
Project Scheduling
with Time Windows

Contributions to Management Science

H. DyckhoffKJ. Finke
Cutting and Packing in Production
and Distribution
1992. ISBN 3-7908-0630-7

R. Flavell (Ed.)
Modelling Reality and Personal
Modelling
1993. ISBN 3-7908-0682-X

M. HofmannlM. List (Eds.)
Psychoanalysis and Management
1994. ISBN 3-7908-0795-8

R. L. D'EcclesialS. A. Zenios (Eds.)
Operations Research Models
in Quantitative Finance
1994. ISBN 3-7908-0803-2

M. S. CatalaniIG. F. Clerico
Decision Making Structures
1996. ISBN 3-7908-0895-4

M. Bertocchi~E. CavalliIS. Koml6si
(Eds.)
Modelling Techniques for Financial
Markets and Bank Management
1996. ISBN 3-7908-0928-4

H. Herbst
Business Rule-Oriented Conceptual
Modeling
1997. ISBN 3-7908-1004-5

C. Zopounidis (Ed.)
New Operational Approaches for
Financial Modelling
1997. ISBN 3-7908-1043-6

K. Zwerina
Discrete Choice Experiments in
Marketing
1997. ISBN 3-7908-1045-2

G. Marseguerra
Corporate Financial Decisions and
Market Value
1998. ISBN 3-7908-1047-9

A. Scholl
Balancing and Sequencing of
Assembly Lines
1999. ISBN 3-7908-1 180-7

E. Canestrelli (Ed.)
Current Topics in Quantitative
Finance
1999. ISBN 3-7908-1231-5

W. BiihlertH. HaxiR. Schmidt (Eds.)
Empirical Research on the German
Capital Market
1999. ISBN 3-7908-1 193-9

M. BonillatT. CasasuslR. Sala (Eds.)
Financial Modelling
2000. ISBN 3-7908-2282-X

S. Sulzmaier
Consumer-Oriented Business Design
2001. ISBN 3-7908-1366-4

C. Zopounidis (Ed.)
New Trends in Banking
Management
2002. ISBN 3-7908-1488-1

WHU Koblenz - Otto Beisheim
Graduate School of Management
(Ed.)
Structure and Dynamics of the
German Mittelstand
1999. ISBN 3-7908-1 165-3

Ulrich Dorndorf

Project Scheduling
with Time Windows
From Theory to Applications

With 21 Figures and 17 Tables

Phy sica-Verlag
A Springer-Verlag Company

Series Editors
Werner A. Muller
Martina Bihn

Author
Dr. Ulrich Dorndorf
INFORM - Institut fur Operations Research
und Management GmbH
PascalstraSe 23
52076 Aachen
Germany
udorndorf@acm.org

ISSN 1431-1941
ISBN 3-7908-1516-0 Physica-Verlag Heidelberg New York

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Dorndorf, Ulrich: Project scheduling with time windows: from theory to applications; with
17 tables I Ulrich Dorndorf. - Heidelberg; New York: Physica-Verl., 2002

(Contributions to economics)
ISBN 3-7908-1516-0

Zugl. Diss., TU Darmstadt, Kennziffer Dl7

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Physica-Verlag. Violations are liable for prosecution
under the German Copyright Law.

Physica-Verlag Heidelberg New York
a member of Bertelsmannspringer Science+Business Media GmbH

0 Physica-Verlag Heidelberg 2002
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Softcover Design: Erich Kirchner, Heidelberg

SPIN 10885915 8812202-5 4 3 2 1 0 - Printed on acid-free and non-aging paper

Acknowledgements

In the preparation of this work I am greatly indebted to the following people who
have given freely of their time and shared their insights to assist in this effort. I am
grateful to my advisors Prof. Dr. Wolfgang Domschke and Prof. Dr. Erwin Pesch,
whose exceptional encouragement and support, kindness and patience have made
this research a most valuable experience. I am indebted to T o h Phan Huy for many
helpful, inspiring and enjoyable discussions, which helped improve this work con-
siderably, and for carefully reading drafts of several chapters. I am also indebted to
Werner Siemes for his help in the evaluation of the gate scheduling algorithm. I also
want to thank Thomas Schmidt for his kind support. Most importantly, my special
thanks goes to my family, without whose support this book could never have been
completed.

Frankfurt am Main, May 2002 U. Dorndorf

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Outline . 4

2 Optimisation Model 7
2.1 The General Single-Mode Model 8

2.1.1 Activities and Resources 8
2.1.2 Temporal Constraints . 9
2.1.3 The Model . 13
2.1.4 Schedules and Performance Measures 14
2.1.5 Domains of Decision Variables 15
2.1.6 Special Cases . 15

2.2 Extension to Multiple Execution Modes 16
2.2.1 Modes . 16
2.2.2 Resources . 17
2.2.3 The Model . 18

3 Constraint Propagation 19
3.1 Constraint Satisfaction and Optimisation 19

3.1.1 The Constraint Satisfaction Problem 20
3.1.2 The Constraint Optimisation Problem 21
3.1.3 Constraint Graphs . 21

3.2 Concepts of Consistency . 22
3.2.1 k-Consistency . 22
3.2.2 Domain-Consistency . 24
3.2.3 Bound Consistency . 24

3.3 Consistency Checking . 25
3.3.1 Consistency Tests . 25
3.3.2 Consistency Checking Algorithms 26
3.3.3 Uniqueness of the Fixed Point 28

3.4 Constraint Programming . 29

...
Vll l CONTENTS

4 Consistency Tests 31
4.1 Basic Concepts . 32
4.2 Consistency Tests for Temporal Constraints 34
4.3 Interval Consistency . 36
4.4 Disjunctive Sub-Problems . 38

4.4.1 Disjunctive Activity Pairs 38
4.4.2 Selection of Disjunctive Sub-Problems 40

4.5 Disjunctive Interval Consistency Tests 41
4.5.1 InputlOutput Test . 41
4.5.2 Input-or-Output Test . 45
4.5.3 InputIOutput Negation Test 48
4.5.4 Summary and Generalisation 49
4.5.5 Relation to Interval Consistency 50
4.5.6 Lower Level Consistency 52
4.5.7 Sequence Consistency Does Not Imply k-b-Consistency . . 54
4.5.8 Shaving . 55

4.6 Cumulative Interval Consistency Tests 56
4.6.1 Unit-Interval Consistency 56
4.6.2 Activity Interval Consistency 57
4.6.3 Minimum Slack Intervals 60
4.6.4 Fully and Partially Elastic Relaxations 61

4.7 Multi-Mode Consistency Tests . 62
4.8 Summary . 64

5 A Branch-and-Bound Algorithm 67
5.1 Previous Solution Approaches . 68
5.2 Constraint Propagation . 70

5.2.1 Consistency Tests . 70
5.2.2 Some Properties of the Earliest Start Times 70

5.3 The Branch-and-Bound Algorithm 71
5.3.1 The Branching Scheme . 71
5.3.2 Upper and Lower Bounds 77
5.3.3 Some Properties of Active Schedules 78

5.4 Computational Experiments . 80
5.4.1 Implementation of the Algorithm 80
5.4.2 Bidirectional Planning . 80
5.4.3 Characteristics of the Test Sets 81
5.4.4 Experiments for the Problem PSltemplC,, 83
5.4.5 Experiments for the Problem PSlprecl C,, 93

. 5.5 Summary 100

6 Multi-Mode Extension of the Branch-and-Bound Algorithm 103
. 6.1 Previous Work 103

. 6.2 Constraint Propagation 105
. 6.3 %Extended Branching Scheme 105

CONTENTS ix

7 Applications in Airport Operations Management 109
. 7.1 Scheduling of Ground Handling Operations 110

. 7.2 Gate Scheduling 112
. 7.2.1 Introduction 112

. 7.2.2 Literature Review 115
. 7.2.3 Problem Description 116

. 7.2.4 Constraint Propagation 124
. 7.2.5 A Branch-and-Bound Algorithm 124

. 7.2.6 Lower Bounds 127
. 7.2.7 Problem Partitioning 129

. 7.2.8 Layered Branch-and-Bound 133
. 7.2.9 Large Neighbourhood Search 135

. 7.2.10 Computational Experiments 136

8 Summary and Conclusions 143

List of Figures 147

List of Tables 149

List of Symbols 151

References 155

Chapter 1

Introduction

1 . Motivation and Objectives

Project scheduling is concerned with the allocation of resources over time to perform
a collection of activities. The decision models that fit within this framework cover
a multitude of practical problems that arise, for example, in such diverse areas as
research and development, software engineering, construction engineering, repair
and maintenance, as well as make-to-order and small batch production planning.

A project is a one-of-a-kind undertaking with specific objectives that has to be per-
formed within a certain time-frame and with limited resource supply. Its manage-
ment roughly consists of (1) a project definition and data acquisition phase, (2) a
scheduling phase and (3) an execution and termination phase during which the sched-
ule is realised and the performance is analysed.

This work deals with the scheduling aspect. The aim is to develop methods for
finding an optimal schedule for a project; this involves the assignment of activities to
resources and the definition of exact activity start and completion times, a task that
is generally difficult whenever multiple activities simultaneously compete for the
same resources. We will not address the topics related to the conception, selection,
and definition of a project, but will rather assume that the project structure is given,
including data on resource availabilities and requirements as well as the necessary
processing times. Likewise, we will not deal with the issues that typically arise
during the realisation phase of a project.

We shall investigate a very general class of deterministic project scheduling problems
that is expressive enough to capture many features commonly found in practical
problems, such as precedence constraints, activity time windows, fixed activity start
times, synchronisation of start or finish times, maximal or minimal activity overlaps,
non-delay execution of activities, setup times, or time varying resource supply and
demand.

2 CHAPTER 1. INTRODUCTlON

In the basic model, technological or organisational requirements are represented
through generalised precedence constraints that allow to specify minimal andlor
maximal time lags, or time windows, between any pair of activities. An activity
may require different amounts of several resource types. Resource requirements and
availabilities may vary in discrete steps over time. While we usually consider the
objective of minimising the overall completion time of a project, most of the results
apply at least for any performance measure that is a non-decreasing function of the
completion or start times of the activities. We will also address multi-mode schedul-
ing, i.e., the situation where a choice must be made between several modes in which
an activity may be processed, reflecting time-resource or resource-resource tradeoffs.
Due to its generality, the basic model also covers many difficult special problems that
have been extensively studied in scheduling research, for example, shop scheduling
problems (Blazewicz et al. 1996).

Throughout this work, we study deterministic project scheduling problems, where
all parameters that define a problem instance are known with certainty in advance.
Deterministic scheduling models are best suited if any possible random influences in
the project execution phase can be expected to be low, and if the problem parameters
can thus be estimated with high accuracy. This may, for instance, be the case if the
activities of a project show a high degree of similarity with previous projects. In
situations where the problem parameters are difficult to estimate and are subject to
significant random influences, the use of deterministic scheduling techniques may,
however, be problematic. As a typical example, deterministic scheduling in the pres-
ence of stochastic activity processing times generally leads to an underestimation of
the expected project duration, as already observed by Fulkerson (1962).

The first models and methods for dealing with large scale projects have been devised
in the late 1950's and early 1960's. The well known Critical Path Method (CPM,
Kelley 1961) and the Metra Potential Method (MPM, Roy 1962) have been designed
for deterministic project scheduling with ordinary or generalised precedence con-
straints, respectively, while the Project Evaluation and Review Technique (PERT,
Malcolm et al. 1959) considers probabilistic activity processing times; the Graph-
ical Evaluation and Review Technique (GERT, Pritsker and Happ 1966) addition-
ally takes probabilistic precedence relations into account. These approaches have
received great attention in the following years. In the early 1970's, Davis (1973)
already reported more than 15 books and 300 papers on the subject.

The original models and methods simplified the problem by concentrating only on
temporal constraints, i.e., by assuming that the availability of resources is not a lim-
iting factor. Beginning in the late 1960's, the models were extended by additionally
considering scarcity of resources. In order to distinguish between the classic CPM,
MPM, and PERT or GERT models on the one hand and models that consider limited
resource availability on the other hand, the latter are usually referred to as resource-
constrained. The underlying problems are much more difficult to solve, as the com-
putational effort for finding an optimal solution usually grows exponentially with
the problem size. For a long time, this has prohibited the use of exact algorithms for
scheduling large practical projects with resource constraints.

I. I. MOTNATOAJ AND OBJECTIVES 3

In the past years, interest and research efforts in the field of resource-constrained
project scheduling have strongly increased, and many new modelling concepts and
algorithms have been developed. Overviews of the advances in models and solu-
tion methods are given in the survey papers of Brucker et al. (1999), Herroelen
et al. (1998), Kolisch and Padman (2001), Drexl et al. (1997), Elmaghraby (1995),
0zdamar and Ulusoy (1995), Icmeli et al. (1993), or Domschke and Drexl (1991).
A gentle introduction to network models for project planning and control is given
by Elmaghraby (1977). Descriptions of the basic classic project scheduling models
for the temporal analysis of projects can be found in many introductory Manage-
ment Science textbooks (e.g. Domschke and Drexl 1998). Applications within the
area of production planning have been described, e.g., by Hax and Candea (1984)
and Giinther and Tempelmeier (2000); Drexl et al. (1994) discuss a special type of
project scheduling software, called Leitstand system, for make-to-order manufactur-
ing management.

The resource-constrained project scheduling problems studied in this work can be
understood as extensions of the basic problem covered by the Metra Potential
Method. Due to the general form of the temporal constraints, the resource-con-
strained version of the problem is particularly difficult to solve. Even the question
for the existence of a feasible schedule can in general only be answered with expo-
nentially growing effort. This may be one the main reasons why, despite the expres-
siveness and high practical relevance of the models, very few attempts have so far
been made to design solution procedures for this class of problems.

The main objective of this work is to help overcome this deficiency by developing
effective and efficient solution methods. The focus will be on the design and eval-
uation of exact branch-and-bound algorithms for finding optimal schedules, but we
shall also study the performance of heuristics based upon truncated versions of these
procedures.

The scheduling methods that will be developed make use of a general purpose prob-
lem solving paradigm that originated in the area of Artificial Intelligence. Constraint
propagation is an elementary technique for simplifying difficult search and optimi-
sation problems by exploiting implicit constraints that are discovered through the
repeated analysis of the domains of decision variables and the interrelation between
the variables and domains that is induced by the constraints. In the past years, con-
straint propagation techniques have been applied with growing success for solving
a number of difficult, idealised scheduling problems, mostly in the area of machine
scheduling. The successful application for solving special cases of the general prob-
lem class studied here suggests that the approach may also be valuable in this con-
text. As a second objective of this work, we shall therefore study the application of
constraint propagation techniques in project scheduling.

A third objective is to demonstrate the practical relevance of the approach taken in
this work. To this end we shall describe possible applications of the models and
methods and extensions thereof in the area of airport operations management.

CHAPTER 1. INTRODUCTION

1.2 Outline

The presentation of the results is organised as follows.

Chapter 2 introduces a decision model for deterministic project scheduling with gen-
eralised precedence constraints, the basic problem considered in this work. The
chapter starts with a description of the entities that make up a project scheduling
problem: activities, resources, precedence relations or time windows, and perfor-
mance measures. After presenting a formal optimisation model, the concept of do-
mains, i.e., sets of possible values of decision variables, is introduced. The general
problem is then related to some well known special cases that are obtained if certain
assumptions about the resource availability and requirements andlor the structure of
the precedence relations are made. Finally, the generalisation to multiple activity
execution modes is described.

Chapter 3 gives a general introduction to constraint propagation. Constraint propa-
gation is a search space reduction technique that tries to remove inconsistent values
from the variable domains, i.e., values that cannot participate in any feasible solu-
tion, by repeated applying a set of consistency tests. The chapter discusses different
concepts of consistency that have been developed in the literature on the constraint
satisfaction problem, and which may serve as a theoretical background for the prop-
agation techniques that will be employed. Consistency checking methods are de-
scribed that control the repeated application of the tests until a fixed point is reached,
i.e., until no further reductions are possible. The chapter concludes by pointing to
constraint programming environments that build upon the concepts that have been
introduced.

Chapter 4 is devoted to consistency tests for project scheduling that may be applied
within the general framework introduced in the preceding chapter. It first describes
simple tests that analyse the precedence constraints of a problem. The emphasis
of the chapter is on interval consistency tests that are based upon the comparison
of the resource supply and demand within certain time intervals. Previous research
has shown that difficult project scheduling problem instances are frequently char-
acterised by a low resource availability, which leads to the existence of many dis-
junctive sub-problems, i.e., sub-problems with unit resource availabilities and re-
quirements. The chapter shows how disjunctive sub-problems can be identified and
selected. Consistency tests that have been proposed in the literature for disjunctive
(machine) scheduling problems are then reviewed and presented within a unifying
framework using numerous examples. Previous results are generalised and related
to the concept of interval work, i.e., the minimum amount of work that must be
performed within a time interval. The search space reduction that is achieved by ap-
plying the tests within a fixed point propagation method is analysed and related to the
theoretical concepts of consistency presented in Chapter 3. The results for disjunc-
tive sub-problems are then extended for the case of arbitrary resource availabilities
and requirements. The chapter finally shows how the results can be used for multi-
mode project scheduling by considering a mode-minimal problem instance, where

all mode-dependent problem parameters are replaced with the minimum possible
values.

Chapter 5 describes a new time-oriented branch-and-bound procedure for the basic
single-mode project scheduling problem, in which the constraint propagation tech-
niques are embedded. The solution method enumerates possible activity start times
by scheduling activities as early as possible or delaying them by reducing their start
time domains in such a way that the construction of non-active (dominated) sched-
ules is avoided. The procedure heavily relies upon the application of constraint prop-
agation techniques at the nodes of the search tree. The algorithm is evaluated for the
problem with generalised precedence constraints as well as for the special case of or-
dinary (finish-start) precedence constraints, using many large sets of benchmark test
problems from the literature with up to five hundred activities,per problem instance.
The results are compared to those of other exact procedures that have recently been
proposed as well as to heuristic results; a detailed analysis of the influence of certain
parameters that characterise a problem instance is given.

Chapter 6 extends the branching scheme for the case of multi-mode project schedul-
ing. The basic idea is to integrate a time-oriented branching over activity start times
with a branching over mode assignments or restrictions.

Chapter 7 discusses applications of the models and methods in the area of airport
operations management. We first describe an application of single-mode project
scheduling with time windows in ground handling, where activities required for ser-
vicing an aircraft while on the ground have to be scheduled. The focus of the chapter
then is on the development of a model and solution procedure for gate scheduling,
i.e., the problem of assigning flights (activities) to airport terminal gates or parking
positions (modes) and scheduling the start and end times of the assignments. The
chapter demonstrates how this problem can be modelled as a special multi-mode
project scheduling problem with time windows. A solution procedure based on the
concepts and techniques developed in the preceding chapters is described and evalu-
ated on large practical test-cases.

This work finishes with a summary and some concluding remarks in Chapter 8.

Chapter 2

Optimisation Model

This chapter describes an optimisation model for deterministic resource-constrained
project scheduling with generalised precedence constraints. It introduces the ba-
sic elements of project scheduling models such as activities, resources, precedence
constraints, as well as performance measures for evaluating the cost or utility of a
schedule.

We are concerned with scheduling a set of activities subject to constraints on the
availability of several shared resources and temporal constraints that allow to spec-
ify minimal and maximal time lags between the start of two activities. The objective
considered in this work usually is to minimise the makespan, i.e., the maximum of
the completion times of all activities, although most of the results hold for any regular
objective function and are frequently also useful for optimising non-regular objective
functions1. The rationale behind the makespan criterion is that an early completion
of the project is advantageous in the sense that it frees resources for other tasks and
reduces the risk of deadline violations and associated penalties; furthermore, signif-
icant payments are often linked to the project completion, and an early completion
thus tends to increase the net present value of a project.

Sometimes, a choice can be made between several modes in which an activity can be
processed. The modes may differ with respect to resource requirements and process-
ing time, and they can influence the tightness of the temporal constraints; the modes
reflect time-resource and resource-resource tradeoffs. Models with multiple possible
execution modes per activity are called multi-mode models; otherwise we speak of
single-mode models.

Using the classification scheme for project scheduling proposed by Brucker et al.
(1999), which extends the well known three-field classification scheme for machine
scheduling introduced by Graham et al. (1979), we will denote the main single-mode
problem considered in this work with PSltemplC,,,,,, for (a) project scheduling with

'Chapter 7 develops a special project scheduling model for a specific application with a non-regular
objective function.

8 CHAPTER 2. OPTIMISATION MODEL

(p) general temporal constraints and (y) the objective of minimising the maximum
completion time. In the alternative classification scheme developed by Herroelen
et al. (1999) the problem can be characterised as m, llgprlCm,,. The multi-mode
extension of the problem will be denoted with MPSJtempl C,,.

The problem PSltempl C,,, is sometimes referred to as resource-constrained project
scheduling problem (RCPSP) with time windows (e.g. Bartusch et al. 1988), RCPSP
with generalised precedence relations (e.g. De Reyck and Herroelen 1998), or
RCPSP with minimal and maximal time lags (RCPSPImax, e.g. Schwindt 1998b).

While the classic resource-constrained project scheduling problem with simple
precedence constraints, i.e. the problem PSlpreclC,,, has been extensively studied,
algorithms for solving the problem PSltempl C,,, or its multi-mode generalisation
have only recently received growing attention in the literature, as documented by the
recent surveys by Brucker et al. (1999), Herroelen et al. (1998), and Kolisch and Pad-
man (2001). This may to some extent have been caused by the fact that the problem
PSlpreclC,,, itself is intractable and belongs to the class of NP-hard optimisation
problems (Blazewicz et al. 1983). As an extension, the problem PSltemplC,, is, of
course, also NP-hard, and even the question whether a problem instance has a feasi-
ble solution is NP-complete in the strong sense (Bartusch et al. 1988)~. As a gener-
alisation of the problem PSItempIC,,, the multi-mode problem MPSlternplC,,, and
its corresponding feasibility problem belong to the same complexity class.

In the following, we will first describe the single-mode project scheduling problem
PSltemplC,, in detail in Section 2.1 and then introduce its multi-mode version in
Section 2.2.

2.1 The General Single-Mode Model

2.1.1 Activities and Resources

The basic entities of the project scheduling problem considered are the activities
or jobs. A set of activities V = (1,. . . , n) has to be processed with the objec-
tive of minimising the makespan, which is the maximum of the completion times
of all activities. Each activity i E V has a specific processing time pi and a start
time Si. While the former is fixed in advance, the latter is a decision variable. The
completion time of an activity is denoted with Ci. Because the processing times
are fixed and deterministic, the completion time of an activity follows from its start
time. By choosing sufficiently small time units we can always assume that the pro-
cessing and start and completion times are non-negative integer values. We study
the non-preemptive version of the problem, which means that activities must not be
interrupted during their processing.

2 ~ ~ - c o m p l e t e n e s s of the feasibility problem is shown by transformation of an NP-complete unit-
time scheduling problem Q. NP-completeness in the strong sense follows from the fact that Q is not a
number-problem.

2.1. THE GENERAL SINGLE-MODE MODEL 9

An activity i requires rik E No units of one or several resources k E R, where R
denotes the set of all resources. For the sake of simplicity we assume that resource
k is available in constant amount Rn, although the results derived in the subsequent
sections also apply if we consider variable resource supply instead: for constant
R k , time varying resource supply can easily be modelled by introducing fictitious
activities (Bartusch et al. 1988). Resources may not be shared and are exclusively
assigned to an activity during its processing. They are reusable, i.e., they are released
when they are no longer required by an activity and are then available for processing
other activities. More precisely, an activity uses exactly rik units of resource k in
any interval of width one starting at time t = Si , . . . , Si + pi - 1, at which these
units are not available for other activities, and releases them at time t = Si +pi. The
set of activities which require resource k is denoted with Vk := {i E V I rir, > 0).

A resource k E R with supply Rk > 1 is also called cumulative resource; in the
special case where Rk = 1 we speak of disjunctive or unary resources, which are
sometimes also referred to as machines.

Resource constraints ensure that in any processing period the resource demand never
exceeds the resource supply. It is possible to define these resource constraints in a
quite elegant way using the concept of a slackfunction, which will be introduced
in Chapter 4. For the time being it is sufficient to define the auxiliary set V (t) of
activities in process at time t , or more precisely, in the right-open interval [t, t + l[.
The resource constraints can then be stated as follows:

A schedule, i.e., an assignment of activity start times Si, . . . , S,, is resource feasible
if it satisfies the above constraint.

1 2.1.2 Temporal Constraints

In general, activities cannot be processed independently from each other due to
scarcity of resources and additional technological requirements. Technological re-
quirements will be modelled by temporal constraints or, as synonyms, generalised
precedence constraints or time windows. Many classic scheduling models such as
the well known resource-constrained project scheduling problem, which is a special
case of the model described here, only use minimal time lags between activities; the
lags reflect finish-start precedence relations between activities and are thus assumed
to be equal to activity processing times. Arbitrary minimal and maximal time lags are
an important generalisation, as they allow to model many characteristics commonly
found in practical scheduling problems. The temporal constraints can for instance
be used to model activity time windows, fixed activity start times, synchronisation of
start or completion times, maximal or minimal activity overlaps, non-delay execu-
tion of activities, setup times, or time varying resource supply and demand (Bartusch
et al. 1988, Elmaghraby and Kamburowski 1992, Neumann and Schwindt 1997).

CHAPTER 2. OPTIMISATION MODEL

1 i before j
2 i meets j

3 i overlaps j

4 i finishedby j

5 i contains j

6 i starts j

7 i equals j

8 i started by j

9 i during j

10 i finishes j
11 i overlapped by j
12 i met by j

13 i after j

I position of activity i
...............................
I i position of activity j

Figure 2.1 : Possible temporal relations between two activities

Figure 2.1 shows the thirteen possible temporal relations between a pair of activities
(Allen 1983)'. We will see that generalised precedence constraints can selectively
enforce or admit any of these relations; this stands in contrast to precedence con-
straints with minimal time lags only and simple completion-start precedence con-
straints.

A generalised precedence constraint (i, j) specifies a minimal or maximal time lag
between two activities i and j and has the general standardised form:

As for the activity start and processing times, we will. assume without loss of gen-
erality that all time lags dij are integer values. If dij > 0 then the constraint (i, j)
can be interpreted as: activity j must start at least dij time units after the start of
i (minimal time lag). If di j 5 0, then the following interpretation applies: j must
start at most di j time units before the start of i (maximal time lag). The set of all
generalised precedence constraints is denoted with E.

3 ~ y swapping the roles of activities i and j in Figure 2.1 the number of relations is reduced to seven.

2.1. THE GENERAL SINGLE-MODE MODEL

dji < 0

Figure 2.2: Visualisation of temporal constraints as forward and backward arcs

Figure 2.3: Visualisation of temporal constraints as time window of j relative to i

Temporal constraints between two activities can always be formulated in the stan-
dardised form (2.2) as start-start relations. Because the activity processing times are
fixed and deterministic, all other possible relations, i.e. start-completion, completion-
start, and completion-completion, can be trivially transformed into start-start rela-
tions.

For example, Relation 2 shown in Figure 2.1 (i meets j) can be enforced by imposing
the two constraints Ci 5 S j and Sj 5 Ci. By substituting Ci := Si +pi, these
constraints can be transformed into the standardised form Si +pi 5 S j and S j -pi 5
si .
Figures 2.2 and 2.3 visualise the temporal constraints between a pair of activities
i and j; the activities are shown as solid rectangles with a horizontal length corre-
sponding to the processing time. Figure 2.2 shows a constraint Si + dij 5 S j with
a strictly positive time lag as a forward arc of length dij starting at time Si; the con-
straint requires that j starts at least dij units of time after the start of i. The figure
also shows a constraint S j + d j i 5 Si with strictly negative time lag as a backward
arc of length dji starting at time S j ; this constraint requires that j starts at most dji
units of time after the start of i. The constraints can also be visualised in the form
shown in Figure 2.3, i.e., as time window of activity j relative to activity i, or vice
versa. By changing the values of di j and dj i the length of the "handles" shown in

12 CHAPTER 2. OPTLMISATTON MODEL

Figure 2.3 can be adjusted and the size or position of the relative time window is
changed. For simplicity, Figures 2.2 and 2.3 use only two activities for visualis-
ing minimal and maximal time lags. In general, the time lags may lead to cycles
involving an arbitrary number of activities.

Many special cases of the problem PSltemplC,,,, do not allow for negative time
lags and cyclic temporal constraints. In the terms of Figure 2.3 this corresponds to
removing the right handle labelled dj i .

Using the time window visualisation, it is easy to see that any of the thirteen possi-
ble relations shown in Figure 2.1 can either be selectively enforced or be admitted
or ruled out by choosing suitable minimal and maximal time lags (and, of course,
processing times).

The set of all temporal constraints can be visualised in an activity-on-node network
or digraph G(V, E) with vertex set V and edge set E with edge weights d i j , where
minimal lags are usually represented as forward edges and maximal lags as backward
edges4. The vertices of G correspond to the activities of the project, and there are
edges between any two activities (vertices) i and j that are linked by a precedence
constraint (i, j) E E. Frequently, two fictitious activities 0 and n + 1 that represent
the start and end of a project are added as source and sink of the network, with edges
from the source to all real activities and from all real activities to the sink, with edge
weights do,i = 0 and di,n+l = pi, for i = 1, . . . , n. For the remainder of this section
we will assume that G contains the fictitious start and end activities.

A time feasible schedule, i.e., one that satisfies all temporal constraints, is an assign-
ment of non-negativenumbers to the activity start times S1 , . . . , s,, or, equivalently,
to the vertices of G, such that

The numbers fulfilling (2.3) are also called potentials in graph theory (Berge 1985),
and there is a well developed theory about them that also forms the basis of the
Metra-Potential-Method (MPM) for project networks (Roy 1962), which deals with
start-start time lags and also covers the temporal constraints of the model discussed
here.

It is well known that there exists a time feasible schedule (a potential for G) iff
G has no directed circle of positive length (Bartusch et al. 1988). Such a cycle
would correspond to a logical contradiction in the temporal constraints. For example,
consider a cycle involving only two activities that is formed by the constraints Si +
3 5 Sj and S j - 2 < S i ; the length of the cycle is 1; while the first constraint
requires that activity j starts at least 3 units of time after i, the second constraint
demands that i starts at most 2 units before j.

The existence of a time feasible schedule can be tested by computing the unique
component-wise minimum solution of (2.3), which gives the earliest possible starting

4 ~ o r all graph theoretic notions not defined here see LawIer (1976). For an introduction to network
representations of projects see Elmaghnby (1977).

2.1. THE GENERAL SINGLE-MODE MODEL 13

times. This schedule, which is usually not resource feasible, is also called the earliest
start schedule. The earliest start schedule can be efficiently computed by standard
graph algorithms, e.g. with effort O(n3) by the Floyd-Warshall Algorithm (Lawler
1976). Alternatively, the earliest start schedule can be derived through constraint
propagation, as shall be explained in the following chapters.

2.1.3 The Model

The problem PSltemplC,, can now conceptually be stated as follows:

S i + d i j < S j , V (i , . i)EE , (ii)

CiEv(t) rik 5 R k , Vt E No, Vk E R, (iii)
Vi E V . (i.1

A schedule S = (S1, . . . , S,) is an assignment of all activity start times. S is feasible
if it satisfies all precedence constraints (ii) and resource constraints (iii). Reformu-
lating the problem, the task is to find a feasible schedule with minimal makespan.

There are several other ways of formally modelling the problem PSltempJC,, that
mainly differ in the way how resource constraints are represented. Many formula-
tions have originally been proposed for the problem PSlpreclC,,,, i.e., the exten-
sively studied variant of the problem PS(temp(C,,, where all time lags dij are equal
to the activity processing times pi.

The formulations are frequently based on using time indexed binary decision vari-
ables zit that take the value one if an activity i E V finishes in (or is processed in, or
starts before, etc.) period t and zero otherwise. The first formulation of this type for
the problem PSlpreclC,, has been described by Pritsker et al. (1969).

Other formulations are based on the concept of using forbidden sets (Bartusch et al.
1988) to represent the resource constraints. A forbidden set of activities is a set
N S V for which

rik > RI, for some k t R.
i € N

Condition (2.4) is the negation of (2.1); it is time independent due to the constant
resource demands and supplies. Given a set N of all forbidden sets, a schedule S
is resource feasible iff no set N E N is scheduled simultaneously in any period t.
A disadvantage of the description by forbidden sets is the fact that the number of
required (minimal) forbidden sets may grow exponentially with the problem size,
although it seems that for many applications this does not cause problems (Stork and
Uetz 2000).

14 CHAPTER 2. OPTIMISATION MODEL

Forbidden set formulations have been used, e.g., by Bartusch et al. (1988) and by
Alvarez-Valdes and Tamarit (1993). A formulation based on the complementary
concept of compatible sets of activities has been proposed by Mingozzi et al. (1998).

2.1.4 Schedules and Performance Measures

A schedule S = (Sl , . . . , Sn) is an assignment of all activity start times. The quality
of a schedule is usually measured by a cost or utility function n : Rn + IR that
transforms the vector of start or completion times onto a one-dimensional scale. The
makespan function C,, := n(S) := rnaxi~v Si + pi is an example of such a
transformation.

When comparing two schedules S and S' we say that S 5 S' if no activity in S
starts later than in S':

Further, S < S' if S 5 S' and additionally at least one activity in S starts earlier:

A schedule S is active if it is feasible and if there exists no other feasible schedule
S' such that S' < S . In other words, S is active, if no activity can be started earlier
without violating either one of the precedence or resource constraints. If a schedule
S is not active and some activity i can therefore be started earlier than at time Si,
then we say for short that i can be lefr-shifed in S.

A detailed discussion of active schedules and the related concepts of semi-active and
non-delay schedules in the context of project scheduling is given by Sprecher et al.
(1995).

The definition of active schedules immediately leads to the following simple and
well known observation: any solution method which minimises the makespan func-
tion can refrain from generating non-active schedules, since there always exists a
corresponding active schedule with a lower or identical makespan. We shall exploit
this observation in the branch-and-bound procedure developed in Chapter 5.

The observation can be generalised for the class of regular measures of pel3cormance
(Conway et al. 1967) which is defined as the class of all objective functions that are
non-decreasing with respect to the component-wise ordering of Rn, i.e., for which

Regular measures of performance cover the standard objective functions used in
scheduling such as makespan, weighted flowtime, or tardiness costs. The condition
is general enough to allow for many cost terms that occur in practical applications.

I

2.1. THE GENERAL SINGLE-MODE MODEL 15

2.1.5 Domains of Decision Variables

We will now introduce the concept of domains of decision variables, which will
prove useful in the following chapters. Each activity start time variable Si has a
current domain As, c No of possible values. Because the activity start times are
the only decision variables in the single-mode model, we will also use the shorter
notation Ai instead of As, when no confusion is possible and simply speak of the
domain of activity i; we shall use the explicit notation when dealing with multi-mode
models. We will later assume that some real or hypothetical upper bound UB on the
optimal makespan is known or given, so that even Ai C [0, UB - pi] holds. This is
necessary, since most of the constraint propagation methods that will be applied can
only deduce a domain reduction if the current domains are finite. If no initial upper
bound is given we use the trivial upper bound

The set of current domains of all activities is denoted with A := {Ai I i E V). For
an activity i E V, ESi(A) := min Ai is the earliest start time, ISi(A) := m a Ai
the latest start time, &(A) := ESi (A) + pi the earliest completion time and
LCi (A) := ISi(A) +pi the latest completion time of i. If no confusion is possible,
then we will write ESi, ISi , etc., for short.

A schedule S is called domain feasible with respect to a set A of current domains if
the current domain of each activity still contains the start time of this activity in S ,
i.e., if we can arrive at S by repeatedly reducing the current domains.

Given a set A of current domains, the set of all activities V can be naturally parti-
tioned into a set of scheduled and non-scheduled, or free, activities. Clearly, if the
current domain of an activity i contains exactly one entry, then i must start at that
time and can be considered as scheduled. Hence

is the set of scheduled activities, and

is the set of free activities. For all scheduled activities i E VS(A), the start time is
defined through Si (A) := ESi (A) = LSi (A).

2.1.6 Special Cases

The general problem PSItempI C,,, contains several special cases that are obtained if
the admissible precedence constraints are restricted in certain ways or if the resource
supply takes a special form.

16 CHAPTER 2. OPZTWSATION MODEL

A first class of simple problems is obtained if the resource constraints are relaxed,
i.e., if resource supply is unlimited. This first leads to a (resource-un-constrained)
project scheduling problem with generalised precedence constraints, a problem that
is addressed by the well known Metra-Potential Method (MPM) for the temporal
analysis of project networks. The problem covered by the famous Critical Path
Method (CPM) is obtained if, additionally, only simple precedence constraints are
allowed, i.e., if the time lags dij between a pair of activities i and j are equal to the
processing time of the preceding activity i: dij = Pi, V (i , j) E E.

In contrast to the simple problems with unlimited resource supply, problems with
resource constraints are generally difficult to solve.

One of the best studied special cases of the problem PSltempJC,, is the classic
RCPSP with simple precedence constraints, i.e., the problem PSlpreclC,,,, which
generalises the problem covered by the CPM method by adding resource constraints.

It has been shown that several seemingly unrelated optimisation problems can be for-
mulated as instances of the problem PSlpreclC,,. Examples include the bin pack-
ing (Garey et al. 1976) and the assembly line balancing problem (Elmaghraby 1977,
Sprecher 1994). The relation of the multi-mode problem MPSlprecl C,, to the knap-
sack packing problem as well as to two- and three-dimensional packing and cutting
problems has been discussed by Hartmann (1999).

The problem PSlpreclC,,,, with ordinary precedence constraints is in turn a gener-
alisation of several well known, difficult optimisation problems studied in machine
scheduling, where unary, or disjunctive, resources are considered. Examples include
shop scheduling problems such as the job shop, flow shop, and open shop problems
(Blaiewicz et al. 2001) as well as many other, more special problems. We will see in
the following chapters that some solution techniques originally developed for shop
scheduling can be successfully applied for solving project scheduling problems.

A special problem that has been called Generalised RCPSP (Demeulemeester and
Herroelen 1997a, Klein 2000b) is obtained if the RCPSP is extended by allowing
for arbitrary minimal time lags, combined with the assumption that the precedence
constraints are acyclic.5

2.2 Extension to Multiple Execution Modes

2.2.1 Modes

In multi-mode scheduling, an activity may be processed in one of multiple possible
execution modes, which differ with respect to the necessary processing time and the
resource requirements. Furthermore, the time lag between a pair of activities may

5 ~ h e fact that time lags of value zero are legal would otherwise allow for cycles of length zero, cor-
responding to a synchronisation of start times; this would slightly complicate the design of enumeration
schemes.

2.2. EXTENSION TO MULTIPLE EXECUTION MODES 17

vary depending on the chosen mode. The modes reflect tradeoffs between required
processing time and resource consumption on the one hand as well as tradeoffs be-
tween the consumption of different types of resources on the other hand; additionally
the time lags between activities may vary depending on the chosen modes.

The mode Mi in which an activity i E V is processed thus becomes an additional
decision variable, which can take values from the associated set M i of all admissible
modes. The current domain of Mi is denoted with AM;, and initially AM^ = Mi.

As the processing time and resource requirements of an activity now depend on the
chosen mode, they are indexed accordingly: pi, is the time required for processing
activity i in mode p E M i , and ri,k is the amount of resource k E R needed for
executing activity i in mode p. The mode dependent time lag that must pass between
the start of two activities i, j E V if i is performed in mode p E M i and j in mode
v E M j is denoted with diPj,.

The initial mode domain of an activity can be reduced by removing inefficient modes.
In multi-mode models with simple finish-start precedence constraints, a mode is
called ineficient if its processing time is not shorter and its resource requirement
is not less than that of another mode of the same activity. If generalised precedence
constraints are allowed, this condition must be strengthened by additionally consid-
ering the mode-dependent time lags: A mode p E AM; of activity i is inefficient if
its processing time is not shorter and its resource requirement is not less than that of
another mode of i and if the time lags diPjv and djvi, associated with mode p and
activity i are not less than for another mode of i, for all j E V, for which (i, j) E &
or (j, i) E E, and all v E AMj .

2.2.2 Resources

In multi-mode project scheduling it is common practice to distinguish between re-
newable and non-renewable resources, as originally proposed by Slowinski (1980)
and Weglarz (1981).

So far, we have only introduced renewable resources, which are constrained on a per
period basis. The required number of units of a renewable resource are assigned to
an activity during its processing; upon completion of the activity, the resource units
are released again and are then available for processing other activities. Examples of
renewable resources include manpower and machines.

Non-renewable resources are globally constrained for the entire planning horizon.
In contrast to renewable resources, they are consumed by processing an activity
and cannot be reused. Money is an example for a non-renewable resource. Non-
renewable resources can thus be used to model budget constraints for a project. A
non-renewable resource is redundant and may be removed if the mode-dependent
maximal total demand for the resource is at most equal to the resource supply. Non-
renewable resources need only be considered in multi-mode problems as they must

18 CHAPTER 2. OPTIMISATION MODEL

always be redundant in instances of single-mode problems (or the problem instance
does not have a solution).

Resources that are constrained per period as well as for the entire project are called
doubly constrained. A doubly constrained resource can be modelled by introducing
a renewable and a non-renewable resource.

Another type of resource that allows to model resource supply restrictions for a sub-
set of periods and that is called partially renewable has recently been proposed by
Bottcher et al. (1999).

In the following we will distinguish between the set RP of renewable and the set
R" of non-renewable resources, i.e., R = RP U R V, and denote the supply of a
renewable (non-renewable) resource k E R with R i (RL).

2.2.3 The Model

The problem MPSJtemplC,,,, can now conceptually be stated as follows:

min{max{Si + &Mi }} s.t.
zEV

(i)

Si + d i ~ ; jMj I Sj, v(i, j) E E, (ii)

CiEv(t) T i ~ ~ k 5 RL, vt E No, vk E RP, (iii)
xiEv 7 ' i ~ ; k 5 Ri, vt No , \Jk E R V , (iv)
si E NO, Vi E V . (v)
Mi E Mi, Vi E V. (4

A schedule (S, M) = (S1,. . . , S,, MI, . . . , M,) is an assignment of all activity
start times and modes. (S, M) is feasible if it satisfies all precedence constraints (ii)
and constraints for renewable (iii) and non-renewable (iv) resources.

The multi-mode project scheduling problem MPSltemplC,, can be conceptually
divided into two sub-problems. The mode assignment problem consists of finding
a mode vector that satisfies constraints (iv) and (vi); it is NP-complete for prob-
lems with at least two non-renewable resources (Kolisch 1995). Given a mode-
assignment, the scheduling sub-problem defined by (i) - (iii) and (v) is of the type
PSI temp 1 Cmx.

Chapter 3

Constraint Propagation

The branch-and-bound algorithms that will be developed in the following chapters
rely to a great extent on efficient constraint propagation techniques. Constraint prop-
agation is a problem reduction technique that transforms problems into equivalent
problems that are hopefully easier to solve. The basic idea is to reduce the search
space of a problem instance through the repeated analysis and evaluation of variables,
their domains, and the interdependence between the variables that is induced by the
set of constraints. The goal is to detect and remove inconsistent assignments that can-
not participate in any feasible solution. A whole theory is devoted to the definition of
different concepts of consistency, which may serve as a theoretical background for
the propagation techniques that we will employ. This theory has been developed for
the constraint satisfaction problem (CSP) or constraint optimisation problem (COP);
the project scheduling problems examined in this work can be understood as special
subclasses of the CSP or COP.

In this chapter we shall introduce the standard CSP and COP and the important con-
cepts related to it. Section 3.1 gives a short introduction to these problem classes;
Section 3.2 then describes different concepts of consistency, and Section 3.3 ad-
dresses consistency checking algorithms. Section 3.4 points to some software sys-
tems and languages that have been developed based on concepts from CSP research
and help in the formulation and solution of CSPs.

3.1 Constraint Satisfaction and Optimisation

A CSP is composed of a finite set of variables, each of which is associated with a
finite domain, and a set of constraints that restrict the values that the variables can
simultaneously take. The task is to assign a value from its domain to each variable
so that all constraints are satisfied. The COP additionally requires that the solution
optimises some objective function. The problem PSltemplC,,,, introduced in Chap-

20 CHAPTER 3. CONSTRAINT PROPAGATION

ter 2 is an example of a COP. Any COP can be transformed into a related CSP by
replacing the objective function with a constraint on the objective value. By repeat-
edly restricting the value, e.g. through bi-section over the interval defined by a bound
on the objective function value and an initial guess for the optimal value, a COP can
be solved by repeatedly solving related CSPs.

The CSP was first formalised and studied by Huffman (1971), Clowes (1971) and
Waltz (1975) in vision research for solving line-labelling problems. Haralick and
Shapiro (1979, 1980) and Mackworth (1992) discuss general algorithms and appli-
cations of CSP solving. Hentenryck (1992) and Cohen (1990) tackle the CSP from
a constraint logic programming viewpoint. Comprehensive introductions to the CSP
are provided by Meseguer (1989), Kumar (1992) and Dorndorf et al. (2000b). An
exhaustive overview of the theory of constraint satisfaction and optimisation is given
by Tsang (1993). We will only present the necessary aspects and start with some
basic definitions.

The finite domain of a variable is the set of all values that can be assigned to the vari-
able. For many interesting problems, the assumption that the domains are finite is not
a serious restriction. For example, for the project scheduling problems introduced in
Chapter 2 the domains of the start and completion times can easily be made finite by
imposing a bound on the makespan. The domain associated with the variable x is de-
noted with A,. If V = 1x1,. . . , x,) is a set of variables and A = {A,, , . . . , A,,,)
the set of their domains, then an assignment a = (al , . . . , a,) is an element of the
Cartesian product A,, x . . . x A,,, ; in other words, an assignment instantiates each
variable xi with a value ai E A,; from its domain.

A constraint c on A is a function c : A,;, x . . . x A,;, + {true, false), where V' :=
{xil, . . . , xi,} is a non empty set of variables. The cardinality IV'I is also called the
arity of c. If 1V'I = 1 or IV'I = 2 then we speak of unary and binary constraints,
respectively. An assignment a E A,, x . . . x A,,, satisfies c if c(ai,, . . . , ai,) = true.

Given a set of current domains A, a constraint is called resolved if it is satisfied for
all assignments a E A,, x . . . x AXn, otherwise it is (still) unresolved.

3.1.1 The Constraint Satisfaction Problem

An instance P of the constraint satisfaction problem (CSP) is defined by a tuple
P = (V, A, C), where V is a finite set of variables, A the set of associated domains
and C a finite set of constraints on A. An assignment a is feasible if it satisfies all
constraints in C. A feasible assignment is also called a solution of P. We denote
with F (P) the set of all feasible assignments (solutions) of P.

Given an instance P of the CSP, the associated task is to find a solution a E 3 (P)
or to prove that P has no solution.

The goal of constraint propagation is to transform a problem P into a reduced but
equivalent problem P' that is easier to solve. The reduced problem P' usually differs
from P in the sense that the variable domains are reduced or that new, redundant

3.1. CONSTRAINT SATISFACTION AND OPTIMISATION 21

constraints, which may help in deducing future domain reductions, have been added.
Problem reduction is an iterative process; we will generally assume that A and C
refer to the current domain set and constraint set of the current reduced problem.
Whenever we must explicitely refer to the original domain set and constraint set in
P to avoid confusion, we will use the notation AO and C O .

3.1.2 The Constraint Optimisation Problem

As distinguished from the constraint satisfaction problem, the constraint optimisa-
tion problem searches for a solution which optimises a given objective function. We
will only consider the case of minimisation, as maximisation can be handled sym-
metrically.

An instance of the constraint optimisation problem (COP) is defined by a tuple P =
(V, A , C , z) , where (V, A , C) is an instance of the CSP and z an objective function
z : A,, x . . . x AZn + a. Defining

Zmin(P) :=
otherwise,

an assignment a is called an optimal solution of P if a is feasible and z(a) =
zmin(P).
Given an instance P of the COP, the associated task is to find an optimal solution of
P and to determine z,i, (P) .

The project scheduling problems introduced in Chapter 2 can be seen as special
cops .

It is not hard to see that the CSP and the COP are intractable and belong to the class
of NP-hard problems. For a more detailed discussion, which exceeds our needs, we
refer to Garey and Johnson (1979) or Tsang (1993).

3.1.3 Constraint Graphs

An instance of the CSP can be represented by means of a constraint graph which vi-
sualises the interdependencies between variables that are induced by the constraints.
If we restrict our attention to unary and binary constraints then the definition of a con-
straint graph G is quite straightforward. The vertex set of G corresponds to the set
of all variables V , while the edge set is defined as follows: two vertices xi, xj E V,
i f j , are connected by an undirected edge if there exists a constraint c(xi, x j) E C .
This can be generalised to constraints of arbitrary arity using the concept of hyper-
graphs (Tsang 1993).

For a resource-un-constrained project scheduling problem that contains only prece-
dence constraints the constraint graph of the problem has the same structure as the
activity-on-node precedence network but is undirected.

22 CHAPTER 3. CONSTRAINT PROPAGAT7ON

3.2 Concepts of Consistency

As the domains of a CSP instance P are finite, P can in principle be solved by a
simple generate-and-test algorithm that enumerates all assignments a E A,, x . . . x
A,,, , verifies whether a satisfies all constraints c E C, and stops if the answer is
"yes". The COP can be solved by enumerating all feasible assignments and storing
the one with minimal objective function value.

Of course, this method is not practicable due to the size of the search space which
grows exponentially with the number of variables. In the worst case, all assignments
of a CSP instance have to be tested which cannot be carried out efficiently except
for problem instances too small to be of any practical value. It is thus worth to look
for methods that can reduce the search space prior to starting (or during) the search
process.

One such method of search space reduction which only makes use of simple infer-
ence mechanisms and which is not problem specific is known as constraintpropaga-
tion. The origins of constraint propagation go back to Waltz (1972) who almost three
decades ago developed a now well-known filtering algorithm for labelling three-
dimensional line diagrams.

The basic idea of constraint propagation is to make implicit constraints more visi-
ble through the repeated analysis and evaluation of the variables, domains and con-
straints describing a specific problem instance. This makes it possible to detect and
remove inconsistent variable assignments that cannot participate in any solution by
a merely partial problem analysis.

Over the years, different concepts of consistency have been developed that allow to
identify inconsistent assignments. In this context, the term consistency with regard
to certain properties must be understood in the following way: variable assignments,
whose presence would cause these properties to be false, have been ruled out. The
different types of consistency guarantee different properties. Roughly speaking, a
concept of consistency defines the maximal search space reduction that is possible
regarding some specific properties. It is worth pointing out that the term consistency
as used here is neither a necessary nor a sufficient condition for a problem to be
solvable.

The first concepts of consistency have been formalised by Montanari (1974) who
introduced node-, arc- and path-consistency. Roughly speaking, these concepts are
based on the examination of constraints containing k variables, where k = 1,2,3,
with their names being derived from the presentation of a CSP instance as a con-
straint graph. These concepts have been generalised by Freuder (1978) to the notion
of k-consistency. We will describe the basic ideas of k-consistency in an informal
way; a detailed analysis is given by Tsang (1993).

3.2. CONCEPTS OF CONSISTENCY 23

In order to define k-consistency we have to introduce the notion of k-feasibility. Let
a = (al, . . . , a,) be an assignment of a given CSP instance. A partial assignment
of k variables (ai1, . . . , ai,) is k-jieasible iff it satisfies all constraints which at most
contain these variables1. The motivation of the definition of of k-consistency is
based on the following observation: a can only be feasible if, for a given k, any
partial assignment (ai, , . . . , ai,) is k-feasible. Inversely, any partial assignment of
k variables that is not feasible is not interesting and hints at an inconsistent state.

In the words of Freuder (1978), k-consistency is established if, for any (k - 1)-
feasible assignment of a set of k - 1 variables (taken from a set AZi1 x . . . x A,,,-l)
and any choice of a k-th variable, there exists an assignment of the k-th variable
(taken from the set A,,) such that the assignment of the k variables taken together
is k-feasible.

It is tempting to believe that k-consistency as defined above implies (k - 1)-consist-
ency, but, as Freuder (1982) has pointed out, a CSP which is k-consistent needs not
be (k - 1)-consistent. This can be seen by observing that k-consistency only requires
that any (k - 1)-feasible assignment can always be extended to a k-th variable such
that the assignment of all k variables is k-feasible; however this does not rule out
the possible existence of (k - 1)-infeasible assignments. In view of this weakness,
Freuder (1982) has introduced the concept of strong k-consistency, which addition-
ally requires j-consistency for 1 < j < k.

The property of k-consistency is always relative to the sets of possible assignments
A,,l x . . . x A,;,-l and A,;l: . To establish k-consistency, starting from an incon-
sistent state, thus implicitly requires a (k - 1)-dimensional administration of these
sets. In the beginning, the sets contain all assignments; inconsistent assignments, i.e.,
tuples (ail, . . . , ~ i , - ~) , are then eventually discarded until k-consistency is reached.

1-consistency is quite easy to achieve: if xi E V is a variable and c(xi) a unary
constraint then all assignments ai E A$, for which c(ai) = false are removed.
In order to establish 2-consistency, pairs of variables xi, x j E V and binary con-
straints c(x: , xj) have to be examined: an assignment ai E A,; can be removed
if c(ai, aj) = false for all a j E AZj. Analogously, 3-consistency requires the ex-
amination of triples of variables xi, xj, xk E V and removes pairs of assignments
(ai, a j) E A,; x A,,, etc. As already mentioned, 1- and 2-consistency coincide
with the notions of node- and arc-consistency, whereas 2- and 3-consistency taken
together are equivalent to path-consistency (Tsang 1993). 1-, 2- and 3-consistency
have also been summarised under the name of lower-level consistency as opposed
to higher-level consistency, since only small subsets of variables, domains and con-
straints are evaluated simultaneously.

An optimal algorithm for achieving k-consistency has been described by Cooper
(1989). The algorithm requires testing all subsets of (k - 1)-feasible assignments

' k-feasibility depends on the chosen set of variables. We therefore assume that a partial assignment
always identifies the corresponding set of variables.

24 CHAPTER 3. CONSTRAINT PROPAGATION

which is only practicable for small values of k. We therefore describe two weaker
concepts of consistency.

3.2.2 Domain-Consistency

The first concept is based on only storing the 1-dimensional sets A,, for all vari-
ables xi E V. For reasons near at hand, A,, is also called the current domain of xi.
Intuitively, we can at most discard all values ai E A,; for which there exist no as-
signments a j E AXj, j # i, such that (al, . . . , ai, . . . , a,) is feasible. Alternatively,
the feasibility condition can be replaced with the sufficient condition of &feasibility
which leads to a lower level of consistency. We refer to this concept of consistency as
domain-consistency or k-d-consistency. Domain-consistency has been used, among
others, by Nuijten (1994).

Formally, k-d-consistency for a CSP instance I=' = (V, A, C) can be defined as fol-
lows:

1. The set of current domains A is k-d-consistent for 1 5 k 5 n if, for all subsets
V' := {xi,, . . . ,xi,-,} of k - 1 variables and any k-th variable xi, 4 V', the
following condition holds:

vaik E Az;,

3ail E Ax,, , . . . , 3aik-, E A,;,-, : (ail, . . . , ai,) is k-feasible.

2. The set of current domains A is strongly k-d-consistent for 1 5 k 5 n if A is
kt-d-consistent for all 1 5 k' 5 k.

The following naive algorithm establishes k-d-consistency: start with A,; := A:;
for all zi E 1); choose a variable xi, and an assignment ai, E A,,, ; test whether
there exists a subset of k- 1 variables V' := {xi,, . . . , xi,-, } which does not contain
xik, SO that (ail,. . . , ai,-, , ai,) is not k-feasible for all ail E A,,, , . . . , ai,-, E
A,;,-, ; if the answer is "yes" then remove the assignment ai, from AXi, ; repeat
this process with other assignments and/or variables until no more domain reductions
are possible.

We did not yet discuss how to establish n-d-consistency other than to apply the naive
algorithm, so an important question is whether there exists an efficient implementa-
tion after all. Before we deal with this issue, however, we will first present another
concept of consistency.

3.2.3 Bound Consistency

Storing all values of the current domains A,, , . . . , A,, still might be too costly.
An interval oriented encoding of A,; provides an alternative if A,; is totally or-
dered, for instance, if A,; 2 No. In this case, we can identify A,; with the

3.3. CONSISTENCY CHECKTNG 25

interval [l i , ~ i] := {li, li + 1,. . . ,ri - l , r i) , so that only the "left" and "right"
bounds of A,; have to be stored. Therefore, this concept of consistency is usu-
ally referred to as bound-consistency or k-b-consistency. Bound-consistency has
been discussed, among others, by Moore (1966), Davis (1987), van Beek (1992) and
Lhomme (1993).

Formal1y;k-b-consistency for a CSP instance IJ = (V, A, C) can be defined as fol-
lows:

1. The set of current domains A is k-b-consistent for 1 < k < n if, for all subsets
V' := {xi,, . . . , xi,-,} of k - 1 variables and any k-th variable xi, $ V', the
following condition holds:

yai, E {li, , ri,),
3ail E A x i 1 , . . . , 3aik-l E Az;,-, : (ai l , . . . , ai,) is k-feasible.

2. The set of current domains A is strongly k-b-consistent for 1 < k < n if A is
kl-b-consistent for all 1 5 k' < k.

A naive algorithm for establishing k-b-consistency is obtained by slightly modifying
the naive k-d-consistency algorithm: instead of choosing ai, E A,;,, we may only
choose (and remove) ai, E {li , , r;,).

As a negative side effect, only the bounds li and ri, but no intermediate value
li < ai < ri can be discarded except if, due to the repeated removal of other
assignments, ai eventually becomes the left or right bound of the current domain.
Bound-consistency therefore is a weaker concept than domain-consistency. How-
ever, establishing n-b-consistency for the CSP still is an NP-hard problem.

3.3 Consistency Checking

In general, establishing k-consistency is ruled out due to the complex data structures
that are necessary for the administration of the k-feasible subsets. In the last subsec-
tion we have further seen that establishing the weaker n-d- or n-b-consistency still is
an NP-hard problem. Consequently, using constraint propagation in order to solve
the CSP is only sensible if we content ourselves with approximations of the concepts
of consistency that have been introduced.

An important task is to derive simple rules which lead to efficient search space re-
ductions, but at the same time can be implemented efficiently with a low polynomial
time complexity. These rules are called consistency tests.

3.3.1 Consistency Tests

Consistency tests are generally described through a condition-instruction pair A and
B. Intuitively, the semantic of a consistency test is as follows: whenever condition A

26 CHAPTER 3. CONSTRAINT PROPAGATlON

is satisfied, B has to be executed. A may be, for instance, an equation or inequation,
while B may be a domain reduction rule. We will often use the shorthand notation
A * B for consistency tests.

Example 1. (Consistency Tests)
Let us derive a simple consistency test for the constraint xl - 6 5 x2. Given an
assignment a1 of X I , we can remove a1 from A,, if there exists no assignment
a2 E A,, satisfying a1 - 6 5 a2. However, we do not really have to test all
assignments in A,, , because if the constraint is not satisfied for a2 = max A,, then
it is not satisfied for any other assignment in A,, and vice versa. Hence, for any
a1 E A,, 9

a1 - 6 > max A,, ==+ A,, := A,, \ {al)

defines a consistency test.

Of course, this example is quite simple and it may not seem clear whether any ad-
vantages can be drawn from such elementary deductions. Surprisingly, however, an
analogously simple analysis will allow us to derive powerful consistency tests, as we
will see in the following chapters.

Consistency tests lead to the deduction of additional constraints. Frequently, though
not necessarily, the newly discovered constraints are unary and allow to directly
reduce individual variable domains and can thus be stated in the form of a domain
reduction rule, as in the example above. Consistency tests of this type are also called
domain consistency tests.

Let us derive a formal definition of domain consistency tests. Let O := 2*:1 x . . . x
2A:n, where 2A0, denotes the set of all subsets of A:;. Given A, A' E O, that is,
A = {A,, I xi E V) and A' = {Ah, I E V) , we say that

1 . A c A' iff Axe A;; for all xi E V ,

2. A 5 A' iff A c A, and there exists xi E V , such that A,; A',,.

Domain consistency tests have to satisfy two conditions. Firstly, current domains
are either reduced or left unchanged. Secondly, only assignments ai E A,, are
removed for which no feasible assignment a = (al , . . . , ai, . . . ,a,) exists. Since
we do not need the second condition in the following examination, only the first one
is formalised:

A domain consistency testy is a function y : O + O satisfying y(A) c
A for all A E 0.

3.3.2 Consistency Checking Algorithms

Given a set of consistency tests, these tests have to be applied in an iterative fashion
rather than only once in order to obtain the maximal domain reduction possible. The

3.3. CONSISTENCY CHECKRVG 27

Algorithm 1 Computing the fixed point CP(A)
Require: J? is a set of consistency tests.

repeat
sold := A;
for all (y E I?) do

A := y(A);
end for

until (A = AOld).

reason for this is that, after reducing several domains, additional domain adjustments
can possibly be derived using some of the tests which previously failed in deducing
any reductions. Therefore, the reduction process is carried out until no more up-
dates are possible. Algorithm 1 shows the basic reduction principle. Given a set of
consistency tests I? and a set of current domains A, the algorithm computes CP(A).
Obviously, CP(A) is a fixed point. This point does not have to be unique and in
general depends upon the order of the application of the consistency tests. However,
we will only study consistency tests which result in a unique fixed point. These tests
satisfy a monotony condition described below, which, as we will see, is sufficient for
the uniqueness of the fixed point.

The major problem with Algorithm 1 is that the revision of even a single domain
in some iteration forces a11 consistency tests to be re-applied for all variables in the
next iteration, even though only a small number of constraints and variables are
affected by this reduction. Variations of Algorithm 1 overcome this drawback by
only applying the tests for those constraints and variables that are possibly affected
by a previous revision.

Efficient algorithms for establishing I-, 2- and 3-consistency and an analysis of
their complexity have been presented, among others, by Montanari (1974), Mack-
worth (1977), Mackworth and Freuder (1985), Mohr and Henderson (1986), Dechter
and Pearl (1988), Han and Lee (1988), Cooper (1989) and Van Hentenryck et al.
(1 992). Improved arc-consistency algorithms AC-6 and AC-7 have been presented
by Bessiere (1994) and Bessi2re et al. (1999). Chen (1999) has recently proposed
a new arc-consistency algorithm, AC-8, which requires less computation time and
space than AC-6 and AC-7. Cooper (1989) developed an optimal algorithm which
achieves k-consistency for arbitrary k. Jeavons et al. (1998) have identified a number
of constraint classes for which some fixed level of local consistency is sufficient to
ensure global consistency. They characterise all possible constraint types for which
strong k-consistency guarantees global consistency, for each k 2 2. Other methods
for solving the CSP through the sole application of constraint propagation (solution
synthesis) have been proposed by Freuder (1978), Seidel(1981) and Tsang and Fos-
ter (1990). The deductive approach proposed by Bibel (1988) is closely related to
solution synthesis.

28 CHAPTER 3. CONSTRAINT PROPAGATION

The basic constraint propagation algorithm that is actually used in our implementa-
tions is a variant of the AC-5 arc-consistency algorithm described by Van Hentenryck
et al. (1992). Like all improved consistency algorithms, it works with a queue con-
taining elements to reconsider. A queue element consists of a constraint and a value
(or a set of values) that has been removed from the domain of some variable ap-
pearing in the constraint and justifies the need to reconsider the constraint. In each
iteration of the propagation algorithm, a constraintlvalue pair is removed from the
queue and all consistency tests are evaluated that are associated with this constraint.
If any of these tests removes a value ai from a domain, say from AXi, then all con-
straints which contain the variable xi and which are not yet resolved are stored in
the queue, together with the information that ai has been removed from A,;. This
process is repeated until the queue is empty and the fixed point is reached. The rea-
son for storing a value together with a constraint is that this may allow to use a more
efficient algorithm in a consistency test.

Intuitively, each constraintlvalue pair can, and needs to, enter the queue only once,
if at all, and the maximum number of elements enqueued and dequeued by the al-
gorithm therefore depends on (1) the number of constraints and (2) the number of
variables per constraint and their domain sizes. If d := r n a x , ; ~ ~ lazi I is the size of
the largest domain, then we obtain at most O(IC1 IVI d) enqueueing and dequeueing
operations, with IVI as an upper bound on the highest possible arity of a constraint.
Given the number of queue operations, the overall worst case complexity of the prop-
agation algorithm can then be deduced from the complexity of the consistency tests.
It is worth mentioning that the worst case in terms of computational effort is also a
best case in the sense that it corresponds to reducing the domains until all variables
are instantiated; the average propagation effort is usually much lower.

3.3.3 Uniqueness of the Fixed Point

It is important to mention that the fixed point computed by the propagation algorithm
does not have to be unique and usually depends upon the order of the application of
the consistency tests. However, we will only study monotonous consistency tests for
which the order of application does not affect the outcome of the domain reduction
process. This result will be derived in the following (cf. Dorndorf et al. 2000b).

A consistency testy is monotonous iff the following condition is satisfied:

Let us first define the fixed point mentioned above. Let r be a set of monotonous
domain consistency tests. For practical reasons we will always assume that I' is
finite. Let y, = (yS)gEN E I?' be a series of domain consistency tests in I', such
that

3.4. CONSTRAINT PROGRAMMING 29

The series y, determines the order of application of the consistency tests. The last
condition ensures that every consistency test in I? is (a priori) infinitely often applied.
Starting with an arbitrary set A of current domains, we define the series of current
domain sets induced by y, through the following recursive equation

Since all domains AZi are finite and A(,) C A(,-,) due to the definition of domain
consistency tests, there obviously exists g* E N, ssuch that A(,) = A(,.) for all
g > g*. We can therefore define y, (A) := A(,-). The next question to answer is
whether y, (A) really depends on the chosen series y,.

Theorem 1 (Unique Fixed Points). I f I? is a set of monotonous domain consistency
tests and y,, y& E I?" are series satisfying Condition (3.1) then y, (A) = y k (A).

Proof. For reasons of symmetry we only have to show y, (A) C y&(A).

Let (A(,)),,, and (Al,,,)),tE~ be the series induced by y, and respectively. It
is sufficient to prove that for all g' E N, there exists g E N, ssuch that A(,) g At,,).
This simple proof will be carried out by induction.

The assertion is obviously h e for g' = 0. If g' > 0, we have A;,,) = yi, (A;,,-,)).
By the induction hypothesis, there exists h E N such that A(h) f Atg.-,). Further,
Condition (3.1) implies that there exists g > h satisfying y, = y,, . Since g > h, we
know that A(,-,) C A(h). Using the monotony property of y,, we can conclude

This completes the induction proof.

3.4 Constraint Programming

The generality of the CSP has motivated the development of constraint proramming
languages and software sytems that offer built-in functions for describing common
types of constraints and include techniques developed in CSP research. The idea is
to facilitate the development of CSP solution algorithms by letting the user specify
models and algorithms on a high level while hiding the details of the constraint solu-
tion techniques. The solution algorithms are most often based on (truncated) search
tree traversal.

The earliest approaches for constraint programming were based on the constraint
logic programming paradigm. Examples for constraint programming systems and
languages are CLP (Jaffar et al. 1986) and CLP(R) (Jaffar et al. 1992), PROLOG I11
(Colmerauer 1990), CHIP (Aggoun et al. 1987) and CLAIRE (Caseau and Laburthe

30 CHAPTER 3. CONSTRAINT PROPAGATION

1996a). PROLOG I11 and CHIP have been developed into commercial systems and
have been demonstrated to be effective and elegant in problem solving.

The success of CHIP has lead to the development of other commercial systems, e.g.
CHARME, PECOS, and LOG, that largely use the same solution techniques and
mainly differ in their programming languages and implementation efficiency.

Several constraint programming systems include extensions specifically designed for
scheduling applications, e.g., ILOG Scheduler (Le Pape 1994b, 1995, Nuijten and Le
Pape 1998), CHIP (Aggoun and Beldiceanu 1993), or CLAIRE Schedule (Le Pape
and Baptiste 1996a). A detailed review of the early historic development of the
application of constraint programming for scheduling is given by Le Pape (1994a).

Chapter 4

Consistency Tests

Consistency tests are logical tests that serve to reduce the current domains of the
decision variables and thus reduce the search space of a problem instance. The tests
may be iteratively applied within a fixed point constraint propagation algorithm.

The purpose of this chapter is to present classes of consistency tests that are useful for
solving project scheduling problems. These tests allow to reduce activity start time
domains by ruling out inconsistent start time assignments or inconsistent activity
sequences; additionally, they may help reduce activity mode domains by detecting
inconsistent mode assignments.

The consistency tests and the constraint propagation algorithm in which they are
applied are independent of the actual solution procedure and can be applied in al-
gorithms such as list scheduling heuristics or branch-and-bound procedures. The
benefit of the tests is that they can reduce the search space and direct an algorithm
towards good solutions. In this chapter, we are only interested in the tests themselves
and do neither address the constraint propagation algorithm which controls their ap-
plication nor any scheduling algorithms in which the resulting constraint propagation
procedure can be embedded. Since the tests only eliminate solutions incompatible
with the constraints and current variable domains, they are independent of the overall
objective function to be optimised.

The remainder of this chapter is organised as follows. Section 4.1 introduces some
basic concepts and briefly reviews the relevant parts of the optimisation model in
order to keep this chapter mostly self-contained. Section 4.2 discusses some simple
consistency tests which are based on the temporal constraints.

Sections 4.3 to 4.6, which form the major part of this chapter, present interval capac-
ity consistency tests that are based on the resource constraints. These tests consider
the resource capacities available and required within certain time intervals. In the
literature, activity start time domains are often approximated by start time windows,
and this approximation is then referred to as activity release times and due dates,

32 CHAPTER 4. CONSISTENCY TESTS

or heads and tails. The domain reduction process may then be called adjustment of
heads and tails or time bound adjustment. Specific interval consistency tests have
become known under the names immediate selection, edge finding, and energetic
reasoning. It seems fair to say that the advances in modem branch and bound algo-
rithms for difficult disjunctive scheduling problems, such as the job shop problem,
that have been made in the last decade can to a large extent be attributed to the effect
of interval consistency tests. Sections 4.3 to 4.6 present these tests within a unified
framework, using numerous examples for illustration. The state of the art is reviewed
and new results for disjunctive and cumulative scheduling are derived.

Section 4.3 first introduces the general concept of interval consistency which serves
as a framework for the tests. As several powerful interval consistency tests may be
applied for the special case of disjunctive scheduling with unit resource capacities
and requirements, Section 4.4 explains how disjunctive sub-problems of a project
scheduling problem instance can be identified. The tests that may be applied for
these sub-problems are discussed in Section 4.5. Section 4.6 then addresses cumu-
lative scheduling with arbitrary resource capacities and requirements; the section
generalises some of the results obtained for disjunctive scheduling and introduces
additional tests for cumulative scheduling.

Throughout most of this chapter, we will consider the single-mode project schedul-
ing problem PSItemplC,,,, and the goal of reducing activity start time domains. Sec-
tion 4.7 finally explains how the tests developed for this problem may be applied
for the more general multi-mode problem MPSlremplC,, by considering a single-
mode relaxation associated with a multi-mode problem instance; the section also
introduces consistency tests for reducing activity mode domains. Section 4.8 sum-
marises the results of this chapter.

4.1 Basic Concepts

For the rest of this chapter, except for Section 4.7, we will consider instances of the
problem PSJtempJC,, introduced in Chapter 2. In this section we briefly review
the relevant aspects of the optimisation model in order to keep this chapter self-
contained, and introduce some additional concepts and notation.

An activity i is characterised by its processing time pi and resource requirements
rik: for each of pi time units, it requires ~ i k units of a renewable resource k, which
is available in constant amount Rk, and it releases the resource units again upon
completion. An activity i has an associated start time decision variable Si. Activities
must be processed without preemption. Two activities i and j may be linked by a
generalised precedence or temporal constraint (i , j) of the form Si + dij 5 Sj, and
the set of all temporal constraints is denoted with E .

4.1. BASIC CONCEPTS 33

Each activity i has a current domain Ai of possible start times.' We assume that
some upper bound UB on the makespan is known or given, so that Ai C [0, UB -pi]
holds. We will generally interpret Ai as the interval defined by the earliest and latest
possible start times of i , i.e., Ai := [ESi, LSi] = {ESi, ESi + 1,. . . , U i } , although
we will sometimes also refer to the set oriented interpretation.

The set of all activities is denoted with V; the subset of all activities to be processed
by a resource k is Vk := {i E V 1 rik > 0). We will frequently consider subsets
A g Vk of activities. To deduce domain reductions for the activities in A we often
try to show that an activity i E A must start before or finish after all other activities
in A. Using the shorthand notation Ai := A \ { i) , this is denoted by i + di if i
must start first, and Ai + i if i must finish last. We also use the notation d + A'
to express that all activities in set A must start before all activities in set A'. It is
convenient to introduce the total processing time P(A) of a set A of operations,
defined by P(A) := CjEApj Given a set A of activities the time interval [tl , tz[
defined by the minimal earliest start time t l = minjEA ESj and the maximal latest
completion time t2 = m a x j E ~ LCj of two different activities in A is called activity
interval of A. Many consistency tests operate on activity intervals.

For illustration and motivation of the consistency tests, we use examples in the style
of Figure 4.1, which shows two activities that must be processed by the same re-
source; the style is similar to the one used by Nuijten (1994). Unless stated oth-
erwise, we will assume that the resource has a capacity of 1. Consider activity j

Figure 4.1 : Two activities i and j with pi = 4 and pj = 3

where several points on the time scale have been annotated for illustration. The fig-
ure shows the time between the earliest start of j, ESj, and its latest completion,
LC,., as a horizontal line segment. The processing time pj is depicted as a hollow
bar beginning at ESj with rounded right end at EC,. = ESj + pj ; the length of this
bar is, of course, equal to LC,. - LSj. Admissible start times, i.e., the values in A j ,
are shown as black circles. Times in the interval [LSj + 1, LC,.[at which j may
be in process, but at which it cannot start, are marked with tick marks. Scheduling
an activity can be intrepreted as positioning the processing time bar at one of the
admissible start times. Activity i in Figure 4.1 appears in the usual style without an-

' ~ e c a l l that instead of As, we usually use the notation Ai for the start time domain of activity i for
simplicity.

CHAPTER 4. CONSISTENCY TESTS

notations. Initially, possible start times of i are in the interval [2,8]. The x appearing
under the scale of i at time 2 indicates that we have, by applying a test described
below, deduced that i cannot start at time 2.

4.2 Consistency Tests for Temporal Constraints

A temporal or precedence constraint (i, j) of the form Si + dij 5 S j determines the
minimal or maximal time lag that must pass between the start of two activities i and
j. Clearly, the left side of the constraint is minimal for ESi, and a lower bound on
the earliest possible start of activity j is thus given by ESi + dij. Likewise, the right
side of the constraint is maximal for LS,., and L S j - dij is an upper bound on the
latest possible start of i. This leads to the following well known test:

Consistency Test 1 (Precedence Consistency). For a precedence constraint (i, j)
the following domain reduction rules apply:

As some of the consistency tests discussed below may discover new precedence con-
straints, which must hold in addition to those given in the original problem instance,
the set E of all precedence constraints depends on the set A of current start time
domains and is denoted with &(A).

When used within the constraint propagation algorithm, Consistency Test 1 naturally
leads to the same result (fixed point) as a traditional temporal analysis of the project
network (see, e.g., Elmaghraby 1977). A logical contradiction in the precedence
constraints, corresponding to a cycle of positive length in the project network, will
lead to an empty domain for some activity.

It is interesting to note that if only the precedence consistency test is applied in
the constraint propagation algorithm, the resulting algorithm is very similar to label
correcting algorithms for solving longest path problems in graphs, for instance the
algorithm of Moore and Bellman (see e.g. Lawler 1976). It is therefore no surprise
that, as with label correcting algorithms, the worst case time complexity for graphs
with positive and negative edge weights cannot be polynomially bounded in the size
of the graph. The complexity can be derived as follows. For a given precedence
constraint, Consistency Test 1 can be applied with constant effort. The worst case
propagation effort caused by the precedence constraints is therefore determined by
the O(I&I d) possible enqueueing and dequeueing operations, where d is the size of
the largest domain. We will shortly see that the same fixed point could indeed be
calculated with polynomially bounded worst case effort O(JVI3). However, due to
the good average time complexity, the application of Consistency Test 1 within the
propagation algorithm is advantageous.

4.2. CONSISTENCY TESTS FOR TEMPORAL CONSTRAINTS 35

A temporal constraint (i , j) is resolved, i.e., always satisfied given the current set
of domains2, if the maximal value of the left side is smaller than or equal to the
minimal value of the right side, i.e., if L& + dij 5 ESj; otherwise the constraint is
unresolved.

Clearly, the precedence consistency test, as any consistency test, can only lead to
domain reductions for unresolved constraints. The question whether a precedence
constraint is resolved will play a role in the branching scheme described in Chapter 5.

Additional domain reductions may be deduced by considering the transitive minimal
time lags between two disjunctive activities. We will discuss the question when two
activities are disjunctive in detail in Section 4.4.1; for the time being it is sufficient to
assume that two activities are in disjunction if they must not be processed in parallel
because their combined resource requirement is too high.

Let D' := (d i j) be the matrix of transitive minimal temporal distances (longest
paths) between activities that is induced by the set of temporal constraints &(A). D'
can be calculated with effort O(IVI3) with the Floyd-Warshall Algorithm (Lawler
1976). The domain reductions obtained by applying Consistency Test 1 can also be
derived from the matrix D' by simply setting ESi to the distance of i from the source
node and L& to the distance of i to the sink node of the project network, assuming a
unique source and sink node have been added to the project network.

Using the transitive time lags d l j , we can state the following observation (Brucker
et al. 1998, De Reyck and Herroelen 1998):

Consistency Test 2 (Lag Based Disjunctive Consistency). Let i , j E V be in dis-
junction. I f d i j > -pj, then i must precede j.

Note that the condition dl j > -pj means that j cannot finish before the start of i ;
as i and j must not be processed in parallel this implies that i must precede j . Also
observe that the test depends only on the "relative" lag between i and j, but not on
the "absolute" start time domains of the two activities. Clearly, the test is only useful
if dl j < pi. We add any precedence constraint resulting from the application of
this test to the set &(A), and the corresponding domain reduction then follows from
the precedence consistency test. The test also detects infeasibilities that occur if the
temporal constraints require that two activities i and j which are in disjunction must
be processed in parallel for some time. In this case two contradicting precedence
constraints are added, and the precedence consistency test consequently leads to an
empty domain.

The matrix D' depends upon the temporal constraints &(A). Whenever a disjunc-
tive consistency test adds a new precedence constraint to &(A), the matrix can be
updated with effort O(IVI2) by exploiting the fact that any increased longest path
between two activities must pass through the edge corresponding to the new prece-
dence constraint.

2 ~ e e Section 3.1, page 20.

36 CHAPTER 4. CONSISTENCY TESTS

4.3 Interval Consistency

This section introduces a general framework for interval consistency tests. These
tests are based on the resource constraints and consider the resource availability and
requirements within certain time intervals.

An activity i requires an amount of work win := rikpi from resource k that depends
upon the resource requirement rik and processing time pi. A time interval is capacity
consistent if the amount of work requested by all activities within this time interval
can be matched by the amount of work supplied.

Figure 4.2: Types of intersections between an activity and a time interval

Let us consider the work of an activity i that must fall into a time interval [tl , t2[. The
interval processing time pi(t l , t 2) is the smallest amount of time during which i has
to be processed within [tl , t2 [. There are five possible situations: The activity can
be (1) completely contained within the interval, (2) completely overlap the interval
when started as early (left-shifted) or as late (right-shifted) as possible, (3) have a
minimum processing time within the interval that is realised when started as early as
possible, or (4) have a minimum processing within the interval that is realised when
started as late as possible. These four situations are shown in Figure 4.2. The fifth
situation applies whenever i does not have to be processed - neither completely nor
partially - within the given time interval. Consequently,

The corresponding interval work is wik (t l , t2) := r ikp i (t l , t2). The interval work of
a subset of activities A E V is defined through Wk (A, tl , t2) := CiEA Wik (t l , t2).
Using this definition of interval work we can now define the slack of a time interval
with respect to a resource k and a set of activities as the difference between work
supply and demand within the interval:

slack(A, k , t l , t2) := Rk . (t2 - t l) - Wk (A, t i , t2). (4.2)

4.3. INTERVAL CONSISTENCY 37

Observe that the slack function depends on the actual set A of current domains, so we
will write slacka (A, k, tl , t2) whenever necessary. An interval [tl , ta [is capacity
consistent if it has non-negative slack for all resources and activities that require the
resource:

Given a domain set A, we can only develop a solution if this necessary condition
holds for all resources and all time intervals.

The basic idea behind all interval consistency tests described in this chapter now is
as follows: We consider an additional, hypothetical constraint H and try to show that
if H is satisfied then Constraint (4.3) is violated for some resource and time interval;
in this case we can conclude: T H . This leads to two main questions which we will
try to answer in the following sections:

1. How should H be chosen so that the conclusion T H leads to useful domain
reductions?

2. For which intervals [tl , t2 [should Constraint (4.3) be tested?

The notion of interval capacity consistency as defined here has to the best of our
knowledge first been suggested by Lopez (1991) (see also Lopez et al. 1992) under
the name energetic reasoning; the area of the rectangle defined by an activity pro-
cessing time and a resource requirement can be interpreted as work or energy, and
we use the terms interchangeably. Special cases of this concept have been known for
a long time (see e.g. Zaloom 1971). Schwindt (l998b) has independently developed
a concept of interval work. He and, independently, Baptiste et al. (1999) were the
first to answer Question 2.

Although our focus is primarily on the use of interval consistency tests for deducing
domain reductions, it is worth mentioning that Constraint (4.3) can, of course, also be
used to derive bounds for optimisation problems, e.g., lower bounds for makespan
minimisation problems, in the following way: Impose a hypothetical upper bound
UB on the makespan; if this leads to a violation of Constraint (4.3) then UB + 1 is
a lower bound. This approach, for which Klein and Scholl(1999a) have introduced
the intuitive name destructive improvement due to the principle of repeatedly refut-
ing hypothetical constraints, has for example been used by Nuijten (1994), Pesch and
Tetzlaff (1996), Heilmann and Schwindt (1997) and Schwindt (1998b). Test values
for UB are usually chosen through a dichotomising search. A violation of Con-
straint (4.3) can be detected through the repeated application of a temporal analysis
and of any of the tests described in the following sections; the constraint is violated
if a test causes a domain to become empty.

Resource capacity constraints in the form of Constraint (4.3), but mostly limited to
intervals defined by earliest start and latest completion times of activities, have also
been used in constraint logic based scheduling; see, e.g., the description of solving
a famous bridge scheduling problem (an instance of the problem PS(temp1 C,,,) by

3 8 CHAPTER 4. CONSISTENCY TESTS

Van Hentenryck (1989) or the implementation of the cumulative constraint in CHIP
(Aggoun and Beldiceanu 1993).

4.4 Disjunctive Sub-Problems

Two activities i and j are disjunctive if, for instance due to limited resource availabil-
ity, i and j cannot be processed simultaneously. Difficult project scheduling problem
instances are typically characterised by a low resource supply, which causes many
pairs of activities to be disjunctive. This,motivates a closer study of consistency
checking techniques for disjunctive scheduling. These techniques may be applied
to disjunctive sub-problems of a project scheduling problem, i.e., sub-problems in
which all activities are pair-wise disjunctive.

This section explains how such disjunctive sub-problems can be isolated. It first
deals with the question when two activities are in disjunction and then discusses how
all disjunctive sub-problems can be found and the most promising ones heuristically
selected.

The difficulty of problem instances with very low resource supply has first been
systematically analysed by Kolisch et al. (1995) for the problem PSlpreclC,,. Sev-
eral authors have subsequently suggested the application of disjunctive consistency
checking techniques for the problem PSlpreclC,, (Brucker et al. 1998, Klein and
Scholl 1999a, Baptiste et al. 1999) and the problem PSltempJC,, (Schwindt 1998b).
The importance of disjunctive sub-problems is also underlined by the fact that a very
successful lower bound for the problem PSlpreclC,,,,, which has been proposed by
Mingozzi et al. (1998) and is often referred to as LB3 or node packing bound, is
based on the idea of solving a relaxation of a disjunctive sub-problem. The bound is
an important component of most newer branch-and-bound algorithms for the prob-
lem (see e.g. Sprecher 2000, Demeulemeester and Herroelen 1997b, Brucker et al.
1998, Klein and Scholl 1999a).

1 4.4.1 Disjunctive Activity Pairs

Two activities i, j E V are disjunctive if they cannot be processed simultaneously,
i.e., if either i has to finish before j can start, or j has to finish before i can start,
which means that the following disjunctive constraint must hold:

We will denote the fact that i and j are disjunctive with i+j for short. Obviously,
i ~ j must hold if (1) the temporal constraints either require that i+j or require that
j+i, or (2) the start time domains allow to rule out the possibility that i and j are
performed in parallel, or (3) the resource availability is too low to perform i and

4.4. DISJUNCTNE SUB-PROBLEMS 39

j in parallel. In this section, we are most interested in those disjunctive activity
pairs for which the (transitive) temporal constraints or the start time domains do not
immediately imply which part of the disjunction must hold.

Let us therefore consider in more detail when limited resource availability causes the
two activities i and j to be in disjunction. This is obviously the case if their combined
resource requirements exceed the available capacity, i.e., if rir, + rjk > Rk for some
resource k. However, this condition can be relaxed by only considering the slack for
a small time interval that depends on the current domains of i and j.

Lemma 1 (Disjunctive Activities). Consider two activities i , j E V and an interval
[tl , t 2 [deJined by

Activities i and j are in disjunction (i ~ j) , Sfthere is a resource k E R required by
both i and j and S f

slacka(l/\ { i , j) , k , t , t + 1) < rik +r jk , vt E [t l , t z [. (4.4)

ProoJ If Condition (4.4) is satisfied for the interval [tl , t2 [then either i or j must
finish before t l or start after t2, i.e.

or the two activities must be in disjunction:

It is now easy to show that whenever Condition (4.5) holds then Condition (4.6) must
also be satisfied.

Simple as it may seem, the condition of Lemma 1 has often been missed and replaced
with the stronger condition rib + r j k > Rk which discovers fewer disjunctions.

The Lemma is useful because (1) it only considers a limited time interval [tl , t 2 [and
(2) the slack in this interval is at most equal to but may be less than the resource sup-
ply Rk. The second point deserves some further explanation: Recall that the slack
function depends upon the start time domains, as it is defined in terms of the interval
work and hence in terms of interval processing times. Even if no activity is sched-
uled, we may, by reducing the start time domains through constraint propagation,
be able to deduce that certain activities must be processed and consume resources at
some time within the interval [tl , t2 [and thus reduce the slack. These conclusions
will usually be stronger if a tight initial upper bound is given.

40 CHAPTER 4. CONSISTENCY TESTS

4.4.2 Selection of Disjunctive Sub-Problems

A disjunctive sub-problem of a cumulative scheduling problem is defined by a set
V C V of activities which are pairwise disjunctive. Such a set V c is also called
disjunctive clique. From an algorithmic point of view, disjunctive cliques play an
important role as they may allow to deduce the order or at least a partial order in
which the activities in a clique must be sequenced.

An intuitive interpretation of the sub-problem defined by a disjunctive clique V C is
obtained if we think of an associated redundant disjunctive resource: We introduce a
fictitious resource with capacity one that is required by all activities in the clique; the
sub-problem defined by V C then is to find a (partial) sequence in which the activities
in V C must be processed by the resource.

Generally, there are many possibilities for choosing V C. An obvious example are the
two element sets of disjunctive activity pairs. However, due to the way in which the
consistency tests described in Section 4.5 below work, we are interested in choosing
maximal disjunctive cliques V C, i.e., sets which have the property that there exists no
true superset of painvise disjunctive activities.

These possible choices of V c can be determined by considering an undirected graph
G (V , Idi"j) with nodes corresponding to the set of activities and edges between any
pair of disjunctive activities, i.e., edge set Edisj := { (i , j) I i, j E V , i # j , i ~ j } .
A decomposition of G into all maximal cliques then gives all possible choices of
Vc.3 Although already the problem of finding a single largest maximal clique of G
is W-hard (Garey and Johnson 1979) and the number of all maximal cliques may in
general be exponential in the size of the graph, the decomposition can for practical
purposes be quickly calculated with the algorithm of Bron and Kerbosch (1973).

Nevertheless, the number of maximal cliques may still be large and many of these
cliques may be overlapping. As the gain of information deduced by the consistency
tests may be outweighed by the computational effort for applying the tests, if this
is done too frequently, it is reasonble to restrict the attention to a small number
of maximal cliques chosen at the beginning of the search according to a heuristic
suggested by Phan Huy (2000):

Phase 1 : Given the decomposition of G into all maximal cliques, repeat-
edly select a maximal clique which contains the largest number of edges
that are not already covered by some previously chosen clique, until all
edges are covered.

Phase 2: Repeatedly choose an additional clique in order of decreas-
ing size, if the new clique does not overlap with any previously chosen
clique for more than two thirds.

30bserve that the maximal clique decompostion of G in general depends on the set of current start
time domains A, since, according to Lemma 1, the question whether two activities are disjunctive or not
may depend on A. However, since we will generally only determine a maximal clique decomposition
once during the solution of a problem instance, we will write VC instead of VC(A) .

4.5. DISJUNCTIVE LNTERVAL CONSISTENCY TESTS 41

Other heuristics for choosing some (usually significantly fewer) disjunctive cliques
have been described by Brucker et al. (1998), Baptiste et al. (1999) and Baptiste and
Le Pape (2000); in contrast to the approach described here, these procedures are not
based on an initial decomposition into all maximal cliques but heuristically construct
some promising cliques.

4.5 Disjunctive Interval Consistency Tests

The idea behind all consistency tests described in this section is to consider subsets
A VC of disjunctive activities that belong to the same disjunctive clique. Within
these subsets, all possible activity sequences with a particular property are examined,
e.g. the property that the sequence does not start with an activity i E A. If all such
sequences are infeasible, then we can draw the conclusion that the sequence must not
have this property and deduce that i must be first in A. Using the shorthand notation
Ai := A \ {i), this will be denoted by i + Ai.
Consistency tests which try to draw conclusions about the (partial) sequence in which
some activities must be processed are called sequence consistency tests. Given in-
formation about a (partial) sequence, associated domain consistency tests then try to
reduce the activity start time domains.

The consistency tests are presented in order from strongest to weakest condition.
While a stronger condition allows a stronger conclusion, it is at the same time more
likely to be inapplicable. After developing the individual tests in Sections 4.5.1
to 4.5.3 we generalise the results in Section 4.5.4 and show how they relate to the
concept of interval consistency in Section 4.5.5. Sections 4.5.6 and 4.5.7 relate the
domain reductions achieved by the consistency tests to the different notions of con-
sistency introduced in Chapter 3.

4.5.1 InputJOutput Test

Figure 4.3 shows an example with a set A = {i, j, k) of three activities to be pro-
cessed by the same disjunctive resource. We can deduce that i must be scheduled
first in the following way: Suppose i does not start first. Then all three operations
must be processed in the interval [2,9[. This means that a total processing time of
8 = 3 + 2 + 3 must be scheduled in 7 = 9 - 2 available time units, which is a
contradiction. Thus we can conclude that i must start first; we can then deduce that
start times of i greater than 1 can be removed from Ai. Note that this conclusion
cannot be drawn by separately considering any two of the three activities.

Carlier and Pinson (1989) have formalised the observation made in the example and
have derived conditions under which it can be concluded that an operation i E A
must be scheduled first or last in A. If i is scheduled before or after Ai we may also

CHAPTER 4. CONSlSlIrENCY TESTS

,
0 1 2 3 4 5 6 7 8 9

X X X X X

Figure 4.3: Example for the input test

think of i as the input or output of Ai, hence the name of the conditions. We use the
shorthand notation P(A) := CiEA pi for the total processing time of A.

Consistency Test 3 (InputIOutput). Let i E A g V C. I f

max (LC, - ESU) < P(A)
uEAi , w E A , u f v

then i must precede all activities in Ai (input condition). Likewise, if

max (LC,, - ESu) < P(A)
uEA,uEA; ,U#W

then i must succeed all operations in Ai (output condition).

ProoJ: If i does not precede Ai, then all activities in A must be scheduled within
maxuEd, ,uEA,uf (G - ESu) time units. I f Condition (4.7) holds this is not pos-
sible. The second part can be shown symmetrically.

The special case of the inputloutput condition where Id1 = 2 is also called disjunc-
tive pair test.

If the output condition holds, i.e., if we have concluded that Ai -+ i, then we may
add precedence constraints S j + pj 5 Si for all j E Ai to the set &(A) of tempo-
ral constraints of the original problem instance; a symmetric statement applies for
the input condition. The addition of these temporal constraints may obviously cause
some domain reductions in a subsequent temporal analysis, i.e., applications of Con-
sistency Test 1, which will for instance ensure that ESi > maxjeAi (ESj + pj).

However, a better domain adjustment for activity i may be possible. Assume that we
have concluded that Ai t i. Clearly, i can only start after the minimum completion
time t* of all activities in Ai. Unfortunately, finding t* is an NP-hard problem,
as it is equivalent to solving the one-machine makespan minimisation problem with
release times and due dates (Carlier 1982). Therefore we resort to approximating

4.5. DTSJUNCTNE INTERVAL. CONSISENCY TESTS 43

t*. As already mentioned above, a simple and obvious approximation is the maxi-
mal earliest completion time in Ai. We can do better by considering the preemptive
relaxation of the one-machine problem (preemptive bound). For this problem, an
optimal solution known as Jackson's Preemptive Schedule (JPS) can be efficiently
obtained by scheduling the activities in Ai "from left to right" according to the "ear-
liest due date" priority dispatching rule (Jackson 1956):

Whenever the resource is free, schedule the activity i with minimal L G ;
if an activity j with L q < LG becomes available while i is in process
then interrupt i and start j.

We denote the completion time of JPS for Ai by ECpr(di). Clearly, ECpT(d;) is a
lower bound on the earliest start of i, and the same holds true for all subsets A' C di.
However, Carlier (1982) has shown that

ECPT(Ai) = max { min ES, + P(A1)).
A'CAi uEA'

This implies that ECPr (A') 5 ECpr (Ai), if A' C Ai. We can thus adjust the
earliest possible start time of i to ECpr (Ai).

Symmetrically, we use LSPr(Ai) as the preemptive bound for the latest start time
of Ai, obtained by preemptively scheduling the activities in Ai "from right to left"
as late as possible according to the "maximum latest start" priority dispatching rule.
We can now summarise the domain adjustments in the following domain consistency
test:

Consistency Test 4 (Inputloutput Domain Adjustments). Let i E A V C. Then
the following tests apply:

Before returning to the initial example, let us point out that Consistency Test 3 is a
sequence consistency test while Consistency Test 4 is the associated domain consis-
tency test. Observe that we have not required the sets d VC in the two tests to be
identical. We will shortly come back to this question.

For the example in Figure 4.3 the maximum of the expression on the left side of the
input condition is 9 - 2, and P(A) = 8; since 9 - 2 < 8, we can deduce i+{j, k).
With LSpr ({ j , k)) = 4 the domain of i becomes Ai := [O , 61\14 - 3, co[= [O, 11.
Note the effect of using the preemptive bound: By using LSpT({j, k)) we have ob-
tained a stronger domain reduction for i than we would have by considering LSj and
LSk separately, which would have left the value 2 in Ai. A subsequent application
of Consistency Test 1 for the newly added precedence constraint i+k will then re-
duce the domain of k to Ak := [2,5] \ [O, 0 + 3[= [3,5]. As pointed out above, this

44 CHAPTER 4. CONSISTENCY TESTS

reduction in Ak could also be achieved through a further application of the input test
for A = {i, k).

The inputloutput test (pair test) also applies in the example in Figure 4.1 on page 33.
For activity i and A = {i, j), the output condition gives 8 - 2 < 7 and deduces
j+i. The domain of j remains unmodified, and the domain of i reduces to Ai :=

Ai \ [O, 3[= [3,8].

Let us now consider the question whether the sets A C V c in the sequence and
domain consistency test can always without loss of information be chosen in such a
way that they are identical, as seems likely after the previous examples. The example
in Figure 4.4 (Dorndorf et al. 2001) demonstrates that this is not the case.

Figure 4.4: Input/output sequence and domain consistency tests

In the example, the input conditions allow to separately conclude j+i and k+i. The
output domain adjustment condition then yields: {j, k)+i Si 2 6. However,
the output condition of Consistency Test 3 is not satisfied for A = {i, j , k) and the
distinct activity i , as 9 - 0 # 9. This demonstrates that by independently choosing
the set A for the two tests additional information can be derived.

In branch and bound procedures that branch over disjunctive edges, the tests may
be employed to immediately select the orientation of edges, a process often called
immediate selection, as first suggested by Carlier and Pinson (1989), or edge finding,
a term introduced by Applegate and Cook (1991). The inputloutput tests have first
been described by Carlier and Pinson in the context of a branch and bound algorithm
for the job shop problem (JSP); the tests that they actually implemented in their
initial algorithm were limited to two-element sets A and one additional heuristically
determined A and i E A for each resouice. Using these tests, they were able to
optimally solve a notoriously difficult 10 x 10 JSP instance (Fisher and Thompson
1963) that, despite many attempts, had defied solution for over 25 years.

Efficient algorithms that have later been developed for testing the inputloutput con-
ditions for all A and i and performing the corresponding domain reductions based
on the preemptive bounds usually use an ordering of activities according to earliest
start and latest completion times. The challenging part is to test the inputloutput

4.5. DISJUNCTIVE INTERVAL CONSISTENCY TESTS 45

conditions and calculate preemptive bounds at the same time. Carlier and Pinson
(1990), Martin and Shmoys (1996), and Nuijten (1994) have designed 0((VCI2) al-
gorithms for testing all subsets A C VC. The algorithm of Nuijten has the interesting
property that it can be generalised for cumulative scheduling. O(lVC I log IVC I) algo-
rithms for testing all subsets have been described by Brucker et al. (1996) and Carlier
and Pinson (1994). Caseau and Laburthe (1994,1995,1996b) describe an algorithm
based on the concept of task or activity intervals for checking all sets A with effort
O(lVc13). The advantage of their approach is that the consistency conditions can be
evaluated incrementally within a search procedure. When used within a branch-and-
bound algorithm this means that the effective time complexity for performing the
tests at each node of the search tree is usually lower than O(IVCI3) because it is not
necessary to test all A; although the worst case complexity for performing the tests
at a node is still O(IVcI3), the average complexity is lower. This contrasts with the
usual approach of applying the full test at each node of a branch-and-bound tree. All
algorithms have in common that they combine the evaluation of Consistency Tests 3
and 4 and thus require the sets A in both tests to be identical. An O(IVCI2 log IVC()
algorithm which first tries to deduce sequence relations by applying the sequence
consistency test and in a second, independent step computes domain adjustments
has recently been described by Dorndorf et al. (2001).

As a generalisation of the inputloutput test, Focacci and Nuijten (2000) have pro-
posed two consistency tests for disjunctive scheduling with sequence dependent
setup times between pairs of activities processed by the same resource. A version
of the inputloutput test for preemptive scheduling, i.e., the case where activities can
interrupt one another, has been designed by Le Pape and Baptiste (1996b).

Finally, we would like to mention that to our knowledge all algorithms discussed
above do not test the inputloutput conditions in the form of Consistency Test 3, where
we have required in the maximum expressions that u # v, but rather allow for u = v,
thus actually testing a weaker condition. Although the extension may seem trivial it
does lead to additional deductions in certain cases. However, it is not always obvious
how to include it in existing algorithms without increasing their time complexity.

4.5.2 Input-or-Output Test

The inputfoutput condition allows to deduce that an operation i E A 2 Vk must be
scheduled first or last in A. The weaker input-or-output condition can be used to
show that a precedence relation i -+ j must exist between a pair of activities i and j
from set A.

Figure 4.5 shows an example with a set A = {i, j, k , l } of four activities to be
processed by the same resource. The inputloutput condition does not allow to draw
any conclusions about the order in which the activities must be scheduled. However,
we can deduce that i must precede j: Suppose i is not scheduled first and j is not
scheduled last. Then all four activities with a total processing time of 7 = 3+2+1+ 1
must be scheduled within the interval [2,8], which is a contradiction. Hence we can

46 CHAPTER 4. CONSISTENCY TESTS

conclude that it is impossible that at the same time i is not first and j is not last. If
either i must be first or j must be last, then i must precede j , and we can remove the
start time 3 from Aj. This observation leads to the following consistency test.

Figure 4.5: Example for the input-or-output test

Consistency Test 5 (Input-or-Output). Let i , j E A 5 V C. If

then i must be scheduled$rst or j must be scheduled last in A. Ifi # j then i must
precede j.

Pro08 Suppose neither i is scheduled first nor j is scheduled last. All activities in
A must then be scheduled within maxuE~i ,vEAj ,u+, (LC,, - ESu) time units. If
Condition (4.10) holds, this is impossible and we can conclude that either i must be
first or j must be last in A. In both cases i must precede j if i # j.

Comparison to the very similar inputloutput test shows in what sense the input-or-
output test is weaker.

If this condition holds and i # j which means that i+j, then we can add the corre-
sponding precedence constraint Si +pi 5 Sj to the set l (A) of temporal constraints.
If possible, the start time domains of i and j will then be reduced in a subsequent
temporal analysis.

If the condition holds for i = j , the domain of i can be reduced in the following way:

While any domain reduction in the case that i f j can only occur at the domain
bounds, domain reduction rule (4.1 1) may remove values within the domain but

4.5. DISJUNCTIVE INTERVAL CONSISTENCY TESTS 47

leaves the bounds untouched and is thus not useful if only the domain bounds are
~ t o r e d . ~

For the example in Figure 4.5 we obtain 8 - 2 < 7 and deduce i+j. By applying
a domain reduction rule for the temporal constraint Si + pi 5 Sj we can remove
the value 3 from Aj. Figure 4.6 shows another example where the input-or-output
condition can deduce that a single activity must either start first or last; in terms of
Consistency Test 5 this is the case where i = j . We obtain 5 - 3 < 4 and conclude
that i must start before or after {k, I) . Domain reduction rule (4.1 1) allows to remove
the values [2,4] from hi.

Figure 4.6: Input-or-output condition example: i must be first or last

As a final example, note that the result i+{ j , k} that we have obtained with the
inputloutput condition for the example in Figure 4.3 can also be deduced in two steps
with the input-or-output condition, resulting in the conclusions i -+ j and i -+ Ic .
However, the corresponding reduction in Ai is weaker, leaving the value 2 in Ai.

To our knowledge, the input-or-output test in its general form has not been discussed
in the literature. A similar condition for the special case where i = j has been
described by Carlier and Pinson (1990) and Biazewicz et al. (1998). Stronger condi-
tions based on considering all sets A of cardinality r, hence called r-set conditions,
have been discussed by Brucker et al. (1996). They describe an O(lVc12) 3-set algo-
rithm that checks all activity sets of cardinality three and detects all pairwise ordering
relations derivable from triples. The algorithm thus implements the input-or-output
test for Id1 = 3. Judging from the implementation within their branch-and-bound
procedure for the JSP, the efficiency of the 3-set tests is comparable to that of the
inputloutput tests. It is unclear whether a low polynomial time-complexity r-set al-
gorithm could be developed for r > 3.

The development of an algorithm with low polynomial time complexity for testing
the input-or-output conditions is an open issue. Based on experience with other con-
sistency tests, we conjecture that in order to be of practical value such an algorithm
must at most have time complexity O(IVC12). There is an obvious O(IvCI4) algo-

4 ~ e e the discussion of domain-consistency versus bound consistency in Sections 3.2.2 and 3.2.3.

48 CHAPTER 4. CONSISTENCY TESTS

rithm using task or activity intervals, and Phan Huy (2000) has designed an O(IVCI3)
algorithm.

4.5.3 InpuUOutput Negation Test

By further relaxing the condition to be tested, we can still draw additional conclu-
sions in situations where the input-or-output condition and the stronger input/output
conditions do not hold. Figure 4.7 shows an example with a set A = {i , j , k) of
three activities to be processed by the same resource. Although we cannot conclude
that activity i must be last or must precede j or k, we can deduce that i must not be
first, and therefore remove the value 2 from A,. By generalising the observations

Figure 4.7: Example for the input negation test

made in the example, we arrive at the following consistency test.

Consistency Test 6 (InputIOutput Negation). Let i E A V C. I f

then i must not start first in Ai (input negation: ij+Ai). I f

max (Xi - ESu) < P(A)
UEA;

then i must not end last in Ai (output negation: Aij+i).

ProoF If i precedes Ai, all activities in A must be processed within the interval
[ESi, rnaxvEA, LC,[. If Condition (4.12) holds, this is not possible. The second part
can be shown symmetrically.

Again, it is easy to see in which sense these conditions are weaker than in the pre-
ceding tests. Domain reduction rules can be based on the observation that i must
succeed (input negation) or precede (output negation) at least one other activity in
A:

4.5. DISJTJNCTNE INTERVAL CONSISTENCY TESTS 49

Consistency Test 7 (Input/Output Negation Domain Adjustment). For i E A
V C the following tests apply:

i f , A i * Ai := Ai \ [O, min E&[,
uEA;

For the example in Figure 4.7 the input negation condition yields 9 - 2 < 8 and we
conclude i f , { j , k) . According to the first domain reduction rule we can therefore
remove all values less than 3 from A i .

Conclusions similar to those obtained in the examples for the inputloutput and input-
or-output test could also have been produced through successive application of the
inputloutput negation test. Since the condition to be tested for the inputloutput nega-
tion conclusion is weaker than the preceding conditions, it will of course hold when-
ever the stronger conditions apply. Consider again the example in Figure 4.3. Here,
the inputloutput negation conditions allows to conclude j f , { i , k) i + jVk + j
and k f , { i , j) e~ i + k V j -+ k, which implies i + { j , k) . However, this im-
plication is not automatically deduced by the inputloutput negation condition. This
demonstrates that inputloutput negation conditions alone do not deduce all interest-
ing domain reductions. A similar effect can be seen in the example in Figure 4.5.
Here, the inputloutput negation conditions can be used to deduce {j, k , l)+ i and
j + { i , k , I) , but this does not allow to remove the value 3 from Aj as in the input-
or-output test.

The inputloutput negation test has first been suggested by Carlier and Pinson (1989).
Most authors working on consistency tests have considered the test in some form.
However, an algorithm that tests all interesting A and i with effort O(IVCI2) has
only recently been developed by Baptiste and Le Pape (1996). Another O(IVCI2)
algorithm has been described by Dorndorf et al. (2001). Nuijten and Le Pape (1998)
have derived consistency tests similar to the inputloutput negation tests with tighter
time bound adjustments; the corresponding algorithms have a complexity O(IvC 1 3)
and O ((V C (2 log IVCI).

Other researchers have often applied the tests in an incomplete way, testing only
some A and i (Carlier and Pinson 1989, 1990, Nuijten 1994, Baptiste and Le Pape
1995). Caseau and Laburthe (1994, 1995) have integrated the tests in their task
interval algorithm which tests inputloutput conditions and the negation conditions
with effort O(IVc 1 3) .

4.5.4 Summary and Generalisation

All disjunctive interval sequence consistency tests that we have discussed can be
derived from the following theorem.

Theorem 2 (Sequence Consistency). Let A', A" C A V C. If

50 CHAPTER 4. CONSISTENCY TESTS

max
u€A\A1 ,vEA\A" ,U#V (LC, - ESu) < P(A)

then an activity in A' must startjrst or an activity in A" must end last in A.

Proof: If none of the activities in A" succeeds A\ A" and none of the activities in A'
precedes A \ A', then A must be processed within maxuEA\A',vGA\A",u#v (L G -
ES,) units of time. If Condition (4.13) holds this is a contradiction.

Test d \ d " d \ A' Conclusion (1 H)
input A Ai i+Ai
output Ai A Ai +i
input-or-output Jz j Ai i+Ai v Aj+j
input negation Ai { i) i+Ai
output negation { i) Ai Ai+i

Table 4.1: Summary of disjunctive interval consistency tests, A', A" C A g Vc

The results of the preceding sections are summarised in Table 4.1. For each con-
sistency test, the table shows the values of A \ A' and A \ A" that, when used in
Theorem 2, yield the test. The conclusions of Theorem 2 have been reformulated to
match the tests presented above. Note that the conclusion is always the negation of
the hypothesis H falsified by the test.

4.5.5 Relation to Interval Consistency

We will now relate the Sequence Consistency Theorem to the general concept of
interval consistency introduced in Section 4.3. For disjunctive scheduling and a given
set of disjunctive activities V C, the Interval Capacity Constraint (4.3) reduces to

where P(VC, t l , t 2) := CiEvC pi (t l , t 2) is the total interval processing time within
[t l , t2 [. Inversely, we denote the set of all activities in Vc that must be processed com-
pletely or partially within an interval [tl , t 2 [as Vc(tl , t g) := { i E VC I pi (tl , tg) >
0). The following theorem shows how we can efficiently test violations of the Inter-
val Capacity Constraint.

Theorem 3 (Sufficiency of Activity Interval Consistency). a for some time inter-
val [tl , t 2 [>

max (LC,. - ESi) < P(VC(tl,t2)).
i j € V c (t l , t z) , i # j

4.5. DISJUNCTNE INTERVAL CONSISTENCY TESTS 5 1

ProoJ: From Equation (4.1) we know that 0 < t2 - tl < P(Vc, t l , t2) implies
that (Vc(tl , t2) (2 2. We consider two activities i, j E Vc(t l , t 2) , i # j , and start
to transform Condition (4.14) into Condition (4.15) by rewriting the left hand side
of (4.14):

By observing that t2 - LSj > pj (t l , t2) > 0, according to Equation (4. I), we can
approximate the left side. We rewrite the right side and obtain:

Again, we know from Equation (4.1) that ECi - tl > pi(tl , t2) > 0. This approxi-
mation leads to:

Next, we approximate the sum on the right hand side, once again using Equation (4.1)
which tells us thatpk 2 pk(tl , t2) 2 0, and obtain:

By adding pi + pj on both sides we arrive at:

As it is always possible to choose i and j in such a way that the maximum difference
LC,. - ESi is realised, Condition (4.15) must hold. 17

The theorem tells us two interesting things. First, it states that if an interval capacity
constraint is violated for some arbitrary time interval [t l , t2[, then there will also be
a violation for an interval defined by the earliest start and latest completion time of
two different activities in V c(t l , t z) . When checking for violations this allows us to
restrict our attention to intervals defined by earliest start and latest completion times,
called task or activity intervals (Caseau and Laburthe 1994), instead of considering
all possible time intervals. Any violation of the capacity constraint can thus be de-
tected by testing O(JVc12) intervals. For disjunctive scheduling, this answers the
initial question, posed in Section 4.3 on page 37, what intervals we should test. Sec-
ond, the theorem states that, as long as we test all activity intervals, there is nothing
to be gained from considering interval processing time instead of simple processing
time. If interval processing time has an effect on the test for a given set A then we
can obtain the same effect by considering a different set A'. In summary, this means
that an algorithm which tests Condition (4.15) for all activity intervals will detect all
violations according to the more general concept of Condition (4.14) which is the
negation of the disjunctive version of the general Interval Capacity Constraint (4.3).

52 CHAPTER 4. CONSISTENCY TESTS

It is worth emphasising that this statement is independent of the particular hypothet-
ical constraint H to be tested. This can be seen as follows: For any set of constraints,
it is always possible to first add and propagate the constraints, and then test the
interval consistency constraints. The particular form of the sequence consistency
tests is simply an accelerated version of this "add and propagate, then test" pro-
cess. For illustration, consider again the example shown in Figure 4.3, where the
conclusion i-+{j, k) could also have been obtained in the following way: (1) Add
H : ifS{j, k), (2) update the domain of i based on H, which yields Ai := Ai \ {tlt <
minu,(j,k) EC,) = [5,6] , and (3) test the interval consistency constraint (4.3) for
the activity interval defined by {i, j, k) which has the left time bound 2 and the right
time bound 9. Because 9 - 2 2 8 this test fails and we conclude 1 H * i-+{j, k).

For disjunctive scheduling, Theorem 3 improves the characterisation of time inter-
vals for which the capacity constraint may be violated, which has been obtained by
Schwindt (1998b) and Baptiste et al. (1999) for the cumulative case discussed in
Section 4.6. The theorem also reveals that for disjunctive scheduling the "energetic"
consistency tests that have been proposed by Baptiste and Le Pape (1995) are not
more powerful than their non-energetic counterparts, i.e., the consistency tests that
have been presented above.

4.5.6 Lower Level Consistency

This section relates the disjunctive interval consistency tests to the general concept
of lower level consistency, in particular 2-consistency and 2- and 3-b-consistency
that are commonly used in CSP research and that have been introduced in Chapter 3.
We first derive a 2-consistency test and show that the consistency tests described in
Sections 4.5.1 to 4.5.3 can be used to achieve 2-b-consistency.

Let us first briefly recall the relevant notions of consistency: Activity start time do-
mains are called 2-consistent if, for any pair i , j E V, and for any value ai E Ai there
is some value a j E Aj such that Si = ai and Sj = a j is permitted by the constraints
of the scheduling problem. The weaker definition of bound consistency looks at do-
main bounds: Activity domains are called 2-bound-consistent, or 2-b-consistent for
short, if, for any pair i , j E V, and for every value ai E {min Ai, max Ai) there is a
value a j E A j such that Si = ai and Sj = a j is permitted. Clearly, 2-consistency
implies 2-b-consistency. A general definition of k-b-consistency is given in Sec-
tion 3.2.3.

The concept of bound consistency is of interest because, as we have seen, many con-
sistency tests are based on domain bound considerations. In addition, the propagation
of temporal constraints depends on domain bounds. Any change in domain bounds
can therefore trigger further domain reductions. Finally, if domains are approxi-
mated by start time windows - and this is often done for reasons of implementation
efficiency - bound-consistency is the only reasonable concept of consistency.

Figure 4.8 shows an example, taken from Nuijten (1994), with a pair of activities
i , j E VC where any 2-inconsistent value is marked. For example, j cannot start at

4.5. DISJUNCTIVE INTERVAL CONSISTENCY TESTS

Figure 4.8: 2-consistency

time 2 since this does neither leave enough room for i to be processed before j nor
after j . In general, i cannot start in the open interval]LS,. - pi, EC,. [. Note that the
interval can be empty if I?%'j 5 U j - pi. The observation is summarised in the
following theorem due to Nuijten (1994).

Theorem 4 (2-consistency). Let i, j E V C, i # j. Ai and Aj are 2-consistent ifand
only if

ProoJ: If j is started at time t E Aj then i is blocked during the open interval
It - pi, t + pj [. The left bound of the interval is maximal for t = LSj, and the right
bound is minimal for t = ESj. Thus the minimal interval during which i cannot
start is]LS,. - pi, EC,. [. All other possible start times of j leave possible start times
for i.

The following result shows that the sequence consistency tests based on Theorem 2
can be used to ensure 2-b-consistency.

Theorem 5 (2-b-consistency). Application of the input/output, input-or-output, or
the input/output negation test within a fixed point iteration leads to a 2-b-consistent
state.

ProoJ: For A = { i , j) all the tests simplify to:

To achieve 2-b-consistency any Zinconsistent value must be removed from the do-
main bounds. According to Equation (4.16), the left domain bound can only be
2-inconsistent if

In this case, the condition of the tests is satisfied and any inconsistent values are
removed by the first domain reduction rule above. The proof for the right domain
bound is symmetrical.

54 CHAPTER 4. CONSISTENCY TESTS

We have thus shown that the application of any of the inputloutput, input-or-output,
and inputJoutput negation tests, even if only used for activity pairs, within a fixed
point propagation algorithm5 leads at least to a 2-b-consistent state with respect to
the interval capacity, or resource, constraint^.^
As the example in Figure 4.8 shows, the tests can, however, only ensure 2-b-consist-
ency but not the stronger concept of 2-consistency, because none of the marked val-
ues in the domains of i and j can be removed by any of the tests. Of course, it is no
surprise that the domain bound-oriented tests can only achieve bound-consistency.

However, a stronger result can be obtained if the the inputloutput and inputloutput
negation tests are applied together within a fixed point algorithm:

Theorem 6 (Strong 3-b-consistency). Application of the input/output and input/
output-negation tests for all pairs and triples of activities within a f i edpo in t itera-
tion leads to a strongly 3-b-consistent state.

Pro05 A detailed proof is given in Dorndorf et al. (2000b). The proof relies on a
technical analysis of the necessary conditions for 3-b-consistency, which are trans-
formed in such a way that it can be seen that these conditions must be satisfied if the
inputloutput and inputJoutput-negation consistency tests are applied at least for pairs
and triples of operations.

The inputloutput and inputloutput negation tests usually, but not necessarily im-
ply more than 3-b-consistency. However, if only pairs and triples of activities are
considered, then the application of the tests is equivalent to enforcing strong 3-b-
consistency.

4.5.7 Sequence Consistency Does Not Imply k-b-Consistency

Trivial though it may be, it is worth emphasising that the consistency tests only check
necessary, but not sufficient conditions for the existence of a feasible schedule.While
we could show that the sequence consistency tests always achieve 3-b-consistency,
this means that they in general do not achieve k-b-consistency for k > 3. The
example in Figure 4.9 illustrates these two points.

In the example, A = {i, j , k, 1, m). The output condition allows to conclude that
{j, k, I, m)+i, since 10 - 0 < 11. The preemptive bound ECpr (Ai) for the earliest
completion time of {j, k, 1, m) is 9. According to domain reduction rule (4.8) this
leaves the value 9 as the left bound of Ai. However, manual inspection shows that
the earliest completion time of { j , k, 1, m) is actually 10. Thus, the inputloutput
test leaves an inconsistent value at the left bound of A,. This demonstrates that the
domain reduction rule based on the preemptive bound is heuristic.

5 ~ e e Algorithm 1 on page 27.
6 ~ t is easy to see that if precedence constraints are given in addition to resource constraints, as, e.g.,

in the problem PSltemplCntax, then the additional application of the Precedence Consistency Test 1 will
ensure overall 2-b-consistency.

4.5. DISJUNCTIVE INTERVAL CONSISTENCY TESTS

" u
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
X X X X X X X X X

Figure 4.9: When sequence consistency tests fail

Now modify the example by reducing LCi to 11. The inputloutput test still yields the
same result, and none of the other sequence consistency tests leads to an inconsis-
tency (by producing an empty domain). Again, manual inspection shows that there
is no feasible schedule for A.

4.5.8 Shaving

In the tests based on the Sequence Consistency Theorem 2 we have tried to refute
hypothetical constraints on the sequence in which activities in a set A C V e execute.
Now, we take a purely time-oriented approach and consider hypothetical constraints
on individual activity start times. If we can falsify such a constraint, then we can
reduce the corresponding activity domain in an obvious way. The process of reducing
activity domains based on this kind of reasoning has been called shaving (Martin and
Shmoys 1996, Caseau and Laburthe 1996b).

For example, we can test a hypothetical constraint of the type Si > t , for some t , E
A,. If this leads to a contradiction, then we can conclude that Si must be less than or
equal to t , and remove all values greater t , from Ai. A contradiction may be caused
by a direct violation of the interval capacity constraint (4.3) or after propagating the
hypothetical constraint by repeatedly applying other consistency tests. Values of t ,
can for example be chosen by a dichotomising search over Ai.

A shaving approach for disjunctive scheduling has been proposed by Carlier and
Pinson (1994) for solving the JSP. Martin and Shmoys (1996) have, independently,
applied the technique within a time-oriented branch-and-bound algorithm for the
JSP. Using a shaving technique, Caseau and Laburthe (1996b) were able to obtain
a proof of optimality for the famous 10 x 10 job shop problem instance of Fisher

I

56 CHAPTER 4. CONSISTENCY TESTS

and Thompson (1963) with only 7 backtracks. Recently, Dorndorf et al. (2001) have
shown how the use of simple shaving techniques can significantly reduce the search
effort of a branch-and-bound algorithm for the Open Shop Scheduling Problem, an-
other classic disjunctive scheduling problem.

4.6 Cumulative Interval Consistency Tests

While disjunctive scheduling or sequencing is concerned with unit resource require-
ments and capacities, cumulative scheduling considers the general case of arbitrary
resource supply and demand.

In this section we introduce several consistency tests for cumulative scheduling that
are based on the Interval Capacity Constraint (4.3). Section 4.6.1 first deals with the
special case of time intervals of width one. Section 4.6.2 then presents tests based on
considering activity intervals, i.e., intervals defined by the earliest possible start and
latest possible completion time of two activities, while Section 4.6.3 discusses the
question which time intervals must in general be tested in order to detect a violation
of Constraint (4.3). Finally, Section 4.6.4 briefly describes consistency tests based
on the concept of elastic resource relaxations.

4.6.1 Unit-Interval Consistency

An important special case of the general interval capacity constraint (4.3) is obtained
if we consider time intervals of width one, also called unit-intervals. If, for a set Vk
of activities to be processed by resource k , some activity i E Vk and some time t , the
slack(vk \ { i) , k , t , t + 1) is less than the required resource amount rik, then activity
i cannot be processed at time t. This leads to the following consistency test, which is
also known under the name timetable-based constraint propagation (Le Pape 1994b).

Consistency Test 8 (Unit-Interval Test). Let i E Vk. $ for some time t in the
interval [ESi (A) , LG (A) [,

s ~ u c ~ A (V ~ \ {i), k , t , t + 1) < rik

then the domain of i can be reduced in the following way:

~ Ai := Ai\ It -p i , t] .

Tests similar or equivalent to the unit-interval consistency test have for instance been
described by Le Pape (1994b, 1995), Nuijten (1994), Caseau and Laburthe (1996b),
and Klein and Scholl (1999a). For disjunctive scheduling, the unit-interval test is
covered by the pair test.

The test can be efficiently implemented through capacity profiles reflecting remain-
ing and used capacity over time; the profiles can be based on a support point repre-
sentation. A capacity profile can be initialised and updated by using the fact that an

4.6. CUMULATIVE INTERVAL CONSISTENCY TESTS 57

activity i must always be in process during its core time between its latest start and
earliest completion time; observe that it follows from the definition of interval pro-
cessing time in (4.1) thatpi(t, t + 1) = 1 for all t E [a, ECi[, andpi(t, t + 1) = 0
otherwise. The capacity profile can therefore only change at points in time corre-
sponding to the latest start or earliest completion time of an activity and can thus be
represented using at most 2 . IVI support points.

Let tk and tk+l be two consecutive support points of the capacity profile, where the
capacity value given at time tk applies in the time interval [tk , [. Clearly, if an
activity cannot be in process at time tk, then in cannot be processed anywhere in
[tk, tk+l [. We therefore only need to test the condition of Consistency Test 8 at the
relevant support points and may strengthen the reduction rule by removing all times
in the interval]tk -pi, tk+l [. The worst case effort for checking all activities against
the complete remaining capacity profile obviously is O(IV12). However, the average
effort is often lower because usually not all activities have a non-zero core time and
we need only check against the support points within the start time domain of an
activity.

The capacity profile can be updated as part of the constraint propagation process.
Whenever the start time domain of an activity is reduced, an update of the capacity
profile may be required as the domain reduction may have led to a new or modified
core time of i. Since the core time modification may overlap the entire profile, the
worst case updating effort is O(IV I).

4.6.2 Activity Interval Consistency

The disjunctive sequence consistency tests developed in Section 4.5 can be gener-
alised for cumulative scheduling in a straightforward way by considering available
and required work instead of time spans and processing times. This relation was
first pointed out by Nuijten (1994) (see also Nuijten and Aarts 1996). The following
theorem extends the Sequence Consistency Theorem 2 for cumulative scheduling.
In analogy to the total processing time P(A) of the activities in a set A, we define
the total work with respect to a resource k as Wk(A) := xjEA ?kpj. As the time
intervals considered are activity intervals that are defined by act~vity sets, we have
chosen the name activity interval consistency.

Theorem 7 (Activity Interval Consistency). Let A', A" C A C Vk.Zf

Rk . max (LC, - ES,) < W (A)
uEA\A',v€A\A"

then an activity in A' must startJirst or an activity in A" must end last.

Proof: Similar to proof of Theorem 2.

In contrast to the Sequence Consistency Theorem, we can no longer assume that
u # v because it is now possible that an activity that starts first also ends last.

5 8 CHAPTER 4. CONSISTENCY TESTS

Comparison of Condition (4.17) to the general Interval Capacity Constraint (4.3)
shows that the condition only considers time intervals defined by a set A of activities
and the total work of A, as opposed to interval work. In the disjunctive case we were
able to show that it was sufficient to consider activity intervals and that there was
nothing to be gained from using interval work instead of set based work on the right
side. However, it turns out that this is not the case for cumulative scheduling, so that
the condition can actually be strengthened. The reason for presenting the condition
in the above form is that this extension of the disjunctive case allows to generalise
algorithms originally designed for sequencing. We will discuss a sharper form in
Section 4.6.3.

The theorem can be used to derive consistency tests in analogy to the sequencing
tests by using suitable values for A' and A", as shown in Table 4.1. Note that the
meaning of conclusions such as Ai+i or i+Ai is that i must end after (start before)
all activities in Ai; in contrast to the disjunctive case this, however, does not imply
that it must also start after (end before) Ai.

Useful domain reductions can be deduced for the cumulative version of the input-
or-output test with i = j. For A' = A" = {i), i.e., for testing the hypothetical
constraint H : i+Ai A Ai+i, Theorem 7 yields the following consistency test:

Rk - max (LC, - ES,) < W (A)
uEAi ,uEA;

Clearly, the excess amount of work that cannot be processed in the interval defined
by minUEdi ES, and m a x , ~ ~ , LC, is the difference of the total work required by A
and the capacity available within the interval. Since only activity i can move partially
or completely out of the interval, we can conclude that the amount of processing time
of i to be moved outside to the left andlor right, denoted by rest(A, i), is:

rest(A, i) := [(W(A) - Rk . max (LC, - ES,,))/rial.
,Ed; ,uEA;

This observation allows to deduce domain reductions if the minimum amount of
processing time that is always outside of the interval, regardless of the chosen start
time, is less than the required amount:

Pi - rnax (LC, - ES,) < rest(A, i).
U E A ~ , V E A ~

If Condition (4.19) holds, then the part of i that must be outside of the interval must
either be completely on the left or be completely on the right side of the interval. This
leads to the following domain reduction rule that can be applied if Conditions (4.18)
and (4.19) hold:

Ai := Ai\ 115; ESu - rest(A, i), man LC,, + rest(A, i) -pi[. (4.20)
VEA;

This rule can actually be sharpened as follows: If the left or right bound reduction
may be applied for Ai then it can also be applied for all subsets A' E Ai; this is
not shown here. The sharpened form of the rule is equivalent to domain reduction

4.6. CUMULATIVE INTERVAL CONSISTENCY TESTS 59

i + = - = = = =) : 4
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4
X X X X

Figure 4.10: Four activities requiring 1 unit of a resource with capacity 2

rule (4.1 1). We refer to the conditions and this domain reduction rule as the cumula-
tive input-or-output test.

Figure 4.10 illustrates the test. It shows an example (Nuijten 1994) with four ac-
tivities to be processed by the same resource k with capacity Rk = 2. Inspection
shows that if activity i is started before time 4, then it is impossible to schedule all
of the other activities j , k, 1 within their time window. This is detected by the input-
or-output test in the following way: Because 2 . (9 - 1) < 18 we conclude that
i+{j, k, I) V {j, k, 1 1 4 . The amount of processing time of i that must take place
outside of the interval [l , 9[is rest({i, j, k, 1),i) = [(I8 - 2 - (9 - 1))/1] = 2.
Because 7 - 8 < 2, Condition (4.19) is satisfied and we apply the domain reduction
rule A; := A;\ 11 - 2,9 + 2 - 7[= [4,7], as shown in Figure4.10.

It is interesting to consider a slight modification of the example: For p; = 6 the
reduction rule yields A; := Ai\]0,4[= {0,4, . . . ,7); the value 0 is thus left in Ai
and the domain bounds remain untouched.

The test presented here is similar to the three cumulative tests described by Nui-
jten (1994), who also describes a corresponding extension of his disjunctive con-
sistency checking algorithm. The time complexity of the resulting algorithm is
O(I {r;k)l . IVkI3), where I{rik)l is the number of distinct resource capacity require-
ments. Another O(lVk 13) consistency checking algorithm for activity intervals has
been described by Caseau and Laburthe (1996b).

Baptiste and Le Pape (2000) have recently proposed an O(IVkI2) algorithm for
checking activity interval consistency that is based on the idea of transforming a
cumulative resource and cumulative, non-preemptable activities to a disjunctive re-
source and corresponding disjunctive activities with preemption allowed; they then
apply an algorithm that implements the inputJoutput consistency test for disjunc-
tive preemptive scheduling (Le Pape and Baptiste 1996b) and reduce the domains
of the original, cumulative activities based on the domain reductions deduced for

60 CHAPTER 4. CONSISTENCY TESTS

their disjunctive counterparts. While the computational complexity of the algorithm
is lower, the time bound adjustments are less precise than with the algorithms of
Nuijten (1994) and Caseau and Laburthe (l996b).

As mentioned before, the tests described in this Section could be strengthened by us-
ing interval work instead of simple work and by considering additional time intervals
other than activity intervals. This is explained in the following section.

4.6.3 Minimum Slack Intervals

Figure 4.11 shows an example, similar to an example used by Baptiste et al. (1999),
with five activities that require one unit of a resource with capacity 2. We can con-
clude that activity i must start after time 6. This can be deduced by first imposing
the hypothetical constraint H : Ci 5 10 or equivalently Si 5 6, and then testing the
general Interval Capacity Constraint (4.3) for the interval [I, 9[. If i is constrained

I J
0 1 2 3 4
X X X X X

Figure 4.11: Five activities requiring one unit of a resource with capacity 2

to finish at time 10 or before, then the total amount of interval work to be processed
within [I, 9[is 2 . 4 + 3 . 3 = 17 units, whereas only 2 . (9 - 1) = 16 units are
available. We can thus conclude TH and remove values less than or equal to 6 from
the start time domain Ai. We emphasise that H can only be refuted by testing the in-
terval [l, 9[, while the Interval Capacity Constraint is satisfied for all other intervals,
including all activity intervals.

The example leads us back to the initial question, posed in Section 4.3, for what time
intervals the capacity constraint should be tested. This question has recently been an-
swered by Schwindt (1998b) and, independently, by Baptiste et al. (1999). By study-
ing the possible extrema of the slack function (4.2) for a given set of activities V k , the

4.6. CUMULATIVE lN7ERVAL CONSISTENCY TESTS 61

set of intervals [tl, t2 [can be characterised for which the slack function can take a
local or global minimum and may thus violate an Interval Capacity Constraint (4.3).
Schwindt and Baptiste et al. have shown that the number of such minimum slack
intervals is of order of magnitude O(IVk 1 2) and have given a characterisation of the
intervals (the one in Schwindt (1998b) is slightly tighter). Thus, as we know from
the initial example, the set of minimum-slack intervals is larger than the set of activ-
ity intervals but still of order of magnitude O(IVk12). Since an intuitive description
of the minimum slack intervals is hard to give, and because the proof is lengthy, we
do not describe the set of minimum-slack intervals in more detail.

Baptiste et al. have developed an O(IVk 1 2) algorithm for computing the value of the
slack function for all potential minimum-slack intervals, and an O(IVk 1' log lVk 1)
algorithm has been described by Schwindt, who has used the interval capacity con-
straint for computing lower bounds for the problem PSltemplC,,,, by using a de-
structive improvement approach.

In order to reduce activity domains, Baptiste et al. suggest to use hypothetical con-
straints of the type Si < t,, similar to the example above, where t , depends on
the right bound of a minimum slack interval; there is an obvious symmetrical test.7
The time complexity of an algorithm that computes all domain reductions which can
be obtained on the minimum-slack intervals is O(IVk 1 3) ; this follows from the fact
that the slack for all potential minimum-slack intervals can be computed with effort
O(IVk 1 2) , that there are lVk 1 activities to be tested and that the candidate values for
t , and t, depend on the minimum slack interval and the activity under consideration.

The development of a quadratic algorithm to compute all domain reductions is an
open issue.

4.6.4 Fully and Partially Elastic Relaxations

This section describes two relaxations of the scheduling problem that have been
suggested by Baptiste et al. (1999). The relaxations describe necessary conditions
for the existence of a feasible schedule. They are based upon the idea of trying
to answer the question whether there exists an integer function esk(t , i), (for elastic
schedule), that describes the number of work units assigned to all activities over time
so that for every activity the total number of units assigned equals the required work.
The capacity assignment defined by esk (t , i) is elastic in the sense that it allows that
the amount of resources assigned to activity i may vary while i is in process, as long
the total amount of work corresponding to i is covered.

'~aptiste et al. (1999, Proposition 13) actually use the right bound of a minimum slack interval for
t,. However, we would like to point out that the resulting conclusion can be strenthened if, for a distinct
activity i and a minimum slack interval [tl, tz [the value t, = t2 + max(0, t l - ES;) is used instead of
t, = tz; this can easily be integrated in the proposed algorithm. Simply speaking, the value oft , should
be chosen in such a way that the minimum processing time of activity i within the interval [tl , t2 [that is
obtained when i is right-shifted equals the minimum processing time when i is left-shifted.

In the example above, we thus obtain t, = 9 + m a x (0 , l - 0) = 10; it can easily be seen that the
domain reduction obtained for the hypothesis t, = 9 is weaker.

62 CHAPTER 4. CONSISTENCY TESTS

The fully elastic relaxation is the decision problem of deciding whether a function
esk (t , i) exists such that the following constraints hold:

esk(t , i) = 0, for all i E VI, and t 6 Ai

esk(t , i) = pirik, for all i E Vk
t

A tighter relaxation can be obtained by adding the two following constraints.

est (t', i) < Rt - (t - min Ai), for all i and t E Ai (4.24)
t l<t

esk (t', i) 5 Rt . (m a Ai - t) , for all i and t E Ai. (4.25)
tit'

The resulting decision problem is called partially elastic relaxation; the way in which
assigned work may float within the activity time window is more restricted than in
the fully elastic case.

The partially and fully elastic relaxations can be used to deduce activity domain re-
ductions in the usual way. If, after adding hypothetical constraint H, it can be shown
that no function esk(t , i) exists that satisfies Constraints (4.21) to (4.25), then -H
must hold. Baptiste et al. describe an O(IVkI2) domain reduction algorithm based
upon the fully elastic relaxation and an O(1og I{rik}l - IVkI2) algorithm using the
partially elastic relaxation, where I {r ik) 1 is the number of distinct resource capacity
requirements.

The partially elastic relaxation is strictly weaker than the general interval consistency
constraint (Baptiste et al. 1999).

4.7 Multi-Mode Consistency Tests

Given an instance of the multi-mode project scheduling problem MPSlternplC,, we
can obtain an associated instance of the problem PSltemplC,,, by replacing the in-
put data that depends on the mode assignments, i.e., processing times, time lags, and
resource requirements, with the corresponding minimal values over all modes (Heil-
mann 1998). As the resulting associated problem is a single-mode problem we can
apply the consistency tests to it that have been described in the preceding sections.
If the associated problem is a relaxation of the original problem then any domain re-
duction obtained for the associated problem must also apply for the original problem
instance. The concept of the associated problem instance is formally expressed in
the following definition.

4.7. MULTI-MODE CONSISTENCY TESTS 63

Definition 1 (Mode-Minimal Problem Instance). Given an instance 7' of the prob-
lenz MPSltemp(C,,,, described by

the associated mode-minimal problem instance 'P is the instance of the problem
PSltemplC,, that is described by

where

Given an instance P of the problem MPSlternplC,,, the consistency tests for the
temporal constraints and the interval consistency tests may then be applied to the cor-
responding minimal problem instance 5. Since 'P is a relaxation of P, any domain
reduction obtained for 5 must also apply for P. As 'P is a single-mode problem, any
consistency test applied to it can, of course, only lead to reductions of the activity
start time domains.

We therefore introduce three additional simple consistency tests for reducing the
activity mode domains AM; based on the consideration of temporal constraints, re-
newable resource constraints, and non-renewable resource constraints. The tests are
presented in the form of condition and conclusion. We do not comment on the obvi-
ous computational complexity of the tests.

If a temporal constraint (i, j) can never hold in case a particular mode assignment
p E AM; is chosen for activity i , regardless of the mode of j , then we may remove
p from A Mi :

Additionally, any mode assignment p E AM; that leads to a violation of a unit
interval capacity constraint for a renewable resource may be removed from AM; :

i E V k , p E AM;,^ E [Ui,m[:
(4.27)

slackL(Vk \ { i) , k, t , t + 1) < ri,k AMi := AM< \ { p) .

A similar test may be applied for the constraints for non-renewable resources. In
analogy to Definition (4.2), a slack function for non-renewable resources may be
defined as follows.

64 CHAPTER 4. CONSISTENCY TESTS

Algorithm 2 Mode Shaving
repeat

 old .- .- A
for all activities i E V do

for all modes p E AM; do
A' := A
Ahi := { p)
if a current domain in CP(Af) is empty then

A , := AM; \ { p)
end if

end for
end for

until A = AoZd

slack;; (v, k) := Ri - min ripk
P E A M ~

i E V k

Using this function we can state the following consistency test that removes any
mode assignment p E AMi that leads to a violation of a non-renewable resource
constraint:

i E V k , p ~ AM^ :
slack;; (Vk \ {i), k) < T i p k * AM; := AM{ \ { p) .

The three mode consistency tests 4.26 to 4.28 are subsumed in the mode shaving
test, which repeatedly tries to show that a mode assignment p E AM; leads to a
contradiction by applying constraint propagation until a fixed point is reached or a
domain becomes empty. The idea of the test is similar to the shaving test for reducing
start time domains described in Section 4.5.8. The test is shown in Algorithm 2. The
operator CP may apply any number of consistency tests but, of course, must not
recursively apply the mode shaving test itself.

4.8 Summary

We have introduced simple consistency tests for temporal constraints and have pre-
sented a general, unifying framework for understanding interval capacity consistency
tests. Within this framework, we have surveyed and extended previous results that
have been obtained in the areas of Operations Research and Artificial Intelligence.
We have related the concept of energetic reasoning to sequence consistency tests
known under the names of immediate selection or edge finding.

The interval consistency tests described in this chapter have been applied frequently
and with great success for solving disjunctive scheduling problems. Fewer and so far

4.8. SUMMARY 65

1 less conclusive results have been reported for the application of the tests for cumula-
tive scheduling. Several tests that we have described are available in general purpose
scheduling software libraries such as ILOG Scheduler (Le Pape 1994b, 1995, Nui-
jten and Le Pape 1998), CHIP (Aggoun and Beldiceanu 1993), or CLAIRE Sched-
ule (Le Pape and Baptiste 1996a).

I Chapter 5

Algorithm

This chapter describes a time-oriented, constraint propagation based approach to
resource-constrained project scheduling with generalised precedence constraints.
We present a branch-and-bound algorithm for the general problem PSltemplC,,
that enumerates possible activity start times based on the idea that, at a given node
of the search tree, an activity must either start as early as possible or be delayed.
A central feature of the algorithm is the application of constraint propagation tech-
niques that actively exploit the temporal and resource constraints during the search
in order to narrow down the set of possible activity start times and thus reduce the
search space. Further reduction of the search effort is achieved by enforcing some
necessary conditions that must be met by active schedules.

One of the main advantages of the time-oriented branching scheme is its concep-
tual simplicity which allows to modify and extend the approach for related practical
scheduling problems that are often complicated by additional constraints. Further-
more, the constraint propagation techniques that we use are not custom-tailored for
the problem PSltemplC,,,, but are of an elementary nature and have a wide applica-
bility.

Extensive computational experiments with systematically generated test cases for the
problem PSltemplC,,, with one hundred up to five hundred activities per problem
instance show that the algorithm solves more problems to optimality and feasibility
than other exact solution procedures which have recently been proposed, and that the
truncated version of the algorithm is also a very good heuristic.

-In addition to the general problem PSltempJC,,, the algorithm is evaluated for the
special case of the problem PSlpreclC,,, which contains only simple precedence
constraints. Computational experiments with large benchmark test sets, ranging in
size from thirty to one hundred and twenty activities per problem instance, show that

68 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

the algorithm scales well and is competitive with other exact solution approaches for
this special problem.

The structure of this chapter is as follows. Section 5.1 reviews the most relevant pre-
vious solution approaches. Section 5.2 summarizes which of the consistency tests
introduced in Chapter 4 are used within the branch-and-bound algorithm. The al-
gorithm itself is then presented in Section 5.3, and Section 5.4 finally describes the
computational experiments.

5.1 Previous Solution Approaches

Already the problem PSlprecJCma is NP-hard. Most exact solution methods are
therefore based on branch-and-bound search. Beginning with the work of John-
son (1967), a great number of branch-and-bound algorithms for solving the prob-
lem PSlpreclCmm have been developed, and we refer the reader to the recent sur-
vey papers of Brucker et al. (1999), Herroelen et al. (1998), Kolisch and Padman
(2001), and Elmaghraby (1995) for a description and classification of the various
approaches. Currently, the most effective exact algorithms seem to be the ones of
Demeulemeester and Herroelen (1997b), Sprecher (2000), Mingozzi et al. (1998),
Brucker et al. (1998) and the procedures of Klein and Scholl(2000, 1999b), which
can solve a generalised version of the problem PSJpreclC,,with arbitrary minimal
time lags.

While the classic resource-constrained project scheduling problem PSlprecl C,,, has
been intensively studied, algorithms for solving the problem PSltemplC,, have only
recently received growing attention in the literature as can be seen in the surveys by
Herroelen et al. (1998) and Brucker et al. (1999). This may to some extent have been
caused by the fact that the problem PSlprecJC,, itself is intractable. As an exten-
sion, the problem PSltempJC,,,, is, of course, also NP-hard, and even the question
whether a problem instance has a feasible solution is NP-hard (Bartusch et al. 1988).

Different heuristics for resource-constrained project scheduling with generalised pre-
cedence constraints have.been proposed, and we refer the reader to Zhan (1994),
Neumann and Zhan (1995), Brinkmann and Neumann (1996), Schwindt (1998b),
Franck and Neumann (1998), Franck and Selle (1998), and Neumann and Zimmer-
mann (1999) for a discussion.

Exact branch-and-bound algorithms for the problem PSlremplC,, have been devel-
oped by Bartusch et al. (1988), De Reyck and Herroelen (1998) (see also De Reyck
et al. 1999), Schwindt (1998a,b), and Fest et al. (1999). The common idea behind
these algorithms is to relax the resource constraints and compute an optimal time-
feasible schedule. The resulting schedule will usually violate resource constraints
and is therefore scanned for resource conflicts, i.e., times when more resources are
consumed than are available. The procedures then branch over the possible alter-
natives for resolving these conflicts. A resource conflict is resolved by adding new
constraints that delay some of the activities causing the conflict (conflict set). Subject

5.1. PREVIOUS SOLUTION APPROACHES 69

I to the constraints added so far, an optimal time-feasible schedule is then re-computed
and again tested for further resource conflicts. In the algorithms of Bartusch et al.
(1988) and De Reyck and Herroelen (1998) activities from a conflict set are delayed
by introducing additional classic precedence constraints. The procedure of Schwindt
(1998b) delays activities by adding special precedence constraints between pairs of
disjoint sets of conflicting activities; all activities in the second set are delayed until
the completion time of a first activity in the first set. The algorithm of Fest et al.
(1999) resolves conflicts by dynamically increasing release dates for certain activi-
ties.

The time-oriented branch-and-bound algorithm that we describe here is different in
the sense that it simultaneously considers temporal and resource constraints. Instead
of enumerating alternatives for resolving resource conflicts that occur in a relaxed
problem, the procedure enumerates possible activity start times based on the follow-
ing simple idea: at a given node of the search tree, an activity must either start as

I early as possible or be delayed. A central feature of the algorithm is the application
of constraint propagation techniques that actively exploit the temporal and resource
constraints during the search in order to narrow down the set of possible activity
start times and thus reduce the search space. Further reduction of the search ef-
fort is achieved by enforcing some necessary conditions that must be met by active
schedules.

Time-oriented branching schemes that branch over activity start times have previ-
ously been applied for solving several special cases of the problem PSltemplC,,,,.
The first time-oriented branching schemes for the problem PSlprecl C,, have been
described by Elmaghraby (1977) and Talbot and Patterson (1978); the common idea
behind these algorithms is to branch over all possible start time assignments of the

1 next activity to be scheduled, and the number of child nodes generated at a given
node of the search tree thus depends on the selected activity. Carlier and Latapie
(1991) have proposed a binary search scheme in which branching consists of select-
ing an activity and splitting its interval of possible start times into two intervals of

I equal size. Martin and Shmoys (1996) have developed a time oriented algorithm for
the job shop scheduling problem. Caseau and Laburthe (1996b) have independently

1 designed a branch-and-bound algorithm for a multi-mode project scheduling prob-
lem that can be classified as MPSlpreclC,,,, in the scheme of Brucker et al. (1999).
For the single mode case the algorithm uses the same branching strategy as the pro-
cedure of Martin and Shmoys, which schedules an activity at its earliest start time or
delays it upon backtracking until the earliest completion time of some other activity,
resulting in a binary search tree. The branching scheme described here also makes
use of this elementary approach. The branching strategy described by Caseau and
Laburthe has also been used in modified form in the studies of Baptiste et al. (1999)
and Baptiste and Le Pape (2000). Heipcke and Colombani (1997) have developed an

I algorithm for a version of the problem PS(prec(C,,,, in which resource supply and
1 demand may vary over time; the branching scheme of their algorithm is also binary;
1 an activity is scheduled at its earliest start time or delayed upon backtracking by a

70 CHAP7'ER 5. A BRANCH-AND-BOUND ALGORITHM

single unit of time. An unusual feature of their algorithm is that activities are in
general not scheduled in order of increasing start times.

5.2 Constraint Propagation

5.2.1 Consistency Tests

The branch-and-bound algorithm that will be described in the next section relies to
a great extent on efficient constraint propagation techniques. At each node of the
search tree, a fixed point is computed by applying at least the two most basic consis-
tency tests introduced in Chapter 4 within the constraint propagation algorithm:

Precedence Consistency Test 1 ;

Unit-Interval Consistency Test 8.

As we will see, the application of these two tests is an essential part of the branch-
and-bound algorithm.

Additionally, the following consistency tests for pair-wise disjunctive activities as
defined by Lemma 1 are applied:

Lag-Based Disjunctive Consistency Test 2;

Inpub'Output Consistency Test 3 for pairs of disjunctive activities;

General Inpub'Output Consistency Test 3 for disjunctive sub-problems, which
are selected as described in Section 4.4.2.

5.2.2 Some Properties of the Earliest Start Times

The Precedence Consistency Test 1 and the Unit Interval Consistency Test 8 that
are applied within the fixed point constraint propagation algorithm affect the earliest
activity start times as follows. Letpcj (A) be the minimal start time of an activity j E
V if only the precedence constraints (i, j) between activities i in the set VS(A) :=
{i E V I 1 Ail = 1) of scheduled activities and j are considered:

pcj (A) := max {Si + dij I (i, j) E f}.
i € V s (A)

Here, we have used the convention that the maximum of the empty set is 0. Let
further rcj (A) be the minimal start time of j if additionally resource constraints are
considered:

rcj(A) := min {t 1 Vk E R,Vtl E [t, ..., t + p j [:
t 2 ~ c j (A)

slacka(Vk \ {j),t ' , t l + 1) 2 rjk).

1 5.3. THE BRANCH-AND-BOUND ALGORITHM 7 1

I Then, obviously,
I

ESj (A) 2 rcj (A) > pcj (A).

, A schedule S can be naturally identified with a set of current domains, where each
, domain Ai contains the corresponding start time, i.e., Ai := {Si). This justifies the

notation rcj (S) and pcj (S). Clearly, S can only be active if for all activities either a
precedence constraint or insufficient resource capacity prevents a left-shift. Thus, in
any active schedule S , the identity

holds for all j E V.

Since we may without loss of generality assume that an activity has at most IVI - 1
predecessors, the calculation of pcj requires effort O((V1). The calculation of rcj is
based upon pcj and a traversal of the support points of the remaining capacity pro-
file, as introduced in Section 4.6.1, and requires a worst case effort O(IRI IVI). The
average effort for typical problems is much lower because the number of predeces-

I sors of an activity is usually significantly smaller than O(IV1) and in general only a
small part of the capacity profile must be traversed.

5.3 The Branch-and-Bound Algorithm

The main component of the branch-and-bound algorithm described in this section is
a time-oriented, binary branching scheme. We will show that this branching scheme
generates at least all active schedules, so that traversing the search tree will result
in an optimal solution. Inversely, the branching scheme tries to avoid constructing
non-active schedules, which cuts down the search space considerably. A detailed
description of the branching scheme is given in Section 5.3.1.

Section 5.3.2 deals with the "bounding" part of the algorithm. Generally, nodes of
the search tree can be fathomed through the comparison of upper and lower bounds
for the optimal makespan, which are computed in the nodes of the search tree. As
a peculiarity, however, our algorithm does not explicitly compute lower bounds. In-
deed, the bound-oriented fathoming of nodes is a useful by-product of constraint
propagation techniques, that have to be applied anyway in the "branching" part of
the algorithm.

Additionally, the search space is reduced by adding constraints that must be satisfied
by all active schedules that can be developed from a given node, and through the
application of a simple left-shift dominance test. This is discussed in Section 5.3.3.

1 5.3.1 The Branching Scheme
I

The branching structure that we describe here is based on a simple time-oriented
schedule generation scheme, which results in a binary search tree. Each node a

72 CHAPTER 5. A BRANCH-AND-BOUND ALGORTTMM

of the search tree is associated a set A(a) = {Ai(a) I i E V) of current do-
mains, which uniquely determine the sets Vs(A(a)) := {i E V (lAi(a)l = 1)
and v f (A(a)) := {i E V I 1 Ai (a) 1 > 1) of scheduled and non-scheduled activi-
ties, respectively. (In order to simplify the notation we will write V S(a) instead of
V s(A(a)) , etc., whenever possible.) Generating a specific schedule is equivalent to
reducing the current domains until all activities are appropriately scheduled. One
method of domain reduction that will be extensively used is the application of con-
straint propagation. Since in general, however, constraint propagation alone does not
schedule all activities, some activities additionally will have to be scheduled by an
explicit assignment of their start time variables.

At every node a of the search tree an unscheduled activity j E ~f (a) is chosen
and two child nodes are generated. Denoting the left child node with l(a) and the
right child node with r(a), the branching scheme relies on the following simple node
generation rule.

l(a): Start j at its earliest start time by setting Sj(l (a)) := ESj (a) .

r(a): Increase the earliest start of j by choosing ESj(r(a)) > ESj (a) .

A complete specification of the branching scheme now requires the answer to two
questions. The first question deals with the problem of which activity j E V* (a) to
choose in node a. The second question is how the earliest start time of j should be
increased in r(a). We will first describe the choice of an activity j and then derive
an earliest start time adjustment for the right child node. We will then summarize
the branching scheme and show its completeness, i.e., prove that it can generate any
active schedule.

Selection of Activities

At node a, an activity can be selected for branching if it is free and non-delayed. For
the time being, it is not necessary to describe this attribute more closely. We only
assume that the set of non-delayed activities ~ f ' (a) is a non-empty subset of the set
of free activities. An activity j is then selected according to the following rule:

Choose j E v f l (a) , such that ESj = t (a) where t (a) is the schedule
time:

t (a) := min ESi(a).
i ~ ~ f ' (a)

Ties are first broken by selecting an activity which satisfies some secondary criterion,
then randomly. In general, we use the minimal time slack, i.e. [Ail, as secondary
criterion; this means that we use the well known first fail principle which consists
of first instantiating the variable with the fewest remaining possible values. We will
denote with act(a) the activity chosen in a.

5.3. THE BRANCH-AND-BOUND ALGORITHM 73

After the description of the selection rule, we are left with the problem of how to
identify the set of non-delayed activities. Of course, we can always set v f r (a) :=
v f (a) . This, however, is not sensible, since choosing an arbitrary free activity will
often lead to a non-active schedule. We will therefore show how to specify the set of
delayed activities, so as to capture the notion of active schedules more closely.

It will prove useful to partition the set of free activities into a set of activities which
still have to satisfy a maximal time lag and a set of activities which do not have to.
Let& = Emin~Emax , whereEmin := { (i , j) E E I dij > 0) andEmax := { (i , j) E
E I dij 5 0) are the relations specifying the minimal and maximal time lags between
pairs of activities. We then define the set

vtC(a) := { j E v f (a) 1 3i E v f (a) : (i , j) E Emax)

of timemax-constrained activities and the set vtU(a) := ~f (a) \VtC(a) of timemax-
unconstrained activities.

We can now describe the set of free and non-delayed activities:

v f ' (a) := Vtc(a) U { j E ~f (a) I ESj (a) = rcj (a))

This means that a free activity is a candidate for branching if it either has an "in-
coming" backward arc, or if its earliest start time equals its current earliest resource
feasible start time rq(a) . Note that the latter condition may in particular not be
given if the constraint propagation algorithm has adjusted ESj(a) to some value
greater than rcj (a) , or if an activity has been delayed (by an amount of time to be
defined below). The definition of the set of free and selectable activities v f ' can
therefore be interpreted as follows: a delayed activity i without an incoming back-
ward arc remains un-selectable until we know that the resource capacity "provided"
by delaying i has been used by some other activity. The following lemma justifies
our choice of the set ~ f ' .

Lemma 2 (Existence of Earliest Start Time Schedules). Let a be a node of the
search tree. Ifthere is an unscheduled activity then v f (a) is not empty, or a cannot
lead to an active schedule.

Pro05 Let S be an active schedule which is domain feasible in a, and let us assume
that Vtc(a) = 0. We then have to prove that there exists an activity j E vf (a)
satisfying ESj (a) = rcj (a) . Since Sj 2 ESj (a) 2 rcj (a) , we only have to show
that for some j E ~f (a) the identity Sj = rcj(a) holds.

Suppose that Sj > rcj(a) for all j E ~f (a) . Observe that the set of timemax-
unconstrained activities Vt"(a) is not empty, since V f (a) is not empty. It is therefore
possible to choose an activity j E Vtu(a) with minimal start time in S:

Sj = . min Si.
Z E V * ~ (L U)

(5.4)

Using the obvious identity V S (S) = V , Equation (5.1) tells us that

74 CHAPTER 5. A BRANCH-AND-BOUND ALGORlTHM

pcj (S) = z y { S i + dij I (i, j) E E),

If there exists a precedence constraint (i , j) E Emin, then i E V S (a) , since otherwise
Si + dij 5 S j and dij > 0 immediately imply Si < S j , which is a contradiction to
Equation (5.4). If (i, j) E Emax, then i E V S(a) follows directly from j E Vt"(a).
So for all (i, j) E E, we have i E V S(a) and the last equation can be simplified as
follows:

pcj(S) = max {Si + dij I (i , j) E E).
iEVs (a)

Domain feasibility now allows us to deduce the identity Si = Si(a) for all i E
V s (a) , which leads to

pcj(S) = max {&(a) +dij I (i, j) E E) =pcj(a).
iEVs(cx)

(5.5)

As S is active we know from Equation (5.2) that S j = rcj (S) , so that we can
conclude rcj (S) > rcj (a) . More formally

min { t I Vk E R,Vtl E [t, ..., t f p j [: s lacks (~k , t ' , t '+ l) 2 r jk)
t2~cj(S)

> min { t l V k ~ R , V t ' ~ [t , ..., t + p j [: ~ l a ~ k a (v k , t ' , t 1 + 1) 2 ~ j k) .
t2~cj(a)

Because pcj (S) = pcj (a), this means that there must be some resource k E R , such
that fort = S j - 1 the following conditions hold:

sZack,(Vk - { j) , t , t + 1) 2 ~ j k ,
slacks(V~, - { j) , t , t + 1) < rjk.

If the slack of period t in S is smaller than the slack of this period at node a , then
the interval processing time p, (t , t + 1) of at least one activity v E v f (a) = Vt"(a)
must assume the value 0 in a and 1 in S. According to the definition of interval
processing times in (4.1), p,(t, t + 1) = 1 implies that t + 1 - S, > 0. We thus
obtain S, 5 t < S j , which is a contradiction to Condition (5.4). So, in fact, there
must exist j E V f (a) with S j = rcj(a).

~ e l a ~ i n ~ Duration

Let us now turn to the question of how to increase the earliest start time of a selected
activity j = act(@) if we branch to the right. A first simple alternative is to delay
the activity by a single time unit. However, we can do better by observing that the
resulting schedule S can only be active if either (1) a precedence constraint or (2) low
slack prohibits a left-shift of the selected activity. Since the activity will be delayed
by at least one time unit, the first case can be ruled out if all precedence constraints
(i, j) E E are already resolved (see pages 20 and 34) in node a. The second case

5.3. THE BRANCH-AND-BOUND ALGORITHM 75

requires that the slack of all activities except j is insufficient to the left of S j (a) .
Intuitively, this can only be the case if S j (a) matches the completion time of some
activity that shares resources with j. This leads to the following lemma, in which
Ri := { I c E R I rik > 0) denotes the set of resources required by activity i.

Lemma 3 (Delaying Duration). Let a be the current node of the search tree and all
(i, j) E & be resolved for j = act(a). The set of all activities that share resources
with j andJinish after t(a) is denoted with V' := {i E V \ { j) I Ri r l Rj #
0 A %(a) > t (a)) . Letfurther

miniEv! ECi(a) ifV' # 0 ,
t f (f f) :=

t (a) + 1 otherwise.

Then S j 2 t+(a) in any active schedule S developedfrom r (a) .

Pro05 We need only consider the case whkre V' # 0. If j is delayed in r (a) and S
is active then, according to equation (5.2), rcj (S) = S j > t(a). If rcj (S) > t(a)
then, obviously, either

If, for the given j , all (i, j) E & are resolved, then mi + dij 5 ES j for all (i, j) E &.
Thus pcj (S) 5 t(a) and condition (5.6) cannot hold. Now consider condition (5.7).
We will show that any time t = rc j (S) satisfying this condition must correspond
to the completion time of some activity. If condition (5.7) holds then there must be
some time t and some resource Ic E R for which:

slacks(l/l, \ { j) , t - 1, t) < rjk A slacks(Vk \ { j) , t , t + 1) 2 rjk.

This immediately implies that there must be some activity in V k \ { j) that is pro-
cessed in the interval [t - 1, t[but not in [t, t + 1 [, i.e. an activity which finishes at
time t.

We have thus derived that if j is delayed from ESj (a) and the resulting schedule is
active, then S j = rcj (S) must equal some completion time t > t(a). Therefore we
can conclude that ESj (r (a)) must be greater than or equal to an earliest completion
time greater than t (a) . Of course, we need only consider activities that share a
common resource with j.

It is worth mentioning that the precedence constraints (i, j) E & are always resolved
if j has only incoming arcs with positive weight, i.e. if j E Vt"(a) .

76 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

At the root p Let p be the root of the search tree, and let Ail := [0, UB -pi]
for all i E V. Then:

A(p) := CP(A1).

In node a Let a be a node of the search tree. Let A(a) = {A;(a) I i E V)
be the set of current domains in a and j := act(a) the activity chosen in a.

Branching to the left 1 (a)
Let A1(a) := {A, (a), . . . , Ajl(a), . . . , A, (a)), where

Ajl(a) := {t(a)).

Then: A(l(a)) := CP(A1(a)).

Branching to the right r (a)
Let A1I(a) := {A1 (a) , . . . , Ajl'(a), . . . , An (a)}, where

i Aj (a) n [t(a) + 1, w[if there is an unresolved (i, j) E Imax A,"(a) :=
Aj (a) n [t+(a), w[otherwise.

Then: A(r(a)) := CP(A1I(a)).

Figure 5.1 : The branching scheme

Summary of the Branching Scheme

We are now able to define the branching scheme recursively; this is done in Fig-
ure 5.1. Recall that we only have to specify A(a), since this determines all other
sets and values.

The search tree is traversed in depth-first order until a leaf node is generated. This
happens whenever ~ f ' (a) = 0. This leaf node represents a solution, if VS (a) = V.
Backtracking occurs when a leaf node is reached or when an inconsistency has been
detected, i.e. when Ai (a) has become empty for some activity i E V.

The minimum possible depth of the tree is zero and is obtained if all activities are
scheduled through constraint propagation at the root node. The maximum depth of
the search tree that is possible in the worst case is reached when branching to the very
right side of the tree in the following way. Starting at the root node, we can initially
at most delay 1111 - 1 activities and must then schedule the remaining activity or
backtracking would be initiated. Next we can, at most, branch IVI - 2 times to the
right before branching a single time to the left. By continuing in this way, we may
reach a theoretical worst case depth of 1/21Vl (lVI + 1).

' 5.3. THE BRANCH-AND-BOUND ALGORITHM 77

The following theorem states that our time-oriented branching scheme is complete,
i.e., that an optimal schedule is generated. As we have already discussed in Sec-
tion 2.1.4, it is sufficient to prove that all active schedules can be generated.

Theorem 8 (Completeness of Time-Oriented Branching). The time-oriented
branching scheme generates all active sclzedules, i.e., if S is an active schedule,
then the search tree contains a leaf node a in which all activities are scheduled and
Si = &(a) for all i E V.

Pro05 Let S be an active schedule. We will first prove the following assertion: if S
is domain feasible in a, then S is domain feasible in either l(a) or r(a).

Lemma 2 ensures that v f l (a) is not empty, so that there exists an activity j E vf'
that is selected in a. Now, if Sj = ESj(a), then S is domain feasible with re-
spect to A1(a) as defined in Figure 5.1. Constraint propagtion only removes val-

' ues from current domains Ai not belonging to any schedule that is domain feasible
with respect to A. This implies that S must be domain feasible with respect to
A(1 (a)) = CP(A1(a)). If Sj > ESj (a) , then a similar argumentation in combina-
tion with Lemma 3 shows that S must be domain feasible with respect to A(r(a)).

We can conclude, that there exists a path p, a1 , a2, . . . , along which S is domain
feasible. Let lAl := CiEv lAil. Given the finiteness of the current domains,
ca > lA(p) 1 > lA(al) 1 > IA(a2) 1 > . . . 2 n must hold. This implies, that S
is domain feasible in some node am satisfying lA(am)l = n, i.e. Vs(am) = V.
This completes the proof.

5.3.2 Upper and Lower Bounds

The makespan of an initial or improved schedule is, of course, used as upper bound
UB.

If A is a set of current domains then constraint propagation implies a lower bound
of all domain feasible schedules in the following way. Let us assume that UB' 5 UB
is a hypothetical upper bound. Setting A' := {Ai n [0, UB' - pi[I i E V) we

I can then apply constraint propagation and examine CP(A1). If CP(A1) yields an
I inconsistency, i.e. an empty domain for some activity, then there cannot be a domain

feasible solution with completion time less than UB', so we can deduce that UB1 in
fact is a lower bound. The approach of computing lower bounds by repeatedly re-
futing hypothetical upper bounds has been called destructive improvement by Klein
and Scholl (1999a) who have successfully applied it to the problem PSlprec(C,,.

It is possible to compute the best constraint propagation based lower bound through
a bi-section search in the interval [0, . . . , LIB]. However, we only have to answer
the following "yeslno" question: Is the lower bound less than the current best upper
bound or not? This question is answered by applying constraint propagation to the
set A, which is already a fixed component of the branching scheme, so that an explicit
computation of lower bounds is not implemented in our algorithm.

78 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

5.3.3 Some Properties of Active Schedules

This section describes some additional conditions and a simple left-shift test that
aim at further reducing the search space by ruling out non-active schedules. We
make use of an effect caused by the activity selection rule: The choice of an activity
j E V f l (a) with minimal earliest start time, which, according to Equation (5.3),
determines the schedule time t (a) , ensures that any time point smaller than t (a)
does not have to be considered any more.

Clearly, the selection rule implies that in any schedule S developed from a the con-
dition S j > t (a) must hold for all j E V f ' (a) . But there might be free and delayed
activities j E V f (a) \ V f ' (a) for which ESj (a) < t (a) and which could therefore
possibly be scheduled at a time earlier than t (a) , either by the propagation algo-
rithm or through an explicit start time assignment, once they have become selectable
again. However, the following lemma states that this cannot happen if the resulting
schedule is active.

Lemma 4 (Start of Delayed Activities). Let a be a node of the search tree and let
S be an active schedule that is domain feasible in a. Then:

Proof: The proof is quite similar to the proof of Lemma 2, so we will only briefly
discuss the main differences.

Suppose there is an activity j E V f (a) \ Vf ' (a) that starts not later than t(a). Then
the set

A := {i E v f (a) \ V f ' (a) I Si 5 t (a))

is not empty, and we can always choose j E A so that its start time is minimal
among all activities in A. A similar line of argumentation as in Lemma 2 shows that
pcj (S) = pcj (a) .
The fact that S j 2 ESj (a) > rcj (a) then allows us to conclude that S j > rcj (a):
otherwise, if S j = rcj (a) then ESj (a) = rcj (a) and consequently j E V f ' (a) ,
which yields a contradiction.

Hence S j = rcj (S) > rcj (a) > pcj (a) = pcj (S) holds. This means that there
must be an activity i E V f (a) that finishes at time S j and consumes resources
required by j, which implies that Si < S j . Since Si > t (a) for all i E V f ' (a) we
can conclude that i E V f (a) \ V f ' (a) . But then i E A, which contradicts the fact
that S j is minimal among all j E A.

We can directly use Lemma 4 to reduce the search space in the following way. At
node a we additionally set

5.3. THE BRANCH-AND-BOUND ALGORITHM 79

before applying constraint propagation. The start time adjustment can be further im-
proved by applying a similar argument as in Lemma 3. Observe that the adjustment
of the earliest start time will lead to an empty domain for all delayed activities i
for which LSi 5 t (a) , i.e., for those activities which have been "needlessly" de-
layed. Because the adjustment of a single start time requires constant effort, the total
adjustment effort is O(1V 1) .
Lemma 4 and the fact that Si 2 t (a) for all i E ~f (a) also imply the following
result.

Corollary 9 (Constant Slack to the Left of t(a)). Let a be a node of the search
tree; then the slack in any period t < t(cu) does not change in descendant nodes of
a that lead to an active schedule.

This allows us to apply a simple left-shift dominance test. If, for any free, timemax-
unconstrained activity j E Vtu(cu) with pj > 0, the condition rc j (a) + pj 5 t (a)
holds, i.e., if j can resource and precedence-feasibly be scheduled so that it finishes
not later than at time t (a) , then node a cannot lead to an active schedule. While
it is possible to formulate more powerful left-shift conditions that consider sets of
activities rather than just a single activity (Schwindt 1998b), the advantage of the
test described here is that it can be easily evaluated. The effort for the left-shift
dominance test for all free, timemax-unconstrained activities is O(IVI2) since rcj
must be calculated for every activity in Vt" (a).

The fact that the slack to the left of t (a) remains constant can be exploited further.
Let j be an activity scheduled at node a at time t (a) . If rc j (a) < t (a) , then suffi-
cient slack and the temporal constraints involving the currently scheduled activities
admit a left-shift of j. Hence, a resulting schedule S can only be active if a tempo-
ral constraint involving a currently unscheduled activity prevents this left-shift. This
means that the following condition must hold in order for S to be active:

We add a corresponding constraint that takes part in the propagation mechanism.
The consistency test for this constraint works in the following way. If no temporal
constraint can satisfy this condition, then the node is fathomed. Otherwise, if only
one single temporal constraint (i, j) can satisfy the condition, then the domain of
activity i can be adjusted.

The effort required to test whether the constraint may be added is dominated by
. the calculation of rcj. The constraint is a disjunction over the temporal constraints

lnce a con- with O(IV1) possible predecessors and can be defined in time O(V1). S'
straint of this type can be added whenever an activity is scheduled, there may be
O(IV1) of these constraints. The constraints may thus cause 0(1VI2 d) enqueueing
and dequeueing operations in the constraint propagation algorithm. The correspond-
ing consistency test can be performed with effort O(IV1). The overall worst case
propagation effort caused by this constraint and test is therefore O(IVI3 d). Again,
if the number of predecessors of an activity is small as in typical project scheduling
problems, then the average effort is lower.

80 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

5.4 Computational Experiments

5.4.1 Implementation of the Algorithm

The branch-and-bound algorithm has been implemented in C++ using the constraint
programming libraries ILOG SOLVER and ILOG SCHEDULER which support the im-
plementation of tree search algorithms that apply constraint propagation at the nodes
of the tree (Le Pape 1994b). The basic propagation algorithm used in SOLVER is a
variant of the AC-5 arc consistency algorithm of Van Hentenryck et al. (1992).

The most important features of the SOLVER library are (1) fundamental data types
such as integer domain variables, (2) generic constraints upon these variables to-
gether with corresponding domain reduction rules, e.g., linear constraints on integer
domain variables, (3) the propagation algorithm, (4) classes for defining a search
(branching) scheme, and (5) support for reversible actions that are automatically un-
done upon backtracking, for instance the definition and propagation of constraints.
Based upon the generic data types and algorithms found in SOLVER', the SCHED-
ULER library provides an object model and algorithms that facilitate the development
of scheduling applications. For instance, SCHEDULER includes classes for represent-
ing activities and resources as well as associated constraints such as precedence or
resource constraints.

Besides the support for implementing backtracking algorithms and the generic prop-
agation mechanism, we have used the following features of the libraries. The de-
cision variables Si are represented as integer domain variables. The temporal con-
straints and the corresponding Consistency Test 1 are realised through the built-in
linear constraints provided by SOLVER. The resource constraints and the Unit-
Interval Consistency Test 8 are provided by SCHEDULER. For the administration
of the temporal and resource constraints we have used the activity and resource
classes of SCHEDULER. Consistency Test 3 for pairs of activities is implemented
as a generic disjunctive SOLVER constraint; a general version of the test for sets of
more than two activities is provided by SCHEDULER.

The logic of the branch-and-bound algorithm, the other consistency tests and the
additional node fathoming rules described in Section 5.3 have been hand coded. By
using the SOLVER search tree classes, the amount of code required for the branching
and backtracking part has been kept low.

All results reported for our algorithm in the following tables have been obtained on
a Pentium Pro/200 PC with NT 4.0 as operating system.

5.4.2 Bidirectional Planning

When trying to solve a given problem instance, we apply our algorithm in forward
and backward direction (bidirectionalplanning). A problem can be solved in back-
ward fashion by simply reversing the project network and applying the algorithm to

, 5.4. COMPUTATIONAL EXPERIMENTS 81

the resulting mirror-network (for a discussion of backward and bidirectional plan-
ning for a related scheduling problem see Klein 2000a).

While no scheduling direction is uniformly superior for all test problems, some in-
stances are easier to solve in one direction than in the other. Intuitively, a branch-
and-bound algorithm works best if the difficult part of the problem, or bottleneck, is

I handled at beginning of the search, since otherwise a solution for the difficult sub- ' problem has to be rediscovered many times in different branches of the search tree.
This means that if the bottleneck is towards the beginning of the project then forward
planning is advantageous; otherwise, if the bottleneck is at the end then backward
planning works best.

Because it is hard to predict the location of the bottleneck to chose a favourable
planning direction, we simply proceed as follows. We allocate half of the run-time
to solve the problem in forward direction; if the problem remains open after this time
then we apply the algorithm to the mirror problem, now using the makespan of the
best schedule found so far, if any, as initial upper bound.

5.4.3 Characteristics of the Test Sets

We have tested the algorithm on several large sets of benchmark problems that were
systematically generated with the problem generators ProGen (Kolisch et al. 1995)
and ProGenImax (Schwindt 1996), which allow to specify several control param-
eters that characterise a resulting problem instance. The test sets are collected in
the project scheduling problem library PSPLIB (Kolisch and Sprecher 1996, Kolisch

' et al. 1999). All test sets have also been used in other recent studies so that it is
possible to compare the effectiveness and efficiency of different algorithms. For a

' discussion of the relative advantages of the systematic, generator based approach
and of other approaches for generating or collecting project scheduling benchmark
instances we refer to Schirmer (1999, Chapter 3).

Previous studies (see e.g. Kolisch et al. 1995, Schwindt 1998b) have concluded that
the difficulty of a problem instance is most strongly influenced by (1) the project
network, (2) the structure of the resource demand and (3) the level of resource sup-
ply. These characteristics are measured by the following variables that are used as
problem generator parameters:

The network complexity'c 2 1 used by ProGen indicates the average number
of immediate successors of an activity and is a measure of the complexity of

I the precedence constraints. The network complexity has the disadvantage of
I

not being normalized and it has been empirically shown to have little influence
on the difficulty of instances of the problem PSlpreclC,,, (Kolisch et al. 1995).

The newer problem generator ProGenImax uses a control variable called the
network restrictiveness RT E [0, 11. The restrictiveness of a network is a
measure of the number of strict orderings of the nodes or activities that are
compatible with the partial order induced by the precedence constraints. A

82 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

parallel network has a restriveness of zero, and a series network has a restric-
tiveness of 1. The higher the restrictiveness, the fewer linear orderings of the
activities are feasible and the smaller the solution space becomes, leading to
easier problem instances. As the calculation of the exact restrictiveness of a
project network is NP-hard ,Thesen (1977) has proposed an approximation
for the restrictiveness.

The resource factor R F E [O , l] (Pascoe 1966) indicates the average percent-
age of resources required to process an activity. Formally, the resource factor
with respect to resource k E R is

R F is the average over all RFk, for k E R. It takes a value of 1 if every activ-
ity requires every resource. The higher the resource factor, the more difficult a
problem instance becomes.

The resource strength RS E [O , l] (Kolisch et al. 1995) describes the aver-
age tightness of the resource constraints. Formally, the resource strength for
resource k E R is

where RFin := rnaxi~v rik is the minimal resource capacity required for
performing the project; Rrax is the smallest capacity of resource k for which
the earliest start schedule for the resource relaxation of the problem becomes
resource feasible with respect to k. RS is the average over all RSk, for k E R.

A resource strength of 0 indicates maximal tightness, which results from the
minimal feasible resource availability, i.e., a supply equal to the maximum
requirement of any single activity. For a resource strength of 1, the earliest
start schedule does not contain any resource conflicts and the problem becomes
easy.

The complexity measures described above are used to control the problem instance
generators that were employed to create the test sets used in this study. Additionally,
the generation of instances of the problem PSItemplC,,,, can also be influenced by
specifying the desired number of cycle structures in the precedence constraints and
detailed characteristics of these cycle structures, e.g. their tightness (Schwindt 1996).

Baptiste et al. (1999) have proposed another complexity measure, the disjunction
ratio, which is the ratio between a lower bound on the number of activity pairs that
cannot be processed in parallel and the overall number of activity pairs. A simple
lower bound is obtained by considering all activity pairs, for which either the transi-
tive time lags or the resource constraints forbid a parallel execution. Baptiste et al.
(1999) conclude that for problem instances with a high disjunction ratio disjunctive

5.4. COMPUTATIONAL EXPERMEATS 83

Test Size Fixed parameters Variable parameters
set /It) PI pi Ti k Cycles RT RF RS
A 1080a 100 5 {5 ... 15) {I ... 5) [2,5] 0.35 0.50 0.2

[6,9] 0.50 0.75 0.5
0.65 1.00 0.7

B 120' 500 5 (1 ... 10) (1. .. 10) [2,21] 0.25 0.50 0.25
0.50 0.75 0.50

1 .oo

"Only 1059 of the 1080 problem instances have a feasible solution.
'only 119 of the 120 problem instances have a feasible solution.

Table 5.1: Characteristics of the test sets for the problem PSltemplC,,

constraint propagation techniques are most appropriate, while cumulative constraint
propagation techniques are most likely to be successful for highly cumulative in-
stances with a low disjunction ratio.

5.4.4 Experiments for the Problem PS 1 temp1 C,,,

Test Data

We have tested the algorithm on two large sets of benchmark problems that were
systematically generated by Schwindt (1998b) using the problem generator Pro-
GeniMax (Schwindt 1996). The test sets are collected in the project scheduling
problem library PSPLIB (Kolisch et al. 1999). The major characteristics of the test
sets are shown in Table 5.1. A detailed description of the characteristics is given by
Schwindt (l998b).

Test Set A contains 1080 problems with 100 activities, not including the fictitious
start and end activities. Each activity requires up to 5 resources; the processing times
pi and the resource requirements rik are randomly chosen from the sets (5. . .15)
and (1. . .5), respectively. For each combination of values for the control param-
eters "Cycles", RT, RF, and RS, that are shown on the right side of table, ten
instances have been generated, leading to a total of 1080 instances. Only 1059 prob-
lem instances have a feasible solution.

Test Set B consists of 120 problem instances with 500 activities; 119 of these prob-
lems have a feasible solution.

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

Version of the algorithm t,, Feasible Optimal Infeasibility D ~ v . ~ ~
proven

NO. B~ D~ A' B P ~ (set) (%) (%) (%I (%>
I - - - - 3 91.1 55.9 0.0 5.7

"Branching: + indicates that vf' and t+(a) are defined as in Section 5.3.1; otherwise ~ f ' := v f

and t+(a) := t (a) + 1.
b~isjunctive consistency tests: + indicates use of Consistency Tests 2 and 3 for activity pairs.
'Active schedules: + indicates use of the tests and conditions described in Section 5.3.3.
d~idirectional planning.
eCorresponding to 100% of the problems that have a feasible solution.

Table 5.2: Impact of different modules of the algorithm for 1080 problems with 100
activities

5.4. COMPUTATIONAL EXPERIMENTS 85

Impact of Different Modules of the Algorithm

Table 5.2 shows the impact of the different modules of our algorithm for the test
set of 1080 problems with 100 activities. For a given algorithm version, which is
characterised by the presence or absence of the modules, and a given run time limit
t,,, the table shows the percentage of problems for which (1) a feasible solution
could be found, (2) an optimal solution was found and verified, (3) infeasibility was
proven, and (4) the average deviation D ~ V . ~ ~ from the lower bounds calculated in the
study of Schwindt (1998b). Except for the D ~ v . ~ ~ values, all percentages are given
with respect to the total number of 1080 problems. For comparison purposes, the
percentages for the average deviation from the lower bound are given with respect
to the number of problems solved to feasibility, including the number of instances
solved to optimalityl.

The first five columns of the table characterise different versions of the algorithm; in
addition to a reference number they show whether a particular module has been used
(+) or omitted (-) in a version. To keep the size of the table within reasonable limits
we have grouped related features of the algorithm into modules and present data for
several interesting module combinations.

Rows 1 and 9 of the table show the results obtained for the minimal version of our
algorithm in which only the precedence and the unit interval consistency tests are ap-
plied within the constraint propagation algorithm. Observe that these test are always
required as they are the only means by which the algorithm will obey the temporal
and resource constraints. In the minimal version, we use a very basic activity selec-
tion rule where any free activity is selectable, i.e., we set vf' := vf, and the simple
delaying strategy of always postponing an activity by a single time unit, i.e., we set
t+(cr) := t (a) + 1. The advanced activity selection and delaying rules described
in Sections 5.3.1 and 5.3.1 are referred to as the branching module which is shown
as column B. The minimal version does not use the disjunctive Consistency Tests 3
and 2 (column D), it does not apply the tests and conditions for active schedules
described in Section 5.3.3 (column A), and it does not use bidirectional planning
(column BP). Row 1 of the table shows that, within a time limit of 3 seconds, the
minimal algorithm solves 91.1% of the problems to feasibility and 55.9% to opti-
mality; it cannot prove the infeasibility of any of the 21 infeasible problems, and the
average deviation from the lower bound is 5.7%. As Row 9 shows, these results are
hardly improved within the tenfold run time.

The minimal version is then improved by activating the advanced branching module;
the results are shown in Row 2 (10). Rows 3 (11) and 4 (12) show the effect of
adding the disjunctive Consistency Tests 3 and 2 for activity pairs and the active
schedule dominance rules described in Section 5.3.3. When the disjunctive tests are

'The deviation of aproblem instance with (possibly optimal) upper bound UBi and lower bound LBi is
(UBi - LBi)/LBi. This means that problems that were solved to optimality but where the lower bound is
not tight have a positive deviation and that the lowest possible DeuLB value is therefore greater than zero.
The average deviations are approximately 0.1 percentage points smaller if the deviation of an instance
solved to optimality is always set to zero.

86 CHAPTER 5. A BRANCH-AND-BOUND ALGORTTHM

used infeasibility can be proven at the root node for 20 of the 21 infeasible instances.
Row 5 (13) shows the impact of applying the full algorithm bidirectionally, i.e., to the
original problem and to the mirror problem. The table shows that the more advanced
versions of the algorithm solve more problems to feasibility and optimality than their
simpler counterparts while at the same time achieving a smaller average deviation
from the lower bound.

Row 6 (14) shows the results for the minimal version of the algorithm with bidirec-
tional planning. For the smaller time limit, the improvement with respect to Version
1 is comparable to the effect obtained by the advanced branching module shown in
Row 2. However, Row 14 shows that in contrast to the other modules bidirectional
planning alone does hardly lead to further improvements within the higher run time.
By comparing Rows 7 and 8 (15 and 16) to Rows 2 and 3 (10 and 11) we can see
that the combination of bidirectional planning and the other modules has a positive
effect. It is interesting to note that in contrast to the minimal version with or without
bidirectional planning the higher run time always leads to improved results and that
all modules contribute to the improvements.

Comparison to Other Branch-and-Bound Algorithms

Table 5.3 compares the results obtained with our algorithm for the test set of 1080
problems with 100 activities to those of the three most recent other exact solution
approaches by - in historical order - De Reyck and Herroelen (1998), Schwindt
(1998a, and personal communication), and Fest et al. (1999, and personal commu-
nication), who have all used the same test set. De Reyck et al. (1999) describe
a newer version of the procedure of De Reyck and Herroelen; the improvements
mainly concern a different conflict detection and resolution mechanism (the conflicts
are resolved in a different, more effective, sequence) as well as more efficient cod-
ing, which has led to slightly improved results (personal communication De Reyck
1999); however, as test data for this new version for Schwindt's benchmark problem
set is not available, Table 5.3 shows the results published in De Reyck and Herroelen
(1998). For run time limits t,,, of 3,30,100, and 1000 seconds, including a scaling
factor to account for different hardware, the table shows the percentage of problems
for which (1) a feasible solution could be found, (2) an optimal solution was found
and verified, (3) infeasibility was proven, and (4) the average deviation Dev.LB from
the lower bounds calculated in the study of Schwindt (1998b). Dashes indicate that
the corresponding information is not available.

For comparison purposes the Dev.LB values for our algorithm and for the algorithms
of Fest et al. (1999) and Schwindt (1998b) were all calculated in the way described
above using the lower bounds of Schwindt2. As the deviations reported by De Reyck

2 ~ n contrast to the values shown for our algorithm and the procedure of Schwindt, the values shown
for the algorithm of Fest et al. have been calculated by setting the deviation of a problem instance solved
to optimality to zero, leading to a slightly more favourable average value. However, in our experience the
resulting difference is usually less than 0.1 percentage points and thus negligible.

5.4. COMPUTATIONAL EXPERIMENTS 87

Procedure t,,, Feasible Optimal Infeasibility D ~ V . ~ ~
proven

~ e s t , Mohring, Stork & Uetz 3 92.2 58.1 1.9 10.9
I 30 98.1" 69.4 1.9 7.7
I ~ 100 98.1" 71.1 1.9 7.0

1000 98.1" 73.3 1.9 6.1

Schwindt

De Reyck & Herroelen 3b 97.3 54.8 1.4 - C
30b 97.5 56.4 1.4 C -

loob - - - -
1000~ - - - -

"Corresponding to 100% of the problems that have a feasible solution.

I
h~orresponding to 60/200 of the real computation time.
'Published values are based on different lower bounds than values for the other procedures.

1 Table 5.3: Results of exact algorithms for 1080 problems with 100 activities

and Herroelen (1998) are based on different, possibly weaker bounds, the corre-
sponding fields are left empty.

The results of De Reyck and Herroelen have been obtained on a Pentiud60 PC; the
run time limits used in their study were 1, 10, and 100 seconds. Schwindt has used
a Pentiuml200 PC and Fest et al. have used a Sun Ultra with 200 MHz clock pulse.
As mentioned above, our results have been obtained on a Pentium Pro1200 PC. For
%omparison purposes the run time limits for all procedures but the one of De Reyck
and Herroelen were set to 3, 30, 100, and 1000 seconds, thus reflecting the clock
bulse ratio.

For time limits less than 100 seconds, the time-oriented algorithm applies the dis-
junctive consistency test 3 for activity pairs only. For the large time limit of 1000
seconds, the test is applied in its full form for all disjunctive sub-problems that are
selected as described in Section 4.4.

88 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

The table shows that the time-oriented branch-and-bound algorithm solves more
problems to optimality than the other procedures. With respect to this criterion, the
results obtained within 3 seconds are already better than the results obtained with the
procedures of Schwindt (1998a) or De Reyck and Herroelen (1998) within the max-
imum allowed time. Within a limit of 30 seconds, a feasible solution for all 1059
problems that can be feasibly solved is found; only Schwindt's algorithm, which
applies a cycle structure based decomposition heuristic at the root node for finding
initial upper bounds, finds a feasible solution for all problems within 3 seconds and
does better on this criterion.

The interpretation of the average deviation from the lower bound (D ~ V . ~) can be
problematic since this value depends on the individual problems that are solved to
feasibility as well as on the lower bounds used for calculating Dev.LB. Strictly speak-
ing, two Dev.LB values can only be compared if they are both based on the same
bounds and on the same subset of problems that were solved feasibly; in our ex-
perience, the problems for which it is difficult to find a feasible solution tend to
increase DeV.LB. The values shown for the first three algorithms are a11 based
on Schwindt's lower bounds, and the values shown for time limits of 30 seconds
or more are based upon all instances that have a feasible solution. Table 5.3 shows
that the average lower bound deviation of the solutions found by the time-oriented
algorithm is significantly lower than that of the procedures of Fest et al. (1999) and
Schwindt (1998a).

Because our algorithm does not use explicit lower bounds, we were interested in the
possible improvement that could be achieved by adding such bounds. To partially
answer this question we have used the lower bounds of Schwindt and have examined
those test problems for which our algorithm could find a solution matching a lower
bound without being able to prove optimality within the time limit. We found that for
one of the 1080 test problems our algorithm finds a solution matching a lower bound
but cannot prove optimality within 3 seconds. Within 30 seconds, this solution is
proven to be optimal, and for another problem a solution matching a lower bound
is found without proof of optimality; this problem remains open after 100 seconds.
This means that the results of our algorithm could only be marginally improved by
using these lower bounds. Data concerning the tightness of the lower bounds can be
found in Table 5.4.

Comparison to Heuristics

Table 5.4 compares our algorithm to the best heuristic results reported for the same
problem set, this time using only the 1059 solvable instances. In addition to the
columns shown in the previous tables, column "taUg" shows the average required
run time, and column "C,,, = LB" contains the percentage of problems for which
a solution with a value matching a lower bound was found. The results for our algo-
rithm are identical to those shown in the corresponding rows in Tables 5.2 and 5.3,
except that all percentages in the columns "feasible", "optimal", and "C,, = L B
are now given with respect to the 1059 solvable problems. Again, all values re-

5.4. COMPUTATIONAL EXPERIMENTS 89

Procedure t,,, t,,, Feasible Optimal C,, = LB D ~ v . ~ ~

Franck & Neumann
Direct - 0.5 99.4 - 56.8 7.7
Contraction - 1.3 100.0 - 42.5 9.4

Franck & Selle
GAprec - 16.0" 100.0 - 59.9 5.3
GAvar, - 16.0" 81.1 - 61.0 2.0
Tabu Search - 16.6" 100.0 - 56.0 5.8
Simulated Annealing - 10.4" 100.0 - 59.5 5.7

"Corresponding to 2661200 of the real computation time.

Table 5.4: Comparison of heuristics for 1059 of the 1080 problems with 100 activi-
ties

garding lower bounds shown in the table are based on the bounds of Schwindt. As
mentioned above, the time-oriented algorithm has been tested on a Pentium Pro1200
PC; the algorithms of Franck and Neumann (1 998) have been run on a Pentiud200
PC, and Franck and Selle (1998) have used a Pentiud266 PC. As before, we have
scaled the run times according to the clock pulse.

The results of Franck and Neumann (1998) have been obtained by applying a combi-
nation of serial and parallel list scheduling algorithms using several different prior-
ity rules; the algorithms include limited backtracking capabilities. The basic idea
behind the direct and the contraction method is to give preferential treatment to
activities which are on cycle structures induced by the temporal constraints. The
two approaches differ in the specific way in which they handle cycle structures; the
contraction heuristic initially solves subproblems defined by the activities and cor-
responding precedence constraints on the same cycle structure and then integrates
these solutions in a complete schedule. The results of Franck and Neumann greatly
improve upon the results reported by Schwindt (1998b) for the older priority rule
based heuristics of Zhan (1994) (see also Neumann and Zhan 1995) and Brinkmann
(1992) (see also Brinkmann and Neumann 1996), which can solve approximately
98% of the problems with an average deviation from the lower bound of roughly
80%. This indicates the progress that has been made in this area in the past years.

I

i~ranck and Selle (1998) have improved these results by embedding a variant of the
direct method in four meta-heuristics, specifically in two genetic algorithms (GA)

90 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

based on two different solution encodings and in a tabu search and simulated anneal-
ing framework. The meta-heuristics all manipulate the order in which activities are
scheduled by the list scheduling algorithm, which thus serves for evaluating (neigh-
bouring) solutions. The table shows that, at the cost of an increased average run
time, the meta-heuristics solve more problems to optimality than the priority rule
based methods and achieve a significantly smaller average deviation from the lower
bound. The low average deviation from the lower bound shown for the second ge-
netic algorithm is probably caused by the fact that this procedure reaches the smallest
number of feasible solutions; this conjecture is supported by the observation that the
8 1.1 % of the problems with lowest individual deviation that are found by our algo-
rithm within a maximum time of 3 seconds have an average deviation of 0.9%.

Other heuristics have been developed by Schwindt (1998b) based upon truncated
versions of his branch-and-bound algorithm. However, since the newer version of
his exact algorithm (Schwindt 1998a), whose results are cited in Table 5.3, improves
upon the results of these heuristics, we do not present them in Table 5.4. Of course,
the results of any exact method shown in Table 5.3 may also be compared to the data
in Table 5.4.

When comparing the time-oriented algorithm to the priority rule based heuristics
of Franck and Neumann we can observe that for average run times in the order of
magnitude of one second the algorithm finds more solutions matching a lower bound
while achieving a very small average deviation. However, the contraction method
is faster at finding feasible solutions for all problems. It can also be seen that for
average times in the order of magnitude of 10 seconds the time-oriented algorithm
performs better with respect to all criteria shown in the table than any of the meta-
heuristics that can solve all problems.

Influence of Problem Characteristics

Table 5.5 shows the influence of the resource strength RS, the resource factor RF,
the network restrictiveness RT, and the number of cycle structures on the difficulty
of the 1080 problem instances with 100 activities. The table shows the percentage
of problems with a given characteristic that could be solved to optimality and the
average deviation from the lower bounds of Schwindt (1998b). For example, line
three shows that 99.7% of the problems with a resource strength of 0.7 could be
solved to optimality with an average deviation from the lower bounds of 0.1%.

The table shows that the resource strength has the strongest influence on the diffi-
culty of the problems. The hardest problems occur when a low resource strength is
combined with a high resource factor. The influence of the given variation of the
network restrictiveness and the number of cycles in the network appears to be weak.

5.4. COMPUTATIONAL EXPERlMENTS

Parameter Value Optimala Dev. LB a

Cycles [2,5] 74.6 4.2

[6,91 72.4 4.8

"Within a time limit of 100 seconds.
"~roblems were generated with the target restrictiveness values shown in Table 5.1, but the actual

values may vary from the target values.

Table 5.5: Influence of problem characteristics for the problem PSItempIC,,, for test
set A

92 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

Procedure t,, t,,, Feasible Optimal C,,, = LB Dev.LB
(sec) (sec) (%) (%) (%I (%I

Time-oriented B&B 200 98 97.5 71.4 61.3 0.5
1000 306 99.2 77.3 61.3 0.5

Fest, Mohring,
Stork & Uetz 200 - 100.0 58.8 - 5.2

1000 - 100.0 58.8 - 3.8

Franck & Neumann
Direct - 56 84.9 - 40.3 1.2
Contraction - 18 100.0 - 5.0 5.1

Neumann & Zimmermann
Filtered Beam Search - 14 80 - 62 0.1
Decomposition 200 51 100 - 6 5.0

Table 5.6: Results for 119 of 120 large problems with 500 activities

Results for Large Problems

To demonstrate the scalability of our algorithm, Table 5.6 presents results for the sec-
ond test set of 120 problem instances with 500 activities. For comparison, the table
also shows the results reported by Fest et al. (1999), the only other exact procedure
for which results have been published for this test set. The table also contains the
results obtained by Franck and Neumann (1998) for their priority rule based heuris-
tics, and by Neumann and Zimmermann (1999) for the two branch-and-bound based
heuristics that they found most effective for this test set in terms of the criteria re-
ported in Table 5.6. The latter heuristics are based on the algorithm of Schwindt
(1998b). Similar to the priority rule based contraction method, the decomposition
heuristic initially solves subproblems corresponding to the cycle structures. All per-
centages except for those in the Dev.LB column are based only on the 119 problem
instances that have a feasible solution. Again, the lower bounds used for calculat-
ing the average lower bound deviation have been found in the study of Schwindt
(1998b). The results of Neumann and Zimmermann as well as those of Franck and
Neumann have been obtained on Pentiud200 PCs.

The results in Table 5.6 show that our algorithm scales quite well. Within 200 sec-
onds, the algorithm solves 71.4% of the problems to optimality and leaves only 3
of the 119 feasible problems unsolved; the infeasibility of the remaining problem is
proven at the root node. For a time limit of 1000 seconds, 118 of the 119 problems
that have a feasible solution are solved to feasibility and 92 instances or 77.3% to
optimality; the time-oriented algorithm also achieves a very small average deviation

5.4. COMPUTATIONAL EXPERIMENTS 93

Table 5.7: Characteristics of the test sets for the problem PSJpreclC,,

from the lower bound. The table shows that those procedures which can also solve
the remaining problem(s) left open by the time-oriented algorithm can only do so at
the price of a significantly lower solution quality, as indicated by the D ~ v . ~ ~ values.
The number of problems solved to optimality within the maximum allowed time is
18.5 percentage points, corresponding to 22 problems, higher than for the algorithm
of Fest et al.

5.4.5 Experiments for the Problem PS lprecl C,,

Test Data

We have tested the algorithm on four standard sets of benchmark instances of the
problem PSlpreclC,,,, that were systematically generated with the problem generator
ProGen (Kolisch et al. 1995).

Table 5.7 shows the detailed characteristics of the test sets. The number of activities,
JVI, does not include the fictitious start and end activities. All processing times
and resource requirements were randomly drawn from the set (1, . . . , l o) . The first
three test sets with 30, 60, and 90 activities per problem contain ten instances for
each combination of the three control parameter values shown in the three right-
most columns and four top-most rows of the table, leading to a total number of
480 instances. The last test set, which contains problems with 120 activities, has
been generated with different, more difficult resource strength values; again, the
set contains 10 problem instances for each combination of the variable parameters
shown in the last 5 rows of the table, resulting in a total number of 600 problems.

94 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

Procedure t ,ax twg Optimal Dev. opt

avg. max
(set) fsec) (%I (%I (%I

Time-oriented B&B
1 0.3 80.2 0.57 10.9

10 1.6 88.3 0.19 8.9
60 6.0 92.7 0.10 6.0

300 19.4 95.4 0.05 6.0
1800 66.4 97.3 0.03 4.5

Table 5.8: Results for 480 problems with 30 activities (test set j30)

Results

Table 5.8 shows the results obtained with the time-oriented branch-and-bound algo-
rithm for the smallest test set with 30 activities per problem. For a given run time
limit tmaX the table shows the average run time t,,, the percentage of problems
solved to optimality within the time limit, and the remaining average and maximum
deviation from the optimal solution (all optimal solutions for this test set are known).
For example, the table shows that within a time limit of 300 seconds 95.4 % or 458
problem instances can be solved to optimality within an average run time of 19.4 sec-
onds and a remaining average deviation from the optimal solution of 0.05 %. Within
the maximum allowed run time of 1800 seconds, 97.3 % of the problems are solved.
We found that the difficulty of the problem instances for the time-oriented algo-
rithm strongly depends on the resource strength. While all instances with a resource
strength greater than 0.2 can be solved within less than 10 seconds, the problems
with a resource strength of 0.2 are considerably more difficult.

We must mention that the currently most effective algorithms for this problem set,
which have been developed by Klein and Scholl(1999b), Demeulemeester and Her-
roelen (1997b), Sprecher (2000) and Mingozzi et al. (1998), perform better on this
problem set and can solve more instances within shorter time. For example, Klein
(2000b) reports that the scatter search algorithm of Klein and Scholl can solve all
problems within a maximum time of 361 seconds on a Pentiumfl66 computer.

Table 5.9 shows the results of our algorithm for the larger test set with 60 activities
per problem instance and compares them to the results of the procedures of Brucker
et al. (1998), Sprecher (2000), and Klein and Scholl(1999b), which have been tested
on the same problem set. The table shows the algorithms in inverse historical order.
For a given time limit, the table presents the average run time, the percentage of
problems solved to optimality, and the average and maximum deviations from sev-
eral lower bounds as well as the average deviation from the best known solutions
collected in the corresponding benchmark file of the project scheduling problem li-

5.4. COMPUTATIONAL EXPERIMENTS 95

brary PSPLIB. Dashes indicate that the corresponding information was not avail-
' able. When comparing the results of different algorithms, the different computer
platforms, which are described in the table footnotes, must be taken into account;
observe that we have not scaled the run time values.

The development of tight lower bounds for the problem PSlpreclC,, is an area of
1 active research (see e.g. Klein and Scholl 1999a, Brucker and Knust 1999, Mohring
et al. 1998, Heilmann and Schwindt 1997). In Table 5.9 and in the following ta-
bles we show the deviations of our algorithm with respect to the best lower bounds
that are currently available in the corresponding PSPLIB benchmark files. A com-
parison of the performance of different algorithms with respect to deviations from
lower bounds is, of course, only meaningful if the deviations are based on the same
bounds. Table 5.9 and Table 5.10 below therefore also include deviations from the
lower bounds of Brucker et al. (1998), which have been used in the other studies.
For easy reproducibility we also give the deviations with respect to the precedence
based lower bound LBO which corresponds to the optimal solution of the resource
relaxation of the problem.

Table 5.9 shows that the time-oriented algorithm is competitive with the other pro-
cedures and that, for small run times, it achieves the highest percentage of optimally
solved problems. For large run times, the algorithm of Klein and Scholl seems to
perform slightly better than our algorithm.

Table 5.10 compares the results of the time-oriented algorithm for the test set j90
to those of the procedure of Sprecher (2000), which is the only algorithm for which
results on this test set have been published. The format of the table is the same as in
Table 5.9.

Table 5.1 1 shows the results of our algorithm for the largest test set with 120 ac-
tivities per problem instance. Recall that this problem set has been generated with
more difficult resource strength values than the three smaller sets. As we will see in
Table 5.12 below, this appears to be the main reason for the strong decrease in the
percentage of problems solved to optimality when compared to the smaller test sets.
We can also observe that the average deviations from the lower bounds are roughly
three times as high as for the smaller and easier test sets with 60 and 90 activities
per instance. As before, the percentage of problems solved to optimality grows only
slowly when the run time is increased.

Data on the performance of other exact procedures for this problem set has not been
published. We have compared our results with respect to the average deviation from
the precedence based lower bound LBO to that of several state of the art heuristics
reported by Kolisch and Hartmann (1999), who have analysed the performance of
eight heuristics within a maximum number of 1000 and 5000 iterations; an iteration
corresponds to the application of a serial or parallel schedule generation scheme.
The minimal deviation obtained by the best heuristic within 1000 iterations is 39.4
%. Within the maximum number of iterations, only the best of the eight heuristics,
the genetic algorithm of Hartmann (1998), achieves a lower deviation (36.7 %) than
our algorithm within the maximum allowed time.

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

Procedure tm, tWg Opt. D ~ v . L B ~ D~V.LB Dev.~& D ~ V . U B ~
avg. max avg. max avg. avg.

10
60

300
1800

Klein and
Scholle 10

60
300

1800
3600

~ ~ r e c h e r f 300 88.1 72.7 - - 5.7 45.8 13.6 -
1800 472.7 75.8 - - 5.3 40.7 13.0 -

Brucker
et a l . V 6 0 0 - 67.9 - - 4.8 30.8 - -

RBased on the best known lower bounds collected in the PSPLIB.
h ~ a s e d on the lower bounds of Bmcker et al. (1998).
CBased on the best known solutions collected in the PSPLIB.
d~mpl. in C++, results obtained on Pentium Pro1200 with Windows NT.
eImpl. in C u , results obtained on Pentiudl66 with Windows 95.
.flmpl. in C++, results obtained on Pentiudl66 with Linux.
gImpl. in C, results obtained on SUNISparc 201801 (80 MHz) with Solaris 2.5.

Table 5.9: Results of exact algorithms for 480 problems with 60 activities (test set
j60)

5.4. COMPUTATIONAL EXPERIMENTS

Procedure t,, tWg Opt. D e v . ~ ~ ~ Dev. LB Dev. Dev. .yBC

avg. max avg. max avg. avg.

Sprecherf 300 120.3 61.5 - - 8.3 58.7 15.7 -

OBased on the best known lower bounds collected in the PSPLIB.
' ~ased on the lower bounds of Brucker et al. (1998).
CBased on the best known solutions collected in the PSPLIB.
d~mpl. in C++, results obtained on Pentium Pro1200 with Windows NT.
eBased only on forward planning.
f~mpl. in C++, rasults obtained on Pentiudl66 with Linux.

Table 5.10: Results of exact algorithms for 480 problems with 90 activities (test set
~ 9 0)

Procedure t,, tmg Optimal D ~ v . L B ~ Dev.LB, Dev..y~'
avg. rnax avg. avg.

(sec) (see) (%) (%) (%) (%) (%)
Time-oriented B&B 10 7.4 31.0 9.9 40.6 38.0 3.6

RBased on the best known solutions collected in the PSPLIB benchmark file.
"ased on the best known lower bounds collected in the PSPLIB benchmark file.

Table 5.1 1 : Results for 600 problems with 120 activities (test set j 120)

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

Param. Value Optimala D~V.LB
j30 j60 j90 j120 j30 j60 j90 j120

(%I (%I (%I (%I (%I (%I (%I (%I
RS 0.1 - - - 2.5 - - - 19.9

0.2 81.7 30.8 20.0 9.2 0.2 11.6 14.0 13.4
0.3 - - - - - - 25.0 8.3
0.4 - - - 49.2 - - - 3.9
0.5 100.0 83.3 84.2 80.8 0.0 1.2 0.8 0.8
0.7 100.0 100.0 100.0 - 0.0 0.0 0.0 -
1.0 100.0 100.0 100.0 - 0.0 0.0 0.0 -

"Within a time limit of 300 seconds.
b ~ a s e d on the best known lower bounds collected in the PSPLIB.

Table 5.12: Influence of problem characteristics for the problem PSlpreclC,,,

5.4. COMPUTATIONAL EXPERIMENTS 99

Table 5.12 analyses the influence of the resource strength RS, the resource factor
RF, and the network complexity C on the difficulty of the problem instances. For
the four test sets, the table gives the percentage of problems with a particular char-
acteristic that could be solved to optimality and the average deviation from the best
known lower bounds collected in the corresponding PSPLIB benchmark files. For
example, line five of the table shows that 80.8 % of the problem instances with 120
activities that were generated with a resource strength of 0.5 could be solved to opti-
mality, and the remaining average deviation from the lower bound for these problems
was 0.8 %. The data shown in Table 5.12 confirms the results of earlier studies, see
e.g. Kolisch (1995), regarding the influence of the problem characteristics.

The table shows that the hardest problems are those with a low resource strength.
For a resource strength of 0.2, the percentage of problems that could be solved to
optimality sharply decreases with growing problem size; for the lowest resource
strength value of 0.1, only three of the problems with 120 activities could be solved to
optimality. Problems with RS 2 0.7 appear to be easy independent of problem size,
and the benchmark lower bounds for these instances are always tight. For RS = 0.5,
we can observe that the percentage of problems that can be solved remains roughly
constant when the problem size grows from 60 to 120 activities, although the time
limit is not increased.

The influence of the resource factor is also clearly visible: problems become harder
as the average number of resource types required by an activity increases. For
example, for the minimal resource factor of 0.25, which means that on average each
activity requires only a single resource type, the algorithm can solve 84.2 % of the
problems with 120 activities. As the resource factor grows, the value drops to 19.2%.

The influence of the network complexity is not as significant as that of the other
two control parameters. While the results for test set j I20 indicate that the problems
become more difficult with increasing network complexity, the data for the smaller
test sets is inconclusive.

As to be expected after examining Table 5.12, the hardest problems occur when a
low resource strength is combined with a high resource factor. For example, roughly
speaking, the 30.8 % of the problems with 60 activities and a resource strength of
0.2 that can be solved to optimality include all those instances for which the resource
factor takes a value of 0.25 and a few instances with a resource factor of 0.5. Intu-
itively, a low resource strength causes many activity pairs to be disjunctive and thus
leads to cliques of pairwise disjunctive activities of considerable size. Additionally,
if the average number of resource types required by an activity is high, then, simply
speaking, there are many "links" between the cliques induced by each resource type.
This combined effect leads to large and difficult disjunctive sub-problems.

We also analysed in how many cases our algorithm could find values matching a best
known lower bound without being able to prove optimality within the maximum
allowed run time. We found that this occurs for none of the instances in the test
sets j60 and j90 and for only a single instance of the test set j 120. This means that
even the best known lower bounds, if calculated at the root of the search tree, would

100 CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM

only marginally improve the results of our algorithm. Also, it seems questionable
if a re-calculation of bounds during the search would pay off in terms of overall
computation time. For example, Klein (1999) has found that for his branch-and-
bound algorithm the pruning power of the bounds described by Klein and Scholl
(1999a) does often not outweigh the associated computational effort and does in
general not lead to a reduction of computation times.

Dominance Criterion Based on Partial Schedules

We also experimented with a dominance rule based on storing and comparing partial
schedules, which is similar to the well known cutset rule described by Demeule-
meester and Herroelen (1992). While the use of this rule led to some improvements,
the overall effect for the larger test sets wasrather small; for example, when us-
ing this rule, only a single additional instance of the test set j60 could be solved
within the maximum time limit of 1800 seconds. Because the performance of the
rule within our algorithm was disappointing and because the rule cannot easily be
adapted for the general case of arbitrary minimal and maximal time lags, we did not
further consider it in our study.

5.5 Summary

This chapter has presented a branch-and-bound algorithm for a very general schedul-
ing model, the resource-constrained project scheduling problem with generalised
precedence relations, with the objective of minimising the project makespan. The
algorithm uses a binary, time-oriented branching scheme that relies on efficient con-
straint propagation techniques for reducing the search space. The power of constraint
propagation lies in the systematic and computationally efficient application of basic
consistency tests. The search effort is reduced further by adding some necessary
conditions that must be satisfied by active schedules and through a simple left-shift
test. The algorithm can also easily be applied for optimising other regular measures
of performance.

Given the conventional wisdom that the efficiency of branch-and-bound procedures
depends largely on good lower bounds, it is quite interesting to note that our algo-
rithm does not use any explicit lower bounds. Instead, lower bounding is implicitly
achieved through the constraint propagation process.

Computational experiments on several large test sets of systematically generated
benchmark problems taken from the literature have demonstrated the effectiveness
of the approach.

On a data set of over thousand instances of the problem PSltemplC,,,, with one
hundred activities each, the algorithm finds feasible solutions for all problems and
it solves more problems to optimality than other methods, while at the same time
achieving a significantly smaller deviation from a lower bound for those instances

5.5. SUMMARY 101

for which optimality cannot be proven. The results obtained for another test set con-
sisting of problems with five hundred activities show that the algorithm also scales
very well. In addition, the truncated version of the algorithm compares favourably
to the best heuristic procedures for the problem.

The algorithm also performs well for the special project scheduling problem with
ordinary precedence constraints, i.e., the problem PSlpreclC,,,. Computational ex-
periments with four large, systematically generated sets of benchmark problems,
ranging in size from 30 to 120 activities per problem instance, indicate again that
the algorithm scales well and, especially for larger instances, is competitive to other
exact procedures for this problem. The results for the largest test set show that the
time truncated version of the algorithm may be a useful heuristic for solving large
project scheduling problems. Surprisingly, many exact algorithms for the problem
PSlpreclC,, have mainly been evaluated on the smallest of the four test sets. The
good performance of the time-oriented algorithm on the larger test sets is also inter-
esting because the algorithm does not include features such as partial schedule based
dominance pruning or explicit lower bound computation; while these features often
make exact algorithms perform well on the small test set, they have the disadvan-
tage that they are usually not easy to extend or to adapt for generalised or modified
versions of the problem PSlpreclC,,.

We have found that, for the problem PSltemplC,,,, and for the larger test sets of the
problem PSlpreclC,,, even the use of the currently best known lower bound values
available in the benchmark files of the project scheduling library PSPLIB would
only marginally improve the results of the algorithm with respect to the number of
optimally solved problems.

The computational analysis has shown that the difficulty of the problem instances for
the algorithm depends primarily on the problem characteristics, in particular on the
combination of resource supply and demand as measured by the resource strength
and resource factor, and that the problem size is not the most important factor. As
the hardest problems are characterised by a high share of disjunctive activities, we
expect that further improvements may be achieved by concentrating on the disjunc-
tive aspects of the problem.

Chapter 6

Multi-Mode Extension of the
Branch-and-Bound Algorithm

This chapter addresses project scheduling with generalised precedence constraints
and multiple execution modes per activity, reflecting time-resource and resource-
resource tradeoffs. It shows how the branch-and-bound algorithm developed for the
single-mode problem PSltemplC,, in the previous chapter can be extended for the
multi-mode problem MPSltempl C,,,.

After a brief review of the literature on multi-mode project scheduling in Section 6.1,
Section 6.2 explains how constraint propagation may be used, and Section 6.3 then
introduces the extended branching scheme.

6.1 Previous Work

Despite its general nature, the problem MPSltemplC,,, has only very recently been
studied from an algorithmic point of view, and very few solution approaches have
been reported in the literature. Traditionally, algorithms for multi-mode project
scheduling on the one hand and project scheduling with generalised precedence
constraints on the other hand have been developed separately. Multi-mode project
scheduling has almost exclusively been studied for the problem MPSlprecl C,,, with
classic precedence constraints; generalised precedence constraints have mainly been
considered within the single-mode problem PSltemplC,,,. It appears that the diffi-
culty of the combined problem has lead researchers to focus on only one of two the
aspects at a time.

Exact algorithms for the problem MPSlpreclC,,,, have been developed by Talbot
(1982), Patterson et al. (1989), Sprecher (1994), Nudtasomboon and Randhawa
(1997), Sprecher et al. (1997), and Sprecher and Drexl (1998). Pesch (1999) de-

104 CHAPTER 6. MULTI-MODE EXTENSION OF THE B&B ALGORI7'HM

scribes lower bounds. A comparison of exact algorithms is given by Hartmann and
Drexl(1998). An exact algorithm for a generalisation of the problem MPSlpreclC,,
with arbitrary minimal time lags has been proposed by Hove and Deckro (1998) and
Van-Hove et al. (1999).

Heuristic solution procedures have, among others, been described by Talbot (1982),
Drexl (1991), Drexl and Griinewald (1993), Slowinski et al. (1994), Boctor (1993,
1996a,b), Kolisch (1995), Kolisch and Drexl(1997), Hartmann (1998), and Ahn and
Erengiiq (1998). An overview of the various approaches is given in the recent survey
papers of Brucker et al. (1999), Herroelen et al. (1998), and Kolisch and Padman
(2001).

As discussed in Chapter 2, multi-mode project scheduling problems can be divided
into two sub-problems. The mode assignment problem consists of assigning a mode
to every activity. Given a mode assignment, the scheduling sub-problem is to find a
start time assignment for all activities. Algorithms for the problem MPSlpreclC,,,
and, in analogy, for the problem MPSltemplC,,, can be classified as decomposition
or integration approaches, depending on whether the mode assignment sub-problem
and the scheduling sub-problem are addressed sequentially or simultaneously.

The first heuristic algorithm for the problem MPSltenpJC,, has been described by
De Reyck and Herroelen (1999). It is based on a decomposition approach and con-
tains a mode assignment phase and a subsequent scheduling phase with fixed mode
assignments. A mode assignment is found using tabu search; during the search, a
given mode vector is evaluated by solving the corresponding scheduling sub-problem
of the type PSltemplC,,. A schedule is computed with a truncated version of the
branch-and-bound algorithm of De Reyck and Herroelen (1998). Upon termination
of the tabu search, a final schedule is computed for the best mode assignment found
by again applying the truncated branch-and-bound algorithm, this time using a larger
time limit.

Another tabu search procedure based on a decomposition approach has been pro-
posed by Franck (1999). Heilmann (1999) has presented a priority rule heuristic
with limited backtracking that is based upon his exact algorithm described below.

The only exact procedure for the problem MPSltemplC,, that has been described
so far is the one of Heilmann (1998, 1999). The algorithm is based on an integra-
tion approach, i.e., it simultaneously makes decisions concerning mode assignments
and the resolution of resource conflicts. The idea is to consider the current mode-
minimal problem instance', to relax the resource constraints and compute an optimal
time-feasible schedule. The resulting schedule, which will usually violate resource
constraints, is then tested for resource conflicts. Branching consists of (1) assigning
a mode to an activity or (2) adding special precedence constraints to resolve a re-
source conflict. As in the algorithm of Schwindt (1998a,b), conflicts are resolved by
introducing special precedence constraints between pairs of disjoint sets of activities;
all activities in the second set are delayed until the completion of some activity in the

'see Definition 1 on page 63.

6.2. CONSTRAINT PROPAGATION 105

first set. The decision whether to branch over a mode assignment or a resource con-
flict is made based on a heuristic that tries to select the most difficult decision, which
on average has the strongest influence on a lower bound of the objective function
value.

6.2 Constraint Propagation

Constraint propagation proceeds mostly in the same way as in the single-mode case,
the main differences being that all consistency tests are applied to the mode-minimal
problem instance introduced in Definition 1 on page 63 and that the additional mode
reduction tests described in Section 4.7 are used.

At every node of the search tree, a fixed point is computed by applying at least the
two most basic consistency tests, i.e., the Precedence Consistency Test 1 and the
Unit-interval Consistency Test 8. As before, the application of these two tests is an
essential part of the branch-and-boundalgorithm. The valuespcj (A) and rcj (A) are
calculated for the mode-minimal problem instance in the way defined in Section 5.2.

6.3 Extended Branching Scheme

The branching scheme of the multi-mode algorithm is an extension of the single-
mode branching structure developed in the previous chapter. It combines the time-
oriented branching scheme with simultaneous mode decisions.

Each node a of the search tree is associated a set A(a) := {As(a) , AM(^)) :=
{Asi (a) , AMi (a) I i E V} of start time and mode assignment variable domains.
An activity is unscheduled if its mode or its start time have not yet been assigned.
Inversely, an activity is scheduled if its start time and mode are bound. The set of
domain sets A(a) uniquely determines the set Vs (A(a)) := {i E V I [Asi I =
1 A [AMi I = 1) of scheduled activities and the set ~f (A (a)) := V \ Vs (A(a)) of
unscheduled or free activities. To simplify the notation, we will again write VS(a)
instead of VS(A(a)), etc., whenever no confusion is possible. Generating a sched-
ule is equivalent to reducing the start time and mode domains until exactly one entry
remains in every domain. As before, domains will be reduced by constraint propa-
gation and by explicit branching.

The key idea of the branching scheme is to interleave a binary branching over a
mode assignment or restriction with the binary time-oriented branching developed
for the single-mode case. The branching decisions are interleaved in such a way that
the assigned activity start times are non-decreasing, as in the single-mode algorithm.
The non-decreasing start-times will again allow to apply simple dominance rules that
rule out non-active schedules.

At every node a of the search tree, an unscheduled activity j E vf (a) is selected
and two child nodes are generated according to the following rule:

106 CHAPTER 6. MULTI-MODE EXTENSION OF THE B&B ALGORITHM

If Mj is unbound, then select a mode X E AM^ (a) and create a left
child node Z1(a) and a right child node rl(a) as follows:

l l(a): Assign mode X by setting Mj(Zt(a)) := A.

(a) : Forbid mode X by setting Mj(r1(a)) := Mj(a) \ {A).

Otherwise, if Mj is bound, then branch over the start times of j by
creating a left child node Z(a) and a right child node r(a) as follows:

1 (a) : Start j at its earliest start time by setting Sj (I (a)) := ESj (a) .

r(a): Increase the earliest start of j by choosing ESj (r(a)) > ESj (a) .

The rules for the time-oriented branching step leading to the child nodes l (a) and
r(a) are identical to the single-mode algorithm. If all modes are bound, the branch-
ing scheme reduces to the single-mode scheme.

To completely specify the branching scheme we must now answer three questions.
Firstly, we must describe how to choose activity j E ~f (a) , and secondly how
to select the corresponding mode X if applicable. Thirdly we must specify how to
increase the earliest start time of j in r(a). We will first address the selection of an
activity and a corresponding mode.

Selection of Activities and Modes

The propagation process by which the earliest start of activity i, ESi(a), is calcu-
lated only makes use of the mode-minimal problem instance, and in particular of
the mode-minimal duration and resource requirements of activity i . Because these
values may increase if the mode of i is chosen, the actual earliest start time that
can be realised for some mode assignment may be greater than ESi(a). In order
to determine the realisable earliest start time of an activity considered for branching
we will often tentatively assign a mode to this activity and evaluate the effect of the
assignment by applying constraint propagation. The modified domain set in which a
mode p E AM; (a) has been assigned to activity i is is denoted with A (Q) ~ ~ = P and
is defined as follows:

We can now introduce the realisable earliest start time ESil(a) 2 ESi(a) of an
activity i, which is defined as the minimal start time of i that can be realised if a
mode for i is chosen and this mode assignment is propagated by applying a fixed
point constraint propagation algorithm CP.

ESil(a) := rnin E S ~ (c P (A (~) Mi'P)).
P E A M ; (a)

(6.2)

6.3. EXTENDED BRANCHING SCHEME 107

If the mode of i is bound, we obtain, of course, Esir(a) = ESi(a).

We are now ready to address the activity and mode selection rule. As in the single-
mode case, the idea behind the rule is to only branch in such way that the creation
of non-active schedules is avoided where possible. At node a of the search tree, we
choose an activity j from the set v f l (a) of free and non-delayed activities, which
will be defined in a way very similar to the single-mode case. For the time being,
we only assume that ~ f ' (a) it is a non-empty subset of the set of free activities. The
activity and mode selection rule can be stated as follows:

Choose j E v f l (a) such that ESjl(a) = t (a) , where the schedule time
t (a) is the minimal realisable earliest start time, i.e.,

t (a) := min ESir (a) .
i W f ' (a)

If Mj is not bound, then choose a mode X for which ESjr (a) is realised:

A = arg min E S ~ (CP(A (a) Mi'p)).
P E A M ~ (0)

(6.3)

Ties are broken by first selecting an activity with minimal time slack, i.e., an activity
for which lasi (a)I is minimal. Ties concerning the mode selection are broken by
first choosing the mode with minimal processing time p j ~ , .
We are now left with the task of specifying the set of free and non-delayed activities.
In a similar fashion as in the single-mode algorithm, it will prove useful to partition
the set of free activities into (1) a set of activities that, depending on the mode assign-
ment, may still have to satisfy a maximal time lag, and (2) a set of activities which
do not, no matter what modes are chosen.

Let E = Emin(a) U Emax(a), where Emin(a) := {(i , j) E E I &(a) > 0) and
Emax(a) := {(i, j) E & 1 &(a) _< 0) are the relations specifying the minimal
and maximal time lags between pairs of activities. In contrast to the single-mode
case, the sets Emin (a) and Emax (a) depend on the time lags Sj (a) of the minimal
problem instance, i.e., on the mode domains and thus on the search tree node.

We then define the set

CtC(a) := { (j , ~) 1 j E ~ f (a) A P E A M ~ (Q) A
3i E v f (a) : (i , j) E E~~~ (c ~ (A (a) ~ j = p)))

of timemax-constrained activity-mode combinations and the set Vt"(a) := v f (0) \
VtC(a) of timemax-unconstrained activity-mode pairs.

The set of free and non-delayed activity-mode pairs can then be described in analogy
to the single-mode algorithm:

108 CHAPTER 6. MULTI-MODE EXTENSION OF THE B&B ALGORITHM

The interpretation of the set cf' is very similar to the single-mode case: An activity-
mode pair (j , p) with a free activity j is a candidate for branching if j, under the
assumption that it is performed in mode p, may have an incoming backward arc, or if
the earliest start time of j in mode p equals its current earliest resource feasible start
time rcj (c ~ (A (a) ~ " ") . In the same way as in the single-mode algorithm, this
means that a delayed activity that is not constrained by a maximal time lag remains
un-selectable until the resource capacity made available by delaying j has been used
by some other activity. The choice of the set cf' is justified by a generalised version
of Lemma 2.

Delaying Duration

The delaying duration, i.e., the rule how to increase the earliest start time of an
activity j selected at node a in the child node r(a) is the same as explained for the
single mode case in Section 5.3.1.

Recall that in order for the resulting schedule S to be active, either (1) a precedence
constraint or (2) low slack must prohibit a left-shift of the selected activity j. Since
the activity will be delayed by at least one time unit, the first case can be ruled
out if all precedence constraints (i, j) E E are already resolved (see page 20) in
node a.; otherwise, we can only delay j by a single time unit. The second case
requires that the slack of all activities except j is insufficient to the left of Sj(a) ,
which can only be the case if Sj(a) matches the completion time of some activity
that shares resources with j. Since the earliest possible completion time ECi is based
upon constraint propagation for the mode-minimal problem instance, the multi-mode
aspect, is taken into account when using Lemma 3 for the multi-mode case.

Chapter 7

Applications in Airport
Operations Management

In the past decades, the volume of worldwide civil air transport has been steadily
increasing with an average growth rate of more than five percent. Passenger and
freight traffic have roughly doubled since the mid 1980s. The growth is generally
expected to continue at the same rate: The International Air Transport Association
currently predicts an annual average growth rate for total scheduled international
traffic of 5.6% for passengers and of 6.7% for freight for the next five years (IATA
2000b,c).

The growth has been accompanied by a wave of deregulation and liberalisation in
the airline industry in Europe, in the United States, and in many other parts of the
world. Airlines left free to provide service with few regulations have significantly
changed their services and schedules, for example by introducing airline hubs. At the
same time, privatisation and commercialisation are changing the mode of operation
of many airports (ADV 1997, Endler and Peters 1998).

From the point of view of an airport or ground service provider it has become in-
creasingly important to utilise the available resources in the best possible way in
order to cope with these trends. To handle the growing traffic volume, it is essential
that a good resource utilisation is achieved. This holds true for the staff and equip-
ment concerned with ground handling on the ramp and in the terminal, as well as
for infrastructure and building resources, such as runways or terminal gates, which
typically can only be extended in the long run, if at all, and with very large financial
effort.

The high resource utilisation required to satisfy the growing demand for ground ser-
vices leads to complex planning and scheduling problems that can no longer be
adequately addressed with traditional, manual planning methods. The scheduling
of resources on the operational level is additionally complicated by frequent, un-

110 CHAPTER 7. APPLICATTONS

predictable changes in the flight schedule, such as delays, re-routings, or aircraft
changes.

The complexity and size of the problems call for computerised decision support
tools. This chapter analyses two important areas within the total airport operations
system, in which the project scheduling models and solution techniques described in
the previous chapters can be applied:

1. The scheduling of ground handling activities required for serving aircrafts
while at an airport gives rise to a resource-constrained multi-project schedul-
ing problem with time windows. The ground handling scheduling problem is
briefly described in Section 7.1.

2. Gate scheduling deals with the problem of assigning flights to terminal gates
or parking positions and scheduling the start or end times of the assignments.
Section 7.2 shows in depth how this decision problem can be modelled as a
special multi-mode resource-constrained project scheduling problem and de-
velops a solution approach based on the techniques described in the previous
chapters.

For a general introduction to airport operations and airport engineering that describes
the role of the two areas mentioned above within the total airport system, we refer to
the books by Ashford et al. (1997) and Ashford and Wright (1992).

7.1 Scheduling of Ground Handling Operations

In airport ground handling, a large number of activities required for serving an air-
craft while on the ground have to be scheduled. These activities include, for example,
(1) technical services, such as fuelling, wheel and tire checks, ground power supply,
de-icing, cooling and heating, routine maintenance, or cleaning of cockpit windows,
(2) loading and unloading of cargo and baggage, (3) passenger and flight crew dis-
embarkment and embarkment, and (4) catering and cleaning services. The activities
have to respect certain precedence constraints and must be processed within given
time windows that depend on the aircraft arrival and departure times. The turn-round
or transit processing of an individual aircraft can be seen as a resource-constrained
project scheduling problem with generalised precedence constraints, and the overall
scheduling problem for the complete airport or its terminal areas is a corresponding
multi-project scheduling problem.

Airlines try to reduce aircraft ground times at airports for two reasons: firstly, to keep
up the flight schedule in case of operational irregularities, and secondly to increase
the fleet utilisation. Short turn-round or transit times are also advantageous for the
airport or ground service provider, as the use of heavy investment, such as terminal
gates or costly ramp equipment, is maximised if ground times are kept as short as
possible.

7.1. SCHEDULING OF GROUND HANDLING OPERATIONS 11 1

Minutes 0 5 10 15 20 25 30 35 40

Positioning Pass. StepsIJet Bridges

Disembarking

Cleaning

Boarding

Removal Pass. StepsIJet Bridges

Forward: Positioning Highloader

Forward: Door OpeninglClosing

Forward: Loading

Rear: Positioning Highloader

Rear: Door OpeninglClosing

Rear: Loading

Lower Deck Unloading/Loading

Positioniong Fueltruck

Refuelling

Positioning Catering Trucks

Loading

Start Engines (unless push-back)

Main Deck: Positioning Highloader

Main Deck: Door OpeningIClosing

Main Deck: Loading

Figure 7.1 : Minimum transit time of a B747 aircraft

Scheduled arrival and departure times are therefore derived from a set of minimum
transit or turn-round times which reflect the technical possibilities with standard
equipment and,normally productive manpower. The times are obtained by anal-
ysis, including the timing of individual activities and critical path calculations, and
through actual demonstrations. The minimum times define the performance that may
be needed in case of delay on arrival.

Figure 7.1, taken from an airport handling manual (IATA 2000a), shows an example
of how the minimum transit time of a B747 aircraft is determined. The Gantt-chart-
style figure shows a subset of the required activities with their start and completion
times when started as early as possible (left-shifted). There are obvious (generalised)
precedence relations between certain activities.

For modem containerised aircraft, the critical path of a transit or turn-round process-
ing usually consists of passenger disembarkment, cabin cleaning, and embarkment.
In few cases, before very long flights, fuelling operations may determine the critical
path (IATA 2000a).

The scheduled ground times are usually approximately ten to fifteen minutes higher
than the minimum times in order to allow for delayed arrivals while still achieving

112 CHAPTER 7. APPLICATIONS

on-time departure. This, the fact that not all activities are critical even when the
ground times are minimal, and the fact that the actual required processing times for
some activities depend on the actual (vs. expected) load data and may thus vary from
the processing times used for deriving the minimum ground time, leads to degrees
of freedom that may be exploited when scheduling the ground handling activities.
Additionally, there are usually a number of aircraft which, for various reasons, stay
at the airport for considerably longer than the minimum necessary ground time.

The task of scheduling the ground handling activities may be modelled as single- or
multi-mode project scheduling problem with time windows with cumulative andlor
disjunctive resources. A possible fine-grained approach is to model all available staff
and equipment as individual disjunctive resources and to represent the assignment of
an activity to a resource as mode selection in a multi-mode model. This allows to in-
troduce individual availability times, e.g., shift times, as well as sequence dependent
setup times between activities. The setup times can reflect the necessary travelling
durations between aircraft positions, which may be an important consideration if
these times are significant and vary considerably.

The performance measure will usually consider multiple attributes. One of the main
goals frequently simply is to find a feasible schedule, if one exists, or to find a
schedule that comes as close as possible to feasibility. Other useful criteria are, for
example, a levelling of the resource usage or requirements and an even distribution
of the staff workload.

Some of the modelling aspects mentioned above will also appear in the application
described in the following section.

7.2 Gate Scheduling

7.2.1 Introductioh

Gate scheduling is conderned with finding an assignment of flights to terminal or
ramp positions, called gates, and an assignment of the start and completion times of
the processing of a flight at its position. It is a key activity in airport operations. With
the increase of civil air-traffic and the corresponding growth of airports in the past
decades, the complexity of the task has increased significantly. At large international
airports, several hundreds of flights must be handled per day. The task is further
complicated by frequent changes of the underlying flight schedule on the day of
operations, such as delays or aircraft changes.

The main input for gate scheduling is a flight schedule with flight arrival and depar-
ture times and additional detailed flight information, including pair-wise links be-
tween successive flights served by the same aircraft, the type of aircraft, the number
of passengers, the cargo volume, and the origin or destination of a flight, classified
e.g. as domestic or international. The information in the flight schedule defines the
time frame for processing a flight and the subset of gates to which it can or should

7.2. GATE SCHEDULRVG 113

be assigned, taking into account, e.g., aircraft-gate size compatibility, access to gov-
ernmental inspection facilities for international flights, etc.

Gates are scarce and expensive resources. Increasing the resource supply involves a
time-consuming and costly re-design of terminal buildings or the ramp and is usually
not feasible in the short run. It is therefore of great economic importance for an
airport or terminal operator to use the available gates in the best possible way.

The gate assignment also influences the quality of passenger service in manifold
ways. A problem well known to many passengers is that arriving flights sometimes

I have to wait on the ramp before travelling to their final position, because the assigned
gate is still occupied by another flight. Such a situation is often caused by a poor
gate assignment or by failure to adapt an initial assignment to updates of the flight

1 schedule. When changing a gate schedule, however, it must be taken into account
I that gate assignments are published some time before the actual arrival or departure
of a flight, for instance for planning purposes in other operational units, on passenger
information displays and on boarding passes. Passengers already waiting at a gate
may have to be re-directed if the gate of a departing flight is changed on short notice.
Another example of the influence of the gate assignment on passenger service is the
required passenger walking distance, which depends on the chosen gates.

The gate assignment also affects other ground services. A good assignment may
reduce the number of aircraft tows required and may lead to reduced setup times for
several ground service activities on the ramp as well as in the terminal.

The problem of finding a suitable gate assignment usually has to be addressed on
three levels. Firstly, during the preparation of seasonal flight schedule revisions,
the ability to accommodate the proposed flights must be examined. Secondly, given
a current flight schedule, daily plans have to be prepared before the actual day of
operation. Thirdly, on the day of operation, the gate schedule must be frequently
altered to accommodate updates or disruptions in the flight schedule; this is referred
to as reactive scheduling.

The new optimisation model and algorithm for gate scheduling described in this
section differ from previous approaches reported in the literature in several ways.

I

While at the airport, an aircraft goes through the three stages of (I) arrival processing, 1 (2) optional intermediate parking, depending on the length of the ground time, and
(3) departure processing. In contrast to previous models, these stages are considered
as separate entities that can potentially be assigned to different positions if necessary
or advantageous. The aircraft may then have to travel between the assigned arrival,
parking, and departure positions; as this usually requires the use of tow tractors,
we will generally refer to it as towing. In addition to assigning the three stages to
positions, the start and completion times of processing at a position, which can vary
within certain time windows, have to be assigned.

The model can consider an arbitrary time horizon, typically set to a day. This stands
in contrast to approaches that split the overall problem into isolated, short time slots,
that correspond to waves of arriving and departing flights, a simplification that can

114 CHAPTER 7. APPLICATIONS

be justified at some hub airports where many passengers change between connecting
flights and where there is little relation between the flights in two successive arrival-
transfer-departure waves.

Previous optimisation based approaches have usually modelled the problem by rep-
resenting the arrival, parking, and departure stages as a single entity to be assigned to
the same position, and they only consider a single flight wave. The objective function
most frequently used is the minimisation of walking distances for arriving, transfer-
ring, and departing passengers. The problem then becomes similar to a quadratic
assignment problem (Lawler 1963). However, for many airports, this modelling ap-
proach leads to an over-simplification that does not adequately reflect the original
decision problem.

The key idea behind the model presented here is to look at the problem as a modified
multi-mode resource-constrained project scheduling problem with a multi-criteria
objective function. The most important goals are the maximisation of a total flight-
gate preference value and the minimisation of the number of tows.

The basic optimisation algorithm is a truncated branch-and-bound procedure that
branches over (1) gate (mode) assignments and (2) the disjunctive constraints used
to model the capacity restrictions of the disjunctive resources (gates). The algorithm
uses constraint propagation techniques to reduce the search space. To cope with
large practical problems with in the order of magnitude of thousand activities per
day, the problem is decomposed into loosely coupled sub-problems using a new
generic problem partitioning technique. The sub-problems are used within a layered
branch-and-bound approach: The search tree is conceptually split into layers that
correspond to the sub-problems. In each layer, only decision variables of the current
sub-problem are selected for branching; limited backtracking is performed within
the current layer before proceeding to the next layer. Initial solutions obtained in this
way are iteratively improved using a large neighbourhood search (LNS) technique
(Kilby et al. 2000) that relaxes some of the decisions and uses the branch-and-bound
algorithm to reform the relaxed part of the solution at a lower cost. LNS can also
serve to adapt an existing schedule to changes in the input data in a smooth way.

The model and algorithm have been evaluated using small manually designed test
cases as well as two weeks of real-life flight schedule data from a large international
airport. A comparison of the computational results with a rule based approach, as
often used in commercial systems, shows that the algorithm greatly improves the
solution quality.

Beyond their application for the gate scheduling problem at hand, the problem parti-
tioning technique and the layered branch-and-bound approach are of general interest,
since they address a common task and can easily be generalised.

The remainder of this chapter is structured as follows. After a review of the relevant
literature in Section 7.2.2, Section 7.2.3 describes the problem in detail and develops
the optimisation model. Section 7.2.5 presents the basic branch-and-bound algo-
rithm. Section 7.2.7 shows how the problem can be partitioned into sub-problems,

7.2. GATE SCHEDULING

and Section 7.2.8 describes how these sub-problems are used within the layered
branch-and-bound approach. The iterative improvement of solutions is discussed
in Section 7.2.9. Section 7.2.10 finally reports on computational experiments.

7.2.2 Literature Review

Gate assignment strategies have been studied for a long time, and the first quantita-
tive approaches have already been described in the late 1960's (Baron 1969). One
of the first studies that demonstrated the effect of gate assignment strategies on pas-
senger walking distances was undertaken by Braaksma (1977). As an example, the
mean walking distance per passenger at Terminal 2 of Toronto International Airport
could be reduced by more than ten percent as a result of a change in gate assignment
policy. The minimisation of total walking distance within the terminal for arriving,
transferring, and terminating passengers has remained one of the most frequently
considered objectives in the literature.

Passenger walking distance minimisation is an important issue not only in the op-
eration of airport terminals but also in the design of a terminal. Several efforts to
integrate a method to minimise intra-terminal travel into the terminal design process
have been reported, and as an example we refer to the discussions by Wirasinghe and
Bandara (1990) and Bandara and Wirasinghe (1992).

The main part of the literature on gate assignment deals with terminal operations.
The various contributions can be roughly classified according to the underlying tech-
nology as (1) optimisation based and (2) rule based or expert system approaches.

Previous studies that have developed optimisation models and algorithms have fo-
cused on the assignment aspect of the gate scheduling problem; the resulting prob-
lem is usually referred to as gate assignment problem (GAP). The basic constraints
of the GAP are that a gate can only accommodate a single aircraft and that two flights
must therefore not be assigned to the same gate if they overlap in time. Arrival pro-
cessing, intermediate parking, and departure processing are considered as a single
entity to be planned and must be assigned to the same gate.

Gate assignment optimisation models can be classified as single or multiple time
slot models. Single time slot models consider the assignment of a batch of flights
that arrive within a given time period, or slot, to gates; in these models, only one
flight can be assigned to each gate. The GAP can be modelled in analogy to the
quadratic assignment problem, which is a location problem where the cost of placing
a facility (flight) at a location (gate) depends on the placement of other facilities and
the transport volume between two facilities (Lawler 1963).

Babic et al. (1984) have formulated the single-slot GAP as integer linear program
with the objective of minimising the total walking distance for arriving and depart-
ing passengers. Mangoubi and Mathaisel (1985) have proposed an integer program
for the problem with an extended objective function that additionally takes transfer
passengers into account. Their single-slot model, which is similar to a quadratic

116 CHAPTER 7. APPLICATIONS

assignment problem, is solved using an LP-relaxation and a heuristic. Another ap-
proach has been described by Bihr (1990), who proposes to model the single-slot
problem as a linear assignment problem for fixed arrivals in a hub operation. Chang
(1994) describes a single-slot GAP that considers the effect of an assignment on bag-
gage transport distances in addition to passenger walking distances. Xu and Bailey
(2001) have recently proposed a tabu search algorithm for a single slot GAP with the
objective function of minimising the overall passenger connecting times or distances;
the problem is formulated as a quadratic assignment problem and reformulated as a
mixed 0- 1 integer linear program.

Haghani and Chen (1998) formulate a multiple time slot GAP with walking dis-
tance and baggage transport distance minimisation as an integer program. One of
their main contributions is a model that extends the single-slot GAP with time con-
straints; this is achieved by introducing time-indexed binary variables that indicate
the assignment of a particular flight to some gate in a given time slot. Haghani and
Chen (1998) propose a branch-and-bound algorithm as well as a heuristic to solve
the problem. The size, or width, of the time slots must be carefully selected as it
influences the problem size as well as the possible gate utilisation; the authors con-
clude that the slot width should be roughly equal to the minimum time that an aircraft
can occupy a gate.

"Traditional approaches utilising classical operations research techniques have diffi-
culty with uncertain information and multiple performance criteria, and do not adapt
well to the needs of real-time operations support" (Gosling 1990). As a result, the
use of rule based or expert systems for the operational control of terminal and ramp
activities has been investigated from the mid 1980's on. Hamzawi (1986) has de-
veloped a rule based system for simulating the assignment of gates to flights and
for evaluating the effects of particular rules on the gate utilisation. Gosling (1990)
describes a prototype expert system for gate assignment that has been evaluated in
a case study at Denver Stapleton Airport, a major hub airport. Srihari and Muthukr-
ishnan (1991) use a similar approach for solving the GAP and also describe how to
apply sensitivity analysis. Cheng (1997) describes the integration of mathematical
programming techniques into a knowledge-based gate assignment system.

Both optimisation based and rule based approaches have been combined with sim-
ulation analysis to study the effect of assignment policies and rules (see e.g. Baron
1969, Hamzawi 1986).

7.2.3 Problem Description

This section formally describes the gate scheduling problem. After explaining the
problem in detail by looking at a small example gate schedule, the system of con-
straints is formally presented and the objective function is introduced.

7.2. GATE SCHEDULING

Position pyin
I w dsetup - - - - - - - - -

1

2 Departure: k

3 arking: j

4 I m
L - - - - - J dse tu~

Figure 7.2: Example from a gate schedule

An Example

Figure 7.2 shows an example from a gate schedule represented as a Gantt-Chart. The
figure shows four positions or gates on the vertical axis and three activities i, j , and
k that are represented as solid rectangles and correspond to the arrival processing,
parking, and departure processing of an aircraft. The example shows the special case
where these three activities are assigned to different gates; although it is generally
desirable to assign the three activities to one and the same gate, the special case
illustrates the problem better. We will use the example to introduce the system of
constraints of the gate scheduling problem.

Let us first consider the activity i corresponding to the arrival processing, or arrival,
for short. The start time Si of the arrival depends on the flight schedule and is fixed.
Beginning at this time, the aircraft must be assigned to a gate for at least pTin units of
time, which is the fixed minimum time required for processing the arrival, including
passenger disembarkment, baggage unloading, etc. The minimum processing time
is visualised in Figure 7.2 as an arrow of length p? starting at the arrival time Si.
After time Si + p y , the aircraft may either stay at the gate or may be towed to
another position for parking. The completion time Ci at which the aircraft leaves
the arrival gate is a decision variable. Of course, Si + prin < Ci must hold. In the
example, the aircraft remains at the arrival gate for more than the minimum required
time and then moves to the parking gate.

In an analogous way, the departure activity k has a fixed completion time Ck at which
the aircraft must leave the gate. The fixed minimum required departure processing
time prin is visualised as a backward arrow of length pp, beginning at time CI,. The
start of the departure processing, SI, is a decision variable. Again, SI, + p p 5 CI,
must hold.

While at the airport, an aircraft must be continuously assigned to some position or
be moving between two successively assigned positions. In the example, the aircraft

118 CHAPTER 7. APPLICATIONS

moves from the assigned arrival gate 1 to gate 3 for intermediate parking. The start
time Sj of the parking at gate 3, which is a decision variable, must be equal to
the completion time Ci of the arrival processing plus the required travel, or tow,
time dtoW between the arrival and parking gates. To avoid degenerate solutions in
which an aircraft is towed to a parking position, and immediately afterwards towed
to another gate for departure processing, we impose a minimum processing time c'" > 0 for parking. The parking completion time Cj is a decision variable. As
before, Sj + pj"'" 5 Cj must hold. At time Cj , the aircraft is towed to the departure
gate; in the example, Cj + dtoW = Sk must hold. Because the tow time depends on
the gates and on the aircraft, it will later be indexed accordingly.

A gate can only accept one aircraft at a time, and between two successive assign-
ments a sequence dependent setup time dYetup that depends on the associated two
aircraft must pass. In Figure 7.2, the setup time between the arrival activity i and
some other, following activity I , that is also assigned to position 1, is shown as an
arrow of length d""'*P, beginning at time Ci. Setup times mainly serve to model the
time required for the push-back of an aircraft from a gate using a tow tractor and
the time required for the following aircraft to move to the free gate. The setup du-
ration depends on the gates and on the affected aircraft and will later be indexed
accordingly.

An assignment of an aircraft to a particular gate does not only restrict the use of this
gate for other aircraft, but may also influence possible assignments at other adjacent
gates due to wingtip proximity problems or blocked access. Additionally, the ramp
layout often includes overlapping positions, that may, for instance, either accommo-
date one large aircraft or two small ones. The restrictions between adjacent gates are
sometimes intuitively called shadowing. Figure 7.2 shows an example of shadow-
ing between the parking activity assigned to gate 3 and another activity m shown as
dashed rectangle at position 4. Intuitively, the aircraft at gate 3 casts its shadow on
the adjacent gate 4 and restricts the use of position 4 during the assignment of the
parking activity as well as for a certain amount of setup time before and afterwards.
The restrictions between pairs of (adjacent) gates generally depend on the gates and
the aircraft type or size.

This completes the discussion of the example gate schedule, that has shown the spe-
cial and most general case where the arrival, parking and departure of an aircraft
are assigned to three different gates. Other assignments involving only one or two
gates are often possible and preferable because ground service setup times as well
as tows and the associated ramp traffic are avoided. In addition to the case shown in
the example where an aircraft goes through the three stages of arrival, parking, and
departure, a flight schedule may also contain arrivals without a linked departure, and
vice versa; for example, such a situation can occur when an arriving aircraft has to
stay at the airport for maintenance or returns from maintenance, respectively.

7.2. GATE SCHEDULING 119

'Constraints

'The gate scheduling problem can be modelled in analogy to a multi-mode resource-
'constrained project scheduling problem; the choice of a processing mode corre-
sponds to a gate assignment. The model developed in the following is summarised
in Figure 7.3; the notation used is analogous to the standard project scheduling nota-
tion.

 or every pair of linked arrival and departure flights, i.e., successive transit or turn-
'round flights served by the same aircraft, we introduce three activities correspond-
ing to the arrival processing, parking, and departure processing. The activities are
referred to simply as arrival, parking, and departure; the arrival is linked to the park-
ing, which in turn is linked to the departure. The set of all links (i, j) between two
activities i and j is denoted with &'OW (every link implies a potential towing opera-
tion). For an arriving flight that is not linked to a departure, and for a departing flight
without a corresponding arrival, we introduce a single activity. The set of all arrivals
is denoted with V a ; V

p
is the set of all parking activities, vd is the set of departures,

and the set of all activities is V := V a U VP U vd.
An activity i has a given minimal processing timep?, a start time Si, and a comple-
tion time Ci. By choosing sufficiently small time units, we can assume without loss
of generality that the processing times and the start and completion times are natural
numbers. The start and completion times are decision variables. However, in case
of arrival activities, the start time must equal the flight arrival time tf given in the
flight schedule, and departure activities must complete at the scheduled flight depar-
ture time t:; for parking activities, both the start and completion time are variable.
In contrast to classical project scheduling models, only a minimal processing time is
given, and the actual processing time pi := Ci - Si is not fixed in advance but fol-
lows from the selected start and completion times. The minimal required processing
time leads to Constraint (7.1) in Figure 7.3. The domains of the start and completion
times are restricted by Constraints (7.4) - (7.6).

The set of all gates, or modes, is denoted with M. An activity i must be assigned a
processing mode Mi from its associated set of possible mode assignments Mi C M,
which is given. The chosen processing mode Mi corresponds to a gate assignment,
and the set Mi corresponds to the set of gates to which the aircraft may be feasibly
assigned. To cope with situations where the constraints do not allow to assign all
aircraft to a real gate - for example if the number of flights to be scheduled exceeds
the number of available gates - we introduce a fictitious gate 0, or dummy gate,
with unlimited capacity. By default, every mode set Mi contains this dummy gate;
assignments to the dummy gate will be penalised in the objective function. Con-
straint (7.7) restricts the mode variables. The set of all possible modes is denoted
with M, andMi C M.

The completion and start times of two successive (linked) activities i and j for the
same aircraft may differ only by the time required for towing the aircraft between
the assigned gates. This tow time naturally depends on the distance between the

120 CHAPTER 7. APPLICATIONS

Find a schedule (S, C, M) w.r.t.

I Minimal processing time I
I Continuous processing I

Disjunctive activities and setup times

Ci + d$fjMj 5 Sj Mi = M j # 0
v

Cj + dyziMi 5 Si, 3(i, Mi, j, Mj) E Ishadow.

Start and completion time

I Mode selection I
Figure 7.3: Constraints of the gate scheduling problem

gates, and also on the aircraft type associated with the activity. It is denoted with
d4GijMj E No ; due to the large number of activities and possible modes in practical
problem instances, it will be implemented as some function f of the activities and
chosen modes, i.e., dfGi jMj := f (i, Mi, j, Mj), rather than as table or array lookup,
as suggested by the index notation. The tow time takes the value zero if and only
if two activities are assigned to the same gate, i.e., d?GijM, = OifMi = Mj,for
all i , j E V, and it is strictly positive otherwise. Using the tow time, the continuous
processing requirement can be formulated as Constraint (7.2).

Gates are disjunctive resources that can only process one activity (aircraft) at a time;
the only exception is the dummy gate 0, which can hold an infinite number of aircraft.
Between the processing of two activities i and j , a setup time d z j M j E No must
pass. The setup time can reflect the time required to push back the first aircraft
back from the gate and for moving the second aircraft to the gate, as well as the
duration required for setting up equipment such as aircraft bridges. It depends on the

7.2. GATE SCHEDULING 121

'gates and aircraft types associated with the activities and is therefore indexed with
the activities and their corresponding mode variables. Setup times are only required
between the processing of two different aircraft; if i and j are successive activities
'served by the same aircraft, i.e., if (i, j) E Etn'" then dyi,pjMj = 0. In analogy to the
tow times, the setup times will be implemented as some function f of the activities
(aircraft types) and modes (gates), i.e., d y z j M j := f (i, Mi, j, Mj) .

The basic disjunctive resource constraint that forbids the simultaneous assignment
of two aircraft to the same gate can now be formulated as follows:

This corresponds to the first case covered by Constraint (7.3).

'Additionally, Constraint (7.3) also covers shadowing restrictions between gates. A
'shadowing restriction between a pair of gates p and v can be conceptually repre-
sented as a tuple (i, p, j, v) that has the following interpretation: If mode p E Mi
is assigned to activity i , then activity j must not be "simultaneously" processed in
mode v E M j . The set of all shadowing restrictions is denoted with In the
same way and for the same reasons as for activities assigned to the same gate, setup
durations must also be taken into account for activities at adjacent gates affected by
a shadowing restriction. This leads to the following disjunctive constraint:

ci + dz ,$Mj < S j
V Vi, j E V : 3(i, Mi,j , M j) E EShadffw

Cj + dy$riMi < si,
This corresponds to the second case covered by Constraint (7.3). In summary, Con-
straint (7.3) must hold for two activities i and j either (1) if the same modeis assigned
to i and j or (2) if the modes are chosen in such a way that a shadowing restriction
applies. In both cases, the activities and their setup durations must not overlap in
time. Of course, the constraints only need to be explicitely defined for those pairs of
activities for which the start and completion time domains allow for such an overlap
and where the mode domains intersect or may trigger a shadowing restriction, as
the constraint is always satisfied otherwise. Formally, the set V of disjunctive activ-
ity pairs for which Constraint (7.3) must be explicitely defined can be described as
follows:

'It is not reasonable to define a shadowing restriction for the fictitious gate (mode) 0.

122 CHAPTER 7. APPLICATIONS

It is worth mentioning that the disjunctive constraints do not apply for activities
assigned to the fictitious gate, i.e., which are processed in mode zero. Because Con-
straint (7.3) is the only resource constraint in the model, the number of activities that
can be simultaneously assigned to the fictitious gate is unlimited.

Finding a solution to the gate scheduling problem is equivalent to finding an assign-
ment of the start and completion time and mode variables that is compatible with the
Constraints (7.1) - (7.7). A gate schedule is thus defined by the tuple (S, C, M) of
start time, completion time, and mode vectors.

The problem is similar in structure to a multi-mode project scheduling problem with
unary, or disjunctive, resources. As a peculiarity, only minimal required processing
times are given. In addition to start time decision variables, the completion times
therefore also become decision variables. Constraints (7.2) are the temporal con-
straints of the problem. They are of equality type; they could also be represented in
a way similar to the problem MPSltemplC,, by using two precedence constraints
with appropriate minimal and maximal time lags. Constraints (7.3) are the resource
constraints and additionally serve to model shadowing restrictions. Constraints (7.4)
- (7.7) are domain constraints.

The ground time of an aircraft, which is defined as the duration between its arrival
and departure, is sometimes so short that the arrival, parking, and departure activity
must always be assigned to the same gate (block processing). If this is detected
in a preprocessing step which serves to define the minimal processing times, then
the minimal processing times for activities that require block processing can be set
accordingly: If i, j , and lc are the arrival, parking, and departure activities, then set

min .- t d - ta p r n .-
Pi .- I,

, , , ' .- 0 a n d p p := 0. Because the tow time dtow between different
gates is strictly positive, Constraints (7.1), (7.2), and (7.4) - (7.6) then imply that
Mi = M j = MI, must hold.

Objective Function

The objective function is a linear combination of several goals. In extensive discus-
sions with a terminal operator, it has been concluded that the most important goals
are (1) the maximisation of a total assignment preference score, (2) the minimisation
of the number of required towing operations, and (3) the minimisation of the devia-
tion from a given reference gate schedule. In order to further differentiate between
gate schedules that are of equal quality with respect to these goals it is reasonable
to add other goals of lower importance. In the following we will concentrate on the
three top goals.

Using goal weights ai, which are non-negative real numbers, the objective function
z(S, C, M) is formulated as follows:

7.2. GATE SCHEDULING 123

We will see below that the values of three goals zl , 22, and z3 depend only on the
mode vector M but not on the start and completion time vectors S and C, so that we
can write z (M) instead of z (S , C, M) .

'The first goal zl is the maximisation of the total gate preference score. We associate
a preference value ui, with every activity-mode combination, i.e., for all i E V and
p E M. Each activity is further associated a weight, or priority, wi E [O , l] . An
assignment to the fictitious gate 0 is penalised with a large negative value; otherwise,
the preference values are normalized numbers, i.e., uip E [0, 11, for all i E V and all
p E M \ (0) ; the preference ui, is always 0 if p fZ Mi and usually greater than
zero otherwise. The goal of maximising the total mode assignment preference score
can be formulated as follows:

It is evident that the preferences and weights have a large influence on the optimal
gate schedule. Choosing suitable values for the assignment preference and weight
parameters u i ~ ; and wi is a difficult problem in itself, but is beyond the scope of
this study. The task is delegated to a rule-based system that defines the values based
on the detailed characteristics of the associated flights, for example, origin, destina-
tion(~), number of passengers, type of aircraft, airline, and many more.

The movement of an aircraft from a terminal position to another position generally
requires the use of an aircraft tow tractor, because the aircraft needs to be pushed
back from the terminal building. Tow tractors are scarce and expensive resources.
Furthermore, aircraft movements may restrict access to other gates, that are being
passed, and add to ramp traffic congestion. It is therefore of great importance to
minimise the number of movements. This is captured in the second goal:

The third goal is to minimise the deviation from a given reference gate schedule,
which will be denoted with (S ' , C', M') . This goal is important for two main rea-
sons. Firstly, in the preparation of daily plans before the actual day of operations,
is desirable to obtain a maximum similarity between the gate schedules for different
days of the week. For example, it is considered advantageous if the eight o'clock
flight to a particular destination always departs at the same gate, as this tends to
ease other operational planning tasks. Secondly, in reactive re-scheduling, which is
made necessary by flight schedule disruptions, conflicts or infeasibilities in the gate
schedule should be resolved in such a way that the changes to the schedule are kept
minimal. Here, the rationale behind minimising the number of changes is that the
'gate schedule is published for passengers and for other operational systems within
the airport and that gate changes may cause considerable effort in these areas. The
goal can be formally expressed as follows:

124 CHAPTER 7. APPLICATIONS

It is interesting to note that this goal addresses one of the typical weaknesses of
optimisation based systems, namely that small changes in the input data may easily
lead to large changes in the output data.

7.2.4 Constraint Propagation

The gate scheduling problem is solved using a branch-and-bound approach. At each
node of the search tree a fixed point is computed by applying constraint propagation.
The basic propagation algorithm is a variant of the AC-5 arc consistency algorithm
described by Van Hentenryck et al. (1992). Within the constraint propagation algo-
rithm, we use the following consistency tests introduced in Chapter 4, which are all
based on the mode minimal problem instance introduced in Definition 1 on page 63:

A variant of the precedence consistency test 1 for the minimal processing time
constraints (7.1), for the continuous processing constraints (7.2)', and for the
disjunctive precedence constraints (7.3) once it can be deduced or has been
explicitely decided which part of a disjunction must hold.

The disjunctive pair test, which enforces constraints (7.3).

A mode shaving test as described in Algorithm 2 on page 64.

7.2.5 A Branch-and-Bound Algorithm

The branch-and-bound algorithm described in this section builds gate schedules by
iteratively assigning modes to activities and by resolving resource conflicts. As we
have seen in the previous section, the objective function value depends only on the
mode vector, but not on the start and completion times. We will therefore search for
a solution in which at least an assignment for all mode variables has been selected
and in which the start and completion time domains are generally reduced from their
initial values; however, the time domains may still contain more than one entry,
i.e., start and completion variables may still be unbound. The remaining degree
of freedom can be exploited in a sub-sequent optimisation step, not covered here,
that chooses start and completion times in a way that allows to schedule all required
towing operations. This can for instance be achieved by solving a vehicle routing and
scheduling problem with time windows for the tow crews, where the time windows
for the start and end of a towing operation are defined by the start and completion
time domains of the corresponding arrival and parking, or parking and departure
activities.

At each node of the search tree, we first apply constraint propagation and then branch
in one of two alternative ways by either

'~eca l l that a continuous processing constraint can be replaced by two precedence constraints with
minimal and maximal time lags.

7.2. GATE SCHEDULING

1. assigning a mode to an activity or forbidding the mode assignment, or

2. resolving a resource conflict by selecting which part of the disjunction in Con-
straint (7.3) must hold.

In the following we shall first explain the details of the binary branching scheme and
' then show how simple lower bounds can be developed.

Branching Scheme

Each node a of the search tree has an associated set of current domains A(a):

A(a) uniquely determines the sets of scheduled and free activities. The set Vs of
scheduled or assigned activities contains all activities whose mode domain contains

I exactly one entry, i.e.,

v f (a) := V \ V S(a) is the set of free or unassigned activities. We thus consider an
activity as scheduled as soon as it is assigned a mode (gate), even though its start and

I completion time domains may still vary.

'Disjunctive Branching If there is a pair of scheduled activities i , j E V S(a) for
which Constraint (7.3) must be explicitely defined, i.e., for which {i, j } E D, as
introducedin Definition (7.8), and where both cases i+ j and j+i of Constraint (7.3)
may still hold, then we branch by creating two child nodes Z1(a) and r'(a) that
1 correspond to the two possible orientations of the disjunction:

(a) : add the constraint Ci + d'zrjMj 5 Sj,
< si. rl(a) : add the constraint Cj + d'YziMi -

If multiple activity pairs are eligible for branching then we first choose the pair with
the smallest time domains, i.e., the pair {i, j } for which (As, I+lAc, I+lAsj I+lAcj I
is minimal. We then choose activity i and j so that ESi 5 ESj and first branch to
the left child node Z1(a). All ties are broken arbitrarily.

T h e reason why the branching over disjunctions between pairs {i, j) E D is delayed
until modes have been chosen for both i and j is that any previous reductions of

the mode domains AM. and AM, and constraint propagation may allow to deduce
which part of a disjunction must hold without the need for explicit branching.

I t is easy to see that explicit branching will only be required for activity pairs where
at least one of the activities is a parking activity: All other pairs involve only arrival

126 C H A m R 7. APPLICATIONS

and departure activities, i.e., activities for which either the start or completion time
is fixed through Constraint (7.4) and (7.5); the order in which the two activities must
execute can thus be immeditately deduced.

Mode Branching If there is no pair {i, j) E 23 that is eligible for disjunctive
branching, then we branch over a mode assignment in the following way.

At node a we select the next unassigned activity from vf (a) for mode branching
according to a variable selection rule that we will explain below; we denote the
chosen activity with act(a). A value selection rule that will also be introduced below
then chooses a mode m(i, a) E AM; (a) which is assigned to i in one of the child
nodes. Let i = act(a) be the activity chosen at a. When branching from node a, two
child nodes l(a) and r(a) are created by either assigning m(i, a) to i or prohibiting
this assignment:

l(a) : AM^ := {m(i, a)) ,
r(a) : AMi := AM; \ {m(i, a)) .

Activities and modes are chosen according to a maximal regret criterion, which is
based on lower bounds of the objective function. The rationale behind the well
known maximal regret principle is to first make those assignments which otherwise,
if not made, will cause the greatest loss as indicated by the increase of the lower
bound. For every activity, we consider (1) the currently "best" mode assignment,
i.e., the one for which the resulting lower bound value is minimal, and (2) the cur-
rently second best assignment. The regret of not assigning the currently best mode
to an activity is the difference between the lower bound values for the best and sec-
ond best assignment. The activity for which the maximal regret is realised and its
currently best mode are chosen for branching.

In order to formalise the maximal regret concept, let us introduce LB(a) as a bound
on the minimal objective function value of any schedule that can be developed from
node a given the set of current domains A(a). Additionally, let LB(a, Ai = { p))
denote the value of this bound if we bind a free activity i E vf (a) to one of the
modes p in its current domain, i.e., replace AM^ (a) = {. . . , p, . . .} with { p) , and
apply CP in order to evaluate the consequences of this assignment. The "best" mode
for activity i given the domains A is the one with smallest lower bound value:

m(i, a) := arg min LB(A, AM; = { p))) .
PEAM; (a)

The regret of not assigning the best mode to i can then be defined as:

regret(i,a) := min LB(a, ,AMi (a) = { p)) -
P€AM; (a)\m(i,ff)

LB(a, AMi (a) = m(i, a)) .

Finally, the function act(a) returns the unassigned activity i E vf (a) with maximal
regret:

7.2. GATE SCHEDULING

act(a) := arg max regret(i, a)) .
i ~ V f (a)

Summary of the Branching Scheme We can now define the branching scheme
recursively. This is done in Figure 7.4. Recall that we only have to specify A(a),
since this determines all other sets and values.

The search tree is traversed in depth-first order until a leaf node is generated, i.e.,
until VS (a) = V. Backtracking occurs when a leaf node is reached, when bounding
considerations allow to prune a branch, or when an inconsistency has been detected,
i.e., when some domain becomes empty.

Because of the simple branching structure and the fact that constraint propagation
only removes values which cannot participate in any feasible schedule that can be
developed from a node, it is easy to see that the branching scheme is complete in
the sense that it can generate any feasible mode assignment vector and reduce the
start and completion time domains in such way that they contain all feasible start
and completion times.

Start and Completion Times

Intuitively, the fact that two linked activities i and j, with i preceding j , are assigned
to the same gate means that the precise value of the intermediate completion of i and
the start of j becomes meaningless. This can be visualised in Figure 7.2 by moving
the parking activity j to the arrival gate 1 or to the departure gate 2. In general, for
any pair of linked activities i , j E V, with (i, j) E EtoW, that are assigned to the same
gate, the values of Ci = Sj can be arbitrarily chosen from the domains As, (a') or
A, (a'), where a' is a solution node of the search tree where values for all mode
variables have been selected.

We use this observation in the following way. Let i E V a, j E VP, and (i , j) E
EroW; if, at any search tree node a , Mi = Mj after the application of constraint
propagation, then we arbitrarily set Ci := min Aci (a) and Sj := Ci. In analogy,
let j E VP and k E Vd and (j, k) E &*OW; if, at any search tree node a , Mj = Mk

after applying constraint propagation, then we arbitrarily set SI, := max As, (a)
and Cj := Sj.

The start and completion times of all other activities are not explicitely assigned in
the branch-and-bound algorithm. The remaining degree of freedom is exploited in .

the subsequent solution for a VRSPTW for the tow crews.

7.2.6 Lower Bounds

Lower bounds for the objective function value of any schedule that can be developed
from the current node are used to select activities and modes for branching, and to
prune parts of the search tree based on the comparison of the current lower bound and

7.2. GATE S C H E D a m G 129

the value of the best solution found so far, if any. Lower bounds LBi can be derived
for each of the individual goals zi introduced in Section 7.2.3 in a straightforward
way. Clearly, the bounds depend on the set of current domains A(a), and the overall
bound on z(A) is given by:

3

LB(A) := ai LBi (A).
i= 1

Because this value must be frequently recomputed or updated, we will use rather
simple bounds that can be calculated with low effort.

By considering the most preferred gate in the current domain of each activity, we
obtain the following bound for the overall preference score:

LBI (A) = - C wi - p ~ ~ i ~ (i , p) .
i € V

A lower bound on the total number of towing operations is obtained by testing the
mode domain intersections of all linked activities:

A lower bound for the deviation from a reference Schedule (Sf

7 C f

7 M f) , can be ob-
tained by simply testing for mode domains that no longer contain the mode selected
in the reference schedule:

7.2.7 Problem Partitioning

Practical gate scheduling problem instances involve a large number of flights and
gates. Although a gate schedule is in reality continuous, it is in many ways natural to
partition the underlying flight schedule into one-day periods for which gate schedules
have to be constructed; still, a limited interaction between successive days is caused
by aircraft staying at the airport over night. Within one day at a large airport terminal,
on the order of magnitude of 1000 activities must be scheduled at approximately 100
gates.

Problem partitioning, or decomposition, is a way to accelerate the process of solving
these large problem instances by decomposing a problem into smaller sub-problems.
The sub-problems can then either be solved independently, or, as we will see in
Section 7.2.8, the information about the sub-problems can be used in some other
way to enhance the overall solution algorithm.

A problem can be partitioned exactly or heuristically. While an exact partitioning
splits a large problem into formally independent sub-problems, the sub-problems in

130 CHAPTER 7. APPLICATIONS

a heuristic partition are not strictly independent but loosely coupled. For a general
discussion of problem decomposition techniques for constraint satisfaction problems
we refer to Tsang (1993).

Exact Partitioning Based on the Constraint Graph

An exact partitioning of any decision problem can be efficiently obtained in poly-
nomial time by finding the connected components of the constraint graph, which is
defined as the graph consisting of nodes corresponding to the decision variables and
edges between any pair of variables (nodes) that appear in a common constraint (see
Section 3.1.3 on page 21). A sub-problem is defined by the decision variables and
constraints within a connected component of the graph. Solving all sub-problems to
optimality is equivalent to solving the complete problem to optimality.

When using the exact partitioning approach on the practical gate scheduling problem
instances which were used to test our algorithms and that are defined for twenty-four
hour periods, it was sometimes possible to isolate some small sub-problems in the
early morning or late evening of a day. However, the largest part of any problem
could not be partitioned exactly, leaving a main sub-problem that still contained al-
most all decision variables. It is therefore interesting to look for ways to heuristically
partition a problem.

Heuristic Problem Partitioning Using a Clique Partitioning Model

The Clique Partitioning Problem A gate scheduling problem can be decomposed
heuristically by partitioning a complete, edge-weighted graph G(V, E, (wij)) into
non-overlapping cliques in such a way that the similarity of vertices within a clique
is maximised. The node set V of the graph G corresponds to the activity set of the
gate scheduling problem. The edge weights wij are a measure of the similarity or
dissimilarity between the associated activities i and j and will be defined in the fol-
lowing way: If the two activities have similar gate preferences, then wij is positive,
otherwise it is negative. The basic idea now is to partition the gate scheduling prob-
lem into loosely coupled sub-problems by partitioning G into an arbitrary number of
cliques in such a way that the total edge weight within all cliques is maximised, or,
equivalently, the total weight of all edges between different cliques, called the cut, is
minimised. Minimising the weight of the cut is achieved by placing activities with
similar gate preferences within the same clique.

Figure 7.5 shows an example of a complete graph with five vertices (activities) that
is partitioned into two cliques (sub-problems) Vl and V2; in general, the number of
cliques may be larger than two. In the following, we will first formally describe the
partitioning problem and then explain how to derive the edge weights wij.

The problem of partitioning the graph G(V, E, (wij)) in such a way that the cut
is minimised is known as clique partitioning problem, or CPP. Using the binary
decision variables xij which take the value 1 if vertices i and j are in the same

7.2. GATE SCHEDULING

Figure 7.5: Example of a graph partitioned into two cliques

clique and 0 otherwise, the CPP can be formally described as follows:

min C w i j x i j ,

i , j € V : i < j

X i j + X j k - x i k 5 1, Vi,j, k E V : i < j < k,
x i j - x j k + x i k < 1, Vi, j, k E V : i < j < k,

- x i j + x j k + x i k 5 1, tli,j,k E V : i < j < k,
X i j E {O,l), V i , j E V : i < j.

Constraints (7.10) - (7.12) ensure that if two edges of a triangle (a clique of three
vertices) in the graph belong to the same clique, then the whole triangle belongs to
this clique.

If all edge weights are non-negative or non-positive, then the problem can easily be
solved. However, if the graph has negative as well as positive edge weights then
the CPP is NP-complete (Dyer and Frieze 1985). Exact and heuristic algorithms
for the CPP have for example been described by Grijtschel and Wakabayashi (1990)
and Dorndorf and Pesch (1994). The CPP will be solved using a fast and effective
heuristic algorithm proposed by Dorndorf and Pesch (1994).

A Similarity Metric After the formal description of the CPP, we are left with the
task of defining the edge weights w i j in a way that is meaningful for the under-
lying gate scheduling problem. The weights are derived from the matrix (u i j) of
normalised activity-gate preferences. The basic idea is that two activities are similar
if their two corresponding rows in the preference matrix have similar entries in all
columns, which means that they prefer the same set of gates. We will measure the

132 CHAPTER 7. APPLICATIONS

degree of similarity of two activities by looking at the average difference of their
gate preferences. We will further take into account that a similarity with respect
to a highly preferred gate (high preference values) is of greater significance than a
similarity with respect to a barely acceptable gate (small preference values), or even
with respect to an infeasible gate (preference values of zero). As all activities can
be assigned to the fictitious gate 0, we will only consider the set of gates or modes
M0 := M \ (0).

The relative importance Gijk of a gate (mode) k E M0 for a pair of activities i, j E V
is the ratio of the sum of preferences of i and j for k to their total preference values:

For normalised preference values this implies that Gijr, E [O, 11 and CkEMo Gijk =
1.

The normalised similarity sijk of a pair of activities i, j E V with respect to gate
k E M0 is:

Sijk := 1 -)uik - u j k I / max{Uik, ~ j k) if uik > 0 V ~ j k > 0,
otherwise.

The similarity measure can take values in the interval [0, 11; if the preference values
of activities i and j with respect to gate k are equal, then sijk = 1.

The normalised weight of the edge between nodes representing activities i , j E V
can now be defined as:

- CkEMo Gijk . s j j k if {i, j) E 2) v (i, j) E EloW,
wij :=

otherwise.

2) is the set of disjunctive activity pairs introduced in Definition (7.8). The weight
cj can only take a non-zero value if i and j are in disjunction or if they are linked,
i.e., if i and j are two subsequent activities for the same aircraft. It follows from
the definitions of Gijk and sijk that Gij is normalised, with values close to 1 corre-
sponding to a high similarity and values close to 0 to a low similarity of activities i
and j.

Using a bias value ,B E [0, 11, the edge weights wij to be used in the Objective
Function (7.9) can now simply be defined as follows:

The bias /? is used to ensure that the weights take negative values for activity pairs
of low similarity; because Gij is normalised it follows that wij E [-p, 1 - P]. For
given preference values, a low bias leads to more positive weights and consequently
to fewer cliques (partitions) than a high bias, which generally leads to a fine grained
partitioning into many cliques.

We have now completely defined the CPP that can serve to heuristically partition
a given gate scheduling problem. The following section shows how the resulting
partition is used within the branch-and-bound algorithm.

7.2. GATE SCHEDULING 133

7.2.8 Layered Branch-and-Bound

In tree search algorithms that use a chronological backtracking strategy, branching
decisions are always undone in the reverse order in which they were made. If two
successive branching decisions are only weakly related or even unrelated, this may
lead to a weak performance of the search algorithm, because effort is wasted by
searching futile branches repeatedly. A related, second problem is that the search
tends to concentrate on a small area of the tree, in the proximity of a first solution.

There are many ways in which these two main problems can be addressed. To avoid
concentration of the search on a narrow region of the search space, breadth-first
search strategies can be used. The repeated exploration of similar, futile sub-trees
can be avoided by using dependency directed backtracking (DDBT), some times also
called intelligent backtracking. The idea of DDBT is to identify the culprit(s) that
necessitate backtracking, so that the algorithm can backtrack to the relevant decisions
only; however, the identification of the culprit(s) based on the constraints in the
problem may not be easy, and DDBT may require great overhead. A repeated search
within futile subtrees can to some extent also be avoided by choosing a favourable
search order in which branching decisions are made. This is the approach that we
will follow here. For a general and exhaustive discussion of issues arising in the
design of tree search algorithms we refer to Tsang (1993).

In this section, we shall address the two problems by using the decomposition of the
problem to guide a truncated branch-and-bound search. The search tree, which corre-
sponds to the complete gate scheduling problem, is conceptually split into layers that
correspond to the sub-problems that have been identified by solving the associated
CPP described in the previous section. Within each layer, only branching decisions
concerning the variables of the corresponding sub-problem are made. Before leav-
ing a layer, the search chronologically backtracks within the current layer until a time
limit expires or the layer is exhausted. It then continues from the best partial solution
found within the current layer. The intuition behind this approach is that, by keeping
decisions concerning strongly related variables close to each other, the distance one
has to backtrack is reduced and the effectiveness of backtracking is increased. Ad-
ditionally, backtracking within each layer leads to an in-breadth exploration of the
current sub-problem.

The principle is best illustrated by an example. Figure 7.6 shows an example of a
layered branch-and-bound tree with two layers which correspond to the partition of
the example in Figure 7.5 into two subsets V1 and V2. On the first level of the tree,
only decision variables related to the two activities in the set V1 are considered for
branching. For example, the search may begin by assigning modes to activities 3
and 4 at nodes 1 and 2, respectively; when reaching node 2, no more decisions con-
cerning the sub-problem defined by V1 can be made3, and backtracking is initiated.
Backtracking subsequently leads to the generation of nodes 3, 4, and so on. Back-
tracking continues until the sub-problem is exhausted or a time-limit expires. In the

! 3~ssuming all disjunctions are oriented. I ~

CHAPTER 7. APPLICATIONS

... t

Figure 7.6: Example of a layered branch-and-bound tree

example, we assume that the solution with the best lower bound has been found at
node 6, and the search therefore continues from node 6 and proceeds to the next
layer. In the second layer, only decisions concerning the variables corresponding
to the set V2 will be made. The search continues to node 9, which corresponds to
a solution, and then backtracks. When backtracking, the search does not leave the
current layer: if the layer is exhausted, the search does not backtrack beyond node 6
to the previous layer, but instead stops, or, in general, continues to the next layer.

The sub-problems are selected for branching in the order of the total importance, or
weight, associated with their activities, i.e., the sub-problem Vk for which CiEVk Wi

is maximal is considered first, and so on.

The sub-problems influence the search order and the way in which backtracking is
performed. By imposing a time-limit for the effort to be spent in each layer and
by preventing a backtrack to the previous layer, the branch-and-bound search is no
longer exhaustive but turns into a heuristic. It is worth mentioning that the sub-
problems do not restrict the constraint propagation process, which does not only
consider the variables of the current sub-problem but takes the complete problem
into account.

7.2. GATE SCHEDULING 135

7.2.9 Large Neighbourhood Search

An initial gate schedule found using the layered branch-and-bound approach is it-
eratively improved through Large Neighbourhood Search (LNS, Kilby et al. 1998,
2000). The central idea of LNS as a general search technique is to relax some of the
decisions made during the construction of a solution and use a constructive method
to reform the relaxed part of the solution at a lower cost.

Schedule Improvement

Given a feasible schedule (A;, A;, Ah), LNS for the gate scheduling pro1
proceeds as follows:

Choose an activity i E V with a "bad" mode assignment.

A bad assignment Mi is an assignment to the ficitious gate 0 or one that causes
a potentially avoidable tow for a pair of activities (i, j) E &'OW or (j, i) E &'Ow.
A tow is required if Mi # Mj; it may be avoidable if the mode sets ' "

include a common real gate, i.e., if M i n M \ (0) # 8.

Choose a subset V(i) of activities of a given size n that includes activity i anu
other, "closely related" activities.

The subset V(i) is constructed using the edge weights wij of the associated
clique partitioning problem in the following way: Initially, V(i) := {i}; the
set is grown by greedily moving the activity j E V \ V(i) to V(i) for which
the maximal increase, or minimal decrease, of the total weight within V(i) is
obtained, i.e., for which CkEV(i) wjk is maximal.

Relax all decisions concerning the activities in V(i) but keep all other deci-
sions.

This is achieved by reconstructing the partial solution for all activities in the

1 set V \ V(i) by simply resetting the start time, completion time, and mode
domains of all activities j E V to their initial values and then making all mode
assignment and disjunction orientation decisions that were made for activities
j E V \ V(i) during the construction of the schedule (A;, A;, Ah); disjunc-
tions concerning a pair of activities j and k with j E V \ V(i) and lc E V(i)
remain relaxed.

Complete the schedule by applying branch-and-bound search, using the value
of the best full schedule found so far as upper bound.

' If the new schedule improves upon the current schedule then replace the cur-
rent schedule with it. Repeat the previous steps until every 'bad" assignment

i in the current gate schedule has been chosen for improvement.

CHAPTER 7. APPLICATIONS

The intuition behind relaxing the decisions corresponding to the activity set V(i) is to
introduce a degree of freedom that will allow to fix the problematic assignment of i .
The size of the set V (i) should be large enough to offer sufficient freedom, yet small
enough to allow a fast branch-and-bound search. In computational experiments we
found that a suitable size of the set V(i) was between twenty and thirty activities.

Reactive Scheduling

LNS cannot only be applied to improve a given initial schedule, but is also useful
for adapting a gate schedule to flight schedule disruptions with only small changes
in the gate schedule. In the following we shall briefly outline the LNS approach for
reactive gate scheduling.

In terms of the gate scheduling model (7.1) - (7.7) a flight schedule disruption may
lead to changes of arrival or departure times tq and t!, to changes of the mode sets
Mi in case of aircraft changes, or to new or cancelled activities. These changes may
lead to constraint violations and thus invalidate a gate schedule.

To adapt or "repair" a gate schedule that has become infeasible, a modified version
of the LNS scheme described above may be used. Instead of selecting activities with
unfavourable mode assignments, the search focuses on activities involved in a con-
straint violation. Because multiple constraint violations can occur simultaneously
and because the reconstruction of partial solutions that contain an infeasibility is
not useful, as the search would immediately fail when trying to continue, it is first
necessary to relax enough decisions so that the remaining partial schedule becomes
feasible. The set of violating activities for which decisions are relaxed is denoted
with V'. Depending on the type of violation, there may be more than one way to re-
lax decisions so that a particular constraint violation is avoided. We can now proceed
in an analogous way as when using LNS for solution improvement, the main differ-
ence being that instead of selecting activities with "bad assignments, we repeatedly
select violating activities from the set V'.

7.2.10 Computational Experiments

Implementation and Test Data

The layered branch-and-bound algorithm including the generic constraint propaga-
tion algorithm and the consistency tests, the exact and heuristic problem partitioning
algorithms, and the LNS improvement heuristic have been implemented in C++. All
results reported below have been obtained on a PentiumProl200 PC with the Linux
operating system.

We have tested the algorithm on two problem sets:

1. The first set contains fourteen manually constructed small test problems with
approximately ten to twenty activities. The instances where used to validate

7.2. GATE SCHEDULING 137

the model and algorithm by comparing the results to manually built gate sched-
ules. The instances can all be solved to optimality within a fraction of a second.

2. The second set consists of fourteen problems based on real flight schedules
for two weeks at a large international airport. These instances contain approx-
imately 800 activities per day that must be scheduled at 94 gates. The problem
instances have been exported from a commercial gate scheduling decision sup-
port system (DSS); the gate preference values and activity priorities used were
determined by a rule based sub-system of the DSS.

To evaluate our algorithm, the results for the second test set will be compared to gate
schedules built by the commercial gate scheduling DSS that is in use at the same
airport. The system has been developed in the past three years and represents the
current state of the art. The decision logic of the system uses a rule based approach;
it replaces and improves upon an older rule based DSS that takes an approach similar
to the one in the prototype system described by Gosling (1990).

Results

The algorithm was evaluated with goal weights cwl = = 1 and as = 0. The
preference values for the large test problems were defined as follows: An assignment
to the dummy gate 0 is penalised with a preference value uio = -5, for all i E V;
all other preference values are normalised, i.e. u e E [0, I], for all i E V and p E
M i \ (0). Intuitively, this means that a single assignment to the dummy gate is as
bad as five tows; assigning an activity to a gate with the lowest possible preference
value 0 instead of a gate with the highest possible preference value 1 is as bad as a
single tow.

Because it is difficult to interpret the numeric objective function value, we report
the results with respect to the number of activities assigned to the dummy gate, the
number of tows, and the overall preference score for all real gates.

After initial experiments, the following run time limits were chosen: a total run-time
limit of 500 seconds for finding an initial solution, and a time limit of 15 seconds
for each LNS iteration, i.e. per attempt to fix a bad assignment. The total time limit
for constructing the initial solution determines the time limits for each layer of the
search tree; for a given layer, we simply allocate the fraction of the total time equal
to the share of activities within the layer, i.e., the layer of sub-problem i, or activity
set Vi, receives a fraction IVi 1 / 1 V 1 of the run-time. The time required for finding an
initial solution is therefore at most t,,, but usually significantly smaller.

A problem is first partitioned exactly, and the resulting sub-problems are then parti-
tioned heuristically. For the large test problems, exact partitioning leads to at most 3
independent sub-problems; however, the largest sub-problem always contains all but
one or two activities, and the remaining sub-problems are of size one.

For heuristic partitioning, the associated clique partitioning problem is defined us-
'ing a bias /3 of 0.05, which was empirically found to lead to useful partitions. On

138 CHAPTER 7. AF'PLICA77ONS

Day IvI Initial Solution Large Neighbourhood Search
Layers tl OpenaTowsb Pre$ It. t2C OpenaTowsb Prej

Sum 10 388 1321 2 139 1308

"Number of activities assigned to the fictitious gate, excluding mandatory assignments.
h~xcluding mandatory tows.
cIncluding tl .

Table 7.1: Results of the branch-and-boundalgorithm for the first test week

average, this resulted in 39 sub-problems, or search tree layers, with a minimum of
29 and a maximum of 47 sub-problems; the size of the sub-problems varied between
three and approximately one hundred activities.

The LNS improvement of an initial solution uses subsets V (i) of size 24.

Tables 7.1 and 7.2 show the results for the two test weeks. For each day of the week,
the tables show the number of activities to be scheduled and additional information
on the initial solution found using layered branch-and-bound as well as ,on the final
solution after the application of LNS. The columns shown for the initial solution
contain the number of layers, or sub-problems, the time used for finding the solution,
the number of open activities, which are assigned to the fictitious gate, the number
of tows required, and the total preference score for all real gates. The same columns
are shown for the final solution, except that the number of LNS iterations appears
instead of the number of search tree layers. For the criteria related to the objective
function value, the total values are shown at the bottom of the table.

For a given problem instance, certain mandatory tows may be required and it is
possible that certain activities must remain unassigned, as any assignment other than
the fictitious gate would lead to constraint violations. At the root of the search tree,
lower bounds on the number of mandatorily unassigned activities and mandatory
tows can be derived by applying constraint propagation; these numbers are shown
in Tables 7.3 and 7.4 in the section "Mandatory" in columns "Open" and "Tows".
Because these numbers cannot be influenced by the solution algorithm and are thus
not useful for the comparison of algorithms, the columns for open activities and tows
do otherwise not include these numbers.

7.2. GATE SCHEDULING 139

Day IvI Initial Solution Large Neighbourhood Search
Layers tl OpenaTows"Pref. It. tZC Opena Towsb Pref.

(set) (see)
' 1 723 34 322 0 69 195 74 843 0 20 192

2 820 40 367 5 112 194 150 1456 1 51 195
3 799 39 372 4 101 194 1341352 0 46 193
4 819 41 370 4 97 195 135 1369 2 52 194
5 815 37 326 7 100 196 1371199 1 52 195
6 818 39 379 1 116 198 1491536 0 57 198
7 635 29 379 0 86 149 1021027 0 38 145

Sum 21 681 1321 4 316 1312

"Number of activities assigned to the fictitious gate, excluding mandatory assignments.
b~xcluding mandatory tows.
'Including t l .

Table 7.2: Results of the branch-and-bound algorithm for the second test week

' Table 7.1 shows that, in the initial gate schedule found for day one of the first test
week, one activity is assigned to the fictitious gate, or left open; the schedule requires
47 tows and the rounded total activity-gate preference score is 190. The search
tree contains 35 layers. The required run-time of 202 seconds is smaller than the
time limit of 500 seconds; this is caused by the fact that the overall time limit is
distributed over the layers, and that some layers are exhaustively searched before
their limit expires. The solution is then improved within 54 LNS iterations. The time
required for the improvement is 399 - 202 = 197 seconds. In the improved schedule,
no activity remains open, and the number of tows is reduced to 9; this is achieved
at the cost of a slight decrease in the total preference score to 189. The number
of LNS iterations seems small when compared to classic local search algorithms.
However, it must be taken into account that the transition from one solution to an
improving neighbour may affect many more decision variables than in typical local
search neighbourhoods.

The results show that LNS can consistently reduce the number of open activities and
the number of tows at the price of a slight decrease in the total preference score.

The results in Table 7.2 for the second test week, which has a different underlying
flight schedule, are similar to those of the first week. However, the problems in
the second week appear to be more difficult, as more activities remain open and the

I number of tows increases.

; The results shown in Tables 7.1 and 7.2 can be slightly improved at the cost of an
' increased run-time by applying the algorithm multiple times with different control

140 CHAPTER 7. APPLICATIONS

Day Branch-and-Bound Rule-Based Mandatory
Opena Towsh PreJ: Opena Tows"PreJ: Open Tows

1 0 9 189 7 43 187 6 15

Sum 2 139 1308 75 358 1287 14 94

"Number of activities assigned to the fictitious gate, excluding mandatory assignments.
' ~ x c l u d i n ~ mandatory tows.

Table 7.3: Comparison of results for the first test week

parameters, e.g., time limits, partitioning bias, and the size of the subsets used for
LNS.

Tables 7.3 and 7.4 compare the results obtained with the proposed algorithm with
the gate schedules calculated by a commercial rule-based system. The tables show
that the branch-and-bound algorithm leads to substantial improvements. The gate
schedules are significantly better with respect to the number of open activities and the
number of required tows. In the first (second) week, the number of activities assigned
to the fictitious gate can be reduced by more than 97 (96) %, and the number of tows
decreases by more than 61 (46) %; at the same time, the total preference score is
slightly improved.

7.2. GATE SCHEDULING

Day Branch-and-Bound Rule-Based Mandatory
Opena Towsb PreJ: Opena Tows"reJ: Open Tows

1 0 20 192 8 61 189 5 9
2 1 5 1 195 14 8 1 191 0 9
3 0 46 193 10 73 189 0 9
4 2 52 194 17 86 190 0 7
5 1 52 195 23 87 191 0 8
6 0 57 198 23 107 193 1 6
7 0 38 145 17 94 146 5 12

Sum 4 316 1312 112 589 1289 11 60

*Number of activities assigned to the fictitious gate, excluding mandatory assignments.
' ~ x c l u d i n ~ mandatory tows.

Table 7.4: Comparison of results for the second test week

Chapter 8

Summary and Conclusions

This work has developed effective solution methods and described new applications
for a very general class of deterministic, non-preemptive project scheduling models.
The models studied in this book are concerned with the allocation of scarce resources
over time to activities, the start of which may be constrained by minimal and max-
imal time lags; these lags allow to specify any possible temporal relation between
pairs of activities. The single- and multi-mode models for resource-constrained
project scheduling with generalised precedence constraints, or time windows, are
very expressive and cover many requirements commonly found in practical appli-
cations. The basic single-mode problem is a generalisation of many well known,
difficult problems studied in project and machine scheduling.

While we have mainly considered the objective of minimising the completion time
of a project, most of the results hold for any regular objective function, and they are
frequently also applicable for optimising non-regular measures of performance, as
demonstrated by one of the applications proposed in Chapter 7.

A secondary objective of this work has been to investigate the application of con-
straint propagation techniques for project scheduling. Constraint propagation is an
elementary problem reduction technique that transforms problems into equivalent
problems which are hopefully easier to solve. This is achieved by repeatedly de-
ducing new implicit constraints that allow to reduce the search space by removing
inconsistent assignments that cannot participate in any feasible solution.

To provide a theoretical foundation for the constraint propagation approach, Chap-
ter 3 has reviewed different concepts of consistency, which, roughly speaking, define
a certain level of search space reduction. Because establishing full Ic-consistency, k-
domain-consistency, or k-bound-consistency for an arbitrary number Ic of decision
variables is difficult and generally requires exponential effort, approximations are re-
quired. To this end, a number of consistency tests are iteratively applied. Consistency
tests are simple rules, or logical tests, that deduce additional, redundant constraints.
By repeatedly applying the tests within a fixed point iteration, the derived knowledge

144 CHAPTER 8. SUMMARY AND CONCLUSIONS

is reused, or propagated, until no further conclusions can be drawn. As long as the
tests satisfy a very natural monotony condition, the resulting fixed point is unique.

Chapter 4 has investigated consistency tests that may be applied in project schedul-
ing. It has focused on interval consistency tests, i.e., tests that analyse the required
and available amount of work within certain time intervals. Within this framework
we have described tests for disjunctive scheduling with unit resource availabilities
and requirements as well as tests for cumulative scheduling with discrete supply and
demand in a unified way, using numerous examples for illustration.

Previous research, which has been confirmed in this study, has shown that difficult
project scheduling problem instances are frequently characterised by low resource
supply, which in turn leads to difficult disjunctive sub-problems. We have there-
fore first discussed how promising disjunctive sub-problems of a project scheduling
problem can be isolated and then studied consistency tests originally proposed for
disjunctive scheduling (sequencing). Our analysis has shown that these tests can be
understood as special cases of a general sequence consistency condition. We have
related the tests based on this condition to the concept of interval work, or energy,
and have shown that in sequencing it suffices to test the required and available work
within all activity intervals, i.e., time intervals with a start and end defined to be
the earliest start and latest completion time of some activities. The search space re-
duction achieved by the sequence consistency tests has been related to the general
concepts of consistency introduced in Chapter 3.

We have discussed how the sequence consistency condition can be generalised for
cumulative scheduling, where, in contrast to the disjunctive case, it is no longer
sufficient to consider only activity intervals. Chapter 4 has finally described how the
consistency tests, which have been introduced for single-mode scheduling, can be
applied for multi-mode problems to reduce the activity start time domains as well
the mode domains.

Chapter 5 has integrated the constraint propagation techniques into a new branch-
and-bound procedure for single-mode resource-constrained project scheduling with
time windows. The algorithm implicitly enumerates activity start times by either
starting activities as early as possible or delaying them in such a way that the con-
struction of non-active, i.e., dominated, schedules is avoided. At each node of the
tree, a fixed point is computed by repeatedly applying a number of consistency tests.
The search space is further reduced by enforcing some necessary conditions that
must be met by active schedules.

The procedure has been evaluated on several large test sets of benchmark problem
instances, and the influence of the different building blocks of the algorithm and
of a set of parameters characterising the test problems have been analysed. The
experiments have demonstrated the effectiveness and efficiency of the approach.

On a test set of over thousand systematically generated instances with one hundred
activities each of the problem with generalised precedence constraints, the time-
oriented branch-and-bound algorithm can find feasible solutions for all solvable

CHAPTER 8. SUMMARY AND CONCLUSIONS 145

problem instances. It solves more problems to optimality than other exact procedures
that have recently been proposed, while at the same time achieving a significantly
smaller average deviation from a lower bound for the project duration. It is remark-
able that with respect to the latter criterion, the simple time-truncated version of the
branch-and-bound method yields solutions that improve upon the results of the best
known heuristics, and that these solutions are found within average run times as small
as ten seconds.Similar1y good results for a second benchmark test set consisting of
larger problem instances with five hundred activities per project have demonstrated
that the branch-and-bound algorithm also scales very well.

The algorithm has additionally been evaluated on four large benchmark test sets for
the well studied, special project scheduling problem with simple finish-start prece-
dence constraints. The results show again that the algorithm scales very well; for
larger instances, it is competitive to other exact procedures for this problem, and
its truncated version may even be a useful heuristic. The good performance on the
larger test sets is particularly interesting because the algorithm does not include cer-
tain features which enhance the performance on this special problem but that are
hard to adapt for generalised or extended versions of the problem.

The branch-and-bound procedure has been extended in Chapter 6 for the multi-mode
version of the project scheduling problem with time windows by combining the time-
oriented branching over activity start times with a binary branching over mode as-
signments or restrictions.

We have finally dealt with two applications of project scheduling in airport oper-
ations management. Chapter 7 has first described how the scheduling of ground
handling activities required for serving aircrafts while at an airport gives rise to a
resource-constrained multi-project scheduling problem with time windows.

The focus of Chapter 7 has then been on airport gate scheduling which deals with
the task of assigning flights to terminal gates or parking positions and scheduling the
start and end times of the assignments. We have shown how this task can be modelled
as a special multi-mode project scheduling problem with a non-regular objective
function, specially structured temporal constraints, and disjunctive resources. The
proposed solution method of the branch-and-bound type again relies on the use of
constraint propagation techniques for search space reduction. For dealing with large
practical problems with on the order of magnitude of thousand activities, the branch-
and-bound procedure has been combined with additional problem decomposition
and solution improvement techniques which both are of general interest beyond the
application at hand. The problem has been decomposed into looseIy coupIed sub-
problems using a new generic problem partitioning approach, and the search tree is
conceptually split into layers that correspond to the sub-problems. Initial solutions
are iteratively improved by using the branch-and-bound algorithm within a large
neighbourhood search scheme. Computational experiments with large real-life data
sets have demonstrated that the modelling approach is well suited and that the pro-
posed solution method is very effective and greatly improves upon the results of a
modem rule based decision support system.

146 CHAPTER 8. SUMMARY AND CONCLUSIONS

The approach followed in the gate scheduling application has been to adapt a suc-
cessful standard project scheduling model and solution methods for a practical prob-
lem. Based on the experience gained, we believe that this way of starting from stan-
dard models and methods and extending them to cover even more realistic problem
classes is an promising direction for future research as well as for the development
of practical software applications.

Due to their generality, the basic project scheduling models studied here are very
good starting points. The constraint propagation based solution techniques that we
have investigated are also well suited for such an approach because most of the ba-
sic building blocks, i.e., the consistency tests, are not custom tailored for specific
scheduling models and objective functions but cover a wide range of possible appli-
cations. Furthermore, the efficiency of the solution methods proposed in this work
can to a great extent be attributed to the application of these techniques. The de-
sign of strong and efficient consistency tests therefore also remains a promising step
towards the development of improved solution methods.

List of Figures

2.1 Possible temporal relations between two activities 10
2.2 Visualisation of temporal constraints as forward and backward arcs . 1 1
2.3 Visualisation of temporal constraints as relative time windows . . . 11

4.1 Two activities i and j with pi = 4 and pj = 3 33
4.2 Types of intersections between an activity and a time interval 36

. 4.3 Example for the input test 42
4.4 Inputloutput sequence and domain consistency tests 44

. 4.5 Example for the input-or-output test 46
4.6 Example for the input-or-output condition 47
4.7 Example for the input negation test 48
4.8 2-consistency . 53
4.9 When sequence consistency tests fail 55
4.10 Four activities requiring 1 unit of a resource with capacity 2 59
4.11 Five activities requiring one unit of a resource with capacity 2 . . . 60

. 5.1 The branching scheme 76

. 7.1 Minimum transit time of a B747 aircraft 111
. 7.2 Example from a gate schedule 117

. 7.3 Constraints of the gate scheduling problem 120
. 7.4 The branching scheme 128

7.5 Example of a graph partitioned into two cliques 131
. 7.6 Example of a layered branch-and-bound tree 134

List of Tables

4.1 Summary of disjunctive interval consistency tests 50

5.1 Characteristics of test sets forproblem PSltemplC,,
5.2 Impact of different modules of the algorithm
5.3 Results of exact algorithms for 1080 problems with 100 activities . .
5.4 Comparison of heuristics for 1059 of the 1080 problems with 100

activities .
5.5 Influence of problem characteristics for the problem PSltemplC,,

for test set A . .
5.6 Results for large problems with 500 activities
5.7 Characteristics of test sets for problem PSlpreclC,,
5.8 Results for 480 problems with 30 activities
5.9 Results of exact algorithms for 480 problems with 60 activities . . .
5.10 Results of exact algorithms for 480 problems with 90 activities . . .
5.1 1 Results for 600 problems with 120 activities
5.12 Influence of problem characteristics for the problem PSlprecl C,, .

7.1 Results of the branch-and-boundalgorithm for the first test week . . 138
7.2 Results of the branch-and-bound algorithm for the second test week 139
7.3 Comparison of results for the first test week 140
7.4 Comparison of results for the second test week 141

List of Symbols

Symbol Description

Time interval [tl , tz] := {tl , . . . , t2}.
Time interval]tl,t2[:= {tl + 1 , . . . , t 2 - 1).
Activities i and j are in disjunction, i.e. the constraint Si + pi <
Sj V Sj + pj 5 Si must hold.
Activity i must be processed before activity j , i.e. Si +pi 5 Sj must
hold.
i must be processed before (after) the activities in A.
Temporal constraint between activities i and j of the form: Si+dij 5
sj .
Usually denotes a subset of activities that require the same resource.
Shorthand notation for A \ {i}.
Activity chosen in node a.
Completion time of activity i E V S (A) given A: Ci (A) := Si (A) +
Pi.
Set of all constraints.
A consistency test.
Set of all consistency tests.
Integral time lag in temporal constraint (i, j) .
Integral time lag in temporal constraint (i, j) in multi-mode models
if activity i is processed in mode p and activity j in mode v.
Transitive minimal time lag between activities i and j.
Current domain (set of possible assignments) of variable xi.
Shorthand notation for As,, i.e., the current start time domain (set
of possible start times) of activity i; Ai c No and if an upper bound
UB is given then Ai C [0, UB - pi].

continued

152 LIST OF SYMBOLS

Symbol Descriution

ECi(A)
ESi (A)
ECPr (A)

H
LBO
LG(A)
LSi (A)
mpr (A)

Set of all current domains: A := { A x i I X i E V) .
Set of all temporal constraints.
Set of all temporal constraints with minimal lags: Emin := { (i , j) E
E I dij > 0).
Set of all temporal constraints with maximal lags: Emax := { (i , j) E
E I dij 5 0).
Earliest completion time of activity i: Q (A) := ESi (A) + pi.
Earliest start time of activity i: ESi(A) := min Ai.
Earliest time by which the activities in A can be completed if pre-
emption is allowed.
A hypothetical constraint to be falsified by a consistency test.
Precedence based lower bound for the makespan.
Latest completion time of activity i: LG(A) := W (A) + p i .
Latest start time of activity i: L&(A) := max Ai.
Latest time at which the activities in A must be started if preemption
is allowed.
Mode variable or mode assignment of activity i.
Set of possible modes in which activity i may be processed.
Processing time of activity i ; pi E No.
Interval processing of activity i : smallest amount of time during
which i must be processed in the time interval [t l , t2 [.
Total processing time of A: P (A) := C i E A p i .
Total interval proc. time of A: P(A, t l , t z) := C i E A p i (t l , t2)-
Minimal start time of i if only precedence constraints (j , i) between
activities in j E V S(A) and i are considered.
Minimal start time of i if only precedence constraints (j , i) between
activities j E V S (A) and i and, additionally, resource constraints are
considered.
Requirement of activity i for resource lc; ria E No.
In multi-mode models: requirement of activity i for resource k if i is
processed in mode p; riClk E No.
Set of all resources: 72 := RP U R".
Set of renewable resources.
Set of non-renewable resources.
Set of all resources required by activity i : Ri := { k E R I rik > 0)

Rk Available capacity of resource k; Rk E No
S Vector of start time variables or start time assignments.

Start time variable or start time assignment of activity i.
continued

LIST OF SYMBOLS 153

Symbol Description

vtu (A)

Start time of activity i E V S(A) given A: Si(A) := ESi(A) =
LSi (A) .
A time period.
Schedule time in node a: t(a) := miniEv,t (,) ESi(a).
Adjusted earliest start time in node a:
t+(a) := mini,~\~~>,a,nn,+rn{ECi(a) I ECi(a) > t (a)) , for
j = act(a).
Real or hypothetical upper bound on the optimal makespan.
Set of all activities; also: set of all variables.
Set of all activities in process at time t .
Set of all activities requiring resource k : Vk := {i E V I Tik > 0).
Set of activities requiring resource k that must be completely or par-
tially processed within [tl, t2 [: Vk (t l , t2) := {i E Vk I pi(t~, t ~ .) >
01.
A subset of activities which belong to the same maximal disjunc-
tive clique, i.e. which are painvise disjunctive. We often speak of
an associated, possibly fictitious, resource with capacity one that is
required by all activities in VC.
Set of all free (unscheduled) activities given A: ~f (A) := { i E V (
pi1 > 1).
Set of free and non-delayed activities given A: ~ f ' (A) := VtC(A) U
{ i E ~f (A) I ESi (A) = rci (A)} .
Set of all activities scheduled given A: V8(A) := { i E V I [Ail =

11.
Set of tirnernax-constrained activities given A: Vtc(A) := { j E
vf (A) I 3i E v f (A) : (i , j) E E m a x } .
Set of tirnernax-unconstrained activities given A: vtU(A) :=
v f (A) \ VtC(A).
Work required by activity i from resource k: wik := pirik-
Total work of d : W (d) := CQEAGVE Wik.
Total interval work of d Vk in time interval [tl,tz[:
W (d , t l , t2) := CiFA ~ i k ~ i (t 1 , h).

References

ADV. 1997. Sicherung und Optimierung des Luftverkehrsstandortes Deutschland
- Situationsanalyse und Beitrage zu Problemlosungen. Tech. rep., Arbeitsge-
meinschaft Deutscher Verkehrsflughafen.

AGGOUN, A. AND N. BELDICEANU. 1993. Extending CHIP in Order to Solve
Complex Scheduling and Placement Problems. Mathematical and ComputerMod-
elling 17,57-73.

AGGOUN, A., M. DINCBAS, A. HEROLD, H. SIMONIS AND P. VAN HENTEN-
RYCK. 1987. The CHIP System. Technical Report TR-LP-24, ECRC, Munich,
Germany.

AHN, T. AND S. ERENGUC. 1998. The Resource-Constrained Project Scheduling
Problem with Multiple Crashable Modes. European Journal of Operational Re-
search 107,250-259.

ALLEN, J . 1983. Maintaining Knowledge About Temporal Intervals. Communica-
tions of the ACM 26, 832-843.

ALVAREZ-VALDES, R. AND J. TAMARIT. 1993. The Project Scheduling Polyhe-
dron: Dimension, Facets and Lifting Theorems. European Journal of Operational
Research 67,204-220.

APPLEGATE, D. AND W. COOK. 1991. A Computational Study of the Job-Shop
Scheduling Problem. ORSA Journal on Computing 3, 149-156.

ASHFORD, N., H. M. STANTON AND C. A. MOORE. 1997. Airport Operations.
McGraw-Hill, New York, 2nd edn.

ASHFORD, N. AND P. WRIGHT. 1992. Airport Engineering. Wiley-Intersience,
New York, 3rd edn.

BABIC, O., D. TEODOROVIC AND V. TOSIC. 1984. Aircraft Stand Assignment to
Minimize Walking. Journal of Transportation Engineering 110,55-66.

BAKER, K. 1974. Introduction to Sequencing and Scheduling. Wiley, New York.
BANDARA, S. AND S. WIRASINGHE. 1992. Walking Distance Minimization for

Airport Terminal Configurations. Transportation Research 26A, 59-74.
BAPTISTE, P. AND C. LE PAPE. 1995. A Theoretical and Experimental Comparison

of Constraint Propagation Techniques for Disjunctive Scheduling. In Proceedings
of tlze 1 4 ~ ~ International Joint Conference on Artijicial Intelligence. Montreal.

BAPTISTE, P. AND C. LE PAPE. 1996. Edge-finding Constraint Propagation Algo-
rithms for Disjunctive and Cumulative Scheduling. In Proceedings of the 1 5 ~ ~

REFERENCES

Workshop of the U. K. Planning Special Interest Group. Liverpool, U K .
BAPTISTE, P. AND C. LE PAPE. 2000. Constraint Propagation and Decomposi-

tion Techniques for Highly Disjunctive and Highly Cumulative Project Scheduling
Problems. Constraints: an International Journal 5 , 1 19-139.

BAPTISTE, P., C. LE PAPE AND W. P. NUIJTEN. 1999. Satisfiability Tests and
Time-Bound Adjustments for Cumulative Scheduling Problems. Annals of Oper-
ations Research 92,305-333.

BAPTISTE, P., C. LE PAPE AND W. P. NUIJTEN. 2001. Constraint-BasedSchedul-
ing. Kluwer Academic Publishers, Boston.

BARON, P. 1969. A Simulation Analysis of Airport Terminal Operations. Trans-
portation Research 3,481-491.

BARTUSCH, M., R. MOHRING AND F. RADERMACHER. 1988. Scheduling Project
Networks with Resource Constraints and Time Windows. Annals of Operations
Research 16,201-240.

BERGE, C. 1985. Graphs. North Holland, Amsterdam.
BESSI~RE, C. 1994. Arc-Consistency and Arc-Consistency Again. ArtiJicial Intel-

ligence 65,179-190.
BESSIBRE, C., E. FREUDER AND J.-C. RBGIN. 1999. Using Constraint Meta-

knowledge to Reduce Arc Consistency Computation. Art@cial Intelligence 107,
125-148.

BIBEL, W. 1988. Constraint Satisfaction from a Deductive Viewpoint. Artijcial
Intelligence 35,401413.

BIHR, R. 1990. A Conceptual Solution to the Aircraft Gate Assignment Problem
Using 0,l Linear Programming. Computers & Industrial Engineering 19, 280-
284.

BLA~EWICZ, J., W. DOMSCHKE AND E. PESCH. 1996. The Job Shop Schedul-
ing Problem: Conventional and New Solution Techniques. European Journal of
Operational Research 93, 1-33.

BLAZEWICZ, J. , K. H. ECKER, E. PESCH, G. SCHMIDT AND J. WQGLARZ. 2001.
Scheduling Computer and Manufacturing Processes. Springer, Berlin, 2nd edn.

BLAZEWICZ, J. , J. K. LENSTRA AND A. RINNOOY KAN. 1983. Scheduling Sub-
ject to Resource Constraints: classification and Complexity. Discrete Applied
Mathematics 5 , 11-24.

BLA~EWICZ, J., E. PESCH AND M. STERNA. 1998. A Branch and Bound Algo-
rithm for the Job Shop Scheduling Problem. In Beyond Manufacturing Resource
Planning (MRP 11), A. Drexl and A. Kimms, eds. Springer, Berlin, pages 2 19-254.

BOCTOR, F. 1993. Heuristics for Scheduling Projects with Resource Restrictions
and Several Resource-Duration Modes. International Journal of Production Re-
search 31,2547-2558.

BOCTOR, F. 1996a. An Adaptation of the Simulated Annealing Algorithm for Solv-
ing Resource-Constrained Project Scheduling Problems. International Journal of
Production Research 34,2335-2351.

BOCTOR, F. 1996b. A New and Efficient Heuristic for Scheduling Projects with
Resource Restrictions and Multiple Execution Modes. European Journal of Op-
erational Research 90,349-361.

REFERENCES 157

BOTTCHER, J., A. DREXL, R. KOLISCH AND F. SALEWSKI. 1999. Project
Scheduling under Partially Renewable Resource Constraints. Management Sci-
ence 45,543-559.

BRAAKSMA, J. 1977. Reducing Walking Distances at Airports. Airport Forum 4,
135-142.

BRINKMANN, K. 1992. Planung von deterministischen Projekten mit beschrankten
Ressourcen und zeitlichen Maximalabstanden. Ph.D. thesis, University of Karls-
ruhe.

BRINKMANN, K. AND K. NEUMANN. 1996. Heuristic Procedures for Resource-
Constrained Project Scheduling with Minimal and Maximal Time Lags: The Re-
source Levelling and Minimum Project-Duration Problems. Journal of Decision
Systems 5, 129-156.

BRON, C. AND J. KERBOSCH. 1973. Algorithm 457: Finding all Cliques of an
Undirected Graph. Communications of the ACM 16,575-577.

BRUCKER, P., A. DREXL, R. MOHRING, K. NEUMANN AND E. PESCH. 1999.
Resource-Constrained Project Scheduling: Notation, Classification, Models, and
Methods. European Journal of Operational Research 112,341.

BRUCKER, P., B. JURISCH AND A. KRAMER. 1996. The Job-Shop Problem and
Immediate Selection. Annals of Operations Research 50,73-114.

BRUCKER, P. AND S. KNUST. 1999. A Linear Programming and Constraint Propa-
gation Based Lower Bound for the RCPSP. Tech. rep., University of Osnabriick.

BRUCKER, P., S. KNUST, A. SCHOO AND 0. THIELE. 1998. A Branch and Bound
Algorithm for the Resource-Constrained Project Scheduling Problem. European
Journal of Operational Research 107,272-288.

CARLIER, J. 1982. The One-Machine Sequencing Problem. European Journal of
Operational Research 11,4247.

CARLIER, J. AND B. LATAPIE. 1991. Une Mtthode Arborescente pour Rksoudre
les Problbmes Cumulatifs. RAIRO Recherche Ope'rationelle 25, 3 1 1-340.

CARLIER, J. AND E. PINSON. 1989. An Algorithm for Solving the Job-Shop Prob-
lem. Management Science 35,164-176.

CARLIER, J. AND E. PINSON. 1990. A Practical Use of Jackson's Preemptive
Schedule for the Job Shop Problem. Annals of Operations Research 26,269-287.

CARLIER, J. AND E. PINSON. 1994. Adjustments of Heads and Tails for the Job-
Shop Problem. European Journal of Operational Research 78, 146-161.

CASEAU, Y. AND F. LABURTHE. 1994. Improved CLP Scheduling with Task Inter-
vals. In Proceedings of the llth International Conference on Logic Programming,
P. van Hentenryck, ed. MIT-Press.

CASEAU, Y. AND F. LABURTHE. 1995. Disjunctive Scheduling with Task Intervals.
Tech. Rep. 95-25, Laboratoire dYInformatique de 1'Ecole Normale Suptrieure
Paris.

CASEAU, Y. AND F. LABURTHE. 1996a. CLAIRE: Combining Objects and Rules
for Problem Solving. In Proceedings of the JICSLPJ96 Workshop on Multi-
Paradigm Logic programming. Technical University of Berlin.

CASEAU, Y. AND F. LABURTHE. 1996b. Cumulative Scheduling with Task Inter-
vals. In Proceedings of the Joint International Conference on Logic Programming.

158 REFERENCES

MIT-Press.
CHANG, C. 1994. Flight Sequencing and Gate Assignment in Airport Hubs. Ph.D.

thesis, University of Maryland at College Park.
CHEN, Y. 1999. Arc Consistency Revisited. Information Processing Letters 70,

75-1 84.
CHENG, Y. 1997. A Knowledge-Based Airport Gate Assignment System Integrated

with Mathematical Programming. Computers and Industrial Engineering 32,
837-852.

CLOWES, M. B. 1971. On Seeing Things. Artificial Intelligence 2, 179-185.
COHEN, J. 1990. Constraint Logic Programming Languages. Communications of

the ACM 33,52-68.
COLMERAUER, A. 1990. An Introduction to Prolog III. Communications of the

ACM 33,69-90.
CONWAY, R., W. MAXWELL AND L. MILLER. 1967. Theory of Scheduling.

Addison-Wesley, Reading, MA.
COOPER, M. C. 1989. An Optimal Ic-Consistency Algorithm. Artificial Intelligence

41,89-95.
DAVIS, E. 1987. Constraint Propagation with Interval Labels. Artificial Intelligence

32,28 1-33 1.
DAVIS, E. W. 1973. Project Scheduling Under Resource Constraints. AIIE Trans-

actions 5,297-3 13.
DE REYCK, B., E. DEMEULEMEESTER AND W. HERROELEN. 1999. Algo-

rithms for Scheduling Projects with Generalised Precedence Relations. In Project
Scheduling - Recent Models, Algorithms and Applications, J . Wqglarz, ed.,
vol. 14 of International Series in Operations Research and Management Science.
Kluwer Academic Publishers, Boston, pages 77-105.

DE REYCK, B. AND W. HERROELEN. 1998. A Branch-and-Bound Procedure for
the Resource-Constrained Project Scheduling Problem with Generalized Prece-
dence Constraints. European Journal of Operational Research 111, 152-174.

DE REYCK, B. AND W. HERROELEN. 1999. The Multi-Mode Resource-
Constrained Project Scheduling Problem with Generalized Precedence Relations.
European Journal of Operational Research 119,538-556.

DECHTER, R. AND J. PEARL. 1988. Network-Based Heuristics for Constraint Sat-
isfaction Problems. Art$cial Intelligence 34, 1-38.

DEMEULEMEESTER, E. L. AND W. S. HERROELEN. 1992. A Branch-and-Bound
Procedure for the Multiple Resource-Constrained Project Scheduling Problem.
Management Science 38,1803-1 8 18.

DEMEULEMEESTER, E. L. AND W. S. HERROELEN. 1997a. A Branch-and-Bound
Procedure for the Generalized Resource-Constrained Project Scheduling Problem.
Management Science 45,201-2 12.

DEMEULEMEESTER, E. L. AND W. S. HERROELEN. 1997b. New Benchmark Re-
sults for the Resource-Constrained Project Scheduling Problem. Management Sci-
ence 43,1485-1492.

DOMSCHKE, W. AND A. DREXL. 199 1. Kapazitatsplanung in Netzwerken: Ein
Uberblick iiber neuere Modelle und Verfahren. OR Spektrum 13,63-76.

DOMSCHKE, W. AND A. DREXL. 1998. Einfuhrung in Operations Research.
Springer, Berlin, 4th edn.

DORNDORF, U. AND E. PESCH. 1994. Fast Clustering Algorithms. ORSA Journal
on Computing 6,141-153.

DORNDORF, U., E. PESCH AND T. PHAN-HUY. 2000a. A Branch-and-Bound Al-
gorithm for the Resource-Constrained Project Scheduling Problem. Mathematical
Methods of OR 52,413-439.

DORNDORF, U., E. PESCH AND T. PHAN-HUY. 2000b. Constraint Propagation
Techniques for the Disjunctive Scheduling Problem. Art$cial Intelligence 122,
189-240.

DORNDORF, U., E. PESCH AND T. PHAN-HUY. 2000c. A Time-Oriented Branch-
and-Bound Algorithm for Resource-Constrained Project Scheduling with Gener-
alised Precedence Constraints. Management Science 46,1365-1384.

DORNDORF, U., E. PESCH AND T. PHAN-HUY. 2001. Solving the Open Shop
Scheduling Problem. Journal of Scheduling 4, 157-174.

DORNDORF, U., T. PHAN-HUY AND E. PESCH. 1999. A Survey of Interval Ca-
pacity Consistency Tests for Time- and Resource-Constrained Scheduling. In
Project Scheduling - Recent Models, Algorithms and Applications, J. Wqglarz,
ed. Kluwer Academic Publishers, Boston, pages 21 3-238.

DREXL, A. 1991. Scheduling of Project Networks by Job Assignment. Management
Science 37, 1590-1602.

DREXL, A., W. EVERSHEIM, R. GREMPE AND H. ESSER. 1994. CIM im Werk-
zeugmaschinenbau: Der PRISMA-Montageleitstand. Zeitschrift fur betriebs-
wirtschafliche Forschung 46,279-295.

DREXL, A. AND J. GRUNEWALD. 1993. Nonpreemptive Multi-Mode Resource-
Constrained Project Scheduling. IIE Transactions 2 5 , 7 4 4 1.

DREXL, A., R. KOLISCH AND A. SPRECHER. 1997. Neuere Entwicklungen in der
Projektplanung. Zeitschrift fur betriebswirtschafrliche Forschung 49,95-120.

DYER, M. AND A. FRIEZE. 1985. On the Complexity of Partitioning Graphs. Dis-
crete Applied Mathematics , 139-153.

ELMAGHRABY, S. 1977. Activity Networks: Project Planning and Control by Net-
work Models. Wiley, New York.

ELMAGHRABY, S. 1995. Activity Nets: A Guided Tour Through Some Recent
Developments. European Journal of Operational Research 82,37 1-432.

ELMAGHRABY, S. AND J. KAMBUROWSKI. 1992. The Analysis of Activity Net-
works under Generalized Precedence Relations. Management Science 38, 1245-
1263.

ENDLER, J. AND C. PETERS. 1998. Flughafen und Luftverkehr - Eine Branche
im Umbruch. Zeitschrifr fur betriebswirtschaftliche Forschung 50, 1048-1067.

FEST, A., R. H. MOHRING, F. STORK AND M. UETZ. 1999. Resource Constrained
Project Scheduling with Time Windows: A Branching Scheme Based on Dynamic
Release Dates. Tech. Rep. 596, Technical University of Berlin.

FISHER, H. AND G. THOMPSON. 1963. Probabilistic Learning Combinations of Lo-
cal Job-Shop Scheduling Rules. In Industrial Scheduling, J. Muth and G. Thomp-
son, eds. Prentice-Hall, Englewood Cliffs, NF.

160 REFERENCES

FOCACCI, F. AND W. NUIJTEN. 2000. A Constraint Propagation Algorithm for
Scheduling with Sequence Dependent Setup Times. In Proceedings of the 2nd
International Workshop on the Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, U . Junke, S. Karisch and
S. Tschoke, eds. University of Paderborn, pages 53-55.

FRANCK, B. 1999. Prioritatsregelverfiahren fur die ressourcenbeschrankte Projekt-
planung mit und ohne Kalender. Ph.D. thesis, University of Karlsmhe.

FRANCK, B. AND K. NEUMANN. 1998. Resource-Constrained Project Scheduling
with Time Windows: Structural Questions and Priority Rule Methods. Tech. Rep.
WIOR-492, University of Karlsruhe.

FRANCK, B. AND T. SELLE. 1998. Metaheuristics for the Resource-Constrained
Project Scheduling Problem with Schedule-Dependent Time Windows. Tech. Rep.
WIOR-546, University of Karlsruhe.

FREUDER, E. C. 1978. Synthesizing Constraint Expressions. Journal of the ACM
21,958-966.

FREUDER, E. C. 1982. A Sufficient Condition for Backtrack-Free Search. Journal
of the ACM 29,24-32.

FULKERSON, D. 1962. Expected Critical Path Lengths in PERT Networks. Opera-
tions Research 10,808-8 17.

GAREY, M., R. GRAHAM, D. JOHNSON AND A.-C. YAO. 1976. Resource Con-
strained Scheduling as Generalized Bin Packing. Journal of Combinatorial Theory
21,257-298.

GAREY, M. AND D. JOHNSON. 1979. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company.

GOSLING, G. D. 1990. Design of an Expert System for Aircraft Gate Assignment.
Transportation Research 24A, 59-69.

GRAHAM, R., E. LAWLER, J. LENSTRA AND A. RINNOOY KAN. 1979. Optimiza-
tion and Approximation in Deterministic Sequencing and Scheduling Theory: A
Survey. Annals of Discrete Mathematics 5,287-326.

GROTSCHEL, M. AND Y. WAKABAYASHI. 1990. Facets of the Clique Partitioning
Polytope. Mathematical Programming 47,367-387.

GUNTHER, H.-0. AND H. TEMPELMEIER. 2000. Produktion und Logistik.
Springer, Berlin.

HAGHANI, A. AND M.-C. CHEN. 1998. Optimizing Gate Assignments at Airport
Terminals. Transportation Research 32A, 437-454.

HAMZAWI, S. 1986. Management and Planning of Airport Gate Capacity: A
Microcomputer-Based Gate Assignment Simulation Model. Transportation Plan-
ning and Technology 11, 189-202.

HAN; C.-C. AND C.-H. LEE. 1988. Comments on Mohr and Henderson's Path
Consistency Algorithm. Art$cial Intelligence 36, 125-130.

HARALICK, R. M. AND L. G. SHAPIRO. 1979. The Consistent Labelling Problem:
Part I. IEEE Transactions PAMI 1, 173-184.

HARALICK, R. M. AND L. G. SHAPIRO. 1980. The Consistent Labelling Problem:
Part 11. IEEE Transactions PAMI 2, 193-203.

HARTMANN, S. 1998. A Competitive Genetic Algorithm for Resource-Constrained

REFERENCES 161

Project Scheduling. Naval Research Logistics 45,733-750.
HARTMANN, S. 1999. Project Scheduling under Limited Resources: Models, Meth-

ods, and Applications. Springer, Berlin.
HARTMANN, S. AND A. DREXL. 1998. Project Scheduling with Multiple Modes:

A Comparison of Exact Algorithms. Networks 32,283-297.
HAX, A. AND D. CANDEA. 1984. Production and Inventory Management. Prentice-

Hall, New Jersey.
HEILMANN, R. 1998. A Branch-and-Bound Procedure for MRCPSPImax. Tech.

Rep. WIOR-512, University of Karlsruhe.
HEILMANN, R. 1999. Das ressourcenbeschrankte Projektdauemzinimierungsprob-

lem im Mehr-Modus-Fall, Ph.D, thesis, University of Karlsruhe.
HEILMANN, R. AND C. SCHWINDT. 1997. Lower Bounds for RCPSPImax. Tech.

Rep. WIOR-5 11, University of Karlsruhe.
HEIPCKE, S. AND Y. COLOMBANI. 1997. A New Constraint Programming Ap-

proach to Large Scale Resource Constrained Scheduling. In Third Workshop on
Models and Algorithms for Planning and Scheduling Problems, Cambridge, UK.

HENTENRYCK, P. V. 1992. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge.

HERROELEN, W., E. DEMEULEMEESTER AND B. DE REYCK. 1998. Resource-
Constrained Project Scheduling: A Survey of Recent Developments. Computers
& Operations Research 25,279-302.

HERROELEN, W., E. DEMEULEMEESTER AND B. DE REYCK. 1999. A Classifi-
cation Scheme for Project Scheduling Problems. In Project Scheduling - Recent
Models, Algorithms and Applications, J . Wqglarz, ed. Kluwer Academic Publish-
ers, Boston, pages 1-26.

HOVE, J. C. V. AND R. F. DECKRO. 1998. Multi-Modal Project Scheduling with
Generalized Precedence Constraints. In Proceedings of the Sixth International
Workshop on Project Management and Scheduling, G. Barbarasoglu, S. Karabati,
L. 0zdamar and G. Ulusoy, eds. pages 137-140.

HUFFMAN, D. A. 1971. Impossible Objects as Nonsense Sentences. In Machine
Intelligence 6, R. Meltzer and D. Michie, eds. Elsevier, pages 295-323.

IATA. 2000a. Airport Handling Manual. Tech. rep., International Air Transport
Association, Montreal and Geneva.

IATA. 2000b. Freight Forecast 2000 - 2004. Tech. rep., International Air Transport
Association, Montreal and Geneva.

IATA. 2000c. Passenger Forecast 2000 - 2004. Tech. rep., International Air Trans-
port Association, Montreal and Geneva.

ICMELI, O., S. ERENGUG AND C. ZAPPE. 1993. Project Scheduling Problems:
A Survey. International Journal of Operations and Production Management 13,
80-9 1.

JACKSON, J. 1956. An Extension of Johnson's Results on Job Lot Scheduling. Naval
Research Logistics Quarterly 3,201-203.

JAFFAR, J., J.-L. LASSEZ AND M. MAHER. 1986. A Logic Programming Language
Scheme. In Logic Programming: Relations, Functions and Equations, D. DeGroot
and G. Lindstrom, eds. Prentice Hall, pages 441-468.

162 REFERENCES

JAFFAR, J., S. MICHAYOV, P. STUCKEY AND R. YAP. 1992. The CLP(R) Lan-
guage and System. ACM Transactions on Programming Languages and Systems
14,339-395.

JEAVONS, P., D. COHEN AND M. COOPER. 1998. Constraints, Consistency and
Closure. Artijicial Intelligence 101,251-265.

JOHNSON, T. 1967. An Algorithm for the Resource-Constrained Project Scheduling
Problem. Ph.D. thesis, Massachusetts Institute of Technology.

KELLEY, J. 1961. Critical Path Planning and Scheduling: Mathematical Basis. Op-
erations Research 9,296-320.

KILBY, P., P. PROSSER AND P. SHAW. 1998. Implementation of LNS for Con-
strained VRPs. Tech. rep., University of Strathclyde, Glasgow, Scotland.

KILBY, P., P. PROSSER AND P. SHAW. 2000. A Comparison of Traditional and
Constraint-Based Heuristic Methods on Vehicle Routing Problems with Side Con-
straints. Journal of Constraints 5,389-414.

KLEIN, R. 2000a. Bidirectional Planning: Improving Priority Rule Based Heuristics
for Scheduling Resource-Constrained Projects. European Journal of Operational
Research 127,619638.

KLEIN, R. 2000b. Scheduling of Resource-Constrained Projects. Kluwer Academic
Publishers, Boston.

KLEIN, R. AND A. SCHOLL. 1999,. Computing Lower Bounds by Destructive Im-
provement - An Application to Resource-Constrained Project Scheduling. Eu-
ropean Journal of Operational Research 112,322-346.

KLEIN, R. AND A. SCHOLL. 1999b. Scattered Branch and Bound: An Adaptive
Search Strategy Applied to Resource-Constrained Project Scheduling. Central
European Journal of Operations Research 7,177-201.

KLEIN, R. AND A. SCHOLL. 2000. PROGRESS: Optimally Solving the Generalized
Resource-Constrained Project Scheduling Problem. Mathematical Methods of OR
52,467-488.

KOLISCH, R. 1995. Project Scheduling under Resource Constraints: Eficient
Heuristics for Several Problem Classes. Physica-Verlag, Heidelberg.

KOLISCH, R. AND A. DREXL. 1997. Local Search for Nonpreemptive Multi-Mode
Resource-Constrained Project Scheduling. IIE Transactions 29,987-999.

KOLISCH, R. AND S. HARTMANN. 1999. Heuristic Algorithms for the Resource-
Constrained Project Scheduling Problem: Classification and Computational Anal-
ysis. In Project Scheduling - Recent Models, Algorithms and Applications,
J. Wqglarz, ed. Kluwer Academic Publishers, Boston, pages 147-178.

KOLISCH, R. AND R. PADMAN. 2001. An Integrated Survey of Deterministic
Project Scheduling. Omega 29,249-272.

KOLISCH, R., C. SCHWINDT AND A. SPRECHER. 1999. Benchmark Instances for
Project Scheduling Problems. In Project Scheduling- Recent Models, Algorithms
and Applications, J. Wqglarz, ed. Kluwer Academic Publishers, Boston, pages
197-212.

KOLISCH, R. AND A. SPRECHER. 1996. PSPLIB -A Project Scheduling Problem
Library. European Journal of Operational Research 96,205-2 16.

KoLIscH, R., A. SPRECHER AND A. DREXL. 1995. Characterization and Gener-

REFERENCES 163

ation of a General Class of Resource-Constrained Project Scheduling Problems.
Management Science 41,1693-1 703.

KUMAR, V. 1992. Algorithms for Constraint-Satisfaction Problems: A Survey. A.I.
Magazine 13,3244.

LAWLER, E. 1963. The Quadratic Assignment Problem. Management Science 9,
586-599.

LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart, and Winston, New York.

LE PAPE, C. 1994a. Constraint-Based Programming for Scheduling: A Histori-
cal Perspective. Tech. rep., Operations Research Society Seminar on Constraint
Handling Techniques, London.

LE PAPE, C. 1994b. Implementation of Resource Constraints in ILOG SCHED-
ULE: A Library for the Development of Constraint-Based Scheduling Systems.
Intelligent Systems Engineering 3,5546.

LE PAPE, C. 1995. Three Mechanisms for Managing Resource Constraints in a Li-
brary for Constraint-Based Scheduling. In Proceedings of the INRIAIIEEE Con-
ference on Emerging Technologies and Factory Automation. Paris.

LE PAPE, C. AND P. BAPTISTE. 1996a. A Constraint Programming Library for
Preemptive and Non-Preemptive Scheduling. In Proceedings of the European
Conference on AritiJicial Intelligence.

LE PAPE, C. AND P. BAPTISTE. 1996b. Constraint Propagation Techniques for Dis-
junctive Scheduling: The Preemptive Case. In Proceedings of the 12th European
Conference on ArtiJicial Intelligence.

LHOMME, 0 . 1993. Consistency Techniques for Numeric CSPs. In Proceedings
of the 13th International Joint Conference on Artificial Intelligence. Chambtry,
France, pages 232-238.

LOPEZ, P. 1991. Aproche &nerg&tique pour l'ordonnancement de teches sous con-
traintes te temps et de ressources. Ph.D. thesis, Universitk Paul Sabatier, Toulouse.
Cited after Lopez et al. 1992.

LOPEZ, P., J. ERSCHLER AND P. ESQUIROL. 1992. Ordonnancement de tdches
sous contraintes: une approche knergttique. RAIRO Automatique, Productique,
Informatique Industrielle 26,45348 1.

MACKWORTH, A. K. 1977. Consistency in Networks of Relations. Artificial Intel-
ligence 8,99-118.

MACKWORTH, A. K. 1992. The Logic of Constraint Satisfaction. ArtiJicial Intelli-
gence 58,3-20.

MACKWORTH, A. K. AND E. C. FREUDER. 1985. The Complexity of Some Poly-
nomial Network Consistency Algorithms for Constraint Satisfaction Problems.
Artificial Intelligence 25,65-74.

MALCOLM, D., J. ROSEBOOM, C. CLARK AND W. FAZAR. 1959. Applications
of a Technique for Research and Development Program Evaluation. Operations
Research 7,646-669.

MANGOUBI, R. AND D. F. MATHAISEL. 1985. Optimizing Gate Assignments at
Airport Terminals. Transportation Science 19, 173-1 88.

MARTIN, P. AND D. B. SHMOYS. 1996. A New Approach to Computing Opti-

1 64 REFERENCES

ma1 Schedules for the Job-Shop Scheduling Problem. In Proceedings of the 5th
International IPCO Conference.

MESEGUER, P. 1989. Constraint Satisfaction Problems: An Overview. AI Commu-
nications 2, 3-17.

MINGOZZI, A., V. MANIEZZO, S. RICCIARDELLI AND L. BIANCO. 1998. An
Exact Algorithm for the Resource Constrained Project Scheduling Problem Based
on a New Mathematical Formulation. Management Science 44,715-729.

MOHR, R. AND T. C. HENDERSON. 1986. Arc and Path Consistency Revisited.
Artificial Intelligence 28,225-233.

MOHRING, R. H., A. SCHULZ, F. STORK AND M. UETZ. 1998. Resource Con-
strained Project Scheduling: Computing Lower Bounds by Solving Minimum Cut
Problems. Tech. Rep. 620, Technical University of Berlin.

MONTANARI, U. 1974. Networks of Constraints: Fundamental Properties and Ap-
plications to Picture Processing. Information Sciences 7,95-132.

MOORE, R. E. 1966. Interval Analysis. Prentice Hall, Englewood Cliffs.
NEUMANN, K. AND C. SCHWINDT. 1997. Activity-on-Node Networks with Mini-

mal and Maximal Time Lags and their Application to Make-to-Order Production.
OR Spektrum 19,205-2 17.

NEUMANN, K. AND J. ZHAN. 1995. Heuristics for the Minimum Project-Duration
Problem with Minimal and Maximal Time Lags under Fixed Resource Con-
straints. Journal of Intelligent Manufacturing 6, 145-154.

NEUMANN, K. AND J. ZIMMERMANN. 1999. Methods for Resource-Constrained
Project Scheduling with Regular and Nonregular Objective Functions and
Schedule-Dependent Time Windows. In Project Scheduling - Recent Models, Al-
gorithms and Applications, J . Wqglarz, ed. Kluwer Academic Publishers, Boston,
pages 213-287.

NUDTASOMBOON, N. AND S. RANDHAWA. 1997. Resource-constrained Project
Scheduling with Renewable and Non-Renewable Resources and TimeIResource
Trade-offs. Computers and Industrial Engineering 32,227-242.

NUIJTEN, W. P. 1994. Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach. Ph.D. thesis, Eindhoven University of Technology.

NUIJTEN, W. P. AND E. AARTS. 1996. A Computational Study of Constraint Sat-
isfaction for Multiple Capacitated Job-Shop Scheduling. European Journal of
Operational Research 90,269-284.

NUIJTEN, W. P. AND C. LE PAPE. 1998. Constraint-based Job Shop Scheduling
with ILOG SCHEDULER. Journal of Heuristics 3,271-286.

OZDAMAR, L. AND G . ULUSOY. 1995. A Survey on the Resource-Constrained
Project Scheduling Problem. IIE Transactions 27,574-586.

PASCOE, T . 1966. Allocation of Resources - CPM. Revue Fran~aise de Recherche
Ope'rationelle 38,31-38.

PATTERSON, J. H. , R. SLOWINSKI, F. TALBOT AND J. WEGLARZ. 1989. An Al-
gorithm for a General Class of Precedence and Resource Constrained Scheduling
Problems. In Advances in Project Scheduling, R. Slowinski and J. Wqglarz, eds.
Elsevier, Amsterdam, pages 3-28.

PESCH, E. 1999. Lower Bounds in Different Problem Classes of Project Schedules

REFERENCES 165

with Resource Constraints. In Project Scheduling - Recent Models, Algorithms
and Applications, J. Wqglarz, ed. Kluwer Academic Publishers, pages 53-76.

PESCH, E. AND U. TETZLAFF. 1996. Constraint Propagation Based Scheduling of
Job Shops. INFORMS Journal on Computing 8,144-157.

PHAN HUY, T. 2000. Constraint Propagation in Flexible Manufacturing. Springer,
Berlin.

PRITSKER, A. AND W. HAPP. 1966. GERT: Graphical Evaluation and Review
Technique - Part I: Fundamentals. Journal of Industrial Engineering 17, 267-
274.

PRITSKER, A. B., L. J. WATTERS AND P. M. WOLFE. 1969. MultiprojectSchedul-
ing with Limited Resources: A Zero-One Programming Approach. Management
Science 16,93-107.

RADERMACHER, F. 1985186. Scheduling of Project Networks. Annals of Operations
Research 4,227-252.

ROY, B. 1962. Graphes et Ordonnancement. Revue Francaise de Recherche
Ope'rationelle ,323-333.

SCHIRMER, A. 1999. Project Scheduling with Scarce Resources. Ph.D. thesis,
University of Kiel.

SCHWINDT, C. 1996. ProGenImax: Generation of Resource-Constrained Schedul-
ing Problems with Minimal and Maximal Time Lags. Tech. Rep. WIOR-489,
University of Karlsruhe.

SCHWINDT, C. 1998a. A Branch-and-Bound Algorithm for the Resource-
Constrained Project Duration Problem Subject to Temporal Constraints. Tech.
Rep. WIOR-544, University of Karlsruhe.

SCHWINDT, C. 1998b. Vegahren zur Liisung des ressourcenbeschrankten Projekt-
dauerminimierungsproblems mit planungsabhangigen Zeitfenstern. Shaker Ver-
lag, Aachen.

SEIDEL, R. 1981. A New Method for Solving Constraint Satisfaction Problems. In
Proceedings of the 7th International Joint Conference on AI. pages 338-342.

SLOWINSKI, R. 1980. Two Approaches to Problems of Resource Allocation among
Project Activities. Journal of the Operational Research Society 31,711-723.

SLOWINSKI, R., B. SONIEWICKI AND J. WBGLARZ. 1994. DSS for Multiobjective
Project Scheduling Subject to Multiple-Category Resource Constraints. European
Journal of Operational Research 79,220-229.

SPRECHER, A. 1994. Resource Constrained Project Scheduling: Exact Methods for
the Multimode Case, vol. 409 of Lecture Notes in Economics and Mathematical
Systems. Springer, Berlin and Heidelberg.

SPRECHER, A. 2000. Scheduling Resource-Constrained Projects Competitively at
Modest Memory Requirements. Management Science 46,7 10-723.

SPRECHER, A. AND A. DREXL. 1998. Multi-Mode Resource-Constrained Project
Scheduling by a Simple, General and Powerful Sequencing Algorithm. European
Journal of Operational Research 107,43 1450.

SPRECHER, A., S. HARTMANN AND A. DREXL. 1997. An Exact Algorithm for
Project Scheduling with Multiple Modes. OR Spektrum 19, 195-203.

SPRECHER, A., R. KOLISCH AND A. DREXL. 1995. Semi-Active, Active and

166 REFERENCES

Non-Delay Schedules for the Resource-Constrained Project Scheduling Problem.
European Journal of Operational Research 80,94-102.

SRIHARI, K. AND R. MUTHUKRISHNAN. 1991. An Expert System Methodology
for an Aircraft-Gate Assignment. Computers and Industrial Engineering 21, 101-
105.

STORK, F. AND M. UETZ. 2000. On the Representation of Resource Constraints in
Project Scheduling. Tech. Rep. 693, Technical University of Berlin.

TALBOT, F. B . 1982. Resource-Constrained Project Scheduling with Time-Resource
Tradeoffs: The Nonpreemptive Case. Management Science 28, 1197-1210.

TALBOT, F. B. AND J. H. PATTERSON. 1978. An Efficient IntegerPrograrnmingAl-
gorithm with Network Cuts for Solving Resource-Constrained Scheduling Prob-
lems. Management Science 24,1163-1 174.

THESEN, A. 1977. Measures of the Restrictiveness of Project Networks. Networks
7,193-208.

TSANG, E. 1993. Foundations of Constraint Satisfaction. Academic Press, London.
TSANG, E. P. K. AND N. FOSTER. 1990. Solution Synthesis in the Constraint Sat-

isfaction Problem. Technical report csm-142, Department of Computer Sciences,
University of Essex, Essex.

VAN BEEK, P. 1992. Reasoning about Qualitative Temporal Information. Artz$cial
Intelligence 58,297-326.

VAN HENTENRYCK, P. 1989. Constraint Satisfaction in Logic Programming. Logic

~ Programming Series. MIT Press, Cambridge, MA.
VAN HENTENRYCK, P., Y. DEVILLE AND C. TENG. 1992. A Generic Arc-

Consistency Algorithm and its Specializations. Artijicial Intelligence 57, 291-
I

321.
I

VAN-HOVE, J. C., R. F. DECKRO AND J. T. MOORE. 1999. Multi-Modal Project

I Scheduling with Minimal Time Lag Constraints. Tech. rep., Air Force Institute of
1 Technology, Wright Patterson AFB, Ohio.
I WALTZ, D. L. 1972. Generating Semantic Descriptions from Drawings of Scenes
I with Shadows. Technical report AI-TR-271, Massachusetts Institute of Technol-

ogy.
WALTZ, D. L. 1975. Understanding Line Drawings of Scenes with Shadows. In The

Psychology of Computer Vision, P. H. Winston, ed. McGraw-Hill, pages 19-91.
WQGLARZ, J. 1981. On Certain Models of Resource Allocation Problems. Kyber-

netics 9, 61-66.
WIRASINGHE, S. AND S. BANDARA. 1990. Airport Gate Position Estimation for

Minimum Total Costs - Aproximate Closed Form Solution. Transportation Re-
search 24B, 287-297.

XU, J. AND G. BAILEY. 2001. The Airport Gate Assignment Problem: Mathemat-
ical Model and a Tabu Search Algorithm. In Proceedings of the 34th Hawaiian
International Conference on System Sciences. IEEE.

ZALOOM, V. 197 1. On the Resource Constrained Project Scheduling Problem. AIIE
Transactions 3,302-305.

ZHAN, J . 1994. Heuristics for Scheduling Resource-Constrained Projects in MPM
Networks. European Journal of Operational Research 76, 192-205.

