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Preface

“Optimisation, Econometric and Financial Analysis” is a volume of the book
series on “Advances on Computational Management Science”.

Advanced computational methods are often employed for the solution of
modelling and decision-making problems. This book addresses issues associ-
ated with the interface of computing, optimisation, econometrics and finan-
cial modelling. Emphasis is given to computational optimisation methods and
techniques.

The first part of the book addresses optimisation problems and decision
modelling. Three chapters focus on applications of supply chain and worst-
case modelling. The two further chapters consider advances in the method-
ological aspects of optimisation techniques. The second part of the book is
devoted to optimisation heuristics, filtering, signal extraction and various time
series models. There are five chapters in this part that cover the application
of threshold accepting in econometrics, the investigation of the structure of
threshold autoregressive moving average models, the employment of wavelet
analysis and signal extraction techniques in time series. The third and final
part of the book is about the use of optimisation in portfolio selection and
real option modelling. The two chapters in this part consider applications of
real investment options in the presence of managerial controls, and random
portfolios and their use in measuring investment skills.

London, UK Erricos John Kontoghiorghes
August 2006 Cristian Gatu
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A Supply Chain Network Perspective
for Electric Power Generation, Supply,
Transmission, and Consumption

Anna Nagurney and Dmytro Matsypura

Department of Finance and Operations Management, Isenberg School
of Management, University of Massachusetts, Amherst, MA 01003

Summary. A supply chain network perspective for electric power production,
supply, transmission, and consumption is developed. The model is sufficiently general
to handle the behavior of the various decision-makers, who operate in a decentral-
ized manner and include power generators, power suppliers, the transmitters, as well
as the consumers associated with the demand markets. The optimality conditions
are derived, along with the equilibrium state for the electric power supply chain
network. The finite-dimensional variational inequality formulation of the equilib-
rium state is derived, whose solution yields the equilibrium electric power flows
transacted between the tiers of the supply chain network as well as the nodal prices.
The variational inequality formulation is utilized to provide qualitative properties
of the equilibrium electric power flow and price patterns and to propose a compu-
tational scheme. The algorithm is then applied to compute the solutions to several
numerical examples.

Key words: Electric power, supply chains, networks, variational inequalities,
game theory

1 Introduction

The electric power industry in the United States, as well as abroad, is under-
going a transformation from a regulated to a competitive industry. Whereas
power generation was once dominated by vertically integrated investor-owned
utilities who owned many of the generation capacity, transmission, and distri-
bution facilities, the electric power industry today is characterized by many
new companies that produce and market wholesale and retail electric power.
In the United States, for example, several factors have made these changes
both possible and necessary. First, technological advances have altered the
economics of power production. For example, new gas-fired combined cycle
power plants are more efficient and less costly than older coal-fired power
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plants. In addition, technological advances in electricity transmission equip-
ment have made possible the economic transmission of power over long
distances so that customers can now be more selective in choosing an elec-
tricity supplier. Secondly, between 1975 and 1985, residential electricity prices
and industrial electricity prices in the US rose 13% and 28% in real terms,
respectively (US Energy Information Administration, 2002).

Furthermore, the effects of the Public Utilities Regulatory Policies Act
of 1978, which encouraged the development of nonutility power producers
that used renewable energy to generate power, demonstrated that traditional
vertically integrated electric utilities were not the only source of reliable
power. Moreover, numerous legislative initiatives have been undertaken by
the federal government in order to stimulate the development and strength-
ening of competitive wholesale power markets. As a consequence, by December
1, 2003, 1310 companies were eligible to sell wholesale power at market-based
rates in the US (statistics available at http://www.eia.doe.gov).

The dramatic increase in the number of market participants trading over
the past few years, as well as changes to electricity trading patterns have made
system reliability more difficult to maintain. The North American Electric
Reliability Council (NERC) reported that, “[in recent years] the adequacy
of the bulk power transmission system has been challenged to support the
movement of power in unprecedented amounts and in unexpected directions”
(North American Electric Reliability Council, 1998). Moreover, a US Depart-
ment of Energy Task Force noted that “there is a critical need to be sure
that reliability is not taken for granted as the industry restructures, and thus
does not fall through the cracks” (Secretary of Energy Advisory Board’s Task
Force on Electric System Reliability, 1998).

These concerns have helped to stimulate research activity in the area of
electric power supply systems modeling and analysis during the past decade.
Several models have been proposed that allow for more decentralization in the
markets (see, e.g., Schweppe (1988), Hogan (1992), Chao and Peck (1996),
Wu et al. (1996)). Some researchers have suggested different variations of
the models depending on the electric power market organizational structure
(see, for example, Hobbs (2001)). A wide range of models has been proposed
for simulating the interaction of competing generation companies who price
strategically (see Kahn (1998) and Hobbs et al. (2000)), as well as those that
simulate the exercising of market power on linearized dc networks based on
a flexible representation of interactions of competing generating firms (Day
et al. (2002)).

Nevertheless, despite all the research and analytical efforts, on August
14, 2003, large portions of the Midwest, the Northeastern United States,
and Ontario, Canada, experienced an electric power blackout. The blackout
left approximately 50 million people without electricity and affected 61,800
megawatts of electric load (US-Canada Power System Outage Task Force,
2004). In addition, two significant outages during the month of September
2003 occurred abroad: one in England and one, initiated in Switzerland, that
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cascaded over much of Italy. The scale of these recent power outages has
shown that the reliability of the existing power systems is not adequate and
that the latest changes in electric power markets require deep and thorough
analysis.

In this chapter, we propose what we believe is a novel approach to the
modeling and analysis of electric power markets. In particular, we develop a
supply chain network model for electric power generation, supply, transmission,
and consumption, which allows for decentralized decision-making, and which
differs from recent models (see, e.g., Jing-Yuan and Smeers (1999), Takriti
et al. (2000), Boucher and Smeers (2001), and Daxhelet and Smeers (2001)) in
that, first and foremost, we consider several different types of decision-makers
and model their behavior and interactions explicitly. Moreover, we allow for
not only the computation of electric power flows but also the prices associated
with the various transactions between the tiers of decision-makers in the
electric power supply chain network. Finally, the functional forms that can be
handled in our framework are not limited to linear and/or separable functions.
For additional background on supply chain network modeling, analysis, and
computations, as well as financial engineering, see the annotated bibliography
by Geunes and Pardalos (2003). For an overview of electric power systems, see
the book by Casazza and Delea (2003). For an edited volume on the deregu-
lation of electric utilities, see Zaccour (1998). For additional background on
game theory as it relates to electric power systems, see the edited volume by
Singh (1998).

The supply chain network approach permits one to represent the
interactions between decision-makers in the market for electric power in terms
of network connections, flows, and prices. In addition, we consider noncoop-
erative behavior of decision-makers in the same tier of the supply chain
network (such as, for example, the generators, the suppliers, and the demand
markets) as well as cooperative behavior between tiers. Furthermore, this
approach makes it possible to take advantage of the network topology (which is
not limited to a specific number of generators, suppliers, transmitters, and/or
demand markets) for computational purposes. Finally, it provides a framework
from which a variety of extensions can be constructed to include, among
other elements, multicriteria decision-making to incorporate environmental
issues, risk and reliability elements, as well as stochastic components, and, in
addition, the introduction of explicit dynamics and modeling of disequilibrium
behavior.

The chapter is organized as follows. In Sect. 2, we develop the model,
describe the various decision-makers and their behavior, and construct the
equilibrium conditions, along with the variational inequality formulation. The
variables are the equilibrium prices, as well as the equilibrium electricity
flows between the tiers of decision-makers. In Sect. 3, we derive qualitative
properties of the equilibrium pattern, under appropriate assumptions, notably,
the existence and uniqueness of a solution to the governing variational
inequality. In Sect. 4, we propose an algorithm, which is then applied to
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several illustrative numerical examples in Sect. 5. We conclude the chapter
with Sect. 6 in which we summarize our results and suggest directions for
future research.

2 The Supply Chain Network Model for Electric Power

In this section, we develop an electric power supply chain network model
in which the decision-makers operate in a decentralized manner. In partic-
ular, we consider an electric power network economy in which goods and
services are limited to electric energy and transmission services. We consider
power generators, power suppliers (including power marketers, traders, and
brokers), transmission service providers, and consumers (demand markets, or
end users). A depiction of the supply chain network for electric power is given
in Fig. 1.

Power generators are those decision-makers who own and operate elec-
tric generating facilities or power plants. They produce electric power, which,
is then sold to the power suppliers. The prices that generators charge for
the electricity that they produce is determined by the competitive wholesale
market. There is a total of G power generators, depicted as the top tier nodes
in Fig. 1, with a typical power generator denoted by g. Power suppliers, in
turn, bear a function of an intermediary. They buy electric power from power
generators and sell to the consumers at different demand markets. We denote
a typical supplier by s and consider a total of S power suppliers. Suppliers are
represented by the second tier of nodes in the supply chain network in Fig. 1.

Note that there is a link from each power generator to each supplier in the
network in Fig. 1 which represents that a supplier can buy energy from any
generator on the wholesale market (equivalently, a generator can sell to any/all
the suppliers). Note also that the links between the top tier and the second tier
of nodes do not represent the physical connectivity of two particular nodes.

Fig. 1. The electric power supply chain network
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Power suppliers do not physically possess electric power at any stage of the
supplying process; they only hold the rights for the electric power. Hence, the
link connecting a pair of such nodes in the supply chain is a decision-making
connectivity link between that pair of nodes.

In order for electricity to be transmitted from a power generator to
the point of consumption a transmission service is required. Hence, power
suppliers need to buy the transmission services from the transmission service
providers. Transmission service providers are those entities that own and
operate the electric transmission and distribution systems. These are the
companies that distribute electricity from generators via suppliers to demand
markets (homes and businesses). Because transmission service providers do
not make decisions as to where the electric power will be acquired and to
whom it will be delivered, we do not include them in the model explicitly as
nodes. Instead, their presence in the market is modeled as different modes of
transaction (transmission modes) corresponding to distinct links connecting
a given supplier node to a given demand market node in Fig. 1. We assume
that power suppliers cover the direct cost of the physical transaction of elec-
tric power from power generators to the demand markets and, therefore, have
to make a decision as to from where to acquire the transmission services (and
at what level).

We assume that there are T transmission service providers operating in the
supply chain network, with a typical transmission service provider denoted by
t. For the sake of generality, we assume that every power supplier can transact
with every demand market using any of the transmission service providers or
any combination of them. Therefore, there are T links joining every node in
the middle tier of the network with every node at the bottom tier (see Fig. 1).

Finally, the last type of decision-maker in the model is the consumers or
demand markets. They are depicted as the bottom tier nodes in Fig. 1. These
are the points of consumption of electric power. The consumers generate the
demand that drives the generation and supply of the electric power in the
entire system. There is a total of K demand markets, with a typical demand
market denoted by k, and distinguished from the others through the use of
appropriate criteria, such as geographic location; the types of consumers; that
is, whether they are businesses or households; etc. We assume a competitive
electric power market, meaning that the demand markets can choose between
different electric power suppliers (power marketers, brokers, etc.).

We also assume that a given power supplier negotiates with the trans-
mission service providers and makes sure that the necessary electric power
is delivered. These assumptions fit well into the main idea of the restruc-
turing of the electric power industry that is now being performed in the US,
the European Union, and many other countries (see http://www.ferc.gov and
http://www.europarl.eu.int).

Clearly, in some situations, some of the links in the supply chain network
for electric power in Fig. 1 may not exist (due to, for example, various
restrictions, regulations, etc.). This can be handled within our framework by
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eliminating the corresponding link for the supply chain network or (see further
discussion below) assigning an appropriately high transaction cost associated
with that link.

We now turn to the discussion of the behavior of each type of decision-
maker and give the optimality conditions.

2.1 The Behavior of Power Generators
and their Optimality Conditions

We first start with the description of the behavior of the power generators.
Recall that power generators are those decision-makers in the network system,
who own and operate electric generating facilities or power plants. They
generate electric power and then sell it to the suppliers. Hence, one of the
assumptions of our model is that power generators cannot trade directly with
the demand markets.

Let qg denote the nonnegative amount of electricity in watts produced
by electric power generator g and let qgs denote the nonnegative amount of
electricity (also in watts), being transacted from power generator g to power
supplier s. Note that qgs corresponds to the flow on the link joining node g
with node s in Fig. 1. We group the electric power production outputs for all
power generators into the vector q ∈ RG

+. Also, we group all the power flows
associated with all the power generators to the suppliers into the column
vector Q1 ∈ RGS

+ .
For power generator g, we assume, as given, a power generating cost func-

tion denoted by fg, such that

fg = fg(q), ∀g. (1)

All the power generating functions are assumed to be convex and continuously
differentiable. Since generators compete for resources we allow for the general
form (1). Of course, a special case is when fg = fg(qg).

Note that we allow each power generating cost function to depend not
only on the amount of energy generated by a particular power generator,
but also on the amount of energy generated by other power generators. This
generalization allows one to model competition.

In addition, while the electric power is being transmitted from node g to
node s, there will be some transaction costs associated with the transmission
process. Part of these costs will be covered by a power generator. Let cgs
denote power generator g’s transaction cost function associated with trans-
mitting the electric power to supplier node s. Without loss of generality we let
cgs depend on the amount of electric power transmitted from power generator
g to power supplier s. Therefore,

cgs = cgs(qgs), ∀g, ∀s, (2)

and we assume that these functions are convex and continuously differentiable.
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Each power generator g faces the conservation of flow constraint given by:

S∑

s=1

qgs = qg, (3)

that is, a power generator g cannot ship out more electric power than he has
produced.

In view of (3) and (1), we may write, without any loss of generality that
fg = fg(Q1), for all power generators g; g = 1, ..., G. Note that in our frame-
work, as the production output reaches the capacity of a given generator
then we expect the production cost to become very large (and, perhaps, even
infinite).

2.2 Optimisation Problem of a Power Generator

We assume that a typical power generator g is a profit-maximizer. Let ρ∗1gs
denote the price that a power generator g charges a power supplier s per unit
of electricity. We later in this section discuss how this price is arrived at. We
allow the power generator to set different prices for different power suppliers.
Hence, the optimisation problem of the power generator g can be expressed
as follows:

Maximize Ug =
S∑

s=1

ρ∗1gsqgs − fg(Q1)−
S∑

s=1

cgs(qgs) (4)

subject to:
qgs ≥ 0, ∀s. (5)

We assume that the power generators compete in noncooperative manner
following the concepts of Nash (1950, 1951) (see also, e.g., Dafermos and
Nagurney (1987)). Hence, each power generator seeks to determine his optimal
strategy, that is, the generated outputs, given those of the other power gener-
ators. The optimality conditions of all power generators g; g = 1, ..., G,
simultaneously, under the above assumptions (see also Bazaraa et al. (1993),
Bertsekas and Tsitsiklis (1997), and Nagurney (1999)), can be compactly
expressed as: determine Q1∗ ∈ RGS

+ satisfying

G∑

g=1

S∑

s=1

[
∂fg(Q1∗)

∂qgs
+

∂cgs(q∗gs)
∂qgs

− ρ∗1gs

]
× [qgs − q∗gs] ≥ 0, ∀Q1 ∈ RGS

+ . (6)

Note that (6) is a variational inequality. Moreover, (6) has a very nice
economic interpretation. Indeed, at optimality, if there is a positive flow of
electric power between a generator/supplier pair, then the price charged is
precisely equal to the sum of the marginal production cost plus the marginal
transaction cost; if that sum exceeds the price, then there will be no electric
power flow (and, thus, no transaction) between that pair.
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2.3 The Behavior of Power Suppliers
and their Optimality Conditions

We now turn to the description of the behavior of the power suppliers. The
term power supplier refers to power marketers, traders, and brokers, who
arrange for the sale and purchase of the output of generators to other suppliers
or load-serving entities, or in many cases, serve as load-serving entities them-
selves. They play a fundamental role in our model since they are respon-
sible for acquiring electricity from power generators and delivering it to the
demand markets. Therefore, power suppliers are involved in transactions with
both power generators and the demand markets through transmission service
providers.

A power supplier s is faced with certain expenses, which may include,
for example, the cost of licensing and the costs of maintenance. We refer
collectively to such costs as an operating cost and denote it by cs. Let qtsk
denote the amount of electricity being transacted between power supplier s
and demand market k via the link corresponding to the transmission service
provider t. We group all transactions associated with power supplier s and
demand market k into the column vector qsk ∈ RT

+. We then further group all
such vectors associated with all the power suppliers into a column vector Q2 ∈
RSTK

+ . For the sake of generality and to enhance the modeling of competition,
we assume that

cs = cs(Q1, Q2), ∀s. (7)

We also assume that there is another type of cost that a power supplier
may face, namely, transaction costs. As mentioned earlier, each power supplier
is involved in transacting with both power generators and with the demand
markets through transmission service providers. Therefore, there will be costs
associated with each such transaction. These costs may include, for example,
the expenses associated with maintaining the physical lines, if they belong to
the power supplier, or the expenses associated with the transmission service
which a power supplier has to purchase. In order to capture all possible
scenarios, we will use a transaction cost function of a general form. Let ĉgs
denote the transaction cost associated with power supplier s acquiring electric
power from power generator g, where we assume that:

ĉgs = ĉgs(qgs), ∀g, ∀s. (8)

Similarly, let ctsk denote the transaction cost associated with power supplier
s transmitting electric power to demand market k via transmission service
provider t, where:

ctsk = ctsk(q
t
sk), ∀s, ∀k, ∀t. (9)

We assume that all the above transaction cost functions are convex and
continuously differentiable.
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Let ρt2sk denote the price associated with the transaction from power
supplier s to demand market k via transmission service provider t and let ρt∗2sk
denote the price actually charged (which we return to later in this section).
The total amount of revenue the power supplier obtains from his transactions
is equal to the sum over all the modes of transmission and all the demand
markets of the price times the amount of electric power transacted with the
demand market using the particular transmission mode. Indeed, the total
revenue of power supplier s can mathematically be expressed as follows:

K∑

k=1

T∑

t=1

ρt∗2skq
t
sk. (10)

Before formulating an optimisation problem of a typical power supplier,
let us look closer at the transmission service providers and their role in the
electric power supply chain network system.

2.4 Transmission Service Providers

In order for electricity to be transmitted from a given power generator to
the point of consumption a transmission service is required. Hence, power
suppliers purchase the transmission services from the transmission service
providers. Transmission service providers are those entities that own and
operate the electric transmission and distribution systems. We assume that
the price of transmission service depends on how far the electricity has to
be transmitted; in other words, it can be different for different destinations
(demand markets or consumers). We also let different transmission service
providers have their services priced differently, which can be a result of a
different level of quality of service, reliability of the service, etc.

In practice, an electric supply network is operated by an Independent
System Operator (ISO) who operates as a disinterested, but efficient entity
and does not own network or generation assets. His main objectives are:
to provide independent, open and fair access to transmission systems; to
facilitate market-based, wholesale electricity rates; and to ensure the effec-
tive management and operation of the bulk power system in each region
(http://www.isone.org). Therefore, the ISO does not control the electricity
rates. Nevertheless, he makes sure that the prices of the transmission services
are reasonable and not discriminatory. We model this aspect by having trans-
mission service providers be price-takers meaning that the price of their
services is determined and cannot be changed by a transmission service
provider himself. Hence, the price of transmission services is fixed. However, it
is not constant, since it depends on the amount of electric power transmitted,
the distance, etc., and may be calculated for each transmission line separately
depending on the criteria listed above. Consequently, as was stated earlier, a
transmission service provider does not serve as an explicit decision-maker in
the complex network system.
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2.5 Optimisation Problem of a Power Supplier

Assuming that a typical power supplier s is a profit-maximizer, we can express
the optimisation problem of power supplier s as follows:

Maximize Us =
K∑

k=1

T∑

t=1

ρt∗2skq
t
sk − cs(Q1, Q2)−

G∑

g=1

ρ∗1gsqgs

−
G∑

g=1

ĉgs(qgs)−
K∑

k=1

T∑

t=1

ctsk(q
t
sk) (11)

subject to:

K∑

k=1

T∑

t=1

qtsk ≤
G∑

g=1

qgs (12)

qgs ≥ 0, ∀g (13)

qtsk ≥ 0, ∀k, ∀t. (14)

The objective function (11) represents the profit of power supplier s with
the first term denoting the revenue and the subsequent terms the various
costs and payouts to the generators. Inequality (12) is a conservation of flow
inequality which states that a power supplier s cannot provide more electricity
than he obtains from the power generators.

We assume that the power suppliers also compete in a noncoopera-
tive manner (as we assumed for the power generators). Hence, each power
supplier seeks to determine his optimal strategy, that is, the input (accepted)
and output flows, given those of the other power suppliers. The optimality
conditions of all power suppliers s; s = 1, ..., S, simultaneously, under the
above assumptions (see also Dafermos and Nagurney (1987) and Nagurney
et al. (2002)), can be compactly expressed as: determine (Q1∗, Q2∗, γ∗) ∈
R
S(G+KT+1)
+ satisfying

S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q1∗, Q2∗)

∂qtsk
+

∂ctsk(q
t∗
sk)

∂qtsk
− ρt∗2sk + γ∗

s

]
× [qtsk − qt∗sk]

+
S∑

s=1

G∑

g=1

[
∂cs(Q1∗, Q2∗)

∂qgs
+

∂ĉgs(q∗gs)
∂qgs

+ ρ∗1gs − γ∗
s

]
× [qgs − q∗gs]

+
S∑

s=1

[
G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗sk

]
× [γs − γ∗

s ] ≥ 0,

∀(Q1, Q2, γ) ∈ R
S(G+KT+1)
+ , (15)

where γ∗
s is the optimal Lagrange multiplier associated with constraint (12),

and γ is the corresponding S-dimensional vector of Lagrange multipliers.
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Note that γ∗
s serves as a “market-clearing” price in that, if positive, the

electric power flow transacted out of supplier s must be equal to that amount
accepted by the supplier from all the power generators. Also, note that from
(15) we can infer that if there is a positive flow q∗gs, then γ∗

s is precisely equal
to the marginal operating cost of supplier s plus the marginal cost associated
with this transaction plus the price per unit of electric power paid by supplier
s to generator g.

2.6 Equilibrium Conditions for the Demand Markets

We now turn to the description of the equilibrium conditions for the demand
markets. Let ρ3k denote the price per unit of electric power associated with
the demand market k. Note here that we allow the final price of electric power
to be different at different demand markets. We assume that the demand for
electric power at each demand market k is elastic and depends not only on the
price at the corresponding demand market but may, in general, also depend
on the entire vector of the final prices in the supply chain network economy,
that is,

dk = dk(ρ3), (16)

where ρ3 = (ρ31, . . . , ρ3k, . . . , ρ3K)T . This level of generality also allows one
to facilitate the modeling of competition on the consumption side.

Let ĉtsk denote the unit transaction cost associated with obtaining the elec-
tric power at demand market k from supplier s via transmission mode t, where
we assume that this transaction cost is continuous and of the general form:

ĉtsk = ĉtsk(Q
2), ∀s, ∀k, ∀t. (17)

The equilibrium conditions associated with the transactions between power
suppliers and demand markets take the following form: We say that a vector
(Q2∗, ρ∗3) ∈ R

K(ST+1)
+ is an equilibrium vector if for each s, k, t:

ρt∗2sk + ĉtsk(Q
2∗)

{
= ρ∗3k, if qt∗sk > 0,

≥ ρ∗3k, if qt∗sk = 0.
(18)

and

dk(ρ∗3)

{
=

∑S
s=1

∑T
t=1 qt∗sk, if ρ∗3k > 0,

≤
∑S
s=1

∑T
t=1 qt∗sk, if ρ∗3k = 0.

(19)

Conditions (18) state that consumers at demand market k will purchase
the electric power from power supplier s, if the price charged by the power
supplier plus the transaction cost does not exceed the price that the consumers
are willing to pay for the electric power. Note that, according to (18), if the
transaction costs are identically equal to zero, then the price faced by the
consumers for the electric power is the price charged by the power supplier.

Condition (19), on the other hand, states that, if the price the consumers
are willing to pay for the electric power at a demand market is positive, then
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the amount of the electric power transacted by the power suppliers with the
consumers at the demand market is precisely equal to the demand. Conditions
(18) and (19) are in concert with the ones in Nagurney et al. (2002), and
reflect, spatial price equilibrium (see also, e.g., Nagurney (1999)).

Note that the satisfaction of (18) and (19) is equivalent to the solution of
the variational inequality given by: determine (Q2∗, ρ∗3) ∈ R

K(ST+1)
+ , such that

S∑

s=1

K∑

k=1

T∑

t=1

[
ρt∗2sk + ĉtsk(Q

2∗)− ρ∗3k
]
× [qtsk − qt∗sk]

+
K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗sk − dk(ρ∗3)

]
× [ρ3k − ρ∗3k] ≥ 0,

∀(Q2, ρ3) ∈ R
K(ST+1)
+ . (20)

2.7 The Equilibrium Conditions
for the Power Supply Chain Network

In equilibrium, the amounts of electricity transacted between the power gener-
ators and the power suppliers must coincide with those that the power
suppliers actually accept. In addition, the amounts of the electricity that
are obtained by the consumers must be equal to the amounts that the power
suppliers actually provide. Hence, although there may be competition between
decision-makers at the same tier of nodes of the power supply chain network
there must be, in a sense, cooperation between decision-makers associated
with pairs of nodes (through positive flows on the links joining them). Thus,
in equilibrium, the prices and product flows must satisfy the sum of the opti-
mality conditions (6) and (15), and the equilibrium conditions (20). We make
these relationships rigorous through the subsequent definition and variational
inequality derivation.

Definition 1 (Equilibrium State). The equilibrium state of the electric
power supply chain network is one where the electric power flows between the
tiers of the network coincide and the electric power flows and prices satisfy
the sum of conditions (6), (15), and (20).

We now state and prove:

Theorem 1 (VI Formulation). The equilibrium conditions governing the
power supply chain network according to Definition 1 are equivalent to the
solution of the variational inequality given by: determine (Q1∗, Q2∗, γ∗, ρ∗3) ∈
K satisfying:

G∑

g=1

S∑

s=1

[
∂fg(Q1∗)

∂qgs
+

∂cgs(q∗gs)
∂qgs

+
∂cs(Q1∗, Q2∗)

∂qgs
+

∂ĉgs(q∗gs)
∂qgs

− γ∗
s

]

×
[
qgs − q∗gs

]
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+
S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q1∗, Q2∗)

∂qtsk
+

∂ctsk(q
t∗
sk)

∂qtsk
+ ĉtsk(Q

2∗) + γ∗
s − ρ∗3k

]

×
[
qtsk − qt∗sk

]

+
S∑

s=1

[
G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗sk

]
× [γs − γ∗

s ]

+
K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗sk − dk(ρ∗3)

]
× [ρ3k − ρ∗3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K, (21)

where K ≡ {(Q1, Q2, γ, ρ3)|(Q1, Q2, γ, ρ3) ∈ RGS+TSK+S+K
+ }.

Proof. We first establish that the equilibrium conditions imply variational
inequality (21). Indeed, summation of inequalities (6), (15), and (20), after
algebraic simplifications, yields variational inequality (21).

We now establish the converse, that is, that a solution to variational
inequality (21) satisfies the sum of conditions (6), (15), and (20), and is,
hence, an equilibrium.

Consider inequality (21). Add term ρ∗1gs − ρ∗1gs to the term in the first
set of brackets (preceding the first multiplication sign). Similarly, add term
ρt∗2sk − ρt∗2sk to the term in the second set of brackets (preceding the second
multiplication sign). The addition of such terms does not change (21) since
the value of these terms is zero and yields:

G∑

g=1

S∑

s=1

[
∂fg(Q1∗)

∂qgs
+

∂cgs(q∗gs)
∂qgs

+
∂cs(Q1∗, Q2∗)

∂qgs
+

∂ĉgs(q∗gs)
∂qgs

− γ∗
s

+ρ∗1gs − ρ∗1gs

]
×

[
qgs − q∗gs

]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q1∗, Q2∗)

∂qtsk
+

∂ctsk(q
t∗
sk)

∂qtsk
+ ĉtsk(Q

2∗) + γ∗
s − ρ∗3k

+ρt∗2sk − ρt∗2sk

]
×

[
qtsk − qt∗sk

]

+
S∑

s=1

[
G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗sk

]
× [γs − γ∗

s ]

+
K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗sk − dk(ρ∗3)

]
× [ρ3k − ρ∗3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K, (22)
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which can be rewritten as:

G∑

g=1

S∑

s=1

[
∂fg(Q1∗)

∂qgs
+

∂cgs(q∗gs)
∂qgs

− ρ∗1gs

]
×

[
qgs − q∗gs

]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q1∗, Q2∗)

∂qtsk
+

∂ctsk(q
t∗
sk)

∂qtsk
− ρt∗2sk + γ∗

s

]
×

[
qtsk − qt∗sk

]

+
S∑

s=1

G∑

g=1

[
∂cs(Q1∗, Q2∗)

∂qgs
+

∂ĉgs(q∗gs)
∂qgs

+ ρ∗1gs − γ∗
s

]
×

[
qgs − q∗gs

]

+
S∑

s=1

[
G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗sk

]
× [γs − γ∗

s ]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
ρt∗2sk + ĉtsk(Q

2∗)− ρ∗3k
]
×

[
qtsk − qt∗sk

]

+
K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗sk − dk(ρ∗3)

]
× [ρ3k − ρ∗3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K. (23)

Inequality (23) is a sum of equilibrium conditions (6), (15), and (20).
Therefore, the electric power flow and price pattern is an equilibrium according
to Definition 1.

The variational inequality problem (21) can be rewritten in standard vari-
ational inequality form (cf. Nagurney (1999)) as follows: determine X∗ ∈ K
satisfying

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (24)

where X ≡ (Q1, Q2, γ, ρ3), and F (X) ≡ (Fgs, F t
sk, Fs, Fk) where g = 1, ..., G;

s = 1, ..., S; t = 1, ..., T ; k = 1, ..., K, with the specific components of F given
by the functional terms preceding the multiplication signs in (21), respectively.
〈·, ·〉 denotes the inner product in N -dimensional Euclidian space where here
N = GS + SKT + S + K.

We now describe how to recover the prices associated with the first
two tiers of nodes in the power supply chain network. Clearly, the compo-
nents of the vector ρ∗3 are obtained directly from the solution to varia-
tional inequality (21). In order to recover the second tier prices ρ∗2 associ-
ated with the power suppliers one can (after solving variational inequality
(21) for the particular numerical problem) either (cf. (18)) set ρt∗2sk =
ρ∗3k − ĉtsk(Q

2∗) for any s, t, k such that qt∗sk > 0, or (cf. (15))
set ρt∗2sk = ∂cs(Q

1∗,Q2∗)
∂qt

sk
+ ∂ct

sk(qt∗
sk)

∂qt
sk

+ γ∗
s for any s, t, k such that qt∗sk > 0.

Similarly, from (6) we can infer that the top tier prices comprising
the vector ρ∗1 can be recovered (once the variational inequality (21) is
solved with particular data) in the following way: for any g, s
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such that q∗gs > 0, set ρ∗1gs = ∂fg(Q1∗)
∂qgs

+ ∂cgs(q∗gs)

∂qgs
or, equivalently, from (15): set

ρ∗1gs = γ∗
s −

∂cs(Q1∗,Q2∗)
∂qgs

− ∂ĉgs(q∗gs)

∂qgs
.

Theorem 2. The solution to the variational inequality (22) satisfies varia-
tional inequalities (6), (15), and (20) (separately) under the condition that
vectors ρ∗1 and ρ∗2 are derived using the procedure described above.

Proof. Suppose that (Q1∗, Q2∗, γ∗, ρ∗3) ∈ K is a solution to variational
inequality (21). Variational inequality (21) has to hold for all (Q1, Q2, γ, ρ3) ∈
K. Using the procedure for deriving vectors ρ∗1 and ρ∗2 one can get (23) from
(21). Now, consider expression (23) from the proof of Theorem 1. If one lets
γs = γ∗

s , ρ3k = ρ∗3k, and qtsk = qt∗sk for all s, k, and t in (23), one obtains the
following expression:

G∑

g=1

S∑

s=1

[
∂fg(Q1∗)

∂qgs
+

∂cgs(q∗gs)
∂qgs

− ρ∗1gs

]
×

[
qgs − q∗gs

]
≥ 0, ∀Q1 ∈ RGS

+ ,

which is exactly variational inequality (6) and, therefore, a solution to (21)
also satisfies (6).

Similarly, if one lets ρ3k = ρ∗3k for all k, qtsk = qt∗sk for all s, k, and t in
the fourth functional term (preceding the fourth multiplication sign), and also
lets qgs = q∗gs in the first functional term (preceding the first multiplication
sign) in (24), one obtains the following expression:

S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q1∗, Q2∗)

∂qtsk
+

∂ctsk(q
t∗
sk)

∂qtsk
− ρt∗2sk + γ∗

s

]
×

[
qtsk − qt∗sk

]

+
S∑

s=1

G∑

g=1

[
∂cs(Q1∗, Q2∗)

∂qgs
+

∂ĉgs(q∗gs)
∂qgs

+ ρ∗1gs − γ∗
s

]
×

[
qgs − q∗gs

]

+
S∑

s=1

[
G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗sk

]
× [γs − γ∗

s ] ≥ 0,

∀(Q1, Q2, γ) ∈ R
S(G+KT+1)
+ ,

which is exactly variational inequality (15) and, therefore, a solution to (21)
also satisfies (15).

Finally, if one lets γs = γ∗
s , qgs = q∗gs for all g and s, and also qtsk = qt∗sk for

all s, k, and t and substitutes these into the second functional term (preceding
the second multiplication sign) in (23), one obtains the following expression:

S∑

s=1

K∑

k=1

T∑

t=1

[
ρt∗2sk + ĉtsk(Q

2∗)− ρ∗3k
]
×

[
qtsk − qt∗sk

]

+
K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗sk − dk(ρ∗3)

]
× [ρ3k − ρ∗3k] ≥ 0,

∀(Q2, ρ3) ∈ R
K(ST+1)
+ ,
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which is exactly variational inequality (20) and, hence, a solution to (21) also
satisfies (20).

We have, thus, established that a solution to variational inequality (21) also
satisfies (6), (15), and (20) separately under the pricing mechanism described
above.

3 Qualitative Properties

In this section, we provide some qualitative properties of the solution to
variational inequality (24). In particular, we derive existence and uniqueness
results.

Since the feasible set is not compact we cannot derive existence simply
from the assumption of continuity of the functions. We can, however, impose
a rather weak condition to guarantee existence of a solution pattern. Let

Kb = {(Q1, Q2, γ, ρ3)|0 ≤ Q1 ≤ b1; 0 ≤ Q2 ≤ b2;
0 ≤ γ ≤ b3; 0 ≤ ρ3 ≤ b4}, (25)

where b = (b1, b2, b3, b4) ≥ 0 and Q1 ≤ b1, Q2 ≤ b2, γ ≤ b3, and ρ3 ≤ b4 means
qgs ≤ b1, qtsk ≤ b2, γs ≤ b3, and ρ3k ≤ b4 for all g, s, k, and t. Then Kb is
a bounded, closed, convex subset of RGS+SKT+S+K

+ . Therefore, the following
variational inequality:

〈F (Xb)T , X −Xb〉 ≥ 0, ∀X ∈ Kb, (26)

admits at least one solution Xb ∈ Kb, from the standard theory of variational
inequalities, since Kb is compact and F is continuous. Following (Kinder-
lehrer and Stampacchia (1980)) (see also Nagurney (1999)), we then have the
following theorems:

Theorem 3 (Existence). Variational inequality (24) (equivalently (21))
admits a solution if and only if there exists a vector b > 0, such that varia-
tional inequality (26) admits a solution in Kb with

Q1b < b1, Q2b < b2, γb < b3, ρb3 < b4.

Theorem 4 (Uniqueness). Assume that conditions of Theorem 3 hold, that
is, variational inequality (26) and, hence, variational inequality (24) admits
at least one solution. Suppose that function F (X) that enters variational
inequality (24) is strictly monotone on K, that is,

〈(F (X ′)− F (X ′′))T , X ′ −X ′′〉 > 0, ∀X ′, X ′′ ∈ K, X ′ 	= X ′′. (27)

Then the solution to variational inequality (24) is unique.
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4 The Algorithm

In this section, an algorithm is presented that can be applied to solve any
variational inequality problem in standard form (see (24)), that is: determine
X∗ ∈ K, satisfying:

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K. (28)

The algorithm is guaranteed to converge provided that the function F (X)
that enters the variational inequality is monotone and Lipschitz continuous
(and that a solution exists). The algorithm is the modified projection method
of Korpelevich (1977) and it has been applied to solve a plethora of network
equilibrium problems (see Nagurney and Dong (2002)).

We first provide a definition of a Lipschitz continuous function:

Definition 2 (Lipschitz Continuity). A function F (X) is Lipschitz contin-
uous, if there exists a constant L > 0 such that:

‖F (X ′)− F (X ′′)‖ ≤ L‖X ′ −X ′′‖, ∀X ′, X ′′ ∈ K, with L > 0. (29)

The statement of the modified projection method is as follows, where T
denotes an iteration counter:

Modified Projection Method

Step 0: Initialization Set (Q10, Q20, γ0, ρ0
3) ∈ K. Let T = 1 and let a be a

scalar such that 0 < a ≤ 1
L , where L is the Lipschitz continuity constant

(cf. (29)).
Step 1: Computation Compute (Q̄1T , Q̄2T , γ̄T , ρ̄T3 ) by solving the varia-

tional inequality subproblem:
G∑

g=1

S∑

s=1

[
q̄Tgs + a

(
∂fg(Q1T −1)

∂qgs
+

∂cs(Q1T −1, Q2T −1)
∂qgs

+
∂cgs(qT −1

gs )
∂qgs

+
∂ĉgs(qT −1

gs )
∂qgs

− γT −1
s

)
− qT −1

gs

]
×

[
qgs − q̄Tgs

]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
q̄tTsk + a

(
∂cs(Q1T −1, Q2T −1)

∂qtsk
+

∂ctsk(q
tT −1
sk )

∂qtsk

+ĉtsk(Q
2T −1) + γT −1

s − ρT −1
3k

)
− qtT −1

sk

]
×

[
qtsk − q̄tTsk

]

+
S∑

s=1

[
γ̄T
s + a

(
G∑

g=1

qT −1
gs −

K∑

k=1

T∑

t=1

qtT −1
sk

)
− γT −1

s

]
×

[
γs − γ̄T

s

]

+
K∑

k=1

[
ρ̄T3k + a

(
S∑

s=1

T∑

t=1

qtT −1
sk − dk(ρT −1

3 )

)
− ρT −1

3k

]

×
[
ρ3k − ρ̄T3k

]
≥ 0, ∀(Q1, Q2, γ, ρ3) ∈ K, (30)
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Step 2: Adaptation Compute (Q1T , Q2T , γT , ρT3 ) by solving the variational
inequality subproblem:

G∑

g=1

S∑

s=1

[
qTgs + a

(
∂fg(Q̄1T )

∂qgs
+

∂cgs(q̄Tgs)
∂qgs

+
∂cs(Q̄1T , Q̄2T )

∂qgs

+
∂ĉgs(q̄Tgs)

∂qgs
− γ̄T

s

)
− qT −1

gs

]
×

[
qgs − qTgs

]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
qtTsk + a

(
∂cs(Q̄1T , Q̄2T )

∂qtsk
+

∂ctsk(q̄
tT
sk )

∂qtsk
+ ĉtsk(Q̄

2T )

+γ̄T
s − ρ̄T3k

)
− qtT −1

sk

]
×

[
qtsk − qtTsk

]

+
S∑

s=1

[
γT
s + a

(
G∑

g=1

q̄Tgs −
K∑

k=1

T∑

t=1

q̄tTsk

)
− γT −1

s

]
×

[
γs − γT

s

]

+
K∑

k=1

[
ρT3k + a

(
S∑

s=1

T∑

t=1

q̄tTsk − dk(ρ̄T3 )

)
− ρT −1

3k

]
×

[
ρ3k − ρT3k

]
≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K, (31)

Step 3: Convergence Verification If |qTgs − qT −1
gs | ≤ ε, |qtTsk − qtT −1

sk | ≤ ε,
|γT
s − γT −1

s | ≤ ε, |ρT3 − ρT −1
3 | ≤ ε, for all g = 1, · · · , G; s = 1, ..., S;

k = 1, · · · , K; t = 1, ..., T , with ε > 0, a prespecified tolerance, then stop;
else, set T =: T + 1, and go to Step 1.

The following theorem states the convergence result for the modified
projection method and is due to Korpelevich (1977).

Theorem 5 (Convergence). Assume that the function that enters the vari-
ational inequality (21) (or (24)) has at least one solution and is monotone,
that is,

〈(F (X ′)− F (X ′′))T , X ′ −X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ K
and Lipschitz continuous. Then the modified projection method described above
converges to the solution of the variational inequality (21) or (24).

The realization of the modified projection method in the context of the
electric power supply chain network model takes on a very elegant form
for computational purposes. In particular, the feasible set K is a Cartesian
product, consisting of only nonnegativity constraints on the variables which
allows for the network structure to be exploited. Hence, the induced quadratic
programming problems in (30) and (31) can be solved explicitly and in closed
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form using explicit formulae for the power flows between the tiers of the
supply chain network, the demand market prices, and the optimal Lagrange
multipliers.

Conditions for F to be monotone and Lipschitz continuous can be obtained
from the results in Nagurney et al. (2002).

5 Numerical Examples

In this section, we apply the modified projection method to several numerical
examples. The modified projection method was implemented in FORTRAN
and the computer system used was a Sun system located at the University of
Massachusetts at Amherst.

The convergence criterion utilized was that the absolute value of the flows
(Q1, Q2) and the prices (γ, ρ3)between two successive iterations differed by
no more than 10−4. For the examples, a was set to .05 in the algorithm,
except where noted otherwise. The numerical examples had the network
structure depicted in Fig. 2 and consisted of three power generators, two
power suppliers, and three demand markets, with a single transmission service
provider available to each power supplier.

The modified projection method was initialized by setting all variables
equal to zero.

Example 1. The power generating cost functions for the power generators were
given by:

f1(q) = 2.5q2
1 + q1q2 + 2q1, f2(q) = 2.5q2

2 + q1q2 + 2q2,

f3(q) = .5q2
3 + .5q1q3 + 2q3.

Fig. 2. Electric power supply chain network for the numerical examples
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The transaction cost functions faced by the power generators and associ-
ated with transacting with the power suppliers were given by:

c11(q11) = .5q2
11 + 3.5q11, c12(q12) = .5q2

12 + 3.5q12,

c21(q21) = .5q2
21 + 3.5q21, c22(q22) = .5q2

22 + 3.5q22,

c31(q31) = .5q2
31 + 2q31, c32(q32) = .5q2

32 + 2q32.

The operating costs of the power generators, in turn, were given by:

c1(Q1, Q2) = .5(
2∑

i=1

qi1)2, c2(Q1, Q2) = .5(
2∑

i=1

qi2)2.

The demand functions at the demand markets were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1100, d2(ρ3) = −2ρ32 − 1.5ρ31 + 1100,

d3(ρ3) = −2ρ33 − 1.5ρ31 + 1200,

and the transaction costs between the power suppliers and the consumers at
the demand markets were given by:

ĉ1
11(Q

2) = q1
11 + 5, ĉ1

12(Q
2) = q1

12 + 5, ĉ1
13(Q

2) = q1
13 + 5,

ĉ1
21(Q

2) = q1
21 + 5, ĉ1

22(Q
2) = q1

22 + 5, ĉ1
23(Q

2) = q1
23 + 5.

All other transaction costs were assumed to be equal to zero.
The modified projection method converged in 232 iterations and yielded

the following equilibrium pattern:

q∗11 = q∗12 = q∗21 = q∗22 = 14.2762; q∗31 = q∗32 = 57.6051,

q1∗
11 = q1∗

12 = q1∗
21 = q1∗

22 = 20.3861; q1∗
31 = q1∗

32 = 45.3861.

The vector γ∗ had components:

γ∗
1 = γ∗

2 = 277.2487,

and the demand prices at the demand markets were:

ρ∗31 = ρ∗32 = 302.6367; ρ∗33 = 327.6367.

It is easy to verify that the optimality/equilibrium conditions were satisfied
with good accuracy.

Example 2. We then constructed the following variant of Example 1. We kept
the data identical to that in Example 1 except that we changed the first
demand function so that:

d1(ρ3) = −2ρ33 − 1.5ρ31 + 1500.
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The modified projection method converged in 398 iterations, yielding the
following new equilibrium pattern:

q∗11 = q∗12 = q∗21 = q∗22 = 19.5994; q∗31 = q∗32 = 78.8967,

q1∗
11 = q1∗

21 = 118.0985,

and all other q1∗
sks= 0.0000. The vector γ∗ had components:

γ∗
1 = γ∗

2 = 378.3891,

and the demand prices at the demand markets were:

ρ∗31 = 501.4873, ρ∗32 = 173.8850, ρ∗33 = 223.8850.

It is easy to verify that the optimality/equilibrium conditions were satisfied
with good accuracy.

Note that with the increased demand at demand market 1 as evidenced
through the new demand function, the demand price at that market increased.
This was the only demand market that had positive electric power flowing into
it; the other two demand markets had zero electric power consumed.

Example 3. We then modified Example 2 as follows: The data were identical
to that in Example 2 except that we changed the coefficient preceding the
first term in the power generating function associated with the first power
generator so that rather than having the term 2.5q2

1 in f1(q) there was now
the term 5q2

1. We also changed a to .03 since the modified projection method
did not converge with a = .05. Note that a must lie in a certain range, which
is data-dependent, for convergence.

The modified projection method converged in 633 iterations, yielding the
following new equilibrium pattern:

q∗11 = q∗12 = 10.3716, q∗21 = q∗22 = 21.8956, q∗31 = q∗32 = 84.2407.

q1∗
11 = q1∗

21 = 116.5115,

with all other q1∗
sks= 0.0000.

The vector γ∗ had components:

γ∗
1 = γ∗

2 = 383.6027,

and the demand prices at the demand markets were:

ρ∗31 = 505.1135, ρ∗32 = 171.1657, ρ∗33 = 221.1657.

As expected, since the power generating cost function associated with
the first power generator increased, the power that he generated decreased;
the power generated by the two other power generators, on the other hand,
increased. Again, as in Example 2, there was no demand (at the computed
equilibrium prices) at the second and third demand markets.
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Example 4. The fourth, and final example, was constructed as follows from
Example 3. The data were all as in Example 3, but we now assumed that
the demand functions were separable; hence, from each of the three demand
market functions for electric power in Example 3, we eliminated the term not
corresponding to the price at the specific market. In other words, the demand
at demand market 1 only depended upon the price at demand market 1; the
demand at demand market 2 only depended upon the demand at demand
market 2; and the same held for the third demand market.

The modified projection method now converged in 325 iterations and
yielded the following equilibrium electric power flow and price pattern:

q∗11 = q∗12 = 14.1801, q∗21 = q∗22 = 29.9358, q∗31 = q∗32 = 114.9917,

q1∗
11 = q1∗

21 = 111.3682, q1∗
12 = q1∗

22 = 11.3683, q1∗
13 = q1∗

23 = 36.3682.

The vector γ∗ had components:

γ∗
1 = γ∗

2 = 522.2619,

whereas the equilibrium demand prices at the demand markets were now:

ρ∗31 = 638.6319, ρ∗32 = 538.6319, ρ∗33 = 563.6319.

Observe that since now there were no cross-terms in the demand functions,
the electric power flows transacted between the suppliers and the demand
markets were all positive. Of course, the incurred demands at both the second
and third demand markets also increased. In addition, all the equilibrium
flows from the power generators to the suppliers increased since there was
increased demands at all the demand markets for electric power.

These numerical examples, although stylized, demonstrate the types of
simulations that can be carried out. Indeed, one can easily investigate the
effects on the equilibrium power flows and prices of such changes as: changes
to the demand functions, to the power generating cost functions, as well as
to the other cost functions. In addition, one can easily add or remove various
decision-makers by changing the supply chain network structure (with the
corresponding addition/removal of appropriate nodes and links) to investigate
the effects of such market structure changes.

6 Conclusions and Future Research

In this chapter, we proposed a theoretically rigorous framework for the
modeling, qualitative analysis, and computation of solutions to electric power
market flows and prices in an equilibrium context based on a supply chain
network approach. The theoretical analysis was based on finite-dimensional
variational inequality theory.
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We modeled the behavior of the decision-makers, derived the optimality
conditions as well as the governing equilibrium conditions which reflect compe-
tition among decision-makers (in a game-theoretic framework) at the same
tier of nodes but cooperation between tiers of nodes. The framework allows
for the handling of as many power generators, power suppliers, transmission
service providers, and demand markets, as mandated by the specific applica-
tion. Moreover, the underlying functions associated with electric power genera-
tion, transmission, as well as consumption can be nonlinear and non-separable.
The formulation of the equilibrium conditions was shown to be equivalent to
a finite-dimensional variational inequality problem. The variational inequality
problem was then utilized to obtain qualitative properties of the equilibrium
flow and price pattern as well as to propose a computational procedure for the
numerical determination of the equilibrium electric power prices and flows.

In addition, we illustrated both the model and computational procedure
through several numerical examples in which the electric power flows as well
as the prices at equilibrium were computed.

As mentioned in the Introduction, there are many ways in which this basic
foundational framework can be extended, notably, through the incorporation
of multicriteria decision-making associated with the decision-makers (with,
for example, such criteria as environmental impacts, reliability, risk, etc.), the
introduction of stochastic components, as well as the introduction of dynamics
to study the disequilibrium electric power flows and prices.
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Summary. Many economic sectors often collect significantly less data than would
be required to analyze related standard decision problems. This is because the
demand for some data can be intrusive to the participants of the economy in
terms of time and sensitivity. The problem of modelling and solving decision models
when relevant empirical information is incomplete is addressed. First, a procedure
is presented for adjusting the parameters of a model which is robust against the
worst-case values of unobserved data. Second, a scenario tree approach is consid-
ered to deal with the randomness of the dynamic economic model and equilibria is
computed using an interior-point algorithm. This methodology is implemented in
the Australian deregulated electricity market. Although a simplified model of the
market and limited information on the production side are considered, the results
are very encouraging since the pattern of equilibrium prices is forecasted.

Key words: Economic modelling, equilibrium, worst-case, scenario tree,
interior-point methods, electricity spot market

1 Introduction

Decision makers need to build and solve stochastic dynamic decision models
to make planning decisions accurately. Three steps are involved. The first is
the specification of the structure of the stochastic dynamic decision model
reflecting the essential economic considerations. The second step is the cali-
bration of the parameters of the model. The final step is the computation of
the model’s outcome for forecasting and/or simulating economic problems.

In the first part of this paper, we propose an integrated approach to
address this problem. The first task, the specification of the model, involves
a trade-off between complexity and realism. A more realistic model is usually
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a multistage stochastic problem that will become increasingly impractical as
the problem size increases. In general, any multistage stochastic problem is
characterized by an underlying exogenous random process whose realizations
are data trajectories in a probability space. The decision variables of the model
are measurable functions of these realizations. A discrete scenario approxi-
mation of the underlying random process is needed for any application of
the stochastic problem. This field of research has became very popular due
to the large number of finance and engineering applications. For example,
(Bounder, 1997), (Kouwenberg, 2001) and (Høyland and Wallace, 2001) devel-
oped and employed scenarios trees for a stochastic multistage asset-allocation
problem. (Escudero, Fuente, Garćıa and Prieto, 1996), among others, consid-
ered scenarios trees for planning the production of hydropower systems. We
obtain a discrete approximation of the stochastic dynamic problem using
the simulation and randomized clustering approach proposed by (Gülpinar,
Rustem and Settergren, 2004). In particular, we consider a scenario tree
approach to approximate the stochastic random shocks process that affects
the market demand.

On the other hand, firms make decisions on production, advertisement, etc.
within the constraints of their technological knowledge and financial contracts.
In many actual production processes, these constraints contain parameters,
often unknown even when they have physical meaning. Decision makers do not
usually observe all data required to estimate accurately the parameters of the
model. For example, decision makers often lack enough information on the
specifications of competitors. In these circumstances, standard econometric
techniques cannot help to estimate the parameters of an economic model
and still, decision makers require a full specification of the market to design
optimal strategies that optimize their returns.

We propose a robust methodology to calibrate the parameters of a model
using limited information. The robustness in the calibration of the model is
achieved by a worst-case approach. Worst-case modelling essentially consists of
designing the model that best fits the available data in view of the worst-case
outcome of unobserved decision variables. This is a robust procedure for
adjusting parameters with insurance against unknown data.

In the economic context, this approach turns out especially interesting to
study situations in which a structural change takes place, for example when
there are changes in the technologies of firms or a new firm enters the economy.
As a consequence of these exogenous perturbations, the empirical data gener-
ating process is modified and classical estimations cannot be made. In this
context, a model in which decision makers assess the worst-case effect of the
unobserved data is a valuable tool for the decision maker against a risk in
future decisions. Worst-case techniques has been applied in n-person games
to study decision making in real-world conflict situations (see for example
Rosen, 1965). In a worst-case strategy, decision makers seek to minimize the
maximum damage their competitor can do. When the competitor can be
interpreted as nature, the worst-case strategy seek optimal responses in the
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worst-case value of uncertainty. Choosing the worst-case parameters requires
the solution of a min-max continuous problem. Pioneering contributions to the
study of this problem have been made by (Danskin, 1967) and (Bram, 1966),
while computational methods are discussed in (Rustem and Howe, 2002).

The third and final task is the computation of the equilibrium values (deci-
sions and prices) for each scenario. We consider a variant of the interior-point
method presented in (Esteban-Bravo, 2004) to compute equilibria of stochastic
dynamic models.

In the second part of the paper, we consider the deregulated electricity
market in NSW Australia to illustrate the applicability of this methodology.
In recent years, the theoretical and empirical study of the electricity market
has attracted considerable attention. In particular, the ongoing liberaliza-
tion process in the electricity markets has created a significant interest in
the development of economic models that may represent the behaviour of
these markets (a detailed review on this literature can be found in Schweppe,
Carmanis, Tabors and Bohn 1988, Kahn 1998, Green 2000, and Boucher and
Smeers 2001). One of the key characteristics of these markets is that their
databases often collect significantly less variables than necessary for building
useful economic models. This is because the demand for some data can be
intrusive to the firm in terms of time and sensitivity.

We consider a model that focuses on the effect we hope to study in detail:
the process of spot prices. Similar selective approaches are adopted for the
decision analysis of dispatchers (Sheblé, 1999), the financial system as a hedge
against risk (e.g. Bessembinder and Lemmon, 2002), the externalities given
by network effects (e.g. Hobbs 1986 and Jing-Yuan and Smeers 1999).

First, the model developed forecasts daily electricity demand. We assume
that the demand is affected by exogenous factors and by an underlying
stochastic random process. The discrete outcomes for this random process is
generated using the simulation and randomized clustering approach proposed
by (Gülpinar, Rustem and Settergren, 2004).

Our model for generators is a simplification of the standard models in
the literature. We do not attempt to provide a realistic description of the
underlying engineering problems in electricity markets. The literature in this
area is extensive (e.g. McCalley and Sheblé 1994). Our aim is to forecast
the process of spot prices using limited information on the production side.
The knowledge of these prices is the basic descriptive and predictive tool
for designing optimal strategies that tackle competition. Some authors have
studied spot markets assuming a known probability distribution for spot prices
(see, e.g., Neame, Philpott and Pritchard 2003), or considering spot prices
as nonstationary stochastic processes (see Valenzuela and Mazumdar 2001,
Pritchard and Zakeri 2003, and the references therein). We consider economic
equilibrium models to this end. We simplify the effects of the transmission
constraints dictated by Kirchoff’s laws ((Schweppe, Carmanis, Tabors and
Bohn, 1988) and (Hsu, 1997) also consider a simplified model of transmission
network). This may be acceptable as we consider managing decisions using
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limited information. In any case, the approach presented here can be applied
to any other modelling choices which include other phases of the electricity
trading and other models of competition (as those presented in Day, Hobbs
and Pang 2002).

We apply a worst-case approach to provide indicative values of the param-
eters in the model using the information available. The worst-case criteria
ensures robustness to calibrate these parameters. Robustness is ensured as
the best parameter choice is determined simultaneously with the worst-case
outcome of unobserved data.

Finally, we compute the expected value of future equilibrium prices and
we see that the model captures the essential features of the prices’ behaviour.
From the analysis of the results, we can conclude that this approach is able
to forecast the pattern of equilibrium prices using limited information on the
production side.

2 The Methodology

The design of an economic model describing the main features of a certain
managerial problem is an essential step for decision makers. The model should
allow the practitioner to forecast and design economic policies that reduce,
for example, the production cost and market prices. The dynamic stochastic
framework has been extensively used in economics to model almost any
problem involving sequential decision-making over time and under uncertainty.

Consumers are the agents making consumption plans. Market demand
reflects the consumer’s decisions as the demand curve shows the quantity of
a product demanded in the market over a specified time period and state of
nature, at each possible price. Demand could be influenced by income, tastes
and the prices of all other goods. The study of demand pattern is one of the
key steps in managerial problems.

Firms make decisions on production, advertisement, etc. within the
constraints of their technological knowledge and financial contracts. In partic-
ular, firms should maximize their expected profits subject to technological
and risk constraints. In many actual production processes, these constraints
contain parameters, often unknown even when they have physical meaning.
Prices could be decision variables as in Cournot models, or could be considered
as parameters as in perfect competition models.

Market equilibrium y is a vector of decision variables of agents (consumers
and firms) and prices that makes all decisions compatible with one another
(i.e. y clears the market in competitive models or y satisfies Nash equilibrium
in strategic models). In general, an equilibrium y can be characterized by a
system of nonlinear equations H (θ, y, x) = 0, where θ is a vector of param-
eters, and x is a vector of exogenous variables that affects agents’ decisions
through technologies and tastes.
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To obtain predictive models for decision makers, we face the problem of
having to estimate several parameters θ. The optimal determination of these
parameters is essential for building economic models that can address a large
class of questions. Although some of the parameters can be calibrated easily
using the available data, others remain uncertain due to the lack of empirical
information. We propose a worst-case strategy to adjust or calibrate these
parameters to the model using limited empirical data.

2.1 Worst-Case Modelling

Some of the variables (y, x) can be empirically determined (observed data).
Let z be the vector of non-observable variables, r be the vector of observable
variables, and let H (θ, z, r) = 0 denote the system of nonlinear equations that
characterize an equilibrium of the economy, where θ is a vector of parameters.
The aim of the worst-case modelling is essentially to fit the best model (the
best choice of parameters θ) to available data in view of the worst-case unob-
servable decision z. When designing economic models, the worst-case design
problem is a continuous minimax problem of the form

min
θ∈Θ,r∈R

max
z∈Z
‖r − r̂‖22 subject to H (θ, z, r) = 0, (1)

where Θ ⊂ R
n is the feasible set of parameters, R ⊂ R

m is the feasible set
of observable variables, Z ⊂ R

l is the feasible set of non-observable variables
and r̂ is a data sample of r. In other words, our aim is to minimize the
maximum deviation for the worst-scenario of realizable decisions. Thus, the
optimal solution θ∗ to this problem defines a robust optimal specification of
the economic model. This criterion for choosing parameters typically can be
applied to engineering, economics and finance frameworks.

For solving continuous minimax problems we use the global optimisation
algorithm developed by (Žaković and Rustem, 2003). They consider an algo-
rithm for solving semi-infinite programming problem since any continuous
minimax problem of the form

min
θ∈Θ

max
z∈Z
{f(θ, z) : g (θ, z) = 0, } (2)

can be written as a semi-infinite programming problem. Note that the above
problem is equivalent to

min
θ∈Θ,ρ

{
ρ : max

z∈Z
{f(θ, z) ≤ ρ : g (θ, z) = 0}

}
, (3)

and since maxz∈Z f(θ, z) ≤ ρ if and only if f(θ, z) ≤ ρ, for all z ∈ Z, we can
solve the alternative semi-infinite problem:

minθ∈Θ,ρ ρ
subject to f(θ, z) ≤ ρ, ∀ z ∈ Z,

g (θ, z) = 0, ∀ z ∈ Z.
(4)
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Žaković and Rustem’s algorithm involves the use of global optimisation to
compute the global worst-case. The global optimisation approach is essential
to guarantee the robustness property of the solution of the minimax prob-
lems. This is because a crucial step to solve the semi-infinite problem is to
find θ ∈ Θ, f(θ, z) ≤ ρ, g (θ, z) = 0, for all z ∈ Z. To reduce the cost of
computing global optima, it is recommended to restrict the domains Θ and
Z as much as possible given the information available. The monograph edited
by (Pardalos and Resende, 2002) reviews the global optimisation literature
(see Chap. 6).

2.2 Modelling the Uncertainty

As discussed in the introduction, the importance of considering uncertainty via
scenarios is well known in finance and engineering applications. In this section,
we extend the scenario tree methodology to the computation of equilibria in
stochastic dynamic economic models. In such models, agents (consumers and
firms) face a problem involving sequential decision making over time and
under uncertainty. Given the parameters θ ∈ Θ calibrated using the available
information, assume that each agent face the decision problem:

max
xt

T∑

t=0

E [Uθ (xt, at, t)] subject to gθ (xt, at, t) ≤ 0 a.e., (5)

where {xt} are the decision variables, {at} are observable Markovian random
variables with a continuous distribution function, Uθ (xt, at, t) represents the
agents’ preferences and a.e. denotes “almost everywhere”. This decision model
will be characterized by the information available at each period of time,
among other things. We assume that this information is the same for all
agents. Let σt be the σ-algebra generated by {as : 0 ≤ s ≤ t} and let {σt}
be the complete specification of the revelation of information through time,
called filtration.

To reduce the cost of computing optima, we approximate the process {at}
and the associated information set {σt} by a discrete process {at,s}St

s=1 of
possible outcomes for each t, and a discrete information structure {Ft}Tt=1.
A discrete information structure is formally defined as follows: Given a finite
sample space Ω = {ω1, . . . , ωM} that represents the states of world, a discrete
information structure is a sequence of σ-algebras {Ft}Tt=1 such that: 1) F1 =
{Ω, ∅} , 2) FT = 2Ω, 3) Ft+1 is finer than Ft, ∀t = 1, . . . , T − 1. The scenario
tree associated with the discrete information structure {Ft}Tt=1 is defined as
� =

⋃
t∈T, s∈St

(t, s) , where T = {0, . . . , T} and St = {1, . . . , St} . Each (t, s) is
called a tree node or scenario. For each scenario tree we can define a preorder
relation 	 such that (t, s) 	 (t′, s′) if and only if the node (t′, s′) comes after
(t, s) in the tree, that is, if t′ > t and s′ ⊂ s.

Two main approaches to generate discrete scenario trees have been consid-
ered to date. The first one is known as the optimisation approach. This
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method considers the relevant statistical properties of the random variable
such as the first four moments of the marginal distributions. Then a nonlinear
optimisation problem is formulated where the objective is to minimize the
square distance between the statistical properties of the constructed tree
and the actual specifications. The second approach is called the simulation
approach and only uses the sample from the fitted cumulative distribution
function. In this paper, we generate discrete scenario trees using the simula-
tion and randomized clustering approach proposed by (Gülpinar, Rustem and
Settergren, 2004). This method is a simulation-based approach that clusters
scenarios randomly.

2.3 Computing Stochastic Dynamic Equilibria

Once the uncertainty of the problem is represented by a discrete scenario
tree, the stochastic dynamic decision problem of each agent can be written as
follows:

max
xt,s

T∑

t=0

St∑

s=0

βts Uθ (xt,s, at,s, t) subject to gθ (xt,s, at,s, t) ≤ 0, ∀ (t, s) ,

(6)

where {βts} are the conditional probabilities associated to state s at each
period t, with β0 = 1, and λ ≥ 0 denotes the Lagrange’s multipliers asso-
ciated with the inequality constraints. Under appropriate convexity assump-
tions, equilibria are characterized by the first-order conditions of the agents’
problems and the market clearing conditions that define the economic model.
These optimality conditions can be seen as a special class of problems known
as nonlinear complementarity (complementarity conditions stem from comple-
mentarity slackness in the first-order optimality conditions). Mathematically,
these problems are stated as follows: find pT = (xT , λT ) ≥ 0 such that
F (p) ≥ 0 and pTF (p) = 0. A nonlinear complementarity problem can be
reformulated as a standard system of equations H(z) = 0, where

H(z) =
(

pTF (p)
F (p)− s

)
, (7)

s are slack variables and zT = (xT , λT , sT ) ≥ 0. Often, the decision vari-
ables, the Lagrange’s multipliers and the slack variables may take any value
within a certain range bounded by positive finite lower and upper bounds,
l ≤ z ≤ u. A brief summary of standard approaches for solving these problems
can be found in (Esteban-Bravo, 2004). In Chap. 13, (Pardalos and Resende,
2002) provide an excellent introduction to complementarity and related
problems.

The final stage of the methodology is the computation of equilibria for the
stochastic economic model using the generated scenario tree. In this paper,
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we consider a version of the interior point method given in (Esteban-Bravo,
2004). This algorithm can find accurate solutions with little computational
cost, what it is a desirable property as the scenario tree can be expanded
to arbitrarily large sizes as the temporal horizon increases. The main idea of
the algorithm is the application of the Gauss-Newton method to solve the
following perturbed system of nonlinear equations,

J(zk)TH(zk)− w1
k + w2

k = 0,

(Zk − L)W 1
k − μ = 0,

(U − Zk)W 2
k − μ = 0,

w1
k, w

2
k > 0,

where Zk = diag(zk), L = diag (l), U = diag (u) and J(zk) denote the
Jacobian matrix of H. Note that when μ → 0, we compute the original
problem. Following the Gauss-Newton approach, the Hessian of the perturbed
system is approximated by its first term. As a consequence, this algorithm has
the very desirable property that it finds accurate solutions with little compu-
tational cost.

3 Modelling the NSW Spot Electricity Market

In this section, we focus on an application of the robust modelling method-
ology for the deregulated electricity market in NSW, Australia. The deregu-
lated electricity market should be modelled as a sequential trade for goods
and assets. A model of sequential markets is a system of reopening spot
markets, which is a market for immediate delivery. In other words, a seller and
a buyer agree upon a price for a certain amount of electric power (MWs) to
be delivered at the current period (in case of electricity markets, in the near
future). This agreement is monitored by an independent contract adminis-
trator who matches the bids of buyers and sellers.

We consider an economy with three generators that face the NSW
Electricity System. In NSW electricity markets, the role of a financial contract
is small and, as a consequence, we only focus on spot markets that trade most
of the local electricity.

To meet electricity demand and for the spot electricity market to operate
efficiently, a reliable forecast of daily electricity demand is required. Typically,
the electricity demand is affected by several exogenous variables such as air
temperature, and varies seasonally (the total demand will generally be lower
over weekend days than weekdays, and higher in summer or winter than in
fall or spring). Electricity forecasting process must therefore consider both
aspects. The time spans involved in electricity forecasts may range from half
an hour to the next few days. The technique described in this paper considers
the day-to-day forecast as the aim is to guide decisions on capacity, cost
and availability to meet the demand or the necessity to purchase from other
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producers. In the very short-term electricity market, the demand varies little
in response to price changes so we can say that the demand is not affected by
prices, i.e. it is inelastic within the observed range of prices variation.

Generators make decisions about the amount of electricity to produce
within the constraints of their technological knowledge. Modelling the
technologies of a generation company requires special attention. Generators
can produce electricity by means of hydro, thermal and pumped storage
plants. A pumped storage hydro plant is designed to save fuel costs by serving
the peak load (a high fuel-cost load) with hydro energy and then pumping
the water back up into the reservoir at light load periods (a lower cost load).
Moreover, generators face uncertainty because of the inflows in the case of
hydro generation and the price of fuel in the case of thermal and pumped
storage. As the generation system in NSW is overwhelmingly thermally based,
we just consider this kind of technology.

3.1 The Demand

The problem of modelling the pattern of the electricity demand has previously
been studied in the literature; see e.g. (Rhys, 1984), (Harvey and Koopman,
1993), (Henley and Peirson, 1997), (Valenzuela and Mazumdar, 2000), among
others. In this paper, we assume that the daily electricity demand is affected
exogenously by air temperature. In addition, we take into account its daily
pattern. Note that the total electricity demand is generally lower over weekend
days than weekdays, and higher in summer or winter than in fall or spring.
Also in the short term we can assume that the aggregate demand for electricity
is inelastic, as the quantity of power purchased varies little in response to price
changes.

We consider electricity demand data for each day in New South Wales,
Australia, between 1999 and 2002 (see http://www.nemmco.com.au/data/).
The data sequence starts at January 1, 1999 and ends at April 30, 2002.
All values are in MW and according to Eastern Standard Time. The result
is a sequence of 1247 values (see Fig. 3 in Appendix). Let xj denote the
electricity demand at the j-th day. The data for temperature are drawn from
the file AUCNBERA.txt given in the website http://www.engr.udayton.edu/
weather. This dataset contains information on the daily average temper-
atures for Canberra. Let fj denote the average temperature (oF) at the
j-th day.

With a daily temporal frequency, there are patterns repeated over a stretch
of observations. In particular, we observe two seasonal effects: weekly (such as
weekdays and weekends) and monthly (such summer and winter). Assuming
that these effects follow a deterministic pattern, we consider stational dummy
variables. Let djt = 1, if the t-th observation is a j-th day and djt = 0,
otherwise, defining the weekly periodic effects, with j = 1 for Mondays, j =
2 for Tuesdays, and so on; and δjt = 1, if the t-th observation is a j-th
month and δjt = 0, otherwise, defining the monthly periodic effects, with
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j = 1 for January, j = 2 for February and so on. Thus, given n = 1247
pairs of observations (xj , fj) , with j = 1, . . . , n, we consider the following
regression model:

Xt = μ + c1fj + c2f
2
j +

6∑

j=1

γj (djt − d7t) +
6∑

j=1

γ′
j (djt − d7t) fj

+
11∑

j=1

βj (δjt − δ12t) +
11∑

j=1

β′
j (δjt − δ12t) fj

+
6∑

j=1

γ′′
j (djt − d7t) f2

j +
11∑

j=1

β′′
j (δjt − δ12t) f2

j + εt, (8)

where {εj}j is a Gaussian and second order stationary process with zero
mean and covariance function, γ (s) = E [εtεt−s] . This specification avoids
the multicollinearity problems derived from the fact that

∑7
j=1 djt = 1 and

∑12
j=1 δjt = 1. In particular, we consider a linear regression model using all

the dummies variables and assuming that
∑7

j=1 γj = 0, and
∑12

j=1 βj = 0. For
an introduction to the estimation of this type of models see e.g. (Brockwell
and Davis, 1987).

The regression parameters were estimated by the ordinary least squares
(OLS) method using STATA (see http://www.stata.com/). Least-square
regression estimations can be found in Appendix. The degree of explanation
of this model is quite significant, as its R-Squared and adjusted R-Squared
values are 0.7793 and 0.7695, respectively.

The study of the plots of residual autocorrelation and partial autocorre-
lation estimates (see below Fig. 4 in Appendix) suggests an autoregressive
AR(1) model for the perturbation εt. Model (2) considers an autoregressive
AR(1) specification for the process {εj}j, εj = τεj−1 + aj , where |τ | < 1
and {aj}j are independent identically distributed disturbances with zero
mean and constant variance, σ2

a. Using STATA to estimate Model (2) by
the OLS method, its coefficient estimation is τ̂ = 0.60069, with σ2

a =
1.5402e, and its R-Squared and adjusted R-Squared values are 0.3687 and
0.3682, respectively. Simple and partial autocorrelations of its residuals,
shown in Fig. 5 in Appendix, reveal that Model (1) and Model (2) fit
data.

The Markovian process {at}t is approximated by a discrete scenario tree
{ats} as presented in Sect. 2.2. Following the simulation and randomized
clustering approach proposed in (Gülpinar, Rustem and Settergren, 2004) and
given the covariance matrix σ2

a, we construct a tree with a planning horizon
of T + 1 days (today and T future periods of time) and a branching structure
of 1 − 2 − 4 − 6. This means that the tree has an initial node at day 0, 2 at
day 1,. . . The scenario tree provides information about the probabilities βts
associated with the different states s at each period t, with β0 = 1, and the
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AR (1) stochastic process of error terms ats at each state s and period t. The
values of these elements can be found in Appendix.

3.2 The Problem of the Electricity Generators

As we mentioned before, in the very short-term electricity market, the demand
varies little in response to price changes. In this applications where the
planning time horizon is assumed to be three days or periods of time,
we should consider a pure competitive behaviour of generators rather than
oligopolistic strategies. Therefore, in a deregulated environment, the purpose
of the short-term generator is to maximize its expected profit on its techno-
logical constraints over a time period of length T + 1, today and the planning
time horizon. This means that each generator collects its revenue from selling
electricity at spot prices in the spot market. There are network capacity
constraints affecting generators and therefore the total amount of electricity
that these generators can produce will be bound by the network externalities.
The notation used to present the problem of the electricity generators is the
following, at each period t = 0, 1, . . . , T :

Decision variables:
pt, spot price,
yjt, spot electricity production of generator j,
wjt, input of generator j.
Parameters:
T, maximum number of periods,
J, number of generators,
0 ≤ r, discount rate for generators,
qjt, unit generation cost (input’s price) of generator j,
Aj , aj, parameters associated with the technology of generator j,
N, maximum capacity of the network,
M, rate limit to generation over two periods,
lj, uj, minimum and maximum of generation capacity of generator j,

respectively.
The generation constraints are:
Cobb-Douglas type technological constraint: yjt ≤ Ajw

aj

jt .
Network capacity constraint:

∑
j′ �=jyj′t + yjt ≤ N.

Rate limit to generation over two consecutive periods: yjt − yjt−1 ≤M.
We consider a market with three generators, j = 1, . . . , J with J = 3, that

aim to maximize the expected revenues and minimize the expected costs:

T∑

t=0

(
1

1 + r

)t
[pt · yjt − qjt · wjt] . (9)
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Thus, the decision problem of each generator is given by

maxyj ,wj

∑T
t=0

(
1

1+r

)t
[pt · yjt − qjt · wjt]

subject to yjt ≤ Ajw
aj

jt , ∀t,
∑T

j′ �=jyj′t + yjt ≤ N, ∀t,
yjt − yjt−1 ≤M, ∀t,
lj ≤ yjt ≤ uj , ∀t,
0 ≤ wj .

(10)

Most of studies on the generator’s problem have been based on a cost function
(i.e. the minimum cost of producing a given level of output from a specific
set of inputs), even though this formulation is equivalent to the one that
uses technology constraints (this is proved by dual arguments, see e.g. Varian,
1992 and Mas-Colell, Whinston and Green, 1995). But, in case of having
limited information, the formulation with technological constraints is more
recommendable as the specification of cost functions requires detailed infor-
mation on the labor costs, inputs costs, and buildings and machinery amorti-
zation, among others. In particular, we choose a Cobb-Douglas technology
as this specification is characterized by a ready capability to adapt to new,
different, or changing requirements. For example, they can exhibit increasing,
decreasing or constant return to scale depending on the values of their param-
eters. Furthermore, we can readily derive the analytical form of its associated
cost function.

On the other hand, the modelling considered here has strong simplifica-
tions on the transmission side although these simplifications could have effects
for the analysis. This is because we lack sufficient information to calibrate this
externality.

Next, we introduce the concept of equilibrium, the basic descriptive and
predictive tool for economists. The equilibrium of this economy is a vector
prices p∗ and an allocation

(
y∗
j , w

∗
j

)
for all j = 1, . . . , J, that satisfies:

• For each j = 1, . . . , J,
(
y∗
j , w

∗
j

)
is the solution of Problem (10).

• Generators fulfil market demand, i.e.
∑

j

y∗
jt = X̂t, ∀t, (11)

where X̂ is the estimation of the market demand determined by Model (8).

Then, under appropriate convexity assumptions, equilibria can be charac-
terized by the first order conditions of all generators’ problems (10) and the
market clearing conditions (11). In other words, the vector (p∗, y∗, w∗) is an
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equilibrium if, for all j = 1, . . . , J, there exist Lagrange multiplier vectors
γ1
j , γ

2
j , γ

3
j ≥ 0, such that:

(
1

1+r

)t
p∗t − γ1

jt − γ2
jt + γ3

jt = 0, ∀t,

−
(

1
1+r

)t
qjt + γ1

jtAjajw
∗aj−1
jt = 0, ∀t,

y∗
jt −Ajw

∗aj

jt + h1
jt = 0, ∀t,

γ1
jth

1
jt = 0, ∀t,

∑
jy

∗
jt + h2

jt −N = 0, ∀t,
γ2
jth

2
jt = 0, ∀t,

y∗
jt − y∗

jt−1 + h3
jt −M = 0, ∀t,

γ3
jth

3
jt = 0, ∀t,

∑
jy

∗
jt = X̂t, ∀t,

lj ≤ y∗
jt ≤ uj ,

0 ≤ w∗
j ,

(12)

where h1, h2 and h3 ≥ 0 are slack variables.

3.3 Worst-Case Calibration

To obtain predictive decision models for generators, we are faced with the
problem of having to estimate several parameters. The optimal calibration of
these parameters is the aim of this section.

As we mentioned before, some of the parameters can be calibrated easily.
Given that the planning horizon of electricity generators considered is short,
T = 3, the impact of the discount factor parameter is small. In this model,
we set the discount factor as r = 0.05 for all generators.

Fuel prices are subject to a substantial margin of error. However, in the
case of coal, prices are determined in a world market and the data can be
found in http://www.world bank.org/prospects/pinksheets0. In this model we
assume that fuel prices for each generator are given as q1t = 25.6, q2t = 26,
q3t = 15, for all t = 0, 1, . . . , T.

One of the most important parameters in the management of the electricity
generation is the maximum capacity of the network N . As max |Xt| = 455670,
where Xt is the observed electricity demand, estimates of this parameter
can be specified as N = 456000. The rate limit to generation over two
periods M plays also an important role in the generation of electricity. As
max |Xt −Xt−1| = 84622.3, we set M = 85000. Generation capacity is also
constrained by lower and upper bounds: lj = 0 for all j = 1, 2, 3 and
u1 = 350000, u2 = 220000, u3 = 280000.
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To calibrate the parameters that remain uncertain, we will consider the
worst-case modelling presented in Sect. 2.1. In this context, the parameters
should satisfy the optimality conditions (12), the available information is the
daily average price po and daily observed demand Xo, and the worst-case
unobservable decision corresponds to the input’s decision variable w.

As we can determine parameters N and M , we will not consider their
associated constraints in the calibration analysis. In addition, it is predictable
that the variable h1 = 0 (generators are willing to generate the maximum
amount of electricity) which implies yjt = Ajw

aj

jt for all t and j. Therefore,
the optimal conditions (12) can be simplified as follows:

ptAjajw
aj−1
jt − qjt = 0, ∀t,

∑

j

Ajw
aj

jt −Xo
t = 0, ∀t,

where Xo
t is the daily observed demand at each day t. Let C(w, p, A, a) denote

this system of nonlinear equations.
Thus, we define the best choice of parameters {Aj} , {aj} in view of the

worst-case unobservable decisions p, {wj} as the solution of the minimax
problem:

minAj ,aj ,p≥0 maxw ‖p− po‖
subject to C(w, p, A, a) = 0,

(13)

given the observed demand Xo
t and the average price pot at each day t. In

particular, we consider the following observed data:

day 28/4/2002 29/4/2002 30/4/2002
Xo
t 334443.7 382222.6 389739.8

pot 23.53 32.67 25.15
(14)

As recommended before to guarantee little computational cost, we suggest
to restrict the interval of the variables {Aj} , {aj} , {wj} , p given the infor-
mation available. In the context of the Australian electricity market, the
bounds should be:

A1 A2 A3 a1 a2 a3 {wjt} p
lower bound 16500 16500 18000 0.1 0.1 0.1 10000 15
upper bound 18000 18000 20000 1.0 1.0 1.0 17000 70

(15)

Therefore, the solution to Problem (13) is

j = 1 j = 2 j = 3
Aj 18000 18000 20000
aj 0.194774 0.195836 0.152826.

(16)
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3.4 Computing Equilibrium

Given the scenario tree computed in Sect. 3.1, the stochastic version of the
generators’ problem (10) is defined as:

maxyj ,wj

∑T
t=0

∑St

s=0

(
1

1+r

)t
βt,s [pt,s · yjt,s − qjt,s · wjt,s]

subject to
yjt,s −Ajw

aj

jt,s ≤ 0, ∀t, s,
∑

j′ �=j yj′t,s + yjt,s ≤ N, ∀t, s,
yjt,s − yjt−1,s(t−1) ≤M, ∀t, s,
lj ≤ yjt,s ≤ uj , ∀t, s,
0 ≤ wjt,s, ∀t, s,

(17)

where s (t− 1) is the predecessor state. Problem (17) can be transformed
into an equality constrained problem by introducing slack variables h1

j , h2
j ,

h3
j ≥ 0, and a barrier function that penalizes the infeasibility of the inequality

constraints in the slack h1
j , h2

j , h3
j ≥ 0 and decision variables 0 ≤ wj and

lj ≤ yj ≤ uj. Thus, the transformed problem is defined as follows:

maxyj,wj

∑T
t=0

∑St

s=0

(
1

1+r

)t
βt,s [pt,s · yjt,s − qjt,s · wjt,s]

−μ
∑T

t=0

∑St

s=0[log (uj − yjt,s) + log (yjt,s − lj) + log (wjt,s)

+
∑3
m=1 log

(
hmjt,s

)
]

subject to
yjt,s −Ajw

aj

jt,s + h1
jt,s = 0, ∀t, ∀s,

∑
j′ �=j yj′t,s + yjt,s + h2

jt,s −N = 0, ∀t, ∀s,
yjt,s − yjt−1,s + h3

jt,s(t−1) −M = 0, ∀t, ∀s. (18)

Under appropriate convexity assumptions, the vector (yj , wj , hj) is said to
satisfy the necessary and sufficient conditions of optimality for Problem (18)
if there exist Lagrange multiplier vectors γ1

j , γ
2
j , γ

3
j ≥ 0 such that for all j, all

t, all s :
(

1
1+r

)t
βt,spt,s + μ (uj − yjt,s)

−1 − μ (yjt,s − lj)
−1 − γ1

jt,s − γ2
jt,s + γ3

jt,s = 0,

−
(

1
1+r

)t
βt,sqjt,s − μw−1

jt,s + γ1
jt,s Ajajw

aj−1
jt,s = 0,

−μ
(
hmjt,s

)−1 − γmjt,s = 0, ∀m = 1, 2, 3,

yjt,s −Ajw
aj

jt,s + h1
jt,s = 0,

∑
jyjt,s + h2

jt,s −N = 0,

yjt,s − yjt−1,s + h3
jt,s(t−1) −M = 0. (19)
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Let Z1 = μ (U − Y )−1 , Z2 = μ (Y − L)−1, Z3 = μW−1 and Z4m =
μ (Hm)−1

,where Y = diag(y), L = diag (l) , U = diag (u) , W = diag(w),
and Hm = diag(hm) for all m = 1, 2, 3. Then, the above conditions can be
written as:

(
1

1+r

)t
βt,spt,s + z1

jt,s − z2
jt,s − γ1

jt,s − γ2
jt,s + γ3

jt,s = 0,

−
(

1
1+r

)t
βt,sqjt,s − z3

jt,s + γ1
jt,s Ajajw

aj−1
jt,s = 0,

−z4m
jt,s − γmjt,s = 0, ∀m = 1, 2, 3,

yjt,s −Ajw
aj

jt,s + h1
jt,s = 0,

∑
jyjt,s + h2

jt,s −N = 0,

yjt,s − yjt−1,s(t−1) + h3
jt,s −M = 0,

(Uj − Yj)Z1
j e− μe = 0,

(Yj − Lj)Z2
j e− μe = 0,

WjZ
3
j e− μe = 0,

Hm
j Z4m

j e− μe = 0, ∀m = 1, 2, 3,

(20)

for all j = 1, 2, 3, all s = {1, . . . St} , where St = 2, and all t = 0, 1, 2, 3.
Assume that we aim to forecast the prices, inputs and electricity outputs in

equilibrium for the days May 1, May 2 and May 3, 2002, given the temperature
data f1 = 45.5, f2 = 41.4, f3 = 42.0. Using the initial point ξ0 = 1T , the
interior-point algorithm converges to the equilibrium given in Appendix.

To show the accuracy of the computed equilibrium, we consider the
expected value of the computed equilibrium prices. Given the probabilities
βts associated with the different states s at each period t, by Bayes’ rule,
we calculate the marginal probability πts =

∏
(t,s)�(t′,s′)βt′s′ (see Appendix).

Then, the expected value of the computed equilibrium prices E [pt] =∑St

s=1 πtspts and the actual prices for t = 1, 2, 3 (which can be found in
http://www. nemmco.com.au/data/) are shown in Fig. 1, what reveals that
the model captures the essential features of the price’s behaviour.

Let now assume that we aim to forecast the prices, inputs and outputs
in equilibrium for the days October 1, October 2 and October 3, 2002, given
the temperature data f1 = 58.8, f2 = 49, f3 = 48.0. The actual and forecast
equilibrium prices are shown in Fig. 2.

Note that the accuracy of the prediction depends on the data used to
calibrate the parameters of the model. A structural change in the market can
affect the prices and productions in equilibrium, and in that case an updated
calibration of the model should be considered using the new information.
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Fig. 1. Actual and computed prices for May 1st, 2nd, 3rd, 2002

Fig. 2. Actual and computed prices for October 1st, 2nd, 3rd, 2002
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4 Summary and Conclusions

This paper presents a methodology to build and solve stochastic dynamic
economic models using limited data information. The approach has the
potential for application in many economics sectors as practitioners often face
the problem of having significantly less data than necessary for analyzing
standard decision problems.

Decision-makers require the use of a stochastic dynamic complex model to
approximate economic problems in a realistic way, and they often lack suffi-
cient information to estimate the parameters involved in the model accurately.
In this paper, we present a robust procedure for calibrating the parameters of
model that best fits to the available data. The robust calibration of the model
is achieved by a worst-case approach, involving the computation of a minimax
problem. Also, we consider a scenario tree approach to model the underlying
randomness of the demand. We generate scenarios using the simulation and
randomized clustering approach and then, we compute equilibria by means
of the interior-point approach. This algorithm can find accurate solutions
incurring little computational cost.

We illustrate the performance of the method considering the NSW
Australian deregulated electricity market. From the analysis of the results, we
can conclude that this approach is able to forecast the pattern of equilibrium
prices using limited information on the production side.

Appendix

The least-square regression coefficients of Model (8) are:
μ̂ = 420453.7,
γ̂ = (−96356.6,−16410.4, 86594.03, 38223.82, 17360.08, 37401.59)T ,

β̂ = (−481045.5, 12954.2,−25529.96, − 27617.52, 265764.7, 136627.8,
37069.41,−55922.99,−35578.56,−679.53, 98605.83)T ,
ĉ1 = −1976.111,
γ̂′ = (2243.55, 642.10,−2502.44, −997.01,−129.57,−1008.41)T ,

β̂′ = (12235.02,−4899.86,−94.86, 63.39,−7934.55,

−2853.79, 1208.76, 5784.12, 2677.32, 93.16494,−4471.44)T ,
ĉ2 = 16.45,
γ̂′′ = (−20.82,−4.14, 21.37, 10.16, 1.53, 8.87) ,
β̂′′ = (−75.68, 46.27, 8.56, 5.59, 59.65, 17.30,−22.62,
−82.25,−35.93,−3.36, 46.17)T .

The values of the probabilities βts associated with the different states s at
each period t, with β0 = 1, and the AR (1) stochastic process of error terms
ats at each state s and period t are:

for t = 1,
1 2

βs 0.26 0.74
as 0.73 0.59

(21)
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for t = 2,
1 2 3 4

βs 0.79 0.20 0.79 0.20
as 0.67 0.51 0.60 0.80

(22)

for t = 3,

1 2 3 4 5 6 7 8
βs 0.47 0.52 0.62 0.37 0.40 0.59 0.6 0.4
as 0.54 0.72 0.68 0.54 0.75 0.55 0.57 073

(23)

The computed values of equilibrium are:
for t = 0, p∗0 = 49.39, and

1 2 3
y∗
j0 1.51e5 1.53e5 1.05e5

w∗
j0 57.10e3 57.22e2 53.07e3

(24)

for t = 1,
p∗1 = (47.29, 47.29) , and

s=1 1 2 3
y∗
js 1.50e5 1.52e5 1.04e5

w∗
js 54.11e3 54.21e3 50.42e3

s=2 1 2 3
y∗
js 1.50e5 1.52e5 1.046e5

w∗
js 54.11e3 54.21e3 50.42e3

(25)

for t = 2,
p∗2 = (33.19, 33.19, 33.19, 33.19) , and

s=1 1 2 3
y∗
js 1.38e5 1.39e5 9.81e4

w∗
js 34.85e3 34.90e3 33.19e3

s=2 1 2 3
y∗
js 1.38e5 1.39e5 9.81e4

w∗
js 34.85e3 34.90e3 33.19e3

(26)

s=3 1 2 3
y∗
js 1.38e5 1.39e5 9.81e4

w∗
js 34.85e3 34.90e3 33.19e3

s=4 1 2 3
y∗
js 1.38e5 1.39e5 9.81e4

w∗
js 34.85e3 34.90e3 33.19e3

(27)

for t = 3,
p∗3 = (52.53, 52.53, 52.53, 52.53, 52.53, 52.53, 52.53, 52.53) , and

s=1 1 2 3
y∗
js 1.54e5 1.56e5 1.06e5

w∗
js 61.64e3 61.77e3 57.07e3

s=2 1 2 3
y∗
js 1.54e5 1.56e5 1.06e5

w∗
js 61.65e3 61.77e3 57.07e3

(28)

s=3 1 2 3
y∗
js 1.54e5 1.56e5 1.06e5

w∗
js 61.65e3 61.77e3 57.07e3

s=4 1 2 3
y∗
js 1.54e5 1.56e5 1.06e5

w∗
js 61.64e3 61.77e3 57.07e3

(29)
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Fig. 3. Daily electricity demand in NSW, Australia
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Fig. 4. Estimated autocorrelations and partial autocorrelations for residuals of
Model (1)

s=5 1 2 3
y∗
js 1.54e5 1.56e5 1.06e5

w∗
js 61.65e3 61.77e3 57.07e3

s=6 1 2 3
y∗
js 1.54e5 1.56e5 1.06e5

w∗
js 61.64e3 61.77e3 57.07e3

(30)

s=7 1 2 3
y∗
js 1.54e5 1.563e5 1.06e5

w∗
js 61.65e3 61.77e3 57.07e3

s=8 1 2 3
y∗
js 1.54e5 1.56e5 1.06e5

w∗js 61.65e3 61.77e3 57.07e3
(31)

The marginal probabilities πts are:
for t = 1,

1 2
πts 0.22 0.78 (32)

for t = 2,
1 2 3 4

πts 0.132 0.088 0.632 0.148 (33)

for t = 3,
1 2 3 4

πts 0.068 0.064 0.072 0.016
(34)
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Fig. 5. Estimated autocorrelations and partial autocorrelations for residuals of
Model (2)
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Summary. Logistics services form the backbone of every supply chain. Given their
importance in the operation of corporations, it is interesting to determine effi-
cient methods for optimal service procurement. A typical problem faced by most
managers of global firms is studied: given a set of service providers with respective
quantity-discount curves, the objective is to compute the set of logistics services
that should be procured from each provider, such that the overall supply chain effi-
ciency requirements are met. Although this is a very common problem, it is actually
intractable when the number of logistics providers and their services is large enough.
An auction based mechanism to model this situation is developed, using a hybrid
auction approach. Integer programming formulations for the problem are presented,
which try to explore the combinatorial features of the problem. In order to allow
for the efficient computation of large instances, a heuristic algorithm to the winner
determination problem is presented. The proposed polynomial algorithm is applied
to a large number of test instances. Results demonstrate that close to optimal solu-
tions are achieved by the algorithm in reasonable time, even for large instances
typically occurring in real applications.

Key words: Logistics, auction, procurement, integer programming, heuristics

1 Introduction

An auction is a common method for setting prices of commodities that have
an undetermined or variable value. This is a mechanism that is frequently
used when there is a large number of suppliers interested in acquiring a given
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product. The most common auctions are sequential auctions, in which the
products are auctioned in sequence until they are all sold. In this type of
auction, determination of the winner is trivial because the highest bid gets
the item. More involved auctions exist however, where for example the price
paid is the price of the second highest bid. Such types of auctions will not be
considered here.

1.1 General Combinatorial Auctions

Standard auctions have disadvantages when the number of items available
is large. It is difficult to fulfill the requirements of interested parties, which
may have complementarity or substitutability issues. Complementarity occurs
when two items complement each other, therefore their combined valuation
for the supplier is higher than the sum of the separate costs. Substitutability
is the opposite situation, when two items have features that are substitute,
and thus their combined value is less than the sum of individual values.

To avoid such problems, modern auctions have introduced the idea of
bidding on sets of items, instead of single items. The term combinatorial
auction is generally used in this case. Combinatorial auctions can be of
several types, depending on the specific mechanism or protocol that is used
for its accomplishment. A description of the types of combinatorial auctions is
beyond the scope of this paper, and we refer the reader to surveys on the topic,
such as Vries and Vohra (2003), Rothkopf et al. (1998), Pekec and Rothkopf
(2003), Narahari and Dayama (2005), and Sandholm (2000).

A well known application of combinatorial auctions is the widely publicized
Federal Communications Commission auction of wireless communication spec-
trum (Crampton, 1997, Cramton, 1998), performed between 1994 and 1996.
Combinatorial auction mechanisms have also been designed for other prob-
lems, such as airport time slot allocation Rassenti et al. (1982).

Closely related to combinatorial auctions is the problem of procuring
services for a company Sheffi (2004). In this case, the goal is to buy prod-
ucts or services from a set of providers, with the goal of minimizing the
total cost of procured items. This form of inverse auction has been frequently
used in the last few years by companies that want to find the most compet-
itive prices for the services they need. Examples of companies that have
recently used this method include Home Depot, Wal-Mart, and several others
Sheffi (2004).

1.2 The Procurement Model for Transportation

A prime example of this type of inverse auction is in the procurement of
transportation services. A set of lanes, connecting distribution points, is given
and the auctioneer receives bids for the prices of transporting goods on subsets
of the lanes. Service providers consider several characteristics of the lanes in
which they bid: complementarity is a frequent issue arising in this type of



An Approximate Winner Determination Algorithm 53

application, since transportation services can become less expensive if they are
restricted to smaller geographical locations. Another type of complementarity
that is frequently considered is related to circuit formation: it is most often
desirable to have ways of returning the fleet to its original location without
additional costs. The result of such a transportation auction is a partition of
the available lanes, where the total cost the auctioneer needs to pay for the
services procured over the partition is minimized.

A hybrid procurement mechanism is one in which each supplier gives not
only a price, but also a supply curve, depicting different prices for different
quantities of items. This occurs normally when providers are able to give
discounts for additional items serviced. For example, a bidding company may
be able to give a 20% reduction for each item serviced above the limit of 200
units. We assume that in this case the auctioneer needs to pay the full price
for any quantity up to 200 units, with the discount being applied to units
above the limit.

For a more concrete example of such hybrid mechanisms, consider a typical
enterprise having distribution centers over a large geographical area. Such a
company needs to transport its products to all its distribution centers. The
enterprise manufactures products of various types, each with different physical
dimensions and hence occupies different volumes when packed for transporta-
tion. Notice that it is also common to ship certain products as bundles of items
rather than single units. Assume that there are multiple logistics providers
offering to carry out logistic operations over different subsets of distributors
(geographical area). The goal of the procurement model we consider is to
provide a decision framework so that the appropriate set of providers are
located. The major issues concerning this auction model are:

Combinations of regions: Enterprises ideally would like their products
to be distributed over a large geographical area. However, logistics providers
for various reasons exhibit preferences for certain regions. Thus, the decision
maker is faced with choosing a set of providers to distribute his products over
the entire market geographically in a an economic way.

Combinations of volumes: It is natural that market preferences vary
with geographical regions. To suit this requirement, the volumes of goods
being sent to each region will also vary. Logistics providers prefer full units
of transport, i.e., full truck loads to fractional truckloads. Thus, it is common
among logistics providers to offer volume discounts. The decision maker then
has to choose between a combination of volumes and providers to be used to
transport his goods.

In this paper we consider the problem of winner determination for procure-
ment performed using hybrid combinatorial auctions. This is a difficult
problem in most cases, being known to be NP-hard. We start with a formal
definition of the problem in Sect. 2. Practical applications of combinatorial
auctions and hybrid procurement are introduced in Sect. 3. We then discuss
previous work done in this area in Sect. 4, and proceed to provide some
new techniques to solve the problem in practice. First, we introduce integer
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programming formulations for the problem in Sect. 5. Then, we propose in
Sect. 6 a heuristic algorithm that can provide near optimal solutions for many
of the instances tested. Experimental results with the methods presented in
the previous sections are then presented and analyzed in Sect. 7. Finally,
concluding remarks and open questions are provided in Sect. 8.

2 Winner Determination Problem

The main problem arising on the execution of combinatorial auctions is winner
determination. Contrary to single item auctions where bids are made for single
items, each bid in a combinatorial auction can be made on an arbitrary set of
items. The number of such sets is exponential in the number of items, therefore
even evaluating the price achievable by each subset is out of question for any
relatively large auction. Since items can be part of multiple sets, the issue is
to determine a partition of the original set of items such that the total revenue
is maximized. Once a partition has been determined, the winner of each set
can be easily chosen as the supplier that gives the highest valuation for that
set (with ties being broken according to pre-specified rules).

In the context of procurement, the winner determination problem is to
determine a partition into subsets of the original items that must be procured,
such that the associated cost of the resulting partition is as small as possible.
As we are considering hybrid procurement mechanisms, this choice is still
further complicated by the fact that multiple items can be serviced at different
prices, according to the discount model provided by each supplier.

To formalize the problem, let I be the set of items, and di the quantity of
the i-th item that must be procured. There are m suppliers, and each supplier
makes a bid for a subset Bj of I, for j ∈ {1, . . . , m}. The j-th supplier also
provides a discount curve with nj different prices. These are represented by
pjk for volumes between vk−1 and vk, and k ∈ {1, . . . , nj}.

A solution for this problem is a partition A of I. This partition satisfies
(1) if A, B ∈ A and A �= B then A∩B = ∅ and (2)

⋃
A∈A A = I. The solution

also need to specify the number rij of items of type i that will be procured
from provider j, such that rij ≤ di and

∑
j∈{1,...,m} rij = di for each item i.

From now on, we assume that the total supply (from all bidders) is greater
than or equal to the demand, in order to guarantee that there is a feasible
solution for the resulting problem.

3 Applications

Logistic services form the backbone of every supply chain network. A recent
survey reports that third party logistics users expected logistics expenditures
to represent approximately 7% of their organizations’ anticipated total sales
for 2004. Major driving factors to adopt third party logistics include emphasis
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on improved supply chain management, enhancing customer service, reducing
cost, consolidations, mergers, and acquisitions. Other common factors affecting
the cost of operations include rapidly accelerating new product introductions,
implementation of new information technologies, and the rising of new markets
due to globalization. With so many driving factors, it is natural for enter-
prises to try to choose an optimal set of providers for servicing their logistics
needs.

As a way of reducing the costs associated with global logistics,
companies have been increasingly adopting the procurement of services based
on combinatorial auction methods. For example, an early application of
combinatorial auctions is presented by Moore et al. (1991) on the Reynolds
Metals Company. Elmaghraby and Keskinocak (2003) describe the use of
combinatorial procurement as one of the key strategies employed by the Home
Depot company.

An important application of combinatorial procurement models is in the
transportation industry. In this application, lanes connecting important points
are procured among several transportation companies. Ledyard et al. (2002)
provided an example of combinatorial procurement for transportation prob-
lems. Sheffi (2004) discussed several other procurement problems being solved
by companies such as LogiCorp and Logistics.com.

Hybrid (also known as quantity-discount) procurement has also been very
important for the logistics operation of several companies. Hybrid procure-
ment has been used with success for example by Mars Inc., as reported by
Hohner et al. (2003). Due to this success in modeling complex operations
of the procurement process, combinatorial auctions have been the most well
known paradigm used in the literature for solving this kind of problem, as
discussed in the next section.

4 Previous Work

The winner determination problem for general combinatorial auctions has
been studied by several researchers. The most well known approach to winner
determination is to use a model based on the set packing problem. Given a
set I and a collection C of subsets Si ⊆ I, for i ∈ {1, . . . , n}, a set packing is
a set P ⊆ C such that for A, B ∈ P , with A �= B, we have A ∩ B = ∅. Given
a cost for each set in C, the set packing problem asks for the set packing with
maximum cost.

The resemblance between the set packing problem and the winner deter-
mination problem is clear, once we interpret I as the set of items and
Sj ∈ S as the subsets that the j-th supplier is interested in, for j ∈
{1, . . . , m}. This modeling approach has been used by most algorithms for
winner determination.

A popular, although not very efficient, algorithm for the set packing
problem is based on integer programming. The integer programming
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formulation for set packing can be described as follows. Let xS be equal to 1
if the set S is selected as occurring in the partition, and xS = 0 otherwise.
Let cS be the cost associated with using set S in the solution. With these
definitions, we can write the problem as

max
∑

S∈C
xScS

subject to ∑

S:i∈S
xS ≤ 1 for each item i ∈ I

xS ∈ {0, 1}, for each S ⊂ I.

This classical formulation is also called a packing formulation, since we are
allowed to add each element i ∈ I to at most one set.

The winner determination problem is known to be NP-hard, by reduction
to the set packing problem Garey and Johnson (1979). Approximation is also
hard for this problem, with the best possible algorithm achieving only a factor
n1−ε approximation (for any ε > 0) unless NP = ZPP Arora and Lund (1996).

Despite its general intractability, various researchers have designed algo-
rithms to give heuristic solutions to the winner determination problem.
A through discussion of some of the most common algorithms is presented
by Sandholm (2002). Recent methods include combinatorial auctions multi-
unit search Leyton-Brown et al. (2000), branch on bids Leyton-Brown et al.
(2000), and combinatorial auction branch on bids Sandholm et al. (2005),
among others. The basic idea behind these algorithms is to prune searching in
a way that minimizes the chance of missing an optimal result. The first algo-
rithm guarantees an optimal solution, however its applicability is limited by
the inherent complexity of dynamic programming when employed to solve NP-
hard optimisation problems. The two latter algorithms rely on tree structures
that allow branching on specific bids during the optimisation process. These
algorithms derive bounds based on the expected improvement of the existing
optimal value on the subtrees of the branch-and-bound data structure, and
prune them accordingly.

Other algorithms, such as limited discrepancy search Sakurai et al. (2000),
limit the search efforts to the region of the decision tree that is most likely
to contain the optimal result. This algorithm starts by selecting only the
best nodes initially and much later expands the search to include other nodes
in case of necessity. Notice that the above mentioned algorithms all rely on
developing more efficient branch and bound techniques to solve the winner
determination problem. They usually apply depth first search methods to
explore the decision tree. Although these algorithms perform well in many
cases, their worst case behavior is still exponential.

Additionally, several heuristic algorithms have been proposed for the
winner determination problem in combinatorial auctions. A good discussion
of heuristics, as well as other approaches such as dynamic programming, can



An Approximate Winner Determination Algorithm 57

be found in Sandholm (2002). Vries and Vohra (2003) is a survey of models
for combinatorial auctions problems, with the description of several special
cases that can be used to speed up the running time of the general algorithms
for winner determination.

It is important to remark that the algorithms above are designed for
auction problems where a single price is given by service providers. There-
fore, they are not directly applicable for the situation we are considering
in this paper, where the bids contain not only a fixed price but a curve of
discount-prices per volume.

5 Integer Programming Formulation

5.1 First Integer Programming Formulation

We now turn to the discussion of mathematical models for the combinatorial
procurement problem. We propose a mathematical formulation based on linear
integer programming, as described bellow. We assume there are n items to
be procured and m providers. Let di be the demand for the i-th item. Each
provider j (j ∈ {1, . . . , m}) gives a quote composed of prices pjk for volumes
between vj(k−1) and vjk, for all k ∈ {1, . . . , nj} (we assume vj0 = 0 and
vk−1 < vk). Each unit of service of provider j has qij items of the i-th type.

Let xjk, for j ∈ {1, . . . , m}, and k ∈ {1, . . . , nj}, be an integer variable
equal to the quantity selected from the k-th part of the discount function
quoted by provider j.

The choice of the exact part of the discount function that must be selected
from each provider is encoded using a binary variable wjk, for j ∈ {1, . . . , m},
and k ∈ {1, . . . , nj}. This variable is 1 whenever the quantity available in one
of the segments of the curve is not completely selected.

Using the variables described above, the integer programming formulation
for the problem is

min
m∑

j=1

nj∑

k=1

pjk xjk (1)

subject to

wjk ≥ [(vjk − vj(k−1))− xjk]/K j = 1, . . . , m, k = 1, . . . , nj (2)
wjk ≤ (vjk − vj(k−1))− xjk j = 1, . . . , m, k = 1, . . . , nj (3)

xj(k+1) ≤ (1− wjk)(vj(k+1) − vj(k)) j = 1, . . . , m, k = 1, . . . , nj (4)
xj1 ≤ vj1 j = 1, . . . , m (5)

m∑

j=1

nj∑

k=1

qijxjk ≥ di i = 1, . . . , n (6)

xjk ∈ Z+ and wjk ∈ {0, 1} j = 1, . . . , m, k = 1, . . . , nj, (7)

where K ≥ max{vjk − vj(k−1)}, for all j ∈ {1, . . . , m}, k ∈ {1, . . . , nj}.
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The objective function (1) specifies that the total cost of the items obtained
from the selected suppliers is minimized. Constraints (2) and (3) determine
the value of binary variable wjk, for each supplier and section of the discount
curve, as previously explained. If a segment k of the discount domain for
supplier j is not completely obtained, then wjk is equal to one. Constraint (4)
uses the value of the variable wij to determine if a product can be acquired
at a given price level. Constraint (5) is similar to (4) but is necessary only
for the first section of the domain of the discount function. Constraint (6)
enforces the demand satisfaction requirements. Finally, Constraint (7) states
the feasible domain for each variable in the formulation.

By inspection, the number of constraints in this formulation is of the
order O(n + mN), where N is defined as max1≤j≤m(nj). The formulation
has also 2

∑m
j=1 nj variables, of which

∑m
j=1 nj are binary and the remaining

are integer variables.

5.2 Second Integer Programming Formulation

A second integer programming formulation for the procurement problem can
be defined as follows. Let us introduce binary variables xjk with the value 1
meaning that a quote from the j-th supplier was accepted at the k-th level
of its discount curve. Let zjk represent the amount of items procured from
the j-th supplier, from the k-th part of its discount curve. Then, the second
formulation is

min
m∑

j=1

nj∑

k=1

((
k−1∑

�=1

(vj� − vj(�−1))pj�)xjk + pjk zjk) (8)

subject to

m∑

j=1

nj∑

k=1

qij((
k−1∑

�=1

(vj� − vj(�−1)))xjk + zjk) ≥ di i = 1, . . . , n (9)

zjk ≤ (vjk − vj(k−1))xjk j = 1, . . . , m, and k = 1, . . . , nj (10)
nj∑

k=1

xjk ≤ 1 j = 1, . . . , m (11)

xjk ∈ {0, 1} and zjk ∈ Z+ j = 1, . . . , m, k = 1, . . . , nj . (12)

The main difference between the latter formulation and the former one
is that the selection made by variable xjk determines only the exact part of
the discount curve where the quantity we want from supplier j is located.
The remaining quantities are found implicitly, using a summation over the
previous sections of the domain. The objective function (8) uses this idea to
compute the total price paid by the selected items. Constraint (9) guarantees
that the demand is satisfied by the total items procured. Constraint (10)
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determines the feasible bounds for each quantity procured from supplier j at
discount level k. Constraint (11) defines the main property of variables xjk ,
by selecting at most one variable for each supply j. Finally, the domains of
variables xjk and zjk are determined by constraint (12).

The number of constraints in this formulation can easily be seen to be of
the order O(n + mN), where N is defined as max1≤j≤m(nj). Similarly to the
previous formulation, there are

∑m
j=1 nj binary variables and

∑m
j=1 nj integer

variables. This formulation is a little more compact than the previous one, and
therefore we selected it to perform computational experiments, as shown in
Sect. 8.

6 A Heuristic for Winner Determination

Due to the complexity of the winner determination problem, it is unlikely that
an exact integer programming formulation for large instances can be solved
in practice. However, most problems occurring on the industry are of large
scale; to overcome this difficulty we propose a heuristic that has polynomial
time complexity, but that provides very good solution for the instances tested
in our computational experiments.

6.1 The Costliest Item Heuristic

The heuristic proposed is based on the following idea: instead of finding the
optimum solution we can just select, for each item procured, the provider
that gives the best price for that item. Although this might be suboptimal
for some combination of items, in practice the algorithm can provide a good
enough solution for most practical purposes (as will be shown in Sect. 7).
The heuristic tries to satisfy the demand of the costliest items first, hence the
name used. Given a supplier j ∈ {1, . . . , m}, let kd be the minimum value k

such that
∑k
�=1(vj� − vj(�−1))qij ≥ d is satisfied. Then, we define the total

price TP(j, d) necessary to satisfy the demand d as

TP(j, d) =
kd−1∑

�=1

(vj� − vj(�−1))pjk +
(d− vjkd

)pjkd

qij
.

Let πj be the quantity that has already been procured from supplier j at
some point in the algorithm. Then we define a function P (·, ·) representing
the average cost at which the demand of item i can be satisfied by supplier j.
We let

P (i, j) =
TP (j, di + πjqij)− TP (j, πjqij)

di
,
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if there is enough capacity to satisfy the whole demand, i.e., di < (vjnj−πj)qij .
Otherwise, we define

P (i, j) =
TP(j, vnj qij)− TP(j, πjqij)

(vnj − πj)qij
.

Using the notation defined above, we provide a formal description of the
algorithm in Fig. 1. At the beginning, we are given a vector of item demands
and the discount curves for each of the suppliers. The idea is to start finding
the minimum cost needed to satisfy the demand of one item completely,
without bothering about the demand satisfaction of other items. This is a type
of greedy procedure, where there is no guarantee that the computed costs are
optimal. This first phase of the algorithm is called the cost computing phase
(Fig. 2). Once the cost ordered items are obtained, the algorithm proceeds
by satisfying the demand for the costliest item first. In the next iteration the
algorithm satisfies the next costliest item using the minimum available cost,
until all items are satisfied in this way. This stage of the algorithm is called the
demand satisfaction phase (Fig. 3). By combining the two phases described
above, and based on the demand and prices, we select locally the supplier that
will provide the best price for the next item procured. After such a supplier
is found, we update the vector of demands accordingly, removing the items
that have been previously selected.

1 Input: demands di, for i ∈ {1, . . . , n}.
2 Input: prices pjk, for j ∈ {1, . . . ,m} and k ∈ {1, . . . , nj}.
3 for i ∈ {1, . . . , n} do
4 cost i ←∞
5 end
6 while there is di ≥ 0, for i ∈ {1, . . . , n} do
7 Cost ordering phase
8 Demand satisfaction phase
9 end

Fig. 1. Costliest item heuristic

1 Input: demands di, for i ∈ {1, . . . , n}.
2 Input: prices pjk, for j ∈ {1, . . . ,m} and k ∈ {1, . . . , nj}.
3 Output: vector cost , with minimum costs for all items.
4 for all i ∈ {1, . . . , n} such that di > 0 do
5 for all quotes j ∈ {1, . . . ,m} do
6 if cost i > P (i, j) then
7 cost i ← P (i, j)
8 end
9 end
10 end

Fig. 2. Cost computing phase
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1 Input: demands di, for i ∈ {1, . . . , n}.
2 Input: prices pjk, for j ∈ {1, . . . ,m} and k ∈ {1, . . . , nj}.
3 Input: vector cost , with minimum costs for all items.
4 Output: vector π ∈ Zm, with quantities procured from each supplier.
5 i′ ← arg max1≤i≤n costi
6 while di′ > 0 do
7 j′ ← arg min1≤j≤m P (i′, j)
8 δ ← min(di′ , vj′nj′ − πj′)

9 πj′ ← πj′ + δ
10 di′ ← di′ − δ
11 end
12 Return π

Fig. 3. Demand satisfaction phase

6.2 Variations of the Proposed Heuristic

The method used (highest cost) to select the item that must be satisfied next
was quite arbitrary, since this can in practice be determined in several ways.
For example, one may try instead to satisfy the demand as fast as possible, by
selecting the item that has higher demand. One can also try to give precedence
to items high higher average cost across providers. Such policies may prove
to be more effective on different instances of the problem, and should be
implemented according to the requirements of the real instances solved. Thus,
in addition to the method used above, we tried to determine the procurement
costs using various alternative methods of selecting the next item. Examples
of such policies are lowest cost first, highest volume first, and lowest volume
first. We performed a set of computational experiments with these alternate
methods, which are described in the next section.

7 Computational Experiments

7.1 Test Environment

In this section we describe the computational experiments that have been
performed with the proposed algorithms. Our main goal when designing the
computational experiments has been to determine in practice the efficiency of
the methods previously discussed.

With this objective in mind, the second integer programming model
discussed in Sect. 5.2 was solved using Dash Xpress, a commercial solver
from Dash optimisation. The model was implemented using Mosel, a modeling
language for mathematical programming, available with the solver.

Both the costliest item first heuristic and the generator of random instances
was implemented using Java 1.4. Each of the random instances had a set of
20 bidders and the quantities for each of the items ranged from 10 to 60 units.
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The machine used had a Pentium 4 processor with clock speed of 1.59 GHz,
and 512MB of main memory. The Java programs and the integer programming
models were executed on the same machine. (The instances used in this paper
are available at the address http://www.okstate.edu/ceat/iem/iepeople/
oliveira/papers/procurement).

7.2 Comparison of Heuristic Policies

The results of the first test performed with the heuristic is presented in Fig. 4.
In this test, we have used several policies for the same heuristic, and tested
them against a set of instances of the winner determination problem. The
instances tested ranged in size from 1 to 22 items, for a fixed number of
bidders. The graph is shown in a logarithm scale to facilitate the visual-
ization of the smaller values. The results of this first experiment show that
the heuristic works best when the costliest item is selected at each iteration.
Other policies used included selecting at each step the item with the highest
volume, the one with the lowest volume, and the cheapest item. They all
proved to be of lower quality when compared to the simple decision of finding
the costliest item.

The second best heuristic policy from the results is clearly the cheapest
item policy. Its results are the best when a small number of items is involved.
It them becomes inferior to costliest item, but generally follows the same
pattern of increasing costs, meaning that there is a correlation between the
values achieved by the costliest item and the cheapest items policies.

Fig. 4. Comparison of different policies for costliest item first heuristic
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7.3 Comparison of MIP and Heuristic

The number of items to be procured in the experiment ranged from 3 to
43. The number of bidders was kept constant, as a way of controlling the
variability of the instances. The Tables 1 and 2 summarize the results found
in our computational tests. The MIP column reports the results found by
our second mixed integer programming model, with a maximum time limit
set to two hours (the heuristic took less than ten minutes in most cases).
Therefore, the results in this column are not optimal in most of the cases and
provide only a lower bound for the exact solution. When integer solutions were
found, they have been reported instead – this is the reason why there are some
rows where the MIPS value is larger than the corresponding heuristic solution
value. The heuristic column represents the results found by the best policy for
the winner determination heuristic. The columns difference and %difference
show the variation between the results of the integer programming model and
the heuristic, both in cost units and in percentage. We notice that the gap
between the heuristic and the integer programming solutions are in the range
of 0 to 60%. However, as the partial solutions for the MIP give only a lower
bound for the the optimum solution, it may be possible that the heuristic
values are much closer to the optimum solution.

Table 1. Comparison of results for the MIP and the proposed heuristic

n MIP heuristic difference %difference

3 159.4 153.4 −6.0 −3.8
4 142.8 179.9 37.2 26.0
5 169.0 264.9 95.8 56.7
6 243.2 260.1 16.8 6.9
7 341.1 329.0 −12.1 −3.5
8 149.4 147.3 −2.1 −1.4
9 224.8 311.6 86.8 38.6

10 234.3 226.3 −8.0 −3.4
11 339.9 486.9 147.0 43.2
12 280.1 389.5 109.4 39.1
13 225.5 318.9 93.4 41.4
14 295.8 406.1 110.4 37.3
15 294.9 428.6 133.7 45.3
16 294.6 476.7 182.1 61.8
17 359.4 539.8 180.4 50.2
18 267.5 345.3 77.9 29.1
19 257.2 323.8 66.6 25.9
20 276.5 410.6 134.1 48.5
21 286.2 386.9 100.7 35.2
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Table 2. Comparison of results for the MIP and the proposed heuristic (continued)

n MIP heuristic difference %difference

22 279.3 427.1 147.8 52.9
23 305.7 377.6 71.9 23.5
24 339.1 484.2 145.1 42.8
25 257.1 398.0 140.9 54.8
26 344.8 402.9 58.2 16.9
27 251.1 418.1 167.0 66.5
28 299.7 422.4 122.6 40.9
29 286.7 430.3 143.6 50.1
30 335.8 455.0 119.2 35.5
31 322.6 457.1 134.5 41.7
32 318.2 435.9 117.7 37.0
33 337.5 467.9 130.4 38.6
34 326.9 492.9 166.1 50.8
35 330.6 504.0 173.4 52.4
36 315.5 404.6 89.1 28.2
37 342.5 491.5 149.0 43.5
38 322.9 418.1 95.2 29.5
39 363.8 532.9 169.1 46.5
40 334.2 486.5 152.4 45.6
41 288.4 484.0 195.6 67.8
42 333.9 516.9 183.0 54.8
43 382.2 612.4 230.2 60.2

8 Concluding Remarks

Hybrid procurement is an important problem, especially considering the
complexity of modern supply chains. It involves the solution of a complex
winner determination problem, which is in general NP-hard. We considered
in this paper the winner determination problem for the case in which the
suppliers provide a quantity-discount curve of prices, instead of a single bid.
The winner determination problem in this case is still NP-hard, since this is
a generalization of the normal bidding process.

We provided mathematical programming formulations for winner deter-
mination applied to hybrid procurement mechanisms. We also presented a
heuristic solution scheme, where solutions are constructed in a greedy manner.
We illustrated the solution procedure using several instances of the problem,
and showed in practice that some selection policies are more effective in the
determination of the winner for such auctions.

It remains an open question if the mathematical programming models
provided in this paper can be improved in order to reduce the time necessary
to find an optimal solution. It would also be interesting to provide even better
heuristics for this problem, probably using a general meta-heuristic scheme
such as genetic algorithms or tabu search.
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Summary. Oracle Based Optimisation (OBO) conveniently designates an approach
to handle a class of convex optimisation problems in which the information pertaining
to the function to be minimized and/or to the feasible set takes the form of a linear
outer approximation revealed by an oracle. Three representative examples are intro-
duced to show how one can cast difficult problems in this format, and solve them.
An efficient method, Proximal-ACCPM, is presented to trigger the OBO approach.
Numerical results for these examples are provided to illustrate the behavior of the
method. This paper summarizes several contributions with the OBO approach and
aims to give, in a single report, enough information on the method and its imple-
mentation to facilitate new applications.

Key words: Non-differentiable optimisation, cutting plane methods, interior-
point methods, Proximal-ACCPM, multicommodity flow, p-median, inte-
grated assessment models

1 Introduction

Oracle Based optimisation (OBO) conveniently designates an approach to
handle a class of convex optimisation problems in which the information
pertaining to the function to be minimized and/or to the feasible set takes the
form of a linear outer approximation revealed by an oracle. By oracle, we mean
a black-box scheme that returns appropriate information on the problem at
so-called query points. In convex unconstrained optimisation, this informa-
tion takes the form of a linear support for the epigraph set of the function to
be minimized. This class of problems is known as “Nondifferentiable Convex
Optimisation”. We use the terminology OBO to emphasize the principle of
the method — a dialog between an optimizer and an oracle — and the fact
that we can handle more general classes of problems.

The goal of this paper is two-fold. We first intend to present an efficient
method, Proximal-ACCPM, that implements an OBO approach. We give a
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concise but accurate description of the analytic center cutting plane method
(ACCPM), and more precisely of its recent enhancements that include a prox-
imal term (Proximal-ACCPM) and a logarithmic barrier on the epigraph of
the smooth component of the objective function. The main issue in a cutting
plane method is to decide where to query the oracle in order to improve a
current polyhedral approximation of the problem. Proximal-ACCPM selects
the analytic center of this polyhedral set, that is, the point that minimizes
the logarithmic barrier function on that set, augmented with a proximal term.
This choice is efficient since it usually requires relatively few query points to
achieve an accurate approximation of an optimal solution. Proximal-ACCPM
relies on the interior-point methodology to compute the query points. This
methodology is well suited to handle nonlinear information and makes it easy
to implement the extensions we discuss in the paper.

Our second goal is to provide a set of application problems that are very
different in nature and thus illustrate the versatility of the method. This
choice does not cover the full range of applications successfully handled with
Proximal-ACCPM. Yet it gives a flavor of what can be done and hopefully it
will convince readers to develop applications of their own.

In this paper we do not deal with the convergence issue. The pseudo-
polynomial complexity of the method on the feasibility problem has been
proved in (Goffin et al., 1996; Nesterov, 1995). It straightforwardly extends to
optimality problems by casting the latter in the format of a pure feasibility
problem. The proofs are involved but the principles underlying the method
are relatively simple. Neither will we review the literature on nondifferentiable
convex optimisation. The field is large and we content ourselves with referring
to survey papers (Lemaréchal, 1989; Goffin and Vial, 2002). In this presen-
tation we concentrate on the description of the method with some recent
extensions and we illustrate its implementation and performance on three
large-scale applications recently reported in the literature.

The paper is organized as follows. In Sect. 2 we present the framework
of Oracle Base Optimisation. Section 3 provides a succinct description of
Proximal-ACCPM. Two enhancements of the method are discussed. None
of them is really new, but we believe that they crucially contribute to the
overall efficiency of the implementation. We also discuss how to compute a
lower bound and thus obtain a reliable stopping criterion. Section 4 deals
with three examples. The first one, the well-known multicommodity flow
problem, is representative of large-scale continuous optimisation. The method
has been applied to the linear (Babonneau et al., 2006) and the nonlinear
(Babonneau and Vial, 2005) cases. The nonlinear version of the multicom-
modity flow problem we present here is particularly interesting, because part
of the problem structure need not be revealed by a first-order oracle. As it
is presented in Sect. 3, Proximal-ACCPM directly incorporates the nonlinear
information and thus achieves a significant gain of efficiency.

The second application is the p-median problem, a combinatorial opti-
misation problem that is solved by Lagrangian relaxation. This example
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illustrates how powerful is Lagrangian relaxation to generate lower bounds
for the optimal value of this combinatorial problem. These bounds are further
used in an enumerative scheme which computes an optimal integer solution.
In the same subsection we present the new concept of semi-Lagrangian relax-
ation, recently introduced in (Beltran et al., 2004). There, it is shown that
using semi-Lagrangian relaxation permits us to solve to optimality the original
combinatorial problem without resorting to an enumerative scheme.

Our last application deals with air quality control in urban regions and the
coupling of modules in Integrated Assessment Models (IAM). The economic
activity creates pollutant emissions that are spatially distributed. Geographic
and climate models translate those primary pollutant emissions into ozone
concentrations which determine air quality. The objective of the study is to
find an optimal adjustment of the economic activity that results in accept-
able ozone concentrations. The modeling approach consists in coupling two
models, a techno-economic model and a climate model, to properly handle the
interaction between the economic activity and the air quality. From a method-
ological point of view, this approach is original as it allows the coupling of
two models that have totally different natures.

2 Oracle Based Optimisation

Oracle based optimisation deals with the convex programming problem

min{f(u) = f1(u) + f2(u) | u ∈ U ⊂ R
n}, (1)

where f1 is a convex function, f2 is a twice differentiable convex function and
U is a convex set. We assume that f1(u) and U are revealed by a first order
oracle while f2(u) is accessed through a second order oracle in an explicit way.
By oracle, we mean a black-box procedure which at any query point u returns
the information described in Definitions 1 and 2 below.

Definition 1. A first-order oracle for problem (1) is a black box procedure
with the following property. When queried at u, the oracle returns 1 or 2.

1. u �∈ U and (a, c) is such that aTu′ − c ≤ 0, ∀u′ ∈ U (feasibility cut). In
that case, we set f1(u) = +∞.

2. u ∈ U and (a, c) is such that aTu′ − c ≤ f1(u′), ∀u′ ∈ U (optimality cut).
In general, a ∈ ∂f1(u), c = aTu−f1(u), but this is not necessarily so. The
cut may have no intersection with the epigraph set (i.e., may be situated
strictly below that set).

Definition 2. A second-order oracle for problem (1) is a black-box procedure
with the following property. When queried at u, the oracle returns the function
value and the first and second derivatives of f2(u).
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In the traditional OBO approach, the function f2 is handled in the same way as
f1, that is by means of a first-order oracle. This approach looses information.
In this paper, we exploit the explicit knowledge of the function f2 and its
derivatives in the form of a barrier on the epigraph set.

Assumption 1. The function f2 is such that the logarithmic barrier
− log(ζ − f2(u)) on the epigraph set of f2, {(u, ζ) | ζ ≥ f2(u), u ∈ U}, is
self-concordant.

Remark 1. The concept of self-concordant function has been introduced in
(Nesterov and Nemirovski, 1994) to extend the theory of interior-point
methods for linear programming to a more general class of functions. The
condition links the second and third derivatives of the function. For a thor-
ough but more readable presentation of the theory of self-concordant functions
we refer to (Nesterov, 2004).

In many applications, the objective function f1 is a strictly positively
weighted sum of p nonsmooth convex functions

f1(u) =
p∑

i=1

πif1i(u).

In that expression, we can consider that f1(u) is revealed by p indepen-
dent first-order oracles. The epigraph of the function f is the set defined
by {(u, z, ζ) | πT z ≥ f1(u), ζ ≥ f2(u)}. Using this property, problem (1) can
also be written in as

min πT z + ζ
s.t. f1j(u)− zj ≤ 0, j = 1, . . . , p,

f2(u)− ζ ≤ 0,
u ∈ U.

(2)

This formulation is conveniently named the disaggregate mode.
The first order oracle is used to build a polyhedral approximation of the

epigraph of f1. Suppose the oracle has been queried at uk, k = 1, . . . , κ, and
has returned feasibility and/or optimality cuts associated with those points.
The corresponding inequalities are collected in

ATu− ET z ≤ c.

In that definition, the subgradients a of the function f1 form the matrix A
while E is a binary matrix that is constructed as follows. If the objective f1

is treated in an aggregate mode (p = 1), then E is a binary row vector. An
entry one in E indicates that the z variable is present in the cut, implying
that the cut is an optimality cut. In contrast, a zero indicates that the cut is
a feasibility cut. If the objective f1 is disaggregated into p components, row j
of E corresponds to a variable zj and each column corresponds to a cut. An
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entry one in row j and column k indicates that the cut k is an optimality cut
for f1j(u). If column k is a null vector, then cut k is a feasibility cut.

Let θ̄ be the best recorded value such that θ̄ = mink≤κ{f1(uk) + f2(uk)}.
In view of the above definitions, we can define the localization set Lκ as

Lκ =
{
(u, z, ζ) | ATu− ET z ≤ c, f2(u) ≤ ζ, πT z + ζ ≤ θ̄

}
,

which is a subset of an outer approximation of the epigraph of f that contains
all optimal pairs (u∗, f(u∗)). Thus, the search for a new query point should
be confined to the localization set. Among possible solution methods for (1),
we briefly sketch cutting plane schemes which work as follows:

1. Select a query point in the localization set.
2. Send the query point to the first order oracle and get back the optimality/

feasible cuts.
3. Send the query point to the second order oracle to compute the objective

function f2.
4. Update the lower and upper bounds and the localization set.
5. Test termination.

The main issue in the design of a cutting plane scheme is step 1. Different
choices lead to different results. In that paper, we propose a particular method,
named Proximal-ACCPM, that selects the analytic center of the localization
set as the new query point.

3 Proximal-ACCPM

It is well-known that efficient methods for non differentiable convex optimi-
sation rely on some regularization schemes to select the query point. We
discuss here such a scheme; it is based on the concept of proximal analytic
center which corresponds to the minimum of the standard logarithmic barrier
augmented with a proximal term.

3.1 Proximal Analytic Center

We associate with the localization set a standard (weighted) logarithmic
barrier

F (s0, s, σ) = −w0 log s0 −
κ∑

i=1

wi log si − ω log σ, (3)

with (s0, s, σ) > 0 defined by

s0 = θ̄ − πT z − ζ,
si = ci − (ATu− ET z)i, i ∈ K = {1, . . . , κ},
σ = ζ − f2(u).
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The barrier function is augmented with a proximal term to yield the aug-
mented barrier

Ψ(u, s0, s, σ) =
ρ

2
||u− ū||2 + F (s0, s, σ), (4)

where ū ∈ R
n is the query point that has achieved the best objective value

θ̄. We name it the proximal reference point. The proximal analytic center is
defined as the solution of

min
u,z,ζ,s0,s,σ

Ψ(u, s0, s, σ)

s.t. s0 + πT z + ζ = θ̄,
si + (ATu− ET z)i = ci, i ∈ K = {1, . . . , κ},
σ + (f2(u)− ζ) = 0,
s0 > 0, s > 0, σ > 0.

(5)

If (u, z, ζ, s0, s, σ) is feasible to (5), then (5) is equivalent to minimizing
Φ(u, z, ζ) = Ψ(u, s0, s, σ), in which s0, s and σ are replaced by their value
in u, z and ζ. Note that the localization set is not necessarily compact, but
it is easy to show that, thanks to the proximal term, the generalized analytic
center exists and is unique.

In the next paragraphs, we shall use the following notation. Given a vector
s > 0, S is the diagonal matrix whose main diagonal is s. We also use
s−1 = S−1e to denote the vector whose coordinates are the inverse of the
coordinates of s. Similarly, s−2 = S−2e. Finally, given two vectors x and
y of same dimension, xy denotes their component-wise product. With this
notation, the first order optimality conditions for (5) are

ρ(u− ū) + Aws−1 + ωf ′
2(u)σ−1 = 0, (6)

πw0s
−1
0 − Ews−1 = 0, (7)

w0s
−1
0 − ωσ−1 = 0, (8)

s0 + πT z + ζ − θ̄ = 0, (9)
si + (ATu− ET z)i − ci = 0, i ∈ K = {1, . . . , κ}, (10)

σ + f2(u)− ζ = 0. (11)

The algorithm that computes the analytic center is essentially a Newton
method applied to (6)–(11). We shall see later how the vector ξ = ws−1 is
used to derive a lower bound for the optimal solution.

In view of Assumption (1), Φ is self-concordant; Newton’s method is thus
polynomially convergent (Nesterov, 2004). For the sake of simplicity, let us
define v = (u, z, ζ). In the case when v is feasible to (5) the Newton direction is

dv = −[Φ′′(v)]−1Φ′(v).

The damped Newton method for computing the proximal analytic center
consists in taking damped steps to preserve feasibility of v. The aim is to
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achieve a sufficient decrease of Φ, until the domain of quadratic convergence
is reached. Let

λ(v) = ([Φ′′(v)]−1Φ′(v))TΦ′(v) = −dvTΦ′(v). (12)

As long as λ(v) > 3−
√

5
2 a step of length (1 + λ(v))−1 preserves feasibility

and induces a decrease of Φ by an absolute constant. When λ(v) ≤ 3−
√

5
2 a

full step is feasible and the method converges quadratically. The method has
polynomial complexity.

The stopping criterion is triggered by the proximity measure. When λ(v)
falls below the threshold value η < 3−

√
5

2 , the search for the proximal analytic
center stops. In practice, the much looser criterion η = 0.99 suffices.

3.2 Infeasible Newton’s Method

Unfortunately we haven’t easy access to feasible solution for problem (5). In
cutting plane schemes, new constraints cut off the current iterate from the
new localization set and there is no direct way to retrieve feasibility if the
cuts are deep. Since we can’t anymore eliminate the variables (s0, s, σ), we
can’t apply a feasible Newton method to minimize Φ. Thus, we propose an
infeasible start Newton method for (5), which aims to achieve feasibility and
optimality simultaneously in the extended space (u, z, ζ, s0, s, σ).

In the course of the optimisation process, the first order conditions (6)–(11)
are never satisfied. However, we can assume that (s0, s, σ) > 0. We introduce
the residuals r = (ru, rz , rζ , rs0 , rs, rσ) and write

ρ(u− ū) + Aws−1 + ωf ′
2(u)σ−1 = −ru, (13)

w0πs−1
0 − Ews−1 = −rz , (14)

w0s
−1
0 − ωσ−1 = −rζ , (15)

s0 + πT z + ζ − θ̄ = −rs0 , (16)
si + (ATu− ET z)i − ci = −rsi , i ∈ K = {1, . . . , κ}, (17)

σ + f2(u)− ζ = −rσ. (18)

The Newton direction associated to (13)–(18) is given by

P

⎛

⎜⎜⎜⎜⎜⎜⎝

du
dz
dζ
ds0

ds
dσ

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

ru
rz
rζ
rs0
rs
rσ

⎞

⎟⎟⎟⎟⎟⎟⎠
, (19)
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where

P =

⎛

⎜⎜⎜⎜⎜⎜⎝

ρI + ωf2(u)′′σ−1 0 0 0 −AS−2 ωf2(u)′σ−2

0 0 0 −w0πs−2
0 ETS−2 0

0 0 0 −w0s
−2
0 0 ωσ−2

0 πT 1 1 0 0
AT −ET 0 0 I 0

f ′
2(u) 0 −1 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Since (9) and (10) are linear, a full Newton step, i.e., a step of length 1,
yields a point that is feasible with respect to these equations. However, the
same step does not yield a feasible point with respect to the nonlinear equa-
tion (11). Thus, the method remains essentially infeasible and we cannot use
the proximity measure λ to determine the steplength αstep. Instead, we use
the following empirical rule. Let

αmax = max(α | s + αds > 0, s0 + αds0 > 0, σ + αdσ > 0),

the selected step is
αstep = min(1, γαmax);

where the parameter γ is a safeguard to stay away from the boundary of the
domain. In practice, we take γ = 0.95.

When f2(u) is linear (or constant), it may be the case that (9) and (10)
become satisfied. Instead of using the default step length (1 + λ(v))−1, as
prescribed by the theory, we perform the one-dimensional linesearch

αstep = arg min Ψ(v + αdv).

As mentioned earlier, the query point is not feasible for the new cuts
returned by the first order oracle. Finding a good starting value for sκ+1

and/or s0 after a cut has been added is an issue. Though (Goffin and Vial,
1999) proposes a scheme that preserves the polynomial complexity of the
method, in our practical implementation we use a simple heuristic that turns
out to be very efficient.

To summarize, a basic step of the Newton iteration is

1. Send the current point u to the second order oracle to compute the objectif
function f2(u) and its first and second derivatives.

2. Compute the Newton step (du, dz, dζ, ds0, ds, dσ) by (19).
3. Compute a step length αstep to update (u, z, ζ, s0, s, σ).
4. Test termination.

3.3 Lower Bound

A lower bound for (1) permits a measure of progress to optimality. We now
explain a way to generate such a bound. The first step in the derivation of
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the lower bound consists in introducing the perturbed function f(u) − rTu,
where r is a vector to be specified later. The second step is to replace the
non-smooth function f1(u) by its current polyhedral approximation. This is
done by replacing f1(u) by πT z under the constraints ATu − ET z ≤ c. We
thus have the bounding inequality

f(u)− rTu ≥ min
u,z
{πT z + f2(u)− rTu | ATu− ET z ≤ c}.

In view of the convexity of f2, we may write

f(u)− rTu ≥ f2(uc)− f ′
2(u

c)Tuc +
min
u,z
{πT z + f ′

2(u
c)u− rTu | ATu− ET z ≤ c},

where uc is a point of choice (e.g., approximate analytic center). By duality
we obtain

f(u)− rTu ≥ f2(uc)− f ′
2(u

c)Tuc +
min
u,z

max
ξ≥0
{(f ′

2(u
c) + Aξ)Tu + (π − E)T z − cT ξ − rTu},

= f2(uc)− f ′
2(u

c)Tuc + max
ξ≥0

{
−cT ξ +

+ min
u,z

[
(f ′

2(u
c) + Aξ − r)T u + (π − Eξ)T z

]}
. (20)

If ξ ≥ 0 is such that f ′
2(u

c) + Aξ = r and Eξ = π, then

f(u) ≥ f2(uc)− f ′
2(u

c)Tuc + rTu− cT ξ.

We now show how one can get such a vector ξ at the end of the iterations
that compute the proximal analytic center. In view of (14), we let ξ = ξc =
w(sc)−1 > 0 and we scale ξc by using the special structure of the matrix E to
have π − Eξc = 0 and we define r = f ′

2(uc) + Aξc. In view of the optimality
conditions (6) and (6) one may expect r to be small. We obtain the bound
for the optimal objective function value by

f(u∗) ≥ f2(uc)− f ′
2(u

c)Tuc − cT ξc + rTu∗,

≥ f2(uc)− f ′
2(u

c)Tuc − cT ξc + rT (u∗ − uc) + rTuc,

≥ f2(uc)− f ′
2(u

c)Tuc + rTuc − cT ξc − ||r||δ. (21)

The last inequality follows from Cauchy-Schwartz and δ ≥ ||u∗ − uc|| is an
upper bound on the distance of the current point uc to the optimal set.
Finding a good value for δ cannot be done on theoretical grounds. It is essen-
tially problem dependent. In practice, we obtained good results by taking the
“empirical” value δ = 5× ||uc − ū||.

If the variable u is constrained to be nonnegative in (1), we can
further improve the computation of the lower bound by taking
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r = −min{0, f ′
2(u

c) + Aξc}, where the min operator is taken component-wise.
In that case, the coefficient of u in the inner minimization is always nonneg-
ative and (f ′

2(u
c)+ Aξ − r)Tu = 0 at the solution of (20). This remark

is particularly useful when r = 0. Then we obtain the exact lower bound
f2(uc)− f ′

2(uc)Tuc − cT ξc.

3.4 Implementation

Since the oracle is entirely user-defined, we do not include it in the description.
The code has two main blocks: the first one computes query points; the second
one organizes the dialog between the oracle and the query point generator.
The code also includes an important initialization block.

Initialization This module initializes the instance and the various parameters.
Query point generator This modules includes two submodules: the first

one creates the localization set based on the information sent by the cut
manager; the second one computes approximate proximal analytic centers.

Manager This module keeps track of the cuts generated by the oracle and
of the current primal and dual coordinates of the analytic center. It
also controls the parameters that are dynamically adjusted and computes
criteria values that can be used by the user to stop the algorithm. Finally,
it acts as a filter between the oracle and the query point generator.

Two parameters of Proximal-ACCPM are often critical in the applications:
the weight w0 on the epigraph cut in (3) and the coefficient ρ of the proximal
term in (4). The general strategy is to assign to w0 a value equal to the number
of generated cuts (Goffin and Vial, 2002). The management of the proximal
term is more problem dependent. This point will be briefly commented in the
next section. When the problem to be solved has no box constraints on the
variables (e.g., when relaxing equality constraints in Lagrangian relaxation)
the computation of the Newton direction in Proximal-ACCPM can be made
more efficient than in plain ACCPM (du Merle and Vial, 2002).

The code is written in Matlab; it has around 700 lines of code in the query
point generator and 400 in the manager. Matlab is particularly efficient in
dealing with linear algebra. Not much gain can be expected by translating the
code into C++. However, a C version would make it easier to link Proximal-
ACCPM with oracles written in C or FORTRAN or to do an embedding of
Proximal-ACCPM within a larger optimisation scheme (e.g., a branch and
bound scheme). The code is the result of a continuing development efforts by
teams at Logilab partly supported by Swiss NSF.

4 Applications

We have seen that oracle based optimisation is relevant when it is possible
to approximate the epigraph set of the function to be minimized, and the
feasible set, by polyhedral sets. Let us list a few techniques that lead to this
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situation: Lagrangian relaxation (Geoffrion, 1974), Lagrangian decomposi-
tion (Guignard and Kim, 1987), column generation (Barnhart et al., 1998),
Benders’ decomposition (Benders, 2005), dual gap function in variational
inequalities (Nesterov and Vial, 1999), etc. In this section we present three
representative applications, one in large-scale nonlinear continuous optimi-
sation, one in combinatorial optimisation and one dealing with the coupling of
economic and environmental models. Those problems have been fully treated
in (Babonneau et al., 2006; Babonneau and Vial, 2005; Beltran et al., 2004;
Carlson et al., 2004).

In each case, we give a brief presentation of the problem and report a
sample of numerical results. This will give the reader an idea of the type of
problems that can be solved with Proximal-ACCPM. When the numerical
results are displayed in a table, we give the following information: problem
identification, denoted ‘Problem ID’, number of outer iterations (equivalently,
the number of oracle calls), denoted ‘Outer’, number of inner iterations (equiv-
alently, the number of Newton iterations to compute an analytic center),
denoted ‘Inner’, total CPU time in second, denoted ‘CPU’ and the fraction of
the CPU time spent in the oracle, denoted ‘%Oracle’.

4.1 Multicommodity Flow Problems

Given a network represented by the directed graph G(N ,A), with node set
N and arc set A, the multicommodity flow problem consists in shipping
some commodity flows from sources to sinks such that the demands for each
commodities are satisfied, the arc flow constraints are met and the total
cost flow is minimum. The arc-flow formulation of the multicommodity flow
problem is

min
∑
a∈A

fa(ya) (22)

s.t.
∑
k∈K

xka = ya, ∀a ∈ A, (23)

Nxk = dkδ
k, ∀k ∈ K, (24)

xka ≥ 0, ∀a ∈ A, ∀k ∈ K. (25)

Here, N is the network matrix; K is the set of commodities; dk is the demand
for commodity k; and δk is vector with only two non-zeros components: a 1 at
the supply node and a −1 at the demand node. The variable xka is the flow of
commodity k on arc a of the network and xk is the vector of xka. The objective
function f is a congestion function on the arcs.

For the sake of simpler notation we write problem (22)–(25) in the more
compact formulation

min{f(y) | Bx = y, x ∈ X}, (26)

where X represents the set of feasible flows that meet the demands with
respect to the network constraints. Bx defines the load flow.
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The standard Lagrangian relaxation of (26) assigns the dual variables u to
the coupling constraints Bx = y and relaxes them. The Lagrangian problem is

max
u
L(u), (27)

where

L(u) = min
x∈X,y

f(y) + uT (Bx− y),

= min
y

(f(y)− uT y) + min
x∈X

uTBx,

= −f∗(u) + min
x∈X

uTBx.

The function f∗(u) is the Fenchel conjugate of f ; it is convex. In the multi-
commodity case, the second part of the Lagrangian is a sum of |K| shortest
path problems. We denote

SP(ū) = min
x∈X

(BT ū)Tx. (28)

We recall that in Proximal-ACCPM, we treat the negative of the objective
function (27). Let x̄ be an optimal solution returned by the oracle (28) at a
given point ū. Since SP(u) results from a minimization problem, the inequality
SP(u) ≤ (Bx̄)Tu provides a linear upper estimate of the concave function
SP(u). The solution computed by the oracle −f∗(ū) + (Bx̄)T ū produces a
lower bound for the original problems. Instead of using (21) to compute an
upper bound, we use the variable ξ to compute a feasible solution to (22) (It
can be shown).

For the nonlinear multicommodity flow problem, we use the most widely
used function in telecommunications, the so-called Kleinrock congestion
function:

f(y) =
y

c− y
,

where c is the vector of capacities on the arcs. The conjugate function is

f∗(u) = 2
√

cTu− cTu− 1, ∀u ≥ 1
c
.

For the linear case, the objective function is

f(y) =
{

tT y, 0 ≤ y ≤ c,
+∞, otherwise,

where c is the vector of capacities and t the vector of unit shipping cost on
the arcs. The conjugate function is

f∗(u) = cTu, ∀u ≥ 0.

To get a feel for the numerical performance, we pick few examples that
have been solved in (Babonneau et al., 2006; Babonneau and Vial, 2005). We
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select 3 types of problems. Planar and Grid instances are telecommunications
networks while Winnipeg, Barcelona and Chicago are transportation prob-
lems. Table 1 gives for each problem the number of nodes, the number of arcs,
and the number of commodities. The oracle is a shortest path problem solved
with Dijkstra algorithm. The code is written in C. The tests were performed
on a PC (Pentium IV, 2.8 GHz, 2 Gb of RAM) under Linux operating system.

Table 2 shows the numerical results to solve the linear and the nonlinear
case with a relative otpimality gap less than 10−5. We followed different strate-
gies in the management of the proximal term, depending on whether the
problem is linear or not. In the linear case, a constant value for the proximal
parameter, say ρ = 10−2 is suitable. In the nonlinear case, the proximal param-
eter is dynamically adjusted, according to success or failure in improving the
value of the Lagrangian dual objective (lower bound). We start with ρ = 1
and multiply the current ρ by 10 in case of a 3 consecutive failures, up to the
limit value ρ = 1010.

Table 1. Test problems

Problem ID # nodes # arcs # commodities

planar500 500 2842 3525
planar800 800 4388 12756
planar1000 1000 5200 20026
grid12 900 3480 6000
grid13 900 3480 12000
grid14 1225 4760 16000
grid15 1225 4760 32000
Winnipeg 1067 2975 4345
Barcelona 1020 2522 7922
Chicago 933 2950 93513

Table 2. Numerical results

Linear case Nonlinear case

Problem ID Outer Inner CPU %Oracle Outer Inner CPU %Oracle

planar500 229 744 88.7 21 127 324 32.2 37
planar800 415 1182 557.2 16 182 429 110.5 40
planar1000 1303 2817 7846.7 12 381 869 568.1 26
grid12 509 1341 658.5 18 201 409 106.7 41
grid13 673 1629 1226.8 12 222 454 128.7 39
grid14 462 1363 843.6 22 204 414 173.2 48
grid15 520 1450 1055.1 20 203 414 172.8 48
Winnipeg 224 592 81.2 18 338 988 215.0 14
Barcelona 157 421 35.9 23 253 678 101.1 15
Chicago 180 493 79.2 47 145 370 48.6 41
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The results in Table 2 have been further improved by means of column
elimination and an active set strategy. With these enhancements, the method
could solve huge instances with up to 40,000 arcs and 2,000,000 commodities.
It has also been compared to other state-of-the-art methods. It appears to
be very competitive, especially in the linear case, where it turns out to be
from 4 to 30 times faster than the best known results. (For more details, see
(Babonneau et al., 2006; Babonneau and Vial, 2005).)

Let us also mention that the impact of the proximal term has been analyzed
to some depth in the two papers cited above. The introduction of a prox-
imal term in ACCPM instead of box constraints on the variables has proved
to be beneficial in almost all cases. It never appeared to be detrimental.
On nonlinear multicommodity flow problems or on linear problems with an
advanced treatment (column elimination, active set strategy) the version with
the proximal term outperformed the version with box constraints.

4.2 Lagrangian Relaxations of the p-median Problem

In the p-median problem the objective is to open p ‘facilities’ from a set of
m candidate facilities relative to a set of n ‘customers’, and to assign each
customer to a single facility. The cost of an assignment is the sum of the
shortest distances cij from a customer to a facility. The distance is sometimes
weighted by an appropriate factor, e.g., the demand at a customer node. The
objective is to minimize this sum. Applications of the p-median problem can
be found in cluster analysis, facility location, optimal diversity management
problem, etc. (Briant and Naddef, 2004). The p-median problem is NP-hard
(Kariv and Hakimi, 1979).

The p-median problem can be formulated as follows

min
x,y

m∑

i=1

n∑

j=1

cijxij (29)

s.t.
m∑

i=1

xij = 1, ∀j, (30)

m∑

i=1

yi = p, (31)

xij ≤ yi, ∀i, j, (32)
xij , yi ∈ {0, 1}, (33)

where xij = 1 if facility i serves the customer j, otherwise xij = 0 and yi = 1
if we open facility i, otherwise yi = 0.

In the following two sections we formulate the (standard) Lagrangian relax-
ation of the p-median problem, and the semi-Lagrangian relaxation.
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Standard Lagrangian Relaxation of the p-median Problem

In this section we focus on the resolution of the (standard) Lagrangian relax-
ation (LR) of the p-median problem by means of Proximal-ACCPM. To this
end, we relax constraints (30) and (31) in problem (29)–(33), to yield the dual
problem

max
u,v
L1(u, v), (34)

and the oracle

L1(u, v) = min
x,y

m∑

i=1

n∑

j=1

cijxij +
n∑

j=1

uj(1−
m∑

i=1

xij) + v(p−
m∑

i=1

yi) (35)

s.t. xij ≤ yi, ∀i, j, (36)
xij , yi ∈ {0, 1}, (37)

where u ∈ R
n is associated to the constraints

∑m
i=1 xij = 1, j = 1, . . . , n,

and v ∈ R to the constraint
∑m
i=1 yi = p.

We name Oracle 1 this oracle; it is trivially solvable. Its optimal solution
is also optimal for its linear relaxation. Consequently, the optimum of L1

coincides with the optimum of the linear relaxation of (29).
To show Proximal-ACCPM performance when solving the standard

Lagrangian relaxation (35), we take a few examples reported in (du Merle
and Vial, 2002). In this technical report, several p-median problems based
on data from the traveling salesman problem (TSP) library (Reinelt, 2001)
are solved. Instances of the grid problem, where the customers are regularly
spaced points on square, are also solved. In Table 3 we show the results for
ten representative instances (Proximal-ACCPM stopping criterion set equal
to 10−6). In this case, the proximal parameter is set to ρ = 1 initially and
is dynamically adjusted by multiplicative factors 2 and 0.5 depending on the
success or failure in improving the objective of the Lagrangian dual objective.
The updating is limited by the bounds 10−6 and 104. Programs have been

Table 3. Numerical results

Problem ID n p Outer Inner CPU %Oracle

Grid1521 1521 10 348 902 132 33
Grid1849 1849 10 417 1042 241 32
Grid2025 2025 10 382 961 229 37
Grid2304 2304 10 448 1111 370 34
Grid2500 2500 10 440 1095 428 34
TSP1817 1817 10 1070 2303 1861 10
TSP2103 2103 10 316 701 156 48
TSP2152 2152 10 196 430 98 51
TSP2319 2319 10 369 775 237 46
TSP3038 3038 10 127 292 102 62
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written in MATLAB and run in a PC (Pentium-III PC, 800 MHz, with 256
Mb of RAM) under the Linux operating system.

Semi-Lagrangian Relaxation of the p-median Problem

The standard Lagrangian relaxation is commonly used in combinatorial opti-
misation to generate lower bounds for a minimization problem. An optimal
integer solution is obtained by a branch and bound scheme. The semi-
Lagrangian relaxation (SLR) is a more powerful scheme, introduced in (Beltran
et al., 2004), that generates an optimal integer solution for (linear) combina-
torial problems with equality constraints.

To strengthen L1, the SLR introduces in problem (29)–(33) the redundant
constraints

∑
i xij ≤ 1, j = 1, . . . , n, and

∑
i yi ≤ p. After relaxing (30–31),

we obtain the SLR dual problem

maxL3(u, v), (38)

and the new oracle

L3(u, v) = min
x,y

m∑

i=1

n∑

j=1

cijxij +
n∑

j=1

uj(1−
m∑

i=1

xij) + v(p−
m∑

i=1

yi) (39)

s.t.
m∑

i=1

xij ≤ 1, ∀j, (40)

m∑

i=1

yi ≤ p, (41)

xij ≤ yi, ∀i, j, (42)
xij , yi ∈ {0, 1}. (43)

This oracle, which we name Oracle 3, is much more difficult than Oracle 1
(in fact, Oracle 3 is NP-hard). To cope with this difficulty one can use an
intermediate oracle (Oracle 2 ) defined as the Oracle 3 but without constraint
(41). We denote L2 the associated dual function. In general, Oracle 2 is easier
to solve than Oracle 3, especially in cases where the p-median underlying
graph associated to Oracle 2 decomposes into independent subgraphs. In such
situation, we solve an integer problem per subgraph (see (Beltran et al., 2004)
for more details).

It can be seen that solving the SLR dual problem (39) completely solves the
p-median problem. Based on this result, we design a branch-and-bound free
procedure to completely solve the p-median problem. This procedure succes-
sively maximizes the dual functions Li(u, v), i = 1, 2, 3. In this succession of
three dual problems, the optimal solution of one dual problem is used as the
starting point for the next dual problem. After solving the last dual problem
(L3(u, v)) we obtain, as a by-product, an optimal integer solution for (29).
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These dual problems are solved by means of Proximal-ACCPM. Oracle 2 and
3 are solved by means of CPLEX 8.1. Note that, although our procedure is
branch-and-bound free, CPLEX is, of course, based on a sophisticated branch-
and-bound procedure.

If we are not able to solve the three dual problems we will only have a lower
bound of the p-median optimal value. In this case, we will compute an integer
solution for the p-median problem by means of an heuristic as for example
the “Variable Neighborhood Decomposition Search” (VNDS) (Hansen et al.,
2001). The quality or the integer solution will be determined by the dual lower
bound.

In Tables 4 and 5 we show the results (solution quality and performance)
for 10 representative examples of the 44 instances tested in (Beltran et al.,
2004). These instances can be found in the TSPLIB (Reinelt, 2001) and range
from 1304 to 3795 customers, which implies 2 to 14 million binary variables.
The proximal parameter is set to the constant value ρ = 10−2 for problems
with Oracle 2 and Oracle 3. In these tables ‘Or.’ stands for Oracle, ‘VNDS’
for variable neighborhood decomposition search, ‘SLR’ for semi-Lagrangian
relaxation and ‘ANIS’ for averaged number of independent subgraphs. ‘%Opt.’
gives the quality of the solution and is computed as

100×
(

1− ‘Upper bound’− ‘Lower bound’
‘Lower bound’

)
.

Programs have been written in MATLAB and run on a PC (Pentium-IV Xeon
PC, 2.4 GHz, with 6 Gb of RAM) under the Linux operating system. Note
that in some cases the Oracle 3 is not called. The reason is either because the
problem has been completely solved by the second dual problem or the CPU
time limit has been reached when solving the second dual problem.

Table 4. Solution quality

Instance Lower bound Upper bound %Opt.

Problem ID n p Or. 1 Or. 2 Or. 3 Value Method

rl1304 1304 10 2131787.5 2133534 – 2134295 VNDS 99.96
rl1304 1304 500 97008.9 97024 – 97024 SLR 100
vm1748 1748 10 2982731.0 2983645 – 2983645 SLR 100
vm1748 1748 500 176976.2 176986 176986 176986 SLR 100
d2103 2103 10 687263.3 687321 – 687321 SLR 100
d2103 2103 500 63938.4 64006 64006 64006 SLR 100
pcb3038 3038 5 1777657.0 1777677 – 1777835 VNDS 99.99
pcb3038 3038 500 134771.8 134798 134798 136179 VNDS 98.98
fl3795 3795 150 65837.6 65868 – 65868 SLR 100
fl3795 3795 500 25972.0 25976 25976 25976 SPR 100
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Table 5. Performance

Instance Outer ANIS CPU

Problem ID n p Or. 1 Or. 2 Or. 3 Or. 1 Or. 2 Or. 3 Total

rl1304 1304 10 390 35 0 1 95 17241 0 17336
rl1304 1304 500 133 15 0 143 8 40 0 48
vm1748 1748 10 500 21 0 1 174 3771 0 3945
vm1748 1748 500 146 15 2 131 14 61 22 97
d2103 2103 10 241 7 0 2 41 504 0 545
d2103 2103 500 500 26 2 39 143 10086 4309 14538
pcb3038 3038 5 341 5 0 1 111 1988 0 2099
pcb3038 3038 500 211 17 2 38 56 3269 3900 7225
fl3795 3795 150 1000 27 0 17 1100 39199 0 40299
fl3795 3795 500 500 38 1 25 259 2531 218 3008

4.3 Coupling Economic and Environmental Models

Integrated assessment of environmental (IAM) policies is becoming an im-
portant priority due to the social need for local air pollution control or global
climate change mitigation. Typically an IAM will combine an economic model
and an environmental model to yield an evaluation of the costs and bene-
fits associated with some environmental goals, given the technological and
economic choices that are available. In this section we present a successful
implementation using Proximal-ACCPM in this context.

In (Haurie et al., 2004), it has been proposed to use an oracle-based
method to couple an Eulerian air quality model and a techno-economic model
of energy choices in an urban region. The implementation of the approach
has been further developed and tested in (Carlson et al., 2004). Ozone (O3)
pollution is usually modelled in so-called Eulerian models that represent the
transport of primary pollutants (typically NOx and VOCs) and the air photo-
chemistry under various weather conditions and for the specific topography of
the region considered. These models take the form of large scale distributed
parameter systems that are run over specific “weather episodes” (for example
a two-day summer sunny period which may amplify the probability of ozone
peaks in green areas). These simulations serve to build air-quality indica-
tors like, e.g. the ozone concentration peak or the average over a threshold
(AOT) during an episode. On the other side techno-economic models are
dynamic capacity expansion and production models, also called activity anal-
ysis models. A typical example is MARKAL, initially developed to repre-
sent energy-technology choices at a country level (see (Fishbone and Abilock,
1981), (Berger et al., 1992)) and also adapted to the description of these
choices at a city level in (Fragnière and Haurie, 1996a) and (Fragnière and
Haurie, 1996b). In a MARKAL model the planning horizon is in general
defined as 9 periods of 5 years. The model finds, for specified demands in
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energy services, world prices of imported energy and given a gamut of tech-
nology choices, an investment plan and a production program that minimize
a system-wide total discounted cost while satisfying some pollutant emissions
limits.

From this brief description of the two categories of models, the reader may
realize that they belong to very different worlds. The interaction of the models
in a coupling procedure can be schematized as follows. The economic model
produces a vector of pollutants emissions per sector of activity. These emis-
sions are then distributed over time and space using patterns that depend on
the type of activity. For instance, global urban heating emissions are easily
dispatched in space using the geographical distribution of buildings. They are
also distributed in time to follow a yearly seasonal pattern. The other impor-
tant cause of emissions is the volume of traffic. The economic activity analysis
proposes a list of technologies used in different transport sectors (cars, public
transport, taxis, etc), resulting in a global emission level for each of these
sectors. To obtain the spatio-temporal distribution of these emissions due to
traffic one resorts to a complex congestion model of traffic, that essentially
computes traffic equilibria. These different sources of pollutant emissions are
then combined into a spatio-temporal distribution map of emissions. The last
step in the analysis consists in simulations performed with the Eulerian model
to compute air quality indices on a set of critical episodes. The combination of
models that eventually produces the air quality indices is complex, but at the
end one can effectively compute air quality indices as a function of the global
emissions of pollutants by sector of economic activity. Clearly, one cannot
expect this function to be linear. Even worse, the computation may be very
time consuming.

We have described a one-way interaction of the models, starting from the
economic model and ending with air quality indices. Let us now describe
the feedback from the air quality assessment. Indeed, one may want to limit
peaks of pollution. This can be translated into upper limits on the air quality
indices. We now study this reverse mechanism and show how the complete
problem can be recast in the format of problem (1). Let us first schematize
the economic activity analysis as the linear program

min{cTx | Ax = a, x ≥ 0}. (44)

We shall refer to it as the E3 model. The economic activity x induces a vector
y of pollutant emissions. This vector is indexed by sector of activity. In the
paradigm of linear activity analysis, the total emission vector is assumed to
be a linear function of the economic activity level, say

y = Bx.

The complex transformation of the vector y of sectorial emissions into air
quality indices is represented by a vector function Π(y). In (Carlson et al.,
2004) it is shown that one can compute the function value and estimate its
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gradient at any point y. If Π̄ is the bound imposed on the air quality indices
(higher indices imply lower air quality), we can represent our complex problem
as the mathematical programming problem

min{cTx | Ax = a, Bx− y = 0, Π(y) ≤ Π̄, x ≥ 0}. (45)

This large-scale highly nonlinear model is intractable by standard optimi-
sation tools. However, it is quite easily amenable to an Oracle Based Optimi-
sation approach. To this end, we introduce the function

f(y) = min{cTx | Ax = a, Bx = y, x ≥ 0}, (46)

and the set
Y = {y | Π(y) ≤ Π̄}. (47)

Our original problem can now be written as

min{f(y) | y ∈ Y }.
It remains to show that the above problem is of the same type as (1). It is
a well-known fact of convex analysis that the function f(y) is convex (this
is easily seen by considering the dual of the linear program that defines f)
and that one can compute a subgradient at each point of the domain of the
function. Unfortunately, one cannot make a similar statement on Y . Being
the result of such a complex transformation process, Π(y) is likely to be
nonconvex. However, one can hope that in the range of values that are of
interest the nonconvexity is mild. This is supported by empirical evidence. A
gradient is also estimated by a finite difference scheme.

Even in presence of mild nonconvexity, one cannot exclude pathology in
running Proximal-ACCPM. A separating hyperplane for the set Y may turn
out to cut off part of the set, and exclude a point that was proved to be feasible
earlier. To cope with this difficulty, the authors of (Carlson et al., 2004) simply
shifted the plane to maintain feasibility. They also made problem (46) easier by
assuming monotonicity that made it possible to replace the equality constraint
Bx = y by Bx ≤ y.

As the air chemistry description actually involves nonlinear functions, we
have implemented a technique of successive local linearizations of the air
pollution dynamic equations. The details of the implementation are given
in (Carlson et al., 2004). In a particular simulation based on data describing
the Geneva (Switzerland) region, a solution to the reduced order optimisation
problem is obtained through Proximal-ACCPM, with 30 calls to the oracles
(24 feasibility cuts and 6 optimality cuts were peformed). A feasibility cut
(call to the air quality oracle) takes 30 minutes computing time (SUN Ultra-
80, Ultrasparc driver) whereas an optimality cut (call to the techno-economic
model) takes 10 seconds.

This application demonstrates the possibilities offered by an OBO method
to tackle Integrated Assessment Models where part of the modeling is a large-
scale simulator of complex physics and chemistry processes. Since Proximal-
ACCPM keeps the number of oracle calls to a small or moderate size it permits
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the use of these simulators in the design of some oracles and therefore it
realizes the coupling that is the essence of IAMs.

Remark 2. A similar implementation has been realized recently for an IAM of
climate change policies. It is reported in (Drouet et al., 2005a; Drouet et al.,
2005b). In that case the coupling is realized between an economic growth
model and an intermediate complexity climate model. This second successful
experience that we will not further described here confirms the potential of
OBO techniques for the exploitation of complex and large-scale IAMs.

5 Conclusion

In this paper we have presented Proximal-ACCPM, an efficient method
for convex nondifferentiable optimisation, and discussed three large-scale
applications that are representative of an oracle based optimisation approach.
Our presentation of Proximal-ACCPM focuses on the necessary information
for an efficient implementation. It also includes recent extensions, in partic-
ular an explicit treatment of second-order information when this information
is available. The three examples we selected have recently been reported in
the literature. They are genuinely very large-scale problems. The first two
are solved using a classical transformation known as Lagrangian relaxation.
The transformed problem has much smaller dimension, thousands of vari-
ables instead of millions, but one can only collect information about it via a
first-order oracle. It is shown that Proximal-ACCPM is powerful enough to
solve huge instances of these problems. The third application fully exploits the
concept of oracle based optimisation to organize a dialog between two large-
scale models that have totally different natures, a techno-economic model
and a large-scale simulator of complex physics and chemistry processes. The
exchanges between the two models are performed through few variables and
each model is treated as a first-order oracle vis-à-vis these variables. These
oracles, and especially the simulator, are computationally costly. To make the
OBO approach successful, one needs a method that keeps the number of calls
to the oracles as low as possible. Proximal-ACCPM does the job.
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Summary. Eight distinct (and in some cases little known) formulations of the
Travelling Salesman Problem as an Integer Programme are given. Apart from the
standard formulation all the formulations are ‘compact’ in the sense that the number
of constraints and variables is a polynomial function of the number of cities in the
problem. Comparisons of the formulations are made by projecting out variables in
order to produce polytopes in the same space. It is then possible to compare the
strengths of the Linear Programming relaxations. These results are illustrated by
computational results on a small problem.
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1 Introduction

In this paper we survey eight different formulations of the Asymmetric Trav-
elling Salesman Problem (ATSP) as an Integer Programme (IP). We choose
to treat the Asymmetric case as being more general than the Symmetric case.
Some of the work has been published elsewhere by other authors. Our purpose
is, however, to provide new results as well as present a unifying framework,
by projecting all the formulations into the same space.

In Sect. 2 we present the eight formulations classifying them as ‘conven-
tional’ (C), “sequential” (S), “flow based” (F) and “time staged” (T). The
reasons for these terms will become apparent. In order to facilitate compar-
ison between the formulations, in some cases we introduce extra variables
which equate to expressions within the models. This enables us, in Sect. 3, to
compare the Linear Programming (LP) relaxations of all the formulations by
projecting out all, but the, common variables. Such comparisons have already
been done for some of the formulations by Padberg and Sung (1991), Wong
(1980) and Langevin et al. (1990).

Some of the time staged formulations have also been compared by
Gouveia and Voss (1995) and discussed by Picard and Queyranne (1978).
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The sequential formulation has also been improved by Gouveia and Pires
(2001). The extra variables incorporated in this formulation have been used
by Sherali and Driscoll (2002) to further tighten the Linear Programming
relaxation.

Comparisons have also been made for some formulations of the Symmetric
TSP by Carr (1996) and Arthanari and Usha (2000). We unify all these results
in the same framework.

In Sect. 4 we present computational results on a small illustrative example
in order to verify the results of Sect. 3.

2 Eight Formulations of the ATSP

In all our formulations we will take the set of cities as N = {1, 2, ..., n} and
define variables

xij = 1 iff arc (i, j) is a link in the tour
= 0 otherwise(i �= j)

cij will be taken as the length of arc(i, j)

The objective function will be:

Minimise
∑

i,j
i�=j

cijxij (1)

2.1 Conventional Formulation (C)
(Dantzig, Fulkerson and Johnson (1954))

∑

j
j �=i

xij = 1 ∀ i ∈ N (2)

∑

i
i�=j

xij = 1 ∀ j ∈ N (3)

∑

i,j∈M
i�=j

xij ≤ |M | − 1 ∀ M ⊂ N such that {1} /∈M, |M | ≥ 2 (4)

(the symbol ‘⊂’ represents proper inclusion)

This formulation has 2n−1 + n− 1 constraints and n(n− 1) 0–1 variables.
The exponential number of constraints makes it impractical to solve

directly. Hence, the usual procedure is to apply the Assignment constraints
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(2) and (3) and append only those Subtour Elimination constraints (4) when
violated. Alternatively, different relaxations such as the LP relaxation or the
Spanning-2 Tree relaxation can be applied and solved iteratively. A reference
to these methods is Lawler et al. (1995).
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A variant of the above formulation (which we will not classify as a different
formulation) is to replace constraints (4) by:

∑

i∈M
j∈M

xij ≥ 1 ∀ M ⊂ N where {1} /∈ M and M = N −M (5)

Constraints (5) can be obtained by adding constraints (2) for i ∈ M and
subtracting from (4).

2.2 Sequential Formulation (S) (Miller, Tucker and Zemlin (1960))

Constraints (2) and (3) are retained but we introduce (continuous) variables

ui = sequence in which city i is visited (i �= 1)

and constraints

ui − uj + nxij ≤ n− 1 ∀ i, j ∈ N − {1}, i �= j (6)

This formulation has n2 − n + 2 constraints, n(n − 1) 0–1 variables and
(n− 1) continuous variables.

2.3 Flow Based Formulations

Single Commodity Flow (F1) (Gavish and Graves (1978))
Constraints (2) and (3) are retained but we also introduce (continuous)
variables:

yij = ‘Flow’ in an arc (i, j)i �= j

and constraints:

yij ≤ (n− 1)xij ∀ i, j ∈ N, i �= j (7)
∑

j
j �=1

y1j = n− 1 (8)

∑

i
i�=j

yij −
∑

k
i�=k

yjk = 1 ∀ j ∈ N − {1} (9)

Constraints (8) and (9) restrict n− 1 units of a single commodity to flow
into city 1 and 1 unit to flow out of each of the other cities. Flow can only
take place in an arc if it exists by virtue of constraints (7).

It is possible to improve this formulation (F1’) by tightening constraints
(7) for i �=1 to:

yij ≤ (n− 2)xij ∀ i, j ∈ N − {1}, i �= j (10)
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This relies on the observation that at most n− 2 units can flow along any
arc not out of city 1. We are not aware of any other authors having recognised
this improvement.

This formulation has n(n + 2) constraints, n(n − 1) 0–1 variables and
n(n− 1) continuous variables.

Two Commodity Flow (F2) (Finke, Claus and Gunn (1983))
Constraints (2) and (3) are retained but we also introduce (continuous)
variables:

yij = ‘Flow’ of commodity 1 in arc (i, j)i �= j

zij = ‘Flow’ of commodity 2 in arc (i, j)i �= j

and constraints:
∑

j
j �=1

(y1j − yj1) = n− 1 (11)

∑

j

(yij − yji) = 1 ∀ i ∈ N − {1}, i �= j (12)

∑

j
j �=1

(z1j − zj1) = −(n− 1) (13)

∑

j

(zij − zji) = −1 ∀ i ∈ N − {1}, i �= j (14)

∑

j

(yij + zij) = n− 1 ∀ i ∈ N (15)

yij + zij = (n− 1)xij ∀ i, j ∈ N (16)

Constraints (11) and (12) force (n − 1) units of commodity 1 to flow in
at city 1 and 1 unit to flow out at every other city. Constraints (13) and (14)
force (n− 1) units of commodity 2 to flow out at city 1 and 1 unit to flow in
at every other city. Constraints (15) force exactly (n − 1) units of combined
commodity in each arc. Constraints (16) only allow flow in an arc if present.

This formulation has n(n + 4) constraints, n(n − 1) 0–1 variables and
2n(n− 1) continuous variables.

Multi-Commodity Flow (F3) (Wong (1980) and Claus (1984))
Constraints (2) and (3) are retained but we also introduce (continuous)
variables:

yk
ij = ‘Flow’ of commodity k in arc (i, j) κ ∈ N − {1}
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and constraints:

yk
ij ≤ xij ∀ i, j, k ∈ N, k �= 1 (17)

∑

i

yk
1i = 1 ∀ k ∈ N − {1} (18)

∑

i

yk
i1 = 0 ∀ k ∈ N − {1} (19)

∑

i

yk
ik = 1 ∀ k ∈ N − {1} (20)

∑

j

yk
kj = 0 ∀ k ∈ N − {1} (21)

∑

i

yk
ij −

∑

i

yk
ji = 0 ∀ j, k ∈ N − {1}, j �= k (22)

Constraints (17) only allow flow in an arc which is present. Constraints
(18) force exactly one unit of each commodity to flow in at city 1 and
constraints (19) prevent any commodity out at city 1. Constraints (20) force
exactly one unit of commodity k to flow out at city k and constraints (21)
prevent any of commodity k flowing in at city k. Constraints (22) force
‘material’ balance for all commodities at each city, apart from city 1 and
for commodity k at city k.

This formulation has n3 +n2 +6n− 3 constraints, n(n− 1) 0− 1 variables
and n(n− 1)2 continuous variables.

2.4 Timed Staged Formulations

1st Stage Dependent T1 (Fox, Gavish and Graves (1980))
In order to facilitate comparisons with the other formulations it is convenient,
but not necessary, to retain the variables xij (linked to the other variables
by constraints (25)) and constraints (2) and (3). We introduce 0–1 integer
variables:

yt
ij = 1 if arc (i, j) is traversed at stage t

= 0 otherwise

and constraints:
∑

i,j,t

yt
ij = n (23)

∑

j,t
t≥2

tyt
ij −

∑

k,t

tyt
ki = 1 ∀ i ∈ N − {1} (24)

xij −
∑

t

yt
ij = 0 ∀ i, j ∈ N, i �= j (25)
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In addition we impose the conditions:

yt
il = 0∀ t �= n, yt

ij = 0∀ t �= 1, yl
ij = 0∀ i �= 1, i �= j (26)

Constraints (24) guarantee that if a city is entered at stage t it is left at
stage t + 1. Removing certain variables by conditions (26) forces city 1 to be
left only at stage 1 and entered only at stage n.

It is not necessary to place upper bounds of 1 on the variables xij , and
this condition may be violated in the LP relaxation.

This model has n(n + 2) constraints and n(n − 1)(n + 1) 0–1 variables.
Clearly, but for constraints (25) and variables xij this model would be even
more compact having only n constraints and n(n − 1) variables. This is a
remarkable formulation for this reason although, as will be shown in the next
section it is also remarkably bad in terms of the strength of its Linear Program-
ming relaxation and therefore the slowness of its overall running time.

2nd Stage Dependent T2 (Fox, Gavish and Graves (1980))
We use the same variables as in T1 and constraints (2), (3) and (25)
together with:

∑

i,t
i�=j

yt
ij = 1 ∀ j ∈ N (27)

∑

j,t
j �=i

yt
ij = 1 ∀ i ∈ N (28)

∑

i,j �=i

yt
ij = 1 ∀ t ∈ N (29)

∑

j,t
t≥2

tyt
ij −

∑

k,t

tyt
ki = 1 ∀ i ∈ N − {1} (30)

Clearly this is a disaggregated form of T1.
This model has 4n−1 constraints and n(n−1)(n+1) 0–1 variables. Again

but for the constraints (25) and variables xij this would be smaller. In fact
the yt

ij variables can, in this formulation, be regarded as continuous.

3rd Stage Dependent T3 (Vajda (1961))
We use the same variables as in T1 and T2 and constraints (2), (3) and (25)
together with: ∑

j

y1
1j = 1 (31)

∑

i

yn
i1 = 1 (32)
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∑

j

yt
ij −

∑

k

yt−1
ki = 0 ∀ i, t ∈ N − {1} (33)

Constraint (31) forces city 1 to be left at stage 1 and constraint (32) forces
it to be entered at stage n. Constraints (33) have the same effect as (24).

This model has 2n2 − n + 3 constraints and n(n− 1)(n + 1) 0–1 variables
which again could be reduced by leaving out constraints (25) and variables
xij . Again the yt

ij variables can be regarded as continuous.
All the formulations, apart from C, have a polynomial (in n) number of

constraints. This makes them superficially more attractive than C. However,
the number of constraints may still be large, for practically sized n, and the
LP relaxations weaker. These considerations are discussed in the next section.

3 Comparison of LP Formulations

All formulations presented in Sect. 2 can be expressed in the form:

Minimise c.x
subject to Ax + By ∼ b where ‘∼’ represents ‘<=’ and ‘=’ relations. (34)

x, y ≥ 0

x is the vector of variables xi,j and y the different vectors used in the
formulations S, F and T. In the case of S and F y represents continuous
variables but in the case of T integer variables.

In order to facilitate comparisons between the formulation S, F with C
we can project out the continuous variables y to create a model involving
only x . The size of the polytopes of the associated LP relaxations can then
be compared. We will denote the polytope of the resultant LP relaxation of
a (projected) model M as P(M). In the case of formulation T1 the variables
y must be integer. The projection out of such variables is more complex and
may not even result in an IP (see Kirby and Williams (1997)). However, we
can still project out the variables y from the LP relaxation and return an
IP. The LP relaxation of this IP will be weaker than that resulting from the
true projection. It will still, however, be a valid comparator of computational
difficulty when LP based IP methods are used. Therefore we will continue to
use the notation P(M) for the resulting polytope when projecting out the LP
relaxations of the variables y in T1.

In order to project out the variables y in all the formulations we can use
Fourier-Motzkin elimination (see Williams (1986)) or equivalently full Benders
Decomposition (1962). Martin (1999) gives a full general description of the
methods of projection. We do not reproduce the derivation of the methods
here but simply restate them. The projection out of the variables y is effected
by finding all real vectors w , of appropriate dimension, such that,
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w’B ≥ 0 (35)

Where w has non-negative entries corresponding to rows of (34) with ‘≤’
constraints and unconstrained entries in rows with ‘=’ constraints. The set of
w satisfying (35) form a convex polyhedral cone and can be characterised by
its extreme rays. It is therefore sufficient to seek the finite set of w representing
extreme rays, which are what would be obtained by (restricted) Fourier-
Motzkin elimination. We denote these as rows of the matrix Q. Applying
Q to (34) gives:

QAx ≤ Qb (36)

as an alternative formulation to C. Of course, as would be expected, (36)
will have an exponential number of constraints, unlike (34), but is in the same
space as C.

We present the effect of the matrix Q for each of the formulations S, F
and T of Sect. 2.

Formulation S
The effect of Q is to eliminate u2, u3, ..., un from all the inequalities in (6).
This is done by adding those inequalities around each directed cycle M ⊂ N ,
where 1/∈M . This results in inequalities (for each subset M ⊂ N by virtue of
(2) and (3))

xi1i2 + xi2i3 + · · ·+ xi|M|i1 ≤ |M | −
|M |
n

(37)

(together with (2), (3) and non-negativity).

Clearly |M | − 1 < |M | − |M |
n

since M ⊂ N

Since cycles are subsets of their associated sets this demonstrates that

P(S) ⊃ P(C) (38)

(strict inclusion can be proved by numerical examples).
Therefore the LP relaxation associated with S will be weaker than that

associated with C. This result has already been obtained by Wong (1980) and
Padberg and Sung (1991).

Formulation F1
The effect of Q is to, for each (subset) M ⊂ N , where 1/∈M , create

∑

i,j∈M

xij ≤ |M | −
|M |

n− 1
(39)

Clearly |M | − 1 < |M | − |M |
(n− 1)

< |M | − |M |
n
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demonstrating that

P(S) ⊃ P(F1) ⊃ P(C) (40)

(Strict inclusion can again be proved by numerical examples).
This result is also obtained by Wong (1980).
Applying the same elimination procedure to the modified formulation

(F1’) we obtain

1
n− 1

∑

i∈M−{1}
j∈M

xij +
∑

i,j∈M

xij ≤ |M | −
|M |

n− 1
(41)

Clearly, by virtue of (2) and (3),
1

n− 1

∑

i∈M−{1}
j∈M

xij ≤ 1− |M |
n− 1

Hence P(F1) ⊃ P(F1′) (42)

(Strict inclusion can again be proved by numerical examples).

Formulation F2
If zij are interpreted as the ‘slack’ variables in (16) we can use (16) to substi-
tute them out reducing this formulation to F1. This demonstrates that

P(F2) = P(F1) (43)

This result is also given by Langevin et al. (1990).

Formulation F3
The effect of Q is to, for each M ⊂ N ,where 1/∈M , create

∑

i,j∈M

xij ≤ |M | − 1 (44)

i.e. constraints (4) of formulation C.

Hence P(F3) = P(C) (45)

This remarkable result is also obtained by Wong (1980) and Padberg and
Sung (1991)

Formulation T1
The effect of Q is to, for each M ⊂ N , where 1/∈M , create

∑

i∈M
j∈M

xij ≥
|M |
n

(46)
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and ∑

i,j∈N

xij = n (47)

In the absence of assignment constraints, in this formulation, it is not
possible to convert (46) to a form similar to (4). We therefore express it in
a form similar to (5). Representing constraints (37) in a similar form to (5)
demonstrates that

P(S) ⊂ P(T1) (48)

Formulation T2
The effect of Q is to, for each subset M of N − {1}, create

1
n− 1

∑

i∈M
j∈M−{1}

xij +
1

n− 1

∑

i∈M−{1}
j∈M

xij +
∑

i,j∈M

xij ≤ |M | −
|M |

n− 1
(49)

However, other constraints are also created which, to date, it has not been
possible to obtain through the combinatorial explosion resulting from projec-
tion. Padberg and Sung give constraints equivalent to (49) as the projection
of T1. This is clearly wrong.

Hence P(T2) ⊂ P(F1’) (50)

Again strict inclusion can be proved by numerical examples.

Formulation T3
We have again not been able to discover the full effect of Q. However, one of
the effects of the projection is to produce constraints (49) but there are others

Hence P(C) ⊂ P(T3) ⊂ P(T2) (51)

Numerical examples demonstrate that the inclusion is strict.

4 Computational Results

In order to demonstrate the comparative sizes of different formulations and
the relative strengths of their LP relaxations we give results below for a 10
city TSP.

These results were obtained using the NEWMAGIC modelling language
and EMSOL optimiser.
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Model Size LP Obj. Iterations Time IP Nodes Time

(secs) Obj. (secs)

C 502*90

Conventional 766 37 1 766 0 1

Ass. 804 40 1 804 0 1

relaxation 835 43 1 835 0 1

+ subtours (5) 878 48 1 881 9 1

+ subtours (3)

+ subtours (2)

S 92*99 773.6 77 3 881 665 16

Sequential

F1 120*180 794.22 148 1 881 449 13

1 Commodity

F1’ 120*180 794.89 142 1 881 369 11

Modified

F2 140*270 794.22 229 2 881 373 12

2 Commodity

F3 857*900 878 1024 7 881 9 13

Multi

Commodity

T1 10*990 364.5 25 1 No solution after 12 hours

1st Stage

Dependent

T2 120*990 799.46 246 18 881 2011 451

2nd Stage

Dependent

T3 193*990 804.5 307 5 881 145 27

3rd Stage

Dependent

5 Concluding Remarks

Eight formulations of the ATSP as an IP have been compared. Unlike other
published work in this area the authors provide a unifying framework, in the
form of projection, to conduct the comparison. Verification of the results are
obtained through a numerical example.

The authors are now investigating, in the first instance, strategies for the
manual introduction of the sub-tour elimination constraints with a view to
developing a fully automated procedure. This work is being done using the
NEWMAGIC modelling language.
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The Threshold Accepting Optimisation
Algorithm in Economics and Statistics�

Peter Winker1 and Dietmar Maringer2
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Summary. Threshold Accepting (TA) is a powerful optimisation heuristic from
the class of evolutionary algorithms. Using several examples from economics, econo-
metrics and statistics, the issues related to implementations of TA are discussed
and demonstrated. A problem specific implementation involves the definition of
a local structure on the search space, the analysis of the objective function and
of constraints, if relevant, and the generation of a sequence of threshold values
to be used in the acceptance-rejection-step of the algorithm. A routine approach
towards setting these implementation specific details for TA is presented, which will
be partially data driven. Furthermore, fine tuning of parameters and the cost and
benefit of restart versions of stochastic optimisation heuristics will be discussed.

Key words: Heuristic optimisation, threshold accepting

1 Introduction

Threshold accepting is an optimisation heuristic. Reasonable features of such
optimisation heuristics include the following (Barr et al., 1995, p. 12). Firstly,
they should aim at good approximations to the global optimum. Secondly, they
should be robust to changes in problem characteristics, tuning parameters
and changes in the constraints. Thirdly, they should be easy to implement to
many problem instances, including new ones. Finally, a necessary requirement
is that the solution approach consists of a procedure which does not depend
on individual subjective elements. We will try to demonstrate that a suitable
implementation of threshold accepting fulfills these requirements.

Threshold accepting is a modification of the more often used simu-
lated annealing (Kirkpatrick et al., 1983) using a deterministic acceptance

� We are indebted to Manfred Gilli, the editor and two anonymous referees for
valuable comments on a preliminary draft of this contribution.
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criterion instead of the probabilistic one in simulated annealing. It also belongs
to the class of local search methods (Aarts and Lenstra, 1997, p. 2). A classifi-
cation of optimisation heuristics can be found in Winker and Gilli (2004), and
a more detailed description of the threshold accepting algorithm is provided
by Winker (2001).

Classical or standard optimisation techniques such as Newton’s method
are mostly based on differential calculus and first order conditions. However,
this strategy requires the search space Ω to be continuous and to have
just one global optimum. Many of the problems arising in statistics and
economics exhibit objective functions with several local optima or disconti-
nuities. A classification of optimisation problems and some references to such
cases are provided by Winker and Gilli (2004). Applied on these problems,
classical optimisation techniques might report the local optimum next to the
starting point – provided it was able to converge in the first place. It therefore
seems adequate to extend the portfolio of optimisation techniques applied in
these fields by optimisation heuristics. There are a large number of problems in
economics and statistics, including Maximum Likelihood Estimations, GMM,
numerical models in economics, e.g., for computable general equilibrium
models or quantitative game theory (Judd, 1998, pp. 133ff and 187ff, respec-
tively), which are documented, for which standard optimisation approaches
may fail to provide solutions at all or would require tremendous amounts
of computing resources. E.g., (Brooks et al., 2001) found that commonly
used econometric software may fail for a rather simple maximum likelihood
estimation for the parameters of a GARCH model whereas threshold accepting
is capable of finding significantly better results as Maringer (2005) reports.
Therefore, the question as to whether new optimisation paradigms could be
useful in economics and statistics has to be answered by a clear–cut “yes”.

During the last 15 years, threshold accepting has been successfully applied
to many different problems ranging from classical operations research to
economics and statistics. In fact, the algorithm has been introduced with
an application to the famous traveling salesman problem by Dueck and
Scheuer (1990). It appears that simulated annealing is still more widespread
in its use, but there exist also a number of implementations of threshold
accepting both in traditional operational research applications and for more
specific problems from economics and statistics. The second implementation of
threshold accepting, described by Dueck and Wirsching (1991), covers multi–
constraint 0–1 knapsack problems and has been included in a comparative
study by Hanafi et al. (1996). Some further early applications in the area of
operational research are cited in the bibliography provided by Osman and
Laporte (1996, p. 547). A more recent survey is provided in Winker (2001).

Although we do not aim at providing a complete overview on
applications of threshold accepting in statistics and economics, some further
fields of application seem noteworthy. Dueck and Winker (1992) have applied
threshold accepting to portfolio optimisation for different risk measures, an
approach taken up by Gilli and Këllezi (2002a, 2002b), recently. Winker (1995,
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2000) introduces an application of threshold accepting to lag structure identi-
fication in VAR–models. Finally, threshold accepting has been applied with
great success in the construction of low discrepancy experimental designs.
First, Winker and Fang (1997a) obtain lower bounds for the star–discrepancy
and Winker and Fang (1997b) use the approach to obtain low discrepancy U–
type designs for the star–discrepancy. Next, Fang et al. (2000) extend the
analysis to several modifications of the L2–discrepancy, while Fang et al.
(2002), Fang et al. (2003), and Fang et al. (2005) consider the centered
and wrap–around L2–discrepancy allowing to obtain lower bounds for the
objective function (see subsection 2.3).

We will mention some further applications in the text when they are used
as examples to demonstrate specific settings and approaches for a successful
implementation of threshold accepting.

1.1 Basic Features of Threshold Accepting

Much akin to its ancestor simulated annealing, threshold accepting is a typical
local search heuristic that iteratively suggests slight random modifications to
the current solution and by doing so gradually moves through the search space.
TA is therefore well suited for problems where the solution space has a local
structure and a notion of neighborhood around solutions can be introduced.

The second crucial property TA shares with simulated annealing (and most
other heuristic search strategies) is that not only modifications for the better
are accepted, but also for the worse in order to escape local optima. However,
while simulated annealing uses a probabilistic criterion to decide whether to
accept or reject a suggested “uphill move”, TA has the deterministic crite-
rion of a threshold value for impairments: Whenever the suggested modifi-
cation improves the objective function or its degradation does not exceed a
given threshold value, this modification is accepted; if the modification would
degrade the objective function by more than the threshold, it is rejected. This
threshold is not kept fixed in the course of iterations, but forms a “threshold
sequence” which usually makes the criterion rather tolerant in early itera-
tions and increasingly restrictive in the later iterations. By this strategy, the
algorithm can be shown to converge asymptotically to the global optimum
(Althöfer and Koschnik, 1991).

1.2 Pseudo Code

Algorithm 1 provides the pseudo–code for a prototype threshold accepting
implementation for a minimization problem.

Thereby, f represents the objective function, which has to be minimized
over the search space Ω. Of course, by replacing f with −f , the algorithm can
also be applied to maximization problems.

Threshold accepting performs a refined local search on the search space Ω.
It starts with a (randomly) generated feasible solution xc (2:) and continues
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Algorithm 1 Pseudo–code for Threshold Accepting

1: Initialize nR, nSr and the sequence of thresholds τr, r = 1, 2, . . . , nR

2: Choose (randomly) feasible solution xc ∈ Ω
3: for r = 1 to nR do
4: for i = 1 to nSr do
5: Choose (randomly) neighbor xn of xc

6: if Δf = f(xn)− f(xc) < τr then
7: xc = xn

8: else
9: leave xc unchanged
10: end if
11: end for
12: end for

by iterating local search steps. For each step, a new candidate solution xn has
to be chosen in the neighborhood of the current solution xc (5:). Then, the
value of the objective function of both candidate solutions is compared (6:).
The new candidate solution is accepted if it is better than xc, but also if it
is not much worse. The extent of an accepted worsening is limited by the
current value of the threshold sequence (τr), which decreases to zero during
the course of iterations.

The performance of the threshold accepting implementation depends on
a number of settings. In particular, the definition of neighborhoods for the
choice of xn, the sequence of threshold values τr and, finally, the total number
of iterations are most relevant. We will come back to all of these factors in
the following sections of this contribution.

1.3 The Basic Ingredients

Approaching an optimisation problem with TA demands two basic types of
ingredients: ones that characterize the problem, and those that are needed
for the heuristic search. The former group usually covers a proper problem
statement by giving the decision variables, x, and the search space, Ω, the
constraints the decision variables must meet, and the objective function, f(x).
Section 2 will present several relevant aspects in this respect.

For the TA implementation, the first basic ingredient is a concept of the
local structure or the neighborhood of the current solution, N (xc), within
which new solutions are generated. What makes a suitable neighborhood
depends on the optimisation problem. Nonetheless there are some general
requirements and approaches; Section 3 addresses these issues. The second
crucial ingredient is the design of the acceptance criterion. Section 4 describes
how to find an appropriate threshold sequence and related issues. The third
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crucial ingredient for a TA is the decision of how to use the available computa-
tional time by setting the number of iterations per run and the total number
of runs on the one hand and detecting when to halt a run and restart the
search process on the other hand; Section 5 has more details on this issue.

2 Objective Function and Constraints

2.1 Objective Function

Obviously, the objective function f and the search space Ω are problem
specific. Given that threshold accepting is an iterative local search procedure,
it does not require the objective function f to be smooth or even differentiable.
However, it has to evaluate f for many different elements x ∈ Ω. Therefore,
the efficiency of the algorithm will depend heavily on the fast calculation of
f(x) for any given x ∈ Ω. Furthermore, if f(x) cannot be calculated exactly,
the quality of any approximation has to be taken into account.

This statement appears to be trivial for any optimisation problem. However,
in practice it is not. We will discuss two issues related to the objective func-
tion. First, although the objective function might be calculable in principle,
the cost for doing so in terms of computational load can be quite high. Local
updating, considered in more detail in subsection 3.2, often provides a remark-
able speed up. The idea of local updating stems from the observation that if
xn ∈ N (xc) is a neighbor of xc, it is quite similar. Consequently, the objective
function value for xn could be similar to f(xc) as well. If it is possible to eval-
uate the difference directly, a tremendous speed up can result. For example,
instead of recalculating a complete tour for the traveling salesman problem,
if xn and xc differ only by the ordering of a few cities, it is possible to calcu-
late directly the difference in tour length resulting from these few differences.
We will come back to this idea in subsection 3.2 as it is closely linked to the
definition of local neighborhoods.

Second, there exist applications where the objective function itself cannot
be easily evaluated. For example, in uniform design a given number of points
has to be found in a discrete multi-dimensional space such that these points
are as uniformly distributed as possible. A classical measure of the quality
of such designs, i.e., the uniformity of these points, is the so called “star–
discrepancy” which is described, e.g., in Winker and Fang (1997a). However,
in order to evaluate this measure, a complex combinatorial problem has to
be solved. Consequently, Winker and Fang (1997a) proposed to use threshold
accepting to obtain a lower bound for this objective function. Now, if one
would be interested in obtaining a low discrepancy design under the star–
discrepancy, each evaluation of the objective function would correspond to a
run of the threshold accepting heuristic itself. Fortunately, for this problem
other measures of discrepancy have been developed which are much easier to
compute. A similar problem comes up in the context of simulation models.
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If the value of the objective function is obtained by running a simulation
model, again the computational complexity of the algorithm becomes quite
substantial. In addition, the value of the objective function provided by the
simulation will include some Monte Carlo variance. Gilli and Winker (2003)
discuss how this Monte Carlo variance can be taken into account in a threshold
accepting implementation.

2.2 Constraints

In most applications, the search space Ω is not a standard space like {0, 1}k or
IRk, but only a subset of such a space resulting from some explicit constraints.
If there is a large number of different constraints, this subspace might be not
connected or it might prove difficult to generate elements in Ω. Also, the step
of selecting xn ∈ N (xc) can become quite time consuming. Furthermore, the
algorithm risks to get stuck in some part of the search space where no good
solution can be found.

In these cases, a superior approach consists in considering the whole space
{0, 1}k or IRk as search space and to add a penalty term to the objective
function if xc /∈ Ω. If the penalty term is set at a very high level from the very
beginning as sometimes suggested, this approach will just mimic the standard
case, i.e., will face the same difficulties. Thus, it appears to be reasonable to
start with a small penalty in order to enable the algorithm to access different
parts of the search space. While the algorithm proceeds, the penalty term
has to increase in order to make sure that the final solution obtained by the
algorithm will be a feasible one.

2.3 Lower Bounds

Optimisation heuristics like threshold accepting often provide high quality
approximations to the global optimum for a given problem instance. However,
given that the procedure is stochastic and convergence to the global optimum
can only be expected asymptotically (see Sect. 4), missing information about
the quality of an actually found solution is often considered to be a major
drawback of optimisation heuristics. Of course, optimisation heuristics share
this potential drawback with classical optimisation approaches. If, for example,
a numerical procedure detects a solution of a maximum likelihood problem,
this solution is determined by the first order condition. However, this condition
does not guarantee a global optimum unless the function is globally convex
which is rather a rare exception than the rule.

In particular for combinatorial optimisation problems, lower bounds might
provide a helpful tool in this context. For some problems it is possible to
derive minimum values of the objective function for each instance without
calculating an optimum solution. Provided that such a lower bound exists, any
solution obtained by threshold accepting can be compared with this value. If
the lower bound is met, the current solution is a global optimum. In this case,
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a further analysis of the problem instance is only required if one expects to
have multiple global optima and one is interested in identifying the optimizing
set instead of just a single optimum solution. If the lower bound is not met, the
difference of the objective function to this lower bound provides an indicator
of the maximum improvement which might be obtained by further runs of
the algorithm. However, the existence of a lower bound does not imply that
this lower bound can actually be reached. For the traveling salesman problem,
e.g., a trivial lower bound for the round trip is the sum of the distances to
the closest neighboring point for each point of the problem set. Obviously, no
tour can be shorter than this sum, but in general, it has to be much longer.

Fang et al. (2003, 2005) provide theoretical lower bounds for some instances
of the uniform design problem. Consequently, it is possible to prove that some
of the designs obtained by threshold accepting represent global optima, while
others differ to a small extent from the lower bounds. Again, it is not guar-
anteed that the lower bounds can be reached at all. Nevertheless, it has been
shown that the designs obtained by the threshold accepting heuristic are not
farther from a global optimum than a few percentage points in terms of the
objective function.

To sum up this argument, although it is still a rare situation to have access
to theoretical lower bounds for optimisation problems arising in economics and
statistics, such results are extremely helpful for evaluating the quality of the
results obtained by optimisation heuristics. Consequently, some effort should
be devoted to the generation of lower bounds.

3 Local Structure and Updating

3.1 Neighborhoods

As the classification as a local search heuristic suggests, threshold accepting
requires some notion of closeness or neighborhood for all elements of the search
space Ω. For this purpose, for each element x ∈ Ω a neighborhood N (x) ⊂ Ω
has to be defined. Of course, given the typical size of Ω, this assignment of
neighborhoods cannot be done element by element, but has to follow some
algorithmic approach. Furthermore, in each iteration, an element xn in the
neighborhood of the current solution xc has to be generated. Thus, the neigh-
borhoods have to be constructed in a way which makes the search or construc-
tion of such neighboring elements a simple task in terms of computational
complexity.

While for some of the classical combinatoric optimisation problems like
the traveling salesman problem there exist well–known standard concepts for
constructing solutions which are neighbors to a current solution, this is not
the case for most of the new optimisation problems studied in economics and
statistics during the last decade. However, most of these problems allow for
the application of a general concept given that the search space Ω is either
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a subset of some real valued vector space IRk or of a discrete search space
{0, 1}k. For these instances, ε–spheres provide a well–known concept of neigh-
borhood on the vector space corresponding to a notion of distance provided
by the Euclidean and Hamming metric (Hamming, 1950), respectively. Given
a current solution xc, a new element is considered a neighbor if the distance
between both elements is smaller than ε for the given distance measure. This
concept is easily transferred to the subspace Ω: xn is a neighbor to xc ∈ Ω if
it satisfies the distance condition and is an element of Ω itself (Winker, 2001,
pp. 117ff). Thus, we define

N (xc) = {xn|xn ∈ Ω, ‖ xn − xc ‖< ε} , (1)

where ‖ · ‖ stands for the distance measure.
Although being a quite general approach, the proposed construction of

neighborhoods by projection of ε–spheres onto Ω will not always work. In
particular, one has to check whether the resulting neighborhoods are non–
trivial, i.e., contain more than a single element for reasonable choices of ε.
Furthermore, the objective function should exhibit local behavior with regard
to the chosen neighborhoods, i.e., for the elements in N (xn), the mean value
of the objective function should be closer to f(xc) than for randomly selected
elements in Ω. Both requirements result in a trade–off between large neigh-
borhoods, which guarantee non–trivial projections, and small neighborhoods
coming together with a real local behavior of the objective function.

A further argument with regard to the choice of (the size of) neighbor-
hoods is closely connected to the features of the algorithm itself. While larger
neighborhoods allow for fast movements through the search space, they also
increase the peril that a global optimum is simply stepped over. Smaller neigh-
borhoods, on the other hand, increase the number of iterations required to
trespass a certain distance, e.g., in order to escape a local optimum: To escape
a local optimum, a sequence of (interim) impairments of the objective func-
tion has to be accepted; the smaller the neighborhoods are, the longer this
sequence is. Consequently, for smaller neighborhoods, the threshold sequence
has to be more tolerant in order to be able to escape local optima.

In order to illustrate the idea of generating local neighborhoods, we
consider the example of optimal aggregation of time series discussed by
Chipman and Winker (2005). The authors analyze the aggregation of time
series which is considered to be a central but still mainly unsolved problem
in econometrics. In the specific setting considered in their paper, namely the
international transmission of prices, aggregation boils down to the forming of
groups of commodities and replacing the disaggregate time series by sums or
weighted averages of the variables in each group. If one is interested in choosing
the modes of aggregation, i.e., the composition of the groups, optimally with
regard to a measure of mean–square forecast error, a highly complex integer
optimisation problem results. In fact, it has been shown that this problem is
NP–complete (Winker, 2001, Chap. 13.9). Thus, it appears adequate to tackle
the problem with an optimisation heuristic like threshold accepting.
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For this example, the search space is given by the set of all proper grouping
matrices, which is a subspace of {0, 1}6×42 for the actual application. Thus,
although the search space is finite, an exact solution by means of enumera-
tion is not possible. The objective function is a measure of the aggregation
bias in forecasting which results from using the model aggregated to only
six aggregate groups as suggested by the official statistics as compared to
the disaggregate data for 42 commodities. Unfortunately, the evaluation of
the objective function requires some time consuming matrix inversion. Conse-
quently, the number of iterations for this application has to be much smaller
than for some of the other applications of threshold accepting mentioned.

Given that the search space is defined as a subspace of some {0, 1}k, the
neighborhood concept is based on the projection of ε–spheres with regard to
the Hamming distance. In this example, the Hamming distance dH between
two grouping matrices H = (hij) and H̃ = (h̃ij) is given by the number of
differing entries:

dH(H, H̃) =
m∑

i=1

m∗∑

j=1

| hij − h̃ij | . (2)

Figure 1 shows the histogram of relative local differences of the objective
function for three different neighborhood definitions, each based on 50 000
pairs of proper grouping matrices (H1

k , H2
k). For the trivial neighborhood

represented by the top most panel, H2
k is randomly generated. This corre-

sponds to setting ε → ∞. The large dispersion of these relative deviations
indicates that the probability of finding an acceptable new grouping in such
a neighborhood is rather small unless the acceptance criterion becomes very
loose, since no really local structure is imposed.
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Fig. 1. Local differences for different neighborhood definitions
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In contrast, the lower two panels provide histograms for a Hamming
distance of 4 and 8, respectively. In these cases, H2

k is selected randomly from
N (H1

k ). Comparing the two lower panels it is worth noting that a shrinking
of the neighborhoods leads to a concentration of the empirical distribution
of relative deviations around zero per cent, i.e., to a more locally oriented
behavior of the algorithm, but at the same time reduces the number of
feasible moves in each iteration. Consequently, the risk of being stuck in a
local minimum increases with shrinking neighborhoods. In the application
presented by Chipman and Winker (2005), the use of neighborhoods defined
as spheres of radius 8 with regard to the Hamming distance proved to be a
good choice, although the quality of the results did not decrease dramatically
when choosing spheres of radii 4 or 12 instead.

3.2 Local Updating

In the standard version of the algorithm described so far, in each iteration,
xc and f(xc) are given. Then, an element xn ∈ N (xn) is generated. Finally,
f(xn) is calculated in order to obtain the difference Δ = f(xn)−f(xc) required
to test the acceptance criterion. Consequently, the total complexity of a TA
implementation is given by a constant times the total number of iterations
times the complexity of a single evaluation of the objective function f . While
the constant might be influenced by an efficient coding of the algorithm and
the choice of appropriate hardware, the total number of iterations will typi-
cally depend on the complexity of the problem at hand. Of course, a reasonable
choice of neighborhoods and the threshold sequence (see the following section)
might help to reduce the number of iterations required to obtain a predefined
quality of the results. Here, we will concentrate on the last argument in the
complexity function of the algorithm, the evaluation of the objective function
(however, see also Ferrall (2004)).

At first glance, the performance of the algorithm with respect to the objec-
tive function depends solely on an efficient calculation of the objective function
for given x. In fact, often considerable performance gains can be obtained
by searching for more efficient code for calculating the objective function.
However, sometimes a different approach is also feasible. During each iter-
ation step, the algorithm does not require f(xn) and f(xc), but solely the
difference of the objective function values Δ = f(xn) − f(xc). Given xn and
xc, in some cases, a direct calculation of Δ becomes possible at much lower
computational cost than the complete evaluation of f .

For example, for the traveling salesman problem, each element x ∈ Ω
represents a tour through all N cities of the given problem. In order to calcu-
late the length of such a tour, the sum of N distances of pairs of cities has to
be calculated. If the problem is small enough, all distance pairs (N(N − 1))
can be calculated once and for all before starting the algorithm, for larger
problem instances, they have to be calculated on the fly. A typical definition
of neighborhood for traveling salesman tours consists in assuming that two
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tours are neighbors if the second one can be obtained from the first one by
exchanging the position of two cities. Doing so, only the distances for four
pairs of cities change. The rest of the tour remains unchanged. Thus, instead
of calculating the sum of N distances, we have to consider only four in order
to obtain Δ. The speed up resulting from this local updating idea amounts
to 4/N , i.e., it becomes the more important the larger the problem instance
grows.

A similar idea is used by Fang et al. (2003) in an application to uniform
design problems. Making use of a new representation of the objective function,
they can avoid to recalculate the whole objective function when moving from
one candidate solution to a neighboring one. When moving from one solution
to a neighboring one, only two elements of the design matrix are exchanged.
The updating requires 2(n−2) updates, where n denotes the number of design
points, i.e., represents a measure of the problem size. In contrast, a complete
evaluation would require n(n−1)

2 k comparisons, where k denotes the number
of columns of the design matrix. Thus, even if up to four or even slightly more
elements are exchanged in a single iteration, a tremendous speed up results
which is proportional to 1

nk , i.e., the larger the design under consideration,
the higher the efficiency gain. For the implementation presented in Fang et al.
(2003), the actual speed up resulting from the local updating idea ranges from
around 50% for rather small problem instances (n = 8, k = 10), increasing
to 80% for n = 18 and k = 30 and reaching more than 90% for n = 100
and k = 8.

4 Threshold Sequence

The final crucial ingredient of any threshold accepting implementation is the
threshold sequence. By considering two extreme cases, a first intuitive idea
of its influence might be gained. First, if all threshold values are set equal
to zero, in each iteration, the algorithm will only accept new solutions which
are at least as good as the current one. Consequently, a threshold accepting
implementation with a zero threshold sequence would perform like a classical
greedy local search algorithm. In general, it would converge much faster than
with positive threshold values, but will get stuck in a local minimum with
high probability unless the problem is globally convex. Second, if all values
of the threshold sequence are set to a very large value which happens to be
larger than any possible difference of objective function values, the algorithm
will act like a random walk through the search space as any generated candi-
date solution will be accepted. The performance of this degenerated threshold
accepting implementation will be similar to a pure random search heuristic.

Obviously, an intermediate setting is selected for any reasonable threshold
accepting. Unfortunately, not much is known about how to choose this
sequence in a way to improve the performance of the algorithm. The conver-
gence result for threshold accepting provided by Althöfer and Koschnik
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(1991) states only the existence of an appropriate threshold sequence in order
to obtain asymptotic convergence to the global optimum, but it does not
provide any insights into the structure of the sequence. Consequently, the
threshold sequence is often chosen in a rather ad hoc approach. Thereby, a
linearly decreasing sequence appears to be preferred. The advantage of a linear
threshold sequence consists in the fact, that for tuning purposes only the first
value of the sequence has to be varied as it fixes the whole sequence. Existing
experience with different functional forms for the threshold sequence suggests
that the performance of the algorithm is quite robust with regard to the exact
shape of the threshold sequence, while the size of the first threshold values
has some impact. In fact, starting with too high threshold values makes the
algorithm wandering around in the search space in a rather random fashion.
In this case, computational resources are wasted. On the other hand, starting
with a too small value for the threshold sequence, one risks to get stuck in
a less favorable part of the search space. This trade–off has to be consid-
ered when conducting some tuning experiments with a threshold accepting
implementation.

For discrete search spaces, a data driven method for the construction of
the threshold sequence has been proposed by Winker and Fang (1997a). It
is described in more detail in Winker (2001, p. 127f). It is based on the
observation that for a finite (discrete) search space Ω, the set Δ of possible
Δf is also finite (discrete). Obviously, for the algorithm, only the values of this
set are relevant for the threshold sequence, as any value between two elements
of the ordered set of possible Δf will have the same effect in the acceptance
criterion. Although the size of Ω and, consequently, of Δ will exclude a
complete evaluation even in the case of a finite search space, an empirical
approximation to Δ can be obtained as follows. First, a large number of
candidate solutions xc

r is generated at random. Then, for each of these random
designs a neighbor xn

r is selected using the same neighborhood definition as for
the optimisation procedure. For each resulting pair of designs, the difference
of the objective function values between the larger and the smaller value is
calculated Δr = |f(xc

r) − f(xn
r )|. Ordering these values provides an approxi-

mation to the distribution of local relative changes of the objective function.
Finally, taking into account the trade–off between too large or too small
values of the threshold sequence at the beginning of the optimisation run,
only a lower quantile of these sequence is actually employed as the threshold
sequence. Typically, this lower quantile falls in the range of 10% to 50% for
the applications considered in this contribution. Algorithm 2 provides the
pseudo–code for this data driven generation of the threshold sequence.

Before describing the construction of the threshold sequence for the
example of the optimal aggregation of time series, a last possible modification
is introduced. Instead of using an absolute definition of the thresholds, a rela-
tive version can be employed. Consequently, the decision criterion becomes
f(xn) < f(xc)(1 + τr) instead of Δf = f(xn) − f(xc) < τr. The data driven
construction of a threshold sequence can be performed as before by replacing
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Algorithm 2 Pseudo–code for data driven generation of threshold sequence

1: Initialize nR, lower quantile α, nD[nR/α]
2: for r = 1 to nD do
3: Choose (randomly) feasible solution xc

r

4: Choose (randomly) neighbor solution xn
r ∈ N (xc

r)
5: Calculate Δr = |f(xc

r)− f(xn
r )|

6: end for
7: Sort Δ1 ≤ Δ2 ≤ . . . ≤ ΔnD

8: Use ΔnR , . . . ,Δ1 as threshold sequence

Δr = |f(xc
r) − f(xn

r )|, e.g., by Δr =| f(xc
r)/f(xn

r ) − 1 |. The first advan-
tage of this relative version of the threshold criterion is its independence from
units of measurement. However, when employing the data driven method for
constructing the threshold sequence, this advantage appears rather trivial.
The second argument for employing the relative version comes into play,
when the objective function takes values of widely differing orders of magni-
tude. Then, the threshold criterion exhibits some automatic scaling property.
However, so far, there is no clear evidence for a superior performance of one
or the other version of the criterion. This has to be left to future research.

As an example for the data driven generation of the threshold sequence,
we refer again to the example of optimal aggregation introduced in subsec-
tion 3.1 (Chipman and Winker, 2005). The neighborhood definition uses the
concept of the Hamming distance introduced before. As a final ingredient, a
data generated threshold sequence is used which is obtained along the lines
described in this section making use of the relative definition of the threshold
criterion and a lower quantile α ∈ [0.3, 0.4].

Figure 2 shows a threshold sequence obtained by the data driven method
for this application. The final values of the threshold sequence are equal to 1
since some of the simulated pairs of grouping matrices happen to belong to
the same equivalence class of grouping matrices. Consequently, the threshold
accepting algorithm degenerates to a classical local search heuristic during the
last iterations of the algorithm. This feature of the automatically generated
threshold sequence increases the probability to finish with a local optimum.

100 200
1

1.01

1.02

1.03

Ti

Fig. 2. A threshold sequence



120 Peter Winker and Dietmar Maringer

Given the convergence result, this local optimum should be close to the global
optimum and converge to it as the number of iterations of the algorithm tends
to infinity.

5 Restart

Although it is not reported in many publications, most applications of opti-
misation heuristics use a restarting framework, i.e., the algorithm is rerun
with different seeds for the random number generator or with different tuning
parameters. Then, the presented results stem from the run with best perfor-
mance. Some theoretical arguments on restart implementations can be found
in Fox (1994). A heuristic argument in the context of genetic algorithms is
provided by Farley and Jones (1994).

In this section, we will present some rational for this approach in the
context of TA. However, it will turn out that it is essential that publications
report the restarting framework and provide additional information besides
the “best” result. In fact, stochastic search heuristics like threshold accepting
can be interpreted as a stochastic mapping

TA : Ω→ fmin, fmin ∼ DTA(μ, σ) , (3)

where Ω is the search space and fmin the random realization of the minimum
found by the algorithm for the given random number sequence. DTA(μ, σ)
denotes the distribution of fmin given the parameters used in the algorithm.
Of course, this distribution is truncated from the left at the value of the
global minimum fglob

min = inf{f(x)|x ∈ Ω}. Consequently, DTA will not be
a normal distribution. It might be an interesting subject for future studies
to analyze the properties of this distribution for different applications and
different optimisation heuristics.

However, for practical purposes it might suffice to know about the existence
of such a distribution. Furthermore, it might be obvious that an increase
in the total number of iterations of a local search heuristic like threshold
accepting should reduce the expected value μ of the distribution and – due to
the left truncation – probably the standard deviation σ, too. Instead of using a
parametric distributional assumption, we might use the empirical distribution
obtained from a simulation study. For this purpose, the threshold accepting
implementation is run several times with differing initializations (seeds) of
the random number generator. For each run i, i = 1, . . . , N , the minimum
f i

min is stored. Using the set {f i
min|i = 1, . . . , N}, it is possible to calculate

the empirical mean and standard deviation for the best solution found by the
algorithm or to provide empirical quantiles. It is also possible to report the
minimum min{f i

min|i = 1, . . . , N} of all runs. In fact, this is the typical value
provided in publications – sometimes accompanied by the number of runs N .
However, from the interpretation of TA as a stochastic mapping, it becomes
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evident that this value is not a robust statistic. Thus, it should not be the
only information provided.

We recommend to provide at least the following information: The
number of restarts N , the empirical mean and standard deviation or –
alternatively – some quantiles of the empirical distribution. Furthermore, it
should be reported for which parameter settings of the algorithm restarting
has been considered.

Given these arguments about restarting, a further question has to be
considered. Obviously, performing N restarts uses valuable computational
resources. Instead, a smaller number of restarts – or a single run – with more
iterations could be performed. Using more restarts provides a better approx-
imation to the underlying distribution DTA(μ1, σ1) for the given number of
iterations. On the other hand, using less restarts and more iterations results
in an approximation of lower quality to a different distribution DTA(μ2, σ2)
with a smaller expectation μ2 < μ1. In fact, given the convergence property
of threshold accepting, DTA will degenerate to a one point distribution in the
global minimum with the number of iterations going to infinity. Unfortunately,
not much is known about the rate of this convergence. Thus, it remains an
empirical issue to decide about this trade–off.

To conclude this section, we present empirical findings for an implementa-
tion of threshold accepting to the well known traveling salesman problem. The
problem instance with 442 points is described in more detail in Winker (2001,
Chap. 8). For the analysis of a restarting situation, the following experimental
setting is chosen. The threshold sequence is fixed for all runs to the same
linear sequence. Then, the threshold accepting implementation is run with
100 000, 1 000 000 and 10 000 000 iterations. Obviously, in terms of computa-
tional resources, one run with 10 000 000 iterations corresponds to 10 runs with
1 000 000 or 100 runs with 100 000 iterations. In order to obtain good estimates
of the lower percentiles, 100 runs were performed with the largest number of
iterations. Consequently, the number of restarts with different random starting
configurations was 1000 and 10000 for 1 000 000 and 100 000 iterations, respec-
tively. Table 1 summarizes the results obtained for a fixed threshold sequence,
which is identical for all runs and numbers of iterations.

When considering these results, it turns out that the trade–off between
more restarts with different seeds and a higher number of iterations per restart
is in favour of the latter. As expected, both the mean and the lower percentiles
become smaller as the number of iterations per run increases while holding the
total use of computer resources (number of restart times number of iterations)
constant. Given that users are typically interested in the very low percentiles of
the distribution, it should be taken into account that the 1%–quantile for the
runs with 10 000 000 iterations is estimated based on solely 100 observations.
Consequently, this entry has to be interpreted with some care as it is estimated
with less precision than other entries of the table.

The above analysis gives valuable information on the dependence of mean
and percentiles on the number of iterations and restarts. However, it has not
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Table 1. Restart threshold accepting

Iterations per try

100 000 1 000 000 10 000 000

Restarts 10 000 1000 100

Mean 5317.07 5170.52 5138.22
SD 52.83 28.69 21.81
10% 5251.11 5135.45 5112.22
5% 5234.50 5124.83 5107.41
1% 5204.20 5109.90 5098.23

yet answered the practitioner’s question whether it is preferable to perform a
single run with a very high number of iterations, a few restarts with a moderate
number of iterations, or many restarts with a low number of iterations. The
outcomes of the experiment can also be used for this purpose. To this end,
the results are grouped to 100 artificial sub–experiments each consisting of
100 tries with 100 000 iterations, 10 tries with 1 000 000 iterations and one
try with 10 000 000 iterations. Now, only the overall best results obtained
for each number of iterations are compared. Of course, considering this non–
robust statistic is not a valid approach from a pure statistical perspective.
However, it corresponds closely to the typical proceeding in real applications.
Table 2 shows the number of times, the respective combinations of iterations
per restart and number of restarts gave the best result. In the lower part the
mean deviation from the best results for the three categories from the best
results of these three categories are depicted.

If one has only computer resources for a total of 10 000 000 iterations,
these results clearly indicate that one should neither perform many restarts
with a very low number of iterations, nor only one huge run. Instead, the
best expected performance is given by a choice which falls between the two
extremes, i.e., restarting the threshold accepting a few times with a moderate
number of iterations. For recent results for a uniform design problem see also
Winker (2005).

Summarizing the arguments of this section, two aspects seem noteworthy.
Firstly, the common practice to report only the best outcome of several
restarts is not adequate. A minimum requirement is to report also the number

Table 2. Restart threshold accepting (comparison)

Iterations per try 100 000 1 000 000 10 000 000
Restarts 100 10 1
Times best in 100 0 65 35
Mean deviation from best 73.56 5.16 14.48
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of restarts and some information on the empirical distribution DTA, e.g., mean
and standard deviations or quantiles. Secondly, the results indicate that mean
value, standard deviation and low quantiles decrease, other things being equal,
with an increasing number of iterations. Nevertheless, the combination of some
restarts with a moderate number of iterations seems to be preferable in order
to obtain high–quality results.

6 Conclusions

The concept of threshold accepting appears quite simple and yet powerful in
its applications. By replacing a stochastic acceptance criterion by a determin-
istic one, it even reduces the complexity as compared to simulated annealing.
Nevertheless, a more detailed presentation and discussion of the central ingre-
dients of the algorithm highlights some aspects relevant for a successful
implementation.

TA can be used to tackle highly complex optimisation problems which
are not accessible by classical optimisation algorithms. The cost of imple-
mentation are small compared to more refined optimisation heuristics, e.g.,
population based approaches, or to tailor–made problem specific heuristics.
The guidelines provided in this contribution might be helpful for the choice of
settings and parameters resulting in a high quality outcome. Then, even if the
TA implementation might not provide the global optimum, the best results
obtained by this heuristic represent a benchmark which has to be beaten first
by any potential challenger.
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Gilli, M. and E. Këllezi: 2002a, ‘The Threshold Accepting Heuristic for Index
Tracking’. In: P. Pardalos and V. Tsitsiringos (eds.): Financial Engi-
neering, E-Commerce, and Supply Chain, Applied Optimisation Series. Kluwer,
pp. 1–18.
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The Autocorrelation Functions
in SETARMA Models�
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Summary. The dependence structure of a family of self exciting threshold autore-
gressive moving average (SETARMA) models, is investigated. An alternative repre-
sentation for this class of models is proposed and the exact autocorrelation function
is derived in the case of two regimes. Some practical implications of the theoretical
results are analysed and discussed via several examples of SETARMA structures of
fixed orders.
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1 Introduction

The family of linear autoregressive moving-average ARMA models can accom-
modate only a limited set of dynamic phenomena. Numerous generalisations
of the ARMA models have been proposed with the intention of overcoming
these limitations.

In this context, Priestley (1988), Tong (1990), Granger and Teräsvirta
(1993), Tjøstheim (1994), Franses and Van Dijk (2000) and Fan and Yao
(2003) have presented various nonlinear structures, highlighting their charac-
teristic statistical features and proposing relevant applications.

In this paper, attention is focused on the class of threshold autoregres-
sive (TAR) models, proposed by Tong between the end of the 1970’s and the
beginning of the 1980’s, which have been generalised subsequently. Various
features of the TAR models have been studied, such as the statistical prop-
erties of the generating process; the problems of estimating the coefficients of
the models and of generating their forecasts have also been considered.
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In spite of the intense interest in these models, some aspects of their struc-
tures require further investigation. (See Brockwell, Liu and Tweedie, 1992, Liu
and Susko, 1992, De Gooijer, 1998, and more recently Ling and Tong, 2005).

Within the broad class of threshold models, attention has been focused on
the self-exciting threshold autoregressive moving-average (SETARMA) model
proposed in Tong (1983) and on its dependence structure.

Amendola et al. (2006) have derived the moments for this class of models
by analytic methods. Their results have confirmed the well-known ability of
the SETARMA models to capture the asymmetric properties of the distribu-
tion of the data. Moreover, it has been shown that the models can also account
for the excess of kurtosis that characterises many financial times series.

The aim of the present paper is to derive an analytic expression of the
global autocorrelation function of the SETARMA model. The model is locally
linear, and an analysis of its autocorrelation can held in the investigation of
the dependence structure of the process. The analysis of the autocorrelation
functions of each regimes can also help in determining the orders of the respec-
tive autoregressive moving average models.

The structure of the paper is as follows. In Sect. 2, the SETARMA is
introduced. In Sect. 3, the exact form of the moments of a SETARMA
are presented briefly and, in Sect. 4, the autocorrelations of a two-regime
SETARMA model are derived analytically. The generalisation to more than
two regimes is straightforward. The theoretical results are confirmed through
simulations. Some concluding remarks are made in the final section.

2 The SETARMA Model

2.1 The SETARMA Model

The Self-Exciting Threshold AutoRegressive Moving Average (SETARMA)
model of order (h; p1, . . . , ph; q1, . . . , qh), first presented by Tong (1983) and
further mentioned in Tong (1990), is given by:

Xt =
h∑

i=1

⎡

⎣φ
(i)
0 +

pi∑

j=1

φ
(i)
j Xt−j + et −

qi∑

w=1

θ(i)
w et−w

⎤

⎦ I(Xt−d ∈ Ri) (1)

where et ∼ i.i.d.(0, σ2), Ri = [ri−1, ri), for i = 1, 2, . . . , h and
⋃h

i=1 Ri = R,
forms a partition of the real line such that −∞ = r0 < r1 < r2 < . . . < rh =
+∞ with ri the threshold values, d is the threshold delay, pi and qi are non
negative integers referred to the AR order and MA order respectively, φ

(i)
j

and θ
(i)
w are unknown parameters, with j = 1, 2, . . . , pi and w = 1, 2, . . . , qi,

and I(·) is the indicator function. The model is characterized by a piecewise
linear structure which follows a linear ARMA model in each of the h regimes.
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The attention of the present paper has been focused on a different
SETARMA model with respect to the earlier version of Tong (1983), given as:

Xt =
h∑

i=1

⎡

⎣φ
(i)
0 +

pi∑

j=1

φ
(i)
j X

(i)
t−j + σi

(
et −

qi∑

w=1

θ(i)
w et−w

)⎤

⎦ I(Xt−d ∈ Ri), (2)

where σiet ∼ i.i.d.(0, σ2
i ), 0 < σi <∞ for i = 1, . . . , h.

In particular the restriction that the regimes have a common error variance
has been removed. Another aspect in which the present model differs from
that of Tong is manifested when it switches from one regime to another. It
can be observed that according to (1), the output of the i-th regime is a direct
function of the process Xt, whereas, according to (2), it is related to the lagged
values of Xt only via the innovation term et. The two representations (1) and
(2) are equivalent in absence of any autoregressive component and (2) can be
seen has a generalization of the model used in De Gooijer (1998) and Ling
and Tong (2005).

In what follows, we shall consider a SETARMA(2; p1, p2; q1, q2) model with
a delay d and a threshold value r, such that R1 = [r, +∞), R2 = (−∞, r).
This will reduce the complexity of the model and ease the burden of notation.
The generalisation to the case of h regimes should be straightforward.

In a model with two regimes, the switching is regulated by the indicator
process It−d = I(Xt−d ∈ R1) which, in view of its dichotomous nature, can
be written as

It−d =

{
1 if Xt−d ≥ r,

0 if Xt−d < r,
(3)

where t = 1, 2, . . ., and d > 0.
In the case where h = 2, the model of (2) can be represented more

compactly by

Xt = X
(1)
t It−d + X

(2)
t (1 − It−d) ≡ X

(2)
t + [X(1)

t −X
(2)
t ]It−d, (4)

where, within their respective regimes, the outputs X
(i)
t ∼ ARMA(pi, qi); i =

1, 2, are determined by linear autoregressive moving-average processes.
Since It−d in (4) plays a crucial role in the dynamic structure of Xt, its

properties need to be examined more closely.

The Indicator Process It−d

The properties of the process {It−d}; t = d+1, d+2, . . . in (3), which controls
the switching between the two regimes of the SETARMA model, reflect its
dichotomous nature.
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It is assumed that

[A1.] The process It−d is second-order stationary and ergodic, and it has the
following moments:

E(It−d) = P (It−d = 1) = P (Xt−d ≥ r) = p,

var(It−d) = p(1− p); t = d + 1, d + 2, . . . ,

cov(It−d, It−d−k) = γI(k) = pk − p2,

where

pk = E(It−dIt−d−k) = P (It−d = 1; It−d−k = 1) for k = 1, 2, . . . . (5)

It follows that the pair (It−d, It−d−k) has the joint probability distribution
given in Table 1, where p and pk must satisfy the inequality

max(0, 2p− 1) ≤ pk ≤ p. (6)

Moreover, there is

∞∑

k=0

|γI(k)| = p(1− p) +
∞∑

k=1

|pk − p2| < +∞, (7)

where γI(0) = p0−p2 = p(1−p), since p0 = E(I2
t−d) = p. Figure 1 depicts the

autocovariance γI(k) as a function of the pair of values (pk, p); and it reflects
the inequality of (6).

The estimates of the probabilities p and pk can be obtained taking advan-
tage of the properties of the Bernoulli process It−d. In particular, given the
assumption [A1.], estimates of p and pk that are consistent in probability are
given, respectively, by the following relative frequencies

p̂ =
N(xt−d ≥ r)

T − d
, p̂k =

N(xt−d ≥ r, xt−d−k ≥ r)
T − d

, (8)

where x1, x2, . . . , xT is a sample of length T generated by the process (2) and
where N(E) denotes the number of occurrences of the event E within the
sample.

Table 1. Probability distribution of the variable (It−d, It−d−k)

It−d/It−d−k 0 1
0 1 − 2p + pk p − pk 1 − p
1 p − pk pk p

1 − p p 1
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Fig. 1. Autocovariance function of the Bernoulli process It

Example 1. An example of probabilities pk, with k = 1, 2, . . ., that satisfy (6)
and (7), is given by

pk = p2 + (p− p2)k+1 k = 1, 2, . . . (9)

In this case, the probabilities of the distribution in Table 1 are given by

p− pk = p(1− p)[1− pk(1− pk)] ≥ 0,

with p(1− p) ∈ [0, 1] , pk(1− pk) ∈ [0, 1], and

1− 2p + pk = (1− p)2 + pk+1(1− p)k+1 ≥ 0,

with pk+1(1− p)k+1 ∈ [0, (1/4)k+1].
The autocovariance of It is

γI(k) = pk − p2 = pk+1(1 − p)k+1.

Given 0 ≤ p ≤ 1 and 0 ≤ p(1− p) ≤ 1/4, it follows, by a convergence theorem
of numeric series in geometric progression and ratio |z| < 1, that the sum of
the autocovariance in (7) converges. That is

∞∑

k=0

|γI(k)| = p(1− p)
∞∑

k=0

|pk(1− p)k| = p(1− p)
1− p + p2

< +∞.

2.2 An Alternative Representation of the SETARMA Model

A SETARMA model is a generalisation of the ARMA model of Box and
Jenkins (1976). Some of the results related to the ARMA model can be
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extended to this class of nonlinear models. It is helpful, in pursuing these
generalisations, to rewrite the model of (2), with h = 2, as follows:

Xt =

{
[φ(1)

0 + φ
(1)
p1 (B)X(i)

t + θ
(1)
q1 (B)σ1et]I(Xt−d ≥ r),

[φ(2)
0 + φ

(2)
p2 (B)X(i)

t + θ
(2)
q2 (B)σ2et]I(Xt−d < r),

(10)

where φ
(i)
pi (B) =

pi∑
j=1

φ
(i)
j Bj and θ

(i)
qi (B) = 1−

qi∑
w=1

θ
(i)
w Bw, for i = 1, 2.

Two additional assumptions are required:

[A2.] The polynomials Φ(i)(B) = 1−
∑p1

i=1 φ
(i)
j Bj and θ

(i)
qi (B) = 1−

qi∑
w=1

θ
(i)
w Bw

have no roots in common, and all of their roots lie outside the unit circle;

[A3.] the joint process Xt = (X(1)
t , X

(2)
t , It−d), with X

(i)
t ∼ ARMA(pi, qi)

for i = 1, 2, is strictly stationary, ergodic and invertible. (For a sufficient
invertibility condition see Ling and Tong 2005, assumption 2.1);

The SETARMA(2; p1, p2; q1, q2) model can be written alternatively as

Xt =

⎡

⎣c
(1)
0 + σ1

∞∑

j=0

ψ
(1)
j Bjet

⎤

⎦ It−d +

⎡

⎣c
(2)
0 + σ2

∞∑

j=0

ψ
(2)
j Bjet

⎤

⎦ (1− It−d),

(11)
where

c
(i)
0 =

φ
(i)
0

1−
∑pi

j=1 φ
(i)
j

,

is the mean value of regime i, for i = 1, 2, and

∞∑

j=1

|ψ(i)
j | <∞,

with ψ
(i)
0 = 1 and i = 1, 2.

The weights ψ
(i)
j (for i = 1, 2 and j = 0, 1, 2, . . .) are computed as

ψ
(i)
j =

{
1 when j = 0,∑j−1

s=0 ψ
(i)
s φ

(i)
j−s − θ

(i)
j when j ≥ 1,

(12)

with φ
(i)
j = 0, for j > pi, and θ

(i)
j = 0, for j > qi.

The model representation of (11) is used in deriving the theoretical results
of the following sections.
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3 The Moments of the SETARMA Model

A knowledge of the moments of a theoretical stochastic process enables us to
understand the properties of its distribution and to assess the ability of the
model to represent features that are observed in empirical data.

Therefore, Amendola et al. (2006) have derived the exact moments of
order r and the central moments up to order four of the SETARMA model in
(2), under the assumption that the errors et are Gaussian white noise, with
E(et) = 0 and E(e2

t ) = 1.
In particular, using the local linearity of the SETARMA model and the

properties of the Bernoulli process described in Sect. 2.1 (The Indicator
Process It−d), they have demonstrated the following proposition:

Proposition 1. Given Xt ∼ SETARMA(2; p1, p2; q1, q2), under the assump-
tions [A2.] and [A3.] and under the additional assumption that each regime
admits at least moments of order r, it follows that the expected value of Xr

t is

E(Xr
t ) = μ(1)

r p + μ(2)
r (1− p), (13)

where μ
(i)
r = E

[(
X

(i)
t

)r], for i = 1, 2.

The results in Proposition 1 indicate that the expected value of Xt in
(11) is

E(Xt) = c
(1)
0 p + c

(2)
0 (1− p),

with

c
(i)
0 =

φ
(i)
0

1−
∑pi

j=1 φ
(i)
j

,

for i = 1, 2; and that E(Xt) = 0 if c
(1)
0 = c

(2)
0 = 0. The latter implies that

φ
(i)
0 = 0, for i = 1, 2.

The result (13) can also be used to evaluate the variance of the SETARMA
process. Thus

Corollary 1. Under the hypotheses of Proposition 1, the process Xt ∼
SETARMA(2; p1, p2; q1, q2), has the variance

var(Xt) = pΨ2
(1)σ

2
1 + (1 − p)Ψ2

(2)σ
2
2 + p(1 − p)(c(1)

0 − c
(2)
0 )2, (14)

where Ψ2
(i)σ

2
i (for i = 1, 2) is the variance of regime i in (11), with

Ψ2
(i) =

∑∞
j=0

(
ψ

(i)
j

)2

<∞.

The starting point for this result is

var(Xt) = var
[
It−dX

(1)
t

]
+ var

[
(1 − It−d)X

(2)
t

]
(15)

+ 2cov
[
It−dX

(1)
t , (1− It−d)X(2)

t

]
,
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where the three terms on the right of (15) are

(a) var
[
It−dX

(1)
t

]
= pγ1(0) + p(1− p)(c(1)

0 )2,

(b) var
[
(1− It−d)X

(2)
t

]
= (1− p)γ2(0) + p(1− p)(c(2)

0 )2,

(c) cov
[
It−dX

(1)
t , (1 − It−d)X

(2)
t

]
= −p(1− p)c(1)

0 c
(2)
0 .

The study of moments assumes an important role when the distribution of
the process is under analysis. In this context, it is appropriate to investigate
the shape of the distribution through the third and fourth central moments
of Xt in (11).

Corollary 2. Under the hypotheses of Proposition 1, the third central uncon-
ditional moment of Xt is given by

E[(Xt − μ)3] = (c(1)
0 − c

(2)
0 )

[
μ̄3I(c

(1)
0 − c

(2)
0 )2 (16)

+ 3V ar(It)(σ2
1Ψ2

(1) − σ2
2Ψ2

(2))
]
,

with V ar(It) = p(1− p) and μ̄3I = p(1− p)(1− 2p).

The result (16) shows that the third central moment of the SETARMA
model equals zero if the intercepts of the two regimes—or equivalently the
mean values of the two regimes c

(1)
0 and c

(2)
0 in model (11) – are zeros. This

highlights the relevance of the values assumed by φ
(1)
0 and φ

(2)
0 when the

ability of the model to represent the skewness of the data is under analysis.

Corollary 3. Under the hypotheses of Proposition 1, the fourth central uncon-
ditional moment of the SETARMA model is given by

μ̄4 = E[(Xt − μ)4] (17)

= μ̄4I(c
(1)
0 − c

(2)
0 )4 + 3

[
pσ4

1(Ψ
2
(1))

2 + (1 − p)σ4
2(Ψ

2
(2))

2
]

+ 6V ar(It)(c
(1)
0 − c

(2)
0 )2

[
pσ2

1Ψ2
(1) + (1− p)σ2

2Ψ2
(2)

]
,

where μ̄4I = E[(It − p)4] = p(1− p)[1− 3p(1− p)].

The result in Corollary 3 shows that, when c
(1)
0 = c

(2)
0 = 0, the fourth

central moment of model (11) is proportional to the weighted mean of the
variances of the two regimes whose parameters contribute to the exact form
derived for μ̄4. The results (14), (16) and (17) relate to the unconditional
variance, and the third and fourth central moments respectively. They can be
used in computing the indexes of skewness (18) and of excess kurtosis (19) as
follows:

γAS =
E[(Xt − μ)3]

E[(Xt − μ)2]3/2
, (18)
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γK =
E[(Xt − μ)4]
E[(Xt − μ)2]2

− 3, (19)

where it can be readily observed that, when the intercepts, φ
(1)
0 and φ

(2)
0 ,

are zeros, (or equivalently c
(1)
0 = c

(2)
0 = 0,) the skewness index γAS = 0 and

the data generated by the corresponding SETARMA process with Gaussian
innovations have a symmetric distribution.

4 The Autocorrelation

The autocorrelation coefficient ρ(k) of a second-order stationary process

ρ(k) =
cov(Xt, Xt±k)

[V ar(Xt)V ar(Xt±k)]1/2
k = 0, 1, 2, . . . , N, (20)

is an important tool in the analysis of linear time series. It reveals the linear
dependence among the random variables; and it is used in the approach of
Box and Jenkins (1976) in identifying the orders of ARMA models.

When nonlinear models are involved, the autocorrelation coefficient ρ(k)
provides insufficient information for investigating fully the relationship
amongst the variables Xt; t = 1, 2, . . . , N . However, it can give useful indi-
cations of how close the generating mechanism of {Xt} is to linearity. For this
purpose, Tong (1990) has proposed an index of linearity based on the squared
autocorrelation. More recently, Nielsen and Madsen (2001) have generalised
some traditional tools, such as the global and partial autocorrelation func-
tions, for use in identifying nonlinear models.

When Xt ∼ SETARMA(2; p1, p2; q1, q2), the autocorrelation coefficient
ρ(k) can be used to investigate whether a particular sequence of values have
all been generated by the same regime.

For a start, the stationarity of Xt allows us to write the denominator of
(20) as

[V ar(Xt)V ar(Xt±k)]1/2 = V ar(Xt),
where, referring to model (11), V ar(Xt) is given in (14).

The numerator of (20) requires more detailed investigation as the following
proposition indicates.
Proposition 2. Given Xt ∼ SETARMA(2; p1, p2; q1, q2) and under the
assumptions [A2.] and [A3.], which allow the SETARMA model to be written
in the alternative form of (11), the autocovariance of Xt at lag k, with
k = 0, 1, . . . , N , is

γ(k) =
∞∑

j=0

[
pkσ2

1ψ
(1)
j ψ

(1)
k+j + (1− 2p + pk)σ2

2ψ
(2)
j ψ

(2)
k+j + (p− pk)σ1σ2

× (ψ(1)
j ψ

(2)
k+j + ψ

(1)
k+jψ

(2)
j )
]

+ (pk − p2)(c(1)
0 − c

(2)
0 )2, (21)

with pk = E(It−dIt−d−k).
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Proof. The stationarity assumption implies the symmetry of the autocovari-
ance of Xt, such that cov(Xt, Xt−k) = cov(Xt, Xt+k); so the proof can be
limited to the case of γ(k) = cov(Xt, Xt−k).

Starting with the definition of γ(k), we have

γ(k) = cov
[
It−dX

(1)
t , It−d−kX

(1)
t−k

]
(22)

+cov
[
It−dX

(1)
t , (1− It−d−k)X(2)

t−k

]

+cov
[
(1 − It−d)X

(2)
t , It−d−kX

(1)
t−k

]

+cov
[
(1 − It−d)X

(2)
t , (1− It−d−k)X(2)

t−k

]
.

The terms of (22) are given by

(a) cov
[
It−dX

(1)
t , It−d−kX

(1)
t−k

]

= pkγ1(k) + (pk − p2)(c(1)
0 )2,

(b) cov
[
It−dX

(1)
t , (1− It−d−k)X(2)

t−k

]

= (p− pk)γ12(k)− (pk − p2)c(1)
0 c

(2)
0 ,

(c) cov
[
(1 − It−d)X

(2)
t , It−d−kX

(1)
t−k

]

= (p− pk)γ21(k)− (pk − p2)c(1)
0 c

(2)
0 ,

(d) cov
[
(1− It−d)X

(2)
t , (1− It−d−k)X(2)

t−k

]

= (1 − 2p + pk)γ2(k) + (pk − p2)(c(2)
0 )2,

with E[(1−It−d)(1−It−d−k)] = 1−2p+pk and E[(1−It−d)It−d−k] = p−pk.
Placing the results (a)–(d) in (22) gives

γ(k) = pkγ1(k) + (1− 2p + pk)γ2(k) + (p− pk)(γ12(k) + γ21(k))

+(pk − p2)(c(1)
0 − c

(2)
0 )2, (23)

where

γi(k) = σ2
i

∞∑

j=0

ψ
(i)
j ψ

(i)
k+j , for i = 1, 2,

γ12(k) = σ1σ2

∞∑

j=0

ψ
(1)
j ψ

(2)
k+j ,

γ21(k) = σ1σ2

∞∑

j=0

ψ
(1)
k+jψ

(2)
j ,

which enable (21) to be derived.
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In order to show how the autocovariance of the SETARMA model can be
computed, we consider some examples.

Example 2. The simplest models such as SETARMA(2; 0, 0; 1,0) and
SETARMA(2; 0 ,0; 0,1), which are described as SETMA models by De Gooijer
(1998), have the following autocovariances:

γ(k) = cov(Xt, Xt−k) =
{

σ2
1θ

(1)
1 pk if k = 1,

0 otherwise,
(24)

and

γ(k) = cov(Xt, Xt−k) =
{

σ2
2θ

(2)
1 (1− 2p + pk) if k = 1,

0 otherwise,
(25)

where σ2
i is the variance of the error in regime i (i = 1, 2).

It is interesting to note that, in example 2, the SETMA autocovariance
cannot be distinguished from that of a MA model, which has significant conse-
quences for model selection.

A different autocovariance structure is obtained when the autoregressive
component is of order one.

Example 3. Given Xt ∼ SETARMA(2;1,0;0,0) , γ(k) in (21) is

γ(k) = pk

σ2
1

(
φ

(1)
1

)k

1−
(
φ

(1)
1

)2 +(p− pk)σ1σ2

(
φ

(1)
1

)k

+(pk− p2)

(
φ

(1)
0

1− φ
(1)
1

− φ
(2)
0

)2

.

(26)
If both regimes have an autoregressive component of order 1, then the
SETARMA(2; 1,1; 0,0) model becomes:

Xt =
(
φ

(1)
0 + φ

(1)
1 X

(1)
t−1 + etσ1

)
It−d +

(
φ

(2)
0 + φ

(2)
1 X

(2)
t−1 + etσ2

)
(1 − It−d),

and so

γ(k) = pk

σ2
1

(
φ

(1)
1

)k

1−
(
φ

(1)
1

)2 + (1− 2p + pk)
σ2

2

(
φ

(2)
1

)k

1−
(
φ

(2)
1

)2 (27)

+ (p− pk)σ1σ2

(
φ

(1)
1

)k

+
(
φ

(2)
1

)k

1−
(
φ

(1)
1 φ

(2)
1

)

+ (pk − p2)

(
φ

(1)
0

1− φ
(1)
1

− φ
(2)
0

1− φ
(2)
1

)2

.
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More general results are obtained when a SETARMA(2; 1,0; 0,1) is consid-
ered whose autocovariances are given, in the case of k = 1, by

γ(1) = p1
σ2

1φ
(1)
1

1− (φ(1)
1 )2

− (1− 2p + p1)σ2
2θ

(2)
1 (28)

+ (p− p1)σ1σ2φ
(1)
1

[
1− θ

(2)
1

(
φ

(1)
1 − 1

)]

+ (p1 − p2)

(
φ

(1)
0

1− φ
(1)
1

− φ
(2)
0

)2

and, when k > 1, by

γ(k) = pk
σ2

1(φ(1)
1 )k

1− (φ(1)
1 )2

+ (p− pk)σ1σ2

(
φ

(1)
1

)k (
1− θ

(2)
1 φ

(1)
1

)

+ (pk − p2)

(
φ

(1)
0

1− φ
(1)
1

− φ
(2)
0

)2

. (29)

By placing the results (14) and (21) in (20), the autocorrelation ρ(k) for
model (11) is obtained, which assumes different forms when the orders pi

and qi (i = 1, 2) of the two regimes are selected. Based on these results, the
autocorrelations of some SETARMA models are presented in the following
section.

4.1 The Autocorrelation of SETARMA Models

Given a SETARMA(2; 1,1; 1,1) model with no intercepts, the numerator of
the autocorrelation (20) is such that for k = 1:

γi(1) =
σ2
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whereas, more generally, when k > 1

γi(k) = cov
[
X
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t X
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)2 , for i = 1, 2,
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γ12(k) = cov
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Finally the variance at its denominator is

V ar(Xt) = pσ1
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From the previous results, it can be shown that autocorrelation ρ(k) of the
SETARMA(2; 1,1; 1,1) model under analysis tend to zero as k increases:

lim
k→∞

ρ(k) = 0,

and so the autocorrelation between Xt and Xt±k is zero as the temporal lag
|k| grows.

These results can be clearly observed in frame (b) of Fig. 2, where the
correlogram of the series generated from a SETARMA(2; 1,1; 1,1) model is
portrayed, with Xt given by

Xt =

{
0.6X

(1)
t−1 + e

(1)
t − 0.4e

(1)
t−1 Xt−1 ≥ 0,

−0.6X
(2)
t−1 + e

(2)
t + 0.4e

(2)
t−1 Xt−1 < 0,

(30)

where e
(1)
t = et, e

(2)
t = 0.5et and {et} is a white-noise process with et ∼

N(0, 1), for t = 1, 2, . . . , 10000.
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Fig. 2. Frame (a): Sample of the generated series of length 500; Frame (b): Correl-
ogram of the generated series



140 Alessandra Amendola, Marcella Niglio and Cosimo Vitale

-0
.5

0
.0

0
.5

1
.0

A
C

F

(b)(a)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
C

F

Second RegimeFirst Regime

0 10 155 0 10 155

Fig. 3. Correlograms of the generated data which belong to the first and second
regime [frames (a) and (b) respectively]

The sample autocorrelation, which decreases exponentially to zero, gives
useful information about the dependence structure of the series under analysis.
As Tong (1990) has indicated, this can be considered a first step in investi-
gating the dependence among the Xt’s which needs to be evaluated with more
sophisticated instruments in order to avoid model misspecification. Further it
is informative for the identification of the order of the two regimes when
the threshold delay d and the threshold value r are known and therefore the
correlograms of the values which belong to each regime can be observed—see
frames (a) and (b) in Fig. 3.

5 Conclusions

In time series analysis, the autocorrelation function is a tool for studying the
dependence structure of the data, which can also suggest how they should be
modelled. This has provided the motive for deriving the exact form of the
SETARMA autocorrelation function ρ(k) where by the dependence structure
of this family of processes can be investigated. The results obtained also high-
light the way in which diagnostic tools, based on ρ(k), can be used to deter-
mine the extent to which the generating process departs from the linearity,
which can be helpful in identifying a SETARMA.
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Trend Estimation and De-Trending
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Summary. An account is given of a variety of linear filters which can be used
for extracting trends from economic time series and for generating de-trended
series. A family of rational square-wave filters is described which enable designated
frequency ranges to be selected or rejected. Their use is advocated in preference to
other filters which are commonly used in quantitative economic analysis.

Key words: Linear filters, economic time series, extracting trends

1 Introduction: The Variety of Linear Filters

Whenever we form a linear combination of successive elements of a discrete-
time signal y(t) = {yt; t = 0,±1,±2, . . .}, we are performing an operation
which is described as linear filtering. Such an operation can be represented by
the equation

x(t) = ψ(L)y(t) =
∑

j

ψjy(t− j), (1)

wherein
ψ(L) =

{
· · ·+ ψ−1L

−1 + ψ0I + ψ1L + · · ·
}
, (2)

is described as the filter.
The effect of the operation it to modify the signal y(t) by altering the

amplitudes of its cyclical components and by advancing or delaying them
in time. These modifications are described, respectively, as the gain effect
and the phase effect of the filter. The gain effect is familiar through the
example of the frequency-specific amplification of sound recordings which can
be achieved with ordinary domestic sound systems. A phase effect in the form
of a time delay is bound to accompany any signal processing that takes place
in real time.

In quantitative economic analysis, filters are used for smoothing data
series, which is a matter of attenuating or even discarding the high-frequency
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components of the series and preserving the low-frequency components. The
converse operation, which is also common, is to extract and discard the low-
frequency trend components so as to leave a stationary sequence of residuals,
from which the dynamics of short-term economic relationships can be esti-
mated more easily.

As it stands, the expression under (2) represents a Laurent series
comprising an indefinite number of terms in powers of the lag operator L
and its inverse L−1 = F whose effects on the sequence y(t) are described by
the equations Ly(t) = y(t− 1) and L−1y(t) = Fy(t) = y(t + 1).

In practice, ψ(L) often represents a finite polynomial in positive powers
of L, which is described as a one-sided moving-average operator. Such a filter
can only impose delays upon the components of y(t).

Alternatively, the expression ψ(L) might stand for the series expansion of
a rational function δ(L)/γ(L); in which case the series is liable to comprise
an indefinite number of ascending powers of L, beginning with L0 = I. Such
a filter is realised via a process of feedback, which may be represented by the
equation

γ(L)x(t) = δ(L)y(t), (3)

or, more explicitly, by

x(t) = δ0y(t) + δ1y(t− 1) + · · ·+ δdy(t− d) (4)
−γ1x(t− 1)− · · · − γgx(t − g).

Once more, the filter can only impose time delays upon the components of
x(t); and, because the filter takes a rational form, there are bound to be
different delays at the various frequencies.

Occasionally, a two-sided symmetric filter in the form of

ψ(L) = δ(F )δ(L) = ψ0I + ψ1(F + L) + · · ·+ ψd(F d + Ld) (5)

is employed in smoothing the data or in eliminating its seasonal components.
The advantage of such a filter is the absence of a phase effect. That is to say,
no delay is imposed on any of the components of the signal. The so-called
Cramér–Wold factorisation which sets ψ(L) = δ(F )δ(L), and which must be
available for any properly-designed filter, provides a straightforward way of
explaining the absence of a phase effect. For the factorisation enables the
transformation of (1) to be broken down into two operations:

(i) z(t) = δ(L)y(t) and (ii) x(t) = δ(F )z(t). (6)

The first operation, which runs in real time, imposes time delays on every
component of x(t). The second operation, which works in reversed time,
imposes an equivalent reverse-time delay on each component. The reverse-
time delays, which are advances in other words, serve to eliminate the corre-
sponding real-time delays.
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The processed sequence x(t) may be generated via a single application
of the two-sided filter ψ(L) to the signal y(t), or it may be generated in
two operations via the successive applications of δ(L) to y(t) and δ(F ) to
z(t) = δ(L)y(t). The question of which of these techniques has been used to
generate y(t) in a particular instance should be a matter of indifference.

The final species of linear filter that may be used in the processing of
economic time series is a symmetric two-sided rational filter of the form

ψ(L) =
δ(F )δ(L)
γ(F )γ(L)

. (7)

Such a filter must, of necessity, be applied in two separate passes running
forwards and backwards in time and described, respectively, by the equations

(i) γ(L)z(t) = δ(L)y(t) and (ii) γ(F )x(t) = δ(F )z(t). (8)

Such filters represent a most effective way of processing economic data in
pursuance of a wide range of objectives.

The essential aspects of linear filtering are recounted in numerous texts
devoted to signal processing. Two that are worthy of mention are by Haykin
(1989) and by Oppenheim and Schafer (1989). The text of Pollock (1999)
bridges the gap between signal processing and time-series analysis.

In this paper, we shall concentrate on the dual objectives of estimating
economic trends and of de-trending data series. However, before we present
the methods that we wish to advocate, it seems appropriate to provide a
critical account of some of the methods that are in common use.

2 Differencing Filters

In quantitative economics, the traditional means of reducing a time series to
stationarity has been to take as many differences of the series as are necessary
to eliminate the trend and to generate a series that has a convergent autoco-
variance function. A sequence of d such operations can be represented by the
equation

x(t) = (I − L)dy(t). (9)

This approach to trend-elimination has a number of disadvantages, which can
prejudice the chances of using the processed data successfully in estimating
economic relationships.

The first of the deleterious effects of the difference operator, which is easily
emended, is that it induces a phase lag. Thus, when it is applied to data
observed quarterly, the operator induces a time lag of one-and-a-half months.
To compensate for the effect, the differenced data may be shifted forwards in
time to the points that lie midway between the observations. When applied
twice, the operator induces a lag of three months. In that case, the appropriate
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recourse in avoiding a phase lag is to apply the operator both in real time and
in reversed time. The resulting filter is

(I − F )(I − L) = −F + 2I − L, (10)

which is a symmetric two-sided filter with no phase effect.
As Fig. 1 shows, this filter serves to attenuate the amplitude of the compo-

nents of y(t) over a wide range of frequencies. It also serves to increase the
amplitude of the high-frequency components. If the intention is only to remove
the trend from the data, then the amplitude of these components should not
be altered. In order not to affect the high-frequency components, the filter
coefficients must be scaled by a factor of 0.25.

To understand this result, one should consider the transfer-function of
the resulting filter, which is obtained by replacing the lag operator L by the
complex argument z−1 to give

ψD(z) =
1
4
(
− z + 2− z−1

)
. (11)

The effect of the filter upon the component of the highest observable frequency,
which is the so-called Nyquist frequency of ω = π, is revealed by setting
z = exp{iπ}, which creates the filter’s frequency-response function. This is

ψD(eiπ) =
1
4

{
2− (eiπ + e−iπ)

}
(12)

=
1
4

{
2− 2 cos(π)

}
= 1.

Thus, the gain of the filter, which is the factor by which the amplitude of a
cyclical component is altered, is unity at the frequency ω = π, which is what
is required.

0

0.25

0.5

0.75

1

0 π/2−π/2 π−π

B

D

S

Fig. 1. The frequency-response functions of the lowpass filter ψS(z) = 1
4
(z+2+z−1),

the highpass filter ψD(z) = 1
4
(−z + 2 − z−1) and the binomial filter ψB(z) = 1
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(1 + z)3(1 + z−1)3
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The condition that has been fulfilled by the filter may be expressed most
succinctly by writing |ψD(−1)| = 1, where the vertical lines denote the
operation defined by

|ψ(z)| =
√

ψ(z)ψ(z−1), (13)

which, in the case where z = exp{iω}, amounts to taking the complex
modulus. In that case, z is located on the unit circle; and, when it is expressed
as a function of ω, |ψ(exp{iω})| becomes the so-called amplitude-response
function, which indicates the absolute value of the filter gain at each frequency.

In the case of the phase-neutral differencing filter of (10), as in the
case of any other phase-free filter, the condition ψ(z) = ψ(z−1) is fulfilled.
This condition implies that the transfer function ψ(z) = |ψ(z)| is a non-
negative real-valued function. Therefore, the operation of finding the modulus
is redundant. In general, however, the transfer function is a complex-valued
function ψ(z) = |ψ(z)| exp{iθ(ω)} whose argument θ(ω), evaluated at a
particular frequency, corresponds to the phase shift at that frequency.

Observe that the differencing filter also obeys the condition |ψD(1)| = 0.
This indicates that the gain of the filter is zero at zero frequency, which corre-
sponds to the fact that it annihilates a linear trend, which may be construed
as a zero-frequency component.

The adjunct of the highpass trend-removing filter ψD(z) is a comple-
mentary lowpass trend-estimation or smoothing filter defined by

ψS(z) = 1− ψD(z) =
1
4
(
z + 2 + z−1

)
. (14)

As can be seen from Fig. 1, the two filters ψS(z) and ψD(z) bear a relation of
symmetry, with is to say that, when they are considered as functions on the
interval [0, π], they represent reflections of each other about a vertical axis
drawn through the frequency value of ω = π/2. The symmetry condition can
be expressed succinctly via the equations ψS(−z) = ψD(z) and
ψD(−z) = ψS(z).

The differencing filter ψD(z) = 1
4 (1 − z)(1 − z−1) and its complement

ψS(z) = 1
4 (1 + z)(1 + z−1) can be generalised in a straightforward manner

to generate higher-order filters. Thus, we may define a binomial lowpass filter
via the equation

ψB(z) =
1
4n

(1 + z)n(1 + z−1)n. (15)

This represents a symmetric two-sided filter whose coefficients are equal to
the ordinates of the binomial probability function b(2n; p = 1

2 , q = 1
2 ). The

gain or frequency response of this filter is depicted in Fig. 1 for the case where
2n = 6.

An n increases, the profile of the coefficients of the binomial filter tends
increasingly to resemble that of a Gaussian normal probability density func-
tion. The same is true of the profile of the frequency-response function defined
over the interval [−π, π], which is the Fourier transform of the sequence of
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coefficients. In this connection, one might recall that the Fourier (integral)
transform of a Gaussian distribution is itself a Gaussian distribution. As n
increases, the span of the filter coefficients widens. At the same time, the
dispersion of the frequency-response function diminishes, with the effect that
the filter passes an ever-diminishing range of low-frequency components.

It is clear that, for the family of binomial filters, the symmetry of the
relationship between the highpass and lowpass filters prevails only in the case
of n = 1. Thus, if ψC(z) = 1−ψB(z), then, in general, ψC(z) �= ψB(−z). This
is to be expected from the characterisation that we have given above.

It remains to conclude this section by demonstrating the effect that the
simple differencing filter of (10) is liable to have on a typical economic time
series. An example is provided by a series of monthly measurements on the
U.S. money stock from January 1960 to December 1970. Over the period in
question, the stock appears to grow at an accelerating rate.

Figure 2 shows the effect of fitting a polynomial of degree five in the
temporal index t to the logarithms of the data. This constitutes a rough-and-
ready means of estimating the trend.

The periodogram of the residuals from the polynomial regression is
displayed in Fig. 3. Here, there is evidence of a strong seasonal component at
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Fig. 2. The logarithms of 132 monthly observations on the U.S. money stock with
an interpolated polynomial time trend of degree 5
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Fig. 3. The periodogram of the residuals from fitting a 5th degree polynomial time
trend to the logarithms of the U.S. money stock
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the frequency of ω = π/6. Components of a lesser amplitude are also evident
at the harmonic frequencies of ω = π/3, π/2, 2π/3, and there is a barely
perceptible component at the frequency of ω = 5π/6.

Apart from these components, which are evidently related to an annual
cycle in the money stock, there is a substantial low-frequency component,
which spreads over a range of adjacent frequencies and which attains its
maximum amplitude at a frequency that corresponds to a period of roughly
four years. This component belongs to the trend; and the fact that it is evident
in the periodogram of the residuals is an indication of the inadequacy of the
polynomial as a means of estimating the trend.

Figure 4 shows the periodogram of the logarithmic money-stock sequence
after is has been subjected to the differencing filter of (10). As might be
expected, the effect of the filter has been to remove the low-frequency trend
components. However, it also has an effect which spreads into the mid and
high-frequency ranges. In summary, we might say that the differencing filter
has destroyed or distorted much of the information that would be of economic
interest. In particular, the pattern of the seasonal effect has been corrupted.
This distortion is liable to prejudice our ability to build effective forecasting
models that are designed to take account of the seasonal fluctuations.

One might be tempted to use the lowpass binomial filter, defined under
(15), as a means of extracting the trend. However, as Fig. 1 indicates, even
with a filter order of 6, there would be substantial leakage from the seasonal
components into the estimated trend; and we should need to deseasonalise the
data before applying the filter.

In the ensuing sections, we shall describe alternative procedures for trend
extraction and trend estimation. The first of these procedures, which is the
subject of the next section, is greatly superior to the differencing procedure.
Nevertheless, it is still subject to a variety of criticisms. The procedure of the
ultimate section is the one which we shall recommend.
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Fig. 4. The periodogram of a sequence obtained by applying the second-order differ-
encing filter to the logarithms of the U.S. money stock
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3 Notch Filters

The binomial filter ψB(z), which we have described in the previous section,
might be proposed as a means of extracting the low-frequency components of
an economic time series, thereby estimating the trend. The complementary
filter, which would then serve to generate the de-trended series, would take
the form of ψC(z) = 1− ψB(z).

Such filters, however, would be of limited use. In order to ensure that a
sufficiently restricted range of low-frequency components are passed by the
binomial filter, a large value of n would be required. This would entail a filter
with numerous coefficients and a wide time span. When a two-sided filter of
2n + 1 coefficients reaches the end of the data sample, there is a problem of
overhang. Either the final n sample elements must remain unprocessed, or else
n forecast values must be generated in order to allow the most recent data to
be processed. The forecasts, which could be provided by an ARIMA model,
for example, might be of doubtful accuracy.

In applied economics, attention is liable to be focussed on the most recent
values of a data series; and therefore a wide-span symmetric filter, such as
the binomial filter, is at a severe disadvantage. It transpires that methods are
available for constructing lowpass filters which require far fewer parameters.

To describe such methods, let us review the original highpass differencing
filter of (10). Such a filter achieves the effect of annihilating a trend component
by placing a zero of the function ψ(z) on the unit circle at the point z = 1,
which corresponds to a frequency value of ω = 0. Higher-order differencing
filters are obtained by placing more than one zero at this location. However,
the effect of the zeros is likely to be felt over the entire frequency range with
the deleterious consequences that we have already illustrated with a practical
example.

In order to limit the effects of a zero of the filter, the natural recourse is
to place a pole in the denominator of the filter’s transfer function located at a
point in the complex plane near to the zero. The pole should have a modulus
that is slightly less than unity. The effect will be that, at any frequencies
remote from the target frequency of ω = 0, the pole and the zero will virtually
cancel, leaving the frequency response close to unity. However, at frequencies
close to ω = 0, the effect of the zero, which is on the unit circle, will greatly
outweigh the effect of the pole, which is inside it, and a narrow notch will be
cut in the frequency response of the transfer function.

The device that we have described is called a notch filter. It is commonly
used in electrical engineering to eliminate unwanted components, which are
sometimes found in the recordings of sensitive electrical transducers and which
are caused by the inductance of the alternating current of the mains electrical
supply. In that case, the zero of the transfer function is placed, not at z = 1,
but at some point on the unit circle whose argument corresponds to the mains
frequency Also, the pole and the zero must be accompanied by their complex
conjugates.
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The poles in the denominator of the electrical notch filter are commonly
placed in alignment with the corresponding zeros. However, the notch can
be widened by placing the pole in a slightly different alignment. Such a
recourse is appropriate when the mains frequency is unstable. Considerations
of symmetry may then dictate that there should be a double zero on the unit
circle flanked by two poles. If μ denotes a zero and κ denotes a pole, then this
prescription would be met by setting

μ1, μ2 = eiω and κ1, κ2 = ρeiω±ε with 0 < ρ < 1, (16)

where ω denotes the target frequency and ε denotes a small offset. The accom-
panying conjugate values are obtained by reversing the sign of the imaginary
number i.

The concept of a notch filter with offset poles leads directly to the idea of
a rational trend-removal filter of the form

δ(z−1)
γ(z−1)

=
(1 − z−1)2

(1− κz−1)(1 − κ∗z−1)
, (17)

where κ = ρ exp{iε} is a pole which may be specified in terms of its modulus
ρ and its argument ε, and where κ∗ = ρ exp{−iε} is its conjugate. To generate
a phase-neutral filter, this function must be compounded with the function
δ(z)/γ(z), which corresponds to the same filter applied in reversed time.
Although only two parameters ρ and ε are involved, the search for an appro-
priate specification for the filter is liable to be difficult and time-consuming
in the absence of a guiding design formula.

A notch filter, which has acquired considerable popularity amongst
economists, and which depends on only one parameter, is given by the formula

ψN (z) =
δ(z)δ(z−1)
γ(z)γ(z−1)

=
(1− z)2(1 − z−1)2

(1− z)2(1− z−1)2 + λ−1
. (18)

The placement of its poles and zeros within the complex plane is illustrated
in Fig. 5. The complement of the filter, which is specified by

ψP (z) = 1− ψN (z) =
λ−1

(1− z)2(1− z−1)2 + λ−1
(19)

is know to economists as the Hodrick–Prescott smoothing filter.
The filter was presented originally by Hodrick and Prescott (1980) in a

widely circulated discussion paper. The paper was published as recently as
(1997). Examples of the use of this filter have been provided by Kydland and
Prescott (1990), King and Rebelo (1993) and by Cogley and Nason (1995).

The Hodrick–Prescott filter has an interesting heuristic. It transpires that
it is the optimal estimator of the trajectory of a second-order random walk
observed with error. Its single adjustable parameter λ−1 corresponds to the
signal-to-noise ratio, which is the ratio of the variance of the white-noise
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Fig. 5. The pole–zero diagram of the real-time components of the notch filter ψN

(left) and of the Hodrick–Prescott filter ψP = 1 − ψN (right) in the case where
λ = 64. The poles are marked by crosses and, in the case of the notch filter, the
double zero at z = 1 is marked by concentric circles

process that drives the random walk and the variance of the error that obscures
its observations. It is usual to describe λ as the smoothing parameter.

The filter is also closely related to the Reinsch (1976) smoothing spline,
which is used extensively in industrial design. With the appropriate choice of
the smoothing parameter, the latter represents the optimal estimator of the
underlying trajectory of an integrated Wiener process observed with error.

The effect of increasing the value of λ in the formula for the smoothing
filter is to reduce the range of the low-frequency components that are passed
by the filter. The converse effect upon the notch filter is to reduce the width
of the notch that impedes the passage of these components. These two effects
are illustrated in Figs. 6 and 7, which depict the frequency-response functions
of the two filters. Figure 8 shows the trajectory of the poles of the filter as a
function of the value of λ.

In order to implement either the smoothing filter or the notch filter, it is
necessary to factorise their common denominator to obtain an expression for
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Fig. 6. The frequency-response function of the notch filter ψN for various values of
the smoothing parameter λ



Trend Estimation and De-Trending 153

0.00

0.25

0.50

0.75

1.00

116

464

0 π/4 π/2 π3π/4

Fig. 7. The frequency-response function of the Hodrick–Prescott smoothing filter
ψP for various values of the smoothing parameter λ
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Fig. 8. The trajectory in the complex plane of a pole of the norch filter ψN . The
pole approaches z = 1 as λ−1 → 0

γ(z). Since z2γ(z)γ(z−1) is a polynomial of degree four, one can, in principle,
find analytic expressions for the poles which are in terms of the smoothing
parameter λ. Alternatively, one may apply the iterative procedures which are
used in the obtaining the Cramér–World factorisation of a Laurent polyno-
mial. This is, in fact, how Fig. 8 has been constructed.

The Hodrick–Prescott smoothing filter has been subjected to criticisms
from several sources. In particular, it has been claimed—by Harvey and Jaeger
(1993) amongst others—that thoughtless de-trending using the filter can lead
investigators to detect spurious cyclical behaviour in economic data. The claim
can only be interpreted to mean that, sometimes, the notch filter will pass
cyclical components which ought to be impeded and attributed to the trend.
One might say, in other words, that in such circumstances, the trend has been
given a form which is too inflexible. This problem, which cannot be regarded
as a general characteristic of the filter, arises from a mismatch of the chosen
value of the smoothing parameter with the characteristics of the data series.
However, it must be admitted that it is often difficult to find an appropriate
value for the parameter.

A more serious shortcoming of the filter concerns the gradation between
the stopband, which is the frequency range which is impeded by the filter,
and the passband which is the frequency range where the components of a
series are unaffected by the filter. This gradation may be too gentle for some
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purposes, in which case there can be no appropriate choice of value for the
smoothing parameter.

In order to construct a frequency-selective filter which is accurately
attuned to the characteristics of the data, and which can discriminate
adequately between the trend and the residue, a more sophisticated method-
ology may be called for. We shall attempt to provide this in the ensuing
sections of the paper.

4 Rational Square-Wave Filters

In the terminology of digital signal processing, an ideal frequency-selective
filter is one for which the frequency response is unity over a certain range of
frequencies, described as the passband, and zero over the remaining frequen-
cies, which constitute the stopband. In a lowpass filter ψL, the passband covers
a frequency interval [0, ωc] ranging from zero to a cut-off point. In the comple-
mentary highpass filter ψH , it is the stopband which stands on this interval.
Thus

|ψL(eiω)| =
{

1, if ω < ωc

0, if ω > ωc
and |ψH(eiω)| =

{
0, if ω < ωc

1, if ω > ωc.
(20)

In this section, we shall derive a pair of complementary filters that fulfil this
specification approximately for a cut-off frequency of ωc = π/2. Once we have
designed these prototype filters, we shall be able to apply a transformation
that shifts the cut-off point from ω = π/2 to any other point ωc ∈ [0, π].

The idealised conditions of (20), which define a periodic square wave, are
impossible to fulfil in practice. In fact, the Fourier transform of the square
wave is an indefinite sequence of coefficients defined over the positive and
negative integers; and, in constructing a practical moving-average filter, only
a limited number of central coefficients can be taken. In such a filter, the sharp
disjunction between the passband and the stopband, which characterises the
ideal filter, is replaced by a gradual transition. The cost of a more rapid
transition is bound to be an increased number of coefficients.

A preliminary step in designing a pair of complementary filters is to draw
up a list of specifications that can be fulfilled in practice. We shall be guided
by the following conditions:

(i) ψL(z) + ψH(z) = 1, Complementarity (21)

(ii) ψL(−z) = ψH(z), ψH(−z) = ψL(z), Symmetry

(iii) ψL(z−1) = ψL(z), ψH(z−1) = ψH(z), Phase-Neutrality

(iv) |ψL(1)| = 1, |ψL(−1)| = 0, Lowpass Conditions

(v) |ψH(1)| = 0, |ψH(−1)| = 1. Highpass Conditions
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There is no reference here to the rate of the transition from the passband to
the stopband. In fact, the condition under (iv) and (v) refer only to the end
points of the frequency range [0, π], which are the furthest points from the
cut-off.

Observe that the symmetry condition ψL(−z) = ψH(z) under (ii) neces-
sitates placing the cut-off frequency at ωc = π/2. The condition implies that,
when it is reflected about the axis of ωc = π/2, the frequency response of
the lowpass filter becomes the frequency response of the highpass filter. This
feature is illustrated by Fig. 10.

It will be found that all of the conditions of (21) are fulfilled by the highpass
differencing filter ψD, defined under (11), in conjunction with the complemen-
tary lowpass smoothing filter ψS = 1 − ψD, defined under (14). However, we
have already rejected ψD and ψS on the grounds that their transitions between
the passband to the stopband are too gradual.

In order to minimise the problem of spectral leakage whilst maintaining a
transition that is as rapid as possible, we now propose to fulfil the conditions
of (21) via a pair of rational functions that take the forms of

ψL(z) =
δL(z)δL(z−1)
γ(z)γ(z−1)

and ψH(z) =
δH(z)δH(z−1)
γ(z)γ(z−1)

. (22)

The condition of phase neutrality under (iii) is automatically satisfied by these
forms. We propose to satisfy the lowpass and highpass conditions under (iv)
and (v) by specifying that

δL(z) = (1 + z)n and δH(z) = (1− z)n. (23)

Similar specifications are also to be found in the binomial filter ψB of (15)
and in the notch filter ψN of (18).

Given the specifications under (22), it follows that the symmetry condi-
tion of (ii) will be satisfied if and only if every root of γ(z) = 0 is a purely
imaginary number. It follows from (i) that the polynomial γ(z) must fulfil the
condition that

γ(z)γ(z−1) = δL(z)δL(z−1) + δH(z)δH(z−1). (24)

On putting the specifications of (23) and (24) into (22), we find that

ψL(z) =
(1 + z)n(1 + z−1)n

(1 + z)n(1 + z−1)n + (1− z)n(1− z−1)n
(25)

=
1

1 +
(

i
1− z

1 + z

)2n
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and that

ψH(z) =
(1 − z)n(1 − z−1)n

(1 + z)n(1 + z−1)n + (1− z)n(1− z−1)n
(26)

=
1

1 +
(

i
1 + z

1− z

)2n .

These will be recognised as instances of the Butterworth filter, which is
familiar in electrical engineering—see, for example, Roberts and Mullis (1987).

The Butterworth filter, in common with the Hodrick–Prescott filter can
also be derived by applying the Wiener–Kolmogorov theory of signal extrac-
tion to an appropriate statistical model. In that context, the filter represents a
device for obtaining the minimum-mean-square-error estimate of the compo-
nent in question. See Kolmogorov (1941) and Wiener (1950) for the original
expositions of the theory and Whittle (1983) for a modern account.

A defining characteristic of the Wiener–Kolmogorov filters is the condi-
tion of complementarity of (21) (i). On that basis, we might also regard the
complementary binomial filters ψD(z) and ψS(z) of (11) and (15), respectively,
as Wiener–Kolmogorov filters; but they are unusual in being represented by
polynomials of finite degree, whereas filters of this class are more commonly
represented by rational functions.

Since δL(z) and δH(z) are now completely specified, it follows that γ(z)
can be determined via the Cramér–Wold factorisation of the polynomial of
the RHS of (24). However, it is relatively straightforward to obtain analytic
expressions for the roots of the equation γ(z)γ(z−1) = 0. The roots come in
reciprocal pairs; and, once they are available, they may be assigned unequiv-
ocally to the factors γ(z) and γ(z−1). Those roots which lie outside the unit
circle belong to γ(z) whilst their reciprocals, which lie inside the unit circle,
belong to γ(z−1). Therefore, consider the equation

(1 + z)n(1 + z−1)n + (1− z)n(1− z−1)n = 0, (27)

which is equivalent to the equation

1 +
(

i
1− z

1 + z

)2n

= 0. (28)

Solving the latter for

s = i
1− z

1 + z
(29)

is a matter of finding the 2n roots of −1. These are given by

s = exp
{ iπj

2n

}
, where j = 1, 3, 5, . . . , 4n− 1, (30)

or j = 2k − 1; k = 1, . . . , 2n.

The roots correspond to a set of 2n points which are equally spaced around
the circumference of the unit circle. The radii, which join the points to the
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centre, are separated by angles of π/n; and the first of the radii makes an
angle of π/(2n) with the horizontal real axis.

The inverse of the function s = s(z) is the function

z =
i− s

i + s
=

i(s + s∗)
2− i(s− s∗)

. (31)

Here, the final expression comes from multiplying top and bottom of the
second expression by s∗ − i = (i + s)∗, where s∗ denotes the conjugate of
the complex number s, and from noting that ss∗ = 1. On substituting the
expression for s from (29), it is found that the solutions of (28) are given, in
terms of z, by

zk = i
cos{π(2k − 1)/2n}

1 + sin{π(2k − 1)/2n} , where k = 1, . . . , 2n. (32)

The roots of γ(z−1) = 0 are generated when k = 1, . . . , n. Those of γ(z) = 0
are generated when k = n + 1, . . . , 2n.

Figure 9 shows the disposition in the complex plane of the poles and
zeros of the prototype lowpass filter ψ(z)L for the case where n = 6, whilst
Fig. 10 shows the gain of this filter together with that of the complementary
filter ψ(z)H .
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Fig. 9. The pole–zero diagrams of the lowpass square-wave filters for n = 6 when
the cut-off is at ω = π/2 (left) and at ω = π/8
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Fig. 10. The frequency-responses of the prototype square-wave filters with n = 6
and with a cut-off at ω = π/2
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5 Frequency Transformations

The object of the filter ψL(z) is to remove from a time series a set of trend
components whose frequencies range from ω = 0 to a cut-off value of ω = ωc.
The prototype version of the filter has a cut-off at the frequency ω = π/2.
In order to convert the prototype filter to one that will serve the purpose,
a means must be found for mapping the frequency interval [0, π/2] into the
interval [0, ωc]. This can be achieved by replacing the argument z, wherever
it occurs in the filter formula, by the argument

g(z) =
z − α

1− αz
, (33)

where α = α(ωc) is an appropriately specified parameter.
The function g(z) fulfils the following conditions:

(i) g(z)g(z−1) = 1, (34)

(ii) g(z) = z if α = 0,

(iii) g(1) = 1 and g(−1) = −1,

(iv) Arg
{
g(z)

}
≥ Arg{z} if α > 1,

(v) Arg
{
g(z)

}
≤ Arg{z} if α < 1.

The conditions (i) and (ii) indicate that, if g(z) �= z, then the modulus of the
function is invariably unity. Thus, as z encircles the origin, g = g(z) travels
around the unit circle. The conditions of (iii) indicate that, if z = eiω travels
around the unit circle, then g and z will coincide when ω = 0 and when
ω = π—which are the values that bound the positive frequency range over
which the transfer function of the filter is defined. Finally, conditions (iv) and
(v) indicate that, if g �= z, then g either leads z uniformly or lags behind it as
the two travel around the unit circle from z = 1 to z = −1.

The value of α is completely determined by any pair of corresponding
values for g and z. Thus, from (33), it follows that

α =
z − g

1− gz
(35)

=
g1/2z−1/2 − g−1/2z1/2

g1/2z1/2 − g−1/2z−1/2
.

Imagine that the cut-off of a prototype filter is at ω = θ and that it is
desired to shift it to ω = κ. Then z = eiκ and g = eiθ will be corresponding
values; and the appropriate way of shifting the frequency would be to replace
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the argument z within the filter formula by the function g(z) wherein the
parameter α is specified by

α =
ei(θ−κ)/2 − e−i(θ−κ)/2

ei(θ+κ)/2 − e−i(θ+κ)/2
(36)

=
sin{(θ − κ)/2}
sin{(θ + κ)/2} .

To find an explicit form for the transformed filter, we may begin by
observing that, when g(z) is defined by (33), we have

1− g(z)
1 + g(z)

=
{

1 + α

1− α

}{
1− z

1 + z

}
. (37)

Here there is

1 + α

1− α
=

sin{(θ + κ)/2}+ sin{(θ − κ)/2}
sin{(θ + κ)/2} − sin{(θ − κ)/2} (38)

=
sin(θ/2) cos(κ/2)
cos(θ/2) sin(κ/2)

.

In the prototype filter, we are setting θ = π/2 and, in the transformed filter,
we are setting κ = ωc, which is the cut-off frequency. The result of these
choices is that

1 + α

1− α
=

1
tan(ωc/2)

. (39)

It follows that the lowpass filter with a cut-off at ωc takes the form of

ψL(z) =
1

1 + λ

(
i
1− z

1 + z

)2n (40)

=
(1 + z)n(1 + z−1)n

(1 + z)n(1 + z−1)n + λ(1 − z)n(1− z−1)n
,

where λ = {1/ tan(ωc)}2n. The same reasoning shows that the highpass filter
with a cut-off at ωc takes the form of

ψH(z) =
1

1 +
1
λ

(
i
1 + z

1− z

)2n (41)

=
λ(1− z)n(1− z−1)n

(1 + z)n(1 + z−1)n + λ(1 − z)n(1 − z−1)n
.

In applying the frequency transformation to the prototype filter, we are
also concerned with finding revised values for the poles. The conditions
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Fig. 11. The frequency-responses of the square-wave filters with n = 6 and with a
cut-off at ω = π/8

under (iii) indicate that the locations of the zeros will not be affected by
the transformation. Only the poles will be altered. Consider, therefore, the
generic factor within the denominator of the prototype. This is z − iρ, where
iρ is one of the poles specified under (30). Replacing z by g(z) and setting the
result to zero gives the following condition:

z − α

1− αz
− iρ = 0. (42)

This indicates that the pole at z = ρ will be replaced by a pole at

z =
α + iρ

1 + iρα
=

α(1 − ρ2) + iρ(1− α2)
1− ρ2α2

, (43)

where the final expression comes from multiplying top and bottom of its prede-
cessor by 1− iρα.

Figure 11, displays the pole-zero diagram of the prototype filter and of a
filter with a cut-off frequency of π/8. It also suggests that one of the effects of a
frequency transformation may be to bring some of poles closer to the perimeter
of the unit circle. This can lead to stability problems in implementing the filter,
and it is liable to prolong the transient effects of ill-chosen start-up conditions.

6 Implementing the Filters

The classical signal-extraction filters are intended to be applied to lengthy
data sets. The task of adapting them to limited samples often causes difficul-
ties and perplexity. The problems arise from not knowing how to supply the
initial conditions with which to start a recursive filtering process. By choosing
inappropriate starting values for the forwards or the backwards pass, one can
generate a so-called transient effect, which is liable, in fact, to affect all of the
processed values.

Of course, when the values of interest are remote from either end of a
long sample, one can trust that they will be barely affected by the start-
up conditions. However, in many applications, such as in the processing of
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economic data, the sample is short and the interest is concentrated at the
upper end where the most recent observations are to be found.

One approach to the problem of the start-up conditions relies upon the
ability to extend the sample by forecasting and backcasting. The additional
exta-sample values can be used in a run-up to the filtering process wherein the
filter is stabilised by providing it with a plausible history, if it is working in the
direction of time, of with a plausible future, if it is working in reversed time.
Sometimes, very lengthy extrapolations are called for—see Burman (1980),
for example.

The approach that we shall adopt in this paper is to avoid the start-up
problem altogether by deriving specialised finite-sample versions of the filters
on the basis of the statistical theory of conditional expectations.

Some of the more successful methods for treating the problem of the start-
up conditions that have been proposed have arisen within the context of the
Kalman filter and the associated smoothing algorithms—see Ansley and Kohn
(1985), De Jong (1991), and Durbin and Koopman (2001), for example. The
context of the Kalman filter is a wide one; and it seems that the necessary
results can be obtained more easily by restricting the context.

Let us begin, therefore, by considering a specific model for which the
square-wave filter would represent the optimal device for extracting the signal,
given a sample of infinite length. The model is represented by the equation

y(t) = ξ(t) + η(t) (44)

=
(1 + L)n

(1− L)2
ν(t) + (1− L)n−2ε(t),

where ν(t) and ε(t) are statistically independent sequences generated by
normal white-noise processes. This can be rewritten as

(1− L)2y(t) = (1 + L)nν(t) + (1 − L)nε(t) (45)
= ζ(t) + κ(t),

where ζ(t) = (1−L)2ξ(t) = (1+L)nν(t) and κ(t) = (1−L)2η(t) = (1−L)nε(t)
both follow noninvertible moving-average processes.

The statistical theory of signal extraction, as expounded by Whittle (1983),
for example, indicates that the lowpass filter ψL(z) of (40) will generate the
minimum mean-square-error estimate of the sequence ξ(t), provided that the
smoothing parameter has the value of λ = σ2

ε/σ2
ν . The theory also indicates

that the Hodrick–Prescott filter will generate the optimal estimate in the case
where ξ(t) is a second-order random walk and η(t) is a white-noise process:

y(t) = ξ(t) + η(t) (46)

=
1

(1 − L)2
ν(t) + η(t).
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Now imagine that there are T observations of the process y(t) of (44),
which run from t = 0, to t = T − 1. These are gathered in a vector

y = ξ + η. (47)

To find the finite-sample the counterpart of (45), we need to represent the
second-order difference operator (1−L)2 in the form of a matrix. The matrix
that finds the differences d2, . . . , dT−1 of the data points y0, y1, y2, . . . , yT−1

is in the form of

Q′ =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . −2 1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (48)

Premultiplying (47) by this matrix gives

d = Q′y = Q′ξ + Q′η (49)
= ζ + κ,

where ζ = Q′ξ and κ = Q′η. The first and second moments of the vector ζ
may be denoted by

E(ζ) = 0 and D(ζ) = σ2
νM, (50)

and those of κ by

E(κ) = 0 and D(κ) = Q′D(η)Q (51)

= σ2
εQ

′ΣQ,

where both M and Q′ΣQ are symmetric Toeplitz matrices with 2n+1 nonzero
diagonal bands. The generating functions for the coefficients of these matrices
are, respectively, δL(z)δL(z−1) and δH(z)δH(z−1), where δL(z) and δH(z) are
the polynomials defined in (23).

The optimal predictor z of the twice-differenced signal vector ζ = Q′ξ is
given by the following conditional expectation:

E(ζ|d) = E(ζ) + C(ζ, d)D−1(d)
{
d− E(d)

}
(52)

= M(M + λQ′ΣQ)−1d = z,

where λ = σ2
ε/σ2

ν . The optimal predictor k of the twice-differenced noise vector
κ = Q′η is given, likewise, by

E(κ|d) = E(κ) + C(κ, d)D−1(d)
{
d− E(d)

}
(53)

= λQ′ΣQ(M + λQ′ΣQ)−1d = k.

It may be confirmed that z + k = d.
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The estimates are calculated, first, by solving the equation

(M + λQ′ΣQ)g = d (54)

for the value of g and, thereafter, by finding

z = Mg and k = λQ′ΣQg. (55)

The solution of (54) is found via a Cholesky factorisation which sets M +
λQ′ΣQ = GG′, where G is a lower-triangular matrix. The system GG′g = d
may be cast in the form of Gh = d and solved for h. Then G′g = h can be
solved for g.

There is a straightforward correspondence between the finite-sample imple-
mentations of the filter and the formulations that assume an infinite sample.
In terms of the lag-operator polynomials, (54) would be rendered as

γ(F )γ(L)g(t) = d(t), where (56)

γ(F )γ(L) = δL(F )δL(L) + λδH(F )δH(L).

The process of solving (54) via a Cholesky decomposition corresponds to the
application of the filter in separate passes running forwards and backwards in
time respectively:

(i) γ(L)f(t) = d(t) (ii) γ(F )g(t) = f(t). (57)

The coefficients of successive rows of the Cholesky factor G converge upon the
values of the coefficients of γ(z); and, at some point, it may become appro-
priate to use the latter instead. This will save computer time and computer
memory.

The two equations under (55) correspond respectively to

z(t) = δL(F )δL(L)g(t) and k(t) = δH(F )δH(L)q(t). (58)

Our object is to recover from z an estimate x of the trend vector ξ. This
would be conceived, ordinarily, as a matter of integrating the vector z twice via
a simple recursion which depends upon two initial conditions. The difficulty
is in discovering the appropriate initial conditions with which to begin the
recursion.

We can circumvent the problem of the initial conditions by seeking the
solution to the following problem:

Minimise (y − x)′Σ−1(y − x) Subject to Q′x = z. (59)

The problem is addressed by evaluating the Lagrangean function

L(x, μ) = (y − x)′Σ−1(y − x) + 2μ′(Q′x− z). (60)
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By differentiating the function with respect to x and setting the result to zero,
we obtain the condition

Σ−1(y − x)−Qμ = 0. (61)

Premultiplying by Q′Σ gives

Q′(y − x) = Q′ΣQμ. (62)

But, from (54) and (55), it follows that

Q′(y − x) = d− z (63)
= λQ′ΣQg,

whence we get

μ = (Q′ΣQ)−1Q′(y − x) (64)
= λg.

Putting the final expression for μ into (61) gives

x = y − λΣQg. (65)

This is our solution to the problem of estimating the trend vector ξ. Notice
that there is no need to find the value of z explicitly, since the value of x can
be expressed more directly in terms of g = Σ−1z.

It is notable that there is a criterion function which will enable us to derive
the equation of the trend estimation filter in a single step. The function is

L(x) = (y − x)′Σ−1(y − x) + λx′QM−1Q′x, (66)

wherein λ = σ2
ε/σ2

ν as before. This is minimised by the value specified in (65).
The criterion function becomes intelligible when we allude to the assumptions
that y ∼ N(ξ, σ2

εΣ) and that Q′ξ = ζ ∼ N(0, σ2
νM); for then it plainly

resembles a combination of two independent chi-square variates.
The effect of the square-wave filter is illustrated in Figs. 12–14 which depict

the detrending of the logarithmic series of the U.S. money stock. It is notable
that, in contrast to periodogram of Fig. 3, which relates to the the residuals
from fitting a polynomial trend, the periodogram of Fig. 14 shows virtually
no power in the range of frequencies below that of the principal seasonal
frequency.

We should point out that our derivation and the main features of our
algorithm are equally applicable to the task of implementing the Hodrick–
Prescott (H–P) filter and the Reinsch smoothing spline. In the case of the
H–P filter, we need only replace the matrices Σ and M in the equations above
by the matrices I and Q′Q respectively. Then (52) becomes

(I + λQ′Q)−1d = z, (67)

whilst (65), which provides the estimate of the signal or trend, becomes

x = y − λQz. (68)
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Fig. 12. The data on the U.S. money stock with an interpolated trend estimated
by a lowpass square-wave filter with n = 6 and a cut off at ω = π/8
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Fig. 13. The residual sequence obtained by detrending the logarithm of the money
stock data with a square-wave filter
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Fig. 14. The periodogram of the residuals from detrending the logarithm of the
U.S. money stock data
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Non-Dyadic Wavelet Analysis
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Summary. The conventional dyadic multiresolution analysis constructs a succes-
sion of frequency intervals in the form of (π/2j , π/2j−1); j = 1, 2, . . . , n of which
the bandwidths are halved repeatedly in the descent from high frequencies to low
frequencies. Whereas this scheme provides an excellent framework for encoding and
transmitting signals with a high degree of data compression, it is less appropriate to
statistical data analysis. A non-dyadic mixed-radix wavelet analysis which allows
the wave bands to be defined more flexibly than in the case of a conventional
dyadic analysis is described. The wavelets that form the basis vectors for the wave
bands are derived from the Fourier transforms of a variety of functions that specify
the frequency responses of the filters corresponding to the sequences of wavelet
coefficients.

Key words: Wavelet analysis, signal extraction

1 Introduction: Dyadic
and Non-Dyadic Wavelet Analysis

The statistical analysis of time series can be pursued either in the time domain
or in the frequency domain, or in both. A time-domain analysis will reveal
the sequence of events within the data, so long as the events do not coincide.
A frequency-domain analysis, which describes the data in terms of sinusoidal
functions, will reveal its component sequences, whenever they subsist in sepa-
rate frequency bands. The analyses in both domains are commonly based on
the assumption of stationarity. If the assumption is not satisfied, then, often, a
transformation can be applied to the data to make them resemble a stationary
series. For a stationary series, the results that are revealed in one domain can
be transformed readily into equivalent results in the other domain.

The revolution in statistical Fourier analysis that occurred in the middle
of the twentieth century established the equivalence of the two domains under
the weak assumption of statistical stationarity. Previously, it had seemed that
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frequency-domain analysis was fully applicable only to strictly periodic func-
tions of a piecewise continuous nature. However, the additional flexibility of
statistical Fourier analysis is not sufficient to cope with phenomena that are
truly evolving through time. A sufficient flexibility to deal with evolutionary
phenomena can be achieved by combining the time domain and the frequency
domain in a so-called wavelet analysis.

The replacement of classical Fourier analysis by wave packet analysis
occurred in the realms of quantum mechanics many years ago when
Schrödinger’s time-dependent wave equation became the model for all sorts of
electromagnetic phenomena. (See Dirac 1958, for example.) This was when the
dual wave-particle analogy of light superseded the classical wave analogy that
had displaced the ancient corpuscular theory. It is only recently, at the end of
the twentieth century, that formalisms that are similar to those of quantum
mechanics have penetrated statistical time-series analysis. The result has been
the new and rapidly growing field of wavelet analysis.

The common form of dyadic wavelet analysis entails a partition of the
time-frequency plane of the sort that is depicted in Fig. 1, which relates to
the wavelet analysis of a sample of T = 27 = 128 points. The wavelets are
functions of continuous time that reside in a succession of horizontal frequency
bands. Each band contains a succession of wavelets, distributed over time,
of which the centres lie in the cells that partition the band. Within a given
band, the wavelets have a common frequency content and a common temporal
dispersion, but their amplitude, which is their vertical scale, is free to vary. As
we proceed down the frequency scale from one band to the next, the bandwidth
of the frequencies is halved and the temporal dispersion of the wavelets, which
is reflected in the width of the cells, is doubled.

The wavelet bands are created by a recursive process of subdivision. In the
first round, the frequency range is divided in two. The upper band [π/2, π]
is populated by T/2 wavelets, separated, one from the next, by two sampling
intervals, and the lower band [0, π/2] is populated by the same number of
scaling functions in a similar sequence. Thus, there are as many functions
as there are data points. In the next round, the lower half of the frequency

π/8
π/4

π/2

π

0 32 64 96 128

Fig. 1. The partitioning of the time–frequency plane according to a dyadic multires-
olution analysis of a data sequence of T = 128 = 27 points
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range is subdivided into an upper band [π/4, π/2] of wavelets and a lower
band [0, π/4] of scaling functions, with both bands containing T/4 functions,
separated by four intervals. The process can be repeated such that, in the jth
round, the jth band is divided into an upper band of wavelets and a lower
band of scaling functions, with T/2j functions in each. If that number is no
longer divisible by 2, then the process must terminate. However, if T = 2n, as
is the case for Fig. 1, then it can be continued through n rounds until the nth
band contains a single wavelet, and there is a constant function to accompany
it in place of a scaling function.

The object of the wavelet analysis is to associate an amplitude coefficient
to each of the wavelets. The variation in the amplitude coefficients enables
a wavelet analysis to reflect the changing structure of a non-stationary time
series. By contrast, the amplitude coefficients that are associated with the
sinusoidal basis functions of a Fourier analysis remain constant throughout
the sample. Accounts of wavelet analysis, which place it within the context
of Fourier analysis, have been given by Newland (1993) and by Boggess
and Narcowich (2001). Other accessible accounts have been given by Burrus,
Gopinath and Guo (1998) and by Misiti, Misiti, Oppenheim and Poggi (1997)
in the user’s guide to the MATLAB Wavelets Toolbox.

The wavelets that are employed within the dyadic scheme are usually
designed to be mutually orthogonal. They can be selected from a wide range
of wavelet families. The most commonly employed wavelets are from the
Daubechies (1988), (1992) family. Figures 2 and 3 display the level-1 D4
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Fig. 2. The Daubechies D4 wavelet function calculated via a recursive method
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Fig. 3. The Daubechies D4 scaling function calculated via a recursive method
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Daubechies wavelet and scaling function, which are generated on the first
division of the time-frequency plane, and which span the upper and the lower
halves of the frequency range [0, π], respectively. These are highly localised
continuous functions of a fractal nature that have finite supports with a
width of three sampling intervals. The Daubechies wavelets have no available
analytic forms, and they are not readily available in sampled versions. They
are defined, in effect, by the associated dilation coefficients. These express
a wavelet in one frequency band and a scaling function in the band below—
which has the same width and which stretches to zero—as a linear combination
of the more densely packed and less dispersed scaling functions that form a
basis for the two bands in combination.

The fact that the Daubechies wavelets are know only via their dilation
coefficients is no impediment to the discrete wavelet transform. This transform
generates the amplitude coefficients associated with the wavelet decompo-
sition of a data sequence; and it is accomplished via the pyramid algorithm
of Mallat (1989). The continuous-time wavelets are, in reality, a shadowy
accompaniment—and, in some ways, an inessential one—of a discrete-time
analysis that can be recognised as an application of the techniques of multi-
rate filtering, which are nowadays prevalent in communications engineering.
(For examples, see Vaidyanathan 1993, Strang and Nguyen 1997 and Vetterli
and Kovacević 1995.) In this perspective, the dilation coefficients of the
wavelets and of the associated scaling functions are nothing but the coeffi-
cients of a pair of quadrature mirror filters that are applied in successive
iterations of the pyramid algorithm. This uncommon relationship between the
continuous-time and the discrete-time aspects of the analysis is undoubtedly
the cause of many conceptual difficulties.

The Daubechies–Mallat paradigm has been very successful in application
to a wide range of signal processing problems, particularly in audio-acoustic
analysis and in the analysis of digitised picture images, which are two-
dimensional signals in other words. There are at least two reasons for this
success. The first concerns the efficiency of the pyramid algorithm, which is
ideal for rapid processing in real time. The second reason lies in the Daubechies
wavelets themselves. Their restricted supports are a feature that greatly assists
the computations. This feature, allied to the sharp peaks of the wavelets, also
assists in the detection of edges and boundaries in images.

The system of Daubechies and Mallat is not suited to all aspects of
statistical signal extraction. For a start, the Daubechies wavelets might
not be the appropriate ones to select. Their disjunct nature can contrast
with the smoother and more persistent motions that underlie the data. The
non-availability of their discretely sampled versions may prove to be an
impediment; and the asymmetric nature of the associated dilation coeffi-
cients might conflict with the requirement, which is commonly imposed upon
digital filters, that there should be no phase effects. (The absence of phase
effects is important when, for example, wavelets are used as an adjunct to
transfer-function modelling, as in the investigations of Ramsey and Lampart
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1998 and of Nason and Sapatinas 2002.) A more fundamental difficulty lies in
the nature of the dyadic decomposition. In statistical analyses, the structures
to be investigated are unlikely to fall neatly into dyadic time and frequency
bands, such as those of Fig. 1; and the frequency bands need to be placed
wherever the phenomena of interest happen to be located.

For an example of a statistical data series that requires a more flexible form
of wavelet analysis, we might consider the familiar monthly airline passenger
data of Box and Jenkins (1976), depicted in Fig. 4, which comprises T =
144 = 32 × 24 data points. The detrended series, which is obtained by taking
the residuals from fitting a quadratic function to the logarithms of the data,
is shown in Fig. 5. The detrended data manifest a clear pattern of seasonality,
which is slowly evolving in a manner that is readily intelligible if one thinks
of the development of air travel over the period in question—the summer
peak in air travel was increasing relative to the winter peak throughout the
period. The components of the seasonal pattern lie in and around a set of
harmonically related frequencies {πj/6; j = 1, . . . , 6}. This can be seen in
Fig. 6, which displays the periodogram of the seasonal fluctuations.

In order to capture the evolving seasonal pattern, one might apply a
wavelet analysis to some narrow bands surrounding the seasonal frequen-
cies. To isolate bands extending for 5 degrees on either side of the seasonal
frequencies, (excepting the frequency of π, where there is nothing above,) one

0

200

400

600

0 25 50 75 100 125

Fig. 4. International airline passengers: monthly totals (thousands of passengers)
January 1949–December 1960: 144 observations
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Fig. 5. The seasonal fluctuation in the airline passenger series, represented by the
residuals from fitting a quadratic function to the logarithms of the series
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Fig. 6. The periodogram of the seasonal fluctuations in the airline passenger series

must begin by dividing the frequency range in 36 = 32 × 22 equal bands.
The requisite wavelets will be obtained by dilating the first-level wavelet by a
factor of 3 as well as by the dyadic factor of 2. These bands are indicated on
Fig. 6. The other choices for the bandwidths would be 6 degrees, 71

2 degrees
10, degrees and 15 degrees—the latter affording no interstices between the
bands.

2 The Aims of the Paper

The intention of this paper is to provide the framework for a flexible method
of wavelet analysis that is appropriate to nonstationary data that have been
generated by evolving structures that fall within non-dyadic frequency bands.
For this purpose, we have to consider collections of wavelets and filters that
are related to each other by dilation factors in addition to the factor of 2.
At the same time, we shall endeavour to accommodate samples of all sizes,
thereby relieving the restriction that T = 2n, which is necessary for a complete
dyadic decomposition.

We shall use the so-called Shannon wavelet as a prototype, since it is
readily amenable to dilations by arbitrary factors. Since the Shannon wavelets
are defined by a simple analytic function, their sampled versions are readily
available; and their ordinates constitute the coefficients of symmetric digital
filters that have no phase effects.

Thus, in the case of the Shannon wavelets, the connection between the
continuous-time analysis and the discrete-time analysis is uniquely straight-
forward: the sampled ordinates of the wavelets and scaling functions constitute
the filter coefficients of the discrete-time analysis, which are also the coeffi-
cients of the dilation relationships. The orthogonality conditions that affect
the Shannon wavelets are easy to demonstrate. The conditions are important
in a statistical analysis, since they enable the testing of hypotheses to proceed
on the basis of simple chi-square statistics.

The disadvantage of the Shannon wavelets is in their wide dispersion. They
have an infinite support, which is the entire real line. However, they can be
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adapted to the analysis of a finite data sequence of T points by wrapping
their sampled coefficients around a circle of circumference T and by adding
the coincident coefficients. The wrapping is achieved by sampling the corre-
sponding energy functions in the frequency domain at regular intervals. The
wavelet coefficients in the time domain may be obtained by applying the
discrete Fourier transform to the square roots of the ordinates sampled from
the energy functions.

The band limitation of the energy functions enhances the efficiency of
computations performed in the frequency domain, which entail simple multi-
plications or modulations. At the same time, it prejudices the efficiency of
computations performed in the time domain, which entail the circular convo-
lutions of sequences of length T . For this reason, we choose to conduct our
filtering operations in the frequency domain. The mixed-radix fast Fourier
transform of Pollock (1999) may be used to carry the data into the frequency
domain; and it may be used, in its inverse mode, to carry the products of the
filtering operations back to the time domain.

Despite the availability of these techniques for dealing with finite samples,
the wide dispersion of the Shannon wavelets remains one of their significant
disadvantages. Therefore, we must also look for wavelets of lesser disper-
sion. It is true that the Daubechies wavelets that have finite supports can be
adapted to a non-dyadic analysis. Nevertheless, we choose to look elsewhere
for our wavelets. Our recourse will be to derive the wavelets from energy func-
tions specified in the frequency domain. By increasing the dispersion of these
frequency-domain functions, we succeed in decreasing the dispersion of the
corresponding wavelets in the time domain.

Much of what transpires in this paper may be regarded as an attempt to
preserve the salient properties of the Shannon wavelets while reducing their
dispersion in the time domain. In particular, we shall endeavour to main-
tain the conditions of sequential orthogonality between wavelets in the same
band that are manifest amongst the Shannon wavelets. We shall also preserve
the symmetry of the wavelets. The cost of doing so is that we must forego
the conditions of orthogonality between wavelets in adjacent bands. However,
the mutual orthogonality between wavelets in non-adjacent bands will be
preserved. The latter conditions are appropriate to the analysis of spectral
structures that are separated by intervening dead spaces. The seasonal struc-
tures within the airline passenger data, revealed by Fig. 6, provide a case in
point.

Before embarking on our own endeavours, we should make some reference
to related work. First, it should be acknowledged that a considerable amount
of work has been done already in pursuit of a non-dyadic wavelet analysis. The
objective can be described as that of partitioning the time–frequency plane
in ways that differ from that of the standard dyadic analysis, represented in
Fig. 1, and of generating the wavelets to accompany the various schemes.

A program for generalising the standard dyadic analysis has led to the
so-called wavelet packet analysis, of which Wickerhauser (1994) is one of the
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principal exponents. An extensive account has also been provided by Percival
and Walden (2000). The essential aim, at the outset, is to decompose the
frequency interval [0, π] into 2j equal intervals. Thereafter, a rich variety of
strategies are available.

An alternative approach has been developed under the rubric of M -band
wavelet analysis. This uses a particular type of filter bank architecture to
create M equal subdivisions of each of the octave bands of a dyadic analysis.
Seminal contributions have been made by Gopinath and Burrus (1993) and
by Steffen, Heller, Gopinath and Burrus (1993). The work of Vaidyanathan
(1990), (1993) on filter banks has also been influential in this connection.

Next, there is the matter of the uses of wavelets in statistical analysis.
Here, the developments have been far too diverse and extensive for us to give
a reasonable list of citations. However, it is appropriate to draw attention
to a special issue of the Philosophical Transactions of the Royal Society of
London that has been devoted to the area. Amongst other pieces, it contains
an article by Ramsey (1999), which deals with application of wavelets to
financial matters, and a survey by Nason and von Sachs (1999), which covers
a wide range of statistical issues.

3 The Shannon Wavelets

The Shannon wavelet, which is also known as the sinc function, arises from an
attempt to derive a time-localised function from an ordinary trigonometrical
function. It is the result of applying a hyperbolic taper to the sine wave to give

sinc(ωt) =
sin(ωt)

πt
. (1)

Woodward (1953) was responsible for naming the sinc function. It has been
called the Shannon function in recognition of its central role in the Shannon–
Nyquist sampling theory—see, for example, Shannon and Weaver (1964) or
Boggess and Narcowich (2001).

The Figs. 7–9 plot the functions

φ(0)(t) =
sin(πt)

πt
, (2)

φ(1)(t) =
sin(πt/2)

πt
,

ψ(1)(t) =
cos(πt) sin(πt/2)

πt
,

both for t ∈ R, which is the real line, and for t ∈ I = {0,±1,±2, . . .}, which
is the set of integers representing the points at which the data are sampled.
Here, φ(0)(t) is the fundamental scaling function, whereas φ(1)(t) is the scaling
function at level 1 and ψ(1)(t) is the level-1 wavelet.
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Fig. 7. The scaling function φ(0)(t)
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Fig. 8. The scaling function φ(1)(t) = φ(0)(t/2)

These time-domain functions with t ∈ R are the Fourier transforms of the
following square-wave or boxcar functions defined in the frequency domain:

φ(0)(ω) =

⎧
⎪⎨

⎪⎩

1, if |ω| ∈ (0, π);

1/2, if ω = ±π,

0, otherwise

φ(1)(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |ω| ∈ (0, π/2);

1/
√

2, if ω = ±π/2,

0, otherwise

ψ(1)(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if |ω| ∈ (π/2, π);

1/
√

2, if ω = ±π/2,

1/2, if ω = ±π,

0, otherwise

(3)

Here and elsewhere, we are using the same symbols to denote the time-
domain functions and the frequency-domain functions that are their Fourier
transforms. The arguments of the functions alone will serve to make the
distinctions.
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Fig. 9. The wavelet function ψ(1)(t) = cos(πt)φ(0)(t/2)

Within the frequency interval [−π, π] on the real line, the points ±π and
±π/2 constitute a set of measure zero. Therefore, any finite values can be
attributed to the ordinates of the functions at these points without affecting
the values of their transforms, which are the functions of (2). It is when the
frequency-domain functions are sampled at a finite set of points, including the
points in question, that it becomes crucial to adhere to the precise specifica-
tions of (3).

When t ∈ I, the time-domain functions of (2) become sequences that
correspond to periodic functions in the frequency domain, with a period of 2π
radians. These functions are derived by superimposing copies of the aperiodic
functions of (3) displaced successively by 2π radians in both positive and
negative directions. Thus, for example, the periodic function derived from
φ(0)(ω) is

φ̃(0)(ω) =
∞∑

j=−∞
φ(0)(ω + 2πj). (4)

which is just a constant function with a value of unity.
We are defining the periodic functions in terms of the closed intervals

[(2j − 1)π, (2j + 1)π]; j ∈ I, such that adjacent intervals have a common
endpoint. This is subject to the proviso that only half the value of the ordinate
at the common endpoint is attributed to each interval. An alternative recourse,
to which we resort elsewhere, is to define the periodic functions in terms of the
non-overlapping half-open intervals such as [2π[j − 1], 2πj) and to attribute
to the included endpoint the full value of its ordinate.

The time-domain sequences also constitute the coefficients of the ideal
frequency-selective filters of which the above-mentioned periodic functions
constitute the frequency responses. Given that the frequency responses are
real-valued in consequence of the symmetry of the time-domain sequences,
they can also be described as the amplitude responses or the gain functions of
the filters. In the case of the Shannon wavelet, the periodic frequency functions
also represent the energy spectra of the wavelets.

The fundamental scaling function φ(0)(t) with t ∈ I, which is depicted in
Fig. 7, is nothing but the unit impulse sequence. Therefore, the set of sequences
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{φ(0)(t−k); t, k ∈ I}, obtained by integer displacements k of φ(0)(t), constitute
the ordinary Cartesian basis in the time domain for the set of all real-valued
time series.

The level-1 scaling function φ(1)(t) = φ(0)(t/2) of Fig. 8 is derived from the
level 0 function by a dilation that entails doubling its temporal dispersion. The
level 1 wavelet function ψ(1)(t) of Fig. 9 is derived from φ(1)(t) by a process
of frequency shifting, which involves multiplying the latter by cos(πt), which
is (−1)t when t ∈ I, which carries the function into the upper half of the
frequency range.

The set of displaced scaling sequences {φ(1)(t − 2k); t, k ∈ I}, which are
separated from each other by multiples of two points, provides a basis for the
space of all sequences that are band limited to the frequency range (0, π/2).
The corresponding set of wavelet sequences {ψ(1)(t− 2k); t, k ∈ I}, which is,
in effect, a version of the scaling set that has undergone a frequency transla-
tion, provides a basis for the upper frequency range (π/2, π). From the fact
that, with the exclusion of the boundary points, the two ranges are non-
overlapping, it follows that the two basis sets are mutually orthogonal (since
sinusoids at different frequencies are mutually orthogonal.) Therefore, the two
sets together span the full range (0, π).

The elements within the basis sets are also mutually orthogonal. To see
this, consider the fact that the boxcar frequency-response functions are idem-
potent. When multiplied by themselves they do not change, albeit that, with
the resulting change of units, they come to represent the energy spectra of
the wavelets. The time-domain operation corresponding to this frequency-
domain multiplication is autoconvolution. The time-domain functions are real
and symmetric, so their autoconvolution is the same as their autocorrelation.
Therefore, the discrete wavelet sequences are their own autocorrelation func-
tions. (We should say that, in this context, we are talking of autocorrelations
where, in strict parlance, a statistician might talk of autocovariances.)

On inspecting the graphs of these functions, we see that there are zeros
at the points indexed by k = 2t, which correspond to the conditions of
orthogonality. We may describe the mutual orthogonality of the displaced
wavelets as sequential orthogonality. Orthogonality conditions that extend
across frequency bands may be described as lateral orthogonality.

To represent these relationships algebraically, we may consider a wavelet
and its transform denoted by ψ(t) ←→ ψ(ω). The autoconvolution of the
wavelet gives the autocorrelation function ξψ(t) = ψ(t) ∗ ψ(−t) = ψ(t) ∗ ψ(t),
where the second equality is in consequence of the symmetry of the wavelet.
The corresponding operation in the frequency domain gives the modulation
product ξψ(ω) = ψ(ω)ψ(−ω) = {ψ(ω)}2, where the second equality is in
consequence of the fact that the Fourier transform of a real-valued symmetric
sequence is also real-valued and symmetric. Thus, there is

ξψ(t) = ψ(t) ∗ ψ(t)←→ ξψ(ω) = {ψ(ω)}2, (5)
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where ξψ(ω) is the energy spectrum of the wavelet. The peculiar feature of
the Shannon wavelet is that ψ(t) = ξψ(t), for all t. The corresponding boxcar
function has ψ(ω) = ξψ(ω), everywhere except at the points of discontinuity.

The conventional dyadic multiresolution wavelet analysis, represented by
Fig. 1, is concerned with a succession of frequency intervals in the form of
(π/2j , π/2j−1); j = 1, 2, . . . , n, of which the bandwidths are halved repeatedly
in the descent from high frequencies to low frequencies. By the jth round,
there will be j wavelet bands and one accompanying scaling-function band.

By applying the scheme described by Mallat (1989), known as the pyramid
algorithm, to the discrete versions of the functions, φ(1)(t) and ψ(1)(t), sets
of wavelet sequences can be generated that span these bands. The generic set
at level j, denoted by {ψ(j)(t − 2jk); t, k ∈ I}, contains mutually orthogonal
sequences that are separated by multiples of 2j points, and it is accompanied
by a set of scaling sequences {φ(j)(t − 2jk); t, k ∈ I} that span the lower
frequency band [0, π/2j). (Here, as before, t is the index of the sequence,
whereas k is the index of its displacement relative to the other wavelet
sequences within the same band.)

A dyadic wave-packet analysis extends this scheme so that, by the jth
round, there are 2j bands of equal width spanning the intervals ([�− 1]π/2j,
�π/2j); � = 1, . . . , 2j. Each such band is spanned by a set of orthogonal func-
tions {ψ(�/2j)(t−2jk); t, k ∈ I} which are separated by multiples of 2j points.
The first and the second of these bands—counting in terms of rising frequen-
cies, which reverses the dyadic convention—are spanned by the functions
{ψ(1/2j)(t − 2jk) = φ(j)(t − 2jk)} and {ψ(2/2j)(t − 2jk) = ψ(j)(t − 2jk)}
respectively, which are also found in the dyadic multiresolution wavelet
analysis.

In order to generalise such schemes, we need to consider dividing the
frequency range by other prime numbers and their products. For this purpose,
we must consider the function defined in the frequency domain by

ψ(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |ω| ∈ (α, β);

1/
√

2, if ω = ±α,±β,

0, otherwise

(6)

In case it is required to divide the range into p equal intervals, there will be
α = π(j − 1)/p and β = πj/p; j = 1, . . . , p. The corresponding time-domain
function is

ψ(t) =
1
πt
{sin(βt)− sin(αt)} =

2
πt

cos{(α + β)t/2} sin{(β − α)t/2}

=
2
πt

cos(γt) sin(δt), (7)

where γ = (α+β)/2 is the centre of the pass band and δ = (β−α)/2 is half its
width. The equality, which follows from the identity sin(A + B)− sin(A−B)
= 2 cosA sin B, suggests two interpretations. On the LHS is the difference
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Fig. 10. A wavelet within a frequency band of width π/2 running from 3π/8 to 7π/8

between the coefficients of two lowpass filters with cut-off frequencies of β
and α respectively. On the RHS is the result of shifting a lowpass filter with
a cut-off frequency of δ so that its centre is moved from ω = 0 to ω = γ.

The process of frequency shifting is best understood by taking account
of both positive and negative frequencies when considering the lowpass filter.
Then, the pass band covers the interval (−δ, δ). To convert to the bandpass
filter, two copies of the pass band are made that are shifted so that their new
centres lie at −γ and γ. The pass bands have twice the width that one might
expect. In the limiting case, the copies are shifted to the centres −π and π.
There they coincide, and we have ψ(t) = 2 cos(πt) sin(δt)/πt. To reconcile this
with formula for ψ(1)(t) of (2), wherein δ = π/2, we must divide by 2.

We shall show, in Sect. 7, that, when the interval [0, π] is partitioned by
a sequence of p frequency bands of equal width, an orthogonal basis can be
obtained for each band by displacing its wavelets successively by p elements
at a time. We shall also show that, when such a band of width π/p is shifted
in frequency by an arbitrary amount, the conditions of orthogonality will be
maintained amongst wavelets that are separated by 2p elements.

This fact, which does not appear to have been recognised previously, can
be exploited in fitting pass bands around localised frequency structures that
do not fall within the divisions of an even grid. For the present, we shall do no
more than illustrate the fact with Fig. 10, which shows the effect of translating
the Shannon scaling function φ(1)(t) of width π/2 up the frequency scale by
an arbitrary amount. It can be see that there are orthogonality conditions
affecting wavelets at displacements that are multiples of 4 points.

4 Compound Filters

The algorithms of wavelet analysis owe their efficiency to the manner in which
the various bandpass filters can be constructed from elementary component
filters. The resulting filters may be described as compound filters. The manner
in which the filters are formed is expressed more readily in the frequency
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domain than in the time domain. The subsequent translation of the compound
filters from the frequency domain to the time domain is straightforward.

Figure 11 represents, in graphical terms, the construction of the second-
level scaling function φ(2ω)φ(ω) and wavelet ψ(2ω)φ(ω). These are shown
in the third row of the diagram. The fourth row of the diagram shows the
remaining wave-packet functions, which come from dividing the domain of the
(level-1) wavelet ψ(ω) in half. The functions, which are defined over the real
line, have a period of 2π. Therefore, they extend beyond the interval [−π, π]
which covers only the central segment. The serrated edges in the diagram are
to indicate the severance of the segment from the rest of the function.

To represent the construction algebraically, we may use ψj/N (ω) to denote
the jth filter in a sequence of N filters that divide the frequency range
into equal bands, running from low frequency to high frequency. Then, the
level-1 scaling function is φ(1)(ω) = ψ1/2(ω) and the level-1 wavelet function
is ψ(1)(ω) = ψ2/2(ω). The second-level scaling function is φ(2)(ω) = φ1/4(ω),
whereas the second-level wavelet is ψ(2)(ω) = ψ2/4(ω). The algebra for the
second-level functions is as follows:

φ(2)(ω) = φ1/4(ω) = φ(1)(2ω)φ(1)(ω) = ψ1/2(2ω)ψ1/2(ω), (8)

ψ(2)(ω) = ψ2/4(ω) = ψ(1)(2ω)φ(1)(ω) = ψ2/2(2ω)ψ1/2(ω),

ψ3/4(ω) = ψ(1)(2ω)ψ(1)(ω) = ψ2/2(2ω)ψ2/2(ω),

ψ4/4(ω) = φ(1)(2ω)ψ(1)(ω) = ψ1/2(2ω)ψ2/2(ω).

The formulae for the filters at the (j + 1)th level of an ordinary dyadic
analysis, of the kind depicted in Fig. 1, are

φ(j+1)(ω) = φ(j)(2ω)φ(1)(ω) = φ(1)(2jω)φ(j)(ω), (9)

ψ(j+1)(ω) = ψ(j)(2ω)φ(1)(ω) = ψ(1)(2jω)φ(j)(ω).

The equalities can be established via recursive expansions of the formulae.
Regardless of which of the forms are taken, we get

φ(j+1)(ω) =
j∏

i=0

φ(1)(2iω) and ψ(j+1)(ω) = ψ(1)(ω)
j∏

i=1

φ(1)(2iω). (10)

The formulae of (9) can be translated into the time domain. A modulation
in the frequency domain corresponds to a convolution in the time domain.
Raising the frequency value of any function ψ(k)(ω) by a factor of n entails
interpolating n − 1 zeros between the elements of the corresponding time-
domain sequence ψ(k)(t) to give a sequence that may be denoted by ψ(k)(t ↑ n).
Thus, it can be seen that

φ(j+1)(t) = φ(j)(t ↑ 2) ∗ φ(1)(t) = φ(1)(t ↑ 2j) ∗ φ(j)(t), (11)

ψ(j+1)(t) = ψ(j)(t ↑ 2) ∗ φ(1)(t) = ψ(1)(t ↑ 2j) ∗ φ(j)(t).
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φ(ω) ψ(ω)
−π −π/2 0 π/2 π −π −π/2 0 π/2 π

φ(2ω) ψ(2ω)
−3π/4 −π/4 0 π/4 3π/4 −3π/4 −π/4 0 π/4 3π/4

φ(2ω)φ(ω) ψ(2ω)φ(ω)

−π −π/4 0 π/4 π −π −π/2 −π/4 0 π/4 π/2 π

ψ(2ω)ψ(ω) φ(2ω)ψ(ω)

−3π/4 −π/2 0 π/2 3π/4 −π −3π/4 0 3π/4 π

Fig. 11. The formation of second-level wavelets and scaling functions illustrated in
terms of their frequency-response functions

As they stand, these time-domain formulae are not practical: the sequences
φ(1)(t) and ψ(1)(t) of the ordinates of the Shannon functions are infinite and
they converge none too rapidly. The practical finite-sample versions of the
formulae will be derived in the next section.

Figure 12 shows how the dyadic scheme for forming compound filters can
be extended through successive rounds; and it portrays the subdivision of the

1 2

1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

12211221122112211221122112211221

0 8 16 24 32

Fig. 12. The scheme for constructing compound filters in the dyadic case. The
diagram highlights the construction of the filter ψ23/32(ω)
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wavelets bands to create a set of bands of equal width that cover the entire
frequency range. The figure represents five successive rounds; and it highlights
the construction of the bandpass filter which is the 23rd in a succession of 32
filters with pass bands of ascending frequency. In these terms, the filter is

ψ23/32(ω) = ψ2/2(16ω)ψ1/2(8ω)ψ2/2(4ω)ψ2/2(2ω)ψ2/2(ω). (12)

The bold lines in Fig. 12, which create a flight of steps descending from
right to left, relate to the pyramid algorithm of the ordinary dyadic multires-
olution analysis. In the jth round, the algorithm separates into two compo-
nents a filtered sequence that is associated with frequency interval (0, π/2j−1).
From the high-frequency component are derived the amplitude coefficients of
the wavelets of the jth level. The low-frequency component is passed to the
next round for further subdivision.

To see how the dyadic scheme may be generalised, consider the case where
the positive frequency range [0, π] is already divided into n equal intervals, by
virtue of n bandpass filters denoted ψ1/n(ω), . . . , ψn/n(ω). The objective is to
subdivide each interval into p sub intervals, where p is a prime number.

Imagine that there also exists a set of p bandpass filters, ψ1/p(ω),
. . . , ψp/p(ω), that partition the interval [0, π] into p equal parts. Amongst
the latter, the ideal specification of the generic bandpass filter is

ψj/p(ω) =

⎧
⎪⎨

⎪⎩

1, if |ω| ∈ Ij ,
1/2 if |ω| = (j − 1)π/p, jπ/p,

0, if |ω| ∈ Icj ,
(13)

where the open interval Ij = ([j−1]π/p, jπ/p) is the jth of the p subdivisions
of [0, π], and where Icj is the complement within [0, π] of the closed interval
Ij ∪{(j− 1)π/p, jπ/p} that includes the endpoints. But the function ψj/p(ω)
is symmetric such that ψj/p(ω − π) = ψj/p(π − ω). It also has a period of
2π such that ψj/p(ω − π) = ψj/p(ω + π). The two conditions imply that
ψj/p(π + ω) = ψj/p(π − ω). It follows that

ψj/p(π + ω) =

{
1, if |ω| ∈ Ip+1−j ,

0, if |ω| ∈ Icp+1−j ,
(14)

where Icp+1−j in the jth interval in the reverse sequence {Ip, Ip−1, . . . , I1}.
To subdivide the first of the n intervals, which is (0, π/n), into p parts,

the filters ψ1/p(nω), . . . , ψp/p(nω) are used, in which the argument ω has been
multiplied by n. These have the same effect on the first interval as the original
filters have on the interval [0, π]. To subdivide the second of the n intervals,
which is (π/n, 2π/n), the filters ψp/p(nω), . . . , ψ1/p(nω) are used, which are
in reversed order. For, in this case, ω ∈ (π/n, 2π/n) gives nω = π + λ with
λ ∈ (0, π); and, therefore, the conditions of (14) apply.

Now we may recognise that the 2π periodicity of ψj/p(ω) implies that,
amongst the n intervals that are to be sub divided, all odd-numbered intervals
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may be treated in the manner of the first interval, whereas all even-numbered
intervals may be treated in the manner of the second interval.

The generic compound filter, which has a pass band on the jth interval
out of np intervals, is specified by

ψj/pn(ω) = ψk/p(nω)ψ�/n(ω), (15)

where

� = (j div p) + 1 and k =

{
(j mod p), if � is odd;
p + 1− (j mod p), if � is even.

(16)

Here, (j div p) is the quotient of the division of j by p and (j mod p) is the
remainder. (Reference to the first two rows of Figs. 13–15 will help in verifying
this formula.)

Given a succession of prime factors, some of which may be repeated, the
formula of (15) may be used recursively to construct compound filters of a
correspondingly composite nature. However, whereas the prime factorisation
of the sample size T = p1p2 · · · pq is unique, the order of the factors is arbitrary.
By permuting the order, one can find a variety of compositions that amount
to the same bandpass filter.

Figures 13–15 represent three ways of constructing the filter ψ22/30 from
elementary components, which are from the sets {ψj/2, j = 1, 2}, {ψk/3, k =
1, 2, 3} and {ψ�/5, � = 1, 2, . . . , 5}. There are altogether 6 ways in which the
filter may be constructed; but it seems reasonable, to opt for the construction,
represented by Fig. 13, that takes the prime factors in order of descending
magnitude. In practice, the filters are represented, in the frequency domain, by
the ordinates of their frequency response functions, sampled at equal intervals;
and the ordering of the factors by declining magnitude will serve to minimise
the number of multiplications entailed in the process of compounding the
filters. This is reflected in the fact that, compared with the other figures,
Fig. 13 has the least highlighted area.

1 2 3 4 5

1 2 3 3 2 1 1 2 3 3 2 1 1 2 3

122112211221122112211221122112

0 5 10 15 20 25 30

Fig. 13. The 22nd bandpass filter out of 30 factorised as
ψ22/30(ω) = ψ2/2(15ω)ψ2/3(5ω)ψ4/5(ω)



184 Stephen Pollock and Iolanda Lo Cascio

1 2

1 2 3 3 2 1

123455432112345543211234554321

0 5 10 15 20 25 30

Fig. 14. The 22nd bandpass filter out of 30 factorised as
ψ22/30(ω) = ψ2/5(6ω)ψ2/3(2ω)ψ2/2(ω)
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Fig. 15. The 22nd bandpass filter out of 30 factorised as
ψ22/30(ω) = ψ2/2(15ω)ψ1/5(3ω)ψ3/3(ω)

Raising the frequency value of ψk/p(ω) by a factor of n entails interpolating
n − 1 zeros between every point of the corresponding time-domain sequence
ψk/p(t). The following expression indicates the correspondence between the
equivalent operations of compounding the filter in the time domain and the
frequency domain:

ψj/np(t) = {ψk/p(t) ↑ n} ∗ ψ�/n(t)←→ ψj/np(ω) = ψk/p(nω)ψ�/n(ω). (17)

When creating a compound filter via convolutions in the time domain, the
prime factors should be taken in ascending order of magnitude.

In this section, we have described a method of generating the wavelets by
compounding a series of filters. In theory, the process can be pursued either
in the time domain, via convolutions, or in the frequency domain, via modu-
lations. In the case of the Shannon wavelets, the frequency domain specifica-
tions at all levels use the same rectangular template, which is mapped onto
the appropriate frequency intervals. Therefore, is makes no difference whether
the wavelets are produced via the compounding process or directly from the
template, appropriately scaled and located in frequency.

For other wavelet specifications, a choice must be made. Either they are
generated by a process of compounding, which is generally pursued in the time
domain using a fixed set of dilation coefficients as the template, or else they
are generated in the frequency domain using a fixed energy-function template.
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The results of the two choices may be quite different. It is the latter choice
that we shall make in the remainder of this paper.

Example 1. The Daubechies D4 wavelet and the scaling function of Figs. 2
and 3 relate to a dyadic analysis that proceeds in the time domain on the
basis of a set of four dilation coefficients. The dilation coefficients for the
scaling function are p0 = (1 +

√
3)/4, p1 = (3 +

√
3)/4, p2 = (3 −

√
3)/4

and p3 = (
√

3 − 1)/4. The coefficients that are used in creating the wavelets
from the scaling functions are q0 = p3, q1 = −p3, q2 = p1 and q3 = −p0.
The sequences p(1)(t) = {pt} and q(1)(t) = {qt} may be compared to the
sequences of Shannon coefficients φ(1)(t) and ψ(1)(t) respectively. On that
basis, the following equations can be defined, which correspond to those
of (11):

p(j+1)(t) = p(j)(t ↑ 2) ∗ p(1)(t) = p(1)(t ↑ 2j) ∗ p(j)(t), (18)

q(j+1)(t) = p(j)(t ↑ 2) ∗ q(1)(t) = q(1)(t ↑ 2j) ∗ p(j)(t).

The first of the alternative forms, which entails the interpolation of a zero
between each of the coefficients of p(j)(t), corresponds to the recursive system
that has been used in generating Figs. 2 and 3. That is to say, the diagrams
have been created by proceeding through a number of iterations and then
mapping the resulting coefficients, which number 2j+1 + 2j − 2 at the jth
iteration, into the interval [0, 3]. The difference between the wavelets and the
scaling functions lies solely in the starting values. This algorithm provides a
way of seeking the fixed-point solution to the following dilation equation that
defines the D4 scaling function φD(t) with t ∈ R:

φD(t) = p0φD(2t) + p1φD(2t− 1) + p2φD(2t− 2) + p3φD(2t− 3). (19)

The second of the forms is implicated in the pyramid algorithm of Mallat
(1989). In this case, the difference between the wavelets and the scaling func-
tions lies solely in the final iteration.

5 Adapting to Finite Samples

The wavelet sequences corresponding to the ideal bandpass filters are defined
on the entire set of integers {t = 0,±1,±2, . . .} whereas, in practice, a discrete
wavelet analysis concerns a sample of T data points. This disparity can be
overcome, in theory, by creating a periodic extension of the data that replicates
the sample in all intervals of the duration T that precede and follow it. By
this means, the data value at a point t /∈ {0, 1, . . . , T − 1}, which lies outside
the sample, is provided by yt = y{t mod T}, where (t mod T ) lies within the
sample. With the periodic extension available, one can think of multiplying
the filter coefficients point by point with the data.
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As an alternative to extending the data, one can think of creating a finite
sequence of filter coefficients by wrapping the infinite sequence ψ(t) = {ψt}
around a circle of circumference T and adding the overlying coefficients to
give

ψ◦
t =

∞∑

k=−∞
ψ{t+kT} for t = 0, 1, . . . , T − 1. (20)

The inner product of the resulting coefficients ψ◦
0 , . . . , ψ◦

T−1 with the
sample points y0, . . . , yT−1 will be identical to that of the original coefficients
with the extended data. To show this, let ỹ(t) = {ỹt = y{t mod T}} denote the
infinite sequence that is the periodic extension of y0, . . . , yT−1. Then,

∞∑

t=−∞
ψtỹt =

∞∑

k=−∞

{
T−1∑

t=0

ψ{t+kT}ỹ{t+kT}

}
(21)

=
T−1∑

t=0

yt

{ ∞∑

k=−∞
ψ{t+kT}

}
=

T−1∑

t=0

ytψ
◦
t .

Here, the first equality, which is the result of cutting the sequence {ψtỹt} into
segments of length T , is true in any circumstance, whilst the second equality
uses the fact that ỹ{t+kT} = y{t mod T} = yt. The final equality invokes the
definition of ψ◦

t .
In fact, the process of wrapping the filter coefficients should be conducted

in the frequency domain, where it is simple and efficient, rather than in the
time domain, where it entails the summation of infinite series. We shall eluci-
date these matters while demonstrating the use of the discrete Fourier trans-
form in performing a wavelets analysis.

To begin, let us consider the z-transforms of the filter sequence and the
data sequence:

ψ(z) =
∞∑

t=−∞
ψtz

t and y(z) =
T−1∑

t=0

ytz
t. (22)

Setting z = exp{−iω} in ψ(z) creates a continuous periodic function in the
frequency domain of period 2π, denoted by ψ(ω), which, by virtue of the
discrete-time Fourier transform, corresponds one-to-one with the doubly infi-
nite time-domain sequence of filter coefficients.

Setting z = zj = exp{−i2πj/T }; j = 0, 1, . . . , T − 1, is tantamount to
sampling the (piecewise) continuous function ψ(ω) at T points within the
frequency range of ω ∈ [0, 2π). (Given that the data sample is defined on a set
of positive integers, it is appropriate to replace the symmetric interval [−π, π],
considered hitherto, in which the endpoints are associated with half the values
of their ordinates, by the positive frequency interval [0, 2π), which excludes
the endpoint on the right and attributesthe full value of the ordinate at zero
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frequency to the left endpoint.) The powers of zj now form a T -periodic
sequence, with the result that

ψ(zj) =
∞∑

t=−∞
ψtz

t
j (23)

=
{ ∞∑

k=−∞
ψkT

}
+
{ ∞∑

k=−∞
ψ(kT+1)

}
zj + · · ·+

{ ∞∑

k=−∞
ψ(kT+T−1)

}
zT−1
j

= ψ◦
0 + ψ◦

1zj + · · ·+ ψ◦
T−1z

T−1
j = ψ◦(zj).

There is now a one-to-one correspondence, via the discrete Fourier transform,
between the values ψ(zj); j = 0, 1, . . . , T − 1, sampled from ψ(ω) at intervals
of 2π/T , and the coefficients ψ◦

0 , . . . , ψ◦
T−1 of the circular wrapping of ψ(t).

Setting z = zj = exp{−i2πj/T }; j = 0, 1, . . . , T − 1, within y(z) creates the
discrete Fourier transform of the data sequence, which is commensurate with
the square roots of the ordinates sampled from the energy function.

To elucidate the correspondence between operations in the two domains,
we may replace z in (22) by a circulant matrix K = [e1, . . . , eT−1, e0], which is
formed from the identity matrix IT = [e0, e1, . . . , eT−1] of order T by moving
the leading vector to the end of the array. Since Kq = KT+q, the powers of the
matrix form a T -periodic sequence, as do the powers of z = exp{−i2πj/T }.
(A full account of the algebra of circulant matrices has been provided by
Pollock 2002.)

The matrix K is amenable to a spectral factorisation of the form K =
ŪDU , where

U = T−1/2W = T−1/2[exp{−i2πtj/T }; t, j = 0, . . . , T − 1] and

Ū = T−1/2W̄ = T−1/2[exp{i2πtj/T }; t, j = 0, . . . , T − 1] (24)

are unitary matrices such that UŪ = ŪU = IT , and where

D = diag{1, exp{−i2π/T }, . . . , exp{−i2π(T − 1)/T }} (25)

is a diagonal matrix whose elements are the T roots of unity, which are found
on the circumference of the unit circle in the complex plane.

Using K = ŪDU in place of z in (22) creates the following circulant
matrices:

Ψ◦ = ψ◦(K) = Ūψ◦(D)U and Y = y(K) = Ūy(D)U. (26)

The multiplication of two circulant matrices generates the circular convolution
of their elements. Thus the product

Ψ◦Y = {Ūψ◦(D)U}{Ūy(D)U} = Ūψ◦(D)y(D)U. (27)

is a matrix in which the leading vector contains the elements of the circular
convolution of {ψ◦

0 , . . . , ψ◦
T−1} and {y0, . . . , yT−1}, of which the inner product

of (21) is the first element.
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The leading vector of Ψ◦Y can be isolated by postmultiplying this matrix
by e0 = [1, 0, . . . , 0]′. But Ue0 = T−1/2We0 = T−1/2h, where h = [1, 1, . . . , 1]′

is the summation vector. Therefore,

Ψ◦Y e0 = T−1W̄{ψ◦(D)y(D)h}, (28)

where ψ◦(D)y(D)h is a vector whose elements are the products of the diagonal
elements of ψ◦(D) and y(D). Equation (28) corresponds to the usual matrix
representation of an inverse discrete Fourier transform, which maps a vector
from the frequency domain into a vector of the time domain.

Observe that (27) also establishes the correspondence between the opera-
tion of cyclical convolution in the time domain, represented by the product of
the matrices on the LHS, and the operation of modulation in the frequency
domain, represented by the pairwise multiplication of the elements of two diag-
onal matrices. The correspondence can be represented by writing Ψ◦Y ←→
ψ◦(D)y(D). Using such notation, we can represent the finite-sample version
of (17) by

ψ◦
j/np(K) = ψ◦

k/p(K
n)ψ◦

�/n(K)←→ ψ◦
j/np(D) = ψ◦

k/p(D
n)ψ◦

�/n(D). (29)

If α(z) is a polynomial of degree T − 1 and, if n is a factor of T , then
α(Kn) = Ūα(Dn)U is a circulant matrix of order T in which there are T/n
nonzero bands, with n − 1 bands of zeros lying between one nonzero band
and the next. The generic nonzero coefficient, which is on the tth nonzero
subdiagonal band, is α◦

t =
∑T/n

j=0 α{t+jn}. The jth diagonal element of the
matrix Dn, which is entailed in the spectral factorisation of α(Kn), takes the
values exp{−i2πnj/T }; j = 0, 1, . . . , T − 1. Compared to the corresponding
elements of D, its frequency values have been increased by a factor of n.

In the case of a piecewise continuous energy function ξ(ω) = |ψ(ω)|2,
defined on the interval [−π, π], one can afford to ignore the endpoints of the
interval together with any points of discontinuity within the interval. These
constitute a set of measure zero in the context of the remaining frequency
values. When such points are taken in the context of a sample of T frequency
values, they can no longer be ignored, as the example at the the end of this
section indicates.

The method of coping with finite samples via a periodic extension of the
data is also a feature of a discrete Fourier analysis. It requires the data to
be free of an overall trend. Otherwise, there will be a radical disjunction in
passing from the end of one replication of the sample to the begining of the
next. Such disjunctions will affect all of the Fourier coefficients. However,
the effect upon the coefficients of a wavelet analysis will be limited to the
extent that the wavelets are localised in time. A disadvantage of the Shannon
wavelets is that they are widely dispersed; and, in the next section, we shall
be developing wavelets that are more localised.

Example 2 (The Wrapped Shannon Wavelet). Consider a set of frequency-
domain ordinates sampled from a boxcar energy function, defined over the
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interval [−π, π], at the points ωj = 2πj/T ; j = 1−T/2, . . . , 0, . . . , T/2, where
T is even:

ξ◦j =

⎧
⎪⎨

⎪⎩

1, if j ∈ {1− d, . . . , d− 1},
1/2, if j = ±d,

0, otherwise.
(30)

Here, d < T/2 is the index of the point of discontinuity. The (inverse) Fourier
transform of these ordinates constitutes the autocorrelation function of the
wrapped Shannon wavelet. The transform of the square roots of the ordinates
is the wavelet itself.

The z-transform of the energy sequence is ξ◦(z) = {S+(z) + S−(z)}/2,
wherein

S+(z) = z−d + · · ·+ z−1 + 1 + z + · · ·+ zd and (31)

S−(z) = z1−d + · · ·+ z−1 + 1 + z + · · ·+ zd−1.

Setting z = e−iω1t, where ω1 = 2π/T , and using the formula for the partial
sum of a geometric progression, gives the following Dirichlet kernels:

S+(t) =
sin{ω1t(d + 1/2)}

sin(ω1t/2)
, S−(t) =

sin{ω1t(d− 1/2)}
sin(ω1t/2)

. (32)

But sin(A+B)+sin(A−B) = 2 sinA cosB, so, with A = ω1td and B = ω1t/2,
we have

ξ◦(t) =
1

2T
{S+(t) + S−(t)} =

cos(ω1t/2) sin(dω1t)
T sin(ω1t/2)

, (33)

This expression gives the values of the circular autocorrelation function of
the wrapped wavelet at the points t = 1, . . . , T − 1. The value at t = 0 is
ξ◦0 = 2d/T , which comes from setting z = 1 in the expressions for S+(z) and
S−(z) of (31).

If d = T/4, such that the points of discontinuity are at ±π/2, as in the
specification of φ(0)(t) under (3), then sin(dω1t) = sin(πt/2) and ξ◦(2t) = 0
for t = 1, . . . , T − 1. This confirms that the relevant conditions of sequential
orthogonality are indeed fulfilled by the wrapped wavelet.

The technique of frequency shifting may be applied to the formula of (33).
Let g be the index that marks the centre of the pass band. Then, the autocor-
relation function of the wrapped wavelet corresponding to a bandpass filter
with lower and upper cut-off points of a = g − d and b = g + d is given by

ξ◦(t) = 2 cos(gω1t)
cos(ω1t/2) sin(dω1t)

T sin(ω1t/2)
. (34)

To find the wavelets themselves, we transform a set of frequency-domain
coefficients that are the square roots of those of the energy function. For the



190 Stephen Pollock and Iolanda Lo Cascio

wavelet corresponding to the ideal lowpass filter with a cut-off at j = ±d, we
have

Tφ◦(t) =
sin{ω1t(d− 1/2)}

sin(ω1t/2)
+
√

2 cos(dω1). (35)

For the wavelet corresponding to the ideal bandpass filter with a cut-off points
at j = ±a,±b, there is

Tψ◦(t) = 2 cos{(a + b)ω1t/2} sin{(b− a− 1)ω1t/2}
sin(ω1t/2)

(36)

+
√

2{cos(aω1) + cos(bω1)}.

6 Conditions of Sequential Orthogonality
in the Dyadic Case

The advantage of the Shannon wavelets is that they provide us with a ready-
made orthogonal bases for the frequency bands that accompany a multireso-
lution analysis or a wave packet analysis. We have illustrated this feature, in
Sect. 3, with the case of the infinite wavelet and scaling function sequences
that correspond to the first level of a dyadic analysis.

The conditions of sequential orthogonality also prevail in the case of the
wrapped wavelet sequence. This may be demonstrated with reference to the
autocorrelation functions of (33) and (34). The only restriction is that the
bandwidth 2δ = β − α must divide the frequency range [0, π) an integral
number of times, say q times. In that case, the orthogonal basis of each of the
bands that partition the range will be formed by displacing the corresponding
Shannon wavelet by q elements at a time.

In this section, we shall look for the general conditions that are necessary
to ensure that the displaced wavelet sequences are mutually orthogonal. The
conditions of orthogonality will be stated in terms of the frequency-domain
energy function and its square root, which is the Fourier transform of the
time-domain wavelet function.

To avoid unnecessary complexity, we shall deal in terms of the continuous
frequency-domain function rather the sampled version, which has been the
subject of Sect. 5. Except in cases where the energy function has an absolute
discontinuity or a saltus, as in the case of the boxcar function associated
with Shannon wavelets, the results can be applied without hesitation to the
sampled function.

We may begin, in this section, by considering the first of the prime numbers
which is q = 2, which is the case of the dyadic wavelets. This is the only
even prime number; and, therefore, it demands special treatment. In the next
section, we shall deal with the case where q is any other prime number, begin-
ning with the triadic case, where q = 3. This is a prototype for all other
cases.
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Ignoring subscripts, let ξ(t)←→ ξ(ω) denote the autocorrelation function,
which may belong equally to a scaling function or to a wavelet, together with
its Fourier transform, which is the corresponding energy spectrum. Then, the
condition of orthogonality is that

ξ(2t) =

{
ξ0, if t = 0;
0, if t 	= 0,

(37)

which is to say that ξ(2t) = ξ0δ(t), where δ(t) is the unit impulse function in
the time domain. The transform of the impulse function is a constant function
in the frequency domain: δ(t)←→ 1. To see what this implies for the energy
spectrum, define λ = 2ω and use the change of variable technique to give

ξ(2t) =
1
2π

∫ π

−π
ξ(ω)eiω(2t)dω (38)

=
1
4π

∫ 2π

−2π

ξ(λ/2)eiλtdλ

=
1
4π

∫ −π

−2π

ξ(λ/2)eiλtdλ +
1
4π

∫ π

−π
ξ(λ/2)eiλtdλ +

1
4π

∫ 2π

π

ξ(λ/2)eiλtdλ.

But the Fourier transform of the sequence ξ(2t) is a periodic function with
one cycle in 2π radians. Therefore, the first integral must be translated to the
interval [0, π], by adding 2π to the argument, whereas the third integral must
be translated to the interval [−π, 0], by subtracting 2π from the argument.
After their translation, the first and the third integrands combine to form
the segment of the function ξ(π + λ/2) that falls in the interval [−π, π]. The
consequence is that

ξ(2t) =
1
4π

∫ π

−π
{ξ(λ/2) + ξ(π + λ/2)}eiλtdλ. (39)

This relationship can be denoted by ξ(2t) ←→ 1
2{ξ(λ/2) + ξ(π + λ/2)}. The

necessary condition for the orthogonality of the displaced wavelet sequences
is that the Fourier transform on the RHS is a constant function. In that case,
the argument λ/2 can be replaced by ω, and the condition becomes

{ξ(ω) + ξ(π + ω)} = c, (40)

where c is a constant.
It will be observed that, if ξ(ω) = ξ1/2(ω) stands for energy spectrum

of the dyadic scaling function, then ξ(ω + π) = ξ2/2(ω) will be the energy
spectrum of the wavelet. The condition ξ1/2(ω) + ξ2/2(ω) = 1, which actu-
ally prevails, corresponds to the conservation of energy. Pairs of filters for
which the squared gains satisfy the condition are called quadrature mirror
filters.
Example 3 (The Triangular Energy Function). Consider the periodic energy
functions defined over the frequency interval [−π, π] by
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ξ1/2(ω) =

{
1− |ω|/π, if |ω| ∈ [0, π);

0, if ω = ±π,

ξ2/2(ω) =

{
|ω|/π, if |ω| ∈ [0, π/2);

1/2, if ω = ±π,

(41)

Here ξ1/2(ω) is a triangle that results from the autoconvolution in the
frequency domain of the box function φ(1)(ω) of (3), whilst ξ2/2(ω) is a version
translated by π radians. It is manifest that these functions obey the condition
of (40), since ξ1/2(ω) + ξ2/2(ω) = 1.

The Fourier transforms are given by

ξ1/2(t) =
{

sin(πt/2)
πt

}2

, (42)

ξ2/2(t) = cos(πt)ξ1/2(t).

Here, ξ1/2(t) is the square of the sinc function, whereas ξ2/2(t) is the result of
a frequency shifting operation applied to ξ1/2(t).

Example 4 (The Chamfered Box). A generalisation of the function ξ1/2(ω)
of (41), which also obeys the condition of (40), is one that can be described
as a chamfered box or a split triangle, and which is defined by

ξ1/2(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |ω| ∈ (0, π/2− ε),

1− |ω + ε− π/2|
2ε

, if |ω| = (π/2− ε, π/2 + ε),

0, otherwise.

(43)

Setting ε = π/2 reduces this to the triangular function of (41). Also subsumed
under the sampled version of the present function is the sampled version of
the boxcar energy function, in which the problem caused by the discontinuity
at the cut-off point is handled, in effect, by chamfering the edge. (When the
edge of the box is chamfered in the slightest degree, the two function values
at the point of discontinuity, which are zero and unity, will coincide at a value
of one half.)

A function that has the same Fourier transform as the chamfered box can
be formed from the difference of two triangle functions. The first triangle is
defined in the frequency domain by

Λ1(ω) =

⎧
⎨

⎩

1
2

( π

2ε
+ 1
)
− |ω|

2ε
, if |ω| ∈ (0, π/2 + ε),

0, otherwise.
(44)

The Fourier transform is

Λ1(t) =
{

sin{(π/2 + ε)t}
πt

}2

, (45)
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The second triangle is defined by

Λ2(ω) =

⎧
⎨

⎩

1
2

( π

2ε
− 1
)
− |ω|

2ε
, if |ω| ∈ (0, π/2− ε),

0, otherwise.
(46)

The Fourier transform for this one is

Λ2(t) =
{

sin{(π/2− ε)t}
πt

}2

. (47)

The Fourier transform of the function of ξ1/2(ω) of (43) is

ξ1/2(t) = Λ1(t)− Λ2(t). (48)

In the example above, the autocorrelation functions fulfil the orthogonality
condition of (40) by virtue of their anti-symmetry in the vicinity of the cut-
off values ωc = ±π/2. For a sine wave the condition of anti-symmetry is
expressed in the identity sin(−ω) = − sin(ω). For the energy functions, the
points of symmetry have the coordinates (ωc, 0.5) and the conditions of anti-
symmetry, which prevail in the intervals (ωc − ε, ωc + ε), where ε ≤ π/2, are
expressed in the identity

0.5− ξ(ωc − ω) = ξ(ωc + ω)− 0.5 for ω ∈ (−ε, ε) (49)

We may describe this as the condition of sigmoid anti-symmetry, or of
S-symmetry for short. The terminology is suggested by the following example
which uses an ordinary cosine in constructing the autocorrelation function.

Example 5 (The Cosine Bell). The cosine bell, with a period of 2π, is defined
in the frequency domain by

ξ1/2(ω) = 0.5{1 + cos(ω)}. (50)

It is S-symmetric about the point π/2 in the frequency interval (0, π) and
about the point −π/2 in the frequency interval (−π, 0). The function is
not band-limited in frequency domain—but it is band-limited in the time
domain. The Fourier transform of the continuous periodic function is the
three-point sequence {0.25, 0.5, 0.25}, which can be recognised as the auto-
correlation function of the discrete Haar scaling function. The transform of
the continuous periodic function ξ2/2(ω) = 0.5{1 − cos(ω)} is the sequence
{−0.25, 0.5,−0.25}, which can be recognised as the autocorrelation function
of the discrete Haar wavelet.

The Haar wavelet, which is the one with the minimum temporal dispersion,
is defined, in discrete terms, on two points by

ψ(t) =

⎧
⎪⎨

⎪⎩

0.5, if t = 0,

−0.5, if t = 1,

0, otherwise.
(51)
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The accompanying scaling function is

φ(t) =

{
0.5, if t = 0, 1,

0, otherwise.
(52)

Now consider a sequence of ordinates sampled from the energy func-
tion ξ2/2(ω) = 0.5{1 − cos(ω)} at the Fourier frequencies ωj = 2π/T ; j =
0, 1, . . . , T − 1, which extend over the interval [0, 2π). The sequence will be
real-valued and even such that ξ2/2(ωj) = ξ2/2(ωT−j). The Fourier transform
of these ordinates will, likewise, be a real-valued even sequence of T points of
the form {0.5,−0.25, 0, . . . , 0,−0.25}. This can be envisaged either as a single
cycle of a periodic function or as a set of points distributed evenly around a
circle of circumference T . The sequence constitutes the circular autocorrela-
tion function of a wrapped Haar wavelet.

The Haar wavelet is not an even function. To derive a wavelet that is real
and even and which has the same autocorrelation function as the wrapped
Haar wavelet, we must transform into the time domain the square roots of
the ordinates sampled from the cosine bell energy function. An example of
such a wavelet is provided by Fig. 16.

Example 6 (The Split Cosine Bell). A derivative of the cosine bell, which is
band-limited in the frequency domain, is provided by the split cosine bell.
This has a horizontal segment interpolated at the apex of the bell which,
consequently, must show a more rapid transition in the vicinities of ±π/2.

ξ1/2(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |ω| ∈ (0, π/2− ε);

0.5
[
1 + cos

{ π

2ε
|ω + ε− π/2|

}]
, if |ω| ∈ (π/2− ε, π/2 + ε),

0, otherwise
(53)

Setting ε = π/2 reduces this to the cosine bell of (50).

0

0.2

0.4

0.6

−0.2

−0.4
8 10 12 14 0 2 4 6 8

Fig. 16. A circulant wavelet sequence on 16 points corresponding to a cosine bell
energy function
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Observe that, if ε divides π an even number of times, then the split cosine
bell can be expressed as a sum of cosine bells, each of width 4ε, at displace-
ments relative to each other that are multiples of 2ε. In that case, the Fourier
transform of the function has a particularly simple analytic expression.

The split cosine bell has been advocated by Bloomfield (1976) as a means
of truncating and tapering the time-domain coefficients of an ideal bandpass
filter to create a practical FIR filter. Its advantage over the chamfered box
in this connection lies in the fact that it possesses a first derivative that is
continuous everywhere. Its avoidance of discontinuities reduces the spectral
leakage. It is therefore to be expected that a wavelet derived from a cosine
bell energy function will have a lesser temporal dispersion than one that has
been derived from the corresponding chamfered box.

Example 7 (The Butterworth Function). Another family of energy functions
from which the wavelets may be derived is provided by the function that
defines the frequency response of a digital Butterworth filter with a cut-off
point at ω = π/2:

ξ1/2(ω) = (1 + {tan(ω/2)}2n)−1, (54)

ξ2/2(ω) = 1− ξ1/2(ω).

When n = 1, the Butterworth function is the square of a cosine. Increasing
the value of n increases the rate of the transition between the pass band and
the stop band of the filter, such that the function converges to the boxcar
function φ(1)(ω) of (3)—see Pollock (1999), for example.

In the context of the Butterworth digital filter, the integer parameter n
represents the degree of a polynomial operator. In the present context, there
is no reason why n should be restricted to take integer values. It will be found,
for example, that, when n = 0.65, the Butterworth function provides a close
approximation to the triangular energy function of (41). This is shown in
Fig. 23 together with the effects of other values of the parameter.

0

0.25

0.5

0.75

1

0 π/2 π 3π/2 2π

Fig. 17. A sampled energy function of 16 points in the shape of a chamfered box

The Butterworth function, which satisfies the condition of S-symmetry,
appears to be preferable to the split cosine bell. The relative merits of various
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Fig. 18. A sampled energy function of 16 points in the shape of a split cosine bell
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Fig. 19. A sampled energy function of 16 points defined by a Butterworth function
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Fig. 20. A circulant wavelet sequence on 16 points corresponding to the energy
function of Fig. 17, which is in the shape of a chamfered box
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Fig. 21. A circulant wavelet sequence on 16 points corresponding to the split cosine
bell energy function of Fig. 18
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Fig. 22. A circulant wavelet sequence on 16 points corresponding to the Butter-
worth energy function with n = 2 of Fig. 19
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−π −π/2 0 π/2 π

Fig. 23. The Butterworth function with the parameter values n = 0.62 (the
triangle), n = 1 (the bell) and n = 20 (the boxcar)

families of wavelets proposed in this section can be assessed with reference to
Figs. 17–22, which show the energy functions together with the wavelets that
are derived from them.

A remarkable feature of the Butterworth wavelet is that, beyond a short
distance from the central point, where t = 0, the ordinates are virtually zeros.
The virtual zeros are indicated in Fig. 22 by black dots, the first of which
corresponds to a value of ψ(t = 6) = −0.00096. Moreover, such values are
reduced as T increases and as the wavelet is wrapped around a widening
circle.

One might recall the fact that, for a non-circulant wavelet on a finite
support, the condition of sequential orthogonality necessitates an even number
of points—see, for example, Percival and Walden (2000, p.69). This precludes
the symmetry of the coefficients about a central value. Nevertheless, the
Butterworth wavelet, which satisfies the orthogonality conditions, has virtu-
ally a finite support and is also symmetric.

7 Conditions of Orthogonality in the Non-dyadic Case

We shall now consider the general case where the wavelets subsist in q bands
within the frequency interval [0, π], where q is a prime number. We shall begin
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by considering the triadic case where q = 3. This serves as a prototype for all
other cases. First, it is necessary to indicate the manner in which the triadic
wavelets may be constructed from various S-symmetric energy functions, such
as those that have been considered in the previous section.

Consider an energy function B(ω) defined on the interval [−π, π] that
corresponds to a dyadic scaling function or, equally, to a half-band lowpass
filter with a nominal cut-off frequency of π/2. This function can be mapped,
via a compression of the frequency axis, onto an interval of length 2π/3 . The
effect is achieved by multiplying the frequency argument by a factor of 3 to
give B(3ω); ω ∈ [−π/3, π/3].

To construct the triadic lowpass wavelets, for which the nominal range of
the energy function is the interval (−π/3, π/3), copies of B(3ω) are placed at
the centres −π/6 and π/6. The result is the function defined on the interval
[−π, π] by

ξ1/3(ω) =

{
B(3ω + π/6) + B(3ω − π/6), if ω ∈ [−π/2, π/2],
0, otherwise.

(55)

Figure 24a shows the manner in which the copied functions are fused together.
To construct the triadic bandpass wavelet, for which the nominal pass

band is the interval (π/3, 2π/3), the two copies of B(3ω) are translated to
centres at π/2 and −π/2 and combined to give

ξ2/3(ω) =

⎧
⎪⎨

⎪⎩

B(3ω + π/2), if ω ∈ [−5π/6,−π/6],
B(3ω − π/2), if ω ∈ [5π/6, π/6],
0, otherwise.

(56)

The result is shown in Fig. 24b.
In the case of the triadic highpass wavelet, for which the nominal pass band

is the interval (2π/3, π), the two copies of B(3ω) are translated to centres as
5π/6 and −5π/6 to give

ξ3/3(ω) =

{
B(3ω + 5π/6) + B(3ω − 5π/6), if ω ∈ [−π/2, π/2],
0, otherwise.

(57)

This can also be obtained simply by translating the centre of ξ1/3(ω) from
ω = 0 to ω = ±π. The feature becomes fully apparent only when the interval
[−π, π] is wrapped around the circle such that π and −π coincide at the point
diametrically opposite the point where ω = 0. The result is shown in Fig. 24c
in terms of the linear interval.

Let ξ(t) ←→ ξ(ω) denote the autocorrelation function of any one of the
triadic wavelets together with the energy function, which is its Fourier trans-
form. Then, the relevant condition of sequential orthogonality is that ξ(3t) = 0
if t 	= 0. Define λ = 3ω. Then,
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Fig. 24. The triadic energy functions, Figs. a–c. The segments of the latter, which
are demarcated by the dotted lines and which are each of length 2π/3, are dilated
by a factor of 3 and overlaid on the interval [−π, π] to form Figs. A–C

ξ(3t) =
1
2π

∫ π

−π
ξ(ω)eiω(3t)dω (58)

=
1
6π

∫ 3π

−3π

ξ(λ/3)eiλtdλ

=
1
6π

{∫ −π

−3π

ξ(λ/3)eiλtdλ +
∫ π

−π
ξ(λ/3)eiλtdλ +

∫ 3π

π

ξ(λ/3)eiλtdλ

}

=
1
6π

∫ −π

−π

1∑

j=−1

ξ([2πj + λ]/3)eiλtdλ.

It follows that
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ξ(3t)←→
1∑

j=−1

1
3
ξ([2πj + λ]/3) = δ(ω). (59)

The condition of sequential orthogonality is that δ(ω) must be a constant
function such that its Fourier transform is the unit impulse. Figs. 24(A–C)
show how the segments of the three energy functions that are demarcated
by the dotted lines are dilated and overlaid on the interval [−π, π]. In each
case, adding the segments produces the constant function δ(ω) = c. The
overlaying of the segments occurs when each is wrapped around the same
circle of circumference 2π. In fact, the segments need not be separated one
from another. They can be wrapped around the circle in one continuous strip.

The condition of lateral orthogonality cannot be satisfied by wavelets in
adjacent frequency bands. This a consequence of the spectral leakage from
each band into the neighbouring bands. However, in the present triadic spec-
ification, which interpolates a third band between the lowpass and highpass
bands and which limits the extent of the leakage on either side to one half
of the nominal bandwidth, conditions of lateral orthogonality prevail between
non-adjacent bands.

Now let us consider a bandpass filter with a nominal width of π/3 centered,
in the positive frequency range, on some point θ ∈ [π/6, 5π/6] that lies between
the centres of the lowpass and the highpass filters. The energy function of the
filter is specified over the interval [−π, π] by

ξθ/3(ω) =

⎧
⎪⎨

⎪⎩

B(3ω + θ) if ω ∈ [θ − π/3, θ + π/3],
B(3ω − θ), if ω ∈ [−π/3− θ, π/3− θ],
0, otherwise.

(60)

It can be shown that, regardless of the actual value taken by θ within the
designated range, the condition ξθ/3(6t) = 0 prevails for all t 	= 0, which is to
say that wavelets within the band that are separated by multiples of 6 points
are mutually orthogonal.

To demonstrate this, we must consider the decomposition ξθ/3(ω) =
ξ+
θ/3(ω) + ξ−θ/3(ω), where ξ+

θ/3(ω) has a zero segment in place of the segment
of B(3ω−θ), and where ξ−θ/3(ω) has a zero segment in place of the segment of
B(3ω + θ). Since θ is arbitrary, the interaction of ξ+

θ/3(ω) and ξ−θ/3(ω) is unde-
termined, and we must treat the two functions separately.

In order that ξ+
θ/3(ω) should generate a uniform function over the interval

[−π, π] and beyond, it must be dilated by a factor of 6 before being wrapped
around the circle. Then, the pass band, which has a (nominal) width of π/3,
will acquire a width of 2π, which is sufficient to encompass the circle with a
band of constant height. Equivalent conditions apply to ξ−θ/3(ω). The upshot
is that the wavelets that lie within a pass band of width π/3, located at an
arbitrary centre, are mutually orthogonal when separated by multiples of 6
points.
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The generalisations of the analysis of this section from q = 3 to cases of
other integers is immediate. For the case where the interval [0, π] is divided
in q > 2 bands of equal width, the condition for the sequential orthogonality
of wavelets separated by q points is that

ξ(qt)←→
(q−1)/2∑

j=(1−q)/2

1
q
ξ([2πj + λ]/q) = c. (61)

For a band of width π/q, with q ≥ 2, centred on an arbitrary point θ within
[π/2q, π− π/2q], the proof that wavelets separated by multiples 2q points are
mutually orthogonal in indicated by the proof for the case where q = 3. We
shall conclude the paper with an example that shows of how these conditions
can be used in the analysis of the finite data sequence that was described in
the introduction.

Example 8. Figure 25 shows the time–frequency plane for 144 data points,
partitioned in a manner that is appropriate to the analysis of the monthly
airline passenger data of Fig. 5. The bands that have been highlighted cover
the spectral structure of the seasonal fluctuations that is revealed by the
periodogram of Fig. 6. On either side of the the seasonal frequencies {πj/6; j =
1, . . . , 5}, there are adjacent bands of 7 1

2 degrees in width. Altogether, there
are 24 bands of equal width dividing the frequency range, and the time span of
the sample is divided into six sections, each of which spans a two-year period.

With this partitioning, it should be possible to reveal the evolution of the
seasonal pattern by showing the progression of the amplitude coefficients of the
wavelets within the highlighted bands. In testing the statistical null hypothesis
of temporal homogeneity, which is liable to be rejected, it is helpful to have
wavelets that are mutually orthogonal.

The interstices between the highlighted bands are effective in ensuring the
lateral orthogonality of the wavelets, whenever they are derived from one of
the templates that have been provided in Sect. 6. However, the wavelets in
the contiguous bands that fall on either side of the frequencies {πj/6; j =

0

π/6

π/3

π/2

2π/3

5π/6

π

0 24 48 72 96 120 144

Fig. 25. The time–frequency plane for 144 data points partitioned with 24 frequency
intervals and 6 time periods
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1, . . . , 5} will not be mutually orthogonal. This problem can be overcome by
combining these bands. The combined bands will be populated by twice as
many wavelets as the original narrower bands. However, the distances that
separate orthogonal wavelets will remain the same at 24 points.
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Measuring Core Inflation
by Multivariate Structural Time Series Models�

Tommaso Proietti

Dipartimento S.E.F. e ME. Q., University of Rome “Tor Vergata”

Summary. The measurement of core inflation can be carried out by optimal signal
extraction techniques based on the multivariate local level model, by imposing suit-
able restrictions on its parameters. The various restrictions correspond to several
specialisations of the model: the core inflation measure becomes the optimal esti-
mate of the common trend in a multivariate time series of inflation rates for a variety
of goods and services, or it becomes a minimum variance linear combination of the
inflation rates, or it represents the component generated by the common distur-
bances in a dynamic error component formulation of the multivariate local level
model. Particular attention is given to the characterisation of the optimal weighting
functions and to the design of signal extraction filters that can be viewed as two
sided exponentially weighted moving averages applied to a cross-sectional average of
individual inflation rates. An empirical application relative to U.S. monthly inflation
rates for 8 expenditure categories is proposed.

Key words: Common trends, dynamic factor analysis, homogeneity, expo-
nential smoothing, Wiener–Kolmogorov filter

1 Introduction

Core inflation measures are considered to be more appropriate for the assess-
ment of the trend movements in aggregate prices than is the official aggregate
inflation rate. It is usually thought that the raw inflation rate, obtained as the
percentage change in the consumer price index (CPI, henceforth) over a given
horizon, is too noisy to provide a good indication of the inflationary pressures
in the economy.
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Like many other key concept in economics, there is no consensus on
the notion of core inflation, despite the fact that quasi-official measures are
routinely produced by statistical agencies. This is because the notion serves
a variety of purposes. Nevertheless, an increasing number of indices of core
inflation are being produced in a variety of ways.

As a consequence, a large body of literature has been devoted to core
inflation. An excellent review is Wynne (1999), who makes a basic distinction
between methods which use only sectional information, and those which also
use the time dimension. Another useful distinction is between aggregate or
disaggregate approaches.

The most popular measures fall within the disaggregate approach, using
only the cross-sectional distribution of inflation rates at a given point in time.
They aim at reducing the influence of items that are presumed to be more
volatile, such as food and energy. Other measures exclude mortgage interest
costs, and some also exclude the changes in indirect taxes.

Bryan and Cecchetti (1994) (see also Bryan, Cecchetti and Wiggins II,
1997) argue that the systematic exclusion of specific items, such as food and
energy, is arbitrary, and, after remarking that the distribution of relative price
changes exhibits skewness and kurtosis, propose to use the median or the
trimmed mean of the cross-sectional distribution.

Cross-sectional measures, using only contemporaneous price information,
are not subject to revision as new temporal observations become available, and
this is often, although mistakenly, seen as an advantage. The corresponding
core inflation measures tend to be rather rough and do not provide clear signals
of the underlying inflation. We show here that measures that are constructed
via a time series approach are better behaved.

Other approaches arise in the structural vector autoregressive (VAR)
framework, starting from the seminal work of Quah and Vahey (1995), who,
within a bivariate stationary VAR model of real output growth and inflation,
defined core inflation as that component of measured inflation which has no
long run effect on real output.

This paper considers the measurement of core inflation in an unobserved
components framework; in particular, the focus will be on dynamic models
that take a stochastic approach to the measurement of inflation, such as those
introduced in Selvanathan and Prasada Rao (1994, Chap. 4). We propose and
illustrate measures of core inflation that arise when standard signal extraction
principles are applied to restricted versions of a workhorse model, which is the
multivariate local level model (MLLM, henceforth).

The parametric restrictions are introduced in order to accommodate
several important cases: the first is when the core inflation measure is the
optimal estimate of the common trend in a multivariate time series of infla-
tion rates for a variety of goods and services. In an alternative formulation it
is provided by the minimum variance linear combination of the inflation rates.
In another it arises as the component generated by the common disturbances
in a dynamic error component formulation of the MLLM.
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Particular attention is devoted to the characterisation of the
Wiener–Kolmogorov optimal weighting functions and to the design of signal
extraction filters that can be viewed as a two sided exponentially weighted
moving averages applied to a contemporaneously aggregated inflation series.

The paper is organised as follows. Section 2 deals with aggregate measures
of core inflation and their limitations. The MLLM and its main charac-
teristics are presented in Sect. 3. Signal extraction for the unrestricted
MLLM is considered in Sect. 4. Section 5 introduces several measures of core
inflation that can be derived from the MLLM under suitable restrictions of its
parameters. In particular, we entertain three classes of restrictions, namely
the common trend, the homogeneity, and the dynamic error components
restrictions. Section 6 derives the signal extraction filters for the dynamic
factor model proposed by Bryan and Cecchetti (1994); and it compares them
with those derived from the MLLM. Inference and testing for the MLLM and
its restricted versions are the topic of Sect. 7). Finally, in Sect. 8, the measures
considered in the paper are illustrated with reference to a set of U.S. time series
concerning the monthly inflation rates for 8 expenditure categories.

2 Aggregate Measure of Core Inflation

Statistical agencies publish regularly two basic descriptive measures of inflation
that are built upon a consumer or retail price index. The first is the percentage
change over the previous month. The second is the percent change with respect
to the same month of the previous year.

Unfortunately, neither index is a satisfactory measure of trend inflation.
The first turns out to be very volatile, as it is illustrated by the upper
panel of Fig. 1, which displays the monthly inflation rates for the for U.S.
consumer price index (city average, source: Bureau of Labor Statistics) for
the sample period 1993.1–2003.8. By contrast, the annual changes in relative
prices are much smoother (see the lower panel of Fig. 1), but, being based on
an asymmetric filter, they suffer from a phase shift in the signal, which affects
the timing of the turning points in inflation. Furthermore, if the consumer
price index is strictly non seasonal, then the series of yearly inflation rates
is non invertible at the seasonal frequencies. With pt representing the price
index series, and with yt = ln(pt/pt−1), the yearly inflation rate is approxi-
mately S(L)yt, where S(L) = 1 + L + L2 + · · · + L11, which is a one sided
filter with zeros at the seasonal frequencies.

One approach, which is followed by statistical agencies, is to reduce the
volatility of inflation by discarding the goods or services that are presumed to
be more volatile, such as food and energy. The monthly and yearly inflation
rates constructed from the CPI excluding Food and Energy are indeed charac-
terised by reduced variability, as Fig. 1 shows; yet they are far from satisfactory
and they can be criticised on several grounds, not the least of which is their
lack of smoothness.
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Fig. 1. U.S. CPI Total and Excluding Food & Energy, 1993.1–2003.8. Monthly and
yearly inflation rates

3 The Multivariate Local Level Model

The measures of core inflation proposed in this paper arise from applying
optimal signal extraction techniques derived from various restricted versions
of a multivariate times series model. The model in question is the multivariate
generalisation of the local level model (MLLM), according to which a multi-
variate time series can be decomposed into a trend component, represented
by a multivariate random walk, and a white noise (WN) component. Letting
yt denote an N × 1 vector time series referring to the monthly changes in the
prices of N consumer goods and services,

yt = μt + εt, t = 1, 2, . . . , T, εt ∼WN(0,Σε),
μt = μt−1 + ηt, ηt ∼WN(0,Ση).

(1)

The disturbances ηt and εt are assumed to be mutually uncorrelated and
uncorrelated to μ0.

Before considering restricted versions of the model, we review its main
features both in the time and the frequency domain (see Harvey, 1989, for
more details). The model assumes that the monthly inflation rates are inte-
grated of order one (prices are integrated of order two). This assumption can
actually be tested. In Sect. 7 we review the locally best invariant test of the
hypothesis that monthly inflation rates are stationary versus the alternative
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that they are I(1). Taking first differences, we can reexpress model (1) in its
stationary form:

Δyt = ηt + Δεt.

The crosscovariance matrices of Δyt, ΓΔ(τ) = E(ΔytΔy′
t−τ ) are then

ΓΔ(0) = Ση + 2Σε,
ΓΔ(1) = ΓΔ(−1)′ = −Σε,
ΓΔ(τ) = 0, |τ | > 1.

Notice that the autocovariance at lag 1 is negative (semi)definite and
symmetric: ΓΔ(1) = ΓΔ(1)′ = ΓΔ(−1). This symmetry property implies
that the multivariate spectrum is real-valued. Denoting by F(λ) the spec-
tral density of Δyt at the frequency λ, we have F(λ) = (2π)−1 [Ση+
2(1− cosλ)Σε]. The autocovariance generating function (ACGF) of Δyt is

G(L) = Ση + |1− L|2Σε. (2)

The reduced form of the MLLM is a multivariate IMA(1,1) model:

Δyt = ξt + Θξt−1.

Equating (2) to the ACGF of the vector MA(1) representation for Δyt, it is
possible to show that the parameterisation (1) is related to the reduced form
parameters via:

Ση = (I + Θ)Σξ(I + Θ′), Σε = −ΘΣξ = −ΣξΘ′.

The structural form has N(N +1) parameters, whereas the unrestricted vector
IMA(1,1) model has N2+N(N+1)/2. In fact, Σε = −ΘΣξ = −ΣξΘ′ imposes
N(N − 1)/2 restrictions.

4 Signal Extraction

Assuming a doubly infinite sample, the minimum mean square linear estimator
(MMSLE) of the underlying level component is

μ̃t = W(L)yt,

with weighting matrix polynomial

W(L) = |1− L|2Gμ(L)G(L)−1 = Ση

(
Ση + |1− L|2Σε

)−1
,

where Gμ(L) is the pseudo ACGF of the trend component and we have
defined |1 − L|2 = (1 − L)(1 − L−1). This results from the application of
the Wiener–Kolmogorov (WK, henceforth) filtering formulae given in Whittle
(1983), which apply also to the nonstationary case (Bell, 1984).
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The matrix polynomial W(L) performs two-sided exponential smoothing

W(L) = (I + Θ)Σξ(I + Θ′)(I + Θ′L−1)−1Σ−1
ξ (I + ΘL)−1

and it has W(1) = IN , which generalises to the multivariate case the unit
sum property of the weights for the extraction of the trend component.

The filtered or real time estimator of the trend is an exponentially weighted
average of current and past observations:

μ̃t|t = (I + Θ)(I + ΘL)−1yt
= (I + Θ)

∑∞
j=0(−Θ)jyt−j .

5 Measures of Core Inflation Derived from the MLLM

In this section we explore that have to be imposed on the WK filter to make
it yield univariate summary measures of tendency of the form:

μ̃t = w(L)′yt, w(L) = q(L)w (3)

where q(L) is a univariate symmetric two-sided filter and w is a static vector of
cross-sectional weights. Purely static measures arise when q(L) = 1. The signal
extraction filters of (3) are the basis of the measurement of core inflation, when
yt represents N inflation rates that have to be combined in a single measure.

The cross-sectional weights can be model based or they can originate from
a priori knowledge. It is instructive to look at the various ways that they can
originate and at their different various meanings.

5.1 Aggregate Measures (Known Weights)

The first core inflation measures arise from the contemporaneous aggregation
of the multivariate trend component in (1) using known weights. The MLLM
is invariant under contemporaneous aggregation; thus, w′yt, where w is a
vector of known weights (e.g. expenditure shares in the core inflation example),
follows a univariate local level model.

The aggregated time series, w′yt, has thus a local level model representa-
tion, and the miminum-mean-square linear estimator of the trend component,
w′μt, based on a doubly infinite sample, has the above structure (3), with:

q(L) =
1

1 + q−1|1− L|2 =
(1 + θ)2

|1 + θL|2 (4)

and q = w′Σηw/w′Σεw, and θ = [
√

(q2 + 4q − 2− q]/2, −1 < θ ≤ 0.
Alternatively, we could fit a univariate local level model to the aggregate

time series. The corresponding core inflation measure is given by (4), but q
would be estimated directly, rather than obtained from the aggregation of the
covariance matrix of the disturbances of the multivariate specification.
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5.2 Common Trend

Common trends arise when rank(Ση) = K < N , so that

Ση = ZΣη† Z′

where Z is N ×K and Ση† is a full rank K ×K matrix.
When there is a single common trend, K = 1, driving the μt’s in (1), we

can write:
yt = zμt + μ0 + εt,

where z is a N × 1 vector of loadings and μt = μt−1 + ηt, ηt ∼WN(0, σ2
η).

The WK filter for μt, assuming a doubly infinite sample, takes the form
(3) with

w = (z′Σ−1
ε z)−1Σ−1

ε z, (5)

and q(L) given by (4), where the signal–noise ratio is given by

q = σ2
η(z

′Σ−1
ε z).

If Σε is diagonal (i.e. if it represents the idiosyncratic noise) and z is a
constant vector (the common trend enters the series with the same coefficient)
then the cross-sectional weights (5) applied to yt produce a weighted average
ȳt = w′yt, in which the more noisy series are downweighted. The application
of the univariate two sided filter q(L), which is a bidirectional exponentially
weighted average, to ȳt yields the estimated component.

The expression (5) assumes that Σε is full rank; if its rank is N − 1 then
q(L) = 1 and w = (v′z)−1v, where v is the eigenvector corresponding to the
zero eigenvalue of Σε. Hence, in this special case, the filter is fully static.

5.3 Homogeneity

The MLLM is said to be homogeneous if the covariance matrices of the distur-
bances are proportional (see Enns et al., 1982, and Harvey, 1989, Chap. 8):

Ση = qΣε.

Here, q denotes the proportionality factor.
Under homogeneity, the model is a seemingly unrelated IMA(1,1) process

Δyt = ξt + θξt−1, with scalar MA parameter, θ = [
√

(q2 + 4q − 2 − q]/2,
taking values in [-1,0], and ξt ∼WN(0,Σξ),Σξ = −Σε/θ.

The trend extraction filter is scalar and can be applied to each series
in turn:

μ̃t =
1

1 + q−1|1− L|2yt.

As a matter of fact, the Kalman filter and smoother become decoupled, and
inferences are particularly simplified (see also Sect. 7).
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Consider forming a linear combination of the trend component μt: μ̄t =
w′μt. Obviously,

˜̄μt|∞ =
1

1 + q−1|1− L|2 w′yt.

If w is known (as in the case of expenditure shares), then the summary
measure coincides with that arising from the aggregate approach. The differ-
ence, however, lies with the signal–noise ratio, which is estimated more effi-
ciently if the model is homogeneous. Again, the measure of core inflation is a
static weighted average, with given weights, of the individual trends charac-
terising each of the series.

Consider now the alternative strategy of forming a measure of the type (3)
by means of a static linear combination of the estimated trends, μ̃t = w′μ̃t,
with weights

w =
Σ−1
η z

z′Σ−1
η z

. (6)

It is easy to show that the weights w produce the linear combination w′μt
which minimises the variance w′Σηw under the constraint w′z = 1, where z
is an arbitrary vector. Hence, these weights provide the smoothest (i.e. the
least variable) component that preserves the level (w′i = 1), where i is an
N × 1 vector with unit elements, i = [1, . . . , 1]′.

Another interpretation of (6) is that w′μt is the GLS estimates of μt in the
model μt = zμt+μ∗

t , considered as a fixed effect; w′yt are known as Bartlett
scores in factor analysis (see Anderson, 1984, p. 575). Notice, however, that
here z is a known vector, that has to be specified a priori (e.g. we may look
for weights summing up to unity, in which circumstance, z = i). It is not a
necessary feature of the true model.

5.4 Dynamic Error Components

Suppose that the level disturbances have the following error components struc-
ture (Marshall, 1992):

ηt = zηt + η∗t , ηt ∼WN(0, σ2
η), η∗

t ∼WN(0,Nη),

where ηt is disturbance that is common to all the trends and η∗
t is the idiosyn-

cratic disturbance (typically, but not necessarily, Nη is a diagonal matrix).
Correspondingly, Ση = σ2

ηzz
′ + Nη, and the trends can be rewritten as

μt = zμt + μ∗
t , Δμt = ηt, Δμ∗

t = η∗
t .

In general, the WK filter for μt does not admit the representation (3), as
we have:

μ̃t =
σ2
η

1 + σ2
ηz′A(L)−1z

z′A(L)−1yt, A(L) = Nη + |1− L|2Σε.
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However, if Nη = q∗Σε, then the WK filter takes the form (3) with

q(L) =
σ2
ηz

′N−1
η z

σ2
ηz′N

−1
η z + 1 + q−1|1− L|2

(7)

and

w =
N−1
η z

z′N−1
η z

=
Σ−1
ε z

z′Σ−1
ε z

.

This type of homogeneity may arise, for instance, when the idiosyncratic trend
disturbances are a fraction of the irregular component, that is η∗

t = ρεt,
ρ2 = q∗. This makes the overall trend and irregular components correlated,
but μt would still be uncorrelated with εt.

Now let us consider the case when εt has the same error components
structure: εt = zεt + ε∗t , with εt ∼WN(0, σ2

ε ), ε
∗
t ∼WN(0,Nε), so that

Σε = σ2
ε zz

′ + Nε.

The WK filter for μt is now

μ̃t =
σ2
η

1 + σ2
ηz′A(L)−1∗z

z′A(L)−1∗yt, A(L)∗ = Nη + |1− L|2Nε,

and, under the homogeneity condition Nη = q∗Nε, produces exactly the same
filter as the previous case, with q∗ replacing q in (7).

Gathering the components driven by the common disturbances into ςt =
μt + εt, and writing yt = zςt + μ∗

t + ε∗t , the MMSLE of ςt is

ς̃t =
c(L)

1 + c(L)z′A(L)−1∗z
z′A(L)−1∗yt, c(L) = σ2

η(1+q−1|1−L|2), q = σ2
η/σ2

ε .

Moreover, if Nη = qNε, with the same q, σ2
ηA(L) = c(L)Nη, then ς̃t is

extracted by a static linear combination with weights

w =
N−1
η z

σ−2
η + z′N−1

η z
.

Notice that this last case arises when the system is homogeneous Ση = qΣε,
and Σε has an error component structure. Otherwise, if Nη = σ2

η∗I,Nε = σ2
ε∗I,

then the filter for ςt is as in (3) with w = z and

q(L) =
σ2
η(1 + q−1|1− L|2)

σ2
η∗(1 + q−1∗|1− L|2) , q∗ = σ2

η∗/σ2
ε∗
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6 Dynamic Factor Models

This section discusses the signal extraction filters that are optimal for a
class of dynamic factor models proposed by Stock and Watson (1991) for
the purpose of constructing a model-based index of coincident indicators for
the U.S. econonomy.

This class has been adopted by Bryan and Cecchetti (1994) for the
measurement of core inflation, and it applies to a vector of monthly infla-
tion rates, yt, which are expressed as as follows:

yt = zμt + μ∗
t ,

ϕ(L)μt = ηt, ηt ∼WN(0, σ2
η)

D(L)μ∗
t = η∗

t , η∗
t ∼WN(0,Nη)

(8)

where D(L) = diag{di(L), i = 1, . . . , N}, and ϕ(L) and di(L) are AR scalar
polynomials, possibly nonstationary, Nη = diag{σ2

i∗, i = 1, . . . , N}, and ηt is
uncorrelated with η∗

t at all leads and lags.
The autocovariance generating function of μt and the cross-covariance

generating function of yt are respectively:

gμ(L) =
σ2
η

|ϕ(L)|2 , Γy(L) = gμ(L)zz′ + M(L),

where we have written

M(L) = D(L)−1NηD(L−1)−1 = diag{σ2
i∗|di(L)|−2, i = 1, . . . , N}.

Moreover, the cross-covariance generating function between μt and yt is
simply gμ(L)z′. Hence, the WK signal extraction formula is:

μ̃t = gμ(L)z′[Γy(L)]−1yt
=
[
gμ(L)−1 + z′M(L)−1z

]−1
z′M(L)−1yt

=
[
σ−2
η |ϕ(L)|2 +

∑
i |di(L)|2σ−2

i∗
]−1∑N

i=1 |di(L)|2σ−2
i∗ yit.

When ϕ(L) = di(L), i = 1, . . . , N, which is a seemingly unrelated time series
equations (SUTSE) system, the WK specialises as follows:

μ̃t =

[
σ−2
η +

N∑

i=1

1
σ2
i∗

]−1 N∑

i=1

1
σ2
i∗

yit = [σ−2
η + z′N−1

η z]−1z′N−1
η yt.

Hence, μ̃t results only from the contemporaneous aggregation of the individual
time series, with weights that do not sum to unity, although they are still
proportional to the reciprocal of the specific variances. If ϕ(L) = Δ, then the
dynamic factor model (8) is a special case of the MLLM (1), with no irregular
component.
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7 Inference and Testing

The state space methodology provides a means of computing the minimum-
mean-square linear estimators (MMSLE) of the core inflation component, μt,
and of any latent variable in the model. In finite samples the MMSLE of μt
in (1) is computed by Kalman filter and the associated smoothing algorithm
(see Durbin and Koopman, 2001).

The Kalman filter (KF) is started off at t = 2 with μ̃2|1 = y1 and P2|1 =
Σε + Ση computes for t = 2, . . . , T :

νt = yt − μ̃t|t−1, Ft = Pt|t−1 + Σε

Kt = Pt|t−1F
−1
t ,

μ̃t+1|t = μ̃t|t−1 + Ktνt, Pt+1|t = Pt|t−1 + Ση −KtFtK′
t.

Denoting the information up to time t by Yt = {y1,y2, . . . ,yt}, the above
quantities have the following interpretation: νt = yt − E(yt|Yt−1),Ft =
Var(yt|Yt−1), μ̃t|t−1 = E(μt|Yt−1),Pt|t−1 = Var(μt|Yt−1) μ̃t = E(μt|Yt),
Pt = Var(μt|Yt).

The Kalman filter performs the prediction error decomposition of the like-
lihood function. The latter can be maximised using a quasi-Newton numerical
optimisation method.

When the model is homogeneous, inferences are made easier by the fact
that the Kalman filter and smoother become decoupled. In fact, at t = 2,
μ̃2|1 = y1 and P2|1 = (q+2)Σε = p2|1Σε, where we have written p2|1 = (q+1).
Now, consider the KF quantities that are independent of the data:

Ft = Pt|t−1 + Σε, Kt = Pt|t−1F
−1
t ,

Pt+1|t = Pt|t−1 + qΣε −Pt|t−1F
−1
t Pt|t−1;

Ft and Pt+1|t will be proportional to Σε: Ft = ftΣε, Pt|t−1 = pt|t−1Σε; also,
Kt = pt|t−1/(1 + pt|t−1)IN , where the scalar quantities are delivered by the
univariate KF for the LLM with signal to noise ratio q.

Hence, the innovations and inferences about the states can be from N
univariate KFs. Correspondingly, it can be shown that Σε can be concentrated
out the likelihood function, and the concentrated likelihood can be maximised
with respect to q (see Harvey, 1989, p. 439).

7.1 Homogeneity Tests

The Lagrange multiplier test of the homogeneity restriction, H0 : Ση = qΣε,
was derived in the frequency domain by Fernandez and Harvey (1990). The
frequency domain log-likelihood function is built on the stationary represen-
tation of the local level model, Δyt = ηt + Δεt and it takes the form:

L(ψ) = −NT ∗

2
ln 2π − 1

2

T∗−1∑

j=0

{
ln |Gj |+ 2π · trace

[
G−1
j I∗(λj)

]}
,
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where T ∗ = T − 1, ψ is a vector containing the p = N(N + 1) unknown
parameters of the disturbance covariance matrices, Gj is the spectral gener-
ating function at frequency λj = 2πj/T ∗, Gj = Ση + 2(1 − cosλj)Σε is the
spectral generating function of the MLLM evaluated at the Fourier frequency
λj and I∗(λj) is the (real part of) multivariate sample spectrum at the same
frequency.

The LM test of the restriction H0 : ψ = ψ0 takes the form

LM = DL(ψ0)I(ψ0)
−1DL(ψ0)

′ (9)

where DL(ψ0) is 1 × p vector containing the partial derivatives with respect
to the parameters evaluated at the null and I(ψ0) is the information matrix
evaluated at ψ0. Expressions for DL(ψ0) and I(ψ0) are given in Fernandez
and Harvey (1990).

The unrestricted local level model has N(N + 1) parameters, whereas the
homogenous model has N(N + 1)/2 + 1, so the test statistic (9) is asymptot-
ically distributed as a χ2 random variable with N(N + 1)/2 − 1 degrees of
freedom.

The homogeneous dynamic error component model further restricts Σε =
σε̄ii′ + Nε, and when the disturbances ε∗t are fully idiosyncratic, the model
has only N + 2 parameters. This restriction can be tested using (9), which
gives a χ2 test with N(N + 1)−N − 2 degrees of freedom.

7.2 Testing for a Multivariate RW and for Common Trends

Nyblom and Harvey (2003, NH henceforth) have developed the locally best
invariant test of the hypothesis H0 : Ση = 0 against the homogenous alterna-
tive H1 : Ση = qΣε. The test statistic is

ξN = tr[Γ̂
−1

S],

where

S =
1

T 2

T∑

t=1

[
t∑

i=1

(yi − ȳ)(yi − ȳ)′
]

Γ̂ =
1
T

T∑

t=1

(yt − ȳ)(yt − ȳ)′

and has rejection region ξN > c. Under the null hypothesis, the limiting distri-
bution of ξN is Cramèr-von Mises with N degrees of freedom. Although the
test maximises the power against a homogeneous alternative, it is consistent
for any Ση.
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A non parametric adjustment, along the lines of the KPSS test, is required
when εt is serially correlated and heteroscedastic. This is obtained by replacing
Γ̂ with

Γ̂l = Γ̂(0) +
l∑

τ=1

(
1− τ

l + 1

)
[Γ̂(τ) + Γ̂(τ)′]

where Γ̂(τ) is the autocovariance of yt at lag τ .
When the test is applied to the linear transformation A′yt, where A is a

known r ×N matrix, testing the stationarity of A′yt amounts to testing the
null that there are r cointegrating relationships. If A′ΣηA = 0, then we can
rewrite yt = Zμt + μ0 + εt, with A′Z = 0, so that A′yt = A′μ0 + A′εt.

The test statistics for this hypothesis is

ξr(A) = tr[(A′Γ̂A)−1A′SA],

and its limiting distribution is Cramèr-von Mises with r degrees of freedom.
NH also consider the test of the null hypothesis that there are k common

trends, versus the alternative that there are more.

H0 : rank(Ση) = k, vs. H1 : rank(Ση) > k.

The test statistic is based on the sum of the N − k smallest eigenvalues of
Γ̂
−1

S,
ζ(k, N) = λk+1 + . . . + λN

The significance points of ζ(k, N) are tabulated in NH (2003) for a set of
(k, N) pairs.

8 Illustration

Our illustrative example deals with extracting a measure of core inflation
from a multivariate time series consisting of the monthly inflation rates for 8
expenditure categories.

The series are listed in table 1 and refer to the U.S. city average for the
sample period 1993.1–2003.8 (source: Bureau of Labor Statistics). The relative
importance of the components of the U.S, inflation rate in building up the
U.S. inflation rate, i.e. their CPI weights, is reported in the second column of
table 3. Figure 2 displays the eight series yit, i = 1, 2, . . . , 8.

Fitting the univariate local level model to w′yt, where w is the vector
containing the CPI weights reproduced in the second column of table 3, that
is w′yt = μt + εt, εt ∼WN(0, σ2

ε ), μt = μt−1 + ηt, ηt ∼WN(0, qσ2
ε ), gives the

maximum likelihood estimate q̃ = 0.
The estimated signal to noise ratio implies that CPI monthly inflation

is stationary and that the corresponding aggregate core inflation measure is
represented by the time average of the CPI all items monthly inflation rates,
that is μ̃ = T−1

∑
tw

′yt.
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Table 1. Description of the series and their CPI weights

Expenditure group CPI weights

1. Food and beverages 0.162
2. Housing 0.400
3. Apparel 0.045
4. Transportation 0.176
5. Medical care 0.058
6. Recreation 0.059
7. Education and communication 0.053
8. Other goods and services 0.048

DLFood&Beverages DLHousing

1995 2000 1995 2000

DLApparel DLTransportation

0.0000

0.0025

0.0050

0.0075

0.0100

−0.0025

0.0000

0.0025

0.0050

0.0075
DLMedicalCare DLRecreation

1995 2000 1995 2000

−0.02

−0.01

0.00

0.01

0.02

0.00

0.01

0.02

0.03

0.04
DLEducation&Communication
DLOtherGoods&Services

Fig. 2. U.S. CPI, 1993.1–2003.8. Monthly relative price changes for the eight expen-
diture categories

Table 2. Nyblom and Harvey (2003) stationarity test, cointegration test and
common trend test

Truncation lag (l) NH NH-coint CT(1)

0 3.334 2.510 1.112
1 2.876 2.306 0.982
2 2.638 2.134 0.894
5 2.214 1.787 0.720
10 1.682 1.346 0.605
5% crit. value 2.116 1.903 0.637
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Table 3. Core inflation measures: weights defining µ̄t = w′µt

Expenditure group CPI weights MV weights DECM weights

Food and beverages 0.162 0.119 0.114
Housing 0.400 0.174 0.215
Apparel 0.045 0.025 0.023
Transportation 0.176 −0.005 0.007
Medical care 0.058 0.435 0.435
Recreation 0.059 0.146 0.126
Education and communication 0.053 0.079 0.068
Other goods and services 0.048 0.026 0.010

8.1 Stationarity and Common Trends

The issue concerning the stationarity of CPI monthly inflation can be also be
handled within a multivariate framework. Assuming that yt = (y1t, . . . , y8t)′

is modelled as in (1), we can use the NH statistic ξN to test H0 : Ση = 0
versus the alternative that Ση = qΣε.

The values of the NH statistic are reported in the second column of table 2
for various values of the truncation lag l used in computing the Newey-West
nonparametric correction for autocorrelation and heteroscedasticity. They
lead to reject the null that yt is stationarity for values of l up to 5.

The third column reports the values of the NH-cointegration test. The
latter tests the null hypothesis that A′yt is stationary, where A is chosen
such that A′i = 0, which corresponds to the hypothesis that there is a single
common trend which enters each of the series with the same loading; this is
also known as the balanced growth hypothesis: as the series share the same
common trend, the difference between any pair is stationary. This hypothesis
is clearly rejected for low values of the truncation parameter, up to l = 2.

Finally, CT(1) is the statistic for testing the null hypothesis that a single
common trend is present (the 5% critical value has been obtained by simula-
tion), based on the statistic ζ(1, 8) =

∑8
i=2 λi(S−1C), where λi(·) is the i-th

ordered eigenvalue of the matrix in argument.
Taken together, the results of the NH-coint and CT(1) tests do not suggest

the presence of a single common trend driving the eight CPI monthly inflation
rates. Nevertheless, if the MLLM is estimated with a single common trend (see
Sect. 5.2) then the estimated vector of loadings is

z̃′ = [1.000, 0.038, 0.069, 0.081, 0.016, 0.086, 0.023,−0.021],

and the estimated trend disturbance variance is σ̃2
η = 0.00065282. Estimation

of the MLLM with common trends was carried out in Stamp 6 by Koopman
et al. (2000). The other computations and inferences were performed in Ox 3
by Doornik (1999). It can be seen that the series Food and beverages plays a
dominant role in the definition of the common trend.
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8.2 Homogeneous MLLM

Maximum likelihood estimation of the local level model (1) with the homo-
geneity restriction is particularly straightforward, since the innovations and
inferences about the states can be obtained by running N univariate Kalman
filters (this is known as decoupling). The matrix Σε can be concentrated out
the likelihood function and the concentrated likelihood can be maximised with
respect to the signal-noise ratio q.

The estimation results are the following: q̂ = 0.0046, and

Σ̃ε =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.04 −0.10 0.04 0.07 0.02 −0.04 −0.03 −0.01
−0.00 0.02 0.04 0.23 0.05 0.13 0.07 −0.10

0.00 0.00 0.17 0.07 −0.01 −0.00 −0.08 −0.08
0.01 0.02 0.02 0.55 0.04 0.10 −0.22 0.02
0.00 0.00 −0.00 0.00 0.01 −0.14 −0.02 −0.07
−0.00 0.00 −0.00 0.01 −0.00 0.03 −0.06 −0.04
−0.00 0.00 −0.01 −0.04 −0.00 −0.00 0.06 −0.14
−0.00 −0.01 −0.02 0.01 −0.00 −0.00 −0.02 0.39

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where in the upper triangle we report the correlations, which are usually
very low.

The frequency domain test for homogeneity (Fernandez and Harvey, 1990)
takes the value 31.275 on 35 degrees of freedom and therefore it is not signifi-
cant (the p-value is 0.65). This suggests that the homogenous specification is
a good starting point for building up core inflation measures.

8.3 Homogeneous Dynamic Error Components Model

Within the homogeneous model of the previous subsection we considered the
error component structure Σε = σ2

ε ii
′ + Nε, in which there is a common

disturbance linking the trends and the irregular component; Nε was specified
as a diagonal matrix.

When estimated by maximum likelihood, the signal–noise ratio is close to
that of the homogenous case, q̂ = 0.0043; moreover, the common irregular
disturbance variance is estimated σ̂2

ε̄ = ×10−7 and

ˆbN ε = diag(0.035, 0.019, 0.173, 0.546, 0.009, 0.032, 0.059, 0.391).

However, the DECM restriction, H0 : Σε = σ2
ε̄ ii

′ + Nε,Ση = qΣε, is strongly
rejected, with the LM test taking the value 153.43 on 60 degrees of freedom.

8.4 Core Inflation Measures

Bearing in mind the empirical results of the previous sections, we now discuss
three measures of core inflation obtained from the multivariate MLLM.
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The first is derived from the homogeneous local level model and is defined
as w′μ̃t|T , where μ̃t|T are the smoothed estimates of the trends and w is the
vector of CPI weights, equal to the budget share of the expenditure groups.
This is reproduced along with the 95% confidence interval in the first panel
of Fig. 3.

The second measure uses the minimum variance (MV) weights w =
Σ̂−1
ε i/(i′Σ̂−1

ε i), reproduced in the third column of table 3. Housing and Trans-
portation result heavily downweighted (the MV weight is negative for the
latter). The corresponding core inflation measure, displayed in the right upper
panel of Fig. 3, is much smoother than the previous, and characterised by lower
estimation error variance.

The last measure of core inflation is derived from the dynamic error compo-
nent local level model with homogeneity and is defined as w′μ̃t|T , where
w = N−1

η i/(i′N−1
η i) where Nη is a diagonal matrix. Although the DECM

restriction was strongly rejected, the weights and the corresponding core infla-
tion measure agree very closely with the minimum variance one.

The overall conclusion is that the point estimates of the three core inflation
measures agree very closely.

For comparison purposes, in the last panel of Fig. 3 we display the core
inflation measure estimated using the structural VAR approach by Quah and

Homogeneous model, CPI weights

Inflation Core Inflation

1995 2000 1995 2000

Homogeneous model, minimum variance weights

Inflation Core Inflation

0.00

−0.25

0.25

0.50

−0.25

0.00

0.25

0.50

Dynamic Error Component Model

Inflation Core Inflation

1995 2000 1995 2000

0.00

0.25

0.50

−0.25

−0.25

0.00

0.25

0.50

0.75
Structural VAR (Quah and Vahey, 1995)

Inflation Core Inflation

Fig. 3. U.S. CPI, 1993.1–2000.12. Core inflation measures derived from a multi-
variate local level model with homogeneity and variance components restrictions
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Vahey (1995, QV henceforth). A bivariate vector autoregressive (VAR) model
was estimated for the series ut = [Δyt, Δxt]′,

Φ(L)ut = β + ξt, Φ(L) = I−Φ1L− · · · −ΦpL
p,

where yt is the monthly inflation rate, computed using the CPI total, and xt
is the logarithm of the industrial production index (source: Federal Reserve
Board, sample period: 1993.1–2003.8). The VAR lag length which minimises
the Akaike information criterion resulted p = 11, which is close to the value
adopted by QV in their original paper. QV define core inflation as the compo-
nent of inflation that can be attributed to nominal disturbances that have
no long run impact on output. Their identification proceeds as follows: the
structural disturbances, ζt = [ζ1t, ζ2t]′, are defined as linear transformations
of the time series innovations, ξt = Bζt, where B = {bij ; i, j = 1, 2} is a full
rank matrix such that Φ(1)−1B is upper triangular (i.e. the nominal distur-
bance ζ1t has no permanent effect on xt). Correspondingly, the core inflation
measure is:

mt = [ϕ11(L)b11 + ϕ12(L)b21]ζ1t,

where Φ(L)−1 = {ϕij(L); i, j = 1, 2}.
Several differences arise with the measures extracted from the MLLM. The

QV measure tracks actual inflation very closely. The plot clearly show that
mt is indeed very volatile. This lack of smoothness can be partly attributed
to the fact that this measure is based on a one sided filter. On the other hand,
it may be argued that the industrial production index is not fully adequate
to capture core inflation.

9 Conclusions

The paper has illustrated how core inflation measures can be derived from
optimal signal extraction principles based on the multivariate local level
model. The approach is purely statistical, in that a coherent statistical repre-
sentation of the dynamic features of the series the model is sought, along with
sensible ways of synthesizing the dynamics of a multivariate time series in a
single indicator of underlying inflation. The advantage over indices excluding
particular items, such as food and energy, is that maximum likelihood esti-
mation of the parameters of the model indicate what items have to be down-
weighted in the estimation of core inflation.

Two main directions for future research can be envisaged: the first is
enlarging the cross-sectional dimension by using more disaggregate price data.
The second is to provide more economic content to the measurement by
including in the model a Phillips’ type relationship featuring among the
inflation determinants measures of monetary growth, the output gap and
inflation expectations.
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Random Portfolios
for Performance Measurement

Patrick Burns

Burns Statistics

Summary. Random portfolios—portfolios that obey constraints but ignore utility—
are shown to measure investment skill effectively. Problems are highlighted regarding
performance measurement using information ratios relative to a benchmark. Random
portfolios can also form the basis of investment mandates—this allows active fund
managers more freedom to implement their ideas, and provides the investor more
flexibility to gain utility. The computation of random portfolios is briefly discussed.

Key words: Random portfolios, performance measurement, investment
mandates, investment opportunity, Monte Carlo simulation

1 Introduction

The accurate assessment of the skill of fund managers is quite obviously of
great value. It is also well known to be a very difficult task. A variety of tech-
niques, some quite clever, have been devised. Some methods measure indi-
vidual managers, others a class of managers. A few references are (Kosowski
et al., 2001), (Muralidhar, 2001), (Engstrom, 2004), (Ding and Wermers,
2004). There are also (Ferson and Khang, 2002) and (Grinblatt and
Titman, 1993).

More accurate performance measurement allows a quicker determination
of whether or not a fund manager has skill. It can also provide a more fair
method of compensating fund managers for their contribution to the investor.

A perfect measure would be to look at all portfolios that the fund manager
might have held, and compare their realized utility to the realized utility of
the fund under question. The portfolios that the manager might have held are
those that satisfy the constraints that the manager uses.

For practical reasons we take a random sample from the set of portfo-
lios satisfying the constraints to use in the comparisons. We are free to use
whatever measure (or measures) of quality that we like, and we will have
a statistical statement of the significance of the quality of the fund. This
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procedure eliminates much of the noise that results from assessing a fund’s
outperformance relative to an index (or to peers).

Random portfolios have other uses as well, such as evaluating trading
strategies as discussed in (Burns, 2006).

R (R Development Core Team, 2005) was used for computations and
graphs for this paper. Random portfolios and optimisations were done with
the POP Portfolio Construction Suite (Burns Statistics, 2005).

2 Generating Random Portfolios

It is worth noting that naive approaches to generating random portfolios
typically do not work well. For example, permuting the weights of an actual
portfolio seldom yields a portfolio with realistic properties. In particular the
volatility of such portfolios is generally quite large. Real portfolios are not a
haphazard collection of assets.

Generating portfolios of some number of equally weighted assets is an easy
approach. While this can produce a distribution that is much better than
nothing, it is not what a fund manager will do. This technique will produce
portfolios that a fund manager would not hold because they are too volatile. It
also fails to allow portfolios that fund managers would hold—equal weighting
is a significant limitation.

A set of constraints is required in order to produce random portfolios
that are believable. One approach to generating random portfolios when there
are constraints is to use the rejection method—produce a series of random
portfolios and reject all of those that violate at least one constraint. This
is not an effective method in practice. The probability of a portfolio being
accepted is generally extremely small when realistic constraints are in place.

(Dawson and Young, 2003) outline a mathematical algorithm for gener-
ating random portfolios when there are only linear constraints. Perhaps the
most important constraint when generating random portfolios is a limit on the
volatility, which is not linear. Integer constraints such as limits on the number
of assets in the portfolio and limits on the number of assets to trade are also
often desired in practice. Thus an assumption of only linear constraints still
only produces an approximation to the real situation.

Genetic algorithms provide a practical means of generating random port-
folios. Genetic algorithms are generally attributed to (Holland, 1975), but
others contributed as well—see (Fogel, 2006). The use of genetic and related
algorithms in finance is discussed in (Maringer, 2005). The original formu-
lation of a genetic algorithm was quite inefficient, but advances have been
made. The basic idea is that at any one time there is a population of candi-
date solutions. Two of these solutions are selected as parents that produce
child solutions—the children combine, in some random way, features of the
parents. Better solutions have the best chance of surviving in the population.
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In the case of random portfolios the genetic algorithm merely needs a
number that describes how much a solution violates the constraints. Once
we find a solution that violates none of the constraints, we are done (with
generating one random portfolio). Since other solutions in the population
will be correlated with our selected portfolio, we need to start over with a
completely new population to generate an additional random portfolio.

In practice this approach with genetic algorithms (and many other types
of algorithm) will produce random portfolios that usually have at least one
constraint that is close to binding. That is, the portfolios are not uniformly
spread over the space in which the constraints are met—the portfolios are
concentrated on the boundary.

There are two attitudes to this. One is that the portfolios should be
uniform. The other is that actual portfolios will also be close to binding on
some of the constraints—thus being concentrated on the boundary may actu-
ally be closer to what is really wanted. After all, if none of the constraints
were likely to be binding when building a portfolio, then there would be no
point in having the constraints.

The (Dawson and Young, 2003) algorithm includes a method of thinning
solutions near edges. Their technique could possibly be adapted to use with
genetic and other algorithms to produce more uniform sets of random port-
folios. The first step is to decide if a portfolio is too close to one or more
constraints. If it is, then the portfolio could be dropped. While this is not
going to be an especially efficient algorithm, it may well be practical since it
is generally quite quick to generate a portfolio.

Alternatively, a portfolio near the boundary could be moved. Their approach
is to select another portfolio that has already been generated and move
towards that portfolio. This works because the second portfolio is unlikely
to be tight on the same constraints as the first portfolio, and—in their
framework—the feasible region is convex. In most practical applications,
where there is a limit on the number of assets in the portfolios, the feasible
region is not convex. The technique needs modification for these cases.

In the examples used here, no adjustments have been made for concentra-
tions on the boundary.

3 Management Against a Benchmark

Currently a great amount of performance analysis is relative to a benchmark.
Sometimes this is done because it is deemed reasonable, but other times for
lack of an alternative. A good discussion of the use and abuse of benchmarks is
(Siegel, 2003). (Kothari and Warner, 2001) use random portfolios to examine
problems with benchmarks—they get results quite similar to those in this
section.

In this section (and the next) we use a dataset of the daily returns of an
unsystematic collection of 191 large-cap and small-cap US equities. The data
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start at the beginning of 1996 and end after the third quarter of 2004. Results
are reported for each quarter except the first two. The first two quarters are
excluded so that all results are out of sample—in some operations the variance
matrix is estimated with the previous two quarters of data.

One thousand random portfolios were created from this universe with the
constraints that no more than 100 names were in a portfolio, no short values
were allowed, the maximum weight of any asset was 10%, and the sum of the
8 largest weights was no more than 40%. In some figures the first 500 random
portfolios are compared to the second 500 in order to indicate the significance
of any pattern that might appear.

Three artificial benchmarks were created. The first is the equal weighting
of the assets. The other two have weights that were randomly generated. These
latter two are referred to as the “unequally weighted benchmarks”. Note that
the randomness is only in the selection of the weights of the assets, and these
weights are held fixed throughout time.

3.1 Outperforming the Benchmark

The information ratios of the random portfolios were calculated relative to
the benchmark that has equal weight in each stock. (An information ratio is
the annualized return in excess of the benchmark divided by the annualized
standard deviation of the differences in returns—an excess return derived from
a regression rather than subtraction is more desirable (see (Siegel, 2003)) but
for simplicity is not done here.) Figure 1 shows the probability that the random
portfolios have a positive information ratio against this benchmark for each
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Fig. 1. The empirical frequency of a positive information ratio by quarter relative
to the equally weighted benchmark. Each line represents 500 random portfolios
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quarter. One line corresponds to the first 500 random portfolios and the other
line to the second 500.

We might have expected the fraction of portfolios that outperform the
equally weighted benchmark to be closer to 50%. (The average probability
is indicated by the horizontal line.) The p-value is 0.006 for the test that
positive and negative information ratios are equally likely. Note though that
the benchmark is outside the constraints that we have put on the random
portfolios—the portfolios can have at most 100 constituents while the bench-
mark has 191.

While there is a slight tendency for the equally weighted benchmark to
outperform, there seems to be no systematic difference between quarters.

We now look at two benchmarks with (randomly generated) unequal
weights. The mean weight is about 0.5%, and the maximum weight in each
benchmark is slightly over 2.5%. Figures 2 and 3 show the probability of
a positive information ratio. In these plots there are undeniable differences
between quarters. In some quarters there is a strong tendency for the bench-
mark to outperform the random portfolios, in others a strong tendency for the
benchmark to underperform. In most quarters the two sets of random portfo-
lios have almost identical fractions of outperformance. There is no consistency
of outperformance between the two benchmarks.

On reflection this result should not be so surprising—though the extent of
the effect may be. A benchmark will be hard to beat during periods when the
most heavily weighted assets in the benchmark happen to do well. Likewise,
when the assets with large weights in the benchmark do relatively poorly, then
the benchmark will be easy to beat.

P
ro

b
a
b
li
ty

 o
f 
P
o
si

ti
v
e

 I
n
fo

rm
a
ti

o
n

 R
a
ti

o

0
.2

0
.4

0
.6

0
.8

1996 1997 1998 1999 2000 2001 2002 2003 2004

Fig. 2. The empirical frequency of a positive information ratio by quarter relative to
the first unequally weighted benchmark. Each line represents 500 random portfolios



232 Patrick Burns

P
ro

b
a
b
li
ty

 o
f 
P
o
si

ti
v
e

 I
n
fo

rm
a
ti

o
n

 R
a
ti

o

0
.2

0
.4

0
.6

0
.8

1996 1997 1998 1999 2000 2001 2002 2003 2004

Fig. 3. The empirical frequency of a positive information ratio by quarter relative
to the second unequally weighted benchmark. Each line represents 500 random
portfolios

Figure 4 shows the quarterly returns of each of the three benchmarks
plotted against each other. The three benchmarks are obviously highly corre-
lated. This seems contradictory since the probabilities of outperforming
the benchmarks didn’t appear to be related. The explanation is illustrated
by Fig. 5. This shows the returns of the three benchmarks and the proba-
bility of outperformance for each quarter. Even slight differences in return
between the benchmarks cause dramatic differences in the probability of
outperformance. That is, random portfolios provide a very sensitive measure of
performance.

Clearly the more unequal the weights in a benchmark, the more extreme
the swings will be in the probability of outperforming. In this regard, the
random benchmarks that are used here are not at all extreme compared to
many indices that are used in practice as benchmarks.

Table 1 shows a history of U.S. mutual fund outperformance relative to the
“best fitting” benchmark of each fund. The data in this table were computed
by Craig Israelsen using the Morningstar database. (Israelsen, 2003) alludes
to the method of choosing the benchmark for each fund.

There are two histories for the S&P 500—one with all of the available
funds, and one containing only the funds that were live in all of the years.
This was to explore the possibility of survival bias. Survival bias appears to
be minimal.

The pattern of outperformance of the S&P 500 by the funds is quite
similar to that for the unequally weighted benchmarks as exhibited in Figs. 2
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and 3—some years a large fraction of funds underperform and other years a
large fraction outperform.

Interpreting this data in the way that it is often used, we infer that
managers were, in general, bad during the 90’s, then they suddenly became
very good for three years starting in 2000, then returned to being bad in 2003.
This is clearly a ridiculous inference, but nonetheless is often done.

The outperformance of funds relative to the other two benchmarks, while
not completely stable, is much less variable. The S&P Midcap 400 almost
always beats more than half of the funds that track it, while the Russell 2000
is almost always beat by more than half the funds that track it. There are
several possibilities:

• The fund managers that track the S&P Midcap are inept, and the fund
managers that track the Russell 2000 are quite skillful.

• The S&P Midcap has been hard to beat and the Russell 2000 has been
easy to beat.

• The volatilities of the funds are substantially different from the benchmark
volatility.

• The outperformance is an artifact of the way that benchmarks have been
assigned to funds.

We don’t have enough information to decide among these. Random portfolios
could help inform us.

Some would argue—given the evidence we’ve just seen—that benchmarks
should be equally weighted indices. Even if this were accepted as practical
(see (Siegel, 2003) for some reasons why it isn’t), it still doesn’t solve the issue
of accurately measuring skill. Figure 6 shows the probability of the random
portfolios having an information ratio greater than two relative to the equally
weighted benchmark. There are definite systematic differences by quarter—
sometimes a large information ratio is easier to achieve than at other times.

3.2 Information Ratios and Opportunity

Figure 6 implies that the distribution of information ratios changes from
quarter to quarter. Information ratios are not purely a measure of skill, but
rather are a combination of skill and opportunity. (Statman and Scheid, 2005)
focuses on this topic.

Imagine a case where all of the assets in the universe happen to have the
same return over a time period. Portfolios will vary from each other during the
period and hence have non-zero tracking error relative to the index. However,
all portfolios will end the period with the same return—all information ratios
will be zero.

Figure 7 shows the standard deviation of the information ratios of the
random portfolios for each quarter and each of the three benchmarks. The
naive assumption is that the standard deviations should all be 2. (A one-year



236 Patrick Burns

P
ro

b
a
b
li
ty

 o
f 
In

fo
rm

a
ti

o
n

 R
a
ti

o
 >

 2

0
.1

0
0
.1

5
0
.2

0

1996 1997 1998 1999 2000 2001 2002 2003 2004

Fig. 6. The empirical frequency of an information ratio greater than two relative
to the equally weighted benchmark. Each line represents 500 random portfolios
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information ratio “should” have standard deviation 1, in which case annual-
ized quarterly ratios will have a variance of 4 since the annual ratio is the mean
of the four quarterly ratios.) The plot exhibits definite differences between
quarters and between benchmarks.

Certainly the cross-sectional spread of the full-period returns has an effect
on the standard deviation of information ratios. The volatility over time of
the assets will also have an effect. Figure 8 shows an experiment of varying
these. The data are from the first quarter of 2004. Each point in the figure has
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Fig. 8. The standard deviation of information ratios as volatility and returns are
artificially varied (using data from the first quarter of 2004)

had the volatility of each asset multiplied by a value and the returns for the
period multiplied by a value. (The return of an asset is adjusted by adding the
same value to each of the daily returns for the asset. The volatility is adjusted
by scaling the deviation of the returns around the mean return for the asset.)

The point at (1, 1) corresponds to the real data—there the standard devi-
ation of the information ratios (relative to the equally weighted benchmark)
is about 1.8. The points that are at 2 on the horizontal axis have twice the
spread of returns as the real data (a stock that really had a 3% return gets a
6% return, and a stock with a -1% return gets a -2% return). The points that
are at 0.5 on the vertical axis have half of the volatility as the real data for
all of the assets. The point at (2, 0.5) has a standard deviation of information
ratios that is about 7.

Figure 8 shows that the cross-sectional spread of asset returns is very
important to the opportunity to achieve a large information ratio. The spread
of returns has a bigger impact as the volatility of the assets decreases. Obvi-
ously in reality there is a connection between the volatility of the individual
assets and the cross-sectional spread of returns, but there is no reason to
suppose that they are in lock step.

3.3 Measuring Skill via Information Ratios

In order to study the ability to measure skill, a set of 100 “managers” was
created. At the beginning of each quarter each manager performs a portfolio
optimisation. The managers all use the same variance matrix, but each has a
unique vector of expected returns. The variance matrix is estimated from the
previous two quarters using a statistical factor model. The expected returns
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in the optimisation are based on the actual returns that are realized in the
quarter (since this is looking at future data, it is not a strategy that real fund
managers have available to them). The expected returns for the stocks are
random normals with mean equal to 0.1 times the realized mean daily return
for the asset. The standard deviation for the random normals is 0.1 times the
standard deviation of the realized daily returns for the asset. The objective of
the optimisation was to maximize the information ratio—the absolute ratio,
not relative to any benchmark.

A common approach to testing for skill is to compute the information ratio
of the fund relative to its benchmark. The test is then to see if this information
ratio is too large given the null hypothesis that the true value is zero. There
are at least two approaches to the test. One is to feed the information ratios
for the individual periods—33 quarters in the current case—to a t-test. More
common is to calculate the information ratio for the whole period and use the
fact that the standard deviation is theoretically known, then use the normal
distribution. The statistics and p-values from these two approaches should
be similar. Figure 9 shows the p-values from the normal test for the 100
“managers” for the information ratio based on the first unequally weighted
benchmark for the full time period. The skill of the managers shows up by
quite a large number having p-values close to zero.

Another view is in Fig. 10 which shows the number of hypothetical
managers with significant p-values as each quarter is observed—an additional
point on the x-axis becomes available as each quarter is completed. There are
a couple of aspects to this plot that are worrisome. The number of signifi-
cant managers is much more variable when only a few quarters have been
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observed. While the number of managers that are significant at the 5% level
grows reasonably steadily as we would expect, the number that are significant
at 1% seems to stagnate.

We have seen that the assumption of known standard deviation in the
normal test is actually violated. Figure 11 shows the distribution of normal test
p-values using information ratios relative to the equally weighted benchmark
when there is no skill. Each of the “no skill managers” selects one of the
1000 random portfolios at random each quarter—100,000 such managers were
created. If theory were correct, then the distribution in the plot would be
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Fig. 11. Distribution of p-values from the normal test of information ratios relative
to the equally weighted benchmark on portfolios with zero skill
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uniform (that is, flat). The distribution does not have enough mass in the
tails, near 0 and 1. This implies that it is harder (in this case) than it should
be to prove fund managers either skilled or unskilled. The deviation from the
uniform distribution will be time, benchmark and universe dependent.

4 Measuring Skill with Random Portfolios

We’ve already seen that assessing the skill of fund managers with information
ratios has severe problems.

A second commonly used method is to rank a fund relative to similar funds.
This has problems of its own. It supposes that all funds within the category
are doing the same thing. For instance, it isn’t entirely obvious how differences
in volatility should be taken into account, and seemingly small differences in
the universe that is used could have a major impact. (Surz, 2006) has a fuller
criticism of this form of performance measurement as well as arguments for
using random portfolios.

Even if all of the funds in a category used precisely the same universe,
had the same volatility and so on, we still wouldn’t know if the top-ranked
managers had skill. It could be that no manager in the category has skill and
that the top-ranked managers are merely the luckiest.

(Kacperczyk et al., 2006) use a rather unique form of performance measure-
ment. This looks at the published positions of a fund at a point in time, and
then compares the fund’s subsequent return to the return of the published
portfolio. Outperformance relative to published portfolios is found to be
persistent. Using random portfolios to assess the significance of the outper-
formance would be easy and quite accurate.

Random portfolios provide an opportunity to measure skill more effectively
than the methods just discussed. First, we take a statistical detour.

4.1 Combining p-values

In using random portfolios to measure skill, it will be necessary to combine
p-values from different periods of time. A key assumption of combining
p-values is that they need to be statistically independent. In our context as
long as the tests are for non-overlapping periods of time, this will be true to
a practical extent, if not absolutely true.

One way of combining p-values is called Stouffer’s method. In this tech-
nique the individual p-values are transformed into the quantiles of a standard
normal. The p-value of the average of the quantiles is then found. In R the
command to do this is:

pnorm(sum(qnorm(x)) / sqrt(length(x)))

where x is the vector of individual p-values.
Stouffer’s method easily admits the use of weights for the individual

p-values—for example, if not all of the time periods were the same length.
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A weighted sum of the quantiles is performed, and then standardized by its
standard deviation—the square root of the sum of squared weights.

When using Stouffer’s method, we do not want any of the individual
p-values to be either 0 or 1. We need to use centered p-values:

pcentered =
nx + .5
N + 1

where N is the number of random portfolios and nx is the number of portfolios
that are as extreme or more extreme than the observed fund. Stouffer’s method
is used to combine p-values in what follows. See (Burns, 2004) for a discussion
of why Fisher’s method of combining p-values is inappropriate.

4.2 Tests with the Example Data

Figure 9 shows a test of skill using information ratios relative to a benchmark.
Here we use the same data to test skill based on the mean-variance utility using
random portfolios.

The first step is to decide what specific utility is to be computed. In the
case of mean-variance utility we need to specify the risk aversion parameter.
We then compute the utility achieved within each quarter by each random
portfolio and by each manager. The utility of a manager within a quarter is
compared to the utilities of the random portfolios—this provides a p-value for
that manager in that quarter. Finally, we combine these p-values to derive a
p-value for the whole period for each manager.

Figure 12 plots the p-values based on random portfolio tests using mean-
variance utility with risk aversion 2. This has many more very small p-values
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Fig. 12. P-values of the 100 hypothetical managers based on random portfolios
using mean-variance utility with risk aversion 2 (over 33 quarters)
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Table 2. Counts (out of 100) of the number of hypothetical managers achieving
significance levels in the various forms of tests over 33 quarters

test < 0.05 < 0.01 < 0.001

random portfolio, risk aversion = 2 67 57 37
random portfolio, risk aversion = 1 68 56 35
random portfolio, risk aversion = 0.5 67 52 34
random portfolio, risk aversion = 0 66 51 33
information ratio, equal wt benchmark 35 12 0
information ratio, random benchmark 1 47 17 1
information ratio, random benchmark 2 43 14 0

than Fig. 9. Table 2 shows the number of hypothetical managers that achieved
various significance levels for different forms of the tests. The tests using
random portfolios clearly have more power than those using information
ratios. About a third of the random portfolio tests achieve a p-value less
than 0.001, while only one manager in one of the information ratio tests
achieves this.

Figure 13 shows the number of hypothetical managers with significant
p-values as the number of quarters observed increases. (As is also the case
with Fig.10 the managers do not change their behavior as time goes on.) This
plot shows the number of significant p-values growing rather steadily. The
problems that p-values based on information ratios seemed to have are not in
evidence in this plot.
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Fig. 13. Percent of hypothetical managers with significant p-values over time using
random portfolios with risk aversion 2
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5 Investment Mandates

Mandates are the contracts that tell fund managers what they should do with
the investor’s money. Mandates should be created so that the investor maxi-
mizes the usefulness of the entire portfolio. At present this goal is probably
not realized very well.

5.1 Tracking Error Should be Maximized

Currently fund managers are often expected to have a relatively small tracking
error to their benchmark. If there were no opportunity to invest passively in
the benchmark, then this could be a rational approach. But is this the right
approach when passive investment is possible?

If both passive and active funds are held, then the total portfolio is
enhanced from lower volatility when the correlation between the passive and
active portions decreases (assuming the expected return and volatility of the
active fund do not change).

We can see what minimizing correlation means for the tracking error by
some minor manipulation of its definition. We will denote the active fund by
A and the benchmark by B, other notation should be self-explanatory.

TE2
B(A) = Var{A − B} = Var{A} + Var{B} − 2Cov{A, B} (1)

Putting the covariance term alone on the left side and transforming to
correlation gives us

Cor{A, B} =
Cov{A, B}√

Var{A}
√

Var{B}
=

Var{A} + Var{B} − TE2
B(A)

2
√

Var{A}
√

Var{B}
. (2)

Holding the variance of the active fund constant, the correlation between
the active fund and the benchmark is minimized when the (squared) tracking
error is maximized.

This directly contradicts (Kahn, 2000), cited by (Waring and Siegel, 2003).
Who is right?

5.2 What is Risk?

The argument we’ve just seen says that tracking errors are ideally large,
while (Kahn, 2000) argues that tracking errors should be small. The discrep-
ancy boils down to the definition of risk. The argument in which tracking
errors should be large takes the risk to be the mean-variance utility of the
entire portfolio—the active part plus the passive part. The argument in
which tracking errors should be small takes risk to be the deviation from
the benchmark.

Optimal behavior is vastly different depending on which is the more real-
istic definition of risk.
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Calling risk the deviation from the benchmark is the appropriate choice
when the benchmark is the liabilities of the fund. If there is no deviation from
the benchmark, then the fund carries no risk. For example if the fund needs
to deliver x times the value of the S&P 500 in 10 years, then this situation
applies with the benchmark equal to the S&P 500.

Alternatively if the benchmark is the S&P 500 but it could reasonably have
been some other index of U.S. equities, then exactly reproducing the S&P 500
is not going to be a zero risk solution. This is the more common case.

However, using the absolute utility of the portfolio (where we want to
maximize tracking error) is also wrong—it ignores the liabilities altogether,
as if we knew nothing about them.

There has been some work on evaluating policies when the liabilities are
known only with uncertainty—see, for instance, (Board and Sutcliffe, 2005).
A lot of work, however, assumes that liabilities are known, which is almost
always not true. One way of thinking about uncertain liabilities is that it is
a generalization of a dual benchmark optimisation. So perhaps an approx-
imate answer can be obtained by performing an optimisation with several
benchmarks.

My (uneducated) guess is that using the absolute utility is almost always
closer to the right answer than using the active utility.

(Muralidhar, 2001) on p. 157 speaks of an example where the actively
managed portfolio had a lower asset-liability risk (in a certain sense) than
the benchmark portfolio. This is obviously a case where deviation from the
benchmark should not be considered to be the risk.

Traditionally there has been another reason to prefer small tracking errors:
small tracking errors enhance the ability to declare skill when information
ratios are used. Consider an extreme case. Two fund managers outperform
an index by 3%, their funds each have the same volatility, but one has a
tracking error of 1% while the other has a tracking error of 10%. From a
global perspective the two fund managers are equivalent—they have the same
return and the same volatility. But in terms of proving skill via the information
ratio relative to the index, the first fund manager would be judged to have
skill while the second could not be.

6 Random Portfolio Mandates

Random portfolios can be used as the basis of mandates. The investor specifies
the constraints that the fund manager is to obey; the manager is judged, and
possibly paid, based on the fund’s performance relative to random portfolios
that obey the constraints. This process gives fund managers the freedom to
shape their portfolios the way that they see fit, and provides investors with
an accurate measure of the value to them of a fund manager.

In a traditional mandate the investor and fund manager agree on a bench-
mark and a tracking error allowance. With a random portfolio mandate, it is
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the constraints that need to be agreed upon. Of course each party will have
views on the constraints.

In general fund managers want constraints to be loose so that they have
a lot of freedom, and the random portfolios are allowed to do stupid things.
The investor wants to set the constraints so that the fund manager is likely to
add as much value as possible. This tends to favor relatively tight constraints
on such things as volatility.

While there is a natural tension between the fund manager and the
investor, there is also quite a lot of room for cooperation. It is in the interests
of both that the fund manager is given enough freedom to capitalize on good
investment ideas.

6.1 An Example Mandate

Here we briefly outline what a random portfolio mandate might look like. The
items in our mandate are:

• The evaluation period is 6 months.
The frequency of evaluation needs to take the fund manager’s strategy into
account. Obviously an evaluation over 1 week when the manager is looking
at time horizons on the order of 3 to 6 months will be pure noise. A manager
that typically holds positions for less than a day could be evaluated very
frequently, but the evaluation need not be especially frequent.

• The universe of assets is the constituents of the S&P 500 at the
beginning of the period.
To keep things simple, the universe is fixed throughout the period regard-
less of constituent changes in the index itself. An alternative would be
to allow new constituents into the universe, in which case the random
portfolios would be given the opportunity to trade into the new assets.

• The number of assets in the portfolio is to be between 50 and
100, inclusive.
These numbers reflect the desire by the fund manager to hold 100 names
or slightly fewer, while the lower bound ensures that the fund never gets
too concentrated.
If it is found that the size of the portfolio has a material effect on the
distribution of utility, then the random portfolios can be generated with
sizes that characterize the actual sizes that the portfolios are likely to be.
(In this case the range of allowable sizes would probably be reduced.)

• The positions are to be long only.
• The maximum weight of any asset will be 5%.

This seems like a straightforward constraint, but isn’t—there could be
numerous interpretations of what it means. One practical choice is that
a position can be no more than 5% at the point when it is created or
added to.
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• The volatility of the fund will be no more than 150% of the
volatility of the minimum variance portfolio that satisfies the
remaining constraints.
This clearly needs more careful definition. Not just any volatility will do—
it has to be agreed. One choice would be to provide a specific variance
matrix of the universe of assets. An equivalent approach is to provide the
specification of how the variance matrix is to be produced. For example,
use the default arguments of the POP function factor.model.stat with
4 years of daily log returns.

6.2 Operational Issues

In the example mandate, volatility is constrained statically—only informa-
tion available at the beginning of the period is used. While this avoids the
problem of the fund manager unintentionally breaching the mandate because
of changes during the period, it doesn’t necessarily state how the investor
would like the fund manager to behave. The investor may desire the fund
manager to control the volatility of the fund throughout the period using
updated information. While slightly more involved, the random portfolios can
have trading requirements imposed upon them during the period. However, if
the fund manager is being judged based on a utility that includes volatility
as a component, then the fund manager should already be taking changes in
the volatility environment into account in the best interests of the investor.

The evaluation criterion can be at least as useful in shaping the fund
manager’s behavior as the constraints. The criterion can be anything that can
be computed using information that is available at the end of the period—we
are not limited to any particular measures such as the return or a mean-
variance utility. For example, the criterion might include the skewness of the
daily log returns during the evaluation period, and the correlation with some
proxy of the rest of the investor’s portfolio.

The fund manager may be at a disadvantage (or advantage) relative to
the random portfolios if they are allowed unlimited turnover. If a portfolio is
already in place, then it is reasonable for the random portfolios to be generated
so that there is a maximum amount of trading from the portfolio that exists
at the start of the period.

Proposed revisions may arise about the form of the mandate. For example
the fund manager may come to think that a particular constraint is not
the best approach. With the use of random portfolios the fund manager can
demonstrate to the investor the effect of changing the constraint. The mandate
can be revised from period to period as more is learned.

6.3 Performance Fees

Performance fees can easily be based on random portfolios from a mandate.
As stated earlier, the criterion used to measure success can be specialized to fit
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the particular situation. As long as the criterion is a close match to the actual
utility of the investor, then the interests of the investor and fund manager are
aligned when a performance fee is used.

It is probably sensible to reward overlapping time periods—for example,
to have a quarterly, yearly and three-yearly component of the fee. This should
help to reduce the fund manager’s ability to game the performance fee.

The starting point for a performance fee based on random portfolios is
likely to be the average utility of the random portfolios. The fund manager
should be paid for utility that is delivered above the base. How much is paid
for an increment in utility is, of course, up to the investor. From the investor’s
point of view the payment should be for how much utility is delivered, not
how difficult it is to deliver.

As in (Waring and Siegel, 2003) the investor is (or should be) doing a port-
folio optimisation. The investor is selecting weights for a variety of active and
passive funds. The investor may assign different utility functions to different
fund managers (for instance the investor could vary what the managers should
have a small correlation to), but it is sensible for the investor to pay the same
amount to each fund manager for an equivalent increase in utility. More weight
should be given to managers who have the ability to deliver a lot of utility.

7 Summary

Random portfolios have been shown to be of use in two respects—measuring
skill and forming investment mandates.

The measurement of skill with random portfolios avoids some of the noise
that is introduced when performance is measured relative to a benchmark.
This means that knowledge of skill can be more precise. An accurate assess-
ment of skill with random portfolios requires a knowledge of both the returns
of the fund and the constraints that the fund obeys. Less accurate assessment
can be done where the constraints are not known specifically. Even in this
case, though, the results will still be dramatically better than comparing to a
benchmark or to peers. The statistical statements that result are distribution-
free—there are no assumptions on the distribution of returns or measures of
utility.

Mandates that are based on random portfolios allow fund managers to
play to their strengths because they need not be tied to a benchmark. This
also allows more flexibility for the investor to shape the behavior of the fund
managers to best advantage.

Other uses of random portfolios include the assessment of the opportunity
set available to a fund manager with a given strategy.
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Real Options with Random Controls,
Rare Events, and Risk-to-Ruin
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Summary. Situations involving real investment options in the presence of multiple
sources of jump risk, and controls are analyzed. Randomly arriving jumps include
also the special cases of jump-to-ruin on the underlying asset, or on the contin-
gent claim. Management has available impulse-type controls with random outcome.
The analytic solutions when available, and a Markov-Chain numerical approach for
solving more general investment decision problems are demonstrated.

Key words: Flexibility, real options, multi-class jump-diffusion processes,
catastrophic risks, controls with random outcome, Markov-Chains

1 Introduction

Real investment options often involve multiple sources of jump risk and
managerial controls. Randomly arriving value jumps may come from multiple
sources representing political, technological or other risks. We also examine
important special cases involving catastrophic jumps-to-ruin: one is a threat
to the underlying asset, and the other is a threat to the contingent claim.
Management has available impulse-type controls (with random outcome) that
capture managerial actions aiming at enhancing the value of investment
opportunities. This control approach can be applied in cases where firms,
before making a capital-intensive investment decision (to bring a product to
market, etc.), can invest to improve its attributes and enhance its market
appeal or lower its cost of production. This can be done via R&D or by
adopting existing technological innovations. In the case of European options
we demonstrate the analytic solutions, and provide a Markov-Chain numerical
solution framework to handle more general problems of simple or sequential
investment decisions involving potential early exercise. We provide a synthesis
of the random controls (impulse controls with random outcome) discussed in
Martzoukos (2000) with the general jump-diffusion approach in the presence
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of multiple sources of jump risk of Martzoukos and Trigeorgis (2002), and
include the special cases of catastrophic jumps.

We first present the general framework before controls are introduced,
and provide the partial differential equation (or, to be more precise the partial
integro-differential equation, PIDE) that such a claim must follow. Such equa-
tions are generally hard to handle, but analytic solutions for special cases
involving European options (in the spirit of Merton, 1976) are obtained, and
the impact of catastrophic jumps is examined. We demonstrate that the two
classes of jumps-to-ruin assumptions result in significantly different solutions
in the case of put options. We then consider the case of superimposing impulse
controls with random outcome for the stochastic process governing the under-
lying asset. The analytic solutions we present are useful in terms of real option
valuation and for the study of optimal investment decisions. The analytic
solutions also provide a benchmark for testing the accuracy of the numerical
Markov-chain solution framework proposed in the last section.

2 General Framework: European Options
with Multiple Types of Jumps

Stochastic processes with discontinuous (Poisson-type) events have been
extensively studied in the context of option pricing by Merton (1976) and
others (e.g., Ball and Torous, 1985, Amin, 1993). This literature has mostly
focused on the case of a single source of discontinuity (information arrival).
Notable exceptions are Jones (1984), who studied hedging of financial (Euro-
pean) options involving two classes of jumps, Martzoukos and Trigeorgis
(2002) who studied complex real options in the presence of multiple sources
of jumps. Kou (2002) and Kou and Wang (2004) study financial options
with a single source of jumps that can take values from two different proba-
bility distributions – this is in effect equivalent to a jump-diffusion with two
sources of jumps. In this paper we make the assumption that jump risk is
not priced. For issues relating to pricing of the jump risk see Bates (1991),
Bardham and Chao (1996), Chan (1999), Henderson and Hobson (2003), and
Martzoukos (2003).

In our general framework we assume the existence of multiple (N + 2)
sources of jumps. The N classes are non-catastrophic risks affecting the under-
lying asset, the (N +1)th class is a catastrophic risk that affects the underlying
asset, and the (N + 2)th class is a catastrophic risk that affects the contin-
gent claim. The underlying asset S is assumed to follow a continuous-time
stochastic process of the form:

dS

S
= μdt + σdZ +

N+1∑

i=1

(kidqi). (1)
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Here μ is the instantaneous drift and σ the instantaneous standard deviation
of continuous returns, dZ is an increment to a standard Wiener process, dqi
is a jump counter that takes a value 1 with probability λidt or a value 0 with
probability (1 − λi)dt, λi is the (annual) frequency of a jump of type i, and
ki is the jump size for each event class i. Summation is over the N + 1 classes
(types) of rare events involving the underlying asset. The N classes represent
non-catastrophic risks, and the (N + 1)th class involves a catastrophic risk
that causes the underlying asset value S to jump to zero. Due to the impact
of the N non-catastrophic jump risks, and before the catastrophic (N + 1)th

class jump-to-ruin occurs, the actual trend of the underlying (asset) value
process equals μ +

∑N+1
i=1 (λik̄i), involving a term λk ≡ λE[k] for each event

class i that affects the underlying asset, with E[.] denoting the expectations
operator. Under risk-neutral valuation, the underlying asset S follows the
process:

dS

S
= (r − δ∗)dt + σdZ +

N+1∑

i=1

(kidqi). (1a)

Following Merton (1976), we assume the jump risk to be diversifiable (and
hence not priced) and that an intertemporal capital asset pricing model holds
(Merton, 1973). Thus, we do not need to invoke the standard replication and
continuous-trading arguments of Black and Scholes (1973). The risk-neutral
drift above differs from the riskless rate r by δ∗, where δ∗ = δ +

∑N+1
i=1 (λik̄i).

The parameter δ may represent any form of “dividend yield” or opportunity
cost (e.g., in McDonald and Siegel, 1984, δ may be a deviation from the equi-
librium required rate of return, while in Brennan, 1991, δ is a convenience
yield). In the presence of random jumps, the deterministic drift component
in general includes a “compensation” term, λk ≡ λE[k], for each event class.
This term is also present in the jump-diffusion model of Merton (1976) where
the underlying asset is traded, in order to ensure that the expected return of
the asset equals the required (risk-neutral) return r – δ (even when k �= 0).
For a non-traded real option, the compensation term may be absent (e.g.,
Dixit and Pindyck, 1994, pp. 170–172). In this case the rare events may
not only affect volatility but may also affect the expected growth rate (via
λk). We similarly assume that the (N + 1)th class jump is due to technical
uncertainty (uncorrelated to market movement) and is thus not compen-
sated. In what follows we assume for simplicity that jumps are not related
to market events but only to asset-specific technical uncertainties, so that
all the compensation terms are absent (thus δ∗ = δ ). Generally, several
of the N classes may have market-related risks requiring that compensa-
tion terms be added in the following equations – this without any effect on
the results and insights presented herein, so the general notation δ∗ may be
retained.
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The stochastic differential (1a) can alternatively be expressed in integral
form as:

ln[S(T )− ln[S(0)] =

T∫

0

[r − δ∗ − .5σ2]dt +

T∫

0

σdZ(t) +
N∑

i=1

ni∑

q=1

ln(1 + ki,q)

(2)

if for jump class i = N + 1 and q = 0,

or
S(T ) = 0, if for jump class i = N + 1 and q �= 0. (2a)

Equation (2) holds in the absence of any realization of jumps-to-ruin,
while (2a) holds when there has been a realization of a jump-to-ruin on the
underlying asset. Note that realizations of jump-to-ruin on the contingent
claim do not affect the underlying asset. In the above equation, the nested
summation is over the realizations for all N classes of jumps of size ki,q, with
n = (n1, . . . , nN ) an N−element vector with each element being the number
of realized i-class jump occurrences. For each (independent) event class, we
assume that the distribution of jump size, 1 + ki, is log-normal. That is,
ln(1 + ki) ∼ N(γi − .5σ2

i , σ2
i ), with N(.,.) denoting the normal density func-

tion with mean γi – .5σ2
i and variance σ2

i , and E[ki] ≡ k̄i = exp(γi)− 1. The
value of an option on claim F contingent on underlying asset S is characterized
by the following partial integro-differential equation (PIDE):

1
2
σ2S2 ∂2F

∂S2
+ [r − δ∗]S

∂F

∂S
− ∂F

∂t
− rF +

N∑

i=1

{λiE[F (S + Ski, t)− F (S, t)]}

+λN+1E[F (S + SkN+1, t)− F (S, t)] + λN+2E[kN+2F (S, t)− F (S, t)] = 0.

Defining a PIDE is important especially for the case of American options,
since, as we will see below, European options may have analytic solutions.
Note that for realization of the (N + 2)th class jump-to-ruin, the value of the
contingent claim is F = kN+2F (S, t) = 0 with kN+2 = 0. For realization of
the (N + 1)th class jump-to-ruin, the value of contingent claim F depends on
the exact nature of the claim. In the case of a call option that depends on
asset S alone, F = 0, but in the case of a put option, F in general equals X ’
where most often X ’ equals the exercise price X unless contractually defined
equal to a different value. This leads to the following two equations:

The equation for the call option is

1
2
σ2S2 ∂2F

∂S2
+ [r − δ∗]S

∂F

∂S
− ∂F

∂t
− (r + λN+1 + λN+2)F

+
N∑

i=1

{λiE[F (S + Ski, t)− F (S, t)]} = 0. (3)
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Effectively this is equivalent to adding the term λN+1 + λN+2 to both r and
δ. For the put option the equation is

1
2
σ2S2 ∂2F

∂S2
+ [r − δ∗]S

∂F

∂S
− ∂F

∂t
− (r + λN+1 + λN+2)F

+
N∑

i=1

{λiE[F (S + Ski, t)− F (S, t)]}+ λN+1X = 0. (3a)

This is again equivalent to adding the term λN+1 + λN+2 to both r and δ,
plus the additional term λN+1X . This additional term is like a continuous cash
flow, and its implementation in a numerical solution framework is similar to
the implementation of constant continuous interest payments in interest rate
contingent claims (i.e., bonds).

The above multi-class set up is an extension of Merton (1976). As in his
case, these PIDEs are difficult to solve directly in general (a rare but compu-
tationally very intensive method is that of Andersen and Andreasen, 2001).
Following the approach in Merton (see also Jones, 1984), we subsequently
value a European call option on asset S with time to maturity T and exer-
cise price X , assuming independence between the different event classes and
the underlying Wiener process dZ. The value of a European call option with
multiple sources of jumps is given by (iterated integral):

Fcall(S, X, T, σ, δ, r, λi, γi, σi) =

e−rT
∞∑

n1=0

. . .

∞∑

nN+2=0

{P (n1, . . . , nN+2)

×E[(ST −X)+| (n1, . . . , nN+2) jumps]}

= e−(r+λN+1+λN+2)T
∞∑

n1=0

. . .

∞∑

nN =0

{P (n1, . . . , nN )

×E[(ST −X)+| (n1, . . . , nN ) jumps]}, (4)

where P (n1, . . . , nN ) denote the joint probabilities of any random realization
of n = (n1, . . . , nN) jumps. Under the independence assumption, these joint
probabilities simplify to the N -term product

P (n1, . . . , nN) =
N∏

i=1

[e−λiT (λiT )ni/ni!].

The call option has positive value only when none of the jumps-to-ruin is
realized, a joint event with probability equal to P (nN+1 = 0, nN+2 = 0) =
e−(λN+1+λN+2)T .

In order to implement the equation for the call option we need to eval-
uate the risk-neutral expectation E[(ST − X)+ | (n1, . . . , nN) jumps ]. This
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is derived along the lines of the Black-Scholes model but conditional on
n = (n1, . . . , nN) jumps, and is:

E[(ST −X)+ | (n1, . . . , nN ) jumps] = S
[(r−δ∗)T+

N∑
i=1

(niγi)]

e N(d1n)−X N(d2n),
(4a)

where

d1n ≡
ln(S/X) + (r − δ∗)T +

N∑
i=1

(niγi) + .5σ2T +
N∑
i=1

(.5niσ
2
i )

[σ2T +
N∑
i=1

(niσ2
i )]1/2

and

d2n ≡ d1n − [σ2T +
N∑

i=1

(niσ2
i )]

1/2.

N(d) again denotes the cumulative standard normal density evaluated at
d. To operationalize the infinite sum series we truncate when two condi-
tions are met (to a reasonable approximation level): the sum of probabilities∑∞

n1=0 . . .
∑∞
nN =0 {P (n1, . . . , nN )} equals unity, and the option value does not

change by adding more terms.
The value of a European put option with multiple types of jumps is simi-

larly shown to be

Fput(S, X, T, σ, δ, r, λi, γi, σi) = e−rT
∞∑

n1=0

. . .

∞∑

nN+2=0

{P (n1, . . . , nN+2)

×E[(X − ST )+ | (n1, . . . , nN+2)jumps]}

= e−(r+λN+1+λN+2)T
∞∑

n1=0

. . .

∞∑

nN =0

{P (n1, . . . , nN )

×E[(X − ST )+ | (n1, . . . , nN)jumps]}+ (1− e−λN+1T )e−λN+2T e−rTX

(5)

where the last term accounts for the probability that the first catastrophic
events occurs but the second does not. Again, to implement the equation for
the put option we need to evaluate the risk-neutral expectation

E[(X − ST )+ | (n1, . . . , nN) jumps]

= X N(−d2n)− S
[(r−δ∗)T+

N∑
i=1

(niγi)]

e N(−d1n), (5a)

where the parameters d1n and d2n are again defined like in the call option.
Observe that the put option differs slightly from Merton’s weighted-average
Black-and-Scholes-type formula by the last term. This term comes from the
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possibility that jumps-to-ruin on the underlying asset may be realized before
option maturity. In that case, the (present) value of the option would equal
e−rTX times the respective probability.

The assumption of jump-to-ruin on the underlying asset was also treated
in McDonald and Siegel (1986) for a perpetual option with the same result;
effectively an increase in both the riskless rate and the dividend yield. This
result and ours differs from the original treatment in Merton (1976) which
assumed that the underlying asset process was already compensating for the
knowledge on the existence of the jump by including in the drift the term
−λN+1kN+1 = −λN+1 (−1) = λN+1. Thus, in Merton’s case, for a traded
asset the risk-neutral drift becomes r − δ − λN+1kN+1 = r − δ + λN+1, and
discounting (like in our case) is done at r + λN+1. So the final impact of this
jump-to-ruin assumption for a traded asset is that only the riskless rate need
be augmented by λN+1. Here we retain the assumption (similarly to McDonald
and Siegel, 1986) that for a real option on an asset, the compensation term
is not needed and the result is to augment both the riskless rate and the
dividend yield by the intensity of the rare event.

3 Superimposing Impulse Controls
with Random Outcome

We now superimpose costly impulse-type (multiplicative) controls of (random)
size k, as in Martzoukos (2000), while retaining the jump-diffusion assump-
tions (like in Martzoukos and Trigeorgis, 2002) and the two types of jump-to-
ruin. Impulse control has been used in real options literature to model change
of operating scale and other similar problems (for a thorough review of such
literature, see Vollert, 2003). The important difference between the traditional
approach and ours is that in our case the realization of the control is random,
following a specified probability distribution. This may happen with costly
R&D projects, or projects of innovation adoption, like for example, in the
redesign of a product with the intention to strengthen the price and/or market
share, potentially with a negative customer response or reduced produc-
tivity (see discussions in Brynjolffson and Hitt, 2000). For convenience, we
assume that the natural logarithm of 1+k is normally distributed, with mean
γc − 0.5σ2

c , variance σ2
c , and E[kc] = eγc − 1. We assume that the outcome of

control C is independent of the underlying asset Wiener process or any jump
components, can be attained at a cost XC , and involves a diversifiable risk.
We observe that when a control is activated (and before the actual outcome is
observed) it is expected to affect the value of the underlying asset and enhance
its volatility. Given the volatility increase and that for a call option we would
expect a positive effect (and for a put option a negative effect) on the under-
lying asset, it follows from the convexity of option values that the ex ante
outcome is always an increase in option value. Of course, this increase must
exceed the cost of this control action for control activation to be optimal.
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In practice, several mutually-exclusive controls may be pursued at any
time. For the European option with controls available at t = 0, the above
distributional assumptions result in analytic solutions resembling the familiar
Black-Scholes model. For more general model specifications other plausible
distributional assumptions can be made, but generally one needs to resort to
numerical solutions like those described in Sect. 4. Here we focus on the real
investment (European call) option F to acquire underlying project value S by
paying a capital cost X . A put option to sell S in order to receive X could
be treated similarly. In general, the objective is to find the optimal control
policy that maximizes the value of the real claim. Each control action can
(only) be taken at pre-specified times t(c). The decision maker has the option
to activate each available control at time t(c) by paying cost XC . In this
section, we derive an analytic solution for the special case of the European
option, where controls are available only at time t = 0. More generally, the
control problem can be described as follows:

Maximize
C

{F [t, S, XC , t(c)]} subject to

dS

S
= (r − δ∗)dt +

N+1∑

i=1

(kidqi) when controls are not activated,

and

dS

S
= (r − δ∗)dt +

N+1∑

i=1

(kidqi) + kcdqc when a control is activated.

The control distributional characteristics are: ln(1 + kc) normally distributed
with mean γc − 0.5σ2

c , variance σ2
c and E[kc] = eγc − 1.

The terminal condition at maturity T defines the particular claim as a call
(or alternatively as a put) option. In (4) and (5) we use a subscript to denote
if it is a call or a put option. In the expressions below, we omit the subscript
when we refer to the call option. Given these assumptions, the European call
option value conditional on activation of a random control c at time t = 0,
t(c) = 0 is given by:

Fcond[S, X, σ, δ∗, λi, γi, σi, T, r, γc, σc, t(c) = 0] =

e−(r+λN+1+λN+2)T
∞∑

n1=0

. . .
∞∑

nN =0

{P (n1, . . . , nN )

×E[(ST −X)+ | (n1, . . . , nN) jumps; t(c) = 0]
}

. (6)

Again we need the risk-neutral expectation in order to implement the
call option. This, derived along the lines of the Black-Scholes-Merton jump-
diffusion model but conditional on control activation, is:

E[(ST −X)+ | (n1, . . . , nN) jumps; t(c) = 0]

= S
[(r−δ∗)T+

N∑
i=1

(niγi)+γC ]

e N(d1n)−X N(d2n), (6a)
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where

d1n ≡
ln(S/X) + (r − δ∗)T +

N∑
i=1

(niγi) + .5σ2T +
N∑
i=1

(.5niσ
2
i ) + σ2

C

[σ2T +
N∑
i=1

(niσ2
i ) + σ2

j ]1/2

and

d2n ≡ d1n − [σ2T +
N∑

i=1

(niσ2
i ) + σ2

C ]1/2,

with N(d) denoting the cumulative standard normal density evaluated at d.
Table 1 presents representative results using the analytic solutions (in paren-
thesis) that show the impact of the control, along with different assumptions
for the intensity of ruin. The explanation of the derivation of the numerical
values is in Sect. 4.

The sensitivity (the Greeks) of the European call option (conditional on
control activation at t = 0) with respect to asset price S, the control mean
γc, and the control volatility σc are as follows:

∂F

∂S
=

∞∑

n1=0

. . .

∞∑

nN =0

{P (n1, . . . , nN )

×N(d1n)e[−(δ∗+λN+1+λN+2)T+
∑ N

i=1 (niγi)+γc]} > 0,

∂F

∂γc
=

∞∑

n1=0

. . .

∞∑

nN =0

{P (n1, . . . , nN )

×N(d1n)Se[−(δ∗+λN+1+λN+2)T+
∑ N

i=1 (γi)+γc]} > 0,

and

∂F

∂σc
=

∞∑

n1=0

. . .

∞∑

nN=0

{P (n1, . . . , nN )
Xe−(r+λN+1+λN+2)T− d2

2
2

√
2π

[
σ2T +

∑N
i=1 (niσ2

i ) + σ2
c

]σc} > 0.

Their calculation follows the calculation of the Greeks in the Black and
Scholes model (see for example, Stoll and Whaley, 1993, Chap. 11; for addi-
tional insights, see also Bergman Grundy, and Wiener, 1996). Due to the
jump-diffusion, the call option is a probability-weighted average of call option
values conditional on the realizations of the N jump-classes (and conditional
on the impact the control action, through γc, and σc). Thus, the sensitivity
to each parameter is again a probability-weighted average of the sensitivity
of each term, which is calculated like in the standard Black and Scholes
model.
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Table 1. Real option values with rare events (jumps), control activation, and jumps-
to-ruin

Ruin intensity A. Case with jump-diffusion but without control:
γc = 0.00, σc = 0.00(c = 0).

S = 75 S = 100 S = 125

λN+1 + λN+2 = 0 0.402 (0.403) 6.199 (6.192) 24.041 (24.041)
λN+1 + λN+2 = 0.10 0.364 (0.365) 5.609 (5.603) 21.753 (21.753)
λN+1 + λN+2 = 0.25 0.313 (0.314) 4.828 (4.822) 18.723 (18.723)
λN+1 + λN+2 = 0.50 0.244 (0.245) 3.760 (3.756) 14.582 (14.581)

Ruin intensity B. Case with control (and catastrophic jumps only):
γc = 0.10, σc = 0.10 (c = 0).

S = 75 S = 100 S = 125
λN+1 + λN+2 = 0 0.500 (0.500) 11.416 (11.413) 34.574 (34.574)
λN+1 + λN+2 = 0.10 0.452 (0.452) 10.330 (10.327) 31.284 (31.284)
λN+1 + λN+2 = 0.25 0.389 (0.389) 8.891 (8.888) 26.926 (26.926)
λN+1 + λN+2 = 0.50 0.303 (0.303) 6.924 (6.922) 20.970 (20.870)

Ruin intensity C. Case with jump-diffusion and control:
γc = 0.10, σc = 0.10 (c = 0).

S = 75 S = 100 S = 125
λN+1 + λN+2 = 0 1.618 (1.617) 13.511 (13.506) 35.666 (35.666)
λN+1 + λN+2 = 0.10 1.464 (1.463) 12.225 (12.221) 32.272 (32.272)
λN+1 + λN+2 = 0.25 1.260 (1.259) 10.522 (10.518) 27.777 (27.777)
λN+1 + λN+2 = 0.50 0.982 (0.981) 8.195 (8.192) 21.633 (21.633)

Notes: The above case involves a European (real) call option where the under-
lying asset (project) follows a jump-diffusion process with N = 2 sources of non-
catastrophic rare events; in addition we consider jump-to-ruin threats on both the
underlying asset (the N + 1 event class) and the option (the N + 2 event class) and
managerial control activation at t = 0. The parameter values are: X = 100, r = 0.10,
δ∗ = δ = 0.10, σ = 0.10, T = 1, and S = 75, 100, 125; for the non-catastrophic rare
events: λ1 = λ2 = 0.50, γ1 = 0.10, γ2 = −0.10, and σ1 = σ2 = 0.10; and for the
control γc = 0.10, σc = 0.10, and c = 0; the ruin intensity for both classes of catas-
trophic events ranges from 0.10 to 0.50. Numerical values using a scheme with 650
refinements in the asset dimension, 80 steps in the time dimension, and a 125-nomial
Markov-chain differ by no more than ±0.15% from the analytic results (presented
in parenthesis and calculated from (4), (4a), (6), and (6a)). In the absence of both
jumps and controls, the at-the-money call option value equals 3.613 (3.608).
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Now we wish to verify whether activating a control maximizes option value.
When there is a single control available at t(c) = 0, the optimal value for a
European call option equals:

Max{Fcond[S, X, σ, δ∗, λi, γi, σi, T, r, γc, σc, t(c) = 0]
−XC , F (S, X, σ, δ∗, λi, γi, σi, T, r)}

Similarly, in case of more than one mutually-exclusive controls (all at t = 0),
the optimal control will be chosen among the K alternatives {Fcond1(.) –
XC1 ,. . . ,FcondK(.) – XCK , F}. The problem above has analytic solutions for
European call (and put) options when controls can be exercised at t = 0 only.
More generally, one needs to resort to the numerical solutions discussed in
Sect. 4.

3.1 Optimal Decision Thresholds

Suppose that the decision maker faces a situation similar to the case treated
in the first part of Sect. 3. The underlying asset follows a multi-class jump-
diffusion process, with two additional sources of catastrophic risk present, and
a costly control that can be activated at time zero. Suppose further the control
not only has an impact (with random outcome) on the underlying asset value,
but it also affects (reduces) the frequency of the catastrophic events. This
action has the element of pre-emption against competitive entry, etc. Empir-
ical evidence on strategic preemption is ample in Bunch and Smiley (1992).
They find that, for mature markets, advertising, branding, and product differ-
entiation so as to fill most or all product niches, are used most frequently; for
newly developed, concentrated, research intensive markets, strategic deter-
rence employs intensive advertising, and high R&D expenditures resulting in
broad patenting practices.

For the call option we need only consider the cumulative effects (−λC) on
the frequency of both sources of catastrophic risk. This is a typical setting
characterizing any complex/sequential decision making framework before a
capital intensive investment is made. We utilize the special case with analytic
solutions to obtain insights on the thresholds that determine the optimal
managerial decisions. In general, for increasing asset values, the following
describes the alternative decision regions: {W , C, W , C} where W stands
for wait and C stands for control activation (early option exercise is also
feasible but we avoid it here for brevity without any significant effect on the
derived insights). The last region (where for large asset values control acti-
vation is optimal) arises due to the multiplicative nature of the controls, and
is less interesting from an economic perspective. It is very common though
for the intermediate “wait” region to vanish so we get {W , C}. As we will
later see, when the W region appears twice, the first one is of more economic
significance. To understand why these regions appear, one can only examine
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the derivatives of the option value functions with respect to the price of the
underlying asset S:

∂F

∂S
=

lim S→∞

∞∑

n1=0

. . .

∞∑

nN=0

{P (n1, . . . , nN)

e[−(δ∗+λN+1+λN+2)T+
∑ N

i=1 (niγi)]} > 0,

∂Fcond
∂S

=
lim S→∞

∞∑

n1=0

. . .

∞∑

nN=0

{P (n1, . . . , nN)

e[−(δ∗+λN+1+λN+2−λC)T+
∑ N

i=1 (niγi)+γc]} > 0

and

dF

dS
=

lim S→0
0,

dFcond
dS

=
lim S→0

0.

Both slopes start from a value of zero for very low S values. They also end
up with the slope of the option value conditional on control activation always
greater (given positive jump frequencies and positive expected impact of the
control) than the slope of the option value without control activation. This
implies that for very high values of S control activation is always dominant,
and that for very low values of S doing nothing (waiting) is dominant given
that control activation always involves a cost. Figure 1 illustrates the case
where the optimal regions are just {W , C}. The threshold value S∗ that sepa-
rates the two regions can be obtained by equating the option value of waiting
with the option value with costly control activation (and solving numerically
the highly non-linear equation):

Fcond[S∗, X, σ, δ∗, λi, γi, σi, T, r, γc, σc, t(c) = 0]−XC

= F (S∗, X, σ, δ∗, λi, γi, σi, T, r).

Figure 1 confirms that for low values of S the optimal decision is W , but
for higher S values the optimal decision is C, with the threshold level being
at S∗ = 121.742. The lower panel of the figure confirms that beyond S = 0
the slope of the payoff conditional on control activation is always higher than
the slope of the payoff in the wait mode. Thus, when the optimal decision
switches from W to C it stays there for any value of S ≥ S∗ = 121.742.

Figure 2 shows a more general case where the decision regions are {W , C,
W , C}. We first observe decision W for low S values, decision C for somewhat
higher S values, then decision W again, and (outside the plotted area) decision
C again. In the lower panel we cannot see the slope for very high S values
(it is outside the plotted area) but we know that eventually C will dominate
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Fig. 1. Payoff and slope functions with a single decision threshold
Notes: Basic parameters are r = δ = 0.1, σ = 0.1, X = 100, and T = 1. For the
non-catastrophic jumps λ1 = λ2 = 0.5, γ1 = 0.1, γ2 = −0.1, σ1 = σ2 = 0.1; for
catastrophic jumps-to-ruin, λ3 = λ4 = 0.25. For the control, γC = 0.1, σC = 0.1,
λC = 0.15, and cost XC = 10. The upper panel shows the payoff functions that
determine the optimal decisions, with decision W (wait) dominating for low S values,
and decision C (control activation) for higher S values. The lower panel shows the
partial derivative of the payoff function with respect to S. The switching threshold
is (numerically) estimated SW→C = 121.742. The slope confirms that C dominates
W for high values of S
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Fig. 2. Payoff and slope functions with multiple decision thresholds
Notes: Basic parameters are: r = δ = 0.1, σ = 0.1, X = 100, and T = 1. For non-
catastrophic jumps we have λ1 = λ2 = 0.5, γ1 = 0.1, γ2 = −0.1, σ1 = σ2 = 0.1; for
catastrophic jumps-to-ruin, λ3 = λ4 = 0.25. For the control, γC = 0.02, σC = 0.5,
λC = 0, and cost XC = 5. The upper panel shows the payoff functions that determine
the optimal decisions, with optimal decisions W (wait) prevailing for low S values,
C (control activation) for somewhat higher S values, then W prevails again, and
(outside the plotted area) C dominates again. The lower panel shows the partial
derivative of the payoff function with respect to S. We know from theory that the
slope (outside the plotted area) is such that C will dominate W again for very high
values of S. The regions {W , C, W , C} are separated at the (numerically estimated)
thresholds SW→C = 76.384, SC→W = 163.362, and SW→C = 445.384
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Table 2. The optimal decision thresholds

Panel A. A single decision threshold

Threshold S∗

λC = 0 λC = 0.15 λC = 0.3

Base-case 172.496 121.742 108.815
Base-case, Cost -5 103.881 96.713 92.594
Base-case, σC + 0.2 165.789 103.362 94.451
Base-case, γC + 0.2 86.752 83.749 81.197

Note: Input is the same as in Fig. 1.

Panel B. Multiple decision thresholds

Threshold S∗

λC = 0 λC = 0.15 λC = 0.3

Base-case 445.384 – –
163.362 – –
76.384 72.666 69.431

Base-case, Cost +2 627.859 – –
132.185 – –
86.892 81.213 76.908

Base-case, σC -0.1 448.427 – –
133.809 – –
85.738 81.007 77.348

Base-case, γC -0.01 901.932 – –
150.108 – –
77.323 73.486 70.179

Note: Input is the same as in Fig. 2.

W again. The regions {W , C, W , C} are separated by thresholds SW→C =
76.384, SC→W = 163.362, and SW→C = 445.384. Table 2 provides sensitivity
analysis on the optimal thresholds for these two cases, with panel A input
parameters corresponding to Fig. 1, and panel B input parameters those of
Fig. 2. Thus, in panel A only a single threshold appears, whereas in panel B
all three thresholds may appear. Increasing the attractiveness of the control
shifts the first threshold to lower S values.

Attractiveness of a control increases when its cost is lower, its mean impact
is higher, its impact on (decrease of) the ruin probabilities is higher, or when
its volatility is higher. Similarly in panel B we see that increasing the attrac-
tiveness of the control diminishes the second occurrence of the W region.
For higher λC values, this region can be eliminated altogether. It would be
similarly eliminated for any reason that increases the attractiveness of the
control.
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4 A Numerical Markov-Chain Solution Method
for Valuing Claims with Controls
and Multiple Sources of Jumps

For the valuation of claims with multiple types of rare events and controls in a
general context, we follow a numerical approach similar to Martzoukos (2000)
and Martzoukos and Trigeorgis (2002) – drawing on convergence properties
of Markov-chains studied in Kushner (1977), Kushner and DiMasi (1978),
and Kushner (1990). As in Amin (1993), we implement a rectangular finite-
difference scheme that augments the lattice approach of Cox, Ross and Rubin-
stein (1979) as suggested by Jarrow and Rudd (1983). Valuation proceeds in
a backward, dynamic-programming fashion. The contingent claim F is valued
starting at maturity T ; in the absence of rare events, (risk-neutral) valuation
continues backward in the lattice until time zero, at each step using the (risk-
neutral) probabilities of up or down moves of asset S and discounting expected
values accordingly. The lattice expands (from time 0) in a tree-like fashion
(usually binomial or trinomial). The scheme we implement is consistent with
a binomial path for the underlying asset (in the absence of jumps), but is built
using a rectangular “finite-difference” grid. This rectangular scheme allows
implementation of the Markov-chain solution methodology because (in the
joint presence of the geometric Brownian motion, the rare events, and the
controls) the distribution of the value of the contingent claim F is highly
skewed and cannot be approximated well with the next two (or three) points
alone.

The discretization scheme is spaced in the asset dimension, σ
√

(Δt) values
apart around the logarithm of the expected asset value relative to the time-0
asset value, and it retains the logarithmic risk-neutral drift, αΔt = [r − δ∗ −
.5σ2]Δt. In the absence of jumps, the asset value can move up or down with
equal probabilities (pu = pd = 0.50). In the presence of jumps (with random
arrival times following a Poisson distribution), the value of contingent claim
F depends on all possible subsequent values (with a reasonable truncation
for practical purposes – see Martzoukos and Trigeorgis, 2002, for more on the
implementation details of a Markov-chain finite-difference scheme).

To better understand the Markov-chain approximation scheme, we need
first to understand the impact of a) the rare events, b) the Brownian motion,
and c) the controls. In each time interval, the following mutually-exclusive rare
events can occur (assuming that only one rare event can occur at a time):

no jump of any type with probability P (ni = 0 for all i),
one jump of type i = 1 only, with probability P (ni=1 = 1, ni�=1 = 0),
. . .
one jump of type i = N only, with probability P (ni=N = 1, ni�=N = 0),
and a control (together with any of the above).

The above directly accounts for non-catastrophic jumps only, since the jumps-
to-ruin are accounted for indirectly via their impact on the dividend yield and
the riskless rate.
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Assuming independence of these rare events, their joint probabilities are
given from the N -term products:

P (ni = 0foralli) =
N∏

i=1

(e−λiT ) = e
−T

N∑
i=1

(λi)
, (7)

P (ni=1 = 1, ni�=1 = 0) = e−λ1Tλ1T

N∏

i,i�=1

(e−λiT ) = λ1Te
−T

N∑
i=1

(λi)
,

. . .

P (ni=N = 1, ni�=N = 0) = e−λNTλNT
N−1∏

i,i�=N
(e−λiT ) = λNTe

−T
N∑

i=1
(λi)

.

In the absence of any jumps or controls, the option value at time t and
state j, F (t, j), is determined from the up and down values one time-step later,
F (t + Δt, j + 1) and F (t + Δt, j − 1), using the up and down probabilities.
In the presence of jumps or controls, F (t, j) needs to be calculated from the
option values for all possible states one time-step later, using their risk-neutral
(Markov-chain) transition probabilities (within the finite-difference approxi-
mation scheme). We retain the assumption that the rare event is observed
inside the interval Δt, and that only one rare event (of any type) can be
observed within this time interval. In general, the probability P{.} of a certain
outcome (movement of the asset value S over the next period by l steps within
the finite-difference grid) is approximated by

P{ ln[S(t + Δt)]− ln[S(t)] = αΔt+lσ
√

(Δt)}
= N [(l + .5)σ

√
(Δt)]−N [(l − .5)σ

√
(Δt)],

where N [.] is the cumulative normal distribution of the logarithm of the asset
value (given an occurrence of a rare event, the Brownian motion up or down
move, and a control). Of course, the underlying asset S can move (by one
step at a time only) up or down even in the absence of any jumps, following a
geometric Brownian motion with probabilities pu and pd as defined earlier. The
risk-neutral transition probabilities associated with the various jump types as
well as the Brownian motion movement (in most general case with l �= ±1) in
the absence of control activation are given by:

P{ ln[S(t + Δt)]− ln[S(t)] = αΔt + lσ
√

(Δt) | l �= ±1} =
N∑

i=1

P (nk=i = 1,

nk �=i = 0){puNi[(l − 1 + .5)σ
√

(Δt)] − puNi[(l − 1− .5)σ
√

(Δt)]
+ pdNi[(l + 1 + .5)σ

√
(Δt)]− pdNi[(l + 1− .5)σ

√
(Δt)]}. (8)
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Here Ni denotes the probability associated with arrival of a jump of type i.
For the special case of only one up move (l = +1), the Markov-chain proba-
bilities are:

P{ ln[S(t + Δt)]− ln[S(t)] = αΔt + lσ
√

(Δt) | l = +1}

= puP (ni = 0foralli) +
N∑

i=1

P (nk=i = 1, nk �=i = 0)

×{puNi[(l − 1 + .5)σ
√

(Δt)] − puNi[(l − 1− .5)σ
√

(Δt)]
+pdNi[(l + 1 + .5)σ

√
(Δt)]− pdNi[(l + 1− .5)σ

√
(Δt)]}, (8a)

where the first term is due to the Brownian motion up-movement alone. Simi-
larly, for only one down move (l = −1):

P{ ln[S(t + Δt)]− ln[S(t)] = αΔt + lσ
√

(Δt) | l = −1}

= pdP (ni = 0foralli) +
N∑

i=1

P (nk=i = 1, nk �=i = 0)

×{puNi[(l − 1 + .5)σ
√

(Δt)]− puNi[(l − 1− .5)σ
√

(Δt)]
+pdNi[(l + 1 + .5)σ

√
(Δt)]− pdNi[(l + 1− .5)σ

√
(Δt)]}. (8b)

In the case of control activation, (8), (8a), (8b) are replaced by the
following (9). The transition probabilities Pc associated with control activa-
tion, various jump types, and the Brownian motion movement are generally
given by:

Pc{ ln[S(t + Δt)]− ln[S(t)] = αΔt + lσ
√

(Δt)}
= P (ni = 0 for all i){puNc[(l − 1 + .5)σ

√
(Δt)] − puNc[(l − 1− .5)σ

√
(Δt)]

+ pdNc[(l + 1 + .5)σ
√

(Δt)]− pdNc[(l + 1− .5)σ
√

(Δt)]}

+
N∑

i=1

P (nk=i = 1, nk �=i = 0){puNi,c[(l − 1 + .5)σ
√

(Δt)]

− puNi,c[(l − 1− .5)σ
√

(Δt)] + pdNi,c[(l + 1 + .5)σ
√

(Δt)]
− pdNi,c[(l + 1− .5)σ

√
(Δt)]}. (9)

Here Ni,c denotes the joint probability associated with control activation
and the simultaneous arrival of a jump of type i, whereas Nc denotes the
probability due to control activation alone.

At each point on the rectangular grid, and in the absence of control, the
value F of a European-type claim at time t and state j is obtained from:

F (t, j) = e−(r+λN+1+λN+2)ΔT
l=m∑

l=−m
P{ ln[S(t + Δt)]− ln[S(t)]

= αΔt + lσ
√

(Δt)}F (t + 1, j + l), (10)
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with the summation limits m defining a suitable truncation so that the prob-
abilities P{.} add to unity, leading to a suitable solution in a (2m+1)-nomial
approximation framework. Conditional on control activation, the contingent
claim value Fcond(t, j) is similarly obtained from

Fcond(t, j) = e−(r+λN+1+λN+2)ΔT
l=m∑

l=−m
Pc{ ln[S(t + Δt)]− ln[S(t)]

= αΔt + lσ
√

(Δt)}F (t + 1, j + l). (11)

Optimal control activation involves determining F ∗ as the maximum of
F (t, j) and Fcond(t, j) (taking into account all possible mutually-exclusive
control actions). The closed-form analytic results obtained through (4–4a)
and (6–6a) and provided in parenthesis in Table 1 provide a benchmark for
testing the numerical accuracy of the above numerical approximation scheme.
In general, our numerical scheme with 650 refinements in the asset dimension,
80 steps in the time dimension, and a 125-nomial Markov-chain approximation
provides results that differ by no more than ±0.15%. Our numerical method
can readily accommodate the early exercise feature of American-type claims,
as well as more complex sequential/compound options often encountered in
real option applications (see Trigeorgis, 1993).

5 Conclusions

In this paper we study real (investment) options in the presence of managerial
controls, and exogenous rare and catastrophic events. Managerial controls
are multiplicative of the impulse-type with random outcome, they are costly,
and they must be optimally activated by the firm. We assume a lognormal
distribution for the effect of the control. We also incorporate rare events that
arise from a multi-class Poisson process. The impact of these rare events is also
multiplicative and lognormal. Two of the rare events classes are assumed to
be of catastrophic nature, one affecting the underlying asset, and one affecting
the contingent claim.

By studying two different types of catastrophic events we have depicted
that results are the same in the case of a standard call option, but results
differ significantly in the case of the put option. The assumption of lognor-
mality for the effect of the controls allows us to use an analytic framework with
a solution isomorphic to the Black and Scholes model, when a single control
is optimally activated at time zero. The similar lognormality assumption for
the effect of the randomly arriving rare events permits an analytic solution
with both the controls and the randomly arriving jumps. We have studied the
case where the control not only affects the underlying asset (by enhancing its
value), but also pre-emptively affects the intensity of the catastrophic event
(it reduces the intensity). We have demonstrated the optimal control activa-
tion thresholds. Increasing the attractiveness of the control widens the region
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where it is optimal to activate such a control. We finally provide a numerical
Markov-Chain approach for the case of sequential controls in the presence
of a multi-class jump-diffusion. This framework is demonstrated for the case
of lognormal effects, but it can easily be adjusted to handle other plausible
distributions.
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