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Chapter 1 

Introduction 

1 .  Motivation and Objectives 

Project scheduling is concerned with the allocation of resources over time to perform 
a collection of activities. The decision models that fit within this framework cover 
a multitude of practical problems that arise, for example, in such diverse areas as 
research and development, software engineering, construction engineering, repair 
and maintenance, as well as make-to-order and small batch production planning. 

A project is a one-of-a-kind undertaking with specific objectives that has to be per- 
formed within a certain time-frame and with limited resource supply. Its manage- 
ment roughly consists of (1) a project definition and data acquisition phase, (2) a 
scheduling phase and (3) an execution and termination phase during which the sched- 
ule is realised and the performance is analysed. 

This work deals with the scheduling aspect. The aim is to develop methods for 
finding an optimal schedule for a project; this involves the assignment of activities to 
resources and the definition of exact activity start and completion times, a task that 
is generally difficult whenever multiple activities simultaneously compete for the 
same resources. We will not address the topics related to the conception, selection, 
and definition of a project, but will rather assume that the project structure is given, 
including data on resource availabilities and requirements as well as the necessary 
processing times. Likewise, we will not deal with the issues that typically arise 
during the realisation phase of a project. 

We shall investigate a very general class of deterministic project scheduling problems 
that is expressive enough to capture many features commonly found in practical 
problems, such as precedence constraints, activity time windows, fixed activity start 
times, synchronisation of start or finish times, maximal or minimal activity overlaps, 
non-delay execution of activities, setup times, or time varying resource supply and 
demand. 
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In the basic model, technological or organisational requirements are represented 
through generalised precedence constraints that allow to specify minimal andlor 
maximal time lags, or time windows, between any pair of activities. An activity 
may require different amounts of several resource types. Resource requirements and 
availabilities may vary in discrete steps over time. While we usually consider the 
objective of minimising the overall completion time of a project, most of the results 
apply at least for any performance measure that is a non-decreasing function of the 
completion or start times of the activities. We will also address multi-mode schedul- 
ing, i.e., the situation where a choice must be made between several modes in which 
an activity may be processed, reflecting time-resource or resource-resource tradeoffs. 
Due to its generality, the basic model also covers many difficult special problems that 
have been extensively studied in scheduling research, for example, shop scheduling 
problems (Blazewicz et al. 1996). 

Throughout this work, we study deterministic project scheduling problems, where 
all parameters that define a problem instance are known with certainty in advance. 
Deterministic scheduling models are best suited if any possible random influences in 
the project execution phase can be expected to be low, and if the problem parameters 
can thus be estimated with high accuracy. This may, for instance, be the case if the 
activities of a project show a high degree of similarity with previous projects. In 
situations where the problem parameters are difficult to estimate and are subject to 
significant random influences, the use of deterministic scheduling techniques may, 
however, be problematic. As a typical example, deterministic scheduling in the pres- 
ence of stochastic activity processing times generally leads to an underestimation of 
the expected project duration, as already observed by Fulkerson (1962). 

The first models and methods for dealing with large scale projects have been devised 
in the late 1950's and early 1960's. The well known Critical Path Method (CPM, 
Kelley 1961) and the Metra Potential Method (MPM, Roy 1962) have been designed 
for deterministic project scheduling with ordinary or generalised precedence con- 
straints, respectively, while the Project Evaluation and Review Technique (PERT, 
Malcolm et al. 1959) considers probabilistic activity processing times; the Graph- 
ical Evaluation and Review Technique (GERT, Pritsker and Happ 1966) addition- 
ally takes probabilistic precedence relations into account. These approaches have 
received great attention in the following years. In the early 1970's, Davis (1973) 
already reported more than 15 books and 300 papers on the subject. 

The original models and methods simplified the problem by concentrating only on 
temporal constraints, i.e., by assuming that the availability of resources is not a lim- 
iting factor. Beginning in the late 1960's, the models were extended by additionally 
considering scarcity of resources. In order to distinguish between the classic CPM, 
MPM, and PERT or GERT models on the one hand and models that consider limited 
resource availability on the other hand, the latter are usually referred to as resource- 
constrained. The underlying problems are much more difficult to solve, as the com- 
putational effort for finding an optimal solution usually grows exponentially with 
the problem size. For a long time, this has prohibited the use of exact algorithms for 
scheduling large practical projects with resource constraints. 
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In the past years, interest and research efforts in the field of resource-constrained 
project scheduling have strongly increased, and many new modelling concepts and 
algorithms have been developed. Overviews of the advances in models and solu- 
tion methods are given in the survey papers of Brucker et al. (1999), Herroelen 
et al. (1998), Kolisch and Padman (2001), Drexl et al. (1997), Elmaghraby (1995), 
0zdamar and Ulusoy (1995), Icmeli et al. (1993), or Domschke and Drexl (1991). 
A gentle introduction to network models for project planning and control is given 
by Elmaghraby (1977). Descriptions of the basic classic project scheduling models 
for the temporal analysis of projects can be found in many introductory Manage- 
ment Science textbooks (e.g. Domschke and Drexl 1998). Applications within the 
area of production planning have been described, e.g., by Hax and Candea (1984) 
and Giinther and Tempelmeier (2000); Drexl et al. (1994) discuss a special type of 
project scheduling software, called Leitstand system, for make-to-order manufactur- 
ing management. 

The resource-constrained project scheduling problems studied in this work can be 
understood as extensions of the basic problem covered by the Metra Potential 
Method. Due to the general form of the temporal constraints, the resource-con- 
strained version of the problem is particularly difficult to solve. Even the question 
for the existence of a feasible schedule can in general only be answered with expo- 
nentially growing effort. This may be one the main reasons why, despite the expres- 
siveness and high practical relevance of the models, very few attempts have so far 
been made to design solution procedures for this class of problems. 

The main objective of this work is to help overcome this deficiency by developing 
effective and efficient solution methods. The focus will be on the design and eval- 
uation of exact branch-and-bound algorithms for finding optimal schedules, but we 
shall also study the performance of heuristics based upon truncated versions of these 
procedures. 

The scheduling methods that will be developed make use of a general purpose prob- 
lem solving paradigm that originated in the area of Artificial Intelligence. Constraint 
propagation is an elementary technique for simplifying difficult search and optimi- 
sation problems by exploiting implicit constraints that are discovered through the 
repeated analysis of the domains of decision variables and the interrelation between 
the variables and domains that is induced by the constraints. In the past years, con- 
straint propagation techniques have been applied with growing success for solving 
a number of difficult, idealised scheduling problems, mostly in the area of machine 
scheduling. The successful application for solving special cases of the general prob- 
lem class studied here suggests that the approach may also be valuable in this con- 
text. As a second objective of this work, we shall therefore study the application of 
constraint propagation techniques in project scheduling. 

A third objective is to demonstrate the practical relevance of the approach taken in 
this work. To this end we shall describe possible applications of the models and 
methods and extensions thereof in the area of airport operations management. 
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1.2 Outline 

The presentation of the results is organised as follows. 

Chapter 2 introduces a decision model for deterministic project scheduling with gen- 
eralised precedence constraints, the basic problem considered in this work. The 
chapter starts with a description of the entities that make up a project scheduling 
problem: activities, resources, precedence relations or time windows, and perfor- 
mance measures. After presenting a formal optimisation model, the concept of do- 
mains, i.e., sets of possible values of decision variables, is introduced. The general 
problem is then related to some well known special cases that are obtained if certain 
assumptions about the resource availability and requirements andlor the structure of 
the precedence relations are made. Finally, the generalisation to multiple activity 
execution modes is described. 

Chapter 3 gives a general introduction to constraint propagation. Constraint propa- 
gation is a search space reduction technique that tries to remove inconsistent values 
from the variable domains, i.e., values that cannot participate in any feasible solu- 
tion, by repeated applying a set of consistency tests. The chapter discusses different 
concepts of consistency that have been developed in the literature on the constraint 
satisfaction problem, and which may serve as a theoretical background for the prop- 
agation techniques that will be employed. Consistency checking methods are de- 
scribed that control the repeated application of the tests until a fixed point is reached, 
i.e., until no further reductions are possible. The chapter concludes by pointing to 
constraint programming environments that build upon the concepts that have been 
introduced. 

Chapter 4 is devoted to consistency tests for project scheduling that may be applied 
within the general framework introduced in the preceding chapter. It first describes 
simple tests that analyse the precedence constraints of a problem. The emphasis 
of the chapter is on interval consistency tests that are based upon the comparison 
of the resource supply and demand within certain time intervals. Previous research 
has shown that difficult project scheduling problem instances are frequently char- 
acterised by a low resource availability, which leads to the existence of many dis- 
junctive sub-problems, i.e., sub-problems with unit resource availabilities and re- 
quirements. The chapter shows how disjunctive sub-problems can be identified and 
selected. Consistency tests that have been proposed in the literature for disjunctive 
(machine) scheduling problems are then reviewed and presented within a unifying 
framework using numerous examples. Previous results are generalised and related 
to the concept of interval work, i.e., the minimum amount of work that must be 
performed within a time interval. The search space reduction that is achieved by ap- 
plying the tests within a fixed point propagation method is analysed and related to the 
theoretical concepts of consistency presented in Chapter 3. The results for disjunc- 
tive sub-problems are then extended for the case of arbitrary resource availabilities 
and requirements. The chapter finally shows how the results can be used for multi- 
mode project scheduling by considering a mode-minimal problem instance, where 



all mode-dependent problem parameters are replaced with the minimum possible 
values. 

Chapter 5 describes a new time-oriented branch-and-bound procedure for the basic 
single-mode project scheduling problem, in which the constraint propagation tech- 
niques are embedded. The solution method enumerates possible activity start times 
by scheduling activities as early as possible or delaying them by reducing their start 
time domains in such a way that the construction of non-active (dominated) sched- 
ules is avoided. The procedure heavily relies upon the application of constraint prop- 
agation techniques at the nodes of the search tree. The algorithm is evaluated for the 
problem with generalised precedence constraints as well as for the special case of or- 
dinary (finish-start) precedence constraints, using many large sets of benchmark test 
problems from the literature with up to five hundred activities,per problem instance. 
The results are compared to those of other exact procedures that have recently been 
proposed as well as to heuristic results; a detailed analysis of the influence of certain 
parameters that characterise a problem instance is given. 

Chapter 6 extends the branching scheme for the case of multi-mode project schedul- 
ing. The basic idea is to integrate a time-oriented branching over activity start times 
with a branching over mode assignments or restrictions. 

Chapter 7 discusses applications of the models and methods in the area of airport 
operations management. We first describe an application of single-mode project 
scheduling with time windows in ground handling, where activities required for ser- 
vicing an aircraft while on the ground have to be scheduled. The focus of the chapter 
then is on the development of a model and solution procedure for gate scheduling, 
i.e., the problem of assigning flights (activities) to airport terminal gates or parking 
positions (modes) and scheduling the start and end times of the assignments. The 
chapter demonstrates how this problem can be modelled as a special multi-mode 
project scheduling problem with time windows. A solution procedure based on the 
concepts and techniques developed in the preceding chapters is described and evalu- 
ated on large practical test-cases. 

This work finishes with a summary and some concluding remarks in Chapter 8. 





Chapter 2 

Optimisation Model 

This chapter describes an optimisation model for deterministic resource-constrained 
project scheduling with generalised precedence constraints. It introduces the ba- 
sic elements of project scheduling models such as activities, resources, precedence 
constraints, as well as performance measures for evaluating the cost or utility of a 
schedule. 

We are concerned with scheduling a set of activities subject to constraints on the 
availability of several shared resources and temporal constraints that allow to spec- 
ify minimal and maximal time lags between the start of two activities. The objective 
considered in this work usually is to minimise the makespan, i.e., the maximum of 
the completion times of all activities, although most of the results hold for any regular 
objective function and are frequently also useful for optimising non-regular objective 
functions1. The rationale behind the makespan criterion is that an early completion 
of the project is advantageous in the sense that it frees resources for other tasks and 
reduces the risk of deadline violations and associated penalties; furthermore, signif- 
icant payments are often linked to the project completion, and an early completion 
thus tends to increase the net present value of a project. 

Sometimes, a choice can be made between several modes in which an activity can be 
processed. The modes may differ with respect to resource requirements and process- 
ing time, and they can influence the tightness of the temporal constraints; the modes 
reflect time-resource and resource-resource tradeoffs. Models with multiple possible 
execution modes per activity are called multi-mode models; otherwise we speak of 
single-mode models. 

Using the classification scheme for project scheduling proposed by Brucker et al. 
(1999), which extends the well known three-field classification scheme for machine 
scheduling introduced by Graham et al. (1979), we will denote the main single-mode 
problem considered in this work with PSltemplC,,,,,, for (a) project scheduling with 

'Chapter 7 develops a special project scheduling model for a specific application with a non-regular 
objective function. 
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(p) general temporal constraints and (y) the objective of minimising the maximum 
completion time. In the alternative classification scheme developed by Herroelen 
et al. (1999) the problem can be characterised as m, llgprlCm,,. The multi-mode 
extension of the problem will be denoted with MPSJtempl C,,. 

The problem PSltempl C,,, is sometimes referred to as resource-constrained project 
scheduling problem (RCPSP) with time windows (e.g. Bartusch et al. 1988), RCPSP 
with generalised precedence relations (e.g. De Reyck and Herroelen 1998), or 
RCPSP with minimal and maximal time lags (RCPSPImax, e.g. Schwindt 1998b). 

While the classic resource-constrained project scheduling problem with simple 
precedence constraints, i.e. the problem PSlpreclC,,, has been extensively studied, 
algorithms for solving the problem PSltempl C,,, or its multi-mode generalisation 
have only recently received growing attention in the literature, as documented by the 
recent surveys by Brucker et al. (1999), Herroelen et al. (1998), and Kolisch and Pad- 
man (2001). This may to some extent have been caused by the fact that the problem 
PSlpreclC,,, itself is intractable and belongs to the class of NP-hard optimisation 
problems (Blazewicz et al. 1983). As an extension, the problem PSltemplC,, is, of 
course, also NP-hard, and even the question whether a problem instance has a feasi- 
ble solution is NP-complete in the strong sense (Bartusch et al. 1988)~. As a gener- 
alisation of the problem PSItempIC,,, the multi-mode problem MPSlternplC,,, and 
its corresponding feasibility problem belong to the same complexity class. 

In the following, we will first describe the single-mode project scheduling problem 
PSltemplC,, in detail in Section 2.1 and then introduce its multi-mode version in 
Section 2.2. 

2.1 The General Single-Mode Model 

2.1.1 Activities and Resources 

The basic entities of the project scheduling problem considered are the activities 
or jobs. A set of activities V = (1,. . . , n)  has to be processed with the objec- 
tive of minimising the makespan, which is the maximum of the completion times 
of all activities. Each activity i E V has a specific processing time pi and a start 
time Si. While the former is fixed in advance, the latter is a decision variable. The 
completion time of an activity is denoted with Ci.  Because the processing times 
are fixed and deterministic, the completion time of an activity follows from its start 
time. By choosing sufficiently small time units we can always assume that the pro- 
cessing and start and completion times are non-negative integer values. We study 
the non-preemptive version of the problem, which means that activities must not be 
interrupted during their processing. 

2 ~ ~ - c o m p l e t e n e s s  of the feasibility problem is shown by transformation of an NP-complete unit- 
time scheduling problem Q. NP-completeness in the strong sense follows from the fact that Q is not a 
number-problem. 
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An activity i requires rik E No units of one or several resources k E R, where R 
denotes the set of all resources. For the sake of simplicity we assume that resource 
k is available in constant amount Rn, although the results derived in the subsequent 
sections also apply if we consider variable resource supply instead: for constant 
R k ,  time varying resource supply can easily be modelled by introducing fictitious 
activities (Bartusch et al. 1988). Resources may not be shared and are exclusively 
assigned to an activity during its processing. They are reusable, i.e., they are released 
when they are no longer required by an activity and are then available for processing 
other activities. More precisely, an activity uses exactly rik units of resource k in 
any interval of width one starting at time t = Si ,  . . . , Si + pi - 1, at which these 
units are not available for other activities, and releases them at time t = Si +pi. The 
set of activities which require resource k is denoted with Vk := {i E V I rir, > 0).  

A resource k E R with supply Rk > 1 is also called cumulative resource; in the 
special case where Rk = 1 we speak of disjunctive or unary resources, which are 
sometimes also referred to as machines. 

Resource constraints ensure that in any processing period the resource demand never 
exceeds the resource supply. It is possible to define these resource constraints in a 
quite elegant way using the concept of a slackfunction, which will be introduced 
in Chapter 4. For the time being it is sufficient to define the auxiliary set V ( t )  of 
activities in process at time t ,  or more precisely, in the right-open interval [t, t + l[. 
The resource constraints can then be stated as follows: 

A schedule, i.e., an assignment of activity start times Si, . . . , S,, is resource feasible 
if it satisfies the above constraint. 

1 2.1.2 Temporal Constraints 

In general, activities cannot be processed independently from each other due to 
scarcity of resources and additional technological requirements. Technological re- 
quirements will be modelled by temporal constraints or, as synonyms, generalised 
precedence constraints or time windows. Many classic scheduling models such as 
the well known resource-constrained project scheduling problem, which is a special 
case of the model described here, only use minimal time lags between activities; the 
lags reflect finish-start precedence relations between activities and are thus assumed 
to be equal to activity processing times. Arbitrary minimal and maximal time lags are 
an important generalisation, as they allow to model many characteristics commonly 
found in practical scheduling problems. The temporal constraints can for instance 
be used to model activity time windows, fixed activity start times, synchronisation of 
start or completion times, maximal or minimal activity overlaps, non-delay execu- 
tion of activities, setup times, or time varying resource supply and demand (Bartusch 
et al. 1988, Elmaghraby and Kamburowski 1992, Neumann and Schwindt 1997). 
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1 i before j  
2 i meets j 

3 i overlaps j  

4 i finishedby j  

5 i contains j  

6 i starts j  

7 i equals j  

8 i started by j  

9 i during j  

10 i finishes j  
11 i overlapped by j  
12 i met by j  

13 i after j  

I position of activity i 
............................... 
I ............................. i position of activity j 

Figure 2.1 : Possible temporal relations between two activities 

Figure 2.1 shows the thirteen possible temporal relations between a pair of activities 
(Allen 1983)'. We will see that generalised precedence constraints can selectively 
enforce or admit any of these relations; this stands in contrast to precedence con- 
straints with minimal time lags only and simple completion-start precedence con- 
straints. 

A generalised precedence constraint (i, j )  specifies a minimal or maximal time lag 
between two activities i and j  and has the general standardised form: 

As for the activity start and processing times, we will. assume without loss of gen- 
erality that all time lags dij are integer values. If dij > 0 then the constraint (i, j )  
can be interpreted as: activity j  must start at least dij time units after the start of 
i (minimal time lag). If di j  5 0, then the following interpretation applies: j  must 
start at most di j  time units before the start of i (maximal time lag). The set of all 
generalised precedence constraints is denoted with E.  

3 ~ y  swapping the roles of activities i and j in Figure 2.1 the number of relations is reduced to seven. 
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dji < 0 

Figure 2.2: Visualisation of temporal constraints as forward and backward arcs 

Figure 2.3: Visualisation of temporal constraints as time window of j relative to i 

Temporal constraints between two activities can always be formulated in the stan- 
dardised form (2.2) as start-start relations. Because the activity processing times are 
fixed and deterministic, all other possible relations, i.e. start-completion, completion- 
start, and completion-completion, can be trivially transformed into start-start rela- 
tions. 

For example, Relation 2 shown in Figure 2.1 (i meets j) can be enforced by imposing 
the two constraints Ci 5 S j  and Sj  5 Ci. By substituting Ci := Si +pi,  these 
constraints can be transformed into the standardised form Si +pi 5 S j  and S j  -pi 5 
si . 
Figures 2.2 and 2.3 visualise the temporal constraints between a pair of activities 
i and j; the activities are shown as solid rectangles with a horizontal length corre- 
sponding to the processing time. Figure 2.2 shows a constraint Si + dij 5 S j  with 
a strictly positive time lag as a forward arc of length dij starting at time Si; the con- 
straint requires that j starts at least dij units of time after the start of i. The figure 
also shows a constraint S j  + d j i  5 Si with strictly negative time lag as a backward 
arc of length dji starting at time S j ;  this constraint requires that j starts at most dji 
units of time after the start of i. The constraints can also be visualised in the form 
shown in Figure 2.3, i.e., as time window of activity j relative to activity i, or vice 
versa. By changing the values of di j  and dj i  the length of the "handles" shown in 
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Figure 2.3 can be adjusted and the size or position of the relative time window is 
changed. For simplicity, Figures 2.2 and 2.3 use only two activities for visualis- 
ing minimal and maximal time lags. In general, the time lags may lead to cycles 
involving an arbitrary number of activities. 

Many special cases of the problem PSltemplC,,,, do not allow for negative time 
lags and cyclic temporal constraints. In the terms of Figure 2.3 this corresponds to 
removing the right handle labelled dj i .  

Using the time window visualisation, it is easy to see that any of the thirteen possi- 
ble relations shown in Figure 2.1 can either be selectively enforced or be admitted 
or ruled out by choosing suitable minimal and maximal time lags (and, of course, 
processing times). 

The set of all temporal constraints can be visualised in an activity-on-node network 
or digraph G(V, E) with vertex set V and edge set E with edge weights d i j ,  where 
minimal lags are usually represented as forward edges and maximal lags as backward 
edges4. The vertices of G correspond to the activities of the project, and there are 
edges between any two activities (vertices) i and j that are linked by a precedence 
constraint (i, j) E E.  Frequently, two fictitious activities 0 and n + 1 that represent 
the start and end of a project are added as source and sink of the network, with edges 
from the source to all real activities and from all real activities to the sink, with edge 
weights do,i = 0 and di,n+l = pi, for i = 1, . . . , n. For the remainder of this section 
we will assume that G contains the fictitious start and end activities. 

A time feasible schedule, i.e., one that satisfies all temporal constraints, is an assign- 
ment of non-negativenumbers to the activity start times S1 , . . . , s,, or, equivalently, 
to the vertices of G, such that 

The numbers fulfilling (2.3) are also called potentials in graph theory (Berge 1985), 
and there is a well developed theory about them that also forms the basis of the 
Metra-Potential-Method (MPM) for project networks (Roy 1962), which deals with 
start-start time lags and also covers the temporal constraints of the model discussed 
here. 

It is well known that there exists a time feasible schedule (a potential for G) iff 
G has no directed circle of positive length (Bartusch et al. 1988). Such a cycle 
would correspond to a logical contradiction in the temporal constraints. For example, 
consider a cycle involving only two activities that is formed by the constraints Si + 
3 5 Sj and S j  - 2 < S i ;  the length of the cycle is 1; while the first constraint 
requires that activity j starts at least 3 units of time after i, the second constraint 
demands that i starts at most 2 units before j. 

The existence of a time feasible schedule can be tested by computing the unique 
component-wise minimum solution of (2.3), which gives the earliest possible starting 

4 ~ o r  all graph theoretic notions not defined here see LawIer (1976). For an introduction to network 
representations of projects see Elmaghnby (1977). 
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times. This schedule, which is usually not resource feasible, is also called the earliest 
start schedule. The earliest start schedule can be efficiently computed by standard 
graph algorithms, e.g. with effort O(n3) by the Floyd-Warshall Algorithm (Lawler 
1976). Alternatively, the earliest start schedule can be derived through constraint 
propagation, as shall be explained in the following chapters. 

2.1.3 The Model 

The problem PSltemplC,, can now conceptually be stated as follows: 

S i + d i j < S j ,  V ( i , . i )EE ,  (ii) 

CiEv(t) rik 5 R k  , Vt E No, Vk E R, (iii) 
Vi E V .  (i.1 

A schedule S  = (S1, . . . , S,) is an assignment of all activity start times. S  is feasible 
if it satisfies all precedence constraints (ii) and resource constraints (iii). Reformu- 
lating the problem, the task is to find a feasible schedule with minimal makespan. 

There are several other ways of formally modelling the problem PSltempJC,, that 
mainly differ in the way how resource constraints are represented. Many formula- 
tions have originally been proposed for the problem PSlpreclC,,,, i.e., the exten- 
sively studied variant of the problem PS(temp(C,,, where all time lags dij are equal 
to the activity processing times pi. 

The formulations are frequently based on using time indexed binary decision vari- 
ables zit that take the value one if an activity i  E V finishes in (or is processed in, or 
starts before, etc.) period t and zero otherwise. The first formulation of this type for 
the problem PSlpreclC,, has been described by Pritsker et al. (1969). 

Other formulations are based on the concept of using forbidden sets (Bartusch et al. 
1988) to represent the resource constraints. A forbidden set of activities is a set 
N S V for which 

rik > RI,  for some k t R. 
i € N  

Condition (2.4) is the negation of (2.1); it is time independent due to the constant 
resource demands and supplies. Given a set N of all forbidden sets, a schedule S  
is resource feasible iff no set N E N is scheduled simultaneously in any period t. 
A disadvantage of the description by forbidden sets is the fact that the number of 
required (minimal) forbidden sets may grow exponentially with the problem size, 
although it seems that for many applications this does not cause problems (Stork and 
Uetz 2000). 
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Forbidden set formulations have been used, e.g., by Bartusch et al. (1988) and by 
Alvarez-Valdes and Tamarit (1993). A formulation based on the complementary 
concept of compatible sets of activities has been proposed by Mingozzi et al. (1998). 

2.1.4 Schedules and Performance Measures 

A schedule S = (Sl , . . . , Sn) is an assignment of all activity start times. The quality 
of a schedule is usually measured by a cost or utility function n : Rn + IR that 
transforms the vector of start or completion times onto a one-dimensional scale. The 
makespan function C,, := n(S) := rnaxi~v  Si + pi is an example of such a 
transformation. 

When comparing two schedules S and S' we say that S 5 S' if no activity in S 
starts later than in S': 

Further, S < S' if S 5 S' and additionally at least one activity in S starts earlier: 

A schedule S is active if it is feasible and if there exists no other feasible schedule 
S' such that S' < S .  In other words, S is active, if no activity can be started earlier 
without violating either one of the precedence or resource constraints. If a schedule 
S is not active and some activity i can therefore be started earlier than at time Si, 
then we say for short that i can be lefr-shifed in S. 

A detailed discussion of active schedules and the related concepts of semi-active and 
non-delay schedules in the context of project scheduling is given by Sprecher et al. 
(1995). 

The definition of active schedules immediately leads to the following simple and 
well known observation: any solution method which minimises the makespan func- 
tion can refrain from generating non-active schedules, since there always exists a 
corresponding active schedule with a lower or identical makespan. We shall exploit 
this observation in the branch-and-bound procedure developed in Chapter 5. 

The observation can be generalised for the class of regular measures of pel3cormance 
(Conway et al. 1967) which is defined as the class of all objective functions that are 
non-decreasing with respect to the component-wise ordering of Rn, i.e., for which 

Regular measures of performance cover the standard objective functions used in 
scheduling such as makespan, weighted flowtime, or tardiness costs. The condition 
is general enough to allow for many cost terms that occur in practical applications. 

I 



2.1. THE GENERAL SINGLE-MODE MODEL 15 

2.1.5 Domains of Decision Variables 

We will now introduce the concept of domains of decision variables, which will 
prove useful in the following chapters. Each activity start time variable Si has a 
current domain As, c No of possible values. Because the activity start times are 
the only decision variables in the single-mode model, we will also use the shorter 
notation Ai instead of As, when no confusion is possible and simply speak of the 
domain of activity i; we shall use the explicit notation when dealing with multi-mode 
models. We will later assume that some real or hypothetical upper bound UB on the 
optimal makespan is known or given, so that even Ai C [0, UB - pi] holds. This is 
necessary, since most of the constraint propagation methods that will be applied can 
only deduce a domain reduction if the current domains are finite. If no initial upper 
bound is given we use the trivial upper bound 

The set of current domains of all activities is denoted with A := {Ai I i E V). For 
an activity i E V, ESi(A) := min Ai is the earliest start time, ISi(A) := m a  Ai 
the latest start time, &(A) := ESi (A) + pi the earliest completion time and 
LCi (A) := ISi(A) +pi the latest completion time of i. If no confusion is possible, 
then we will write ESi, ISi ,  etc., for short. 

A schedule S is called domain feasible with respect to a set A of current domains if 
the current domain of each activity still contains the start time of this activity in S ,  
i.e., if we can arrive at S by repeatedly reducing the current domains. 

Given a set A of current domains, the set of all activities V can be naturally parti- 
tioned into a set of scheduled and non-scheduled, or free, activities. Clearly, if the 
current domain of an activity i contains exactly one entry, then i must start at that 
time and can be considered as scheduled. Hence 

is the set of scheduled activities, and 

is the set of free activities. For all scheduled activities i E VS(A), the start time is 
defined through Si (A) := ESi (A) = LSi (A). 

2.1.6 Special Cases 

The general problem PSItempI C,,, contains several special cases that are obtained if 
the admissible precedence constraints are restricted in certain ways or if the resource 
supply takes a special form. 
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A first class of simple problems is obtained if the resource constraints are relaxed, 
i.e., if resource supply is unlimited. This first leads to a (resource-un-constrained) 
project scheduling problem with generalised precedence constraints, a problem that 
is addressed by the well known Metra-Potential Method (MPM) for the temporal 
analysis of project networks. The problem covered by the famous Critical Path 
Method (CPM) is obtained if, additionally, only simple precedence constraints are 
allowed, i.e., if the time lags dij between a pair of activities i and j are equal to the 
processing time of the preceding activity i: dij = Pi, V ( i ,  j) E E.  

In contrast to the simple problems with unlimited resource supply, problems with 
resource constraints are generally difficult to solve. 

One of the best studied special cases of the problem PSltempJC,, is the classic 
RCPSP with simple precedence constraints, i.e., the problem PSlpreclC,,,, which 
generalises the problem covered by the CPM method by adding resource constraints. 

It has been shown that several seemingly unrelated optimisation problems can be for- 
mulated as instances of the problem PSlpreclC,,. Examples include the bin pack- 
ing (Garey et al. 1976) and the assembly line balancing problem (Elmaghraby 1977, 
Sprecher 1994). The relation of the multi-mode problem MPSlprecl C,, to the knap- 
sack packing problem as well as to two- and three-dimensional packing and cutting 
problems has been discussed by Hartmann (1999). 

The problem PSlpreclC,,,, with ordinary precedence constraints is in turn a gener- 
alisation of several well known, difficult optimisation problems studied in machine 
scheduling, where unary, or disjunctive, resources are considered. Examples include 
shop scheduling problems such as the job shop, flow shop, and open shop problems 
(Blaiewicz et al. 2001) as well as many other, more special problems. We will see in 
the following chapters that some solution techniques originally developed for shop 
scheduling can be successfully applied for solving project scheduling problems. 

A special problem that has been called Generalised RCPSP (Demeulemeester and 
Herroelen 1997a, Klein 2000b) is obtained if the RCPSP is extended by allowing 
for arbitrary minimal time lags, combined with the assumption that the precedence 
constraints are acyclic.5 

2.2 Extension to Multiple Execution Modes 

2.2.1 Modes 

In multi-mode scheduling, an activity may be processed in one of multiple possible 
execution modes, which differ with respect to the necessary processing time and the 
resource requirements. Furthermore, the time lag between a pair of activities may 

5 ~ h e  fact that time lags of value zero are legal would otherwise allow for cycles of length zero, cor- 
responding to a synchronisation of start times; this would slightly complicate the design of enumeration 
schemes. 
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vary depending on the chosen mode. The modes reflect tradeoffs between required 
processing time and resource consumption on the one hand as well as tradeoffs be- 
tween the consumption of different types of resources on the other hand; additionally 
the time lags between activities may vary depending on the chosen modes. 

The mode Mi in which an activity i E V is processed thus becomes an additional 
decision variable, which can take values from the associated set M i  of all admissible 
modes. The current domain of Mi is denoted with AM;, and initially  AM^ = Mi.  

As the processing time and resource requirements of an activity now depend on the 
chosen mode, they are indexed accordingly: pi, is the time required for processing 
activity i in mode p E M i ,  and ri,k is the amount of resource k E R needed for 
executing activity i in mode p. The mode dependent time lag that must pass between 
the start of two activities i, j E V if i is performed in mode p E M i  and j in mode 
v E M j  is denoted with diPj,. 

The initial mode domain of an activity can be reduced by removing inefficient modes. 
In multi-mode models with simple finish-start precedence constraints, a mode is 
called ineficient if its processing time is not shorter and its resource requirement 
is not less than that of another mode of the same activity. If generalised precedence 
constraints are allowed, this condition must be strengthened by additionally consid- 
ering the mode-dependent time lags: A mode p E AM; of activity i is inefficient if 
its processing time is not shorter and its resource requirement is not less than that of 
another mode of i and if the time lags diPjv and djvi, associated with mode p and 
activity i are not less than for another mode of i, for all j E V, for which (i, j) E & 
or (j, i) E E, and all v E AMj . 

2.2.2 Resources 

In multi-mode project scheduling it is common practice to distinguish between re- 
newable and non-renewable resources, as originally proposed by Slowinski (1980) 
and Weglarz (1981). 

So far, we have only introduced renewable resources, which are constrained on a per 
period basis. The required number of units of a renewable resource are assigned to 
an activity during its processing; upon completion of the activity, the resource units 
are released again and are then available for processing other activities. Examples of 
renewable resources include manpower and machines. 

Non-renewable resources are globally constrained for the entire planning horizon. 
In contrast to renewable resources, they are consumed by processing an activity 
and cannot be reused. Money is an example for a non-renewable resource. Non- 
renewable resources can thus be used to model budget constraints for a project. A 
non-renewable resource is redundant and may be removed if the mode-dependent 
maximal total demand for the resource is at most equal to the resource supply. Non- 
renewable resources need only be considered in multi-mode problems as they must 
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always be redundant in instances of single-mode problems (or the problem instance 
does not have a solution). 

Resources that are constrained per period as well as for the entire project are called 
doubly constrained. A doubly constrained resource can be modelled by introducing 
a renewable and a non-renewable resource. 

Another type of resource that allows to model resource supply restrictions for a sub- 
set of periods and that is called partially renewable has recently been proposed by 
Bottcher et al. (1999). 

In the following we will distinguish between the set RP of renewable and the set 
R" of non-renewable resources, i.e., R = RP U R V,  and denote the supply of a 
renewable (non-renewable) resource k E R with R i  (RL). 

2.2.3 The Model 

The problem MPSJtemplC,,,, can now conceptually be stated as follows: 

min{max{Si + &Mi }} s.t. 
zEV 

(i) 

Si + d i ~ ;  jMj I Sj, v(i, j )  E E, (ii) 

CiEv(t) T i ~ ~ k  5 RL, vt E No, vk E RP,  (iii) 
xiEv 7 ' i ~ ; k  5 Ri, vt No , \Jk E R V ,  (iv) 
si E NO, Vi E V .  (v) 
Mi E Mi, Vi E V. ( 4  

A schedule (S, M )  = (S1,. . . , S,, MI, .  . . , M,) is an assignment of all activity 
start times and modes. (S, M)  is feasible if it satisfies all precedence constraints (ii) 
and constraints for renewable (iii) and non-renewable (iv) resources. 

The multi-mode project scheduling problem MPSltemplC,, can be conceptually 
divided into two sub-problems. The mode assignment problem consists of finding 
a mode vector that satisfies constraints (iv) and (vi); it is NP-complete for prob- 
lems with at least two non-renewable resources (Kolisch 1995). Given a mode- 
assignment, the scheduling sub-problem defined by (i) - (iii) and (v) is of the type 
PSI temp 1 Cmx. 



Chapter 3 

Constraint Propagation 

The branch-and-bound algorithms that will be developed in the following chapters 
rely to a great extent on efficient constraint propagation techniques. Constraint prop- 
agation is a problem reduction technique that transforms problems into equivalent 
problems that are hopefully easier to solve. The basic idea is to reduce the search 
space of a problem instance through the repeated analysis and evaluation of variables, 
their domains, and the interdependence between the variables that is induced by the 
set of constraints. The goal is to detect and remove inconsistent assignments that can- 
not participate in any feasible solution. A whole theory is devoted to the definition of 
different concepts of consistency, which may serve as a theoretical background for 
the propagation techniques that we will employ. This theory has been developed for 
the constraint satisfaction problem (CSP) or constraint optimisation problem (COP); 
the project scheduling problems examined in this work can be understood as special 
subclasses of the CSP or COP. 

In this chapter we shall introduce the standard CSP and COP and the important con- 
cepts related to it. Section 3.1 gives a short introduction to these problem classes; 
Section 3.2 then describes different concepts of consistency, and Section 3.3 ad- 
dresses consistency checking algorithms. Section 3.4 points to some software sys- 
tems and languages that have been developed based on concepts from CSP research 
and help in the formulation and solution of CSPs. 

3.1 Constraint Satisfaction and Optimisation 

A CSP is composed of a finite set of variables, each of which is associated with a 
finite domain, and a set of constraints that restrict the values that the variables can 
simultaneously take. The task is to assign a value from its domain to each variable 
so that all constraints are satisfied. The COP additionally requires that the solution 
optimises some objective function. The problem PSltemplC,,,, introduced in Chap- 
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ter 2 is an example of a COP. Any COP can be transformed into a related CSP by 
replacing the objective function with a constraint on the objective value. By repeat- 
edly restricting the value, e.g. through bi-section over the interval defined by a bound 
on the objective function value and an initial guess for the optimal value, a COP can 
be solved by repeatedly solving related CSPs. 

The CSP was first formalised and studied by Huffman (1971), Clowes (1971) and 
Waltz (1975) in vision research for solving line-labelling problems. Haralick and 
Shapiro (1979, 1980) and Mackworth (1992) discuss general algorithms and appli- 
cations of CSP solving. Hentenryck (1992) and Cohen (1990) tackle the CSP from 
a constraint logic programming viewpoint. Comprehensive introductions to the CSP 
are provided by Meseguer (1989), Kumar (1992) and Dorndorf et al. (2000b). An 
exhaustive overview of the theory of constraint satisfaction and optimisation is given 
by Tsang (1993). We will only present the necessary aspects and start with some 
basic definitions. 

The finite domain of a variable is the set of all values that can be assigned to the vari- 
able. For many interesting problems, the assumption that the domains are finite is not 
a serious restriction. For example, for the project scheduling problems introduced in 
Chapter 2 the domains of the start and completion times can easily be made finite by 
imposing a bound on the makespan. The domain associated with the variable x is de- 
noted with A,. If V = 1x1,. . . , x,) is a set of variables and A = {A,, , . . . , A,,,) 
the set of their domains, then an assignment a = (al , .  . . , a,) is an element of the 
Cartesian product A,, x . . . x A,,, ; in other words, an assignment instantiates each 
variable xi with a value ai E A,; from its domain. 

A constraint c on A is a function c : A,;, x . . . x A,;, + {true, false), where V' := 
{xil, . . . , xi,} is a non empty set of variables. The cardinality IV'I is also called the 
arity of c. If 1V'I = 1 or IV'I = 2 then we speak of unary and binary constraints, 
respectively. An assignment a E A,, x . . . x A,,, satisfies c if c(ai,, . . . , ai, ) = true. 

Given a set of current domains A, a constraint is called resolved if it is satisfied for 
all assignments a E A,, x . . . x AXn, otherwise it is (still) unresolved. 

3.1.1 The Constraint Satisfaction Problem 

An instance P of the constraint satisfaction problem (CSP) is defined by a tuple 
P = (V, A, C), where V is a finite set of variables, A the set of associated domains 
and C a finite set of constraints on A. An assignment a is feasible if it satisfies all 
constraints in C. A feasible assignment is also called a solution of P. We denote 
with F ( P )  the set of all feasible assignments (solutions) of P. 

Given an instance P of the CSP, the associated task is to find a solution a E 3 ( P )  
or to prove that P has no solution. 

The goal of constraint propagation is to transform a problem P into a reduced but 
equivalent problem P' that is easier to solve. The reduced problem P' usually differs 
from P in the sense that the variable domains are reduced or that new, redundant 
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constraints, which may help in deducing future domain reductions, have been added. 
Problem reduction is an iterative process; we will generally assume that A and C 
refer to the current domain set and constraint set of the current reduced problem. 
Whenever we must explicitely refer to the original domain set and constraint set in 
P to avoid confusion, we will use the notation AO and C O .  

3.1.2 The Constraint Optimisation Problem 

As distinguished from the constraint satisfaction problem, the constraint optimisa- 
tion problem searches for a solution which optimises a given objective function. We 
will only consider the case of minimisation, as maximisation can be handled sym- 
metrically. 

An instance of the constraint optimisation problem (COP) is defined by a tuple P = 
(V,  A ,  C ,  z ) ,  where (V, A ,  C )  is an instance of the CSP and z an objective function 
z : A,, x . . . x AZn + a. Defining 

Zmin(P) := 
otherwise, 

an assignment a is called an optimal solution of P if a is feasible and z(a) = 
zmin(P). 
Given an instance P of the COP, the associated task is to find an optimal solution of 
P and to determine z,i, (P) .  

The project scheduling problems introduced in Chapter 2 can be seen as special 
cops .  

It is not hard to see that the CSP and the COP are intractable and belong to the class 
of NP-hard problems. For a more detailed discussion, which exceeds our needs, we 
refer to Garey and Johnson (1979) or Tsang (1993). 

3.1.3 Constraint Graphs 

An instance of the CSP can be represented by means of a constraint graph which vi- 
sualises the interdependencies between variables that are induced by the constraints. 
If we restrict our attention to unary and binary constraints then the definition of a con- 
straint graph G is quite straightforward. The vertex set of G corresponds to the set 
of all variables V ,  while the edge set is defined as follows: two vertices xi, xj E V, 
i f j ,  are connected by an undirected edge if there exists a constraint c(xi, x j )  E C .  
This can be generalised to constraints of arbitrary arity using the concept of hyper- 
graphs (Tsang 1993). 

For a resource-un-constrained project scheduling problem that contains only prece- 
dence constraints the constraint graph of the problem has the same structure as the 
activity-on-node precedence network but is undirected. 
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3.2 Concepts of Consistency 

As the domains of a CSP instance P are finite, P can in principle be solved by a 
simple generate-and-test algorithm that enumerates all assignments a E A,, x . . . x 
A,,, , verifies whether a satisfies all constraints c E C, and stops if the answer is 
"yes". The COP can be solved by enumerating all feasible assignments and storing 
the one with minimal objective function value. 

Of course, this method is not practicable due to the size of the search space which 
grows exponentially with the number of variables. In the worst case, all assignments 
of a CSP instance have to be tested which cannot be carried out efficiently except 
for problem instances too small to be of any practical value. It is thus worth to look 
for methods that can reduce the search space prior to starting (or during) the search 
process. 

One such method of search space reduction which only makes use of simple infer- 
ence mechanisms and which is not problem specific is known as constraintpropaga- 
tion. The origins of constraint propagation go back to Waltz (1972) who almost three 
decades ago developed a now well-known filtering algorithm for labelling three- 
dimensional line diagrams. 

The basic idea of constraint propagation is to make implicit constraints more visi- 
ble through the repeated analysis and evaluation of the variables, domains and con- 
straints describing a specific problem instance. This makes it possible to detect and 
remove inconsistent variable assignments that cannot participate in any solution by 
a merely partial problem analysis. 

Over the years, different concepts of consistency have been developed that allow to 
identify inconsistent assignments. In this context, the term consistency with regard 
to certain properties must be understood in the following way: variable assignments, 
whose presence would cause these properties to be false, have been ruled out. The 
different types of consistency guarantee different properties. Roughly speaking, a 
concept of consistency defines the maximal search space reduction that is possible 
regarding some specific properties. It is worth pointing out that the term consistency 
as used here is neither a necessary nor a sufficient condition for a problem to be 
solvable. 

The first concepts of consistency have been formalised by Montanari (1974) who 
introduced node-, arc- and path-consistency. Roughly speaking, these concepts are 
based on the examination of constraints containing k variables, where k = 1,2,3,  
with their names being derived from the presentation of a CSP instance as a con- 
straint graph. These concepts have been generalised by Freuder (1978) to the notion 
of k-consistency. We will describe the basic ideas of k-consistency in an informal 
way; a detailed analysis is given by Tsang (1993). 
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In order to define k-consistency we have to introduce the notion of k-feasibility. Let 
a = (al,  . . . , a,) be an assignment of a given CSP instance. A partial assignment 
of k variables (ai1, . . . , ai,) is k-jieasible iff it satisfies all constraints which at most 
contain these variables1. The motivation of the definition of of k-consistency is 
based on the following observation: a can only be feasible if, for a given k, any 
partial assignment (ai, , . . . , ai,) is k-feasible. Inversely, any partial assignment of 
k variables that is not feasible is not interesting and hints at an inconsistent state. 

In the words of Freuder (1978), k-consistency is established if, for any (k - 1)- 
feasible assignment of a set of k - 1 variables (taken from a set AZi1 x . . . x A,,,-l ) 
and any choice of a k-th variable, there exists an assignment of the k-th variable 
(taken from the set A,,) such that the assignment of the k variables taken together 
is k-feasible. 

It is tempting to believe that k-consistency as defined above implies (k - 1)-consist- 
ency, but, as Freuder (1982) has pointed out, a CSP which is k-consistent needs not 
be (k - 1)-consistent. This can be seen by observing that k-consistency only requires 
that any (k - 1)-feasible assignment can always be extended to a k-th variable such 
that the assignment of all k variables is k-feasible; however this does not rule out 
the possible existence of (k - 1)-infeasible assignments. In view of this weakness, 
Freuder (1982) has introduced the concept of strong k-consistency, which addition- 
ally requires j-consistency for 1 < j < k. 

The property of k-consistency is always relative to the sets of possible assignments 
A,,l x . . . x A,;,-l and A,;l: . To establish k-consistency, starting from an incon- 
sistent state, thus implicitly requires a (k - 1)-dimensional administration of these 
sets. In the beginning, the sets contain all assignments; inconsistent assignments, i.e., 
tuples (ail, . . . , ~ i , - ~ ) ,  are then eventually discarded until k-consistency is reached. 

1-consistency is quite easy to achieve: if xi E V is a variable and c(xi) a unary 
constraint then all assignments ai E A$, for which c(ai) = false are removed. 
In order to establish 2-consistency, pairs of variables xi, x j  E V and binary con- 
straints c(x: ,  xj )  have to be examined: an assignment ai E A,; can be removed 
if c(ai, aj) = false for all a j  E AZj. Analogously, 3-consistency requires the ex- 
amination of triples of variables xi, xj,  xk E V and removes pairs of assignments 
(ai, a j )  E A,; x A,,, etc. As already mentioned, 1- and 2-consistency coincide 
with the notions of node- and arc-consistency, whereas 2- and 3-consistency taken 
together are equivalent to path-consistency (Tsang 1993). 1-, 2- and 3-consistency 
have also been summarised under the name of lower-level consistency as opposed 
to higher-level consistency, since only small subsets of variables, domains and con- 
straints are evaluated simultaneously. 

An optimal algorithm for achieving k-consistency has been described by Cooper 
(1989). The algorithm requires testing all subsets of (k - 1)-feasible assignments 

' k-feasibility depends on the chosen set of variables. We therefore assume that a partial assignment 
always identifies the corresponding set of variables. 
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which is only practicable for small values of k. We therefore describe two weaker 
concepts of consistency. 

3.2.2 Domain-Consistency 

The first concept is based on only storing the 1-dimensional sets A,, for all vari- 
ables xi E V. For reasons near at hand, A,, is also called the current domain of xi. 
Intuitively, we can at most discard all values ai E A,; for which there exist no as- 
signments a j  E AXj, j # i, such that (al, .  . . , ai, . . . , a,) is feasible. Alternatively, 
the feasibility condition can be replaced with the sufficient condition of &feasibility 
which leads to a lower level of consistency. We refer to this concept of consistency as 
domain-consistency or k-d-consistency. Domain-consistency has been used, among 
others, by Nuijten (1994). 

Formally, k-d-consistency for a CSP instance I=' = (V, A, C) can be defined as fol- 
lows: 

1. The set of current domains A is k-d-consistent for 1 5 k 5 n if, for all subsets 
V' := {xi,, . . . ,xi,-,} of k - 1 variables and any k-th variable xi, 4 V', the 
following condition holds: 

vaik E Az;, 

3ail E Ax,, , . . . , 3aik-, E A,;,-, : (ail, . . . , ai,) is k-feasible. 

2. The set of current domains A is strongly k-d-consistent for 1 5 k 5 n if A is 
kt-d-consistent for all 1 5 k' 5 k. 

The following naive algorithm establishes k-d-consistency: start with A,; := A:; 
for all zi E 1); choose a variable xi, and an assignment ai, E A,,, ; test whether 
there exists a subset of k- 1 variables V' := {xi,, . . . , xi,-, } which does not contain 
xik, SO that (ail,. . . , ai,-, , ai,) is not k-feasible for all ail E A,,, , . . . , ai,-, E 
A,;,-, ; if the answer is "yes" then remove the assignment ai, from AXi, ; repeat 
this process with other assignments and/or variables until no more domain reductions 
are possible. 

We did not yet discuss how to establish n-d-consistency other than to apply the naive 
algorithm, so an important question is whether there exists an efficient implementa- 
tion after all. Before we deal with this issue, however, we will first present another 
concept of consistency. 

3.2.3 Bound Consistency 

Storing all values of the current domains A,, , . . . , A,, still might be too costly. 
An interval oriented encoding of A,; provides an alternative if A,; is totally or- 
dered, for instance, if A,; 2 No. In this case, we can identify A,; with the 
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interval [ l i , ~ i ]  := {li,  li + 1,. . . ,ri - l , r i ) ,  so that only the "left" and "right" 
bounds of A,; have to be stored. Therefore, this concept of consistency is usu- 
ally referred to as bound-consistency or k-b-consistency. Bound-consistency has 
been discussed, among others, by Moore (1966), Davis (1987), van Beek (1992) and 
Lhomme (1993). 

Formal1y;k-b-consistency for a CSP instance IJ = (V, A, C )  can be defined as fol- 
lows: 

1. The set of current domains A is k-b-consistent for 1 < k < n if, for all subsets 
V' := {xi,, . . . , xi,-,} of k - 1 variables and any k-th variable xi, $ V', the 
following condition holds: 

yai, E {li, , ri, ), 
3ail E A x i 1 , .  . . , 3aik-l E Az;,-, : (ai l ,  . . . , ai,) is k-feasible. 

2. The set of current domains A is strongly k-b-consistent for 1 < k < n if A is 
kl-b-consistent for all 1 5 k' < k. 

A naive algorithm for establishing k-b-consistency is obtained by slightly modifying 
the naive k-d-consistency algorithm: instead of choosing ai, E A,;,, we may only 
choose (and remove) ai, E {li , ,  r;, ). 

As a negative side effect, only the bounds li and ri, but no intermediate value 
li < ai < ri can be discarded except if, due to the repeated removal of other 
assignments, ai eventually becomes the left or right bound of the current domain. 
Bound-consistency therefore is a weaker concept than domain-consistency. How- 
ever, establishing n-b-consistency for the CSP still is an NP-hard problem. 

3.3 Consistency Checking 

In general, establishing k-consistency is ruled out due to the complex data structures 
that are necessary for the administration of the k-feasible subsets. In the last subsec- 
tion we have further seen that establishing the weaker n-d- or n-b-consistency still is 
an NP-hard problem. Consequently, using constraint propagation in order to solve 
the CSP is only sensible if we content ourselves with approximations of the concepts 
of consistency that have been introduced. 

An important task is to derive simple rules which lead to efficient search space re- 
ductions, but at the same time can be implemented efficiently with a low polynomial 
time complexity. These rules are called consistency tests. 

3.3.1 Consistency Tests 

Consistency tests are generally described through a condition-instruction pair A and 
B. Intuitively, the semantic of a consistency test is as follows: whenever condition A 
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is satisfied, B has to be executed. A may be, for instance, an equation or inequation, 
while B may be a domain reduction rule. We will often use the shorthand notation 
A * B for consistency tests. 

Example 1. (Consistency Tests) 
Let us derive a simple consistency test for the constraint xl - 6 5 x2. Given an 
assignment a1 of X I ,  we can remove a1 from A,, if there exists no assignment 
a2 E A,, satisfying a1 - 6 5 a2. However, we do not really have to test all 
assignments in A,, , because if the constraint is not satisfied for a2 = max A,, then 
it is not satisfied for any other assignment in A,, and vice versa. Hence, for any 
a1 E A,, 9 

a1 - 6 > max A,, ==+ A,, := A,, \ {al) 

defines a consistency test. 

Of course, this example is quite simple and it may not seem clear whether any ad- 
vantages can be drawn from such elementary deductions. Surprisingly, however, an 
analogously simple analysis will allow us to derive powerful consistency tests, as we 
will see in the following chapters. 

Consistency tests lead to the deduction of additional constraints. Frequently, though 
not necessarily, the newly discovered constraints are unary and allow to directly 
reduce individual variable domains and can thus be stated in the form of a domain 
reduction rule, as in the example above. Consistency tests of this type are also called 
domain consistency tests. 

Let us derive a formal definition of domain consistency tests. Let O := 2*:1 x . . . x 
2A:n, where 2A0, denotes the set of all subsets of A:;. Given A, A' E O, that is, 
A = {A,, I xi E V )  and A' = {Ah, I E V ) ,  we say that 

1 .  A c A' iff Axe A;; for all xi E V ,  

2. A 5 A' iff A c A, and there exists xi E V ,  such that A,; A',,. 

Domain consistency tests have to satisfy two conditions. Firstly, current domains 
are either reduced or left unchanged. Secondly, only assignments ai E A,, are 
removed for which no feasible assignment a = (al , .  . . , ai,  . . . ,a,) exists. Since 
we do not need the second condition in the following examination, only the first one 
is formalised: 

A domain consistency testy is a function y : O + O satisfying y(A) c 
A for all A E 0. 

3.3.2 Consistency Checking Algorithms 

Given a set of consistency tests, these tests have to be applied in an iterative fashion 
rather than only once in order to obtain the maximal domain reduction possible. The 
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Algorithm 1 Computing the fixed point CP(A) 
Require: J? is a set of consistency tests. 

repeat 
sold := A; 
for all (y E I?) do 

A := y(A); 
end for 

until (A = AOld). 

reason for this is that, after reducing several domains, additional domain adjustments 
can possibly be derived using some of the tests which previously failed in deducing 
any reductions. Therefore, the reduction process is carried out until no more up- 
dates are possible. Algorithm 1 shows the basic reduction principle. Given a set of 
consistency tests I? and a set of current domains A, the algorithm computes CP(A). 
Obviously, CP(A) is a fixed point. This point does not have to be unique and in 
general depends upon the order of the application of the consistency tests. However, 
we will only study consistency tests which result in a unique fixed point. These tests 
satisfy a monotony condition described below, which, as we will see, is sufficient for 
the uniqueness of the fixed point. 

The major problem with Algorithm 1 is that the revision of even a single domain 
in some iteration forces a11 consistency tests to be re-applied for all variables in the 
next iteration, even though only a small number of constraints and variables are 
affected by this reduction. Variations of Algorithm 1 overcome this drawback by 
only applying the tests for those constraints and variables that are possibly affected 
by a previous revision. 

Efficient algorithms for establishing I-, 2- and 3-consistency and an analysis of 
their complexity have been presented, among others, by Montanari (1974), Mack- 
worth (1977), Mackworth and Freuder (1985), Mohr and Henderson (1986), Dechter 
and Pearl (1988), Han and Lee (1988), Cooper (1989) and Van Hentenryck et al. 
(1 992). Improved arc-consistency algorithms AC-6 and AC-7 have been presented 
by Bessiere (1994) and Bessi2re et al. (1999). Chen (1999) has recently proposed 
a new arc-consistency algorithm, AC-8, which requires less computation time and 
space than AC-6 and AC-7. Cooper (1989) developed an optimal algorithm which 
achieves k-consistency for arbitrary k. Jeavons et al. (1998) have identified a number 
of constraint classes for which some fixed level of local consistency is sufficient to 
ensure global consistency. They characterise all possible constraint types for which 
strong k-consistency guarantees global consistency, for each k 2 2. Other methods 
for solving the CSP through the sole application of constraint propagation (solution 
synthesis) have been proposed by Freuder (1978), Seidel(1981) and Tsang and Fos- 
ter (1990). The deductive approach proposed by Bibel (1988) is closely related to 
solution synthesis. 
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The basic constraint propagation algorithm that is actually used in our implementa- 
tions is a variant of the AC-5 arc-consistency algorithm described by Van Hentenryck 
et al. (1992). Like all improved consistency algorithms, it works with a queue con- 
taining elements to reconsider. A queue element consists of a constraint and a value 
(or a set of values) that has been removed from the domain of some variable ap- 
pearing in the constraint and justifies the need to reconsider the constraint. In each 
iteration of the propagation algorithm, a constraintlvalue pair is removed from the 
queue and all consistency tests are evaluated that are associated with this constraint. 
If any of these tests removes a value ai from a domain, say from AXi, then all con- 
straints which contain the variable xi and which are not yet resolved are stored in 
the queue, together with the information that ai has been removed from A,;. This 
process is repeated until the queue is empty and the fixed point is reached. The rea- 
son for storing a value together with a constraint is that this may allow to use a more 
efficient algorithm in a consistency test. 

Intuitively, each constraintlvalue pair can, and needs to, enter the queue only once, 
if at all, and the maximum number of elements enqueued and dequeued by the al- 
gorithm therefore depends on (1) the number of constraints and (2) the number of 
variables per constraint and their domain sizes. If d := r n a x , ; ~ ~  lazi I is the size of 
the largest domain, then we obtain at most O(IC1 IVI d) enqueueing and dequeueing 
operations, with IVI as an upper bound on the highest possible arity of a constraint. 
Given the number of queue operations, the overall worst case complexity of the prop- 
agation algorithm can then be deduced from the complexity of the consistency tests. 
It is worth mentioning that the worst case in terms of computational effort is also a 
best case in the sense that it corresponds to reducing the domains until all variables 
are instantiated; the average propagation effort is usually much lower. 

3.3.3 Uniqueness of the Fixed Point 

It is important to mention that the fixed point computed by the propagation algorithm 
does not have to be unique and usually depends upon the order of the application of 
the consistency tests. However, we will only study monotonous consistency tests for 
which the order of application does not affect the outcome of the domain reduction 
process. This result will be derived in the following (cf. Dorndorf et al. 2000b). 

A consistency testy is monotonous iff the following condition is satisfied: 

Let us first define the fixed point mentioned above. Let r be a set of monotonous 
domain consistency tests. For practical reasons we will always assume that I' is 
finite. Let y, = (yS)gEN E I?' be a series of domain consistency tests in I', such 
that 
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The series y, determines the order of application of the consistency tests. The last 
condition ensures that every consistency test in I? is (a priori) infinitely often applied. 
Starting with an arbitrary set A of current domains, we define the series of current 
domain sets induced by y, through the following recursive equation 

Since all domains AZi are finite and A(,) C A(,-,) due to the definition of domain 
consistency tests, there obviously exists g* E N, ssuch that A(,) = A(,.) for all 
g > g*. We can therefore define y, (A) := A(,-). The next question to answer is 
whether y, (A) really depends on the chosen series y,. 

Theorem 1 (Unique Fixed Points). I f  I? is a set of monotonous domain consistency 
tests and y,, y& E I?" are series satisfying Condition (3.1) then y, (A) = y k  (A). 

Proof. For reasons of symmetry we only have to show y, (A) C y&(A). 

Let (A(,)),,, and (Al,,,)),tE~ be the series induced by y, and respectively. It 
is sufficient to prove that for all g' E N, there exists g E N, ssuch that A(,) g At,,). 
This simple proof will be carried out by induction. 

The assertion is obviously h e  for g' = 0. If g' > 0, we have A;,,) = yi, (A;,,-,)). 
By the induction hypothesis, there exists h E N such that A(h) f Atg.-,). Further, 
Condition (3.1) implies that there exists g > h satisfying y, = y,, . Since g > h, we 
know that A(,-,) C A(h). Using the monotony property of y,, we can conclude 

This completes the induction proof. 

3.4 Constraint Programming 

The generality of the CSP has motivated the development of constraint proramming 
languages and software sytems that offer built-in functions for describing common 
types of constraints and include techniques developed in CSP research. The idea is 
to facilitate the development of CSP solution algorithms by letting the user specify 
models and algorithms on a high level while hiding the details of the constraint solu- 
tion techniques. The solution algorithms are most often based on (truncated) search 
tree traversal. 

The earliest approaches for constraint programming were based on the constraint 
logic programming paradigm. Examples for constraint programming systems and 
languages are CLP (Jaffar et al. 1986) and CLP(R) (Jaffar et al. 1992), PROLOG I11 
(Colmerauer 1990), CHIP (Aggoun et al. 1987) and CLAIRE (Caseau and Laburthe 
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1996a). PROLOG I11 and CHIP have been developed into commercial systems and 
have been demonstrated to be effective and elegant in problem solving. 

The success of CHIP has lead to the development of other commercial systems, e.g. 
CHARME, PECOS, and LOG, that largely use the same solution techniques and 
mainly differ in their programming languages and implementation efficiency. 

Several constraint programming systems include extensions specifically designed for 
scheduling applications, e.g., ILOG Scheduler (Le Pape 1994b, 1995, Nuijten and Le 
Pape 1998), CHIP (Aggoun and Beldiceanu 1993), or CLAIRE Schedule (Le Pape 
and Baptiste 1996a). A detailed review of the early historic development of the 
application of constraint programming for scheduling is given by Le Pape (1994a). 



Chapter 4 

Consistency Tests 

Consistency tests are logical tests that serve to reduce the current domains of the 
decision variables and thus reduce the search space of a problem instance. The tests 
may be iteratively applied within a fixed point constraint propagation algorithm. 

The purpose of this chapter is to present classes of consistency tests that are useful for 
solving project scheduling problems. These tests allow to reduce activity start time 
domains by ruling out inconsistent start time assignments or inconsistent activity 
sequences; additionally, they may help reduce activity mode domains by detecting 
inconsistent mode assignments. 

The consistency tests and the constraint propagation algorithm in which they are 
applied are independent of the actual solution procedure and can be applied in al- 
gorithms such as list scheduling heuristics or branch-and-bound procedures. The 
benefit of the tests is that they can reduce the search space and direct an algorithm 
towards good solutions. In this chapter, we are only interested in the tests themselves 
and do neither address the constraint propagation algorithm which controls their ap- 
plication nor any scheduling algorithms in which the resulting constraint propagation 
procedure can be embedded. Since the tests only eliminate solutions incompatible 
with the constraints and current variable domains, they are independent of the overall 
objective function to be optimised. 

The remainder of this chapter is organised as follows. Section 4.1 introduces some 
basic concepts and briefly reviews the relevant parts of the optimisation model in 
order to keep this chapter mostly self-contained. Section 4.2 discusses some simple 
consistency tests which are based on the temporal constraints. 

Sections 4.3 to 4.6, which form the major part of this chapter, present interval capac- 
ity consistency tests that are based on the resource constraints. These tests consider 
the resource capacities available and required within certain time intervals. In the 
literature, activity start time domains are often approximated by start time windows, 
and this approximation is then referred to as activity release times and due dates, 



32 CHAPTER 4. CONSISTENCY TESTS 

or heads and tails. The domain reduction process may then be called adjustment of 
heads and tails or time bound adjustment. Specific interval consistency tests have 
become known under the names immediate selection, edge finding, and energetic 
reasoning. It seems fair to say that the advances in modem branch and bound algo- 
rithms for difficult disjunctive scheduling problems, such as the job shop problem, 
that have been made in the last decade can to a large extent be attributed to the effect 
of interval consistency tests. Sections 4.3 to 4.6 present these tests within a unified 
framework, using numerous examples for illustration. The state of the art is reviewed 
and new results for disjunctive and cumulative scheduling are derived. 

Section 4.3 first introduces the general concept of interval consistency which serves 
as a framework for the tests. As several powerful interval consistency tests may be 
applied for the special case of disjunctive scheduling with unit resource capacities 
and requirements, Section 4.4 explains how disjunctive sub-problems of a project 
scheduling problem instance can be identified. The tests that may be applied for 
these sub-problems are discussed in Section 4.5. Section 4.6 then addresses cumu- 
lative scheduling with arbitrary resource capacities and requirements; the section 
generalises some of the results obtained for disjunctive scheduling and introduces 
additional tests for cumulative scheduling. 

Throughout most of this chapter, we will consider the single-mode project schedul- 
ing problem PSItemplC,,,, and the goal of reducing activity start time domains. Sec- 
tion 4.7 finally explains how the tests developed for this problem may be applied 
for the more general multi-mode problem MPSlremplC,, by considering a single- 
mode relaxation associated with a multi-mode problem instance; the section also 
introduces consistency tests for reducing activity mode domains. Section 4.8 sum- 
marises the results of this chapter. 

4.1 Basic Concepts 

For the rest of this chapter, except for Section 4.7, we will consider instances of the 
problem PSJtempJC,, introduced in Chapter 2. In this section we briefly review 
the relevant aspects of the optimisation model in order to keep this chapter self- 
contained, and introduce some additional concepts and notation. 

An activity i is characterised by its processing time pi and resource requirements 
rik: for each of pi time units, it requires ~ i k  units of a renewable resource k, which 
is available in constant amount Rk,  and it releases the resource units again upon 
completion. An activity i has an associated start time decision variable Si. Activities 
must be processed without preemption. Two activities i and j may be linked by a 
generalised precedence or temporal constraint ( i ,  j) of the form Si + dij 5 Sj, and 
the set of all temporal constraints is denoted with E .  
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Each activity i has a current domain Ai of possible start times.' We assume that 
some upper bound UB on the makespan is known or given, so that Ai C [0, UB -pi] 
holds. We will generally interpret Ai as the interval defined by the earliest and latest 
possible start times of i ,  i.e., Ai := [ESi, LSi] = {ESi, ESi + 1,. . . , U i } ,  although 
we will sometimes also refer to the set oriented interpretation. 

The set of all activities is denoted with V; the subset of all activities to be processed 
by a resource k is Vk := {i E V 1 rik > 0). We will frequently consider subsets 
A g Vk of activities. To deduce domain reductions for the activities in A we often 
try to show that an activity i E A must start before or finish after all other activities 
in A. Using the shorthand notation Ai := A \ { i ) ,  this is denoted by i + di if i 
must start first, and Ai + i if i must finish last. We also use the notation d + A' 
to express that all activities in set A must start before all activities in set A'. It is 
convenient to introduce the total processing time P(A) of a set A of operations, 
defined by P(A) := CjEApj Given a set A of activities the time interval [tl ,  tz[ 
defined by the minimal earliest start time t l  = minjEA ESj and the maximal latest 
completion time t2 = m a x j E ~  LCj of two different activities in A is called activity 
interval of A. Many consistency tests operate on activity intervals. 

For illustration and motivation of the consistency tests, we use examples in the style 
of Figure 4.1, which shows two activities that must be processed by the same re- 
source; the style is similar to the one used by Nuijten (1994). Unless stated oth- 
erwise, we will assume that the resource has a capacity of 1. Consider activity j 

Figure 4.1 : Two activities i and j with pi = 4 and pj = 3 

where several points on the time scale have been annotated for illustration. The fig- 
ure shows the time between the earliest start of j, ESj, and its latest completion, 
LC,., as a horizontal line segment. The processing time pj is depicted as a hollow 
bar beginning at ESj with rounded right end at EC,. = ESj + pj ;  the length of this 
bar is, of course, equal to LC,. - LSj. Admissible start times, i.e., the values in A j ,  
are shown as black circles. Times in the interval [LSj + 1, LC,.[ at which j may 
be in process, but at which it cannot start, are marked with tick marks. Scheduling 
an activity can be intrepreted as positioning the processing time bar at one of the 
admissible start times. Activity i in Figure 4.1 appears in the usual style without an- 

' ~ e c a l l  that instead of As, we usually use the notation Ai for the start time domain of activity i for 
simplicity. 
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notations. Initially, possible start times of i are in the interval [2,8]. The x appearing 
under the scale of i at time 2 indicates that we have, by applying a test described 
below, deduced that i cannot start at time 2. 

4.2 Consistency Tests for Temporal Constraints 

A temporal or precedence constraint (i, j) of the form Si + dij 5 S j  determines the 
minimal or maximal time lag that must pass between the start of two activities i and 
j. Clearly, the left side of the constraint is minimal for ESi, and a lower bound on 
the earliest possible start of activity j is thus given by ESi + dij. Likewise, the right 
side of the constraint is maximal for LS,., and L S j  - dij is an upper bound on the 
latest possible start of i. This leads to the following well known test: 

Consistency Test 1 (Precedence Consistency). For a precedence constraint (i, j) 
the following domain reduction rules apply: 

As some of the consistency tests discussed below may discover new precedence con- 
straints, which must hold in addition to those given in the original problem instance, 
the set E of all precedence constraints depends on the set A of current start time 
domains and is denoted with &(A). 

When used within the constraint propagation algorithm, Consistency Test 1 naturally 
leads to the same result (fixed point) as a traditional temporal analysis of the project 
network (see, e.g., Elmaghraby 1977). A logical contradiction in the precedence 
constraints, corresponding to a cycle of positive length in the project network, will 
lead to an empty domain for some activity. 

It is interesting to note that if only the precedence consistency test is applied in 
the constraint propagation algorithm, the resulting algorithm is very similar to label 
correcting algorithms for solving longest path problems in graphs, for instance the 
algorithm of Moore and Bellman (see e.g. Lawler 1976). It is therefore no surprise 
that, as with label correcting algorithms, the worst case time complexity for graphs 
with positive and negative edge weights cannot be polynomially bounded in the size 
of the graph. The complexity can be derived as follows. For a given precedence 
constraint, Consistency Test 1 can be applied with constant effort. The worst case 
propagation effort caused by the precedence constraints is therefore determined by 
the O(I&I d) possible enqueueing and dequeueing operations, where d is the size of 
the largest domain. We will shortly see that the same fixed point could indeed be 
calculated with polynomially bounded worst case effort O(JVI3). However, due to 
the good average time complexity, the application of Consistency Test 1 within the 
propagation algorithm is advantageous. 
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A temporal constraint ( i ,  j) is resolved, i.e., always satisfied given the current set 
of domains2, if the maximal value of the left side is smaller than or equal to the 
minimal value of the right side, i.e., if L& + dij  5 ESj; otherwise the constraint is 
unresolved. 

Clearly, the precedence consistency test, as any consistency test, can only lead to 
domain reductions for unresolved constraints. The question whether a precedence 
constraint is resolved will play a role in the branching scheme described in Chapter 5. 

Additional domain reductions may be deduced by considering the transitive minimal 
time lags between two disjunctive activities. We will discuss the question when two 
activities are disjunctive in detail in Section 4.4.1; for the time being it is sufficient to 
assume that two activities are in disjunction if they must not be processed in parallel 
because their combined resource requirement is too high. 

Let D' := ( d i j )  be the matrix of transitive minimal temporal distances (longest 
paths) between activities that is induced by the set of temporal constraints &(A). D' 
can be calculated with effort O(IVI3) with the Floyd-Warshall Algorithm (Lawler 
1976). The domain reductions obtained by applying Consistency Test 1 can also be 
derived from the matrix D' by simply setting ESi to the distance of i  from the source 
node and L& to the distance of i to the sink node of the project network, assuming a 
unique source and sink node have been added to the project network. 

Using the transitive time lags d l j ,  we can state the following observation (Brucker 
et al. 1998, De Reyck and Herroelen 1998): 

Consistency Test 2 (Lag Based Disjunctive Consistency). Let i ,  j E V be in dis- 
junction. I f d i j  > -pj,  then i must precede j. 

Note that the condition dl j  > -pj means that j cannot finish before the start of i ;  
as i and j must not be processed in parallel this implies that i  must precede j .  Also 
observe that the test depends only on the "relative" lag between i  and j, but not on 
the "absolute" start time domains of the two activities. Clearly, the test is only useful 
if dl j  < pi.  We add any precedence constraint resulting from the application of 
this test to the set &(A),  and the corresponding domain reduction then follows from 
the precedence consistency test. The test also detects infeasibilities that occur if the 
temporal constraints require that two activities i  and j which are in disjunction must 
be processed in parallel for some time. In this case two contradicting precedence 
constraints are added, and the precedence consistency test consequently leads to an 
empty domain. 

The matrix D' depends upon the temporal constraints &(A).  Whenever a disjunc- 
tive consistency test adds a new precedence constraint to &(A),  the matrix can be 
updated with effort O(IVI2) by exploiting the fact that any increased longest path 
between two activities must pass through the edge corresponding to the new prece- 
dence constraint. 

2 ~ e e  Section 3.1, page 20. 
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4.3 Interval Consistency 

This section introduces a general framework for interval consistency tests. These 
tests are based on the resource constraints and consider the resource availability and 
requirements within certain time intervals. 

An activity i requires an amount of work win := rikpi from resource k that depends 
upon the resource requirement rik and processing time pi. A time interval is capacity 
consistent if the amount of work requested by all activities within this time interval 
can be matched by the amount of work supplied. 

Figure 4.2: Types of intersections between an activity and a time interval 

Let us consider the work of an activity i that must fall into a time interval [tl , t2[ .  The 
interval processing time pi( t l ,  t 2 )  is the smallest amount of time during which i has 
to be processed within [tl , t2  [. There are five possible situations: The activity can 
be (1) completely contained within the interval, (2) completely overlap the interval 
when started as early (left-shifted) or as late (right-shifted) as possible, (3) have a 
minimum processing time within the interval that is realised when started as early as 
possible, or (4) have a minimum processing within the interval that is realised when 
started as late as possible. These four situations are shown in Figure 4.2. The fifth 
situation applies whenever i does not have to be processed - neither completely nor 
partially - within the given time interval. Consequently, 

The corresponding interval work is wik ( t l ,  t2 )  := r ikp i ( t l ,  t2).  The interval work of 
a subset of activities A E V is defined through Wk (A, tl , t2) := CiEA Wik ( t l  , t2).  
Using this definition of interval work we can now define the slack of a time interval 
with respect to a resource k and a set of activities as the difference between work 
supply and demand within the interval: 

slack(A, k ,  t l ,  t2) := Rk . (t2 - t l )  - Wk (A,  t i ,  t2).  (4.2) 
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Observe that the slack function depends on the actual set A of current domains, so we 
will write slacka (A, k, tl , t2)  whenever necessary. An interval [tl , ta [ is capacity 
consistent if it has non-negative slack for all resources and activities that require the 
resource: 

Given a domain set A, we can only develop a solution if this necessary condition 
holds for all resources and all time intervals. 

The basic idea behind all interval consistency tests described in this chapter now is 
as follows: We consider an additional, hypothetical constraint H and try to show that 
if H  is satisfied then Constraint (4.3) is violated for some resource and time interval; 
in this case we can conclude: T H .  This leads to two main questions which we will 
try to answer in the following sections: 

1. How should H be chosen so that the conclusion T H  leads to useful domain 
reductions? 

2. For which intervals [tl , t2 [  should Constraint (4.3) be tested? 

The notion of interval capacity consistency as defined here has to the best of our 
knowledge first been suggested by Lopez (1991) (see also Lopez et al. 1992) under 
the name energetic reasoning; the area of the rectangle defined by an activity pro- 
cessing time and a resource requirement can be interpreted as work or energy, and 
we use the terms interchangeably. Special cases of this concept have been known for 
a long time (see e.g. Zaloom 1971). Schwindt (l998b) has independently developed 
a concept of interval work. He and, independently, Baptiste et al. (1999) were the 
first to answer Question 2. 

Although our focus is primarily on the use of interval consistency tests for deducing 
domain reductions, it is worth mentioning that Constraint (4.3) can, of course, also be 
used to derive bounds for optimisation problems, e.g., lower bounds for makespan 
minimisation problems, in the following way: Impose a hypothetical upper bound 
UB on the makespan; if this leads to a violation of Constraint (4.3) then UB + 1 is 
a lower bound. This approach, for which Klein and Scholl(1999a) have introduced 
the intuitive name destructive improvement due to the principle of repeatedly refut- 
ing hypothetical constraints, has for example been used by Nuijten (1994), Pesch and 
Tetzlaff (1996), Heilmann and Schwindt (1997) and Schwindt (1998b). Test values 
for UB are usually chosen through a dichotomising search. A violation of Con- 
straint (4.3) can be detected through the repeated application of a temporal analysis 
and of any of the tests described in the following sections; the constraint is violated 
if a test causes a domain to become empty. 

Resource capacity constraints in the form of Constraint (4.3), but mostly limited to 
intervals defined by earliest start and latest completion times of activities, have also 
been used in constraint logic based scheduling; see, e.g., the description of solving 
a famous bridge scheduling problem (an instance of the problem PS(temp1 C,,,) by 
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Van Hentenryck (1989) or the implementation of the cumulative constraint in CHIP 
(Aggoun and Beldiceanu 1993). 

4.4 Disjunctive Sub-Problems 

Two activities i and j are disjunctive if, for instance due to limited resource availabil- 
ity, i and j cannot be processed simultaneously. Difficult project scheduling problem 
instances are typically characterised by a low resource supply, which causes many 
pairs of activities to be disjunctive. This,motivates a closer study of consistency 
checking techniques for disjunctive scheduling. These techniques may be applied 
to disjunctive sub-problems of a project scheduling problem, i.e., sub-problems in 
which all activities are pair-wise disjunctive. 

This section explains how such disjunctive sub-problems can be isolated. It first 
deals with the question when two activities are in disjunction and then discusses how 
all disjunctive sub-problems can be found and the most promising ones heuristically 
selected. 

The difficulty of problem instances with very low resource supply has first been 
systematically analysed by Kolisch et al. (1995) for the problem PSlpreclC,,. Sev- 
eral authors have subsequently suggested the application of disjunctive consistency 
checking techniques for the problem PSlpreclC,, (Brucker et al. 1998, Klein and 
Scholl 1999a, Baptiste et al. 1999) and the problem PSltempJC,, (Schwindt 1998b). 
The importance of disjunctive sub-problems is also underlined by the fact that a very 
successful lower bound for the problem PSlpreclC,,,,, which has been proposed by 
Mingozzi et al. (1998) and is often referred to as LB3 or node packing bound, is 
based on the idea of solving a relaxation of a disjunctive sub-problem. The bound is 
an important component of most newer branch-and-bound algorithms for the prob- 
lem (see e.g. Sprecher 2000, Demeulemeester and Herroelen 1997b, Brucker et al. 
1998, Klein and Scholl 1999a). 

1 4.4.1 Disjunctive Activity Pairs 

Two activities i, j E V are disjunctive if they cannot be processed simultaneously, 
i.e., if either i has to finish before j can start, or j has to finish before i can start, 
which means that the following disjunctive constraint must hold: 

We will denote the fact that i and j are disjunctive with i+j for short. Obviously, 
i ~ j  must hold if (1) the temporal constraints either require that i+j or require that 
j+i, or (2) the start time domains allow to rule out the possibility that i and j are 
performed in parallel, or (3) the resource availability is too low to perform i and 
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j  in parallel. In this section, we are most interested in those disjunctive activity 
pairs for which the (transitive) temporal constraints or the start time domains do not 
immediately imply which part of the disjunction must hold. 

Let us therefore consider in more detail when limited resource availability causes the 
two activities i and j  to be in disjunction. This is obviously the case if their combined 
resource requirements exceed the available capacity, i.e., if rir, + rjk > Rk for some 
resource k. However, this condition can be relaxed by only considering the slack for 
a small time interval that depends on the current domains of i and j. 

Lemma 1 (Disjunctive Activities). Consider two activities i ,  j  E V and an interval 
[tl , t 2  [ deJined by 

Activities i and j are in disjunction ( i ~ j ) ,  Sfthere is a resource k  E R required by 
both i and j and S f  

slacka(l/\ { i ,  j ) , k , t , t +  1)  < rik +r jk ,  vt E [ t l , t z [ .  (4.4) 

ProoJ If Condition (4.4) is satisfied for the interval [tl , t2 [ then either i or j must 
finish before t l  or start after t2, i.e. 

or the two activities must be in disjunction: 

It is now easy to show that whenever Condition (4.5) holds then Condition (4.6) must 
also be satisfied. 

Simple as it may seem, the condition of Lemma 1 has often been missed and replaced 
with the stronger condition rib + r j k  > Rk which discovers fewer disjunctions. 

The Lemma is useful because (1) it only considers a limited time interval [tl , t 2  [ and 
( 2 )  the slack in this interval is at most equal to but may be less than the resource sup- 
ply Rk. The second point deserves some further explanation: Recall that the slack 
function depends upon the start time domains, as it is defined in terms of the interval 
work and hence in terms of interval processing times. Even if no activity is sched- 
uled, we may, by reducing the start time domains through constraint propagation, 
be able to deduce that certain activities must be processed and consume resources at 
some time within the interval [tl , t2 [ and thus reduce the slack. These conclusions 
will usually be stronger if a tight initial upper bound is given. 
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4.4.2 Selection of Disjunctive Sub-Problems 

A disjunctive sub-problem of a cumulative scheduling problem is defined by a set 
V C  V  of activities which are pairwise disjunctive. Such a set V c  is also called 
disjunctive clique. From an algorithmic point of view, disjunctive cliques play an 
important role as they may allow to deduce the order or at least a partial order in 
which the activities in a clique must be sequenced. 

An intuitive interpretation of the sub-problem defined by a disjunctive clique V C  is 
obtained if we think of an associated redundant disjunctive resource: We introduce a 
fictitious resource with capacity one that is required by all activities in the clique; the 
sub-problem defined by V C  then is to find a (partial) sequence in which the activities 
in V C  must be processed by the resource. 

Generally, there are many possibilities for choosing V C.  An obvious example are the 
two element sets of disjunctive activity pairs. However, due to the way in which the 
consistency tests described in Section 4.5 below work, we are interested in choosing 
maximal disjunctive cliques V C,  i.e., sets which have the property that there exists no 
true superset of painvise disjunctive activities. 

These possible choices of V c  can be determined by considering an undirected graph 
G ( V ,  Idi"j) with nodes corresponding to the set of activities and edges between any 
pair of disjunctive activities, i.e., edge set Edisj := { ( i ,  j )  I i, j  E V ,  i # j ,  i ~ j } .  
A decomposition of G  into all maximal cliques then gives all possible choices of 
Vc.3  Although already the problem of finding a single largest maximal clique of G 
is W-hard (Garey and Johnson 1979) and the number of all maximal cliques may in 
general be exponential in the size of the graph, the decomposition can for practical 
purposes be quickly calculated with the algorithm of Bron and Kerbosch (1973). 

Nevertheless, the number of maximal cliques may still be large and many of these 
cliques may be overlapping. As the gain of information deduced by the consistency 
tests may be outweighed by the computational effort for applying the tests, if this 
is done too frequently, it is reasonble to restrict the attention to a small number 
of maximal cliques chosen at the beginning of the search according to a heuristic 
suggested by Phan Huy (2000): 

Phase 1 : Given the decomposition of G into all maximal cliques, repeat- 
edly select a maximal clique which contains the largest number of edges 
that are not already covered by some previously chosen clique, until all 
edges are covered. 

Phase 2: Repeatedly choose an additional clique in order of decreas- 
ing size, if the new clique does not overlap with any previously chosen 
clique for more than two thirds. 

30bserve that the maximal clique decompostion of G in general depends on the set of current start 
time domains A, since, according to Lemma 1, the question whether two activities are disjunctive or not 
may depend on A. However, since we will generally only determine a maximal clique decomposition 
once during the solution of a problem instance, we will write VC instead of VC(A) .  
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Other heuristics for choosing some (usually significantly fewer) disjunctive cliques 
have been described by Brucker et al. (1998), Baptiste et al. (1999) and Baptiste and 
Le Pape (2000); in contrast to the approach described here, these procedures are not 
based on an initial decomposition into all maximal cliques but heuristically construct 
some promising cliques. 

4.5 Disjunctive Interval Consistency Tests 

The idea behind all consistency tests described in this section is to consider subsets 
A VC of disjunctive activities that belong to the same disjunctive clique. Within 
these subsets, all possible activity sequences with a particular property are examined, 
e.g. the property that the sequence does not start with an activity i E A. If all such 
sequences are infeasible, then we can draw the conclusion that the sequence must not 
have this property and deduce that i must be first in A. Using the shorthand notation 
Ai := A \ {i), this will be denoted by i + Ai. 
Consistency tests which try to draw conclusions about the (partial) sequence in which 
some activities must be processed are called sequence consistency tests. Given in- 
formation about a (partial) sequence, associated domain consistency tests then try to 
reduce the activity start time domains. 

The consistency tests are presented in order from strongest to weakest condition. 
While a stronger condition allows a stronger conclusion, it is at the same time more 
likely to be inapplicable. After developing the individual tests in Sections 4.5.1 
to 4.5.3 we generalise the results in Section 4.5.4 and show how they relate to the 
concept of interval consistency in Section 4.5.5. Sections 4.5.6 and 4.5.7 relate the 
domain reductions achieved by the consistency tests to the different notions of con- 
sistency introduced in Chapter 3. 

4.5.1 InputJOutput Test 

Figure 4.3 shows an example with a set A = {i, j, k) of three activities to be pro- 
cessed by the same disjunctive resource. We can deduce that i must be scheduled 
first in the following way: Suppose i does not start first. Then all three operations 
must be processed in the interval [2,9[. This means that a total processing time of 
8 = 3 + 2 + 3 must be scheduled in 7 = 9 - 2 available time units, which is a 
contradiction. Thus we can conclude that i must start first; we can then deduce that 
start times of i greater than 1 can be removed from Ai. Note that this conclusion 
cannot be drawn by separately considering any two of the three activities. 

Carlier and Pinson (1989) have formalised the observation made in the example and 
have derived conditions under which it can be concluded that an operation i E A 
must be scheduled first or last in A. If i is scheduled before or after Ai we may also 
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, 
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Figure 4.3: Example for the input test 

think of i as the input or output of Ai, hence the name of the conditions. We use the 
shorthand notation P(A)  := CiEA pi for the total processing time of A. 

Consistency Test 3 (InputIOutput). Let i E A g V C.  I f  

max (LC, - ESU) < P(A)  
uEAi , w E A , u f  v 

then i must precede all activities in Ai (input condition). Likewise, if 

max (LC,, - ESu) < P(A)  
uEA,uEA;  ,U#W 

then i must succeed all operations in Ai (output condition). 

ProoJ: If i does not precede Ai, then all activities in A must be scheduled within 
maxuEd, ,uEA,uf (G - ESu) time units. I f  Condition (4.7) holds this is not pos- 
sible. The second part can be shown symmetrically. 

The special case of the inputloutput condition where Id1 = 2 is also called disjunc- 
tive pair test. 

If the output condition holds, i.e., if we have concluded that Ai -+ i, then we may 
add precedence constraints S j  + pj 5 Si for all j E Ai to the set &(A) of tempo- 
ral constraints of the original problem instance; a symmetric statement applies for 
the input condition. The addition of these temporal constraints may obviously cause 
some domain reductions in a subsequent temporal analysis, i.e., applications of Con- 
sistency Test 1, which will for instance ensure that ESi > maxjeAi (ESj + pj).  

However, a better domain adjustment for activity i may be possible. Assume that we 
have concluded that Ai t i. Clearly, i can only start after the minimum completion 
time t* of all activities in Ai. Unfortunately, finding t* is an NP-hard problem, 
as it is equivalent to solving the one-machine makespan minimisation problem with 
release times and due dates (Carlier 1982). Therefore we resort to approximating 
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t*. As already mentioned above, a simple and obvious approximation is the maxi- 
mal earliest completion time in Ai. We can do better by considering the preemptive 
relaxation of the one-machine problem (preemptive bound). For this problem, an 
optimal solution known as Jackson's Preemptive Schedule (JPS) can be efficiently 
obtained by scheduling the activities in Ai "from left to right" according to the "ear- 
liest due date" priority dispatching rule (Jackson 1956): 

Whenever the resource is free, schedule the activity i with minimal L G ;  
if an activity j with L q  < LG becomes available while i is in process 
then interrupt i and start j. 

We denote the completion time of JPS for Ai by ECpr(di). Clearly, ECpT(d;) is a 
lower bound on the earliest start of i, and the same holds true for all subsets A' C di. 
However, Carlier (1982) has shown that 

ECPT(Ai) = max { min ES, + P(A1)). 
A'CAi uEA' 

This implies that ECPr (A') 5 ECpr (Ai), if A' C Ai. We can thus adjust the 
earliest possible start time of i to ECpr (Ai). 

Symmetrically, we use LSPr(Ai) as the preemptive bound for the latest start time 
of Ai, obtained by preemptively scheduling the activities in Ai "from right to left" 
as late as possible according to the "maximum latest start" priority dispatching rule. 
We can now summarise the domain adjustments in the following domain consistency 
test: 

Consistency Test 4 (Inputloutput Domain Adjustments). Let i E A V C.  Then 
the following tests apply: 

Before returning to the initial example, let us point out that Consistency Test 3 is a 
sequence consistency test while Consistency Test 4 is the associated domain consis- 
tency test. Observe that we have not required the sets d VC in the two tests to be 
identical. We will shortly come back to this question. 

For the example in Figure 4.3 the maximum of the expression on the left side of the 
input condition is 9 - 2, and P(A) = 8; since 9 - 2 < 8, we can deduce i+{j, k). 
With LSpr ( { j ,  k ) )  = 4 the domain of i becomes Ai := [O ,  61\14 - 3,  co[ = [O,  11. 
Note the effect of using the preemptive bound: By using LSpT({j, k)) we have ob- 
tained a stronger domain reduction for i than we would have by considering LSj and 
LSk separately, which would have left the value 2 in Ai. A subsequent application 
of Consistency Test 1 for the newly added precedence constraint i+k will then re- 
duce the domain of k to Ak := [2,5] \ [O, 0 + 3[= [3,5]. As pointed out above, this 
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reduction in Ak could also be achieved through a further application of the input test 
for A = {i, k). 

The inputloutput test (pair test) also applies in the example in Figure 4.1 on page 33. 
For activity i and A = {i, j), the output condition gives 8 - 2 < 7 and deduces 
j+i. The domain of j remains unmodified, and the domain of i reduces to Ai := 

Ai \ [O, 3[= [3,8]. 

Let us now consider the question whether the sets A C V c  in the sequence and 
domain consistency test can always without loss of information be chosen in such a 
way that they are identical, as seems likely after the previous examples. The example 
in Figure 4.4 (Dorndorf et al. 2001) demonstrates that this is not the case. 

Figure 4.4: Input/output sequence and domain consistency tests 

In the example, the input conditions allow to separately conclude j+i and k+i. The 
output domain adjustment condition then yields: {j, k)+i Si 2 6. However, 
the output condition of Consistency Test 3 is not satisfied for A = {i, j , k) and the 
distinct activity i ,  as 9 - 0 # 9. This demonstrates that by independently choosing 
the set A for the two tests additional information can be derived. 

In branch and bound procedures that branch over disjunctive edges, the tests may 
be employed to immediately select the orientation of edges, a process often called 
immediate selection, as first suggested by Carlier and Pinson (1989), or edge finding, 
a term introduced by Applegate and Cook (1991). The inputloutput tests have first 
been described by Carlier and Pinson in the context of a branch and bound algorithm 
for the job shop problem (JSP); the tests that they actually implemented in their 
initial algorithm were limited to two-element sets A and one additional heuristically 
determined A and i E A for each resouice. Using these tests, they were able to 
optimally solve a notoriously difficult 10 x 10 JSP instance (Fisher and Thompson 
1963) that, despite many attempts, had defied solution for over 25 years. 

Efficient algorithms that have later been developed for testing the inputloutput con- 
ditions for all A and i and performing the corresponding domain reductions based 
on the preemptive bounds usually use an ordering of activities according to earliest 
start and latest completion times. The challenging part is to test the inputloutput 
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conditions and calculate preemptive bounds at the same time. Carlier and Pinson 
(1990), Martin and Shmoys (1996), and Nuijten (1994) have designed 0((VCI2) al- 
gorithms for testing all subsets A C VC. The algorithm of Nuijten has the interesting 
property that it can be generalised for cumulative scheduling. O(lVC I log IVC I) algo- 
rithms for testing all subsets have been described by Brucker et al. (1996) and Carlier 
and Pinson (1994). Caseau and Laburthe (1994,1995,1996b) describe an algorithm 
based on the concept of task or activity intervals for checking all sets A with effort 
O(lVc13). The advantage of their approach is that the consistency conditions can be 
evaluated incrementally within a search procedure. When used within a branch-and- 
bound algorithm this means that the effective time complexity for performing the 
tests at each node of the search tree is usually lower than O(IVCI3) because it is not 
necessary to test all A; although the worst case complexity for performing the tests 
at a node is still O(IVcI3), the average complexity is lower. This contrasts with the 
usual approach of applying the full test at each node of a branch-and-bound tree. All 
algorithms have in common that they combine the evaluation of Consistency Tests 3 
and 4 and thus require the sets A in both tests to be identical. An O(IVCI2 log IVC() 
algorithm which first tries to deduce sequence relations by applying the sequence 
consistency test and in a second, independent step computes domain adjustments 
has recently been described by Dorndorf et al. (2001). 

As a generalisation of the inputloutput test, Focacci and Nuijten (2000) have pro- 
posed two consistency tests for disjunctive scheduling with sequence dependent 
setup times between pairs of activities processed by the same resource. A version 
of the inputloutput test for preemptive scheduling, i.e., the case where activities can 
interrupt one another, has been designed by Le Pape and Baptiste (1996b). 

Finally, we would like to mention that to our knowledge all algorithms discussed 
above do not test the inputloutput conditions in the form of Consistency Test 3, where 
we have required in the maximum expressions that u # v, but rather allow for u = v, 
thus actually testing a weaker condition. Although the extension may seem trivial it 
does lead to additional deductions in certain cases. However, it is not always obvious 
how to include it in existing algorithms without increasing their time complexity. 

4.5.2 Input-or-Output Test 

The inputfoutput condition allows to deduce that an operation i E A 2 Vk must be 
scheduled first or last in A. The weaker input-or-output condition can be used to 
show that a precedence relation i -+ j must exist between a pair of activities i and j 
from set A. 

Figure 4.5 shows an example with a set A = {i, j, k , l }  of four activities to be 
processed by the same resource. The inputloutput condition does not allow to draw 
any conclusions about the order in which the activities must be scheduled. However, 
we can deduce that i must precede j: Suppose i is not scheduled first and j is not 
scheduled last. Then all four activities with a total processing time of 7 = 3+2+1+ 1 
must be scheduled within the interval [2,8], which is a contradiction. Hence we can 
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conclude that it is impossible that at the same time i is not first and j is not last. If 
either i must be first or j must be last, then i must precede j ,  and we can remove the 
start time 3 from Aj. This observation leads to the following consistency test. 

Figure 4.5: Example for the input-or-output test 

Consistency Test 5 (Input-or-Output). Let i ,  j E A 5 V C.  If 

then i must be scheduled$rst or j must be scheduled last in A. Ifi # j then i must 
precede j. 

Pro08 Suppose neither i is scheduled first nor j is scheduled last. All activities in 
A must then be scheduled within maxuE~i ,vEAj  ,u+, (LC,, - ESu) time units. If 
Condition (4.10) holds, this is impossible and we can conclude that either i must be 
first or j must be last in A. In both cases i must precede j if i # j. 

Comparison to the very similar inputloutput test shows in what sense the input-or- 
output test is weaker. 

If this condition holds and i # j which means that i+j, then we can add the corre- 
sponding precedence constraint Si +pi 5 Sj to the set l ( A )  of temporal constraints. 
If possible, the start time domains of i and j will then be reduced in a subsequent 
temporal analysis. 

If the condition holds for i = j ,  the domain of i can be reduced in the following way: 

While any domain reduction in the case that i f j can only occur at the domain 
bounds, domain reduction rule (4.1 1) may remove values within the domain but 
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leaves the bounds untouched and is thus not useful if only the domain bounds are 
~ t o r e d . ~  

For the example in Figure 4.5 we obtain 8 - 2 < 7 and deduce i+j. By applying 
a domain reduction rule for the temporal constraint Si + pi 5 Sj we can remove 
the value 3 from Aj. Figure 4.6 shows another example where the input-or-output 
condition can deduce that a single activity must either start first or last; in terms of 
Consistency Test 5 this is the case where i = j .  We obtain 5 - 3 < 4 and conclude 
that i must start before or after {k, I ) .  Domain reduction rule (4.1 1) allows to remove 
the values [2,4] from hi. 

Figure 4.6: Input-or-output condition example: i must be first or last 

As a final example, note that the result i+{ j ,  k} that we have obtained with the 
inputloutput condition for the example in Figure 4.3 can also be deduced in two steps 
with the input-or-output condition, resulting in the conclusions i -+ j and i -+ Ic .  
However, the corresponding reduction in Ai is weaker, leaving the value 2 in Ai. 

To our knowledge, the input-or-output test in its general form has not been discussed 
in the literature. A similar condition for the special case where i = j has been 
described by Carlier and Pinson (1990) and Biazewicz et al. (1998). Stronger condi- 
tions based on considering all sets A of cardinality r, hence called r-set conditions, 
have been discussed by Brucker et al. (1996). They describe an O(lVc12) 3-set algo- 
rithm that checks all activity sets of cardinality three and detects all pairwise ordering 
relations derivable from triples. The algorithm thus implements the input-or-output 
test for Id1 = 3. Judging from the implementation within their branch-and-bound 
procedure for the JSP, the efficiency of the 3-set tests is comparable to that of the 
inputloutput tests. It is unclear whether a low polynomial time-complexity r-set al- 
gorithm could be developed for r > 3. 

The development of an algorithm with low polynomial time complexity for testing 
the input-or-output conditions is an open issue. Based on experience with other con- 
sistency tests, we conjecture that in order to be of practical value such an algorithm 
must at most have time complexity O(IVC12). There is an obvious O(IvCI4) algo- 

4 ~ e e  the discussion of domain-consistency versus bound consistency in Sections 3.2.2 and 3.2.3. 
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rithm using task or activity intervals, and Phan Huy (2000) has designed an O(IVCI3) 
algorithm. 

4.5.3 InpuUOutput Negation Test 

By further relaxing the condition to be tested, we can still draw additional conclu- 
sions in situations where the input-or-output condition and the stronger input/output 
conditions do not hold. Figure 4.7 shows an example with a set A = {i ,  j ,  k) of 
three activities to be processed by the same resource. Although we cannot conclude 
that activity i must be last or must precede j or k, we can deduce that i must not be 
first, and therefore remove the value 2 from A,. By generalising the observations 

Figure 4.7: Example for the input negation test 

made in the example, we arrive at the following consistency test. 

Consistency Test 6 (InputIOutput Negation). Let i E A V C.  I f  

then i must not start first in Ai (input negation: ij+Ai). I f  

max (Xi - ESu) < P(A) 
UEA; 

then i must not end last in Ai (output negation: Aij+i). 

ProoF If i precedes Ai, all activities in A must be processed within the interval 
[ESi, rnaxvEA, LC,[. If Condition (4.12) holds, this is not possible. The second part 
can be shown symmetrically. 

Again, it is easy to see in which sense these conditions are weaker than in the pre- 
ceding tests. Domain reduction rules can be based on the observation that i must 
succeed (input negation) or precede (output negation) at least one other activity in 
A: 
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Consistency Test 7 (Input/Output Negation Domain Adjustment). For i  E A 
V C  the following tests apply: 

i f , A i  * Ai := Ai \ [O, min E&[, 
uEA; 

For the example in Figure 4.7 the input negation condition yields 9 - 2 < 8 and we 
conclude i  f ,  { j ,  k ) .  According to the first domain reduction rule we can therefore 
remove all values less than 3 from A i .  

Conclusions similar to those obtained in the examples for the inputloutput and input- 
or-output test could also have been produced through successive application of the 
inputloutput negation test. Since the condition to be tested for the inputloutput nega- 
tion conclusion is weaker than the preceding conditions, it will of course hold when- 
ever the stronger conditions apply. Consider again the example in Figure 4.3. Here, 
the inputloutput negation conditions allows to conclude j  f ,  { i ,  k )  i  + jVk  + j  
and k f ,  { i ,  j )  e~ i  + k  V  j  -+ k, which implies i  + { j ,  k ) .  However, this im- 
plication is not automatically deduced by the inputloutput negation condition. This 
demonstrates that inputloutput negation conditions alone do not deduce all interest- 
ing domain reductions. A similar effect can be seen in the example in Figure 4.5. 
Here, the inputloutput negation conditions can be used to deduce {j, k ,  l )+ i  and 
j + { i ,  k ,  I) ,  but this does not allow to remove the value 3 from Aj as in the input- 
or-output test. 

The inputloutput negation test has first been suggested by Carlier and Pinson (1989). 
Most authors working on consistency tests have considered the test in some form. 
However, an algorithm that tests all interesting A and i  with effort O(IVCI2) has 
only recently been developed by Baptiste and Le Pape (1996). Another O(IVCI2) 
algorithm has been described by Dorndorf et al. (2001). Nuijten and Le Pape (1998) 
have derived consistency tests similar to the inputloutput negation tests with tighter 
time bound adjustments; the corresponding algorithms have a complexity O(IvC 1 3 )  
and O ( ( V C ( 2  log IVCI). 

Other researchers have often applied the tests in an incomplete way, testing only 
some A and i (Carlier and Pinson 1989, 1990, Nuijten 1994, Baptiste and Le Pape 
1995). Caseau and Laburthe (1994, 1995) have integrated the tests in their task 
interval algorithm which tests inputloutput conditions and the negation conditions 
with effort O(IVc 1 3 ) .  

4.5.4 Summary and Generalisation 

All disjunctive interval sequence consistency tests that we have discussed can be 
derived from the following theorem. 

Theorem 2 (Sequence Consistency). Let A', A" C A V C.  If 
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max 
u€A\A1 ,vEA\A" ,U#V (LC, - ESu) < P(A) 

then an activity in A' must startjrst or an activity in A" must end last in A. 

Proof: If none of the activities in A" succeeds A\ A" and none of the activities in A' 
precedes A \ A', then A must be processed within maxuEA\A',vGA\A",u#v ( L G  - 
ES,) units of time. If Condition (4.13) holds this is a contradiction. 

Test d \ d "  d \ A' Conclusion ( 1 H )  
input A Ai i+Ai 
output Ai A Ai +i 
input-or-output Jz j Ai i+Ai v Aj+j 
input negation Ai { i )  i+Ai 
output negation { i )  Ai Ai+i 

Table 4.1: Summary of disjunctive interval consistency tests, A', A" C A g Vc 

The results of the preceding sections are summarised in Table 4.1. For each con- 
sistency test, the table shows the values of A \ A' and A \ A" that, when used in 
Theorem 2, yield the test. The conclusions of Theorem 2 have been reformulated to 
match the tests presented above. Note that the conclusion is always the negation of 
the hypothesis H falsified by the test. 

4.5.5 Relation to Interval Consistency 

We will now relate the Sequence Consistency Theorem to the general concept of 
interval consistency introduced in Section 4.3. For disjunctive scheduling and a given 
set of disjunctive activities V C,  the Interval Capacity Constraint (4.3) reduces to 

where P(VC, t l ,  t 2 )  := CiEvC pi ( t l ,  t 2 )  is the total interval processing time within 
[ t l ,  t2 [ .  Inversely, we denote the set of all activities in Vc that must be processed com- 
pletely or partially within an interval [tl , t 2  [ as Vc(tl , t g  ) := { i  E VC I pi (tl , tg ) > 
0). The following theorem shows how we can efficiently test violations of the Inter- 
val Capacity Constraint. 

Theorem 3 (Sufficiency of Activity Interval Consistency). a for some time inter- 
val [tl , t 2  [> 

max (LC,. - ESi) < P(VC(tl,t2)). 
i j € V c ( t l  , t z ) , i # j  
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ProoJ: From Equation (4.1) we know that 0 < t2 - tl < P(Vc, t l ,  t2 )  implies 
that (Vc(tl , t2) ( 2 2. We consider two activities i, j E Vc(t l , t 2 ) ,  i # j ,  and start 
to transform Condition (4.14) into Condition (4.15) by rewriting the left hand side 
of (4.14): 

By observing that t2 - LSj > pj ( t l ,  t2 )  > 0, according to Equation (4. I), we can 
approximate the left side. We rewrite the right side and obtain: 

Again, we know from Equation (4.1) that ECi - tl > pi(tl , t2 )  > 0. This approxi- 
mation leads to: 

Next, we approximate the sum on the right hand side, once again using Equation (4.1) 
which tells us thatpk 2 pk(tl ,  t2) 2 0,  and obtain: 

By adding pi + pj on both sides we arrive at: 

As it is always possible to choose i and j in such a way that the maximum difference 
LC,. - ESi is realised, Condition (4.15) must hold. 17 

The theorem tells us two interesting things. First, it states that if an interval capacity 
constraint is violated for some arbitrary time interval [t l ,  t2[,  then there will also be 
a violation for an interval defined by the earliest start and latest completion time of 
two different activities in V c( t l ,  t z ) .  When checking for violations this allows us to 
restrict our attention to intervals defined by earliest start and latest completion times, 
called task or activity intervals (Caseau and Laburthe 1994), instead of considering 
all possible time intervals. Any violation of the capacity constraint can thus be de- 
tected by testing O(JVc12) intervals. For disjunctive scheduling, this answers the 
initial question, posed in Section 4.3 on page 37, what intervals we should test. Sec- 
ond, the theorem states that, as long as we test all activity intervals, there is nothing 
to be gained from considering interval processing time instead of simple processing 
time. If interval processing time has an effect on the test for a given set A then we 
can obtain the same effect by considering a different set A'. In summary, this means 
that an algorithm which tests Condition (4.15) for all activity intervals will detect all 
violations according to the more general concept of Condition (4.14) which is the 
negation of the disjunctive version of the general Interval Capacity Constraint (4.3). 
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It is worth emphasising that this statement is independent of the particular hypothet- 
ical constraint H to be tested. This can be seen as follows: For any set of constraints, 
it is always possible to first add and propagate the constraints, and then test the 
interval consistency constraints. The particular form of the sequence consistency 
tests is simply an accelerated version of this "add and propagate, then test" pro- 
cess. For illustration, consider again the example shown in Figure 4.3, where the 
conclusion i-+{j, k) could also have been obtained in the following way: (1) Add 
H : ifS{j, k), (2) update the domain of i based on H, which yields Ai := Ai \ {tlt < 
minu,(j,k) EC,) = [5,6] ,  and (3) test the interval consistency constraint (4.3) for 
the activity interval defined by {i, j, k) which has the left time bound 2 and the right 
time bound 9. Because 9 - 2 2 8 this test fails and we conclude 1 H  * i-+{j, k). 

For disjunctive scheduling, Theorem 3 improves the characterisation of time inter- 
vals for which the capacity constraint may be violated, which has been obtained by 
Schwindt (1998b) and Baptiste et al. (1999) for the cumulative case discussed in 
Section 4.6. The theorem also reveals that for disjunctive scheduling the "energetic" 
consistency tests that have been proposed by Baptiste and Le Pape (1995) are not 
more powerful than their non-energetic counterparts, i.e., the consistency tests that 
have been presented above. 

4.5.6 Lower Level Consistency 

This section relates the disjunctive interval consistency tests to the general concept 
of lower level consistency, in particular 2-consistency and 2- and 3-b-consistency 
that are commonly used in CSP research and that have been introduced in Chapter 3. 
We first derive a 2-consistency test and show that the consistency tests described in 
Sections 4.5.1 to 4.5.3 can be used to achieve 2-b-consistency. 

Let us first briefly recall the relevant notions of consistency: Activity start time do- 
mains are called 2-consistent if, for any pair i ,  j E V, and for any value ai E Ai there 
is some value a j  E Aj  such that Si = ai and Sj = a j  is permitted by the constraints 
of the scheduling problem. The weaker definition of bound consistency looks at do- 
main bounds: Activity domains are called 2-bound-consistent, or 2-b-consistent for 
short, if, for any pair i ,  j E V, and for every value ai E {min Ai, max Ai) there is a 
value a j  E A j  such that Si = ai and Sj = a j  is permitted. Clearly, 2-consistency 
implies 2-b-consistency. A general definition of k-b-consistency is given in Sec- 
tion 3.2.3. 

The concept of bound consistency is of interest because, as we have seen, many con- 
sistency tests are based on domain bound considerations. In addition, the propagation 
of temporal constraints depends on domain bounds. Any change in domain bounds 
can therefore trigger further domain reductions. Finally, if domains are approxi- 
mated by start time windows - and this is often done for reasons of implementation 
efficiency - bound-consistency is the only reasonable concept of consistency. 

Figure 4.8 shows an example, taken from Nuijten (1994), with a pair of activities 
i ,  j E VC where any 2-inconsistent value is marked. For example, j cannot start at 
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Figure 4.8: 2-consistency 

time 2 since this does neither leave enough room for i to be processed before j nor 
after j .  In general, i cannot start in the open interval ]LS,. - pi, EC,. [. Note that the 
interval can be empty if I?%'j 5 U j  - pi. The observation is summarised in the 
following theorem due to Nuijten (1994). 

Theorem 4 (2-consistency). Let i, j E V C,  i # j. Ai and Aj are 2-consistent ifand 
only if 

ProoJ: If j is started at time t E Aj then i is blocked during the open interval 
It - pi, t + pj [. The left bound of the interval is maximal for t = LSj, and the right 
bound is minimal for t = ESj. Thus the minimal interval during which i cannot 
start is ]LS,. - pi, EC,. [. All other possible start times of j leave possible start times 
for i. 

The following result shows that the sequence consistency tests based on Theorem 2 
can be used to ensure 2-b-consistency. 

Theorem 5 (2-b-consistency). Application of the input/output, input-or-output, or 
the input/output negation test within a fixed point iteration leads to a 2-b-consistent 
state. 

ProoJ: For A = { i ,  j )  all the tests simplify to: 

To achieve 2-b-consistency any Zinconsistent value must be removed from the do- 
main bounds. According to Equation (4.16), the left domain bound can only be 
2-inconsistent if 

In this case, the condition of the tests is satisfied and any inconsistent values are 
removed by the first domain reduction rule above. The proof for the right domain 
bound is symmetrical. 
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We have thus shown that the application of any of the inputloutput, input-or-output, 
and inputJoutput negation tests, even if only used for activity pairs, within a fixed 
point propagation algorithm5 leads at least to a 2-b-consistent state with respect to 
the interval capacity, or resource,  constraint^.^ 
As the example in Figure 4.8 shows, the tests can, however, only ensure 2-b-consist- 
ency but not the stronger concept of 2-consistency, because none of the marked val- 
ues in the domains of i and j can be removed by any of the tests. Of course, it is no 
surprise that the domain bound-oriented tests can only achieve bound-consistency. 

However, a stronger result can be obtained if the the inputloutput and inputloutput 
negation tests are applied together within a fixed point algorithm: 

Theorem 6 (Strong 3-b-consistency). Application of the input/output and input/ 
output-negation tests for all pairs and triples of activities within a f i edpo in t  itera- 
tion leads to a strongly 3-b-consistent state. 

Pro05 A detailed proof is given in Dorndorf et al. (2000b). The proof relies on a 
technical analysis of the necessary conditions for 3-b-consistency, which are trans- 
formed in such a way that it can be seen that these conditions must be satisfied if the 
inputloutput and inputJoutput-negation consistency tests are applied at least for pairs 
and triples of operations. 

The inputloutput and inputloutput negation tests usually, but not necessarily im- 
ply more than 3-b-consistency. However, if only pairs and triples of activities are 
considered, then the application of the tests is equivalent to enforcing strong 3-b- 
consistency. 

4.5.7 Sequence Consistency Does Not Imply k-b-Consistency 

Trivial though it may be, it is worth emphasising that the consistency tests only check 
necessary, but not sufficient conditions for the existence of a feasible schedule.While 
we could show that the sequence consistency tests always achieve 3-b-consistency, 
this means that they in general do not achieve k-b-consistency for k > 3. The 
example in Figure 4.9 illustrates these two points. 

In the example, A = {i, j ,  k, 1, m). The output condition allows to conclude that 
{j, k, I, m)+i, since 10 - 0 < 11. The preemptive bound ECpr (Ai) for the earliest 
completion time of {j, k, 1, m)  is 9. According to domain reduction rule (4.8) this 
leaves the value 9 as the left bound of Ai. However, manual inspection shows that 
the earliest completion time of { j ,  k, 1, m)  is actually 10. Thus, the inputloutput 
test leaves an inconsistent value at the left bound of A,. This demonstrates that the 
domain reduction rule based on the preemptive bound is heuristic. 

5 ~ e e  Algorithm 1 on page 27. 
6 ~ t  is easy to see that if precedence constraints are given in addition to resource constraints, as, e.g., 

in the problem PSltemplCntax, then the additional application of the Precedence Consistency Test 1 will 
ensure overall 2-b-consistency. 
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Figure 4.9: When sequence consistency tests fail 

Now modify the example by reducing LCi to 11. The inputloutput test still yields the 
same result, and none of the other sequence consistency tests leads to an inconsis- 
tency (by producing an empty domain). Again, manual inspection shows that there 
is no feasible schedule for A. 

4.5.8 Shaving 

In the tests based on the Sequence Consistency Theorem 2 we have tried to refute 
hypothetical constraints on the sequence in which activities in a set A C V e  execute. 
Now, we take a purely time-oriented approach and consider hypothetical constraints 
on individual activity start times. If we can falsify such a constraint, then we can 
reduce the corresponding activity domain in an obvious way. The process of reducing 
activity domains based on this kind of reasoning has been called shaving (Martin and 
Shmoys 1996, Caseau and Laburthe 1996b). 

For example, we can test a hypothetical constraint of the type Si > t ,  for some t ,  E 
A,. If this leads to a contradiction, then we can conclude that Si must be less than or 
equal to t ,  and remove all values greater t ,  from Ai. A contradiction may be caused 
by a direct violation of the interval capacity constraint (4.3) or after propagating the 
hypothetical constraint by repeatedly applying other consistency tests. Values of t ,  
can for example be chosen by a dichotomising search over Ai. 

A shaving approach for disjunctive scheduling has been proposed by Carlier and 
Pinson (1994) for solving the JSP. Martin and Shmoys (1996) have, independently, 
applied the technique within a time-oriented branch-and-bound algorithm for the 
JSP. Using a shaving technique, Caseau and Laburthe (1996b) were able to obtain 
a proof of optimality for the famous 10 x 10 job shop problem instance of Fisher 

I 
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and Thompson (1963) with only 7 backtracks. Recently, Dorndorf et al. (2001) have 
shown how the use of simple shaving techniques can significantly reduce the search 
effort of a branch-and-bound algorithm for the Open Shop Scheduling Problem, an- 
other classic disjunctive scheduling problem. 

4.6 Cumulative Interval Consistency Tests 

While disjunctive scheduling or sequencing is concerned with unit resource require- 
ments and capacities, cumulative scheduling considers the general case of arbitrary 
resource supply and demand. 

In this section we introduce several consistency tests for cumulative scheduling that 
are based on the Interval Capacity Constraint (4.3). Section 4.6.1 first deals with the 
special case of time intervals of width one. Section 4.6.2 then presents tests based on 
considering activity intervals, i.e., intervals defined by the earliest possible start and 
latest possible completion time of two activities, while Section 4.6.3 discusses the 
question which time intervals must in general be tested in order to detect a violation 
of Constraint (4.3). Finally, Section 4.6.4 briefly describes consistency tests based 
on the concept of elastic resource relaxations. 

4.6.1 Unit-Interval Consistency 

An important special case of the general interval capacity constraint (4.3) is obtained 
if we consider time intervals of width one, also called unit-intervals. If, for a set Vk 
of activities to be processed by resource k ,  some activity i E Vk and some time t ,  the 
slack(vk \ { i ) ,  k ,  t ,  t + 1)  is less than the required resource amount rik, then activity 
i cannot be processed at time t. This leads to the following consistency test, which is 
also known under the name timetable-based constraint propagation (Le Pape 1994b). 

Consistency Test 8 (Unit-Interval Test). Let i E Vk. $ for some time t in the 
interval [ESi (A) ,  LG (A )  [, 

s ~ u c ~ A ( V ~  \ {i), k ,  t ,  t + 1) < rik 

then the domain of i can be reduced in the following way: 

~ Ai := Ai\ It -p i ,  t] .  

Tests similar or equivalent to the unit-interval consistency test have for instance been 
described by Le Pape (1994b, 1995), Nuijten (1994), Caseau and Laburthe (1996b), 
and Klein and Scholl (1999a). For disjunctive scheduling, the unit-interval test is 
covered by the pair test. 

The test can be efficiently implemented through capacity profiles reflecting remain- 
ing and used capacity over time; the profiles can be based on a support point repre- 
sentation. A capacity profile can be initialised and updated by using the fact that an 
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activity i must always be in process during its core time between its latest start and 
earliest completion time; observe that it follows from the definition of interval pro- 
cessing time in (4.1) thatpi(t, t + 1) = 1 for all t E [a, ECi[, andpi(t, t + 1) = 0 
otherwise. The capacity profile can therefore only change at points in time corre- 
sponding to the latest start or earliest completion time of an activity and can thus be 
represented using at most 2 . IVI support points. 

Let tk and tk+l be two consecutive support points of the capacity profile, where the 
capacity value given at time tk applies in the time interval [tk , [. Clearly, if an 
activity cannot be in process at time tk,  then in cannot be processed anywhere in 
[tk, tk+l [. We therefore only need to test the condition of Consistency Test 8 at the 
relevant support points and may strengthen the reduction rule by removing all times 
in the interval ]tk -pi, tk+l [. The worst case effort for checking all activities against 
the complete remaining capacity profile obviously is O(IV12). However, the average 
effort is often lower because usually not all activities have a non-zero core time and 
we need only check against the support points within the start time domain of an 
activity. 

The capacity profile can be updated as part of the constraint propagation process. 
Whenever the start time domain of an activity is reduced, an update of the capacity 
profile may be required as the domain reduction may have led to a new or modified 
core time of i. Since the core time modification may overlap the entire profile, the 
worst case updating effort is O(IV I). 

4.6.2 Activity Interval Consistency 

The disjunctive sequence consistency tests developed in Section 4.5 can be gener- 
alised for cumulative scheduling in a straightforward way by considering available 
and required work instead of time spans and processing times. This relation was 
first pointed out by Nuijten (1994) (see also Nuijten and Aarts 1996). The following 
theorem extends the Sequence Consistency Theorem 2 for cumulative scheduling. 
In analogy to the total processing time P(A) of the activities in a set A, we define 
the total work with respect to a resource k as Wk(A) := xjEA ?kpj. As the time 
intervals considered are activity intervals that are defined by act~vity sets, we have 
chosen the name activity interval consistency. 

Theorem 7 (Activity Interval Consistency). Let A', A" C A C Vk.Zf 

Rk . max (LC, - ES,) < W (A) 
uEA\A',v€A\A" 

then an activity in A' must startJirst or an activity in A" must end last. 

Proof: Similar to proof of Theorem 2. 

In contrast to the Sequence Consistency Theorem, we can no longer assume that 
u # v because it is now possible that an activity that starts first also ends last. 
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Comparison of Condition (4.17) to the general Interval Capacity Constraint (4.3) 
shows that the condition only considers time intervals defined by a set A of activities 
and the total work of A, as opposed to interval work. In the disjunctive case we were 
able to show that it was sufficient to consider activity intervals and that there was 
nothing to be gained from using interval work instead of set based work on the right 
side. However, it turns out that this is not the case for cumulative scheduling, so that 
the condition can actually be strengthened. The reason for presenting the condition 
in the above form is that this extension of the disjunctive case allows to generalise 
algorithms originally designed for sequencing. We will discuss a sharper form in 
Section 4.6.3. 

The theorem can be used to derive consistency tests in analogy to the sequencing 
tests by using suitable values for A' and A", as shown in Table 4.1. Note that the 
meaning of conclusions such as Ai+i or i+Ai is that i must end after (start before) 
all activities in Ai; in contrast to the disjunctive case this, however, does not imply 
that it must also start after (end before) Ai. 

Useful domain reductions can be deduced for the cumulative version of the input- 
or-output test with i = j. For A' = A" = {i), i.e., for testing the hypothetical 
constraint H : i+Ai A Ai+i, Theorem 7 yields the following consistency test: 

Rk - max (LC, - ES,) < W (A) 
uEAi ,uEA; 

Clearly, the excess amount of work that cannot be processed in the interval defined 
by minUEdi ES, and m a x , ~ ~ ,  LC, is the difference of the total work required by A 
and the capacity available within the interval. Since only activity i can move partially 
or completely out of the interval, we can conclude that the amount of processing time 
of i to be moved outside to the left andlor right, denoted by rest(A, i), is: 

rest(A, i) := [(W(A) - Rk . max (LC, - ES,,))/rial. 
,Ed; ,uEA; 

This observation allows to deduce domain reductions if the minimum amount of 
processing time that is always outside of the interval, regardless of the chosen start 
time, is less than the required amount: 

Pi - rnax (LC, - ES,) < rest(A, i). 
U E A ~ , V E A ~  

If Condition (4.19) holds, then the part of i that must be outside of the interval must 
either be completely on the left or be completely on the right side of the interval. This 
leads to the following domain reduction rule that can be applied if Conditions (4.18) 
and (4.19) hold: 

Ai := Ai\ 115; ESu - rest(A, i), man LC,, + rest(A, i) -pi[. (4.20) 
VEA; 

This rule can actually be sharpened as follows: If the left or right bound reduction 
may be applied for Ai then it can also be applied for all subsets A' E Ai; this is 
not shown here. The sharpened form of the rule is equivalent to domain reduction 
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i + = - = = = = ) :  4 
0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  
X X X X  

Figure 4.10: Four activities requiring 1 unit of a resource with capacity 2 

rule (4.1 1). We refer to the conditions and this domain reduction rule as the cumula- 
tive input-or-output test. 

Figure 4.10 illustrates the test. It shows an example (Nuijten 1994) with four ac- 
tivities to be processed by the same resource k with capacity Rk = 2. Inspection 
shows that if activity i is started before time 4, then it is impossible to schedule all 
of the other activities j ,  k, 1 within their time window. This is detected by the input- 
or-output test in the following way: Because 2 . (9 - 1) < 18 we conclude that 
i+{j, k, I )  V {j, k, 1 1 4 .  The amount of processing time of i that must take place 
outside of the interval [ l ,  9[ is rest({i, j, k, 1),i) = [(I8 - 2 - (9 - 1))/1] = 2. 
Because 7 - 8 < 2, Condition (4.19) is satisfied and we apply the domain reduction 
rule A; := A;\ 11 - 2,9 + 2 - 7[ = [4,7], as shown in Figure4.10. 

It is interesting to consider a slight modification of the example: For p; = 6 the 
reduction rule yields A; := Ai\ ]0,4[ = {0,4, . . . ,7); the value 0 is thus left in Ai 
and the domain bounds remain untouched. 

The test presented here is similar to the three cumulative tests described by Nui- 
jten (1994), who also describes a corresponding extension of his disjunctive con- 
sistency checking algorithm. The time complexity of the resulting algorithm is 
O(I {r;k)l . IVkI3), where I{rik)l is the number of distinct resource capacity require- 
ments. Another O(lVk 13) consistency checking algorithm for activity intervals has 
been described by Caseau and Laburthe (1996b). 

Baptiste and Le Pape (2000) have recently proposed an O(IVkI2) algorithm for 
checking activity interval consistency that is based on the idea of transforming a 
cumulative resource and cumulative, non-preemptable activities to a disjunctive re- 
source and corresponding disjunctive activities with preemption allowed; they then 
apply an algorithm that implements the inputJoutput consistency test for disjunc- 
tive preemptive scheduling (Le Pape and Baptiste 1996b) and reduce the domains 
of the original, cumulative activities based on the domain reductions deduced for 
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their disjunctive counterparts. While the computational complexity of the algorithm 
is lower, the time bound adjustments are less precise than with the algorithms of 
Nuijten (1994) and Caseau and Laburthe (l996b). 

As mentioned before, the tests described in this Section could be strengthened by us- 
ing interval work instead of simple work and by considering additional time intervals 
other than activity intervals. This is explained in the following section. 

4.6.3 Minimum Slack Intervals 

Figure 4.11 shows an example, similar to an example used by Baptiste et al. (1999), 
with five activities that require one unit of a resource with capacity 2. We can con- 
clude that activity i must start after time 6. This can be deduced by first imposing 
the hypothetical constraint H : Ci 5 10 or equivalently Si 5 6, and then testing the 
general Interval Capacity Constraint (4.3) for the interval [I, 9[. If i is constrained 

I J 
0 1 2 3 4  
X X X X X  

Figure 4.11: Five activities requiring one unit of a resource with capacity 2 

to finish at time 10 or before, then the total amount of interval work to be processed 
within [I, 9[ is 2 . 4 + 3 . 3 = 17 units, whereas only 2 . (9 - 1) = 16 units are 
available. We can thus conclude TH and remove values less than or equal to 6 from 
the start time domain Ai. We emphasise that H can only be refuted by testing the in- 
terval [l, 9[, while the Interval Capacity Constraint is satisfied for all other intervals, 
including all activity intervals. 

The example leads us back to the initial question, posed in Section 4.3, for what time 
intervals the capacity constraint should be tested. This question has recently been an- 
swered by Schwindt (1998b) and, independently, by Baptiste et al. (1999). By study- 
ing the possible extrema of the slack function (4.2) for a given set of activities V k ,  the 
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set of intervals [tl, t2  [ can be characterised for which the slack function can take a 
local or global minimum and may thus violate an Interval Capacity Constraint (4.3). 
Schwindt and Baptiste et al. have shown that the number of such minimum slack 
intervals is of order of magnitude O(IVk 1 2 )  and have given a characterisation of the 
intervals (the one in Schwindt (1998b) is slightly tighter). Thus, as we know from 
the initial example, the set of minimum-slack intervals is larger than the set of activ- 
ity intervals but still of order of magnitude O(IVk12). Since an intuitive description 
of the minimum slack intervals is hard to give, and because the proof is lengthy, we 
do not describe the set of minimum-slack intervals in more detail. 

Baptiste et al. have developed an O(IVk 1 2 )  algorithm for computing the value of the 
slack function for all potential minimum-slack intervals, and an O(IVk 1' log lVk 1 )  
algorithm has been described by Schwindt, who has used the interval capacity con- 
straint for computing lower bounds for the problem PSltemplC,,,, by using a de- 
structive improvement approach. 

In order to reduce activity domains, Baptiste et al. suggest to use hypothetical con- 
straints of the type Si < t,, similar to the example above, where t ,  depends on 
the right bound of a minimum slack interval; there is an obvious symmetrical test.7 
The time complexity of an algorithm that computes all domain reductions which can 
be obtained on the minimum-slack intervals is O(IVk 1 3 ) ;  this follows from the fact 
that the slack for all potential minimum-slack intervals can be computed with effort 
O(IVk 1 2 ) ,  that there are lVk 1 activities to be tested and that the candidate values for 
t ,  and t, depend on the minimum slack interval and the activity under consideration. 

The development of a quadratic algorithm to compute all domain reductions is an 
open issue. 

4.6.4 Fully and Partially Elastic Relaxations 

This section describes two relaxations of the scheduling problem that have been 
suggested by Baptiste et al. (1999). The relaxations describe necessary conditions 
for the existence of a feasible schedule. They are based upon the idea of trying 
to answer the question whether there exists an integer function esk(t ,  i), (for elastic 
schedule), that describes the number of work units assigned to all activities over time 
so that for every activity the total number of units assigned equals the required work. 
The capacity assignment defined by esk ( t ,  i) is elastic in the sense that it allows that 
the amount of resources assigned to activity i may vary while i is in process, as long 
the total amount of work corresponding to i is covered. 

'~aptiste et al. (1999, Proposition 13) actually use the right bound of a minimum slack interval for 
t,. However, we would like to point out that the resulting conclusion can be strenthened if, for a distinct 
activity i and a minimum slack interval [tl,  tz [ the value t, = t2 + max(0, t l  - ES;) is used instead of 
t, = tz;  this can easily be integrated in the proposed algorithm. Simply speaking, the value oft ,  should 
be chosen in such a way that the minimum processing time of activity i within the interval [tl , t2 [ that is 
obtained when i is right-shifted equals the minimum processing time when i is left-shifted. 

In the example above, we thus obtain t, = 9 + m a x ( 0 , l  - 0) = 10; it can easily be seen that the 
domain reduction obtained for the hypothesis t, = 9 is weaker. 
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The fully elastic relaxation is the decision problem of deciding whether a function 
esk ( t ,  i )  exists such that the following constraints hold: 

esk(t ,  i )  = 0, for all i E VI,  and t 6 Ai 

esk(t ,  i )  = pirik, for all i E Vk 
t 

A tighter relaxation can be obtained by adding the two following constraints. 

est (t', i )  < Rt - (t - min Ai),  for all i and t E Ai (4.24) 
t l<t 

esk (t', i) 5 Rt  . ( m a  Ai - t ) ,  for all i and t E Ai. (4.25) 
tit' 

The resulting decision problem is called partially elastic relaxation; the way in which 
assigned work may float within the activity time window is more restricted than in 
the fully elastic case. 

The partially and fully elastic relaxations can be used to deduce activity domain re- 
ductions in the usual way. If, after adding hypothetical constraint H, it can be shown 
that no function esk(t , i)  exists that satisfies Constraints (4.21) to (4.25), then -H 
must hold. Baptiste et al. describe an O(IVkI2) domain reduction algorithm based 
upon the fully elastic relaxation and an O(1og I{rik}l - IVkI2) algorithm using the 
partially elastic relaxation, where I {r ik)  1 is the number of distinct resource capacity 
requirements. 

The partially elastic relaxation is strictly weaker than the general interval consistency 
constraint (Baptiste et al. 1999). 

4.7 Multi-Mode Consistency Tests 

Given an instance of the multi-mode project scheduling problem MPSlternplC,, we 
can obtain an associated instance of the problem PSltemplC,,, by replacing the in- 
put data that depends on the mode assignments, i.e., processing times, time lags, and 
resource requirements, with the corresponding minimal values over all modes (Heil- 
mann 1998). As the resulting associated problem is a single-mode problem we can 
apply the consistency tests to it that have been described in the preceding sections. 
If the associated problem is a relaxation of the original problem then any domain re- 
duction obtained for the associated problem must also apply for the original problem 
instance. The concept of the associated problem instance is formally expressed in 
the following definition. 
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Definition 1 (Mode-Minimal Problem Instance). Given an instance 7' of the prob- 
lenz MPSltemp(C,,,, described by 

the associated mode-minimal problem instance 'P is the instance of the problem 
PSltemplC,, that is described by 

where 

Given an instance P of the problem MPSlternplC,,, the consistency tests for the 
temporal constraints and the interval consistency tests may then be applied to the cor- 
responding minimal problem instance 5. Since 'P is a relaxation of P, any domain 
reduction obtained for 5 must also apply for P. As 'P is a single-mode problem, any 
consistency test applied to it can, of course, only lead to reductions of the activity 
start time domains. 

We therefore introduce three additional simple consistency tests for reducing the 
activity mode domains AM; based on the consideration of temporal constraints, re- 
newable resource constraints, and non-renewable resource constraints. The tests are 
presented in the form of condition and conclusion. We do not comment on the obvi- 
ous computational complexity of the tests. 

If a temporal constraint (i, j) can never hold in case a particular mode assignment 
p E AM; is chosen for activity i ,  regardless of the mode of j ,  then we may remove 
p from A Mi : 

Additionally, any mode assignment p E AM; that leads to a violation of a unit 
interval capacity constraint for a renewable resource may be removed from AM; : 

i E V k , p  E  AM;,^ E [Ui,m[: 
(4.27) 

slackL(Vk \ { i ) ,  k,  t , t  + 1) < ri,k AMi := AM< \ { p ) .  

A similar test may be applied for the constraints for non-renewable resources. In 
analogy to Definition (4.2), a slack function for non-renewable resources may be 
defined as follows. 
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Algorithm 2 Mode Shaving 
repeat 

 old .- .- A 
for all activities i E V do 

for all modes p  E AM; do 
A' := A 
Ahi := { p )  
if a current domain in CP(Af) is empty then 

A ,  := AM; \ { p )  
end if 

end for 
end for 

until A = AoZd 

slack;; (v,  k) := Ri - min ripk 
P E A M ~  

i E V k  

Using this function we can state the following consistency test that removes any 
mode assignment p  E AMi that leads to a violation of a non-renewable resource 
constraint: 

i E V k , p ~   AM^ : 
slack;; (Vk \ {i), k) < T i p k  * AM; := AM{ \ { p ) .  

The three mode consistency tests 4.26 to 4.28 are subsumed in the mode shaving 
test, which repeatedly tries to show that a mode assignment p E AM; leads to a 
contradiction by applying constraint propagation until a fixed point is reached or a 
domain becomes empty. The idea of the test is similar to the shaving test for reducing 
start time domains described in Section 4.5.8. The test is shown in Algorithm 2. The 
operator CP may apply any number of consistency tests but, of course, must not 
recursively apply the mode shaving test itself. 

4.8 Summary 

We have introduced simple consistency tests for temporal constraints and have pre- 
sented a general, unifying framework for understanding interval capacity consistency 
tests. Within this framework, we have surveyed and extended previous results that 
have been obtained in the areas of Operations Research and Artificial Intelligence. 
We have related the concept of energetic reasoning to sequence consistency tests 
known under the names of immediate selection or edge finding. 

The interval consistency tests described in this chapter have been applied frequently 
and with great success for solving disjunctive scheduling problems. Fewer and so far 
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1 less conclusive results have been reported for the application of the tests for cumula- 
tive scheduling. Several tests that we have described are available in general purpose 
scheduling software libraries such as ILOG Scheduler (Le Pape 1994b, 1995, Nui- 
jten and Le Pape 1998), CHIP (Aggoun and Beldiceanu 1993), or CLAIRE Sched- 
ule (Le Pape and Baptiste 1996a). 





I Chapter 5 

Algorithm 

This chapter describes a time-oriented, constraint propagation based approach to 
resource-constrained project scheduling with generalised precedence constraints. 
We present a branch-and-bound algorithm for the general problem PSltemplC,, 
that enumerates possible activity start times based on the idea that, at a given node 
of the search tree, an activity must either start as early as possible or be delayed. 
A central feature of the algorithm is the application of constraint propagation tech- 
niques that actively exploit the temporal and resource constraints during the search 
in order to narrow down the set of possible activity start times and thus reduce the 
search space. Further reduction of the search effort is achieved by enforcing some 
necessary conditions that must be met by active schedules. 

One of the main advantages of the time-oriented branching scheme is its concep- 
tual simplicity which allows to modify and extend the approach for related practical 
scheduling problems that are often complicated by additional constraints. Further- 
more, the constraint propagation techniques that we use are not custom-tailored for 
the problem PSltemplC,,,, but are of an elementary nature and have a wide applica- 
bility. 

Extensive computational experiments with systematically generated test cases for the 
problem PSltemplC,,, with one hundred up to five hundred activities per problem 
instance show that the algorithm solves more problems to optimality and feasibility 
than other exact solution procedures which have recently been proposed, and that the 
truncated version of the algorithm is also a very good heuristic. 

-In addition to the general problem PSltempJC,,, the algorithm is evaluated for the 
special case of the problem PSlpreclC,,, which contains only simple precedence 
constraints. Computational experiments with large benchmark test sets, ranging in 
size from thirty to one hundred and twenty activities per problem instance, show that 
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the algorithm scales well and is competitive with other exact solution approaches for 
this special problem. 

The structure of this chapter is as follows. Section 5.1 reviews the most relevant pre- 
vious solution approaches. Section 5.2 summarizes which of the consistency tests 
introduced in Chapter 4 are used within the branch-and-bound algorithm. The al- 
gorithm itself is then presented in Section 5.3, and Section 5.4 finally describes the 
computational experiments. 

5.1 Previous Solution Approaches 

Already the problem PSlprecJCma is NP-hard. Most exact solution methods are 
therefore based on branch-and-bound search. Beginning with the work of John- 
son (1967), a great number of branch-and-bound algorithms for solving the prob- 
lem PSlpreclCmm have been developed, and we refer the reader to the recent sur- 
vey papers of Brucker et al. (1999), Herroelen et al. (1998), Kolisch and Padman 
(2001), and Elmaghraby (1995) for a description and classification of the various 
approaches. Currently, the most effective exact algorithms seem to be the ones of 
Demeulemeester and Herroelen (1997b), Sprecher (2000), Mingozzi et al. (1998), 
Brucker et al. (1998) and the procedures of Klein and Scholl(2000, 1999b), which 
can solve a generalised version of the problem PSJpreclC,,with arbitrary minimal 
time lags. 

While the classic resource-constrained project scheduling problem PSlprecl C,,, has 
been intensively studied, algorithms for solving the problem PSltemplC,, have only 
recently received growing attention in the literature as can be seen in the surveys by 
Herroelen et al. (1998) and Brucker et al. (1999). This may to some extent have been 
caused by the fact that the problem PSlprecJC,, itself is intractable. As an exten- 
sion, the problem PSltempJC,,,, is, of course, also NP-hard, and even the question 
whether a problem instance has a feasible solution is NP-hard (Bartusch et al. 1988). 

Different heuristics for resource-constrained project scheduling with generalised pre- 
cedence constraints have.been proposed, and we refer the reader to Zhan (1994), 
Neumann and Zhan (1995), Brinkmann and Neumann (1996), Schwindt (1998b), 
Franck and Neumann (1998), Franck and Selle (1998), and Neumann and Zimmer- 
mann (1999) for a discussion. 

Exact branch-and-bound algorithms for the problem PSlremplC,, have been devel- 
oped by Bartusch et al. (1988), De Reyck and Herroelen (1998) (see also De Reyck 
et al. 1999), Schwindt (1998a,b), and Fest et al. (1999). The common idea behind 
these algorithms is to relax the resource constraints and compute an optimal time- 
feasible schedule. The resulting schedule will usually violate resource constraints 
and is therefore scanned for resource conflicts, i.e., times when more resources are 
consumed than are available. The procedures then branch over the possible alter- 
natives for resolving these conflicts. A resource conflict is resolved by adding new 
constraints that delay some of the activities causing the conflict (conflict set). Subject 
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I to the constraints added so far, an optimal time-feasible schedule is then re-computed 
and again tested for further resource conflicts. In the algorithms of Bartusch et al. 
(1988) and De Reyck and Herroelen (1998) activities from a conflict set are delayed 
by introducing additional classic precedence constraints. The procedure of Schwindt 
(1998b) delays activities by adding special precedence constraints between pairs of 
disjoint sets of conflicting activities; all activities in the second set are delayed until 
the completion time of a first activity in the first set. The algorithm of Fest et al. 
(1999) resolves conflicts by dynamically increasing release dates for certain activi- 
ties. 

The time-oriented branch-and-bound algorithm that we describe here is different in 
the sense that it simultaneously considers temporal and resource constraints. Instead 
of enumerating alternatives for resolving resource conflicts that occur in a relaxed 
problem, the procedure enumerates possible activity start times based on the follow- 
ing simple idea: at a given node of the search tree, an activity must either start as 

I early as possible or be delayed. A central feature of the algorithm is the application 
of constraint propagation techniques that actively exploit the temporal and resource 
constraints during the search in order to narrow down the set of possible activity 
start times and thus reduce the search space. Further reduction of the search ef- 
fort is achieved by enforcing some necessary conditions that must be met by active 
schedules. 

Time-oriented branching schemes that branch over activity start times have previ- 
ously been applied for solving several special cases of the problem PSltemplC,,,,. 
The first time-oriented branching schemes for the problem PSlprecl C,, have been 
described by Elmaghraby (1977) and Talbot and Patterson (1978); the common idea 
behind these algorithms is to branch over all possible start time assignments of the 

1 next activity to be scheduled, and the number of child nodes generated at a given 
node of the search tree thus depends on the selected activity. Carlier and Latapie 
(1991) have proposed a binary search scheme in which branching consists of select- 
ing an activity and splitting its interval of possible start times into two intervals of 

I equal size. Martin and Shmoys (1996) have developed a time oriented algorithm for 
the job shop scheduling problem. Caseau and Laburthe (1996b) have independently 

1 designed a branch-and-bound algorithm for a multi-mode project scheduling prob- 
lem that can be classified as MPSlpreclC,,,, in the scheme of Brucker et al. (1999). 
For the single mode case the algorithm uses the same branching strategy as the pro- 
cedure of Martin and Shmoys, which schedules an activity at its earliest start time or 
delays it upon backtracking until the earliest completion time of some other activity, 
resulting in a binary search tree. The branching scheme described here also makes 
use of this elementary approach. The branching strategy described by Caseau and 
Laburthe has also been used in modified form in the studies of Baptiste et al. (1999) 
and Baptiste and Le Pape (2000). Heipcke and Colombani (1997) have developed an 

I algorithm for a version of the problem PS(prec(C,,,, in which resource supply and 
1 demand may vary over time; the branching scheme of their algorithm is also binary; 
1 an activity is scheduled at its earliest start time or delayed upon backtracking by a 
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single unit of time. An unusual feature of their algorithm is that activities are in 
general not scheduled in order of increasing start times. 

5.2 Constraint Propagation 

5.2.1 Consistency Tests 

The branch-and-bound algorithm that will be described in the next section relies to 
a great extent on efficient constraint propagation techniques. At each node of the 
search tree, a fixed point is computed by applying at least the two most basic consis- 
tency tests introduced in Chapter 4 within the constraint propagation algorithm: 

Precedence Consistency Test 1 ; 

Unit-Interval Consistency Test 8. 

As we will see, the application of these two tests is an essential part of the branch- 
and-bound algorithm. 

Additionally, the following consistency tests for pair-wise disjunctive activities as 
defined by Lemma 1 are applied: 

Lag-Based Disjunctive Consistency Test 2; 

Inpub'Output Consistency Test 3 for pairs of disjunctive activities; 

General Inpub'Output Consistency Test 3 for disjunctive sub-problems, which 
are selected as described in Section 4.4.2. 

5.2.2 Some Properties of the Earliest Start Times 

The Precedence Consistency Test 1 and the Unit Interval Consistency Test 8 that 
are applied within the fixed point constraint propagation algorithm affect the earliest 
activity start times as follows. Letpcj (A) be the minimal start time of an activity j E 
V if only the precedence constraints (i, j) between activities i in the set VS(A) := 
{i E V I 1 Ail = 1) of scheduled activities and j are considered: 

pcj (A) := max {Si + dij I (i, j) E f}. 
i € V s  (A) 

Here, we have used the convention that the maximum of the empty set is 0. Let 
further rcj (A) be the minimal start time of j if additionally resource constraints are 
considered: 

rcj(A) := min {t 1 Vk E R,Vtl E [t, ..., t + p j [ :  
t 2 ~ c j ( A )  

slacka(Vk \ {j),t ' , t l  + 1) 2 rjk). 
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I Then, obviously, 
I 

ESj (A) 2 rcj (A) > pcj (A). 

, A schedule S can be naturally identified with a set of current domains, where each 
, domain Ai contains the corresponding start time, i.e., Ai := {Si). This justifies the 

notation rcj  (S) and pcj (S). Clearly, S can only be active if for all activities either a 
precedence constraint or insufficient resource capacity prevents a left-shift. Thus, in 
any active schedule S ,  the identity 

holds for all j E V. 

Since we may without loss of generality assume that an activity has at most IVI - 1 
predecessors, the calculation of pcj requires effort O((V1). The calculation of rcj  is 
based upon pcj and a traversal of the support points of the remaining capacity pro- 
file, as introduced in Section 4.6.1, and requires a worst case effort O(IRI IVI). The 
average effort for typical problems is much lower because the number of predeces- 

I sors of an activity is usually significantly smaller than O(IV1) and in general only a 
small part of the capacity profile must be traversed. 

5.3 The Branch-and-Bound Algorithm 

The main component of the branch-and-bound algorithm described in this section is 
a time-oriented, binary branching scheme. We will show that this branching scheme 
generates at least all active schedules, so that traversing the search tree will result 
in an optimal solution. Inversely, the branching scheme tries to avoid constructing 
non-active schedules, which cuts down the search space considerably. A detailed 
description of the branching scheme is given in Section 5.3.1. 

Section 5.3.2 deals with the "bounding" part of the algorithm. Generally, nodes of 
the search tree can be fathomed through the comparison of upper and lower bounds 
for the optimal makespan, which are computed in the nodes of the search tree. As 
a peculiarity, however, our algorithm does not explicitly compute lower bounds. In- 
deed, the bound-oriented fathoming of nodes is a useful by-product of constraint 
propagation techniques, that have to be applied anyway in the "branching" part of 
the algorithm. 

Additionally, the search space is reduced by adding constraints that must be satisfied 
by all active schedules that can be developed from a given node, and through the 
application of a simple left-shift dominance test. This is discussed in Section 5.3.3. 

1 5.3.1 The Branching Scheme 
I 

The branching structure that we describe here is based on a simple time-oriented 
schedule generation scheme, which results in a binary search tree. Each node a 
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of the search tree is associated a set A(a) = {Ai(a)  I i E V )  of current do- 
mains, which uniquely determine the sets Vs(A(a))  := {i E V ( lAi(a)l = 1 )  
and v f  (A(a) )  := {i E V I 1 Ai (a )  1 > 1)  of scheduled and non-scheduled activi- 
ties, respectively. (In order to simplify the notation we will write V S(a )  instead of 
V s(A(a) ) ,  etc., whenever possible.) Generating a specific schedule is equivalent to 
reducing the current domains until all activities are appropriately scheduled. One 
method of domain reduction that will be extensively used is the application of con- 
straint propagation. Since in general, however, constraint propagation alone does not 
schedule all activities, some activities additionally will have to be scheduled by an 
explicit assignment of their start time variables. 

At every node a of the search tree an unscheduled activity j E ~f ( a )  is chosen 
and two child nodes are generated. Denoting the left child node with l(a) and the 
right child node with r(a),  the branching scheme relies on the following simple node 
generation rule. 

l(a): Start j at its earliest start time by setting Sj(l (a ) )  := ESj (a) .  

r(a):  Increase the earliest start of j by choosing ESj(r(a)) > ESj (a) .  

A complete specification of the branching scheme now requires the answer to two 
questions. The first question deals with the problem of which activity j E V* (a )  to 
choose in node a. The second question is how the earliest start time of j should be 
increased in r(a).  We will first describe the choice of an activity j and then derive 
an earliest start time adjustment for the right child node. We will then summarize 
the branching scheme and show its completeness, i.e., prove that it can generate any 
active schedule. 

Selection of Activities 

At node a,  an activity can be selected for branching if it is free and non-delayed. For 
the time being, it is not necessary to describe this attribute more closely. We only 
assume that the set of non-delayed activities ~ f '  (a )  is a non-empty subset of the set 
of free activities. An activity j is then selected according to the following rule: 

Choose j E v f l ( a ) ,  such that ESj = t (a)  where t (a)  is the schedule 
time: 

t (a ) :=  min ESi(a). 
i ~ ~ f '  ( a )  

Ties are first broken by selecting an activity which satisfies some secondary criterion, 
then randomly. In general, we use the minimal time slack, i.e. [Ail, as secondary 
criterion; this means that we use the well known first fail principle which consists 
of first instantiating the variable with the fewest remaining possible values. We will 
denote with act(a) the activity chosen in a. 
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After the description of the selection rule, we are left with the problem of how to 
identify the set of non-delayed activities. Of course, we can always set v f r ( a )  := 
v f  (a) .  This, however, is not sensible, since choosing an arbitrary free activity will 
often lead to a non-active schedule. We will therefore show how to specify the set of 
delayed activities, so as to capture the notion of active schedules more closely. 

It will prove useful to partition the set of free activities into a set of activities which 
still have to satisfy a maximal time lag and a set of activities which do not have to. 
Let& = Emin~Emax ,  whereEmin := { ( i ,  j )  E E I dij  > 0) andEmax := { ( i , j )  E 
E I dij 5 0) are the relations specifying the minimal and maximal time lags between 
pairs of activities. We then define the set 

vtC(a) := { j  E v f  (a )  1 3i E v f  ( a )  : ( i ,  j )  E Emax) 

of timemax-constrained activities and the set vtU(a) := ~f ( a )  \VtC(a) of timemax- 
unconstrained activities. 

We can now describe the set of free and non-delayed activities: 

v f '  ( a )  := Vtc(a) U { j  E ~f ( a )  I ESj (a )  = rcj ( a ) )  

This means that a free activity is a candidate for branching if it either has an "in- 
coming" backward arc, or if its earliest start time equals its current earliest resource 
feasible start time rq(a) .  Note that the latter condition may in particular not be 
given if the constraint propagation algorithm has adjusted ESj(a) to some value 
greater than rcj (a ) ,  or if an activity has been delayed (by an amount of time to be 
defined below). The definition of the set of free and selectable activities v f '  can 
therefore be interpreted as follows: a delayed activity i without an incoming back- 
ward arc remains un-selectable until we know that the resource capacity "provided" 
by delaying i  has been used by some other activity. The following lemma justifies 
our choice of the set ~ f '  . 

Lemma 2 (Existence of Earliest Start Time Schedules). Let a be a node of the 
search tree. Ifthere is an unscheduled activity then v f  (a )  is not empty, or a cannot 
lead to an active schedule. 

Pro05 Let S be an active schedule which is domain feasible in a, and let us assume 
that Vtc(a) = 0. We then have to prove that there exists an activity j E vf  (a )  
satisfying ESj ( a )  = rcj (a) .  Since Sj 2 ESj ( a )  2 rcj (a) ,  we only have to show 
that for some j E ~f ( a )  the identity Sj = rcj(a) holds. 

Suppose that Sj > rcj(a) for all j E ~f (a) .  Observe that the set of timemax- 
unconstrained activities Vt"(a) is not empty, since V f  (a )  is not empty. It is therefore 
possible to choose an activity j E Vtu(a) with minimal start time in S: 

Sj = . min Si. 
Z E V * ~ ( L U )  

(5.4) 

Using the obvious identity V S  ( S )  = V ,  Equation (5.1) tells us that 
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pcj ( S )  = z y { S i  + dij I (i, j) E E),  

If there exists a precedence constraint ( i ,  j )  E Emin, then i E V S ( a ) ,  since otherwise 
Si + dij 5 S j  and dij > 0 immediately imply Si < S j ,  which is a contradiction to 
Equation (5.4). If (i, j)  E Emax, then i E V S( a )  follows directly from j  E Vt"(a). 
So for all (i, j) E E, we have i  E V S( a )  and the last equation can be simplified as 
follows: 

pcj(S) = max {Si + dij I ( i ,  j )  E E). 
iEVs ( a )  

Domain feasibility now allows us to deduce the identity Si = Si(a)  for all i E 
V s  ( a ) ,  which leads to 

pcj(S) = max {&(a)  +dij I (i, j )  E E) =pcj(a).  
iEVs(cx) 

(5.5) 

As S is active we know from Equation (5.2) that S j  = rcj (S) ,  so that we can 
conclude rcj ( S )  > rcj (a ) .  More formally 

min { t  I Vk E R,Vtl E [t, ..., t  f p j [ :  s lacks (~k , t ' , t '+ l )  2 r jk )  
t2~cj(S) 

> min { t l V k ~ R , V t ' ~ [ t ,  ..., t + p j [ : ~ l a ~ k a ( v k , t ' , t 1 + 1 ) 2 ~ j k ) .  
t2~cj(a) 

Because pcj ( S )  = pcj (a),  this means that there must be some resource k E R ,  such 
that fort = S j  - 1 the following conditions hold: 

sZack,(Vk - { j ) ,  t ,  t + 1) 2 ~ j k  , 
slacks(V~, - { j ) ,  t ,  t  + 1) < rjk. 

If the slack of period t in S is smaller than the slack of this period at node a ,  then 
the interval processing time p, ( t ,  t + 1) of at least one activity v E v f  ( a )  = Vt"(a) 
must assume the value 0 in a and 1 in S.  According to the definition of interval 
processing times in (4.1), p,(t, t  + 1) = 1 implies that t + 1 - S, > 0. We thus 
obtain S, 5 t < S j ,  which is a contradiction to Condition (5.4). So, in fact, there 
must exist j  E V f  (a) with S j  = rcj(a). 

~ e l a ~ i n ~  Duration 

Let us now turn to the question of how to increase the earliest start time of a selected 
activity j  = act(@) if we branch to the right. A first simple alternative is to delay 
the activity by a single time unit. However, we can do better by observing that the 
resulting schedule S can only be active if either (1) a precedence constraint or (2) low 
slack prohibits a left-shift of the selected activity. Since the activity will be delayed 
by at least one time unit, the first case can be ruled out if all precedence constraints 
(i, j )  E E are already resolved (see pages 20 and 34) in node a.  The second case 
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requires that the slack of all activities except j is insufficient to the left of S j ( a ) .  
Intuitively, this can only be the case if S j ( a )  matches the completion time of some 
activity that shares resources with j. This leads to the following lemma, in which 
Ri := { I c  E R I rik > 0) denotes the set of resources required by activity i. 

Lemma 3 (Delaying Duration). Let a be the current node of the search tree and all 
(i, j )  E & be resolved for j = act(a). The set of all activities that share resources 
with j andJinish after t(a) is denoted with V' := {i E V \ { j )  I Ri r l  Rj # 
0 A %(a) > t ( a ) ) .  Letfurther 

miniEv! ECi(a) ifV' # 0 ,  
t f ( f f )  := 

t (a)  + 1 otherwise. 

Then S j  2 t+(a) in any active schedule S developedfrom r (a ) .  

Pro05 We need only consider the case whkre V' # 0. If j is delayed in r ( a )  and S 
is active then, according to equation (5.2), rcj ( S )  = S j  > t(a). If rcj ( S )  > t(a) 
then, obviously, either 

If, for the given j ,  all (i, j )  E & are resolved, then mi + dij 5 ES j  for all (i, j )  E &. 
Thus pcj (S)  5 t(a) and condition (5.6) cannot hold. Now consider condition (5.7). 
We will show that any time t = rc j (S )  satisfying this condition must correspond 
to the completion time of some activity. If condition (5.7) holds then there must be 
some time t and some resource Ic E R for which: 

slacks(l/l, \ { j ) ,  t - 1, t )  < rjk A slacks(Vk \ { j ) ,  t ,  t + 1) 2 rjk. 

This immediately implies that there must be some activity in V k  \ { j )  that is pro- 
cessed in the interval [t - 1, t[  but not in [t, t + 1 [ ,  i.e. an activity which finishes at 
time t. 

We have thus derived that if j is delayed from ESj  ( a )  and the resulting schedule is 
active, then S j  = rcj ( S )  must equal some completion time t > t(a). Therefore we 
can conclude that ESj  ( r ( a ) )  must be greater than or equal to an earliest completion 
time greater than t ( a ) .  Of course, we need only consider activities that share a 
common resource with j. 

It is worth mentioning that the precedence constraints (i, j )  E & are always resolved 
if j has only incoming arcs with positive weight, i.e. if j E Vt"(a) .  
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At the root p Let p be the root of the search tree, and let Ail := [0, UB -pi] 
for all i E V. Then: 

A(p) := CP(A1). 

In node a Let a be a node of the search tree. Let A(a) = {A;(a) I i E V) 
be the set of current domains in a and j := act(a) the activity chosen in a. 

Branching to the left 1 (a) 
Let A1(a) := {A, (a), . . . , Ajl(a), . . . , A, (a)), where 

Ajl(a) := {t(a)). 

Then: A(l(a)) := CP(A1(a)). 

Branching to the right r (a) 
Let A1I(a) := {A1 (a) ,  . . . , Ajl'(a), . . . , An (a)}, where 

i Aj (a) n [t(a) + 1, w[ if there is an unresolved (i, j) E Imax A,"(a) := 
Aj  (a)  n [t+(a), w[ otherwise. 

Then: A(r(a)) := CP(A1I(a)). 

Figure 5.1 : The branching scheme 

Summary of the Branching Scheme 

We are now able to define the branching scheme recursively; this is done in Fig- 
ure 5.1. Recall that we only have to specify A(a), since this determines all other 
sets and values. 

The search tree is traversed in depth-first order until a leaf node is generated. This 
happens whenever ~ f '  (a )  = 0. This leaf node represents a solution, if VS (a) = V. 
Backtracking occurs when a leaf node is reached or when an inconsistency has been 
detected, i.e. when Ai (a)  has become empty for some activity i E V. 

The minimum possible depth of the tree is zero and is obtained if all activities are 
scheduled through constraint propagation at the root node. The maximum depth of 
the search tree that is possible in the worst case is reached when branching to the very 
right side of the tree in the following way. Starting at the root node, we can initially 
at most delay 1111 - 1 activities and must then schedule the remaining activity or 
backtracking would be initiated. Next we can, at most, branch IVI - 2 times to the 
right before branching a single time to the left. By continuing in this way, we may 
reach a theoretical worst case depth of 1/21Vl (lVI + 1). 
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The following theorem states that our time-oriented branching scheme is complete, 
i.e., that an optimal schedule is generated. As we have already discussed in Sec- 
tion 2.1.4, it is sufficient to prove that all active schedules can be generated. 

Theorem 8 (Completeness of Time-Oriented Branching). The time-oriented 
branching scheme generates all active sclzedules, i.e., if S is an active schedule, 
then the search tree contains a leaf node a in which all activities are scheduled and 
Si = &(a) for all i E V. 

Pro05 Let S be an active schedule. We will first prove the following assertion: if S 
is domain feasible in a, then S is domain feasible in either l(a) or r(a). 

Lemma 2 ensures that v f l ( a )  is not empty, so that there exists an activity j E vf' 
that is selected in a. Now, if Sj = ESj(a), then S is domain feasible with re- 
spect to A1(a) as defined in Figure 5.1. Constraint propagtion only removes val- 

' ues from current domains Ai not belonging to any schedule that is domain feasible 
with respect to A. This implies that S must be domain feasible with respect to 
A(1 (a) )  = CP(A1(a)). If Sj > ESj (a) ,  then a similar argumentation in combina- 
tion with Lemma 3 shows that S must be domain feasible with respect to A(r(a)). 

We can conclude, that there exists a path p, a1 , a2, . . . , along which S is domain 
feasible. Let lAl := CiEv lAil. Given the finiteness of the current domains, 
ca > lA(p) 1 > lA(al) 1 > IA(a2) 1 > . . . 2 n must hold. This implies, that S 
is domain feasible in some node am satisfying lA(am)l = n, i.e. Vs(am) = V. 
This completes the proof. 

5.3.2 Upper and Lower Bounds 

The makespan of an initial or improved schedule is, of course, used as upper bound 
UB. 

If A is a set of current domains then constraint propagation implies a lower bound 
of all domain feasible schedules in the following way. Let us assume that UB' 5 UB 
is a hypothetical upper bound. Setting A' := {Ai n [0, UB' - pi[ I i E V) we 

I can then apply constraint propagation and examine CP(A1). If CP(A1) yields an 
I inconsistency, i.e. an empty domain for some activity, then there cannot be a domain 

feasible solution with completion time less than UB', so we can deduce that UB1 in 
fact is a lower bound. The approach of computing lower bounds by repeatedly re- 
futing hypothetical upper bounds has been called destructive improvement by Klein 
and Scholl (1999a) who have successfully applied it to the problem PSlprec(C,,. 

It is possible to compute the best constraint propagation based lower bound through 
a bi-section search in the interval [0, . . . , LIB]. However, we only have to answer 
the following "yeslno" question: Is the lower bound less than the current best upper 
bound or not? This question is answered by applying constraint propagation to the 
set A, which is already a fixed component of the branching scheme, so that an explicit 
computation of lower bounds is not implemented in our algorithm. 
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5.3.3 Some Properties of Active Schedules 

This section describes some additional conditions and a simple left-shift test that 
aim at further reducing the search space by ruling out non-active schedules. We 
make use of an effect caused by the activity selection rule: The choice of an activity 
j E V f l ( a )  with minimal earliest start time, which, according to Equation (5.3), 
determines the schedule time t (a) ,  ensures that any time point smaller than t (a)  
does not have to be considered any more. 

Clearly, the selection rule implies that in any schedule S developed from a the con- 
dition S j  > t (a )  must hold for all j E V f '  (a) .  But there might be free and delayed 
activities j E V f  (a )  \ V f '  ( a )  for which ESj ( a )  < t (a)  and which could therefore 
possibly be scheduled at a time earlier than t (a) ,  either by the propagation algo- 
rithm or through an explicit start time assignment, once they have become selectable 
again. However, the following lemma states that this cannot happen if the resulting 
schedule is active. 

Lemma 4 (Start of Delayed Activities). Let a be a node of the search tree and let 
S  be an active schedule that is domain feasible in a. Then: 

Proof: The proof is quite similar to the proof of Lemma 2, so we will only briefly 
discuss the main differences. 

Suppose there is an activity j E V f  (a )  \ Vf '  (a)  that starts not later than t(a).  Then 
the set 

A := {i E v f  (a )  \ V f ' ( a )  I Si 5 t (a ) )  

is not empty, and we can always choose j E A so that its start time is minimal 
among all activities in A. A similar line of argumentation as in Lemma 2 shows that 
pcj ( S )  = pcj (a) .  
The fact that S j  2 ESj (a )  > rcj ( a )  then allows us to conclude that S j  > rcj (a):  
otherwise, if S j  = rcj (a )  then ESj (a )  = rcj (a )  and consequently j E V f '  (a) ,  
which yields a contradiction. 

Hence S j  = rcj ( S )  > rcj (a )  > pcj (a )  = pcj ( S )  holds. This means that there 
must be an activity i E V f  ( a )  that finishes at time S j  and consumes resources 
required by j, which implies that Si < S j .  Since Si > t (a )  for all i E V f '  (a )  we 
can conclude that i E V f  (a )  \ V f '  (a) .  But then i E A, which contradicts the fact 
that S j  is minimal among all j E A. 

We can directly use Lemma 4 to reduce the search space in the following way. At 
node a we additionally set 
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before applying constraint propagation. The start time adjustment can be further im- 
proved by applying a similar argument as in Lemma 3. Observe that the adjustment 
of the earliest start time will lead to an empty domain for all delayed activities i  
for which LSi 5 t ( a ) ,  i.e., for those activities which have been "needlessly" de- 
layed. Because the adjustment of a single start time requires constant effort, the total 
adjustment effort is O(1V 1 ) .  
Lemma 4 and the fact that Si 2 t ( a )  for all i E ~f ( a )  also imply the following 
result. 

Corollary 9 (Constant Slack to the Left of t(a)). Let a  be a node of the search 
tree; then the slack in any period t  < t(cu) does not change in descendant nodes of 
a  that lead to an active schedule. 

This allows us to apply a simple left-shift dominance test. If, for any free, timemax- 
unconstrained activity j  E Vtu(cu) with pj > 0, the condition rc j (a )  + pj 5 t ( a )  
holds, i.e., if j can resource and precedence-feasibly be scheduled so that it finishes 
not later than at time t ( a ) ,  then node a cannot lead to an active schedule. While 
it is possible to formulate more powerful left-shift conditions that consider sets of 
activities rather than just a single activity (Schwindt 1998b), the advantage of the 
test described here is that it can be easily evaluated. The effort for the left-shift 
dominance test for all free, timemax-unconstrained activities is O(IVI2) since rcj 
must be calculated for every activity in Vt" (a).  

The fact that the slack to the left of t ( a )  remains constant can be exploited further. 
Let j  be an activity scheduled at node a at time t ( a ) .  If rc j (a )  < t ( a ) ,  then suffi- 
cient slack and the temporal constraints involving the currently scheduled activities 
admit a left-shift of j. Hence, a resulting schedule S can only be active if a tempo- 
ral constraint involving a currently unscheduled activity prevents this left-shift. This 
means that the following condition must hold in order for S to be active: 

We add a corresponding constraint that takes part in the propagation mechanism. 
The consistency test for this constraint works in the following way. If no temporal 
constraint can satisfy this condition, then the node is fathomed. Otherwise, if only 
one single temporal constraint (i, j )  can satisfy the condition, then the domain of 
activity i  can be adjusted. 

The effort required to test whether the constraint may be added is dominated by 
. the calculation of rcj. The constraint is a disjunction over the temporal constraints 

lnce a con- with O(IV1) possible predecessors and can be defined in time O(V1). S' 
straint of this type can be added whenever an activity is scheduled, there may be 
O(IV1) of these constraints. The constraints may thus cause 0(1VI2 d)  enqueueing 
and dequeueing operations in the constraint propagation algorithm. The correspond- 
ing consistency test can be performed with effort O(IV1). The overall worst case 
propagation effort caused by this constraint and test is therefore O(IVI3 d). Again, 
if the number of predecessors of an activity is small as in typical project scheduling 
problems, then the average effort is lower. 
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5.4 Computational Experiments 

5.4.1 Implementation of the Algorithm 

The branch-and-bound algorithm has been implemented in C++ using the constraint 
programming libraries ILOG SOLVER and ILOG SCHEDULER which support the im- 
plementation of tree search algorithms that apply constraint propagation at the nodes 
of the tree (Le Pape 1994b). The basic propagation algorithm used in SOLVER is a 
variant of the AC-5 arc consistency algorithm of Van Hentenryck et al. (1992). 

The most important features of the SOLVER library are (1) fundamental data types 
such as integer domain variables, (2) generic constraints upon these variables to- 
gether with corresponding domain reduction rules, e.g., linear constraints on integer 
domain variables, (3) the propagation algorithm, (4) classes for defining a search 
(branching) scheme, and (5) support for reversible actions that are automatically un- 
done upon backtracking, for instance the definition and propagation of constraints. 
Based upon the generic data types and algorithms found in SOLVER', the SCHED- 
ULER library provides an object model and algorithms that facilitate the development 
of scheduling applications. For instance, SCHEDULER includes classes for represent- 
ing activities and resources as well as associated constraints such as precedence or 
resource constraints. 

Besides the support for implementing backtracking algorithms and the generic prop- 
agation mechanism, we have used the following features of the libraries. The de- 
cision variables Si are represented as integer domain variables. The temporal con- 
straints and the corresponding Consistency Test 1 are realised through the built-in 
linear constraints provided by SOLVER. The resource constraints and the Unit- 
Interval Consistency Test 8 are provided by SCHEDULER. For the administration 
of the temporal and resource constraints we have used the activity and resource 
classes of SCHEDULER. Consistency Test 3 for pairs of activities is implemented 
as a generic disjunctive SOLVER constraint; a general version of the test for sets of 
more than two activities is provided by SCHEDULER. 

The logic of the branch-and-bound algorithm, the other consistency tests and the 
additional node fathoming rules described in Section 5.3 have been hand coded. By 
using the SOLVER search tree classes, the amount of code required for the branching 
and backtracking part has been kept low. 

All results reported for our algorithm in the following tables have been obtained on 
a Pentium Pro/200 PC with NT 4.0 as operating system. 

5.4.2 Bidirectional Planning 

When trying to solve a given problem instance, we apply our algorithm in forward 
and backward direction (bidirectionalplanning). A problem can be solved in back- 
ward fashion by simply reversing the project network and applying the algorithm to 
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the resulting mirror-network (for a discussion of backward and bidirectional plan- 
ning for a related scheduling problem see Klein 2000a). 

While no scheduling direction is uniformly superior for all test problems, some in- 
stances are easier to solve in one direction than in the other. Intuitively, a branch- 
and-bound algorithm works best if the difficult part of the problem, or bottleneck, is 

I handled at beginning of the search, since otherwise a solution for the difficult sub- ' problem has to be rediscovered many times in different branches of the search tree. 
This means that if the bottleneck is towards the beginning of the project then forward 
planning is advantageous; otherwise, if the bottleneck is at the end then backward 
planning works best. 

Because it is hard to predict the location of the bottleneck to chose a favourable 
planning direction, we simply proceed as follows. We allocate half of the run-time 
to solve the problem in forward direction; if the problem remains open after this time 
then we apply the algorithm to the mirror problem, now using the makespan of the 
best schedule found so far, if any, as initial upper bound. 

5.4.3 Characteristics of the Test Sets 

We have tested the algorithm on several large sets of benchmark problems that were 
systematically generated with the problem generators ProGen (Kolisch et al. 1995) 
and ProGenImax (Schwindt 1996), which allow to specify several control param- 
eters that characterise a resulting problem instance. The test sets are collected in 
the project scheduling problem library PSPLIB (Kolisch and Sprecher 1996, Kolisch 

' et al. 1999). All test sets have also been used in other recent studies so that it is 
possible to compare the effectiveness and efficiency of different algorithms. For a 

' discussion of the relative advantages of the systematic, generator based approach 
and of other approaches for generating or collecting project scheduling benchmark 
instances we refer to Schirmer (1999, Chapter 3). 

Previous studies (see e.g. Kolisch et al. 1995, Schwindt 1998b) have concluded that 
the difficulty of a problem instance is most strongly influenced by (1) the project 
network, (2) the structure of the resource demand and (3) the level of resource sup- 
ply. These characteristics are measured by the following variables that are used as 
problem generator parameters: 

The network complexity'c 2 1 used by ProGen indicates the average number 
of immediate successors of an activity and is a measure of the complexity of 

I the precedence constraints. The network complexity has the disadvantage of 
I 

not being normalized and it has been empirically shown to have little influence 
on the difficulty of instances of the problem PSlpreclC,,, (Kolisch et al. 1995). 

The newer problem generator ProGenImax uses a control variable called the 
network restrictiveness RT E [0, 11. The restrictiveness of a network is a 
measure of the number of strict orderings of the nodes or activities that are 
compatible with the partial order induced by the precedence constraints. A 
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parallel network has a restriveness of zero, and a series network has a restric- 
tiveness of 1. The higher the restrictiveness, the fewer linear orderings of the 
activities are feasible and the smaller the solution space becomes, leading to 
easier problem instances. As the calculation of the exact restrictiveness of a 
project network is NP-hard ,Thesen (1977) has proposed an approximation 
for the restrictiveness. 

The resource factor R F  E [ O , l ]  (Pascoe 1966) indicates the average percent- 
age of resources required to process an activity. Formally, the resource factor 
with respect to resource k E R is 

R F  is the average over all RFk, for k E R. It takes a value of 1 if every activ- 
ity requires every resource. The higher the resource factor, the more difficult a 
problem instance becomes. 

The resource strength RS E [ O , l ]  (Kolisch et al. 1995) describes the aver- 
age tightness of the resource constraints. Formally, the resource strength for 
resource k E R is 

where RFin := rnaxi~v rik is the minimal resource capacity required for 
performing the project; Rrax is the smallest capacity of resource k for which 
the earliest start schedule for the resource relaxation of the problem becomes 
resource feasible with respect to k. RS is the average over all RSk, for k E R. 

A resource strength of 0 indicates maximal tightness, which results from the 
minimal feasible resource availability, i.e., a supply equal to the maximum 
requirement of any single activity. For a resource strength of 1, the earliest 
start schedule does not contain any resource conflicts and the problem becomes 
easy. 

The complexity measures described above are used to control the problem instance 
generators that were employed to create the test sets used in this study. Additionally, 
the generation of instances of the problem PSItemplC,,,, can also be influenced by 
specifying the desired number of cycle structures in the precedence constraints and 
detailed characteristics of these cycle structures, e.g. their tightness (Schwindt 1996). 

Baptiste et al. (1999) have proposed another complexity measure, the disjunction 
ratio, which is the ratio between a lower bound on the number of activity pairs that 
cannot be processed in parallel and the overall number of activity pairs. A simple 
lower bound is obtained by considering all activity pairs, for which either the transi- 
tive time lags or the resource constraints forbid a parallel execution. Baptiste et al. 
(1999) conclude that for problem instances with a high disjunction ratio disjunctive 
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Test Size Fixed parameters Variable parameters 
set /It) PI pi Ti k Cycles RT RF RS 
A 1080a 100 5 {5 ... 15) {I ... 5) [2,5] 0.35 0.50 0.2 

[6,9] 0.50 0.75 0.5 
0.65 1.00 0.7 

B 120' 500 5 (1 ... 10) (1. .. 10) [2,21] 0.25 0.50 0.25 
0.50 0.75 0.50 

1 .oo 

"Only 1059 of the 1080 problem instances have a feasible solution. 
'only 119 of the 120 problem instances have a feasible solution. 

Table 5.1: Characteristics of the test sets for the problem PSltemplC,, 

constraint propagation techniques are most appropriate, while cumulative constraint 
propagation techniques are most likely to be successful for highly cumulative in- 
stances with a low disjunction ratio. 

5.4.4 Experiments for the Problem PS 1 temp1 C,,, 

Test Data 

We have tested the algorithm on two large sets of benchmark problems that were 
systematically generated by Schwindt (1998b) using the problem generator Pro- 
GeniMax (Schwindt 1996). The test sets are collected in the project scheduling 
problem library PSPLIB (Kolisch et al. 1999). The major characteristics of the test 
sets are shown in Table 5.1. A detailed description of the characteristics is given by 
Schwindt (l998b). 

Test Set A contains 1080 problems with 100 activities, not including the fictitious 
start and end activities. Each activity requires up to 5 resources; the processing times 
pi and the resource requirements rik are randomly chosen from the sets (5. . .15) 
and (1.  . .5), respectively. For each combination of values for the control param- 
eters "Cycles", RT, RF, and RS, that are shown on the right side of table, ten 
instances have been generated, leading to a total of 1080 instances. Only 1059 prob- 
lem instances have a feasible solution. 

Test Set B consists of 120 problem instances with 500 activities; 119 of these prob- 
lems have a feasible solution. 
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Version of the algorithm t,, Feasible Optimal Infeasibility D ~ v . ~ ~  
proven 

NO. B~ D~ A' B P ~  (set) (%) (%) (%I (%> 
I - - - -  3 91.1 55.9 0.0 5.7 

"Branching: + indicates that vf' and t+(a) are defined as in Section 5.3.1; otherwise ~ f '  := v f  

and t+(a) := t (a )  + 1. 
b~isjunctive consistency tests: + indicates use of Consistency Tests 2 and 3 for activity pairs. 
'Active schedules: + indicates use of the tests and conditions described in Section 5.3.3. 
d~idirectional planning. 
eCorresponding to 100% of the problems that have a feasible solution. 

Table 5.2: Impact of different modules of the algorithm for 1080 problems with 100 
activities 
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Impact of Different Modules of the Algorithm 

Table 5.2 shows the impact of the different modules of our algorithm for the test 
set of 1080 problems with 100 activities. For a given algorithm version, which is 
characterised by the presence or absence of the modules, and a given run time limit 
t,,, the table shows the percentage of problems for which (1) a feasible solution 
could be found, (2) an optimal solution was found and verified, (3) infeasibility was 
proven, and (4) the average deviation D ~ V . ~ ~  from the lower bounds calculated in the 
study of Schwindt (1998b). Except for the D ~ v . ~ ~  values, all percentages are given 
with respect to the total number of 1080 problems. For comparison purposes, the 
percentages for the average deviation from the lower bound are given with respect 
to the number of problems solved to feasibility, including the number of instances 
solved to optimalityl. 

The first five columns of the table characterise different versions of the algorithm; in 
addition to a reference number they show whether a particular module has been used 
(+) or omitted (-) in a version. To keep the size of the table within reasonable limits 
we have grouped related features of the algorithm into modules and present data for 
several interesting module combinations. 

Rows 1 and 9 of the table show the results obtained for the minimal version of our 
algorithm in which only the precedence and the unit interval consistency tests are ap- 
plied within the constraint propagation algorithm. Observe that these test are always 
required as they are the only means by which the algorithm will obey the temporal 
and resource constraints. In the minimal version, we use a very basic activity selec- 
tion rule where any free activity is selectable, i.e., we set vf' := vf, and the simple 
delaying strategy of always postponing an activity by a single time unit, i.e., we set 
t+(cr) := t (a)  + 1. The advanced activity selection and delaying rules described 
in Sections 5.3.1 and 5.3.1 are referred to as the branching module which is shown 
as column B. The minimal version does not use the disjunctive Consistency Tests 3 
and 2 (column D), it does not apply the tests and conditions for active schedules 
described in Section 5.3.3 (column A), and it does not use bidirectional planning 
(column BP). Row 1 of the table shows that, within a time limit of 3 seconds, the 
minimal algorithm solves 91.1% of the problems to feasibility and 55.9% to opti- 
mality; it cannot prove the infeasibility of any of the 21 infeasible problems, and the 
average deviation from the lower bound is 5.7%. As Row 9 shows, these results are 
hardly improved within the tenfold run time. 

The minimal version is then improved by activating the advanced branching module; 
the results are shown in Row 2 (10). Rows 3 (11) and 4 (12) show the effect of 
adding the disjunctive Consistency Tests 3 and 2 for activity pairs and the active 
schedule dominance rules described in Section 5.3.3. When the disjunctive tests are 

'The deviation of aproblem instance with (possibly optimal) upper bound UBi and lower bound LBi is 
(UBi - LBi)/LBi. This means that problems that were solved to optimality but where the lower bound is 
not tight have a positive deviation and that the lowest possible DeuLB value is therefore greater than zero. 
The average deviations are approximately 0.1 percentage points smaller if the deviation of an instance 
solved to optimality is always set to zero. 
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used infeasibility can be proven at the root node for 20 of the 21 infeasible instances. 
Row 5 (13) shows the impact of applying the full algorithm bidirectionally, i.e., to the 
original problem and to the mirror problem. The table shows that the more advanced 
versions of the algorithm solve more problems to feasibility and optimality than their 
simpler counterparts while at the same time achieving a smaller average deviation 
from the lower bound. 

Row 6 (14) shows the results for the minimal version of the algorithm with bidirec- 
tional planning. For the smaller time limit, the improvement with respect to Version 
1 is comparable to the effect obtained by the advanced branching module shown in 
Row 2. However, Row 14 shows that in contrast to the other modules bidirectional 
planning alone does hardly lead to further improvements within the higher run time. 
By comparing Rows 7 and 8 (15 and 16) to Rows 2 and 3 (10 and 11) we can see 
that the combination of bidirectional planning and the other modules has a positive 
effect. It is interesting to note that in contrast to the minimal version with or without 
bidirectional planning the higher run time always leads to improved results and that 
all modules contribute to the improvements. 

Comparison to Other Branch-and-Bound Algorithms 

Table 5.3 compares the results obtained with our algorithm for the test set of 1080 
problems with 100 activities to those of the three most recent other exact solution 
approaches by - in historical order - De Reyck and Herroelen (1998), Schwindt 
(1998a, and personal communication), and Fest et al. (1999, and personal commu- 
nication), who have all used the same test set. De Reyck et al. (1999) describe 
a newer version of the procedure of De Reyck and Herroelen; the improvements 
mainly concern a different conflict detection and resolution mechanism (the conflicts 
are resolved in a different, more effective, sequence) as well as more efficient cod- 
ing, which has led to slightly improved results (personal communication De Reyck 
1999); however, as test data for this new version for Schwindt's benchmark problem 
set is not available, Table 5.3 shows the results published in De Reyck and Herroelen 
(1998). For run time limits t,,, of 3,30,100, and 1000 seconds, including a scaling 
factor to account for different hardware, the table shows the percentage of problems 
for which (1) a feasible solution could be found, (2) an optimal solution was found 
and verified, (3) infeasibility was proven, and (4) the average deviation Dev.LB from 
the lower bounds calculated in the study of Schwindt (1998b). Dashes indicate that 
the corresponding information is not available. 

For comparison purposes the Dev.LB values for our algorithm and for the algorithms 
of Fest et al. (1999) and Schwindt (1998b) were all calculated in the way described 
above using the lower bounds of Schwindt2. As the deviations reported by De Reyck 

2 ~ n  contrast to the values shown for our algorithm and the procedure of Schwindt, the values shown 
for the algorithm of Fest et al. have been calculated by setting the deviation of a problem instance solved 
to optimality to zero, leading to a slightly more favourable average value. However, in our experience the 
resulting difference is usually less than 0.1 percentage points and thus negligible. 
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Procedure t,,, Feasible Optimal Infeasibility D ~ V . ~ ~  
proven 

~ e s t ,  Mohring, Stork & Uetz 3 92.2 58.1 1.9 10.9 
I 30 98.1" 69.4 1.9 7.7 
I ~ 100 98.1" 71.1 1.9 7.0 

1000 98.1" 73.3 1.9 6.1 

Schwindt 

De Reyck & Herroelen 3b 97.3 54.8 1.4 - C 
30b 97.5 56.4 1.4 C - 

loob - - - - 
1000~ - - - - 

"Corresponding to 100% of the problems that have a feasible solution. 

I 
h~orresponding to 60/200 of the real computation time. 
'Published values are based on different lower bounds than values for the other procedures. 

1 Table 5.3: Results of exact algorithms for 1080 problems with 100 activities 

and Herroelen (1998) are based on different, possibly weaker bounds, the corre- 
sponding fields are left empty. 

The results of De Reyck and Herroelen have been obtained on a Pentiud60 PC; the 
run time limits used in their study were 1, 10, and 100 seconds. Schwindt has used 
a Pentiuml200 PC and Fest et al. have used a Sun Ultra with 200 MHz clock pulse. 
As mentioned above, our results have been obtained on a Pentium Pro1200 PC. For 
%omparison purposes the run time limits for all procedures but the one of De Reyck 
and Herroelen were set to 3, 30, 100, and 1000 seconds, thus reflecting the clock 
bulse ratio. 

For time limits less than 100 seconds, the time-oriented algorithm applies the dis- 
junctive consistency test 3 for activity pairs only. For the large time limit of 1000 
seconds, the test is applied in its full form for all disjunctive sub-problems that are 
selected as described in Section 4.4. 
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The table shows that the time-oriented branch-and-bound algorithm solves more 
problems to optimality than the other procedures. With respect to this criterion, the 
results obtained within 3 seconds are already better than the results obtained with the 
procedures of Schwindt (1998a) or De Reyck and Herroelen (1998) within the max- 
imum allowed time. Within a limit of 30 seconds, a feasible solution for all 1059 
problems that can be feasibly solved is found; only Schwindt's algorithm, which 
applies a cycle structure based decomposition heuristic at the root node for finding 
initial upper bounds, finds a feasible solution for all problems within 3 seconds and 
does better on this criterion. 

The interpretation of the average deviation from the lower bound ( D ~ V . ~ )  can be 
problematic since this value depends on the individual problems that are solved to 
feasibility as well as on the lower bounds used for calculating Dev.LB. Strictly speak- 
ing, two Dev.LB values can only be compared if they are both based on the same 
bounds and on the same subset of problems that were solved feasibly; in our ex- 
perience, the problems for which it is difficult to find a feasible solution tend to 
increase DeV.LB. The values shown for the first three algorithms are a11 based 
on Schwindt's lower bounds, and the values shown for time limits of 30 seconds 
or more are based upon all instances that have a feasible solution. Table 5.3 shows 
that the average lower bound deviation of the solutions found by the time-oriented 
algorithm is significantly lower than that of the procedures of Fest et al. (1999) and 
Schwindt (1998a). 

Because our algorithm does not use explicit lower bounds, we were interested in the 
possible improvement that could be achieved by adding such bounds. To partially 
answer this question we have used the lower bounds of Schwindt and have examined 
those test problems for which our algorithm could find a solution matching a lower 
bound without being able to prove optimality within the time limit. We found that for 
one of the 1080 test problems our algorithm finds a solution matching a lower bound 
but cannot prove optimality within 3 seconds. Within 30 seconds, this solution is 
proven to be optimal, and for another problem a solution matching a lower bound 
is found without proof of optimality; this problem remains open after 100 seconds. 
This means that the results of our algorithm could only be marginally improved by 
using these lower bounds. Data concerning the tightness of the lower bounds can be 
found in Table 5.4. 

Comparison to Heuristics 

Table 5.4 compares our algorithm to the best heuristic results reported for the same 
problem set, this time using only the 1059 solvable instances. In addition to the 
columns shown in the previous tables, column "taUg" shows the average required 
run time, and column "C,,, = LB" contains the percentage of problems for which 
a solution with a value matching a lower bound was found. The results for our algo- 
rithm are identical to those shown in the corresponding rows in Tables 5.2 and 5.3, 
except that all percentages in the columns "feasible", "optimal", and "C,, = L B  
are now given with respect to the 1059 solvable problems. Again, all values re- 
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Procedure t,,, t,,, Feasible Optimal C,, = LB D ~ v . ~ ~  

Franck & Neumann 
Direct - 0.5 99.4 - 56.8 7.7 
Contraction - 1.3 100.0 - 42.5 9.4 

Franck & Selle 
GAprec - 16.0" 100.0 - 59.9 5.3 
GAvar, - 16.0" 81.1 - 61.0 2.0 
Tabu Search - 16.6" 100.0 - 56.0 5.8 
Simulated Annealing - 10.4" 100.0 - 59.5 5.7 

"Corresponding to 2661200 of the real computation time. 

Table 5.4: Comparison of heuristics for 1059 of the 1080 problems with 100 activi- 
ties 

garding lower bounds shown in the table are based on the bounds of Schwindt. As 
mentioned above, the time-oriented algorithm has been tested on a Pentium Pro1200 
PC; the algorithms of Franck and Neumann (1 998) have been run on a Pentiud200 
PC, and Franck and Selle (1998) have used a Pentiud266 PC. As before, we have 
scaled the run times according to the clock pulse. 

The results of Franck and Neumann (1998) have been obtained by applying a combi- 
nation of serial and parallel list scheduling algorithms using several different prior- 
ity rules; the algorithms include limited backtracking capabilities. The basic idea 
behind the direct and the contraction method is to give preferential treatment to 
activities which are on cycle structures induced by the temporal constraints. The 
two approaches differ in the specific way in which they handle cycle structures; the 
contraction heuristic initially solves subproblems defined by the activities and cor- 
responding precedence constraints on the same cycle structure and then integrates 
these solutions in a complete schedule. The results of Franck and Neumann greatly 
improve upon the results reported by Schwindt (1998b) for the older priority rule 
based heuristics of Zhan (1994) (see also Neumann and Zhan 1995) and Brinkmann 
(1992) (see also Brinkmann and Neumann 1996), which can solve approximately 
98% of the problems with an average deviation from the lower bound of roughly 
80%. This indicates the progress that has been made in this area in the past years. 

I 

i~ranck and Selle (1998) have improved these results by embedding a variant of the 
direct method in four meta-heuristics, specifically in two genetic algorithms (GA) 
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based on two different solution encodings and in a tabu search and simulated anneal- 
ing framework. The meta-heuristics all manipulate the order in which activities are 
scheduled by the list scheduling algorithm, which thus serves for evaluating (neigh- 
bouring) solutions. The table shows that, at the cost of an increased average run 
time, the meta-heuristics solve more problems to optimality than the priority rule 
based methods and achieve a significantly smaller average deviation from the lower 
bound. The low average deviation from the lower bound shown for the second ge- 
netic algorithm is probably caused by the fact that this procedure reaches the smallest 
number of feasible solutions; this conjecture is supported by the observation that the 
8 1.1 % of the problems with lowest individual deviation that are found by our algo- 
rithm within a maximum time of 3 seconds have an average deviation of 0.9%. 

Other heuristics have been developed by Schwindt (1998b) based upon truncated 
versions of his branch-and-bound algorithm. However, since the newer version of 
his exact algorithm (Schwindt 1998a), whose results are cited in Table 5.3, improves 
upon the results of these heuristics, we do not present them in Table 5.4. Of course, 
the results of any exact method shown in Table 5.3 may also be compared to the data 
in Table 5.4. 

When comparing the time-oriented algorithm to the priority rule based heuristics 
of Franck and Neumann we can observe that for average run times in the order of 
magnitude of one second the algorithm finds more solutions matching a lower bound 
while achieving a very small average deviation. However, the contraction method 
is faster at finding feasible solutions for all problems. It can also be seen that for 
average times in the order of magnitude of 10 seconds the time-oriented algorithm 
performs better with respect to all criteria shown in the table than any of the meta- 
heuristics that can solve all problems. 

Influence of Problem Characteristics 

Table 5.5 shows the influence of the resource strength RS, the resource factor RF, 
the network restrictiveness RT, and the number of cycle structures on the difficulty 
of the 1080 problem instances with 100 activities. The table shows the percentage 
of problems with a given characteristic that could be solved to optimality and the 
average deviation from the lower bounds of Schwindt (1998b). For example, line 
three shows that 99.7% of the problems with a resource strength of 0.7 could be 
solved to optimality with an average deviation from the lower bounds of 0.1%. 

The table shows that the resource strength has the strongest influence on the diffi- 
culty of the problems. The hardest problems occur when a low resource strength is 
combined with a high resource factor. The influence of the given variation of the 
network restrictiveness and the number of cycles in the network appears to be weak. 
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Parameter Value Optimala Dev. LB a 

Cycles [2,5] 74.6 4.2 

[6,91 72.4 4.8 

"Within a time limit of 100 seconds. 
"~roblems were generated with the target restrictiveness values shown in Table 5.1, but the actual 

values may vary from the target values. 

Table 5.5: Influence of problem characteristics for the problem PSItempIC,,, for test 
set A 
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Procedure t,, t,,, Feasible Optimal C,,, = LB Dev.LB 
(sec) (sec) (%) (%) (%I (%I 

Time-oriented B&B 200 98 97.5 71.4 61.3 0.5 
1000 306 99.2 77.3 61.3 0.5 

Fest, Mohring, 
Stork & Uetz 200 - 100.0 58.8 - 5.2 

1000 - 100.0 58.8 - 3.8 

Franck & Neumann 
Direct - 56 84.9 - 40.3 1.2 
Contraction - 18 100.0 - 5.0 5.1 

Neumann & Zimmermann 
Filtered Beam Search - 14 80 - 62 0.1 
Decomposition 200 51 100 - 6 5.0 

Table 5.6: Results for 119 of 120 large problems with 500 activities 

Results for Large Problems 

To demonstrate the scalability of our algorithm, Table 5.6 presents results for the sec- 
ond test set of 120 problem instances with 500 activities. For comparison, the table 
also shows the results reported by Fest et al. (1999), the only other exact procedure 
for which results have been published for this test set. The table also contains the 
results obtained by Franck and Neumann (1998) for their priority rule based heuris- 
tics, and by Neumann and Zimmermann (1999) for the two branch-and-bound based 
heuristics that they found most effective for this test set in terms of the criteria re- 
ported in Table 5.6. The latter heuristics are based on the algorithm of Schwindt 
(1998b). Similar to the priority rule based contraction method, the decomposition 
heuristic initially solves subproblems corresponding to the cycle structures. All per- 
centages except for those in the Dev.LB column are based only on the 119 problem 
instances that have a feasible solution. Again, the lower bounds used for calculat- 
ing the average lower bound deviation have been found in the study of Schwindt 
(1998b). The results of Neumann and Zimmermann as well as those of Franck and 
Neumann have been obtained on Pentiud200 PCs. 

The results in Table 5.6 show that our algorithm scales quite well. Within 200 sec- 
onds, the algorithm solves 71.4% of the problems to optimality and leaves only 3 
of the 119 feasible problems unsolved; the infeasibility of the remaining problem is 
proven at the root node. For a time limit of 1000 seconds, 118 of the 119 problems 
that have a feasible solution are solved to feasibility and 92 instances or 77.3% to 
optimality; the time-oriented algorithm also achieves a very small average deviation 
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Table 5.7: Characteristics of the test sets for the problem PSJpreclC,, 

from the lower bound. The table shows that those procedures which can also solve 
the remaining problem(s) left open by the time-oriented algorithm can only do so at 
the price of a significantly lower solution quality, as indicated by the D ~ v . ~ ~  values. 
The number of problems solved to optimality within the maximum allowed time is 
18.5 percentage points, corresponding to 22 problems, higher than for the algorithm 
of Fest et al. 

5.4.5 Experiments for the Problem PS lprecl C,, 

Test Data 

We have tested the algorithm on four standard sets of benchmark instances of the 
problem PSlpreclC,,,, that were systematically generated with the problem generator 
ProGen (Kolisch et al. 1995). 

Table 5.7 shows the detailed characteristics of the test sets. The number of activities, 
JVI, does not include the fictitious start and end activities. All processing times 
and resource requirements were randomly drawn from the set (1, . . . , l o ) .  The first 
three test sets with 30, 60, and 90 activities per problem contain ten instances for 
each combination of the three control parameter values shown in the three right- 
most columns and four top-most rows of the table, leading to a total number of 
480 instances. The last test set, which contains problems with 120 activities, has 
been generated with different, more difficult resource strength values; again, the 
set contains 10 problem instances for each combination of the variable parameters 
shown in the last 5 rows of the table, resulting in a total number of 600 problems. 
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Procedure t ,ax twg Optimal Dev. opt 

avg. max 
(set) fsec) (%I (%I (%I 

Time-oriented B&B 
1 0.3 80.2 0.57 10.9 

10 1.6 88.3 0.19 8.9 
60 6.0 92.7 0.10 6.0 

300 19.4 95.4 0.05 6.0 
1800 66.4 97.3 0.03 4.5 

Table 5.8: Results for 480 problems with 30 activities (test set j30) 

Results 

Table 5.8 shows the results obtained with the time-oriented branch-and-bound algo- 
rithm for the smallest test set with 30 activities per problem. For a given run time 
limit tmaX the table shows the average run time t,,, the percentage of problems 
solved to optimality within the time limit, and the remaining average and maximum 
deviation from the optimal solution (all optimal solutions for this test set are known). 
For example, the table shows that within a time limit of 300 seconds 95.4 % or 458 
problem instances can be solved to optimality within an average run time of 19.4 sec- 
onds and a remaining average deviation from the optimal solution of 0.05 %. Within 
the maximum allowed run time of 1800 seconds, 97.3 % of the problems are solved. 
We found that the difficulty of the problem instances for the time-oriented algo- 
rithm strongly depends on the resource strength. While all instances with a resource 
strength greater than 0.2 can be solved within less than 10 seconds, the problems 
with a resource strength of 0.2 are considerably more difficult. 

We must mention that the currently most effective algorithms for this problem set, 
which have been developed by Klein and Scholl(1999b), Demeulemeester and Her- 
roelen (1997b), Sprecher (2000) and Mingozzi et al. (1998), perform better on this 
problem set and can solve more instances within shorter time. For example, Klein 
(2000b) reports that the scatter search algorithm of Klein and Scholl can solve all 
problems within a maximum time of 361 seconds on a Pentiumfl66 computer. 

Table 5.9 shows the results of our algorithm for the larger test set with 60 activities 
per problem instance and compares them to the results of the procedures of Brucker 
et al. (1998), Sprecher (2000), and Klein and Scholl(1999b), which have been tested 
on the same problem set. The table shows the algorithms in inverse historical order. 
For a given time limit, the table presents the average run time, the percentage of 
problems solved to optimality, and the average and maximum deviations from sev- 
eral lower bounds as well as the average deviation from the best known solutions 
collected in the corresponding benchmark file of the project scheduling problem li- 
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brary PSPLIB. Dashes indicate that the corresponding information was not avail- 
' able. When comparing the results of different algorithms, the different computer 
platforms, which are described in the table footnotes, must be taken into account; 
observe that we have not scaled the run time values. 

The development of tight lower bounds for the problem PSlpreclC,, is an area of 
1 active research (see e.g. Klein and Scholl 1999a, Brucker and Knust 1999, Mohring 
et al. 1998, Heilmann and Schwindt 1997). In Table 5.9 and in the following ta- 
bles we show the deviations of our algorithm with respect to the best lower bounds 
that are currently available in the corresponding PSPLIB benchmark files. A com- 
parison of the performance of different algorithms with respect to deviations from 
lower bounds is, of course, only meaningful if the deviations are based on the same 
bounds. Table 5.9 and Table 5.10 below therefore also include deviations from the 
lower bounds of Brucker et al. (1998), which have been used in the other studies. 
For easy reproducibility we also give the deviations with respect to the precedence 
based lower bound LBO which corresponds to the optimal solution of the resource 
relaxation of the problem. 

Table 5.9 shows that the time-oriented algorithm is competitive with the other pro- 
cedures and that, for small run times, it achieves the highest percentage of optimally 
solved problems. For large run times, the algorithm of Klein and Scholl seems to 
perform slightly better than our algorithm. 

Table 5.10 compares the results of the time-oriented algorithm for the test set j90 
to those of the procedure of Sprecher (2000), which is the only algorithm for which 
results on this test set have been published. The format of the table is the same as in 
Table 5.9. 

Table 5.1 1 shows the results of our algorithm for the largest test set with 120 ac- 
tivities per problem instance. Recall that this problem set has been generated with 
more difficult resource strength values than the three smaller sets. As we will see in 
Table 5.12 below, this appears to be the main reason for the strong decrease in the 
percentage of problems solved to optimality when compared to the smaller test sets. 
We can also observe that the average deviations from the lower bounds are roughly 
three times as high as for the smaller and easier test sets with 60 and 90 activities 
per instance. As before, the percentage of problems solved to optimality grows only 
slowly when the run time is increased. 

Data on the performance of other exact procedures for this problem set has not been 
published. We have compared our results with respect to the average deviation from 
the precedence based lower bound LBO to that of several state of the art heuristics 
reported by Kolisch and Hartmann (1999), who have analysed the performance of 
eight heuristics within a maximum number of 1000 and 5000 iterations; an iteration 
corresponds to the application of a serial or parallel schedule generation scheme. 
The minimal deviation obtained by the best heuristic within 1000 iterations is 39.4 
%. Within the maximum number of iterations, only the best of the eight heuristics, 
the genetic algorithm of Hartmann (1998), achieves a lower deviation (36.7 %) than 
our algorithm within the maximum allowed time. 
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Procedure tm, tWg Opt. D ~ v . L B ~  D~V.LB Dev.~& D ~ V . U B ~  
avg. max avg. max avg. avg. 

10 
60 

300 
1800 

Klein and 
Scholle 10 

60 
300 

1800 
3600 

~ ~ r e c h e r f  300 88.1 72.7 - - 5.7 45.8 13.6 - 
1800 472.7 75.8 - - 5.3 40.7 13.0 - 

Brucker 
et a l . V 6 0 0  - 67.9 - - 4.8 30.8 - - 

RBased on the best known lower bounds collected in the PSPLIB. 
h ~ a s e d  on the lower bounds of Bmcker et al. (1998). 
CBased on the best known solutions collected in the PSPLIB. 
d~mpl. in C++, results obtained on Pentium Pro1200 with Windows NT. 
eImpl. in C u ,  results obtained on Pentiudl66 with Windows 95. 
.flmpl. in C++, results obtained on Pentiudl66 with Linux. 
gImpl. in C, results obtained on SUNISparc 201801 (80 MHz) with Solaris 2.5. 

Table 5.9: Results of exact algorithms for 480 problems with 60 activities (test set 
j60) 
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Procedure t,, tWg Opt. D e v . ~ ~ ~  Dev. LB Dev. Dev. .yBC 

avg. max avg. max avg. avg. 

Sprecherf 300 120.3 61.5 - - 8.3 58.7 15.7 - 

OBased on the best known lower bounds collected in the PSPLIB. 
' ~ased  on the lower bounds of Brucker et al. (1998). 
CBased on the best known solutions collected in the PSPLIB. 
d~mpl. in C++, results obtained on Pentium Pro1200 with Windows NT. 
eBased only on forward planning. 
f~mpl. in C++, rasults obtained on Pentiudl66 with Linux. 

Table 5.10: Results of exact algorithms for 480 problems with 90 activities (test set 
~ 9 0 )  

Procedure t,, tmg Optimal D ~ v . L B ~  Dev.LB, Dev..y~' 
avg. rnax avg. avg. 

(sec) (see) (%) (%) (%) (%) (%) 
Time-oriented B&B 10 7.4 31.0 9.9 40.6 38.0 3.6 

RBased on the best known solutions collected in the PSPLIB benchmark file. 
"ased on the best known lower bounds collected in the PSPLIB benchmark file. 

Table 5.1 1 : Results for 600 problems with 120 activities (test set j 120) 
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Param. Value Optimala D~V.LB 
j30 j60 j90 j120 j30 j60 j90 j120 

(%I (%I (%I (%I (%I (%I (%I (%I 
RS 0.1 - - - 2.5 - - - 19.9 

0.2 81.7 30.8 20.0 9.2 0.2 11.6 14.0 13.4 
0.3 - - - - - - 25.0 8.3 
0.4 - - - 49.2 - - - 3.9 
0.5 100.0 83.3 84.2 80.8 0.0 1.2 0.8 0.8 
0.7 100.0 100.0 100.0 - 0.0 0.0 0.0 - 
1.0 100.0 100.0 100.0 - 0.0 0.0 0.0 - 

"Within a time limit of 300 seconds. 
b ~ a s e d  on the best known lower bounds collected in the PSPLIB. 

Table 5.12: Influence of problem characteristics for the problem PSlpreclC,,, 
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Table 5.12 analyses the influence of the resource strength RS, the resource factor 
RF, and the network complexity C on the difficulty of the problem instances. For 
the four test sets, the table gives the percentage of problems with a particular char- 
acteristic that could be solved to optimality and the average deviation from the best 
known lower bounds collected in the corresponding PSPLIB benchmark files. For 
example, line five of the table shows that 80.8 % of the problem instances with 120 
activities that were generated with a resource strength of 0.5 could be solved to opti- 
mality, and the remaining average deviation from the lower bound for these problems 
was 0.8 %. The data shown in Table 5.12 confirms the results of earlier studies, see 
e.g. Kolisch (1995), regarding the influence of the problem characteristics. 

The table shows that the hardest problems are those with a low resource strength. 
For a resource strength of 0.2, the percentage of problems that could be solved to 
optimality sharply decreases with growing problem size; for the lowest resource 
strength value of 0.1, only three of the problems with 120 activities could be solved to 
optimality. Problems with RS 2 0.7 appear to be easy independent of problem size, 
and the benchmark lower bounds for these instances are always tight. For RS = 0.5, 
we can observe that the percentage of problems that can be solved remains roughly 
constant when the problem size grows from 60 to 120 activities, although the time 
limit is not increased. 

The influence of the resource factor is also clearly visible: problems become harder 
as the average number of resource types required by an activity increases. For 
example, for the minimal resource factor of 0.25, which means that on average each 
activity requires only a single resource type, the algorithm can solve 84.2 % of the 
problems with 120 activities. As the resource factor grows, the value drops to 19.2%. 

The influence of the network complexity is not as significant as that of the other 
two control parameters. While the results for test set j I20 indicate that the problems 
become more difficult with increasing network complexity, the data for the smaller 
test sets is inconclusive. 

As to be expected after examining Table 5.12, the hardest problems occur when a 
low resource strength is combined with a high resource factor. For example, roughly 
speaking, the 30.8 % of the problems with 60 activities and a resource strength of 
0.2 that can be solved to optimality include all those instances for which the resource 
factor takes a value of 0.25 and a few instances with a resource factor of 0.5. Intu- 
itively, a low resource strength causes many activity pairs to be disjunctive and thus 
leads to cliques of pairwise disjunctive activities of considerable size. Additionally, 
if the average number of resource types required by an activity is high, then, simply 
speaking, there are many "links" between the cliques induced by each resource type. 
This combined effect leads to large and difficult disjunctive sub-problems. 

We also analysed in how many cases our algorithm could find values matching a best 
known lower bound without being able to prove optimality within the maximum 
allowed run time. We found that this occurs for none of the instances in the test 
sets j60 and j90 and for only a single instance of the test set j 120. This means that 
even the best known lower bounds, if calculated at the root of the search tree, would 
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only marginally improve the results of our algorithm. Also, it seems questionable 
if a re-calculation of bounds during the search would pay off in terms of overall 
computation time. For example, Klein (1999) has found that for his branch-and- 
bound algorithm the pruning power of the bounds described by Klein and Scholl 
(1999a) does often not outweigh the associated computational effort and does in 
general not lead to a reduction of computation times. 

Dominance Criterion Based on Partial Schedules 

We also experimented with a dominance rule based on storing and comparing partial 
schedules, which is similar to the well known cutset rule described by Demeule- 
meester and Herroelen (1992). While the use of this rule led to some improvements, 
the overall effect for the larger test sets wasrather small; for example, when us- 
ing this rule, only a single additional instance of the test set j60 could be solved 
within the maximum time limit of 1800 seconds. Because the performance of the 
rule within our algorithm was disappointing and because the rule cannot easily be 
adapted for the general case of arbitrary minimal and maximal time lags, we did not 
further consider it in our study. 

5.5 Summary 

This chapter has presented a branch-and-bound algorithm for a very general schedul- 
ing model, the resource-constrained project scheduling problem with generalised 
precedence relations, with the objective of minimising the project makespan. The 
algorithm uses a binary, time-oriented branching scheme that relies on efficient con- 
straint propagation techniques for reducing the search space. The power of constraint 
propagation lies in the systematic and computationally efficient application of basic 
consistency tests. The search effort is reduced further by adding some necessary 
conditions that must be satisfied by active schedules and through a simple left-shift 
test. The algorithm can also easily be applied for optimising other regular measures 
of performance. 

Given the conventional wisdom that the efficiency of branch-and-bound procedures 
depends largely on good lower bounds, it is quite interesting to note that our algo- 
rithm does not use any explicit lower bounds. Instead, lower bounding is implicitly 
achieved through the constraint propagation process. 

Computational experiments on several large test sets of systematically generated 
benchmark problems taken from the literature have demonstrated the effectiveness 
of the approach. 

On a data set of over thousand instances of the problem PSltemplC,,,, with one 
hundred activities each, the algorithm finds feasible solutions for all problems and 
it solves more problems to optimality than other methods, while at the same time 
achieving a significantly smaller deviation from a lower bound for those instances 
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for which optimality cannot be proven. The results obtained for another test set con- 
sisting of problems with five hundred activities show that the algorithm also scales 
very well. In addition, the truncated version of the algorithm compares favourably 
to the best heuristic procedures for the problem. 

The algorithm also performs well for the special project scheduling problem with 
ordinary precedence constraints, i.e., the problem PSlpreclC,,,. Computational ex- 
periments with four large, systematically generated sets of benchmark problems, 
ranging in size from 30 to 120 activities per problem instance, indicate again that 
the algorithm scales well and, especially for larger instances, is competitive to other 
exact procedures for this problem. The results for the largest test set show that the 
time truncated version of the algorithm may be a useful heuristic for solving large 
project scheduling problems. Surprisingly, many exact algorithms for the problem 
PSlpreclC,, have mainly been evaluated on the smallest of the four test sets. The 
good performance of the time-oriented algorithm on the larger test sets is also inter- 
esting because the algorithm does not include features such as partial schedule based 
dominance pruning or explicit lower bound computation; while these features often 
make exact algorithms perform well on the small test set, they have the disadvan- 
tage that they are usually not easy to extend or to adapt for generalised or modified 
versions of the problem PSlpreclC,,. 

We have found that, for the problem PSltemplC,,,, and for the larger test sets of the 
problem PSlpreclC,,, even the use of the currently best known lower bound values 
available in the benchmark files of the project scheduling library PSPLIB would 
only marginally improve the results of the algorithm with respect to the number of 
optimally solved problems. 

The computational analysis has shown that the difficulty of the problem instances for 
the algorithm depends primarily on the problem characteristics, in particular on the 
combination of resource supply and demand as measured by the resource strength 
and resource factor, and that the problem size is not the most important factor. As 
the hardest problems are characterised by a high share of disjunctive activities, we 
expect that further improvements may be achieved by concentrating on the disjunc- 
tive aspects of the problem. 





Chapter 6 

Multi-Mode Extension of the 
Branch-and-Bound Algorithm 

This chapter addresses project scheduling with generalised precedence constraints 
and multiple execution modes per activity, reflecting time-resource and resource- 
resource tradeoffs. It shows how the branch-and-bound algorithm developed for the 
single-mode problem PSltemplC,, in the previous chapter can be extended for the 
multi-mode problem MPSltempl C,,,. 

After a brief review of the literature on multi-mode project scheduling in Section 6.1, 
Section 6.2 explains how constraint propagation may be used, and Section 6.3 then 
introduces the extended branching scheme. 

6.1 Previous Work 

Despite its general nature, the problem MPSltemplC,,, has only very recently been 
studied from an algorithmic point of view, and very few solution approaches have 
been reported in the literature. Traditionally, algorithms for multi-mode project 
scheduling on the one hand and project scheduling with generalised precedence 
constraints on the other hand have been developed separately. Multi-mode project 
scheduling has almost exclusively been studied for the problem MPSlprecl C,,, with 
classic precedence constraints; generalised precedence constraints have mainly been 
considered within the single-mode problem PSltemplC,,,. It appears that the diffi- 
culty of the combined problem has lead researchers to focus on only one of two the 
aspects at a time. 

Exact algorithms for the problem MPSlpreclC,,,, have been developed by Talbot 
(1982), Patterson et al. (1989), Sprecher (1994), Nudtasomboon and Randhawa 
(1997), Sprecher et al. (1997), and Sprecher and Drexl (1998). Pesch (1999) de- 
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scribes lower bounds. A comparison of exact algorithms is given by Hartmann and 
Drexl(1998). An exact algorithm for a generalisation of the problem MPSlpreclC,, 
with arbitrary minimal time lags has been proposed by Hove and Deckro (1998) and 
Van-Hove et al. (1999). 

Heuristic solution procedures have, among others, been described by Talbot (1982), 
Drexl (1991), Drexl and Griinewald (1993), Slowinski et al. (1994), Boctor (1993, 
1996a,b), Kolisch (1995), Kolisch and Drexl(1997), Hartmann (1998), and Ahn and 
Erengiiq (1998). An overview of the various approaches is given in the recent survey 
papers of Brucker et al. (1999), Herroelen et al. (1998), and Kolisch and Padman 
(2001). 

As discussed in Chapter 2, multi-mode project scheduling problems can be divided 
into two sub-problems. The mode assignment problem consists of assigning a mode 
to every activity. Given a mode assignment, the scheduling sub-problem is to find a 
start time assignment for all activities. Algorithms for the problem MPSlpreclC,,, 
and, in analogy, for the problem MPSltemplC,,, can be classified as decomposition 
or integration approaches, depending on whether the mode assignment sub-problem 
and the scheduling sub-problem are addressed sequentially or simultaneously. 

The first heuristic algorithm for the problem MPSltenpJC,, has been described by 
De Reyck and Herroelen (1999). It is based on a decomposition approach and con- 
tains a mode assignment phase and a subsequent scheduling phase with fixed mode 
assignments. A mode assignment is found using tabu search; during the search, a 
given mode vector is evaluated by solving the corresponding scheduling sub-problem 
of the type PSltemplC,,. A schedule is computed with a truncated version of the 
branch-and-bound algorithm of De Reyck and Herroelen (1998). Upon termination 
of the tabu search, a final schedule is computed for the best mode assignment found 
by again applying the truncated branch-and-bound algorithm, this time using a larger 
time limit. 

Another tabu search procedure based on a decomposition approach has been pro- 
posed by Franck (1999). Heilmann (1999) has presented a priority rule heuristic 
with limited backtracking that is based upon his exact algorithm described below. 

The only exact procedure for the problem MPSltemplC,, that has been described 
so far is the one of Heilmann (1998, 1999). The algorithm is based on an integra- 
tion approach, i.e., it simultaneously makes decisions concerning mode assignments 
and the resolution of resource conflicts. The idea is to consider the current mode- 
minimal problem instance', to relax the resource constraints and compute an optimal 
time-feasible schedule. The resulting schedule, which will usually violate resource 
constraints, is then tested for resource conflicts. Branching consists of (1) assigning 
a mode to an activity or (2) adding special precedence constraints to resolve a re- 
source conflict. As in the algorithm of Schwindt (1998a,b), conflicts are resolved by 
introducing special precedence constraints between pairs of disjoint sets of activities; 
all activities in the second set are delayed until the completion of some activity in the 

'see Definition 1 on page 63. 
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first set. The decision whether to branch over a mode assignment or a resource con- 
flict is made based on a heuristic that tries to select the most difficult decision, which 
on average has the strongest influence on a lower bound of the objective function 
value. 

6.2 Constraint Propagation 

Constraint propagation proceeds mostly in the same way as in the single-mode case, 
the main differences being that all consistency tests are applied to the mode-minimal 
problem instance introduced in Definition 1 on page 63 and that the additional mode 
reduction tests described in Section 4.7 are used. 

At every node of the search tree, a fixed point is computed by applying at least the 
two most basic consistency tests, i.e., the Precedence Consistency Test 1 and the 
Unit-interval Consistency Test 8. As before, the application of these two tests is an 
essential part of the branch-and-boundalgorithm. The valuespcj (A) and rcj  (A) are 
calculated for the mode-minimal problem instance in the way defined in Section 5.2. 

6.3 Extended Branching Scheme 

The branching scheme of the multi-mode algorithm is an extension of the single- 
mode branching structure developed in the previous chapter. It combines the time- 
oriented branching scheme with simultaneous mode decisions. 

Each node a of the search tree is associated a set A(a) := {As(a) ,   AM(^)) := 
{Asi (a) ,  AMi (a)  I i E V} of start time and mode assignment variable domains. 
An activity is unscheduled if its mode or its start time have not yet been assigned. 
Inversely, an activity is scheduled if its start time and mode are bound. The set of 
domain sets A(a) uniquely determines the set Vs (A(a)) := {i E V I [Asi I = 
1 A [AMi I = 1) of scheduled activities and the set ~f (A (a ) )  := V \ Vs (A(a)) of 
unscheduled or free activities. To simplify the notation, we will again write VS(a) 
instead of VS(A(a)), etc., whenever no confusion is possible. Generating a sched- 
ule is equivalent to reducing the start time and mode domains until exactly one entry 
remains in every domain. As before, domains will be reduced by constraint propa- 
gation and by explicit branching. 

The key idea of the branching scheme is to interleave a binary branching over a 
mode assignment or restriction with the binary time-oriented branching developed 
for the single-mode case. The branching decisions are interleaved in such a way that 
the assigned activity start times are non-decreasing, as in the single-mode algorithm. 
The non-decreasing start-times will again allow to apply simple dominance rules that 
rule out non-active schedules. 

At every node a of the search tree, an unscheduled activity j E vf (a) is selected 
and two child nodes are generated according to the following rule: 
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If Mj is unbound, then select a mode X E  AM^ (a )  and create a left 
child node Z1(a) and a right child node rl(a) as follows: 

l l(a): Assign mode X by setting Mj(Zt(a)) := A. 

( a ) :  Forbid mode X by setting Mj(r1(a)) := Mj(a) \ {A). 

Otherwise, if Mj is bound, then branch over the start times of j by 
creating a left child node Z(a) and a right child node r(a)  as follows: 

1 (a )  : Start j at its earliest start time by setting Sj ( I  (a ) )  := ESj (a) .  

r(a):  Increase the earliest start of j by choosing ESj (r(a))  > ESj (a) .  

The rules for the time-oriented branching step leading to the child nodes l (a)  and 
r(a)  are identical to the single-mode algorithm. If all modes are bound, the branch- 
ing scheme reduces to the single-mode scheme. 

To completely specify the branching scheme we must now answer three questions. 
Firstly, we must describe how to choose activity j E ~f (a) ,  and secondly how 
to select the corresponding mode X if applicable. Thirdly we must specify how to 
increase the earliest start time of j in r(a).  We will first address the selection of an 
activity and a corresponding mode. 

Selection of Activities and Modes 

The propagation process by which the earliest start of activity i, ESi(a), is calcu- 
lated only makes use of the mode-minimal problem instance, and in particular of 
the mode-minimal duration and resource requirements of activity i .  Because these 
values may increase if the mode of i is chosen, the actual earliest start time that 
can be realised for some mode assignment may be greater than ESi(a). In order 
to determine the realisable earliest start time of an activity considered for branching 
we will often tentatively assign a mode to this activity and evaluate the effect of the 
assignment by applying constraint propagation. The modified domain set in which a 
mode p E AM; (a )  has been assigned to activity i is is denoted with A ( Q ) ~ ~ = P  and 
is defined as follows: 

We can now introduce the realisable earliest start time ESil(a) 2 ESi(a) of an 
activity i, which is defined as the minimal start time of i that can be realised if a 
mode for i is chosen and this mode assignment is propagated by applying a fixed 
point constraint propagation algorithm CP. 

ESil(a) := rnin E S ~  ( c P ( A ( ~ )  Mi'P)). 
P E A M ;  (a) 

(6.2) 
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If the mode of i  is bound, we obtain, of course, Esir(a) = ESi(a). 

We are now ready to address the activity and mode selection rule. As in the single- 
mode case, the idea behind the rule is to only branch in such way that the creation 
of non-active schedules is avoided where possible. At node a of the search tree, we 
choose an activity j from the set v f l ( a )  of free and non-delayed activities, which 
will be defined in a way very similar to the single-mode case. For the time being, 
we only assume that ~ f '  (a)  it is a non-empty subset of the set of free activities. The 
activity and mode selection rule can be stated as follows: 

Choose j E v f l ( a )  such that ESjl(a) = t (a) ,  where the schedule time 
t (a )  is the minimal realisable earliest start time, i.e., 

t (a)  := min ESir (a) .  
i W f '  (a) 

If Mj is not bound, then choose a mode X for which ESjr (a)  is realised: 

A = arg min E S ~  (CP( A (a )  Mi'p)). 
P E A M ~  ( 0 )  

(6.3) 

Ties are broken by first selecting an activity with minimal time slack, i.e., an activity 
for which lasi (a)I is minimal. Ties concerning the mode selection are broken by 
first choosing the mode with minimal processing time p j ~ ,  . 
We are now left with the task of specifying the set of free and non-delayed activities. 
In a similar fashion as in the single-mode algorithm, it will prove useful to partition 
the set of free activities into (1) a set of activities that, depending on the mode assign- 
ment, may still have to satisfy a maximal time lag, and (2) a set of activities which 
do not, no matter what modes are chosen. 

Let E = Emin(a) U Emax(a), where Emin(a) := {( i ,  j )  E E I &(a)  > 0) and 
Emax(a) := {(i, j) E & 1 &(a) _< 0) are the relations specifying the minimal 
and maximal time lags between pairs of activities. In contrast to the single-mode 
case, the sets Emin (a )  and Emax (a )  depend on the time lags Sj (a )  of the minimal 
problem instance, i.e., on the mode domains and thus on the search tree node. 

We then define the set 

CtC(a) := { ( j , ~ )  1 j E ~ f ( a )  A P E  A M ~ ( Q )  A 
3i E v f  (a)  : (i ,  j )  E E~~~ ( c ~ ( A ( a ) ~ j = p ) ) )  

of timemax-constrained activity-mode combinations and the set Vt"(a) := v f  (0) \ 
VtC(a) of timemax-unconstrained activity-mode pairs. 

The set of free and non-delayed activity-mode pairs can then be described in analogy 
to the single-mode algorithm: 
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The interpretation of the set cf' is very similar to the single-mode case: An activity- 
mode pair ( j ,  p )  with a free activity j is a candidate for branching if j, under the 
assumption that it is performed in mode p, may have an incoming backward arc, or if 
the earliest start time of j in mode p equals its current earliest resource feasible start 
time rcj ( c ~ ( A ( a ) ~ " " ) .  In the same way as in the single-mode algorithm, this 
means that a delayed activity that is not constrained by a maximal time lag remains 
un-selectable until the resource capacity made available by delaying j has been used 
by some other activity. The choice of the set cf' is justified by a generalised version 
of Lemma 2. 

Delaying Duration 

The delaying duration, i.e., the rule how to increase the earliest start time of an 
activity j selected at node a  in the child node r(a)  is the same as explained for the 
single mode case in Section 5.3.1. 

Recall that in order for the resulting schedule S  to be active, either (1) a precedence 
constraint or (2) low slack must prohibit a left-shift of the selected activity j. Since 
the activity will be delayed by at least one time unit, the first case can be ruled 
out if all precedence constraints (i, j) E E are already resolved (see page 20) in 
node a.; otherwise, we can only delay j by a single time unit. The second case 
requires that the slack of all activities except j is insufficient to the left of Sj(a) ,  
which can only be the case if Sj(a)  matches the completion time of some activity 
that shares resources with j. Since the earliest possible completion time ECi is based 
upon constraint propagation for the mode-minimal problem instance, the multi-mode 
aspect, is taken into account when using Lemma 3 for the multi-mode case. 



Chapter 7 

Applications in Airport 
Operations Management 

In the past decades, the volume of worldwide civil air transport has been steadily 
increasing with an average growth rate of more than five percent. Passenger and 
freight traffic have roughly doubled since the mid 1980s. The growth is generally 
expected to continue at the same rate: The International Air Transport Association 
currently predicts an annual average growth rate for total scheduled international 
traffic of 5.6% for passengers and of 6.7% for freight for the next five years (IATA 
2000b,c). 

The growth has been accompanied by a wave of deregulation and liberalisation in 
the airline industry in Europe, in the United States, and in many other parts of the 
world. Airlines left free to provide service with few regulations have significantly 
changed their services and schedules, for example by introducing airline hubs. At the 
same time, privatisation and commercialisation are changing the mode of operation 
of many airports (ADV 1997, Endler and Peters 1998). 

From the point of view of an airport or ground service provider it has become in- 
creasingly important to utilise the available resources in the best possible way in 
order to cope with these trends. To handle the growing traffic volume, it is essential 
that a good resource utilisation is achieved. This holds true for the staff and equip- 
ment concerned with ground handling on the ramp and in the terminal, as well as 
for infrastructure and building resources, such as runways or terminal gates, which 
typically can only be extended in the long run, if at all, and with very large financial 
effort. 

The high resource utilisation required to satisfy the growing demand for ground ser- 
vices leads to complex planning and scheduling problems that can no longer be 
adequately addressed with traditional, manual planning methods. The scheduling 
of resources on the operational level is additionally complicated by frequent, un- 
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predictable changes in the flight schedule, such as delays, re-routings, or aircraft 
changes. 

The complexity and size of the problems call for computerised decision support 
tools. This chapter analyses two important areas within the total airport operations 
system, in which the project scheduling models and solution techniques described in 
the previous chapters can be applied: 

1. The scheduling of ground handling activities required for serving aircrafts 
while at an airport gives rise to a resource-constrained multi-project schedul- 
ing problem with time windows. The ground handling scheduling problem is 
briefly described in Section 7.1. 

2. Gate scheduling deals with the problem of assigning flights to terminal gates 
or parking positions and scheduling the start or end times of the assignments. 
Section 7.2 shows in depth how this decision problem can be modelled as a 
special multi-mode resource-constrained project scheduling problem and de- 
velops a solution approach based on the techniques described in the previous 
chapters. 

For a general introduction to airport operations and airport engineering that describes 
the role of the two areas mentioned above within the total airport system, we refer to 
the books by Ashford et al. (1997) and Ashford and Wright (1992). 

7.1 Scheduling of Ground Handling Operations 

In airport ground handling, a large number of activities required for serving an air- 
craft while on the ground have to be scheduled. These activities include, for example, 
(1) technical services, such as fuelling, wheel and tire checks, ground power supply, 
de-icing, cooling and heating, routine maintenance, or cleaning of cockpit windows, 
(2) loading and unloading of cargo and baggage, (3) passenger and flight crew dis- 
embarkment and embarkment, and (4) catering and cleaning services. The activities 
have to respect certain precedence constraints and must be processed within given 
time windows that depend on the aircraft arrival and departure times. The turn-round 
or transit processing of an individual aircraft can be seen as a resource-constrained 
project scheduling problem with generalised precedence constraints, and the overall 
scheduling problem for the complete airport or its terminal areas is a corresponding 
multi-project scheduling problem. 

Airlines try to reduce aircraft ground times at airports for two reasons: firstly, to keep 
up the flight schedule in case of operational irregularities, and secondly to increase 
the fleet utilisation. Short turn-round or transit times are also advantageous for the 
airport or ground service provider, as the use of heavy investment, such as terminal 
gates or costly ramp equipment, is maximised if ground times are kept as short as 
possible. 
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Figure 7.1 : Minimum transit time of a B747 aircraft 

Scheduled arrival and departure times are therefore derived from a set of minimum 
transit or turn-round times which reflect the technical possibilities with standard 
equipment and,normally productive manpower. The times are obtained by anal- 
ysis, including the timing of individual activities and critical path calculations, and 
through actual demonstrations. The minimum times define the performance that may 
be needed in case of delay on arrival. 

Figure 7.1, taken from an airport handling manual (IATA 2000a), shows an example 
of how the minimum transit time of a B747 aircraft is determined. The Gantt-chart- 
style figure shows a subset of the required activities with their start and completion 
times when started as early as possible (left-shifted). There are obvious (generalised) 
precedence relations between certain activities. 

For modem containerised aircraft, the critical path of a transit or turn-round process- 
ing usually consists of passenger disembarkment, cabin cleaning, and embarkment. 
In few cases, before very long flights, fuelling operations may determine the critical 
path (IATA 2000a). 

The scheduled ground times are usually approximately ten to fifteen minutes higher 
than the minimum times in order to allow for delayed arrivals while still achieving 
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on-time departure. This, the fact that not all activities are critical even when the 
ground times are minimal, and the fact that the actual required processing times for 
some activities depend on the actual (vs. expected) load data and may thus vary from 
the processing times used for deriving the minimum ground time, leads to degrees 
of freedom that may be exploited when scheduling the ground handling activities. 
Additionally, there are usually a number of aircraft which, for various reasons, stay 
at the airport for considerably longer than the minimum necessary ground time. 

The task of scheduling the ground handling activities may be modelled as single- or 
multi-mode project scheduling problem with time windows with cumulative andlor 
disjunctive resources. A possible fine-grained approach is to model all available staff 
and equipment as individual disjunctive resources and to represent the assignment of 
an activity to a resource as mode selection in a multi-mode model. This allows to in- 
troduce individual availability times, e.g., shift times, as well as sequence dependent 
setup times between activities. The setup times can reflect the necessary travelling 
durations between aircraft positions, which may be an important consideration if 
these times are significant and vary considerably. 

The performance measure will usually consider multiple attributes. One of the main 
goals frequently simply is to find a feasible schedule, if one exists, or to find a 
schedule that comes as close as possible to feasibility. Other useful criteria are, for 
example, a levelling of the resource usage or requirements and an even distribution 
of the staff workload. 

Some of the modelling aspects mentioned above will also appear in the application 
described in the following section. 

7.2 Gate Scheduling 

7.2.1 Introductioh 

Gate scheduling is conderned with finding an assignment of flights to terminal or 
ramp positions, called gates, and an assignment of the start and completion times of 
the processing of a flight at its position. It is a key activity in airport operations. With 
the increase of civil air-traffic and the corresponding growth of airports in the past 
decades, the complexity of the task has increased significantly. At large international 
airports, several hundreds of flights must be handled per day. The task is further 
complicated by frequent changes of the underlying flight schedule on the day of 
operations, such as delays or aircraft changes. 

The main input for gate scheduling is a flight schedule with flight arrival and depar- 
ture times and additional detailed flight information, including pair-wise links be- 
tween successive flights served by the same aircraft, the type of aircraft, the number 
of passengers, the cargo volume, and the origin or destination of a flight, classified 
e.g. as domestic or international. The information in the flight schedule defines the 
time frame for processing a flight and the subset of gates to which it can or should 
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be assigned, taking into account, e.g., aircraft-gate size compatibility, access to gov- 
ernmental inspection facilities for international flights, etc. 

Gates are scarce and expensive resources. Increasing the resource supply involves a 
time-consuming and costly re-design of terminal buildings or the ramp and is usually 
not feasible in the short run. It is therefore of great economic importance for an 
airport or terminal operator to use the available gates in the best possible way. 

The gate assignment also influences the quality of passenger service in manifold 
ways. A problem well known to many passengers is that arriving flights sometimes 

I have to wait on the ramp before travelling to their final position, because the assigned 
gate is still occupied by another flight. Such a situation is often caused by a poor 
gate assignment or by failure to adapt an initial assignment to updates of the flight 

1 schedule. When changing a gate schedule, however, it must be taken into account 
I that gate assignments are published some time before the actual arrival or departure 
of a flight, for instance for planning purposes in other operational units, on passenger 
information displays and on boarding passes. Passengers already waiting at a gate 
may have to be re-directed if the gate of a departing flight is changed on short notice. 
Another example of the influence of the gate assignment on passenger service is the 
required passenger walking distance, which depends on the chosen gates. 

The gate assignment also affects other ground services. A good assignment may 
reduce the number of aircraft tows required and may lead to reduced setup times for 
several ground service activities on the ramp as well as in the terminal. 

The problem of finding a suitable gate assignment usually has to be addressed on 
three levels. Firstly, during the preparation of seasonal flight schedule revisions, 
the ability to accommodate the proposed flights must be examined. Secondly, given 
a current flight schedule, daily plans have to be prepared before the actual day of 
operation. Thirdly, on the day of operation, the gate schedule must be frequently 
altered to accommodate updates or disruptions in the flight schedule; this is referred 
to as reactive scheduling. 

The new optimisation model and algorithm for gate scheduling described in this 
section differ from previous approaches reported in the literature in several ways. 

I 

While at the airport, an aircraft goes through the three stages of ( I )  arrival processing, 1 (2) optional intermediate parking, depending on the length of the ground time, and 
(3) departure processing. In contrast to previous models, these stages are considered 
as separate entities that can potentially be assigned to different positions if necessary 
or advantageous. The aircraft may then have to travel between the assigned arrival, 
parking, and departure positions; as this usually requires the use of tow tractors, 
we will generally refer to it as towing. In addition to assigning the three stages to 
positions, the start and completion times of processing at a position, which can vary 
within certain time windows, have to be assigned. 

The model can consider an arbitrary time horizon, typically set to a day. This stands 
in contrast to approaches that split the overall problem into isolated, short time slots, 
that correspond to waves of arriving and departing flights, a simplification that can 
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be justified at some hub airports where many passengers change between connecting 
flights and where there is little relation between the flights in two successive arrival- 
transfer-departure waves. 

Previous optimisation based approaches have usually modelled the problem by rep- 
resenting the arrival, parking, and departure stages as a single entity to be assigned to 
the same position, and they only consider a single flight wave. The objective function 
most frequently used is the minimisation of walking distances for arriving, transfer- 
ring, and departing passengers. The problem then becomes similar to a quadratic 
assignment problem (Lawler 1963). However, for many airports, this modelling ap- 
proach leads to an over-simplification that does not adequately reflect the original 
decision problem. 

The key idea behind the model presented here is to look at the problem as a modified 
multi-mode resource-constrained project scheduling problem with a multi-criteria 
objective function. The most important goals are the maximisation of a total flight- 
gate preference value and the minimisation of the number of tows. 

The basic optimisation algorithm is a truncated branch-and-bound procedure that 
branches over (1) gate (mode) assignments and (2) the disjunctive constraints used 
to model the capacity restrictions of the disjunctive resources (gates). The algorithm 
uses constraint propagation techniques to reduce the search space. To cope with 
large practical problems with in the order of magnitude of thousand activities per 
day, the problem is decomposed into loosely coupled sub-problems using a new 
generic problem partitioning technique. The sub-problems are used within a layered 
branch-and-bound approach: The search tree is conceptually split into layers that 
correspond to the sub-problems. In each layer, only decision variables of the current 
sub-problem are selected for branching; limited backtracking is performed within 
the current layer before proceeding to the next layer. Initial solutions obtained in this 
way are iteratively improved using a large neighbourhood search (LNS) technique 
(Kilby et al. 2000) that relaxes some of the decisions and uses the branch-and-bound 
algorithm to reform the relaxed part of the solution at a lower cost. LNS can also 
serve to adapt an existing schedule to changes in the input data in a smooth way. 

The model and algorithm have been evaluated using small manually designed test 
cases as well as two weeks of real-life flight schedule data from a large international 
airport. A comparison of the computational results with a rule based approach, as 
often used in commercial systems, shows that the algorithm greatly improves the 
solution quality. 

Beyond their application for the gate scheduling problem at hand, the problem parti- 
tioning technique and the layered branch-and-bound approach are of general interest, 
since they address a common task and can easily be generalised. 

The remainder of this chapter is structured as follows. After a review of the relevant 
literature in Section 7.2.2, Section 7.2.3 describes the problem in detail and develops 
the optimisation model. Section 7.2.5 presents the basic branch-and-bound algo- 
rithm. Section 7.2.7 shows how the problem can be partitioned into sub-problems, 
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and Section 7.2.8 describes how these sub-problems are used within the layered 
branch-and-bound approach. The iterative improvement of solutions is discussed 
in Section 7.2.9. Section 7.2.10 finally reports on computational experiments. 

7.2.2 Literature Review 

Gate assignment strategies have been studied for a long time, and the first quantita- 
tive approaches have already been described in the late 1960's (Baron 1969). One 
of the first studies that demonstrated the effect of gate assignment strategies on pas- 
senger walking distances was undertaken by Braaksma (1977). As an example, the 
mean walking distance per passenger at Terminal 2 of Toronto International Airport 
could be reduced by more than ten percent as a result of a change in gate assignment 
policy. The minimisation of total walking distance within the terminal for arriving, 
transferring, and terminating passengers has remained one of the most frequently 
considered objectives in the literature. 

Passenger walking distance minimisation is an important issue not only in the op- 
eration of airport terminals but also in the design of a terminal. Several efforts to 
integrate a method to minimise intra-terminal travel into the terminal design process 
have been reported, and as an example we refer to the discussions by Wirasinghe and 
Bandara (1990) and Bandara and Wirasinghe (1992). 

The main part of the literature on gate assignment deals with terminal operations. 
The various contributions can be roughly classified according to the underlying tech- 
nology as (1) optimisation based and (2) rule based or expert system approaches. 

Previous studies that have developed optimisation models and algorithms have fo- 
cused on the assignment aspect of the gate scheduling problem; the resulting prob- 
lem is usually referred to as gate assignment problem (GAP). The basic constraints 
of the GAP are that a gate can only accommodate a single aircraft and that two flights 
must therefore not be assigned to the same gate if they overlap in time. Arrival pro- 
cessing, intermediate parking, and departure processing are considered as a single 
entity to be planned and must be assigned to the same gate. 

Gate assignment optimisation models can be classified as single or multiple time 
slot models. Single time slot models consider the assignment of a batch of flights 
that arrive within a given time period, or slot, to gates; in these models, only one 
flight can be assigned to each gate. The GAP can be modelled in analogy to the 
quadratic assignment problem, which is a location problem where the cost of placing 
a facility (flight) at a location (gate) depends on the placement of other facilities and 
the transport volume between two facilities (Lawler 1963). 

Babic et al. (1984) have formulated the single-slot GAP as integer linear program 
with the objective of minimising the total walking distance for arriving and depart- 
ing passengers. Mangoubi and Mathaisel (1985) have proposed an integer program 
for the problem with an extended objective function that additionally takes transfer 
passengers into account. Their single-slot model, which is similar to a quadratic 
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assignment problem, is solved using an LP-relaxation and a heuristic. Another ap- 
proach has been described by Bihr (1990), who proposes to model the single-slot 
problem as a linear assignment problem for fixed arrivals in a hub operation. Chang 
(1994) describes a single-slot GAP that considers the effect of an assignment on bag- 
gage transport distances in addition to passenger walking distances. Xu and Bailey 
(2001) have recently proposed a tabu search algorithm for a single slot GAP with the 
objective function of minimising the overall passenger connecting times or distances; 
the problem is formulated as a quadratic assignment problem and reformulated as a 
mixed 0- 1 integer linear program. 

Haghani and Chen (1998) formulate a multiple time slot GAP with walking dis- 
tance and baggage transport distance minimisation as an integer program. One of 
their main contributions is a model that extends the single-slot GAP with time con- 
straints; this is achieved by introducing time-indexed binary variables that indicate 
the assignment of a particular flight to some gate in a given time slot. Haghani and 
Chen (1998) propose a branch-and-bound algorithm as well as a heuristic to solve 
the problem. The size, or width, of the time slots must be carefully selected as it 
influences the problem size as well as the possible gate utilisation; the authors con- 
clude that the slot width should be roughly equal to the minimum time that an aircraft 
can occupy a gate. 

"Traditional approaches utilising classical operations research techniques have diffi- 
culty with uncertain information and multiple performance criteria, and do not adapt 
well to the needs of real-time operations support" (Gosling 1990). As a result, the 
use of rule based or expert systems for the operational control of terminal and ramp 
activities has been investigated from the mid 1980's on. Hamzawi (1986) has de- 
veloped a rule based system for simulating the assignment of gates to flights and 
for evaluating the effects of particular rules on the gate utilisation. Gosling (1990) 
describes a prototype expert system for gate assignment that has been evaluated in 
a case study at Denver Stapleton Airport, a major hub airport. Srihari and Muthukr- 
ishnan (1991) use a similar approach for solving the GAP and also describe how to 
apply sensitivity analysis. Cheng (1997) describes the integration of mathematical 
programming techniques into a knowledge-based gate assignment system. 

Both optimisation based and rule based approaches have been combined with sim- 
ulation analysis to study the effect of assignment policies and rules (see e.g. Baron 
1969, Hamzawi 1986). 

7.2.3 Problem Description 

This section formally describes the gate scheduling problem. After explaining the 
problem in detail by looking at a small example gate schedule, the system of con- 
straints is formally presented and the objective function is introduced. 
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Figure 7.2: Example from a gate schedule 

An Example 

Figure 7.2 shows an example from a gate schedule represented as a Gantt-Chart. The 
figure shows four positions or gates on the vertical axis and three activities i, j ,  and 
k that are represented as solid rectangles and correspond to the arrival processing, 
parking, and departure processing of an aircraft. The example shows the special case 
where these three activities are assigned to different gates; although it is generally 
desirable to assign the three activities to one and the same gate, the special case 
illustrates the problem better. We will use the example to introduce the system of 
constraints of the gate scheduling problem. 

Let us first consider the activity i corresponding to the arrival processing, or arrival, 
for short. The start time Si of the arrival depends on the flight schedule and is fixed. 
Beginning at this time, the aircraft must be assigned to a gate for at least pTin units of 
time, which is the fixed minimum time required for processing the arrival, including 
passenger disembarkment, baggage unloading, etc. The minimum processing time 
is visualised in Figure 7.2 as an arrow of length p? starting at the arrival time Si. 
After time Si + p y ,  the aircraft may either stay at the gate or may be towed to 
another position for parking. The completion time Ci at which the aircraft leaves 
the arrival gate is a decision variable. Of course, Si + prin < Ci must hold. In the 
example, the aircraft remains at the arrival gate for more than the minimum required 
time and then moves to the parking gate. 

In an analogous way, the departure activity k has a fixed completion time Ck at which 
the aircraft must leave the gate. The fixed minimum required departure processing 
time prin is visualised as a backward arrow of length pp, beginning at time CI,.  The 
start of the departure processing, SI, is a decision variable. Again, SI, + p p  5 CI, 
must hold. 

While at the airport, an aircraft must be continuously assigned to some position or 
be moving between two successively assigned positions. In the example, the aircraft 



118 CHAPTER 7. APPLICATIONS 

moves from the assigned arrival gate 1 to gate 3 for intermediate parking. The start 
time Sj of the parking at gate 3, which is a decision variable, must be equal to 
the completion time Ci of the arrival processing plus the required travel, or tow, 
time dtoW between the arrival and parking gates. To avoid degenerate solutions in 
which an aircraft is towed to a parking position, and immediately afterwards towed 
to another gate for departure processing, we impose a minimum processing time c'" > 0 for parking. The parking completion time Cj is a decision variable. As 
before, Sj + pj"'" 5 Cj must hold. At time Cj ,  the aircraft is towed to the departure 
gate; in the example, Cj + dtoW = Sk must hold. Because the tow time depends on 
the gates and on the aircraft, it will later be indexed accordingly. 

A gate can only accept one aircraft at a time, and between two successive assign- 
ments a sequence dependent setup time dYetup that depends on the associated two 
aircraft must pass. In Figure 7.2, the setup time between the arrival activity i and 
some other, following activity I ,  that is also assigned to position 1, is shown as an 
arrow of length d""'*P, beginning at time Ci. Setup times mainly serve to model the 
time required for the push-back of an aircraft from a gate using a tow tractor and 
the time required for the following aircraft to move to the free gate. The setup du- 
ration depends on the gates and on the affected aircraft and will later be indexed 
accordingly. 

An assignment of an aircraft to a particular gate does not only restrict the use of this 
gate for other aircraft, but may also influence possible assignments at other adjacent 
gates due to wingtip proximity problems or blocked access. Additionally, the ramp 
layout often includes overlapping positions, that may, for instance, either accommo- 
date one large aircraft or two small ones. The restrictions between adjacent gates are 
sometimes intuitively called shadowing. Figure 7.2 shows an example of shadow- 
ing between the parking activity assigned to gate 3 and another activity m shown as 
dashed rectangle at position 4. Intuitively, the aircraft at gate 3 casts its shadow on 
the adjacent gate 4 and restricts the use of position 4 during the assignment of the 
parking activity as well as for a certain amount of setup time before and afterwards. 
The restrictions between pairs of (adjacent) gates generally depend on the gates and 
the aircraft type or size. 

This completes the discussion of the example gate schedule, that has shown the spe- 
cial and most general case where the arrival, parking and departure of an aircraft 
are assigned to three different gates. Other assignments involving only one or two 
gates are often possible and preferable because ground service setup times as well 
as tows and the associated ramp traffic are avoided. In addition to the case shown in 
the example where an aircraft goes through the three stages of arrival, parking, and 
departure, a flight schedule may also contain arrivals without a linked departure, and 
vice versa; for example, such a situation can occur when an arriving aircraft has to 
stay at the airport for maintenance or returns from maintenance, respectively. 
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'Constraints 

'The gate scheduling problem can be modelled in analogy to a multi-mode resource- 
'constrained project scheduling problem; the choice of a processing mode corre- 
sponds to a gate assignment. The model developed in the following is summarised 
in Figure 7.3; the notation used is analogous to the standard project scheduling nota- 
tion. 

 or every pair of linked arrival and departure flights, i.e., successive transit or turn- 
'round flights served by the same aircraft, we introduce three activities correspond- 
ing to the arrival processing, parking, and departure processing. The activities are 
referred to simply as arrival, parking, and departure; the arrival is linked to the park- 
ing, which in turn is linked to the departure. The set of all links (i, j )  between two 
activities i and j is denoted with &'OW (every link implies a potential towing opera- 
tion). For an arriving flight that is not linked to a departure, and for a departing flight 
without a corresponding arrival, we introduce a single activity. The set of all arrivals 
is denoted with V a ;  V

p  
is the set of all parking activities, vd is the set of departures, 

and the set of all activities is V  := V a  U VP U vd. 
An activity i has a given minimal processing timep?, a start time Si, and a comple- 
tion time Ci. By choosing sufficiently small time units, we can assume without loss 
of generality that the processing times and the start and completion times are natural 
numbers. The start and completion times are decision variables. However, in case 
of arrival activities, the start time must equal the flight arrival time tf given in the 
flight schedule, and departure activities must complete at the scheduled flight depar- 
ture time t:; for parking activities, both the start and completion time are variable. 
In contrast to classical project scheduling models, only a minimal processing time is 
given, and the actual processing time pi := Ci - Si is not fixed in advance but fol- 
lows from the selected start and completion times. The minimal required processing 
time leads to Constraint (7.1) in Figure 7.3. The domains of the start and completion 
times are restricted by Constraints (7.4) - (7.6). 

The set of all gates, or modes, is denoted with M. An activity i must be assigned a 
processing mode Mi from its associated set of possible mode assignments Mi C M, 
which is given. The chosen processing mode Mi corresponds to a gate assignment, 
and the set Mi corresponds to the set of gates to which the aircraft may be feasibly 
assigned. To cope with situations where the constraints do not allow to assign all 
aircraft to a real gate - for example if the number of flights to be scheduled exceeds 
the number of available gates - we introduce a fictitious gate 0, or dummy gate, 
with unlimited capacity. By default, every mode set Mi contains this dummy gate; 
assignments to the dummy gate will be penalised in the objective function. Con- 
straint (7.7) restricts the mode variables. The set of all possible modes is denoted 
with M, andMi  C M. 

The completion and start times of two successive (linked) activities i and j for the 
same aircraft may differ only by the time required for towing the aircraft between 
the assigned gates. This tow time naturally depends on the distance between the 
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Figure 7.3: Constraints of the gate scheduling problem 

gates, and also on the aircraft type associated with the activity. It is denoted with 
d4GijMj E No ; due to the large number of activities and possible modes in practical 
problem instances, it will be implemented as some function f of the activities and 
chosen modes, i.e., dfGi jMj := f (i, Mi, j, Mj), rather than as table or array lookup, 
as suggested by the index notation. The tow time takes the value zero if and only 
if two activities are assigned to the same gate, i.e., d?GijM, = OifMi  = Mj,for 
all i ,  j E V, and it is strictly positive otherwise. Using the tow time, the continuous 
processing requirement can be formulated as Constraint (7.2). 

Gates are disjunctive resources that can only process one activity (aircraft) at a time; 
the only exception is the dummy gate 0, which can hold an infinite number of aircraft. 
Between the processing of two activities i and j ,  a setup time d z j M j  E No must 
pass. The setup time can reflect the time required to push back the first aircraft 
back from the gate and for moving the second aircraft to the gate, as well as the 
duration required for setting up equipment such as aircraft bridges. It depends on the 
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'gates and aircraft types associated with the activities and is therefore indexed with 
the activities and their corresponding mode variables. Setup times are only required 
between the processing of two different aircraft; if i and j are successive activities 
'served by the same aircraft, i.e., if (i, j) E Etn'" then dyi,pjMj = 0. In analogy to the 
tow times, the setup times will be implemented as some function f of the activities 
(aircraft types) and modes (gates), i.e., d y z j M j  := f (i, Mi, j, Mj) .  

The basic disjunctive resource constraint that forbids the simultaneous assignment 
of two aircraft to the same gate can now be formulated as follows: 

This corresponds to the first case covered by Constraint (7.3). 

'Additionally, Constraint (7.3) also covers shadowing restrictions between gates. A 
'shadowing restriction between a pair of gates p and v can be conceptually repre- 
sented as a tuple (i, p, j, v) that has the following interpretation: If mode p E Mi 
is assigned to activity i ,  then activity j must not be "simultaneously" processed in 
mode v E M j .  The set of all shadowing restrictions is denoted with In the 
same way and for the same reasons as for activities assigned to the same gate, setup 
durations must also be taken into account for activities at adjacent gates affected by 
a shadowing restriction. This leads to the following disjunctive constraint: 

ci + dz ,$Mj  < S j  
V Vi, j E V : 3(i, Mi,j ,  M j )  E EShadffw 

Cj + dy$riMi < si, 
This corresponds to the second case covered by Constraint (7.3). In summary, Con- 
straint (7.3) must hold for two activities i and j either (1) if the same modeis assigned 
to i and j or (2) if the modes are chosen in such a way that a shadowing restriction 
applies. In both cases, the activities and their setup durations must not overlap in 
time. Of course, the constraints only need to be explicitely defined for those pairs of 
activities for which the start and completion time domains allow for such an overlap 
and where the mode domains intersect or may trigger a shadowing restriction, as 
the constraint is always satisfied otherwise. Formally, the set V of disjunctive activ- 
ity pairs for which Constraint (7.3) must be explicitely defined can be described as 
follows: 

'It is not reasonable to define a shadowing restriction for the fictitious gate (mode) 0. 
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It is worth mentioning that the disjunctive constraints do not apply for activities 
assigned to the fictitious gate, i.e., which are processed in mode zero. Because Con- 
straint (7.3) is the only resource constraint in the model, the number of activities that 
can be simultaneously assigned to the fictitious gate is unlimited. 

Finding a solution to the gate scheduling problem is equivalent to finding an assign- 
ment of the start and completion time and mode variables that is compatible with the 
Constraints (7.1) - (7.7). A gate schedule is thus defined by the tuple (S, C, M )  of 
start time, completion time, and mode vectors. 

The problem is similar in structure to a multi-mode project scheduling problem with 
unary, or disjunctive, resources. As a peculiarity, only minimal required processing 
times are given. In addition to start time decision variables, the completion times 
therefore also become decision variables. Constraints (7.2) are the temporal con- 
straints of the problem. They are of equality type; they could also be represented in 
a way similar to the problem MPSltemplC,, by using two precedence constraints 
with appropriate minimal and maximal time lags. Constraints (7.3) are the resource 
constraints and additionally serve to model shadowing restrictions. Constraints (7.4) 
- (7.7) are domain constraints. 

The ground time of an aircraft, which is defined as the duration between its arrival 
and departure, is sometimes so short that the arrival, parking, and departure activity 
must always be assigned to the same gate (block processing). If this is detected 
in a preprocessing step which serves to define the minimal processing times, then 
the minimal processing times for activities that require block processing can be set 
accordingly: If i, j ,  and lc are the arrival, parking, and departure activities, then set 

min .- t d  - ta p r n  .- 
Pi .- I, 

, , , ' .- 0 a n d p p  := 0. Because the tow time dtow between different 
gates is strictly positive, Constraints (7.1), (7.2), and (7.4) - (7.6) then imply that 
Mi = M j  = MI, must hold. 

Objective Function 

The objective function is a linear combination of several goals. In extensive discus- 
sions with a terminal operator, it has been concluded that the most important goals 
are (1) the maximisation of a total assignment preference score, (2) the minimisation 
of the number of required towing operations, and (3) the minimisation of the devia- 
tion from a given reference gate schedule. In order to further differentiate between 
gate schedules that are of equal quality with respect to these goals it is reasonable 
to add other goals of lower importance. In the following we will concentrate on the 
three top goals. 

Using goal weights ai, which are non-negative real numbers, the objective function 
z(S, C, M )  is formulated as follows: 
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We will see below that the values of three goals zl ,  22, and z3 depend only on the 
mode vector M but not on the start and completion time vectors S and C, so that we 
can write z ( M )  instead of z (S ,  C, M ) .  

'The first goal zl is the maximisation of the total gate preference score. We associate 
a preference value ui, with every activity-mode combination, i.e., for all i E V and 
p E M. Each activity is further associated a weight, or priority, wi E [ O , l ] .  An 
assignment to the fictitious gate 0 is penalised with a large negative value; otherwise, 
the preference values are normalized numbers, i.e., uip E [0, 11, for all i E V and all 
p E M \ (0 ) ;  the preference ui, is always 0 if p fZ Mi and usually greater than 
zero otherwise. The goal of maximising the total mode assignment preference score 
can be formulated as follows: 

It is evident that the preferences and weights have a large influence on the optimal 
gate schedule. Choosing suitable values for the assignment preference and weight 
parameters u i ~ ;  and wi is a difficult problem in itself, but is beyond the scope of 
this study. The task is delegated to a rule-based system that defines the values based 
on the detailed characteristics of the associated flights, for example, origin, destina- 
tion(~), number of passengers, type of aircraft, airline, and many more. 

The movement of an aircraft from a terminal position to another position generally 
requires the use of an aircraft tow tractor, because the aircraft needs to be pushed 
back from the terminal building. Tow tractors are scarce and expensive resources. 
Furthermore, aircraft movements may restrict access to other gates, that are being 
passed, and add to ramp traffic congestion. It is therefore of great importance to 
minimise the number of movements. This is captured in the second goal: 

The third goal is to minimise the deviation from a given reference gate schedule, 
which will be denoted with (S ' ,  C', M' ) .  This goal is important for two main rea- 
sons. Firstly, in the preparation of daily plans before the actual day of operations, 
is desirable to obtain a maximum similarity between the gate schedules for different 
days of the week. For example, it is considered advantageous if the eight o'clock 
flight to a particular destination always departs at the same gate, as this tends to 
ease other operational planning tasks. Secondly, in reactive re-scheduling, which is 
made necessary by flight schedule disruptions, conflicts or infeasibilities in the gate 
schedule should be resolved in such a way that the changes to the schedule are kept 
minimal. Here, the rationale behind minimising the number of changes is that the 
'gate schedule is published for passengers and for other operational systems within 
the airport and that gate changes may cause considerable effort in these areas. The 
goal can be formally expressed as follows: 
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It is interesting to note that this goal addresses one of the typical weaknesses of 
optimisation based systems, namely that small changes in the input data may easily 
lead to large changes in the output data. 

7.2.4 Constraint Propagation 

The gate scheduling problem is solved using a branch-and-bound approach. At each 
node of the search tree a fixed point is computed by applying constraint propagation. 
The basic propagation algorithm is a variant of the AC-5 arc consistency algorithm 
described by Van Hentenryck et al. (1992). Within the constraint propagation algo- 
rithm, we use the following consistency tests introduced in Chapter 4, which are all 
based on the mode minimal problem instance introduced in Definition 1 on page 63: 

A variant of the precedence consistency test 1 for the minimal processing time 
constraints (7.1), for the continuous processing constraints (7.2)', and for the 
disjunctive precedence constraints (7.3) once it can be deduced or has been 
explicitely decided which part of a disjunction must hold. 

The disjunctive pair test, which enforces constraints (7.3). 

A mode shaving test as described in Algorithm 2 on page 64. 

7.2.5 A Branch-and-Bound Algorithm 

The branch-and-bound algorithm described in this section builds gate schedules by 
iteratively assigning modes to activities and by resolving resource conflicts. As we 
have seen in the previous section, the objective function value depends only on the 
mode vector, but not on the start and completion times. We will therefore search for 
a solution in which at least an assignment for all mode variables has been selected 
and in which the start and completion time domains are generally reduced from their 
initial values; however, the time domains may still contain more than one entry, 
i.e., start and completion variables may still be unbound. The remaining degree 
of freedom can be exploited in a sub-sequent optimisation step, not covered here, 
that chooses start and completion times in a way that allows to schedule all required 
towing operations. This can for instance be achieved by solving a vehicle routing and 
scheduling problem with time windows for the tow crews, where the time windows 
for the start and end of a towing operation are defined by the start and completion 
time domains of the corresponding arrival and parking, or parking and departure 
activities. 

At each node of the search tree, we first apply constraint propagation and then branch 
in one of two alternative ways by either 

'~eca l l  that a continuous processing constraint can be replaced by two precedence constraints with 
minimal and maximal time lags. 
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1. assigning a mode to an activity or forbidding the mode assignment, or 

2. resolving a resource conflict by selecting which part of the disjunction in Con- 
straint (7.3) must hold. 

In the following we shall first explain the details of the binary branching scheme and 
' then show how simple lower bounds can be developed. 

Branching Scheme 

Each node a of the search tree has an associated set of current domains A(a): 

A(a) uniquely determines the sets of scheduled and free activities. The set Vs of 
scheduled or assigned activities contains all activities whose mode domain contains 

I exactly one entry, i.e., 

v f  (a)  := V \ V S(a)  is the set of free or unassigned activities. We thus consider an 
activity as scheduled as soon as it is assigned a mode (gate), even though its start and 

I completion time domains may still vary. 

'Disjunctive Branching If there is a pair of scheduled activities i ,  j  E V S(a)  for 
which Constraint (7.3) must be explicitely defined, i.e., for which {i, j }  E D, as 
introducedin Definition (7.8), and where both cases i+ j  and j+i of Constraint (7.3) 
may still hold, then we branch by creating two child nodes Z1(a) and r'(a) that 
1 correspond to the two possible orientations of the disjunction: 

( a )  : add the constraint Ci + d'zrjMj 5 Sj, 
< si. rl(a) : add the constraint Cj + d'YziMi - 

If multiple activity pairs are eligible for branching then we first choose the pair with 
the smallest time domains, i.e., the pair {i, j }  for which (As, I+lAc, I+lAsj I+lAcj I 
is minimal. We then choose activity i and j so that ESi 5 ESj and first branch to 
the left child node Z1(a). All ties are broken arbitrarily. 

T h e  reason why the branching over disjunctions between pairs {i, j )  E D is delayed 
until modes have been chosen for both i and j is that any previous reductions of 

the  mode domains AM. and AM, and constraint propagation may allow to deduce 
which part of a disjunction must hold without the need for explicit branching. 

I t  is easy to see that explicit branching will only be required for activity pairs where 
at least one of the activities is a parking activity: All other pairs involve only arrival 
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and departure activities, i.e., activities for which either the start or completion time 
is fixed through Constraint (7.4) and (7.5); the order in which the two activities must 
execute can thus be immeditately deduced. 

Mode Branching If there is no pair {i, j) E 23 that is eligible for disjunctive 
branching, then we branch over a mode assignment in the following way. 

At node a we select the next unassigned activity from vf (a) for mode branching 
according to a variable selection rule that we will explain below; we denote the 
chosen activity with act(a). A value selection rule that will also be introduced below 
then chooses a mode m(i, a)  E AM; (a) which is assigned to i in one of the child 
nodes. Let i = act(a) be the activity chosen at a. When branching from node a, two 
child nodes l(a) and r(a) are created by either assigning m(i, a )  to i or prohibiting 
this assignment: 

l(a) :  AM^ := {m(i, a ) ) ,  
r(a) : AMi := AM; \ {m(i, a)) .  

Activities and modes are chosen according to a maximal regret criterion, which is 
based on lower bounds of the objective function. The rationale behind the well 
known maximal regret principle is to first make those assignments which otherwise, 
if not made, will cause the greatest loss as indicated by the increase of the lower 
bound. For every activity, we consider (1) the currently "best" mode assignment, 
i.e., the one for which the resulting lower bound value is minimal, and (2)  the cur- 
rently second best assignment. The regret of not assigning the currently best mode 
to an activity is the difference between the lower bound values for the best and sec- 
ond best assignment. The activity for which the maximal regret is realised and its 
currently best mode are chosen for branching. 

In order to formalise the maximal regret concept, let us introduce LB(a) as a bound 
on the minimal objective function value of any schedule that can be developed from 
node a given the set of current domains A(a). Additionally, let LB(a, Ai = { p ) )  
denote the value of this bound if we bind a free activity i E vf (a) to one of the 
modes p in its current domain, i.e., replace  AM^ (a) = {. . . , p, . . .} with { p ) ,  and 
apply CP in order to evaluate the consequences of this assignment. The "best" mode 
for activity i given the domains A is the one with smallest lower bound value: 

m(i, a )  := arg min LB(A, AM; = { p ) ) ) .  
PEAM; ( a )  

The regret of not assigning the best mode to i can then be defined as: 

regret(i,a) := min LB(a, ,AMi (a) = { p ) )  - 
P€AM; (a)\m(i,ff) 

LB(a, AMi (a) = m(i, a)) .  

Finally, the function act(a) returns the unassigned activity i E vf (a) with maximal 
regret: 
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act(a) := arg max regret(i, a ) ) .  
i ~ V f  (a) 

Summary of the Branching Scheme We can now define the branching scheme 
recursively. This is done in Figure 7.4. Recall that we only have to specify A(a), 
since this determines all other sets and values. 

The search tree is traversed in depth-first order until a leaf node is generated, i.e., 
until VS (a) = V. Backtracking occurs when a leaf node is reached, when bounding 
considerations allow to prune a branch, or when an inconsistency has been detected, 
i.e., when some domain becomes empty. 

Because of the simple branching structure and the fact that constraint propagation 
only removes values which cannot participate in any feasible schedule that can be 
developed from a node, it is easy to see that the branching scheme is complete in 
the sense that it can generate any feasible mode assignment vector and reduce the 
start and completion time domains in such way that they contain all feasible start 
and completion times. 

Start and Completion Times 

Intuitively, the fact that two linked activities i and j, with i preceding j ,  are assigned 
to the same gate means that the precise value of the intermediate completion of i and 
the start of j becomes meaningless. This can be visualised in Figure 7.2 by moving 
the parking activity j to the arrival gate 1 or to the departure gate 2. In general, for 
any pair of linked activities i ,  j E V, with (i, j )  E EtoW, that are assigned to the same 
gate, the values of Ci = Sj can be arbitrarily chosen from the domains As, (a') or 
A, (a'), where a' is a solution node of the search tree where values for all mode 
variables have been selected. 

We use this observation in the following way. Let i E V a,  j E VP, and ( i , j )  E 
EroW; if, at any search tree node a ,  Mi = Mj after the application of constraint 
propagation, then we arbitrarily set Ci := min Aci (a) and Sj := Ci. In analogy, 
let j E VP and k E Vd and (j, k) E &*OW; if, at any search tree node a ,  Mj = Mk 

after applying constraint propagation, then we arbitrarily set SI, := max As, (a)  
and Cj := Sj. 

The start and completion times of all other activities are not explicitely assigned in 
the branch-and-bound algorithm. The remaining degree of freedom is exploited in . 

the subsequent solution for a VRSPTW for the tow crews. 

7.2.6 Lower Bounds 

Lower bounds for the objective function value of any schedule that can be developed 
from the current node are used to select activities and modes for branching, and to 
prune parts of the search tree based on the comparison of the current lower bound and 
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the value of the best solution found so far, if any. Lower bounds LBi can be derived 
for each of the individual goals zi introduced in Section 7.2.3 in a straightforward 
way. Clearly, the bounds depend on the set of current domains A(a), and the overall 
bound on z(A) is given by: 

3 

LB(A) := ai LBi (A). 
i= 1 

Because this value must be frequently recomputed or updated, we will use rather 
simple bounds that can be calculated with low effort. 

By considering the most preferred gate in the current domain of each activity, we 
obtain the following bound for the overall preference score: 

LBI (A) = - C wi - p ~ ~ i  ~ ( i ,  p) .  
i € V  

A lower bound on the total number of towing operations is obtained by testing the 
mode domain intersections of all linked activities: 

A lower bound for the deviation from a reference Schedule (Sf

7 C f

7 M f) ,  can be ob- 
tained by simply testing for mode domains that no longer contain the mode selected 
in the reference schedule: 

7.2.7 Problem Partitioning 

Practical gate scheduling problem instances involve a large number of flights and 
gates. Although a gate schedule is in reality continuous, it is in many ways natural to 
partition the underlying flight schedule into one-day periods for which gate schedules 
have to be constructed; still, a limited interaction between successive days is caused 
by aircraft staying at the airport over night. Within one day at a large airport terminal, 
on the order of magnitude of 1000 activities must be scheduled at approximately 100 
gates. 

Problem partitioning, or decomposition, is a way to accelerate the process of solving 
these large problem instances by decomposing a problem into smaller sub-problems. 
The sub-problems can then either be solved independently, or, as we will see in 
Section 7.2.8, the information about the sub-problems can be used in some other 
way to enhance the overall solution algorithm. 

A problem can be partitioned exactly or heuristically. While an exact partitioning 
splits a large problem into formally independent sub-problems, the sub-problems in 
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a heuristic partition are not strictly independent but loosely coupled. For a general 
discussion of problem decomposition techniques for constraint satisfaction problems 
we refer to Tsang (1993). 

Exact Partitioning Based on the Constraint Graph 

An exact partitioning of any decision problem can be efficiently obtained in poly- 
nomial time by finding the connected components of the constraint graph, which is 
defined as the graph consisting of nodes corresponding to the decision variables and 
edges between any pair of variables (nodes) that appear in a common constraint (see 
Section 3.1.3 on page 21). A sub-problem is defined by the decision variables and 
constraints within a connected component of the graph. Solving all sub-problems to 
optimality is equivalent to solving the complete problem to optimality. 

When using the exact partitioning approach on the practical gate scheduling problem 
instances which were used to test our algorithms and that are defined for twenty-four 
hour periods, it was sometimes possible to isolate some small sub-problems in the 
early morning or late evening of a day. However, the largest part of any problem 
could not be partitioned exactly, leaving a main sub-problem that still contained al- 
most all decision variables. It is therefore interesting to look for ways to heuristically 
partition a problem. 

Heuristic Problem Partitioning Using a Clique Partitioning Model 

The Clique Partitioning Problem A gate scheduling problem can be decomposed 
heuristically by partitioning a complete, edge-weighted graph G(V, E, (wij)) into 
non-overlapping cliques in such a way that the similarity of vertices within a clique 
is maximised. The node set V of the graph G corresponds to the activity set of the 
gate scheduling problem. The edge weights wij are a measure of the similarity or 
dissimilarity between the associated activities i and j and will be defined in the fol- 
lowing way: If the two activities have similar gate preferences, then wij is positive, 
otherwise it is negative. The basic idea now is to partition the gate scheduling prob- 
lem into loosely coupled sub-problems by partitioning G into an arbitrary number of 
cliques in such a way that the total edge weight within all cliques is maximised, or, 
equivalently, the total weight of all edges between different cliques, called the cut, is 
minimised. Minimising the weight of the cut is achieved by placing activities with 
similar gate preferences within the same clique. 

Figure 7.5 shows an example of a complete graph with five vertices (activities) that 
is partitioned into two cliques (sub-problems) Vl and V2; in general, the number of 
cliques may be larger than two. In the following, we will first formally describe the 
partitioning problem and then explain how to derive the edge weights wij. 

The problem of partitioning the graph G(V, E, (wij)) in such a way that the cut 
is minimised is known as clique partitioning problem, or CPP. Using the binary 
decision variables xij which take the value 1 if vertices i and j are in the same 
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Figure 7.5: Example of a graph partitioned into two cliques 

clique and 0 otherwise, the CPP can be formally described as follows: 

min C w i j x i j ,  

i , j € V : i < j  

X i j  + X j k  - x i k  5 1, Vi,j, k E V : i < j < k, 
x i j  - x j k  + x i k  < 1, Vi, j, k E V : i < j < k, 

- x i j  + x j k  + x i k  5 1, tli,j,k E V : i < j < k, 
X i j  E {O,l), V i , j E V : i <  j. 

Constraints (7.10) - (7.12) ensure that if two edges of a triangle (a clique of three 
vertices) in the graph belong to the same clique, then the whole triangle belongs to 
this clique. 

If all edge weights are non-negative or non-positive, then the problem can easily be 
solved. However, if the graph has negative as well as positive edge weights then 
the CPP is NP-complete (Dyer and Frieze 1985). Exact and heuristic algorithms 
for the CPP have for example been described by Grijtschel and Wakabayashi (1990) 
and Dorndorf and Pesch (1994). The CPP will be solved using a fast and effective 
heuristic algorithm proposed by Dorndorf and Pesch (1994). 

A Similarity Metric After the formal description of the CPP, we are left with the 
task of defining the edge weights w i j  in a way that is meaningful for the under- 
lying gate scheduling problem. The weights are derived from the matrix ( u i j )  of 
normalised activity-gate preferences. The basic idea is that two activities are similar 
if their two corresponding rows in the preference matrix have similar entries in all 
columns, which means that they prefer the same set of gates. We will measure the 
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degree of similarity of two activities by looking at the average difference of their 
gate preferences. We will further take into account that a similarity with respect 
to a highly preferred gate (high preference values) is of greater significance than a 
similarity with respect to a barely acceptable gate (small preference values), or even 
with respect to an infeasible gate (preference values of zero). As all activities can 
be assigned to the fictitious gate 0, we will only consider the set of gates or modes 
M0 := M \ (0). 

The relative importance Gijk of a gate (mode) k E M0 for a pair of activities i, j E V 
is the ratio of the sum of preferences of i and j for k to their total preference values: 

For normalised preference values this implies that Gijr, E [O, 11 and CkEMo Gijk = 
1. 

The normalised similarity sijk of a pair of activities i, j E V with respect to gate 
k E M0 is: 

Sijk := 1 - )uik - u j k  I /  max{Uik, ~ j k )  if uik > 0 V ~ j k  > 0, 
otherwise. 

The similarity measure can take values in the interval [0, 11; if the preference values 
of activities i and j with respect to gate k are equal, then sijk = 1. 

The normalised weight of the edge between nodes representing activities i ,  j E V 
can now be defined as: 

- CkEMo Gijk . s j j k  if {i, j )  E 2) v (i, j) E EloW, 
wij := 

otherwise. 

2) is the set of disjunctive activity pairs introduced in Definition (7.8). The weight 
cj can only take a non-zero value if i and j are in disjunction or if they are linked, 
i.e., if i and j are two subsequent activities for the same aircraft. It follows from 
the definitions of Gijk and sijk that Gij is normalised, with values close to 1 corre- 
sponding to a high similarity and values close to 0 to a low similarity of activities i 
and j. 

Using a bias value ,B E [0, 11, the edge weights wij to be used in the Objective 
Function (7.9) can now simply be defined as follows: 

The bias /? is used to ensure that the weights take negative values for activity pairs 
of low similarity; because Gij is normalised it follows that wij E [-p, 1 - P]. For 
given preference values, a low bias leads to more positive weights and consequently 
to fewer cliques (partitions) than a high bias, which generally leads to a fine grained 
partitioning into many cliques. 

We have now completely defined the CPP that can serve to heuristically partition 
a given gate scheduling problem. The following section shows how the resulting 
partition is used within the branch-and-bound algorithm. 
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7.2.8 Layered Branch-and-Bound 

In tree search algorithms that use a chronological backtracking strategy, branching 
decisions are always undone in the reverse order in which they were made. If two 
successive branching decisions are only weakly related or even unrelated, this may 
lead to a weak performance of the search algorithm, because effort is wasted by 
searching futile branches repeatedly. A related, second problem is that the search 
tends to concentrate on a small area of the tree, in the proximity of a first solution. 

There are many ways in which these two main problems can be addressed. To avoid 
concentration of the search on a narrow region of the search space, breadth-first 
search strategies can be used. The repeated exploration of similar, futile sub-trees 
can be avoided by using dependency directed backtracking (DDBT), some times also 
called intelligent backtracking. The idea of DDBT is to identify the culprit(s) that 
necessitate backtracking, so that the algorithm can backtrack to the relevant decisions 
only; however, the identification of the culprit(s) based on the constraints in the 
problem may not be easy, and DDBT may require great overhead. A repeated search 
within futile subtrees can to some extent also be avoided by choosing a favourable 
search order in which branching decisions are made. This is the approach that we 
will follow here. For a general and exhaustive discussion of issues arising in the 
design of tree search algorithms we refer to Tsang (1993). 

In this section, we shall address the two problems by using the decomposition of the 
problem to guide a truncated branch-and-bound search. The search tree, which corre- 
sponds to the complete gate scheduling problem, is conceptually split into layers that 
correspond to the sub-problems that have been identified by solving the associated 
CPP described in the previous section. Within each layer, only branching decisions 
concerning the variables of the corresponding sub-problem are made. Before leav- 
ing a layer, the search chronologically backtracks within the current layer until a time 
limit expires or the layer is exhausted. It then continues from the best partial solution 
found within the current layer. The intuition behind this approach is that, by keeping 
decisions concerning strongly related variables close to each other, the distance one 
has to backtrack is reduced and the effectiveness of backtracking is increased. Ad- 
ditionally, backtracking within each layer leads to an in-breadth exploration of the 
current sub-problem. 

The principle is best illustrated by an example. Figure 7.6 shows an example of a 
layered branch-and-bound tree with two layers which correspond to the partition of 
the example in Figure 7.5 into two subsets V1 and V2.  On the first level of the tree, 
only decision variables related to the two activities in the set V1 are considered for 
branching. For example, the search may begin by assigning modes to activities 3 
and 4 at nodes 1 and 2, respectively; when reaching node 2, no more decisions con- 
cerning the sub-problem defined by V1 can be made3, and backtracking is initiated. 
Backtracking subsequently leads to the generation of nodes 3, 4, and so on. Back- 
tracking continues until the sub-problem is exhausted or a time-limit expires. In the 

! 3~ssuming  all disjunctions are oriented. I ~ 
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Figure 7.6: Example of a layered branch-and-bound tree 

example, we assume that the solution with the best lower bound has been found at 
node 6, and the search therefore continues from node 6 and proceeds to the next 
layer. In the second layer, only decisions concerning the variables corresponding 
to the set V2 will be made. The search continues to node 9, which corresponds to 
a solution, and then backtracks. When backtracking, the search does not leave the 
current layer: if the layer is exhausted, the search does not backtrack beyond node 6 
to the previous layer, but instead stops, or, in general, continues to the next layer. 

The sub-problems are selected for branching in the order of the total importance, or 
weight, associated with their activities, i.e., the sub-problem Vk for which CiEVk Wi 

is maximal is considered first, and so on. 

The sub-problems influence the search order and the way in which backtracking is 
performed. By imposing a time-limit for the effort to be spent in each layer and 
by preventing a backtrack to the previous layer, the branch-and-bound search is no 
longer exhaustive but turns into a heuristic. It is worth mentioning that the sub- 
problems do not restrict the constraint propagation process, which does not only 
consider the variables of the current sub-problem but takes the complete problem 
into account. 
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7.2.9 Large Neighbourhood Search 

An initial gate schedule found using the layered branch-and-bound approach is it- 
eratively improved through Large Neighbourhood Search (LNS, Kilby et al. 1998, 
2000). The central idea of LNS as a general search technique is to relax some of the 
decisions made during the construction of a solution and use a constructive method 
to reform the relaxed part of the solution at a lower cost. 

Schedule Improvement 

Given a feasible schedule (A;, A;, Ah), LNS for the gate scheduling pro1 
proceeds as follows: 

Choose an activity i E V with a "bad" mode assignment. 

A bad assignment Mi is an assignment to the ficitious gate 0 or one that causes 
a potentially avoidable tow for a pair of activities (i, j) E &'OW or (j, i) E &'Ow. 
A tow is required if Mi # Mj; it may be avoidable if the mode sets ' " 

include a common real gate, i.e., if M i  n M \ (0) # 8. 

Choose a subset V(i) of activities of a given size n that includes activity i anu 
other, "closely related" activities. 

The subset V(i) is constructed using the edge weights wij of the associated 
clique partitioning problem in the following way: Initially, V(i) := {i}; the 
set is grown by greedily moving the activity j E V \ V(i) to V(i) for which 
the maximal increase, or minimal decrease, of the total weight within V(i) is 
obtained, i.e., for which CkEV(i) wjk is maximal. 

Relax all decisions concerning the activities in V(i) but keep all other deci- 
sions. 

This is achieved by reconstructing the partial solution for all activities in the 

1 set V \ V(i) by simply resetting the start time, completion time, and mode 
domains of all activities j E V to their initial values and then making all mode 
assignment and disjunction orientation decisions that were made for activities 
j E V \ V(i) during the construction of the schedule (A;, A;, Ah); disjunc- 
tions concerning a pair of activities j and k with j E V \ V(i) and lc E V(i) 
remain relaxed. 

Complete the schedule by applying branch-and-bound search, using the value 
of the best full schedule found so far as upper bound. 

' If the new schedule improves upon the current schedule then replace the cur- 
rent schedule with it. Repeat the previous steps until every 'bad" assignment 

i in the current gate schedule has been chosen for improvement. 
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The intuition behind relaxing the decisions corresponding to the activity set V(i) is to 
introduce a degree of freedom that will allow to fix the problematic assignment of i .  
The size of the set V ( i )  should be large enough to offer sufficient freedom, yet small 
enough to allow a fast branch-and-bound search. In computational experiments we 
found that a suitable size of the set V(i) was between twenty and thirty activities. 

Reactive Scheduling 

LNS cannot only be applied to improve a given initial schedule, but is also useful 
for adapting a gate schedule to flight schedule disruptions with only small changes 
in the gate schedule. In the following we shall briefly outline the LNS approach for 
reactive gate scheduling. 

In terms of the gate scheduling model (7.1) - (7.7) a flight schedule disruption may 
lead to changes of arrival or departure times tq and t!, to changes of the mode sets 
Mi in case of aircraft changes, or to new or cancelled activities. These changes may 
lead to constraint violations and thus invalidate a gate schedule. 

To adapt or "repair" a gate schedule that has become infeasible, a modified version 
of the LNS scheme described above may be used. Instead of selecting activities with 
unfavourable mode assignments, the search focuses on activities involved in a con- 
straint violation. Because multiple constraint violations can occur simultaneously 
and because the reconstruction of partial solutions that contain an infeasibility is 
not useful, as the search would immediately fail when trying to continue, it is first 
necessary to relax enough decisions so that the remaining partial schedule becomes 
feasible. The set of violating activities for which decisions are relaxed is denoted 
with V'. Depending on the type of violation, there may be more than one way to re- 
lax decisions so that a particular constraint violation is avoided. We can now proceed 
in an analogous way as when using LNS for solution improvement, the main differ- 
ence being that instead of selecting activities with "bad assignments, we repeatedly 
select violating activities from the set V'. 

7.2.10 Computational Experiments 

Implementation and Test Data 

The layered branch-and-bound algorithm including the generic constraint propaga- 
tion algorithm and the consistency tests, the exact and heuristic problem partitioning 
algorithms, and the LNS improvement heuristic have been implemented in C++. All 
results reported below have been obtained on a PentiumProl200 PC with the Linux 
operating system. 

We have tested the algorithm on two problem sets: 

1. The first set contains fourteen manually constructed small test problems with 
approximately ten to twenty activities. The instances where used to validate 
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the model and algorithm by comparing the results to manually built gate sched- 
ules. The instances can all be solved to optimality within a fraction of a second. 

2. The second set consists of fourteen problems based on real flight schedules 
for two weeks at a large international airport. These instances contain approx- 
imately 800 activities per day that must be scheduled at 94 gates. The problem 
instances have been exported from a commercial gate scheduling decision sup- 
port system (DSS); the gate preference values and activity priorities used were 
determined by a rule based sub-system of the DSS. 

To evaluate our algorithm, the results for the second test set will be compared to gate 
schedules built by the commercial gate scheduling DSS that is in use at the same 
airport. The system has been developed in the past three years and represents the 
current state of the art. The decision logic of the system uses a rule based approach; 
it replaces and improves upon an older rule based DSS that takes an approach similar 
to the one in the prototype system described by Gosling (1990). 

Results 

The algorithm was evaluated with goal weights cwl = = 1 and as = 0. The 
preference values for the large test problems were defined as follows: An assignment 
to the dummy gate 0 is penalised with a preference value uio = -5, for all i E V; 
all other preference values are normalised, i.e. u e  E [0, I], for all i E V and p E 
M i  \ (0). Intuitively, this means that a single assignment to the dummy gate is as 
bad as five tows; assigning an activity to a gate with the lowest possible preference 
value 0 instead of a gate with the highest possible preference value 1 is as bad as a 
single tow. 

Because it is difficult to interpret the numeric objective function value, we report 
the results with respect to the number of activities assigned to the dummy gate, the 
number of tows, and the overall preference score for all real gates. 

After initial experiments, the following run time limits were chosen: a total run-time 
limit of 500 seconds for finding an initial solution, and a time limit of 15 seconds 
for each LNS iteration, i.e. per attempt to fix a bad assignment. The total time limit 
for constructing the initial solution determines the time limits for each layer of the 
search tree; for a given layer, we simply allocate the fraction of the total time equal 
to the share of activities within the layer, i.e., the layer of sub-problem i, or activity 
set Vi, receives a fraction IVi 1 / 1 V 1 of the run-time. The time required for finding an 
initial solution is therefore at most t,,, but usually significantly smaller. 

A problem is first partitioned exactly, and the resulting sub-problems are then parti- 
tioned heuristically. For the large test problems, exact partitioning leads to at most 3 
independent sub-problems; however, the largest sub-problem always contains all but 
one or two activities, and the remaining sub-problems are of size one. 

For heuristic partitioning, the associated clique partitioning problem is defined us- 
'ing a bias /3 of 0.05, which was empirically found to lead to useful partitions. On 
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Day IvI Initial Solution Large Neighbourhood Search 
Layers tl OpenaTowsb Pre$ It. t2C OpenaTowsb Prej 

Sum 10 388 1321 2 139 1308 

"Number of activities assigned to the fictitious gate, excluding mandatory assignments. 
h~xcluding mandatory tows. 
cIncluding tl . 

Table 7.1: Results of the branch-and-boundalgorithm for the first test week 

average, this resulted in 39 sub-problems, or search tree layers, with a minimum of 
29 and a maximum of 47 sub-problems; the size of the sub-problems varied between 
three and approximately one hundred activities. 

The LNS improvement of an initial solution uses subsets V ( i )  of size 24. 

Tables 7.1 and 7.2 show the results for the two test weeks. For each day of the week, 
the tables show the number of activities to be scheduled and additional information 
on the initial solution found using layered branch-and-bound as well as ,on the final 
solution after the application of LNS. The columns shown for the initial solution 
contain the number of layers, or sub-problems, the time used for finding the solution, 
the number of open activities, which are assigned to the fictitious gate, the number 
of tows required, and the total preference score for all real gates. The same columns 
are shown for the final solution, except that the number of LNS iterations appears 
instead of the number of search tree layers. For the criteria related to the objective 
function value, the total values are shown at the bottom of the table. 

For a given problem instance, certain mandatory tows may be required and it is 
possible that certain activities must remain unassigned, as any assignment other than 
the fictitious gate would lead to constraint violations. At the root of the search tree, 
lower bounds on the number of mandatorily unassigned activities and mandatory 
tows can be derived by applying constraint propagation; these numbers are shown 
in Tables 7.3 and 7.4 in the section "Mandatory" in columns "Open" and "Tows". 
Because these numbers cannot be influenced by the solution algorithm and are thus 
not useful for the comparison of algorithms, the columns for open activities and tows 
do otherwise not include these numbers. 
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Day IvI Initial Solution Large Neighbourhood Search 
Layers tl OpenaTows"Pref. It. tZC Opena Towsb Pref. 

(set) (see) 
' 1 723 34 322 0 69 195 74 843 0 20 192 

2 820 40 367 5 112 194 150 1456 1 51 195 
3 799 39 372 4 101 194 1341352 0 46 193 
4 819 41 370 4 97 195 135 1369 2 52 194 
5 815 37 326 7 100 196 1371199 1 52 195 
6 818 39 379 1 116 198 1491536 0 57 198 
7 635 29 379 0 86 149 1021027 0 38 145 

Sum 21 681 1321 4 316 1312 

"Number of activities assigned to the fictitious gate, excluding mandatory assignments. 
b~xcluding mandatory tows. 
'Including t l .  

Table 7.2: Results of the branch-and-bound algorithm for the second test week 

' Table 7.1 shows that, in the initial gate schedule found for day one of the first test 
week, one activity is assigned to the fictitious gate, or left open; the schedule requires 
47 tows and the rounded total activity-gate preference score is 190. The search 
tree contains 35 layers. The required run-time of 202 seconds is smaller than the 
time limit of 500 seconds; this is caused by the fact that the overall time limit is 
distributed over the layers, and that some layers are exhaustively searched before 
their limit expires. The solution is then improved within 54 LNS iterations. The time 
required for the improvement is 399 - 202 = 197 seconds. In the improved schedule, 
no activity remains open, and the number of tows is reduced to 9; this is achieved 
at the cost of a slight decrease in the total preference score to 189. The number 
of LNS iterations seems small when compared to classic local search algorithms. 
However, it must be taken into account that the transition from one solution to an 
improving neighbour may affect many more decision variables than in typical local 
search neighbourhoods. 

The results show that LNS can consistently reduce the number of open activities and 
the number of tows at the price of a slight decrease in the total preference score. 

The results in Table 7.2 for the second test week, which has a different underlying 
flight schedule, are similar to those of the first week. However, the problems in 
the second week appear to be more difficult, as more activities remain open and the 

I number of tows increases. 

; The results shown in Tables 7.1 and 7.2 can be slightly improved at the cost of an 
' increased run-time by applying the algorithm multiple times with different control 
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Day Branch-and-Bound Rule-Based Mandatory 
Opena Towsh PreJ: Opena Tows"PreJ: Open Tows 

1 0 9 189 7 43 187 6 15 

Sum 2 139 1308 75 358 1287 14 94 

"Number of activities assigned to the fictitious gate, excluding mandatory assignments. 
' ~ x c l u d i n ~  mandatory tows. 

Table 7.3: Comparison of results for the first test week 

parameters, e.g., time limits, partitioning bias, and the size of the subsets used for 
LNS. 

Tables 7.3 and 7.4 compare the results obtained with the proposed algorithm with 
the gate schedules calculated by a commercial rule-based system. The tables show 
that the branch-and-bound algorithm leads to substantial improvements. The gate 
schedules are significantly better with respect to the number of open activities and the 
number of required tows. In the first (second) week, the number of activities assigned 
to the fictitious gate can be reduced by more than 97 (96) %, and the number of tows 
decreases by more than 61 (46) %; at the same time, the total preference score is 
slightly improved. 
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Day Branch-and-Bound Rule-Based Mandatory 
Opena Towsb PreJ: Opena Tows"reJ: Open Tows 

1 0 20 192 8 61 189 5 9 
2 1 5 1 195 14 8 1 191 0 9 
3 0 46 193 10 73 189 0 9 
4 2 52 194 17 86 190 0 7 
5 1 52 195 23 87 191 0 8 
6 0 57 198 23 107 193 1 6 
7 0 38 145 17 94 146 5 12 

Sum 4 316 1312 112 589 1289 11 60 

*Number of activities assigned to the fictitious gate, excluding mandatory assignments. 
' ~ x c l u d i n ~  mandatory tows. 

Table 7.4: Comparison of results for the second test week 





Chapter 8 

Summary and Conclusions 

This work has developed effective solution methods and described new applications 
for a very general class of deterministic, non-preemptive project scheduling models. 
The models studied in this book are concerned with the allocation of scarce resources 
over time to activities, the start of which may be constrained by minimal and max- 
imal time lags; these lags allow to specify any possible temporal relation between 
pairs of activities. The single- and multi-mode models for resource-constrained 
project scheduling with generalised precedence constraints, or time windows, are 
very expressive and cover many requirements commonly found in practical appli- 
cations. The basic single-mode problem is a generalisation of many well known, 
difficult problems studied in project and machine scheduling. 

While we have mainly considered the objective of minimising the completion time 
of a project, most of the results hold for any regular objective function, and they are 
frequently also applicable for optimising non-regular measures of performance, as 
demonstrated by one of the applications proposed in Chapter 7. 

A secondary objective of this work has been to investigate the application of con- 
straint propagation techniques for project scheduling. Constraint propagation is an 
elementary problem reduction technique that transforms problems into equivalent 
problems which are hopefully easier to solve. This is achieved by repeatedly de- 
ducing new implicit constraints that allow to reduce the search space by removing 
inconsistent assignments that cannot participate in any feasible solution. 

To provide a theoretical foundation for the constraint propagation approach, Chap- 
ter 3 has reviewed different concepts of consistency, which, roughly speaking, define 
a certain level of search space reduction. Because establishing full Ic-consistency, k- 
domain-consistency, or k-bound-consistency for an arbitrary number Ic of decision 
variables is difficult and generally requires exponential effort, approximations are re- 
quired. To this end, a number of consistency tests are iteratively applied. Consistency 
tests are simple rules, or logical tests, that deduce additional, redundant constraints. 
By repeatedly applying the tests within a fixed point iteration, the derived knowledge 
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is reused, or propagated, until no further conclusions can be drawn. As long as the 
tests satisfy a very natural monotony condition, the resulting fixed point is unique. 

Chapter 4 has investigated consistency tests that may be applied in project schedul- 
ing. It has focused on interval consistency tests, i.e., tests that analyse the required 
and available amount of work within certain time intervals. Within this framework 
we have described tests for disjunctive scheduling with unit resource availabilities 
and requirements as well as tests for cumulative scheduling with discrete supply and 
demand in a unified way, using numerous examples for illustration. 

Previous research, which has been confirmed in this study, has shown that difficult 
project scheduling problem instances are frequently characterised by low resource 
supply, which in turn leads to difficult disjunctive sub-problems. We have there- 
fore first discussed how promising disjunctive sub-problems of a project scheduling 
problem can be isolated and then studied consistency tests originally proposed for 
disjunctive scheduling (sequencing). Our analysis has shown that these tests can be 
understood as special cases of a general sequence consistency condition. We have 
related the tests based on this condition to the concept of interval work, or energy, 
and have shown that in sequencing it suffices to test the required and available work 
within all activity intervals, i.e., time intervals with a start and end defined to be 
the earliest start and latest completion time of some activities. The search space re- 
duction achieved by the sequence consistency tests has been related to the general 
concepts of consistency introduced in Chapter 3. 

We have discussed how the sequence consistency condition can be generalised for 
cumulative scheduling, where, in contrast to the disjunctive case, it is no longer 
sufficient to consider only activity intervals. Chapter 4 has finally described how the 
consistency tests, which have been introduced for single-mode scheduling, can be 
applied for multi-mode problems to reduce the activity start time domains as well 
the mode domains. 

Chapter 5 has integrated the constraint propagation techniques into a new branch- 
and-bound procedure for single-mode resource-constrained project scheduling with 
time windows. The algorithm implicitly enumerates activity start times by either 
starting activities as early as possible or delaying them in such a way that the con- 
struction of non-active, i.e., dominated, schedules is avoided. At each node of the 
tree, a fixed point is computed by repeatedly applying a number of consistency tests. 
The search space is further reduced by enforcing some necessary conditions that 
must be met by active schedules. 

The procedure has been evaluated on several large test sets of benchmark problem 
instances, and the influence of the different building blocks of the algorithm and 
of a set of parameters characterising the test problems have been analysed. The 
experiments have demonstrated the effectiveness and efficiency of the approach. 

On a test set of over thousand systematically generated instances with one hundred 
activities each of the problem with generalised precedence constraints, the time- 
oriented branch-and-bound algorithm can find feasible solutions for all solvable 
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problem instances. It solves more problems to optimality than other exact procedures 
that have recently been proposed, while at the same time achieving a significantly 
smaller average deviation from a lower bound for the project duration. It is remark- 
able that with respect to the latter criterion, the simple time-truncated version of the 
branch-and-bound method yields solutions that improve upon the results of the best 
known heuristics, and that these solutions are found within average run times as small 
as ten seconds.Similar1y good results for a second benchmark test set consisting of 
larger problem instances with five hundred activities per project have demonstrated 
that the branch-and-bound algorithm also scales very well. 

The algorithm has additionally been evaluated on four large benchmark test sets for 
the well studied, special project scheduling problem with simple finish-start prece- 
dence constraints. The results show again that the algorithm scales very well; for 
larger instances, it is competitive to other exact procedures for this problem, and 
its truncated version may even be a useful heuristic. The good performance on the 
larger test sets is particularly interesting because the algorithm does not include cer- 
tain features which enhance the performance on this special problem but that are 
hard to adapt for generalised or extended versions of the problem. 

The branch-and-bound procedure has been extended in Chapter 6 for the multi-mode 
version of the project scheduling problem with time windows by combining the time- 
oriented branching over activity start times with a binary branching over mode as- 
signments or restrictions. 

We have finally dealt with two applications of project scheduling in airport oper- 
ations management. Chapter 7 has first described how the scheduling of ground 
handling activities required for serving aircrafts while at an airport gives rise to a 
resource-constrained multi-project scheduling problem with time windows. 

The focus of Chapter 7 has then been on airport gate scheduling which deals with 
the task of assigning flights to terminal gates or parking positions and scheduling the 
start and end times of the assignments. We have shown how this task can be modelled 
as a special multi-mode project scheduling problem with a non-regular objective 
function, specially structured temporal constraints, and disjunctive resources. The 
proposed solution method of the branch-and-bound type again relies on the use of 
constraint propagation techniques for search space reduction. For dealing with large 
practical problems with on the order of magnitude of thousand activities, the branch- 
and-bound procedure has been combined with additional problem decomposition 
and solution improvement techniques which both are of general interest beyond the 
application at hand. The problem has been decomposed into looseIy coupIed sub- 
problems using a new generic problem partitioning approach, and the search tree is 
conceptually split into layers that correspond to the sub-problems. Initial solutions 
are iteratively improved by using the branch-and-bound algorithm within a large 
neighbourhood search scheme. Computational experiments with large real-life data 
sets have demonstrated that the modelling approach is well suited and that the pro- 
posed solution method is very effective and greatly improves upon the results of a 
modem rule based decision support system. 
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The approach followed in the gate scheduling application has been to adapt a suc- 
cessful standard project scheduling model and solution methods for a practical prob- 
lem. Based on the experience gained, we believe that this way of starting from stan- 
dard models and methods and extending them to cover even more realistic problem 
classes is an promising direction for future research as well as for the development 
of practical software applications. 

Due to their generality, the basic project scheduling models studied here are very 
good starting points. The constraint propagation based solution techniques that we 
have investigated are also well suited for such an approach because most of the ba- 
sic building blocks, i.e., the consistency tests, are not custom tailored for specific 
scheduling models and objective functions but cover a wide range of possible appli- 
cations. Furthermore, the efficiency of the solution methods proposed in this work 
can to a great extent be attributed to the application of these techniques. The de- 
sign of strong and efficient consistency tests therefore also remains a promising step 
towards the development of improved solution methods. 
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Symbol Description 

Time interval [tl , tz] := {tl , . . . , t2}. 
Time interval]tl,t2[:= {tl + 1 , .  . . , t 2  - 1). 
Activities i and j are in disjunction, i.e. the constraint Si + pi < 
Sj V Sj + pj 5 Si must hold. 
Activity i must be processed before activity j ,  i.e. Si +pi 5 Sj must 
hold. 
i must be processed before (after) the activities in A. 
Temporal constraint between activities i and j of the form: Si+dij 5 
sj . 
Usually denotes a subset of activities that require the same resource. 
Shorthand notation for A \ {i}. 
Activity chosen in node a. 
Completion time of activity i E V S  (A) given A: Ci (A) := Si (A) + 
Pi. 
Set of all constraints. 
A consistency test. 
Set of all consistency tests. 
Integral time lag in temporal constraint (i, j ) .  
Integral time lag in temporal constraint (i, j) in multi-mode models 
if activity i is processed in mode p and activity j in mode v. 
Transitive minimal time lag between activities i and j. 
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Symbol Descriution 

ECi(A) 
ESi ( A )  
ECPr (A)  

H 
LBO 
LG(A)  
LSi ( A )  
mpr ( A )  

Set of all current domains: A  := { A x i  I X i  E V ) .  
Set of all temporal constraints. 
Set of all temporal constraints with minimal lags: Emin := { ( i ,  j )  E 
E I dij > 0). 
Set of all temporal constraints with maximal lags: Emax := { ( i ,  j )  E 
E I dij 5 0). 
Earliest completion time of activity i: Q ( A )  := ESi ( A )  + pi. 
Earliest start time of activity i: ESi(A) := min Ai. 
Earliest time by which the activities in A  can be completed if pre- 
emption is allowed. 
A hypothetical constraint to be falsified by a consistency test. 
Precedence based lower bound for the makespan. 
Latest completion time of activity i: LG(A) := W ( A )  + p i .  
Latest start time of activity i: L&(A) := max Ai. 
Latest time at which the activities in A  must be started if preemption 
is allowed. 
Mode variable or mode assignment of activity i. 
Set of possible modes in which activity i  may be processed. 
Processing time of activity i ;  pi E No. 
Interval processing of activity i :  smallest amount of time during 
which i  must be processed in the time interval [ t l ,  t2 [ . 
Total processing time of A: P ( A )  := C i E A p i .  
Total interval proc. time of A: P(A,  t l ,  t z )  := C i E A p i ( t l ,  t2)- 
Minimal start time of i  if only precedence constraints ( j ,  i )  between 
activities in j E V S( A )  and i are considered. 
Minimal start time of i  if only precedence constraints ( j ,  i) between 
activities j  E V S  ( A )  and i  and, additionally, resource constraints are 
considered. 
Requirement of activity i for resource lc; ria E No. 
In multi-mode models: requirement of activity i  for resource k if i is 
processed in mode p;  riClk E No. 
Set of all resources: 72 := RP U R". 
Set of renewable resources. 
Set of non-renewable resources. 
Set of all resources required by activity i :  Ri := { k  E R I rik > 0 )  

Rk Available capacity of resource k; Rk E No 
S  Vector of start time variables or start time assignments. 

Start time variable or start time assignment of activity i. 
continued 
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Symbol Description 

vtu (A)  

Start time of activity i  E V S(A)  given A: Si(A) := ESi(A) = 
LSi (A) .  
A time period. 
Schedule time in node a: t(a) := miniEv,t (,) ESi(a). 
Adjusted earliest start time in node a: 
t+(a) := mini,~\~~>,a,nn,+rn{ECi(a) I ECi(a) > t (a ) ) ,  for 
j = act(a). 
Real or hypothetical upper bound on the optimal makespan. 
Set of all activities; also: set of all variables. 
Set of all activities in process at time t .  
Set of all activities requiring resource k :  Vk := {i E V I Tik  > 0).  
Set of activities requiring resource k that must be completely or par- 
tially processed within [tl,  t2 [ :  Vk (t l ,  t2) := {i E Vk I pi(t~,  t ~ . )  > 
01. 
A subset of activities which belong to the same maximal disjunc- 
tive clique, i.e. which are painvise disjunctive. We often speak of 
an associated, possibly fictitious, resource with capacity one that is 
required by all activities in VC. 
Set of all free (unscheduled) activities given A: ~f (A)  := { i  E V ( 
pi1 > 1). 
Set of free and non-delayed activities given A: ~ f '  (A)  := VtC(A) U 
{ i  E ~f (A )  I ESi (A )  = rci (A)} .  
Set of all activities scheduled given A: V8(A)  := { i  E V I [Ail = 

11. 
Set of tirnernax-constrained activities given A: Vtc(A) := { j  E 
vf  (A)  I 3i E v f  ( A )  : ( i ,  j )  E E m a x } .  
Set of tirnernax-unconstrained activities given A: vtU(A) := 
v f  (A )  \ VtC(A). 
Work required by activity i  from resource k:  wik := pirik- 
Total work of d :  W ( d )  := CQEAGVE Wik. 
Total interval work of d Vk in time interval [tl,tz[: 
W ( d ,  t l ,  t2) := CiFA ~ i k ~ i ( t 1 ,  h). 
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