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Chapter 1

| ntroduction

1 . Motivationand Objectives

Project schedulingis concerned with the allocation of resourcesover timeto perform
acollection of activities. The decision models that fit within this framework cover
a multitude of practical problemsthat arise, for example, in such diverse areas as
research and devel opment, software engineering, construction engineering, repair
and mai ntenance, as well as make-to-orderand small batch production planning.

A project is a one-of -a-kind undertaking with specific objectives that hasto be per-
formed within a certain time-frame and with limited resource supply. Its manage-
ment roughly consists of (1) a project definition and data acquisition phase, (2) a
scheduling phaseand (3) an execution and termination phaseduring which the sched-
uleis realised and the performanceis analysed.

This work deals with the scheduling aspect. The am is to develop methods for
finding an optimal schedulefor a project; thisinvolvesthe assignment of activitiesto
resources and the definition of exact activity start and completion times, a task that
is generally difficult whenever multiple activities simultaneously compete for the
same resources. We will not address the topics related to the conception, selection,
and definition of a project, but will rather assume that the project structureis given,
including data on resource availabilities and requirementsas well as the necessary
processing times. Likewise, we will not deal with the issues that typically arise
during the realisation phase of aproject.

Weshall investigateavery general classof deterministicproject scheduling problems
that is expressive enough to capture many features commonly found in practical
problems, such as precedenceconstraints, activity time windows, fixed activity start
times, synchronisationof start or finishtimes, maximal or minimal activity overlaps,
non-delay execution of activities, setup times, or time varying resource supply and
demand.
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In the basic model, technological or organisationa requirements are represented
through generalised precedence constraints that alow to specify minima and/or
maximal time lags, or time windows, between any pair of activities. An activity
may requiredifferent amountsof several resourcetypes. Resourcerequirementsand
availabilitiesmay vary in discrete steps over time. While we usualy consider the
objectivedf minimisingthe overall completion time of a project, most of the results
apply at least for any performance measure that is a non-decreasingfunction of the
completionor start times of the activities. We will also address multi-mode schedul -
ing, i.e., the situation where a choice must be made between several modesin which
an activity may be processed, reflectingtime-resourceor resource-resourcetradeoffs.
Duetoitsgenerality, the basic model also covers many difficult specia problemsthat
have been extensively studied in scheduling research, for example, shop scheduling
problems (Blazewicz et d. 1996).

Throughout this work, we study deterministic project scheduling problems, where
al parametersthat define a problem instance are known with certainty in advance.
Deterministicscheduling model sare best suited if any possiblerandom influencesin
the project execution phase can beexpectedto be low, and if the problem parameters
can thus be estimated with high accuracy. This may, for instance, be the case if the
activities of a project show a high degree of similarity with previous projects. In
situations where the problem parameters are difficult to estimate and are subject to
significant random influences, the use of deterministic scheduling techniques may,
however, be problematic. Asatypical example, deterministicschedulingin the pres-
ence of stochastic activity processing times generally leadsto an underestimationof
the expected project duration, as already observed by Fulkerson (1962).

Thefirst modelsand methodsfor dealing with largescal e projectshave been devised
in the late 1950's and early 1960's. The well known Critical Path Method (CPM,
Kedley 1961) and the MetraPotential Method (MPM, Roy 1962) have been designed
for deterministic project scheduling with ordinary or generalised precedence con-
straints, respectively, while the Project Evaluation and Review Technique (PERT,
Malcolm et a. 1959) considers probabilistic activity processing times; the Graph-
ical Evaluation and Review Technique (GERT, Pritsker and Happ 1966) addition-
aly takes probabilistic precedence relationsinto account. These approaches have
received great attention in the following years. In the early 1970’s, Davis (1973)
aready reported more than 15 booksand 300 papers on the subject.

The original models and methods ssimplified the problem by concentrating only on
temporal constraints, i.e., by assuming that the availability of resourcesis not alim-
iting factor. Beginningin the late 1960’s, the model s were extended by additionally
considering scarcity of resources. In order to distinguish between the classic CPM,
MPM, and PERT or GERT modelson the one hand and model sthat consider limited
resource availability on the other hand, the latter are usually referredto as resource-
constrained. The underlying problems are much moredifficult to solve, as the com-
putational effort for finding an optimal solution usually grows exponentially with
the problemsize. For along time, this has prohibited the use of exact algorithmsfor
schedulinglarge practical projects with resource constraints.
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In the past years, interest and research effortsin the field of resource-constrained
project scheduling have strongly increased, and many new modelling conceptsand
algorithms have been developed. Overviews of the advances in models and solu-
tion methods are given in the survey papers of Brucker et al. (1999), Herroelen
et a. (1998), Kolisch and Padman (2001), Drex| et a. (1997), Elmaghraby (1995),
Ozdamar and Ulusoy (1995), lcmeli et al. (1993), or Domschkeand Drex| (1991).
A gentle introduction to network modelsfor project planning and control is given
by Elmaghraby (1977). Descriptionsof the basic classic project scheduling models
for the tempora analysis of projects can be found in many introductory Manage-
ment Science textbooks(e.g. Domschke and Drexl 1998). Applicationswithin the
area of production planning have been described, e.g., by Hax and Candea (1984)
and Giinther and Tempelmeier (2000); Drex| et a. (1994) discuss a specia type of
project schedulingsoftware, called L eitstand system, for make-to-order manufactur-
ing management.

The resource-constrained project scheduling problems studied in this work can be
understood as extensions of the basic problem covered by the Metra Potential
Method. Due to the general form of the temporal constraints, the resource-con-
strained version of the problem is particularly difficult to solve. Even the question
for the existenceof a feasibleschedulecan in general only be answered with expo-
nentially growing effort. Thismay be one the main reasonswhy, despite the expres-
sivenessand high practica relevance of the models, very few attempts have so far
been made to design solution proceduresfor thisclass of problems.

The main objectived this work is to help overcomethis deficiency by developing
effectiveand efficient solution methods. The focus will be on the design and eval-
uation of exact branch-and-bound algorithmsfor finding optimal schedules, but we
shall also study the performanceof heuristics based upon truncated versionsof these
procedures.

The scheduling methodsthat will be devel oped make use of a general purposeprob-
lem solving paradigm that originatedin theareaof Artificia Intelligence. Constraint
propagationis an elementary techniquefor simplifyingdifficult search and optimi-
sation problems by exploiting implicit constraintsthat are discovered through the
repeated analysisof thedomainsof decision variablesand the interrel ation between
the variablesand domainsthat isinduced by the constraints. In the past years, con-
straint propagation techniqueshave been applied with growing successfor solving
anumber of difficult, idealised scheduling problems, mostly in the areaof machine
scheduling. The successful application for solving special cases of thegenera prob-
lem class studied here suggests that the approach may also be valuablein this con-
text. Asasecond objectived this work, we shall thereforestudy the application of
constraint propagation techniquesin project scheduling.

A third objectiveis to demonstratethe practical relevance of the approach taken in
this work. To this end we shall describe possible applicationsof the models and
methods and extensionsthereof in the areaof airport operationsmanagement.
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1.2 Outline

The presentationof the resultsis organised asfollows.

Chapter 2 introducesadecisionmodel for deterministicproject scheduling with gen-
eralised precedence constraints, the basic problem considered in this work. The
chapter starts with a description of the entities that make up a project scheduling
problem: activities, resources, precedencerelationsor time windows, and perfor-
mance measures. After presenting aformal optimisation model, the concept of do-
mains, i.e., sets of possiblevalues of decision variables, is introduced. The general
problemis then related to some well known specia casesthat are obtainedif certain
assumptionsabout the resourceavailability and requirementsand/or the structure of
the precedencerelations are made. Finally, the generalisationto multiple activity
execution modesis described.

Chapter 3 gives a general introduction to constraint propagation. Constraint propa-
gation is a search space reduction techniquethat triesto removeinconsistent values
from the variable domains, i.e., values that cannot participatein any feasible solu-
tion, by repeated applyinga set of consistency tests. The chapter discussesdifferent
concepts of consistency that have been developed in the literature on the constraint
satisfaction problem, and which may serveasatheoretical backgroundfor the prop-
agation techniquesthat will be employed. Consistency checking methods are de-
scribed that control the repeated application of thetestsuntil afixed pointis reached,
i.e., until no further reductionsare possible. The chapter concludesby pointing to
constraint programming environments that build upon the concepts that have been
introduced.

Chapter 4 is devoted to consistency testsfor project schedulingthat may be applied
within the general framework introduced in the preceding chapter. It first describes
simple tests that analyse the precedenceconstraints of a problem. The emphasis
of the chapter is on interval consistency tests that are based upon the comparison
of the resourcesupply and demand within certain timeintervals. Previous research
has shown that difficult project scheduling problem instances are frequently char-
acterised by alow resource availability, which leads to the existence of many dis-
junctive sub-problems, i.e., sub-problemswith unit resource availabilitiesand re-
quirements. The chapter shows how digunctive sub-problemscan be identified and
selected. Consistency tests that have been proposed in the literaturefor digunctive
(machine) scheduling problems are then reviewed and presented within a unifying
framework using numerousexamples. Previous results are generalised and related
to the concept of interval work, i.e., the minimum amount of work that must be
performedwithin atimeinterval. The search space reduction that is achieved by ap-
plyingthe testswithin afixed point propagation methodis analysed and rel ated to the
theoretical concepts of consistency presented in Chapter 3. The results for diunc-
tive sub-problemsare then extended for the case of arbitrary resourceavailabilities
and requirements. The chapter finally shows how the results can be used for muilti-
mode project scheduling by considering a mode-minimal problem instance, where



al mode-dependent problem parameters are replaced with the minimum possible
values.

Chapter 5 describesa new time-oriented branch-and-bound procedurefor the basic
single-mode proj ect scheduling problem, in which the constraint propagation tech-
niques are embedded. The solution method enumerates possibleactivity start times
by scheduling activitiesas early as possible or delaying them by reducing their start
time domainsin such away that the construction of non-active(dominated) sched-
ulesis avoided. The procedureheavily relies upon the application of constraint prop-
agation techniquesat the nodes of the search tree. The algorithmisevauatedfor the
problem with generali sed precedenceconstraintsas well asfor the special case of or-
dinary (finish-start) precedenceconstraints, using many large sets of benchmark test
problemsfrom the literaturewith up to five hundred activities per probleminstance.
The results are compared to those of other exact proceduresthat have recently been
proposed as well asto heurigtic results; adetailed analysis of theinfluenceof certain
parametersthat characterisea problem instanceis given.

Chapter 6 extendsthe branching schemefor the case of multi-modeproject schedul-
ing. The basicideais to integrateatime-oriented branching over activity start times
with a branchingover mode assignments or restrictions.

Chapter 7 discusses applicationsof the models and methodsin the area of airport
operations management. We first describe an application of single-mode project
scheduling with time windowsin ground handling, where activities requiredfor ser-
vicingan aircraft while on theground haveto be scheduled. Thefocusof thechapter
then is on the development of a model and solution procedurefor gate scheduling,
i.e., the problem of assigningflights (activities) to airport termina gatesor parking
positions (modes) and scheduling the start and end times of the assignments. The
chapter demonstrates how this problem can be modelled as a special multi-mode
project scheduling problem with time windows. A solution procedure based on the
conceptsand techniques developed in the preceding chaptersis described and evalu-
ated on large practical test-cases.

Thiswork finishes with asummary and some concludingremarksin Chapter 8.






Chapter 2

Optimisation Modd

This chapter describesan optimisation model for deterministicresource-constrained
project scheduling with generalised precedence constraints. It introduces the ba-
sic elements of project scheduling modelssuch as activities, resources, precedence
constraints, as well as performancemeasures for evaluating the cost or utility of a
schedule.

We are concerned with scheduling a set of activities subject to constraints on the
availability of several shared resourcesand temporal constraintsthat allow to spec-
ify minimal and maximal timelags betweenthe start of two activities. The objective
consideredin thiswork usualy is to minimise the makespan, i.e., the maximum of
thecompletiontimesof al activities, althoughmost of theresultshold for any regular
objectivefunction and arefrequently also useful for optimisingnon-regul arobjective
functionst. The rationale behind the makespan criterion is that an early completion
of the project is advantageousin the sensethat it freesresourcesfor other tasksand
reducestherisk of deadlineviolationsand associated penalties; furthermore, signif-
icant paymentsare often linked to the project completion, and an early completion
thustendsto increasethe net present valueof a project.

Sometimes, achoicecan be made between several modesin which an activity can be
processed. The modes may differ with respect to resourcerequirementsand process-
ing time, and they can influence the tightness of the temporal constraints; the modes
reflect time-resourceand resource-resourcetradeoffs. Models with multiplepossible
execution modes per activity are called multi-mode models; otherwise we speak of
single-mode models.

Using the classification scheme for project scheduling proposed by Brucker et al.
(1999), which extendsthe well known three-field classification schemefor machine
schedulingintroducedby Grahamet al. (1979), we will denotethe main single-mode
problem consideredin this work with PS|zemp|Cpex, for (a)project scheduling with

‘Chapter 7 develops a specia project scheduling model for a specific application with a non-regular
objective function.
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(B) general temporal constraintsand (y) the objectiveof minimising the maximum
completion time. In the alternativeclassification scheme developed by Herroelen
et al. (1999) the problem can be characterisedas M, 1|gpr|{Ciax- The multi-mode
extension of the problemwill be denoted with MPS}temp|Cings.

The problem PS|temp|Cpay is SOmetimes referred to as resource-constrai nedproject
scheduling problem (RCPSP) with time windows(e.g. Bartusch et a. 1988), RCPSP
with generalised precedence relations (e.g. De Reyck and Herroelen 1998), or
RCPSP with minimal and maximal time lags (RCPSP/max, e.g. Schwindt 1998b).

While the classic resource-constrained project scheduling problem with simple
precedenceconstraints, i.e. the problem PS|prec|Cinay, has been extensively studied,
algorithmsfor solving the problem PS|temp|C,,, or its multi-modegeneralisation
haveonly recently received growing attention in the literature, as documented by the
recent surveysby Brucker et d. (1999), Herrodenet al. (1998), and Kolisch and Pad-
man (2001). Thismay to some extent have been caused by the fact that the problem
PS|prec|Cuey itsdlf isintractableand belongs to the class of NP-hard optimisation
problems(Btazewicz et al. 1983). As an extension, the problem PS|temp|Cpay S, Of
course, al'so NP-hard, and even the question whether a probleminstancehasafeasi-
ble solutionis NP-completein the strong sense (Bartusch et al. 1988)2. Asa gener-
alisation of the problem PS|temp| Cyqy, the multi-modeproblem MPS|temp| C,,q and
its correspondingfeasibility problem belong to the same complexity class.

In thefollowing, we will first describethe single-modeproject scheduling problem
PS|temp|Cpay in detail in Section 2.1 and then introduceits multi-modeversionin
Section 2.2.

2.1 TheGeneral Single-ModeMode

211 Activitiesand Resources

The basic entities of the project scheduling problem considered are the activities
or jobs. A set of activitiesV = {1,...,n) hasto be processed with the objec-
tive of minimising the makespan, which is the maximum of the completion times
of al activities. Each activity ¢ € V has a specific processing time p; and a start
time S;. While the former is fixed in advance, the | atter is a decision variable. The
completion time of an activity is denoted with C;. Because the processing times
are fixed and deterministic, the completion time of an activity followsfrom its start
time. By choosing sufficiently small time units we can dways assumethat the pro-
cessing and start and completion times are non-negative integer values. We study
the non-preemptive version of the problem, which meansthat activitiesmust not be
interrupted during their processing.

? N P-completeness of the feasibility problem is shown by transformation of an NP-complete unit-
time scheduling problem Q. NP-completeness in the strong sense follows from thefact that Q is not a
number-problem.
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An activity ¢ requiresr;; € Ny unitsof one or several resourcesk € R, where R
denotesthe set of all resources. For the sake of simplicity we assumethat resource
k is availablein constant amount Ry, although the results derived in the subsequent
sections also apply if we consider variable resource supply instead: for constant
Ry, time varying resource supply can easily be modelled by introducing fictitious
activities (Bartusch et al. 1988). Resourcesmay not be shared and are exclusively
assignedto an activity duringits processing. They arereusable, i.e., they arereleased
when they are no longer required by an activity and are then availablefor processing
other activities. More precisely, an activity uses exactly r;; units of resource k in
any interval of width one starting at timet = S;,...,S; T p; — 1, at which these
unitsare not availablefor other activities, and releasesthem at timet = S; + p;. The
set of activities which requireresourcek isdenotedwith Vi, :={i € V | ri > 0).

A resource k. € R with supply R, > 1is aso called cumulative resource; in the
specia case where R, = 1 we spesk of digunctiveor unary resources, which are
sometimesal so referred to as machines.

Resourceconstraintsensurethat in any processing period the resourcedemand never
exceeds the resourcesupply. It is possibleto define these resourceconstraintsin a
quite elegant way using the concept of a slackfunction, which will be introduced
in Chapter 4. For the time being it is sufficient to define the auxiliary set V(t) of

activitiesin processat timet, or more precisely, in theright-openinterval [tf + 1.
The resource constraintscan then be stated asfollows:

A schedule, i.e., an assignmentof activity starttimessS;, .. ., Sn, isresourcefeasible
if it satisfies the aboveconstraint.

212 Tempora Congraints

In general, activities cannot be processed independently from each other due to
scarcity of resources and additional technological requirements. Technologica re-
quirementswill be modelled by temporal constraintsor, as synonyms, generalised
precedence constraintsor time windows. Many classic scheduling models such as
the well known resource-constrainedproj ect scheduling problem, whichis a specia

case of themodel described here, only use minimal timelags between activities; the
lags reflect finish-start precedencerel ationsbetween activities and are thus assumed
to beequal to activity processingtimes. Arbitrary minimal and maximal timelagsare
an important generalisation, as they adlow to model many characteristicscommonly
found in practical scheduling problems. The temporal constraintscan for instance
be used to modd activity timewindows, fixed activity start times, synchronisationof

start or completion times, maximal or minimal activity overlaps, non-delay execu-
tion of activities,setup times, or time varying resourcesupply and demand (Bartusch
et al. 1988, Elmaghraby and Kamburowski 1992, Neumann and Schwindt 1997).
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1 i beforej
2 ¢ meetsj

3 i overlapsj

4 | finishedby j

5 4containsj

6 i startsj

7 iequalsj Frsse
8 istartedby j

9 i during j

10 i finishesj

11 i overlappedby j
12 i methy j

13 i after j

C——— positionof activity
position of activity j

Figure2.1: Possibletemporal relationsbetween two activities

Figure 2.1 showsthe thirteen possibletemporal relationsbetween a pair of activities
(Allen 1983)'. We will see that generalised precedence constraintscan selectively
enforce or admit any of these relations; this stands in contrast to precedence con-
straints with minimal time lags only and simple completion-start precedence con-
straints.

A generalised precedenceconstraint(i, j) specifiesa minimal or maximal timelag
between two activitiesi and j and hasthe genera standardised form:

Asfor the activity start and processing times, we will.assume without loss of gen-
erality that all time lags d;; areinteger values. If d;; > 0 then the constraint(i, j)
can be interpreted as:. activity j must start at least d;; time units after the start of
i (minimal time lag). If d;; < 0, then the following interpretation applies: j must
start at most d;; time units before the start of ¢ (maximal time lag). The set of dl
generalised precedenceconstraintsis denoted with £,

*By swapping theroles of activities: and 7 in Figure 2.1 the number of relations is reduced to seven.
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d;; <0

Figure 2.2: Visualisation of temporal constraintsas forward and backward arcs

Figure 2.3: Visuaisation of temporal constraintsastime window of j relativetos

Tempora constraints between two activities can aways be formulated in the stan-
dardised form (2.2) as start-start rel ations. Becausethe activity processingtimes are
fixed and deterministic,all other possiblerelations,i.e. start-completion,completion-
start, and completion-completion,can be trivialy transformed into start-start rela-
tions.

For example, Relation2 shownin Figure2.1 (i meets j)can beenforced by imposing
the two congtraints C; < S; and S; < C;. By subgtituting C; := S; + p;, these
constraintscan betransformedinto thestandardisedform S;+p; < S; and S; —p; <
S;.

Figures 2.2 and 2.3 visualise the tempora constraints between a pair of activities
i and j; the activities are shown as solid rectangles with a horizontal length corre-
sponding to the processingtime. Figure2.2 showsaconstraint S; T d;; < S; with

adtrictly positivetimelag asaforward arc of length d;; starting at time S;; the con-
straint requiresthat j startsat least d;; units of time after the start of i. The figure
also showsa constraint S; + d;; < S; with strictly negativetime lag as a backward
arc of length d;; starting at time S;; thisconstraint requiresthat j startsat most dy;

units of time after the start of i. The constraintscan also be visualised in the form
shown in Figure 2.3, i.e., as time window of activity j relativeto activity ¢, or vice
versa. By changing the values of d;; and d;; the length of the ""handles” shown in
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Figure 2.3 can be adjusted and the size or position of the relative time window is
changed. For smplicity, Figures 2.2 and 2.3 use only two activitiesfor visualis-
ing minimal and maximal time lags. In general, the time lags may lead to cycles
involving an arbitrary number of activities.

Many special cases of the problem PS|temp|C,,,. do not alow for negative time
lagsand cyclic temporal constraints. In the terms of Figure 2.3 this correspondsto
removingtheright handlelabelled d;;.

Using the time window visualisation, it is easy to see that any of the thirteen possi-
ble relations shown in Figure 2.1 can either be selectively enforced or be admitted
or ruled out by choosing suitable minimal and maximal time lags (and, of course,
processing times).

The set of al temporal constraintscan be visualised in an activity-on-nodenetwork
or digraph G (V, E) with vertex set V and edge set £ with edge weights d;;, where
minimal lagsare usually represented asforward edgesand maximal lags asbackward
edges®. The vertices of G correspond to the activities of the project, and there are
edges between any two activities (vertices)s and j that are linked by a precedence
constraint (i, j) € &. Frequently, two fictitious activities 0 and n + 1 that represent
the start and end of a project are added as sourceand sink of the network, with edges
fromthe sourceto al red activitiesand from all real activitiesto the sink, with edge
weightsdy ; = 0and d; ,,.; = pi,fori =1,...,n. For theremainderof thissection
we will assumethat G containsthefictitiousstart and end activities.

Atime feasibleschedule, i.e., onethat satisfiesal temporal constraints,isan assign-
ment of non-negativenumbersto the activity start times Sy, ..., S, or, equivalently,
totheverticesof G, such that

The numbersfulfilling (2.3) are d so called potentialsin graph theory (Berge 1985),
and there is a well developed theory about them that also forms the basis of the
Metra-Potential -Method(MPM) for project networks (Roy 1962), which dealswith
start-start time lags and also coversthe tempord constraintsof the model discussed
here.

It is well known that there exists a time feasible schedule (a potential for G) iff
G has no directed circle of positive length (Bartusch et a. 1988). Such a cycle
would correspondto alogical contradictionin thetemporal constraints. For example,
consider acycleinvolving only two activities that is formed by the constraintsS; +
3 < 5;andS; -2 <S55 the length of the cycleis 1; while the first constraint
requires that activity j starts at least 3 units of time after ¢, the second constraint
demandsthat ¢ startsat most 2 units before j.

The existence of a time feasible schedule can be tested by computing the unique
component-wiseminimumsolutionof (2.3), which givestheearliest possiblestarting

“For all graph theoretic notions not defined here see Lawler (1976). For an introduction to network
representations of projects see EImaghnby (1977).
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times. Thisschedule, whichis usually not resourcefeasible, isalso called theearliest
start schedule. The earliest start schedule can be efficiently computed by standard
graph algorithms, e.g. with effort O(n®)by the Floyd-Warshall Algorithm (Lawler
1976). Alternatively, the earliest start schedule can be derived through constraint
propagation, as shall be explained in the following chapters.

213 TheModd

The problem PS|temp|Cpae Can now conceptualy be stated asfollows:

Si +dij < Sj, Y(i,j) € €, (i)
Zi&V(f} rik < Rk’ Vte Ny, Vk e R, (17,1,)
VieV. (iv)

A scheduleS = (51,...,Sn) isanassignment of dl activity start times. Sisfeasible
if it satisfies all precedenceconstraints(ii) and resourceconstraints(iii). Reformu-
lating the problem, the task is to find afeasible schedulewith minimal makespan.

There are severd other ways of formally modelling the problem PS|temp| Cpgy that
mainly differ in the way how resource constraintsare represented. Many formula-
tions have originally been proposed for the problem PS|prec|Cmasx, i-e., the exten-
sively studied variant of the problem PS|temp|C,... Whereall timelagsd;; areequal
to the activity processing times p;.

The formulationsare frequently based on using time indexed binary decision vari-
ablesz;; that takethe valueoneif an activity i € V finishesin (or isprocessed in, or
starts before, etc.) periodt and zero otherwise. Thefirst formulation of this typefor
the problem PS|prec|Cpax has been described by Pritsker et al. (1969).

Other formulationsare based on the concept of using forbidden sets (Bartusch et al.
1988) to represent the resource constraints. A forbidden set of activitiesis a set
N C V for which

> ry > Ry, forsomekeR.
€N

Condition (2.4) is the negation of (2.1); it is time independent due to the constant
resource demands and supplies. Given aset /' of all forbidden sets, a schedule S
is resourcefeasibleiff noset N € A is scheduled simultaneouslyin any period t.
A disadvantage of the description by forbidden sets is the fact that the number of
required (minimal) forbidden sets may grow exponentially with the problem size,
athoughit seemsthat for many applicationsthis doesnot cause problems (Stork and
Uetz 2000).
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Forbidden set formulations have been used, e.g., by Bartusch et a. (1988) and by
Alvarez-Vadesand Tamarit (1993). A formulation based on the complementary
concept of compatible sets of activities has been proposed by Mingozzi et al. (1998).

214 Schedulesand PerformanceM easures

A scheduleS= (54,...,S,) isan assgnment of all activity start times. Thequality
of a scheduleis usually measured by a cost or utility functionx : R" — R that
transformsthe vector of start or completion times onto aone-dimensionalscale. The
makespan function Cray = £(S) = max;cy S; + p; is an example of such a
transformation.

When comparing two schedulesS and S’ wesay that S < &’ if no activity in S
startslater thanin S:

Further, S< 8’ if S< §' and additionally at least oneactivity in S startsearlier:

A schedule Sis active if it isfeasibleand if there exists no other feasible schedule
S’ suchthat S' < S. In other words, Sis active, if no activity can be started earlier
without violating either one of the precedenceor resourceconstraints. If a schedule
Sis not active and some activity ¢ can thereforebe started earlier than at time S;,
then we say for short that ¢ can be left-shifted in S

A detaileddiscussionof active schedulesand the related conceptsof semi-activeand
non-delay schedulesin the context of project scheduling is given by Sprecher et al.
(1995).

The definition of active schedulesimmediately leads to the following simple and
well known observation: any solution method which minimises the makespan func-
tion can refrain from generating non-active schedules, since there dways exists a
corresponding active schedulewith alower or identical makespan. We shall exploit
this observationin the branch-and-boundproceduredevel opedin Chapter 5.

The observationcan be generalisedfor the classof regular measuresaof performance
(Conway et a. 1967) whichis defined as theclass of dl objectivefunctionsthat are
non-decreasingwith respect to the component-wiseorderingof R", i.e., for which

Regular measures of performance cover the standard objective functions used in
scheduling such as makespan, weighted flowtime, or tardinesscosts. The condition
is general enoughto alow for many cost termsthat occur in practical applications.
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215 Domainsof Decison Variables

We will now introduce the concept of domains of decision variables, which will
prove useful in the following chapters. Each activity start time variable .S; has a
current domain Ag, € Ny of possiblevaues. Becausethe activity start times are
the only decision variablesin the single-modemaodel, we will aso use the shorter
notation A; instead of As, when no confusion is possibleand simply speak of the
domainof activity i ; we shall usetheexplicit notation when dealing with multi-mode
models. We will later assume that some real or hypothetical upper bound UB on the
optimal makespan is known or given, so that even A; C [0,UB — p;] holds. Thisis
necessary, sincemost of the constraint propagation methods that will be applied can
only deduce adomain reduction if the current domainsarefinite. If noinitial upper
boundis given we usethetrivia upper bound

The set of current domainsof al activitiesis denoted with A := {A; | i € V). For
an activity 7 € V, ES;(A) :== min A; isthe earliest start time, LS;(A) := max A;
the latest start time, EC;(A) := ES;(A) + p; the earliest completion time and
LC;(A) := LS;(A) + p; the latest completion timeof i. If no confusionis possible,
then wewill write ES;, LS;, etc., for short.

A schedule Sis called domain feasible with respectto aset A of current domainsif
the current domain of each activity <till containsthe start time of thisactivity in S,
i.e., if wecan arriveat Sby repeatedly reducing the current domains.

Given aset A of current domains, the set of al activities V can be naturally parti-
tioned into a set of scheduled and non-scheduled, or free, activities. Clearly, if the
current domain of an activity ¢ containsexactly one entry, then i must start at that
time and can be considered as scheduled. Hence

isthe set of scheduled activities, and

isthe set of free activities. For all scheduled activities: € V*(A), the start timeis
defined through S;(A) := ES;(A) = LS;(A).

216 Special Cases

Thegenera problem PS|zemp|Cpax CONtainsseveral specia casesthat are obtainedif
the admissibl e precedenceconstraintsare restricted in certain waysor if theresource
supply takes aspecia form.
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A first class of simple problemsis obtained if the resource constraintsare relaxed,
i.e., if resource supply is unlimited. Thisfirst leads to a (resource-un-constrained)
project scheduling problem with generalised precedenceconstraints, a problem that
is addressed by the well known Metra-Potential Method (MPM) for the temporal
analysis of project networks. The problem covered by the famous Critical Path
Method (CPM) is obtained if, additionally, only simple precedenceconstraints are
alowed, i.e., if thetimelagsd;; between a pair of activities¢ and j areequal to the
processingtimeof the preceding activity i: d;; = p;,V(,j) € E.

In contrast to the simple problems with unlimited resource supply, problems with
resource constraintsare generaly difficult to solve.

One of the best studied specia cases of the problem PSjtemp|C,,, is the classic
RCPSP with simple precedenceconstraints, i.e., the problem PS|prec|Cpax, Which
generalisesthe problem covered by the CPM method by adding resourceconstraints.

It has been shown that several seemingly unrelated optimisation problemscan befor-
mulated as instances of the problem PS|prec|Cpay. Examplesincludethe bin pack-
ing (Garey et al. 1976) and the assembly line balancing problem (EImaghraby 1977,
Sprecher 1994). Therelation of the multi-mode problem MPS|prec|Cax to the knap-
sack packing problem as well asto two- and three-dimensiona packing and cutting
problems has been discussed by Hartmann (1999).

The problem PS|prec|Cnay With ordinary precedenceconstraintsisin turn a gener-
aisation of severa well known, difficult optimisation problems studied in machine
scheduling, where unary, or digjunctive, resourcesare considered. Examplesinclude
shop scheduling problemssuch as the job shop, flow shop, and open shop problems
(Blazewicz et al. 2001) as well as many other, morespecial problems. We will seein
the following chapters that some sol ution techniquesoriginally developedfor shop
scheduling can be successfully applied for solving project scheduling problems.

A specia problem that has been called Generalised RCPSP (Demeulemeester and
Herroelen 1997a, Klein 2000b) is obtained if the RCPSP is extended by alowing
for arbitrary minimal time lags, combined with the assumption that the precedence
constraintsare acyclic.®

2.2 Extenson to Multiple Execution M odes

221 Modes

In multi-mode scheduling, an activity may be processed in one of multiple possible
execution modes, which differ with respect to the necessary processingtimeand the
resource requirements. Furthermore, the time lag between a pair of activities may

3The fact that time lags of value zero are legal would otherwise allow for cycles of length zero, cor-
responding to asynchronisation of start times; this would slightly complicate the design of enumeration
schemes.
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vary depending on the chosen mode. The modes reflect tradeoffs between required
processing time and resource consumption on the one hand as well as tradeoffsbe-
tween the consumptionof differenttypesof resourceson the other hand; additionally
the time lags between activities may vary dependingon the chosen modes.

The mode M; in which an activity | € V is processed thus becomes an additional
decisionvariable, which can takevaluesfrom the associated set M; of all admissible
modes. The current domain of M; is denoted with A »y,, and initially Azr, = M;.

As the processing time and resource requirementsof an activity now depend on the
chosen mode, they are indexed accordingly: pi, is the time requiredfor processing
activity | in mode . € M;, and r;,;. isthe amount of resource & € R needed for
executingactivityi in mode g. The modedependenttimelag that must pass between
the start of two activitiesi,j € V if i is performedin mode s € M; andj in mode
v € M; isdenoted with diy .

Theinitial modedomainof an activity can be reduced by removinginefficient modes.
In multi-mode models with simple finish-start precedence constraints, a mode is
called inefficient if its processing time is not shorter and its resource requirement
is not less than that of another mode of the same activity. If generalised precedence
constraintsare alowed, this condition must be strengthened by additionaly consid-
ering the mode-dependenttimelags: A mode . € Ay, of activity 7 isinefficient if
its processingtimeis not shorter and its resourcerequirementis not less than that of
another mode of ¢ and if thetime lags d;,,;, and d;.;, associated with mode ¢ and
activity ¢ are not lessthan for another modeof i, for al j € V, for which(i,j) € £
or (4,i) EE,andal v € Apy;.

2.2.2 Resources

In multi-mode project scheduling it is common practice to distinguish between re-
newable and non-renewable resources, as originally proposed by Slowinski (1980)
and Weglarz (1981).

So far, we haveonly introduced renewabl eresources, which are constrainedon a per
period basis. The required number of units of a renewable resourceare assignedto
an activity during its processing; upon completion of the activity, the resource units
arereleased again and are then availablefor processing other activities. Exampl esof
renewabl eresourcesinclude manpower and machines.

Non-renewable resources are globally constrained for the entire planning horizon.
In contrast to renewable resources, they are consumed by processing an activity
and cannot be reused. Money is an examplefor a non-renewable resource. Non-
renewable resourcescan thus be used to model budget constraintsfor a project. A
non-renewableresourceis redundant and may be removed if the mode-dependent
maximal total demand for the resourceis at most equal to the resourcesupply. Non-
renewabl e resources need only be considered in multi-modeproblems as they must
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aways be redundantin instancesof single-modeproblems (or the problem instance
does not havea solution).

Resourcesthat are constrained per period as well as for the entire project are called
doubly constrained. A doubly constrainedresourcecan be modelled by introducing
arenewable and a non-renewabl eresource.

Another typeof resourcethat allowsto mode resourcesupply restrictionsfor a sub-
set of periodsand that is called partially renewable has recently been proposed by
Bottcher et al. (1999).

In the following we will distinguish between the set R of renewable and the set
R” of non-renewable resources, i.e., R = R? U R", and denote the supply of a
renewable(non-renewable) resource k € R with R (RY).

223 TheModd

The problemMPS|temp|Cpq, Can now conceptually be stated asfollows:

mi“{me?gf{sf tpi}} st ()
Si + di,'\'f,-ij < Sj’ V(?|J) € { (’1,’1,)

ZiEVU} TiMk = sz VteNo,Vk € RP,  (iii)
weyTimk < RY, VEENo,VkER”, (iv)

Si € No, Viey. (v)

M; € M;, vieV. (vi)

A schedule (S, M) = (S1,...,80, M1,..., M,) is an assignment of al activity
start timesand modes. (S,M) isfeasibleif it satisfiesall precedenceconstraints(ii)
and constraintsfor renewable (iii) and non-renewable(iv) resources.

The multi-mode project scheduling problem MPS|temp|Cax can be conceptually
divided into two sub-problems. The mode assignment problem consists of finding
a mode vector that satisfies constraints(iv) and (vi); it is NP-complete for prob-
lems with at least two non-renewable resources (Kolisch 1995). Given a mode-
assignment, the scheduling sub-problem defined by (i) - (iii) and (v) is of the type
PS|temp| Cruas.



Chapter 3

Congtraint Propagation

The branch-and-boundalgorithmsthat will be developedin the following chapters
rely to agreat extent on efficient constrai nt propagation techni ques. Constraint prop-
agation is a problem reduction techniquethat transforms problemsinto equivalent
problemsthat are hopefully easier to solve. The basicideais to reduce the search
spaceof a probleminstancethroughtherepeated analysisand evaluation of variables,
their domains, and the interdependencebetween the variablesthat is induced by the
set of constraints. The goal isto detect and removeinconsi stentassignmentsthat can-
not participatein any feasiblesolution. A wholetheory is devoted to the definition of
different concepts of consistency, which may serve as a theoretical backgroundfor
the propagati on techni questhat we will employ. This theory has been devel opedfor
the constraint satisfaction problem (CSP) or constraint optimisation problem (COP);
the project scheduling problemsexamined in this work can be understoodas special
subclassesof the CSP or COP.

In this chapter we shdl introducethe standard CSP and COP and the important con-
ceptsrelated to it. Section 3.1 gives a short introduction to these problem classes;
Section 3.2 then describes different concepts of consistency, and Section 3.3 ad-
dresses consistency checking algorithms. Section 3.4 points to some software sys-
tems and languagesthat have been developed based on conceptsfrom CSP research
and helpin the formulation and solution of CSPs.

3.1 Congraint Satisfaction and Optimisation

A CSPiscomposed of afiniteset of variables, each of which is associated with a
finitedomain, and a set of constraints that restrict the values that the variablescan
simultaneously teke. Thetask is to assign a valuefrom its domain to each variable
so that al constraintsare satisfied. The COP additionally requiresthat the solution
optimises some objective function. The problem PS|temp|Cyqyx introducedin Chap-
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ter 2 is an example of a COP. Any COP can be transformed into a related CSP by
replacing the obj ectivefunction with a constraint on the objectivevaue. By repeat-
edly restrictingthe vaue, e.g. throughbi-section over theinterval defined by a bound
on the objectivefunction valueand an initia guessfor the optimal value, a COP can
be solved by repeatedly solving related CSPs.

The CSP was first formalised and studied by Huffman (1971), Clowes (1971) and
Waltz (1975) in vision research for solving line-labelling problems. Haralick and
Shapiro (1979, 1980) and Mackworth (1992) discuss general algorithmsand appli-
cations of CSP solving. Hentenryck (1992) and Cohen (1990) tackle the CSP from
aconstraint logic programmingviewpoint. Comprehensiveintroductionsto the CSP
are provided by Meseguer (1989), Kumar (1992) and Dorndorf et al. (2000b). An
exhaustiveoverview of the theory of constraint satisfaction and optimisationisgiven
by Tsang (1993). We will only present the necessary aspects and start with some
basic definitions.

Thefinitedomain of avariableistheset of al valuesthat can be assignedto the vari-
able. For many interesting problems, the assumption that thedomainsarefiniteis not
aseriousrestriction. For example, for the project scheduling problemsintroducedin
Chapter 2 thedomainsof the start and completion timescan easily be madefinite by
imposing aboundon the makespan. The domain associated with thevariablex isde-
notedwith A,. If V = {z;,...,%) isasetof variablesand A ={A,, ,...,A,)
the set of their domains, then an assignmenta = (ay,...,a) isaneementof the
Cartesianproduct A,, X ... X A,, ; in other words, an assignmentinstanti ateseach
variablez; with avaluea; € A, fromitsdomain.

A constraintcon A isafunctionc: A, X...x A, —{true fase), wherey' :=
{zi,, ...,z } is anon empty set of vanabl&s Thecardlnallty|V’| isalsocalled the
arity of c. If [V'| = Lor |[V'| = 2 then we speak of unary and binary constraints,
respectively. An assignmenta € A,, X...XA, satisfiescif ¢(ay,,...,aq;,) = true.

Given aset of current domainsA, aconstraintis called resolved if it is satisfied for
all assignmentsa € A,, x...X A, , otherwiseitis (still) unresolved.

3.1.1 The Constraint Satisfaction Problem

An instance P of the constraint satisfaction problem (CSP) is defined by a tuple

= (V,A,C), whereV isafiniteset of variables, A the set of associated domains
and C afinite set of constraintson A. An assignment a is feasible if it satisfies all
constraintsin C. A feasible assignment is also called a solution of P, We denote
with F(P) the set of all feasibleassignments (solutions) of 7.

Given an instance P of the CSP, the associated task isto find a solutiona € F(P)
or to provethat P has no solution.

The goa of constraint propagation is to transform a problem P into a reduced but
equivalentproblem P’ that iseasier to solve. The reduced problem P’ usualy differs
from P in the sense that the variable domains are reduced or that new, redundant
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constraints, which may help in deducingfuturedomain reductions, have been added.
Problem reduction is an iterative process; we will generally assume that A and C
refer to the current domain set and constraint set of the current reduced problem.
Whenever we must explicitely refer to the original domain set and constraint set in
P to avoid confusion, we will usethe notation A° and C°.

3.1.2 TheConstraint Optimisation Problem

As distinguished from the constraint satisfaction problem, the constraint optimisa-
tion problemsearchesfor a solution which optimises a given objectivefunction. We
will only consider the case of minimisation, as maximisation can be handled sym-
metrically.

An instanceof the constraint optimisation problem (COP) isdefined by atuple P =
(V,A,C, z) ,where (V,A,C) is an instance of the CSP and z an objective function
z: A, x...xA,; — R Defining

Zmin ‘;} = .
(P) [ o0 otherwise,

an assignment a is called an optimal solution of P if a is feasible and z{(a) =
zrrtéu{_T’)-

Givenan instanceP of the COP, the associated task is to find an optimal solution of
P and to determine z,,:. (P) .

The project scheduling problems introduced in Chapter 2 can be seen as specid
COPs.

Itis not hard to see that the CSP and the COP areintractableand belong to the class
of NP-hard problems. For amoredetailed discussion, which exceedsour needs, we
refer to Garey and Johnson (1979) or Tsang (1993).

3.1.3 Constraint Graphs

Aninstanceof the CSP can be represented by meansof a constraint graph which vi-
sualisesthe interdependenci esbetween variablesthat areinduced by the constraints.
If we restrict our attention to unary and binary constraintsthen the definition of acon-
straint graph G is quite straightforward. The vertex set of G correspondsto the set
of all variablesV, whilethe edge set is defined as follows: two verticesXi,z; € V,
i # j, are connected by an undirected edgeif thereexistsaconstrainte(z;, z;) € C.
This can be generalised to constraintsof arbitrary arity using the concept of hyper-
graphs(Tsang 1993).

For a resource-un-constrainedproject scheduling problem that contains only prece-
dence constraintsthe constraint graph of the problem has the same structure as the
activity-on-node precedencenetwork but is undirected.
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3.2 Conceptsof Consggency

As the domains of a CSP instance P are finite, P can in principle be solved by a
simplegenerate-and-testalgorithmthat enumeratesall assignmentsa € A,, x...X
A, , verifies whether a satisfies al constraintsc & C, and stops if the answer is
"yes". The COP can be solved by enumeratingdl feasible assignmentsand storing
the one with minimal objectivefunction vaue.

Of course, this method is not practicable due to the size of the search space which
growsexponentially with the number of variables. In the worst case, all assignments
of a CSP instance have to be tested which cannot be carried out efficiently except
for probleminstancestoo small to be of any practical vaue. It is thus worth to ook
for methodsthat can reduce the search space prior to starting (or during) the search
process.

One such method of search space reduction which only makes use of simpleinfer-
ence mechanismsand which is not problem specificis known as constraint propaga-
tion. Theoriginsof constraint propagation go back to Waltz (1972) who almost three
decades ago developed a now well-known filtering algorithm for labelling three-
dimensional line diagrams.

The basic idea of constraint propagation is to make implicit constraints more visi-
ble through the repeated analysisand evaluation of the variables, domainsand con-
straints describing a specific problem instance. This makesit possibleto detect and
remove inconsistent variable assignments that cannot participatein any solution by
amerely partia problem analysis.

Over the years, different conceptsof consistency have been developedthat alow to
identify inconsistent assgnments. In this context, the term consistency with regard
to certain propertiesmust be understoodin the following way: variableassignments,
whose presence would cause these properties to be false, have been ruled out. The
different types of consistency guarantee different properties. Roughly speaking, a
concept of consistency defines the maximal search space reduction that is possible
regarding some specific properties. It is worth pointing out that theterm consistency
as used here is neither a necessary nor a sufficient condition for a problem to be
solvable.

The first concepts of consistency have been formalised by Montanari (1974) who
introduced node-, arc- and path-consistency. Roughly speaking, these conceptsare
based on the examination of constraintscontaining k variables, wherek = 1,2, 3,
with their names being derived from the presentation of a CSP instance as a con-
straint graph. These conceptshave been generalisedby Freuder (1978) to the notion
of k-consistency. We will describethe basic ideas of k-consistency in an informal
way; adetailed analysisis given by Tsang (1993).
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In order to define k-consistency we haveto introducethe notion of k-feasibility. Let
a = (ay,...,a) beanassignment of agiven CSPinstance. A partial assignment
of k variables(a;, , .- .,a;, ) isk-jieasbleiff it satisfiesall constraintswhich at most
contain these variables'. The motivation of the definition of of k-consistency is
based on the following observation: a can only be feasible if, for a given k, any
partial assignment (as,,...,a;,) is k-feasible. Inversely, any partial assignment of
k variablesthat is not feasibleis not interestingand hintsat an inconsi stent state.

In the words of Freuder (1978), k-consistency is established if, for any (k — 1)-
feasibleassignmentof aset of k—1variables(takenfromaset A, x... XA, )
and any choice of a k-th variable, there exists an assignment of the k th varlable
(takenfrom the set A,,) such that the assignment of the k variablestaken together
is k-feasible.

Itistemptingto believethat k-consistency as defined aboveimplies (k — 1)-consist-
ency, but, as Freuder (1982) has pointed out, a CSP which is k-consistent needs not
be (k — 1)-consistent. Thiscan be seen by observingthat k-consistency only requires
that any (k — 1)-feasible assignment can always be extended to a k-th variable such
that the assignment of al k variablesis k-feasible; however this does not rule out
the possibleexistenceof (k — 1)-infeasibleassignments. In view of this weakness,
Freuder (1982) has introduced the concept of strong k-consistency, which addition-
ally requiresj-consistency for 1 <j<k

The property of k-consistency is adways relativeto the sets of possible assignments
Ag, XAy, and A, . Toestablish k-consistency, starting from an incon-
sistent state, thus [ mpI|C|tIy reqw resa (k — 1)-dimensional administrationaof these
sets. In thebeginning, the setscontain al assignments; inconsistentassignments,i.e.,
tuples(ai,, . .. ,ai,—1), arethen eventualy discardeduntil k-consistency is reached.

1-consistency is quite easy to achieve: if z; € V is avariable and ¢(z;) a unary
constraint then al assignments a; € A, for which e¢(a;) = false are removed.
In order to establish 2-consistency, pairs of variablesxi,z; € V' and binary con-
straints c(z;, z;) have to be examined: an assignmenta; € A, can be removed
if c(a;,a5) = faseforal a; € A,,. Analogously, 3-consistency requires the ex-
amination of triplesof variables z;,z;,zx € V and removes pairs of assignments
{(ai,a;) € Az, X A, etc. Asaready mentioned, 1- and 2-consistency coincide
with the notions of node- and arc-consistency, whereas 2- and 3-consistency taken
together are equivalent to path-consistency (Tsang 1993). 1-, 2- and 3-consistency
have also been summarised under the name of lower-level consistency as opposed
to higher-level consistency, since only small subsets of variables, domainsand con-
straintsare evaluated simultaneoudly.

An optimal algorithm for achieving k-consistency has been described by Cooper
(1989). The algorithmrequirestesting al subsets of (k — 1)-feasible assignments

!k-feasibility depends on the chosen set of variables. We therefore assume that a partial assignment
always identifies the corresponding set of variables.
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which is only practicablefor small values of k. We thereforedescribe two weaker
conceptsof consistency.

3.22 Domain-Congstency

The first concept is based on only storing the 1-dimensional sets A,, for al vari-
ablesx; € V. For reasonsnear at hand, A,, isalsocalledthe current domain of z;.
Intuitively,we can at most discard al valuesa; € A, for which thereexist no as-
signmentsa; € A, j # i,suchthat (ay,...,a;,...,a8) isfeasible. Alternatively,
thefeasibility conditioncan be replaced with the sufficient conditionof k-feasibility
whichleadstoalowerleve of consistency. Werefer to thisconcept of consistencyas
domain-consistencyor k-d-consistency. Domain-consistency has been used, among
others, by Nuijten (1994).

Formally, k-d-consistency for a CSPinstance? = (V,A, C) can be defined as fol-
lows:

1. Theset of currentdomainsA is k-d-consistentfor 1. < k < niif, for al subsets
V' = {x;,...,24_, } Of kK — Lvariablesand any k-th variablexi, ¢ V', the
following condition holds:

Va;, € Am‘k,
dai, E Auyyyeen, 304, € Ag, |z (@y,...,04) iSk-feasible.

2. Theset of current domainsA isstrongly k-d-consistentfor L < k < nif Ais
k'-d-consistent foral 1. < &' < k.

The following naive algorithm establishes k-d-consistency: start with A,; = AJ.
for al z; € V; choose avariable z;, and an assignmenta;, € A,, ; test whether
thereexistsasubset of k—1variablesV' := {z;,,...,z;,_, } which doesnot contain
zi,, so that (ai,,-..,a,_,,a;) isnot k-feasiblefor dl a;; € A,, ,...,a4_, €
Ag;,_,; if theansweris"yes" then remove the assignment a;, from A, ; repeat
this process with other assignmentsand/or variablesuntil no moredomain reductions
arepossible.

We did not yet discuss how to establish n-d-consi stency other than to apply the naive
algorithm, so an important question is whether thereexists an efficient implementa-
tion after al. Beforewedea with thisissue, however, we will first present another
concept of consistency.

323 Bound Condgstency

Storing al values of the current domainsA,, ,..., A, dill might be too costly.
An interval oriented encoding of A,, providesan dternative if A,; istotally or-
dered, for instance, if A,, € Ny. In this case, we can identify A,; with the
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interval [li, 7] = {l;,1; + 1,...,7 — 1,7;}, so that only the "left" and "right"
bounds of A;; have to be stored. Therefore, this concept of consistency is usu-
aly referred to as bound-consistency or k-b-consistency. Bound-consistency has
been discussed, among others, by Moore(1966), Davis(1987), van Beek (1992) and
Lhomme (1993).

Formally, k-b-consistency for aCSPinstance? = (V, A,C) can be defined as fol-
lows:

1. Theset of currentdomainsA is k-b-consistentfor 1 < k < niif, for dl subsets
V' i={zy,...,%i_, } of k = Lvariablesand any k-th variablez;, ¢ V', the
followingcondition holds:

Vﬂ'ik S {hk’rik}>
dai, € Ay, yeo,F04, € Ay 2 (4. .., 05,) isk-feasible

2. Theset of currentdomains A isstrongly k-b-consistentfor 1. < £ < nif Ais
k'-b-consistent for all 1 < k' < k.

A naivea gorithmfor establishingk-b-consistency is obtained by slightly modifying
the naive k-d-consistency algorithm: instead of choosinga;, € Az, , wemay only
choose (andremove) a;, € {li,, 7, }-

As a negative side effect, only the bounds I; and r;, but no intermediate value
li < a; < r; can be discarded except if, due to the repeated removal of other
assignments, a; eventually becomes the left or right bound of the current domain.
Bound-consistency therefore is a weaker concept than domain-consistency. How-
ever, establishing n-b-consistency for the CSPtill isan NP-hard problem.

3.3 Consistency Checking

In general, establishing k-consistency is ruled out due to the complex datastructures
that are necessary for the administration of the k-feasible subsets. In thelast subsec-
tion we havefurther seen that establishingthe weaker n-d- or n-b-consistencystill is
an NP-hard problem. Consequently, using constraint propagation in order to solve
the CSPisonly sensibleif wecontent oursel veswith approximationsof the concepts
of consistency that have been introduced.

An important task is to derive simple rules which lead to efficient search space re-
ductions, but at the sametime can beimplemented efficiently with alow polynomial
timecomplexity. Theserulesare caled consistency tests.

3.3.1 Consistency Tedts

Consistency testsare generally describedthrough acondition—instructionpair A and
B. Intuitively, the semantic of aconsistency testisasfollows: whenever condition A
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issatisfied, B hasto be executed. A may be, for instance, an equation or inequation,
while B may be a domain reduction rule. We will often use the shorthand notation
A = B for consistency tests.

Examplel. (Consistency Tests)

Let us derive a simple consistency test for the constraintz; — 6 < x. Given an
assignment a; of z;, we can remove a; from A,, if there exists no assignment
as € A, satisfyinga; — 6 < as. However, we do not redly have to test al
assignmentsin A,, , becauseif theconstraint is not satisfied for a; = max A,, then
it is not satisfied for any other assignmentin A,, and vice versa. Hence, for any
a; € Ag,,

ap —6>maxA, = A, =A, \{al}

defines a consistency test. O

Of course, this exampleis quite simple and it may not seem clear whether any ad-
vantagescan be drawn from such elementary deductions. Surprisingly, however, an
analogously simpleanalysiswill allow us to derive powerful consistency tests, aswe
will seein thefollowingchapters.

Consistency testslead to the deduction of additional constraints. Frequently, though
not necessarily, the newly discovered constraints are unary and alow to directly
reduce individual variable domainsand can thus be stated in the form of a domain
reduction rule, asin the exampleabove. Consistency testsof thistype areaso called
domain consistency tests.

Let usderiveaformal definition of domain consistency tests. Let © := 2850 x ... X
244, where 2°+: denotesthe set of al subsets of AY . Given A,A' € O, that is,
A={A; |z eV)andA' = {AL |z €V), wesy that

LACA'iff A,, CAl fordlx €V,

2. A C A'iff A C A,and thereexistsz; € V,suchthat A,, C Al .
Domain consistency tests have to satisfy two conditions. Firstly, current domains
are either reduced or left unchanged. Secondly, only assignmentsa; € A,, are
removed for which no feasible assignment a = (ay,...,as,...,a,) exists. Since

we do not need the second conditionin the following examination, only thefirst one
isformalised:

Adomain consistencytesty isafunctiony : © = O satisfyingy(A) C
Aforadl A € 6.

3.3.2 Consistency Checking Algorithms

Given aset of consistency tests, these tests have to be appliedin an iterativefashion
rather than only oncein order to obtain the maximal domain reduction possible. The
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Algorithm 1 Computingthe fixed point CP(A)
Require: I isaset of consistency tests.
repeat
Ajg :==A,
for all (y e I")do
A :=7(A);
end for
until (A = A).

reason for thisisthat, after reducing several domains, additional domain adjustments
can possibly be derived using some of the tests which previoudly failed in deducing
any reductions. Therefore, the reduction process is carried out until no more up-
dates are possible. Algorithm 1 shows the basic reduction principle. Given a set of
consistency testsI" and a set of current domains A, thealgorithmcomputes CP(A).
Obvioudly, CP(A) is afixed point. This point does not have to be unique and in
generd depends upon theorder of the application of the consistency tests. However,
we will only study consistency tests which resultin a uniquefixed point. Thesetests
satisfy a monotony condition described below, which, as we will see, issufficientfor
the uniquenessaf thefixed point.

The major problem with Algorithm 1 is that the revision of even a single domain
in some iteration forces all consistency tests to be re-applied for al variablesin the
next iteration, even though only a small number of constraints and variables are
affected by this reduction. Variations of Algorithm 1 overcome this drawback by
only applying the testsfor those constraintsand variables that are possibly affected
by a previousrevision.

Efficient algorithms for establishing 1-, 2- and 3-consistency and an analysis of
their complexity have been presented, among others, by Montanari (1974), Mack-
worth (1977), Mackworth and Freuder (1985), Mohr and Henderson (1986), Dechter
and Pearl (1988), Han and Lee (1988), Cooper (1989) and Van Hentenryck et al.
(1992). Improved arc-consistency algorithms AC-6 and AC-7 have been presented
by Bessiére (1994) and Bessiére et al. (1999). Chen (1999) has recently proposed
a new arc-consistency agorithm, AC-8, which requiresless computation time and
space than AC-6 and AC-7. Cooper (1989) developed an optimal algorithm which
achieves k-consistencyfor arbitrary k. Jeavonset al. (1998) haveidentified a number
of constraint classes for which some fixed level of loca consistency is sufficient to
ensure global consistency. They characterisedl possible constraint typesfor which
strong k-consistency guarantees global consistency, for each & > 2. Other methods
for solving the CSP through the sole application of constraint propagation (solution
synthesis) have been proposed by Freuder (1978), Seidel (1981) and Tsang and Fos-
ter (1990). The deductive approach proposed by Bibel (1988) is closely related to
solution synthesis.
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The basic constraint propagation algorithmthat is actually used in our implementa-
tionsisavariant of the AC-5 arc-consistency algorithm described by Van Hentenryck
et al. (1992). Likeall improved consistency algorithms, it works with a queue con-
taining elementsto reconsider. A queueelement consistsaof aconstraint and avalue
(or a set of values) that has been removed from the domain of some variable ap-
pearing in the constraint and justifies the need to reconsider the constraint. In each
iteration of the propagation algorithm, a constraintlvaluepair is removed from the
gueue and al consistency tests are eva uated that are associated with this constraint.
If any of thesetestsremovesavauea; from adomain, say from A,,, then al con-
straints which contain the variable x; and which are not yet resolved are stored in
the queue, together with the information that a; has been removed from A,;. This
processis repeated until the queueis empty and the fixed pointis reached. Therea-
son for storing a value together with a constraintis that this may alow to useamore
efficient algorithmin aconsistency test.

Intuitively, each constraintlvaluepair can, and needs to, enter the queue only once,
if at al, and the maximum number of elements enqueued and dequeued by the al-
gorithm therefore depends on (1) the number of constraintsand (2) the number of
variablesper constraint and their domainsizes. If d := max;,cy |A,, | isthesizeof
thelargest domain, then we obtain at most O(|C| - |V d) enqueueingand dequeueing
operations, with |V as an upper bound on the highest possiblearity of a constraint.
Given thenumber of queueoperations,the overall worst case complexity of theprop-
agation algorithmcan then be deduced from the complexity of the consistency tests.
It is worth mentioning that the worst case in terms of computational effort isalso a
best case in the sense that it correspondsto reducing the domainsuntil al variables
areinstantiated; the average propagation effort is usually much lower.

3.3.3 Uniquenessof theFixed Point

It isimportant to mention that the fixed point computed by the propagation algorithm
does not have to be uniqueand usually depends upon the order of the applicationof
the consistency tests. However, we will only study monotonousconsi stency testsfor
which the order of application does not affect the outcomeof the domain reduction
process. This result will be derivedin thefollowing (cf. Dorndorf et a. 2000b).

A consistencytesty is monotonousiff the following condition is satisfied:

Let usfirst define the fixed point mentioned above. Let I' be a set of monotonous
domain consistency tests. For practical reasons we will always assume that I' is
finite. Let Yoo = (74)9en € I be aseriesof domain consistency testsin T, such
that
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The series v determinesthe order of application of the consistency tests. The last
conditionensuresthat every consistency testin I is (apriori) infinitely often applied.
Starting with an arbitrary set A of current domains, we define the series of current
domainsets (A,))gen induced by v, through thefollowing recursiveequation

Sinceal domainsA,, arefiniteand A,y € A(,_1y dueto thedefinition of domain
consistency tests, there obvioudy exists g* € N, such that A,y = A,y for al
g > g*. We can thereforedefine v (A) := A(g+y. Thenext question to answer is
whether v (A) really dependson the chosen series .

Theorem 1 (Unique Fixed Points). If " isa set of monotonousdomain consistency
tests and Yoo, 7., € TN are series satisfying Condition (3.1) then Yoo (A) = 74 (A).

Proof. For reasonsof symmetry we only haveto show 7., (A) C 7. (A).
Let (A¢g))gen and (Af,))g en betheseriesinduced by v and 7., respectively. It

gr

issufficient to provethat for all ¢ € N, thereexistsg € N, suchthat A () C Ay
Thissimple proof will be carried out by induction.

The assertionis obvioudy true for g’ = 0. If ¢’ > 0, we have A,y = vy (A'(g,_l)).
By theinductionhypothesis, thereexistsh € N, suchthat A,y C AZ o—1)- Further,
Condition (3.1) impliesthat thereexistsg > h satisfyingy, = ;. Sinceg > h, we
know that A1y € Ay Using the monotony property of «y,, we can conclude

This completestheinduction proof. O

34 Congraint Programming

The generality of the CSP has motivated the development of constraint proramming
languages and software sytems that offer built-in functionsfor describing common
types of constraintsand include techniquesdeveloped in CSP research. Theideais
to facilitate the devel opment of CSP solution algorithmsby letting the user specify
modelsand algorithmson a high level while hiding the detailsof the constraint solu-
tion techniques. The solution algorithmsare most often based on (truncated) search
treetraversal.

The earliest approachesfor constraint programming were based on the constraint
logic programming paradigm. Examples for constraint programming systems and
languagesare CLP (Jaffar et a. 1986) and CLP(R) (Jaffaret al. 1992), PROLOG ITI
(Colmerauer 1990), CHIP (Aggoun et a. 1987) and CLAIRE (Caseau and Laburthe
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1996a). PROLOG III and CHIP have been developedinto commercia systems and
have been demonstrated to be effectiveand elegant in problem solving.

The success of CHIP haslead to the development of other commercial systems, e.g.
CHARME, PECOS, and ILOG, that largely use the same solution techniques and
mainly differ in their programminglanguagesand implementationefficiency.

Several constraint programmingsystemsincludeextensionsspecifically designedfor
scheduling applications, e.g., ILOG Schedul er (LePape 1994b, 1995, Nuijten andL e
Pape 1998), CHIP (Aggoun and Beldiceanu 1993), or CLAIRE Schedule (L e Pape
and Baptiste 1996a). A detailed review of the early historic development of the
application of constraint programmingfor schedulingis given by Le Pape (1994a).



Chapter 4

Consgency Teds

Consistency tests are logical tests that serve to reduce the current domains of the
decision variablesand thus reduce the search space of a probleminstance. The tests
may beiteratively applied within afixed point constraint propagational gorithm.

The purposeof thischapteristo present classesof consistency teststhat are useful for
solving project scheduling problems. These tests allow to reduce activity start time
domains by ruling out inconsistent start time assignments or inconsistent activity
sequences; additionally, they may help reduce activity mode domains by detecting
inconsi stent mode assignments.

The consistency tests and the constraint propagation algorithm in which they are
applied are independent of the actual solution procedureand can be appliedin al-

gorithms such as list scheduling heuristics or branch-and-bound procedures. The
benefit of the testsis that they can reduce the search space and direct an algorithm
towardsgood solutions. In thischapter, we are only interestedin the tests themselves
and do neither address the constraint propagation algorithm which controlstheir ap-

plicationnor any schedulingagorithmsin which theresultingconstraint propagation
procedure can be embedded. Since the tests only eliminate solutionsincompatible
with the constraintsand current variabledomains, they areindependentof the overall

objectivefunctionto be optimised.

The remainder of this chapter is organised as follows. Section 4.1 introducessome
basic concepts and briefly reviews the relevant parts of the optimisation model in
order to keep this chapter mostly self-contained. Section 4.2 discussessome simple
consistency tests which are based on the temporal constraints.

Sections4.31t0 4.6, which form the major part of thischapter, presentinterval capac-
ity consistency tests that are based on the resource constraints. These tests consider
the resource capacities available and required within certain time intervals. In the
literature, activity start time domainsare often approximated by start time windows,
and this approximationis then referred to as activity release times and due dates,
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or headsand tails. The domain reduction process may then be called adjustment of
heads and tails or time bound adjustment. Specific interval consistency tests have
become known under the names immediate selection, edge finding, and energetic
reasoning. It seemsfair to say that the advancesin modem branch and bound algo-
rithmsfor difficult digunctivescheduling problems, such as the job shop problem,
that have been madein thelast decadecan to alarge extent be attributed to the effect
of interval consistency tests. Sections 4.3 to 4.6 present these tests within a unified
framework, using numerousexampl esfor illustration. Thestate of theart isreviewed
and new resultsfor digunctiveand cumulativeschedulingare derived.

Section 4.3 first introducesthe general concept of interval consistency which serves
as aframework for the tests. As several powerful interval consistency tests may be
applied for the special case of disunctive scheduling with unit resource capacities
and requirements, Section 4.4 explains how digunctive sub-problemsaf a project
scheduling problem instance can be identified. The tests that may be applied for
these sub-problemsare discussed in Section 4.5. Section 4.6 then addresses cumu-
lative scheduling with arbitrary resource capacities and requirements; the section
generalisessome of the results obtained for digunctive scheduling and introduces
additional testsfor cumulativescheduling.

Throughout most of this chapter, we will consider the single-modeproject schedul -
ing problem PS|temp|C,.., and thegoal of reducing activity start timedomains. Sec-
tion 4.7 finaly explains how the tests developed for this problem may be applied
for the more general multi-modeproblem MPS|temp|C,.qx by considering a single-
mode relaxation associated with a multi-mode problem instance; the section also
introduces consistency tests for reducing activity mode domains. Section 4.8 sum-
marises theresultsof thischapter.

4.1 Basic Concepts

For the rest of thischapter, except for Section 4.7, we will consider instancesaf the
problem PS|temp|Cyay introduced in Chapter 2. In this section we briefly review
the relevant aspects of the optimisation model in order to keep this chapter self-
contained, and introduce some additional conceptsand notation.

An activity i is characterised by its processing time p; and resource requirements
ri: for each of p; time units, it requiresr;; units of arenewable resource &, which
is availablein constant amount Ry, and it releases the resource units again upon
completion. An activity i hasan associated start timedecision variable S;. Activities
must be processed without preemption. Two activities: and j may be linked by a
generalised precedenceor temporal constraint (i,j) of theform S; +d;; < S;, and
the set of al temporal constraintsis denoted with £.
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Each activity ¢ has a current domain A; of possible start times.' We assume that
some upper bound UB on themakespan is known or given, sothat A; C [0,U B —p;]
holds. We will generaly interpret A; astheinterval defined by theearliest and latest
possiblestarttimesadf i ,i.e., A; := [ES;, LS;] = {ESi,ESi+1,. .., LS;}, although
we will sometimesalso refer to the set oriented interpretation.

Theset of al activitiesis denoted with V; the subset of all activities to be processed
by aresourcek isVy := {i € V | rix = 0}. We will frequently consider subsets
A C V) of activities. To deduce domain reductions for the activitiesin A we often
try to show that an activity i € A must start beforeor finish after all other activities
in A. Using the shorthand notation A; := A\ {i),thisisdenoted by i — A; if i
must start first, and A; — i if i must finish last. We also usethe notation A — A’
to expressthat al activitiesin set A must start beforeall activitiesin set A'. Itis
convenient to introduce the total processing time P(A) of a set A of operations,
defined by P(A) := 3, 4 p;. Givenaset A of activitiesthe timeinterval [t1,22]
defined by the minimal earliest start timet, = min;c 4 ES; and the maximal latest
completiontimet, = max;e 4 LC; of twodifferentactivitiesin A iscalled activity
interval of A. Many consistency tests operateon activity intervals.

For illustrationand motivation of the consistency tests, we use examplesin the style
of Figure 4.1, which shows two activities that must be processed by the same re-
source; the styleis similar to the one used by Nuijten (1994). Unless stated oth-
erwise, we will assume that the resource has a capacity of 1. Consider activity Jj

Figure4.1: Two activities: and j withp; =4 andp; =3

where several points on the time scal e have been annotated for illustration. The fig-
ure shows the time between the earliest start of j, ES;, and its latest completion,
LC;, as a horizontal line segment. The processing time p; is depicted as a hollow
bar beginningat ES; with roundedright end at EC; = ES; + p;; thelength of this
bar is, of course, equal to LC; — LS;. Admissible start times, i.e., the valuesin A,
are shown as black circles. Timesin the interval [LS; + 1,LC;[ at which j may
be in process, but at which it cannot start, are marked with tick marks. Scheduling
an activity can be intrepreted as positioning the processing time bar at one of the
admissiblestart times. Activity ¢ in Figure4.1 appearsin the usual style without an-

IRecall that ingtead of A5, weusually usethe notation A; for the sart time domain of activity  for
simplicity.
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notations. Initially, possiblestart times of i arein theinterval [2, 8]. The x appearing
under the scale of i at time 2 indicates that we have, by applying a test described
below, deduced that i cannot start at time 2.

4.2 Consgency Tedsfor Temporal Constraints

A temporal or precedenceconstraint(i, j ) of theform $; + d;; < 8; determinesthe
minimal or maximal time lag that must pass between the start of two activitiesi and
j. Clearly, the l€eft side of the constraintis minimal for ES;, and alower bound on
the earliest possiblestart of activityj isthusgiven by ES; T+ di;. Likewise, theright
side of the constraintis maximal for LS;, and LS; — d;; is an upper bound on the
latest possiblestart of i. Thisleads to the following well known test:

Consistency Tes 1 (PrecedenceConsistency). For a precedence constraint(i, j)
the following domain reduction rules apply:

Assome of the consistency testsdiscussed below may discover new precedencecon-
straints, which must hold in addition to those given in the original problem instance,
the set £ of al precedence constraintsdependson the set A of current start time
domainsand is denoted with £(A).

When used within the constrai nt propagation algorithm, Consistency Test 1 naturally
leads to the same result (fixed point) as atraditional tempord analysisof the project
network (see, e.g., ElImaghraby 1977). A logica contradictionin the precedence
constraints, correspondingto a cycle of positive length in the project network, will
lead to an empty domain for some activity.

It is interesting to note that if only the precedence consistency test is applied in
the constraint propagation algorithm, the resulting algorithm is very similar to label
correcting algorithmsfor solving longest path problemsin graphs, for instance the
algorithm of Mooreand Bellman (seee.g. Lawler 1976). It is thereforeno surprise
that, as with label correctingagorithms, the worst case time complexity for graphs
with positive and negative edge weights cannot be polynomially bounded in the size
of the graph. The complexity can be derived as follows. For a given precedence
constraint, Consistency Test 1 can be applied with constant effort. The worst case
propagation effort caused by the precedenceconstraintsis thereforedetermined by
the O(|£€]| d) possibleenqueueingand dequeueing operations, whered is the size of
the largest domain. We will shortly see that the same fixed point could indeed be
calculated with polynomially bounded worst case effort O(|V|?). However, due to
the good average time complexity, the application of Consistency Test [ within the
propagation algorithmis advantageous.
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A temporal constraint (i ,j) is resolved, i.e., dways satisfied given the current set
of domaing?, if the maximal value of the left side is smaller than or equal to the
minimal valueof theright side, i.e., if LS; + d;; < ES;; otherwisetheconstraintis
unresolved.

Clearly, the precedenceconsistency test, as any consistency test, can only lead to
domain reductionsfor unresolved constraints. The question whether a precedence
constraintisresolved will play arolein the branchingschemedescribedin Chapter5.

Additional domain reductionsmay be deduced by consideringthe transitiveminimal
time lags between two disjunctive activities. We will discuss the question when two
activitiesaredigiunctivein detail in Section4.4.1; for thetimebeing itis sufficientto
assumethat two activitiesarein disunctionif they must not be processed in parallel
becausetheir combined resourcerequirementistoo high.

Let D' := (d};) be the matrix of transitive minimal temporal distances (longest
paths) between activitiesthat isinduced by the set of temporal constraints& (A)D’
can be calculated with effort O(|V|3) with the Floyd-Warshall Algorithm (Lawler
1976). The domain reductionsobtained by applying Consistency Test 1 can also be
derivedfrom thematrix D' by simply setting ES; to thedistanceof ¢ from the source
node and ZS; to thedistanceof i to thesink nodeof the project network, assuminga
uniquesource and sink node have been added to the project network.

Using the trangitive time lags d;;, we can state the following observation (Brucker
et a. 1998, De Reyck and Herroelen 1998):

Consistency Test 2 (Lag Based Digunctive Consistency). Leti,j € V beindis
junction. If d;; > —pj, then i must precede |.

Note that the condition d i > —p; meanstha j cannot finish before the start of i ;
as+ and j must not be processed in parallel thisimpliesthat i must precede j. Also
observethat the test dependsonly on the "'relative’” lag betweeni and j, but not on

the" absolute” start time domainsof the two activities. Clearly, thetest isonly useful

if di; < p;. We add any precedence constraint resulting from the application of

thistest to the set & (A)and the correspondingdomain reduction then followsfrom
the precedenceconsistency test. The test also detectsinfeasibilitiesthat occur if the
temporal constraintsrequire that two activitiesi and j which arein disjunction must
be processed in pardlel for some time. In this case two contradicting precedence
constraintsare added, and the precedenceconsistency test consequently leadsto an

empty domain.

The matrix D’ depends upon the temporal constraints& (A) Whenever a disunc-
tive consistency test adds a new precedenceconstraint to £(A), the matrix can be
updated with effort O(|V|?) by exploiting the fact that any increased longest path
between two activities must pass through the edge corresponding to the new prece-
dence constraint.

2See Section 3.1, page 20.
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4.3 Interval Consstency

This section introduces a general framework for interval consistency tests. These
tests are based on the resourceconstrai ntsand consider the resourceavailability and
requirementswithin certain timeintervals.

An activity i requiresan amountof work w;; := ;. p; from resourcek that depends
upon the resourcerequirementr;; and processingtimep;. A timeintervaliiscapacity
consistent if the amount of work requested by all activities within this time interval
can be matched by the amount of work supplied.

Figure4.2: Typesdf intersectionsbetween an activity and atimeinterval

Let usconsider thework of an activity ¢ that must fall intoatimeinterva [¢;,ts]. The
interval processing time p;(t1,t2) isthesmallest amount of timeduring whichi has
to be processed within [t1,ts[. There are five possible situations: The activity can
be (1) completely contained within the interval, (2) completely overlapthe interval
when started as early (left-shifted) or as late (right-shifted) as possible, (3) have a
minimum processingtimewithin theinterval that is realised when started as early as
possible, or (4) have a minimum processing within the interval that is realised when
started as | ate as possible. These four situationsare shown in Figure 4.2. The fifth
situation applieswhenever ; does not haveto be processed — neither compl etely nor
partially — within the given timeinterval. Consequently,

Thecorrespondinginterval work isw;y (t1,%2) := rikpi(t1, t2). Theinterval work of
asubset of activities A C V isdefinedthrough Wi (A t1,2) := D ;¢ 4 wik(t1,12).
Using this definition of interval work we can now definetheslack of atimeinterval
with respect to aresource k and a set of activities as the difference between work
supply and demand within theinterval:

SlaCk(Aa ka ty ) t?) = Rk . (t2 - tl) - M;k ('A’ t1, t?)' (42)
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Observethat theslack functiondependson theactual set A of currentdomains, sowe
will write slacka (A, k,t1,t2) whenever necessary. An interval [t1, ¢, is capacity
consistent if it has non-negativeslack for al resourcesand activitiesthat requirethe
resource:

Given adomain set A, we can only develop a solution if this necessary condition
holdsfor all resourcesand al timeintervals.

The basicidea behind al interval consistency testsdescribedin this chapter now is
asfollows: Weconsider an additional, hypothetical constraintH and try to show that
if H issatisfied then Constraint (4.3) is violated for someresourceand timeinterval;
in this case we can conclude: —H. This leadsto two main questionswhich we will
try to answer in thefollowing sections:

1. How should H be chosen so that the conclusion —H |eads to useful domain
reductions?

2. For whichintervals|t1, ;[ should Constraint (4.3) be tested?

The notion of interval capacity consistency as defined here has to the best of our
knowledgefirst been suggested by Lopez (1991) (see aso Lopez et al. 1992) under
the name energetic reasoning; the area of the rectangledefined by an activity pro-
cessing timeand a resourcerequirement can be interpreted as work or energy, and
we usethe termsinterchangeably.Special casesaf thisconcept have been known for
alongtime(seee.g. Zaloom 1971). Schwindt (1998b) hasindependentlydevel oped
a concept of interval work. He and, independently, Baptiste et al. (1999) were the
first to answer Question 2.

Although our focusis primarily on the use of interval consistency testsfor deducing
domain reductions,it isworth mentioningthat Constraint(4.3) can, of course, aso be
used to derive boundsfor optimisation problems, e.g., lower bounds for makespan
minimisation problems, in the following way: Impose a hypothetical upper bound
UB on the makespan; if thisleadsto a violation of Constraint (4.3) then UB + 1is
alower bound. This approach, for which Klein and Scholl (1999a) haveintroduced
the intuitive name destructive improvement due to the principleof repeatedly refut-
ing hypothetical constraints, hasfor examplebeen used by Nuijten (1994), Pesch and
Tetzlaff (1996), Heilmann and Schwindt (1997) and Schwindt (1998b). Test values
for UB are usually chosen through a dichotomising search. A violation of Con-
straint (4.3) can be detected through the repeated application of a temporal analysis
and of any of the testsdescribedin the following sections; the constraintis violated
if atest causesadomain to become empty.

Resource capacity constraintsin the form of Constraint (4.3), but mostly limited to
intervalsdefined by earliest start and latest completion times of activities, have also
been used in constraint logic based scheduling; see, e.g., the descriptionof solving
afamous bridge scheduling problem (an instanceof the problem PS{temp|Cpax) by



38 CHAPTER 4. CONSISTENCY TESTS

Van Hentenryck (1989) or the implementation of the cumulativeconstraintin CH P
(Aggoun and Beldiceanu 1993).

4.4 Digunctive Sub-Problems

Twoactivities: andj aredigunctiveif, for instancedueto limited resourceavail abil-
ity,i andj cannot be processed simultaneousdly. Difficult project scheduling problem
instances are typically characterised by a low resource supply, which causes many
pairs of activitiesto be digunctive. This motivates a closer study of consistency
checking techniquesfor digunctive scheduling. These techniquesmay be applied
to digiunctive sub-problemsof a project scheduling problem, i.e., sub-problemsin
which al activities are pair-wisedisunctive.

This section explains how such digunctive sub-problems can be isolated. It first
deal swith thequestion when two activitiesare in digunction and then di scusses how
all digunctivesub-problemscan befound and the most promising ones heuristically
selected.

The difficulty of problem instances with very low resource supply has first been
systematically analysed by Kolisch et a. (1995) for the problem PS|prec|Cpax. Sev-
eral authors have subsequently suggested the application of digunctiveconsistency
checking techniquesfor the problem PS|prec|Coa: (Brucker et al. 1998, Klein and
Scholl 1999a, Baptisteet al. 1999) and the problem PS|temp| Cynar (Schwindt 1998b).
Theimportanceof disjunctivesub-problemsisalso underlined by thefact that a very
successful lower bound for the problem PS|prec|Cpax, Which has been proposed by
Mingozzi et a. (1998) and is often referred to as LB; or node packing bound, is
based on theidea of solvingareaxation of adigunctive sub-problem. The bound is
an important component of most newer branch-and-bound algorithmsfor the prob-
lem (seee.g. Sprecher 2000, Demeulemeester and Herroelen 1997b, Brucker et al.
1998, Klein and Scholl 1999a).

44.1 DigunctiveActivity Pairs

Two activitiesz,j € V are digunctive if they cannot be processed simultaneoudly,
ie., if eitheri hasto finish beforej can start, orj hasto finish beforei can start,
which means that the following disjunctiveconstraint must hold:

We will denote thefact that < andj are digunctive with 7«5 for short. Obviously,
i+»j must hold if (1) the temporal constraintseither require that s— ;7 or require that
j—1, or (2) the start time domainsalow to rule out the possibility that  and ;7 are
performed in pardlél, or (3) the resource availahility is too low to performi and
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j in parallel. In this section, we are most interested in those digunctive activity
pairsfor which the (transitive) temporal constraints or the start time domainsdo not
immediately imply which part of the digunction must hold.

L et usthereforeconsiderin moredetail when limited resourceavailability causesthe
two activitiesi and j to bein digunction. Thisisobvioudy the caseif their combined
resourcerequirementsexceed the availablecapacity, i.e., if 7, +rjk > Ry, for some
resourcek. However, this condition can be relaxed by only consideringtheslack for
asmall timeinterval that dependson the currentdomainsaof ¢ and j.

Lemma 1 (DigunctiveActivities). Consider rwo activitiesi ,j € V and an interval
[t1,t2[ defined by

Activitiesi and j arein digunction (i<sj), if there isa resource k € R required by
bothi and j and Sf

.\‘ZCI(.‘kA(V \{I ,j}, k,t,t 4+ l) < Tik o+ '!'_}-k, Vf- € Itk, fg[ (44)

Proof. If Condition (4.4) is satisfied for the interval [t;,¢2[ then either  or j must
finish beforet, or start after ¢y, i.e.

or thetwo activities must be in digunction:

Itisnow easy to show that whenever Condition (4.5) holdsthen Condition (4.6) must
also be stisfied. O

Simpleasit may seem, thecondition of Lemma 1 has often been missed and replaced
with the stronger condition 7. + r;; = Ry, which discoversfewer disunctions.

TheLemmais useful because(1) it only considersalimited timeinterval [t1, 2] and

(2)thedack in thisinterval isat most equal to but may beless than theresourcesup-

ply Rr. The second point deserves some further explanation: Recall that the slack
function depends upon the start timedomains, asit is defined in terms of theinterval

work and hence in terms of interval processing times. Even if no activity is sched-
uled, we may, by reducing the start time domains through constraint propagation,
be able to deducethat certain activities must be processed and consumeresourcesat
some time within the interval [t, ;[ and thus reduce the slack. These conclusions
will usualy bestronger if atight initial upper boundis given.
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4.4.2 Sdection of Digunctive Sub-Problems

A digunctivesub-problem of a cumulativescheduling problem is defined by a set
Ve C VY o activities which are pairwise diunctive. Such aset V¢ is also caled
disjunctive clique. From an algorithmic point of view, digunctive cliques play an
important role as they may alow to deduce the order or at least a partial order in
which the activitiesin aclique must be sequenced.

An intuitiveinterpretation of the sub-problem defined by a digunctivecliqueV © is
obtained if wethink of an associated redundant disjunctive resource: Weintroducea
fictitiousresourcewith capacity onethat isrequired by al activitiesin theclique; the
sub-problemdefined by V ¢ thenisto find a (partial) sequencein which the activities
inV ¢ must be processed by the resource.

Generdly, there are many possibilitiesfor choosingV €. An obviousexampleare the
two element sets of disjunctiveactivity pairs. However, dueto the way in which the
consistency tests describedin Section 4.5 below work, we areinterestedin choosing
maximal digjunctivecliquesV ¢, i.e., setswhich havethe property that thereexistsno
true superset of pairwise digjunctiveactivities.

These possiblechoices of V © can be determined by consideringan undirectedgraph
G(V, £99) with nodes correspondingto the set of activities and edges between any
pair of disiunctiveactivities, i.e., edge set £49 = {(i,j) | i, ] € V,i # j,i¢>j}.
A decompositionof G into al maximal cliques then gives all possible choices of
Ve Althoughalready the problem of finding asinglelargest maximal clique of G
is NP-hard (Garey and Johnson 1979) and the number of all maximal cliquesmay in
general be exponential in the size of the graph, the decomposition can for practica
purposes be quickly cal culated with the algorithmof Bron and Kerbosch (1973).

Nevertheless, the number of maximal cliques may still be large and many of these
cliques may be overlapping. Asthegain of information deduced by the consistency
tests may be outweighed by the computational effort for applying the tests, if this
is done too frequently, it is reasonble to redtrict the attention to a small number
of maximal cliques chosen at the beginning of the search according to a heuristic
suggested by Phan Huy (2000):

Phase 1: Given thedecomposition of G intoall maximal cliques, repeat-
edly select amaximal cliquewhich containsthelargest number of edges
that are not already covered by some previoudy chosen clique, until al
edges arecovered.

Phase 2: Repeatedly choose an additional clique in order of decreas-
ing size, if the new cliquedoes not overlap with any previously chosen
cliquefor morethan two thirds.

30bserve that the maximal clique decompostion of G in general depends on the set of current start
time domains A, since, according to Lemma 1, the question whether two activities are disjunctive or not
may depend on A. However, since we will generally only determine a maximal clique decomposition
once during the solution of a problem instance, we will write\V© instead of V¢(A).
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Other heuristicsfor choosing some (usually significantly fewer) disjunctivecliques
have been described by Brucker et al. (1998), Baptiste et al. (1999) and Baptisteand
L e Pape (2000); in contrast to the approach described here, these proceduresare not
based on aninitial decompositioninto al maximal cliquesbut heuristically construct
some promisingcliques.

45 Digunctivelnterval Consstency Tedts

Theideabehind al consistency tests described in this section is to consider subsets
A C V¢ of disunctiveactivitiesthat belong to the same disjunctiveclique. Within
thesesubsets, all possibleactivity sequenceswith a particul ar property areexamined,
e.g. the property that the sequencedoes not start with an activity 2 € A. If al such
sequencesareinfeasible, then wecan draw the conclusion that the sequencemust not
havethis property and deducethati must befirstin A. Using the shorthand notation
A; = A\ {i}, thiswill bedenoted by i — A;.

Consistency testswhichtry todraw conclusionsabout the (partial) sequencein which
some activitiesmust be processed are called sequence consistency tests. Given in-
formation about a (partial) sequence, associated domain consistency teststhentry to
reducethe activity start timedomains.

The consistency tests are presented in order from strongest to weakest condition.
While a stronger conditionalows a stronger conclusion, it is at the same time more
likely to be inapplicable. After developing the individud tests in Sections 4.5.1
to 4.5.3 we generalisethe results in Section 4.5.4 and show how they relate to the
concept of interval consistency in Section4.5.5. Sections4.5.6 and 4.5.7 relate the
domain reductionsachieved by the consistency tests to the different notionsof con-
sistency introducedin Chapter 3.

451 Input/Output Tex

Figure 4.3 shows an examplewith aset A ={i, |, k} of three activitiesto be pro-
cessed by the same digunctive resource. We can deduce that i must be scheduled
first in the following way: Supposei doesnot start first. Then al three operations
must be processedin the interval [2,9[. This meansthat a total processingtime of
8 = 3+ 2+ 3 must be scheduled in 7 = 9 — 2 available time units, whichis a
contradiction. Thus we can concludethat i must start first; we can then deduce that
start times of i greater than 1 can be removed from A;. Note that this conclusion
cannot bedrawn by separately consideringany two of the three activities.

Carlier and Pinson (1989) have formalised the observation madein the exampleand
have derived conditions under which it can be concluded that an operationi € A
must be scheduledfirst or lastin A. If i is scheduled before or after .A; we may also
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>

Figure4.3: Examplefor theinput test

think of i astheinput or output of .4;, hencethe name of the conditions. We usethe
shorthand notation P(A) := . 4 p; for thetotal processingtimeof A.

Consistency Tes 3 (Input/Qutput). Leti € ACVC. If

uEA.l:{)lE.A ustv (LC ES ) < P( )

then 7 must precedeall activitiesin .4; (input condition). Likewise, if

uEA, veA,,u;é (LC,, — ES,) < P(A)

then i must succeed all operationsin .4; (output condition).

Proof. If i does not precede A;, then all activitiesin A must be scheduled within
MaXye A; ved,uzo (LCy — ESy) timeunits. | f Condition (4.7) holdsthisis not pos-
sible. The second part can be shown symmetrically. O

The special case of the input/output condition where | A| = 2 isalso called digunc-
tive pair test.

If the output condition holds, i.e., if we have concluded that A; — i, then we may
add precedence constraints S; + p; < .S; foral j € A; totheset £{(A) of tempo-
ral constraints of the original problem instance; a symmetric statement applies for
the input condition. The addition of these temporal constraints may obviously cause
some domain reductionsin asubsequent temporal analysis, i.e., applicationsof Con-
sistency Test 1, which will for instanceensurethat ES; > max;c 4, (ES; T p;).

However, a better domain adjustmentfor activity ¢+ may be possible. Assumethat we
haveconcluded that A; — i. Clearly, i can only start after the minimum completion
time ¢* of all activitiesin A;. Unfortunately, finding t* is an A"P-hard problem,
asit isequivalent to solving the one-machine makespan minimisation problem with
release times and due dates (Carlier 1982). Therefore we resort to approximating
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t* . As aready mentioned above, a simple and obvious approximationis the maxi-
mal earliest completiontimein 4;. We can do better by considering the preemptive
relaxation of the one-machine problem (preemptive bound). For this problem, an
optimal solution known as Jackson's Preemptive Schedule (JPS) can be efficiently
obtained by scheduling the activitiesin .4; "'from left to right™ according to the "' ear-
liest due date" priority dispatching rule (Jackson 1956):

Whenever the resourceisfree, schedulethe activity i with minimal LC;;
if an activity j with LC; < LC; becomesavailablewhiles isin process
then interrupt i and start 3.

We denote the completiontime of JPSfor A; by EC?"(A;). Clearly, ECP"(A;) isa
lower bound on theearliest start of i ,and thesame holdstruefor al subsets A’ C A;.
However, Carlier (1982) has shown that

ECPT(A;) = Amga\i(‘{ltzrglArll ES, + P(A")}.

Thisimplies that EC?"(A') < EC?"(A;), if A C A;. We can thus adjust the
earliest possiblestart timeof ¢ to ECP"(A;).

Symmetricaly, we use LSP"(A;) as the preemptivebound for the latest start time
of A;, obtained by preemptively scheduling the activitiesin .A; "from right to left"
aslate as possibleaccording to the" maximum latest start™ priority dispatchingrule.
We can now summarise the domain adjustmentsin thefollowingdomain consistency
test:

Consistency Tegt 4 (Input/Output Domain Adjustments). Leti € AC VC. Then
the following testsapply:

Before returning to theinitial example, let us point out that Consistency Test 3isa
sequence consistency test while Consistency Test 4 is the associated domain consis-
tency test. Observethat we have not requiredthe setsd C V¢ in the two teststo be
identical. We will shortly come back to this question.

For the examplein Figure 4.3 the maximum of the expression on theleft side of the
input conditionis9 — 2,and P(A) = 8; since9 — 2 < 8, we can deduce i—{j, k).
With LS?"({j,k)) = 4 the domain of i becomesA; := [0,6M4 — 3,00[= [0, 1].
Note the effect of using the preemptivebound: By using LS ({7, k)) we have ob-
tained astronger domain reductionfor i than we would haveby considering LS; and
LS, separately, which would have left the value 2 in A;. A subsequent application
of Consistency Test 1 for the newly added precedence constraint :—4 will then re-
duce thedomain of k to A :=1[2,5] \ [0,0 % 3[ = [3, 5]. As pointed out above, this
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reductionin A, could aso beachieved through afurther application of theinput test
for A={i, k.

Theinput/output test (pair test) also appliesin theexamplein Figure4.1 on page 33.
For activity i and A = {1, 5}, the output condition gives8 — 2 < 7 and deduces
j—1. The domain of j remains unmodified, and the domain of ¢ reducesto A; =
Let us now consider the question whether the sets A C V¢ in the sequence and
domain consistency test can aways without loss of information be chosen in such a
way that they areidentical, as seemslikely after the previousexamples. Theexample
in Figure 4.4 (Dorndorf et al. 2001) demonstratesthat thisis not thecase.

Figure4.4: Input/output sequenceand domain consistency tests

In the exampl e, theinput conditionsallow to separatelyconcludej +  and k—i. The
output domain adjustment conditionthen yields: {j , k}—¢ = S; > 6. However,
the output condition of Consistency Test 3is not satisfied for A = {1, j, k} and the
distinct activity i, as9 — 0 £ 9. Thisdemonstratesthat by independently choosing
the set A for the two tests additional information can be derived.

In branch and bound proceduresthat branch over digunctive edges, the tests may
be employed to immediately select the orientation of edges, a process often called
immediatesel ection, asfirst suggested by Carlier and Pinson (1989), or edgefinding,
aterm introduced by Applegate and Cook (1991). The inputloutput tests have first
been described by Carlier and Pinson in the context of a branch and bound algorithm
for the job shop problem (JSP); the tests that they actually implemented in their
initial algorithm werelimited to two-element sets A and one additional heuristically
determined A andi € A for each resource. Using these tests, they were able to
optimally solve a notorioudly difficult 10 X 10 JSP instance (Fisher and Thompson
1963) that, despite many attempts, had defied solution for over 25 years.

Efficient algorithmsthat have later been developed for testing the inputloutput con-
ditionsfor al A andi and performing the corresponding domain reductions based
on the preemptivebounds usually use an ordering of activities accordingto earliest
start and latest completion times. The challenging part is to test the input/output
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conditions and cal culate preemptive bounds at the same time. Carlier and Pinson

(1990), Martin and Shmoys (1996), and Nuijten (1994) have designed O(|V¢|?) d-

gorithmsfor testing all subsetsA C V°. Thealgorithmof Nuijten hastheinteresting
property that it can be generalised for cumulative scheduling. O(|V¢|log |V¢|) ago-
rithmsfor testing all subsetshavebeen describedby Brucker et al. (1996) and Carlier
and Pinson (1994). Caseau and Laburthe (1994, 1995, 1996b) describean algorithm
based on the concept of task or activity intervalsfor checkingall sets A with effort
O(|v¢|®). The advantageof their approach is that the consistency conditionscan be
evaluated incremental ly within a search procedure. When used within a branch-and-
bound algorithm this means that the effective time complexity for performing the
tests at each node of the searchtreeis usualy lower than O({V¢|?) becauseit is not
necessary to test all A; although the worst case complexity for performing the tests
at anodeistill O(|Ve|?), the average complexity is lower. This contrastswith the
usual approachof applyingthefull test at each nodeof abranch-and-bound tree. All

algorithmshavein common that they combinethe evaluation of Consistency Tests 3
and 4 and thusrequirethesets A in both tests to beidentical. An O(|V?]2 log {V*¢()

algorithm which first tries to deduce sequence relations by applying the sequence
consistency test and in a second, independent step computes domain adjustments
has recently been described by Dorndorf et al. (2001).

As a generdisationof the input/output test, Focacci and Nuijten (2000) have pro-
posed two consistency tests for digunctive scheduling with sequence dependent
setup times between pairs of activities processed by the same resource. A version
of the input/output test for preemptivescheduling,i.e., the case where activities can
interrupt one another, has been designedby Le Pape and Baptiste(1996b).

Finally, we would like to mention that to our knowledge all agorithmsdiscussed
abovedo not test theinput/output conditionsin theform of Consistency Test 3, where
we haverequiredin the maximumexpressionsthat u # v, but rather allow for v = v,
thusactually testing a weaker condition. Although the extension may seem trivial it
doeslead to additional deductionsin certain cases. However, itis not alwaysobvious
how to includeit in existing algorithmswithout increasing their time complexity.

45.2 Input-or-Output Tes

The input/output condition allows to deduce that an operation: € A C V;, must be
scheduled first or last in A. The weaker input-or-output condition can be used to
show that a precedencerelationi — j must exist betweena pair of activitiesi and j
fromset A.

Figure 4.5 shows an example with aset A = {i, j,k, [} of four activities to be
processed by the same resource. The inputloutput condition does not alow to draw
any conclusionsabout the order in which the activities must be scheduled. However,
we can deduce that : must precede j: Supposei is not scheduled first and j is not
scheduledlast. Thendl four activitieswith atotal processingtimeof 7= 3+2+1+1
must be scheduled within theinterval [2, 8], which is a contradiction. Hence we can
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conclude that it isimpossiblethat at the same timei isnot first and j isnot last. If
eitheri must befirst or j must belast, theni must precede j, and we can removethe
start time 3 from A ;. Thisobservation |eads to the following consistency test.

Figure4.5: Examplefor theinput-or-outputtest

Consistency Tes 5 (Input-or-Output). Leti,j € ACVE. If

then i must be scheduled first or 7 must be scheduled lastin A. Ifi # j theni must
precede j.

Proof. Suppose neither i is scheduledfirst nor j is scheduled last. All activitiesin
A must then be scheduled within max,e 4, vea; ,uze (LCy — ESy) time units. I
Condition (4.10) holds, thisis impossibleand we can concludethat either : must be
firstor j must belastin A. In both casesi must precedey if 7 # j. O

Comparison to the very similar input/output test showsin what sense the input-or-
output test is weaker.

If this conditionholdsandi # ;7 which meansthat i— 7, then we can add the corre-
sponding precedenceconstraint S;+pi - < S; totheset £(A) of temporal constraints.
If possible, the start time domainsof i and j will then be reduced in a subsequent
temporal analysis.

If theconditionholdsfori = j, thedomain of i can be reduced in the following way:

While any domain reduction in the case that ¢ # j can only occur at the domain
bounds, domain reduction rule (4.11) may remove values within the domain but
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leaves the bounds untouched and is thus not useful if only the domain boundsare
stored.*

For the examplein Figure 4.5 we obtain 8 — 2 < 7 and deducei—j. By applying
adomain reduction rule for the tempora constraint S; + p; < S; we can remove
thevalue 3 from A;. Figure 4.6 shows another example where the input-or-output
condition can deducethat a single activity must either start first or last; in terms of

Consistency Test 5 thisis the casewherei = j. We obtain 5 — 3 < 4 and conclude
thati must start beforeor after{ k, {}. Domain reductionrule(4.11) alowsto remove
thevalues[2, 4] from A;.

Figure 4.6: Input-or-output condition example: i must befirst or last

As afina example, note that the result i—{7, k} that we have obtained with the
input/output conditionfor theexamplein Figure4.3 can also bededucedin two steps
with the input-or-outputcondition, resulting in the conclusionsi — j and i — k.
However, the correspondingreductionin A; is weaker, leavingthe value2in A;.

To our knowledge, theinput-or-outputtest in its general form hasnot been discussed
in the literature. A similar condition for the special case where¢ = j has been
described by Carlier and Pinson (1990) and Btazewicz et a. (1998). Stronger condi-
tions based on consideringall sets A of cardinality r, hence called r-set conditions,
have been discussed by Brucker et al. (1996). They describean O(|V°¢|?) 3-set algo-
rithm that checksall activity setsof cardinality threeand detectsall pairwise ordering
relationsderivablefrom triples. The agorithm thus implements the input-or-output
test for |.A| = 3. Judging from the implementation within their branch-and-bound
procedurefor the JSP, the efficiency of the 3-set tests is comparableto that of the
input/output tests. It is unclear whether alow polynomial time-complexity r-set al-
gorithm could be developed for r > 3.

The development of an agorithm with low polynomial time complexity for testing
the input-or-outputconditionsis an open issue. Based on experiencewith other con-
sistency tests, we conjecturethat in order to be of practical value such an algorithm
must at most have time complexity O(|V¢|?). Thereis an obvious O(|V¢|*) algo-

4See the discussion of domain-consistency versus bound consistency in Sections3.2.2 and 3.2.3.
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rithm using task or activity intervals, and Phan Huy (2000) hasdesignedan O(|V¢|®)
agorithm.

45.3 Input/Output Negation Tes

By further relaxing the condition to be tested, we can still draw additional conclu-
sionsin situations where the input-or-output condition and the stronger input/output
conditionsdo not hold. Figure4.7 shows an example with aset A = {i g,k} of

three activitiesto be processed by the same resource. Although we cannot conclude
that activity + must be last or must precede j or k, we can deducethat < must not be
first, and thereforeremovethe value 2 from A;. By generalising the observations

Figure4.7: Examplefor theinput negation test

madein the example, we arriveat the following consistency test.

Consistency Tes 6 (Input/Output Negation). Leti € ACVe®, If

theni must not start firstin 4; (input negation: i/4.A4;). | f
%(Xl— ES,) < P(A)

theni must not end last in .4; (outputnegation: A4;/41%).

Proof. If i precedes A;, dl activitiesin A must be processed within the interval
[ES;, max,e 4, LCy[. If Condition (4.12) holds, thisis not possible. The second part
can be shown symmetrically. O

Again, it is easy to seein which sense these conditionsare weaker than in the pre-
ceding tests. Domain reduction rules can be based on the observation that i must
succeed (input negation) or precede (output negation) at least one other activity in
A
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Consistency Test 7 (Input/Output Negation Domain Adjustment). For i € A C
Ve thefol | owi ng testsappl y:

iAHA = A = Ai\[O,ungiﬂECu[,

For the examplein Figure4.7 the input negation conditionyields9 — 2 < 8 and we
concludei 4 {j,k}. Accordingto thefirst domain reduction rule we can therefore
removeall vaueslessthan 3from A;.

Conclusionssimilar to thoseobtained in theexamplesfor theinput/output and input-
or-output test could also have been produced through successiveapplication of the
input/output negation test. Sincethe condition to betested for theinputloutput nega-
tion conclusionis weaker than the preceding conditions, it will of course hold when-
ever the stronger conditionsapply. Consider again the examplein Figure4.3. Here,
theinputloutput negation conditionsallowstoconcludej /4 {i,k} & i — jVk — j
andk 4 {i,j} i = kVvj— k whichimpliesi — {j,k}. However, thisim-
plication is not automatically deduced by the input/output negation condition. This
demonstratesthat input/output negation conditionsalone do not deducedl interest-
ing domain reductions. A similar effect can be seen in the examplein Figure 4.5.
Here, the input/output negation conditionscan be used to deduce { j ,k,}+i and
j#{i,k, 1), but this does not allow to remove the value 3 from A; asin the input-
or-output test.

Theinputloutput negationtest hasfirst been suggested by Carlier and Pinson (1989).
Most authors working on consistency tests have considered the test in some form.
However, an algorithm that tests all interesting A and i with effort O(|V°|?) has
only recently been developed by Baptiste and Le Pape (1996). Another O(|V¢|?)
a gorithm has been described by Dorndorf et al. (2001). Nuijten and L e Pape (1998)
have derived consistency tests similar to the input/output negation tests with tighter
time bound adjustments; the correspondingal gorithms have a complexity O(|V¢|?)
and O(|V¢|? log | Ve]).

Other researchers have often applied the tests in an incomplete way, testing only
some A and 7 (Carlier and Pinson 1989, 1990, Nuijten 1994, Baptisteand Le Pape
1995). Caseau and Laburthe (1994, 1995) have integrated the tests in their task
interval algorithm which tests inputloutput conditionsand the negation conditions
with effort O(|Ve®).

454 Summary and Generalisation

All digunctiveinterval sequence consistency tests that we have discussed can be
derived from thefollowingtheorem.

Theorem 2 (Sequence Consistency). Let A", A" c AC Ve, If
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(LC, — ES,) < P(A)

max
ue A\A ve A\ A" utv

then an activity in A' must szart first Or an activity in A" must end last in A.

Proof: If noneof theactivitiesin A" succeeds A\ A" and noneof theactivitiesin A'
precedes A \ A", then A mustbe processed within max, ¢ 4\ 4r,ve A\ A"yt (LCy —

ES,) unitsof time. If Condition (4.13) holdsthisis acontradiction. O
Test A\ A" A\ A Conclusion (—H)
input A A; i—A;

output A; A A; =i
input-or-output A; Ai i=A; V Aj—j
input negation A; {i} iAA;

output negation {i} Ai Ai i

Table4.1: Summary of digunctiveinterval consistency tests, A', 4" C A C V°¢

The results of the preceding sections are summarised in Table 4.1. For each con-
sistency test, the table shows the valuesof A\ A" and A \ A" that, when used in
Theorem 2, yield the test. The conclusionsof Theorem 2 have been reformulatedto
match the tests presented above. Note that the conclusion is aways the negation of
the hypothesisH falsified by the test.

455 Rdationto Interval Consastency

We will now relate the Sequence Consistency Theorem to the general concept of
interval consistency introducedin Section 4.3. For digunctiveschedulingand agiven
set of digunctiveactivitiesV ¢, the Interval Capacity Constraint (4.3) reducesto

whereP (VC,ty,t5) := 3, pi(t1, t2) isthetotal interval processing time within
[t1, t2[. Inversely, we denotetheset of all activitiesinV¢ that must be processed com-
pletely or partially within an interval {t;,¢2[ as Ve(t1,ts) = {i @ V° | pi (¢1,t2) >
0}. The following theorem shows how we can efficiently test violationsof theInter-
va Capacity Constraint.

Theorem 3 (Sufficiencyof Activity Interval Consistency). If, for sometimeinter-
val [t1,t2p

max
i, JEVE(ty,ta),i%t

— ES;) < P(V¢(t1,12)).
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Proof. From Equation (4.1) we know that 0 < o — t; < P(VCt1,%2) implies
that [V¢(t1,t2)] > 2. We consider two activitiesi, j € VE(t),%2),i # j, and Start
to transform Condition (4.14) into Condition (4.15) by rewriting the left hand side
of (4.14):

By observingthat t2 — LS; > p;(t1,t2) > 0, accordingto Equation (4.1), we can
approximatethe | eft side. We rewrite the right side and obtain:

Again, we know from Equation (4.1) that EC; — t; > p;(t1,t2) > 0. Thisapproxi-
mation leadsto:

Next, we approximatethesum on the right hand side, onceagain using Equation(4.1)
whichtdls usthat py > pi(t;,t2) > 0, and obtain:

By adding g t p; on both sides we arrive at:

Asitisawayspossibleto choosei and j in such away that the maximum difference
LC; — ES; isrealised, Condition (4.15) must hold. O

Thetheoremtells ustwointerestingthings. First, it statesthat if an interval capacity
congtraintis violated for some arbitrary time interva [¢;, £2[, then therewill also be
aviolationfor an interval defined by the earliest start and latest completiontime of
two different activitiesin VC(t, ,t2). When checkingfor violations this allows us to
restrict our attention to interval sdefined by earliest start and latest compl etiontimes,
called task or activity intervals (Caseau and Laburthe 1994), instead of considering
al possibletime intervals. Any violation of the capacity constraint can thus be de-
tected by testing O(|V¢|?) intervals. For digunctive scheduling, this answers the
initial question, posed in Section 4.3 on page 37, what interval swe should test. Sec-
ond, the theorem states that, as long as we test dl activity intervals, thereis nothing
to be gained from consideringinterval processing timeinstead of simple processing
time. If interval processing time has an effect on the test for a given set A then we
can obtain the sameeffect by consideringa different set A'. In summary, this means
that an a gorithmwhich tests Condition (4.15) for al activity intervalswill detect all
violationsaccording to the more general concept of Condition (4.14) which is the
negation of thedigunctive version of the general Interval Capacity Constraint (4.3).
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It is worth emphasisingthat thisstatementisindependentof the particular hypothet-
ical constraintH to betested. Thiscan be seen asfollows: For any set of constraints,
it is aways possible to first add and propagate the constraints, and then test the
interval consistency constraints. The particular form of the sequence consistency
tests is smply an accelerated version of this "add and propagate, then test” pro-
cess. For illustration, consider again the example shown in Figure 4.3, where the
conclusion i—{7, ¥} could also have been obtained in the followingway: (1) Add
H: iA{j,k), (2) updatethedomain of i based onH, whichyieldsA; := A; \ {t|t <
min,e ;1 ECy} = [5,6], and (3) test the interval consistency constraint (4.3) for
theactivity interval defined by { i, j, &} which hasthe left time bound 2 and theright
time bound 9. Because 9 — 2 # 8thistest failsand weconclude—H < i—{j, k).

For digunctivescheduling, Theorem 3 improves the characterisation of time inter-
vals for which the capacity constraint may be violated, which has been obtained by
Schwindt (1998b) and Baptiste et al. (1999) for the cumulative case discussed in
Section 4.6. The theorem al so reveal sthat for digunctive schedulingthe " energetic"
consistency tests that have been proposed by Baptiste and Le Pape (1995) are not
more powerful than their non-energeticcounterparts, i.e., the consistency tests that
have been presented above.

456 Lower Leve Consstency

This section relates the diunctiveinterval consistency teststo the general concept
of lower level consistency, in particular 2-consistency and 2- and 3-b-consistency
that are commonly used in CSP research and that have been introducedin Chapter 3.
We first derive a 2-consistency test and show that the consistency tests described in
Sections 4.5.1t0 4.5.3 can be used to achieve 2-b-consistency.

Let usfirst briefly recall the relevant notions of consistency: Activity start time do-
mainsarecalled 2-consistentif, for any pairi, 7 € V, andfor any valuea; € A, there
issomevaluea; € A; suchthat S; = a; and S; = a; is permitted by the constraints
of the scheduling problem. The weaker definition of bound consistency looks at do-
main bounds: Activity domainsare caled 2-bound-consistent, or 2-b-consistentfor
short, if, for any pair i, j € V, and for every valuea; € {min A;, max A;} thereisa
vauea; € Aj suchthat S; = a; and S; = a; is permitted. Clearly, 2-consistency
implies 2-b-consistency. A general definition of k-b-consistency is given in Sec-
tion 3.2.3.

Theconcept of bound consistency is of interest because, as we have seen, many con-
sistency testsare based on domain bound considerations. In addition, the propagation
of temporal constraintsdependson domain bounds. Any changein domain bounds
can therefore trigger further domain reductions. Findly, if domains are approxi-
mated by start timewindows— and thisis often donefor reasonsof implementation
efficiency — bound-consistency is the only reasonableconcept of consistency.

Figure 4.8 shows an example, taken from Nuijten (1994), with a pair of activities
i,7 € V° whereany 2-inconsistentvalue is marked. For example, ; cannot start at
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Figure4.8: 2-consistency

time 2 since this does neither leave enough room for 7 to be processed before j nor
after 5. In general, i cannot start in the open interval | LS; — p;, EC;[. Notethat the
interval can be empty if EC; < LS; — p;. The observation is summarised in the
following theorem due to Nuijten (1994).

Theorem 4 (2-consistency). Let4,j € V©,i # j. A; and A; are 2-consistent if and
only if

Proof. If | is started at timet € A; then i is blocked during the open interval
It = ps,t +pj[. Theleft bound of theinterval is maximal for t = LSj, and theright
bound is minimal for t = ES;. Thus the minimal interval during which ¢ cannot
startis |LS; — p;, EC;[. All other possible start timesof j |leave possiblestart times
fori. O

Thefollowing result shows that the sequence consistency tests based on Theorem 2
can be used to ensure 2-b-consistency.

Theorem 5 (2-b-consistency). Application of the input/output, input-or-output, or
the input/output negation test within a fixed point iteration leads to a 2-b-consistent
state.

Proof. For A= {i,j} dl thetestssimplify to:

To achieve 2-b-consistency any 2-inconsistent value must be removed from the do-
main bounds. According to Equation (4.16), the left domain bound can only be
2-inconsistentif

In this case, the condition of the tests is satisfied and any inconsistent vaues are
removed by the first domain reduction rule above. The proof for the right domain
bound is symmetrical.
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We have thus shown that the application of any of the input/output, input-or-output,
and input/output negation tests, even if only used for activity pairs, within a fixed
point propagation algorithm® leads at least to a 2-b-consistent state with respect to
theinterval capacity, or resource, constraints.

As theexamplein Figure 4.8 shows, the tests can, however, only ensure 2-b-consist-
ency but not the stronger concept of 2-consistency, because none of the marked val-
uesin thedomainsof 7 and j can beremoved by any of thetests. Of course,itisno
surprisethat the domain bound-oriented tests can only achieve bound-consistency.

However, a stronger result can be obtained if the the input/output and input/output
negation tests are applied together within a fixed point algorithm:

Theorem 6 (Strong 3-b-consistency). Application of the input/output and input/
output-negation tests for all pairsand triples of activities within a fixed point itera-
tion leadsto a strongly 3-b-consistent state.

Proof. A detailed proof is given in Dorndorf et a. (2000b). The proof relieson a
technical analysisof the necessary conditionsfor 3-b-consistency, which are trans-
formed in such away that it can be seen that these conditionsmust be satisfied if the
input/output and input/output-negation consistency testsare appliedat least for pairs
and triplesof operations. O

The inputloutput and input/output negation tests usually, but not necessarily im-
ply more than 3-b-consistency. However, if only pairs and triples of activities are
considered, then the application of the tests is equivalent to enforcing strong 3-b-
consistency.

45.7 Sequence Consistency Does Not | mply k-b-Consistency

Trivia thoughit may be, itisworth emphasising that the consistency testsonly check
necessary, but not sufficient conditionsfor the existenceof afeasibleschedule.While
we could show that the sequence consistency tests always achieve 3-b-consistency,
this means that they in general do not achieve k-b-consistency for k > 3. The
examplein Figure4.9 illustratesthese two points.

In the example, A = {i, 7, k,1, m). The output condition allows to conclude that
{j, k,l,m}—1, since10 — 0 < 11. The preemptivebound EC?" (A;) for theearliest
completiontime of {7, k,1, m)is9. According to domain reduction rule (4.8) this
leaves the value9 as the left bound of A;. However, manual inspection shows that
the earliest completion time of {j, k,1,m} is actually 10. Thus, the input/output
test leaves an inconsistentvalue at the left bound of A;. This demonstratesthat the
domain reduction rule based on the preemptivebound is heuristic.

3See Algorithm 1 on page 27.

“It is easy to see that if precedence constraints are given in addition to resource congtraints, as, e.g.,
in the problem PS|temp|Cpayx. then the additional application of the Precedence Consistency Test 1 will
ensure overall 2-b-consistency.
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Figure4.9: When sequence consistency testsfail

Now modify the exampleby reducing LC; to 11. Theinput/output test still yieldsthe
same result, and none of the other sequence consistency tests leads to an inconsis-
tency (by producing an empty domain). Again, manual inspection showsthat there
isno feasible schedulefor A.

458 Shaving

In the tests based on the Sequence Consistency Theorem 2 we have tried to refute
hypothetical constraintson the sequencein which activitiesin aset A C V° execute.
Now, we take a purely time-oriented approach and consider hypothetical constraints
on individual activity start times. If we can falsify such a constraint, then we can
reducethecorrespondingactivity domainin an obviousway. Theprocessof reducing
activity domains based on thiskind of reasoninghas been calledshavi ng (Martinand
Shmoys 1996, Caseau and Laburthe 1996b).

For example, we can test a hypothetical constraint of thetypeS; > t, for somet, €
A;. If thisleadsto acontradiction, then we can concludethat S; must belessthan or
equal tot, and removeall vauesgreater ¢, from A;. A contradictionmay be caused
by adirect violation of theinterval capacity constraint (4.3) or after propagating the
hypothetical constraint by repeatedly applying other consistency tests. Vaues of ¢
can for example be chosen by a dichotomisingsearch over A;.

A shaving approach for disjunctive scheduling has been proposed by Carlier and
Pinson (1994) for solving the JSP. Martin and Shmoys (1996) have, independently,
applied the technique within a time-oriented branch-and-bound algorithm for the
JSP. Using a shaving technique, Caseau and Laburthe (1996b) were able to obtain
a proof of optimality for the famous 10 x 10 job shop problem instance of Fisher
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and Thompson (1963) with only 7 backtracks. Recently, Dorndorf et a. (2001) have
shown how the use of simple shaving techniquescan significantly reducethe search
effort of a branch-and-bound algorithm for the Open Shop Scheduling Problem, an-
other classic disjunctivescheduling problem.

4.6 Cumulativelnterval Consstency Tests

While disjunctiveschedulingor sequencing is concernedwith unit resourcerequire-
ments and capacities, cumul ativeschedulingconsidersthe general case of arbitrary
resourcesupply and demand.

In this section we introduceseveral consistency testsfor cumulativescheduling that
are based on the Interval Capacity Constraint(4.3). Section 4.6.1 first dealswith the
specia case of timeinterval sof width one. Section4.6.2 then presentstests based on
considering activity intervals,i.e., intervalsdefined by the earliest possiblestart and
latest possible completion time of two activities, while Section 4.6.3 discusses the
guestion which timeintervalsmust in general be tested in order to detect aviolation
of Constraint (4.3). Finaly, Section 4.6.4 briefly describesconsistency tests based
on the concept of elastic resourcerelaxations.

4.6.1 Unit-Interval Consistency

Animportant specia case of the generd interval capacity constraint(4.3) isobtained
if we consider timeintervals of width one, also called unit-intervals. If, for aset Vs,
of activitiesto be processed by resource k, someactivityi € Vi and sometimet, the
slack(Vi \{i) k,t,t + 1) islessthan the required resourceamount i, then activity
1 cannot be processed at timet. Thisleadsto thefollowing consistency test, whichis
a so known under the name timetabl e-based constraint propagation (Le Pape 1994b).

Consistency Test 8 (Unit-Interval Test). Leti € Vi. If, for sometimet in the
interval [ES;(A) LC; (A}

Sfackg(vk \ {Z}, k,t,t + 1) < 7T
then the domain of i can be reduced in the following way:
Ai = Az\ ]ﬁ ——pi,t] .

Testssimilar or equivalent to the unit-interval consistency test havefor instancebeen
described by Le Pape (1994b, 1995), Nuijten (1994), Caseau and Laburthe (1996b),
and Klein and Scholl (1999a). For digunctive scheduling, the unit-interval test is
covered by the pair test.

Thetest can be efficiently implemented through capacity profilesreflecting remain-
ing and used capacity over time; the profilescan be based on a support point repre-
sentation. A capacity profilecan beinitialised and updated by using thefact that an
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activity ¢« must dways bein process during its core time between its latest start and
earliest completion time; observe that it follows from the definition of interval pro-
cessingtimein (4.1) that p;(t,t +1) = 1forall t € [LS;, EC;[, and pi(t,t T 1) = 0
otherwise. The capacity profile can thereforeonly change at pointsin time corre-
sponding to the latest start or earliest completion time of an activity and can thus be
represented using at most 2 . |V| support points.

Let tx and £+ betwo consecutive support points of the capacity profile, wherethe
capacity value given at time ¢, appliesin thetimeinterval [ty, ti+1[. Clearly, if an
activity cannot be in process at time ¢, then in cannot be processed anywherein
[tk, tr+1[. We thereforeonly need to test the condition of Consistency Test 8 at the
relevant support points and may strengthen the reduction rule by removing all times
intheinterval Jtx — p;, tr+1[. Theworst caseeffort for checkingall activitiesagainst
the complete remaining capacity profileobviously is O(|V|?). However, the average
effort is often lower becauseusually not al activities have a non-zerocoretime and
we need only check against the support points within the start time domain of an
activity.

The capacity profile can be updated as part of the constraint propagation process.
Whenever the start time domain of an activity is reduced, an update of the capacity
profile may be required as the domain reduction may haveled to a new or modified
core timeof i. Since the core time modification may overlap the entire profile, the
worst case updatingeffortis O(JV)|).

4.6.2 Activity Interval Consistency

The digjunctive sequence consistency tests developed in Section 4.5 can be gener-
alised for cumulativescheduling in a straightforward way by considering available
and required work instead of time spans and processing times. This relation was
first pointed out by Nuijten (1994) (see also Nuijten and Aarts 1996). Thefollowing
theorem extends the Sequence Consistency Theorem 2 for cumulative scheduling.
In analogy to the total processing time P(.A) of the activitiesin aset A, we define
the total work with respect to aresourcek as Wy (A) == ). 4 mjkp;. Asthetime
intervals considered are activity intervals that are defined by activity sets, we have
chosen the name activity interval consistency.

Theorem 7 (Activity Interval Congstency). Let A', A" C A C Vi.If

3 - <
Rk.”EA\;‘r’l‘?)éA\A”(LC, ES,) <W(A)

then an activity in A" must szart firsz or anactivityin A" must end last.
Proof: Similar to proof of Theorem 2.

In contrast to the Sequence Consistency Theorem, we can no longer assume that
u # v becauseit is now possible that an activity that starts first also ends last.
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Comparison of Condition (4.17) to the general Interval Capacity Constraint (4.3)
showsthat the conditiononly considerstimeinterval sdefined by aset A of activities
and thetota work of A, asopposedto interval work. In the digunctive case we were
able to show that it was sufficient to consider activity intervalsand that there was
nothing to be gained from using interval work instead of set based work on theright
side. However,it turnsout that thisis not the casefor cumulativescheduling, so that
the condition can actualy be strengthened. The reason for presentingthe condition
in the aboveform is that this extension of the digunctive case alows to generalise
algorithms originally designed for sequencing. We will discuss a sharper form in
Section 4.6.3.

The theorem can be used to derive consistency tests in analogy to the sequencing
tests by using suitable valuesfor A' and A", as shown in Table 4.1. Note that the
meaning of conclusionssuch as.4;—1 or i—.4; isthat i must end after (start before)
all activitiesin A;; in contrast to the digunctive case this, however, does not imply
that it must also start after (end before) A;.

Useful domain reductionscan be deduced for the cumulativeversion of the input-
or-output test withi = j. For A' = A" ={i), i.e., for testing the hypothetical
constraintH : i4.A; A A;/14, Theorem 7 yields thefollowing consistency test:

Ry Cwemax (LC,-ES) <W(A) =
Clearly, the excess amount of work that cannot be processed in the interval defined
by min,ec 4, BS andmax, ¢4, LC, isthedifferencecf thetotal work requiredby A
and thecapacity availablewithin theinterval. Sinceonly activity ¢ can movepartially
or completely out of theinterval, we can concludethat the amount of processingtime
of 7 to be moved outsideto the left and/or right, denoted by rest(A, i), is:

rest(A, 1) == [(W(A) - Ry . max , (LC, = ESu))/rik].
This observation alows to deduce domain reductions if the minimum amount of
processingtimethat is always outside of theinterval, regardless of the chosen start
time, is less than the required amount:

pi—  max (LC, — ES,) <rest(A,1).
If Condition (4.19) holds, then the part of i that must be outside of the interval must
either be completely on theleft or be completely on theright sideof theinterval. This
leadsto thefollowingdomain reduction rule that can be applied if Conditions(4.18)
and (4.19) hold:

Ai == Ai\ | min BS, —rest(4,i), manLC, *+ rest(A, i) — pil. (4.20)
This rule can actually be sharpened as follows: If the left or right bound reduction
may be appliedfor A; then it can also be applied for all subsets A" C A;; thisis
not shown here. The sharpenedform of the rule is equivalent to domain reduction
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Figure 4.10: Four activitiesrequiring 1 unit of aresourcewith capacity 2

rule (4.11). Werefer to the conditionsand thisdomain reduction rule as thecumula-
tive input-or-output test.

Figure 4.10 illustrates the test. It shows an example (Nuijten 1994) with four ac-
tivitiesto be processed by the same resource k with capacity R = 2. Inspection
shows that if activity i isstarted beforetime 4, then it isimpossibleto scheduleall
of the other activities j, k, I within their time window. Thisis detected by theinput-
or-output test in the following way: Because 2. (9 — 1) < 18 we conclude that
i—={j,k,1} V{]j, k,1}—i. Theamount of processing time of 4 that must take place
outside of the interval [1,9[ isrest({s,],k,i},7) = [(18 = 2- (9 - 1))/1] = 2.
Because 7 — 8 < 2, Condition (4.19) is satisfied and we apply the domain reduction
rueA; := A;\ 11 — 2,9F 2 - 7[ = [4, 7], asshown in Figure 4.10.

It is interesting to consider a dight modification of the example: For p; = 6 the
reduction ruleyields A; := A;\ 10,4[ = {0,4,...,7}; thevalueOisthusleftin A;
and the domain bounds remain untouched.

The test presented here is similar to the three cumulativetests described by Nui-
jten (1994), who also describesa corresponding extension of his digunctive con-
sistency checking algorithm. The time complexity of the resulting algorithm is
O([{rir}| . |V|®), where |{r;x }| is the number of distinct resourcecapacity require-
ments. Another O(|V,|?) consistency checking algorithm for activity intervals has
been described by Caseau and Laburthe (1996b).

Baptiste and Le Pape (2000) have recently proposed an O(|Vi|?) agorithm for
checking activity interval consistency that is based on the idea of transforming a
cumulativeresource and cumulative, non-preemptable activities to a digunctive re-
source and correspondingdisunctive activities with preemption allowed; they then
apply an algorithm that implements the input/output consistency test for digunc-
tive preemptive scheduling (Le Pape and Baptiste 1996b) and reduce the domains
of the original, cumulativeactivities based on the domain reductions deduced for
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their digjunctivecounterparts. While the computational complexity of theagorithm
is lower, the time bound adjustments are less precise than with the algorithms of
Nuijten (1994) and Caseau and Laburthe (1996b).

As mentioned before, the testsdescribedin this Section could be strengthenedby us-
ing interval work instead of simplework and by considering additional timeintervals
other than activity intervals. Thisis explained in the following section.

4.6.3 Minimum Sack Intervals

Figure4.11 shows an example, similar to an exampleused by Baptisteet a. (1999),
with five activities that require one unit of a resourcewith capacity 2. We can con-
clude that activity ¢ must start after time 6. This can be deduced by first imposing
the hypothetical constraintH : C; < 10 or equivalently S; < 6, and then testing the
general Interval Capacity Constraint (4.3) for theinterval [1,9[. If 4 is constrained

Figure4.11: Five activitiesrequiring one unit of a resourcewith capacity 2

to finish at time 10 or before, then the total amount of interval work to be processed
within [1,9] is2.4 % 3.3 = 17 units, whereasonly 2. (9 — 1) = 16 unitsare
available. We can thus conclude—H and removevalueslessthan or equal to 6 from
thestart timedomain A;. We emphasisethat H can only berefuted by testing thein-
terval [1, 9[, while the I nterval Capacity Constraintis satisfied for all other intervals,
includingal activity intervals.

Theexampleleadsus back to theinitial question, posed in Section4.3, for what time
interval sthe capacity constraintshould be tested. This question hasrecently been an-
swered by Schwindt (1998b) and, independently, by Baptisteet a. (1999). By study-
ing the possibleextremadf the slack function (4.2) for agiven set of activitiesVx, the
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set of intervals[t;,t2[ can be characterised for which the slack function can takea
local or global minimumand may thus violate an Interval Capacity Constraint (4.3).
Schwindt and Baptiste et a. have shown that the number of such minimum slack
intervalsis of order of magnitude O(|V;|?) and havegiven a characterisationof the
intervals (the onein Schwindt (1998b) is dightly tighter). Thus, as we know from
theinitial example, the set of minimum-slackintervalsislarger than the set of activ-
ity intervalsbut still of order of magnitude O(|V;|?). Since an intuitivedescription
of the minimum slack intervalsis hard to give, and because the proof islengthy, we
do not describethe set of minimum-dack intervalsin more detail.

Baptisteet al. havedeveloped an O(|V|?) agorithm for computingthe valueof the
slack function for al potential minimum-slack intervals, and an O(|Vi|? log [ Vi |)
algorithm has been described by Schwindt, who has used the interval capacity con-
straint for computing lower bounds for the problem PSjtemp|C,.ax by using a de-
structiveimprovementapproach.

In order to reduce activity domains, Baptiste et al. suggest to use hypothetical con-
straints of the type S; t,, similar to the example above, wheret, depends on
the right bound of a minimum slack interval; thereis an obvioussymmetrical test.”
The timecomplexity of an algorithm that computesall domain reductionswhich can
be obtained on the minimum-slack intervalsis O(| Vi [3); this followsfrom the fact
that the slack for all potential minimum-dack intervals can be computed with effort
O(|Ve|?), that there are [Vy,| activities to be tested and that the candidate values for
t, and ¢, dependon theminimumslack interval and the activity under consideration.

The development of a quadratic algorithm to compute al domain reductionsis an
open issue.

4.6.4 Fullyand Partially Elastic Relaxations

This section describes two relaxations of the scheduling problem that have been
suggested by Baptisteet a. (1999). The relaxationsdescribe necessary conditions
for the existence of a feasible schedule. They are based upon the idea of trying
to answer the question whether there exists an integer functionesy (¢,i) ,(for elastic
schedule), that describesthe number of work unitsassigned to all activities over time
so that for every activity the total number of unitsassigned equal stherequired work.
The capacity assignmentdefined by esy. (1 ,i) iselasticin the sensethat it allows that
theamount of resourcesassignedto activity ¢ may vary whilei isin process, aslong
thetotal amount of work correspondingto ¢ is covered.

"Baptiste et al. (1999, Proposition 13) actually use the right bound of a minimum slack interval for
t-. However, we would like to point out that the resulting conclusion can be strenthened if, for a distinct
activity < and aminimum slack interval [¢1, ¢2{ the valuet, = ¢o +max{0, t; — ES;} isused instead of
t, = t2;thiscan easily beintegrated in the proposed algorithm. Simply speaking, the value oft, should
be chosen in such away that the minimum processing time of activity i within theinterval [t;, to that is
obtained when ¢ is right-shifted equals the minimum processing time when ¢ is | eft-shifted.

In the example above, we thusobtaint, = 9+ max{0,1 — 0} = 10; it can easily be seen that the
domain reduction obtained for the hypothesist, = 9 isweaker.
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The fully elastic relaxation is the decision problem of deciding whether a function
esk(t,i) existssuch that the following constraintshold:

esp(t,i) = 0, forali € Vi, andt € A;
> esk(t,i)= pira, foralie Vg
t

A tighter relaxation can be obtained by adding the two following constraints.

S est(t)i) < Ri-(t-minay), fordliandt € A (4.24)
<t
S esi(t'i) < Ri.(maxA;—t), fordliandt € A;. (4.25)

t<t!

Theresultingdecision problemiscalled partially elasticrelaxation; theway in which
assigned work may float within the activity time window is more restricted than in
thefully elasticcase.

The partialy and fully elastic relaxationscan be used to deduce activity domain re-
ductionsin the usual way. If, after adding hypothetical constraint H, it can be shown
that no function es (¢,1) exists that satisfies Constraints(4.21) to (4.25), then —H
must hold. Baptisteet al. describe an O(|Vx|?) domain reduction algorithm based
upon the fully elastic relaxation and an O(log |{rix }| - |V |?) agorithm using the
partially elastic relaxation, where | {r;; } | is the number of distinct resourcecapacity
requirements.

The partially elastic relaxationis strictly weaker than thegeneral interval consistency
constraint (Baptisteet a. 1999).

4.7 Multi-ModeConsstency Teds

Given an instanceaf the multi-modeproject schedulingproblem MPS|temp|Cpax We
can obtain an associated instance of the problem PS|temp|C,.qx by replacingthein-
put data that dependson the mode assignments, i.e., processing times, timelags, and
resourcerequirements, with the correspondingminimal valuesover al modes (Heil-
mann 1998). As the resulting associated problem is a single-mode problem we can
apply the consistency teststo it that have been describedin the preceding sections.
If the associated problemis arelaxation of the original problem then any domain re-
duction obtainedfor the associated problem must also apply for the original problem
instance. The concept of the associated problem instanceis formally expressedin
thefollowingdefinition.
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Definition 1 (Mode-Minimal Problem Instance). Given an instanceP of the prob-
lem MPS|temp|Ch,,, described by

the associated mode-minimal problem instance P is the instance of the problem
PS|temp|Cpuay that isdescribed by

where

Given an instance P of the problem MPS|temp|Cqy, the consistency tests for the
temporal constraintsand theinterval consistency testsmay then be applied to thecor-
responding minimal problem instance?. SinceP is arelaxation of P, any domain
reductionobtainedfor P must also apply for P. AsPisas ingle-mode problem, any
consistency test applied to it can, of course, only lead to reductionsof the activity
start time domains.

We therefore introduce three additional simple consistency tests for reducing the
activity modedomains A 5, based on the considerationof temporal constraints, re-
newabl e resourceconstraints, and non-renewableresource constraints. The tests are
presented in theform of conditionand conclusion. We do not comment on the obvi-
ous computational complexity of thetests.

If atemporal constraint (i, j) can never hold in case a particular mode assignment
1 € Ay, ischosen for activity i, regardiess of the mode of 7, then we may remove
wfrom Ay,

Additionaly, any mode assignment . € Ay, that leads to a violation of a unit
interval capacity constraintfor a renewableresource may beremovedfrom Ay, :

1€ Vi, € Apg,, t € [LS;, ECi|:

4.27)
slackh, (Vi \ {i) b, t,t+1) < i An = A \{p)-
A similar test may be applied for the constraintsfor non-renewable resources. In
analogy to Definition (4.2), a slack function for non-renewable resources may be
defined asfollows.
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Algorithm 2 Mode Shaving
repeat
Aold = A
for all activitiess € V do
for all modespy € Ay, do
A=A
Ay, = {u}
if acurrentdomainin CP(A') isempty then
A, o= Ao \ {p}
end if
end for
end for
until A = Adld

slacka (V, k) := R} - Z (r_n&n Tiuk
1€V, HESM

Using this function we can state the following consistency test that removes any
mode assignment i € Ay, that leadsto a violation of a non-renewable resource
constraint:

i € Vi, € Ay, -
slack’y (Vy, \ {i}, K)<ripe = A=A, \ {u}.

The three mode consistency tests 4.26 to 4.28 are subsumed in the mode shaving
test, which repeatedly tries to show that a mode assignment ¢ € Ay, leadsto a
contradiction by applying constraint propagation until a fixed point is reached or a
domain becomesempty. Theideaof thetest issimilar to theshavingtest for reducing
start timedomainsdescribedin Section 4.5.8. Thetestisshownin Algorithm2. The
operator CP may apply any number of consistency tests but, of course, must not
recursively apply the modeshaving test itself.

48 Summary

We have introduced simpl e consistency tests for temporal constraintsand have pre-
sented ageneral, unifyingframework for understanding interval capacity consi stency
tests. Within this framework, we have surveyed and extended previous results that
have been obtained in the areas of Operations Research and Artificial Intelligence.
We have related the concept of energetic reasoning to sequence consistency tests
known under the names of immediate selection or edge finding.

Theinterval consistency tests describedin this chapter have been appliedfrequently
and with great successfor solving digunctiveschedulingproblems. Fewer and so far
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I lessconclusiveresults have been reportedfor the application of thetestsfor cumula-
tivescheduling. Several tests that we have described are availablein general purpose
scheduling software libraries such as ILOG Scheduler (Le Pape 1994b, 1995, Nui-
jten and Le Pape 1998), CHIP (Aggoun and Beldiceanu 1993), or CLAIRE Sched-

ule (LePape and Baptiste 1996a).






Chapter 5

Algorithm

This chapter describes a time-oriented, constraint propagation based approach to
resource-constrained project scheduling with generalised precedence constraints.
We present a branch-and-bound algorithm for the general problem PSitemp|Cpiax
that enumerates possible activity start times based on the idea that, at a given node
of the search tree, an activity must either start as early as possible or be delayed.
A central feature of the algorithm is the application of constraint propagation tech-
niquesthat actively exploit the temporal and resourceconstraintsduring the search
in order to narrow down the set of possibleactivity start times and thus reduce the
search space. Further reduction of the search effort is achieved by enforcing some
necessary conditionsthat must be met by active schedules.

One of the main advantages of the time-oriented branching scheme is its concep-
tual simplicity which allowsto modify and extend the approach for related practical
scheduling problems that are often complicated by additional constraints. Further-
more, the constraint propagation techniques that we use are not custom-tailored for
the problem PS|temp|C gy but are of an elementary natureand have a wide applica-
bility.

Extensivecomputational experimentswith systematicallygenerated test casesfor the
problem PS{temp|Cpqx With one hundred up to five hundred activities per problem
instance show that the agorithm solves more problemsto optimality and feasibility
than other exact solution procedureswhich have recently been proposed, and that the
truncated version of the algorithmis aso avery good heuristic.

In addition to the general problem PS|temp|Cpa. the algorithm is evaluated for the
specia case of the problem PS|prec|Cumax Which contains only simple precedence
constraints. Computational experimentswith large benchmark test sets, ranging in
sizefrom thirty to one hundred and twenty activities per probleminstance, show that



68 CHAPTERS. A BRANCH-AND-BOUNDALGORITHM

the algorithm scales well and is competitive with other exact sol ution approachesfor
this special problem.

Thestructureof thischapterisasfollows. Section5.1 reviewsthe most relevant pre-
vious solution approaches. Section 5.2 summarizes which of the consistency tests
introduced in Chapter 4 are used within the branch-and-bound algorithm. The a-
gorithm itsdlf is then presented in Section 5.3, and Section 5.4 finally describesthe
computational experiments.

5.1 PreviousSolution Approaches

Already the problem PS|prec|Cq. is NP-hard. Most exact solution methods are
therefore based on branch-and-bound search. Beginning with the work of John-
son (1967), a great number of branch-and-bound algorithmsfor solving the prob-
lem PS|prec|Cq: have been developed, and we refer the reader to the recent sur-
vey papers of Brucker et d. (1999), Herroelen et a. (1998), Kolisch and Padman
(2001), and Elmaghraby (1995) for a description and classification of the various
approaches. Currently, the most effective exact algorithmsseem to be the ones of
Demeulemeester and Herroelen (1997b), Sprecher (2000), Mingozzi et d. (1998),
Brucker et a. (1998) and the proceduresof Klein and Scholl (2000, 1999b), which
can solve a generalised version of the problem PSlprec|Cna,with arbitrary minimal
timelags.

While the classi c resource-constrai nedproject scheduling problem PS|prec| Cinax has
beenintensively studied, algorithmsfor solving the problem PS|temp|Cpa. haveonly
recently received growing attention in the literatureas can be seen in the surveyshby
Herroelenet al. (1998) and Brucker et al. (1999). Thismay to someextent have been
caused by the fact that the problem PS|prec|Cy, itself is intractable. Asan exten-
sion, the problem PS|temp|Cmay 1S, of course, also NP-hard, and even the question
whether a probleminstancehasafeasiblesolution is NP-hard (Bartusch et al. 1988).

Different heuristicsfor resource-constrained project schedulingwith generalised pre-
cedence constraints have-been proposed, and we refer the reader to Zhan (1994),
Neumann and Zhan (1995), Brinkmann and Neumann (1996), Schwindt (1998b),
Franck and Neumann (1998), Franck and Selle (1998), and Neumann and Zimmer-
mann (1999) for a discussion.

Exact branch-and-boundal gorithmsfor the problem PS|zemp|Cpax have been devel-
oped by Bartuschet al. (1988), De Reyck and Herroelen (1998) (see also De Reyck
et al. 1999), Schwindt (1998a,b), and Fest et al. (1999). The common idea behind
these algorithmsis to relax the resource constraintsand compute an optimal time-
feasible schedule. The resulting schedule will usually violate resource constraints
and is therefore scanned for resourceconflicts, i.e., times when more resourcesare
consumed than are available. The proceduresthen branch over the possible alter-
nativesfor resolving theseconflicts. A resourceconflict is resolved by adding new
constraintsthat delay someof the activitiescausingtheconflict (conflict set). Subject
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to the constraintsadded sofar, an optimal time-feasi bleschedul eis then re-computed
and again tested for further resource conflicts. In the algorithmsof Bartusch et al.
(1988) and De Reyck and Herroelen (1998) activities from aconflict set are delayed
by introducingadditional classic precedenceconstraints. The procedureof Schwindt
(1998b) delays activitiesby adding specia precedenceconstraintsbetween pairs of
digoint sets of conflicting activities; al activitiesin the second set are delayed until
the completion time of afirst activity in the first set. The algorithm of Fest et a.
(1999) resolves conflicts by dynamically increasing releasedatesfor certain activi-
ties.

The time-oriented branch-and-boundalgorithm that we describe hereis differentin
the sensethat it smultaneously considerstemporal and resourceconstraints. Instead
of enumerating alternativesfor resolving resource conflicts that occur in a relaxed
problem, the procedureenumeratespossible activity start times based on thefollow-
ing simpleidea: at a given node of the search tree, an activity must either start as
early as possibleor bedelayed. A central feature of the algorithmis the application
of constraint propagation techniques that actively exploit the temporal and resource
constraints during the search in order to narrow down the set of possible activity
start times and thus reduce the search space. Further reduction of the search ef-
fort is achieved by enforcing some necessary conditionsthat must be met by active
schedules.

Time-oriented branching schemes that branch over activity start times have previ-
ously been applied for solving several specia casesof the problem PS{temp|Cmas.
The first time-oriented branching schemesfor the problem PS|prec|Conae have been
described by Elmaghraby (1977) and Talbot and Patterson (1978); the common idea
behind these algorithmsis to branch over al possiblestart time assignmentsof the
next activity to be scheduled, and the number of child nodes generated at a given
node of the search tree thus depends on the selected activity. Carlier and Latapie
(1991) have proposed a binary search schemein which branching consistsof select-
ing an activity and splitting its interval of possible start timesinto two intervals of
equal size. Martin and Shmoys (1996) have devel oped a time oriented algorithmfor
the job shop scheduling problem. Caseau and Laburthe (1996b) haveindependently
designed a branch-and-bound algorithm for a multi-modeproject scheduling prob-
lem that can be classified as MPS|prec| Cmax in the schemeof Brucker et al. (1999).
For the single mode case the al gorithm uses the same branching strategy as the pro-
cedure of Martin and Shmoys, which schedulesan activity at its earliest start timeor
delaysit upon backtrackinguntil theearliest completion time of someother activity,
resulting in a binary search tree. The branching scheme described here also makes
use of this elementary approach. The branching strategy described by Caseau and
Laburthe has also been used in modifiedform in the studiesof Baptisteet al. (1999)
and Baptisteand L e Pape (2000). Hel pckeand Colombani (1997) havedevel oped an
algorithmfor a version of the problem PS|prec|Cmayx in which resource supply and
demand may vary over time; the branchingschemeof their algorithmis also binary;
an activity is scheduled at its earliest start time or delayed upon backtracking by a
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single unit of time. An unusua feature of their algorithm is that activities are in
general not scheduled in order of increasing start times.

5.2 Congtraint Propagation

521 Consstency Tests

The branch-and-boundal gorithm that will be describedin the next section reliesto
a great extent on efficient constraint propagation techniques. At each node of the
search tree, afixed pointis computed by applyingat least thetwo most basic consis-
tency tests introduced in Chapter 4 within the constraint propagation algorithm:

e PrecedenceConsistency Test 1,
e Unit-Interval Consistency Test 8.

As we will see, the application of these two testsis an essential part of the branch-
and-bound agorithm.

Additionally, the following consistency tests for pair-wise disjunctiveactivities as
defined by Lemmal are applied:

e L ag-BasedDigunctive Consistency Test 2;
o Input/Output Consistency Test 3 for pairsof disunctiveactivities;

e Genera Input/Output Consistency Test 3 for disjunctivesub-problems, which
are selected as described in Section4.4.2.

5.2.2 SomePropertiesof theEarliest Start Times

The Precedence Consistency Test 1 and the Unit Interval Consistency Test 8 that
are applied within the fixed point constraint propagation al gorithm affect the earliest
activity start timesasfollows. Let pc; (A) betheminimal start timeof an activity j <
V if only the precedenceconstraints (i,;) between activities i in the set VS(A) :=
{i € V| |A;| =2) of scheduledactivitiesand j are considered:

pej(A) = apax {Sitdij | (1.9) € €}

Here, we have used the convention that the maximum of the empty set is 0. Let
further rc; (A) bethe minimal start time of j if additionally resourceconstraintsare
considered:

rey(8) = _min (] VKSRV E [to...t+ pi:
t2pe;(8) slacka (Vi \ {7}, ¢, ¢ + 1) 2 7ji ).
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Then, obvioudly,
ES;(A) > re; (A) > pc;(A).

, A schedule S can be naturally identified with a set of current domains, where each
, domain A; containsthe correspondingstart time, i.e., A, := {S;}. Thisjustifiesthe

notationrc; (S)and pe; (S). Clearly, Scan only be activeif for al activitieseither a
precedenceconstraint or insufficient resource capacity preventsaleft-shift. Thus, in
any activeschedule S, theidentity

holdsfor al j € V.

Since we may without loss of generality assume that an activity hasat most |V| — 1
predecessors, the calculation of pe; requireseffort O(|V|). Thecaculation of rc; is
based upon pc; and a traversal of the support points of the remaining capacity pro-
file, asintroducedin Section 4.6.1, and requiresa worst caseeffort O(|R| |V}). The
averageeffort for typical problemsis much lower becausethe number of predeces-
sorsaf an activity is usualy significantly smaller than O(|V|) and in general only a
small part of the capacity profilemust be traversed.

5.3 TheBranch-and-Bound Algorithm

The main component of the branch-and-bound algorithmdescribedin thissection is
atime-oriented, binary branching scheme. We will show that this branching scheme
generates at least al active schedules, so that traversing the search tree will result
in an optimal solution. Inversaly, the branching scheme tries to avoid constructing
non-active schedules, which cuts down the search space considerably. A detailed
description of the branching schemeis givenin Section 5.3.1.

Section 5.3.2 deals with the "bounding™ part of the algorithm. Generdly, nodes of
the search tree can be fathomed through the comparison of upper and lower bounds
for the optimal makespan, which are computed in the nodes of the search tree. As
a peculiarity, however, our algorithmdoes not explicitly computelower bounds. In-
deed, the bound-oriented fathoming of nodes is a useful by-product of constraint
propagation techniques, that have to be applied anyway in the "'branching™ part of
the algorithm.

Additionally, the search spaceis reduced by adding constraintsthat must be satisfied
by al active schedulesthat can be developed from a given node, and through the
applicationof asimpleleft-shift dominancetest. Thisisdiscussedin Section 5.3.3.

5.3.1 TheBranching Scheme

The branching structure that we describe here is based on a simple time-oriented
schedule generation scheme, which results in a binary search tree. Each node a
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of the search tree is associated a set A(a) = {Ai(e) | i € V) of current do-
mains, which uniquely determinethe setsVS(A(a))={i € V | |Ai(a)| = 1)
and V/(A(a)) :={i €V | |A;(a) > 1) o scheduled and non-scheduled activi-
ties, respectively. (In order to simplify the notation we will writeV°(a)instead of
VS(A(a))etc., whenever possible.) Generating a specific scheduleis equivalent to
reducing the current domains until dl activities are appropriately scheduled. One
method of domain reduction that will be extensively used is the application of con-
straint propagation. Sincein general, however, constraint propagati on alone does not
schedule al activities, some activities additionally will have to be scheduled by an
explicit assignment of their start time variables.

At every node a of the search tree an unscheduled activity j € V¥ (a)is chosen
and two child nodes are generated. Denoting the left child node with {(a) and the
right child nodewith r{«), the branching schemerelieson thefollowing simplenode
generationrule.

l{o): Start] atitsearlieststart imeby setting S;(I(a) Y= ES;(a).
r(a): Increasetheearlieststartof j by choosing ES;(r(a)) > ES;(a).

A complete specification of the branching scheme now requires the answer to two
questions. Thefirst question deals with the problem of which activity j € V¥ (a)to
choosein node a. The second question is how the earliest start time of 7 should be
increased in r(a). We will first describethe choiceof an activity j and then derive
an earliest start time adjustmentfor the right child node. We will then summarize
the branching scheme and show its completeness, i.e., provethat it can generateany
activeschedule.

Selection of Activities

Atnodea,an activity can be selected for branchingif itisfree and non-ddayed. For
the time being, it is not necessary to describe this attribute more closely. We only
assume that the set of non-delayed activities /' (a)isa non-empty subset of the set
of free activities. An activity j is then selected accordingto thefollowing rule:

Choosej € V/'(«), such that ES; = () wheret(a) is the schedule
time:

t(a) := min ES;(a).
eV (a)

Tiesarefirst broken by selecting an activity which satisfiessome secondary criterion,
then randomly. In general, we use the minimal time dack, i.e. |A;|, as secondary
criterion; this means that we use the well known first fail principle which consists
of first instantiating the variable with the fewest remaining possiblevalues. We will
denote with act(a) the activity chosen in a.
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After the description of the selection rule, we are |eft with the problem of how to
identify the set of non-delayed activities. Of course, we can awaysset V' (a) :=
Vf(a).This, however, is not sensible, since choosing an arbitrary free activity will
often|ead to a non-activeschedule. We will thereforeshow how to specify the set of
delayed activities, so asto capturethe notion of active schedulesmoreclosely.

It will prove useful to partition the set of free activitiesinto aset of activitieswhich
till have to satisfy amaximal time lag and a set of activities which do not haveto.
Let & = Eminygmaz whereEMN := {(i ) € £ | di; > 0) andE™™ := {(4,j) €
£ | di; < 0) aretherelationsspecifyingtheminimal and maximal timelags between
pairs of activities. We then definethe set

Vic(a) :={j e V/(a)|Fi e V/(a): (i,)e Em=}

of timemax-constrained activitiesand the set V% () := V¥ (a)V'°(a) of timemax-
unconstrained activities,

We can now describethe set of free and non-delayed activities:
V' (a)y=V'(a)u {j € V/(a)| ES;(a)=rc;(a))

This means that afree activity is a candidatefor branching if it either has an "in-
coming" backward arc, or if itsearliest start time equalsits current earliest resource
feasible start time r¢; (). Note that the latter condition may in particular not be
given if the constraint propagation algorithm has adjusted ES;(«) to some value
greater than rc; (@) or if an activity has been delayed (by an amount of time to be
defined below). The definition of the set of free and selectable activities V' can
therefore be interpreted as follows. a delayed activity i without an incoming back-
ward arc remains un-sel ectableuntil we know that the resourcecapacity " provided"
by delayingi has been used by some other activity. Thefollowinglemmajustifies
our choice of theset V/'.

Lemma 2 (Existence of Earliest Start Time Schedgl%). Let a be a node of the
search tree. If there is an unscheduled activity then V¥ (@)is not empty, or a cannot
lead to an active schedule.

Proof. Let S bean activeschedule whichisdomainfeasiblein a, and let us assume
that V'¢(a) = . We then have to prove that there exists an activity j € V7 (a)
satisfying ES;(a)= re;(a) SinceS; > ES;(a)> rc;(a) weonly haveto show
that for some j € V¥ (a)theidentity S; = rc;(a) holds.
Suppose that S; > rcj(a) for dl j € V¥ (a). Observe that the set of timemax-
unconstrainedactivitiesV!" (a)is not empty, sinceV f(a)is notempty. Itistherefore
possibleto choosean activity j € V**(a) with minimal start timein S:

S;=. min S;. (5.4)

IEVI (o)

Using the obviousidentity V*( S)=V, Equation (5.1) tellsusthat
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pej(S) = max{Si+dy | (i, j) € £},

If thereexistsa precedenceconstraint (i,j) € £™™, theni € V*(a), sinceotherwise
S; + di; < S5 andd;; > 0 immediately imply S; < S;, which is acontradictionto
Equation (5.4). If (i,j) € £™*2, theni ¢ VS(a)followsdirectly from j € V" (a).
Soforal (i,j) € & wehavei € V°(a)and thelast equation can be simplified as
follows:

pe;(8) = mmax {Sitdy | (i.]) € E).

Domain feasibility now alows us to deduce the identity S; = S;(a) foral i €
V#(a) which leadsto

pei(S) = ié{l}%){si(a) +dij |(i, ]) € &} = pejla). (5.5)

As S is active we know from Equation (5.2) that S; = r¢;(S), so that we can
concluderc; (S)> rc;(a).Moreformally

>mir{1q){t |VE e RVt € [t,..,t +p;[: slacks(Vi,t',t' + 1) > rjx}
t=pe;l!

> >mir2 {t | Vk € RVt € [t,...,t + pj[: slacka(Vi,t',t' + 1) > rji}.
t>pe;(a)

Becausepc; ( S)= pc;(a) thismeansthat theremust besomeresourcek € R, such
that fort =.5; — 1 thefollowing conditionshold:

slack, (Ve — {j) t,t + 1) > Ti,
.‘?lﬂcks(vk — {J ) ,t,t + 1) < Tik-

If the dack of periodt in Sissmaller than the dack of this period at node a, then
theinterval processingtimep, (t t + 1) of at least oneactivity v € V¥ (a)= Vi¥(a)
must assume the value 0 in a and 1in S. According to the definition of interval
processingtimesin (4.1), p,(¢,t T 1) = 1impliesthatt + 1 - S, > 0. We thus
obtain S, <t < .5;, which isa contradictionto Condition (5.4). So, in fact, there
must exist j € V f(a)with S; = rc;(a). O

Delaying Duration

L et usnow turn to thequestion of how to increasethe earliest start time of aselected
activity j = act{e) if we branch to theright. A first simple alternativeis to delay
the activity by a single time unit. However, we can do better by observing that the
resultingschedule S can only be activeif either (1) a precedenceconstraintor (2) low
slack prohibitsa left-shift of the selected activity. Since the activity will be delayed
by at least onetime unit, the first case can beruled out if al precedenceconstraints
(i,j) € € are dready resolved (see pages 20 and 34) in node a. The second case
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requires that the slack of all activities except j is insufficient to the left of S;(a).
Intuitively, this can only be the case if S;(a) matches the completiontime of some
activity that sharesresourceswith j. Thisleadsto the following lemma, in which
R; :={k € R | ri > 0} denotesthe set of resourcesrequired by activity i .

Lemma 3 (DelayingDuration). Let a bethe current nodeof the searchtreeand all
(i, j) € &€ beresolved for j = act(e). The set d all activitiesthat share resources
with j and finish after t(a) is denoted with V' := {i € V\ {j) | RinR; #
0 A ECi(a) >t(a)}. Letfurther

t*(a) := {milhev' ECi(a) V' #0,
T tayte otherwise.

Then S; > t*(a) inany active schedule S developed from r(c).

Proof. We need only consider the casewhkreV’ # 0. If j isdelayedinr(a) and S
is activethen, according to equation (5.2), r¢; (S)= S; > t(a). If r¢; (S)> t(a)
then, obvioudly, either

If, for thegiven j, dl (i,j) € € areresolved, then LS,;+d,-,- < ES;fordl (i,7) € £.
Thuspc;(S) < t(a) and condition (5.6) cannot hold. Now consider condition (5.7).
We will show that any timet = r¢;(S) satisfying this condition must correspond
to the completion time of some activity. If condition (5.7) holds then there must be
sometimet and someresourcek € R for which:

slacks(Ve \{j) t = 1,t) < rju A slacks(Vi \ {7}, 8,1+ 1) > rjx.

This immediately implies that there must be some activity in Vi \ {j ) that is pro-
cessed in theinterval [t— 1,# butnotin [tf + 1[ j.e. an activity which finishesat
timet.

We havethusderived that if j isdelayed from ES;(a)and theresulting scheduleis
active, then S; = r¢; ( S)must equal some completion timet > #(a). Thereforewe
can concludethat ES;(r(a)) must be grester than or equal to an earliest completion
time greater than ¢(c). Of course, we need only consider activitiesthat share a
common resourcewith j. O

It is worth mentioningthat the precedenceconstraints(i, j) € £ areawaysresolved
if j hasonly incoming arcs with positiveweight, i.e. if j € V*(a).
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~Attherootp  Let p betheroot of the search treg, and let A;" := [0, UB — p;]
forali e V. Then:

A(p) :=CP(A).

Innodea Letabeanodedf thesearchtree. Let A(a) = {Ai(e) | i € V)
be the set of current domainsin aand j := act(a) theactivity chosenin a

Branchingtotheleft [ (a)
Let A'(a) :={A1(d),...,A;'(a),..., A, (3)), where

Aj'(@) = {t(a)}.
Then: A(l(a)) := CP(A'(a)).

Branchingtotherightr (&)
Let A"(a) :={A(Q),...,A;"(@),...,A,(a)}, where

A; (@) N{t(a) T 1,00] if thereisan unresolved (i, j) € £me=
Aj(a)N[tt(a),00[  Otherwise.

Aj"(a) = {

. Then: A(r(a)) == CP(A" ().

Figure5.1: The branching scheme

Summary of the Branching Scheme

We are now able to define the branching scheme recursively; this is done in Fig-
ure 5.1. Recall that we only have to specify A(a), since this determinesall other
setsand values.

The search treeis traversed in depth-first order until a leaf nodeis generated. This
happenswhenever V/' (@) = 0. Thisleaf node representsasolution, if V°(a) = V.
Backtrackingoccurswhen aleaf nodeisreached or when an inconsistency has been
detected, i.e. when A; (&) has become empty for some activity z € V.

The minimum possibledepth of the treeis zero and is obtained if al activitiesare
scheduled through constraint propagation at the root node. The maximum depth of
thesearch treethat is possiblein theworst caseis reached when branchingto thevery
right side of the treein the following way. Starting at the root node, we can initially
at most delay |V| — 1 activities and must then schedule the remaining activity or
backtrackingwould be initiated. Next we can, at most, branch |V} — 2 timesto the
right before branching a singletime to theleft. By continuingin this way, we may
reach a theoretical worst casedepth of 1/2|V|(|V| +1).
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The following theorem statesthat our time-oriented branching schemeis complete,
i.e., that an optimal scheduleis generated. As we have aready discussed in Sec-
tion 2.1.4, it issufficient to provethat all active schedulescan be generated.

Theorem 8 (Completeness of Time-Oriented Branching). The time-oriented
branching scheme generates all active schedules, i.e., if S is an active schedule,
then the search tree containsa leaf node a in which all activities are scheduled and
S; = Si(a) foralli V.

Proof. Let Sbe an activeschedule. We will first provethefollowing assertion: if S
isdomainfeasiblein a, then S isdomain feasiblein either I(a) or r(a).

Lemma 2 ensuresthat V' (a) is not empty, so that there existsan activity j € V¥ '
that is selected in a. Now, if S; = ES;(a), then S is domain feasible with re-
spect to A’(a) as defined in Figure 5.1. Constraint propagtion only removes val-
ues from current domains A; not belonging to any schedulethat is domainfeasible
with respect to A. This implies that S must be domain feasible with respect to
A(l(a) = CP(A(a))if S; > ES;(a)then asimilar argumentation in combina-
tion with Lemma 3 showsthat S must be domain feasiblewith respect to A(r(a)).

We can conclude, that there exists a path p, o1, as,..., dong which S is domain
feasible. Let [A] := > .., |A;]. Given the finiteness of the current domains,
oo > |A(p)| > |Aaq)| > |A(az)| > ... = nmust hold. Thisimplies, that S
is domain feasible in some node a,,, satisfying |A(a,)| = n, ie. V¥ (am) = V.
Thiscompletesthe proof. O

932 Upper and Lower Bounds

The makespan of an initial or improved scheduleis, of course, used as upper bound
UB.

If Alisaset of current domainsthen constraint propagation implies alower bound
of all domainfeasibleschedulesin the followingway. Let usassumethat UB' < UB
is a hypothetical upper bound. Setting A = {A; N[OUB' —p;[ | i € V) we
can then apply constraint propagation and examine CP(A'). If CP(A') yieldsan
inconsistency, i.e. an empty domain for some activity, then there cannot be adomain
feasible solution with completion time less than UB', so we can deduce that UB' in
fact is a lower bound. The approach of computinglower bounds by repeatedly re-
futing hypothetical upper bounds has been called destructiveimprovementby Klein
and Scholl (1999a) who havesuccessfully applied it to the problem PS|prec| Cmas-

Itis possibleto computethe best constraint propagation based lower bound through
a bi-section search in theinterval [O,.., UB]. However, we only have to answer
thefollowing “yes/no” question: | s the lower bound less than the current best upper
bound or not? This question is answered by applying constraint propagation to the
set A, whichisalready afixed componentof the branchingscheme, so that an explicit
computationof lower boundsis not implemented in our agorithm.
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5.3.3 SomePropertiesof ActiveSchedules

This section describes some additiona conditionsand a simple left-shift test that
am at further reducing the search space by ruling out non-active schedules. We
make use of an effect caused by the activity selection rule: The choice of an activity
j € V¥ (@) with minimal earliest start time, which, according to Equation (5.3),
determines the schedule time ¢(a), ensuresthat any time point smaller than ¢(c)
does not haveto be consideredany more.

Clearly, the selection ruleimpliesthat in any schedule S developed from a the con-
dition S; > t(a) must hold for al j € V¥'(a) .But theremight be free and delayed
activitiesj € VY (a)\ v/’ (a)for which ES;(a)< t(c) and which could therefore
possibly be scheduled a a time earlier than t{«), either by the propagation algo-
rithmor through an explicit start time assignment, once they have become selectable
again. However, the following lemma states that this cannot happen if the resulting
scheduleis active.

Lemma 4 (Start of Delayed Activities). Ler a be a node of the search tree and let
Shbe an active schedule that isdomain feasible in a. Then:

Proof: The proof is quite similar to the proof of Lemma 2, so we will only briefly
discussthe main differences.

Supposethereisan activity j € V f(a)\ V¥’ (a)that startsnot |ater than t(c). Then
theset

A={i evi(a\V'(a)| S < t{a)}

is not empty, and we can always choose; € A so that its start time is minimal

among all activitiesin A. A similar lineof argumentation asin Lemma2 showsthat

pe;(S) = pej(a).

Thefact that S; > ES;(a)> rc;(a)then alows usto concludethat S; > re;(a):
otherwise, if S; = re;(a)then ES;(a)= re;(a)and consequently j € V/'(a),
which yields acontradiction.

Hence S; = rc;(S) > rej(@) > pej(@)= pej(S)holds. This means that there
must be an activity i € V¥(a)that finishes a time S; and consumes resources
required by j, which impliesthat S; < S;. Since S; > t(a) foral i € y#'(a)we
can concludethat i € Vf(a)\ V/'(a) .But theni € A, which contradictsthe fact
that .S; isminimal amongadl j € A. O

We can directly use Lemma 4 to reduce the search spacein the following way. At
node a we additionally set
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beforeapplying constraint propagation. The start time adjustmentcan befurther im-
proved by applyingasimilar argument asin Lemma3. Observethat the adjustment
of the earliest start time will lead to an empty domain for al delayed activities?
for which LS; < t(«), i.e., for those activities which have been "'needlessly” de-
layed. Becausethe adjustmentof asinglestart timerequiresconstant effort, the total
adjustment effortis O(|V|).

Lemma4 and the fact that S; > t(e) for dl i € Vf(a)asoimply thefollowing
result.

Coroallary 9 (Constant Slack to the Left of £(a)). Let a be a node of the search
tree; then the slack in any period t < ¢(a) does not change in descendant nodes of
a that lead to an active schedule.

This alows usto apply asimpleleft-shift dominancetest. If, for any free, timemax-
unconstrainedactivity j € V*(a) with p; > 0, thecondition rej(a) + p; < t(a)
holds, i.e., if j can resourceand precedence-feasibly be scheduled so that it finishes
not later than at time ¢(«), then node a cannot lead to an active schedule. While
it is possible to formulate more powerful |eft-shift conditionsthat consider sets of
activities rather than just a single activity (Schwindt 1998b), the advantage of the
test described here is that it can be easily evaluated. The effort for the left-shift
dominancetest for al free, timemax-unconstrained activities is O(|V|?) since r¢;
must be calculated for every activity inVt" (a).

The fact that the dack to the l€eft of ¢{a) remains constant can be exploited further.
Let j bean activity scheduledat node a at timet(a). If re;(a) < t(a), then suffi-
cient slack and the temporal constraintsinvolving the currently scheduled activities
admit a left-shift of j. Hence, a resulting schedule S can only be activeif a tempo-
ral constraint involvinga currently unscheduled activity preventsthis|eft-shift. This
meansthat the following condition must hold in order for Sto be active:

We add a corresponding constraint that takes part in the propagation mechanism.
The consistency test for this constraint works in the following way. If no temporal
constraint can satisfy this condition, then the node is fathomed. Otherwise, if only
one single temporal constraint (i ,j) can satisfy the condition, then the domain of
activity i can be adjusted.

The effort required to test whether the constraint may be added is dominated by
. thecalculation of r¢;. The constraint is adisjunctionover the temporal constraints
with O(|V|) possible predecessors and can be defined in time O(V|). Since acon-
straint of this type can be added whenever an activity is scheduled, there may be
O(|V|) of these constraints. The constraintsmay thus cause O(|V|? d) enqueueing
and dequeueing operationsin the constrai nt propagati on a gorithm. The correspond-
ing consistency test can be performed with effort O(]V|). The overal worst case
propagation effort caused by this constraint and test is thereforeO(|V|3 d). Again,
if the number of predecessorsof an activity is small asin typica project scheduling
problems, then the averageeffort is lower.
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5.4 Computational Experiments

54.1 Implementationof the Algorithm

The branch-and-boundal gorithm has been implemented in C++ using the constraint
programminglibraries| LOG SoLVER and ILoG SCHEDULER which support theim-
plementationof treesearch algorithmsthat apply constraint propagation at the nodes
of the tree (Le Pape 1994b). The basic propagation algorithm used in SOLVER isa
variant of the AC-5 arc consistency algorithm of Van Hentenryck et al. (1992).

The most important features of the SOLVER library are (1) fundamental data types
such as integer domain variables, (2) generic constraints upon these variables to-
gether with correspondingdomain reduction rules, e.g., linear constraintson integer
domain variables, (3) the propagation agorithm, (4) classes for defining a search
(branching) scheme, and (5) support for reversibleactionsthat are automatically un-
done upon backtracking, for instancethe definition and propagation of constraints.
Based upon the generic data types and algorithmsfound in SOLVER, the SCHED-
ULER library providesan object modd and al gorithmsthat facilitatethe devel opment
of schedulingapplications. For instance, SCHEDULER includesclassesfor represent-
ing activitiesand resourcesas well as associated constraintssuch as precedence or
resource constraints.

Besidesthe support for implementingbacktracking algorithmsand the generic prop-
agation mechanism, we have used the following features of the libraries. The de-
cision variables S; are represented as integer domain variables. The temporal con-
straints and the corresponding Consistency Test 1 are realised through the built-in
linear constraints provided by SOLVER. The resource constraints and the Unit-
Interval Consistency Test 8 are provided by SCHEDULER. For the administration
of the tempora and resource constraints we have used the activity and resource
classes of SCHEDULER. Consistency Test 3 for pairs of activities is implemented
as a generic digunctiveSOLVER constraint; a general version of the test for sets of
more than two activitiesis provided by SCHEDULER.

The logic of the branch-and-bound agorithm, the other consistency tests and the
additional node fathoming rules described in Section 5.3 have been hand coded. By
using the SOLVER search treeclasses, the amount of code required for the branching
and backtracking part has been kept low.

All resultsreported for our algorithmin the following tables have been obtained on
a PentiumPro/200 PC with NT 4.0 as operating system.

5.4.2 Bidirectional Planning
When trying to solve a given problem instance, we apply our algorithmin forward

and backward direction(bi di recti onal pl anni ng). A problem can be solved in back-
ward fashion by smply reversing the project network and applying the algorithm to
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the resulting mirror-network (for a discussion of backward and bidirectional plan-
ning for arelated scheduling problem see Klein 2000a).

While no scheduling directionis uniformly superior for dl test problems, somein-
stances are easier to solve in one direction than in the other. Intuitively, a branch-
and-boundalgorithmworksbest if the difficultpart of the problem, or bottleneck, is

I handled at beginning of the search, since otherwisea solution for the difficult sub-
problem has to be rediscovered many timesin different branches of the search tree.
Thismeansthat if the bottleneck istowardsthe beginning of the project thenforward
planning is advantageous; otherwise, if the bottleneck is at the end then backward
planning works best.

Because it is hard to predict the location of the bottleneck to chose a favourable
planning direction, we smply proceed as follows. We alocate haf of the run-time
tosolvethe problemin forwarddirection; if the problem remainsopen after thistime
then we apply the algorithmto the mirror problem, now using the makespan of the
best schedulefound so far, if any, asinitial upper bound.

5.4.3 Characteristicsof theTest Sets

We have tested the algorithmon several large sets of benchmark problemsthat were
systematically generated with the problem generatorsProGen (Kolisch et al. 1995)
and ProGen/max (Schwindt 1996), which alow to specify severa control param-
eters that characterise a resulting problem instance. The test sets are collected in
the project schedulingproblem library PSPLIB (Kolischand Sprecher 1996, Kolisch

et al. 1999). All test sets have aso been used in other recent studies so that it is
possible to compare the effectiveness and efficiency of different algorithms. For a

" discussion of the relative advantages of the systematic, generator based approach
and of other approachesfor generating or collecting project scheduling benchmark
instanceswe refer to Schirmer (1999, Chapter 3).

Previousstudies(seee.g. Kalisch et a. 1995, Schwindt 1998b) have concluded that
the difficulty of a problem instanceis most strongly influenced by (1) the project
network, (2) the structureof the resourcedemand and (3) the leve of resource sup-
ply. These characteristicsare measured by the following variablesthat are used as
problem generator parameters.

e The network complexity’ C' > 1 used by ProGen indicatesthe average number
of immediatesuccessorsof an activity and is a measure of the complexity of
the precedence constraints. The network complexity has the disadvantage of
not being normalizedand it has been empiricaly shownto havelittleinfluence
on thedifficulty of instances of the problem PS|prec|Cpax (Kolischet al. 1995).

The newer problem generator ProGen/max uses a control variable called the
network restrictiveness RT & [0,1]- The restrictivenessof a network is a
measure of the number of strict orderingsof the nodes or activities that are
compatible with the partial order induced by the precedenceconstraints. A
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paralel network hasa restriveness of zero, and aseries network hasa restric-
tivenessof 1. The higher the restrictiveness, the fewer linear orderingsof the
activitiesare feasible and the smaller the solution space becomes, leading to
easier probleminstances. As the calculation of the exact restrictivenessof a
project network is NP-hard ,Thesen (1977) has proposed an approximation
for the restrictiveness.

e Theresourcefactor R F € [0, 1] (Pascoe 1966) indicatesthe average percent-
age of resourcesrequired to process an activity. Formally, the resourcefactor
with respect to resourcek € R is

R Fistheaverageover dl RFy, for k € R. It takesavaueof 1if every activ-
ity requiresevery resource. The higher the resourcefactor, the moredifficulta
problem instance becomes.

e The resource strength RS € [0, 1] (Kolisch et al. 1995) describes the aver-
age tightness of the resource constraints. Formally, the resource strength for
resourcek € Ris

where RN = max;cy i iS the minimal resource capacity required for
performingthe project; Ri*®* is the smallest capacity of resourcek for which
the earliest start schedulefor the resourcerelaxation of the problem becomes
resourcefeasiblewith respectto k. R.S istheaverageover dl RSy, fork € R.

A resource strength of 0 indicates maximal tightness, which results from the
minimal feasible resource availability, i.e., a supply equal to the maximum
requirement of any single activity. For a resource strength of 1, the earliest
start schedul edoes not contain any resource conflictsand the problem becomes

easy.

The complexity measures described above are used to control the problem instance
generatorsthat were employed to create the test sets used in thisstudy. Additionally,
the generation of instances of the problem PS|temp|C,... can aso be influenced by
specifying the desired number of cycle structuresin the precedenceconstraintsand
detail ed characteristicsof thesecyclestructures,e.g. their tightness(Schwindt 1996).

Baptiste et al. (1999) have proposed another complexity measure, the disunction
ratio, which is the ratio between a lower bound on the number of activity pairs that
cannot be processed in parallel and the overal number of activity pairs. A simple
lower bound is obtained by consideringdl activity pairs, for which either thetransi-
tive time lags or the resourceconstraintsforbid a parallel execution. Baptisteet al.
(1999) concludethat for problem instances with a high digunctionratio digunctive
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Tet Sze _ Fixed parameters Variable parameters
set VIR mi Tik Cydes RT RF RS
A 1080¢ 100 5 {5...15} {l1...5} [2,5] 035 050 02

[6,9) 050 075 05
065 100 07

B 120° 500 5 (1...10) (1...10) [2,21] 025 050 0.25
050 0.75 0.50
1.00

"Only 1059 of the 1080 problem instances have a feasible solution.
bOnly 119 of the 120 problem instances have a feasible solution.

Table5.1: Characteristicsof the test sets for the problem PS|temp| Cpiax

constraint propagation techniques are most appropriate, while cumul ativeconstraint
propagation techniquesare most likely to be successful for highly cumulativein-
stanceswith alow digunctionratio.

5.4.4 Experimentsfor the Problem PS/temp|C,y.y
Test Data

We have tested the algorithm on two large sets of benchmark problems that were
systematically generated by Schwindt (1998b) using the problem generator Pro-
Gen/Max (Schwindt 1996). The test sets are collected in the project scheduling
problem library PSPLIB (Kolisch et a. 1999). The mgjor characteristicsof the test
setsare shown in Table5.1. A detailed description of the characteristicsis given by
Schwindt (1998b).

Test Set A contains 1080 problems with 100 activities, not including the fictitious
start and end activities. Each activity requiresup to 5 resources; the processing times
p; and the resource requirementsr;; are randomly chosen from the sets {5...15}
and {1...5}, respectively. For each combination of valuesfor the control param-
eters"Cycles", RT, RF, and RS, that are shown on the right side of table, ten
instanceshave been generated, leading to atotal of 1080 instances. Only 1059 prob-
lem instances have afeasiblesolution.

Test Set B consistsof 120 problem instances with 500 activities; 119 of these prob-
lems haveafeasiblesolution.
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Version of thealgorithm £y, Feasble Optimal Infeasibility Dev.p

proven
NO. B? D” A BP? (sec) (%) (%) (%) (%)
I - - - 3 1.1 55.9 0.0 5.7

“Branching: + indicates that Vf' and t*(c) are defined as in Section 5.3.1; otherwise V' := Vf
and t+(a) := t{a) T 1.

bDisjunctive consistency tests: * indicates use of Consistency Tests 2 and 3 for activity pairs.

‘Active schedules: + indicates use of the tests and conditions described in Section 5.3.3.

4Bidirectional planning.

¢Corresponding to 100%0f the problems that have afeasible solution.

Table5.2: Impact of different modulesof the algorithm for 1080 problemswith 100
activities
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Impact of Different Modules of the Algorithm

Table 5.2 shows the impact of the different modules of our algorithmfor the test
set of 1080 problems with 100 activities. For a given agorithm version, which is
characterised by the presenceor absence of the modules, and a given run time limit
t the table shows the percentageof problemsfor which (1) a feasible solution
could befound, (2) an optimal solutionwasfound and verified, (3) infeasibility was
proven, and (4) theaveragedeviation Dev.; 5 from thelower boundscalculatedin the
study of Schwindt (1998b). Except for the Dev. 5 values, all percentagesare given
with respect to the total number of 1080 problems. For comparison purposes, the
percentagesfor the average deviation from the lower bound are given with respect
to the number of problemssolved to feasihility, including the number of instances
solved to optimality!.

Thefirst fivecolumnsaf the table characterisedifferentversionsof thealgorithm;in
additionto areferencenumber they show whether a parti cularmodul e has been used
(+) or omitted (-) in aversion. To keep thesize of the table within reasonablelimits
we have groupedrelated featuresof the algorithm into modules and present datafor
several interesting modulecombinations.

Rows 1 and 9 of the table show the results obtained for the minimal version of our
algorithmin which only the precedenceand the unitinterval consistency testsare ap-
plied within the constraint propagation algorithm. Observe that these test are always
required as they are the only means by which the algorithm will obey the temporal
and resourceconstraints. In the minimal version, we use avery basic activity selec-
tion rule where any free activity is selectable, i.e., weset V' := V7, and thesimple
delaying strategy of always postponing an activity by a singletime unit, i.e., we set
t*(a) := t(a) T 1. The advanced activity selection and delaying rules described
in Sections 5.3.1 and 5.3.1 are referred to as the branching module which is shown
as column B. The minimal version does not use the disjunctiveConsistency Tests 3
and 2 (column D), it does not apply the tests and conditionsfor active schedules
described in Section 5.3.3 (column A), and it does not use bidirectional planning
(column BP). Row 1 of the table shows that, within a time limit of 3 seconds, the
minimal agorithm solves 91.1% of the problems to feasibility and 55.9% to opti-
mality; it cannot provetheinfeasibility of any of the 21 infeasibleproblems, and the
averagedeviation from the lower bound is 5.7%. As Row 9 shows, theseresultsare
hardly improved within thetenfold run time.

Theminimal versionisthenimproved by activating the advanced branchingmodule;
the results are shown in Row 2 (10). Rows 3 (11) and 4 (12) show the effect of
adding the digunctiveConsistency Tests 3 and 2 for activity pairs and the active
scheduledominancerulesdescribedin Section 5.3.3. When the disjunctivetests are

'The deviation of a problem instance with (possibly optimal) upper bound UB; and lower bound LB; is
(UB; — LB;)/LB;. Thismeansthat problemsthat were solved to optimality but where thelower bound is
not tight have a positive deviation and that the lowest possible Dev.; g valueis therefore greater than zero.
The average deviations are approximately 0.1 percentage points smaller if the deviation of an instance
solved to optimality is always set to zero.
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used infeasibility can be proven at theroot nodefor 20 of the 21 infeasibleinstances.
Row 5 (13) showstheimpact of applyingthefull algorithm bidirectionaly,i.e., tothe
original problem and to the mirror problem. The tableshowsthat the more advanced
versionsof thealgorithmsolve more problemsto feasibility and optimality than their
simpler counterparts while at the same time achieving a smaller average deviation
from thelower bound.

Row 6 (14) showstheresultsfor the minima version of the algorithmwith bidirec-
tional planning. For the smaller timelimit, the improvement with respect to Version
1 is comparableto the effect obtained by the advanced branching module shown in
Row 2. However, Row 14 shows that in contrast to the other modules bidirectional
planning alone does hardly lead to further improvements within the higher run time.
By comparing Rows 7 and 8 (15 and 16) to Rows 2 and 3 (10 and 11) we can see
that the combinationof bidirectional planning and the other modules has a positive
effect. Itisinterestingto notethat in contrast to the minimal versionwith or without
bidirectional planningthe higher run time alwaysleadsto improved results and that
al modulescontributeto theimprovements.

Comparison to Other Branch-and-BoundAlgorithms

Table 5.3 comparesthe results obtained with our algorithm for the test set of 1080
problems with 100 activities to those of the three most recent other exact solution
approachesby — in historical order — De Reyck and Herroelen (1998), Schwindt
(1998a, and personal communication),and Fest et a. (1999, and persona commu-
nication), who have al used the same test set. De Reyck et al. (1999) describe
a newer version of the procedure of De Reyck and Herroelen; the improvements
mainly concern adifferent conflict detection and resol ution mechanism (the conflicts
are resolved in adifferent, more effective, sequence) as well as more efficient cod-
ing, which has led to slightly improved results (personal communication De Reyck
1999); however, astest datafor this new versionfor Schwindt's benchmark problem
set isnot available, Table 5.3 showstheresults published in De Reyck and Herroelen
(1998). For run timelimitst,,,, of 3, 30, 100, and 1000 seconds, includingascaling
factor to account for different hardware, the table showsthe percentageof problems
for which (1) afeasible solution could be found, (2) an optimal solution was found
and verified, (3) infeasibility was proven, and (4) the average deviation Dev..z from
the lower boundscalculatedin the study of Schwindt (1998b). Dashesindicate that
the correspondinginformation is not available.

For comparison purposesthe Dev.; 5 valuesfor our algorithmand for the algorithms
of Festet al. (1999) and Schwindt (1998b) wereall calculated in the way described
above using the lower boundsof Schwindt2. Asthe deviationsreported by De Reyck

2In contrast to the values shown for our algorithm and the procedure of Schwindt, the values shown
for the algorithm of Fest et a. have been calculated by setting the deviation of a problem instance solved
to optimality to zero, leading to a slightly more favourable average value. However, in our experience the
resulting difference is usually less than 0.1 percentage points and thus negligible.
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Procedure tmax Feasible Optimal Infeasibility Dev.;s
proven
Fest, Mohring, Stork & Uetz 3 92.2 58.1 19 10.9
30 98.14 69.4 1.9 1.7
| 100  98.1° 711 1.9 7.0
1000 98.1¢ 73.3 19 6.1
Schwindt
De Reyck & Herroelen 3 973 54.8 1.4 —
30? 975 56.4 1.4 —C
100? — _ — —
1000® — _ — —

" Corresponding to 100% of the problems that have a feasible solution.
bCorresponding to 60/200 of thereal computation time.
'Published values are based on different lower boundsthan valuesfor the other procedures.

Table5.3: Results of exact algorithmsfor 1080 problemswith 100 activities

and Herroelen (1998) are based on different, possibly weaker bounds, the corre-
sponding fields are | eft empty.

Theresultsof De Reyck and Herroel en have been obtained on a Pentium/60 PC; the
run time limits used in their study were 1, 10, and 100 seconds. Schwindt has used
a Pentium/200 PC and Fest et a. have used a Sun Ultra with 200 MHz clock pulse.
lAs mentioned above, our results have been obtained on a Pentium Pro/200 PC. For
comparison purposesthe run time limitsfor al procedures but the one of De Reyck
and Herroelen were set to 3, 30, 100, and 1000 seconds, thus reflecting the clock
pulse ratio.

For time limits less than 100 seconds, the time-oriented algorithm applies the dis-
junctive consistency test 3 for activity pairs only. For the large timelimit of 1000
seconds, the test is appliedin its full form for dl digunctive sub-problemsthat are
selected as describedin Section 4.4.
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The table shows that the time-oriented branch-and-bound algorithm solves more
problemsto optimality than the other procedures. With respect to this criterion, the
resultsobtained within 3 seconds are already better than the results obtainedwith the
proceduresof Schwindt (1998a) or De Reyck and Herroelen (1998) within the max-
imum alowed time. Within a limit of 30 seconds, a feasible solution for al 1059
problems that can be feasibly solved is found; only Schwindt's algorithm, which
applies a cycle structure based decomposition heuristicat the root node for finding
initial upper bounds, findsafeasible solution for dl problemswithin 3 secondsand
does better on this criterion.

The interpretation of the average deviation from the lower bound (Dev..5) can be
problematic since this value depends on the individual problems that are solved to
feasibility aswell ason thelower boundsused for calculatingDev. 5. Strictly speak-
ing, two Dev.; 5 values can only be compared if they are both based on the same
bounds and on the same subset of problems that were solved feasibly; in our ex-
perience, the problemsfor which it is difficult to find a feasible solution tend to
increase Dev.;p. The Dev.;p valuesshown for the first three algorithmsare all based
on Schwindt's lower bounds, and the values shown for time limits of 30 seconds
or more are based upon dl instancesthat have a feasible solution. Table 5.3 shows
that the averagelower bound deviation of the solutionsfound by the time-oriented
algorithmis significantly lower than that of the proceduresof Fest et a. (1999) and
Schwindt (1998a).

Because our algorithmdoesnot useexplicit lower bounds, we wereinterestedin the
possible improvement that could be achieved by adding such bounds. To partialy
answer thisquestion we have used thelower bounds of Schwindt and have examined
those test problemsfor which our algorithm could find a solution matching alower
bound without being ableto proveoptimdity within thetimelimit. Wefound that for
one of the 1080 test problemsour algorithmfindsasol ution matchingalower bound
but cannot prove optimality within 3 seconds. Within 30 seconds, this solution is
proven to be optimal, and for another problem a solution matching a lower bound
is found without proof of optimality; this problem remains open after 100 seconds.
This means that the results of our agorithm could only be marginally improved by
using theselower bounds. Data concerningthe tightness of the lower boundscan be
foundin Table5.4.

Comparisonto Heuristics

Table5.4 comparesour algorithm to the best heuristicresults reported for the same
problem set, this time using only the 1059 solvable instances. In addition to the
columns shown in the previous tables, column “¢,,,” shows the average required
run time, and column “Cmax = LB” containsthe percentagecf problemsfor which
asolution with a value matching alower bound was found. The resultsfor our algo-
rithm are identical to those shown in the correspondingrowsin Tables5.2 and 5.3,
except that all percentagesin the columns*'feasible”,"optima™,and “Cmax = L B
are now given with respect to the 1059 solvable problems. Again, al values re-
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Procedure tmaz  tewe Feasible Optimal Ciax = LB Dev.p

Franck & Neumann

Direct _ 0.5 99.4 — 56.8 7.7

Contraction — 1.3 100.0 — 425 9.4
Franck & Selle

GAprec _ le.0" 100.0 — 59.9 5.3

GAvary __ le.0" 811 — 61.0 2.0

Tabu Search _  le.e" 100.0 — 56.0 5.8

Simulated Annealing —  10.4¢ 100.0 — 59.5 5.7

" Corresponding to 2661200 of thereal computation time.

Table 5.4: Comparisonof heuristicsfor 1059 of the 1080 problems with 100 activi-
ties

garding |lower boundsshownin the table are based on the bounds of Schwindt. As
mentioned above, the time-oriented algorithm has been tested on a PentiumPro/200
PC; the algorithmsof Franck and Neumann (1998) have been run on aPentium/200
PC, and Franck and Selle (1998) have used a Pentium/266 PC. As before, we have
scaled the run timesaccordingto the clock pulse.

Theresultsof Franck and Neumann (1998) have been obtained by applyingacombi-
nation of serial and parallédl list scheduling algorithmsusing severa different prior-
ity rules; the algorithmsinclude limited backtracking capabilities. The basic idea
behind the direct and the contraction method is to give preferential treatment to
activities which are on cycle structures induced by the temporal constraints. The
two approachesdiffer in the specific way in which they handlecycle structures; the
contraction heuristicinitially solves subproblems defined by the activities and cor-
responding precedenceconstraints on the same cycle structure and then integrates
these solutionsin acompleteschedule. The results of Franck and Neumann greatly
improve upon the results reported by Schwindt (1998b) for the older priority rule
based heuristicsof Zhan (1994) (see also Neumann and Zhan 1995) and Brinkmann
(1992) (see adso Brinkmann and Neumann 1996), which can solve approximately
98% of the problems with an average deviation from the lower bound of roughly

80%. Thisindicatesthe progressthat has been madein this areain the past years.

‘\Franck and Selle (1998) haveimproved these results by embeddinga variant of the

direct method in four meta-heuristics, specificaly in two genetic algorithms (GA)
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based on two different solution encodingsand in atabu search and simulatedanneal -
ing framework. The meta-heuristics dl manipulatethe order in which activitiesare
scheduled by the list scheduling algorithm, which thus servesfor evauating (neigh-
bouring) solutions. The table shows that, at the cost of an increased average run
time, the meta-heuristics solve more problems to optimality than the priority rule
based methodsand achieve a significantly smaller average deviation from the lower
bound. The low average deviation from the lower bound shown for the second ge-
neticalgorithmis probably caused by thefact that this procedurereachesthesmallest
number of feasiblesolutions; thisconjectureis supported by the observation that the
81.1% of the problemswith lowest individua deviation that are found by our algo-
rithm within a maximum time of 3 seconds have an average deviation of 0.9%.

Other heuristics have been developed by Schwindt (1998b) based upon truncated
versionsof his branch-and-boundalgorithm. However, since the newer version of
hisexact algorithm (Schwindt 1998a), whoseresults are cited in Table 5.3, improves
upon theresults of these heuristics, we do not present them in Table 5.4. Of course,
theresultsof any exact method shown in Table 5.3 may also be compared to the data
inTable54.

When comparing the time-oriented agorithm to the priority rule based heuristics
of Franck and Neumann we can observethat for average run timesin the order of
magnitudeof one second the algorithm findsmoresol utionsmatchingalower bound
while achieving a very small average deviation. However, the contraction method
is faster at finding feasible solutionsfor al problems. It can aso be seen that for
averagetimesin the order of magnitudeof 10 secondsthe time-oriented algorithm
performs better with respect to all criteriashown in the table than any of the meta-
heuristicsthat can solvedl problems.

Influence of Problem Char acteristics

Table5.5 showsthe influence of the resource strength RS, the resourcefactor RF,
the network restrictivenessRT, and the number of cycle structureson the difficulty
of the 1080 problem instanceswith 100 activities. The table shows the percentage
of problemswith a given characteristicthat could be solved to optimality and the
average deviation from the lower bounds of Schwindt (1998b). For example, line
three shows that 99.7% of the problems with a resource strength of 0.7 could be
solved to optimality with an averagedeviation from thelower bounds of 0.1%.

The table shows that the resource strength has the strongest influence on the diffi-
culty of the problems. The hardest problemsoccur when alow resourcestrengthis
combined with a high resourcefactor. The influence of the given variation of the
network restrictivenessand the number of cyclesin the network appearsto be weak.
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Parameter Value Optimal? Dev.rp?
Cycles 2,5] 746 42
6,9] 724 48

"Within a timelimit of 100 seconds.
bproblems were generated with the target restrictiveness values shown in Table 5.1, but the actual
valuesmay vary from the target values.

Table5.5: Influenceof problem char acterigticsfor the problem PS|temp| Cmax for test
set A
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Procedure tmax teyg Feasible Optimal Cupmax = LB Dev.p
(sec) (sec) (%) (%) (%) (%)
Time-orientedB&B 200 98 975 714 61.3 05
1000 306 99.2 77.3 61.3 05
Fest, Mohring,
Stork & Uetz 200 — 100.0 58.8 52
1000 — 100.0 58.8 __ 38
Franck & Neumann
Direct 56 849 — 403 12
Contraction __ 18 1000 — 50 5.1
Neumann & Zimmermann
Filtered Beam Search — 14 80 — 62 0.1
Decomposition 200 51 100 — 6 50

Table5.6: Resultsfor 119 of 120 large problemswith 500 activities

Resultsfor Large Problems

Todemonstratethe scalability of our algorithm, Table5.6 presentsresultsfor the sec-
ond test set of 120 problem instanceswith 500 activities. For comparison, the table
also showsthe results reported by Fest et al. (1999), the only other exact procedure
for which results have been published for this test set. The table also contains the
results obtained by Franck and Neumann (1998) for their priority rule based heuris-
tics, and by Neumann and Zimmermann (1999) for the two branch-and-boundbased
heuristics that they found most effective for this test set in terms of the criteriare-
ported in Table 5.6. The latter heuristics are based on the algorithm of Schwindt
(1998b). Similar to the priority rule based contraction method, the decomposition
heuristicinitially solves subproblemscorresponding to the cycle structures. All per-
centages except for those in the Dev.; 5 column are based only on the 119 problem
instances that have a feasible solution. Again, the lower bounds used for calculat-
ing the average lower bound deviation have been found in the study of Schwindt
(1998b). The results of Neumann and Zimmermann as well as those of Franck and
Neumann have been obtained on Pentium/200 PCs.

The resultsin Table 5.6 show that our algorithm scales quite well. Within 200 sec-
onds, the agorithm solves 71.4% of the problems to optimdity and leaves only 3
of the 119 feasible problems unsolved; the infeasibility of the remaining problemis
proven at the root node. For atimelimit of 1000 seconds, 118 of the 119 problems
that have a feasible solution are solved to feasibility and 92 instancesor 77.3% to
optimality; the time-oriented algorithmalso achievesavery small averagedeviation
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Table5.7: Characteristicsof the test setsfor the problem PS|prec|Cax

from the lower bound. The table shows that those procedureswhich can also solve
the remai ning problem(s) left open by the time-oriented algorithmcan only do so at
the price of asignificantly lower solutionquality, as indicated by the Dev.; 5 values.
The number of problemssolved to optimality within the maximum allowed timeis
18.5 percentage points, correspondingto 22 problems, higher than for thealgorithm
of Festeta.

5.45 Experimentsfor the Problem PS|prec|Cpay
Ted Data

We have tested the algorithm on four standard sets of benchmark instances of the
problem PS|prec|C,,, that were systematically generated with the problem generator
ProGen (Kolisch et a. 1995).

Tableb.7 showsthe detail ed characteristicsof thetest sets. The number of activities,
|V|, does not include the fictitious start and end activities. All processing times
and resourcerequirementswere randomly drawnfrom theset {1,...,10}. Thefirst
three test sets with 30, 60, and 90 activities per problem contain ten instancesfor
each combination of the three control parameter values shown in the three right-
most columns and four top-most rows of the table, leading to a total number of
480 instances. The last test set, which contains problems with 120 activities, has
been generated with different, more difficult resource strength values, again, the
set contains 10 problem instancesfor each combination of the variable parameters
shownin thelast 5 rowsof thetable, resulting in atotal number of 600 problems.
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Procedure tmax tavg Optimal Dev.opt
avg. max
(sec) (sec) (%) (%) (%)

Time-orientedB&B

1 0.3 80.2 0.57 10.9
10 1.6 88.3 0.19 8.9
60 6.0 92.7 0.10 6.0
300 194 95.4 0.05 6.0
1800 66.4 97.3 0.03 45

Table5.8: Resultsfor 480 problemswith 30 activities (test set j30)

Results

Table 5.8 shows the results obtained with the time-oriented branch-and-bound al go-
rithm for the smallest test set with 30 activities per problem. For a given run time
limit ¢ax the table shows the average run time t..,, the percentageof problems
solved to optimality within the time limit, and the remaining average and maximum
deviationfrom the optimal solution (all optimal solutionsfor thistest set are known).
For example, the table shows that within a timelimit of 300 seconds95.4 % or 458
probleminstancescan be solved to optimality within an averagerun time of 19.4 sec-
ondsand aremainingaveragedeviation from the optimal solution of 0.05 %. Within
the maximum allowed run time of 1800 seconds, 97.3 % of the problemsare solved.
We found that the difficulty of the problem instances for the time-oriented algo-
rithm strongly dependson the resourcestrength. Whileall instanceswith aresource
strength greater than 0.2 can be solved within less than 10 seconds, the problems
with aresourcestrength of 0.2 are considerably moredifficullt.

We must mention that the currently most effective algorithmsfor this problem set,
which have been devel oped by Klein and Scholl (1999b), Demeulemeester and Her-
roelen (1997b), Sprecher (2000) and Mingozzi et al. (1998), perform better on this
problem set and can solve more instances within shorter time. For example, Klein
(2000b) reportsthat the scatter search algorithm of Klein and Scholl can solve all
problemswithin a maximum time of 361 secondson aPentium/166 computer.

Table5.9 showstheresultsof our algorithmfor the larger test set with 60 activities
per probleminstance and comparesthem to the results of the proceduresof Brucker
et al. (1998), Sprecher (2000), and Klein and Scholl (1999b), which have been tested
on the same problem set. The table shows the algorithmsin inverse historical order.
For a given time limit, the table presents the average run time, the percentage of
problemssolved to optimality, and the average and maximum deviationsfrom sev-
eral lower bounds as well as the average deviation from the best known solutions
collected in the corresponding benchmark file of the project scheduling problem li-
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brary PSPLIB. Dashes indicate that the corresponding information was not avail-

able. When comparing the results of different algorithms, the different computer
platforms, which are describedin the table footnotes, must be taken into account;
observethat we havenot scaled the run time values.

The development of tight lower bounds for the problem PS|prec|Cpa, IS an area of

activeresearch (seee.g. Klein and Scholl 1999a, Brucker and Knust 1999, Mohring
et al. 1998, Heilmann and Schwindt 1997). In Table 5.9 and in the following ta-

bles we show the deviationsof our algorithm with respect to the best lower bounds
that are currently availablein the correspondingPSPLIB benchmark files. A com-

parison of the performanceof different algorithmswith respect to deviationsfrom
lower boundsis, of course, only meaningful if the deviationsare based on the same
bounds. Table 5.9 and Table 5.10 below thereforeal so include deviationsfrom the
lower bounds of Brucker et al. (1998), which have been used in the other studies.
For easy reproducibility we also give the deviationswith respect to the precedence
based lower bound LB, which correspondsto the optimal solution of the resource
relaxation of the problem.

Table 5.9 showsthat the time-oriented algorithm is competitive with the other pro-
ceduresand that, for small run times, it achievesthe highest percentageof optimally
solved problems. For large run times, the algorithm of Klein and Scholl seems to
perform dlightly better than our a gorithm.

Table 5.10 compares the results of the time-oriented algorithmfor the test set j90
to those of the procedureaf Sprecher (2000), which isthe only algorithm for which
results on this test set have been published. Theformat of thetableisthe sameasin
Table5.9.

Table 5.11 shows the results of our algorithm for the largest test set with 120 ac-
tivities per problem instance. Recal that this problem set has been generated with
more difficult resourcestrength valuesthan the three smaller sets. As we will seein
Table 5.12 below, this appears to be the main reason for the strong decreasein the
percentageof problemssolved to optimality when compared to thesmaller test sets.
We can also observethat the average deviations from the lower bounds are roughly
three times as high asfor the smaller and easier test sets with 60 and 90 activities
per instance. As before, the percentage of problems solved to optimality grows only
dowly when the run timeis increased.

Data on the performanceof other exact proceduresfor this problem set has not been
published. We have compared our results with respect to the averagedeviation from
the precedence based lower bound LB, to that of severa state of the art heuristics
reported by Kolisch and Hartmann (1999), who have analysed the performance of
eight heuristicswithin a maximum number of 1000 and 5000 iterations; an iteration
corresponds to the application of a serial or parallel schedule generation scheme.
The minimal deviation obtained by the best heuristic within 1000 iterationsis 39.4
%. Within the maximum number of iterations, only the best of the eight heuristics,
the genetic algorithmof Hartmann (1998), achievesalower deviation (36.7 %) than
our agorithm within the maximum allowed time.
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Procedure #max tavg  Opt. Dev. g® Dev.pg”  Dev.pp, Dev.ys®
avg. max avg. max avg. avg.

10
60
300
1800
Kleinand
Scholl® 10
60
300
1800
3600

Spreche’ 300 831 727 — — 57 458 13.6 —
1800 4727 758 — — 53 40.7 13.0 —

Brucker

et al.® 3600 — 679 — — 48 308 — —

“Based on thebest known lower bounds collected in the PSPLIB.

bBased on the lower bounds of Brucker et al. (1998).

“Based on the best known solutions collected in the PSPLIB.

4Impl. in C++, results obtained on Pentium Pro/200 with WindowsNT.

¢Impl. in C++, results obtained on Pentium/166 with Windows 95.

fTmpl. in C++, results obtained on Pentium/166 with Linux.

&Impl. in C, results obtained on SUN/Sparc 201801 (80 MHz) with Solaris 2.5,

Table5.9: Results of exact algorithmsfor 480 problems with 60 activities (test set
j60)
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Procedure #max tavg  OpL. Dev.pg*° Dev.;g”  Dev.p g, Dev.yg’
avg. max avg. max  avg.  avg.

Sprecherf 300 1203 615 — — 83 587 157 —

“Based on the best known lower bounds collected in the PSPLIB.
bBased on the lower bounds of Brucker et al. (1998).

“Based on the best known solutionscollected in the PSPLIB.

4Impl. in C++, results obtained on Pentium Pro/200 with WindowsNT.
“Based only on forward planning.

fImpl. in C++, results obtained on Pentium/166 with Linux.

Table 5.10: Resultsof exact algorithmsfor 480 problemswith 90 activities (test set
190)

Procedure tmax tavg  Optimal Dev.; g Dev.rp, Dev.yg”
avg. max avg. avg.

(sec) (sec) (%) (%) (%) (%) (%) I

Time-oriented B&B 10 74 310 99 406 38.0 3.6 I

“Based on the best known solutionscollected in the PSPLIB benchmark file.
#Based on the best known lower bounds collected in the PSPLIB benchmark file.

Table5.11: Resultsfor 600 problemswith 120 activities (test set j120)
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Param. Value Optimal® Dev.15"
j30  j60  j90 jI20 j30 60 j9O 20
(%) (%) (%) (%) (%) (B) (%) (%)
25

RS 01 .  _  — — —  — 199
0.2 817 30.8 200 9.2 02 116 140 134
0.3 — — — 250 — —_ —_ 8.3
04 — — — 492 _ e — 39
05 1000 833 842 808 0.0 12 08 08
0.7 100.0 100.0 100.0 — 00 00 00 —
1.0 100.0 100.0 100.0 — 00 00 00 —

"Within a time limit of 300 seconds.
bBased on the best known lower bounds collected in thePSPLI B.

Table5.12: Influenceof problem characteristicsfor the problem PS|prec|Cax
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Table 5.12 analysesthe influence of the resource strength RS, the resource factor
RF, and the network complexity €' on the difficulty of the problem instances. For
the four test sets, the table gives the percentageof problems with a particular char-
acteristic that could be solved to optimality and the average deviation from the best
known lower bounds collected in the correspondingPSPLIB benchmark files. For
example, linefive of the table showsthat 80.8 % of the problem instanceswith 120
activitiesthat weregenerated with aresourcestrength of 0.5 could be solved to opti-
mality, and the remaining averagedeviation from thelower bound for these problems
was 0.8 %. Thedatashown in Table5.12 confirmsthe results of earlier studies, see
e.g. Kolisch (1995), regarding theinfluence of the problem characteristics.

The table shows that the hardest problems are those with a low resource strength.
For a resource strength of 0.2, the percentageof problems that could be solved to
optimality sharply decreases with growing problem size; for the lowest resource
strengthvalueof 0.1, only threedf the problemswith 120activitiescould besolvedto
optimality. Problemswith RS > 0.7 appear to be easy independentof problemsize,
and the benchmark lower boundsfor theseinstances arealwaystight. For RS = 0.5,
we can observethat the percentagecf problemsthat can be solved remainsroughly
constant when the problem size grows from 60 to 120 activities, although the time
limitis not increased.

Theinfluenceof the resourcefactor isalso clearly visible: problems become harder
as the average number of resource types required by an activity increases. For
example, for the minimal resourcefactor of 0.25, which meansthat on averageeach
activity requiresonly asingle resourcetype, the algorithm can solve 84.2 % of the
problemswith 120 activities. Astheresourcefactor grows, the valuedropsto 19.2%.

The influence of the network complexity is not as significant as that of the other
two control parameters. While theresultsfor test set j120 indicatethat the problems
becomemore difficult with increasing network complexity, the datafor the smaller
test setsisinconclusive.

As to be expected after examining Table 5.12, the hardest problems occur when a
low resourcestrength is combined with a high resourcefactor. For example, roughly
speaking, the 30.8 % of the problemswith 60 activities and a resource strength of
0.2that can be solved to optimality includeall those instancesfor which the resource
factor takes a value of 0.25 and afew instanceswith a resourcefactor of 0.5. Intu-
itively, alow resourcestrength causes many activity pairsto be disunctiveand thus
leadsto cliques of pairwise digunctive activitiesof considerablesize. Additionaly,
if the averagenumber of resourcetypesrequired by an activity is high, then, smply
speaking, thereare many "links" between the cliquesinduced by each resourcetype.
This combinedeffect leadsto largeand difficult digunctive sub-problems.

We also analysed in how many casesour agorithm could find valuesmatchinga best
known lower bound without being able to prove optimality within the maximum
alowed run time. We found that this occursfor none of the instancesin the test
sets j60 and j90 and for only a singleinstanceof the test set j120. This means that
even the best known lower bounds, if calculated at the root of the search tree, would
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only marginaly improve the results of our algorithm. Also, it seems questionable
if a re-calculation of bounds during the search would pay off in terms of overall
computation time. For example, Klein (1999) has found that for his branch-and-
bound agorithm the pruning power of the bounds described by Klein and Scholl
(1999a) does often not outweigh the associated computational effort and does in
general not lead to areduction of computation times.

Dominance Criterion Based on Partial Schedules

We also experimentedwith adominancerul e based on storing and comparing partial
schedules, which is similar to the well known cutset rule described by Demeule-
meester and Herroelen (1992). Whilethe use of thisruleled to someimprovements,
the overall effect for the larger test sets wasrather small; for example, when us-
ing this rule, only a single additional instance of the test set j60 could be solved
within the maximum time limit of 1800 seconds. Because the performanceof the
rule within our algorithm was disappointing and because the rule cannot easily be
adapted for the general case of arbitrary minimal and maxima timelags, wedid not
further consider itin our study.

25 Summary

Thischapter has presented a branch-and-boundalgorithmfor avery general schedul -
ing model, the resource-constrained project scheduling problem with generalised
precedence relations, with the objective of minimising the project makespan. The
algorithm uses a binary, time-oriented branching schemethat relieson efficient con-
straint propagati ontechni quesfor reducing the search space. The power of constraint
propagation liesin the systematicand computationallyefficient application of basic
consistency tests. The search effort is reduced further by adding some necessary
conditionsthat must be satisfied by active schedulesand through a simple | eft-shift
test. The algorithmcan also easily be applied for optimisingother regular measures
of performance.

Given the conventional wisdom that the efficiency of branch-and-boundprocedures
depends largely on good lower bounds, it is quite interesting to note that our algo-
rithm does not use any explicit lower bounds. Instead, lower boundingisimplicitly
achieved through the constraint propagation process.

Computational experimentson severa large test sets of systematically generated
benchmark problemstaken from the literature have demonstrated the effectiveness
of the approach.

On a data set of over thousand instances of the problem PS|temp|Cynax With one
hundred activities each, the algorithm finds feasible solutions for al problemsand
it solves more problems to optimality than other methods, while at the same time
achieving a significantly smaller deviation from a lower bound for those instances
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for which optimality cannot be proven. The resultsobtainedfor another test set con-
sisting of problems with five hundred activities show that the algorithm also scales
very well. In addition, the truncated version of the algorithm comparesfavourably
to the best heuristic proceduresfor the problem.

The algorithm also performswell for the specia project scheduling problem with
ordinary precedenceconstraints, i.e., the problem PS|prec|Cp,q.. Computational ex-
periments with four large, systematically generated sets of benchmark problems,
ranging in size from 30 to 120 activities per problem instance, indicate again that
the algorithm scaleswell and, especially for larger instances, is competitiveto other
exact proceduresfor this problem. The results for the largest test set show that the
time truncated version of the algorithm may be a useful heuristicfor solving large
project scheduling problems. Surprisingly, many exact algorithmsfor the problem
PS|prec|Cmar have mainly been evaluated on the smallest of the four test sets. The
good performancedf the time-oriented algorithmon the larger test setsis alsointer-
esting becausethe algorithmdoes not includefeatures such as partial schedulebased
dominancepruning or explicitlower bound computation; while these features often
make exact algorithms perform well on the small test set, they have the disadvan-
tage that they are usually not easy to extend or to adapt for generalised or modified
versionsof the problem PS|prec|Ciax.

We havefound that, for the problem PS|temp|Cnqx and for thelarger test setsof the
problem PS|prec|Cpqy, even the useof thecurrently best known lower bound values
availablein the benchmark files of the project scheduling library PSPLIB would
only marginally improvethe results of the algorithm with respect to the number of
optimally solved problems.

The computational analysishasshown that the difficulty of the probleminstancesfor
the algorithm depends primarily on the problem characteristics,in particular on the
combination of resourcesupply and demand as measured by the resource strength
and resourcefactor, and that the problem sizeis not the most important factor. As
the hardest problems are characterised by a high share of digunctiveactivities, we
expect that further improvements may be achieved by concentratingon the disjunc-
tive aspectsof the problem.






Chapter 6

M ulti-M ode Extension of the
Branch-and-Bound Algorithm

This chapter addresses project scheduling with generalised precedenceconstraints
and multiple execution modes per activity, reflecting time-resourceand resource-
resourcetradeoffs. It shows how the branch-and-bound algorithm developed for the
single-mode problem PS|temp|Cya, in the previous chapter can be extended for the
multi-mode problem MPS|temp| Cpi.

After abrief review of theliteratureon multi-mode project schedulingin Section 6.1,
Section 6.2 explains how constraint propagation may be used, and Section 6.3 then
introducesthe extended branching scheme.

6.1 PreviousWoak

Despite its generd nature, the problem MPS|temp|Cqx hasonly very recently been
studied from an algorithmic point of view, and very few solution approaches have
been reported in the literature. Traditionaly, algorithmsfor multi-mode project
scheduling on the one hand and project scheduling with generalised precedence
constraints on the other hand have been developed separately. Multi-mode project
scheduling has almost exclusively been studied for the problem MPS|prec|Cpax with
classic precedenceconstraints; generalised precedenceconstraintshave mainly been
considered within the single-modeproblem PS|temp|Cpax. 1t appearsthat the diffi-
culty of the combined problem haslead researchersto focus on only one of two the
aspectsat atime.

Exact algorithmsfor the problem MPS|prec|Cma: have been developed by Talbot
(1982), Patterson et a. (1989), Sprecher (1994), Nudtasomboon and Randhawa
(1997), Sprecher et a. (1997), and Sprecher and Drex| (1998). Pesch (1999) de-
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scribeslower bounds. A comparison of exact algorithmsis given by Hartmann and
Drex! (1998). An exact agorithmfor ageneraisation of the problem MPS|prec|Cpax
with arbitrary minimal time lags has been proposed by Hoveand Deckro (1998) and
Van-Hoveet al. (1999).

Heuristic solution procedureshave, among others, been described by Talbot (1982),
Drexl (1991), Drex| and Griinewald (1993), Slowinski et al. (1994), Boctor (1993,
1996a,b), Kolisch (1995), Kalisch and Drex! (1997), Hartmann (1998), and Ahn and
Erengiic (1998). An overview of the variousapproachesis givenin the recent survey
papers of Brucker et a. (1999), Herroelen et al. (1998), and Kolisch and Padman
(2001).

As discussed in Chapter 2, multi-mode project scheduling problemscan be divided
into two sub-problems. The mode assignment problem consists of assigninga mode
to every activity. Given a mode assignment, the scheduling sub-problemistofind a
start time assignment for al activities. Algorithmsfor the problem MPS|prec|Cmax,
and, in analogy, for the problem MPS|temp| Cpax, Can be classified as decomposition
or integration approaches, dependingon whether the mode assignment sub-problem
and the scheduling sub-problem are addressed sequentially or simultaneoudly.

Thefirst heuristicalgorithmfor the problem MPSltemp|C,. has been described by
De Reyck and Herroelen (1999). It is based on a decomposition approach and con-
tains a mode assignment phase and a subsequent scheduling phase with fixed mode
assignments. A mode assignment is found using tabu search; during the search, a
given modevector isevaluated by solvingthecorrespondingschedulingsub-problem
of the type PS|temp|Cpay. A scheduleis computed with a truncated version of the
branch-and-boundalgorithm of De Reyck and Herroelen (1998). Upon termination
of the tabu search, afind scheduleis computed for the best mode assignment found
by again applying the truncated branch-and-bound al gorithm, thistime using alarger
timelimit.

Another tabu search procedure based on a decomposition approach has been pro-
posed by Franck (1999). Heilmann (1999) has presented a priority rule heuristic
with limited backtrackingthat is based upon hisexact algorithm described below.

The only exact procedurefor the problem MPS|temp|C.a. that has been described
so far is the one of Hellmann (1998, 1999). The algorithm is based on an integra-
tion approach, i.e., it smultaneously makesdecisionsconcerning mode assignments
and the resolution of resourceconflicts. The idea is to consider the current mode-
minimal problem instance’, to relax theresource constraintsand computean optimal
time-feasibleschedule. The resulting schedule, which will usually violate resource
constraints, is then tested for resourceconflicts. Branchingconsistsof (1) assigning
a mode to an activity or (2) adding specia precedence constraintsto resolve a re-
sourceconflict. Asin the algorithm of Schwindt(1998a,b), conflictsare resolved by
introducingspecial precedenceconstraintsbetween pairsof digointsetsof activities;
all activitiesin the second set are delayed until the completion of someactivity in the

! See Definition 1 on page 63.
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first set. The decision whether to branch over amode assignmentor a resourcecon-
flictis made based on a heuristicthat triesto sel ect the most difficult decision, which
on average has the strongest influence on a lower bound of the objective function
value.

6.2 Congraint Propagation

Constraint propagation proceeds mostly in the same way asin the single-modecase,
the main differencesbeing that all consistency testsare applied to the mode-minimal
probleminstanceintroducedin Definition 1 on page 63 and that the additional mode
reduction testsdescribedin Section 4.7 are used.

At every node of the search tree, afixed point is computed by applying at least the
two most basic consistency tests, i.e., the Precedence Consistency Test 1 and the
Unit-interval Consistency Test 8. As before, the application of these two testsis an
essential part of the branch-and-boundalgorithm. The values pc; (A) andre; (A) are
calculatedfor the mode-minimal problem instancein the way defined in Section 5.2,

6.3 Extended Branching Scheme

The branching scheme of the multi-modealgorithmis an extension of the single-
mode branching structure developed in the previous chapter. 1t combinesthe time-
oriented branchingscheme with simultaneousmode decisions.

Each node a of the search treeis associated a set A(a) = {As(a), Ay (a)} =
{Ag,(a),Ap,(8) | i € V} of start time and mode assignment variable domains.
An activity is unscheduled if its mode or its start time have not yet been assigned.
Inversaly, an activity is scheduledif its start time and mode are bound. The set of
domain sets A(a) uniquely determinesthe set VS(A(a)) :={i € V | |As,| =
1A |Ay| = 1} of scheduled activitiesand theset VY (A(a)) == V \ VS(A(«)) of
unscheduledor free activities. To simplify the notation, we will again write V °(a)
instead of VS(A(a)), etc., whenever no confusion is possible. Generating a sched-
uleis equivalent to reducing the start time and modedomainsuntil exactly one entry
remainsin every domain. As before, domainswill be reduced by constraint propa
gation and by explicit branching.

The key idea of the branching scheme is to interleave a binary branching over a
mode assignment or restriction with the binary time-oriented branching devel oped
for the single-modecase. The branchingdecisionsareinterleavedin such away that
the assigned activity start timesare non-decreasing,asin the single-modeal gorithm.
The non-decreasingstart-times will again allow to apply simpledominancerul esthat
rule out non-active schedules.

At every node a of the search tree, an unscheduled activity 7 € V7 (a) is selected
and two child nodesare generated according to thefollowing rule:
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If M; is unbound, then select amode A € Ay, (@)and create a left
child node!’(a) and aright child noder’(a) asfollows:

U(a): Assign mode ) by setting M;(l'(a)) :== A.
(a): ForbidmodeX by setting M; (r' () := M;(e) \ {\}.

Otherwise, if M; is bound, then branch over the start times of j by
creating aleft child nodel(«) and aright child noder(«) asfollows:

I(a) Startjatitsearlieststarttimeby settingS;(i(a) )= ES;(a).
r(a): Increasetheearlieststart of j by choosing ES;(r(a)) > ES;(a).

The rules for the time-oriented branching step leading to the child nodes I(«) and
r(a) areidentical to the single-maodealgorithm. If al modesare bound, the branch-
ing scheme reduces to the single-modescheme.

To completely specify the branching schemewe must now answer three questions.
Firstly, we must describe how to choose activity 5 € V¥ (a),and secondly how
to select the corresponding mode X if applicable. Thirdly we must specify how to
increase the earliest start time of j in 7(a). We will first addressthe selection of an
activity and a corresponding mode.

Selection of Activitiesand Modes

The propagation process by which the earliest start of activity i, ES;(«a), is calcu-
lated only makes use of the mode-minimal problem instance, and in particular of
the mode-minimal duration and resource requirementsof activity i. Because these
values may increase if the mode of i is chosen, the actua earliest start time that
can be realised for some mode assignment may be greater than ES;(«). In order
to determinethe realisableearliest start time of an activity consideredfor branching
we will often tentatively assign a modeto this activity and evaluatethe effect of the
assignment by applyingconstraint propagation. The modifieddomain set in which a
mode i € Ay, (a)has been assigned to activity i isisdenoted with A (o) Mi=# and
isdefined asfollows:

We can now introduce the realisable earliest start time ES;'(a) > ES;(a) of an
activity i, which is defined as the minimal start time of i that can be redised if a
modefor ¢ is chosen and this mode assignment is propagated by applying a fixed
point constrai nt propagation agorithm CP.

BS{(a) = min BS{(CP(A)™). 62)
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If the modeof i is bound, weobtain, of course, ES;'(a) = ES;(a).

We are now ready to addressthe activity and mode selection rule. Asin the single-
mode case, theidea behind the rule is to only branchin such way that the creation
of non-activeschedulesis avoided where possible. At node e of the search tree, we
choose an activity j from the set V' () of free and non-delayed activities, which
will be defined in a way very similar to the single-modecase. For the time being,
weonly assumethat V/' ()it is anon-empty subset of theset of freeactivities. The
activity and mode selection rule can be stated asfollows:

Choosej € V' (a) such that ES;' () = t(a), wherethe scheduletime
t(e) istheminimal realisable earliest start time, i.e.,

t(a) = min ES;(a).
eVl (@)

If M; isnot bound, then chooseamode for which ES;' (a)is realised:
A=arg min ) ES;(CP(A(a)M:=H)). (6.3)
(¢4

#Es‘l,\;l.(

Tiesare broken by first selectingan activity with minimal timedack, i.e., an activity
for which |Ag, (e)] is minimal. Ties concerning the mode selection are broken by
first choosing the modewith minimal processingtimep;as; .

We are now |eft with thetask of specifyingtheset of free and non-delayed activities.
In asimilar fashion asin the single-modeal gorithm, it will prove useful to partition
the set of free activitiesinto (1) aset of activitiesthat, dependingon the modeassign-
ment, may still have to satisfy a maxima timelag, and (2) a set of activitieswhich
do not, no matter what modes are chosen.

Let E = E™(a) U £™3%(q), where E™7"(a) := {(i j) € E | di;(a) > 0) and
Emer (o) == {(i,§) € £ | J:J-{rr) < 0) are the relations specifying the minimal
and maximal time lags between pairs of activities. In contrast to the single-mode
case, the sets E™ (o) and £™2% () depend on thetimelags d; ;(a)of theminimal
probleminstance, i.e., on the mode domainsand thus on the search tree node.

We then definethe set

9tc(a) = {0, | j € Vi(a) A @€ Ap, () A
di e Vf(a): (I ,j) € E,"”“’--T(CP(‘/_\(U)"U;=H))}

of timemax-constrained activity-modecombinationsand the set V% (a) := V/ (0)\
V() of timemax-unconstrainedactivity-modepairs.

Theset of free and non-delayed activity-modepairs can then be describedin anal ogy
to the single-modeal gorithm:
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Theinterpretationof the set Vf'is very similar to thesingle-modecase: An activity-
mode pair (4, 1) with afree activity j is a candidatefor branching if j, under the
assumptionthat itis performed in mode i, may havean incomingbackwardarc, or if
theearliest start time of j in mode 1 equalsits current earliest resourcefeasiblestart
time r¢; (CP(A(a)™i=#)). In the same way as in the single-modealgorithm, this
means that a delayed activity that is not constrained by a maximal time lag remains
un-sel ectableuntil the resourcecapacity made available by delayingj has been used
by some other activity. Thechoiceof theset /' isjustified by ageneralised version
of Lemmaz2.

Delaying Duration

The delaying duration, i.e., the rule how to increase the earliest start time of an
activity j selected at node a in the child noder(a) is the same as explainedfor the
single modecasein Section 5.3.1.

Recall that in order for the resultingschedule S to be active, either (1) a precedence
constraint or (2) low dack must prohibit a left-shift of the selected activity j. Since
the activity will be delayed by at least one time unit, the first case can be ruled
out if al precedenceconstraints (i,j) € £ are aready resolved (see page 20) in
node a.; otherwise, we can only delay j by a single time unit. The second case
requires that the slack of all activities except j is insufficient to the left of S;(a),
which can only be the case if S;(a)) matches the completion time of some activity
that sharesresourceswith j . Sincetheearliest possiblecompletiontime EC; isbased
upon constraint propagation for the mode-minimal probleminstance, the multi-mode
aspect, is taken into account when using Lemma 3 for the multi-modecase.



Chapter 7

Applicationsin Airport
Operations M anagement

In the past decades, the volume of worldwide civil air transport has been steadily
increasing with an average growth rate of more than five percent. Passenger and
freight traffic have roughly doubled since the mid 1980s. The growth is generally
expected to continue at the same rate: The International Air Transport Association
currently predicts an annual average growth rate for tota scheduled international
traffic of 5.6% for passengersand of 6.7%for freight for the next five years (IATA
2000b,c).

The growth has been accompanied by a wave of deregulation and liberalisationin
the airline industry in Europe, in the United States, and in many other parts of the
world. Airlinesleft free to provideservice with few regulationshave significantly
changedtheir services and schedul es, for exampleby introducingairlinehubs. At the
sametime, privatisation and commercialisation are changing the mode of operation
of many airports(ADV 1997, Endler and Peters 1998).

From the point of view of an airport or ground service provider it has becomein-
creasingly important to utilise the available resourcesin the best possible way in
order to cope with thesetrends. To handlethe growing traffic volume, it is essential
that a good resource utilisation is achieved. This holds true for the staff and equip-
ment concerned with ground handling on the ramp and in the terminal, as well as
for infrastructureand building resources, such as runways or terminal gates, which
typically can only beextendedin thelong run, if at al, and with very largefinancial
effort.

The high resource utilisation required to satisfy the growing demand for ground ser-
vices leads to complex planning and scheduling problems that can no longer be
adequately addressed with traditional, manua planning methods. The scheduling
of resources on the operational level is additionally complicated by frequent, un-
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predictable changes in the flight schedule, such as delays, re-routings, or aircraft
changes.

The complexity and size of the problems call for computerised decision support
tools. This chapter analysestwo important areas within the tota airport operations
system, in which the project scheduling model sand sol ution techniquesdescribedin
the previous chapterscan be applied:

1. The scheduling of ground handling activities required for serving aircrafts
while at an airport givesrise to a resource-constrained multi-project schedul -
ing problem with time windows. The ground handling scheduling problem is
briefly describedin Section 7.1.

2. Gate scheduling deals with the problem of assigning flights to terminal gates
or parking positionsand scheduling the start or end times of the assignments.
Section 7.2 shows in depth how this decision problem can be modelled as a
special multi-moderesource-constrainedproject scheduling problem and de-
velops a solution approach based on the techniques describedin the previous
chapters.

For ageneral introductionto airport operationsand airport engineeringthat describes
theroleof thetwo areas mentioned abovewithin thetotal airport system, we refer to
the booksby Ashford et a. (1997) and Ashford and Wright (1992).

7.1 Scheduling of Ground Handling Oper ations

In airport ground handling, a large number of activities required for serving an air-

craft whileon the ground haveto be scheduled. Theseactivitiesinclude, for example,
(2) technical services, such asfuelling, whed and tire checks, ground power supply,

de-icing, cooling and heating, routine maintenance, or cleaningof cockpit windows,

(2) loading and unloading of cargo and baggage, (3) passenger and flight crew dis-

embarkment and embarkment, and (4) catering and cleaning services. The activities
have to respect certain precedenceconstraintsand must be processed within given

timewindowsthat depend on theaircraft arrival and departuretimes. The turn-round
or transit processingof an individua aircraft can be seen as a resource-constrained
project scheduling problem with generalised precedenceconstraints, and the overall

scheduling problemfor the completeairport or its termina areasis a corresponding
multi-proj ectscheduling problem.

Airlinestry to reduceaircraftground timesat airportsfor two reasons: firstly, to keep
up the flight schedulein case of operational irregularities, and secondly to increase
the fleet utilisation. Short turn-round or transit times are also advantageous for the
airport or ground service provider, as the use of heavy investment, such as termina
gates or costly ramp equipment, is maximised if ground times are kept as short as
possible.
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Figure7.1: Minimum transittime of aB747 aircraft

Scheduled arrival and departure times are therefore derived from a set of minimum
transit or turn-round times which reflect the technical possibilities with standard
equipment and,normally productive manpower. The times are obtained by anal-
ysis, including the timing of individual activitiesand critical path calculations, and
through actual demonstrations. The minimum timesdefinethe performancethat may
be needed in case of delay on arrival.

Figure 7.1, taken from an airport handling manual (IATA 2000a), shows an example
of how the minimum transit time of a B747 aircraft is determined. The Gantt-chart-
style figure shows a subset of the required activitieswith their start and completion
timeswhen started as early as possible (left-shifted). Thereare obvious(generalised)
precedence rel ations between certain activities.

For modem containerised aircraft, thecritical path of atransit or turn-round process-
ing usually consists of passenger disembarkment, cabin cleaning, and embarkment.
In few cases, before very long flights, fuelling operationsmay determinethe critical
path (IATA 2000a).

The scheduled ground times are usually approximately ten to fifteen minutes higher
than the minimum times in order to alow for delayed arrivals while still achieving
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on-time departure. This, the fact that not all activities are critical even when the
ground timesare minimal, and the fact that the actual required processingtimesfor
some activitiesdepend on theactud (vs. expected) load dataand may thusvary from
the processing times used for deriving the minimum ground time, leads to degrees
of freedom that may be exploited when scheduling the ground handling activities.
Additionaly, there are usually anumber of aircraft which, for various reasons, stay
at the airport for considerably longer than the minimum necessary ground time.

Thetask of schedulingthe ground handling activities may be modelled as single- or
multi-mode project scheduling problem with time windows with cumulativeand/or
digunctiveresources. A possiblefine-grained approachisto modd al avail ablestaff
and equipment asindividua digunctive resourcesand to represent the assignment of
an activity to aresourceas mode selection in a multi-mode model. Thisalowstoin-
troduceindividud availability times, e.g., shifttimes, aswell as sequencedependent
setup times between activities. The setup times can reflect the necessary travelling
durations between aircraft positions, which may be an important consideration if
these times are significant and vary considerably.

The performancemeasurewill usually consider multiple attributes. One of themain
goals frequently simply is to find a feasible schedule, if one exists, or to find a
schedule that comes as close as possibleto feasibility. Other useful criteriaare, for
example, alevelling of the resource usage or requirementsand an even distribution
of the staff workload.

Some of the modelling aspects mentioned abovewill also appear in the application
described in the following section.

7.2 Gate Scheduling

7.2.1 Introductioh

Gate scheduling is conderned with finding an assignment of flights to terminal or
ramp positions, called gates, and an assignment of the start and compl etion times of
the processingof aflight atits position. It isakey activity in airport operations. With
the increase of civil air-traffic and the correspondinggrowth of airportsin the past
decades, the complexity of the task hasincreased significantly. At largeinternational
airports, several hundredsof flights must be handled per day. The task is further
complicated by frequent changes of the underlying flight schedule on the day of
operations, such as delaysor aircraft changes.

The main input for gate scheduling is aflight schedulewith flight arrival and depar-
ture times and additional detailed flight information, including pair-wise links be-
tween successiveflightsserved by the same aircraft, the type of aircraft, the number
of passengers, the cargo volume, and the origin or destination of a flight, classified
e.g. as domestic or international. The information in the flight schedul e defines the
time frame for processing a flight and the subset of gates to which it can or should
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be assigned, takinginto account, e.g., aircraft-gatesize compatibility, accessto gov-
ernmental inspection facilitiesfor international flights, etc.

Gatesare scarce and expensive resources. |ncreasingthe resourcesupply involvesa
time-consumingand costly re-design of terminal buildingsor therampandis usually
not feasible in the short run. It is thereforeof great economic importancefor an
airport or terminal operator to use the available gatesin the best possibleway.

The gate assignment also influences the quality of passenger service in manifold
ways. A problemwell known to many passengersisthat arriving flights sometimes
haveto wait on theramp beforetravellingto their final position, becausethe assigned
gateis still occupied by another flight. Such a situation is often caused by a poor
gate assignment or by failure to adapt an initial assignment to updates of the flight
schedule. When changing a gate schedule, however, it must be taken into account
that gate assgnments are published some time before the actual arrival or departure
of aflight, for instancefor planning purposesin other operationa units, on passenger
information displays and on boarding passes. Passengers aready waiting at a gate
may haveto bere-directed if the gate of adepartingflight ischanged on short notice.
Another exampleof theinfluence of the gate assignment on passenger serviceisthe
required passenger walking distance, which dependson the chosen gates.

The gate assignment also affects other ground services. A good assignment may
reducethe number of aircraft tows required and may lead to reduced setup timesfor
severa ground serviceactivities on the ramp aswell asin theterminal.

The problem of finding a suitable gate assignment usually has to be addressed on
three levels. Firgtly, during the preparation of seasonal flight schedule revisions,
the ability to accommodatethe proposed flights must be examined. Secondly, given
a current flight schedule, daily plans have to be prepared before the actual day of
operation. Thirdly, on the day of operation, the gate schedule must be frequently
atered to accommodateupdates or disruptionsin the flight schedule; thisis referred
to asreactive scheduling.

The new optimisation model and algorithm for gate scheduling described in this
section differ from previous approachesreported in the literaturein several ways.

Whileat theairport, an aircraftgoesthroughthethreestagesof (1) arrival processing,
(2) optional intermediate parking, depending on the length of the ground time, and
(3) departureprocessing. In contrast to previousmodels, these stagesare considered
as separate entitiesthat can potentially be assigned to different positionsif necessary
or advantageous. The aircraft may then haveto travel between the assigned arrival,
parking, and departure positions; as this usualy requires the use of tow tractors,
we will generaly refer to it as towing. In addition to assigning the three stages to
positions, the start and completion times of processing at a position, which can vary
within certain time windows, haveto be assigned.

Themodel can consider an arbitrary time horizon, typically set to aday. Thisstands
in contrast to approachesthat split the overall problemintoisolated, short timeslots,
that correspond to waves of arriving and departing flights, a smplification that can
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bejustified at some hub airportswheremany passengerschange between connecting
flightsand wherethereislittlerelation between the flightsin two successivearriva-
transfer-departurewaves.

Previousoptimisation based approacheshave usually modelled the problem by rep-
resentingthe arrival, parking, and departurestagesas a singleentity to be assignedto
thesameposition, and they only consider asingleflight wave. Theobjectivefunction
most frequently used is the minimisation of walking distancesfor arriving, transfer-
ring, and departing passengers. The problem then becomes similar to a quadratic
assignment problem (Lawler 1963). However, for many airports, this modelling ap-
proach leads to an over-simplification that does not adequately reflect the original
decision problem.

Thekey ideabehind themodel presented hereisto look at the problemasamodified
multi-mode resource-constrainedproject scheduling problem with a multi-criteria
objectivefunction. The most important goals are the maximisation of atotal flight-
gate preferencevalue and the minimisation of the number of tows.

The basic optimisation algorithm is a truncated branch-and-bound procedure that

branchesover (1) gate (mode) assignments and (2) the digunctive constraints used

tomodel the capacity restrictionsof thedisunctive resources(gates). Thea gorithm
uses constraint propagation techniques to reduce the search space. To cope with

large practical problemswith in the order of magnitude of thousand activities per

day, the problem is decomposed into loosely coupled sub-problemsusing a new

generic problem partitioningtechnique. The sub-problemsare used within a layered

branch-and-bound approach: The search tree is conceptually split into layers that

correspond to the sub-problems. In each layer, only decisionvariablesof the current

sub-problem are selected for branching; limited backtrackingis performed within

the current layer beforeproceedingto the next layer. Initial solutionsobtainedin this
way are iteratively improved using a large neighbourhoodsearch (LNS) technique
(Kilby et a. 2000) that relaxessome of thedecisionsand uses the branch-and-bound
algorithm to reform the relaxed part of the solution at a lower cost. LNS can aso
serveto adapt an existing scheduleto changesin the input datain a smooth way.

The model and algorithm have been evaluated using small manually designed test
cases aswell astwoweeksof real-lifeflight scheduledatafrom alargeinternational
airport. A comparison of the computationa results with a rule based approach, as
often used in commercia systems, shows that the algorithm greatly improves the
solution quality.

Beyond their applicationfor the gate scheduling problem at hand, the problem parti-
tioningtechniqueand thelayered branch-and-boundapproach are of general interest,
since they addressa common task and can easily be generalised.

Theremainder of thischapter is structured asfollows. After areview of the relevant
literaturein Section 7.2.2, Section 7.2.3 describesthe problemin detail and devel ops
the optimisation model. Section 7.2.5 presents the basic branch-and-bound algo-
rithm. Section 7.2.7 shows how the problem can be partitioned into sub-problems,
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and Section 7.2.8 describes how these sub-problems are used within the layered
branch-and-bound approach. The iterative improvement of solutions is discussed
in Section 7.2.9. Section 7.2.10 finally reportson computati onal experiments.

722 LiteratureReview

Gate assignment strategies have been studied for along time, and thefirst quantita-
tive approaches have already been described in the late 1960's (Baron 1969). One
of thefirg studiesthat demonstrated the effect of gate assignment strategieson pas-
senger walking distances was undertaken by Braaksma(1977). As an example, the
mean walking distance per passenger at Terminal 2 of Toronto International Airport
could be reduced by more than ten percent asaresult of achangein gate assignment
policy. The minimisation of total walking distance within the terminal for arriving,
transferring, and terminating passengers has remained one of the most frequently
considered objectivesin the literature.

Passenger walking distance minimisationis an important issue not only in the op-
eration of airport terminals but also in the design of a termind. Severa efforts to
integrate a method to minimiseintra-terminal travel into theterminal design process
have been reported, and as an examplewe refer to thediscussionsby Wirasingheand
Bandara (1990) and Bandaraand Wirasinghe(1992).

The main part of the literature on gate assignment deals with terminal operations.
The variouscontributionscan be roughly classified according to the underlyingtech-
nology as (1) optimisation based and (2) rule based or expert system approaches.

Previous studies that have devel oped optimisation models and agorithms have fo-
cused on the assignment aspect of the gate scheduling problem; the resulting prob-
lem is usualy referred to as gate assignment problem (GAP). The basic constraints
of the GAParethat a gatecan only accommodatea singleaircraft and that two flights
must therefore not be assigned to the same gateif they overlapin time. Arriva pro-
cessing, intermediate parking, and departure processing are considered as a single
entity to be planned and must be assigned to the same gate.

Gate assignment optimisation models can be classified as single or multiple time
slot models. Single time slot models consider the assignment of a batch of flights
that arrive within a given time period, or dot, to gates; in these models, only one
flight can be assigned to each gate. The GAP can be modelled in anadogy to the
guadratic assignment problem, which isalocation problem wherethe cost of placing
afacility (flight) at alocation (gate) dependson the placement of other facilitiesand
the transport volume between two facilities (Lawler 1963).

Babic et a. (1984) have formulated the single-dot GAP as integer linear program
with the objectiveof minimising the total walking distancefor arriving and depart-
ing passengers. Mangoubi and Mathaisel (1985) have proposed an integer program
for the problem with an extended objectivefunction that additionally takes transfer
passengers into account. Their single-slot model, which is similar to a quadratic
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assignment problem, is solved using an L P-relaxation and a heuristic. Another ap-
proach has been described by Bihr (1990), who proposes to model the single-slot
problem as a linear assignment problem for fixed arrivalsin a hub operation. Chang
(1994) describesasingle-slot GAPthat considersthe effect of an assignmenton bag-
gage transport distancesin addition to passenger walking distances. Xu and Bailey
(2001) haverecently proposeda tabu search algorithm for asingles ot GAPwith the
objectivefunction of minimising theoverall passenger connectingtimesor distances;
the problemis formulated as a quadratic assignment problem and reformul atedas a
mixed O-1 integer linear program.

Haghani and Chen (1998) formulate a multiple time slot GAP with walking dis-
tance and baggage transport distance minimisation as an integer program. One of
their main contributionsis a mode that extendsthe single-slot GAP with time con-
straints; this is achieved by introducing time-indexed binary variables that indicate
the assignment of a particular flight to some gatein a given timeslot. Haghani and
Chen (1998) propose a branch-and-bound algorithm as well as a heuristic to solve
the problem. The size, or width, of the time slots must be carefully selected as it
influencesthe problem size as well as the possiblegate utilisation; the authorscon-
cludethat thesl ot width should be roughly equal to the minimumtimethat an aircraft
can occupy a gate.

"Traditional approachesutilising classical operationsresearch techniqueshave diffi-
culty with uncertain information and multipleperformancecriteria, and do not adapt
well to the needs of real-timeoperationssupport™ (Gosling 1990). As a result, the
use of rule based or expert systems for the operational control of terminal and ramp
activities has been investigated from the mid 1980's on. Hamzawi (1986) has de-
veloped a rule based system for simulating the assignment of gates to flights and
for evaluating the effects of particular rules on the gate utilisation. Gosling (1990)
describes a prototype expert system for gate assignment that has been evaluated in
a case study at Denver Stapleton Airport,a magjor hub airport. Srihari and Muthukr-
ishnan (1991) use a similar approach for solving the GAP and also describe how to
apply sensitivity analysis. Cheng (1997) describesthe integration of mathematical
programming techni quesinto a knowledge-based gate assignment system.

Both optimisation based and rule based approaches have been combined with sm-
ulation analysisto study the effect of assignment policies and rules (see e.g. Baron
1969, Hamzawi 1986).

7.2.3 Problem Description

This section formally describesthe gate scheduling problem. After explaining the
problem in detail by looking at a small example gate schedule, the system of con-
straintsis formally presented and the objective function isintroduced.
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Figure 7.2: Examplefrom a gate schedule

An Example

Figure 7.2 shows an examplefrom a gate schedul erepresented as a Gantt-Chart. The
figure showsfour positionsor gates on the vertical axis and three activitiest, 7, and
k that are represented as solid rectangles and correspond to the arrival processing,
parking, and departure processingof an aircraft. Theexample showsthespecia case
where these three activities are assigned to different gates; although it is generally
desirable to assign the three activities to one and the same gate, the special case
illustrates the problem better. We will use the example to introduce the system of
congtraints of the gate scheduling problem.

Let usfirst consider the activity i correspondingto the arrival processing, or arrival,
for short. The start time S; of the arrival dependson theflight scheduleand is fixed.
Beginning at thistime, the aircraft must be assigned to agatefor at least p™* unitsof
time, which is the fixed minimumtime requiredfor processingthe arrival, including
passenger disembarkment, baggage unloading, etc. The minimum processing time
is visualised in Figure 7.2 as an arrow of length p?" starting at the arriva time S;.
After time S; + p", the aircraft may either stay at the gate or may be towed to
another position for parking. The completion time C; at which the aircraft leaves
thearrival gateis adecision variable. Of course, S; + prr < C; must hold. In the
example, the aircraft remainsat the arrival gatefor more than the minimumrequired
time and then movesto the parking gate.

In an anal ogousway, thedepartureactivity k hasafixed completiontimeCy, at which
the aircraft must leave the gate. The fixed minimum required departure processing
time p* is visualised asa backward arrow of length p}, beginningat time Cy,. The
start of the departure processing, Sy, is adecision variable. Again, S + ™ < Cy
must hold.

While at the airport, an aircraft must be continuously assigned to some position or
be moving between two successively assigned positions. In the example, the aircraft
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moves from the assigned arrival gate 1 to gate 3 for intermediateparking. The start
time S; of the parking at gate 3, which is a decision variable, must be equal to
the completion time C; of the arrival processing plus the required travel, or tow,
time d"" between the arrival and parking gates. To avoid degeneratesolutionsin
which an aircraftis towed to a parking position, and immediately afterwardstowed
to another gate for departure processing, we impose a minimum processing time
p’"’" > 0 for parking. The parking completion time C; is a decision variable. As
before S; + p"““ < C; must hold. At time C}, theaircraftis towed to the departure
gate; in the example C + g = S, must hold. Because the tow time depends on
the gatesand on thealrcraft it will later beindexed accordingly.

A gate can only accept one aircraft at a time, and between two successive assign-
ments a sequence dependent setup time d**” that depends on the associated two
aircraft must pass. In Figure 7.2, the setup time between the arrival activity i and
some other, following activity [, that is also assigned to position 1, is shown as an
arrow of length d*™?, beginning at time C;. Setup times mainly serveto model the
time required for the push-back of an aircraft from a gate using a tow tractor and
the time required for the following aircraft to move to the free gate. The setup du-
ration depends on the gates and on the affected aircraft and will later be indexed
accordingly.

An assignment of an aircraft to a particular gate does not only restrict the use of this
gatefor other aircraft, but may al so influence possibleassignments at other adjacent
gates due to wingtip proximity problemsor blocked access. Additionaly, the ramp
layout often includesoverlapping positions, that may, for instance, either accommo-
date onelargeaircraft or two small ones. Therestrictionsbetween adjacent gates are
sometimesintuitively called shadowing. Figure 7.2 shows an exampleof shadow-
ing between the parking activity assigned to gate 3 and another activity m shown as
dashed rectangle at position 4. Intuitively, the aircraft at gate 3 castsits shadow on
the adjacent gate 4 and restrictsthe use of position 4 during the assignment of the
parking activity aswell asfor a certain amount of setup time before and afterwards.
The restrictionsbetween pairs of (adjacent) gatesgenerally depend on the gatesand
theaircraft typeor size.

This completesthediscussion of the examplegate schedule, that has shown the spe-
cial and most general case where the arrival, parking and departure of an aircraft
are assigned to three different gates. Other assignments involving only one or two
gates are often possibleand preferable because ground service setup times as well
astowsand the associated ramp traffic are avoided. In addition to the case shownin
the example where an aircraft goes through the three stages of arrival, parking, and
departure, aflight schedulemay a so contain arrivalswithouta linked departure, and
vice versa; for example, such a situation can occur when an arriving aircraft hasto
stay at the airport for maintenance or returnsfrom maintenance, respectively.
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‘Constraints

"Thegate scheduling problem can be modelled in analogy to a multi-moderesource-
‘constrained project scheduling problem; the choice of a processing mode corre-
spondsto a gate assignment. The model developed in the following is summarised
in Figure 7.3; the notation used is anal ogousto the standard project scheduling nota-
tion.

For every pair of |inked arrival and departureflights, i.e., successive transit or turn-
‘round flights served by the same aircraft, we introducethree activities correspond-
ing to the arrival processing, parking, and departure processing. The activitiesare
referred to simply asarrival, parking, and departure; thearrival is linked to the park-
ing, which in turnislinked to the departure. The set of al links (i,7) between two
activitiesi and j is denoted with £* (every link impliesa potential towing opera-
tion). For an arrivingflight that is not linked to adeparture, and for a departingflight
withouta correspondingarrival, weintroduceasingleactivity. Theset of al arrivals
isdenoted withV 2: V Pistheset of all parking activities, V¥ is the set of departures,
and the set of all activitiesisV :=V2ay y? U Ve,

An activity : hasa given minimal processing time p", astart time S;, and acomple-
tion time C;. By choosing sufficiently small time units, we can assumewithout |oss
of generality that the processing times and the start and completion timesare natural
numbers. The start and completion times are decision variables. However, in case
of arrival activities, the start time must equal the flight arrival time t¢ given in the
flight schedule, and departureactivities must completeat the schedul ed flight depar-
turetimet:; for parking activities, both the start and completion time are variable.
In contrast to classical project scheduling models, only aminimal processingtimeis
given, and the actual processingtimep; := C; — S; is not fixed in advance but fol-
lows from the sel ected start and compl etion times. The minimal required processing
timeleadsto Constraint (7.1) in Figure7.3. Thedomainsof the start and completion
timesarerestricted by Constraints(7.4) — (7.6).

Theset of al gates, or modes, is denoted with M. An activity i must be assigned a
processingmode M; fromitsassociated st of possiblemodeassignmentsM; € M,
which is given. The chosen processing mode M; correspondsto a gate assignment,
and the set Mi correspondsto the set of gatesto which the aircraft may befeasibly
assigned. To cope with situations where the constraintsdo not alow to assign all
aircraft to ared gate — for exampleif the number of flightsto be scheduledexceeds
the number of available gates — we introduce a fictitious gate 0, or dummy gate,
with unlimited capacity. By default, every modeset M; containsthis dummy gate;
assignments to the dummy gate will be penalised in the objective function. Con-
straint (7.7) restrictsthe mode variables. The set of all possible modesis denoted
with M,andMi a M.

The completion and start times of two successive (linked) activitiess and 5 for the
same aircraft may differ only by the time required for towing the aircraft between
the assigned gates. This tow time naturally depends on the distance between the
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Figure7.3: Constraints of the gatescheduling problem

gates, and also on the aircraft type associated with the activity. It is denoted with

1.;m, € Nos duetothelarge number of activities and possible modes in practical
probfem instances, it will be implemented as some function f of the activities and
chosen modes, i.e., d{77 ;=T (i, Mi, j, M;), rather than as tableor array lookup,
as suggested by the index notation. The tow time takes the value zero if and only
if two activities are assigned to the same gate, i.e., di}y ;y, = 0if M; = M;;, for
al i,7 € V, and it is strictly positive otherwise. Using the fow time, the continuous
processing requirementcan beformulatedas Constraint (7.2).

Gates are disjunctive resources that can only process one activity (aircraft) at atime;
the only exceptionis thedummy gate0, which can hold aninfinitenumber of aircraft.
Between the processing of two activities 7 and j, asetup time d;,”;,, € No must
pass. The setup time can reflect the time required to push back the first aircraft
back from the gate and for moving the second aircraft to the gate, as well as the

duration required for setting up equipment such as aircraft bridges. |t depends on the
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gates and aircraft types associated with the activities and is thereforeindexed with
theactivitiesand their correspondingmode variables. Setup timesare only required
between the processing of two differentaircraft; if i and j are successiveactivities
'served by thesameaircraft, i.e., if (i.j) € £ thend;3,”,, = 0. Inanalogy to the
tow times, the setup times will be implemented as somef'unctlon f of theactivities
(aircrafttypes) and modes (gates), i.e., d;yy 5y, =T (i, M, j, Mj).

The basic disjunctiveresource constraint that forbids the simultaneous assignment
of two aircraft to the same gate can now beformulatedasfollows:

This correspondsto the first case covered by Constraint (7.3).

‘Additionally,Constraint (7.3) also covers shadowing restrictionsbetween gates. A
‘shadowingrestriction between a pair of gates ¢ and » can be conceptually repre-
sented as atuple (i,u, j,v) that has the following interpretation: If mode i € M;
is assigned to activity i, then activity 7 must not be "'ssimultaneously" processed in
moder € M;. Theset of al shadowing restrictionsis denoted with Inthe
same way and for the samereasonsas for activities assigned to the same gate, setup
durations must also be taken into account for activities at adjacent gates affected by
ashadowingrestriction. Thisleads to thefollowing digunctiveconstraint:

Se
Ci + ¢ izw iM; < 5

M Vi, j e V :3(i, My, j, M;) E E™
Ci F a5 s, < S,

This correspondsto the second case covered by Constraint (7.3). In summary, Con-
straint (7.3) must hold for two activitiesi and j either (1)if the samemode is assigned
to¢ and j or (2) if the modes are chosen in such a way that a shadowing restriction
applies. In both cases, the activities and their setup durations must not overlapin
time. Of course, the constraintsonly need to be explicitely defined for those pairs of
activitiesfor which the start and completion time domainsallow for such an overlap
and where the mode domains intersect or may trigger a shadowing restriction, as
the constraintis always satisfied otherwise. Formally, the set D of digunctiveactiv-
ity pairsfor which Constraint (7.3) must be explicitely defined can be described as
follows:

11t is not reasonable to define a shadowing restriction for the fictitious gate (mode) 0.
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It is worth mentioning that the digunctive constraints do not apply for activities
assigned to thefictitious gate, i.e., which are processed in mode zero. BecauseCon-
straint (7.3) is the only resourceconstraintin the model, the number of activitiesthat
can be simultaneously assigned to thefictitiousgateis unlimited.

Finding a solution to the gate scheduling problem is equivaent to finding an assign-
ment of thestart and completion time and modevariablesthat iscompatiblewith the
Constraints(7.1) — (7.7). A gate scheduleis thusdefined by thetuple (S,C, M) of
start time, compl etiontime, and mode vectors.

The problemissimilar in structureto a multi-modeproject scheduling problemwith
unary, or digunctive, resources. As a peculiarity, only minimal required processing
times are given. In addition to start time decision variables, the completion times
therefore al'so become decision variables. Constraints(7.2) are the temporal con-
straints of the problem. They are of equality type; they could also be representedin
away similar to the problem MPS|temp|Cpq: by using two precedence constraints
with appropriateminimal and maximal timelags. Constraints(7.3) are the resource
constraintsand additionally serveto mode shadowingrestrictions. Constraints(7.4)
- (7.7) aredomain constraints.

The ground time of an aircraft, which is defined as the duration between its arriva
and departure, is sometimesso short that the arrival, parking, and departureactivity
must always be assigned to the same gate (block processing). If thisis detected
in a preprocessing step which servesto define the minimal processingtimes, then
the minimal processing timesfor activities that requireblock processingcan be set
accordingly: If ¢, 7, and k& are the arrival, parking, and departureactivities, then set
prin = t‘l,f —t¢, pin := 0 and p™" := 0. Becausethetow timed™* betweendifferent
gates is strictly positive, Constraints(7.1), (7.2), and (7.4) — (7.6) then imply that
M;=M; = M, must hold.

ObjectiveFunction

The objectivefunctionis alinear combination of several goals. In extensivediscus-
sions with atermina operator, it has been concluded that the most important goals
are (1) the maximisation of atotal assignment preferencescore, (2) the minimisation
of the number of required towing operations, and (3) the minimisation of the devia-
tion from a given referencegate schedule. In order to further differentiate between
gate schedules that are of equal quaity with respect to these goalsit is reasonable
to add other goals of lower importance. In the following we will concentrateon the
threetop godls.

Using goal weights «;, which are non-negativereal numbers, the objective function
2(S, C, M) isformulated as follows:
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We will see below that the values of threegoals 21, 22, and z3 depend only on the
modevector M but not on the start and completiontime vectors S and C, so that we
can writez(M) instead of 2(S,C,M).

"Thefirst goal z; isthe maximisation of thetotal gate preference score. We associate
apreferencevaue u;, with every activity-modecombination,i.e., fordl i € V and
w € M. Each activity is further associated a weight, or priority, w; € [0,1]. An
assignment to thefictitiousgate0 is penalised with alarge negativevalue; otherwise,
the preferencevaluesare normaized numbers, i.e., u;, € [01],foral: € V and al
€ M\ {0}; the preferenceu;, isaways0 if 4 ¢ M, and usualy greater than
zero otherwise. Thegoal of maximising the total mode assignment preferencescore
can beformulated asfollows:

It is evident that the preferencesand weights have alarge influenceon the optimal
gate schedule. Choosing suitable values for the assignment preferenceand weight
parametersu;ay, and w; is adifficult problemin itself, but is beyond the scope of
thisstudy. Thetask is delegated to a rule-based system that defines the val ues based
on the detailed characteristicsof the associated flights, for example, origin, destina
tion(~)number of passengers, typeof aircraft, airline, and many more.

The movement of an aircraft from aterminal position to another positiongenerally
requiresthe use of an aircraft tow tractor, because the aircraft needs to be pushed
back from the terminal building. Tow tractors are scarce and expensiveresources.
Furthermore, aircraft movements may restrict access to other gates, that are being
passed, and add to ramp traffic congestion. It is thereforeof great importanceto
minimisethe number of movements. Thisis captured in the second goal:

The third goal is to minimise the deviation from a given reference gate schedule,
which will be denoted with (S',C’, M"). Thisgoal isimportantfor two main rea-
sons. Firstly, in the preparation of daily plans before the actual day of operations,
isdesirableto obtain a maximum similarity between the gateschedulesfor different
days of the week. For example, it is considered advantageousif the eight o'clock
flight to a particular destination always departs at the same gate, as this tends to
ease other operational planningtasks. Secondly, in reactive re-scheduling, whichis
made necessary by flight scheduledisruptions, conflictsor infeasibilitiesin the gate
schedule should be resolved in such a way that the changes to the schedule are kept
minimal. Here, the rationale behind minimising the number of changesis that the
‘gatescheduleis published for passengers and for other operational systemswithin
the airport and that gate changesmay cause considerableeffort in these areas. The
goal can beformally expressed asfollows:



124 CHAPTER7. APPLICATIONS

It is interesting to note that this goal addresses one of the typical weaknesses of
optimisation based systems, namely that small changesin the input data may easily
lead to largechangesin the output data.

7.24 Congraint Propagation

The gate scheduling problemis solved using a branch-and-boundapproach. At each
node of the searchtree afixed pointis computed by applyingconstraint propagation.
The basic propagation algorithmis a variant of the AC-5 arc consistency algorithm
described by Van Hentenryck et al. (1992). Within the constraint propagationago-
rithm, we use the following consistency tests introduced in Chapter 4, which are all
based on the mode minimal problem instanceintroduced in Definition 1 on page63:

e A variantof the precedenceconsistency test 1 for the minimal processingtime
constraints(7.1), for the continuousprocessingconstraints(7.2)%, and for the
digunctive precedenceconstraints (7.3) once it can be deduced or has been
explicitely decided which part of adisjunctionmust hold.

e Thedigunctivepair test, which enforcesconstraints(7.3).

¢ A modeshaving test asdescribedin Algorithm 2 on page 64.

7.2.5 A Branch-and-Bound Algorithm

The branch-and-boundalgorithm describedin this section builds gate schedul es by
iteratively assigning modes to activities and by resolving resource conflicts. Aswe
have seen in the previous section, the objective function value depends only on the
mode vector, but not on the start and completion times. We will thereforesearchfor
asolutionin which at least an assignment for al mode variables has been selected
and in which the start and compl etion timedomainsare generally reducedfromtheir
initial values, however, the time domains may still contain more than one entry,
i.e., start and completion variables may still be unbound. The remaining degree
of freedom can be exploited in a sub-sequent optimisation step, not covered here,
that chooses start and completion timesin away that allowsto scheduleall required
towing operations. Thiscan for instancebe achieved by solvinga vehicleroutingand
scheduling problem with time windowsfor the tow crews, where the time windows
for the start and end of atowing operation are defined by the start and completion
time domains of the corresponding arrival and parking, or parking and departure
activities.

At each nodeof thesearch tree, wefirst apply constraint propagationand then branch
in one of two alternativeways by either

Recall that a continuous processing constraint can be replaced by two precedence constraints with
minimal and maximal time lags.
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1. assigningamodeto an activity or forbiddingthe mode assignment, or

2. resolving aresourceconflict by selecting which part of thedisjunctionin Con-
straint (7.3) must hold.

In thefollowing we shall first explain the detail sof the binary branching schemeand
then show how simplelower boundscan be devel oped.

Branching Scheme

Each node a of the search tree has an associated set of current domains A{a):

A(a) uniquely determines the sets of scheduled and free activities. The set V* of
scheduled or assigned activities containsall activities whose mode domain contains
exactly oneentry, i.e.,

Vi (a):=V \Vs(a)istheset of free or unassigned activities. We thus consider an
activity as scheduledas soon asit is assigned amaode (gate), even though itsstart and
completiontime domainsmay still vary.

'DisjunctiveBranching If thereis a pair of scheduled activities?,j € VV°(a)for
which Constraint (7.3) must be explicitely defined, i.e., for which{i,j} € D, as
introducedin Definition (7.8), and whereboth casesi— j and j—i of Constraint (7.3)
may still hold, then we branch by creating two child nodes !'() and r'(¢) that
correspond to the two possibleorientationsof the disjunction:

(a): addtheconstraintC; +diiy",,, < S;,

r'(a) : addtheconstraintC; + dj3l ., < 8;.
If multipleactivity pairsareeligiblefor branchingthen wefirst choosethe pair with
thesmallesttimedomains, i.e., thepair{i, j }for which|Ag,|+|Ac; [+|As; [+]Ag; |
is minimal. We then choose activity i and j so that ES; < ES; and first branch to
theleft child node!’ (). All tiesare broken arbitrarily.

T hereason why the branching over disjunctionsbetween pairs{i, 7} € D isdelayed
until modes have been chosen for both i and j is that any previous reductions of

the mode domains A s, and Ay, and constraint propagation may allow to deduce
which part of a disunctionmust hold without the need for explicit branching.

| tiseasy to seethat explicit branchingwill only be required for activity pairswhere
a least one of the activitiesisa parking activity: All other pairsinvolveonly arrival
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and departure activities, i.e., activities for which either the start or completion time
isfixed through Constraint (7.4) and (7.5); the order in which the two activitiesmust
execute can thus be immeditately deduced.

Mode Branching If thereis no pair {i,j) € D that is eligible for disunctive
branching, then we branch over a mode assignment in the following way.

At node a we select the next unassigned activity from VY (a)for mode branching
according to a variable selection rule that we will explain below; we denote the
chosen activity with act(a). A valuesdection rulethat will also beintroduced below
then choosesa mode m.(i,a) € Ay, (a)whichisassignedtoi in one of thechild
nodes. Leti = act{a) betheactivity chosenat a. When branchingfrom nodea, two
child nodes!(«a) and r{c) are created by either assigning m(i,a)to ¢ or prohibiting
this assignment:

(a): Ay, = {m(,a)),
rla): Apn, = A \{m (i,a)).

Activitiesand modes are chosen according to a maximal regret criterion, which is
based on lower bounds of the objective function. The rationale behind the well
known maximal regret principleis to first make those assignments which otherwise,
if not made, will cause the greatest loss as indicated by the increase of the lower
bound. For every activity, we consider (1) the currently ""bet™ mode assignment,
i.e., the onefor which the resulting lower bound valueis minimal, and (2) the cur-
rently second best assignment. The regret of not assigning the currently best mode
to an activity is the difference between the lower bound values for the best and sec-
ond best assignment. The activity for which the maximal regret is realised and its
currently best modeare chosen for branching.

In order to formalisethe maximal regret concept, let usintroduceLB(«) as abound
on the minimal objectivefunctionvalueof any schedulethat can be developedfrom
node a given the set of current domains A (). Additionaly, let LB(o, A; = {p))
denote the value of this bound if we bind a free activity i € V¥ (a)to one of the
modes  in its current domain, i.e., replace Aar, (2)= {..., 4 ...} with {p),and
apply CP in order to evaluate the consequencesof thisassignment. The “best” mode
for activity i given thedomains A is the one with smallest lower bound value:

m(i,a):= arg ;T!{n{n LB(A, Ay, =1{p))).

The regret of not assigningthe best modetoi can then be defined as:

regret(i,a) = min LB(a, Ay (Q)= {11})

BEA g, (a)\m(i,a)

LB(a, Ay, ()= m(i,a)).

Finally, the function act(e) returnsthe unassigned activity i € Y/ (a)with maximal
regret:
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act{a) == arg max regret(i,a)).
ievi(a)

Summary of the Branching Scheme We can now define the branching scheme
recursively. Thisis donein Figure7.4. Recall that we only have to specify A(a),
sincethisdeterminesall other setsand values.

The search treeis traversed in depth-first order until a leaf nodeis generated, i.€.,
until V°(a) = V. Backtrackingoccurswhen aleaf nodeis reached, when bounding
considerationsalow to prunea branch, or when an inconsistency has been detected,
i.e., when some domain becomesempty.

Because of the simple branching structure and the fact that constraint propagation
only removes values which cannot participatein any feasible schedule that can be
developed from a node, it is easy to see that the branching schemeis completein
the sense that it can generate any feasible mode assignment vector and reduce the
start and completion time domainsin such way that they contain all feasible start
and completiontimes.

Start and Completion Times

Intuitively, thefact that two linked activitiesi and j,with i precedingj, are assigned
to the same gate meansthat the precise valueof the intermediatecompletionof < and
the start of j becomes meaningless. Thiscan bevisualised in Figure7.2 by moving
the parking activity j to the arrival gate 1 or to the departuregate 2. In general, for
any pair of linkedactivitiesi, j € V, with (i,j) € £”, that areassignedto the same
gate, the valuesof C; = S; can be arbitrarily chosen from thedomains As, (&) or
Ag, (8"), wherea' is asolution node of the search tree where values for all mode
variableshave been selected.

We use this observation in the followingway. Leti € V2, j € VP, and (¢,5) €
grv; if, at any search tree nodea, M; = M; after the application of constraint
propagation, then we arbitrarily set C; := minA¢,(a) and S; := Cj;. In anaogy,
let j € VP and k € V9 and (j,k) € £7*; if, at any search treenode a, M; = Mj,
after applying constraint propagation, then we arbitrarily set S := max As, ()
and Cj = Sj.

The start and completion times of al other activities are not explicitely assignedin
the branch-and-boundalgorithm. The remaining degree of freedomis exploitedin
the subsequent solution for aVRSPTW for the tow crews.

7.26 Lower Bounds
Lower boundsfor the objectivefunction valueof any schedulethat can be developed

from the current node are used to select activities and modesfor branching, and to
prunepartsof thesearch tree based on thecomparison of thecurrent lower bound and
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the value of the best solution found so far, if any. Lower bounds LB; can be derived
for each of the individual goals z; introduced in Section 7.2.3 in a straightforward
way. Clearly, the bounds depend on the set of currentdomains A(a), and the overall

bound on z(A) isgiven by:

3
LB(A) :=)_ a;-LBi(A).
=1

Because this value must be frequently recomputed or updated, we will use rather
simple bounds that can be calculated with low effort.

By considering the most preferred gate in the current domain of each activity, we
obtain thefollowing bound for the overall preference score:

LBi(A) = = w;- max u(i,p).

A,
icy HEQ N,

A lower bound on the total number of towing operationsis obtained by testing the
modedomain intersectionsof al linked activities:

A lower boundfor the deviation from areferenceSchedule (S, C , M ), can be ob-
tained by smply testing for mode domainsthat no longer contain the mode sel ected
in the referenceschedule:

7.2.7 Problem Partitioning

Practical gate scheduling problem instances involve a large number of flights and
gates. Althougha gatescheduleisin reality continuous,itisin many waysnatural to
partition the underlyingflight schedul einto one-day periodsfor which gateschedules
haveto be constructed; still, alimited interaction between successive daysis caused
by aircraft stayingat theairportover night. Withinoneday at alargeairportterminal,
on the order of magnitudeof 1000 activities must be scheduledat approximately 100
gates.

Problem partitioning, or decomposition, isaway to accel eratethe process of solving
theselarge problem instances by decomposing a probleminto smaller sub-problems.
The sub-problems can then either be solved independently, or, as we will see in
Section 7.2.8, the information about the sub-problemscan be used in some other
way to enhancethe overall solution agorithm.

A problem can be partitioned exactly or heuristically. While an exact partitioning
splitsa large problem into formally independent sub-problems, the sub-problemsin
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a heuristic partition are not strictly independent but loosely coupled. For a general
discussionaf problemdecomposition techniquesfor constrai ntsatisfaction problems
we refer to Tsang (1993).

Exact PartitioningBased on the Congtraint Graph

An exact partitioning of any decision problem can be efficiently obtainedin poly-
nomial time by finding the connected componentsof the constraint graph, whichis
defined as the graph consisting of nodes correspondingto the decision variablesand
edges between any pair of variables (nodes) that appear in acommon constraint (see
Section 3.1.3 on page 21). A sub-problem is defined by the decision variablesand
constraintswithin a connected componentof the graph. Solvingall sub-problemsto
optimality is equival entto solving the compl eteproblem to optimality.

When using theexact partitioning approach on the practical gate schedulingproblem
instanceswhich were used to test our algorithmsand that are defined for twenty-four
hour periods, it was sometimes possibleto isolate some small sub-problemsin the
early morning or late evening of a day. However, the largest part of any problem
could not be partitionedexactly, leaving a main sub-problem that still contained al-
most al decisionvariables. It isthereforeinteresting tolook for waysto heuristically
partition aproblem.

HeuristicProblem Partitioning Usinga CliquePartitioning M odd

TheCliquePartitioningProblem A gatescheduling problemcan be decomposed
heuristically by partitioning a complete, edge-weighted graph G(V, E, (w;;)) into
non-overlappingcliquesin such away that the similarity of vertices within aclique
is maximised. The nodeset V of the graph G correspondsto the activity set of the
gate scheduling problem. The edge weights w;; are a measureof the similarity or
dissimilarity between the associated activities< and 7 and will bedefined in thefol -
lowing way: If the two activities have similar gate preferences, then w;; is positive,
otherwiseit is negative. The basic idea now is to partition the gate scheduling prob-
lem into loosely coupled sub-problemsby partitioningG into an arbitrary number of
cliquesin such away that the total edge weight within al cliquesis maximised, or,
equivalently, thetotal weight of all edges between different cliques, caled thecut, is
minimised. Minimisingthe weight of the cut is achieved by placing activitieswith
similar gate preferenceswithin the sameclique.

Figure 7.5 shows an exampleof a completegraph with five vertices (activities) that
is partitionedinto two cliques (sub-problems) vy and V2; in genera, the number of
cliqgues may belarger than two. In the following, we will first formally describethe
partitioning problemand then explain how to derive the edge weightsw;;.

The problem of partitioning the graph G(V, E, (w;;)) in such a way that the cut
is minimised is known as clique partitioning problem, or CPP. Using the binary
decision variables z;; which take the value 1 if verticesi and j are in the same
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Figure7.5: Exampleof agraph partitioned into two cliques

cliqueand 0 otherwise, the CPP can be formally described asfollows:

min E WijTij,

£,jEV:LS

T+ o —og < 1, VijkeV:i<j<k

zi—zpptoa < 1, VigkeV:i<j<k

_zij+xjk+$z'k < 1, VYigkeV:i<j<Kk,
.’l:ijE{U.l}. Vi,jEV:i<j,

Constraints (7.10) — (7.12) ensure that if two edges of atriangle (a clique of three
vertices) in the graph belong to the same clique, then the whole triangle belongs to
thisclique.

If al edge weightsare non-negative or non-positive, then the problem can easily be
solved. However, if the graph has negative as well as positive edge weights then
the CPP is NP-complete (Dyer and Frieze 1985). Exact and heuristic algorithms
for the CPP havefor examplebeen described by Grotschel and Wakabayashi (1990)
and Dorndorf and Pesch (1994). The CPP will be solved using afast and effective
heuristic algorithm proposed by Dorndorf and Pesch (1994).

A Similarity Metric After theformal descriptionof the CPP, we areleft with the
task of defining the edge weights w;; in away that is meaningful for the under-
lying gate scheduling problem. The weights are derived from the matrix (ui;) of
normalised activity-gatepreferences. The basicideais that two activities are similar
if their two corresponding rows in the preference matrix have similar entriesin all
columns, which means that they prefer the same set of gates. We will measurethe
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degree of similarity of two activities by looking at the average difference of their
gate preferences. We will further take into account that a similarity with respect
to a highly preferred gate (high preference values) is of greater significancethan a
similarity with respect to abarely acceptablegate (small preferencevalues), or even
with respect to an infeasible gate (preferencevalues of zero). Asall activities can
be assigned to the fictitiousgate 0, we will only consider the set of gates or modes
M =M \ {0}.

Therelativeimportancew; ;. of agate(mode) k € M for apair of activitiesi, j € V
istheratio of the sum of preferencesof i and j for & to their total preferencevalues:

For normalised preferencevalues thisimpliesthat @i« E [0, 1] and 3_ . g0 Wik =
1.

The normalised similarity s;;x of a pair of activitiesi,j € V with respect to gate
ke Mlis
PO [ 1 — |ui — wjp|/ max{ui, ujr} if wir >0V up >0,
ik - 0 otherwise.

The similarity measure can take vauesin theinterval [0,1]; if the preferencevalues
of activitiesi and j with respect to gate k areequal, then s;;, = 1.

The normalised weight of the edge between nodes representing activitiesi, j € V
can now be defined as:

~ { ZA‘.EJ\«T" ’lﬁijk . Sijk If{l,] ) eD V (I,J)E glow,

Wiy 1= 0 .

otherwise.

D isthe set of digunctiveactivity pairsintroduced in Definition (7.8). The weight
w;; can only takeanon-zerovaueif i and j arein disunctionor if they are linked,
i.e., if i and j are two subsequent activitiesfor the same aircraft. It followsfrom
the definitionsof @;;x and s;; that @;; is normalised, with valuesclose to 1 corre-
sponding to a high similarity and valuesclose to 0 to alow similarity of activities:
and j.
Using a bias value # € [0,1], the edge weights w;; to be used in the Objective
Function (7.9) can now simply be defined asfollows:

The bias 4 is used to ensure that the weights take negativevalues for activity pairs
of low similarity; because w;; is normalisedit followsthat w;; € [-8,1— §]. For
given preferencevalues, alow biasleads to more positive weights and consequently
to fewer cliques (partitions) than a high bias, which generally leadsto afine grained
partitioning into many cliques.

We have now completely defined the CPP that can serve to heuristically partition
a given gate scheduling problem. The following section shows how the resulting
partitionis used within the branch-and-boundal gorithm.
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7.2.8 Layered Branch-and-Bound

In tree search algorithmsthat use a chronological backtracking strategy, branching
decisions are aways undonein the reverse order in which they were made. If two
successivebranching decisionsare only weskly related or even unrelated, this may
lead to a weak performanceof the search agorithm, because effort is wasted by
searching futile branches repeatedly. A related, second problem is that the search
tendsto concentrateon asmall areaof the tree, in the proximity of afirst solution.

There are many waysin which thesetwo main problems can be addressed. To avoid
concentration of the search on a narrow region of the search space, breadth-first
search strategies can be used. The repeated exploration of similar, futile sub-trees
can beavoided by using dependency directed backtracking (DDBT), sometimesalso
called intelligent backtracking. The idea of DDBT is to identify the culprit(s) that
necessitatebacktracking,so that theal gorithm can backtrack to therelevantdecisions
only; however, the identification of the culprit(s) based on the constraintsin the
problemmay not be easy, and DDBT may requiregreat overhead. A repeated search
within futile subtrees can to some extent also be avoided by choosing afavourable
search order in which branching decisionsare made. This is the approach that we
will follow here. For a general and exhaustive discussion of issues arising in the
design of tree search algorithmswe refer to Tsang (1993).

In this section, we shall addressthe two problemsby using the decompositionof the
problemto guideatruncated branch-and-boundsearch. Thesearchtree, whichcorre-
spondsto the compl etegate scheduling problem, is conceptud ly splitintolayersthat
correspond to the sub-problemsthat have been identified by solving the associated
CPP described in the previous section. Within each layer, only branching decisions
concerning the variablesof the correspondingsub-problem are made. Before leav-
ing alayer, thesearch chronol ogicallybacktrackswithin thecurrent layer until atime
limitexpiresor thelayer is exhausted. I t then continuesfrom the best partial solution
found within the current layer. Theintuition behind this approach is that, by keeping
decisionsconcerningstrongly related variablesclose to each other, the distance one
has to backtrack is reduced and the effectiveness of backtracking is increased. Ad-
ditionally, backtracking within each layer leads to an in-breadth explorationof the
current sub-problem.

The principleis best illustrated by an example. Figure 7.6 shows an example of a
layered branch-and-boundtree with two layers which correspondto the partition of
the examplein Figure 7.5 into two subsets V; and V.. On thefirst level of the tree,
only decision variables related to the two activitiesin the set V; are considered for
branching. For example, the search may begin by assigning modes to activities 3
and 4 at nodes 1 and 2, respectively; when reaching node 2, no more decisionscon-
cerning the sub-problem defined by V; can be made?, and backtrackingis initiated.
Backtracking subsequently leads to the generation of nodes 3, 4, and so on. Back-
tracking continues until the sub-problem is exhausted or atime-limitexpires. In the

3 Assuming al digunctions are oriented.
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Figure 7.6: Exampleof alayered branch-and-boundtree

example, we assumethat the solution with the best lower bound has been found at
node 6, and the search therefore continues from node 6 and proceeds to the next
layer. In the second layer, only decisions concerning the variables corresponding
to the set V, will be made. The search continuesto node 9, which correspondsto
a solution, and then backtracks. When backtracking, the search does not |eave the
current layer: if the layer isexhausted, the search does not backtrack beyond node 6
to the previouslayer, but instead stops, or, in general, continuesto the next layer.

The sub-problemsare selected for branching in the order of the total importance, or
weight, associated with their activities, i.e., the sub-problemVy for which 3., wi
ismaximal is consideredfirst, and so on.

The sub-problems influence the search order and the way in which backtrackingis
performed. By imposing a time-limit for the effort to be spent in each layer and
by preventinga backtrack to the previouslayer, the branch-and-boundsearch is no
longer exhaustive but turns into a heuristic. It is worth mentioning that the sub-
problems do not restrict the constraint propagation process, which does not only
consider the variables of the current sub-problem but takes the complete problem
into account.
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7.29 LargeNeghbourhood Search

An initial gate schedulefound using the layered branch-and-boundapproach is it-
eratively improved through Large Neighbourhood Search (LNS, Kilby et al. 1998,
2000). The central idea of LNS as ageneral search techniqueisto relax someof the
decisions made during the construction of a solution and use a constructivemethod
to reformtherelaxed part of the solution at alower cost.

Schedulel mprovement

Given a feasible schedule( A; , A%, Ah) , LNS for the gate scheduling prol
proceeds asfollows:

e Choosean activity i € V with a*“bad” mode assignment.

A bad assignment M; is an assignmentto theficitiousgate0 or onethat causes
a potentially avoidabletow for apair of activities(i ,j ) € ¥ or(] ,i) € E¥.
A tow is requiredif M; # M;; it may be avoidable if the mode sets”
includeacommon real gate, i.e., if M; NM; \ {0} # 8.

e Chooseasubset V(%) of activitiesof agiven size n that includesactivity 2 anu
other, "closdly related” activities.

The subset V(i) is constructed using the edge weights w;; of the associated
clique partitioning problem in the following way: Initialy, V(i) :={i}; the
set is grown by greedily moving the activity j € V \ V(3) to V(4) for which
the maximal increase, or minimal decrease, of thetotal weight within V(i) is
obtained, i.e., for which 3, ., ;) wjx is maximal.

e Relax al decisions concerning the activitiesin V(z) but keep all other deci-
sions.

This is achieved by reconstructingthe partia solution for al activitiesin the
set V \ V(i) by simply resetting the start time, completion time, and mode
domainsof al activitiesj € V totheirinitial valuesand then making all mode
assignment and disjunction orientationdecisionsthat were madefor activities
4 € V\'V(z) duringthe construction of theschedule( A; , A%, A%,); disjunc-
tions concerning a pair of activities j and & with j € V \ V(i) and k € V(4)
remain relaxed.

e Completethe scheduleby applying branch-and-bound search, using the value
of the best full schedulefound so far as upper bound.

o |f the new scheduleimproves upon the current schedul e then replacethe cur-
rent schedulewith it. Repeat the previous steps until every “bad” assignment
in the current gate schedul e has been chosen for improvement.
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Theintuition behind relaxing the decisionscorrespondingto the activity set V(i) isto
introducea degree of freedom that will alow to fix the problematicassignment of 4.
Thesizeof theset V(1) should be largeenough to offer sufficient freedom, yet small
enough to alow afast branch-and-bound search. In computational experimentswe
found that asuitablesize of theset V(%) was between twenty and thirty activities.

Reactive Scheduling

LNS cannot only be applied to improve a given initial schedule, but is also useful
for adapting a gate scheduleto flight schedule disruptionswith only small changes
in the gate schedule. In the following we shall briefly outline the LNS approach for
reactivegate scheduling.

In terms of the gate schedulingmodel (7.1) — (7.7) aflight scheduledisruption may
lead to changes of arrival or departuretimest¢ and ¢¢, to changesof the mode sets
M, in case of aircraft changes, or to new or cancelled activities. These changes may
lead to constraint violationsand thusinvalidatea gate schedul e.

To adapt or "repair' a gate schedulethat has becomeinfeasible, a modified version
of the LNS schemedescribedabove may be used. Instead of selectingactivitieswith
unfavourablemode assignments, the search focuses on activitiesinvolved in a con-
straint violation. Because multiple constraint violationscan occur simultaneously
and because the reconstruction of partial solutions that contain an infeasibility is
not useful, as the search would immediately fail when trying to continue, it is first
necessary to relax enough decisionsso that the remaining partial schedule becomes
feasible. The set of violating activities for which decisionsare relaxed is denoted
with V'. Dependingon the type of violation, there may be morethan one way to re-
lax decisionsso that a particular constraintviolation is avoi ded. We can now proceed
in an analogousway as when using LNS for solution improvement,the main differ-
ence being that instead of selectingactivitieswith " bad assignments, we repeatedly
select violating activitiesfrom the set V',

7.210 Computational Experiments
Implementationand Test Data

The layered branch-and-boundalgorithm including the generic constraint propaga-
tion algorithmand the consistency tests, the exact and heuristic problem partitioning
algorithms, and the LNS improvementheuri stic have been implemented in C++. All

results reported below have been obtained on a PentiumPro/200 PC with the Linux
operating system.

We have tested the algorithm on two problem sets:

1. Thefirst set containsfourteen manually constructed small test problemswith
approximately ten to twenty activities. The instances where used to validate
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themodel and algorithm by comparing theresultsto manually built gate sched-
ules. Theinstancescan dl be solvedto optimality withinafractionof asecond.

2. The second set consists of fourteen problems based on red flight schedules
for two weeksat alargeinternational airport. Theseinstancescontain approx-
imately 800 activities per day that must be scheduled at 94 gates. The problem
instanceshave been exportedfrom acommercial gateschedulingdecisionsup-
port system (DSS); the gate preference valuesand activity prioritiesused were
determined by a rule based sub-system of the DSS.

To evaluateour algorithm, theresultsfor the secondtest set will be compared to gate
schedules built by the commercia gate scheduling DSS that is in use at the same
airport. The system has been developed in the past three years and representsthe
current state of theart. The decisionlogic of the system uses a rule based approach;
it replacesand improves upon an older rule based DSS that takesan approach similar
to the onein the prototypesystem described by Godling (1990).

Reaults

The algorithm was evaluated with goal weightsa; = a2 = 1and s = 0. The
preferencevauesfor thelargetest problemsweredefined asfollows: An assignment
to the dummy gate O is penalised with a preference valueu;o = =5, fordl i € V,
all other preferencevauesare normalised, i.e. u;, € [0,1}, forali € Vand u €
M; \ {0}. Intuitively, this meansthat a single assignment to the dummy gateis as
bad as five tows; assigning an activity to a gate with the lowest possible preference
value 0 instead of a gate with the highest possible preference value 1 isas bad as a
singletow.

Because it is difficult to interpret the numeric objective function value, we report
the results with respect to the number of activities assigned to the dummy gate, the
number of tows, and the overall preferencescorefor dl real gates.

Afterinitial experiments,thefollowing run timelimitswere chosen: atotal run-time
limit of 500 secondsfor finding an initial solution, and atime limit of 15 seconds
for each LNS iteration, i.e. per attempt to fix a bad assignment. Thetotal timelimit
for constructing the initial solution determinesthe time limits for each layer of the
search tree; for agiven layer, we simply alocate the fraction of the total time equal
to the share of activitieswithin the layer, i.e., the layer of sub-problemi, or activity
set V;, receivesafraction |V;|/|V| of the run-time. Thetime required for finding an
initial solutionis thereforeat most ¢max but usudly significantly smaller.

A problem isfirst partitioned exactly, and the resulting sub-problemsare then parti-
tioned heurigtically. For the large test problems, exact partitioningleadsto at most 3
independent sub-problems; however, thelargest sub-problem always containsall but
one or two activities, and the remaining sub-problemsare of size one.

For heuristic partitioning, the associated clique partitioning problem is defined us-
ing a bias 8 of 0.05, which was empirically found to lead to useful partitions. On
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Day |V| Initial Solution Large Neighbourhood Search
Layers ¢; Open®Tows®Pref. It. &° Open®Tows® Pref.
Sum 10 388 1321 2 139 1308

"Number of activities assigned to thefictitious gate, excluding mandatory assignments.
bExcluding mandatory tows.
“Including £,.

Table7.1: Results of the branch-and-boundalgorithmfor thefirst test week

average, this resulted in 39 sub-problems, or search tree layers, with a minimum of
29 and a maximum of 47 sub-problems; thesize of the sub-problemsvaried between
three and approximately one hundred activities.

The LNS improvementof an initial solution usessubsets V(i) of size 24.

Tables7.1 and 7.2 show the resultsfor the two test weeks. For each day of the week,
the tables show the number of activities to be scheduled and additional information
on theinitial solution found using layered branch-and-boundas well as.on the fina

solution after the application of LNS. The columns shown for the initial solution
contain thenumber of layers, or sub-problems,the time used for finding the sol ution,
the number of open activities, which are assigned to the fictitious gate, the number
of towsrequired, and the total preference scorefor dl real gates. The same columns
are shown for the final solution, except that the number of LNS iterations appears
instead of the number of search tree layers. For the criteriarelated to the objective
function value, thetotal valuesare shown at the bottom of the table.

For a given problem instance, certain mandatory tows may be required and it is
possiblethat certain activities must remain unassigned, as any assignment other than
the fictitious gate would lead to congtraint violations. At the root of the search tree,
lower bounds on the number of mandatorily unassigned activities and mandatory
tows can be derived by applying constraint propagation; these numbers are shown
in Tables 7.3 and 7.4 in the section "Mandatory" in columns ""Open™ and "Tows".
Because these numberscannot be influenced by the solution algorithm and are thus
not useful for the comparison of agorithms, the columnsfor open activities and tows
do otherwisenot include these numbers.
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Day |V| Initial Solution Large Neighbourhood Search
Layers t; Open®Tows'Pref. It.  £,° OpeniTows® Pref.

(sec) (sec)

1 723 34 322 0 69 195 74 843 0 20 192
2 820 40 367 5 112 194 1501456 1 51 195
3 799 39 372 4 101 19 1341352 0 46 193
4 819 41 370 4 97 195 1351369 2 52 194
5 815 37 326 7 100 196 1371199 1 52 195
6 818 39 379 1 116 198 1491536 0 57 198
7 635 29 379 0 86 149 1021027 0 38 145
Sum 21 681 1321 4 316 1312

"Number of activities assigned to the fictitious gate, excluding mandatory assignments.
PExcluding mandatory tows.
‘Including ¢;.

Table7.2: Resultsof the branch-and-boundalgorithmfor the second test week

' Table 7.1 shows that, in the initial gate schedulefound for day one of the first test
week, oneactivity isassignedto thefictitiousgate, or left open; theschedulerequires
47 tows and the rounded tota activity-gate preference score is 190. The search
tree contains 35 layers. The required run-time of 202 secondsis smaller than the
time limit of 500 seconds; this is caused by the fact that the overal time limit is
distributed over the layers, and that some layers are exhaustively searched before
their l[imit expires. The solution isthen improved within54 LNSiterations. Thetime
requiredfor theimprovementis 399 - 202 = 197 seconds. In theimprovedschedule,
no activity remains open, and the number of tows is reduced to 9; thisis achieved
at the cost of a dlight decrease in the total preference score to 189. The number
of LNS iterations seems small when compared to classic loca search agorithms.
However, it must be taken into account that the transition from one solution to an
improving neighbour may affect many more decision variablesthan in typical loca
search neighbourhoods.

Theresultsshow that LNS can consistently reducethe number of open activitiesand
the number of tows at the price of adight decreasein thetotal preferencescore.

The resultsin Table 7.2 for the second test week, which has a different underlying
flight schedule, are similar to those of the first week. However, the problemsin
the second week appear to be more difficult, as more activities remain open and the
number of tows increases.

The resultsshown in Tables 7.1 and 7.2 can be dightly improved at the cost of an
increased run-time by applying the algorithm multiple times with different control
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Day Branch-and-Bound Rule-Based Mandatory
Open?  Tows® Pref  Open® Tows® Pref  Open  Tows
1 0 9 189 7 43 187 6 15
Sum 2 139 1308 75 368 1287 14 94

"Number of activities assigned to the fictitious gate, excluding mandatory assignments.
YExcluding mandatory tows.

Table 7.3: Comparison of resultsfor thefirst test week

parameters, e.g., time limits, partitioning bias, and the size of the subsets used for
LNS.

Tables 7.3 and 7.4 compare the results obtained with the proposed algorithm with
the gate schedul es calculated by a commercial rule-based system. The tables show
that the branch-and-bound algorithm leads to substantial improvements. The gate
schedulesaresignificantly better with respectto the number of open activitiesand the
number of required tows. In thefirst (second) week, the number of activitiesassigned
to thefictitiousgate can be reduced by morethan 97 (96) %, and the number of tows
decreases by more than 61 (46) %; at the same time, the total preferencescoreis
dlightly improved.
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Day Branch-and-Bound Rule-Based Mandatory
Open® Tows® Pref  Open® Tows” Pref. Open  Tows
1 0 20 192 8 61 189 5 9
2 1 51 195 14 81 191 0 9
3 0 46 193 10 73 189 0 9
4 2 52 194 17 86 190 0 7
5 1 52 195 23 87 191 0 8
6 0 57 198 23 107 193 1 6
7 0 38 145 17 A 146 5 12
Sum 4 316 1312 112 589 1289 11 60

“Number of activitiesassigned to thefictitiousgate, excluding mandatory assignments.
bExcluding mandatory tows.

Table7.4: Comparison of resultsfor the second test week






Chapter 8

Summary and Conclusons

This work has devel oped effective solution methods and described new applications
for avery general class of deterministic,non-preemptiveproject schedulingmodels.
The modelsstudiedin this book are concerned with theall ocationof scarceresources
over timeto activities, the start of which may be constrained by minimal and max-
imal time lags; these lags alow to specify any possibletempora relation between
pairs of activities. The single- and multi-mode models for resource-constrained
project scheduling with generalised precedence constraints, or time windows, are
very expressiveand cover many requirements commonly found in practical appli-
cations. The basic single-mode problem is a generaisation of many well known,
difficult problemsstudiedin project and machine scheduling.

While we have mainly consideredthe objective of minimising the completion time
of a project, most of the resultshold for any regular objective function, and they are
frequently also applicablefor optimising non-regular measures of performance, as
demonstrated by one of the applicationsproposed in Chapter 7.

A secondary objective of this work has been to investigate the application of con-
straint propagation techniques for project scheduling. Constraint propagation is an
elementary problem reduction technique that transforms problemsinto equivalent
problems which are hopefully easier to solve. This is achieved by repeatedly de-
ducing new implicit constraintsthat alow to reduce the search space by removing
inconsi stent assignments that cannot participatein any feasiblesolution.

To providea theoretical foundation for the constraint propagation approach, Chap-
ter 3 hasreviewed different conceptsof consistency, which, roughly speaking, define
acertainlevel of search space reduction. Because establishingfull k-consistency, k-
domain-consistency, or k-bound-consistency for an arbitrary number & of decision
variablesisdifficult and generally requiresexponential effort, approximationsarere-
quired. Tothisend, anumber of consistency testsareiteratively applied. Consistency
testsaresimplerules, or logical tests, that deduce additional, redundant constraints.
By repeatedly applyingthe testswithin afixed point iteration, the derived knowledge
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is reused, or propagated, until no further conclusionscan be drawn. Aslong as the
testssatisfy a very natural monotony condition, the resultingfixed pointis unique.

Chapter 4 hasinvestigated consistency tests that may be applied in project schedul-
ing. It hasfocused on interval consistency tests, i.e., tests that analysethe required
and available amount of work within certain time intervals. Within this framework
we have described tests for disjunctivescheduling with unit resource availabilities
and requirementsas well astestsfor cumulativeschedulingwith discrete supply and
demandin a unified way, using numerousexamplesfor illustration.

Previousresearch, which has been confirmed in this study, has shown that difficult
project scheduling problem instances are frequently characterised by low resource
supply, which in turn leads to difficult digunctive sub-problems. We have there-
forefirst discussed how promising digunctive sub-problemsof a project scheduling
problem can be isolated and then studied consistency tests originally proposed for
digunctivescheduling (sequencing). Our analysis has shown that these tests can be
understood as special cases of a general sequence consistency condition. We have
related the tests based on this condition to the concept of interva work, or energy,
and haveshown that in sequencing it sufficesto test the required and availablework
within al activity intervals, i.e., time intervals with a start and end defined to be
the earliest start and latest completion time of some activities. The search space re-
duction achieved by the sequence consistency tests has been related to the general
conceptsof consistency introduced in Chapter 3.

We have discussed how the sequence consistency condition can be generalisedfor
cumulative scheduling, where, in contrast to the digunctive case, it is no longer
sufficient to consider only activity intervals. Chapter 4 hasfinally described how the
consistency tests, which have been introduced for single-mode scheduling, can be
applied for multi-mode problems to reduce the activity start time domains as well
the mode domains.

Chapter 5 has integrated the constraint propagation techniquesinto a new branch-
and-bound procedurefor single-moderesource-constrained project scheduling with
time windows. The agorithm implicitly enumerates activity start times by either
starting activitiesas early as possible or delaying them in such a way that the con-
struction of non-active, i.e., dominated, schedulesis avoided. At each node of the
tree, afixed pointis computed by repeatedly applyinga number of consistency tests.
The search space is further reduced by enforcing some necessary conditions that
must be met by active schedules.

The procedure has been evauated on severd large test sets of benchmark problem
instances, and the influence of the different building blocks of the algorithm and
of aset of parameters characterising the test problems have been analysed. The
experiments have demonstratedthe effectiveness and efficiency of the approach.

On atest set of over thousand systematically generated instances with one hundred
activities each of the problem with generalised precedence constraints, the time-
oriented branch-and-bound algorithm can find feasible solutions for al solvable
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probleminstances. It solvesmore problemsto optimality than other exact procedures
that have recently been proposed, while at the same time achieving a significantly
smaller average deviationfrom alower bound for the project duration. It is remark-
able that with respect to the latter criterion, the simpletime-truncated version of the
branch-and-boundmethod yields sol utionsthat improve upon the results of the best
known heuristics,and that these sol utions arefound within averagerun timesassmall

as ten seconds.Similarly good resultsfor a second benchmark test set consisting of

larger problem instanceswith five hundred activities per project have demonstrated
that the branch-and-boundalgorithm also scalesvery well.

The agorithm has additionally been evaluated on four large benchmark test setsfor
the well studied, special project scheduling problem with simplefinish-start prece-
dence constraints. The results show again that the algorithm scales very well; for
larger instances, it is competitive to other exact proceduresfor this problem, and
its truncated version may even be a useful heuristic. The good performanceon the
larger test setsis particularly interesting because the algorithm does not include cer-
tain features which enhance the performance on this special problem but that are
hard to adapt for generdised or extended versionsof the problem.

The branch-and-bound procedure has been extended in Chapter 6 for the multi-mode
version of the projectscheduling problemwith time windowsby combiningthetime-
oriented branching over activity start times with a binary branching over mode as-
signmentsor restrictions.

We have finaly dealt with two applications of project schedulingin airport oper-
ations management. Chapter 7 has first described how the scheduling of ground
handling activities required for serving aircrafts while at an airport givesrise to a
resource-constrai nedmulti-projectscheduling problem with time windows.

The focus of Chapter 7 has then been on airport gate scheduling which deals with
thetask of assigning flightsto terminal gatesor parking positionsand schedulingthe
start and end times of theassignments. We haveshown how thistask can be modelled
as a special multi-mode project scheduling problem with a non-regular objective
function, specialy structured temporal constraints, and digunctive resources. The
proposed solution method of the branch-and-boundtype again relies on the use of
constraint propagation techniquesfor search space reduction. For dealing with large
practical problemswith on the order of magnitudeof thousandactivities, thebranch-
and-bound procedure has been combined with additional problem decomposition
and sol ution improvementtechniques which both are of general interest beyond the
application at hand. The problem has been decomposed into loosely coupled sub-
problemsusing anew generic problem partitioningapproach, and the search treeis
conceptually split into layers that correspond to the sub-problems. Initial solutions
are iteratively improved by using the branch-and-boundal gorithm within a large
neighbourhoodsearch scheme. Computational experimentswith largereal-life data
sets have demonstrated that the modelling approach is well suited and that the pro-
posed solution method is very effective and greatly improves upon the results of a
modem rule based decisionsupport system.
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The approach followed in the gate scheduling application has been to adapt a suc-
cessful standard project schedulingmodel and solution methodsfor a practical prob-
lem. Based on the experiencegained, we believethat this way of startingfrom stan-
dard models and methods and extending them to cover even more redlistic problem
classesis an promising direction for future research as well asfor the development
of practical softwareapplications.

Due to their generality, the basic project scheduling models studied here are very
good starting points. The congtraint propagation based solution techniquesthat we
have investigated are also well suited for such an approach becausemost of the ba-
sic building blocks, i.e., the consistency tests, are not custom tailored for specific
scheduling model sand objective functionsbut cover a wide range of possibleappli-
cations. Furthermore, the efficiency of the solution methods proposed in this work
can to a great extent be attributed to the application of these techniques. The de-
sign of strong and efficient consistency tests thereforeal so remainsa promising step
towards the devel opmentof improved solution methods.
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