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Abstract

An autonomous mobile vehicle able to traverse a wide range of poor natural
terrains is an indubitable useful concept that can be utilized in different kinds of
fields. A variety of needs of planetary explorations, rescue missions in hazard
areas, humanitarian demining as well as agriculture applications have recently
triggered a lot of research works aiming at developing sufficiently reliable motion
and navigation planning approaches in such environments. This work presents
such a concept to guide the vehicle to reach a goal position regardless the terrain
shapes.

The presented navigation planning approach is based on the model predictive
control paradigm (MPC). The MPC-like approaches allow for taking into account
a variety of different constraints, such as guaranteeing stability, avoiding obstacles,
and preventing the vehicle from sideslip and rollover. An additional feature of an
MPC approach is that it continuously repeats the optimization during the task
execution allowing for new local sensor measurements to be taken into account.
Such a policy is used for continuous finding collision-free paths and to guarantee
the safe task execution. Additionally, it inherently provides a certain level of
robustness to an MPC generated path comparing to the approaches where the
complete path is being found prior the task execution.

In order to adopt an MPC-like approach for the purpose of mobile vehicle
navigation, we use energy shaping technique to include the terrain map and the
goal position into the system model. The passivity-based control theory is then
used to obtain a stable MPC framework (PB/MPC) guaranteeing task completion,
which means the vehicle is being capable to reach the goal position.

The straightforward procedure for finding feasible control actions, regardless
the complexity of the vehicle model, makes this approach a good tool to be used in
outdoor environments. Namely, using a precise complex model that reflects the
vehicle behavior on rough terrains, during the planning stage, provides a safer
planner which generates trajectories that can be easily tracked by the vehicle
during the execution stage. The problem of using a simplified model to generate
trajectories during the planning stage is certainly an issue of the navigation
planning for complex vehicles and environments.

xi



Chapter 1
Introduction

1.1 Motivation

The popularity of the research on unmanned ground vehicles has increased recently
due to a variety of operations and environments. Planetary explorations, search and
rescue missions in hazard areas, surveillance, humanitarian de-mining, as well as
agriculture applications such as pruning vine and fruit trees, represent possible fields
of using autonomous vehicles in natural environments. Planetary exploration allows
for understanding the planet surface geology, its present and past climate conditions,
and for discovering potential signs of other lives. Rescue missions in dangerous
environments and surveillance with reduced human operations and interventions
have also become interesting areas for unmanned vehicles. With the special inter-
est within the military industry, these areas are growing rapidly and motivate new
research in autonomous vehicle motion planning in difficult environments. The use
of the autonomous vehicles in a de-mining process decreases the danger and the cost
of manual mine detection. Both humanitarian and economic motivations to use such
vehicles to this purpose are obvious. Finally, agriculture applications have recently
recognized the potential to use the fully autonomous vehicles in agricultural oper-
ations reducing the total cost of the final product. Some of the respective vehicles
used for different applications are shown in Figs. 1.1, 1.2, 1.3, and 1.4.

1.2 Motion Planning Literature

During the past 20 years, motion planning has become one of the most active research
areas in robotics. A nice overview of motion planning has been presented in [1, 2].
The main focus of the early research stage was finding collision-free paths. In [3–5],
the potential field approach for real-time obstacle avoidance was introduced and dis-
cussed both for manipulators and mobile ground robots. In order to define the final
potential field, this technique defines goals and obstacles as attractive and repulsive

A. Tahirovic and G. Magnani, Passivity-Based Model Predictive Control for Mobile 1
Vehicle Motion Planning, SpringerBriefs in Control, Automation and Robotics,
DOI: 10.1007/978-1-4471-5049-7_1, © The Author(s) 2013



2 1 Introduction

Fig. 1.1 NASA/JPL mars explorations rover

Fig. 1.2 Different NASA/JPL explorations rovers

forces, respectively, in order to navigate the vehicle toward the decrease of the cor-
responding potential function. Artificial potential fields have been used in variety of
applications including mobile vehicles in natural terrains [1, 4, 6–8]. Ge and Cui
dealt with the problem of moving obstacles using the potential field method [9]. The
main drawback of the approach based on artificial potential fields is the existence of
local minima that may trap the robot in an undesired location. An improvement of
computational efficiency of a method that deals with local minima was analyzed in
[10], where a parallel computational scheme was illustrated. The local minima prob-
lem arisen from potential field method is still attractive subject for many researchers.
Some of the methods carefully compute potential functions to contain only a unique
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Fig. 1.3 Surveillance vehicles: 1. Seekur UGV from MobileRobots Inc, 2. µTrooper from Thales,
and 3. MDARS from general dynamics

Fig. 1.4 Humanitarian demining vehicles: 1. Buggy-robot from Hirose and Fukushima laboratory,
2. Humi from TU Wien, and 3. Gryphon-III with field arm from Hirose and Fukushima laboratory

global minimum at the goal position [11–13]. The approach of Laplace’s equation
[11] is considered to be computationally expensive. The concept of navigation func-
tions [12, 13] was successfully used to make a potential field in Cartesian space
to navigate mobile robots. How to efficiently recompute a navigation function in a
dynamical environment is shown [14]. A new class of navigation functions that are
appropriate for nonholonomic motion planning were presented in [15]. High speed
navigation of mobile vehicles on uneven terrains was introduced in [16], where an
artificial field is computed using rollover and sideslip constraints, hazard locations,
as well as desired velocities.

In [17], authors have found the way to compute the fastest dynamically admissible
speed along a given path on a three-dimensional terrain considering dynamics such
as slip, rollover, and ballistic motion. Finding a time optimal path using the result
of this work is presented in [18], while static and moving obstacles are considered
in [19]. A drawback of these methods is computational inefficiency for real-time
applications. Some different techniques for collision avoidance taking into account
the vehicle velocity constraints have also been presented in [20] and [21].

The research on motion planning evolved by adding the capability of taking into
account the vehicle motion dynamics constraints within the well-known dynamic
window approach (DWA) [22, 23]. The DWA selects translational and rotational
velocities by maximizing an objective function based on the vehicle heading to
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the goal position, distance to the closest obstacle, and velocity of the vehicle.
The optimization is performed using arcs considering only reachable and safe veloc-
ities. This subject was extended to the high-speed navigation of a mobile robot in
[14] by the global DWA, as the generalization of the DWA. A combination of the
DWA with other methods yielded some improvements in long-term real-world appli-
cations [24]. Dubowsky and Iagnemma extended the DWA to rough terrains using
the vehicle curvature-velocity space bounded by hazards as well as steering limits,
wheel-terrain interaction, rollover and sideslip constraints. In this space the stability
constraints of the vehicle, for instance, expressed by limit values of the roll-over
and side slip indexes, can be easily described. The given algorithm was also suitable
for high speed vehicles and appropriate for real-time implementation [16, 25, 26].
A convergent DWA was obtained for the unicycle mobile vehicle [27] exploiting
the model predictive control combined with the direct Lyapunov function approach
(MPC/CLF) [27, 28].

Sequences of motion primitives have been used to cover local planning search
space since [29]. More recent works are given in [30] and [31], where the inverse tra-
jectory generation was used to navigate UAV and UGV, respectively. The importance
of separation in a local planning search space is discussed in [32] and it was shown
that the mutual separation of a set of paths is related to the relative completeness of the
motions set. The planning approach proposed in [33] generate path sets to navigate
an UGV. The planner considers global guidance, satisfies environmental constraints,
and guarantees dynamic feasibility by the use of a model-predictive trajectory genera-
tor. A grid-based planning approach which takes into account the vehicle differential
constraints is introduced in [34]. This planner uses the vehicle model to generate
the state lattices assuring the feasible paths along the cost map edges. The heuristic
cost estimate, which represents cost-to-go for each node of the grid needed by the
A∗ algorithm [35], is taken from a priori calculated heuristic look-up table (HLUT)
[36, 37], which is based on the path length, speeding up the algorithm. In [34], the
cost edges are calculated by solving two boundary value problem where the control
action is parameterized converting the problem into a nonlinear programming one.
The cost function represented the minimum slope-dwell performance index, select-
ing less difficult paths between the nodes (lattice states) that are considered in the
overall optimization. Including the vehicle model into the motion planning stage pro-
vides a planner which generates trajectories that can be easily followed by a mobile
robot. This especially comes to the fore when a vehicle moves with high speed and
operates on rough terrains. Using a simpler planner that does not take into account
the mobile vehicle model might cause a fatal error due to the difference between
the planned and executed trajectories. For this reason, the gradient-based algorithms
such as the navigation function or a variant of the D∗ [38, 39], in our case are not
considered being an acceptable solution.

The sample-based technique for robot motion planning was introduced in [40].
The first sample-based motion planners were not computationally efficient for cer-
tain environments. In [41–43] the probabilistic roadmap method (PRM) was devel-
oped for path planning in configuration spaces with many degrees of freedom.
A comprehensive overview and discussion about PRM is given in [44] and [45].
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PRM method has proven to work well in static well-known environments and are
considered computationally efficient for car-like vehicles [46]. However, PRM may
not be suitable for planning in a dynamic environment, especially because it does not
take into account the vehicle dynamics and might result in very sharp turning points.
In [47] the authors introduced quasi-PRM and lattice roadmap (LRM) algorithms.
LRM was extended in [34] to allow the state lattice to represent the differential
constraints of the mobile vehicle. Rapidly exploring random trees (RRT) is a type
of probabilistic planners originally developed to cope with differential constraints
[48–50]. A significant feature of the RRT-like algorithms is that the resulting trajec-
tories are executable by the underlying dynamical system. The RRT algorithm has
been proven probabilistically complete [50], meaning that the probability of finding
a solution feasible path converges to one if such a path exists. An improvement of the
RRT algorithm was proposed in [51], where the obtained exponential convergence
speed yielded a good performance. Several variants of the roughness-based RRTs
are illustrated in [52–54], while some recent results on the RRT-like planners have
been introduced in [55] and [56].

The RHC/CLF (Receding Horizon Control/Control Lyapunov Function) scheme
developed in [57] used the concept of control Lyapunov function to obtain the stability
of RHC scheme. The authors presented the generalization of the RHC/CLF scheme
demonstrating its relation to the optimal controller. In [27], the authors have imple-
mented the same scheme (MPC/CLF, Model Predictive Control/Control Lyapunov
Function) for the navigation planning of a unicycle mobile vehicle. The approach
developed and proposed in [58] used a passivity-based constraint to obtain an MPC
scheme with guaranteed closed loop stability for nonlinear systems. Inspired by this
control concept, a framework for mobile robot motion planning using the PB/MPC is
presented both for flat and rough terrains in [59–61]. The PB/MPC motion planning
framework will be the focus of this work.

1.3 Passivity-Based Control Overview

The passivity theory has been used in the stability analysis of nonlinear electrical
circuit networks, see e.g., [62]. The state-space representation with its storage and
dissipation energy described by Lyapunov functions was used in [63] and [64]. Pio-
neer works on the connection among stabilization, Lyapunov function existence, and
optimality within the passivity theory have appeared in [65] and [66]. A basic stabi-
lization property of interconnected passive systems has been introduced in [67] and
[68]. These papers have triggered a large number of research works in the passivity-
based control field. The idea of designing a controller that stabilizes the system using
the framework of total energy shaping combined with the passivity-based approach
was given in [69].

In order to introduce the passivity-based control concept, let us consider the system
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ẋ = f (x, u) (1.1)

y = h(x),

where the origin x = 0 is an open-loop equilibrium point, h(0) = 0, f is locally
Lipschitz in (x, u) and h is continuous in x , for all x∈Rn and u∈Rm . If a continuously
differentiable positive semidefinite function V (x) exists representing the storage
function, so that

uT y ≥ V̇ = ∂V

∂x
f (x, u), ∀(x, u) ∈ Rn × Rm, (1.2)

then the system (1.1) is passive.
A basic idea on the passivity-based control is expressed by the following theorem,

recalled without proof (see e.g., [70]).

Theorem 1 If system (1.1) is passive with a radially unbounded positive definite
storage function, and zero-state observable, then the origin x = 0 can be globally
stabilized by u = −φ(y), whereφ is any locally Lipschitz function such thatφ(0) = 0
and yT φ(y) > 0 for all y �= 0.

The following system (1.3) is a special case of (1.1). It can be transformed into a
passive system choosing the output (1.4), where the storage function V (x) is a radially
unbounded, positive definite, continuously differentiable function satisfying (1.5).

ẋ = f (x) + G(x)u (1.3)

y = h(x) =
[
∂V

∂x
G(x)

]T

(1.4)

∂V

∂x
f (x) ≤ 0,∀x (1.5)

1.4 Passivity-Based Model Predictive Control

A variant of the passivity-based nonlinear model predictive control scheme for the
system (1.1) is given by the setup

inf
u(·)

t0+T∫
t0

(q ′(x) + uT u)dt (1.6)

ẋ = f (x) + g(x)u (1.7)

y = h(x) (1.8)

uT (t)y(t) < −yT (t)φ(y), (1.9)
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where q ′(x) is a state cost function. In the PB/MPC optimization setup proposed
in [58], φ(y) = y. The choice of the passivity-based constraint (1.9) allows for the
system stabilization with the feedback u = −y if system (1.7) is passive and zero-
state detectable. It will be shown that the stabilization can be also achieved using any
function φ(y) defined in Theorem 1 and using the general feedback law u = −φ(y)

if system (1.7) is passive and zero-state observable.
Differently than the MPC/CLF optimization setup, where the stability is achieved

by enforcing a decrease of the Lyapunov function along the solution trajectory,
the PB/MPC optimizations setup obtains the stability by using the passivity-based
constraint.

As in case of the MPC/CLF, it has been shown in [58] that the proposed PB/MPC
optimization setup also relates to the optimal control. This relationship is given by
the following corollary recalled here without the proof.

Corollary The optimal performance of the infinite horizon optimal control problem
is recovered by the passivity-based model predictive control scheme (1.6–1.9 ), if
y = 1

2gT (x) ∂V ∗
∂x and T → 0, where V ∗ is the value function of the infinite horizon

optimal control problem.

1.5 Scope of the Work

In this work, we present the passivity-based model predictive control (PB/MPC)
adopted from the control theory to the mobile vehicle navigation framework for both
indoor and outdoor environments. The PB/MPC navigation approach stabilizes the
goal position using both energy shaping technique by the use of navigation function
and the passivity control concept. Stabilization of the goal position guarantees the
task completion which means that the vehicle is able to reach the goal for a given envi-
ronment. Unlike an MPC framework which is stabilized using the control Lypunov
function (CLF) as a terminal constraint, and in which the feasible control actions
have to be found for each optimization cycle in order to satisfy the stability con-
straint, the feasible control actions obtained by the PB/MPC is a direct consequence
of the passivity-based approach. This means that the feasible control set obtained
by the PB/MPC, over which the MPC optimization is performed, does not require
any additional effort to be found. Such a property makes the PB/MPC navigation
approach general and suitable to be used for a wide range of vehicles. For this rea-
son, the PB/MPC can also be easily adapted to flat as well as rough terrains, where
a truly complex vehicle that comprises the terrain model might be used to predict
trajectories within the MPC optimization horizon. Obtaining feasible trajectories for
a complex vehicle model, which can be safely tracked by the vehicle, is certainly a
critical issue present in any motion planning approach in complex environments.

Chapter 2 presents the PB/MPC motion planning framework. Chapter 3 contains
different examples and illustrates the usage of the planner. In Chap. 4, we analyze
some limitations for the case of rough terrains and present a possible real-time imple-
mentation of an MPC-like motion planner. Chapter 5 outlines the presented work.

http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_3
http://dx.doi.org/10.1007/978-1-4471-5049-7_4
http://dx.doi.org/10.1007/978-1-4471-5049-7_5
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Chapter 2
PB/MPC Navigation Planner

2.1 Introduction

In this chapter, a rather straightforward procedure is presented to obtain navigation
algorithms for a broad class of vehicle models, based on an adapted version of the
passivity-based nonlinear MPC examined in [1]. The proposed PB/MPC approach for
navigation planning can be seen as a generalization of the well-known DWA devel-
oped in [2–4]. Similar to the navigation based on the MPC/CLF [5], the PB/MPC
optimization setup guarantees the task completion, which means the vehicle is being
able to reach the goal position. However, whereas in the MPC/CLF navigation frame-
work a control action that decreases the Lyapunov function has to be found in
advance, which is rather difficult if not impossible for complex vehicle models, the
PB/MPC navigation framework gives directly the control action as a consequence
of the passivity-based control. Therefore, the PB/MPC can be easily adapted to a
variety of vehicle and terrain models providing a straightforward procedure for the
navigation of wide range of vehicles.

The first step of the procedure requires to shape the energy of the vehicle model
by the navigation function which includes information on the goal position and
obstacles. A navigation function is constructed for the field or terrain to be traveled
in order to shape the energy of the vehicle model including the information on the
goal position into the optimization setup. The second step is the selection of the
output to force the system to be passive. Passivity-based control is used to make
the system equilibrium point globally asymptotically stable, thus guaranteeing task
completion.

The obtained properties of the PB/MPC navigation planner can be described as
follows. The passivity-based constraint, inherently included in the PB/MPC opti-
mization setup, enhances the navigation by guaranteeing the task completion. In
accordance with the MPC paradigm, any additional constraint can be easily imposed
into the optimization setup. A general vehicle model is extended by energy-shaping
technique using the navigation function, which includes information on the ter-
rain obstacles and the goal position, guaranteeing the avoidance of obstacles while

A. Tahirovic and G. Magnani, Passivity-Based Model Predictive Control for Mobile 11
Vehicle Motion Planning, SpringerBriefs in Control, Automation and Robotics,
DOI: 10.1007/978-1-4471-5049-7_2, © The Author(s) 2013
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approaching the goal position. Unlike the MPC/CLF navigation framework, where
a control action that decreases the value of Lyapunov function has to be found in
advance, which is difficult if not impossible for complex vehicle models, the pro-
posed PB/MPC framework gives a control action for any kind of vehicle and terrain
models as a consequence of the passivity-based control. Therefore, the PB/MPC
approach can be used also for mobile vehicles traveling in outdoor rough terrains,
whose behavior is described by truly complex models.

2.2 PB/MPC Optimization Framework

The passivity-based nonlinear control approach, introduced in [1], has been exploited
to propose a new mobile vehicle navigation framework for flat terrains [6, 7]. In
addition, the PB/MPC navigation framework is extended from flat to rough terrains
in [8]. The PB/MPC motion planning optimization framework can be described by
the following optimization setup (2.1–2.9):

J (u, r(x0)) =
t0+T∫
t0

γ(x, u)dt + �(t0 + T ), (2.1)

V (x) = kNF(r) + 1

2
v2, (2.2)

d

dt
x = f (x) + g(x)u (2.3)

y = h(x) =
[
∂V

∂x
g(x)

]T

, (2.4)

uT (t)y(t) < −yT (t)φ(y) (2.5)

τ : [0, 1] → Cfree, τ (0) = q(t0), τ (1) = q(t0 + T ) (2.6)

v(t0 + T ) = 0 (2.7)

cos ∠(∇NF, eṙ )|t=t0+T1 < 0
cos ∠(∇NF, eṙ )|t=t0+T < 0

(2.8)

NF(r(t0 + T )) < NF(r(t0 + T1)) < NF(r(t0)) (2.9)

The main difference between the PB/MPC planners for flat and for rough terrains
is in the cost function (2.1). In addition, the last constraint (2.9) is not necessarily
required for the PB/MPC planner for flat terrains. These differences will be explained
in the sequel to the chapter.
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2.2.1 Cost Function

The task of this optimization is to find such a control input u to guide the vehicle
(traction force and steering angle momentum) for each optimization time horizon
t ∈ (t0, t0 + T ), over all potential alternatives, by minimizing the cost function J (u)

given in (2.1). The integrand γ(x, u) is selected depending on what is locally required
to minimize. The term �(t0 + T ) represents an estimation of the cost-to-go value
with respect to the goal position in terms of selected measure.

For the PB/MPC motion planner on flat terrains, the cost function is selected to
be the value of the energy storage function at the end of the optimization horizon

J (u) = V (x(t0 + T )), (2.10)

where function V (x) is selected as in (2.2). It includes a virtual potential term con-
structed by the navigation function of the given terrain, NF(r) [9, 10], which is
selected to have a unique minimum at the goal position, and a kinetic term, 1

2v2,
where r = (xcg, ycg) and v are the current vehicle coordinates and velocity. The
concept of the navigation function has been rigorously introduced in [11]. The main
motive behind the construction of such a function is the problem of the local min-
ima which inherently appear in potential fields functions [12]. In [11], the authors
have found the exact analytical expressions to construct a function which includes
all terrain obstacles while having only a global minimum in the goal position. Some
numerical solutions to the same problem has been given in [9, 10], where the naviga-
tion function might be expressed as being the shortest paths from each cell of a grid
terrain to the goal position. The numerical navigation function given in [9] (NF1), is
used in this work. The NF(r) function is computed for each point of a rectanguloid
grid, which is made by appropriate terrain map discretization, as the L1 (Manhattan)
distance to the goal position. In such a case, NF(r) function approximately repre-
sents the shortest path to the goal from each obstacle-free terrain point. This choice
assures NF(r) has a unique minimum at the goal position. A numerical navigation
function is not a differentiable function which might cause some problems while
using algorithms to solve optimal control problems. The problem of differentiability
of a numerical function will be addressed in Chap. 4 under Sect. 4.3.

Since the navigation function has a unique minimum at the goal position [9], the
energy storage function given by (2.2) has a unique global minimum at (xcg ycg v) =
(xgoal ygoal 0). Hence, by decreasing the objective function (2.10), the vehicle grad-
ually approaches the goal position by choosing the shortest possible paths while
satisfying the PB/MPC optimization constraints (2.3–2.9). V follows the definition
of the CLF used in the MPC/CLF paradigm proposed in [5] for the particular problem
of the navigation of the unicycle mobile robot in flat terrain.

However, choosing the shortest path to the goal position may be a rather strict
constraint especially when the vehicle moves in rough terrains. A natural choice of
the cost function (2.1) for the PB/MPC planner on rough terrains is a roughness
measure computed along the path to be traversed. For this purpose, we introduce

http://dx.doi.org/10.1007/978-1-4471-5049-7_4
http://dx.doi.org/10.1007/978-1-4471-5049-7_4
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some possible cost functions that can describe the roughness level, or traversability
index, along the selected path. The first candidate for a cost measure is a function
that penalizes high roll and pitch values along the path. Such a function is used in
[13] and is given by

γ(x, u) = (1 + α(ϕ2 + θ2)), (2.11)

where ϕ, θ are the roll and pitch angles of the vehicle along the candidate path.
Coefficientα represents the tradeoff between the minimum-time and minimum slope-
dwell solutions. If α = 0, then the solution gives the fastest path within the horizon.

A second candidate was proposed in [14] and is given by

γ(x, u) = 1

vmax(r)
. (2.12)

This function describes the roughness level in terms of the high mobility of the
vehicle, where vmax(r) is the predicted maximal value of the vehicle velocity at each
position r(t), ∀t ∈ (t0, t0 + T ), along a candidate path, which still does not cause
sideslip and rollover of the vehicle [15, 16]. This function is more descriptive when
it is important to increase the vehicle mobility. It favors those paths that allow high
speeds while preserving the vehicle stability constraints.

Other possibilities for the estimation of the roughness measures along a candi-
date path are given in [17–19], where the authors introduced a traversability index
describing the roughness of the terrain. Regardless of the choice of the measure,
the vehicle prefers to find smoother regions toward the goal position, since all the
aforementioned measures represent a kind of traversability index along a candidate
path considered within the optimization.

For demonstration purposes, a local measure of the roughness is estimated by the
relative height of the terrain describing its deviation from flatness and is given by

γ(x, u) =
√

var(z(R))

d
, (2.13)

where d is the vehicle wheel diameter scaling the selected roughness measure to
vehicle size, and

√
var(z(R)) being the standard deviation of the terrain height,

z(R), along a candidate path, where R is a terrain map [20]. This approximation is
done for all candidate paths within the optimization horizon. However, the approach
remains general since any aforementioned roughness functions can be used.

The proposed algorithm optimizes the roughness level toward the goal position
in order to select smoother paths. To this purpose, the cost-to-go term �(t0 + T )

representing the roughness-to-go value at the end of the optimization horizon, is
added to the locally used roughness measure, in accordance with (2.1). The esti-
mation of the optimal cost-to-go value within a nonlinear MPC framework is often
impossible, and some rough estimations have to be found. Obtaining the optimal
cost-to-go map for each terrain location is also likely impossible especially for the
problems of the vehicle navigation on large-scale rough terrains. The reason is that
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the differential constraints have to be taken into account starting from each vehicle
initial configuration. One way to construct a numerical roughness-based naviga-
tion function for the purpose of an MPC-like motion planning has been presented in
[21, 22]. In addition, every time new information is acquired by the vehicle, the update
procedure of the D∗ algorithm [23, 24] can be used to get the updated cost-to-go
map. Obtaining a differentiable objective function required to solve the optimization
problem is addressed in Chap. 4 under Sect. 4.3.

Finally, the choice of the optimization and control horizon design parameters, T
and T1, can influence the final result. The control horizon, T1, can be a sample cycle
period as in most MPC schemes, while the choice of T can be further analyzed.
However, regardless of the choice of these parameters, we assume only that Lmax ≥
T · vmax, where Lmax is the maximum radius of the visible region with respect to the
vehicle current position, and vmax being the vehicle maximum velocity.

2.2.2 Optimization Constraints

Equation (2.3) represents the virtual model obtained by shaping the energy of the
real vehicle dynamics by the navigation function, where x are the new states. The
choice of the output (2.4) forces the system to be passive with respect to a radially
unbounded and continuously differentiable storage function V , and is based on the
passivity control concept.

Passivity constraint (2.5), where φ represents a damping injected to the model,
asymptotically stabilizes the goal position providing the decrease of the energy stor-
age function V .

Equation (2.6) constrains the optimization to the collision-free configurations,
where τ is the map from the initial to the final vehicle configuration q, into the
collision-free space Cfree. Constraint (2.7) guarantees that the selected control u can
stop the vehicle at the end of the horizon satisfying collision-free constraint (2.6).
If this constraint holds, then any state space point x(T1) preserves the safe policy,
where T1 < T . The optimization preformed for the horizon T repeats each T1.

The conditions given in (2.8), where ∠(∇NF, eṙ ) is the current angle between the
gradient of the navigation function and the current vehicle velocity direction ṙ repre-
sented by its unit vector eṙ , are the terminal conditions which keep the vehicle oriented
toward the decrease of the navigation function at the end of each PB/MPC optimiza-
tion cycle. This constraint guarantees that the energy-shaped system includes some
properties providing the asymptotic stability of the system [6].

The passivity constraint (2.5) ensures the decrease of the energy storage function
V . This does not ensure the decrease of the virtual potential term NF (2.2) of V at
any time within the optimization horizon because of the kinetic energy term 1

2v2.
As it was already discussed the choice of the objective function given in (2.10)
yields the minimization of the value of the navigation function at the end of each
optimization horizon. Such optimization policy aims at generating paths toward the
steepest descent of the navigation function surface assuring the orientation of the

http://dx.doi.org/10.1007/978-1-4471-5049-7_4
http://dx.doi.org/10.1007/978-1-4471-5049-7_4
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vehicle to be toward its decrease. In case a cost function different from (2.10) is
used, in such cases of rough terrains, an additional constraint must be imposed into
the PB/MPC framework given by (2.9) to ensure the decrease of the navigation
function along the selected paths. Since the optimization is performed within the
time T while the control action u is applied each time T1, both conditions of (2.9)
need to be included.

In addition to the constraints given by Eqs. (2.3–2.9), any additional constraints
such as the control input limitations (e.g., maximum velocity), preventing the vehicle
from the rolling over or from the slippage, can be easily included into the optimization
setup.

2.2.3 Optimization Techniques

The MPC optimization can be conducted by a discrete number of motion primitives
using the extreme-left, left, straight, right, and the extreme-right maneuvers which use
the maximum acceleration allowed within a particular time horizon by the PB/MPC
navigation scheme in accordance with the expression derived later (3.36). However,
the MPC optimization problem can be solved by parameterization of the control space
within the given horizon as it is nicely demonstrated in [13], when the optimization
is solvable by a nonlinear programming optimization technique. Another approach
based on a priori defined motion primitives that has widely been used in mobile
vehicle navigation [25], was also used in [26]. In [6], the genetic algorithm (GA) is
implemented for the local optimization as an alternative to the optimization approach
based on defined motion primitives, where chromosomes consisted of the potential
values of the vehicle accelerations and steering angles. Such optimizations provide
more efficient ways of covering the vehicle control space improving the final solution.
However, another way of tackling the local environment constraints that can be used
instead of control space sampling is the vehicle state space sampling of feasible
motions as discussed and illustrated in [27]. A reader can find a comprehensive
overview of different optimization techniques used for the vehicle navigation in [27].
The possible implementation of an MPC-like motion planning algorithm using an
optimal control software is presented in Chap. 4 under Sect. 4.3. Therein, a possible
lack of a feasible solution for an optimization cycle is addressed by introducing
an alternative motion strategy to keep the vehicle moving forward. Such a backup
strategy can also be used as a candidate control by the GA algorithm in order to
avoid the problem of not finding a feasible solution by the MPC-like optimization
framework. Results suggest that both a GA and an optimal control software can be
used to solve the optimization setup given by Eqs. (2.1–2.9).

As an example, Fig. 2.1 shows the block diagram of the PB/MPC motion planning
approach for rough terrains. The ‘Energy-shaped Virtual Model’ and ‘Constraint
I: Passivity based’ blocks are used to shape the energy of the system and to obtain a
passive system, (2.2–2.5). The ‘Constraint II: Steering’ block provides the feasible
set of steering angles (or steering momenta) Us , where us ∈ Us . The ‘Constraint III:

http://dx.doi.org/10.1007/978-1-4471-5049-7_3
http://dx.doi.org/10.1007/978-1-4471-5049-7_4
http://dx.doi.org/10.1007/978-1-4471-5049-7_4


2.2 PB/MPC Optimization Framework 17

Fig. 2.1 Block diagram of the PB/MPC navigation approach for rough terrains

Navigation function’ and ‘Constraint IV: Safety’ blocks check for the constraint on
decrease of the navigation function (2.9) and the safety conditions (2.6, 2.7), respec-
tively. The ‘Constraint V’ block may include some additional constraints related to
the vehicle stability conditions such as sideslip and rollover. These constraints esti-
mate the maximum admissible vehicle velocity profile along a candidate path that
still does not cause sideslip or rollover of the vehicle. The passivity-based constraint
(2.5) provides the feasible set Vp for the new traction force input vp ∈ Vp. The
traction force limitations of the input u p can be checked using the block ‘Constraint
VII: Drive Train’ within the optimization. Finally, the block: ‘Constraint VI: Ter-
minal Orientation’ is used to force the vehicle to be oriented toward the decrease of
the navigation function at the end of each MPC optimization horizon in accordance
with (2.8).

2.3 Design of the PB/MPC Motion Planner

2.3.1 General Model

The model of a mobile vehicle driven with the traction force u p and the steering
angle momentum us , can be expressed in a rather general form by [28]

ẋ = f (x) + G(x)(u p us)
T , (2.14)
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where x ∈ Rn is the vehicle state vector, x = (xcg ycg v x4 x5 . . . xn)T and the
position of the vehicle center of mass (xcg,ycg), and the velocity of the vehicle v

are the states of interest with respect to the final goal position. (x4 x5 . . . xn) are
the remaining states (see Chap. 3). The goal of the navigation task can be stated as
making (xcg ycg v)e = (x∗ y∗ 0) to be a globally asymptotically stable equilibrium
point, being (x∗, y∗) the goal position and (·)e denoting the equilibrium point of the
corresponding subsystem.

In order to have the goal position included in a candidate state for the zero equi-
librium point of the subsystem represented by (xcg ycg v), the position coordinates
have to be transformed as ex = xcg − x∗, ey = ycg − y∗, yielding

ė = f (e) + G(e)(u p us)
T , (2.15)

where
e = (ex ey v x4 x5 . . . xn)T ,

f (e) = (v fex v fey fv fx4 fx5 . . . fxn )
T ,

G(e) =
(
gex 1 gey1 gv1 g41 g51 . . . gn1

gex 2 gey2 gv2 g42 g52 . . . gn2

)T

.

It can be seen that the first two equations in (2.15) carry the information on the vehicle
nonholonomic constraint.

2.3.2 Energy-Shaping Using a Navigation Function

In general, the equilibrium point of the subsystem described by (ex ey v) will not be
the zero one, that is (ex ey v)e 	= (0 0 0), since the system has no global information
about the goal position. The traction force input up can be selected to shape the
energy of the system with an injection of additional information on the exact goal
position providing (ex ey v)e = (0 0 0) for this purpose. This can be achieved using
a navigation function of the given terrain NF(r) with a unique minimum at the goal
position, that is min NF(r) = NF(r∗), as the part of the selected traction force input.
Many different ways to compute NF are discussed in [9].

It is worth noting that

‖ṙ‖ =
√

˙xcg
2 + ˙ycg

2 =
√

ė2
x + ė2

y = v fr , (2.16)

where fr =
√

f 2
ex

+ f 2
ey

is a nonnegative function, since for a general vehicle model

and for some r it may result fr 	= 1, implying ‖ṙ‖ 	= v.

http://dx.doi.org/10.1007/978-1-4471-5049-7_3
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It is assumed that gv1 is a nonsingular and positive function for all x ∈ Rn ,
and that the states of system (2.15) are measured or estimated at the end of each
optimization horizon, since the MPC optimization requires the initial values of the
states of the reshaped vehicle model for the subsequent optimization cycle. Besides
vehicle velocity v, and steering angle δ, usually a SLAM has to be solved to obtain
the vehicle position r, and its heading angle ψ. Other vehicle states can be measured
by the Inertial Measurement Units and other sensors. In this case, the energy of the
system can be shaped taking

up = g−1
v1

(− fv − k∇ NF(r)eṙ fr − gv2 us) + vp, (2.17)

where
k∇ NF(r)eṙ = k‖∇ NF(r)‖ cos ∠(∇ NF(r), eṙ ) (2.18)

is the scaled inner product of the gradient of the navigation function NF(r) with
a unit vector of the current direction represented by vector eṙ. This term favors
those directions that move the vehicle along the paths which decrease the value of
the navigation function NF(r), hence toward the goal position. For instance, if the
vehicle goes in the direction of the steepest descent of the navigation function, (2.18)
will have a minimum possible value thus providing the maximum value in (2.17). If
the vehicle moves increasing values of the navigation function, the component (2.18)
will have positive values, hence decreasing the speed and stopping the vehicle. vp is
the new control input of the system replacing the traction force.

In [4] the authors discussed how to construct the navigation function for the case
when the vehicle only has information about its sensor range environment.

Given (2.17), the system (2.15) transforms as

ė = f̃ (e) + G̃(e)(vp us)
T , (2.19)

where

f̃ (e) = (v f̃ex v f̃ey f̃v f̃x4 f̃x5 . . . f̃xn )
T ,

G̃(e) =
(
gex 1 gey1 gv1 g41 . . . gn1

g̃ex 2 g̃ey2 g̃v2 g̃42 . . . g̃n2

)T

,

and defining

g11 = gex 1; g21 = gey1; g31 = gv1; fx1 = v fex ; fx2 = v fey ;
g12 = gex 2; g22 = gey2; g32 = gv2, fx3 = fv,

it results
g̃i2 = gi2 − gi1

gv2

gv1
, (2.20)
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f̃xi = fxi + gi1

gv1
(− fv − k∇NF(r)eṙ fr ) , i = 1, . . . , n; (2.21)

providing g̃v2 ≡ 0, and

v̇ = −k∇NF(r)eṙ fr + gv1vp. (2.22)

For the sake of consistency of the notation to the passivity based control theory
presented in the next section, (2.19) will be denoted as

ẋ = f (x) + G(x)

(
vp

us

)
. (2.23)

Theorem 2 If the general vehicle dynamic model (2.14) is transformed into (2.15)
and the system energy is shaped by (2.17), the subsystem described by the states
xss = (ex ey v)T of the new vehicle dynamic model (2.19) will have zero equilibrium
point, that is xss = 0.

Proof Assuming ėx = 0, ėy = 0 and v̇ = 0, namely that there is no movement in
both directions of the reference frame, the vehicle velocity is equal to zero, v = 0.
From v̇ = 0, using (2.22) with input vp ≡ 0, it follows ∇NF(r)eṙ = 0. One possible
solution of the latter equation, cos(∇NF(r)eṙ )) = 0, implies that the first condition
in (2.8) is not satisfied for the given assumptions since this equality then also holds
at the end of the operating time horizon T1. This means that the feasible solution
to this equation is only r = (x∗ y∗), that is, ex = 0 and ey = 0, since the unique
minimum of the navigation function NF(r) is at this point.

2.3.3 Energy Storage Function

The main task of the navigation planning algorithm is to generate reference trajec-
tories using the energy shaped model of the vehicle, whose subsystem consisting of
the states of interest has an equilibrium point xss = 0. In order to find the inputs that
move the vehicle toward the goal position, an appropriate energy storage function has
to be selected. In [5] the authors used the direct Control Lyapunov function approach
in order to navigate the unicycle mobile vehicle. The MPC/CLF optimization setup
has the explicit constraint on the decrease of Lyapunov function along trajectories
of the system, that is, V̇ ≤ −εσ(x), where the function εσ(x) is a properly selected
positive definite function. In order to satisfy this constraint, one should find such
control action to make the system stable. For a unicycle mobile vehicle, the stabiliz-
ing control actions can be easily found as illustrated in [5]. Although there are some
procedures to obtain stabilizing control actions using given Lyapunov function for
particular class of systems, this is generally a hard task for many nonlinear systems.

Since in (2.19) a potential energy term exists in the form of the navigation function
NF(r), a natural choice of the energy storage function is similar to the one proposed
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in [5] and given by (2.2). A major difference with respect to the Lyapunov function
proposed in [5], where only the unicycle mobile robot was considered, is that in (2.2)
a distinction is made between ‖ṙ‖ and v, which is necessary for more accurate car-
like vehicle models (see Eq. (2.16)). With the assumption that the navigation function
NF(r) can be constructed such that it is continuously differentiable, and since this
storage energy function V (x) is clearly radially unbounded and positive definite, this
choice of V (x) satisfies condition (1.5).

From (2.16) and (2.22), it results

∂V

∂x
f (x) =

(
∂V

∂r
∂V

∂v

∂V

∂x3
· · · ∂V

∂xn

)
f (x) = (k∇NF(r) v 0) f (x) (2.24)

= k∇NF(r)ṙ + v(−k∇NF(r)eṙ fr ) = 0,∀x .

2.3.4 Passivity

In order to have a passive system, the output of the system is selected according to
(2.4) and is given by

yT =
(
∂V

∂r
∂V

∂v

∂V

∂x3
· · · ∂V

∂xn

)
G(x) = (k∇NF(r) v 0)G(x) ⇒

yT = (gv1v 0) ⇒ y1 = gv1v. (2.25)

This means that the output of interest for the given storage function is y1 that will
be used to define a damping feedback to the model, as discussed in subsection 2.3.6,
only through input up.

2.3.5 Zero State Observability

Theorem 3 If a general vehicle dynamic model (2.14) is transformed into (2.15)
and if its energy shaping form and output are selected as in (2.17) and (2.3.4),
respectively, the subsystem described by the three states of interest xss of the new
vehicle dynamic model (2.19) will be zero-state observable.

Proof This claim is easy to verify starting from the subsystem

⎛
⎝ ėx

ėy

v̇

⎞
⎠ =

⎛
⎝ v f̃ex

v f̃ey

f̃v

⎞
⎠ +

⎛
⎝ gex 1 g̃ex 2
gey1 g̃ey2

gv1 g̃v2

⎞
⎠ (

vp

us

)
, (2.26)

http://dx.doi.org/10.1007/978-1-4471-5049-7_1


22 2 PB/MPC Navigation Planner

with the condition y ≡ 0 and u ≡ 0. This implies v ≡ 0 since the output is selected
as in (2.3.4). This means ėx = 0 and ėy = 0, as well as v̇ = 0. Using (2.22), it
follows ∇NF(r)eṙ = 0. Similar to the discussion given in the proof of Theorem 2,
the latter equation implies r = (x∗ y∗), that is ex = 0 and ey = 0, so that xss = 0,
namely the subsystem (2.26) is ZSO.

2.3.6 Stability

Since all conditions of Theorem 1 are satisfied, the input vp can be selected in the
form vp = −φ(y), where φ is any locally Lipschitz function such that φ(0) = 0 and
yTφ(y) > 0 for all y 	= 0. One possible choice of a damping injection using the
function φ(y) is (see e.g. [29])

vp = −ε 1

gv1

2

π
arctan(kvv), (2.27)

where ε and kv are positive constants to be selected.
In order to obtain stability, by the assumption v ≥ 0, one can write

vp ≤ −ε 1

gv1

2

π
arctan(kvv). (2.28)

This choice of vp satisfies (2.5) making the equilibrium point xss of subsystem (2.26),
globally asymptotically stable.

This claim can be easily verified finding the time derivative of the energy storage
function along the trajectories of system (2.19) under condition (2.28). In fact, using
(2.22)

V̇ =
(
∂V

∂r
∂V

∂v

∂V

∂x3
· · · ∂V

∂xn

)
ẋ = (k∇NF(r) v 0)ẋ

= k∇NF(r)ṙ + v(−k∇NF(r)eṙ fr + gv1vp) = gv1vvp

and, under constraint (2.28), the condition on the derivative of the energy storage
function along the trajectories of the closed-loop system is obtained as follows:

V̇ = gv1vvp ≤ −εv 2

π
arctan(kvv). (2.29)

Hence, V̇ is negative semidefinite and V̇ = 0 if and only if v = 0. Then, by
zero-state observability, y(t) ≡ 0 ⇒ xss ≡ 0. Therefore, according to the invariance
principle, the origin of the subsystem represented by xss is globally asymptotically
stable. This means that the energy of the system under control, expressed by the sum
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of the virtual potential NF(r) and of the kinetic energy term 1
2v2, will decrease along

the trajectories of the controlled system, moving the vehicle toward the goal position.
This result gives the final shape of the traction force u p given by (2.17) and (2.28),

over each MPC optimization horizon.
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Chapter 3
Examples

3.1 Introduction

This chapter demonstrates the design procedure of the PB/MPC motion planning
framework. The first two examples consider the vehicle models that might be used
on flat terrains, a unicycle, and a car-like mobile vehicle. The third example covers
a rather general model that can be used for rough terrains.

3.2 Flat Terrain

3.2.1 Unicycle Vehicle

The model of a unicycle vehicle with nonholonomic constraints can be written in the
general form (2.14) with

ẋ = (ẋcg ẏcg v̇ ψ̇ ψ̈)T ,

f (x) = (v fex v fey 0 ψ̇ 0)T ,

G(x) =
(

0 0 1
m 0 0

0 0 0 0 1
Izz

)T

,

where ψ, m, and Izz are the current vehicle orientation with respect to the given
reference frame, the vehicle mass, and the yaw moment of inertia, respectively (see
e.g., [1]).

After the coordinate transformation ex = xcg−x∗, ey = ycg−y∗, the form (2.15) is
obtained with e = (ėx ėy v̇ ψ̇ ψ̈)T , f (e) = f (x), fex = cosψ, fey = sinψ and
G(e) = G(x). Here, relation (2.16) is ‖ṙ‖ = v, hence fr ≡ 1.

The energy of the system is shaped with the traction force input given in (2.17)
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up = m(−k∇NF(r)eṙ ) + vp. (3.1)

Considering expressions (2.20) and (2.21), the system

f̃ (e) = (v cosψ v sinψ − k∇NF(r)eṙ ψ̇ 0)T ,

G̃(e) = G(e)

is obtained.
As it has already been shown, this system satisfies all conditions of Theorem 1

with respect to the storage energy function (2.2). This means that with the output
choice y = 1

m v (2.25), for any traction force input selected from the set given in
(2.28) vp ≤ −εm 2

π arctan(kvv), (2.29) holds and the state point xss = 0 is globally
asymptotically stable.

This result gives the final shape of the traction force input within each MPC
optimization horizon similar to the one obtained in [1], where it has been computed
using the MPC/CLF approach.

3.2.2 Car-Like Mobile Vehicle with Slippage

Using the tyre model described by Pacejka’s MAGIC formula [2, 3], the model of
the car-like vehicle with slippage can be described according to the general form
(2.14) with (see e.g., [4])

ẋ = (ẋcg ẏcg v̇ ψ̇ ψ̈ β̇ δ̇)T ,

f (x) =(v fex v fey fv ψ̇ fψ̇ fβ − 1

τs
δ)T ,

G(x) =
(

0 0 gv1 0 0 gβ1 0
0 0 0 0 0 0 κs

)T

, (3.2)

where ψ, δ, and β are the current vehicle orientation with respect to the given refer-
ence frame, the steering angle, and the velocity direction with respect to the vehicle
reference frame, respectively (Fig. 3.1).

After coordinate transformation the form (2.15) is obtained with

e =(ėx ėy v̇ ψ̇ ψ̈ β̇ δ̇)T ,

f (e) = f (x), (3.3)

G(e) = G(x), (3.4)

where

http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
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Fig. 3.1 A schematic diagram
of the vehicle model with slip
angle

ψ
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fex = cosβ cosψ − sin β sinψ, fey = cosβ sinψ + sin β cosψ. (3.5)

fv is obtained from the longitudinal motion dynamics equation

mv̇ = Fx cosβ + Fy sin β, (3.6)

Fx and Fy being the forces acting in the x and y directions of the vehicle internal
reference frame, respectively, given by

Fx = [−2 sin δFs. f + u p], Fy = [2 cos δFs. f + 2Fs.r ]. (3.7)

Fs. f and Fs.r are the lateral forces acting on the front and rear wheels, respectively.
These forces can be approximated using the stiffness coefficients C f and Cr , as
F f = C f α f and Fr = Crαr , α f and αr being the slip angles of the front and rear
tyres approximated by

α f = δ − arctan
v sin β + L f ψ̇

v cosβ
,αr = − arctan

v sin β − Lr ψ̇

v cosβ
, (3.8)

where L f and Lr are the distances of the front and rear wheels from the vehicle
center of mass, respectively.

fβ is obtained from the momentum equation
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mv(β̇ + ψ̇) = −Fx sin β + Fy cosβ. (3.9)

Since Fx is included in (3.9), which depends on the traction force input u p, it turns
out that the coefficient gβ1 �= 0 in G(x).

fψ̇ is obtained from the momentum equation

Izzψ̈ = 2Fs. f L f cos δ − 2Fs.r Lr . (3.10)

Here, relation (2.16) is ‖ṙ‖ = v, hence fr ≡ 1. From (3.6) and (3.7) it follows
that gv1 = 1

m cosβ, and β being small, cosβ ≈ 1, the function gv1 is nonsingular.
Therefore, the energy of the system can be shaped with the traction force input given
in (2.17)

u p = m

cosβ
(− fv − k∇NF(r)eṙ ) + vp, (3.11)

where fv is extracted from (3.6).
As it has been already shown, this energy reshaped system fulfills all conditions

of Theorem 1 with respect to the storage energy function (2.2). This means that
with the output choice y = cosβ

m v (2.25) and the traction force input satisfying
(2.28) vp ≤ −ε m

cosβ
2
π arctan(kvv), (2.29) holds and the state xss = 0 is globally

asymptotically stable.

3.2.3 Simulations

The PB/MPC navigation framework was verified using the unicycle mobile vehicle,
which has been also exploited in [1, 5], and the car-like vehicle with vmax = 1.2 m/s.

For the unicycle vehicle, the MPC optimization within one time horizon was
carried out using a discrete number of vehicle maneuvers, that is the extreme-left,
left, straight, right, and the extreme-right. This approach is demonstrated in Fig. 3.2a
where all possible eligible paths have been evaluated at the beginning of each MPC
time horizon while searching for the best one. All these maneuvers used the maximum
acceleration allowed within a particular time horizon by the PB/MPC navigation
scheme in accordance with (2.28). The main drawback of this limited set of motion
primitives along the optimization horizon regard the existence of the feasible solution.
If this simplified approach is used then it is important to select the time horizons T1
and T appropriately. In the simulation presented, values T1 = 0.3s and T = 0.8s
have provided sufficient reliability for different terrain examples.

Figure 3.2b illustrates a terrain example, where the vehicle was able to reach the
goal position. Grazing the obstacles is a direct consequence of the selected con-
struction algorithm of the navigation function (so-called NF1) (see [6]). It can be
easily avoided by enlarging obstacles or using other navigation functions [1, 6]. The
NF1 function is computed for each point of a rectangloid grid, which is made by

http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
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Fig. 3.2 Unicycle vehicle: a Illustration of the simple optimization approach with a discrete number
of maneuvers. b Generated path within the given configuration
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Fig. 3.3 a Values of the navigation function at the end points of PB/MPC optimization cycles.
b This figure shows that more efficient path can be obtained if more careful local optimization is
used. Path presented with black color and no lattices was obtained by GA algorithm while the other
one by the optimization with a few motion primitives

appropriate terrain map discretization, as the L1 (Manhattan) distance to the goal
position. In such a case, NF1 function represents approximately the shortest path to
the goal from each obstacle-free terrain point. This choice assures NF(r) has a unique
minimum at the goal position. Figure 3.3a verifies the decrease of the navigation func-
tion from the initial position to the goal position guaranteeing the convergence of the
algorithm. In the simulation, k is set to 0.7 in order to obtain the final form of the
virtual potential term, k N F .

Different optimizations can be used in order to find more efficient paths.
Figure 3.3b illustrates a possible improvement based on a different local optimiza-
tion technique. In this figure, the optimization based on the genetic algorithm (GA)
is shown as a possible alternative, where a chromosome consists of control inputs,
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δ ∈ (− 800 , 800)

δ ∈ (− 600 , 600)

δ ∈ (− 300 , 300)

(a) (b)

Fig. 3.4 Car-like vehicle: a Generated path within the given terrain. b Paths generated using models
with different steering constraints δ

vehicle steering angle, and acceleration. It can be observed that GA can improve the
result by covering the vehicle control space efficiently and giving a smoother path
toward the goal position. GA was also used for the car-like vehicle, and the results
obtained from models with different steering constraints are shown in Fig. 3.4.

The dumping injection is given by (2.28). If a large enough kv is taken, then
2
π arctan(kvv) can be considered a unit Heaviside function for v ≥ 0. This choice
is to make the PB/MPC optimization framework behave as the MPC/CLF for the
navigation of a unicycle vehicle. Therefore, the PB/MPC optimization framework
can be seen as a generalization of the MPC/CLF for this vehicle, also covering a wider
class of vehicles and terrain models. The various dumping injections presented in
[7] can also be used. Parameter ε in (2.28) is related to the speed of decrease of the
energy storage function V (2.29) and is arbitrarily set to ε = 0.1.

3.3 Rough Terrains

The PB/MPC planner for rough terrains easily accommodates a thorough vehicle
model that accounts for complex vehicle dynamics, terrain structure, and wheel-
terrain interaction. In this way, the generated trajectories are likely to be feasible
for rough terrains, unlike the trajectories obtained using a flat terrain vehicle model.
In order to get feasible trajectories, the latter approach uses a feedback loop to
compensate for the effects caused by terrain irregularities. However, the flat terrain
model approach might lack feasible trajectories during the optimization.

The presented PB/MPC navigation approach has a compact optimization form
which consists of global- and local-based planning strategies. Consequently, the
approach guarantees the safe task completion. The PB/MPC is analyzed for various
worst-case scenarios, providing insights into its strength and limitations in terms of
the sensitivity to terrain roughness. The analysis includes the equations to compute
the final completion time, the path length and its shape obtained during the task

http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
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execution. The worst case possible shapes are derived explicitly for three possible
cases, unknown rough terrain with obstacles, completely known rough terrain with
obstacles, and unknown rough terrain without obstacles.

The main task of this section is to derive a virtual model of the vehicle that will
be used to generate feasible trajectories by shaping the energy of the vehicle model
in rough terrains. The energy-shaping technique is implemented by the navigation
function constructed for the given terrain, while the goal position is asymptotically
stabilized by the passivity-based control approach.

3.3.1 General Model of a Vehicle in Rough Terrain

The challenge in deriving the model of a vehicle acting in a rough terrain is to include
the vehicle longitudinal and lateral dynamics, the suspension and tyre compliance and
the terrain properties and uncertainties (see, e.g., [2, 3, 8]). The aim of this subsection
is to comprise the most important effects into the nonlinear vehicle model in order
to obtain a reliable system to be used for state prediction on rough terrains within
the MPC optimization horizon.

State-space form of the vehicle model driven with traction force up and steering
momentum us

ẋ = f (x) + G(x)

(
u p

us

)
(3.12)

can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋcg
ẏcg
v̇

ψ̇

ψ̈

β̇
ϕ̈

δ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v fex

v fey

fv
ψ̇
fψ
fβ
fϕ
fδ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
gv1 0
0 0
0 0
gβ1 0
0 0
0 gδ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
u p

us

)
, (3.13)

where ψ is the current vehicle orientation with respect to the world frame x Oy, δ is
the steering angle, ϕ the body roll angle, and β is the angle of the velocity direction
with respect to the vehicle reference frame (Fig. 3.5).

The nonholonomic constraints are

fex = cosβ cosψ − sin β sinψ,

fey = cosβ sinψ + sin β cosψ.
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Fig. 3.5 Left A schematic diagram of the vehicle model with slip angle. Right Suspension com-
pliance model

fv and gv1 in (3.13) are obtained using the vehicle longitudinal dynamics motion
equation (see Fig. 3.5left)

mv̇ = Fx cosβ + Fy sin β, (3.14)

where m is total vehicle mass, Fx and Fy are forces acting along the x and y directions
of the vehicle internal reference frame, respectively, given by

Fx = −2 sin δFs. f + u p, (3.15)

Fy = 2 cos δFs. f + 2Fs.r +
4∑

i=1

Ti , (3.16)

Fs. f and Fs.r being lateral forces of the front and rear wheels. These forces can be
approximated for small slip angles using the stiffness coefficients, C f and Cr , as
F f = C f α f and Fr = Crαr , α f and αr being the slip angles of the front and rear
tyres approximated by

α f = δ − arctan
v sin β + L f ψ̇

v cosβ
, (3.17)

αr = − arctan
v sin β − Lr ψ̇

v cosβ
, (3.18)

where L f and Lr are the distances of the front and rear wheels from the vehicle
center of mass, respectively.
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Ti represents the terrain disturbance force acting at each wheel i = 1..4. Assuming
the terrain elevation is a continuous and differentiable function z(x, y), Ti is given by

Ti = Ni

(
− sinψ

∂z

∂x0
+ cosψ

∂z

∂y0

)
, (3.19)

where Ni is the normal contact force at wheel i while ∂z
∂x0

and ∂z
∂y0

are gradients
calculated in the vehicle body frame.

fβ and gβ1 are obtained using the momentum equation (see Fig. 3.5)

mv(β̇ + ψ̇) = −Fx sin β + Fy cosβ + mshϕ̈, (3.20)

ms being the mass of the chassis and h the height of the chassis center of mass (see
Fig. 3.5right).
ϕ̈ can be extracted from the suspension compliance model equation

Ixx ϕ̈ = Fyh + Mroll + Ms, (3.21)

where Ixx is the roll moment inertia of the chassis, Mroll = msghϕ is the moment
caused by the inclination of the chassis center of mass (see the right Fig. 3.5), and
Ms the suspension moment on sloped terrain which can be given as

Ms = −k f (ϕ− ϕ f ) − kr (ϕ− ϕr ) − b f (ϕ̇− ϕ̇ f ) − br (ϕ̇− ϕ̇r ), (3.22)

k f , kr being the stiffness and b f , br the damping rates of the respective axles.
ϕ f and ϕr are the roll disturbances caused by the terrain. By the assumption that
wheels do not loose the contact with the terrain, these disturbances are given by

ϕ f,r = z f,r+1 − z f,r

yw

, (3.23)

ż f,r = ∂z

∂x0
v cos(ψ + β) + ∂z

∂y0
v sin(ψ + β) (3.24)

z f,r are the positions of front and rear wheels respectively, and yw is the vehicle
width.

fψ is obtained using the momentum equation (see Fig. 3.5)

Izzψ̈ = 2Fs. f L f cos δ − 2Fs.r Lr +
4∑

i=1

Ti Li , (3.25)

Izz being the yaw moment of inertia, Li the longitudinal position of each wheel with
respect to the vehicle center of mass.

The last row of (3.13) represents the steering dynamics of the vehicle from which
fδ and gδ2 can be extracted.
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3.3.2 Energy-Shaping Using a Navigation Function

The main task of this subsection is to obtain a virtual model from (3.13) which
is passive with a globally asymptotically stable goal position. More precisely, it is
required that the equilibrium point is (xcg ycg v)e = (x∗ y∗ 0), where (x∗, y∗)
is the goal position and (·)e denotes an equilibrium point. The position coordinate
transformation ex = xcg − x∗, ey = ycg − y∗, transforms the desired equilibrium
point into the zero-state (ex ey v)e = (0 0 0).

Now, the model of the system given in (3.13) becomes

ė = f (e) + g(e)

(
u p

us

)
, (3.26)

where
ė = (ėx ėy v̇ ψ̇ ψ̈ β̇ ϕ̈ δ̇)T , f (e) = f (x), g(e) = g(x).

The energy of the given system can be shaped with the following traction force
input

u p = 1

gv1

(− fv − k∇NF(r)eṙ ) + vp, (3.27)

where
k∇NF(r)eṙ = k‖∇NF(r)‖ cos ∠(∇NF(r), eṙ ) (3.28)

is the scaled inner product of the gradient of the navigation function NF(r) with a unit
vector of the current vehicle direction represented by the vector eṙ. This term favors
those directions that move the vehicle along the paths which decrease the value of
the navigation function NF(r), hence toward the goal position. For instance, if the
vehicle goes in the direction of the steepest descent of the navigation function, (3.28)
will have a minimum possible value thus providing the maximum value in (3.27).
If the vehicle moves increasing the value of the navigation function, the component
(3.28) will have positive values, hence decreasing the speed and stopping the vehicle.
vp is the new control input of the system replacing the traction force.

In [5] the construction of the navigation function is discussed for the case when
the vehicle only has information about its sensor range environment.

The virtual model obtained by the energy-shaping technique applied to model
(3.26) is

ė = f̃ (e) + g̃(e)

(
vp

us

)
, (3.29)

where g̃(e) = g(e) and

f̃ (e) = (v fex v fey − k∇NF(r)eṙ ψ̇ fψ f̃β fϕ fδ)
T .
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Note that
v̇ = −k∇NF(r)eṙ fr + gv1vp (3.30)

and the function fβ was changed into f̃β since gβ1 �= 0.
In Chap. 2 [9] it has been shown that for the general case of the energy shaped vehi-

cle model, the subsystem that contains the triple state of interest xss = (ex ey v)T

has the zero-state equilibrium point, that is xsse = (0 0 0)T . For the purpose of
clarity, the proof is recalled here.

Assuming ėx = 0, ėy = 0 and v̇ = 0, namely that there is no movement in both
directions of the reference frame, the vehicle velocity is equal to zero, v = 0. From
v̇ = 0, using (3.30) with input vp ≡ 0, it follows ∇NF(r)eṙ = 0. One possible
solution of the latter equation, cos(∇NF(r)eṙ )) = 0, implies that the first condition
in (2.8) is not satisfied since this equality also holds at the end of the operating time
horizon T1. This means that this equality is true only for the second possible solution,
r = (x∗ y∗), that is ex = 0 and ey = 0, since the unique minimum of the navigation
function NF(r) is at this point.

3.3.3 Passivity-Based Stability

3.3.3.1 Energy Storage Function

It was shown in Chap. 2 [9] that the energy storage function selected according to
(2.2) satisfies the requirements given by Theorem 1 for the general vehicle model. For
the new virtual system obtained by the energy-shaping technique, this means that the
energy storage function V (x) is radially unbounded and positive definite assuming
the navigation function can be constructed such that it is continuously differentiable.
For the case of the virtual model of the vehicle acting in rough terrain, condition
(1.5) of Theorem 1 is satisfied

V̇ = ∂V

∂x
f (x) = [ ∂V

∂ex

∂V

∂ey

∂V

∂v
0] f (x)

= [k∇NF(r) v 0] f (x) (3.31)

= k∇NF(r)ṙ + v(−k∇NF(r)eṙ fr ) = 0,

where
f (x) = (ṙ − k∇NF(r)eṙ ψ̇ fψ f̃β fϕ fδ)

T .

3.3.3.2 System Output

In order to have a passive system, the output of the system is selected according to
(2.4) and is given by

http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_1
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
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yT = ∂V

∂x
g(x) =

[
∂V

∂ex

∂V

∂ey

∂V

∂v
0
]

G(x) (3.32)

= [k∇NF(r) v 0]G(x) = [gv1v 0]

This means that the output of interest for the given storage function is y1

y1 = gv1v = 1

m
v, (3.33)

that will be used to define a damping feedback to the model through input u p only.

3.3.3.3 Zero-State Observability

In Chap. 2 [9] it has been shown that for the general case of the vehicle with
energy-shaped model, the subsystem that contains the triple state of interest xss
was zero-state observable. For the purpose of clarity, this proof discussion is recalled
here.

The subsystem of interest is

⎛
⎝ ėx

ėy

v̇

⎞
⎠ =

⎛
⎝ v fex

v fey

−k∇NF(r)eṙ

⎞
⎠ +

⎛
⎝ 0 0

0 0
gv1 0

⎞
⎠

(
vp

us

)
(3.34)

ZSO conditions y ≡ 0 and u ≡ 0 imply v ≡ 0 if y1 is selected according to
(3.33). This means ėx = 0 and ėy = 0, as well as v̇ = 0. Using (3.30), it follows
∇NF(r)eṙ = 0. Similar to the discussion given in Subsection B, the latter equation
implies r = (x∗ y∗), that is ex = 0 and ey = 0, so that xss = 0, namely the
subsystem (3.34) is zero-state observable.

3.3.3.4 Damping Injection

Since all conditions of Theorem 1 are satisfied, the new traction force input vp can be
selected in the form vp = −φ(y), where φ is any locally Lipschitz function such that
φ(0) = 0 and yTφ(y) > 0 for all y �= 0. One possible choice of damping injection
using function φ(y) is (see e.g., [7])

vp = −ε 1

gv1

2

π
arctan(kvv) = −εm 2

π
arctan(kvv), (3.35)

where ε and kv are positive constants to be selected.
In order to obtain stability, by the assumption v ≥ 0, one can write

http://dx.doi.org/10.1007/978-1-4471-5049-7_2
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vp ≤ −εm 2

π
arctan(kvv). (3.36)

This choice satisfies (2.5) making the equilibrium xsse globally asymptotically stable.
This claim can be easily verified finding the time derivative of the energy storage

function V along the trajectories of system (3.29) under condition (3.36). In fact,
using (3.30)

V̇ = ∂V

∂x
ẋ = [∂V

∂r
∂V

∂v
0]ẋ = [k∇NF(r) v 0]ẋ

= k∇NF(r)ṙ + v(−k∇NF(r)eṙ fr + gv1vp) = gv1vvp,

and, under constraint (3.36), the condition on the derivative of the energy storage
function along the trajectories of the closed loop system is obtained as follows

V̇ = gv1vvp ≤ −εv 2

π
arctan(kvv). (3.37)

Hence, V̇ is negative semidefinite and V̇ = 0 if and only if v = 0. By zero-
state observability, y ≡ 0 and u ≡ 0 implies xss = 0. Therefore, by the invariance
principle, the origin of the subsystem represented by xss is globally asymptotically
stable. This means that the energy of the system given by the virtual potential k N F(r)
and the kinetic energy term 1

2v2 will decrease along the trajectories of the system
(3.29), moving the vehicle toward the goal position.

3.3.4 Simulation

The vehicle model which includes terrain effects along the MPC time horizon is
assumed to be known in order to appropriately shape the energy of the vehicle to
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Fig. 3.6 Vehicle follows flat terrain on the left-side toward the goal position
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Fig. 3.7 Vehicle follows flat terrain section on the right-side toward the goal position
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Fig. 3.8 Vehicle avoids rough terrain sections toward the goal position
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Fig. 3.9 Vehicle avoids highly rough terrain sections toward the goal position

provide feasible trajectories. Uncertainties caused by sensor measurements of the
terrain effects may be compensated using a path tracking controller. Figures 3.6, 3.7,
3.8, 3.9 and 3.10 illustrate the vehicle capability to avoid difficult terrain sections
while approaching the goal position assuming completely known terrain. All pre-
sented examples are illustrated by two subfigures. The left one denotes the generated
path, while the right one depicts the contour plot representing the cost field of the
level of roughness. Figures 3.6 and 3.7 show the capability of the vehicle to follow
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Fig. 3.10 Left Vehicle avoids rough terrain sections in known terrain. Right Vehicle avoids rough
terrain sections using different limited sensor ranges, R

flat parts of the terrain toward the goal position. In Fig. 3.9, a different rough terrain
is given where the vehicle avoids more difficult areas while moving toward the goal
position.

For the case when the terrain roughness is unknown outside the sensor range, the
unknown area is considered to be completely flat when the roughness-to-go value
is estimated. Some different cases are shown in Fig. 3.10(right). An improvement
in estimation of the roughness-to-go value at the end of the optimization horizon
has been presented in [10, 11]. For the case of obstacle-free terrain but of unknown
roughness, any quadratic function can be used to form the navigation function having
a unique minimum at the goal position. However, for the terrain with obstacles, any
form of the navigation function can be used instead [6].

References

1. P. Oegren, N.E. Leonard, A convergent dynamic window approach to obstacle avoidance. IEEE
Trans. Robot. 21(2), 188–195 (2005)

2. E. Bakker, L. Nyborg, H.B. Pacejka, Tyre modeling for use in vehicle dynamics studies (Society
of Automotive Engineers, Warrendale, 1987)

3. H.B. Pacejka, Tire and Vehicle Dynamics, 2nd edn. (Society of Automotive Engineers, Warren-
dale, 2006)

4. Y. Yoon, J. Shin, H.J. Kim, Y. Park, S. Sastry, Model-predictive active steering and obstacle
avoidance for autonomous ground vehicles. Control Eng. Pract. 17(7), 741–750 (2009)

5. O. Brock, O. Khatib, High-speed navigation using the global dynamic window approach. Proc.
IEEE Int. Conf. Robot. Autom. 1, 341–346 (1999)

6. J. Latombe, Robot Motion Planning (Kluwer, Boston, 1991)
7. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 2002)
8. S. Peters, K. Iagnemma, Mobile robot path tracking of aggressive maneuvers on sloped terrain,

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Washington, 2008

9. A. Tahirovic, G. Magnani, P. Rocco, Mobile robot navigation using passivity-based MPC, in
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
pp. 248–488, 2010



40 3 Examples

10. A. Tahirovic, G. Magnani, A roughness-based RRT for mobile robot navigation planning, in
Proceedings of the 18th IFAC World Congress, pp. 5944–5949, 2011

11. A. Tahirovic, G. Magnani, Y. Kuwata, An approximate of the cost-to-go map on rough terrains,
in Proceedings of the IEEE International Conference on Mechatronics, 2013



Chapter 4
Some Limitations and Real-Time
Implementation

4.1 Introduction

This chapter gives an analysis of the worst possible case which the vehicle might
experience during the task execution on rough terrains while using the PB/MPC
motion planner. Additionally, we present a possible real-time implementation of an
MPC-like motion planner using algorithms developed for optimal control problems.

4.2 The Worst Case Scenarios on Rough Terrains

In the following analysis it is assumed that kv has taken large providing the term
2
π arctan(kvv) be approximately a unit Heaviside function for v ≥ 0. Therefore,
(3.37) can be approximately rewritten as

V̇ ≤ −εv. (4.1)

4.2.1 Unknown Rough Terrain with Obstacles

The following theorem gives the maximum time needed by the vehicle to reach the
goal position. It is assumed that after new terrain information appears and the new
navigation function is constructed, there exists a feasible solution to the PB/MPC
navigation scheme for rough terrains. If this is not the case, the vehicle should perform
a turning maneuver toward the decrease of the navigation function.

If vav is the average velocity along the whole path, vmin �= 0 is the smallest feasible
velocity of the moving vehicle, k and ε are parameters of the PB/MPC optimization
framework, M the number of different recalculations of the navigation functions
caused by the change in perception of the terrain, and �NF j the decrease of the
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navigation function from two successive recalculations, then the theorem is stated as
follows.

Theorem 4 (Time and Path Length) If the PB/MPC scheme is used for the navigation
of mobile vehicles in unknown rough terrain with obstacles assuming zero initial
velocity, then the longest path, the final time Tgoal, and the upper time bound Tgoal−max
needed for the task completion are given as follows

l ≤ lmax = k

ε

M∑
j=1

�NF j , (4.2)

Tgoal = k

εvav

M∑
j=1

�NF j , (4.3)

Tgoal−max = k

εvmin

M∑
j=1

�NF j , (4.4)

where Tgoal ≤ Tgoal−max.

Proof Integration of both sides of the condition (4.1) along the i th time horizon,
t ∈ (ti−1, ti−1 + T1 = ti ), and within j th navigation function, NF j , yields V j (ti ) −
V j (ti−1) ≤ −εl j

i , where l j
i is the arc length of the traversed path segment within

the time horizon. By taking the expression for the energy storage function given by
(2.2), the following inequality can be obtained

k(NF j (ri−1) − NF j (ri )) + 1

2
(v2

i−1 − v2
i ) ≥ εl j

i

⇔ kδNF j
i + 1

2
(v2

i−1 − v2
i ) ≥ εl j

i , (4.5)

where ri−1 and ri are the positions of the vehicle at the beginning and the end of the
i th horizon, while δNF j = NF j (ri−1) − NF j (ri ) is the decrease of the navigation
function along the i th horizon when NF j represents the terrain.

By performing the sum of both the left and right sides of (4.5) along the whole
path from the initial to the final position of the current active navigation function
NF j , that is the position where the next navigation function is calculated, it follows

N∑
i=1

[
kδNF j

i + 1

2
(v2

i−1 − v2
i )

]
≥

N∑
i=1

εl j
i

⇔ k�NF j + 1

2

(
v

2( j)
0 − v

2( j)
final

)
≥ εl j , (4.6)
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where N is the number of the performed optimization horizons within NF j , l j is the
length of the selected path from the initial to the final position within NF j , �NF j is
the whole decrease of the navigation function NF j , and v

j
0 , v

j
final the initial and the

final velocity of the selected path within NF j .
If both sides of (4.6) are summed along the whole path from the initial to the goal

position within each navigation function NF j , it results

M∑
j=1

[
k�NF j + 1

2

(
v

2( j)
0 − v

2( j)
final

)]
≥

M∑
j=1

εl j

⇔ k
M∑

j=1

�NF j + 1

2

(
v

2(1)
0 − v

2(M)
final

)
≥ εl. (4.7)

Since the vehicle started with zero velocity v1
0 = 0 as it was assumed in Theorem

4, and the velocity at the goal position vM
final = 0 according to the PB/MPC navigation

scheme, the latter inequality gives the maximum length of the PB/MPC generated
path (4.2).

By taking l = Tgoalvav and lmax = Tgoalvmin, equations (4.3) and (4.4) easily
follow.

4.2.2 Completely Known Rough Terrain with Obstacles

If the terrain is completely known then the navigation function is computed only
once, hence M = 1.

Corollary (Time and Path Length) If the PB/MPC navigation scheme is used for
the navigation of mobile vehicle in completely known rough terrain with obstacles
assuming zero initial velocity, then the longest path, the final time Tgoal, and the
upper time bound Tgoal−max needed for the task completion are given as follows

l ≤ lmax = k

ε
NF(r0), (4.8)

Tgoal = k

εvav
NF(r0), (4.9)

Tgoal−max = k

εvmin
NF(r0), (4.10)

where Tgoal ≤ Tgoal−max.

Proof The proof directly follows from (4.2–4.4) since M = 1 and
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NF1 − NF0 = NF(r0) − NF(rgoal) = NF(r0).

If NF = NF(x, y) is the navigation function given by Cartesian coordinates, and
NF = NF(ρ, θ) being the navigation function given by polar coordinates, where
x = ρ cos θ and y = ρ sin θ, then the following theorem gives the shape of the worst
case scenario generated by the PB/MPC optimization framework for completely
known rough terrain with obstacles.

Theorem 5 (Path Shape) If the PB/MPC scheme is used for the navigation of a
mobile vehicle in completely known rough terrain with obstacles, assuming zero
initial velocity, the final path shape of the worst case scenario can be generated by
the differential equations (4.11) and (4.12)

∂NF

∂x
+ ∂NF

∂y

dy

dx
= − ε

k

√
1 +

(
dy

dx

)2

(4.11)

∂NF

∂ρ

dρ

dθ
+ ∂NF

∂θ
= − ε

k

√
dρ

dθ
+ ρ2. (4.12)

Proof In order to obtain the shape of the worst case scenario for which the vehicle
moves with constant smallest feasible velocity vmin, one can start from (4.1) and
obtain

dV = kdNF(r) + vdv ≤ −εdr. (4.13)

Since we assume v = vmin along the path, that is dv = 0, (4.13) can be rewritten as

dNF(r) ≤ − ε

k
dr. (4.14)

For the worst case scenario the infinitesimal decrease dNF of the navigation function
will be equal to the right hand side.

In the case when NF = NF(x, y), the differential equation (4.11) from which
the shape of the longest possible path can be directly generated follows from (4.14)
using the total differential of the function NF, namely

∂NF

∂x
dx + ∂NF

∂y
dy = − ε

k

√
(dx)2 + (dy)2. (4.15)

Similarly, if NF = NF(ρ, θ), where dr =
√

dρ
dθ + ρ2dθ, then the differential

equation (4.12), which is equivalent to the previous one, can be obtained

∂NF

∂ρ
dρ+ ∂NF

∂θ
dθ = − ε

k

√
dρ

dθ
+ ρ2dθ. (4.16)
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Note that the coefficients of equations (4.11) and (4.12) depend on the terrain
configuration.

4.2.3 Unknown Rough Terrain Without Obstacles

Quite interesting is the case of obstacle-free terrain but with areas of different level of
roughness. Here, any quadratic function can be used to form the navigation function
having a unique minimum at the goal position.

One particular example is when the navigation function represents the distance
from the current position to the goal position, that is NF(ρ) = ρ.

Corollary (Path Shape and Length) If the PB/MPC navigation scheme is used
for the navigation of a mobile vehicle in unknown rough terrains without obstacles
assuming the navigation function represents the shortest distance to the goal position
and zero initial velocity, the final path shape of the worst case scenario can be
generated by the differential equations (4.17)

θ = θ0 − 1

p

[
ln |t | + 2p

t + p
− ln|tρ0 | − 2p

tρ0 + p

]
, (4.17)

where p = ε
k , t = −2ρ − √

p2 + 4ρ2, and θ0, tρ0 = t (ρ0), NF(r0) = ρ0 being the
initial values given the starting position of the vehicle, and the bounds of the path
length being

ρ0 ≤ l ≤ k

ε
ρ0. (4.18)

Proof In this case, the differential equation (4.12) becomes

dρ

dθ
= − ε

k

√
dρ

dθ
+ ρ2. (4.19)

The explicit solution to this differential equation can be easily found in the form
Eq. (4.17) as follows. Eq. (4.19) implies the following equation

y2 − p2 y − p2ρ = 0, (4.20)

where y = dρ
dθ ≤ 0 and p = ε

k . The solution of this equation can be expressed as

y = p2 − p
√

p2 + 4ρ2

2
, (4.21)
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from which follows
dρ

p − √
p2 + 4ρ2

= p

2
dθ. (4.22)

If both left and right sides of the latter equation are integrated over the interval (ρ0, ρ)
and (θ0, θ), respectively, the right integral is easily solved

θ∫
θ0

p

2
dθ = p

2
(θ − θ0), (4.23)

while the left one is the integral of irrational function,

ρ∫
ρ0

dρ

p − √
p2 + 4ρ2

, (4.24)

which can be solved by the substitution

p −
√

p2 + 4ρ2 = 2ρ+ t + p. (4.25)

From this substitution one can easily obtain

ρ = p2 − t2

4t
, (4.26)

t = −2ρ−
√

p2 + 4ρ2, (4.27)

and

dρ = − t2 + p2

4t2 dt. (4.28)

Finally, the integral (4.24) becomes the integral of the rational function

− 1

2

t∫
t0

t2 + p2

t (t + p)2 , (4.29)

whose t0 and t are defined by the substitution (4.27). This integral can be easily
solved and its solution is given by

ρ∫
ρ0

dρ

p − √
p2 + 4ρ2

= −1

2

(
ln |t | − ln |t0| + 2p

t + p
− 2p

t0 + p

)
. (4.30)
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Fig. 4.1 Shape of the path generated for the worst case scenario of the PB/MPC framework when
there are no obstacles. Left ε = 0.2, Right ε = 0.1

Finally, the solution (4.17) of the differential equation (4.19) follows from the equality
of the solutions (4.23) and (4.30), and the substitution (4.27).

As the shortest path from the vehicle initial position r0 to the goal position is ρ0,
(4.18) directly follows from (4.8).

As one can expect this shape has the spiral form. Diagrams for different ε, which
is a parameter to be selected in the PB/MPC framework, are given in Fig. 4.1. Note
that there is a tradeoff between the roughness sensitivity of the algorithm and the
length of the generated path which can be adjusted by parameter ε. This was expected
since the solution was derived from (4.1), wherein the larger ε the faster the energy
storage function decreases.

4.3 Real Time Implementation of an MPC Based Motion
Planner

Finding an optimal path on rough terrains, given a vehicle model and all information
about the terrain, can be expressed as a two point boundary value optimal control
problem (OCP). Including the terrain shape into an objective function for the OCP
might result into a problem difficult to solve. Namely, the OCP softwares, including
ACADO [1], the software used in this work, require a differentiable objective func-
tion. To overcome this problem, a kind of interpolation of the terrain shape must be
applied. However, such an interpolation might be computationally intensive even for
medium size terrains, and finding the best path solving an OCP might be impractical
for real-time implementation.

The MPC optimization problem can be expressed as an initial value OCP problem
with an end-free position (2.1–2.9). For the purpose of the motion planning on rough
terrains, we locally interpolate roughness data in order to construct differentiable
objective functions (2.1) for each optimization cycle required by the ACADO. Local
interpolation is being conducted for local roughness measure, γ(x, u), as well for

http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
http://dx.doi.org/10.1007/978-1-4471-5049-7_2
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the cost-to-go term, �(t0 + T ). The differentiable function for the local roughness
measure is constructed from the roughness map provided by the vehicle sensors, while
the differentiable cost-to-go term is interpolated from the numerical map which can
be obtained by the Dijkstra’s algorithm or in an approximated fashion as in [2, 3]. The
latter is especially important in case of large-scale terrains [3], where computing an
optimal value function for the whole terrain is rather computationally complex task.
The local construction of a differentiable objective function significantly decreases
the computational complexity of any interpolation technique in accordance to a
requirement for having a differentiable function over the whole terrain as in case
of a two point boundary problem. We have used the interpolation technique for
terrain shapes presented in [4]. In addition, the numerical map can be updated during
the task execution due to the new environment information as in [5].

In some rare cases for which ACADO fails, bringing back an infeasible solution
due to the MPC constraints, we use a backup strategy to guide the vehicle forward.
In those cases, a planner selects a close way-point which is located along the steepest
descent of the cost-to-go term, �(t0 + T ), and solves for a two point boundary value
OCP problem.

In the sequel, the advantages of an MPC motion planner implementation are
summarized. An MPC-based motion planner can easily accommodate for a vehicle
model with all the required constraints. The planner might be near optimal (giving
the current state information) due to “the optimality principle” if �(t0 + T ) is a near
optimal estimator of the cost-to-go optimization term. Since the MPC horizon can
be arbitrarily chosen, a terrain shape interpolation required to get a differentiable
objective function can be locally applied using algorithms presented in [4]. Having a
differentiable objective function allows for using an OCP software. Using a software
to solve a local OCP problem, like ACADO, covers much of the control and state
space comparing to [6–10]. Finally, instead of repeating the complete path planning
procedure from scratch when the vehicle senses new information, the cost-to-go
term, �(t0 + T ), can be easily updated similarly to [5].

4.3.1 Simulation Results

The example presented in Fig. 4.2 shows that the generated path avoids obstacles,
follows less roughness regions (blue regions), and reaches the goal position (start
and goal positions are marked with a red and a pink disk, respectively).

In some cases where the terrain is small scale, it is even possible to compute
an optimal solution (solving two point boundary problem) in a reasonable time by
an OCP software such as ACADO. For this reason, we have used a small terrain
50 × 50 m to compare an optimal and an MPC-based solutions exploring the MPC
sub-optimality. Figure 4.3 depicts 10 simulations in which the same rough terrain
and different vehicle initial positions are used. The average sub-optimality of the
MPC-based path planner can be computed as
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Fig. 4.2 An example of an
MPC-based solution

Fig. 4.3 I: Small-scale ter-
rain. MPC and OCP solutions

α = 1

N

∑ roughnessOCP

roughnessMPC = 0.43

where N is the number of simulations. One might see that in the 9th and 10th
simulations, ACADO did not find a feasible solution for the OCP problem (depicted
by 0 in the picture).

Figure 4.4 depicts another example with 10 simulations on the same terrain with
the same vehicle initial position and roughness shape, but with different obstacles.
There are some examples where an MPC-based solution has given a better result. This
can be explained by the fact that an OCP software parameterizes the control space in
order to find the best solution. This might produce a solution that is not necessary the
optimal one. In this example, the sub-optimality of the MPC path planner is much
higher (α = 0.93).
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Fig. 4.4 II: Small-scale ter-
rain. MPC and OCP solutions

Fig. 4.5 Large-scale terrain.
MPC and smooth gradient-
based solutions

A two boundary value problem is difficult to solve in a feasible time on a large-
scale terrain. For this reason, we use three different planners for a 500 × 500 m
terrain, an MPC-based planner, a gradient-based planner, and a smooth gradient-
based planner. The gradient-based planner is generated by the steepest descent of
the cost-to-go function �(t0 + T ). As already discussed, the gradient-based planner
is not considered as an acceptable solution in our work, since it does not take the
vehicle model into account, and it is hard to predict how well the vehicle will follow
such path. However, in order to validate the MPC-based path planner, we introduce
a smooth gradient-based path planner which picks a point on the path obtained by
the gradient-based path planner and solves for a two boundary problem. Then, it
repeats the procedure going toward the goal position. Figure 4.5 compares the two
planners on 10 different rough terrains. The sub-optimality of the MPC-based path
planner is α = 1.8, which means that the MPC-based planner performs better than
the smooth gradient path planner. Again, this can be explained by the fact that the
smooth gradient-based path planner does take the vehicle model into account but
only to follow the gradient-based path planner.
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Chapter 5
Conclusion

The presented PB/MPC motion planning approach is based both on the energy
shaping technique using a navigation function obtained from the terrain configuration
and on the passivity-based MPC concept. The planner can be seen as a generalized
DWA planning technique. The PB/MPC algorithm is a straightforward procedure
that can be easily adapted to the navigation for a broad class of vehicles and terrains.
It guarantees task completion under the assumption that the vehicle model is known
and its states are obtainable through measurement and estimation at the end of each
optimization interval.

The work presents the PB/MPC planner both for indoor and outdoor environ-
ments. The final form of the planner is obtained by the energy-shaping technique
applied to the vehicle dynamics model using a navigation function, where the naviga-
tion function provides the information on the goal position and obstacles. The MPC
is enhanced by the passivity constraint in order to stabilize the goal position guaran-
teeing the task completion, and it assures a safe driving policy which is consistent
with the safe driving policy adopted by humans in such terrains.

The PB/MPC navigation and motion planner may easily use a truly complex
vehicle and terrain model to generate feasible trajectories during the task execution.
Having a possibility to use a more complex vehicle model during the planning stage
of the vehicle navigation certainly provides a more reliable planner in comparison to
the approaches that use a simplified model for trajectory generation. Consequently,
the trajectories generated by the more complex navigation model are easier to track
by the real vehicle. Such a feature inherently implies a more safe planning procedure
in terms of collision-free paths.

An inherited property of the MPC optimization allows one to impose a wide
range of additional constraints into the PB/MPC navigation. This property provides
a possibility to further extend the PB/MPC framework including constraints on the
vehicle stability that can be described by rollover and sideslip angles. The MPC
cost function represents a cost value helping the vehicle to select smoother areas
toward the goal position. An additional improvement of the cost-to-go estimation
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might allow for further improvement of the planner in terms of mobility index. This
extension will be the focus of the future work.

The planning PB/MPC framework is developed for a rather general vehicle model,
it can also be used for other mobile systems such as aerial and underwater unmanned
vehicles. As such, the PB/MPC algorithm can be seen as a broadly general planner
suitable for a wide range of unmanned vehicles and environments.
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