Kluwer’s
International Series

ADVANCING THE
STATE-OF-THE-ART

Volume Contributors:

James C. Bean

Yixin Chen

Carlos A. Coello Coello
Kalyanmoy Deb
Agoston E. Eiben
Elham Ghashghai
Tushar Goyal

Emma Hart

Frederick Hillier

Mark Hillier

Robert Hinterding
Jeffrey A. Joines
Michael G. Kay
An Li

Alex Z.-Z. Lin
Zbigniew Michalewicz
Bryan A. Norman
Ronald L. Rardin
Peter Ross

Thomas Runarsson
Ruhul Sarker
Martin Schmidt
Alice E. Smith
Benjamin Wah

Ingo Wegener
Chelsea C. White 111
Kit Po Wong

Xin Yao

EVOLUTIONARY
OPTIMIZATION

INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Frederick S. Hillier, Series Editor Stanford University

Jaiswal, N.K. / MILITARY OPERATIONS RESEARCH: Quantitative Decision Making
Gal, T. & Greenberg, H. / ADVANCES IN SENSITIVITY ANALYSIS AND
PARAMETRIC PROGRAMMING
Prabhu, N.U. / FOUNDATIONS OF QUEUEING THEORY
Fang, S.-C., Rajasekera, J.R. & Tsao, H.-SJ. / ENTROPY OPTIMIZATION
AND MATHEMATICAL PROGRAMMING
Yu, G./ OPERATIONS RESEARCH IN THE AIRLINE INDUSTRY
Ho, T.-H. & Tang, C. S. / PRODUCT VARIETY MANAGEMENT
El-Taha, M. & Stidham , S. / SAMPLE-PATH ANALYSIS OF QUEUEING SYSTEMS
Miettinen, K. M. / NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao, H. & Huntington, H. G. / DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz, J. / PROJECTSCHEDULING: Recent Models, Algorithms & Applications
Sahin, 1. & Polatoglu, H. / QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE
Tavares, L. V. /ADVANCED MODELS FOR PROJECT MANAGEMENT
Tayur, S., Ganeshan, R. & Magazine, M. / QUANTITATIVE MODELING FOR SUPPLY
CHAIN MANAGEMENT
Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING
Shanthikumar, J.G. & Sumita, U/APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. & Esogbue, A.O. / DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T./ MULTICRITERIA DECISION MAKING: Advances in MCDM
Models, Algorithms, Theory, and Applications
Fox, B. L./ STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W./ HANDBOOK OF TRANSPORTATION SCIENCE
Grassman, W.K./ COMPUTATIONAL PROBABILITY
Pomerol, J-C. & Barba-Romero, S. / MULTICRITERION DECISION IN MANAGEMENT
Axsiter, S./ INVENTORY CONTROL
Wolkowicz, H., Saigal, R., Vandenberghe, L./ HANDBOOK OF SEMI-DEFINITE
PROGRAMMING: Theory, Algorithms, and Applications
Hobbs, B. F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide
to the Use of Multicriteria Methods
Dar-El, E./ HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J. S./ PRINCIPLES OF FORECASTING: A Handbook for Researchers and
Practitioners
Balsamo, S., Personé, V., Onvural, R./ ANALYSIS OF QUEUEING NETWORKS WITH BLOCKING
Bouyssou, D. et al/ EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T./ INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. & Vargas, L./ MODELS, METHODS, CONCEPTS & APPLICATIONS OF THE ANALYTIC
HIERARCHY PROCESS
Chatterjee, K. & Samuelson, W./ GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al/ THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT MODELS
Vanderbei, R. J./ LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A./ MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR
SCHEDULING PROJECTS
Baptiste, P., Le Pape, C. & Nuijten, W./ CONSTRAINT-BASED SCHEDULING
Feinberg, E. & Shwartz, A./ HANDBOOK OF MARKOV DECISION PROCESSES: Methods
and Applications
Ramik, J. & Vlach, M./ GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION
AND DECISION ANALYSIS
Song, J. & Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and
Optimization
Kozan, E. & Ohuchi, A./ OPERATIONS RESEARCH/ MANAGEMENT SCIENCE AT WORK
Bouyssou et al/ AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in
Honor of Bernard Roy
Cox, Louis Anthony, Jr./ RISK ANALYSIS: Foundations, Models and Methods
Dror, M., L’Ecuyer, P. & Szidarovszky, F. / MODELING UNCERTAINTY: An Examination
of Stochastic Theory, Methods, and Applications
Dokuchaev, N./ DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules
for Incomplete Information

EVOLUTIONARY
OPTIMIZATION

Edited by

RUHUL SARKER
University of New South Wales

MASOUD MOHAMMADIAN
University of Canberra

XIN YAO

University of Birmingham

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-48041-7
Print ISBN: 0-7923-7654-4

©2003 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic Publishers
Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Contents

Preface

Contributing Authors

Part I Introduction

1
Conventional Optimization Techniques
Mark S. Hillier and Frederick S. Hillier

1 Classifying Optimization Models
Linear Programming
Goal Programming
Integer Programming
Nonlinear Programming
Simulation
Further Reading

NN~ Wwo

2

Evolutionary Computation

Xin Yao

What Is Evolutionary Computation

A Brief Overview of Evolutionary Computation

EV}(l)lutionary Algorithm and Generate-and-Test Search Algo-
rithm

Search Operators
Summary

[V JE N W N =

Part IT Single Objective Optimization

3
Evolutionary Algorithms and Constrained Optimization
Zbigniew Michalewicz and Martin Schmidt

1 Introduction

2 General considerations
3 Numerical optimization
4 Final Remarks

ix

Xi

vi EVOLUTIONARY OPTIMIZATION
4

Constrained Evolutionary Optimization 87

Thomas Runarsson and Xin Yao
1 Introduction 87
2 The Penalty Function Method &9
3 Stochastic Ranking 93
4 Global Competitive Ranking 95
5 How Penalty Methods Work 97
6 Experimental Study 100
7 Conclusion 106
Appendix: Test Function Suite 109

Part III Multi-Objective Optimization

5

Evolutionary Multiobjective Optimization 117

Carlos A. Coello Coello
1 Introduction 118
2 Definitions 118
3 Historical Roots 119
4 A Quick Survey of EMOO Approaches 121
5 Current Research 128
6 Future Research Paths 134
7 Summary 135

6

MEA for Engineering Shape Design 147

Kalyanmoy Deb and Tushar Goel
1 Introduction 147
2 Multi-Objective Optimization and Pareto-Optimality 149
3 Elitist Non-dominated Sorting GA (NSGA-II) 151
4 Hybrid Approach 155
5 Optimal Shape Design 159
6 Simulation Results 162
7 Conclusion 172

7

Assessment Methodologies for MEAs 177

Ruhul Sarker and Carlos A. Coello Coello
1 Introduction 177
2 Assessment Methodologies 178
3 Discussion 186
4 Comparing Two Algorithms: An Example 188
5 Conclusions and Future Research Paths 191

Part IV Hybrid Algorithms

8
Hybrid Genetic Algorithms 199
Jeffrey A. Joines and Michael G. Kay

1 Introduction 199
2 Hybridizing GAs with Local Improvement Procedures 202

Contents

3 Adaptive Memory GA’s
4 Summary

9
Combining choices of heuristics

Peter Ross and Emma Hart

Introduction

GAs and parameterised algorithms
Job Shop Scheduling

Scheduling chicken catching
Timetabling

Discussion and future directions

AN+ W —

10
Nonlinear Constrained Optimization

Benjamin W. Wah and Yi-Xin Chen
Introduction
Previous Work

Experimental Results
Conclusions

N H W -

Part V Parameter Selection in EAs

11
Parameter Selection

Zbigniew Michalewicz, Agoston E. Eiben and Robert Hinterding

Introduction

An example

Classification of Control Techniques
Various forms of control

Discussion

AN W —

Part VI Application of EAs to Practical Problems

12
Design of Production Facilities

Alice E. Smith and Bryan A. Norman
1 Introduction

2 Design for Material Flow When the Number of I/O Points is

Unconstrained
3 Design for Material Flow for a Single I/O Point
4 Considering Intradepartmental Flow
5 Material Handling System Design
6 Concluding Remarks
13

Virtual Population and Acceleration Techniques

Kit Po Wong and An Li
1 Introduction

A General Framework to look for S Py,

Parameter tuning vs. parameter control

vii

218
225

229

229
232
235
241
244
248

253

253
257
263
268
273

279

279
281
284

294
297

309

309
312
315
318

323

329

329

viii EVOLUTIONARY OPTIMIZATION

Concept of Virtual Population

Solution Acceleration Techniques

Accelerated GA and Acceleration Schemes

Validation of Methods

Further Improvement: Refined Scheme (c)

The Load Flow Problem in Electrical Power Networks

Accelerated Constrained Genetic Algorithms for Load Flow
Calculation

Klos-Kerner 11-Node System Studies
Conclusions

E\D [RN e WU, I S I \S]

Part VII Application of EAs to Theoretical Problems

14

Methods for the analysis of EAs on pseudo-boolean functions
Ingo Wegener

Introduction

Optimization of pseudo-boolean functions
Performance measures

Selected functions

Tail inequalities

The coupon collector’s theorem

The gambler’s ruin problem

Upper bounds by artificial fitness levels
Lower bounds by artificial fitness levels
Potential functions

Investigations of typical runs

— =000 JAUNPHWN =

=]

15

A GA Heuristic For Finite Horizon POMDPs

Alex Z.-Z. Lin, James C. Bean and Chelsea C. White 111
1 Introduction
2 Partially Observed MDP
3 Basics of Genetic Algorithms
4 Proposed Genetic Algorithm Heuristic
5 Heuristic Performance Measures
6 Numerical Results
7 Summary
Appendix

16
Finding Good k-Tree Subgraphs
Elham Ghashghai and Ronald L. Rardin

1 Introduction

2 k-Trees

3 Algorithm Paradigm and Terminology

4 Genetic Algorithm Implementation

5 Computational Results

6 Concluding Remarks and Further Research
Index

331
332
334
335
336
337

338
339
343

349

349
351
352
353
355
357
358
359
362
363
365

371

371
372
376
380
387
390
391
397

399

399
400
401
403
406
412

415

Preface

Evolutionary computation techniques have attracted increasing atten-
tions in recent years for solving complex optimization problems. They
are more robust than traditional methods based on formal logics or
mathematical programming for many real world OR/MS problems. Evo-
lutionary computation techniques can deal with complex optimization
problems better than traditional optimization techniques. However,
most papers on the application of evolutionary computation techniques
to Operations Research /Management Science (OR/MS) problems have
scattered around in different journals and conference proceedings. They
also tend to focus on a very special and narrow topic. It is the right
time that an archival book series publishes a special volume which in-
cludes critical reviews of the state-of-art of those evolutionary compu-
tation techniques which have been found particularly useful for OR/MS
problems, and a collection of papers which represent the latest develop-
ment in tackling various OR/MS problems by evolutionary computation
techniques. This special volume of the book series on Evolutionary Op-
timization aims at filling in this gap in the current literature.

The special volume consists of invited papers written by leading re-
searchers in the field. All papers were peer reviewed by at least two
recognised reviewers. The book covers the foundation as well as the
practical side of evolutionary optimization.

This book contains 17 chapters which can be categorized into the
following seven parts:

1 Introduction
2 Single Objective Optimization
3 Multiobjective Optimization

4 Hybrid Algorithms

X EVOLUTIONARY OPTIMIZATION

5 Parameter Selection
6 Application of EAs to Practical Problems

7 Application of EAs to Theoretical Problems

This book will be useful to postgraduate course work students, re-
searchers, doctoral students, instructors and practitioners in OR/MS,
computer science, industrial engineering, business, and applied mathe-
matics. We expect that the promising opportunities illustrated by the
case studies and the tools and techniques described in the book will help
to expand the horizons of evolutionary optimization and disseminate
knowledge to both the research and the practice communities.

We would like to thank Prof. Fred Hillier of Standford University
(series editor for International Series in Operations Research and Man-
agement Science for Kluwer Academic Publishers) and Prof. Fred Glover
of University of Colorado, USA, for their advice in preparing the pro-
posal of the book. We are grateful to the unknown reviewers for the
book proposal for their constructive and useful suggestions.

We would like to acknowledge the help of all involved in the collation
and the review process of the book, without whose support the project
could not have been satisfactorily completed. Most of the authors of
chapters included in this volume also served as referees for articles writ-
ten by other authors. Thanks also to several other referees who have
kindly refereed chapters accepted for in this book. Thanks go to all
those who provided constructive and comprehensive reviews and com-
ments. A further special note of thanks goes to all the staff at Kluwer
Academic Publisher, whose contribution throughout the whole process
from inception to final publication have been invaluable. Ruhul Sarker
also likes to thank Dr W. Zhu and Dr H. Abbass for their help in initial
formatting using LaTex.

In closing, we wish to thank all the authors for their insight and ex-
cellent contributions to this book. In addition, this book would not
have been possible without the ongoing professional support from Mr.
Gary Folven, Publisher in OR/MS and Ms. Deborah Doherty, Electronic
Production Manager, Kluwer Academic Publishers. Finally, we want to
thank our families for their love and support throughout this project.

R. SARKER, M. MOHAMMADIAN AND X. YAO

Contributing Authors

James C. Bean, Professor and Associate Dean for Graduate Education,
University of Michigan, College of Engineering, 1221 Beal Ave, Ann
Arbor, MI 48109-2102, Email: jbean@engin.umich.edu

Yixin Chen, Department of Computer Science and the Coordinated
Science Laboratory, Univ. of Illinois at Urbana-Champaign, 447 CSRL,
1304 West Main Street, Urbana, IL 61801.

Email: chen@manip.crhc.uiuc.edu

Carlos A. Coello Coello, CINVESTAV-IPN, Departamento de In-
genieria Electrica Seccion de Computacion, Av. Instituto Politecnico
Nacional No. 2508, Col. San Pedro Zacatenco, Mexico, D.F. 07300,
Email: ccoello@cs.cinvestav.mx

Kalyanmoy Deb, Professor, Kanpur Genetic Algorithms Laboratory,
Department of Mechanical Engineering, Indian Institute of Technology
Kanpur, Kanpur, Pin 208 016, INDIA, Email: deb@iitk.ac.in

Agoston E. Eiben, Faculty of Sciences, Vrije Universiteit Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.

Elham Ghashghai, Engineer, Rand Corporation, 1700 Main Street,
PO Box 2138, Santa Monica, CA 90407-2138, Email: elham@rand.org

Tushar Goyal, Department of Mech Engg, Indian Institute of Technol-
ogy, Kanpur, Pin 208 016, INDIA, Email: tusharg_99 @yahoo.com

Emma Hart, School of Computing, Napier University, 219 Colinton
Road, Edinburgh, EH14 1DJ UK.

Xii EVOLUTIONARY OPTIMIZATION

Frederick Hillier, Management Science and Engineering, Terman En-
gineering Center, 3rd Floor, Stanford University, Stanford, California
94305-4026, Email: fhillier@leland.Stanford. EDU

Mark Hillier, Associate Professor, Dept. of Management Science, Uni-
versity of Washington, Mackenzie 370, Box 353200 Seattle, WA 98195-
3200, Email: mhillier@mac.com

Robert Hinterding, Department of Computer and Mathematical Sci-
ences, Victoria University of Technology, PO Box 14428 MCMC Mel-
bourne 8001, Australia.

Jeffrey A. Joines, Assistant Professor, Textile Engineering, Chem-
istry, and Science, North Carolina State University, Campus Box 8301,
Raleigh, N.C. 27695-8301, Email: jjoine@eos.ncsu.edu

Michael G. Kay, Industrial Engineering, North Carolina State Uni-
versity, Campus Box 7906, Raleigh, N.C. 27695-7906.

An Li, Artificial Intelligence and Power Systems Research Group (AIPS),
Department of EEE, The University of Western Australia, 35 Stirling
Highway, CRAWLEY, WA 6009, Australia, Email: leon@ee.uwa.edu.au

Alex Z.-Z. Lin, Industrial and Operations Engineering, Univ. of Michi-
gan at Ann Arbor, 1221 Beal Ave, Ann Arbor, MI 48109-2102.

Zbigniew Michalewicz, NuTech Solutions, Inc., 8401 University Ex-
ecutive Park, Suite 102, Charlotte, NC 28262 USA.

Bryan A. Norman, Assistant Professor, Industrial Engineering De-
partment, University of Pittsburgh, 1033 Benedum Hall, Pittsburgh,
PA 15261, Email: banorman @engrng.pitt.edu

Ronald L. Rardin, Professor, Industrial Engineering, Purdue Univer-
sity, West Lafayette, IN 47907-1287, Email: rardin@ecn.purdue.edu

Peter Ross, Professor, School of Computing, Napier University, 219
Colinton Road, Edinburgh EH14 1DJ UK, Email: peter@dcs.napier.ac.uk

Contributing Authors xiii

Thomas Runarsson, Department of Mechanical Engineering, Uni-
versity of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland, Email:
tpr@verk.hi.is

Ruhul Sarker, School of Computer Science, University of New South
Wales, ADFA Campus, Northcott Drive, Canberra 2600, Australia.
Email: ruhul@cs.adfa.edu.au

Martin Schmidt, NuTech Solutions, Inc., 8401 University Executive
Park, Suite 102, Charlotte, NC 28262 USA.

Alice E. Smith, Professor and Chair, Department of Industrial and
Systems Engineering, 207 Dunstan Hall, Auburn University, AL 36849-
5346 USA, Email: aesmith@eng.auburn.edu

Benjamin Wah, Professor, Department of Computer Science, Univ.
of Illinois at Urbana-Champaign, 447 CSRL, 1304 West Main Street,
Urbana, IL 61801, Email: b-wah@uiuc.edu

Ingo Wegener, Professor, Universitaet Dortmund, Lehrstuhl Infor-
matik 2, 44221 Dortmund, Germany.
Email: wegener@ls2.cs.uni-dortmund.de

Chelsea C. White III, Professor, Department of Industrial and Oper-
ations Engineering, 1205 Beal Avenue, The University of Michigan, Ann
Arbor, MI 48109-2117.

Kit Po Wong, Professor, Artificial Intelligence and Power Systems
Research Group (AIPS), Department of EEE, The University of Western
Australia, 35 Stirling Highway, CRAWLEY, WA 6009, Australia, Email:
kitpo@ee.uwa.edu.au

Xin Yao, Professor, School of Computer Science, The University of
Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
Email: X.Yao@cs.bham.ac.uk

xiv EVOLUTIONARY OPTIMIZATION

List of Reviewers

H. Abbass, Australia
J. Bean, USA

C. Coello Coello, Mexico
N. Clapham, Australia
K. Deb, India

J. Joines, USA

L. Khan, Australia

M. Kirley, Australia

J. Knowles, UK

K. Liang, Australia

R. Mckay, Australia
Z.Michalewicz, USA
M. Mohammadian, Australia
C. Newton, Australia
R. Rardin, USA

P. Ross, UK

T. Runarsson, Iceland
R. Sarker, Australia
M. Schoenauer, France
A. Smith, USA

B. Wah, USA

I. Wegener, Germany
E. Zitzler, Switzerland

I

INTRODUCTION

This page intentionally left blank

Chapter 1

CONVENTIONAL OPTIMIZATION
TECHNIQUES

Mark S. Hillier and
Frederick S. Hillier

Operations research (OR) and management science (MS) are disci-
plines that attempt to aid managerial decision making by developing
mathematical models that describe the essence of a problem and then
applying mathematical procedures to solve the models. The purpose
of this chapter is to present an overview of conventional OR/MS tech-
niques in optimization. This will include discussion of the various types
of models that are used and the approaches that are used to solve them.

We first explore the nature of optimization models in general. The
mathematical model of a business problem is a system of equations and
mathematical expressions that describe the essence of the problem. If
there are n quantifiable decisions to be made, they are represented by de-
cision variables (say, x1,Z2,...,Tn). An appropriate performance mea-
sure (e.g., profit) is then defined as a function of the decision variables
(e.g., Profit = 2x1 + 5x2). This function is called the objective function.
If there are restrictions on the values that the decision variables can take,
these are expressed mathematically. These restrictions are typically ex-
pressed as inequalities (e.g., 1 4+ 2z2 < 3) or equations (e.g., z1z2 = 7),
and are called constraints. The goal is then to choose the values of the
decision variables that achieve the best value of the objective function
subject to satisfying each of the constraints.

For example, consider the problem of choosing the production level of
n different products so as to maximize profit, subject to m restrictions
on the production levels (e.g., due to limited resources). The model then
is to choose 1, Z2,...,%y, SO as to

4 EVOLUTIONARY OPTIMIZATION

Maximize f(z1,22,...,2n)
subject to
g1($1,$2, ce ,:I?n) < b1
ga(x1, 22,y) < by (1.1)
gm(ml, Loy vy :L'n) S bm
and

21 20,2020,...,2, > 0.

In this model, the decision variables (1, %2, ...,%,) represent the pro-
duction levels, the objective function f(z1, s, ..., Tn) measures the profit,
and the inxconstraints are represented by the inequalities g;(z1, 22, ...,
ZTp) <bjfori=1,...,m.

Any choice of values of (x1,z2,...,2,) is called a solution, whereas
a solution satisfying all the constraints is a feasible solution. The set
of all feasible solutions is called the feasible region. A solution in the
feasible region that maximizes the objective function is called an optimal
solution.

Other optimization models may have the goal of minimizing the objec-
tive function (e.g., minimizing cost). Also, models may have a mixture
of constraints, some with < signs, some with > signs, and some with =
signs, or some may have no constraints at all.

1. Classifying Optimization Models

Before solving an optimization model, it is important to consider the
form and mathematical properties of the objective function, constraints,
and decision variables. For example, the objective function might be lin-
ear or nonlinear, differentiable or nondifferentiable, concave or convex,
etc. The decision variables might be continuous or discrete. The feasi-
ble region might be convex or nonconvex. These differences each impact
how the model can be solved, and thus optimization models are classified
according to these differences. This section defines a number of mathe-
matical properties, and then classifies optimization models according to
these properties.

Many optimization solution techniques depend upon the objective
function and/or the functions in the constraints being linear functions.
A function is linear if it can be expressed in the form f(zy,zg,...,2y) =
€121 + caxg + -+ - + cpxy, Where the ¢; are constants. If the objective

Conventional Optimization Techniques 5

function and all the constraint functions are linear functions, then the
model is called a linear programming model.

In (1.1), there was a single goal—to maximize profit. Sometimes,
however, it is not possible to include all the managerial objectives within
a single overriding objective, such as maximizing profit or minimizing
cost. For these reasons, models may include multiple objective functions
and analysis of the problem may require individual consideration of the
separate objectives. Goal programming provides a way of striving toward
several objectives simultaneously.

Linear programming and nonlinear programming techniques conven-
tionally assume that the decision variables are continuous. That is, the
decision variables are allowed to have any value that satisfies the con-
straints, including noninteger values. In many applications, however, the
decision variables make sense only if they have integer values. For exam-
ple, it is often necessary to assign people or equipment in integer quanti-
ties. Thus, some optimization models include discrete decision variables,
usually restricting some or all of the decision variables to integer values.
A model where all the variables are required to be integer is called an
integer programming model. 1f some of the variables are continuous, but
others are required to be integer, it is called a mixed-integer program-
ming model. An integer programming model can be further categorized
as either an integer linear programming model (if all the functions in the
model are linear) or an integer nonlinear programming model (if any of
the functions are nonlinear). It is common when identifying an integer
linear programming model to drop the adjective linear.

A model where either the objective function or any of the constraints
includes a nonlinear function is called a nonlinear programming model.
Nonlinear programming problems come in many different shapes and
forms. No single algorithm can solve all these different types of prob-
lems. Instead, algorithms have been developed to solve various indi-
vidual classes (special types) of nonlinear programming problems. For
example, the objective function can be concave, convex, or neither, dif-
ferentiable or nondifferentiable, quadratic or not, and so on. The con-
straints can be linear or nonlinear, or the problem can be unconstrained.
The feasible region can be a convex set or a nonconvex set. Many of these
terms and classifications are defined in Section 5, and various algorithms
that are used to solve these different classes of nonlinear programming
models will be discussed.

In the following sections, we discuss linear programming, goal pro-
gramming, integer programming, nonlinear programming, and simula-
tion. This encompasses most of the important types of optimization
models (or at least those types where evolutionary optimization algo-

6 EVOLUTIONARY OPTIMIZATION

rithms might be applicable). We conclude with suggestions for further
reading if more detailed information about conventional optimization
techniques is desired.

2. Linear Programming

Linear programming is one of the most widely used techniques of oper-
ations research and management science. Its name means that planning
(’ programming”) is being done with a mathematical model (called a lin-
ear programming model) where all the functions in the model are linear
functions.

Consider the example that resulted in (1.1). If the contribution of
each product to profit is proportional to the level of production z;, then
each product contributes ¢;jz; to profit (where ¢; is a constant). Further
suppose that b; is the available quantity of resource %, and that the usage
of each resource i is proportional to the level of production z; and equal
to a;jz; (where a;; is a constant). The resulting linear programming
model is then to choose z1, 29, ...,Zn SO as to

Maximize C1Z1 + X2+« + CnZy

subject to
01171 + 61222 + -+ + 1Ty S b1
a91%1 + agexe + - -+ + a2pxn < by (1.2)
Om1Z1 + amax2 + Ay < by
and

x120,x220,...,xn_>_0.

Another common form for a linear programming model is to minimize
the objective function, subject to functional constraints with > signs and
nonnegativity constraints. A typical interpretation then is that the ob-
jective function represents the total cost for the chosen mix of activities
and the functional constraints involve different kinds of benefits. In par-
ticular, the function on the left-hand side of each functional constraint
gives the level of a particular kind of benefit that is obtained from the
mix of activities, and the constant on the right-hand side represents the
minimum acceptable level of the benefit. Still other linear programming
models have an equality instead of inequality sign in some or all of the
functional constraints. Such constraints represent fixed requirements for
the value of the function on the left-hand side. It is also fairly common
for large linear programming models to include a mixture of functional

Conventional Optimization Techniques 7

constraints—some with < signs, some with > signs, and some with =
signs.

2.1 Some Applications of Linear Programming

Linear programming has been applied to a wide variety of problems.
These applications include determining the best mix of products to pro-
duce given a limited set of resources, personnel scheduling to minimize
cost while meeting service requirements, mixing a blend of raw materials
to meet various requirements, and many, many more.

A number of important applications fit a special type of linear pro-
gramming model called the minimum-cost flow problem. A typical ap-
plication of this type involves shipping goods through a distribution
network from certain supply points to certain demand points. Given
the supply available from each supply point, the amount needed at each
demand point, and the maximum amount that can be shipped through
each branch of the distribution network, the objective is to determine
how to route the goods so as to minimize the total shipping cost.

Some other important applications of linear programming are special
cases of the minimum-cost flow problem. One special case, called the
transportation problem, involves direct shipments from the supply points
to the demand points (where the only limits on shipment amounts are the
supplies and demands at these points), so the only decisions to be made
are how much to ship from each supply point to each demand point.
A second special case, called the assignment problem, involves assigning
people (or machines or vehicles or plants) to tasks so as to minimize the
total cost or time for performing these tasks. The shortest path problem,
which involves finding the shortest route (in distance, cost, or time)
through a network from an origin to a destination, also is a special case.
Still another special case, called the maximum flow problem, is concerned
with how to route goods through a distribution network from a single
supply point to a single demand point so as to maximize the flow of goods
without exceeding the maximum amount that can be shipped through
each branch of the network.

2.2 Solving Linear Programming Models

In 1947, George Dantzig developed a remarkably efficient algorithm,
called the simplex method, for finding an optimal solution for a linear
programming model. The simplex method exploits some basic proper-
ties of optimal solutions for linear programming models. Because all the
functions in the model are linear functions, the set of feasible solutions
(the feasible region) is a convex set, as defined in Section 5. The vertices

8 EVOLUTIONARY OPTIMIZATION

of the feasible region play a special role in finding an optimal solution.
A model will have an optimal solution if it has any feasible solutions
and the constraints prevent improving the value of the objective func-
tion indefinitely. Any such model must have either exactly one optimal
solution or an infinite number of them. In the former case, the one op-
timal solution must be a vertex of the feasible region. In the latter case,
at least two vertices must be optimal solutions, and all the convex linear
combinations of these vertices also are optimal. Therefore, it is suffi-
cient to find the vertices with the most favorable value of the objective
function in order to identify all optimal solutions.

Based on these facts, the simplex method is an iterative algorithm
that only examines vertices of the feasible region. At each iteration, it
uses algebraic procedures to move along an outside edge of the feasible
region from the current vertex to an “adjacent” vertex that is better.
The algorithm terminates when a vertex is reached that has no bet-
ter adjacent vertices, because the convexity of the feasible region then
implies that this vertex is optimal.

The simplex method is an exponential-time algorithm. That is, the
solution time can theoretically grow exponentially in the number of vari-
ables and constraints. However, it consistently has proven to be very ef-
ficient in practice. Running time tends to grow approximately with the
cube of the number of functional constraints, and less than linearly in
the number of variables. Problems with many thousands of functional
constraints and decision variables are routinely solved. Furthermore,
continuing improvements in the computer implementation of the simplex
method and its variants (particularly the dual simplex method) now are
sometimes making it possible to solve massive problems ranging into the
hundreds of thousands of functional constraints and millions of decision
variables. One key to its efficiency on such large problems is that the
path followed generally passes through only a tiny fraction of all vertices
before reaching an optimal solution. The number of iterations (vertices
traversed) generally is the same order of magnitude as the number of
functional constraints.

Highly streamlined versions of the simplex method also are available
to solve certain special types of linear programming problems in only
a tiny fraction of the time that would be required by the general sim-
plex method. For example, one such streamlined version is the network
simplex method, which is widely used to solve minimum-cost flow prob-
lems. In addition, even more specialized algorithms are available to solve
the special cases of the minimum-cost flow problem mentioned earlier,

Conventional Optimization Techniques 9

namely, the transportation problem, the assignment problem, the short-
est path problem, and the maximum flow problem.

In recent years, there has been a flurry of research to develop interior-
point methods. The application of these methods to linear programming
now has reached a high level of sophistication. These algorithms move
through the interior of the feasible region until they converge to an op-
timal solution. A key feature of this approach is that both the number
of iterations (trial solutions) and total running time tend to grow very
slowly (even more slowly than for the simplex method) as the problem
size is increased. Therefore, the best implementations tend to become
faster than the simplex method for relatively large problems. However,
this is not always true, because the efficiency of each approach depends
greatly in different ways on the special structure in each individual prob-
lem.

3. Goal Programming

The models described in the other sections of this chapter assume
that the objectives of the organization conducting the study can be en-
compassed within a single overriding objective, such as maximizing total
profit or minimizing total cost, so that this overriding objective can be
expressed in a single objective function for the model. However, this
assumption is not always realistic. The management of some organiza-
tions frequently focus simultaneously on a wide variety of rather differ-
ent objectives. In this case, a multicriteria decision making approach is
needed.

A considerable number of multicriteria decision making techniques
have been developed. We will briefly describe only one of these here,
namely, a popular technique called goal programming.

The goal programming approach is to establish a specific numeric goal
for each of the objectives, formulate an objective function for each objec-
tive, and then seek a solution that minimizes the total penalty assessed
for missing these goals. This total penalty is expressed as a weighted
sum of deviations of these objective functions from their respective goals.
There are three possible types of goals. One is a lower, one-sided goal
that sets a lower limit that we do not want to fall under (but exceeding
the limit is fine), so a penalty is assessed only if the corresponding objec-
tive function falls below the goal. A second type is an upper, one-sided
goal that sets an upper limit that we do not want to exceed (but falling
under the limit is fine), so a penalty is assessed only if the corresponding
objective function exceeds the goal. The third type is a two-sided goal
that sets a specific target that we do not want to miss on either side,

10 EVOLUTIONARY OPTIMIZATION

so a penalty is assessed if the corresponding objective function deviates
from the goal in either direction.

Goal programming problems can be categorized according to the con-
ventional type of optimization model that it fits except for having multi-
ple goals instead of a single objective. The most important case is linear
goal programming, where all the objective functions and constraint func-
tions are linear functions. In this case, it is possible to reformulate the
linear goal programming model into a conventional linear programming
model, so that the extremely efficient simplex method can be used to
solve the model. One key to this reformulation is that the total penalty
to be minimized can be expressed as a linear function of new variables
that represent the relevant deviations from the respective goals.

Another categorization is according to how the goals compare in im-
portance. In one case, called nonpreemptive goal programming, all the
goals are of roughly comparable importance. In this case, when evalu-
ating the total penalty for missing goals, the weights on the respective
deviations are of the same order of magnitude. In another case, called
preemptive goal programming, there is a hierarchy of priority levels for
the goals, so that the goals of primary importance receive first-priority
attention, those of secondary importance receive second-priority atten-
tion, and so forth (if there are more than two priority levels).

4. Integer Programming

One of the key assumptions of linear programming is that all the
decision variables are continuous variables, so that either integer or non-
integer values are allowed for these variables. However, many problems
arise in practice where some or all of the decision variables need to be
restricted to integer values. Integer programming is designed to deal
with such problems.

The form of an integer (linear) programming model is identical to
that shown in Section 2 for a linear programming model except that it
has additional constraints specifying that certain decision variables must
have an integer value. If every decision variable has such a constraint,
the model is said to be a pure integer programming model, whereas it is a
mixed integer programming model if only some of the decision variables
have this constraint.

4.1 The Role of Binary Integer Programming
Models

There have been numerous applications of integer programming that
involve a direct extension of linear programming where the assumption of

Conventional Optimization Techniques 11

continuous decision variables must be dropped. However, another area
of application may be of even greater importance, namely, problems
involving “yes-or-no decisions.” In such decisions, the only two possible
choices are yes and no. For example, should we undertake a particular
fixed project? Should we make a particular fixed investment? Should
we locate a facility on a particular site?

With just two choices, we can represent such decisions by decision
variables that are restricted to just two values, say O and 1. Thus, the
Jth yes-or-no decision would be represented by, say, z; such that

S 1, if decision j is yes
771 0, if decision j is no.

Such variables are called binary variables. Consequently, integer pro-
gramming models where all the integer-restricted variables are further
restricted to be binary variables commonly are referred to as binary in-
teger programming models (or BIP models for short). Such a model is a
pure BIP model if all the variables are binary variables, whereas it is a
mixed BIP model if only some of the variables are binary variables and
the rest are continuous variables.

BIP models (either pure or mixed) are among the most widely used
optimization models. We list below some examples of important types
of BIP models, where the yes-or-no decisions represented by binary vari-
ables for each example are identified in parentheses.

m Capital budgeting with fixed investment proposals. (For each pro-
posed investment, should it be made?)

m Site selection. (For each possible location of the sites for new
facilities, should it be selected?)

m Designing a distribution network. (For each combination of a dis-
tribution center and a market area, should that distribution center
be assigned to serve that market area?)

a Scheduling interrelated activities. (For each combination of an
activity and a time period, should that activity begin in that time
period?)

m» Scheduling asset divestitures. (For each combination of an asset
and a time period, should that asset be sold in that time period?)

w The fleet assignment problem. (For each combination of a type of
airplane and a flight leg in the airline schedule, should that airplane
type be assigned to that flight leg?)

12 EVOLUTIONARY OPTIMIZATION

m The crew scheduling problem. (For each combination of an airline
crew and a flight leg in the airline schedule, should that crew be
assigned to that flight leg?)

Such applications of BIP models often have provided very substantial
savings for the companies involved. For example, annual savings of hun-
dreds of millions of dollars have been achieved in the airline industry by
applying BIP models to fleet assignment and crew scheduling problems.

4.2 Solving Integer Programming Models

The traditional approach that has been used to solve integer program-
ming models with either general integer variables or binary variables is
to apply an algorithm that is based on the branch-and-bound technique.
The basic concept underlying this technique is to divide and conquer.
Since the original ”large” problem is too difficult to be solved directly, it
is divided into smaller and smaller subproblems until these subproblems
can be conquered. The dividing (branching) is done by partitioning the
entire set of feasible solutions into smaller and smaller subsets. The
conquering (fathoming) is done partially by bounding how good the best
solution in the subset can be and then discarding the subset if its bound
indicates that it cannot possibly contain an optimal solution for the
original problem. This bounding commonly is done by using the sim-
plex method or dual simplex method to solve the current subproblem’s
LP-relaxation (the linear programming model obtained by deleting the
integer constraints from the subproblem).

The computational efficiency of branch-and-bound algorithms for in-
teger programming is quite limited, and so is not at all comparable to
the efficiency of the simplex method for linear programming. Such al-
gorithms frequently fail to solve integer programming models with more
than a hundred integer or binary variables.

Because many integer programming models arising in practice are
too large to be solved by a branch-and-bound algorithm, research in
recent years has focused on developing more efficient branch-and-cut al-
gorithms. This kind of algorithm combines clever branch-and-bound
techniques with two other kinds of techniques: automatic problem pre-
processing and the generation of cutting planes. Automatic problem pre-
processing involves a ’computer inspection” of the user-supplied formu-
lation of the integer programming model in order to spot reformulations
that make the model quicker to solve without eliminating any feasible
solutions. This involves identifying variables that can be fixed at one of
their possible values, identifying and eliminating redundant constraints,
and tightening some constraints without eliminating any feasible solu-

Conventional Optimization Techniques 13

tions. Generating cutting planes involves introducing new functional
constraints that reduce the feasible region for the LP-relaxation without
eliminating any feasible solutions for the integer programming model.
This is very helpful in providing tighter bounds when solving the LP-
relaxation of either the original problem or any of its subproblems.

The new branch-and-cut algorithms have provided a rather dramatic
improvement in computational efficiency for solving integer program-
ming models. For example, they now are sometimes succeeding in solv-
ing BIP problems with many thousands of binary variables.

A significant amount of research is being conducted to develop al-
gorithms for integer nonlinear programming. However, this is a very
difficult problem and progress to date has been quite limited. No such
algorithms have yet been adopted for widespread use in practice. There
appears to be considerable potential for the application of evolutionary
optimization algorithms in this area.

S. Nonlinear Programming

For most of the models in the preceding sections, it is assumed that
all its functions (objective function and constraint functions) are linear.
However, there are many practical problems for which this assumption
does not hold. For instance, when there are economies of scale, the pro-
duction function is nonlinear. In transportation problems, if there are
volume discounts on shipping costs, then the shipping costs are nonlin-
ear with respect to shipping volume. In portfolio selection problems,
correlation between the performance of various securities causes the risk
function to be nonlinear. For many problems the nonlinearities are small
enough that it is reasonable to approximate them with linear functions.
However, when the nonlinearities are not small, we often must deal di-
rectly with nonlinear programming models.

A general form for a nonlinear programming problem is to find x =
(21, 22,...,Zp) SO as to

Maximize f(x)
subject to
gi(x)<b; fori=1,2,...,m (1.3)
and
x> 0.

Other forms are possible (e.g., minimization or > constraints), but they
can all be converted to (1.3), and for simplicity, we will assume this form
in this section.

14 EVOLUTIONARY OPTIMIZATION

There are several complications that arise in nonlinear programming
that do not arise in linear programming. First, unlike linear program-
ming models, the optimal solution is not necessarily on the boundary
of the feasible region. Therefore, a general algorithm for solving nonlin-
ear programming models needs to consider all solutions in the feasible
region, not just those on the boundary.

A second complication of nonlinear programming is that a local max-
imum (or minimum) need not be a global maximum (or minimum).
Consider, for example, the single-variable function f(z) plotted in Fig-
ure 1.1. This function has three local maxima (at z = 1,z = 2, and
x = 4), but only one (z = 4) is a global maximum.

A

fix)

Figure 1.1. A function with several local maxima.

Most nonlinear programming algorithms search locally for improved
solutions and hence can get “trapped” at a local maximum, with no
way to guarantee that it is the global maximum. However, under some
conditions, a local maximum is guaranteed to be a global maximum.

In a model that has no constraints, the objective function being con-
cave guarantees that a local maximum is a global maximum. Similarly,
the objective function being convex guarantees that a local minimum
is a global minimum. A concave function is a function that is always
”curving downward” (or not curving at all). A convex function is one
that is always “curving upward” (or not curving at all). More specifi-
cally, f(x) is a convex function if for each pair of points on the graph of
the function, the line segment joining the two points lies on or above the
graph. It is a concave function if for each pair of points on the graph
of the function, the line segment joining the two points lies on or below
the graph. Examples of both a concave function and a convex function
are shown in Figure 1.2. A linear function is both concave and convex.
The function shown in Figure 1.1 is neither concave nor convex.

Conventional Optimization Techniques 15

A &

fx) Concave function f®)

Convex function

Figure 1.2. A concave function and a convex function.

However, if there are constraints, then even a model with a concave
objective function can have a local maximum that is not a global maxi-
mum (or a convex objective function can have a local minimum that is
not a global minimum). Consider a two-variable problem where the ob-
jective function is to maximize 5z1 + 3xg, with the feasible region shown
in Figure 1.3. This problem has local maxima at both (3, 4) and (7, 0),
but only (7, 0) is a global maximum.

x & \Z=27=5x +3x)
AY
‘e (3,4) = local maximum

Z=35=5x) +3x9

A
v
A

oao=
“ optimal
ysolution

1 2 3 4 3 6 T

VX
Figure 1.3. A nonconvex feasible region with multiple local optima.

For a constrained optimization problem, more is needed to guarantee
that a local maximum is a global maximum. In particular, the feasible
region must be a convex set. A convex set is a set of points such that the
line segment connecting any pair of points in the set lies entirely within
the set. Examples of both a convex set and a nonconvex set are shown

16 EVOLUTIONARY OPTIMIZATION

in Figure 14. If f(x) is concave and the feasible region forms a convex
set, then any local maxima must also be a global maximum.

If all the functions g;(x) [for the constraints g;(x) < b;] are convex
functions, then the resulting feasible region will be a convex set. Thus, a
linearly constrained model will have a convex feasible region. However,
the feasible region in Figure 1.3 is clearly nonconvex.

£ X2

Cirves ek Nonconvex set

Figure 1.4. A convex set and a nonconvex set.

5.1 Types of Nonlinear Programming Models

Nonlinear programming problems come in many different shapes and
forms. No single algorithm can solve all these different types of problems.
Therefore, nonlinear programming problems are classified according to
the properties of the objective function and constraints (if any).

An unconstrained nonlinear programming model has no constraints.
Thus, the goal is simply to maximize f(x) over all values of the decision
variables x = (1, Zg,...,Zn)-

Linearly constrained nonlinear programming models have linear con-
straints, but the objective function is nonlinear. A number of special
algorithms have been developed for this case, including a few that extend
the simplex method to consider the nonlinear objective function.

An important special type of linearly constrained nonlinear model is
a quadratic programming model. Quadratic programming models again
have linear constraints, but are characterized by an objective function
that is quadratic. That is, each term in the objective function consists
of a constant times either a single decision variable, the square of a
single decision variable, or a product of two decision variables (e.g.,
5z1,22%, or 3z122). Many algorithms have been developed for quadratic
programming with the further assumption that the objective function is

Conventional Optimization Techniques 17

concave. One applicable approach in this case is to use a direct extension
of the simplex method to find the global maximum.

Convex programming covers a broad class of problems which include
the assumptions that the objective function f(x) is concave and all the
functions gi(x) [for the constraints g;(x) < b;] are convex functions, so
that the feasible region is a convex set. These assumptions are enough
to ensure that any local maximum is a global maximum.

Nonconvex programming includes all nonlinear programming models
that do not satisfy the assumptions of convex programming. For these
models, even if a local maximum is found, there is no guarantee that
it will also be a global maximum. Except for a few special cases, there
is no algorithm that will guarantee finding an optimal solution for such
problems. A common approach for these problems is to apply an al-
gorithm for finding a local maximum, and then restart it a number of
times from a variety of initial trial solutions in order to find as many
distinct local maxima as possible. The final step is to choose the best
local maximum.

5.2 Solving Unconstrained Nonlinear
Programming Models

Consider the problem of maximizing the objective function f(x) over
all possible values of x. If the objective function is differentiable, then
a necessary condition that a particular solution x = x* is optimal is

%jj):Oatx:x*forj:l,Z...,n. (1.4)
If the objective function is also concave, then this is also a sufficient
condition for optimality.

For these problems, one approach for finding an optimal solution is to
apply a gradient search procedure. The gradient of f(x), denoted V f(x),
is the vector whose elements are the respective partial derivativesof f(x).
That is,

_ (9f(x) 9f(x) Of(x)

The significance of the gradient is that the (infinitesimal) change in
x that maximizes the rate at which f(x) increases is a move in the “di-
rection” of the gradient V f(x). The gradient search procedure exploits
this property. Each iteration involves changing the current trial solution
x’ as follows:

18 EVOLUTIONARY OPTIMIZATION

Reset x' = x' + t*V f(x'), (1.6)

where t* is the positive value of ¢ that maximizes f(x' + ¢tV f(x')). The
iterations of the gradient search procedure continue until Vf(x) = 0
within a small tolerance.

If f(x) is not a concave function, the gradient search procedure would
converge to a local maximum, but not necessarily the global maximum.
Several starting points can be tried in an attempt to find better local
maxima.

Although the gradient search procedure is one popular (and particu-
larly straightforward) search technique for unconstrained optimization,
it is only a special case of a general class of such techniques called iz-
erative ascent methods (or iterative descent methods when minimizing
instead of maximizing). Each iteration of such a method begins by iden-
tifying a direction of ascent (called the search direction) from the current
trial solution. A step is then taken in this direction from the current trial
solution in order to find a new improved trial solution. These iterations
are repeated until a test for convergence is satisfied.

The search direction for these methods typically is identified by ob-
taining a first- or second-order Taylor series expansion of the objective
function around the current trial solution and then computing the direc-
tion that maximizes (or approximately maximizes) the expansion. The
gradient search procedure uses a first-order expansion whereas Newton’s
method employs a second-order expansion. Although Newton’s method
thereby requires computing second derivatives, this provides a more
rapid (quadratic) rate of convergence under favorable conditions. Quasi-
Newton methods only compute approximations of the second derivatives.

For Newton-type methods, the length of the step to be taken in the
search direction typically is determined in one of two ways. A line search
method finds the steplength that maximizes (or at least approximately
maximizes) the second-order Taylor series expansion along the line that
leads from the current trial solution in the search direction. A trust
region method only considers steplengths that are small enough that
the second-order Taylor series expansion can be trusted to provide a
reasonable approximation of the objective function.

5.3 Solving Constrained Nonlinear
Programming Models

Now consider constrained optimization problems, as represented by
(1.3). Necessary conditions for a given solution to be optimal are given
by the Karush-Kuhn-Tucker conditions (also called KKT conditions).
Assume that f(x), g1(x), g2(%),...,gm(x) are differentiable functions

Conventional Optimization Techniques 19

satisfying certain regularity conditions. Then x* can be an optimal
solution if there exist numbers %1, ug, ..., 4y such that all the following
KKT conditions are satisfied:

0160 _ ™, 20i(x

< — * ; —
oz . Bz, <0 atx=x"forj=12...,n
i=1
af() . 39()
) ok .
gi(x*)—b; <0, fori=1,2,...,m. (1.7)

ui[gi(x*) — b} = 0, fori=1,2,...,m.
z; >0, forj=1,2,...,n
u; > 0, fori=1,2,...,m

If the objective function is also concave and the feasible region forms a
convex set (i.e. the model is a convex programming model), then this is
also a sufficient condition for optimality.

There is no single standard algorithm that always is used to solve con-
vex programming models. Many algorithms have been developed, each
with its own advantages and disadvantages. These algorithms typically
fall into one of three categories.

The first category is gradient algorithms, where the gradient search
procedure is modified in some way to keep the search path from pen-
etrating any constraint boundary. For example, one popular gradient
method is the generalized reduced gradient (GRG) method.

The second category is sequential unconstrained algorithms. These al-
gorithms often incorporate the constraints into either a penalty or barrier
function that is subtracted from the objective function. When using a
penalty function, the role of this function is to impose a penalty for vi-
olating constraints. With a barrier function, only feasible solutions are
considered and then this function is used to impose a large penalty for
approaching constraint boundaries. By subtracting a sequence of posi-
tive multiples of either kind of function from the objective function, the
original constrained optimization problem is converted into a sequence
of unconstrained optimization problems that can be solved by an un-
constrained optimization algorithm, e.g., the gradient search procedure,
inxxsequential unconstrained algorithms

For example, to solve (1.3), we can solve for x so as to

Maximize h(x;7) = f(x) — rB(x) (1.8)

where 7 is a positive constant and B(x) is a positive barrier function
that has the property that it is small when x1is far from the boundary

20 EVOLUTIONARY OPTIMIZATION

of the feasible region, large when x is close to the boundary of the
feasible region, and goes to infinity in the limit as the distance from
the boundary of the feasible region approaches zero. The most common
choice for B(x) is

B(x) = —_— — 1.
=25 T)
By starting with a feasible initial trial solution that does not lie on
the boundary of the feasible region and then applying an iterative ascent
method that finds a series of improving trial solutions for (1.8), this bar-
rier function forces all the trial solutions to remain within the interior of
the feasible region for (1.3). However, an optimal solution for (1.3) might
lie on or near the very boundary that the barrier function is preventing
the search from approaching too closely. To alleviate this difficulty, a
sequence of problems given by (1.8) are solved for successively smaller
values of r, approaching zero, where the optimal solution obtained for
each problem (or at least its approximation) is used as the initial trial
solution for the next problem. The sequence of optimal solutions for
the unconstrained problem (1.8) will converge to an optimal solution for
the constrained problem (1.3) in the limit as r goes to zero, even if this
latter solution lies on the boundary of the feasible region.
If a sequential unconstrained algorithm uses a penalty function instead
of a barrier function, each of the unconstrained optimization problems
considered has the form

Maximize h(x;p) = f(x) — pP(x) (1.10)
where p is a positive constant and P(x) is a penalty function that penal-
izes constraint violations. Typically, P(x) is an additive function with
one nonnegative term for each of the constraints in the original nonlin-
ear programming problem, where this term is zero if the corresponding
constraint is satisfied, small if the constraint is violated but barely so,
large if the constraint is substantially violated, and grows without bound
as the size of the violation increases. For example, consider the case of
a nonlinear programming problem where the only constraints are func-
tional constraints in equality form,

gi(x)=b;, fori=1,2,...,m. (1.11)
A commonly used penalty function for this case is the quadratic function

m

P(x) =Y (b — gi(x))*. (1.12)

i=1

Conventional Optimization Techniques 21

With a functional constraint in inequality form, g;(x) < b;, the same
quadratic term would be included in P(x) if the constraint is violated,
so that the term would be set to zero if b; — g;(x) > 0. Similarly, with
nonnegativity constraints, ; > 0 for j = 1,2,...,n, quadratic terms z2
would be included in P(x) if z; > 0 is violated, so that the term would
be set to zero if €; > 0. Starting with a trial solution that violates one
or more of the constraints, an iterative ascent method is used to solve
a sequence of unconstrained optimization problems of the form (1.10)
for successively larger values of p (where the final trial solution from
each problem becomes the initial trial solution for the next one). By
using a sequence of values of p that would go to infinity in the limit,
the sequence of optimal solutions for the unconstrained optimization
problems converges to a solution that is both feasible and optimal for
the original nonlinear programming problem.

The third category of algorithms for convex programming is sequential
approximation algorithms, including linear approximation and quadratic
approximation methods. These algorithms replace a nonlinear objective
function by a sequence of linear or quadratic approximations. These
algorithms are particularly well suited to linearly constrained nonlin-
ear programming models, where these approximations allow repeated
application of efficient linear programming or quadratic programming
algorithms.

For example, consider a linearly constrained nonlinear programming
model. At any given trial solution x’, the objective function can be
approximated by the first-order Taylor series expansion of f(x) around
x = x'. That is,

7o) 7o)+ 3 2D (. (1.13)

=1 aiL'j

Using this linear approximation of the objective function, a linear pro-
gramming algorithm can be used to find an optimal solution for the
resulting linear programming model. By considering the line segment
between x’ and this optimal solution, a line search can be conducted to
maximize the original objective function f(x) over this line segment to
find a new trial solution. A new approximation for the objective func-
tion is then derived at the new trial solution. The procedure is repeated
until it converges to a solution.

Algorithms for nonconvex nonlinear programming models and for non-
linear programming models with nondifferentiable functions are an area
of ongoing research. However, these are very difficult problems. These

22 EVOLUTIONARY OPTIMIZATION

appear to be promising areas for the application of evolutionary opti-
mization algorithms.

6. Simulation

The preceding sections have focused on decision making when the
consequences of alternative decisions are known with a reasonable de-
gree of certainty. This decision-making environment enabled formulating
helpful models with objective functions that specify the estimated con-
sequences of any combination of decisions. Although these consequences
usually cannot be predicted with complete certainty, they could at least
be estimated with enough accuracy to justify using such models (along
with sensitivity analysis, etc.).

However, decisions often must be made in environments that are much
more fraught with uncertainty. Furthermore, the decisions may need to
take into account uncertainty about many future events. This is the
case when making decisions about how to design and operate stochastic
systems (systems that evolve over time in a probabilistic manner) so as
to optimize their performance.

Simulation is a widely used technique for analyzing stochastic sys-
tems in preparation for making these kinds of decisions. This technique
involves using a computer to imitate (simulate) the operation of an en-
tire process or system. For example, simulation is frequently used to
perform risk analysis on financial processes by repeatedly imitating the
evolution of the transactions involved to generate a profile of the pos-
sible outcomes. Simulation also is widely used to analyze stochastic
systems that will continue operating indefinitely. For such systems, the
computer randomly generates and records the occurrences of the various
events that drive the system just as if it were physically operating. Be-
cause of its speed, the computer can simulate even years of operations
in a matter of seconds. Recording the performance of the simulated
operation of the system for a number of alternative designs or operat-
ing procedures then enables evaluating and comparing these alternatives
before choosing one.

The technique of simulation has long been an important tool of the
designer. For example, simulating airplane flight in a wind tunnel is
standard practice when a new airplane is designed. Theoretically, the
laws of physics could be used to obtain the same information about
how the performance of the airplane changes as design parameters are
altered. However, as a practical matter, the analysis would be too com-
plicated to do it all. Another alternative would be to build real airplanes
with alternative designs and test them in actual flight to choose the final

Conventional Optimization Techniques 23

design, but this would be far too expensive (as well as unsafe). There-
fore, after some preliminary theoretical analysis is performed to develop
a rough design, simulating flight in a wind tunnel is a vital tool for ex-
perimenting with specific designs. This simulation amounts to imitating
the performance of a real airplane in a controlled environment in order
to estimate what its actual performance will be. After a detailed design
is developed in this way, a prototype model can be built and tested in
actual flight to fine-tune the final design.

Simulation plays essentially this same role in many OR/MS studies.
However, rather than designing an airplane, the OR/MS team is con-
cerned with developing a design or operating procedure for some stochas-
tic system. Rather than use a wind tunnel, the performance of the real
system is imitated by using probability distributions to randomly gen-
erate various events that occur in the system. Therefore, a simulation
model synthesizes the system by building it up component by compo-
nent and event by event. Then the model runs the simulated system
to obtain statistical observations of the performance of the system that
result from various randomly generated events. Because the simulation
runs typically require generating and processing a vast amount of data,
these simulated statistical experiments are inevitably performed on a
computer.

When simulation is used as part of an OR/MS study, commonly it is
preceded and followed by the same steps described earlier for the design
of an airplane. In particular, some preliminary analysis is done first (per-
haps with approximate mathematical models) to develop a rough design
of the system (including its operating procedures). Then simulation is
used to experiment with specific designs to estimate how well each will
perform. After a detailed design is developed and selected in this way,
the system probably is tested in actual use to fine-tune the final design.

To prepare for simulating a complex system, a detailed simulation
model needs to be formulated to describe the operation of the system
and how it is to be simulated. A simulation model has several basic
building blocks:

= A definition of the state of the system.
= A list of the possible states of the system that can occur.

m A list of the possible events that would change the state of the
system.

® A provision for a simulation clock, located at some address in the
simulation program, that will record the passage of (simulated)
time.

24 EVOLUTIONARY OPTIMIZATION

A method for randomly generating the events of the various kinds.

» A formula for identifying state transitions that are generated by
the various kinds of events.

Great progress is being made in developing special software for effi-
ciently integrating the simulation model into a computer program. This
software includes general-purpose simulation languages, applications-
oriented simulators for simulating specific types of systems, and ani-
mation software for displaying computer simulations in action, as well
as software for performing simulations on spreadsheets.

Two broad categories of simulations are discrete-event and continuous
simulations. A discrete-event simulation is one where changes in the
state of the system occur instantaneously at random points in time as
a result of the occurrence of discrete events. A continuous simulation
is one where changes in the state of the system occur continuously over
time.

Simulation now is one of the most widely used OR/MS techniques,
and it is continuing to grow in popularity because of its great versatil-
ity. We list below some examples of important types of applications of
simulation.

m Design and operation of queueing systems

= Managing inventory systems

m Estimating the probability of completing a project by the deadline
m Design and operation of manufacturing systems

s Design and operation of distribution systems

m Financial risk analysis

m Health care applications

m Applications to other service industries

Simulation is a powerful tool for analyzing stochastic systems such
as these by providing estimates of how the system would perform with
various alternative designs and operating procedures. However, simu-
lation does not determine by itself how to optimize the performance of
the system. A supplementary technique is needed to use the estimates
provided by simulation to search for the optimal values (or at least the
approximately optimal values) of the decision variables involving the de-
sign and operating procedure for the system. Evolutionary optimization
algorithms (and other metaheuristics) have a strong potential for being
used in conjunction with simulation in this way.

REFERENCES 25

7. Further Reading

All the topics covered in this chapter are developed in much greater
detail in Hillier and Lieberman (2001). Hillier et al. (2000) also expand
on these topics with a relatively applied orientation.

In addition, Hillier and Lieberman (2001) provide a number of selected
references for each of these topics. We will mention here just one book
that is devoted to each topic.

Vanderbei (2001) focuses on linear programming. Schneiderjans (1995)
deals with goal programming. Nemhauser and Wolsey (1988) provide a
treatise on integer programming. Bertsekas (1995) focuses on nonlinear
programming. Fishman (1996) provides a leading reference on simula-
tion.

References

Bertsekas, D.P. (1995). Nonlinear Programming, Athena Scientific, Bel-
mont, MA.

Fishman, G.S. (1996). Monte Carlo: Concepts, Algorithms and Applica-
tions, Springer-Verlag, New York.

Hillier, F.S., M.S. Hillier, and G.J. Lieberman (2000). Introduction to
Management Science: A Modeling and Case Studies Approach with
Spreadsheets, Irwin/McGraw-Hill, Burr Ridge, IL.

Hillier, F.S., and G.J. Lieberman (2001). Introduction to Operations Re-
search, Tth ed., McGraw-Hill, Burr Ridge, IL.

Nembhauser, G.L., and L.A. Wolsey (1988). Integer and Combinatorial
Optimization. Wiley, New York. (Reprinted in 1999.)

Schneiderjans, M. (1995). Goal Programming: Methodology and Applica-
tions, Kluwer Academic Publishers, Boston.

Vanderbei, R.J. (2001). Linear Programming: Foundations and Exten-
sions, 2nd ed., Kluwer Academic Publishers, Boston.

This page intentionally left blank

Chapter 2

EVOLUTIONARY COMPUTATION
A Gentle Introduction

Xin Yao

Abstract This chapter gives a gentle introduction to evolutionary computation,
a field in which evolutionary optimisation is one of the most important
research areas. Unlike most introductions to evolutionary computation
which are based on its simplified biological link, this chapter emphasises
the link between evolutionary computation and artificial intelligence and
computer science. In fact, this whole book is centred around problem-
solving, e.g., optimisation, using evolutionary computation techniques.
It does not deal with the issue of biological modelling.

Keywords: Evolutionary computation, global optimisation, combinatorial optimi-
sation, evolutionary learning, evolutionary design.

1. What Is Evolutionary Computation

Evolutionary computation is the study of computational systems which
use ideas and get inspirations from natural evolution and adaptation. It
aims at understanding such computational systems and developing more
robust and efficient ones for solving complex real-world problems. The
problems dealt with by such computational systems are usually highly
nonlinear and contain inaccurate and noisy data.

Traditional computational systems are good at accurate and exact
computation but brittle. They are not designed for processing inac-
curate, noisy and complex data although they might excel at dealing
with complicated data. For example, the classical simplex method is
an invaluable mathematical programming technique which has been ap-
plied to numerous practical problems successfully. However, it requires
a problem to be formulated in exact and accurate mathematical forms.
It does not work well for problems where the objective function cannot
be expressed mathematically, is noisy, and changes with time. Evolu-

28 EVOLUTIONARY OPTIMIZATION

tionary computation is a field where such problems will be studied in
depth. It complements the study of traditional computational systems.

Many evolutionary computation techniques get their ideas and inspi-
rations from molecular evolution, population genetics, immunology, etc.
Some of the terminologies used in evolutionary computation have been
borrowed from these fields to reflect their connections, such as genetic
algorithms, genotypes, phenotypes, species, etc. Although the research
in evolutionary computation could help us understand some biological
phenomena better, its primary aim is not to build biologically plausible
models. There is no requirement in evolutionary computation that a
technique developed must be biologically plausible. The primary aim
is to study and develop robust and efficient computational systems for
solving complex real-world problems.

Evolutionary computation is an emerging field which has grown rapidly
in recent years. There are at least two international journals which are
dedicated to this field: IEEE Transactions on Evolutionary Computa-
tion and Evolutionary Computation (MIT Press). Other journals which
have a large evolutionary computation component include IEEE Trans-
actions on Systems, Man, and Cybernetics and BioSystems (Elsevier).
There are also many international conferences on evolutionary compu-
tation held each year, such as the annual IEEE International Confer-
ence on Evolutionary Computation, Evolutionary Programming Confer-
ence and Genetic Programming Conference, and bi-annual International
Conference on Genetic Algorithms, International Conference on Parallel
Problem Solving from Nature, and Asia-Pacific Conference on Simulated
Evolution and Learning.

1.1 A Brief History

Evolutionary computation encompasses several major branches, i.e.,
evolution strategies, evolutionary programming, genetic algorithms and
genetic programming, due largely to historical reasons. At the philo-
sophical level, they differ mainly in the level at which they simulate
evolution. At the algorithmic level, they differ mainly in their represen-
tations of potential solutions and their operators used to modify the so-
lutions. From a computational point of view, representation and search
are two key issues. This book will look at their differences more at the
algorithmic level than at the philosophical level.

Evolution strategies were first proposed by Rechenberg and Schwefel
in 1965 as a numerical optimisation technique. The original evolution
strategy did not use populations. A population was introduced into
evolution strategies later (Schwefel, 1981; Schwefel, 1995).

Evolutionary Computation 29

Evolutionary programming was first proposed by Fogel et al. in mid
1960’s as one way to achieve artificial intelligence (Fogel et al., 1966).
Several examples of evolving finite state machines were demonstrated
(Fogel et al.,, 1966). Since late 1980’s, evolutionary programming was
also applied to various combinatorial and numerical optimisation prob-
lems.

The current framework of genetic algorithms was first proposed by
Holland (Holland, 1975) and his students (Jong, 1975) in 1975 although
some of the ideas appeared as early as 1957 in the context of simulating
genetic systems (Fraser, 1957). Genetic algorithms were first proposed
as adaptive search algorithms, although they have mostly been used as
a global optimisation algorithm for either combinatorial or numerical
problems. They are probably the most well-known branch of evolution-
ary computation.

A special sub-branch of genetic algorithms is . Genetic program-
ming can be regarded as an application of genetic algorithms to evolve
tree-structured chromosomes. Historically, those trees represent LISP
programs. The term of genetic programming was first used by Koza in
the above sense (Koza, 1989; Koza, 1990). de Garis used the term of
genetic programming to mean a quite different thing. He regarded ge-
netic programming as the genetic evolution of artificial neural networks
(de Garis, 1990). This book will follow Koza’s explanation of genetic
programming since de Garis is no longer using the term.

In recent years, a general term of evolutionary algorithms has been
used by more and more researchers to include all three major algorithms,
i.e., evolution strategies, evolutionary programming and genetic algo-
rithms, since they use almost the same computational framework. This
is the view taken by this book.

1.2 A General Framework of Evolutionary
Algorithms

All evolutionary algorithms have two prominent features which dis-
tinguish themselves from other search algorithms. First, they are all
population-based. Second, there is communications and information ex-
change among individuals in a population. Such communications and
information exchange are the result of selection and/or recombination
in evolutionary algorithms. A general framework of evolutionary algo-
rithms can be summarised by Figure 2.1, where the search operators are
also called genetic operators for genetic algorithms. They are used to
generate offspring (new individuals) from parents (existing individuals).

30 EVOLUTIONARY OPTIMIZATION

1 Set i = 0;
2 Generate the initial population P(i) at random;
3 REPEAT
(a) Evaluate the fitness of each individual in P(i);

(b) Select parents from P(i) based on their fitness;

(c) Apply search operators to the parents and produce gen-
eration P(i + 1);

4 UNTIL the population converges or the maximum time is
reached

Figure 2.1. A General Framework of Evolutionary Algorithms.

Obviously Figure 2.1 specifies a whole class of algorithms, not any
particular ones. Different representations of individuals and different
schemes for implementing fitness evaluation, selection and search oper-
ators define different algorithms.

1.3 Evolution Strategies

For evolution strategies (Schwefel, 1995; Bick, 1996), the representa-
tion of individuals is often very close to a problem’s natural representa-
tion. It does not emphasise the genetic representation of individuals. For
example, an individual is represented as a vector of real numbers rather
than a binary string for numerical optimisation problems. Evolution
strategies usually use a deterministic selection scheme, Gaussian muta-
tion, and discrete or intermediate recombination. The term crossover
is seldom used in the context of evolution strategies because evolution
strategies do not simulate evolution at the genetic level.

There are two major deterministic selection schemes in evolution
strategies (Schwefel, 1981; Schwefel, 1995), i.e., (A+u) and (A, #) where
i is the population size (which is the same as the number of parents)
and A the number of offspring generated from all p parents. In (A +)
evolution strategies, A offspring will be generated from y parents. The
p fittest individuals from A 4+ p candidates will be selected to form the
next generation. In (), u) evolution strategies, the p fittest individuals
from A offspring only will be selected to form the next generation. As a
result, A > u is required.

Evolutionary Computation 31

Mutation in evolution strategies is often implemented by adding a
Gaussian random number to a parent. Assume x = (z1,22,...,Zy) iSa
parent (individual), then an offspring will be generated by mutation as
follows:

i = z; + N;(0, 0;) (2.1)

where N;(0,0;) is a normally distributed random number with mean
0 and standard deviation ¢;. The n random numbers are generated
independently.

One important parameter in the Gaussian mutation is the standard
deviation, ;. Its selection is quite important in determining the per-
formance of evolution strategies. Unfortunately, its optimal value is
problem dependent as well as dimension dependent. Schwefel (Schwefel,
1981) proposed to include o;’s as part of an individual so that it can be
evolved automatically. This is often called self-adaptation in evolution
strategies. It is one of the major differences between evolution strategies
and genetic algorithms. In many implementations, ¢;’s will be mutated
first, and then z; is mutated using the new a{.

Mutating different components of an vector independently may not
be appropriate for some problems because those components may not
be independent at all. To address this issue, co-variance has been intro-
duced as another additional part of an individual. It is unclear at this
stage whether such self-adaptation is beneficial for most problem as the
search space will be increased exponentially as we triple (at least) the
individual size. Further work will be necessary in this area.

Recombination in evolution strategies takes two major forms, i.e.,
discrete and intermediate recombinations. Discrete recombination mixes
components of two parent vectors. For example, given two parents x =
(x1,%2,...,2n) and ¥ = (y1,¥2,...,¥Yn). The offspring x’ = (z},},...,
zp) and y’' = (¥}, 5, .-.,¥,) can be generated as follows:

/
1

) T with probability precombination
y; otherwise

y’ will be the complement of x’.

Intermediate recombination is usually based on some kind of aver-
aging. For example, given two parents x = (z1,Z2,...,Zp) and y =
(y1,92,..-,Yn). The offspring x' = (x},25,...,2;,) and y' = (v}, ¥4, - .-,
¥y) can be generated as follows:

z; = z; + oy — ;)

where «is a weighting parameter in (0,1). It is traditionally set to 0.5.
It can also be generated at random. y’can be generated similarly.

32 EVOLUTIONARY OPTIMIZATION

According to the description by Béck and Schwefel (Bédck and Schwe-
fel, 1993), a (14, A) evolution strategy can be implemented as follows:

1 Generate the initial population of p individuals, and set k = 1.
Each individual is taken as a pair of real-valued vectors, (x;,7:),
Vi € {1,---,u}, where 5 plays the role of ¢ (i.e., the standard
deviation).

2 Evaluate the fitness value for each individual (x;, 7;), Vie{1, - - ,u},
of the population.

3 Each parent (x;,7;),%=1,---,pu, creates A\/u offspring on average,

so that a total of A offspring are generated: for i = 1,---,pu,
j=1,---,nyand k=1,)
m'(7) = m(j)exp(7'N(0,1) + 7N;(0,1)) (2.2)
xi'(7) = xi(5) +nd (F)N;(0,1) (2.3)

where x;(j), xx'(5), mi(5) and m'(j) denote the j-th component
of the vectors x;, Xi', m; and %', respectively. N(0,1) denotes a
normally distributed one-dimensional random number with mean
zero and standard deviation one. N;(0,1) indicates that the ran-
dom number is generated anew for each value of j. The factors

—1 _
7 and 7' are usually set to (\/2\/ﬁ> and (v2n) ' (Bick and
Schwefel, 1993).

4 Evaluate the fitness of each offspring (x;, n/’), Vie{1, - ,A}.

5 Sort offspring (x;/,m:'), Vi € {1,--- , A} into a non-descending order
according to their fitness values, and select the p best offspring out
of A to be parents of the next generation.

6 Stop if the stopping criterion is satisfied; otherwise, k¥ = k+ 1 and
go to Step 3.

14 Evolutionary Programming

When used for numerical optimisation, evolutionary programming
(Fogel et al., 1966; Fogel, 1991; Fogel, 1995) is very similar to evolu-
tion strategies in terms of algorithm. It uses vectors of real numbers as
individuals, Gaussian mutation and self-adaptation as described above.
The most noticeable differences between evolutionary programming and
evolution strategies are recombination and selection. Evolutionary pro-
gramming does not use any recombination or crossover, but uses a proba-
bilistic competition (i.e., a kind of tournament selection) as the selection
mechanism. Of course, there is no reason why evolutionary programming

Evolutionary Computation 33

cannot have recombination and why evolution strategies cannot have a
probabilistic selection scheme from the algorithmic point of view.

The origins of evolutionary programming and evolution strategies are
quite different. Evolutionary programming was first proposed to simu-
late intelligence by evolving finite state machines, while evolution strate-
gies were proposed to optimise numerical parameters. It was unclear how
recombination could be usefully applied to finite state machines.

According to the description by Béck and Schwefel (Bick and Schwe-
fel, 1993), evolutionary programming can be implemented as follows:

1 Generate the initial population of g individuals, and set k = 1.
Each individual is taken as a pair of real-valued vectors, (x;,7;),
Vi € {1,---,u}, where x;’s are objective variables and 7;’s are
standard deviations for Gaussian mutations.

2 Evaluate the fitness score for each individual (x;,7;), Vie{1, - - ,u},
of the population.

3 Each parent (x;,7:),% =1, -+ , u, creates a single offspring (x;’, ;")
by: forj=1,---,mn,

n'(7) = m(7)exp(r'N(0,1) + TN;(0,1)) (2.4)
z'(7) = =(7)+n'()N5(0,1), (2.5)

where zi(j), zi'(5), n:(j) and n;’(j) denote the j-th component
of the vectors x;, Xi', 7; and 7', respectively. N(0,1) denotes a
normally distributed one-dimensional random number with mean
0 and standard deviation 1. N;(0,1) indicates that the random
number is generated anew for each value of j. The factors 7 and 7/

—1 _
have commonly set to (\/2\/5) and (\/ 2n) ' (Bick and Schwe-
fel, 1993; Fogel, 1994).

4 Calculate the fitness of each offspring (xi,m:'), Vi € {1,--- ,u}.

5 Conduct pairwise comparison over the union of parents (x;,7;)
and offspring (x;',n:'), V¢ € {l1,---,u}. For each individual, q
opponents are chosen uniformly at random from all the parents
and offspring. For each comparison, if the individual’s fitness is no
smaller than the opponent’s, it receives a “win.”

6 Select the g individuals out of (x;,7;) and (x;',n’), Vi € {1,--- , i},
that have the most wins to be parents of the next generation.

7 Stop if the halting criterion is satisfied; otherwise, £k = k+ 1 and
go to Step 3.

34 EVOLUTIONARY OPTIMIZATION

1.5 Genetic Algorithms

Genetic algorithms (Holland, 1975; Goldberg, 1989; Michalewicz, 1996)
are quite different from evolution strategies and evolutionary program-
ming in terms of individual representation and search operators. Genetic
algorithms emphasise genetic encoding of potential solutions into chro-
mosomes and apply genetic operators to these chromosomes. This is
equivalent to transforming the original problem from one space to an-
other space. It is obvious that the genetic representation will be crucial
to the success of genetic algorithms. A good representation will make
a problem easier to solve. A poor representation will do the opposite.
The issues faced by genetic algorithms in general are the same as those
which have haunted many artificial intelligence problems for years, i.e.,
representation and search. In other words, a crucial issue in applying
genetic algorithms to a problem is how to find a representation which
can be searched efficiently.

A canonical genetic algorithm (also called simple genetic algorithm
sometimes) (Goldberg, 1989) is the one which uses binary representation,
one point crossover and bit-flipping mutation. Binary representation
means that each individual will be represented by a number of binary
bits, 0 or 1. One point crossover is carried out as follows: Given two
binary strings, £ and ¥, of length n. Generate a crossover point between
1 and n — 1 (inclusively) uniformly at random, sayr. Then the first
offspring consists of the first r bits of z and the last n — r bits of y. The
second offspring consists of the first 7 bits of y and the last n — r bits of
. Mutation is carried out bit-wise. That is, every bit of an individual
has certain probability of being flipped from O to 1 or from 1 to 0. A
canonical genetic algorithm can be implemented as follows:

1 Generate the initial population P(0) at random and set ¢ = 0;

2 REPEAT

(a) Evaluate the fitness of each individual in P(3).

(b) Select parents from P(i) based on their fitness as follows:
Given the fitness of n individuals as fi, fa,..., fn. Then select
individual 4 with probability

fi

=7
=1 fj

This is often called roulette wheel selection of fitness propor-
tional selection.

(c) Apply crossover to selected parents;

Evolutionary Computation 35

(d) Apply mutation to crossed-over new individuals;

(e) Replace parents by the offspring to produce generation P(i+
1);

3 UNTIL the halting criterion is satisfied

1.6 Other Topics in Evolutionary Computation

There are numerous variants of classical evolution strategies, evolu-
tionary programming and genetic algorithms described above. Some of
the evolutionary algorithms can hardly be classified into any of these
three categories. Evolutionary computation includes much more than
just three kinds of algorithms. It also covers topics such as artificial
immune systems, artificial ecological systems, co-evolutionary systems,
evolvable hardware, self-adaptive systems, etc.

2. A Brief Overview of Evolutionary
Computation

The current research and development in evolutionary computation
can be classified into three major areas, i.e., evolutionary computation
theory, evolutionary optimisation and evolutionary learning. There are,
of course, overlaps among these areas.

2.1 Evolutionary Computation Theory

The theoretical work in evolutionary computation has concentrated on
three main topics. The first one is the theoretical analysis of convergence
and convergence rate of evolutionary algorithms. There has been some
work on the convergence and convergence rate of evolution strategies
(Schwefel, 1981; Schwefel, 1995; Beyer, 1994), evolutionary programming
(Fogel, 1992; Fogel, 1995) and genetic algorithms (Eiben et al., 1991;
Rudolph, 1994; Rudolph, 1996; Reynolds and Gomatam, 1996; Suzuki,
1993; Suzuki, 1995; Rudolph, 1994a). They are very general results
which describe the asymptotic behaviour of certain class of evolutionary
algorithms under different conditions. However, few of them studied the
relationship between the convergence rate and the problem size.

The second main topic in evolutionary computation theory is the
study of problem hardness with respect to evolutionary algorithms. That
is, the aim is to investigate what kind of problems is hard for evolution-
ary algorithms and what is easy for them. If we knew the characteristics
of a problem which make evolutionary algorithms hard or easy to solve,
we would be able to better understand how and when evolutionary algo-
rithms would work. This will be of enormous practical value in addition

36 EVOLUTIONARY OPTIMIZATION

to of theoretical interest. Centered around this topic, there was some
work on genetic algorithm deceptive problems (Goldberg, 1989; Liepins
and Vose, 1991; Deb and Goldberg, 1993). Such work tried to charac-
terise problems that are hard for genetic algorithms to solve as deceptive.
It has been pointed out that this approach is rather problematic (Grefen-
stette, 1993). There have been other approaches to the understanding
of what make a problem hard for genetic algorithms, such as building
block and schema analysis (Holland, 1975; Goldberg, 1989; Davidor,
1991), Walsh analysi based on Walsh functions (Heckendorn and Whit-
ley, 1997), fitness landscape analysis (Manderick et al., 1991; Hordijk,
1996) and fitness distance correlation (Jones, 1995), etc. All these ap-
proaches have made certain progress towards a better understanding of
how genetic algorithms work, but there is still a long way to go to gain
a full understanding of how and when a genetic algorithm would work.

The third main topic in evolutionary computation theory is compu-
tational complexity of evolutionary algorithms. This is one of the most
important research topics where little progress has been made. Evolu-
tionary algorithms have been used extensively in both combinatorial and
numerical optimisation in spite of the original emphasis on search and
adaptation (Fogel et al., 1966; Holland, 1975; Holland, 1992; DelJong,
1993). There are established algorithms and their complexity results for
many of these optimisation problems. However, it is unclear whether
evolutionary algorithms can perform any better than other approximate
or heuristic algorithms in terms of worst or average time complexity.
There has not been any concrete result on the computational complex-
ity of an evolutionary algorithm on a nontrivial problem, especially a
combinatorial problem, although the complexity theory is well estab-
lished for combinatorial decision and optimisation problems (Garey and
Johnson, 1979).

2.2 Evolutionary Optimisation

Evolutionary optimisation is probably the most active and productive
area in evolutionary computation measured by the number of papers
published and the number of successful applications reported. Although
neither evolutionary programming nor genetic algorithms were first pro-
posed as optimisation algorithms, people had quickly realised they could
adapt these algorithms to carry out combinatorial and function optimi-
sation. Hence a flood of variants of classical algorithms were proposed
and applied to different optimisation problems.

So far most of the evolutionary optimisation work belongs to nu-
merical optimisation. Both constrained (Michalewicz and Schoenauer,

Evolutionary Computation 37

1996; Kim and Myung, 1997) and unconstrained (Yao and Liu, 1996; Yao
and Liu, 1997) numerical optimisation has been studied. There has also
been research on multiobjective optimisation by evolutionary algorithms
(Fonseca and Fleming, 1995; Fonseca and Fleming, 1998; Fonseca and
Fleming, 1998a).

When genetic algorithms are applied to numerical function optimisa-
tion, vectors of real numbers are usually encoded into binary bit strings.
Different binary encoding methods have been proposed, such as Gray
coding (Goldberg, 1989) and delta coding (Mathias and Whitley, 1994).
Delta coding actually changes the representation during search. In spite
of all these efforts in finding the best encoding method for real numbers,
it is still unclear whether it is necessary to transform real numbers into
binery strings.

Evolution strategies and evolutionary programming use vectors of real
numbers directly as individuals and thus avoid the burden of finding a
suitable encoding method for individuals. There have been some com-
parative studies between the binary representation used by genetic al-
gorithms and the real representation used by evolutionary programming
(Fogel and Atmar, 1990; Fogel, 1995a). However, more extensive com-
parisons need to be carried out to test the performance of different al-
gorithms and find out why an algorithm performs well (or poorly) for
certain problems.

In addition to numerical optimisation, evolutionary algorithms have
also been used to tackle various combinatorial optimisation problems,
such as the travelling salesman problem (Grefenstette et al., 1985; Fogel,
1988; Yao, 1993), transportation problem (Michalewicz, 1992; Vignaux
and Michalewicz, 1991), switchbox routing in integrated circuits (Lienig
and Thulasiraman, 1995), cutting stock problem (Hinterding and Khan,
1995; Liang et al., 1998), lecture room assignment problem (Luan and
Yao, 1994), etc. Some of these results are quite competitive in compar-
ison with more traditional approaches. In particular, hybrid algorithms
which combine evolutionary algorithms with others (such as simulated
annealing (Yao, 1991) and local search methods (Kido et al., 1994)) have
shown a lot of promises in dealing with hard combinatorial optimisation
problems.

23 Evolutionary Learning

Evolutionary learning includes many topics, such as learning clas-
sifier systems, evolutionary artificial neural networks, co-evolutionary
learning, self-adaptive systems, etc. The primary goal of evolutionary
learning is the same as that of machine learning in general. Evolution-

38 EVOLUTIONARY OPTIMIZATION

ary learning can be regarded as the evolutionary approach to machine
learning. It has been used in the framework of supervised learning, re-
inforcement learning and unsupervised learning, although it appears to
be most promising as a reinforcement learning method.

2.3.1 Learning Classifier Systems. Learning classifier sys-
tems (Holland, 1986; Holland, 1988), also known as classifier systems,
are probably the oldest and best known evolutionary learning systems,
although they did not work very well in their classical form (Westerdale,
1997). Some of the recent systems have improved this situation (Wilson,
1995; Colombetti and Dorigo, 1998). Due to its historical importance,
a brief introduction to the classical learning classifier system (Holland,
1986; Holland, 1988) will be presented here.

Learning classifier systems are a particular class of message-passing,
rule-based systems (Holland, 1988). They can also be regarded as a type
of adaptive expert system that uses a knowledge base of production rules
in a low-level syntax that can be manipulated by a genetic algorithm
(Smith and Goldberg, 1992). In a classifier system, each low-level rule
is called a classifier.

A genetic algorithm is used in classifier systems to discover new clas-
sifiers by crossover and mutation. The strength of a classifier is used as
its fitness. The genetic algorithm is only applied to the classifiers after
certain number of operational cycles in order to approximate strengths
better. There are two approaches to classifier systems; the Michigan
approach and the Pitts approach. For the Michigan approach, each indi-
vidual in a population is a classifier. The whole population represents a
complete classifier system. For the Pitts approach, each individual in a
population represents a complete classifier system. The whole popula-
tion includes a number of competing classifier systems.

2.3.2 Evolutionary Artificial Neural Networks. Evolu-
tionary artificial neural networks can be considered as a combination of
artificial neural networks and evolutionary algorithms (Yao, 1991b; Yao,
1993a; Yao, 1995a). Evolutionary algorithms have been introduced into
artificial neural networks at three different levels: the evolution of con-
nection weights, architectures, and learning rules (Yao, 1993a; Yao,
1995a). At present, most work on evolutionary artificial neural net-
works concentrates on the evolution of architectures, i.e., connectivities
of ANNSs (Yao and Shi, 1995; Liu and Yao, 1996; Yao and Liu, 1997a; Yao
and Liu, 1998). Very good results have been achieved for some artificial
and real-world benchmark problems.

Evolutionary Computation 39

One of the most important benefits of evolutionary artificial neural
networks is that a near optimal (in terms of generalisation) artificial neu-
ral network with both structure and weights can be evolve automatically
without going through a tedious trial-and-error manual design process.
The results obtained so far have demonstrated that very compact arti-
ficial neural networks with good generalisation can be evolved (Yao and
Liu, 1997a).

233 Co-evolutionary Learning. “Coevolution refers to
the simultaneous evolution of two or more species with coupled fit-
ness.” (Rosin and Belew, 1997) Co-evolutionary learning has two differ-
ent forms. In the first form, two or more populations are evolved at the
same time (Hillis, 1991). The fitness of an individual in one population
depends on the individuals in another population. There is no crossover
or other information exchange between two populations. This can be
regarded as co-evolution at the population level.

The second form of co-evolution is at the individual level. There is
only one population involved. The fitness of an individual in the pop-
ulation depends on other individuals in the same population (Axelrod,
1987; Yao and Darwen, 1994; Darwen and Yao, 1995; Darwen and Yao,
1996; Darwen and Yao, 1997). For example, the same strategy for play-
ing an iterated prisoner’s dilemma game may get quite different fitness
values depending on what other strategies are in the same population.
Both forms of co-evolution have a dynamic environment and a dynamic
fitness function. This is an active area of research.

3. Evolutionary Algorithm and
Generate-and-Test Search Algorithm

Although evolutionary algorithms are often introduced from the point
of view of survival of the fittest and from the analogy to natural evolution,
they can also be understood through the framework of generate-and-
test search. The advantage of introducing evolutionary algorithms as a
type of generate-and-test search algorithms is that the relationships be-
tween evolutionary algorithms and other search algorithms, such as sim-
ulated annealing (Kirkpatrick et al., 1983; Szu and Hartley, 1987; Yao,
1991a; Yao, 1995), tabu search (Glover, 1989; Glover, 1990), etc., can
be made clearer and thus easier to explore. Under the framework of
generate-and-test search, different search algorithms investigated in ar-
tificial intelligence, operations research, computer science, and evolution-
ary computation can be unified together. Such interdisciplinary studies
are expected to generate more insights into search algorithms in general.

40 EVOLUTIONARY OPTIMIZATION

A general framework of generate-and-test search can be described by
Figure 2.2.

1 Generate the initial solution at random and denote it as the
current solution;

2 Generate the next solution from the current one by perturba-
tion;

3 Test whether the newly generated solution is acceptable;

(a) Accepted it as the current solution if yes;

(b) Keep the current solution unchanged otherwise.

4 Goto Step 2 if the current solution is not satisfactory, stop oth-
erwise.

Figure 2.2. A General Framework of Generate-and-Test.

It is quite clear that various hill-climbing algorithms can be described
by Figure 2.2 with different strategies for perturbation. They all require
the new solution to be no worse than the current one to be acceptable.
simulated annealing does not have such a requirement. It regards a worse
solution to be acceptable with certain probability. The difference among
classical simulated annealing (Kirkpatrick et al., 1983), fast simulated
annealing (Szu and Hartley, 1987), very fast simulated annealing (Ingber,
1989), and a new simulated annealing (Yao, 1995) lies in the difference
in their perturbations, i.e., methods of generating the next solution.

Evolutionary algorithms can be regarded as a population-based ver-
sion of generate-and-test search. They use search operators like crossover
and mutation to generate new solutions, and use selection to test which
solutions are fitter than others. From this point of view, it is clear that
we do not have to limit ourselves to crossover and mutation in an evo-
lutionary algorithm. In principle, we can use any search operators to
generate new solutions (i.e., offspring). A good search operator should
always increase the probability of finding a global optimum. This is also
true for selection.

4. Search Operators

There are many search operators that have been used in various evolu-
tionary algorithms. Some of them are specialised in solving a particular

Evolutionary Computation 41

class of problems. This section describes some search operators and se-
lection schemes' commonly used. They do not represent a complete set
of all search operators.

4.1 Recombination Operators

The essence of any recombination (crossover) operator is the inher-
itance of information (genes) from two or more parents by offspring.
Although most recombination operator uses two parents, multiple par-
ents may be useful in some cases. Two offspring are often produced by a
recombination operator, but, again, other numbers might be appropriate
for some problems.

4.1.1 Recombination for Real-Valued Vectors. These
operators are mostly proposed for evolution strategies. They are used to
process vectors of real numbers. In evolution strategies, recombination is
done independently for objective variables and strategy parameters (i.e.,
variance, etc.). It can be different for objective variables and strategy
parameters.

Discrete Recombination In this case, an offspring vector will have
components coming from two or more parent vectors. There is
no change to any component itself. For example, given two par-
ents x = (x1,22,...,2Zn) and ¥ = (¥1,Y2,...,Yn). The offspring
x' = (z},25,...,2}) and y' = (¥],¥5,...,¥,) can be generated as
follows:

x

o

1) T with probability precombination
y; otherwise

y’ will be the complement of x’. A global version of this recom-
bination is that y; will be taken from a randomly generated y for
each 7 value. That is, for each ¢ value, a y is generated uniformly
at random in the whole population. Then its ith component will
be used for recombination. Basically the number of parents is the
same as the population size.

Intermediate Recombination In this case, a component of an off-
spring vector is a linear combination (average) of parent’s corre-
sponding components. For example, given two parents x = (z1,
Toy ..., Zn) and y = (Y1, ¥2, .-, Yn). The offspring x' = (), x5,

1Usually selection is not regarded as a search operator. It is included in this section for ease
of discussions.

42 EVOLUTIONARY OPTIMIZATION

oy @) and Y = (Y4, Y5, -+ ., Y,) can be generated as follows:
:L‘; =x;+ a(yi - wl)

where « is a weighting parameter in (0,1). It is traditionally set
to 0.5. It can also be generated at random. y’ can be generated
similarly. A global version of this recombination is that y; will be
taken from a randomly generated y for each 7 value. « can also be
different for each 1.

4.1.2 Recombination for Binary Strings. Common recom-
bination operators for binary strings include k-point crossover (k > 1)
and uniform crossover, although there are many other variants.

k-point crossover This crossover can actually be applied to strings of
any alphabet. Given two parents of length n. k¥ random numbers,

T1,72,...,Tk, between 1 and n — 1 will be generated uniformly
(without repetition). Then an offspring is produced by taking
segments (separated by 71,72, ...,7%) of parent strings alternately,

i.e., the first segment from the first parent, the second from the
second parent, the third from the first parent, and so on. For
example, a 3-point crossover at 1,4,6 of two parents 00000000 and
11111111 will produce two offspring 01110011 and 10001100.

uniform crossover This crossover is also applicable to strings of any
alphabet. An offspring is generated by taking its each bit or char-
acter from the corresponding bit or character in one of the two
parents. The parent that the bit or character is to be taken from
is chosen uniformly at random.

Other crossover operators include segmented crossover and shuffle
crossover (Eshelman et al., 1989). They are not widely used in genetic
algorithm applications.

4.1.3 Specialised Recombination. There are numerous
recombination operators which have been proposed for different prob-
lems, especially combinatorial optimisation problems, such as matrix-
based crossover (Vignaux and Michalewicz, 1991; Luan and Yao, 1994),
permutation-based crossover (Whitley et al., 1991; Yao, 1993), tree-
based crossover (Koza, 1992; Koza and Andre, 1998), etc.

4.2 Mutation Operators

Mutation operators used for vectors of real values are usually based
on certain probability distributions, such as uniform, lognormal, Gauss

Evolutionary Computation 43

(normal) and Cauchy distributions. Mutation for binary strings is a lot
simpler. It is usually a bit-fliping operation.

4.2.1 Mutation for Real-Valued Vectors.

Gaussian Mutation In this case, an offspring is produced by adding
a Gaussian random number with mean 0 and standard deviation
o to the parent. For example, given x = (z1,xe,...,Z,) as the
parent, an offspring is produced as follows:

z; = z; + N;(0,0;)

where N;(0,0;) is a normally distributed random number with
mean 0 and standard deviation o;. The n random numbers are
generated independently for each dimension (thus the subscription
i in N;(0,0;). For self-adaptive evolutionary algorithms, such as
evolution strategies and evolutionary programming, o;’s are usu-
ally mutated independently using a lognormal distribution. More
details are given by Eqgs. 2.2 and 2.3 in Section 1.3.

Cauchy Mutation Cauchy mutation differs from Gaussian mutation
in the probability distribution used to generate the random num-
ber. The use of Cauchy mutation in evolutionary algorithms was
inspired by fast simulated annealing (Szu and Hartley, 1987; Yao,
1995) and proposed indepedently by several researchers (Yao and
Liu, 1996; Kappler, 1996). A detailed study of Cauchy mutation
will be presented later in this chapter.

Other Mutations Mutations based on other probability distributions,
such as the z-distribution, may be introduced into evolutionary
algorithms. An important question to ask when introducing a new
operator is when the new operator will be most efficient for what
kind of problems.

4.2.2 Mutation for Binary Strings.

Bit-Fliping Bit-flipping mutation simply flips a bit from 0 to 1 or from
1 to 0 with certain probability. This probability is often called the
mutation probability or mutation rate. Bit-flipping mutation can
be generalised to mutate strings of any alphabet. The generalised
mutation works as follows: for each character (allele) in a string,
replace it with another randomly chosen character (not the same
as the one to be replaced) in the alphabet with certain mutation
probability.

44 EVOLUTIONARY OPTIMIZATION

Random Bit This mutation does not flip a bit. It replaces a bit by 0
or 1 with equal probability (i.e., 0.5 respectively). The generalised
version of this mutation works as follows: for each character (allele)
in a string, replace it with a randomly chosen character (could be
the same as the one to be replaced) in the alphabet with certain
mutation probability.

Specialised Mutations Similar to the situation for crossover, there
are many other specialised mutation operators designed for various
combinatorial problems, such as the operators for mutate finite
state machines (Fogel et al., 1966), artificial neural networks (Yao
and Liu, 1997a) and cutting stock problems (Liang et al., 1998).

4.3 Selection

A selection scheme determines the probability of an individual be-
ing selected for producing offspring by recombination and/or mutation.
In order to search for increasingly better individuals, fitter individuals
should have higher probabilities of being selected while unfit individu-
als should be selected only with small probabilities. Different selection
schemes have different methods of calculating selection probability. The
selection pressure has sometimes been used to indicate how large the
selection probability should be for a fit individual in comparison with
that for an unfit individual. The larger the probability, the stronger the
selection pressure.

There are three major types of selection schemes, roulette wheel se-
lection (also known as the fitness proportional selection), rank-based
selection and tournament selection.

4.3.1 Roulette Wheel Selection. Let fi1, fo,..., fn be fit-
ness values of individuals 1,2, ---, n. Then the selection probability for
individual i is
b= fi
z — —1 .
?:1 f b

Roulette wheel selection calculates the selection probability directly from
individual’s fitness values.

This method may cause problems in some cases. For example, if an
initial population contains one or two very fit but not the best individ-
uals and the rest of the population are not good, then these fit indi-
viduals will quickly dominate the whole population (due to their very
large selection probabilities) and prevent the population from exploring
other potentially better individuals. On the other hand, if individuals
in a population have very similar fitness values, it will be very difficult

Evolutionary Computation 45

for the population to move towards a better one since selection prob-
abilities for fit and unfit individuals are very similar. To get around
these two problems, various fitness scaling methods have been proposed
(Goldberg, 1989). These fitness scaling methods are used to scale fitness
values before they are used in calculating selection probabilities.

4.3.2 Rank-Based Selection. Rank-based selection does not
calculate selection probabilities from fitness values directly. It sorts all
individuals according to their fitness values first and then computes se-
lection probabilities according to their ranks rather than their fitness
values. Hence rank-based selection can maintain a constant selection
pressure in the evolutionary search and avoid some of the problems en-
countered by roulette wheel selection.

There are many different rank-based selection schemes. Two are in-
troduced here. Assume the best individual in a population ranks the
first. The probability of selecting individual % can be calculated linearly
as follows (Baker, 1985):

1 1—1
pi = E Nmaz — (Mmaz — nmin)

n—1

where n is the population size, 7ye, and 7y, are two parameters.

Nmaz = Nmin = 0
Mmaz + Mmin = 2

The recommended value for 7,4, 1s 1.1.
A rank-based selection scheme with a stronger selection pressure is
the following nonlinear ranking scheme (Yao, 1993):
i
Pi = "n o
j=1J7

4.3.3 Tournament Selection. Both roulette wheel selection
and rank-based selection are based on the global information in the whole
population. This increases communications overheads if we want to par-
allelise an evolutionary algorithms on a parallel machine. Tournament
selection only needs part of the whole population to calculate an individ-
ual’s selection probability. Different individuals can also calculate their
selection probabilities in parallel.

One of the often used tournament selection schemes is that used in
evolutionary programming, which was described in Section 1.4. Another
one is Boltzmann tournament selection (Goldberg, 1990), described as
follows:

46 EVOLUTIONARY OPTIMIZATION

1 For tournament size 3, first select anindividual 47 at random. Then
select ¢z also at random but must differfrom ¢; by a fitness amount
of ©. Randomly selected %3 must also differ from 1, and half the
time differ from ig as well, all by ©.

2 ipcompetes with 43 first. Then the winner competes with 3. The
winner is identified by the Boltzmann acceptance probability. The
probability of individual £ winingover y is:

1
Pley) = T, = 7D

where T is the temperature. (Note that we are maximising fitness.)

4.3.4 Elitist Selection. Elitist selection is also known as
elitism and elitist strategy. It always copy the best individual to the
next generation without any modification. More than one individual
may be copied, i.e., the best, second best, etc., may be copied to the
next generation without any modification. Elitism is usually used in
addition to other selection schemes.

S. Summary

This chapter introduces the basic concept and major areas of evolu-
tionary computation. It presents a brief history of three major types of
evolutionary algorithms, i.e., evolution strategies, evolutionary program-
ming and genetic algorithms, and points out similarities and differences
among them. It is also pointed out that the field of evolutionary com-
putation is much more than just three types of algorithms. The field
includes many other topics.

The chapter gives a quick overview of evolutionary computation with-
out diving into too much detail. Three main areas of the field have been
discussed: evolutionary computation theory, evolutionary optimisation
and evolutionary learning. It is argued that much work on the compu-
tational complexity of evolutionary algorithms is needed among other
things in order to better understand the computational power of these
algorithms.

References

Axelrod, R. (1987). The evolution of strategies in the iterated prisoner’s
dilemma. in Genetic Algorithms and Simulated Annealing (L. Davis,
ed.), ch.-3, San Mateo, CA: Morgan Kaufmann, 32-41.

Back, T. (1996). Evolutionary Algorithms in Theory and Practice. New
York: Oxford University Press.

REFERENCES 47

Bick, T. and Schwefel, H.-P. (1993). An overview of evolutionary algo-
rithms for parameter optimization. Evolutionary Computation, 1(1),
1-23.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms.
in Proc. of an Int’l Conf. on Genetic Algorithms and Their Applica-
tions (J. J. Grefenstette, ed.), 101-111.

Beyer, H.-G. (1994). Towards a theory of evolution strategies: the (u, A)
theory. Evolutionary Computation, 2(4), 381-407.

Colombetti, M. and Dorigo, M. (1998) Evolutionary computation in
behavior engineering, in Evolutionary Computation, World Scientific
Publ. Co.

Darwen, P. J. and Lao, X. (1995). On evolving robust strategies for it-
erated prisoner’s dilemma, in Progress in Evolutionary Computation,
Lecture Notes in Artificial Intelligence, Vol. 956 (X. Lao, ed.), (Hei-
delberg, Germany), Springer-Verlag, 276-292.

Darwen, P. J. and Yao, X. (1996). Automatic modularization by specia-
tion. in Proc. of the 1996 IEEE Int’l Conf. on Evolutionary Compu-
tation (ICEC’96), Nagoya, Japan, IEEE Press, New York, NY 10017-
2394, 88-93.

Darwen, P. J. and Lao, X. (1997). Speciation as automatic categori-
cal modularization. IEEE Transactions on Evolutionary Computation,
1(2), 101-108.

Davidor, Y. (1991). Epistasis variance: a viewpoint on GA-hardness. in
Foundations of Genetic Algorithms (G. J. E. Rawlins, ed.), Morgan
Kaufmann, San Mateo, CA, 23-35.

Deb, K. and Goldberg, D. E. (1993). Analyzing deception in trap func-
tions, in Foundations of Genetic Algorithms 2 (L. D. Whitley, ed.),
(San Mateo, CA), Morgan Kaufmann, 93-108.

de Garis, H. (1990). Genetic programming: modular evolution for Darwin
machines, in Proc. of Int’l Joint Conf. on Neural Networks, Vol. I,
(Washington, DC), Lawrence Erlbaum Associates, Hillsdale, NJ, 194-
197, .

DeJong, K. A. (1993). Genetic algorithms are NOT function optimizers.
in Foundations of Genetic Algorithms 2 (L. D. Whitley, ed.), (San
Mateo, CA), Morgan Kaufmann, 5-17.

Eiben, A. E., Aarts, E. H. L. and van Hee, K. M. (1991). Global con-
vergence of genetic algorithms: a markov chain analysis, in Parallel
Problem Solving from Nature (H.-P. Schwefel and R. Manner, eds.),
Springer-Verlag, Heidelberg, 4-12.

Eshelman, L., Caruana, R. and Schaffer, J. D. (1989). Biases in the
crossover landscape. in Proc. of the Third Int’l Conf. on Genetic Al-

48 EVOLUTIONARY OPTIMIZATION

gorithms and Their Applications (J. D. Schaffer, ed.), Morgan Kauf-
mann, San Mateo, CA, 10-19.

Fogel, D. B. (1998). An evolutionary approach to the traveling salesman
problem. Biological Cybernetics, 60, 139-144,

Fogel, D. B. (1991). System Identification Through Simulated Evolution:
A Machine Learning Approach to Modeling. Needham Heights, MA
02194: Ginn Press.

Fogel, D. B. (1992). Evolving Artificial Intelligence. PhD thesis, Univer-
sity of California, San Diego, CA, 1992.

Fogel, D. B. (1994). An introduction to simulated evolutionary optimi-
sation. I[EEE Trans, on Neural Networks, 5(1), 3-14.

Fogel, D. B. (1995). Evolutionary Computation: Towards a New Philos-
ophy of Machine Intelligence. New York, NY: IEEE Press.

Fogel, D. B. (1995a). A comparison of evolutionary programming and ge-
netic algorithms on selected constrained optimization problems. Sim-
ulation, 64(6), 399-406.

Fogel, L. J., Owens, A. J. and Walsh, M. J. (1966). Artificial Intelligence
Through Simulated Evolution. New York, NY: John Wiley & Sons.
Fogel D. B. and Atmar, J. W. (1990). Comparing genetic operators with
Gaussian mutations in simulated evolutionary process using linear

systems. Biological Cybernetics, 63(2), 111-114.

Fonseca, C. M. and Fleming, P. J. (1995). An overview of evolutionary
algorithms in multiobjective optimization. Evolutionary Computation,
3(1), 1-16.

Fonseca, C. M. and Fleming, P. J. (1998). Multiobjective optimization
and multiple constraint handling with evolutionary algorithms — part
i: A unified formulation. IEEE Trans. on Systems, Man, and Cyber-
netics, Part A: Systems and Humans, 28(1), 26-37.

Fonseca, C. M. and Fleming, P. J. (1998a). Multiobjective optimiza-
tion and multiple constraint handling with evolutionary algorithms
— part ii: Application example. IEEE Trans. on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 28(1), 38-47.

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital
computers. I. Introduction. Australian Journal of Biological Sciences,
10, 484-491.

Garey M. R. and Johnson, D. S. (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness. San Francisco: W. H.
Freeman Co..

Glover, F. (1989). Tabu search — part I. ORSA J. on Computing, 1,
190-206.

Glover, F. (1990). Tabu search — part II. ORSA J. on Computing, 2,
4-32,

REFERENCES 49

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison-Wesley.

Goldberg, D. E. (1990). A note on Bltzmann tournament selection for ge-
netic algorithms and population-oriented simulated annealing. Com-
plex Systems, 4, 445-460.

Grefenstette, J. J. (1993). Deception considered harmful. in Foundations
of Genetic Algorithms 2 (L. D. Whitley, ed.), (San Mateo, CA), Mor-
gan Kaufmann, 75-91.

Grefenstette, J. J., Gopal, R., Rosmaita, B. J. and van Gucht, D. (1985).
Genetic algorithms for the traveling salesman problem. in Proc. of the
First Int’l Conf. on Genetic Algorithms and Their Applications (J. J.
Grefenstette, ed.), Carnegie-Mellon University, 160-168.

Heckendorn R. B. and Whitley, D. (1997). A Walsh analysis of NK-
landscapes. in Proc. of the 7th Int’l Conf. on Genetic Algorithms
(T. Bick, ed.),(San Francisco, CA), Morgan Kaufmann, 41-48.

Hillis, W. D. (1991). Co-evolving parasites improve simulated evolution
as an optimization procedure. in Santa Fe Institute Studies in the
Sciences of Complexity, Volume-10, Addison-Wesley, 313-323.

Hinterding, R. and Khan, L. (1995). Genetic algorithms for cutting
stock problems: with and without contiguity. in Progress in Evolu-
tionary Computation, Lecture Notes in Artificial Intelligence, Vol. 956
(X. Lao, ed.), (Heidelberg, Germany), Springer-Verlag, 166-186.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: The University of Michigan Press.

Holland, J. H., Holyoak, K. J., Nisbett, R. E. and Thagard, P. R.
(1986). Induction: Processes of Inference, Learning, and Discovery.
Cambridge, MA: The MIT Press.

Holland, J. H. (1988). Using classifier systems to study adaptive nonlin-
ear networks. in Lectures in the Sciences of Complexity (D. L. Stein,
ed.), Redwood City, CA: Addison-Wesley, 463-499.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems (1st
MIT Press Edn). Cambridge, MA: The MIT Press.

Hordijk, W. (1996). A measure of landscapes. Evolutionary Computa-
tion,4(4), 335-360.

Ingber, L. (1989). Very fast simulated re-annealing. Mathl. Comput.
Modelling, 12(8), 967-973.

Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search.
PhD thesis, The University of New Mexico, Albuquerque, New Mex-
ico.

Jong, K. A. D. (1975). An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, University of Michigan, Ann Arbor.

50 EVOLUTIONARY OPTIMIZATION

Kappler, C. (1996). Are evolutionary algorithms improved by large mu-
tations?. in Parallel Problem Solving from Nature (PPSN) IV (H.-M.
Voigt, W. Ebeling, 1. Rechenberg, and H.-P. Schwefel, eds.), vol. 1141
of Lecture Notes in Computer Science, (Berlin), Springer-Verlag, 346-
355.

Kido, T., Takagi, K. and Nakanishi, M. (1994). Analysis and comparisons
of genetic algorithm, simulated annealing, tabu search, and evolution-
ary combination algorithm. Informatica, 18, 399-410.

Kim, J.-H. and Myung, H. (1997). Evolutionary programming techniques
for constrained optimization problems. /IEEE Transactions on Evolu-
tionary Computation, 1(2), 129-140.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization
by simulated annealing. Science, 220, 671-680.

Koza, J. R. (1989). Evolving programs using symbolic expressions. in
Proc. of the 1l1th Int’l Joint Conf. on Artificial Intelligence (N. S.
Sridharan,ed.), (San Mateo, CA), Morgan Kaufmann, 768-774.

Koza, J. R. (1990). Genetic programming: a paradigm for genetically
breeding populations of computer programs to solve problems. Tech.
Rep. STAN-CS-90-1314, Department of Computer Science, Stanford
University.

Koza, J. R. (1992). Genetic Programming. Cambridge, Mass.: The MIT
Press.

Koza, J. and D. Andre, D. (1998). Automatic discovery of protein mo-
tifs using genetic programming, in Evolutionary Computation, World
Scientific Publ. Co..

Liang, K.-H., Yao, X., Newton, C. and Hoffman, D. (1998). Solving cut-
ting stock problems by evolutionary programming. in Evolutionary
Programming VII: Proc. of the 7th Annual Conference on Evolution-
ary Programming (V. W. Porto, N. Saravanan, D. Waagen, and A. E.
Eiben, eds.), vol. 1447 of Lecture Notes in Computer Science, (Berlin),
Springer-Verlag, 291-300.

Lienig, J. and Thulasiraman, K. (1995). GASBOR: A genetic algorithm
for switchbox routing in integrated circuits. in Progress in Evolution-
ary Computation, Lecture Notes in Artificial Intelligence, Vol. 956
(X. Lao, ed.), (Heidelberg, Germany), Springer-Verlag, 187-200.

Liepins G. E. and Vose, M. D. (1991). Deceptiveness and genetic al-
gorithm dynamics. in Foundations of Genetic Algorithms (G. J. E.
Rawlins, ed.), 1, (San Mateo, CA), Morgan Kaufmann, 36-50.

Liu, Y. and Lao, X. (1996). A population-based learning algorithm which
learns both architectures and weights of neural networks. Chinese
Journal of Advanced Software Research (Allerton Press, Inc., New
York, NY 10011), 3(1), 54-65.

REFERENCES 51

Luan, F. and Yao, X. (1994). Solving real-world lecture room assignment
problems by genetic algorithms. in Complex Systems — From Local
Interactions to Global Phenomena, 10S Press, Amsterdam, 148-160.

Manderick, B., de Weger, M. and Spiessens, P. (1991). The genetic al-
gorithm and the structure of the fitness landscape. in Proc. of the
Fourth Int’l Conf. on Genetic Algorithms (R. K. Belew and L. B.
Booker, eds.), Morgan Kaufmann, San Mateo, CA, 143-150.

Mathias K. E. and Whitley, D. (1994). Changing representations during
search: A comparative study of delta coding. Evolutionary Computa-
tion, 2(3), 249-278.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures
lution Programs. Berlin, Germany: Springer-Verlag.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evo-
lution Programs (3rd edition). Berlin, Germany: Springer-Verlag.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for
constrained parameter optimization problems. Evolutionary Compu-
tation, 4(1), 1-32.

Reynolds, D. and Gomatam, J. (1996). Stochastic modelling of genetic
algorithms. Artificial Intelligence, 82(1-2), 303-330.

Rosin, C. D. and Belew, R. K. (1997). New methods for competitive
coevolution. Evolutionary Computation, 5(1), 1-29.

Rudolph, G. (1994) Convergence properties of canonical genetic algo-
rithms. IEEE Trans. on Neural Networks, 5(1), 96-101.

Rudolph, G. (1994a). Convergence of non-elitist strategies. in Proc. of
the 1994 IEEE Int’l Conf. on Evolutionary Computation (ICEC’94)
(Z. M. et al.,ed.), IEEE Press, New York, NY 10017-2394, 63-66.

Rudolph, G. (1996). Convergence analysis of evolutionary algorithms
in general search spaces, in Proc. of the 1996 IEEE Int’l Conf. on
Evolutionary Computation (ICEC’96), (New York, NY), IEEE Press,
50-54.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models.
Chichester: John Wiley & Sons.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. New York: John
Wiley & Sons.

Smith, R. E. and Goldberg, D. E. (1992). Reinforcement learning with
classifier systems: adaptive default hierarchy formation. Applied Arti-
ficial Intelligence, 6, 79-102.

Suzuki, J. (1993). A markov chain analysis on a genetic algorithm. in
Proc. of the Fifth Int’l Conf. on Genetic Algorithms (S. Forrest, ed.),
Morgan Kaufmann, San Mateo, CA, 146-153.

Suzuki, J. (1995). A markov chain analysis on a simple genetic algorithm.
IEEE Trans. on Systems, Man, and Cybernetics, 25, 655-659.

Evo-

52 EVOLUTIONARY OPTIMIZATION

Szu, H. H. and Hartley, R. L. (1987). Fast simulated annealing. Physics
Letters A, 122, 157-162.

Vignaux, G. A. and Michalewicz, Z. (1991). A genetic algorithm for the
linear transportation problem. [EEE Trans, on Systems, Man, and
Cybernetics, 21(2), 445-452.

Westerdale, T. H. (1997). Classifier systems — no wonder they don’t
work.in Proc. of the 2nd Annual Conf. on Genetic Programming (J. R.
Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L.
Riolo, eds.), (San Francisco, CA), Morgan Kaufmann, 529-537.

Whitley, D., Starkweather, T. and Shaner, D. (1991). The traveling sales-
man and sequence scheduling: quality solutions using genetic edge
recombination. in Handbook of Genetic Algorithms (L. Davis, ed.),
ch. 22, New York, NY: Van Nostrand Reinhold, 350-372.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary
Computation, 3(2), 149-175.

Yao, X. (1991). Optimization by genetic annealing, in Proc. of Second
Australian Conf. on Neural Networks (M. Jabri, ed.), (Sydney, Aus-
tralia), 94-97.

Yao, X. (1991a). Simulated annealing with extended neighbourhood. Int.
J. of Computer Math., 40, 169-189.

Yao, X. (1991b). Evolution of connectionist networks, in Preprints of the
Int’l Symp. on Al, Reasoning & Creativity (T. Dartnall, ed.), (Queens-
land, Australia), Griffith University, 49-52.

Yao, X. (1993). An empirical study of genetic operators in genetic algo-
rithms. Microprocessing and Microprogramming, 38, 707-714.

Yao, X. (1993a). A review of evolutionary artificial neural networks.
International Journal of Intelligent Systems, 8(4), 539-567.

Yao, X. (1995). A new simulated annealing algorithm. Int. J. of Com-
puter Math., 56, 161-168.

Yao, X. (1995a). Evolutionary artificial neural networks. in Encyclopedia
of Computer Science and Technology (A. Kent and J. G. Williams,
eds.), vol.-33, New York, NY 10016: Marcel Dekker Inc., 137-170.

Yao, X. and Darwen, P. (1994). An experimental study of N-person
iterated prisoner’s dilemma games. Informatica, 18, 435-450.

Yao, X. and Liu, Y. (1996). Fast evolutionary programming. in Evo-
lutionary Programming V: Proc. of the Fifth Annual Conference on
Evolutionary Programming (L. J. Fogel, P. J. Angeline, and T. Back,
eds.), (Cambridge, MA), The MIT Press, 451-460.

Yao, X. and Liu, Y. (1997). Fast evolution strategies. Control and Cy-
bernetics, 26(3), 467-496.

REFERENCES 53

Yao, X. and Liu, Y. (1997a). A new evolutionary system for evolving
artificial neural networks. IEEE Transactions on Neural Networks,
8(3), 694-713.

Yao, X. and Liu, Y. (1998). Making use of population information in evo-
lutionary artificial neural networks. IEEE Trans. on Systems, Man,
and Cybernetics, Part B: Cybernetics, 28(3), 417-425.

Yao, X. and Shi, Y. (1995). A preliminary study on designing artificial
neural networks using co-evolution. in Proc. of the IEEE Singapore
Intl Conf on Intelligent Control and Instrumentation, (Singapore),
IEEE Singapore Section, 149-154.

This page intentionally left blank

IT

SINGLE OBJECTIVE OPTIMIZATION

This page intentionally left blank

Chapter 3

EVOLUTIONARY ALGORITHMS
AND CONSTRAINED OPTIMIZATION

Zbigniew Michalewicz and
Martin Schmidt

Abstract

Evolutionary computation techniques have received a lot of attention re-
garding their potential as optimization techniques for complex numerical
functions. However, they have not produced a significant breakthrough
in the area of nonlinear programming due to the fact that they have not
addressed the issue of constraints in a systematic way. Only during the
last decade several methods have been proposed for handling nonlin-
ear constraints by evolutionary algorithms for numerical optimization
problems; however, these methods give different performance on differ-
ent test cases.

In this chapter we (1) present some issues which should be addressed
while solving the general nonlinear programming problem, (2) survey
several approaches which have emerged in the evolutionary computation
community, and (3) discuss briefly a methodology, which may serve as
a handy reference for future methods.

1. Introduction

Every real-world problem poses constraints. You can’t get away from
them. It’s only the textbooks that allow you solve problems in the
absence of constraints. Dhar and Ranganathan (1990) wrote:

Virtually all decision making situations involve constraints. What dis-
tinguishes various types of problems is the form of these constraints.
Depending on how the problem is visualized, they can arise as rules,
data dependencies, algebraic expressions, or other forms.

We would only amend this by removing the word “virtually!” As we
can face problems with very pesky constraints, in this chapter we con-
centrate on a variety of constraint-handling techniques that might be
incorporated into evolutionary algorithms. In this case we have the po-

58 EVOLUTIONARY OPTIMIZATION

tential of treating both feasible and infeasible solutions simultaneously
within a single evolving population.

In evolutionary computation methods the evaluation function serves
as the main link between the problem and the algorithm by rating indi-
vidual solutions in the population. Superior individuals are usually given
higher probabilities for survival and reproduction. It’s crucial that we
define the evaluation function to capture and characterize the problem
in a reasonable way. This can be a significant challenge when facing
the possibility of having infeasible solutions. Our final answer must be
a feasible solution, otherwise it’s really no solution at all. It might be
useful, however, to operate on infeasible solutions while searching for
better feasible solutions. Finding a proper evaluation measure for feasi-
ble and infeasible individuals is of paramount importance. It can mean
the difference between success or failure.

Usually constraints cause some difficulties in most problem-solving
strategies, but it needn’t always be the case. Sometimes constraints are
helpful and can guide you in the right direction. We’ll explore some pos-
sibilities for taking advantage of constraints later in the chapter. First,
let’s tackle some of the general issues that are connected with handling
constraints in evolutionary algorithms. Later we illustrate many of these
issues in the domain of nonlinear programming problems (NLPs). Fi-
nally, we discuss briefly a new tool for evaluating all existing constraint-
handling methods: a test case generator.

2. General considerations

When facing constrained optimization problems using evolutionary al-
gorithms, it’s very important to process infeasible individuals (Michalew-
icz, 1995). Particularly in real-world problems, you’ll find it difficult to
design operators that avoid them entirely while still being effective in
locating useful feasible solutions. In general, a search space & consists
of two disjoint subsets of feasible and infeasible subspaces, F and U,
respectively (see figure 3.1). Here, we’re not making any assumptions
about these subspaces. In particular, they don’t have to be convex or
even connected (e.g., as shown in figure 3.1 where the feasible part F
of the search space consists of four disjoint subsets). In solving opti-
mization problems we search for a feasible optimum. During the search
process we have to deal with various feasible and infeasible individuals.
For example (see figure 3.1), at some stage of the evolution, a popula-
tion might contain some feasible individuals (b,c,d, e, j) and infeasible
individuals (e, f, g, h, i, k, I, m, n, 0), while the (global) optimum solution
is marked by “X”.

Evolutionary Algorithms and Constrained Optimization 59

—

°f

j search space §

. i e infeasible search
. space U
n :\
J b ;
: \ feasible search

I space F

Figure 83.1. A search space and its feasible and infeasible parts with a population of
15 individuals, a — o

Having to operate on both feasible and infeasible solutions can affect
how we design various aspects of an evolutionary algorithm. Suppose
we were using some form of elitist selection. Should we simply maintain
the best feasible individual, or should we perhaps maintain an infeasi-
ble individual that happens to score better by our evaluation function?
Questions sometimes arise in designing variation operators as well. Some
operators might only be applicable to feasible individuals. But without
a doubt, the major concern is the design of a suitable evaluation function
to treat both feasible and infeasible solutions. This is far from trivial.

In general, we’ll have to design two evaluation functions, evaly and
evaly, for the feasible and infeasible domains, respectively. There are
many important questions to be addressed:

1. How should we compare two feasible individuals, e.g., “c” and “j”
from figure 3.1? In other words, how should we design the function
evaly?

2. How should we compare two infeasible individuals, e.g., “@” and “n”?
In other words, how should we design the function eval,?

3. How are the functions evaly and eval, related? Should we assume,
for example, that evals(s) > evaly(r) forany s € F and any r € U?
(The symbol & is interpreted as “is better than,” i.e., “greater than” for
maximization and “less than” for minimization problems.)

4. Should we consider infeasible individuals harmful and eliminate them
from the population?

60 EVOLUTIONARY OPTIMIZATION

5. Should we “repair” infeasible solutions by moving them into the
closest point of the feasible space (e.g., the repaired version of “m”
might be the optimum “X,” figure 3.1)?

6. If we repair infeasible individuals, should we replace an infeasible
individual by its repaired version in the population or should we instead
only use a repair procedure for evaluations?

7. Since our aim is to find a feasible optimum solution, should we choose
to penalize infeasible individuals?

8. Should we start with an initial population of feasible individuals and
maintain the feasibility of their offspring by using specialized operators?

9. Should we change the topology of the search space by using decoders
that might translate infeasible solutions into feasible solutions?

10. Should we extract a set of constraints that define the feasible search
space and process individuals and constraints separately?

11. Should we concentrate on searching a boundary between feasible
and infeasible parts of the search space?

12. How should we go about finding a feasible solution?

Several trends for handling infeasible solutions have emerged in evolu-
tionary computation; most of these have only come about quite recently,
making efforts from a decade or more ago almost obsolete (e.g., Richard-
son et al., 1989). Even when using penalty functions to degrade the qual-
ity of infeasible solutions, this area of application now consists of several
methods that differ in many important respects. Other newer methods
maintain the feasibility of the individuals in the population by means of
specialized operators or decoders, impose a restriction that any feasible
solution is “better” than any infeasible solution, consider constraints one
at the time in a particular order, repair infeasible solutions, use inxmul-
tiobjective optimization techniques, are based on cultural algorithms, or
rate solutions using a particular co-evolutionary model. We’ll discuss
briefly these techniques by addressing issues 1 — 12 in turn.

2.1 Feasible solutions

For textbook problems, designing the evaluation function f is usually
easy: it’s usually given to you. For example, when treating most op-
erations research problems, such as inxknapsack problems, the inxTSP,
inxset covering, and so forth, the evaluation function comes part-and-
parcel along with the problem. But when dealing with the real world,
things aren’t always so obvious. For example, in many design problems

Evolutionary Algorithms and Constrained Optimization 61

there are no clear formulas for comparing two feasible designs. Some
problem-dependent heuristics are necessary in these cases, which should
provide a numerical measure evals(z) of the quality of a feasible indi-
vidual z.

Even in classic combinatorial optimization problems such as bin pack-
ing, we can encounter some difficulties. As noted in Falkenauer (1994),
where the task was to pack some maximum number of potentially dif-
ferent items into bins of various size, the obvious evaluation function
of counting the number of bins that suffices to pack all of the items is
insufficient. The reason it’s insufficient is that the resulting “landscape”
to be searched isn’t very friendly. There is a relatively small number of
optimum solutions and a very large number of solutions that evaluate
to just one higher number (i.e., they require just one more bin). All
of these suboptimal solutions have the same perceived quality, so how
can we traverse the space when there’s no guidance from the evaluation
function on which directions to go? Clearly, the problem of designing a
“perfect” evaly is far from trivial.

Actually, there’s an entirely different possibility, because in many
cases we don’t have to define the evaluation function evals to be a map-
ping to the real numbers. In a sense, we don’t have to define it at all!
It’s really only mandatory if we’re using a selection method that acts on
the solutions’ values, such as proportional selection. For other types of
selection, however, all that might be required is an ordering relation that
says that one solution is better than another. If an ordering relation >
handles decisions of the type ‘“is a feasible individual z better than a
feasible individual y?” then such a relation > is sufficient for tourna-
ment and ranking selection methods, which require either selecting the
best individual out of some number of individuals, or a rank ordering of
all individuals, respectively.

2.2 Infeasible solutions

Designing the evaluation function for treating infeasible individuals is
quite difficult. It’s tempting to avoid it altogether by simply rejecting
infeasible solutions (see section 2.4). Alternatively, we can extend the
domain of the function evaly in order to handle infeasible individuals,
ie., evaly(z) = evals(z) = Q(x), where Q(x) represents either a penalty
for the infeasible individual z, or a cost for repairing such an individual
(i.e., converting it to a feasible solution, see section 2.7). Another option
is to design a separate evaluation function eval, that’s independent of
evaly; however, we then have to establish some relationship between
these two functions (see section 2.3).

62 EVOLUTIONARY OPTIMIZATION

Evaluating infeasible individuals presents quite a challenge. Consider
a knapsack problem, where your goal is to get as many items as possible
into a knapsack of some particular size. The amount by which you
violate the capacity of the knapsack might not be a very good measure
of that particular solution’s “fitness.” This also holds true for many
scheduling, timetabling, and planning problem:s.

As with feasible solutions, it’s possible to develop an ordering relation
for infeasible individuals (as opposed to constructing ewval,). In both
cases it’s necessary to establish a relationship between the evaluations
of feasible and infeasible individuals.

2.3 Feasible vs. infeasible solutions

Let’s say that we’ve decided to treat both feasible and infeasible in-
dividuals and evaluate them using two evaluation functions, eval; and
evaly, respectively. That is, a feasible individual z is evaluated using
evaly(z) and an infeasible individual y is evaluated using evaly(y). Now
we have to establish a relationship between these two evaluation func-
tions.

As mentioned previously, one possibility is to design eval, based on
evaly, evaly(y) = evalf(y)£Q(y), where Q(y) represents either a penalty
for the infeasible individual y, or a cost for repairing such an individual

(see section 2.7). Alternatively, we could construct a global evaluation
function eval as

- @-evas(p) if peF
eval(p) = { g2 - evaly(p) if peU.

In other words, we have two weights, g1 and ¢z, that are used to scale
the relative importance of evaly and evaly,.

Note that both of the methods provide the possibility for an infeasi-
ble solution to be “better” than a feasible solution. That is, it’s possible
to have a feasible individual x and an infeasible individual ¢ such that
eval(y) > eval(z). This may lead the algorithm to converge to an in-
feasible solution. This phenomenon has led many researchers to exper-
iment with dynamic penalty functions @ (see section 2.7) that increase
the pressure on infeasible solutions as the evolutionary search proceeds.
The problem of selecting Q(x) (or weights g; and ¢2), however, can be
as difficult as solving the original problem itself.

24 Rejecting infeasible solutions

The “death penalty” heuristic is a popular option in many evolution-
ary algorithms. Simply kill off all infeasible solutions at every step. Note

Evolutionary Algorithms and Constrained Optimization 63

that rejecting infeasible individuals does simplify things. For example,
there’s no need to design eval, and to compare it with evaly.

Eliminating infeasible solutions may work well when the feasible search
space is convex and constitutes a reasonable part of the whole search
space. Otherwise this approach has serious limitations. For example,
there are many search problems where a random sampling of solutions
may generate an initial population that’s entirely infeasible. It would
therefore be essential to improve these solutions instead of reject them
outright. Wiping the slate clean doesn’t help here because you’re right
back where you started. Moreover, for many variation operators, it’s
quite often the case that the evolutionary algorithm can reach the opti-
mum solution more quickly if it can “cross” an infeasible region (this is
especially true in nonconvex feasible search spaces).

2.5 Repairing infeasible solutions

The idea of repairing infeasible solutions enjoys a particular popular-
ity in the evolutionary computation community, and especially so for
certain combinatorial optimization problems (e.g., TSP, knapsack prob-
lem, set covering problem). In these cases, it’s relatively easy to repair
an infeasible solution and make it feasible. Such a repaired version can
be used either for evaluation, i.e., evaly(y) = evalf(z), where z is a
repaired (i.e., feasible) version of y, or it can replace the original in-
dividual in the population (perhaps with some probability, see section
2.6). Note that the repaired version of solution “m” (figure 3.1) might
be the optimum “X”.

The process of repairing infeasible individuals is related to a combi-
nation of learning and evolution (the so-called Baldwin effect (Whitely
et al., 1996)). Learning (as local search in general, and local search for
the closest feasible solution, in particular) and evolution interact with
each other. The fitness value of the local improvement is transferred to
the individual. In that way a local search is analogous to the learning
that occurs during a single generation.

The weakness of these methods lies in their problem dependence. Dif-
ferent repair procedures have to be designed for each particular problem.
There are no standard heuristics for accomplishing this. It’s sometimes
possible to use a greedy method for repairing solutions, and at other
times you might use some random procedure, or a variety of alternative
choices. And then sometimes repairing infeasible solutions might become
as complex a task as solving the original problem. This is often the case
in nonlinear transportation problems, scheduling, and timetabling.

64 EVOLUTIONARY OPTIMIZATION

2.6 Replacement of solutions

The idea of replacing repaired individuals is related to what’s called
Lamarckian evolution (Whitely et al., 1996), which assumes that an
individual improves during its lifetime and that the resulting improve-
ments are coded back into the genetics of that individual. This is, of
course, not the way nature works, but remember that we’re designing
evolutionary algorithms as computational procedures for solving prob-
lems, and we don’t have to be constrained by the way nature works.

Orvosh and Davis (1993) reported a so-called 5-percent-rule, which
states that in many combinatorial optimization problems, when coupling
a repair procedure with an evolutionary algorithm, the best results are
achieved when 5 percent of repaired individuals replace their infeasible
original versions. We know that this rule can’t work in all problem
domains, but this is at least a starting point to try when facing some
new problem. In continuous domains, a new replacement rule emerged:
The GENOCOP III system (Michalewicz and Nazhiyath, 1995) that
uses a repair function appears to work well on certain problems when
repairing 15 percent of the individuals. Higher and lower percentages
have yielded inferior performance. Again, these types of settings are
problem dependent and might even vary while a problem is being solved.

2.7 Penalizing infeasible solutions

The most common approach to handling infeasible solutions is to pro-
vide a penalty for their infeasibility by extending the domain of evaly,
and assuming that evaly(p) = evals(p) = Q(p), where Q(p) represents
either a penalty for an infeasible individual p, or a cost for repairing such
an individual. The primary question then concerns how we should design
such a penalty function Q(p). Intuition suggests that the penalty should
be kept as low as possible, just above the threshold below which infea-
sible solutions are optimal (the so-called minimal penalty rule (Leriche
et al., 1995), But it’s often difficult to implement this rule effectively.

The relationship between an infeasible individual “p” and the feasible
part F of the search space S plays a significant role in penalizing such
individuals. An individual might be penalized just for being infeasible,
for the “amount” of its infeasibility, or for the effort required to repair
the individual. For example, for a knapsack problem with a weight
capacity of 99 kilograms we may have two infeasible solutions that yield
the same profit (which is calculated based on the items you can fit in
the knapsack), where the total weight of all items taken is 100 and 105
kilograms, respectively. It’s difficult to argue that the first individual
with the total weight of 100 is better than the other one with a total

Evolutionary Algorithms and Constrained Optimization 65

weight of 105, despite the fact that for this individual the violation of
the capacity constraint is much smaller than for the other one. The
reason is that the first solution may involve five items each weighing 20
kilograms, and the second solution may contain (among other items) an
item of low profit and a weight of six kilograms: Removing this item
would yield a feasible solution, one that might be much better than any
repaired version of the first individual. In these cases, the appropriate
penalty function should consider the ease of repairing an individual,
as well as the quality of the repaired version. Again, this is problem
dependent.

2.8 Maintaining feasibility

It seems that one of the most reasonable heuristics for dealing with
the issue of feasibility is to use specialized representations and variation
operators to maintain the feasibility of individuals in the population.

Several specialized systems have been developed for particular opti-
mization problems. These evolutionary algorithms rely on unique rep-
resentations and specialized variation operators. Some examples were
described in (Davis, 1991) and many others are described here. For
example, GENOCOP (Michalewicz and Janikow, 1996) assumes that
the problem you face has only linear constraints and a feasible starting
point (or a feasible initial population). A closed set of variation opera-
tors maintains the feasibility of solutions. There’s no need to ever treat
infeasible solutions when these conditions hold.

Very often such systems are much more reliable than other evolution-
ary techniques based on a penalty approach. Many practitioners have
used problem-specific representations and specialized variation opera-
tors in numerical optimization, machine learning, optimal control, cog-
nitive modeling, classical operation research problems (TSP, knapsack
problems, transportation problems, assignment problems, bin packing,
scheduling, partitioning, etc.), engineering design, system integration,
iterated games, robotics, signal processing, and many others. The varia-
tion operators are often tailored to the representation (e.g., Fogel et al.,
1966, Koza, 1992).

2.9 Using decoders

Using some form of decoder offers an interesting option when design-
ing an evolutionary algorithm. In these methods, the data structure
that represents an individual doesn’t encode for a solution directly, but
instead provides the instruction for how to build a feasible solution.

66 EVOLUTIONARY OPTIMIZATION

It’s important to point out several factors that should be taken into
account while using decoders. Each decoder imposes a relationship T°
between a feasible solution and a decoded solution. It’s important that
several conditions are satisfied: (1) for each solution s € F there is an
encoded solution d, (2) each encoded solution d corresponds to a feasible
solution s, and (3) all solutions in F should be represented by the same
number of encodings d.! Additionally, it’s reasonable to request that (4)
the transformation 7 is computationally fast and (5) it has a locality
feature in the sense that small changes in the encoded solution result in
small changes in the solution itself. An interesting study on coding trees
in evolutionary algorithms was reported by Palmer and Kershenbaum
(1994), where the above conditions were formulated.

2.10 Separating solutions and constraints

Separating out individuals and constraints is a general and interesting
heuristic. The first possibility includes the use of multiobjective opti-
mization methods, where the evaluation function f and constraint vio-
lation measures f; (for m constraints) constitute an (m -+ 1)-dimensional
vector v = (f, f1,..., fm). Using some multiobjective optimization
method, we can attempt to minimize its components. An ideal solu-
tion z would have f;(z) = 0for 1 < i < m and f(z) < f(y) for all
feasible y (minimization problems). Surry et al. (1995) presented a
successful implementation of this approach.

Another heuristic is based on the idea of handling constraints in a
particular order. Schoenauer and Xanthakis (1993) called this method
a “behavioral memory” approach.

211 Exploring boundaries

A special approach was proposed in evolutionary algorithms where
variation operators can be designed to search the boundary (and only
the boundary) between feasible and infeasible solutions (Michalewicz et
al.,, 1996). The general concept for boundary operators is that all indi-
viduals of the initial population lie on the boundary between feasible and

'As observed by Davis (1995), however, the requirement that all solutionsin F should be rep-
resented by the same number of decodings seems overly strong. There are cases in which this
requirement might be suboptimal. For example, suppose we have a decoding and encoding
procedure that makes it impossible to represent suboptimal solutions, and which encodes the
optimal one. This might be a good thing. An example would be a graph coloring order-based
structure with a decoding procedure that gives each node its first legal color. This repre-
sentation couldn’t encode solutions where some nodes that could be colored in fact weren’t
colored, but this is a good thing!

Evolutionary Algorithms and Constrained Optimization 67

infeasible areas of the search space and the operators are closed with re-
spect to the boundary. Then all the offspring are at the boundary points
as well. As these operators were proposed in the context of constrained
parameter optimization, we discuss this approach in the next section.

2.12 Finding feasible solutions

There are problems for which any feasible solution would be of value.
These are tough problems! Here, we really aren’t concerned with any
optimization issues (finding the best feasible solution) but instead we
have to find any point in the feasible search space F. These problems
are called constraint satisfaction problems.

Some evolutionary algorithms have been designed to tackle these prob-
lems. Paredis experimented with two different approaches to constraint
satisfaction problems. The first approach (Paredis, 1992 and 1993) was
based on a clever representation of individuals where each component
was allowed to take on values from the search domain, as well as an
additional value of ‘?,” which represented choices that remained unde-
cided. The initial population consisted of strings that possessed all 7s.
A selection-assignment-propagation cycle then replaced some ? sym-
bols by values from the appropriate domain (the assignment is checked
for consistency with the component in question). The quality of such
partially-defined individuals was defined as the value of the evaluation
function of the best complete solution found when starting the search
from a given partial individual. Variation operators were extended to
incorporate a repair process (a constraint-checking step). This system
was implemented and executed on several N-queens problems (Paredis,
1993) as well as some scheduling problems (Paredis, 1992).

In the second approach, Paredis (1994) investigated a co-evolutionary
model, where a population of potential solutions co-evolves with a pop-
ulation of constraints. Fitter solutions satisfy more constraints, whereas
fitter constraints are violated by more solutions. This means that indi-
viduals from the population of solutions are considered from the whole
search space, and that there’s no distinction between feasible and in-
feasible individuals. The evaluation of an individual is determined on
the basis of constraint violation measures f;s; however, better f;s (e.g.,
active constraints) contribute more towards the evaluation of solutions.
The approach was tested on the N-queens problem and compared with
other single-population approaches (Paredis, 1994 and 1995).

68 EVOLUTIONARY OPTIMIZATION

3. Numerical optimization

Let us concentrate now on one particular area of applications of evo-
lutionary algorithms: numerical optimization. There have been many
efforts to use evolutionary algorithms for constrained numerical opti-
mization problems (Michalewicz, 1994). In this section we survey some
approaches of addressing constraints; these approaches would illustrate
some points raised in the previous section of this chapter and would
provide more concrete examples.

In general, constraint-handling techniques which have been incorpo-
rated in evolutionary algorithms can be grouped into five basic cate-
gories:

1 Methods based on preserving the feasibility of solutions.
2 Methods based on penalty functions.

3 Methods that make a clear distinction between feasible and infea-
sible solutions.

4 Methods based on decoders.
5 Other hybrid methods.

We’ve just explored many of the issues involved in each of these cat-
egories. Now let’s revisit and take a look at methods in more detail.
Furthermore, for most of the methods enumerated here, we’ll provide a
test case and the result of the method on that case.

3.1 Preserving the feasibility

There are two methods that fall in this category. Let’s discuss them
in turn.

Use of specialized operators. The idea behind the GENOCOP sys-
tem? (Michalewicz, 1996; Michalewicz and Janikow, 1996) is based on
specialized variation operators that transform feasible individuals into
other feasible individuals. These operators are closed on the feasible
part F of the search space. As noted earlier, the method assumes that
we are facing only linear constraints and that we have a feasible start-
ing point (or population). Linear equations are used to eliminate some
variables, which are replaced as a linear combination of the remaining

2GENOCOP stands for GEnetic algorithm for Numerical Optimization of COnstrained Prob-
lems and was developed before the different branches of evolutionary algorithms became
functionally similar.

Evolutionary Algorithms and Constrained Optimization 69

variables. Linear inequalities are updated accordingly. For example,
when a particular component z; of a solution vector x is varied, the
evolutionary algorithm determines its current domain dom(z;) (which is
a function of linear constraints and the remaining values of the solution
vector X) and the new value of z; is taken from this domain (either with
a uniform probability distribution or other probability distributions for
nonuniform and boundary-type variations). Regardless of the specific
distribution, it’s chosen such that the offspring solution vector is always
feasible. Similarly, arithmetic crossover, ax + (1 — a)y, on two feasible
solution vectors x andy always yields a feasible solution (for 0 < a < 1)
in convex search spaces. Since this evolutionary system assumes only

linear constraints, this implies the convexity of the feasible search space
F.

Searching the boundary of the feasible region. Searching along
the boundaries of the feasible-infeasible regions can be very important
when facing optimization problems with nonlinear equality constraints
or with active nonlinear constraints at the target optimum. Within
evolutionary algorithms, there’s a significant potential for incorporating
specialized operators that can search such boundaries efficiently. We
provide one example of such an approach; for more details see (Schoe-
nauer and Michalewicz, 1996).

Consider the following numerical optimization problem: maximize the
function

G(x) = |Z?=1 cos* (@) — 2[Ti; cos®(w:) |

Y11 > 2
D ie1 1
subject to

[T 2 >0.75, 30 @ < 7.5n, and bounds 0 < z; <10 for
1<i<n.

Function G is nonlinear and its global maximum is unknown, lying
somewhere near the origin. The problem has one nonlinear constraint
and one linear constraint. The latter is inactive around the origin and
will be omitted. So the boundary between feasible and infeasible re-
gions is defined by the equation []z; = 0.75. The problem is difficult
and no standard methods gave satisfactory results. This function was
the first for which the idea of searching only the boundary was tested
(Michalewicz et al., 1996). Specific initialization procedures and vari-
ation operators could be tailored to the problem owing to the simple
analytical formulation of the constraint.

70 EVOLUTIONARY OPTIMIZATION

s Initialization. Randomly choose a positive variable for z;, and
use its inverse as a variable for x;41. The last variable is either
0.75 (when 7 is odd), or is multiplied by 0.75 (if n is even), so that
the point lies on the boundary surface.

m Crossover. The variation operator of geometrical crossover is
defined by (z;)(y;) — (m‘z?‘yil_o‘), with & randomly chosen in [0,1].

w Mutation. Pick two variables randomly, multiply one by a ran-
dom factor ¢ > 0 and the other by -;— (restrict g to respect the
bounds on the variables). AMutation

3.2 Penalty functions

The main efforts to treat constrained evolutionary optimization have
involved the use of (extrinsic) penalty functions that degrade the quality
of an infeasible solution. In this manner, the constrained problem is
made unconstrained by using the modified evaluation function

B f(x), if xeF
eval(x) = { f(x) + penalty(x), otherwise,

where penalty(x) is zero if no violation occurs, and is positive, otherwise
(assuming the goal is minimization). The penalty function is usually
based on some form of distance that measures how far the infeasible
solution is from the feasible region F, or on the effort to “repair” the
solution, i.e., to transform it into . Many methods rely on a set of
functions f; (1 € j £ m) to construct the penalty, where the function
fj measures the violation of the j-th constraint:

fi) = { mex{0,g5(x)}, i 1<j<q
’ A ()1, ifg+1<j<m.

But these methods differ in many important details with respect to how
the penalty function is designed and applied to infeasible solutions. Some
more details on the specifics is provided below.

Method of static penalties. Homaifar et al. (1994) proposed that
a family of intervals be constructed for every constraint that we face,
where the intervals determine the appropriate penalty coefficient. The
idea works as follows:

(1) For each constraint, create several (£) levels of violation.
(2) For each level of violation and for each constraint, create a penalty
coefficient Rij (1 = 1,2,...,¢, 7 =1,2,...,m). Higher levels of

Evolutionary Algorithms and Constrained Optimization 71

violation require larger values of this coefficient (again, we assume
minimization).

(3) Start with a random population of individuals (feasible or
infeasible).

(4) Evolve the population. Evaluate individuals using

eval(x) = f(x) + 372, Ri; f7(x).

The weakness of the method arises in the number of parameters. For
m constraints the method requires m(2¢ + 1) parameters in total: m
parameters to establish the number of intervals for each constraint, ¢
parameters for each constraint thereby defning the boundaries of the
intervals (the levels of violation), and ¢ parameters for each constraint
representing the penaltycoefficients R;;. In particular, for m = 5 con-
straints and ¢ = 4 levels of violation, we need to set 45 parameters!
And the results are certainly parameter dependent. For any particular
problem, there might exist an optimal set of parameters for which we’d
generate feasible near-optimum solutions, but this set might be very
difficult to find.

Method of dynamic penalties. In contrast to Homaifar et al. (1994),
Joines and Houck (1994) applied a method that used dynamic penalties.
Individuals are evaluated at each iteration (generation) ¢, by the formula

eval(x) = f(x) + (C x t)* 377, ff(x),

where C, a, and 8 are constants. A reasonable choice for these param-
eters is C = 0.5, a = § = 2 (Joines. and Houck, 1994). This method
doesn’t require as many parameters as the static method described ear-
lier, and instead of defining several violation levels, the selection pressure
on infeasible solutions increases due to the (C x t)® component of the
penalty term: as ¢ grows larger, this component also grows larger.

Method of annealing penalties. A different means for dynamically
adjusting penalties can take a clue from the annealing algorithm: Per-
haps we can anneal the penalty values using a parameter that is analo-
gous to “temperature.” This procedure was incorporated into the second
version of GENOCOP (GENOCOP II) (Michalewicz. and Attia, 1994):
(1) Divide all the constraints into four subsets: linear equations, linear
inequalities, nonlinear equations, and nonlinear inequalities.

(2) Select a random single point as a starting point. (The initial pop-
ulation consists of copies of this single individual.) This initial point
satisfies the linear constraints.

(3) Set the initial temperature 7 = 7o.

(4) Evolve the population using eval(x,7) = f(x) + % ;-n:l fj?“(x),

72 EVOLUTIONARY OPTIMIZATION

(5) If T < 1y, stop; otherwise,

— Decrease the temperature 7.

- Use the best available solution to serve as a starting point for the next
iteration.

— Repeat the previous step of the algorithm.

This method distinguishes between linear and nonlinear constraints.
The algorithm maintains the feasibility of all linear constraints using a
set of closed operators that convert a feasible solution (feasible, that is,
only in terms of linear constraints) into another feasible solution. The
algorithm only considers active constraints at every generation and the
selective pressure on infeasible solutions increases due to the decreasing
values of the temperature 7.

Methods of adaptive penalties. Instead of relying on a fixed de-
creasing temperature schedule, it’s possible to incorporate feedback from
the search into a means for adjusting the penalties. Let’s discuss two
possibilities.

Bean and Hadj-Alouane (Bean and Hadj-Alouane, 1992, Hadj-Alouane
and Bean, 1992) developed a method where the penalty function takes
feedback from the search. Each individual is evaluated by the formula

eval(x) = f(x) + A(t) X]L, f7(x),

where A(t) is updated at every generation ¢:

(1/B81) - A(t), ifbteFforallt—k+1<i<t
At+1) =1 B2 A(D), ifbteS—Fforallt—k+1<i<t
A(t), otherwise,

where b? denotes the best individual in terms of function eval at gen-
eration i, £1,082 > 1 and B # B2 to avoid cycling. In other words, (1)
if all of the best individuals in the last k generations were feasible the
method decreases the penalty component A(¢ + 1) for generation ¢ + 1,
and (2) if all of the best individuals in the last k generations were infea-
sible then the method increases the penalties. If there are some feasible
and infeasible individuals as best individuals in the last k£ generations,
A(t + 1) remains without change.

A different method was offered by Smith and Tate (1993) that uses
a “near-feasible” threshold ¢; for each constraint 1 < j < m. These
thresholds indicate the distances from the feasible region J that are
considered “reasonable” (or, in other words, that qualify as “interesting”
infeasible solutions because they are close to the feasible region). Thus

Evolutionary Algorithms and Constrained Optimization 73

the evaluation function is defined as
m
eval(x,t) = f(x) + Freas(t) — Fau(t Z Fi(x)/g5(t))¥,
j=1

where Fyy(t) denotes the unpenalized value of the best solution found
so far (up to generation t), Feqs(t) denotes the value of the best feasible
solution found so far, and & is a constant. Note, that the near-feasible
thresholds ¢;(t) are dynamic. They are adjusted during the search based
on feedback from the search. For example, it’s possible to define g;(t) =
g;(0)/(1 + B;t) thus increasing the penalty component over time. To
the best of our knowledge, neither of the adaptive methods described in
this subsection has been applied to continuous nonlinear programming
problems.

Death penalty method. The death penalty method simply rejects
infeasible solutions, killing them immediately (see above). This simple
method can provide quality results for some problems. This method
requires initialization with feasible solutions so comparisons to other
methods can be tricky, but an interesting pattern emerged from the
experiments analyzed in Michalewicz (1995). Simply rejecting infeasible
methods performed quite poorly and wasn’t as robust as other techniques
(i.e., the standard deviation of the solution values was relatively high).

Segregated evolutionary algorithms. When tuning penalty coef-
ficients, too small a penalty level leads to solutions that are infeasible
because some penalized solutions will still exhibit an apparently higher
quality than some feasible solutions. On the other hand, too high a
penalty level restricts the search to the feasible region and thereby fore-
goes any short cut across the infeasible region. This often leads to pre-
mature stagnation at viable solutions of lesser value. One method for
overcoming this concern was offered in Leriche et al. (1995).

The idea is to design two different penalized evaluation functions with
static penalty terms p1 and p2. Penalty p; is purposely too small, while
penalty ps is hopefully too high. Every individual in the current popula-
tion undergoes recombination and mutation (or some form of variation).
The values of the two evaluation functions fi(x) = f(x)+pi(x), i = 1,2,
are computed for each resulting offspring (at no extra cost in terms of
evaluation function calls), and two ranked lists are created according
to the evaluated worth of all parents and offspring for each evaluation
function.

74 EVOLUTIONARY OPTIMIZATION

33 Search for feasible solutions

Some evolutionary methods emphasize a distinction between feasible
and infeasible solutions. One method considers the problem constraints
in sequence. Once a sufficient number of feasible solutions is found in the
presence of one constraint, the next constraint is considered. Another
method assumes that any feasible solution is better than any infeasible
solution (as we discussed above). Yet another method repairs infeasible
individuals. Let’s take each of these examples in turn.

Behavioral memory method. Schoenauer and Xanthakis (1993)
proposed what they call a “behavioral memory” approach:

(1) Start with arandom population of individuals (feasible or infeasible).
(2) Set j =1 (j is a constraint counter).

(3) Evolve this population with eval(x) = f;(x) until a given percent-
age of the population (a so-called flip threshold ¢) is feasible for this
constraint.

(4) Set j =7+ 1.

(5) The current population is the starting point for the next phase of the
evolution, where eval(x) = f;j(x) (defined in the section 3.2). During
this phase, points that don’t satisfy one of the first, second, ..., or (j—1)-
th constraints are eliminated from the population. The halting criterion
is again the satisfaction of the j-th constraint using the flip threshold
percentage ¢ of the population.

(6) If 7 < m, repeat the last two steps, otherwise (j = m) optimize
the evaluation function, i.e., eval(x) = f(x), while rejecting infeasible
individuals.

The method requires a sequential ordering of all constraints that are
processed in turn. The influence of the order of constraints on the end
results isn’t very clear, and different orderings can generate different re-
sults both in the sense of total running time and accuracy. In all, the
method requires three parameters: the sharing factor o, the flip thresh-
old ¢, and a particular order of constraints. The method’s very different
from many others, and really is quite different from other penalty ap-
proaches since it only considers one constraint at a time. Also, the
method concludes by optimizing using the “death penalty” approach, so
it can’t be neatly parceled into one or another category.

*The method suggests using a so-called sharing scheme to maintain population diversity.

Evolutionary Algorithms and Constrained Optimization 75

Method of superiority of feasible points. Powell and Skolnick
(1993) used a method that’s based on a classic penalty approach, but
with one notable exception. Each individual is evaluated by the formula

eval(x) = f(x) + 7307, fi(x) +0(t, %),

where 7 is a constant; however, the original component H(t,x) is an
additional iteration-dependent function that influences the evaluations of
infeasible solutions. The point is that the method distinguishes between
feasible and infeasible individuals by adopting an additional heuristic
(suggested earlier Richardson et al., 1989). For any feasible individual
x and any infeasible individual y: eval(x) < eval(y), i.e., any feasible
solution is better than any infeasible one. This can be achieved in many
ways. One possibility is to set

0, if xeF
0(t,x) = ¢ max{0, maxxer{f(x)}
—minxes—F{f(x) +r 371 fi(x)}}, otherwise.

Infeasible individuals are penalized such that they can’t be better than

the worst feasible individual (i.e., maxxer{f(x)}).*
In a recent study (Deb, 1999), this approach was modified using tour-
nament selection coupled with the evaluation function

F{x), if x is feasible,

eval(x) = { fmax + 372, fi(x), otherwise,
where fmax is the function value of the worst feasible solution in the
population. The main difference between this approach and Powell and
Skolnick’s approach is that here the evaluation function value is not
considered in evaluating an infeasible solution. Additionally, a niching
scheme might be introduced to maintain diversity among feasible solu-
tions. Thus, the search focuses initially on finding feasible solutions and
then, when an adequate sampling of feasible solutions have been found,
the algorithm finds better feasible solutions by maintaining a diverse set
of solutions in the feasible region. There’s no need for penalty coefficients
here because the feasible solutions are always evaluated to be better than
infeasible solutions, and infeasible solutions are compared purely on the
basis of their constraint violations. Normalizing the constraints f;(x) is
suggested.

Repairing infeasible individuals. GENOCOP III (the successor
to the previous GENOCOP systems), incorporates the ability to re-
pair infeasible solutions, as well as some of the concepts of co-evolution

“Powell and Skolnick (1993) achieved the same result by mapping evaluations of feasible
solutions into the interval (—oo,1) and infeasible solutions into the interval (1,00). This
difference in implementation isn’t important for ranking and tournament selection methods.

76 EVOLUTIONARY OPTIMIZATION

(Michalewicz and Nazhiyath, 1995). As with the original GENOCOP,
linear equations are eliminated, the number of variables is reduced, and
linear inequalities are modified accordingly. All points included in the
initial population satisfy linear constraints. Specialized operators main-
tain their feasibility in the sense of linear constraints from one generation
to the next. We denote the set of points that satisfy the linear constraints
by F1 CS.

Nonlinear equations require an additional parameter (7y) to define the
precision of the system. All nonlinear equations h;(x) = 0 (for j =
g+1,...,m) are replaced by a pair of inequalities —y < h;(x) <. Thus,
we only deal with nonlinear inequalities. These nonlinear inequalities
further restrict the set ;. They define the fully feasible part F C Fj of
the search space S.

GENOCOP III extends GENOCOP by maintaining two separate pop-
ulations where a development in one population influences the evalua-
tions of individuals in the other. The first population P consists of
so-called search points from Fj that satisfy the linear constraints of the
problem. As mentioned earlier, the feasibility of these points, in the
sense of linear constraints, is maintained by specialized operators.

The second population P, consists of so-called reference points from
F; these points are fully feasible, i.e., they satisfy all the constraints.’
Reference points r from P, being feasible, are evaluated directly by
the evaluation function, i.e., eval(r) = f(r). On the other hand, search
points from Py are “repaired” for evaluation and the repair process works
as follows. Assume there’s a search point s € F;. Ifs € F, then
eval(s) = f(s), since s is fully feasible. Otherwise (i.e., s € F), the
system selects® one of the reference points, say r from P, and creates
a sequence of random points z from a segment between s and r by
generating random numbers @ from the range (0,1): z = as+ (1 —a)r.”
Once a fully feasible z is found, eval(s) = eval(z) = f(z).®

Additionally, if f(z) is better than f(r), then the point z replaces r
as a new reference point in the population of reference points F,. Also,
z replaces s in the population of search points Py with some probability
of replacement py.

>If GENOCOP III has difficulties in locating such a reference point for the purpose of ini-
tialization, it prompts the user for it. In cases where the ratio |F|/|S| of feasible points in
the search space is very small, it may happen that the initial set of reference points consists
of multiple copies of a single feasible point.
®Better reference points have greater chances of being selected. A nonlinear ranking selection
method was used.
"Note that all such generated points z belong to Fj.

The same search point & can evaluate to different values in different generations due to the
random nature of the repair process.

Evolutionary Algorithms and Constrained Optimization 77

34 Decoders

Decoders offer an interesting alternative for designing evolutionary
algorithms, but they’ve only been applied in continuous domains recently
(Koziel and Michalewicz, 1998 and 1999). It’s relatively easy to establish
a one-to-one mapping between an arbitrarily convex feasible search space
F and the n-dimensional cube [—1,1]" (see figure 3.2).

Figure 8.2. A mapping T from a space F into a cube {—1,1]" (two-dinensional case)

Note that an arbitrary point (other than 0) yo = (Y¥0,1,-..,%0,n) €
[~1, 1] defines a line segment from the 0 to the boundary of the cube.
This segment is described by ¥ = yo; - t, for ¢ = 1,...,n, where ¢
varies from 0 t0 tmae = 1/ max{|yo,1|,...,|%0n|}. For t =0,y = 0, and
for t = tmaz, ¥ = (Yo,1tmazs--- ,yo,ntmam)— a boundary point of the
[~1,1]" cube. Consequently, the corresponding feasible point (to yo €
[~1,1]*) %o € F (with respect to some reference point’ rg) is defined
as Xg = rg + Yo * 7, where 7 = Tmaz/tmaz, and Tmaz is determined with
arbitrary precision by a binary search procedure such that rg+ygo - Tmes
is a boundary point of the feasible search space F.

The above mapping satisfies all the requirements of a “good” decoder.
Apart from being one-to-one, the transformation is fast and has a “lo-
cality” feature (i.e., points that are close before being mapped are close
after being mapped).

°A reference point rg is an arbitrary internal point of the convex set F. Note, that it’s
not necessary for the feasible search space F to be convex. Assuming the existence of the
reference point rg, such that every line segment originating in ro intersects the boundary of
F in precisely one point, is sufficient. This requirement is satisfied, of course, for any convex
set F.

78 EVOLUTIONARY OPTIMIZATION

3.5 Hybrid methods

It’s easy to develop hybrid methods that combine evolutionary algo-
rithms with deterministic procedures for numerical optimization prob-
lems. For example, Waagen et al. (1992) combined a floating-point
representation and Gaussian variation with the direction set method of
Hooke-Jeeves. This hybrid was tested on three unconstrained continuous-
valued test functions. Myung et al. (1995) considered a similar approach
but experimented with constrained problems in the continuous domain.
Again, they used floating-point representations and Gaussian variation,
but combined this with a Lagrange method developed by Maa and Shan-
blatt (1992) into a two-phased search. During the first phase, the evo-
lutionary algorithm optimizes the function

eval(x) = f(x)+ 5 (Z;r;l ff(x)) !

where s is a constant. After this phase terminates, the second phase
applies the Maa and Shanblatt procedure to the best solution found
during the first phase. This second phase iterates until the system

X' = = v f(0) = [T, V650 +)]

is in equilibrium, where the Lagrange multipliers are updated as /\; =
esfj for a small positive constant e.

Several other constraint-handling methods also deserve attention. For
example, some methods use the values of the evaluation function f and
penalties f; (j = 1,...,m) as elements of a vector and apply multiob-
jective techniques to minimize all the components of the vector. For
example, Schaffer (1984) selects 1/(m + 1) of the population based on
each of the objectives. Such an approach was incorporated by Parmee
and Purchase (1994) in the development of techniques for constrained
design spaces. On the other hand, Surry et al. (1995), ranked all the
individuals in the population on the basis of their constraint violations.
This rank, r, together with the value of the evaluation function f,leads
to the two-objective optimization problem. This approach gave a good
performance on optimization of gas supply networks (Surry et al., 1995).

Hinterding and Michalewicz (1998) used a vector of constraint viola-
tions, to assist in the process of parent selection, where the length of
the vector corresponded to the number of constraints. For example, if
the first parent satisfies constraints 1, 2, and 4 (say out of 5), it’s mated
preferably with an individual that satisfies constraints 3 and 5. It’s also
possible to incorporate knowledge of the problem constraints into the
belief space of cultural algorithms (Reynolds, 1994). These algorithms
provide a possibility for conducting an efficient search of the feasible
search space (Reynolds et al., 1995).

Evolutionary Algorithms and Constrained Optimization 79

4. Final Remarks

We’ve covered a great many facets of constrained optimization prob-
lems and provided a survey of some of the attempts to treat these prob-
lems. Even though it might seem that this survey was lengthy, in fact, it
was overly brief. It only skimmed the surface of what has been done with
evolutionary algorithms and what remains to be done. Nevertheless, we
have to admit that the characteristics that make a constrained problem
difficult for an evolutionary algorithm (or for that matter, other meth-
ods) aren’t clear. Problems can be characterized by various parameters:
the number of linear constraints, the number of nonlinear constraints,
the number of equality constraints, the number of active constraints, the
ratio p = |F|/|S} of the size of feasible search space to the whole, and
the type of evaluation function in terms of the number of variables, the
number of local optima, the existence of derivatives, and so forth.

In Michalewicz and Schoenauer (1996), 11 test cases (G1-G11) for
constrained numerical optimization problems were proposed. These test
cases include evaluation functions of various types (linear, quadratic,
cubic, polynomial, nonlinear) with various numbers of variables and dif-
ferent types (linear inequalities, nonlinear equalities and inequalities)
and numbers of constraints. The ratio p between the size of the feasible
search space F and the size of the whole search space S for these test
cases varies from zero to almost 100 percent. The topologies of feasible
search spaces are also quite different.

Even though many constraint-handling methods reported successes on
particular test cases, the results of many tests haven’t provided meaning-
ful patterns to predict the difficulty of problems. No single parameter,
such as the number of linear, nonlinear, active constraints, and so forth,
can suffice to describe the problem difficulty. Several methods were also
quite sensitive to the presence of a feasible solution in the initial pop-
ulation. There’s no doubt that more extensive testing and analysis is
required. The question of how to make an appropriate choice of an evo-
lutionary method for a nonlinear optimization problem a priori remains
open. It seems that more complex properties of the problem (e.g., the
characteristic of the evaluation function together with the topology of
the feasible region) may constitute quite significant measures of the dif-
ficulty of the problem. Also, some additional measures of the problem
characteristics due to the constraints might be helpful. So far, we don’t

have this sort of information at hand.
Michalewicz and Schoenauer (1996) offered:

It seems that the most promising approach at this stage of research is
experimental, involving the design of a scalable test suite of constrained
optimization problems, in which many [..] features could be easily

80 EVOLUTIONARY OPTIMIZATION

tuned. Then it should be possible to test new methods with respect to
the corpus of all available methods.

There’s a clear need for a parameterized test-case generator that can
be used for analyzing various methods in a systematic way instead of
testing them on a few selected cases. Furthermore, it’s not clear if the
addition of a few extra specific test cases is really of any help. A few
test-case generators have been just constructed.

There have been some attempts to propose a test case generator for
unconstrained parameter optimization (Whitley et al., 1995, 1996). We
are also aware of some attempts to do so for constrained cases. In Van
Kemenade (1998) the author proposed so-called stepping-stones problem
defined as:

maximize Y 5, (z:/m + 1),
where -7 < z; < wfor ¢ = 1,...,n and the following constraints are
satisfied:

e/ 4 cos(2z;) < lfori=1,...,n.

Note that the evaluation function is linear and that the feasible region
is split into 2™ disjoint parts (called stepping-stones). As the number of
dimensions n grows, the problem becomes more complex. However, as
the stepping-stones problem has only one parameter, it can not be used
to investigate some aspects of a constraint-handling method.

In Michalewicz (1999) a test-case generator for constrained parame-
ter optimization techniques was proposed. This generator is capable of
creating various test cases with different characteristics:

® problems with different value of p: the relative size of the feasible
region in the search space

m problems with different number and types of constraints

® problems with convex or non-convex evaluation function, possibly
with multiple optima

» problems with highly non-convex constraints consisting of (possi-
bly) disjoint regions.

All this can be achieved by setting a few parameters that influence
different characteristics of the optimization problem. Such a test-case
generator should be very useful for analyzing and comparing different
constraint-handling techniques.

However, this test case generator is far from perfect. It defines a
landscape which is a collection of site-wise optimizable functions, each
defined on different subspaces of equal sizes. Because of that all basins
of attractions have the same size, moreover, all points at the boundary

REFERENCES 81

between two basins of attraction have the same value. The local optima
are located in centers of the hypercubes; all feasible regions are centered
around the local optima. Note also, that while we can change the num-
ber of constraints, there is precisely one active constraint at the global
optimum.

In Schmidt and Michalewicz (2000) a new version of the test case
generator was defined to overcome the limitations of the previous one.
Here it is possible to control dimensionality, multimodality, ruggedness
of the landscape, the number of feasible components, and the size of the
feasible search space. With the gradual and intuitive control over its
parameters, the proposed test case generator is a significant improve-
ment over earlier versions. It should be very useful in evaluating (in a
systematic way) various constraints handling methods; it should allow
to understand their merits and drawbacks.

References

Bean, J. C. and A. B. Hadj-Alouane (1992). A dual genetic algorithm for
bounded integer programs. Technical Report TR 92-53, Department
of Industrial and Operations Engineering, The University of Michigan.

Bowen, J. and G. Dozier (1995). Solving Constraint Satisfaction Prob-
lems Using a Genetic/Systematic Search Hybrid that Realizes When
to Quit. In Proceedings of the Sixth International Conference on Ge-
netic Algorithms, Eshelman, L.J.(ed.), Morgan Kaufmann, San Ma-
teo, CA., 122-129.

Davis, L., ed. (1991). Handbook of Genetic Algorithms. Van Nostrand
Reinhold, NY.

Davis, L. (1995). Private communication.

Deb, K. (1999). An Efficient Constraint Handling Method for Genetic
Algorithms. Computer Methods in Applied Mechanics and Engineer-
ing, in press.

Dhar, V. and Ranganathan, N., (1990). Integer Programming vs. Expert
Systems: An Experimental Comparison, Communications of the ACM,
33(3), 323-336.

Eiben, A.E., P.-E. Raue, and Zs. Ruttkay (1994). Solving Constraint
Satisfaction Problems Using Genetic Algorithms. In Proceedings of
the 1994 IEEE Conference on Evolutionary Computation, IEEE Press,
Piscataway, NJ, 542-547.

Falkenauer, E. (1994). A New Representation and Operators for GAs
Applied to Grouping Problems. Evolutionary Computation, 2(2), 123-
144,

82 EVOLUTIONARY OPTIMIZATION

Fogel, L.J., A.J. Owens, and M.J. Walsh (1966). Artificial Intelligence
Through Simulated Evolution. John Wiley, New York, NY.

Hadj-Alouane, A. B. and J. C. Bean (1992). A genetic algorithm for
the multiple-choice integer program. Technical Report TR 92-50, De-
partment of Industrial and Operations Engineering, The University
of Michigan.

Hinterding, R. and Z. Michalewicz (1998). Your Brains and My Beauty:
Parent Matching for Constrained Optimisation. In Proceedings of the
1998 IEEE Conference on Evolutionary Computation, 1IEEE Press,
Piscataway, NJ, 810-815.

Homaifar, A., S. H.-Y. Lai, and X. Qi (1994). Constrained optimization
via genetic algorithms. Simulation 62(4), 242-254.

Joines, J. and C. Houck (1994). On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems with
gas. In Z. Michalewicz, J. D. Schaffer, H.-P. Schwefel, D. B. Fogel,
and H. Kitano (Eds.), Proceedings of the First IEEE International
Conference on Evolutionary Computation, IEEE Press, 579-584.

Keane, A.J. (1996). A Brief Comparison of Some Evolutionary Opti-
mization Methods. In Modern Heuristic Search Methods, V. Rayward-
Smith, I. Osman, C. Reeves and G. D. Smith, eds., John Wiley, New
York, NY, 255-272.

van Kemenade, C.H.M. (1998). Recombinative evolutionary search. PhD
Thesis, Leiden University, Netherlands.

Koza, J.R. (1992). Genetic Programming. MIT Press, Cambridge, MA.

Koziel, S. and Z. Michalewicz (1998). A Decoder-Based Evolutionary Al-
gorithm for Constrained Parameter Optimization Problems. In Pro-
ceedings of the S5th Parallel Problem Solving from Nature Conference,
Eiben, A.E., T. Bick, M. Schoenauer, and H.—P. Schwefel, (eds.), Lec-
ture Notes in Computer Science, Vol.1498, Springer, Berlin, 231-240.

Koziel, S. and Z. Michalewicz (1999). Evolutionary Algorithms, Homo-
morphous Mappings, and Constrained Parameter Optimization. Evo-
lutionary Computation, 7(1), 19-44.

Leriche, R. G., C. Knopf-Lenoir, and R. T. Haftka (1995). A segragated
genetic algorithm for constrained structural optimization. In L. J.
Eshelman (Ed.), Proceedings of the 6" International Conference on
Genetic Algorithms, 558-565.

Maa, C. and M. Shanblatt (1992). A two-phase optimization neural net-
work. IEEE Transactions on Neural Networks, 3(6), 1003-1009.

Michalewicz, Z. (1995a). Genetic algorithms, numerical optimization and
constraints. In L. J. Eshelman (Ed.), Proceedings of the 6 Interna-
tional Conference on Genetic Algorithms, Morgan Kaufmann, 151-
158.

REFERENCES 83

Michalewicz, Z. (1993). A Hierarchy of Evolution Programs: An Exper-
imental Study. Evolutionary Computation, 1(1), 51-76.

Michalewicz, Z. (1994). Evolutionary Computation Techniques for Non-
linear Programming Problems. International Transactions in Opera-
tional Research, 1(2), 223-240.

Michalewicz, Z. (1995). Heuristic Methods for Evolutionary Computa-
tion Techniques. Journal of Heuristics, 1(2), 177-206.

Michalewicz, Z. (1996). Genetic Algorithms+ Data Structures=Evolution
Programs. New-York: Springer Verlag. 3rd edition.

Michalewicz, Z. and N. Attia (1994). Evolutionary optimization of con-
strained problems. In Proceedings of the §¢ Annual Conference on
Evolutionary Programming, World Scientific, 98-108.

Michalewicz, Z. (1995). Genetic Algorithms, Numerical Optimization
and Constraints. In Proceedings of the Sixth International Conference
on Genetic Algorithms, Eshelman, L.J.(ed.), Morgan Kaufmann, San
Mateo, CA., 151-158.

Michalewicz, Z., K. Deb, M. Schmidt, and T. Stidsen (2000). Test Case
Generator for Constrained Parameter Optimization Techniques. IEEE
Transactions on Evolutionary Computation.

Michalewicz, Z. and C. Z. Janikow (1991). Handling constraints in ge-
netic algorithms. In R. K. Belew and L. B. Booker (Eds.), Proceedings
of the 4" International Conference on Genetic Algorithms, Morgan
Kaufmann, 151-157.

Michalewicz, Z., T. Logan, and S. Swaminathan (1994). Evolutionary
operators for continuous convex parameter spaces. In Proceedings of
the 8% Annual Conference on Evolutionary Programming, World Sci-
entific, 84-97.

Michalewicz, Z. and Michalewicz, M. (1995). Pro-Life versus Pro-Choice
Strategies in Evolutionary Computation Techniques. Chapter 10 in
Evolutionary Computation, 1EEE Press.

Michalewicz, Z. and G. Nazhiyath (1995). GENOCOP III: A Coevolu-
tionary Algorithm for Numerical Optimization Problems with Non-
linear Constraints. In Proceedings of the 1995 IEEE Conference on
Evolutionary Computation, IEEE Press, Piscataway, NJ, 647-651.

Michalewicz, Z., G. Nazhiyath, and M. Michalewicz (1996). A Note
on Usefulness of Geometrical Crossover for Numerical Optimization
Problems. In Proceedings of the 5th Annual Conference on Evolution-
ary Programming, Fogel, L.J., P.J. Angeline, and T. Back, (eds.), MIT
Press, Cambridge, MA, 305-312.

Michalewicz, Z. and M. Schoenauer (1996). Evolutionary Algorithms for
Constrained Parameter Optimization Problems. Evolutionary Com-
putation, 4(1), 1-32.

84 EVOLUTIONARY OPTIMIZATION

Michalewicz, Z. and C. Janikow, C. (1996). GENOCOP: A Genetic Algo-
rithm for Numerical Optimization Problems with Linear Constraints.
Communications of the ACM, December, 118.

Myung, H., J.-H. Kim, and D.B. Fogel (1995). Preliminary Investiga-
tion Into a Two-stage Method of Evolutionary Optimization on Con-
strained Problems. In Proceedings of the 4th Annual Conference on
Evolutionary Programming, McDonnell, J.R., R.G. Reynolds, and D.B.
Fogel, (eds.), MIT Press, Cambridge, MA, 449-463.

Orvosh, D. and L. Davis (1993). Shall we repair? Genetic algorithms,
combinatorial optimization, and feasibility constraints. In S. Forrest
(Ed.), Proceedings ofthe 5" International Conference on Genetic Al-
gorithms, Morgan Kaufmann, 650.

Palmer, C.C. and A. Kershenbaum (1994). Representing Trees in Genetic
Algorithms. In Proceedings of the IEEE International Conference on
Evolutionary Computation, 27-29 June 1994, 379-384.

Paredis, J. (1992). Exploiting Constraints as Background Knowledge
for Genetic Algorithms: A Case-Study for Scheduling. In Proceedings
of the 2nd Conference on Parallel Problem Solving from Nature 2.,
Minner, R. and B. Manderick, (eds.), North-Holland, Amsterdam,
The Netherlands , 229-238.

Paredis, J. (1993). Genetic State-Space Search for Constrained Opti-
mization Problems. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo,
CA.

Paredis, J. (1994). Coevolutionary constraint satisfaction. In Y. Davi-
dor, H.-P. Schwefel, and R. Manner (Eds.), Proceedings of the 3grd
Conference on Parallel Problems Solving from Nature, Springer Ver-
lag, 46-55.

Paredis, J. (1995). The Symbiotic Evolution of Solutions and Their Rep-
resentations. In Proceedings of the Sixth International Conference on
Genetic Algorithms, Eshelman, L.J.(ed.), Morgan Kaufmann, San Ma-
teo, CA., 359-365.

Parmee, 1. and G. Purchase (1994). The development of directed genetic
search technique for heavily constrained design spaces. In Proceedings
of the Conference on Adaptive Computing in Engineering Design and
Control, University of Plymouth, 97-102.

Powell, D. and M. M. Skolnick (1993). Using genetic algorithms in engi-
neering design optimization with non-linear constraints. In S. Forrest
(Ed.), Proceedings ofthe 5" International Conference on Genetic Al—
gorithms,Morgan Kaufmann, 424-430.

REFERENCES 85

Rechenberg, 1. (1973). Evolutionstrategie: Optimierung Technisher Sys—
teme nach Prinzipien des Biologischen Evolution. Stuttgart: Fromman—
Holzboog Verlag.

Reynolds, R. (1994). An introduction to cultural algorithms. In Pro-
ceedings ofthe 3 ¢ Annual Conference on Evolutionary Programming,
World Scientific, 131-139.

Reynolds, R., Z. Michalewicz, and M. Cavaretta (1995). Using cultural
algorithms for constraint handling in Genocop. In J. R. McDonnell,
R. G. Reynolds, and D. B. Fogel (Eds.), Proceedings ofthe 4** Annual
Conference on Evolutionary Programming, MIT Press, 298-305.

Richardson, J. T., M. R. Palmer, G. Liepins, and M. Hilliard (1989).
Some guidelines for genetic algorithms with penalty functions. In J. D.
Schaffer (Ed.), Proceedings of the 3¢ International Conference on Ge-
netic Algorithms, Morgan Kaufmann, 191-197.

Schaffer, J.D., ed. (1989). Proceedings of the 3rd International Confer-
ence on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.
Schaffer, J.D. (1984). Some Experiments in Machine Learning Using
Vector Evaluated Genetic Algorithms. PhD Dissertation, Vanderbilt

University, Nashville, TN.

Schmidt, M. and Michalewicz, Z. (2000). Test—Case Generator TCG-
2 for Nonlinear Parameter Optimization. In Proceedings of the 6th
Parallel Problem Solving from Nature, Paris, September 17-20, 2000,
Schoneauer, M., K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,
and H.-P. Schwefel (Editors), Springer-Verlag, Lecture Notes in Lom-
puter Science, Vol.1917, 539-548.

Schoenauer, M. and Z. Michalewicz (1996). Evolutionary Computation
at the Edge of Feasibility. In Proceedings of the 4th Conference on
FParallel Problem Solving from Nature, Voigt, H.—M., W. Ebeling, 1.
Rechenberg, and H.—P. Schwefel,(eds.), Lecture Notes in Computer
Science, Vol.1141, Springer, Berlin, 245-254.

Schoenauer, M. and S. Xanthakis (1993). Constrained GA optimization.
In S. Forrest (Ed.), Proceedings of the 5** International Conference
on Genetic Algorithms, Morgan Kaufmann, 573-580.

Smith, A. and D. Tate (1993). Genetic optimization using a penalty
function. In S. Forrest (Ed.), Proceedings ofthe 5t* International Con-

ference on Genetic Algorithms, Morgan Kaufmann, 499-503.

Surry, P., N. Radcliffe, and 1. Boyd (1995). A multi-objective approach to
constrained optimization of gas supply networks. In T. Fogarty (Ed.),
Proceedings of the AISB-95 Workshop on Evolutionary Computing,
Volume 993, Springer Verlag, 166—180.

Waagen, D., P. Diercks, and J. McDonnell (1992). The stochastic direc-
tion set algorithm: A hybrid technique for finding function extrema. In

86 EVOLUTIONARY OPTIMIZATION

D. B. Fogel and W. Atmar (Eds.), Proceedings ofthe 1t Annual Con-
ference on Evolutionary Programmming,Evolutionary Programming So-
ciety, 35-42.

Whitley, D., V.S. Gordon, and K. Mathias (1996). Lamarckian Evolu-
tion, the Baldwin Effect and Function Optimization. In Proceedings of
the 3rd Conference on Parallel Problem Solving from Nature, Davidor,
Y., H.-P. Schwefel, and R. Minner, (eds.), Lecture Notes in Computer
Science, Vol.866, Springer, Berlin, 6-15.

Whitley, D., K. Mathias, S. Rana, and J. Dzubera (1995). Building better
test functions. In Proceedings of the Sixth International Conference
on Genetic Algorithms, Eshelman, L.J.(ed.), Morgan Kaufmann, San
Mateo, CA.

Whitley, D., K. Mathias, S. Rana, and J. Dzubera (1996). Evaluating
evolutionary algorithms. Artificial Intelligence Journal, 85, 245-276.

Xiao, J., Z. Michalewicz, L. Zhang, and K. Trojanowski (1997). Adaptive
Evolutionary Planner/Navigator for Mobile Robots. IEEE Transac-
tions on Evolutionary Computation, 1(1), 18-28.

Chapter 4

CONSTRAINED
EVOLUTIONARY OPTIMIZATION

— the penalty function approach

Thomas Runarsson and

Xin Yao

Abstract

Keywords:

The penalty function method has been used widely in constrained evo-
lutionary optimization (CEO). This chapter provides an in-depth anal-
ysis of the penalty function method from the point of view of search
landscape transformation. The analysis leads to the insight that apply-
ing different penalty function methods in evolutionary optimization is
equivalent to using different selection schemes. Based on this insight,
two constraint handling techniques, i.e., stochastic ranking and global
competitive ranking, are proposed as selection schemes in CEO. Our
experimental results have shown that both techniques performed very
well on a set of benchmark functions. Further analysis of the two tech-
niques explains why they are effective: they introduce few local optima
except for those defined by the objective functions.

Constrained evolutionary optimization (CEO), penalty function method,
ranking.

1. Introduction

The general nonlinear programming problem can be formulated as

minimize f(x), x=(z1,...,2,) ER" (4.1)

where f(x) is the objective function, x € SNF, § & R" defines the
search space which is an n-dimensional space bounded by the parametric

constraints

z, < z; < T, jE{l,...,n}, (4.2)

88 EVOLUTIONARY OPTIMIZATION

and the feasible region F is defined by
F={xeR"|g(x)<0Vkell,..,m}} (4.3)

where gr(x),k € {1,...,m}, are inequality constraints. Equality con-
straints h(x)can be approximated by inequality constraints using |h(x)|—
0 < 0, where ¢ is a small positive number that indicates the degree of
constraint violation. Only minimization problems are considered in this
chapter without loss of generality since max{f(x)} = —min{—f(x)}.

The penalty function methods considered in this chapter belong to the
exterior penalty approach. They are used widely in evolutionary con-
strained optimization (ECO), although some of the methods are equally
applicable to non-evolutionary optimization algorithms. In contrast to
numerous penalty function methods proposed for ECO (Michalewicz and
Schoenauer, 1996), few theoretical analysis are available to explain how
and why a penalty function method works. This chapter fills in this
gap by providing an in-depth analysis of penalty function methods and
their relationship to search landscape transformation. Such analysis has
led to the development of new constraint handling techniques for CEO.
In essence, a penalty function method transforms the search landscape
by adding a penalty term to the objective function. Such transforma-
tion influences the relative fitness of individuals in a population. It also
alters the characteristics of the search landscape, e.g., ruggedness. A
previously fit individual according to the objective function might not
be fit anymore on the transformed search landscape. Since the primary,
if not the only, place in an evolutionary algorithm that fitness is used is
selection, it is easy to see that an effective approach to “implementing” a
penalty function method is to design a new selection scheme. Two rank-
based selection schemes are described in this chapter to illustrate how
penalty function methods can be “implemented” effectively by designing
new ranking schemes in ECO.

The rest of this chapter is organized as follows. Section 2 analysis the
penalty function method in CEO and discusses how different penalty
function methods influence evolutionary search. In particular, the re-
lationship between different penalty function methods and the ranking
of individuals in a population is discussed in detail. Sections 3 and 4
present the ideas and algorithms of two constraint handling techniques
based on ranking, i.e., stochastic ranking (Runarsson and Yao, 2000)
and global competitive ranking. Section 5 provides further analysis of
penalty function methods and shows how the penalty function method
works through two detailed examples. Section 6 gives our experimental
results on the two constraint handling techniques. Finally, Section 7
gives a brief summary of this chapter.

Constrained Evolutionary Optimization 89

2. The Penalty Function Method

Constrained optimization problems have often been transformed into
unconstrained ones by adding a measure of the constraint violation to
the objective function (Fiacco and McCormick, 1968). This constrained
handling technique is known as the penalty function method.

The introduction of the penalty term enables the transformation of
a constrained optimization problem into a series of unconstrained ones,
e.g.,

Y(x) = f(x) + 79 $lg;(x);j=1,...,m) (44)
where ¢ > 0 isa real valued function which imposes a penalty, ¢(g;(x),
controlled by a sequence of penalty coefficients {r(9}§. G indicates the
maximum number of generations used in CEO. The general form of func-
tion ¢ includes both the generation counter g (for dynamic penalty) and
the population (for adaptive penalty). In our current notation, this is
reflected in the penalty coefficient #(9). This transformation, i.e. equa-
tion (4.4), has been used widely in CEO (Kazarlis and Petridis, 1998;
Siedlecki and Sklansky, 1989). In particular, the following quadratic
loss function (Fiacco and McCormick, 1968), whose decrease in value
represents an approach to the feasible region, has often been used as the
penalty function (Michalewicz and Attia, 1994; Joines and Houck, 1994):

¢(gi(x);5 =1,...,m) = Y _ max{0,g(x)}". (4.5)
=1

However, any other penalty function is equally valid. Different penalty
functions characterize different problems. It is unlikely that a generic
penalty function exists which is optimal for all problems. The intro-
duction of penalties may transform a smooth objective function into a
rugged one. The search may then become more easily trapped in local
minima. For this reason, it is necessary to develop a penalty function
method which attempts to preserve the topology of the objective func-
tion and yet enables a CEO algorithm to locate the optimal feasible
solution.

The penalty function method may work quite well for some problems.
However, deciding an optimal (or near-optimal) value for 9 turns out
to be a difficult optimization problem itself! If 79 is too small, an
infeasible solution may not be penalized enough. Hence an infeasible
solution may be evolved by an evolutionary algorithm. If (9 is too
large, then a feasible solution is very likely to be found but could be of
very poor quality. A large +(9) discourages the exploration of infeasible
regions even in the early stages of evolution. This is particularly inef-
fective for problems where feasible regions in the whole search space are

90 EVOLUTIONARY OPTIMIZATION

disjoint. In this case, it may be difficult for an evolutionary algorithm
to move from one feasible region to another unless they are very close
to each other. Reasonable exploration of infeasible regions may act as
bridges connecting two or more different feasible regions. The critical
issue here is how much exploration of infeasible regions (i.e., how large
(9} is) should be considered as reasonable. The answer to this question
is problem dependent. Even for the same problem, different stages of
evolutionary search may requiredifferent (9 values.

There has been some work on the dynamic setting of r(9) values in
CEO (Joines and Houck, 1994; Kazarlis and Petridis, 1998; Michalewicz
and Attia, 1994). Such work usually relies on a predefined monotoni-
cally nondecreasing sequence of 79) values. This approach worked well
for some simple problems but failed for more difficult ones because the
optimal setting of (@) values is problem dependent (Reeves, 1997). A
fixed and predefined sequence cannot solve a variety of different problems
satisfactorily. A trial-and-error process has to be used in this situation
in order to find a proper function for {9 for each problem, as is done
in (Joines and Houck, 1994; Kazarlis and Petridis, 1998).

An adaptive approach, where (9 values are adjusted dynamically
and automatically by an evolutionary algorithm itself, appears to be
most promising in tackling different constrained optimization problems.
For example, population information can be used to adjust r(9 values
adaptively (Smith and Coit, 1997). Different problems lead to different
populations in evolutionary search and thus lead todifferent r(9) values.
The advantage of such an adaptive approach is that it can be applied
to problems where little prior knowledge is available because there is no
need to find a predefined r@ value, or a sequence of (9 values.

According to (4.4), different r(9) values lead to different fitness func-
tions. A fit individual under one fitness function may not be fit under
a different fitness function. When rank-based selection is used in CEO,
finding a near optimal r(9), adaptively, is equivalent to ranking individu-
als in a population adaptively. Hence, the issue of setting r(9) adaptively
becomes how to rank individuals according to their objective and penalty
values.

To facilitate later discussion, some notations are first introduced here.
The individuals being ranked will be arbitrarily assigned some numerical
labels. Then for any ranking of individuals, the corresponding permuta-
tion m € P* will be a function from {1,..., A} onto itself, whose argu-
ments are the individuals and whose values are the ranks. The following
notation is used: (i) is the rank given to individual 5 and 7~1(j) is the
individual assigned the rank j. Since 7~(j) is the individual assigned

Constrained Evolutionary Optimization 91
the rank j, the bracket notation
= <7T_1(1)’ 7"—1(2)a e ,W—I(A))

corresponds to listing all individuals in their ranked order.
For a given penalty coefficient (%) > 0 let the ranking of A individuals
be

Y(Xr1(1)) S P(Xpr(2)) < - S P(Xpr(yy) (4.6)

where 9 is the transformation function given by equation (4.4). Now
examine the adjacent pair 7~(i) and 7~(i + 1) in the ranked order:

fitr9¢ < fia 49, ie{l,...,A-1}, (47)

where notations f; = f(Xz1(;)) and ¢; = ¢(gj(Xz1(),4 = 1,...,m)) are
used for convenience.

Define a parameter, 7;, which will be referred to as the critical penalty
coefficient for the adjacent pair ¢ and ¢4 1, as

7 = (fix1 — fi) /(b5 — big1), for ¢; # ¢iy1. (4.8)

For a given choice of r(9) > 0, there are three different cases which may
give rise to Inequality (4.7):

1 f; < fi+1 and ¢; > ¢iy1: the comparison is said to be dominated
by the objective function and 0 < 79) < #; because the objective
function f plays the dominant role in determining the inequality.

When individuals are feasible, ¢; = ¢;4.1 = 0 and 7; — co.

2 fi 2 fiy1 and ¢; < ¢i41: the comparison is said to be dominated
by the penalty function and 0 < 7 < r{9 because the penalty
function ¢ plays the dominant role in determining the inequality.

3 fi < fiy1 and ¢; < ¢;4+1: the comparison is said to be nondomi-
nated and 7; < 0.

When comparing nondominated and feasible individuals, the value
of 7(9) has no impact on Inequality (4.7). In other words, it does not
change the order of ranking of the two individuals. However, the value
of 7(9) is critical in the first two cases as 7; is the flipping point that
will determine whether the comparison is objective or penalty function
dominated. For example, if r(9) is increased to a value greater than 7; in
the first case, individual 7=*(i+1) would change from a fitter individual
into a less fit one. For the entire population, the chosen value of 7(9) used
for comparisons will determine the fraction of individuals dominated by
the objective and penalty functions.

92 EVOLUTIONARY OPTIMIZATION

Not all possible (9 values can influence the ranking of individuals.
They have to be within a certain range, i.e. r, < rl9) < T4, to influence
the ranking, where the lower bound r, is the minimum critical penalty
coefficient computed from adjacent individuals ranked only according to
the objective function and the upper bound 7, is the maximum criti-
cal penalty coefficient computed from adjacent individuals ranked only
according to the penalty function. In general, there are three different

categories of 7@ values (Runarsson and Yao, 2000):

170 <. Al comparisons are based only on the objective func-
tion. 7(9) is too small to influence the ranking of individuals. This
is called under-penalization.

2 9 > 79): All comparisons are based only on the penalty func-
tion. 7(9) is so large that the impact of the objective function can
be ignored. This is called over-penalization.

3 rl9) < 79 < 79: All comparisons are based on a combination of
objective and penalty functions.

Penalty function methods can be classified into one of the above three
categories. Some methods may fall into different categories during dif-
ferent stages in evolutionary search. It is important to understand the
difference among these three categories because they indicate which func-
tion (or combination of functions) is driving the search process and how
search progresses. For example, most dynamic penalty methods start
with alow (@ value (i.e., r(® < z(g)) in order to find a good region that
may contain both feasible and infeasible individuals. Towards the end of
search, a high r(@ value (i.e., 79 > 7(9)) is often used in order to locate
a good feasible individual. Such a dynamic penalty method would work
well for problems for which the unconstrained global optimum is close to
the constrained global optimum. It is unlikely to work well for problems
for which the constrained global optimum is far away from the uncon-
strained one, because the initial low 7@ value would drive the search
towards the unconstrained global optimum and thus further away from
the constrained one.

The traditional constraint handling technique used in evolution strate-
gies (ESs) falls roughly into the category of over-penalization since all
infeasible individuals are regarded as worse than feasible ones (Schwefel,
1995; Hoffmeister and Sprave, 1996; Deb, 1999; Jiménez and Verdegay,
1999). In fact, canonical evolution strategies allow only feasible indi-
viduals in the initial population. To perform constrained optimization,
an ES is first used to find a feasible initial population by minimizing
the penalty function (Schwefel, 1995, p. 115). Once a feasible initial

Constrained Evolutionary Optimization 93

population is found, the ES algorithm will then minimize the objective
function and reject all infeasible solutions generated.

It has been widely recognized that neither under- nor over-penalization
is a good constraint handling technique and there should be a balance be-
tween preserving feasible individuals and rejecting infeasible ones (Gen
and Cheng, 1997; Runarsson and Yao, 2000). Such a balance can be
achieved by adjusting our measure of how fit an individual should be in
comparison with others. The adjustment can be done explicitly through
ranking individuals in evolutionary algorithms. In order to strike the
right balance, ranking should be dominated by a mixture of objective
and penalty functions. That is, the penalty coefficient 7(9) should be
within the bounds: 7@ < r(¥) < 7). It is worth noting that the two
bounds are not fixed. They are problem dependent and may change
from generation to generation as they are also influenced by the current
population.

One way to measure the balance of dominance of objective and penalty
functions is to count how many comparisons of adjacent individual pairs
are dominated by the objective and penalty functions respectively. Such
a number of comparisons can be computed for any given (¥ by count-
ing the number of critical penalty coefficients given by (4.8) which are
greater than r(9. If there is a predetermined preference for the num-
ber of adjacent comparisons that should be dominated by the penalty
function then a corresponding penalty coefficient can be determined.

It is clear from the analysis in this section that all a penalty function
method tries to do is to obtain the right balance between objective and
penalty functions so that the search moves towards the optimal feasible
solution rather than the optimum in the combined feasible and infea-
sible space. One way to achieve such balance effectively and efficiently
is to adjust such balance directly and explicitly. Possible methods of
achieving this will be presented in the following two sections.

3. Stochastic Ranking

The ranking procedure introduced in this section is stochastic ranking
(Runarsson and Yao, 2000) where ranking is achieved by a bubble-sort-
like procedure. In this approach a probability Py of using only the ob-
jective function for comparing individuals in the infeasible region of the
search space is introduced. That is, given any pair of two adjacent indi-
viduals, the probability of comparing them (in order to determine which

94 EVOLUTIONARY OPTIMIZATION

one is fitter) according to the objective function is 1 if both individuals
are feasible, otherwise it is Py.

The procedure provides a convenient way of balancing the dominance
in a ranked set. In the bubble-sort-like procedure, A individuals are
ranked by comparing adjacent individuals in at least A sweeps'. The
procedure is halted when no change in the rank ordering occurs within a
complete sweep. Figure 4.1 shows the stochastic bubble sort procedure
used to rank individuals in a population (Runarsson and Yao, 2000).

If at least one individual is infeasible in an adjacent pair, the prob-
ability of an individual winning a comparison, i.e., holding the higher
rank, in the ranking procedure is

Py = Ppy Py + P¢w(1 — Pf) (4.9)

where Py, is the probability of the individual winning according to the
objective function and Pp,, is the probability of the individual winning

"It would be exactly A sweeps if the comparisons were not made stochastic.

Stochastic bubble sort (Pf, f, ¢):
() =jVie{l,..., A}
fori=1to N do
forj=1toA—1 do
sample u € U(0, 1);
if ((ﬁ(xﬂ-l(j)) = ¢(xw.1{j+1)) = U) or (u < Pf) then
if (f(%z1(j)) > f(Xz 1(j+1))) then
swap(n~1(5), 771 (5 + 1));
fi
else
if (#(xy 1) > 6(Xr 1(541)) then
swap(7~1(5), 771 (j +1));
fi
fi
od
if no swap done break; fi
od
return (7)

Figure 4.1, Stochastic ranking procedure, where U(0, 1) is a uniform random number
generator and N is the number of sweeps going through the whole population. When
Py = 0 the ranking is equivalent to over-penalization. When P; = 1 the ranking is
equivalent to under-penalization. The initial ranking is generated at random.

Constrained Evolutionary Optimization 95

according to the penalty function. In the case where adjacent individuals
are both feasible Py = Py, the probability of winning ¥ more compar-
isons than losses can be computed. The total number of wins will be
k' = (N +k)/2 where N is the total number of comparisons made. The
probability of winning &’ comparisons out of N is given by the binomial
distribution

N / e
Py = k) = () P (L= P, (@10
The probability of winning at least k' comparisons is
Kol '
roz=1-% (V)pa-rr
§=0

Equations (4.10) and (4.11) show that the greater the number of com-
parisons (N) the less influence the initial ranking will have. It is worth
noting that the probability P, usually varies for different individuals
in different stages of ranking. Now consider the case where P, is con-
stant during the entire ranking procedure, which will be trueif f; < f;,
¢; > (/)j; j#FLI=1,...,\ Thenwa =1 and P¢w = 0. IfPf =0.51s
chosen then P, = 0.5. There will be an equal chance for a comparison
to be made based on the objective or penalty function. Because we are
interested in feasible solutions as the final solution, Py should be less
than 0.5 such that there is a pressure against infeasible solutions. The
strength of the pressure can be adjusted easily by adjusting only Fy.
When parameter N, the number of sweeps, approaches oo, the rank-
ing will be determined by Py. That is, if Py > 0.5, the ranking will be
based on the objective function. If Py < 0.5, the ranking is equivalent to
over-penalization. Hence, an increase in the number of ranking sweeps
is effectively equivalent to changing parameter P;. Hence, N = A can
be fixed and Py adjusted to achieve the best performance.

The effectiveness and efficiency of stochastic ranking will be evaluated
in Section 6 through experimental studies.

4. Global Competitive Ranking

A different method of ranking individuals in a population, in order
to strike the right balance between objective and penalty functions, is
the deterministic global competitive ranking scheme. In this scheme,
an individual % is ranked by comparing it against all other members of
the population. This is different from the stochastic ranking approach
where only adjacent individuals compete for a given rank. In the global

96 EVOLUTIONARY OPTIMIZATION

competitive ranking method, special consideration is given to tied ranks.
In the case of tied ranks the same lower rank will be used. For example,
for ranking 7 = (1, 3, (2,6), 7,(4,5)), we should have 7(1) = 1, #(3) = 2,
7(2) = 7(6) = 3, 7(7) = 5 and 7(4) = w(5) = 6.

Similar to the stochastic ranking approach, it is assumed that either
the objective or the penalty function will be used in deciding an individ-
ual’s rank. Py indicates the probability that a comparison is done based
on the objective function only. The probability that individual ¢ holds
its rank 7(¢) when challenged by any other member of the population is,

A —7s(d)
A—1

A~ 7y 4)

P(r(i)) = Py 1

+ (1 — Py) (4.12)

where the permutations 7; and 7y correspond to the ranking of individ-
uals based on the objective and penalty functions, respectively. Equa-
tion (4.12) can be used to determine the final ranking. That is, the
fitness function for the minimization problem becomes:

wie) = L g pyT ol gy

It is clear from the above that Py can be used easily to bias ranking
according to the objective or penalty function. In practice, the prob-
ability should take a value 0 < Py < 0.5 in order to guarantee that a
feasible solution may be found. The close the probability is to 0.5, the
greater the emphasis will be on minimizing the objective function. As
the Py approaches 0, not equal to zero, the ranking corresponds an over-
penalization. The global competitive ranking scheme, unlike stochastic
ranking, is deterministic. It can be summarized by Figure 4.2.

Global competitive ranking (Py, f, ¢):

Step 1: Determine the ranking, mz, 74:
Fxapy) < f(xrp@) <00 < F(xr)
(}5()(,-;&1(1)) < gf)(xﬂ.;(g)) Sune s (;b(x,ré-l(,\))

Step 2. Compute competitive fitness:

P(x;) = sz%(?—l_—l +(1- Pf)%.

Step 3. Determine final ranking, =:

V(Xr-1(1)) S P(Xra(2)) £ oo S P(Xpa(y))

Figure 4.2. Global competitive ranking method for constraint handling,

Constrained Evolutionary Optimization 97

S. How Penalty Methods Work

Convergence and convergence rate are two important issues in stochas-
tic optimization and search algorithms, such as EAs. For a stochastic
search procedure, average positive progress towards the global optimum,
x*, is necessary in order to find the optimum efficiently. One approach
of measuring progress is to compute the distance travelled between suc-
cessive generations (Schwefel, 1995) towards x*. The distance from the
best individual in generation (g) to the optimum x* should be on aver-
age greater than that of the best individual at generation (g + 1). That
is, the following ¢x should be greater than O:

(9) (9)

Xyt (1y -+ ,xr_,(u)], (4.14)

o = Bl %) = i)

where the distance metric d(x,x*) =[| x — x* ||. A similar progress
definition is given by (Rudolph, 1997, p. 207) in terms of fitness for the
unconstrained problem:

wr =Blfx%) - £

(9) (9)
xw"{l(l), .. .,xﬁl(“)]. (4.15)

However, the progress rate computed from fitness values, as the one
given by (4.15), indicates the progress towards a local unconstrained
minimum only. Progress towards the global minimum in a multimodal
landscape can only be computed in terms of the distance and when the
global minimum is known (Yao et al., 1999). Computing ¢ analytically
is a difficult theoretical problem although there has been some published
work on drift analysis (He and Yao, 2001).

If positive progress towards the global optimum is to be maintained,
there must exist at least one parent x) which produces at least one
offspring that is closer than itself to the optimum x* on average. Con-
sider a simple (1, A) EA where there is only one parent (i = 1) at each
generation producing A offspring. The offspring are produced using the
following mutation operator:

x = x + N(0,0) =1, (4.16)

where N;(0,02) is a normally distributed random variable with zero
mean and variance o2. We can now use two examples to illustrate how a
penalty function method works by investigating the relationship between
different penalty function methods and progress rates. In particular, we
will examine how the progress in terms of fitness corresponds to that in
terms of the distance to the global optimum.

98 EVOLUTIONARY OPTIMIZATION

—ferz(x)
3 T

—0.92} over-penalization

—0.941
= objective function
T
- R
8,
« —0.96 g
= stochastic ranking

—0.98 competitive ranking

“ig 3 i ' 5

29 2 = 29 = 5 (parent)

Figure 4.3. Expected fitness of the best offspring as a function of parent position for
test function fi2. The curves lying below the dashed one (parent fitness) corresponds
to positive progress towards the global optimum.

The first example is a the benchmark test function, fi2 in (Koziel and
Michalewicz, 1999):

maximize: fia(x) = (100 — (zq1 — 5)2 — (2 — 5)% — (23 — 5)2) /100
subject to:
g(x) = (z1 — p) + (w2 — 9)* + (x3 —)2 — 0.0625 < 0,

where 0 < z; < 10 (i = 1,2,3) and p,q,7 = 1,2,...,9. The feasible
region of the search space consists of 9% disjointed spheres. A point
(21,22, x3) is feasible if and only if there exist p, q,r such that the above
inequality holds. Hence, the g(x) returned corresponds to its lowest
value for given p, q,r values. The feasible global optimum is located at
x* = (5,5,5) where fia(x*) = 1.

Figure 4.3 shows the results of 10,000 one-generational experiments
for a number of different parent values. In Figure 4.3, variables g and
x3 were fixed at 5 and only z; was adjusted between values 2 and 5.
The mean search step size used was ¢ = 0.2 and the number of offspring
A = 10. This simulation was conducted using three different ranking
strategies: over-penalization, stochastic ranking, and global competitive
ranking. In both the stochastic and global competitive ranking, the value

Constrained Evolutionary Optimization 99

of Py is 0.45. Over-penalization corresponds to a ranking with Py = 0.
The problem was treated as a minimization one.

In Figure 4.3, the expected objective function value of the highest
ranked offspring is plotted versus the parent value of ;. The dashed
line corresponds to the objective function value of the parent. Hence,
positive progress toward the global optimum will be achieved when the
expected objective function value of the best offspring lies beneath the
dashed line. The figure illustrates how the over-penalization approach
has effectively transformed the original unimodal objective function to
a multimodal fitness function. There existed large regions of negative
progress when the over-penalization approach was used. The stochas-
tic and global competitive ranking, however, maintained their positive
progress towards the global feasible optimum even in infeasible regions,
although the rate of progress is slower. This example shows that the
penalty function method works by transforming the search landscape
(Runarsson, 2000). Inappropriate penalty functions may make the opti-
mization task more difficult than it should be.

Figure 4{.4. Fitness landscape for test function f11. The curve represents the region
of feasibility.

The second example is also a well known benchmark test function in
(Koziel and Michalewicz, 1999):

minimize: fi1(x) = z3 + (xg — 1)2
subject to:

h(x) = 2o — 22 =0,

100 EVOLUTIONARY OPTIMIZATION

where —1 < 21 £ 1 and —1 < z3 < 1. The global feasible optimum is at
x* = (£1/+/2,1/2) where f11(x*) = 0.75. Figure 4.4 shows the objective
function, f11(x), and the constraint curve h(x).

In this example both parent variables x; and zy were varied in our
experimental study. Stochastic ranking (Py = 0.45) was compared with
over-penalization (Py = 0). Since there exist two optima for this ex-
ample, the progress was computed in terms of the maximum distance
covered towards one of the optima:

¢ = B| min {d(x¥),),y*), d(x9), 2)} (4.17)
. * 1 *
~min {d(x%), ¥), 4= 1), 7))

where z* and y* are the optima (1/v/2,1/2).

Two different mean step sizes were used in our experiments: o = 0.05
and o = 0.1. The number of offspring generated was again A = 10.
The progress rate given by Equation 4.17 is illustrated by contour plots
shown in Figure 4.5, where regions of negative progress are outlined with
contour lines.

It is clear from Figure 4.5 that negative regions of progress were lo-
cated around the global optima. This is not surprising since the mean
search step size used was too large in these regions. A decreasing mean
search step size should be used. For the over-penalization approach,
however, there existed additional regions of negative progress which were
not in the global optimum regions. These regions formed additional lo-
cal attractors and would trap individuals as the mean search step size
decreased. Stochastic ranking did not create any local attractors in this
case. This is also true for global competitive ranking, as will be seen in
the following section.

In summary, the introduction of constraints may produce additional
local optima in the search landscape. A well designed constraint han-
dling technique can minimize the number of such misleading local op-
tima. This is the primary reason why our ranking methods worked so
well on many test functions. Our ranking methods also make it easy to
control constrained search by adjusting Py for different problems.

6. Experimental Study
6.1 Evolutionary Optimization Algorithm

The evolutionary optimization algorithm described in this section is
based on the evolution strategy (ES) (Schwefel, 1995). One reason for
choosing ES is that it does not introduce any specialized constraint-
handling variation operators. It will be shown that specialized and

Constrained Evolutionary Optimization 101

0.1, P, =

Figure 4.5. The figures show the progress rate in terms of the distance metric, i.e.
@z where = 1 and A = 10, for test function fi1. The drawn contours mark regions
of negative progress (darker regions). When Py = 0 (over-penalization), there exists
a region where no progress is maintained towards either global optima, and thus
the search will get stuck in this region. This figure explains the poor performance
observed in Table 4.1 for this function.

complex variation operators for constrained optimization problems are
unnecessary although they may be quite useful for particular types of
problems (see for example (Michalewicz et al., 1996)). A simple ex-
tension to the ES, i.e., the use of the ranking schemes proposed in the
previous sections, can achieve significantly better results than other more
complicated techniques.

In a (u, A)-ES algorithm, an individual ¢ is a pair of real-valued vec-
tors, (x;,0i), Vi € {1,...,A}. The initial population of x is generated
according to a uniform n-dimensional probability distribution over the
search space 8. Let dx be an approximate measure of the expected dis-
tance to the global optimum, then the initial setting for the ‘mean step
sizes’ should be (Schwefel, 1995, p. 117):

0{) = 8uj/ v~ @ —z)/vn, i€{l,...,Ahi€{L,...,n}, (418)

102 EVOLUTIONARY OPTIMIZATION

where o0;; denotes the j-th component of the vector o;. These initial
values will also be used as upper bounds on o.

Following the ranking schemes presented, the evaluated objective f(x)
and penalty function ¢(gi(x); k¥ = 1,...,m) for eachindividual (x;, 0;),
Vi€ {1,...,A} is used to rank individuals in a population and the
best (highest-ranked) u individuals out of A are selected for the next
generation. The truncation level is set at /X ~ 1/7 (Bick, 1996, p. 79).

Variation of strategy parameters is performed before the modification
of objective variables. New A strategy parameters are produced from
the p highest ranked individuals and then applied later for generating
A offspring. The ‘mean step sizes’ are updated according to the log-
normal update rule (Schwefel, 1995): + = 1,...,4, h = 1,..., A, and
j = 1) (T

oI = 619 exp(r'N(0,1) + 7N;(0, 1)), (4.19)

where N(0, 1) is a normally distributed one-dimensional random vari-
able with an expectation of zero and variance one. The subscript j in
N;(0, 1) indicates that the random number is generated anew for each
value of j. The ‘learning rates’ 7 and 7' are set equal to ¢*/+/2\/n
and ¢*/ V2n respectively where ¢* is the expected rate of convergence
(Schwefel, 1995, p. 144) and is set to one (Bick, 1996, p. 72). Recombi-
nation is performed on the self-adaptive parameters before applying the
update rule given by (4.19). In particular, global intermediate recom-
bination (the average) between two parents (Schwefel, 1995, p. 148) is
implemented as

50 =0 +af)/2 Ke{l,....uh, (4.20)

where k; is an index generated at random and anew for each j.

Having varied the strategy parameters, each individual (x;,0;), Vi €
{1, ..., u}, creates A/p offspring on average, so that a total of X offspring
are generated:

2 = 2l + 6N, (0, 1) (4.21)

Recombination is not used in the variation of objective variables.
When an offspring is generated outside the parametric bounds defined
by the problem, the mutation (variation) of the objective variable will be
retried until the variable is within its bounds. In order to save computa-
tion time the mutation is retried only 10 times and then ignored, leaving
the object variable in its original state within the parameter bounds.

Constrained Evolutionary Optimization 103
Table 4.1. Over-penalization.

fen | optimal | best median st. dev. | Gn
fi —15.000 —15.000 —15.000 0.0E4+00 697
fo —0.803619 —0.803578 —0.785253 1.56E—02 1259
f3 —1.000 —0.327 —-0.090 7.2E-02 61
fa —30665.539 —30665.539 —30665.538 3.8E+00 632
fs 5126.498 5126.945 5225.100 2.7E+402 213
fe —6961.814 —6961.814 —6961.814 1.9E-12 946
fr 24.306 24.322 24.367 5.9E—02 546
fs —0.095825 —0.095825 —-0.095825 2.7TE—17 647
fo 680.630 680.632 680.657 3.8E—-02 414
fio 7049.331 7117.416 7336.280 3.4E4+02 530
fm 0.750 0.750 0.953 5.4E—-02 1750
fi2 —1.000000 —0.999972 —0.999758 1.4E-04 90
f13 0.053950 0.919042 0.997912 1.56E—-02 1750
6.2 Experimental Results and Discussion

Thirteen benchmark functions are studied. The first 12 are taken from
(Koziel and Michalewicz, 1999) and the 13th from (Michalewicz, 1995).
The details, including the original sources, of these functions are listed in
appendix 4.A. Functions fs, f3, fs, and fi2 are maximization problems.
They are transformed to minimization problems using — f(x). For each
of the benchmark problems 30 independent runs are performed using a
(30, 200)-ES and the ranking procedures described in the previous sec-
tions. All runs are terminated after G = 1750 generations except for fi2,
which was run for 175 generations. The experimental results using the
stochastic and global competitive ranking, with Py = 0.45, are given in
Tables 4.2 to 4.3. The results are compared against the over-penalization
approach (Table 4.1) used in ES (Hoffmeister and Sprave, 1996). The
over-penalization approach corresponds to the ranking schemes discussed
for Py — 0. In the tables the best feasible objective value, median, stan-
dard deviation, and median number of generations (G,) needed to find
the best individual are given.

As can be seen from Tables 4.1 to 4.3, both stochastic ranking and
global competitive ranking performed very well for most test functions,
especially for functions fs, fi1, f12, and fi3, for the reasons given in Sec-
tion 5. They are also much faster than the over-penalization approach for
most test functions. There are, however, two test functions that stand

104 EVOLUTIONARY OPTIMIZATION

Table 4.2. Stochastic ranking (Py = 0.45).

fen | optimal | best median st. dev. | Gm
fi —15.000 —15.000 —15.000 0.0E4-00 741
fa —0.803619 —0.803515 —0.785800 2.0E-02 1086
fa —1.000 —1.000 —-1.000 1.9E-04 1146
fa —30665.539 —30665.539 —30665.539 2.0E—05 441
fs 5126.498 5126.497 5127.372 3.5E+00 258
fe —6961.814 —-6961.814 —6961.814 1.6E+402 590
fa 24.306 24.307 24.357 6.6E—02 715
fs —0.095825 —0.095825 —0.095825 2.6E—17 381
fo 680.630 680.630 680.641 3.4E—02 557
Jio 7049.331 7054.316 7372.613 5.3E+02 642
fm 0.750 0.750 0.750 8.0E-05 57
fi2 —1.000000 —1.000000 —1.000000 0.0E+00 82
f13 0.053950 0.053957 0.057006 3.1E-02 349
Table 4.3. Global competitive ranking (P = 0.45).

fen | optimal | best median st. dev. | Gm
fi —15.000 —15.000 —15.000 0.0E4-00 692
fa —0.803619 —0.803591 —0.792805 1.7E-02 1335
f3 —1.000 —1.000 —-1.000 2.6E—-05 1725
fa —-30665.539 | —30665.539 —30665.538 5.4E—01 731
fs2 5126.498 5126.497 5126.721 1.1E+00 319
fe —6961.814 —6943.560 —6579.214 2.9E402 13
fr 24.306 24.308 24.361 1.1IE-01 517
fs —0.095825 —0.095825 —0.095825 2.6E—17 398
fo 680.630 680.631 680.657 5.8E—02 396
fio 7049.331 - - - -
fi1 0.750 0.750 0.750 7.2E-05 76
2 —1.000000 —1.000000 —1.000000 0.0E+-00 63
f13 0.053950 0.053943 0.053987 1.3E-04 247

out: fio and fg. It is difficult to determine whether it is the constraint
handling technique or the underlying search method which is contribut-
ing to the success or failure in locating the optimum. In (Runarsson and
Yao, 2000) the importance of the search method was illustrated on test

Constrained Evolutionary Optimization 105

Taoble 4.4. Over-penalization versus stochastic ranking for test function f1p and ¢ =
1/4.

P; | optimal | best ~median st. dev. | Gp

0.45 | 7049.331 | 7049.852 7054.111 5.7E+400 | 1733
0.00 | 7049.331 | 7049.955 7062.673 3.1E+401 | 1745

function f1o by setting ¢ = 1/4. This results is given in table 4.4 and
illustrates how significant the search method is.

Test function fg is the only test function solved more effectively using
over-penalization. For this reason it is interesting to plot its progress
rate landscape. The test function has two variables. The progress rate
is simulated as before using 10.000 one generational experiments in the
region where suboptimal solutions are found. The result is depicted in
figure 4.6. Progress landscapes for the step sizes ¢ = 0.05 (dotted) and
o = 0.01 (dashed) are plotted as contours. Negative progress is main-
tained to the right of the last of the three contour lines plotted. The
solid lines in the figure are the constraint curves and the circle marks the
location of x*. The feasible region is the top narrow band formed by the
two constraint curves. From the figure it becomes clear that in this case
over-penalization guides the search directly to the optimal feasible solu-
tions from the infeasible region. However, stochastic ranking approaches
the optimal solution from the combined feasible and infeasible region.
The progress contours are simply rotated. In this test case no additional

P; =045

i

1

1

b £
2 d:
i

i

15 13 14 15

T I

Figure 4.6. Progress landscape for test function fg for step sizes o = 0.05 (dotted)
and ¢ = 0.01 (dashed). Negative progress is to the right of the last of the three
contour lines. The solid lines are the constraint curves and the circle the location of
x*. The feasible region is the top narrow band formed by the two constraint curves.

106 EVOLUTIONARY OPTIMIZATION

attractors are created by the over-penalization method and therefore
the two approaches should yield similar performance. This leads one to
speculate whether the performance difference may be due to the lack of
rotational invariance of the search method. To test this the coordinate
system is rotated by #/4 and the experiment is re-run. The results are
given in table 4.5. This simple experiment supports our prediction that
the performance difference is due to the lack of rotational invariance of
the search method.

Table 4.5. Over-penalization versus stochastic ranking for test function fs and co-
ordinate system rotated by /4.

P | best median mean st. dev. worst | G,

0.45 | —6954.352 —6913.419 —6909.142 2.7TE4+01 —6842.484 | 957
0.00 | —6942.806 —6903.223 —6887.683 4.2E401 —6782.945 | 864

7. Conclusion

The penalty function method is widely used in constrained optimiza-
tion. It is emphasized in this chapter that the penalty function method
transforms a constrained problem into an unconstrained one by modify-
ing the search landscape. Different modifications lead to different search
landscapes and thus different difficulties of optimization. We have given
two concrete examples to illustrate how additional local optima could be
introduced through inappropriate penalty methods and how such local
optima could mislead search.

Selection in an EA depends primarily on fitness values of individuals.
Modifications to a search (fitness) landscape can be achieved through
modifications to the selection scheme, rather than to the fitness function.
Ranking is a simple yet effective selection method that can be used
to indicate which individuals are fitter than others and thus achieve
the goal of modifying the fitness landscape. Two ranking schemes have
been introduced in this paper to show how they can be used to handle
constraints effectively and efficiently without adding a penalty term in
the fitness function. Experimental results on a set of benchmark test
functions are given in this chapter to support our analysis.

References

Bick, T. (1996). Evolutionary Algorithms in Theory and Practice. Ox-
ford University Press, New York.

REFERENCES 107

Deb, K. (1999). An efficient constrained handling method for genetic
algorithms. In Computer Methods in Applied Mechanics and Engi-
neering, page in press.

Fiacco, A. V. and McCormick, G. P. (1968). Nonlinear Programming:
Sequential Unconstrained Minimization Techniques. Wiley, New-York.

Floundas, C. and Pardalos, P. (1987). A Collection of Test Problems
for Constrained Global Optimization, volume 455 of Lecture Notes in
Computar Science. Springer-Verlag, Berlin, Germany.

Gen, M. and Cheng, R. (1997). Genetic Algorithms and Engineering
Design. Wiley, New-York.

He, J. and Yao, X. (2001). Drift analysis and average time complexity
of evolutionary algorithms. Artificial Intelligence, 127(1):57-85.

Himmelblau, D. (1972). Applied Nonlinear Programming. McGraw-Hill,
New-York.

Hock, W. and Schittkowski, K. (1981). Test Examples for Nonlinear
Programming Codes. Lecture Notes in Economics and Mathematical
Systems. Springer-Verlag, Berlin, Germany.

Hoffmeister, F. and Sprave, J. (1996). Problem independent handling of
constraints by use of metric penalty functions. In Fogel, L. J., An-
geline, P. J., and Bick, T., editors, Proceedings of the Fifth Annual
Conference on Evolutionary Programming, pages 289-294, Cambridge
MA. The MIT Press.

Jiménez, F. and Verdegay, J. L. (1999). Evolutionary techniques for con-
strained optimization problems. In Proc. of the 7th European Congress
on Intelligent Techniques and Soft Computing (EUFIT’99), Germany,
Berlin. Springer-Verlag.

Joines, J. and Houck, C. (1994). On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems with
GAs. In Proc. IEEE International Conference on Evolutionary Com-
putation, pages 579-584. IEEE Press.

Kazarlis, S. and Petridis, V. (1998). Varying fitness functions in ge-
netic algorithms: Studying the rate of increase in the dynamic penalty
terms. In Parallel Problem Solving from Nature, volume 1498 of Lec-
ture Notes in Computer Science, pages 211-220, Berlin, Germany.
Springer.

Koziel, S. and Michalewicz, Z. (1999). Evolutionary algorithms, homo-
morphous mappings, and constrained parameter optimization. Evolu-
tionary Computation, 7(1): 19-44.

Michalewicz, Z. (1995). Genetic algorithms, numerical optimization and
constraints. In Eshelman, L., editor, Proceedings of the 6th Interna-
tional Conference on Genetic Algorithms, pages 151-158, San Mateo,
CA. Morgan Kaufman.

108 EVOLUTIONARY OPTIMIZATION

Michalewicz, Z. and Attia, N. (1994). Evolutionary optimization of con-
strained problems. In Fogel, L. J. and Sebald, A., editors, Proc. of the
2nd Annual Conference on Evolutionary Programming, pages 98-108,
River Edge, NJ. World Scientific Publishing.

Michalewicz, Z., Nazhiyath, G., and Michalewicz, M. (1996). A note on
usefulness of geometrical crossover for numerical optimization prob-
lems. In Fogel, L., Angeline, P., and Béack, T., editors, Proc. of the
5th Annual Conference on Evolutionary Programming, pages 305-312.
MIT Press, Cambridge, MA.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for
constrained parameter optimization problems. Evolutionary Compu-
tation, 4(1):1-32.

Reeves, C. R. (1997). Genetic algorithms for the operations researcher.
INFORMS Journal on Computing, 9(3):231-247.

Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms.
Verlag Dr. Kova¢, Hamburg.

Runarsson, T. P. (2000). Evolutionary Problem Solving. PhD thesis, Uni-
versity of Iceland, Reykjavik, Iceland.

Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained
evolutionary optimization. /[EEE Transactions on Evolutionary Com-
putation, 4(3):284-294.

Schwefel, H.-P. (1995). Evolution and Optimum Secking. Wiley, New-
York.

Siedlecki, W. and Sklansky, J. (1989). Constrained genetic optimization
via dynamic reward-penalty balancing and its use in pattern recogni-
tion. In International Conference on Genetic Algorithms, pages 141—
149.

Smith, A. E. and Coit, D. W. (1997). Penalty functions. In Bick, T.,
Fogel, D. B., and Michalewicz, Z., editors, Handbook on Evolutionary
Computation, pages C5.2:1-6. Oxford University Press.

Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made
faster. IEEE Transactions on Evolutionary Computation, 3(2):82-102.

REFERENCES 109

Appendix: Test Function Suite
Minimize (Floundas and Pardalos, 1987):

4 4 13
filx) =53 jwi =53 2l -3 a
i=1 i=1

i=5

subject to:

g1(x) =221+ 2z + 210+ 211 — 10K 0
g2(x) = 221 + 2x3 + 210+ 12 — 10< 0
g3(x) = 2z2 + 223 + 211+ 212 — 100
ga(x) = —8x1 + 21050

gs(x) = ~8r2+ 211 <0

ge(x) = —8ra+ 21250

g7(x) = —2x4 — x5 + 210 < 0

gs(x) = —2z¢ —x7 + 711 < 0

go(x) = -2z — o+ 212 < 0

where the bounds are 0 < z; <1 (¢ =1,...,9), 0 < & < 100 (= 10,11,12) and
0 < z13 £ 1. The global minimum is at x"=(1,1,1,1,1,1,1,1,1,3,3,3,1) where six
constraints are active (g1,82,83,87,8s and go) and fi(x*) = —15.

Maximize (Koziel and Michalewicz, 1999):

_ '22;1 cos (2;) — 2 [T1 cos?(w:)
\/E?:l Z‘T?

f2(x)

subject to:

g1(x) =075 - [[= <0

i=1
n

ga2(x) = Z z; ~7.5n <0
i=1
where n =20 and 0 < z; £ 10 (¢ = 1,...,n). The global maximum is unknown, the
best we found is fa(x*) = 0.803619 (which, to the best of our knowledge, is better

than any reported value), constraint g;is close to being active (g1 = —1078).

Maximize (Michalewicz et al., 1996):

fa) = (V)" []

h;(x)=2w?—1=0

i=1

110 EVOLUTIONARY OPTIMIZATION

where n = 10and 0 < 2; €1 (¢ =1,...,n). The global maximum is at =} = 1/\/n
(i=1,...,n) where f3(x") = 1.

Minimize (Himmelblau, 1972):
fa(x) = 5.3578547x5 + 0.8356891z1 25 + 37.293239x1 — 40792.141

subject to:

g1(x) = 85.334407 + 0.0056858z2x5 + 0.0006262z1x4 — 0.0022053z325 — 92 < 0
g2(x) = —85.334407 — 0.0056858z,x5 — 0.0006262x124 + 0.0022053z325 < 0
ga(x) = 80.51249 + 0.0071317x225 + 0.0029955z1x2 + 0.0021813z3 — 110 < 0
ga(x) = —80.51249 — 0.0071317z225 — 0.0029955x1 22 — 0.0021813z3 + 90 < 0
gs(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x 123 + 0.00190852314 — 25 < 0
ge(x) = —9.300961 — 0.0047026x325 — 0.0012547xz123 — 0.0019085x324 + 20 < 0

where 78 < z1 < 102, 33 € z2 < 45 and 27 € z; < 45 (1 = 3,4,5). The

optimum solution is x* =(78, 33, 29.995256025682, 45, 36.775812905788) where
fa(x*) = —30665.539. Two constraints are active (g1 and ge).

Minimize (Hock and Schittkowski, 1981):
f5(x) = 3z1 + 0.00000123 + 222 + (0.000002/3)z}
subject to:

g1{x) = —z4 + 23 — 0.55 <0

ga(x) = —z3+ x4 —0.55<0

hz(x) = 1000sin(—xz3 — 0.25) + 1000sin(—z4 — 0.25) + 894.8 —z; =0
hy(x) = 1000 sin(zs — 0.25) + 1000 sin({xs — x4 — 0.25) + 894.8 ~ 3 =0
hs(x) = 1000sin(z4 — 0.25) + 1000sin(zs — zs — 0.25) + 1294.8 = 0

where 0 < 1 < 1200, 0 < 22 < 1200, —0.55 < 23 < 0.55 and —0.55 < z4 < 0.55.
The best known solution (Koziel and Michalewicz, 1999) x* = (679.9453,1026.067,
0.1188764, —0.3962336) where f5(x*) = 5126.4981.

Minimize (Floundas and Pardalos, 1987):
fo(x) = (w1 — 10)°® + (z2 — 20)°
subject to:

g1(x) = —(21 - 5)* — (22 — 5)* +100 < 0
g2(x) = (21 — 6) + (z2 — 5)° — 82.81 <0

where 13 < z3 < 100 and 0 < 25 < 100. The optimum solution is x* = (14.095, 0.8429)
where fg(x*) = —6961.81388. Both constraints are active.

REFERENCES 111

Minimize (Hock and Schittkowski, 1981):

fr(x) = 2%+ 23 + 22 — 1421 — 1622 + (23 — 10)% + 4(m4 — 5)° + (x5 — 3)% +
2(xe — 1)* + 522 + T(zs — 11)% + 2(wg — 10)* + (x10 — 7)% + 45

subject to:

gi(x) = —105 + 4z1 + 5z2 — 327 + 915 < 0

ga(x) = 10z, — 822 — 1727 + 225 < 0

gs(x) = —8z; + 222 + 520 ~ 2210~ 12<0

ga(x) = 3(z1 — 2)2 + 4(x2 — 3)% + 202 ~ T2y — 120 <0
gs(x) = 522 + 8xa + (3 —6)° — 224 ~40< 0

ge(x) = 3 + 2(x2 — 2)° — 2w122 + 1425 — 626 < 0
g7(x) = 0.5(x1 — 8)° + 2(w2 —4)* + 322 — 26— 30 <0
ga(x) = —3x1 + 622 + 12(xo — 8)% — 710 <0

where =10 < #; < 10 (¢ = 1,...,10). The optimum solution is x* = (2.171996,
2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927) where f7(x*) = 24.3062091. Six constraints are active (g1, g2, £3, 84,
gs and ge).

Maximize (Koziel and Michalewicz, 1999):

sin® (272) sin(27x2)
3z + x2)

fa(x) =

subject to:

gi(x)=af —x2+1<0
gg(x)zl—:c1+(x2—4)250

where 0 < x1 € 10 and 0 < 22 £ 10. The optimum is located at x* = (1.2279713,
4.2453733) where fs(x*) = 0.095825. The solution lies within the feasible region.

Minimize (Hock and Schittkowski, 1981):
fo(x) = (x1 — 10)% + 5(x2 — 12)® + 5§ + 3(za — 11)* +
10z§ + 7x2 + 2 — dzgxr — 1026 — 87
subject to:
g1(x) = =127 + 227 + 323 + 23 + 425 + 525 < 0
g2(X) = —282 + Tx1 + 3o + 1023 + 24 — 05 < O

g3(x) = —196 + 23z1 + x5 + 625 — 87 < 0
ga(x) = 423 + 2% — 32125 + 233 + 526 — 1127 <0

112 EVOLUTIONARY OPTIMIZATION

where ~10 < z; < 10 for (i = 1,...,7). The optimum solution is x* = (2.330499,
1951372, —0.4775414, 4.365726, —0.6244870, 1.038131, 1.594227) where fo(x*) =
680.6300573. Two constraints are active (g1 and gq).

Minimize (Hock and Schittkowski, 1981):
fro{x) =1 + z2 + 23
subject to:

gi1(x) = —1 +0.0025(z4 + z6) < 0

g2(x) = —1 4 0.0025(zs + x7 — 24) < 0

ga(x) = —1+0.01(zs —25) <0

ga(x) = —x176 + 833.33252x4 + 10021 — 83333.333 < 0
gs5(x) = —zaw7 + 1250x5 + zaq — 125024 < 0

ge(x) = —x3xs + 1250000 + x3xs — 2500x5 < O

where 100 < z; < 10000, 1000 < z; < 10000 (i = 2,3) and 10 £ z; < 1000
(i =4,...,8). The optimum solution is x* = (579.3167, 1359.943, 5110.071, 182.0174,

295.5985, 217.9799, 286.4162, 395.5979) where fio(x*) = 7049.3307. Three con-
straints are active (g1, gz and g3).

Minimize (Koziel and Michalewicz, 1999):
fu(x) = 2t + (w2 — 1)°
subject to:

h(x) =z -2} =0

where =1 < 21 <1 and —1 < z2 £ 1. The optimum solution is x* = (il/\/Q_,l/Z)
where fi1(x*) = 0.75.

Maximize (Koziel and Michalewicz, 1999):
Fr2(x) = (100 — (z1 ~ 5)° — (x2 — 5)* — (w3 — 5)%)/100
subject to:

g(x) = (@1 — p)* + (22 —)% + (m3 — r)? — 0.0625 < 0

where 0 < #; £ 10 (¢ = 1,2,3) and p,q,r = 1,2,...,9. The feasible region of the
search space consists of 9% disjointed spheres. A point (z1,2,x3) is feasible if and
only if there exist p, ¢, such that the above inequality holds. The optimum is located
at x* = (5,5,5) where fi12(x*) = 1. The solution lies within the feasible region.

REFERENCES 113

Minimize (Hock and Schittkowski, 1981):
fls(x) — ewlwzrsm«:ms
subject to:

mx)=22+22+22+22+22-10=0
hz(x) = X2X3 — 5:1:4:175 =0
ha(x)=ai+23+1=0

where —2.3 < 2; < 23 (1 = 1,2) and —8.2 < x; £ 3.2 (2 = 3,4,5). The op-
timum solution is x* = (—1.717143, 1.595709, 1.827247, —0.7636413, —0.763645)
where fiz(x*) = 0.0539498.

This page intentionally left blank

11T

MULTI-OBJECTIVE OPTIMIZATION

This page intentionally left blank

Chapter 5

EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION: A CRITICAL REVIEW

Carlos A. Coello Coello

“We will say that members of a collectivity enjoy maximum ophelimity in a
certain position when it is impossible to find a way of moving from that po-
sition very slightly in such a manner that the ophelimity enjoyed by each of
the individuals in the collectivity increases or decreases. That is to say, any
small displacement in departing from that position necessarily has the effect of
increasing the ophelimity which certain individuals enjoy, and decreasing that
which others enjoy, of being agreeable to some and disagreeable to others”
—Vilfredo Pareto, Manual of Political Economy, 189%

Abstract In this chapter, we will review some of the most representative research
in the field of evolutionary multiobjective optimization. We will discuss
the historical roots of multiobjective optimization, the motivation to
use evolutionary algorithms, and the most popular techniques currently
in use. Then, we will discuss some of the research currently under way,
including our own. At the end, we will provide what we consider to be
some of the most promising paths of future research.

Keywords: evolutionary multiobjective optimization, evolutionary algorithms, vec-
tor optimization, multiobjective optimization, genetic algorithms, mul-
ticriteria optimization

118 EVOLUTIONARY OPTIMIZATION

1. Introduction

Most optimization problems naturally have several objectives to be
achieved (normally conflicting with each other), but in order to simplify
their solution, they are treated as if they had only one (the remaining
objectives are normally handled as constraints). These problems with
several objectives, are called “multiobjective” or “vector” optimization
problems, and were originally studied in the context of economics. How-
ever, scientists and engineers soon realized that such problems naturally
arise in all areas of knowledge.

Over the years, the work of a considerable amount of operational
researchers has produced an important number of techniques to deal
with multiobjective optimization problems (Miettinen, 1998). However,
it was until relatively recently that researchers realized of the potential
of evolutionary algorithms (EAs) in this area.

This chapter will review the most important research in the area
now called Evolutionary Multi-Objective Optimization, or EMOO for
short. The importance of this field is reflected by a significant increment
(mainly during the last five years) of technical papers in international
conferences and peer-reviewed journals, special sessions in international
conferences and interest groups in the Internet’.

The organization of this chapter is the following: first, we will provide
some basic concepts used in multiobjective optimization. Then, we will
briefly discuss the historical roots of this discipline, and the motivation
for using evolutionary algorithms. After that, we will do a critical review
of the most popular EMOO techniques currently available, including
some of their applications. Finally, we will discuss some of the research
currently under way, including our own. We will finish this chapter with
a brief discussion of what we consider to be some of the most promising
paths of future research.

2. Definitions

We are interested in solving multiobjective optimization problems
(MOPs) of the form:

minimize [f1(x), fa(x),. .., fe(x)] (5.1)

subject to the m inequality constraints:

"The author maintains an EMOO repository which currently includes over 650
bibliographical entries at: http://www.lania.mx/“ccoello/EMOO/ with a mirror at
http://www.jeo.org/emo/

Evolutionary Multiobjective Optimization 119

G(x)>0 i=1,2,...,m (5.2)

and the p equality constraints:

hix)=0 i=1,2,...,p (5.3)

where k is the number of objective functions f; : R® — R. Wecall x =
[z1,Z2, - - ., wn]T the vector of decision variables. We wish to determine
from among the set F of all numbers which satisfy (5.2) and (5.3) the
particular set zj,x3,...,Z; which yields the optimum values of all the
objective functions.

2.1 Pareto Optimum

It is rarely the case that there is a single point that simultaneously
optimizes all the objective functions. Therefore, we normally look for
“trade-offs”, rather than single solutions when dealing with multiobjec-
tive optimization problems. The notion of “optimum” is therefore, differ-
ent. The most commonly adopted notion of optimality is that originally
proposed by Francis Ysidro Edgeworth (1881) and later generalized by
Vilfredo Pareto (1896). Although some authors call Edgeworth-Pareto
optimum to this notion (see for example Stadler (1988)), we will use the
most commonly accepted term: Pareto optimum.

We say that a vector of decision variables x* € F is Pareto optimal
if there does not exist another x € F such that fi(x) < fi(x*) for all
i=1,...,kand fj(x) < fj(x*) for at least one j.

In words, this definition says that x* is Pareto optimal if there exists
no feasible vector of decision variables x € F which would decrease some
criterion without causing a simultaneous increase in at least one other
criterion. Unfortunately, this concept almost always gives not a single
solution, but rather a set of solutions called the Pareto optimal set. The
vectors x* correspoding to the solutions included in the Pareto optimal
set are called nondominated. The plot of the objective functions whose
nondominated vectors are in the Pareto optimal set is called the Pareto
front.

3. Historical Roots

John von Neumann and Oskar Morgenstern (1944) were the first to
recognize the existence of optimization problems in economics that were
“a peculiar and disconcerting mixture of several conflicting problems”.
However, no real contribution to the solution of such problems was made
until the 1950s.

120 EVOLUTIONARY OPTIMIZATION

Harold W. Kuhn and Albert W. Tucker (1951) introduced a vector-
valued objective function in mathematical programming—a vector max-
imum problem, and derived the optimality conditions for efficient solu-
tions. The so-called “proper efficiency” in the context of multiobjective
optimization was also formulated in this seminal paper that many con-
sider as the first serious attempt to derive a theory in this area. This
same direction was later followed by Arrow et al. (1953) who used the
term ‘“admissible” instead of “efficient” points.

However, multiobjective optimization theory remained relatively un-
developed during the 1950s, and the subject was scarcely covered by
only a few authors (see for example (Koopman, 1953; Karlin, 1959)).

The application of multiobjective optimization to domains outside
economics began with the work of Tjalling Koopmans (1951) in produc-
tion theory and with the work of Marglin (1967) in water resources plan-
ning. The first application of multiobjective optimization in engineering
was in the early 1960s (Zadeh, 1963), but its use became generalized
until the 1970s (Stadler, 1975; Cohon, 1978).

Good reviews of existing mathematical programming techniques for
multiobjective optimization can be found in a variety of references (see
for example (Cohon and Marks, 1975; Hwang et al., 1980; Miettinen,
1998)).

Evolutionary algorithms have been successfully applied to a variety
of optimization problems with very large (intractable) search spaces,
noise, non-differentiable and even dynamic objective functions in the
last few years (Goldberg, 1989; Michalewicz, 1996; Mitchell, 1996; Gen
and Cheng, 1997).

The potential of evolutionary algorithms in this field was hinted in
the late 1960s by Rosenberg (1967), but the first implementation was
produced until the mid-1980s (Schaffer, 1985). Evolutionary algorithms
seem particularly appropriate to solve multiobjective optimization prob-
lems because they deal simultaneously with a set of possible solutions
(the so-called population) which allows us to find several members of the
Pareto optimal set in a single run of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional mathe-
matical programming techniques. Additionally, evolutionary algorithms
are less succeptible to the shape or continuity of the Pareto front (e.g.,
they can easily deal with non-convex Pareto fronts), whereas these two
issues are a real concern for mathematical programming techniques.

Evolutionary algorithms are not the only heuristic technique that has
been used to solve multiobjective optimization problems. The good per-
formance exhibited by some algorithms (e.g., tabu search and simulated
annealing) in combinatorial optimization problems has led researchers to

Evolutionary Multiobjective Optimization 121

develop multiobjective versions of them (Hansen, 1996; Ehrgott, 2000;
Czyzak and Jaszkiewicz, 1997; Gandibleux et al., 1997; Romero and
Manzanares, 1999). Some researchers have also suggested hybrids be-
tween genetic algorithms and other heuristics (e.g., tabu search (Kura-
hashi and Terano, 2000)) for multiobjective optimization. Nevertheless,
our review will only concentrate on evolutionary multiobjective opti-
mization techniques.

4. A Quick Survey of EMOO Approaches

A considerable number of EMOO techniques have been proposed in
the last few years and it is not our intention to enumerate them all
in this chapter (interested readers should refer to (Coello, 1999) and
(Veldhuizen, 1999) for more detailed surveys of EMOO approaches).
Therefore, we will concentrate our discussion on those techniques that
have been more popular among researchers or that are very recent (and
promising according to our own personal criterion). The techniques dis-
cussed are the following: Aggregating functions, VEGA, MOGA, NSGA,
NPGA, target vector approaches and two recent approaches: PAES and
SPEA.

4.1 Aggregating functions

Knowing that an EA? needs scalar fitness information to work, it is
almost natural to propose a combination of all the objectives into a
single one using either an addition, multiplication or any other combi-
nation of arithmetical operations that we could devise. In fact, this is
also the oldest mathematical programming method for multiobjective
optimization, since it can be derived from the Kuhn-Tucker conditions
for inxnondominated solutions (Kuhn and Tucker, 1951). An example
of this approach is a sum of weights of the form:

k
min 3w () (5.4)
i=1

where w; > 0 are the weighting coefficients representing the relative
importance of the & objective functions of our problem. It is usually
assumed that

*We will use the generic term Evolutionary Algorithm throughout this chapter, although
most of the EMOO approaches discussed use genetic algorithms.

122 EVOLUTIONARY OPTIMIZATION

k
> wi=1 (5.5)
i=1
4.1.1 Strengths and weaknesses. The main strengths of this

method are its simplicity and efficiency (computationally speaking). It
can work properly in simple (convex) MOPs with few objective func-
tions. This approach is normally used to generate a single (or a few)
nondominated solution that can be used as an initial solution for other
techniques. One of its main weaknesses is the difficulty to determine the
set of weights that can appropriately scale the objectives when we do
not have enough information about the problem. Its most serious draw-
back is that it cannot generate proper members of the Pareto optimal
set when the Pareto front is concave regardless of the weights used (Das
and Dennis, 1997).

4.1.2 Some Applications.

m Task planning (Jakob et al., 1992).
m System-level synthesis (Blickle et al., 1996).

= Truss optimization (Liu et al., 1998).

4.2 VEGA

David Schaffer (1985) proposed an approach that he called the Vector
Evaluated Genetic Algorithm (VEGA), and that differed of the simple
genetic algorithm (GA) only in the way in which selection was per-
formed. This operator was modified so that at each generation a number
of sub-populations was generated by performing proportional selection
according to each objective function in turn. Thus, for a problem with
k objectives and a population size of M, k sub-populations of size M /k
each would be generated. These sub-populations would be shuffled to-
gether to obtain a new population of size M, on which the GA would
apply the crossover and mutation operators in the usual way.

The solutions generated by VEGA are locally nondominated, but not
necessarily globally nondominated. VEGA presents the so-called “spe-
ciation” problem (i.e., we could have the evolution of “species” within
the population which excel on different objectives). This problem arises
because this technique selects individuals who excel in one objective,
without looking at the others. The potential danger doing that is that
we could have individuals with what Schaffer (1985) called “middling”

Evolutionary Multiobjective Optimization 123

performance3 in all dimensions, which could be very useful for compro-
mise solutions, but that will not survive under this selection scheme,
since they are not in the extreme for any dimension of performance (i.e.,
they do not produce the best value for any objective function, but only
moderately good values for all of them). Speciation is undesirable be-
cause it is opposed to our goal of finding compromise solutions.

4.2.1 Strengths and weaknesses. The main advantages of
this technique are its simplicity and its efficiency. However, as we men-
tioned before, the “middling” problem prevents the technique from find-
ing the compromise solutions that we normally aim to produce. In fact,
if proportional selection is used with VEGA (as Schaffer did), the shuf-
fling and merging of all the sub-populations corresponds to averaging the
fitness components associated with each of the objectives (Richardson
et al., 1989). In other words, under these conditions, VEGA behaves as
an aggregating approach and therefore, it is subject to the same prob-
lems of such techniques.

4.2.2 Some Applications.
® Groundwater pollution containment (Ritzel et al., 1994).
s Constraint-handling (Surry et al., 1995; Coello, 2000c).
& Scheduling (Hilliard et al., 1989).

4.3 MOGA

Fonseca and Fleming (1993) proposed the Multi-Objective Genetic Al-
gorithm (MOGA). The approach consists of a scheme in which the rank
of a certain individual corresponds to the number of individuals in the
current population by which it is dominated. All nondominated individ-
uals are assigned rank 1, while dominated ones are penalized according
to the population density of the corresponding region of the trade-off
surface.

Fitness assignment is performed in the following way (Fonseca and
Fleming, 1993):

1 Sort population according to rank.

2 Assign fitness to individuals by interpolating from the best (rank 1)
to the worst (rank n < N) in the way proposed by Goldberg (1989)

*By “middling”, Schaffer meant an individual with acceptable performance, perhaps above
average, but not outstanding for any of the objective functions.

124 EVOLUTIONARY OPTIMIZATION

(the so-called Pareto ranking assignment process), according to
some function, usually linear, but not necessarily.

3 Average the fitnesses of individuals with the same rank, so that all
of them will be sampled at the same rate.

MOGA is combined with mating restrictions and sharing on the ob-
jective function values to preserve diversity (Deb and Goldberg, 1989).
The authors of this method also provided some guidelines regarding the
way in which niche sizes can be estimated.

4.3.1 Strengths and weaknesses. MOGA has been a very
popular EMOO technique (particularly within the control community),
not only because it is relatively simple to implement, but also because
of its good overall performance (Coello, 1996). Its main weakness is
its dependence on the sharing factor (how to maintain diversity is the
main issue when dealing with EMOO approaches in general). However,
as indicated before, Fonseca and Fleming (1993) have provided some
guidelines regarding the way to compute niche sizes.

4.3.2 Some Applications.

» Controllers design (Tan and Li, 1997; Chipperfield and Fleming,
1995; Schroder et al., 1997)

® Co-synthesis of hardware-software embedded systems (Dick and
Jha, 1998)

® Truss design (Narayanan and Azarm, 1999)

4.4 NSGA

The Nondominated Sorting Genetic Algorithm (NSGA) was proposed
by Srinivas and Deb (1994), and is based on several layers of classifica-
tions of the individuals. Before selection is performed, the population
is ranked on the basis of domination (using Pareto ranking): all non-
dominated individuals are classified into one category (with a dummy
fitness value, which is proportional to the population size). To maintain
the diversity of the population, these classified individuals are shared
(in decision variable space) with their dummy fitness values. Then this
group of classified individuals is removed from the population and an-
other layer of nondominated individuals is considered (i.e., the remainder
of the population is re-classified). The process continues until all indi-
viduals in the population are classified. Since individuals in the first

Evolutionary Multiobjective Optimization 125

front have the maximum fitness value, they always get more copies than
the rest of the population.

4.4.1 Strengths and weaknesses. Some researchers have
reported that NSGA has a lower overall performance than MOGA, and
it seems to be also more sensitive to the value of the sharing factor
than MOGA (Coello, 1996; Veldhuizen, 1999). However, Deb et al.
(2000a,2000b) have recently proposed a new version of this algorithm,
called NSGA-II, which is more efficient (computationally speaking), uses
elitism and a crowded comparison operator that keeps diversity without
specifying any additional parameters. The new approach has not been
extensively tested yet, but it certainly looks promising.

4.4.2 Some Applications.

m Investment portfolio optimization (Vedarajan et al., 1997).

s Optimization of low-thrust interplanetary spacecraft trajectories
(Hartmann et al., 1998).

w Optimization of an industrial nylon 6 semibatch reactor (Mitra
et al., 1998).

4.5 NPGA

Horn et al. (1994) proposed the Niched Pareto Genetic Algorithm
which uses a tournament selection scheme based on Pareto dominance.
Two individuals are compared against a set of members of the population
(typically, 10% of the population size). When both competitors are
either dominated or nondominated (i.e., when there is a tie), the result
of the tournament is decided through fitness sharing in the objective
domain (a technique called equivalent class sharing was used in this
case) (Horn et al., 1994).

4.5.1 Strengths and weaknesses. Since this approach does
not apply Pareto ranking to the entire population, but only to a segment
of it at each run, its main strength are that it is faster than MOGA and
NSGA®. Furthermore, it also produces good nondominated fronts that
can be kept for a large number of generations (Coello, 1996). How-
ever, its main weakness is that besides requiring a sharing factor, this

*Pareto ranking is O(kM?), where k is the number of objectives and M is the population
size

126 EVOLUTIONARY OPTIMIZATION

approach also requires an additional parameter: the size of the tourna-
ment.

4.5.2 Some Applications.
m Design of laminated ceramic composites (Belegundu et al., 1994).
w Airfoil design (Quagliarella and Vicini, 1997).

s Manufacturing cell formation problems (Pierreval and Plaquin,
1998).

4.6 Target Vector Approaches

Under this name we will consider approaches in which the decision
maker has to assign targets or goals that wishes to achieve for each
objectives. The EA in this case, tries to minimize the difference between
the current solution found and the vector of goals (different metrics can
be used for that purpose). The most popular techniques included here
are hybrids with: Goal Programming (Deb, 1999c; Wienke et al., 1992),
Goal Attainment (Wilson and Macleod, 1993; Zebulum et al., 1998) and
the min-max approach (Hajela and Lin, 1992; Coello and Christiansen,
1998).

4.6.1 Strengths and weaknesses. The main strength of these
methods is their efficiency (computationally speaking) because they do
not require a Pareto ranking procedure. However, their main weakness
is the definition of the desired goals which requires some extra computa-
tional effort. Furthermore, these techniques will yield a nondominated
solution only if the goals are chosen in the feasible domain, and such
condition may certainly limit their applicability.

4.6.2 Some Applications.
Design of multiplierless IIR filters (Wilson and Macleod, 1993).
m Structural optimization (Sandgren, 1994; Hajela and Lin, 1992).

m Optimization of the counterweight balancing of a robot arm (Coello
et al., 1998).

5 Although target vector approaches can be considered as another aggregating approach, we
decided to discuss them separately because these techniques can generate (under certain
conditions) non-convex portions of the Pareto front, whereas approaches based on weighted
sums cannot.

Evolutionary Multiobjective Optimization 127

4.7 Recent approaches

Recently, several new EMOO approaches have been developed. We
consider important to discuss briefly at least two of them: PAES and
SPEA.

The Pareto Archived Evolution Strategy (PAES) was introduced by
Knowles and Corne (2000a). This approach is very simple: it uses
a (1+1) evolution strategy (i.e., a single parent that generates a single
offspring) together with a historical archive that records all the nondom-
inated solutions previously found (such archive is used as a comparison
set in a way analogous to the tournament competitors in the NPGA).
PAES also uses a novel approach to keep diversity, which consists of a
crowding procedure that divides objective space in a recursive manner.
Each solution is placed in a certain grid location based on the values of its
objectives. A map of such grid is maintained, indicating the amount of
solutions that reside in each grid location. Since the procedure is adap-
tive, no extra parameters are required (except for the number of divisions
of the objective space). Furthermore, the procedure has a lower compu-
tational complexity than traditional niching methods. PAES has been
used to solve the off-line routing problem (Knowles and Corne, 1999)
and the adaptive distributed database management problem (Knowles
and Corne, 2000).

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced
by Zitzler and Thiele (1999). This approach was conceived as a way
of integrating different EMOO techniques. SPEA uses an archive con-
taining nondominated solutions previously found (the so-called external
nondominated set). At each generation, nondominated individuals are
copied to the external nondominated set. For each individual in this
external set, a strength value is computed. This strength is similar to
the ranking value of MOGA, since it is proportional to the number of
solutions to which a certain individual dominates. The fitness of each
member of the current population is computed according to the strengths
of all external nondominated solutions that dominate it. Additionally,
a clustering technique is used to keep diversity. SPEA has been used to
explore trade-offs of software implementations for DSP algorithms (Zit-
zler et al., 1999) and to solve 0/1 knapsack problems (Zitzler and Thiele,
1999).

Recently, we have been experimenting with a micro-GA (a GA with
small population and a reinitialization mechanism (Krishnakumar, 1989))
for multiobjective optimization (Coello and Toscano, 2001). Our ap-
proach uses two memories: 1) a population memory, which is used as
the source of diversity, and 2) an external memory, which is used to

128 EVOLUTIONARY OPTIMIZATION

archive members of the Pareto optimal set found during the evolution-
ary process. Our micro-GA uses a population of four individuals, which
undergo binary tournament selection, two point crossover and uniform
mutation until nominal convergence is achieved (a small number of itera-
tions is used in our case, but other criteria could also be used). Through
the use of different forms of elitism and a reinitialization process that
mixes good solutions previously found with random solutions, we grad-
ually approach the true Pareto front of a problem. To keep diversity,
we use an approach similar to the adaptive grid proposed by Knowles
and Corne (2000a). The idea is that once the archive that stores non-
dominated vectors (i.e., the external memory) has reached its limit, we
divide the search space that this archive covers, assigning a set of co-
ordinates to each vector. Then, each newly generated nondominated
vector will be accepted only if the geographical location to where it be-
longs is less populated than the most crowded location, or if it belongs
to a location outside the previously specified boundaries (i.e., if it forms
a new niche). The approach has a very low computational cost (with
respecto to Pareto ranking) and we can regulate the amount of points
from the Pareto front that we wish to find through the size of the ex-
ternal memory. Our preliminary results indicate that our micro-GA is
able to generate the Pareto front of difficult test functions (i.e., discon-
nected and concave Pareto fronts) that have been previously adopted to
evaluate EMOO techniques (Coello and Toscano, 2001).

5. Current Research

Being a very active area of research, EMOO has seen a lot of changes
in the last few years and the research trends are constantly changing. We
will focus our discussion in this section to two main areas that currently
interest us: constraint-handling for evolutionary optimization, and in-
corporation of preferences into an EMOQO algorithm. These two areas
have not been studied in enough depth and, from our particular point
of view, seem very promising.

5.1 Handling Constraints

An interesting application of EMOO techniques that we have recently
explored is in constraint-handling (for single-objective evolutionary op-
timization). The most straightforward approach is to redefine the single-
objective optimization of f(x) as a multiobjective optimization problem
in which we will have m 4- 1 objectives, where m is the number of con-

Evolutionary Multiobjective Optimization 129

straints®. Then, we can apply any EMOO technique to the new vec-
tor ¥ = (f(x), fi(x),..., fm(x)), where fi(x),..., fm(x) are the original
constraints of the problem. An ideal solution x would thus have f;(x)=0
for 1 <4 < mand f(x) < f(y) forall feasible y (assuming minimiza-
tion).

However, it should be clear that in single-objective optimization prob-
lems we do not want just good trade-offs; we want to find the best possi-
ble solutions that do not violate any constraints. Therefore, a mechanism
such as Pareto ranking may be useful to approach the feasible region,
but once we arrive to it, we will need to guide the search with a different
mechanism so that we can reach the global optimum. In order to achieve
this goal, we should also be able to maintain diversity in the population.
These aspects are the main focus of the research briefly reviewed in this
section.

Surry et al. (1997) proposed the use of Pareto ranking and VEGA
to handle constraints. In their approach, called COMOGA, the popu-
lation is ranked based on constraint violations (counting the number of
individuals dominated by each solution). Then, one portion of the pop-
ulation is selected based on constraint ranking, and the rest based on
real cost (fitness) of the individuals. COMOGA compared fairly with a
penalty-based approach in a pipe-sizing problem, and was less sensitive
to changes in the parameters, but the results achieved were not better
than those found with a penalty function (Surry and Radcliffe, 1997). It
should be added that COMOGA requires several extra parameters, al-
though its authors argue that the technique is not particularly sensitive
to the values of such parameters.

Parmee and Purchase (1994) implemented a version of VEGA that
handled the constraints of a gas turbine problem as objectives to allow a
GA to locate a feasible region within the highly constrained search space
of this application. However, VEGA was not used to further explore the
feasible region, and instead the authors used specialized operators that
would create a variable-size hypercube around each feasible point to help
the GA to remain within the feasible region at all times. It is important
to notice that no real attempt to reach the global optimum was made in
this case.

Camponogara and Talukdar (1997) proposed to restate a single ob-
jective optimization problem in such a way that two objectives would be
considered: the first would be to optimize the original objective function
and the second would be to minimize:

The assumption that we have m constraints will hold throughout this section.

130 EVOLUTIONARY OPTIMIZATION

®(x) = Y max[0, gi(x))’ (5.6)
i=1

where 3 is normally 1 or 2.

Once the problem is redefined, nondominated solutions with respect
to the two new objectives are generated. The solutions found define
a search direction d = (z; — x;)/|zs — xj|, where z; € S;, z; € Sj,
and S; and S; are Pareto sets. The direction search d is intended to
simultaneously minimize all the objectives. Line search is performed in
this direction so that a solution z can be found such that xz dominates
z; and x; (i.e., x is a better compromise than the two previous solutions
found). Line search takes the place of crossover in this approach, and
mutation is essentially the same, where the direction d is projected onto
the axis of one variable j in the solution space. Additionally, a process
of eliminating half of the population is applied at regular intervals (only
the less fitted solutions are replaced by randomly generated points).

This approach has obvious problems to keep diversity, as it is reflected
by the need to discard the worst individuals at each generation. Also,
the use of line search increases the computational cost of the approach
and it is not clear what is the impact of the segment chosen to search in
the overall performance of the algorithm.

Jiménez et al. (1999) proposed the use of a min-max approach (Chan-
kong and Haimes, 1983) to handle constraints. The main idea of this
technique is to apply a set of simple rules to decide the (binary tourna-
ment) selection process:

1 If the two individuals being compared are both feasible, then select
based on the minimum value of the objective function.

2 If one of the two individuals being compared is feasible and the
other one is infeasible, then select the feasible individual.

3 If both individuals are infeasible, then select based on the max-
imum constraint violation (max g;(x), for j = 1,...,m). The
individual with the lowest maximum violation wins.

A subtle problem with this approach is that the evolutionary pro-
cess first concentrates only on the constraint satisfaction problem and
therefore it samples points in the feasible region essentially at random
(Surry et al., 1995). This means that in some cases (e.g., when the fea-
sible region is disjoint) we might land in an inappropriate part of the
feasible region from which we will not be able to escape. However, this
approach may be a good alternative to find a feasible point in a heavily
constrained search space. Deb (2000) proposed a similar approach but

Evolutionary Multiobjective Optimization 131

using tournament selection based on feasibility. However, niching was
required to maintain diversity in the population.

Coello (2000c) proposed the use of a population-based multiobjective
optimization technique such as VEGA to handle each of the constraints
of a single-objective optimization problem as an objective. At each gen-
eration, the population is split into m + 1 sub-populations (m is the
number of constraints), so that a fraction of the population is selected
using the (unconstrained) objective function as its fitness and another
fraction uses the first constraint as its fitness and so on. This approach
provided good results in several optimization problems (Coello, 2000c).
Its main disadvantage was related to scalability issues. However, in a
recent application in combinational circuit design we were able to suc-
cessfully deal with up to 49 objective functions (Coello et al., 2000b).
Furthermore, the approach showed an important improvement (in terms
of efficiency) with respect to a previous GA-based approach developed
by us for the same task (Coello et al., 2000a).

Recently, we have also explored the use of selection based on domi-
nance (which was defined in terms of feasibility) to handle constraints
(Coello, 2000a). Our approach uses stochastic universal sampling so
that the selection pressure is not too high and no extra procedures are
required to maintain diversity. Also, adaptive crossover and mutation
rates were adopted as part of the approach.

The key for future research in this area is not only to adapt other
EMOO approaches to handle constraints, but to exploit domain knowl-
edge as much as possible. An example of this is the recent work by Ray
et al. (2000) in which solutions are ranked separately based on the value
of their objective functions and their constraints. Then a set of mating
restrictions are applied based on the information that each individual
has of its own feasibility (this idea was inspired on an earlier approach
by Hinterding and Michalewicz (1998)), so that the global optimum can
be reached through cooperative learning.

Other approaches are also possible. For example, we could combine
an EMOO approach with a mechanism to incorporate preferences from
the user (the topic discussed in the next section). Such preferences,
however, could be directly derived from the problem (using the domain
knowledge available), instead of requiring an active participation from
the user.

5.2 Incorporation of Preferences

By looking at most of the EMOOQO papers in the literature, one gets
the impression that researchers seem to forget that the solution of a

132 EVOLUTIONARY OPTIMIZATION

MOP really involves three stages: measurement, search, and decision
making. Most EMOO research tends to concentrate on issues related to
the search of nondominated vectors. However, these nondominated vec-
tors do not provide any insight into the process of decision making itself
(the decision maker (DM) still has to choose manually one of the several
alternatives produced), since they are really a useful generalization of a
utility function under the conditions of minimum information (i.e., all
attributes are considered as having equal importance; in other words, the
DM does not express any preferences of the attributes). Thus, the issue
is how to incorporate the DM’s preferences into an EMOO approach as
to guide the search only to the regions of main interest for the DM.

One way to classify techniques that incorporate preferences from the
DM is based on the moment (within the search process) at which pref-
erences are expressed. According to this criterion, preferences can be
expressed (Horn, 1997): a priori, a posteriori, or in an interactive way
when using EAs.

If preferences are expressed a priori, the DM has to define them in
advance (before actually performing the search). An example of this are
the aggregating approaches discussed in Section 4.1. Shaw and Fleming
(1997), Greenwood et al. (1997), and Cvetkovi¢ and Parmee (2000) have
proposed a priori schemes to incorporate preferences into an EMOO
approach.

In the second case, we search first, and decide later. Most EMOO
approaches (those that use Pareto ranking) fall into this category. In this
case, we use an EA to search the “best possible” alternatives, where “best
possible” normally means members of the Pareto optimal set. Massebeuf
et al. (1999) proposed an a posteriori scheme to incorporate preferences
into an EMOO approach.

The third case is the less common in the EA literature: approaches
that allow to guide the search of the EA using preferences from the DM,
but in an interactive way (i.e., assuming that such preferences can change
over time). Tanino et al. (1993) and Fonseca and Fleming (1993,1998)
proposed interactive schemes to incorporate preferences into an EMOO
approach7.

The Operations Research (OR) literature has normally favored inter-
active approaches for several reasons (Monarchi et al., 1973):

1 It is normally the case that the DM wishes to find trade-offs that
satisfy only a certain set of criteria, instead of wishing to find

"The approach was also used to handle constraints.

Evolutionary Multiobjective Optimization 133

solutions that are the best trade-off considering all criteria at the
same time.

2 The preferences of the DM can (and normally do) change over
time.

3 The DM normally learns through the search process and tends to
change (in consequence) his aspirations or desires.

If we analyze the literature on multi-criteria decision making (MCDM),
we find another way of classifying approaches to incorporate preferences.
In this case, two main lines of thought are normally considered: the so-
called French School, which is based on the outranking concept (Vincke,
1995) and the American School, which is based on the Multi-Attribute
Utility Theory (MAUT) (Hwang and Masud, 1979). Both outranking
and MAUT can be used a priori, a posteriori or in an interactive way.

Outranking relationships are built under the form of pairwise com-
parisons of the objects under study (a graph representing preferences is
normally used). Pairs of objects are compared to determine if there ex-
ists preference, indifference, or incomparability between them. Weights
for each objective are derived from these pairwise comparisons. It is
important, however, to be aware of the fact that these pairwise com-
parisons may lead to intransitive or incomplete relations (van Huylen-
broeck, 1995). The main drawbacks of outranking approaches are their
high computational cost when there is a large amount of alternatives,
the high amount of parameters that they require, and the difficulties
to define some of these alternatives (e.g., the “degree of credibility”)
(Brans et al., 1986). Rekiek et al. (2000) and Massebeuf et al. (1999)
have proposed EMOO approaches that incorporate preferences using
PROMETHEE (Brans et al., 1986) (Preference Ranking Organization
Method for Enrichment Evaluations), which is an outranking approach.

MAUT is based on the formulation of an overall utility function. Al-
though it is normally assumed that such utility function can be obtained,
when that is not possible, then nondominated solutions can be used (i.e.,
we assume that all objectives are given the same importance). Certain
flexibility can be obtained through the concept of “weak dominance”
(Loucks, 1975), which can be used to express a certain lack of conviction.
It is also possible for the DM to express indifference, which means that
both vectors under comparison are equivalent and that it does not mat-
ter which one is selected. It is worth mentioning that “indifference” is
not the same that “incomparability” (as defined in outranking methods),
because the second indicates vectors with strong opposite merits (van
Huylenbroeck, 1995). MAUT does not allow intransitivities to occur.

134 EVOLUTIONARY OPTIMIZATION

This considerably simplifies the modelling of the preferences. However,
it is not very difficult to produce an example in which intransitivities
“naturally” emerge (see for example (van Huylenbroeck, 1995)). Green-
wood et al. (1997) and Cvetkovi¢ and Parmee (2000) have proposed
EMOO approaches that incorporate preferences using utility functions.

Despite this research, there is an obvious lack of models for the in-
corporation of preferences into an EMOO approach. Issues such as scal-
ability and the presence of several DMs deserve special attention when
devising such a model.

As we have indicated before (Coello, 2000b), we believe that there
are several approaches from OR that could be easily coupled with EAs.
Approaches such as PROTRADE (PRObabilistic TRAde-off DEvelop-
ment method) (Goicoechea et al., 1979) and SEMOPS (Sequential Multi-
Objective Problem Solving method) (Monarchi et al., 1973) could be
easily tailored to incorporate preferences into EMOO approaches. Both
approaches are interactive and assume a degree of uncertainty from the
DM with respect to the trade-offs of the objectives under study. Com-
promise programming (Duckstein, 1984) is also promising, and it has
in fact been used by some EMOO researchers (see for example (Deb,
1999a; Bentley and Wakefield, 1997)). However, more complex articula-
tions of preferences are possible if the approach is used interactively (it
has been normally used as an a priori technique).

We believe that a key issue to foster the development of this area in
the future is that EMOO researchers be aware of the work done by oper-
ational researchers in MCDM. It should be clear to EMOO researchers
that searching efficiently nondominated vectors is not the only important
topic in multiobjective optimization.

6. Future Research Paths

As has been indicated before in some of the sections of this chapter,
a lot of work remains to be done in this area. We will describe next
some of the future research paths that we consider most promising in
this area:

Combinatorial Optimization: We believe that EMOO researchers
can benefit from the considerable amount of work done in com-
binatorial optimization by relying on multiobjective versions of
such problems. Such problems are not only challenging, but have
also been studied in great depth (Ehrgott and Gandibleux, 2000).
The benchmarks available for problems like the 0/1 knapsack can
be used to test EMOQO approaches. Such idea has been explored
by a few EMOO researchers (for example (Zitzler and Thiele,

Evolutionary Multiobjective Optimization 135

1999; Jaszkiewicz, 2000)), but more work in this direction is still
necessary.

w Efficient data structures: EMOQO researchers have paid little at-
tention to the data structures used to store nondominated vectors.
Operational researchers have used, for example, domination-free
quad trees where a nondominated vector can be retrieved from
the tree very efficiently. Checking if a new vector is dominated by
the vectors in one of these trees can also be done very efficiently
(Habenicht, 1982). Efficiency has been emphasized in EMOO re-
search until recently (Deb et al., 2000a), mainly regarding the num-
ber of comparisons performed for ranking the population and to
maintain diversity, but a lot of work is still necessary.

m Theoretical issues: There are very few theoretical studies related
to EMOO, and most of them concentrate on convergence issues
(Rudolph, 1998; Rudolph and Agapie, 2000; Hanne, 2000; Veld-
huizen and Lamont, 1998), or on ways to compute niche sizes
(Fonseca and Fleming, 1993; Horn et al., 1994). However, many
other important areas have not been studied. It would be very in-
teresting to study, for example, the structure of fitness landscapes
in MOPs. Such study could provide some insights regarding the
sort of problems that are particularly difficult for EAs and could
also provide clues regarding the design of more powerful EMOO
techniques. Also, there is a need for detailed studies of the dif-
ferent aspects involved in the parallelization of EMOO techniques
(e.g., load balancing, impact on Pareto convergence, performance
issues, etc.), including new algorithms that are more suitable for
parallelization than those currently in use.

There are also several other research areas that are worth explor-
ing. For example: development of MOP test functions (Veldhuizen
and Lamont, 1999; Deb, 1999b; Deb and Meyarivan, 2000), appropri-
ate metrics that allow us to evaluate performance in a quantitative way
(Zitzler et al., 2000; Veldhuizen, 1999; Fonseca and Fleming, 1996), to
study in more depth the role of local search in multiobjective optimiza-
tion (Ishibuchi and Murata, 1996; Parks and Miller, 1998; Knowles and
Corne, 2000; Coello and Toscano, 2001), etc. Some of these areas are
actively being pursued by several researchers nowadays.

7. Summary

We have tried to give a general perspective of the research that has
been done and that is currently under way in evolutionary multiobjective

136 EVOLUTIONARY OPTIMIZATION

optimization, including our own. Starting with a short discussion on the
origins of a separate discipline devoted to the study of MOPs, we have
led our discussion towards the main motivations to use EAs in these
types of problems.

We have stressed the importance of studying the several issues in-
volved in solving a MOP, rather than just focusing our research in the
development of efficient procedures to generate nondominated vectors.
Decision making is as important (or maybe more) than just generating
trade-offs for a MOP, and most EMOO researchers seem to overlook this
matter.

We have also indicated some promising research trends (from our per-
sonal perspective), from which the lack of theoretical studies remains as
the area that requires more attention from EMOO researchers.

Finally, we have also surveyed the main EMOO approaches currently
in use, indicating some of their applications reported in the literature,
as well as their advantages and disadvantages.

But overall, one of the most reiterative issues that we have underlined
in this chapter has been the importance of relying on the work done in
OR as a basis for pursuing research in EMOO. The awareness of the
important contributions to multiobjective optimization that operational
researchers have made will help EMOO researchers to have a wider per-
spective of the field and a deeper understanding of the fundamental
problems that need to be solved in this discipline.

Acknowledgements

The author acknowledges support from the mexican Consejo Nacional
de Ciencia y Tecnologia (CONACYyT) through project number 34201-A.

References

Arrow, K. J., Barankin, E. W., and Blackwell, D. (1953). Admissible
Points of Convex Sets. In Kuhn, H. W. and Tucker, A. W., editors,
Contributions to the Theory of Games, pages 87-91. Princeton Uni-
versity Press, Princeton, New Jersey.

Belegundu, A. D., Murthy, D. V., Salagame, R. R., and Constants, E. W.
(1994). Multiobjective Optimization of Laminated Ceramic Compos-
ites Using Genetic Algorithms. In Fifth AIAA/USAF/NASA Sym-
posium on Multidisciplinary Analysis and Optimization, pages 1015—
1022, Panama City, Florida. ATAA. Paper 84-4363-CP.

Bentley, P. J. and Wakefield, J. P. (1997). Finding Acceptable Solu-
tions in the Pareto-Optimal Range using Multiobjective Genetic Al-
gorithms. In Chawdhry, P. K., Roy, R., and Pant, R. K., editors, Soft

REFERENCES 137

Computing in Engineering Design and Manufacturing, Part 5, pages
231-240, London. Springer Verlag London Limited. (Presented at the
2nd On-line World Conference on Soft Computing in Design and Man-
ufacturing (WSC2)).

Blickle, T., Teich, J., and Thiele, L. (1996). System-level synthesis using
evolutionary algorithms. Technical Report TIK Report-Nr. 16, Com-
puter Engineering and Communication Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH), Gloriastrasse 35, 8092 Zurich.

Brans, J. P., Vincke, P., and Mareschal, B. (1986). How to select and
how to rank projects: the PROMETHEE method. European Journal
of Operational Research, 24(2):228-238.

Camponogara, E. and Talukdar, S. N. (1997). A Genetic Algorithm for
Constrained and Multiobjective Optimization. In Alander, J. T., edi-
tor, 3rd Nordic Workshop on Genetic Algorithms and Their Applica-
tions (3INWGA), pages 49-62, Vaasa, Finland. University of Vaasa.

Chankong, V. and Haimes, Y. Y. (1983). Multiobjective Decision Making:
Theory and Methodology. Systems Science and Engineering. North-
Holland.

Chipperfield, A. J. and Fleming, P. J. (1995). Gas Turbine Engine Con-
troller Design using Multiobjective Genetic Algorithms. In Zalzala, A.
M. S., editor, Proceedings of the First IEE/IEEE International Con-
ference on Genetic Algorithms in Engineering Systems : Innovations
and Applications, GALESIA ’95, pages 214-219, Halifax Hall, Univer-
sity of Sheffield, UK. IEEE.

Coello, C. A., Christiansen, A. D., and Aguirre, A. H. (2000a). Use of
Evolutionary Techniques to Automate the Design of Combinational
Circuits. International Journal of Smart Engineering System Design,
2(4):299-314.

Coello, C. A. C. (1996). An Empirical Study of Evolutionary Techniques
for Multiobjective Optimization in Engineering Design. PhD thesis,
Department of Computer Science, Tulane University, New Orleans,
LA.

Coello, C. A. C. (1999). A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques. Knowledge and Information
Systems. An International Journal, 1(3):269-308.

Coello, C. A. C. (2000a). Constraint-handling using an evolutionary mul-
tiobjective optimization technique. Civil Engineering Systems, 17:319—
346.

Coello, C. A. C. (2000b). Handling Preferences in Evolutionary Multi-
objective Optimization: A Survey. In 2000 Congress on Evolutionary
Computation, volume 1, pages 30-37, Piscataway, New Jersey. IEEE
Service Center.

138 EVOLUTIONARY OPTIMIZATION

Coello, C. A. C. (2000c). Treating Constraints as Objectives for Single-
Objective Evolutionary Optimization. Engineering Optimization, 32(3)
:275-308.

Coello, C. A. C., Aguirre, A. H., and Buckles, B. P. (2000b). Evolution-
ary Multiobjective Design of Combinational Logic Circuits. In Lohn,
J., Stoica, A., Keymeulen, D., and Colombano, S., editors, Proceedings
of the Second NASA/DoD Workshop on Evolvable Hardware, pages
161-170, Los Alamitos, California. IEEE Computer Society.

Coello, C. A. C. and Christiansen, A. D. (1998). Two New GA-based
methods for multiobjective optimization. Civil Engineering Systems,
15(3):207-243.

Coello, C. A. C., Christiansen, A. D., and Aguirre, A. H. (1998). Using a
New GA-Based Multiobjective Optimization Technique for the Design
of Robot Arms. Robotica, 16(4):401-414.

Coello, C. A. C. and Toscano, G. (2001). A Micro-Genetic Algorithm
for Multiobjective Optimization. In Zitzler, E., Deb, K., Thiele, L.,
Coello, C. A. C., and Corne, D., editors, First International Confer-
ence on Evolutionary Multi-Criterion Optimization, pages 127-141.
Springer-Verlag. Lecture Notes in Computer Science No. 1993.

Cohon, J. L. (1978). Multiobjective Programming and Planning. Aca-
demic Press.

Cohon, J. L. and Marks, D. H. (1975). A Review and Evaluation of
Multiobjective Programming Techniques. Water Resources Research,
11(2):208-220.

Cvetkovié, D. and Parmee, 1. C. (2000). Designer’s preferences and multi-
objective preliminary design processes. In Parmee, 1. C., editor, Pro-
ceedings of the Fourth International Conference on Adaptive Comput-
ing in Design and Manufacture (ACDM’2000), pages 249-260. PEDC,
University of Plymouth, UK, Springer London.

Czyzak, P. and Jaszkiewicz, A. (1997). Pareto Simulated Annealing. In
Fandel, G. and Gal, T., editors, Multiple Criteria Decision Making.
Proceedings of the Xlith International Conference, pages 297-307, Ha-
gen, Germany. Springer-Verlag.

Das, I. and Dennis, J. (1997). A Closer Look at Drawbacks of Minimizing
Weighted Sums of Objectives for Pareto Set Generation in Multicri-
teria Optimization Problems. Structural Optimization, 14(1):63-69.

Deb, K. (1999a). Multi—Objective Evolutionary Algorithms: Introduc-
ing Bias Among Pareto—Optimal Solutions. KanGAL report 99002,
Indian Institute of Technology, Kanpur, India.

Deb, K. (1999b). Multi-Objective Genetic Algorithms: Problem Difficul-
ties and Construction of Test Problems. Evolutionary Computation,
7(3):205-230.

REFERENCES 139

Deb, K. (1999c). Solving Goal Programming Problems Using Multi-
Objective Genetic Algorithms. In 1999 Congress on Evolutionary Com-
putation, pages 77-84, Washington, D.C. IEEE Service Center.

Deb, K. (2001). An Efficient Constraint Handling Method for Genetic
Algorithms. Computer Methods in Applied Mechanics and Engineer-
ing. (in Press).

Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. (2000a). A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II. KanGAL report 200001, Indian Institute of
Technology, Kanpur, India.

Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. (2000b). A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II. In Proceedings of the Parallel Problem Solv-
ing from Nature VI Conference, pages 849-858. Springer.

Deb, K. and Goldberg, D. E. (1989). An Investigation of Niche and
Species Formation in Genetic Function Optimization. In Schaffer,
J. D., editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 42-50, San Mateo, California. George Ma-
son University, Morgan Kaufmann Publishers.

Deb, K. and Meyarivan, T. (2000). Constrained Test Problems for Multi-
Objective Evolutionary Optimization. KanGAL report 200005, Indian
Institute of Technology, Kanpur, India.

Dick, R. P. and Jha, N. K. (1998). MOGAC: A Multiobjective Genetic
Algorithm for Hardware-Software Co-synthesis of Hierarchical Het-
erogeneous Distributed Embedded Systems. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 17(10) :920—
935.

Duckstein, L. (1984). Multiobjective Optimization in Structural Design:
The Model Choice Problem. In Atrek, E., Gallagher, R. H., Ragsdell,
K. M., and Zienkiewicz, O. C., editors, New Directions in Optimum
Structural Design, pages 459—481. John Wiley and Sons.

Edgeworth, F. Y. (1881). Mathematical Physics. P. Keagan, London,
England.

Ehrgott, M. (2000). Approximation algorithms for combinatorial multi-
criteria optimization problems. International Transactions in Opera-
tional Research, 7:5-31.

Ehrgott, M. and Gandibleux, X. (2000). An Annotated Bibliography of
Multi-objective Combinatorial Optimization. Technical Rep.- 62/2000,
Fachbereich Mathematik, Universitat Kaiserslautern, Kaiserslautern,
Germany.

Fonseca, C. M. and Fleming, P. J. (1993). Genetic Algorithms for Multi-
objective Optimization: Formulation, Discussion and Generalization.

140 EVOLUTIONARY OPTIMIZATION

In Forrest, S., editor, Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, pages 416423, San Mateo, California.
University of Illinois at Urbana-Champaign, Morgan Kauffman Pub-
lishers.

Fonseca, C. M. and Fleming, P. J. (1996). On the Performance As-
sessment and Comparison of Stochastic Multiobjective Optimizers.
In Voigt, H.-M., Ebeling, W., Rechenberg, 1., and Schwefel, H.-P., ed-
itors, Parallel Problem Solving from Nature—PPSNIV, Lecture Notes
in Computer Science, pages 584—593, Berlin, Germany. Springer-Verlag.

Fonseca, C. M. and Fleming, P. J. (1998). Multiobjective Optimization
and Multiple Constraint Handling with Evolutionary Algorithms—
Part I: A Unified Formulation. /IEEE Transactions on Systems, Man,
and Cybernetics, Part A: Systems and Humans, 28(1):26-37.

Gandibleux, X., Mezdaoui, N., and Fréville, N. (1997). A tabu search
procedure to solve combinatorial optimisation problems. In Caballero,
R., Ruiz, F., and Steuer, R., editors, Advances in Multiple Objective
and Goal Programming, volume 455 of Lecture Notes in Economics
and Mathematical Systems, pages 291-300. Springer-Verlag.

Gen, M. and Cheng, R. (1997). Genetic Algorithms and Engineering
Design. John Wiley and Sons, Inc., New York.

Goicoechea, A., Duckstein, L., and Fogel, M. (1979). Multiple objectives
under uncertainty: An illustrative application of PROTRADE. Water
Resources Research, 15(2):203-210.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Reading,
Massachusetts.

Greenwood, G. W., Hu, X. S., and D’Ambrosio, J. G. (1997). Fitness
Functions for Multiple Objective Optimization Problems: Combining
Preferences with Pareto Rankings. In Belew, R. K. and Vose, M. D.,
editors, Foundations of Genetic Algorithms 4, pages 437455, San Ma-
teo, California. Morgan Kaufmann.

Habenicht, W. (1982). Quad trees, A data structure for discrete vector
optimization problems. In Lecture notes in economics and mathemat-
ical systems, volume 209, pages 136-145.

Hajela, P. and Lin, C. Y. (1992). Genetic search strategies in multicri-
terion optimal design. Structural Optimization, 4:99-107.

Hanne, T. (2000). On the convergence of multiobjective evolutionary
algorithms. European Journal of Operational Research, 117(3):553—
564.

Hansen, M. P. (1996). Tabu Search in Multiobjective Optimisation :
MOTS. In Proceedings of MCDM’97, Cape Town, South Africa.

REFERENCES 141

Hartmann, J. W., Coverstone-Carroll, V., and Williams, S. N. (1998).
Optimal interplanetary spacecraft trajectories via a pareto genetic
algorithm. Journal of the Astronautical Sciences, 46(3):267-282.

Hilliard, M. R., Liepins, G. E., Palmer, M., and Rangarajen, G. (1989).
The computer as a partner in algorithmic design: Automated discov-
ery of parameters for a multiobjective scheduling heuristic. In Sharda,
R., Golden, B. L., Wasil, E., Balci, O., and Stewart, W., editors, Im-
pacts of Recent Computer Advances on Operations Research. North-
Holland Publishing Company, New York.

Hinterding, R. and Michalewicz, Z. (1998). Your Brains and My Beauty:
Parent Matching for Constrained Optimisation. In Proceedings of the
5th International Conference on Evolutionary Computation, pages
810-815, Anchorage, Alaska.

Horn, J. (1997). Multicriterion Decision Making. In Béck, T., Fogel, D.,
and Michalewicz, Z., editors, Handbook of Evolutionary Computation,
volume 1, pages F1.9:1 — F1.9:15. IOP Publishing Ltd. and Oxford
University Press.

Horn, J., Nafpliotis, N., and Goldberg, D. E. (1994). A Niched Pareto
Genetic Algorithm for Multiobjective Optimization. In Proceedings
of the First IEEE Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence, volume 1, pages 82—
87, Piscataway, New Jersey. IEEE Service Center.

Hwang, C. L. and Masud, A. S. M. (1979). Multiple Objective Decision-
Making Methods and Applications. In Lecture Notes in Economics
and Mathematical Systems, volume 164. Springer-Verlag, New York.

Hwang, C. L., Paidy, S. R., and Yoon, K. (1980). Mathematical Pro-
gramming with Multiple Objectives: A Tutorial. Computing and Op-
erational Research, 7:5-31.

Ishibuchi, H. and Murata, T. (1996). Multi-Objective Genetic Local
Search Algorithm. In Fukuda, T. and Furuhashi, T., editors, Pro-
ceedings of the 1996 International Conference on Evolutionary Com-
putation, pages 119-124, Nagoya, Japan. IEEE.

Jakob, W., Gorges-Schleuter, M., and Blume, C. (1992). Application
of Genetic Algorithms to task planning and learning. In Ménner, R.
and Manderick, B., editors, Parallel Problem Solving from Nature,
2nd Workshop, Lecture Notes in Computer Science, pages 291-300,
Amsterdam. North-Holland Publishing Company.

Jaszkiewicz, A. (2000). On the performance of multiple objective genetic
local search on the 0/1 knapsack problem, a comparative experiment.
Technical Report RA-002/2000, Institute of Computing Science, Poz-
nan University of Technology, Poznan, Poland.

142 EVOLUTIONARY OPTIMIZATION

Jiménez, F., Verdegay, J. L., and Gomez-Skarmeta, A. F. (1999). Evolu-
tionary Techniques for Constrained Multiobjective Optimization Prob-
lems. In Wu, A. S., editor, Proceedings of the 1999 Genetic and Evolu-
tionary Computation Conference. Workshop Program, pages 115-116,
Orlando, Florida.

Karlin, S. (1959). Mathematical Methods and Theory in Games. In Pro-
gramming and Economics, volume 1, pages 216-217. Addison-Wesley,
Reading, Massachusetts.

Knowles, J. D. and Corne, D. W. (1999). The Pareto Archived Evolution
Strategy: A New Baseline Algorithm for Multiobjective Optimisation.
In 1999 Congress on Evolutionary Computation, pages 98—-105, Wash-
ington, D.C. IEEE Service Center.

Knowles, J. D. and Corne, D. W. (2000). Approximating the Nondom-
inated Front Using the Pareto Archived Evolution Strategy. Evolu-
tionary Computation, 8(2):149-172.

Koopman, B. O. (1953). The Optimum Distribution of Effort. Operations
Research, 1(2):52-63.

Koopmans, T. C. (1951). Analysis of Production as an efficient com-
bination of activities. In Koopmans, T. C., editor, Activity Analysis
of Production and Allocation, Cowles Commision Monograph No. 13,
pages 33-97. John Wiley and Sons, New York, New York.

Krishnakumar, K. (1989). Micro-genetic algorithms for stationary and
non-stationary function optimization. In SPIE Proceedings: Intelligent
Control and Adaptive Systems, pages 289-296.

Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In
Neyman, J., editor, Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability, pages 481-492, Berkeley,
California. University of California Press.

Kurahashi, S. and Terano, T. (2000). A Genetic Algorithm with Tabu
Search for Multimodal and Multiobjective Function Optimization. In
Whitley, D., Goldberg, D., Canti-Paz, E., Spector, L., Parmee, I, and
Beyer, H.-G., editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2000), pages 291-298, San Fran-
cisco, California. Morgan Kaufmann.

Liu, X., Begg, D. W., and Fishwick, R. J. (1998). Genetic approach to op-
timal topology/controller design of adaptive structures. International
Journal for Numerical Methods in Engineering, 41:815-830.

Loucks, D. P. (1975). Conflict and choice: Planning for multiple objec-
tives. In Blitzer, C., Clark, P., and Taylor, L., editors, Economy wide
Models and Development Planning, New York, New York. Oxford Uni-
versity Press.

REFERENCES 143

Marglin, S. (1967). Public Investment Criteria. MIT Press, Cambridge,
Massachusetts.

Massebeuf, S., Fonteix, C., Kiss, L. N., Marc, 1., Pla, F., and Zaras,
K. (1999). Multicriteria Optimization and Decision Engineering of an
Extrusion Process Aided by a Diploid Genetic Algorithm. In 7999
Congress on Evolutionary Computation, pages 14-21, Washington,
D.C. IEEE Service Center.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evo-
lution Programs. Springer-Verlag, third edition.

Miettinen, K. M. (1998). Nonlinear Multiobjective Optimization. Kluwer
Academic Publishers, Boston, Massachusetts.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press,
Cambridge, Massachusetts.

Mitra, K., Deb, K., and Gupta, S. K. (1998). Multiobjective Dynamic
Optimization of an Industrial Nylon 6 Semibatch Reactor Using Ge-
netic Algorithm. Journal of Applied Polymer Science, 69(1):69-87.

Monarchi, D. E., Kisiel, C. C., and Duckstein, L. (1973). Interactive Mul-
tiobjective Programming in Water Resources: A Case Study. Water
Resources Research, 9(4):837-850.

Narayanan, S. and Azarm, S. (1999). On Improving Multiobjective Ge-
netic Algorithms for Design Optimization. Structural Optimization,
18:146-155.

Pareto, V. (1896). Cours D’Economie Politique, volume I and II. F.
Rouge, Lausanne.

Parks, G. T. and Miller, 1. (1998). Selective Breeding in a Multiobjective
Genetic Algorithm. In Eiben, A. E., Schoenauer, M., and Schwefel, H.-
P., editors, Parallel Problem Solving From Nature — PPSN V, pages
250-259, Amsterdam, Holland. Springer-Verlag.

Parmee, 1. C. and Purchase, G. (1994). The development of a directed
genetic search technique for heavily constrained design spaces. In
Parmee, 1. C., editor, Adaptive Computing in Engineering Design and
Control-’94 pages 97-102, Plymouth, UK. University of Plymouth,
University of Plymouth.

Pierreval, H. and Plaquin, M.-F. (1998). An Evolutionary Approach of
Multicriteria Manufacturing Cell Formation. International Transac-
tions in Operational Research, 5(1):13-25.

Quagliarella, D. and Vicini, A. (1997). Coupling Genetic Algorithms
and Gradient Based Optimization Techniques. In Quagliarella, D.,
Périaux, J., Poloni, C., and Winter, G., editors, Genetic Algorithms
and Evolution Strategies in Engineering and Computer Science. Re-
cent Advances and Industrial Applications, chapter 14, pages 289-309.
John Wiley and Sons, West Sussex, England.

144 EVOLUTIONARY OPTIMIZATION

Ray, T., Kang, T., and Chye, S. K. (2000). An Evolutionary Algo-
rithm for Constrained Optimization. In Whitley, D., Goldberg, D.,
Canti-Paz, E., Spector, L., Parmee, 1., and Beyer, H.-G., editors,
Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO’2000), pages 771-777, San Francisco, California. Mor-
gan Kaufmann.

Rekiek, B., Lit, P. D., Pellichero, F., L’Eglise, T., Falkenauer, E., and
Delchambre, A. (2000). Dealing With User’s Preferences in Hybrid
Assembly Lines Design. In Proceedings of the MCPL’2000 Conference.

Richardson, J. T., Palmer, M. R., Liepins, G., and Hilliard, M. (1989).
Some Guidelines for Genetic Algorithms with Penalty Functions. In
Schaffer, J. D., editor, Proceedings of the Third International Confer-
ence on Genetic Algorithms, pages 191-197, George Mason University.
Morgan Kaufmann Publishers.

Ritzel, B. J., Eheart, J. W., and Ranjithan, S. (1994). Using genetic
algorithms to solve a multiple objective groundwater pollution con-
tainment problem. Water Resources Research, 30(5): 1589-1603.

Romero, C. E. M. and Manzanares, E. M. (1999). MOAQ an Ant-Q
Algorithm for Multiple Objective Optimization Problems. In Banzhaf,
W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,
M., and Smith, R. E., editors, Genetic and Evolutionary Computing
Conference (GECCO 99), volume 1, pages 894-901, San Francisco,
California. Morgan Kaufmann.

Rosenberg, R. S. (1967). Simulation of genetic populations with bio-
chemical properties. PhD thesis, University of Michigan, Ann Harbor,
Michigan.

Rudolph, G. (1998). On a Multi-Objective Evolutionary Algorithm and
Its Convergence to the Pareto Set. In Proceedings of the 5th IEEE
Conference on Evolutionary Computation, pages 511-516, Piscataway,
New Jersey. IEEE Press.

Rudolph, G. and Agapie, A. (2000). Convergence Properties of Some
Multi-Objective Evolutionary Algorithms. In Proceedings of the 2000
Conference on Evolutionary Computation, volume 2, pages 1010-1016,
Piscataway, New Jersey. IEEE Press.

Sandgren, E. (1994). Multicriteria design optimization by goal program-
ming. In Adeli, H., editor, Advances in Design Optimization, chap-
ter 23, pages 225-265. Chapman & Hall, London.

Schaffer, J. D. (1985). Multiple Objective Optimization with Vector
Evaluated Genetic Algorithms. In Genetic Algorithms and their Appli-
cations: Proceedings of the First International Conference on Genetic
Algorithms, pages 93-100. Lawrence Erlbaum.

REFERENCES 145

Schroder, P., Chipperfield, A. J., Fleming, P. J., and Grum, N. (1997).
Multi-Objective Optimization of Distributed Active Magnetic Bearing
Controllers. In Genetic Algorithms in Engineering Systems: Innova-
tions and Applications, pages 13-18. IEE.

Shaw, K. J. and Fleming, P. J. (1997). Including Real-Life Preferences in
Genetic Algorithms to Improve Optimisation of Production Schedules.
In Proceedings of the GALESIA "97, Glasgow, Scotland. IEE.

Srinivas, N. and Deb, K. (1994). Multiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms. Evolutionary Computation,
2(3):221-248.

Stadler, W. (1975). Preference optimality and applications to Pareto
optimality. In Leitmann, G. and Marzollo, A., editors, Multi-Criteria
Decision Making, volume 211. Springer-Verlag, New York.

Stadler, W. (1988). Fundamentals of multicriteria optimization. In Stadler,
W., editor, Multicriteria Optimization in Engineering and the Sci-
ences, pages 1-25. Plenum Press, New York.

Surry, P. D. and Radcliffe, N. J. (1997). The COMOGA Method: Con-
strained Optimisation by Multiobjective Genetic Algorithms. Control
and Cybernetics, 26(3).

Surry, P. D., Radcliffe, N. J., and Boyd, I. D. (1995). A Multi-Objective
Approach to Constrained Optimisation of Gas Supply Networks : The
COMOGA Method. In Fogarty, T. C., editor, Evolutionary Comput-
ing. AISB Workshop. Selected Papers, Lecture Notes in Computer
Science, pages 166-180, Sheffield, U.K. Springer-Verlag.

Tan, K. C. and Li, Y. (1997). Multi-Objective Genetic Algorithm Based
Time and Frequency Domain Design Unification of Linear Control
Systems. Technical Report CSC-97007, Department of Electronics and
Electrical Engineering, University of Glasglow, Glasglow, Scotland.

Tanino, T., Tanaka, M., and Hojo, C. (1993). An interactive multicriteria
decision making method by using a genetic algorithm. In Proceedings
of 2nd International Conference on Systems Science and Systems En-
gineering, pages 381-386.

van Huylenbroeck, G. (1995). The Conflict Analysis Method: bridging
the gap between ELECTRE, PROMETHEE and ORESTE. European
Journal of Operational Research, 82(3):490-502.

Vedarajan, G., Chan, L. C., and Goldberg, D. E. (1997). Investment
Portfolio Optimization using Genetic Algorithms. In Koza, J. R., ed-
itor, Late Breaking Papers at the Genetic Programming 1997 Confer-
ence, pages 255-263, Stanford University, California. Stanford Book-
store.

Veldhuizen, D. A. V. (1999). Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations. PhD thesis, Depart-

146 EVOLUTIONARY OPTIMIZATION

ment of Electrical and Computer Engineering. Graduate School of En-
gineering. Air Force Institute of Technology, Wright-Patterson AFB,
Ohio.

Veldhuizen, D. A. V. and Lamont, G. B. (1998). Evolutionary Compu-
tation and Convergence to a Pareto Front. In Koza, J. R., editor,
Late Breaking Papers at the Genetic Programming 1998 Conference,
pages 221-228, Stanford University, California. Stanford University
Bookstore.

Veldhuizen, D. A. V. and Lamont, G. B. (1999). Multiobjective Evo-
lutionary Algorithm Test Suites. In Carroll, J., Haddad, H., Oppen-
heim, D., Bryant, B., and Lamont, G. B., editors, Proceedings of the
1999 ACM Symposium on Applied Computing, pages 351-357, San
Antonio, Texas. ACM.

Vincke, P. (1995). Analysis of MCDA in Europe. European Journal of
Operational Research, 25:160-168.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and
Economic Behavior. Princeton University Press, Princeton, New Jer-
sey.

Wienke, P. B., Lucasius, C., and Kateman, G. (1992). Multicriteria tar-
get optimization of analytical procedures using a genetic algorithm.
Analytical Chimica Acta, 265(2) :211-225.

Wilson, P. B. and Macleod, M. D. (1993). Low implementation cost IIR
digital filter design using genetic algorithms. In IEE/IEEE Workshop
on Natural Algorithms in Signal Processing, pages 4/1-4/8, Chelms-
ford, U.K.

Zadeh, L. A. (1963). Optimality and Nonscalar-Valued Performance Cri-
teria. IEEE Transactions on Automatic Control, AC-8(1):59-60.

Zebulum, R. S., Pacheco, M. A., and Vellasco, M. (1998). A multi-
objective optimisation methodology applied to the synthesis of low-
power operational amplifiers. In Cheuri, L. J. and dos Reis Filho, C. A.,
editors, Proceedings of the XIII International Conference in Microelec-
tronics and Packaging, volume 1, pages 264271, Curitiba, Brazil.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computa-
tion, 8(2):173-195.

Zitzler, E., Teich, J., and Bhattacharyya, S. S. (1999). Multidimensional
Exploration of Software Implementations for DSP Algorithms. VLSI
Signal Processing Systems. (To appear).

Zitzler, E. and Thiele, L. (1999). Multiobjective Evolutionary Algo-
rithms: A Comparative Case Study and the Strength Pareto Ap-
proach. IEEE Transactions on Evolutionary Computation, 3(4):257-
271.

Chapter 6

MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS FOR ENGINEERING
SHAPE DESIGN

Kalyanmoy Deb and
Tushar Goel

Abstract

Evolutionary optimization algorithms work with a population of solu-
tions, instead of a single solution. Since multi-objective optimization
problems give rise to a set of Pareto-optimal solutions, evolutionary op-
timization algorithms are ideal for handling multi-objective optimiza-
tion problems. Many years of research and application studies have
produced a number of efficient multi-objective evolutionary algorithms
(MOEASs), which are ready to be applied to real-world problems. In this
paper, we propose a practical approach, which will enable an user to find
a set of non-dominated solutions closer to the true Pareto-optimal front
and simultaneously reduce the size of the obtained non-dominated so-
lution set. The efficacy of the proposed approach is demonstrated in
solving a number of mechanical shape optimization problems, includ-
ing a simply-supported plate design, a cantilever plate design, a hoister
design, and a bicycle frame design. The results are interesting and sug-
gest immediate application of the proposed technique to more complex
engineering design problems.

Keywords: Genetic algorithms, multi-objective optimization, shape optimization,

Pareto-optimum, mechanical component design.

1. Introduction

During the last decade, a number of multi-objective optimization tech-
niques using evolutionary algorithms are suggested (Deb et al., 2000b;
Horn et al., 1994; Fonseca and Fleming, 1993; Knowles and Corne,
1999; Srinivas and Deb, 1995; Zitzler and Thiele, 1998). The outcome
of these studies is that different multi-objective optimization problems
are possible to solve for the purpose of finding multiple Pareto-optimal

148 EVOLUTIONARY OPTIMIZATION

solutions in one single simulation run. Classical means of finding one so-
lution at a time with a weight vector or with a similar approach requires
apriori knowledge of weight vector and need to be run many times, hope-
fully finding a different Pareto-optimal solution each time. In addition
to converging close or on the true Pareto-optimal set, multi-objective
evolutionary algorithms (MOEAs) are capable to finding a widely dis-
tributed set of solutions.

In this paper, we suggest a hybrid technique to take evolutionary
multi-objective optimization procedures one step closer to practice. Specif-
ically, in a real-world problem, we would like to ensure a better conver-
gence to the true Pareto-optimal front and would also like to reduce
the size of obtained non-dominated solutions to a reasonable number.
The solutions obtained by an MOEA are modified using a local search
method, in which a weighted objective function is minimized. The use
of a local search method from the MOEA solutions will allow a better
convergence to the true Pareto-optimal front. A clustering method is
suggested to reduce the size of the obtained set of solutions. For finite
search space problems, the local search approach may itself reduce the
size of the obtained set.

A specific MOEA—elitist non-dominated sorting GA or NSGA-II—
and a hill-climbing local search method are used together to solve a num-
ber of engineering shape optimization problems for two objectives. Mini-
mizing the weight of a structure and minimizing the maximum deflection
of the structure have conflicting solutions. When these two objectives
are considered together in a design, a number of Pareto-optimal solutions
result. By representing presence and absence of small constituting ele-
ments in a binary string (Chapman and Jakiela, 1996; Chapman et al.,
1994; Duda and Jakiela, 1997), NSGA-II uses an innovative crossover
operator which seems to help in combining good partial solutions to-
gether to form bigger partial solutions. The finite element method is
used to evaluate a string representing a shape. The paper shows how
the proposed hybrid technique can find a number of solutions with dif-
ferent trade-offs between weight and deflection. On a cantilever plate
design, a simply-supported plate design, a hoister plate design, and a
bicycle frame design problem, the proposed technique finds interesting
and well-engineered solutions. These results indicate that the proposed
hybrid technique is ready to be applied to more complex engineering
shape design problems.

MEA for Engineering Shape Design 149

2. Multi-Objective Optimization and
Pareto-Optimality

The principles of multi-objective optimization are different from that
of a single-objective optimization. The main goal in a single-objective
optimization is to find the global optimal solution. However, in a multi-
objective optimization problem, there are more than one objective func-
tion, each of which may have a different individual optimal solution. If
there is sufficient difference in the optimal solutions corresponding to
different objectives, the objective functions are often known as conflict-
ing to each other. Multi-objective optimization with such conflicting
objective functions gives rise to a set of optimal solutions, instead of
one optimal solution. The reason for the optimality of many solutions
is that no one solution can be considered to be better than any other
with respect to all objective functions. These optimal solutions have a
special name—Pareto-optimal solutions.

It is clear that the concept of optimality in multi-objective optimiza-
tion deals with a number (or a set) of solutions, instead of one solution.
Based on the above discussions, we first define conditions for a solution
to become dominated with respect to another solution and then present
conditions for a set of solutions to become a Pareto-optimal set.

For a problem having more than one objective function (say, fj, j =
1,...,M and M > 1), any two solutions (1) and £(? (having P decision
variables each) can have one of two possibilities—one dominates the
other or none dominates the other. A solution () is said to dominate
the other solution z(?, if both the following conditions are true (Steuer,
1986):

1 The solution (1) is no worse (say the operator < denotes worse and
> denotes better) than 22 in all objectives, or f;(z(M) £ f;(z®)
forall j =1,2,...,M objectives.

2 The solution (1) is strictly better than x@_) in at least one objec-
tive, or fj(cc(l)) - f;(a:(z)) for at least one j € {1,2,...,M}.

If any of the above conditions is violated, the solution (1 does not
dominate the solution £(®). If z{!) dominates the solution m(2), it is also
customary to write £ is dominated by M, or (Y is non-dominated by
z®, or, simply, among the two solutions, x() is the non-dominated solu-
tion. Although the above is a standard definition of domination among
two solutions, Parmee et al. (Parmee et al., 2000) suggested a weighted
dominance relation based on relative importance of objectives. In prob-
lems where a weight information is available, such modified definitions
may be useful.

150 EVOLUTIONARY OPTIMIZATION

The following definitions ensure whether a set of solutions belong to a
local or global Pareto-optimal set, similar to the definitions of local and
global optimal solutions in single-objective optimization problems:

Local Pareto-optimal Set: If for every member x in a set P, there
exist no solution y satisfying ||y — z||ec < €, where € is a small
positive number (in principle, y is obtained by perturbing z in
a small neighborhood), which dominates any member in the set
P, then the solutions belonging to the set P constitute a local
Pareto-optimal set.

Global Pareto-optimal Set: If there exists no solution in the search
space which dominates any member in the set P, then the solutions
belonging to the set P constitute a global Pareto-optimal set.

We would like to highlight here that there exists a difference between
a non-dominated set and a Pareto-optimal set. A non-dominated set is
defined in the context of a sample of the search space. In a sample of
search points, solutions that are not dominated (according to the above
definition) by any other solution in the sample space are non-dominated
solutions. A Pareto-optimal set is a non-dominated set, when the sample
is the entire search space.

From the above discussions, we observe that there are primarily two
goals that a multi-objective optimization algorithm must try to achieve:

I Guide the search towards the global Pareto-optimal region, and
2 Maintain population diversity in the Pareto-optimal front.

The first task is a natural goal of any optimization algorithm. The
second task is unique to multi-objective optimization only. Since no one
solution in the Pareto-optimal set can be said to be better than the other,
what an algorithm can do best to find as many different Pareto-optimal
solutions as possible.

The classical ways of tackling multi-objective optimization problems
is straightforward: convert multiple objectives into one objective. There
exists a number of conversion methods (Chankong and Haimes, 1983; Mi-
ettinen, 1999; Sen and Yang, 1998)—weighted sum approach, e- pertur-
bation method, Tchebycheff method, min-max method, goal program-
ming method and others. Since multiple objectives are converted into
one objective, the resulting solution to the single-objective optimization
problem is usually subjective to the parameter settings chosen by the
user. Since a classical optimization method is used to solve the resulting
problem, only one solution (hopefully a Pareto-optimal solution) can be

MEA for Engineering Shape Design 151

found in one simulation run. Thus, in order to find multiple Pareto-
optimal solutions, the chosen optimization algorithm must have to be
used a number of times. Furthermore, the classical methods have been
found to be sensitive to the convexity and continuity of the Pareto-
optimal region (Deb, 2001).

3. Elitist Non-dominated Sorting GA
(NSGA-II)

The details of NSGA-II algorithm appears elsewhere (Deb et al.,
2000a). Initially, a random parent population Py is created. The popula-
tion is sorted based on the non-domination. A special book keeping pro-
cedure is used in order to reduce the computational complexity down to
O(M N?). Each solution is assigned a fitness equal to its non-domination
level. Binary tournament selection, recombination, and mutation oper-
ators are used to create a child population Qg of size N. Thereafter, we
use the following algorithm in every generation.

Ry =P U@
F = fast-nondominated-sort (R;)
Pt+1=(0andi=1
until |Pyp1| + | F) £ N
crowding-distance-assignment (F;)
Py1=PUF
t=1+1
Sort(F;, <n)
Py = Piya UFR[L (N ~ |Bal)]
Q1 = make-new-pop(Pit1)
t=t+1

First, a combined population R; = P U @, is formed. This allows
parent solutions to be compared with the child population, thereby en-
suring elitism. The population R; is of size 2N. Then, the population R
is sorted according to non-domination (Steuer, 1986). The sorting pro-
cedure classifies the population into several non-dominated fronts, Feo,
Fe, and so on. The new parent population Pi1 is formed by adding
solutions from the first front Fo and continuing to other fronts suc-
cessively till the size exceeds N. Thereafter, the solutions of the last
accepted front are sorted according to a crowded distance metric and a
total of N points are picked. The crowded distance is measured as the
perimeter of the maximum box containing the two neighboring solutions
in the objective space, as depicted in Figure 6.1. For details, refer to
the original study (Deb et al., 2000a). Since the diversity among the

152 EVOLUTIONARY OPTIMIZATION

Figure 6.1. The crowding distance calculation is shown.

solutions is important, we define a crowded comparison operator using
a relation <y, asfollows:

Definition 1 Solution i is better than solution j in relation <y, if (irank <
jmnk) or ((irank = jmnk) and (idistance > jdistance))-

In the tournament selection, we use the above crowded comparison op-
erator to choose one of the two solutions. Between two solutions with
differing non-domination ranks in a tournament, we prefer the solutions
with the lower rank. Otherwise, if both the points belong to the same
front then we prefer the point which is located in a region with lesser
number of points (or with larger crowded distance). This way solutions
from less dense regions in the search space are given importance in decid-
ing which solutions to choose from R;. This constructs the population
P;y1. This population of size N is now used for selection, crossover and
mutation to create a new population Q¢4+ of size N. We use a binary
tournament selection operator but the selection criterion is now based on
the crowded comparison operator <. The above procedure is continued
for a specified number of generations.

It is clear from the above description that NSGA-II uses (i) a faster
non-dominated sorting approach, (ii) an elitist strategy, and (ii) no nich-
ing parameter. It has been shown elsewhere (Deb, 2001) that the above
procedure has O(M N?) computational complexity.

3.1 Two Test Problems

We illustrate the working of NSGA-II on two difficult test problems.
The function ZDT?2 has a non-convex Pareto-optimal region, whereas the
second function KUR has a discontinuous Pareto-optimal region (Deb,

MEA for Engineering Shape Design 153
2001):

(fl(x) =1,

fa(x) = 9() [1 = (21/9(x))"]

gx)=1+9 (3%, m,-) /29,

L 0< <1, i=1,2,...,30.

(A =33, (—10exp (—0.21/:1:22 + $12+1)) ,

KUR: fo(x) = Z?=1 (lz:]°® + 5sinz?) (6.2)
-5<2; <5, i=1,2,3.

o

ZDT2:

Figure 6.2 shows the obtained non-dominated set of solutions for ZDT2.
All solutions lie on the true Pareto-optimal front. Binary-coded GAs
with a single-point crossover operator (p, = 0.9) and a bit-wise mutation
operator (p, = 1/600) are used. For each variable, we use 20 bits. A
population of size 100 is chosen. NSGA-II is run for 250 generations.
It is clear that NSGA-II is able to maintain a wide spread of solutions
on the Pareto-optimal front, which is non-convex. The search space lies
above the Pareto-optimal front shown in the figure.

Figure 6.3 shows that NSGA-II is also able to find a well-distributed
set of solutions in all three discontinuous regions of Pareto-optimal front
for KUR. Here, a real-coded GA is used. Variables are coded directly

Llr Pareto-optimal front =——
2 HSGA-II *

07

03 gk)

02 NSGA-II (binary coded)

01 it 1
0 .

0 01 02 03 04 05 06 07 08 09 1 -12
£l -20 -18 -18 -17 -16 -15% -14

{ 5 1

2

Figure 6.2. Non-dominated solutions Figure 6.3. Non-dominated solutions
with NSGA-II (binary-coded) on ZDT2 with NSGA-II (real-coded) on KUR are
are shown. shown.

and the simulated binary crossover operator with p. = 0.9 (Deb and
Agrawal, 1995) and a polynomial mutation operator with p,, = 1/3 are
used. NSGA-II with a population size of 100 is run for a maximum of 250

154 EVOLUTIONARY OPTIMIZATION

generations. Despite disconnected regions, the NSGA-II can find well-
distributed solutions in all regions. The above two results demonstrate
the NSGA-II procedure can be used with binary-coded as well as real-
coded implementations.

3.2 Constraint handling

The usual way of handling constraints using penalty functions is crit-
icized for their sensitivity on the so-called penalty parameters. Here,
we suggest a more elegant approach for constraint handling as follows.

We simply change the definition of domination between two solutions
as follows:

Definition 2 A solution i is said to constrained-dominate a solution j, if
any of the following conditions is true:

1 Solution i is feasible and solution j is not.

2 Solutions i and j are both infeasible, but solutiont has a smaller
constraint violation.

3 Solutions i and j are feasible and solution 1 dominates solution j.

This way, feasible solutions constrained-dominate any infeasible solution
and two infeasible solutions are compared based on their constraint vi-
olations only. However, when two feasible solutions are compared, they
are checked based on their usual domination level.

3.2.1 Simulation Results. We illustrate the working of the
constraint handling strategy on the following problem:

fi(x) = z1,
f2(x) = T2,
TNK:{ g1(x) = —2? — 23 + 1 4 0.1 cos(16 arctan(z1 /z2)) < 0, (6.3)
go(x) = (z1 — 0.5)% + (z2 — 0.5)2 < 0.5,
0<az;<m, i=1,2

Figure 6.4 shows the NSGA-II population after 100 generations. Real-
coded NSGA-II with identical parameter setting as in KUR is used
here. It is clear that NSGA-II is able to distribute population mem-
bers on the critical constraint boundary, portions of which form the
constrained Pareto-optimal set. Regions which are not Pareto-optimal
are not found by the NSGA-II. This shows the ability of NSGA-II along
with the constraint-domination principle in converging and in distribut-
ing solutions on the true Pareto-optimal regions.

MEA for Engineering Shape Design 155

1.4 T T T 1
1.2

1
0.8

f.2

0.6
0.4
0.2

0 1 1 1 I ; 1
0 02040608 1 12 14
f1

Figure 6.4. Obtained non-dominated solutions with NSGA-II on the constrained
problem TNK are shown.

4. Hybrid Approach

It is clear from the previous section that NSGA-II is an efficient pro-
cedure of finding a wide-spread as well as well-converged set of solutions
in a multi-objective optimization problem. All problems considered in
the previous section and in earlier studies are test problems where ex-
act location of Pareto-optimal solutions is known. Such test problems
are necessary to evaluate the working of any MOEA. However, in this
section we would like to take MOEAs a step closer to practice by

1 ensuring convergence closer to the true Pareto-optimal front, and
2 reducing the size of the obtained non-dominated set.

We illustrate both the above issues in the following subsections.

4.1 Converging better

In a real-world problem, the knowledge of the Pareto-optimal front
is usually not known. Although NSGA-II has demonstrated good con-
vergence properties in test problems, we enhance the probability of its
convergence by using a hybrid approach. A local search strategy is
suggested from each obtained solution of NSGA-II to find a better solu-
tion. Since a local search strategy requires a single objective function,
a weighted objective or a Tchebycheff metric or any other metric which

156 EVOLUTIONARY OPTIMIZATION

will convert multiple objectives into a single objective can be used. In
this study, we use a weighted objective:

M
F(x) = Z ¥ fi(x), (6.4)
j=1

where weights are calculated from the obtained set of solutions in a
special way. First, the minimum f;“in and maximum f** values of
each objective function f; are noted. Thereafter, for any solution x in
the obtained set, the weight for each objective function is calculated as

follows: |
o = (™~ fi(x))/(X — miny
TOTM (fmax _ g (x))/(fmex — fmin)

In the above calculation, minimization of objective functions is assumed.
When a solution x is close to the individual minimum of the function
fj, the numerator becomes one, causing a large value of the weight for
this function. For an objective which has to be maximized, the term
(f]"®* — f;(x)) needs to be replaced with (f;(x) — f]’-“i“). The division of
the numerator with the denominator ensures that the calculated weights
are normalized or Z;’il o) =1

In order to distinguish the above calculated weight from the usual
user-specified weight needed in weighted multi-objective optimization
algorithms, we call these calculated weights W as pseudo-weights.

Once the pseudo-weights are calculated, the local search procedure
is simple. Begin the search from each solution x independently with
the purpose of optimizing F(x). Figure 6.5 illustrates this procedure.
Since, the pseudo-weight vector W dictates roughly the priority of differ-
ent objective functions at that solution, optimizing F'(x) will produce a
Pareto-optimal or a near Pareto-optimal solution. This is true for con-
vex Pareto-optimal regions. However, for non-convex Pareto-optimal
regions, there exists no weight vector corresponding to Pareto-optimal
solutions in certain regions. Thus, a different metric, such as Tchebycheff
metric can be used in those cases. Nevertheless, the overall idea is that
once NSGA-II finds a set of solutions close to the true Pareto-optimal
region, we use a local search technique from each of these solutions
with a differing emphasis of objective functions in the hope of better
converging to the true Pareto-optimal front. Since independent local
search methods are tried from each solution obtained using an MOEA,
all optimized solutions obtained by the local search method need not be
non-dominated to each other. Thus, we find the non-dominated set of
solutions from the obtained set of solutions before proceeding further.

. (6.5)

MEA for Engineering Shape Design 157

local search

Figure 6.5. The local search technique is expected to find better solutions.

The complete procedure of the proposed hybrid strategy is shown in
Figure 6.6. Starting from the MOEA results, we first apply a local search
technique, followed by a non-domination check. After non-dominated

Multiple
local searches
i

MOEA
Problem |—p

Non-domination

Clustering check
-~

T

Figure 6.6. The proposed hybrid procedure of using a local search technique, a non-
domination check, and a clustering technique are illustrated.

solutions are found, a clustering technique is used to reduce the size of
the optimal set, as discussed in the next subsection.

158 EVOLUTIONARY OPTIMIZATION

4.2 Reducing the size of non-dominated set

In an ideal scenario, user is interested in finding a good spread of
non-dominated solutions closer to the true Pareto-optimal front. From
a practical standpoint, the user would be interested in a handful of
solutions (in most cases, 5 to 10 solutions are probably enough). In-
terestingly, most MOEA studies use a population of size 100 or more,
thereby finding about 100 different non-dominated solutions. The in-
teresting question to ask is ‘Why are MOEAs set to find many more
solutions than desired?’

The answer is fundamental to the working of an EA. The population
size required in an EA depends on a number of factors related to the
number of decision variables, the complexity of the problem, and others
(Goldberg et al, 1992; Harik et al., 1999). The population cannot be
sized according to the desired number of non-dominated solutions in a
problem. Since in most interesting problems, the number of decision
variables are large and are complex, the population sizes used in solving
those problems can be in hundreds. Such a population size is manda-
tory for the successful use of an EA. The irony is that when an MOEA
works well with such a population size N, eventually it finds N different
non-dominated solutions, particularly if an adequate niching mechanism
used. good. Thus, we need to devise a separate procedure of selecting a
handful of solutions from a rather large obtained set of non-dominated
solutions.

One approach would be to use a clustering technique similar to that
used in (Zitzler, 1999) for reducing the size of the obtained non-dominated
set of solutions. In this technique, each of N solutions is assumed to be-
long to a separate cluster. Thereafter, the distance d. between all pairs
of clusters is calculated by first finding the centroid of each cluster and
then calculating the Euclidean distance between the centroids. Two
clusters having the minimum distance are merged together into a bigger
cluster. This procedure is continued till the desired number of clusters
are identified. Finally, with the remaining clusters, the solution closest
to the centroid of the cluster is retained and all other solutions from each
cluster are deleted. This is how the clusters can be merged and the car-
dinality of the solution set can be reduced. Figure 6.7 shows the MOEA
solution set in open boxes and the reduced set in solid boxes. Care may
be taken to choose the extreme solutions in the extreme clusters.

However, in many problems the local search strategy itself can reduce
the cardinality of the obtained set of non-dominated solutions. This will
particularly happen in problems with a discrete search space. For two
closely located solutions, the pseudo-weight vectors may not be very

MEA for Engineering Shape Design 159

MOEA solutions O
Reduced set =

clusters

Figure 6.7. The clustering method of reducing the set of non-dominated solutions is
llustrated.

different. Thus, when a local search procedure is started from each
of these solutions (which are close to each other) with a F'(x) which
is also similar, the resulting optimum solutions may be identical in a
discrete search space problem. The solutions a and b in Figure 6.5 are
close and after the local search procedure they may converge to the
same solution A. Thus, for many solutions obtained using NSGA-II, the
resulting optimum obtained using the local search method may be the
same. Thus, the local search procedure itself may reduce the size of the
obtained non-dominated solutions in problems with a finite search space.
Figure 6.6 shows that clustering is the final operation of the proposed
hybrid strategy.

S. Optimal Shape Design

Designing shape of engineering components is not a new activity. The
use of optimization in engineering shape design has also received a lot of
attention. However, in optimal shape design problems, the most popular
approach has been to pre-define a parametric mathematical function for
the boundary describing the shape and use an optimization technique
to find the optimal values of the parameters describing the mathemat-
ical function. Although this procedure requires prior knowledge of the
shape, the classical optimization methods facilitated the optimization of
parameters describing the mathematical shape functions.

With the advent of evolutionary algorithms as an alternate optimiza-
tion method, there exist a number of applications of optimal shape de-

160 EVOLUTIONARY OPTIMIZATION

sign, where shapes are evolved by deciding presence or absence of a
number of small elements (Chapman and Jakiela, 1996; Chapman et al.,
1994; Hamada and Schoenauer, 2000; Jakiela et al., 2000; Sandgren et al.,
1990). A predefined area (or volume) is divided into a number of small
regular elements. The task of an evolutionary optimization procedure
is to find which elements should be kept and which should be thrown
away so that the resulting shape is optimal with respect to an objective
function. This procedure has a number of advantages:

1 The use of numerical finite element method (or boundary element
method) is a usual method of analyzing an engineering component.
Since the finite element procedure requires the component to be
divided into a number of small elements, this approach reduces
one computational step and is complimentary to the usual finite
element method.

2 Since no apriori knowledge about the shape is required, this method
does not have any bias from the user.

3 By simply using three-dimensional elements, the approach can be
extended to three-dimensional shape design problems.

4 The number and shape of holes in a component can evolve natu-
rally without explicitly fixing them by the user.

Most studies of this method, including the studies with evolutionary al-
gorithms, have concentrated on optimizing a single objective. In this
study, we apply this evolutionary procedure for multiple conflicting ob-
jectives.

5.1 Representation

In this study, we consider two-dimensional shape design problems
only. However, the procedure can be easily extended to three-dimensional
shape design problems. We begin with a rectangular plate, describing
the maximum overall region, where the shapes will be confined. There-
after, we divide the rectangular plate into a finite number of small ele-
ments (refer to Figure 6.8). We consider here square elements, although
any other shape including triangular or rectangular elements can also be
considered. Since the presence or absence of every element is a decision
variable, we use a binary coding describing a shape. For the shape shown
in Figure 6.9, the corresponding binary coding is as follows:

01110 11111 10001 11111

MEA for Engineering Shape Design

11 12 13 14 15

16 17 i8 19 20

Figure 6.8. Rectangular Figure 6.9. The skeleton Figure 6.10. Final smoo-
plate is divided into small of a shape is shown. thened shape is shown.
elements.

The presence is denoted by a 1 and the absence is shown by a 0. A
left-to-right coding procedure as shown in Figure 6.8 is adopted here. In
order to smoothen the stair-case like shape denoted by the basic skeleton
representation, we add triangular elements (shown shaded) for different
cases in Figure 6.11. The resulting skeleton shape shown in Figure 6.9
represents the true shape shown in Figure 6.10.

Figure 6.11. Different cases of smoothening through triangular elements are shown.

5.2 Evaluation

When the shape is smoothened, the shape is further divided into
smaller elements. All interior rectangular elements are divided into two
triangles and all boundary elements (including elements around a hole)
are divided into four small triangles. Even the boundary triangles used
for smoothening is divided into smaller triangles. The shape is eval-
uated by finding the maximum stress and deflection developed at any
point in the component by the application of the specified loads. Since
no connectivity check is made while creating a new string or while cre-
ating the initial random population, a string may represent a number of
disconnected regions in the rectangle. In this case, we proceed with the

161

162 EVOLUTIONARY OPTIMIZATION

biggest cluster of connected elements (where two elements are defined
to be connected if they have at least one common corner). The string
is repaired by assigning a O at all elements which are not part of the
biggest cluster.

In all applications here, two conflicting objectives are chosen: weight
and deflection. These two objectives are conflicting because a minimum
weight design is usually not stiff and produces a large deflection, whereas
a minimum deflection design has densely packed elements, thereby caus-
ing a large weight of the overall component. The maximum stress and
deflection values are restricted to lie within specified limits of the design
by using them as constraints.

6. Simulation Results

To show the efficacy of the proposed hybrid multi-objective optimiza-
tion procedure in solving optimal shape design problems, we use a num-
ber of mechanical component design problems. In all cases, we use
NSGA-II as the multi-objective optimizer. Since binary-coded strings
are used to represent a shape, we use a bit-wise hill-climbing strategy as
the local search operator. The procedure is simple. Starting from the
left of the string, every bit is flipped to see if it improves the design.
If it does, the flipped bit is retained, else the bit is unchanged. This
procedure is continued until no bit-flipping over the entire string length
has resulted an improvement.

Since the shapes are represented in a two-dimensional grid, we intro-
duce a new crossover operator which respects the rows or columns of
two parents. Whether to swap rows or columns are decided with a prob-
ability 0.5. Each row or column is swapped with a probability 0.95/d,
where d is the number of rows or columns, as the case may be. This way
on an average one row or one column will get swapped between the par-
ents. A bit-wise mutation with a probability of 1/string-length is used.
NSGA-II is run for 150 generations. It is important to highlight that
NSGA-II does not require any extra parameter setting. In all problems,
a population of size 30 is used.

For all problems, we use the following material properties:

Plate thickness : 50 mm
Yield strength : 150 MPa
Young’s modulus : 200 GPa

Poisson’s ratio 0 0.25

MEA for Engineering Shape Design 163

6.1 Cantilever Plate Design

First, we consider a cantilever plate design problem, where an end load
P = 10 kN is applied as shown in Figure 6.12. The rectangular plate of

100 mm |

Figure 6.12. 'The loading and support of the cantilever plate are shown.

size 60x 100 mm? is divided into 60 small rectangular elements. Thus, 60
bits are used construct a binary string representing a shape. Although
symmetry information could have been used to reduce the number of
decision variable to 30, we do not use any such information here to give
NSGA-II a stringent test for investigating if a near-symmetric shape
appears.

Figure 6.13 shows the four steps of the proposed hybrid method in de-
signing the cantilever plate. The first plot shows the non-dominated solu-
tions obtained using NSGA-II. Since the population size is 30, NSGA-II
is able to find 30 different non-dominated solutions. Thereafter, the lo-
cal search method is applied from each non-dominated solution and new
and improved set of solutions are obtained. The third plot is the result of
the non-dominated check of the solutions obtained after the local search
method. Three dominated solutions are eliminated by this process. The
final plot is obtained after the clustering operation with a choice of nine
solutions. The plot shows how a set of nine well distributed solutions is
found from the third plot of 27 solutions. If fewer than nine solutions
are desired, the clustering mechanism can be set accordingly.

In order to visualize the obtained set of nine solutions having a wide
range of trade-offs in the weight and scaled deflection values, we show
the shapes in Figure 6.14. It is clear that starting from a low-weight
solution (with large deflection), how large-weight (with small deflection)
shapes are found by the hybrid method. It is interesting to note that
the minimum weight solution eliminated one complete row (the bottom-
most row) in order to reduce the overall weight. The second solution
(the element (1,2) in the 3x3 matrix in Figure 6.14) corresponds to
the second-best weight solution. It is well known that for an end load
cantilever plate, a parabolic shape is optimal. Both shapes (elements

164 EVOLUTIONARY OPTIMIZATION

18 T T T T T T T 18 T T T T T T T
16 161°
NSGA-IT Local Search
g 1l . g e
-l -l
% 12 ‘l’-’l 12F
[}]
o % Y
8 10 i a 10
8 @ gr
: N LI
v 6 s &F .
© ® s w =
ar @ 1 ar g,
-1 .1
3 ! ; : TQ’O‘T““‘?“"L 2 . . Ao.u L ®, e9c 0
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
Weight Weight
18 18
16 F Clustered Sclutions E 161°

Non-dominated Solutions

=
o®

Scaled Deflection
=

Scaled Deflection
=

o a0
1 4+ D,
o ° e
2 2 ; l° v il o " 2 i i L 1 , - s 9900
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 S0 55 60
Weight Weight

Figure 6.13. The steps of the hybrid procedure to find nine trade-off solutions for
the cantilever plate design problem are shown.

(1,1) and (1,2)) exhibits a similar shape. As the importance of deflec-
tion increases, the shapes tend to have more and more elements, thereby
making the plate rigid enough to have smaller deflection. In the middle,
the development of vertical stiffener is interesting. This is a compro-
mise between the minimum weight solution and a minimum deflection
solution. By adding a stiffener the weight of the structure does not in-
crease much, whereas the stiffness of plate increases (hence the deflection
reduces). Finally, the complete plate with right top and bottom ends
chopped off is the minimum deflection solution.

We would like to reiterate here that the above nine solutions are not
results of multiple runs of a multi-objective optimization algorithm. All
nine solutions (and if needed, more can also be obtained) with interesting
trade-offs between weight and deflection are obtained in one simulation
run of the hybrid method.

MEA for Engineering Shape Design 165

Figure 6.14. Nine trade-off shapes for the cantilever plate design are shown.

6.2 Simply-Supported Plate Design

Next, we consider a simply-supported plate design, starting from a
rectangular plate of identical dimension as in the previous design. The
plate is supported on two supports as shown in Figure 6.15 and a vertical
load P = 10 kN is acted on the top-middle node of the plate.

VP

Figure 6.15. The loading and support of the simply-supported plate are shown.

Figure 6.16 shows the obtained non-dominated solutions using NSGA-
II. After local search method, the obtained non-dominated solutions have
a wider distribution. The number of solutions have been reduced from
30 solutions to 22 solutions by the non-dominated checking. Finally,
the clustering algorithm finds nine widely separated solutions from 22
non-dominated solutions. The shape of these nine solutions are shown

166 EVOLUTIONARY OPTIMIZATION

,
\ NSGA-IT - O -
1k H Non-dominated local search —8— |
A Clustered solutions ¢
1
{
|

Scaled Deflection

Figure 6.16. Hybrid procedure finds nine trade-off solutions for the simply-supported
plate design problem.

in Figure 6.17. The minimum weight solution tends to use one row (the

Figure 6.17. Nine trade-off shapes for the simply-supported plate design are shown.

top-most row) less, but since the load is acting on the top of the plate,

MEA for Engineering Shape Design 167

one element is added to have the load transferred to the plate. The
third solution (shown in the (1,3)-th position in the matrix) is interest-
ing. A careful look at Figure 6.16 reveals that this solution is a ‘knee’
solution. To achieve a small advantage in weight-loss, a large sacrifice in
the deflection-gain is evident. Similarly, to achieve a small advantage in
deflection-loss, a large sacrifice in weight is needed. Shapes in position
(1,2) and (2,1) can be compared with respect to the shape in position
(1,3). Shape in position (3,1) or solution 7 is also interesting. In order to
have further reduction in deflection stiffening of the two slanted arms is
needed. Finally, the absolute minimum deflection shape is the complete
rectangle with maximum possible weight.

Starting with the minimum weight design having two slim slanted
legs down to thickening the legs to make them stiff, followed by joining
the legs with a stiffener, and finally finding the complete rectangular
plate having minimum deflection are all intuitive trade-off solutions. In
the absence of any such knowledge, it is interesting how the hybrid
procedure with NSGA-II is able to find the whole family of different
trade-off solutions.

6.3 Hoister Plate Design

Here, we attempt to design a hoister, that lifts a weight. Once again,
a rectangular plate is used, but this time we use a 80x60 mm? plate
with 48 elements. Thus, the string to represent a hoister is 48 bits long.
The loading and the support conditions are shown in Figure 6.18. The
vertical load is 5 kN and the horizontal loadings are 2.5 kN distributed
over the length of the element. In order to apply the load, two center
elements are forcibly made absent (that is, the corresponding bits in a
string are always set to zero).

oz

3 I"

s ——

Figure 6.18. The loading and support of the hoister plate are shown.

168 EVOLUTIONARY OPTIMIZATION

Figure 6.19 shows 30 non-dominated solutions obtained using NSGA-
II. The figure shows a good spread of trade-off solutions. When the
local search method is applied from each solution and a non-domination
check is made, there exists only 14 solutions, as shown in Figure 6.20.
Moreover, most solutions concentrate near the middle of the previously-
obtained front. Although two extreme solutions are found, the diversity
among solutions is somewhat lost. Many solutions near the minimum

&0 T T T T T T —l (1]
50+ HSGA-II 1 50 Non-dominated local search
g]
o
Doaof b
4] (4]
L] L]
- —
i i
3 20 g
d q
% L]
0 o

0 - .
10 15 20 25 30 is 40 45 25 D 35 40 45 50
Weight Weight

Figure 6.19. NSGA-II solutions for the Figure 6.20. Solutions obtained after
hoister plate design problem are shown. the local search method for the hoister
plate design problem are shown.

deflection region in Figure 6.19 converge to an identical solution after
the local search method. Although this allows the procedure to converge
to a reduced set of non-dominated solutions, some important trade-off
solutions may get lost by this process. This happens mainly due to the
way we have allocated a pseudo-weight to a solution.

6.3.1 Continuously updated pseudo-weight vector. We
have highlighted earlier that the pseudo-weight vector computation using
equation 6.5 provides an approximate idea of the true weights associated
with objectives at any solution. In order to get a better approximation
of the true weight, we propose a continuously-updated pseudo-weight
vector, where solutions are not assigned a fixed weight vector according
to equation 6.5, instead the optimum found after each local search is
used to update the weight vector.

Let us illustrate the procedure with the help of Figure 6.21 and for
two objectives. For more than two objectives, a similar procedure can
be adopted easily. First, the extreme solutions A and B are assigned a
weight vector according to equation 6.5. A local search procedure is used

MEA for Engineering Shape Design 169

AW MOEA solution set o
After local search e

Figure 6.21. 'The continuously-updated weighted approach is illustrated.

to find the corresponding optimum solutions. Based on the new values
of f;"i“ and f"** values, an intermediate solution I is assigned a weight
vector. Preferably, this intermediate solution I can be chosen as the
one being maximally away from the extreme solutions. The local search
procedure can be used with this intermediate solution and the optimum
solution can be found. Now we consider each of the two intervals: region
between A and I and the region between I and A. An intermediate
solution (preferably the solution in the middle of the range) is chosen in
each range. Say the solution L is chosen in the range between A and L.
The pseudo-weight vector for this solution is calculated as follows.

where solutions a and b are extreme solutions for the range under con-
sideration. Thus, for solution L, solution a is A and solution b is I. The
parameters %% and u‘)}’ are pseudo-weights associated with the extreme
solutions. When pseudo-weights are calculated for objective functions,
they can be normalized. This procedure can be repeated till the local
search is applied to all solutions. This update of pseudo-weights with a
local search procedure is advantageous in two ways:

1 The true optimum solution corresponding to a weight vector can
be found, and

170 EVOLUTIONARY OPTIMIZATION

2 The calculated weights for each optimum solution is close to their
true weights.

Figure 6.22 shows the obtained non-dominated solutions using the hy-
brid method with the above continuously updated pseudo-weight vector
calculation. The figure shows that a good distribution of solutions is

60 1 1 1 1 T I I

NSGA-II --©-
Non-dominated local search —8—
Clustered solutions ¢

50

g--°

40

301

.0-—""_'_-—‘-n

20 <3 =

Scaled Deflection

Figure 6.22. Hybrid procedure finds six trade-off solutions for the hoister plate design
problem.

now possible to obtain with the continuously updated scheme. There
are 17 solutions found after the local search method, but importantly
they are well distributed.

During clustering, we choose to have only six solutions, which are
marked in the figure. The figure shows the spread of obtained solutions.
It is interesting to note here that solutions 4, 5 and 6 have very similar
deflection, but their weights are very different. Figure 6.23 shows the
shape of six trade-off solutions. The minimum weight solution is our
familiar hook, often used for hoisting purposes. What is interesting is
that the opening in the left side of the hook evolves without any pre-
defined knowledge. The minimization of overall weight finds the hook
as the optimum design. It is also interesting that this design does not
use two columns (left-most and right-most) and one row (bottom-most),
in order to minimize the weight. From the support in the middle of the
plate, the shape turns to accommodate the loading nodes, just like a
human designer would do in designing a hook. As more stiff designs are

MEA for Engineering Shape Design 171

| o

Figure 6.23. Six trade-off shapes for the hoister plate design are shown.

desired, the gap in the hook closes and in the third solution, the loop is
closed. This way, a much stiffer hoister plate is designed. Other three
designs are different ways to make the plate more stiff, but mainly by
significantly increasing the weight for a small gain in the stiffness.

6.4 Bicycle Frame Design

Finally, we attempt to design a bicycle frame for a vertical load of
10 kN applied at A in Figure 6.24. The specifications are similar to
that used elsewhere (Kim et al., 2000). The plate is 20 mm thick and
is restricted to be designed within the area shown in Figure 6.24.
The frame is supported at two places B and C. The point B marks the

Figure 6.24. The hybrid procedure is illustrated for the bicycle frame design.

position of the axle of the rear wheel and the point C is the location
of the handle support. The filled element is the location of the pedal

172 EVOLUTIONARY OPTIMIZATION

assembly and is always present. The material yield stress is 140 MPa,
Young’s modulus is 80 GPa and Poisson’s ratio is 0.25. The maximum
allowed displacement is 5 mm.

Figure 6.25 shows the NSGA-II solutions and corresponding solutions
obtained by the hybrid approach. Here, we are interested in finding four
different trade-off solutions, marked in the figure.

16 T T T T T T T

NSGA-II —o— |
Non dominated local search -~ &
Clustered Solutions *

Scaled Deflection

2
20

Figure 6.25. 'The hybrid procedure is illustrated for the bicycle frame design.

These four solutions are shown mounted on a sketch of a bicycle in
Figure 6.26. The top-left solution is the minimum weight design. The
second solution have put more material on the bar joining the seat and
the rear wheel axle. Third solution joins the paddle wheel with the
bar joining the handle and the seat. This solution is similar to the
one seen on roads. Maximum weight solution puts almost full plate
to have the most stiff bicycle frame. The interior hole and absence
of top-left elements are all intuitive. The proposed hybrid approach
can evolve such solutions without the knowledge and mainly by finding
and maintaining trade-off solutions among weight and deflection. The
presence of many such solutions with different trade-offs between weight
and stiffness provides a plethora of information about various types of
designs.

7. Conclusion

The hybrid multi-objective optimization technique proposed in this
paper uses a combination of an multi-objective evolutionary algorithm
(MOEA) and a local search operator. The proposed technique ensures

REFERENCES 173

Figure 6.26. Four trade-off shapes for the bicycle frame design are shown.
a better convergence of MOEAs to the true Pareto-optimal region and

helps in finding a small set of diverse solutions for practical reasons.
The efficacy of the proposed technique is demonstrated by solving a
number of engineering shape design problems for two conflicting objec-
tives —weight of the structure and maximum deflection of the structure.
In all cases, the proposed technique has been shown to find a set of four
to nine diverse solutions better converged than an MOEA alone. The

results are encouraging and take the evolutionary multi-objective opti-
mization approach much closer to practice.

Acknowledgments
The authors wish to thank Ministry of Human Resources Development
(MHRD) for supporting this research.

References

Chankong, V. and Haimes, Y. Y. (1983). Multiobjective decision making
theory and methodology. North-Holland, New York.

Goldberg, D. E., Deb, K., and Clark, J. H. (1992). Genetic algorithms,
noise, and the sizing of populations. Complex Systems, 6:333-362.

174 EVOLUTIONARY OPTIMIZATION

Chapman, C. D. and Jakiela, M. J. (1996). Genetic algorithms based
structural topology design with compliance and topology simplifica-
tion considerations. ASME Journal of Mechanical Design, 118:89-98.

Kim, H., Querin, O. M., and Steven, G. P. (2000). Post-processing of
the two-dimensional evolutionary structure optimization topologies.
In Evolutionati Design and Manufacture, London: Springer, 33-44.

Chapman, C. D., Saitou, K., and Jakiela, M. J. (1994). Genetic algo-
rithms as an approach to configuration and topology design. ASME
Journal of Mechanical Design, 116:1005-1012.

Deb, K. (2001). Multiobjective optimization using evolutionary algorithms.
Wiley, Chichester.

Deb, K. and Agrawal, R. B. (1995). Simulated binary crossover for con-
tinuous search space. Complex Systems, 9:115-148.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000a). A fast eli-
tist non-dominated sorting genetic algorithm for multi-objective opti-
mization: Nsga-ii. In Proceedings of the Parallel Problem Solving from
Nature VI Conference, pages 849-858.

Deb, K., Pratap, A., Agrawal, S., and Meyarivan, T. (2000b). A fast and
elitist multi-objective genetic algorithm: NSGA-II. Technical Report
No. 2000001, Indian Institute of Technology Kanpur, India.

Duda, J. W. and Jakiela, M. J. (1997). Generation and classification of
structural topologies with genetic algorithm speciation. ASME Jour-
nal of Mechanical Design, 119:127-131.

Fonseca, C. M. and Fleming, P. J. (1993). Genetic algorithms for mul-
tiobjective optimization: Formulation, discussion, and generalization.
In Proceedings of the Fifth International Conference on Genetic Al-
gorithms, pages 416-423.

Hamada, H. and Schoenauer, M. (2000). Adaptive techniques for evo-
lutionary optimum design. In Proceedings of the Evolutionary Design
and Manufacture, pages 123-136.

Harik, G., Cantu-paz, E., Goldberg, D. E., and Miller, B. L. (1999).
The gambler’s ruin problem, genetic algorithms, and the sizing of
populations. Evolutionary Computation, 7(3):231-254.

Horn, J., Nafploitis, N., and Goldberg, D. E. (1994). A niched pareto
genetic algorithm for multi-objective optimization. In Proceedings of
the First IEEE Conference on Evolutionary Computation, pages 82—
87.

Jakiela, M. J., Chapman, C., Duda, J., Adewuya, A., and abd Saitou,
K. (2000). Continuum structural topology design with genetic algo-
rithms. Computer Methods in Applied Mechanics and Engineering,
186:339-356.

REFERENCES 175

Knowles, J. and Corne, D. (1999). The pareto archived evolution strat-
egy: A new baseline algorithm for multiobjective optimisation. In Pro-
ceedings of the 1999 Congress on Evolutionary Computation, Piscat-
away: New Jersey: IEEE Service Center, pages 98-105.

Miettinen, K. (1999). Nonlinear multiobjective optimization. Kluwer,
Boston.

Parmee, 1. C., Cvetkovic, D., Watson, A. H., and Bonham, C. R. (2000).
Multiobjective satisfaction within an interactive evolutionary design
environment. Evolutionary Computation, 8(2):197-222.

Sandgren, E., Jensen, E., and Welton, J. (1990). Topological design of
structural components using genetic optimization methods. In Pro-
ceedings of the Winter Annual Meeting of the American Society of
Mechanical Engineers, pages 31-43.

Sen, P. and Yang, J. B. (1998). Multiple criteria decision support in
engineering design. Springer, London.

Srinivas, N. and Deb, K. (1995). Multi-objective function optimization
using non-dominated sorting genetic algorithms. Evolutionary Com-
putation, 2:221-248.

Steuer, R. E. (1986). Multiple criteria optimization: Theory, computa-
tion, and application. Wiley, New York.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimiza-
tion: Methods and applications. Doctoral thesis ETH NO. 13398, Zurich:
Swiss Federal Institute of Technology (ETH), Aachen, Germany: Shaker
Verlag.

Zitzler, E. and Thiele, L. (1998). An evolutionary algorithm for multiob-
Jective optimization: The strength Pareto approach. Technical Report
No. 43 (May 1998), Ziirich: Computer Engineering and Networks Lab-
oratory, Switzerland.

This page intentionally left blank

Chapter 7

ASSESSMENT METHODOLOGIES FOR
MULTIOBJECTIVE EVOLUTIONARY
ALGORITHMS

Ruhul Sarker and
Carlos A. Coello Coello

Abstract The Pareto-based evolutionary multiobjective algorithms have shown
some success in solving multiobjective optimization problems. However,
it is difficult to judge the performance of multiobjective algorithms be-
cause there is no universally accepted definition of optimum in multiob-
jective as in single-objective optimization problems. As appeared in the
literature, there are several methods to compare two or more multiob-
jective algorithms. In this chapter, we discuss the existing comparison
methods with their strengths and weaknesses.

Keywords: multiobjective, Pareto front, metrics, evolutionary algorithm, perfor-
mance assessment

1. Introduction

In multiobjective optimization problems, we define the vector-valued
objective function f : R* — R™ where m > 1, n is the dimension of the
decision vector, x, andm is the dimension of the objective vector, y.
For the case of minimization problems, we intend to minimize

y =£(x) = (fi(x), -, fm(x)),

where x € R®, and y € R™. A solution y, is said to dominate
solution yu if Yai < ypi, Vi € {1,--+ ,m} and Yai < ypi, i € {1,--- ,m}.
In most cases, the objective functions are in conflict, because in order
to decrease any of the objective functions, we need to increase other
objective functions. When we have a solution which is not dominated
by any other solution in the feasible space, we call it Pareto-optimal.

178 EVOLUTIONARY OPTIMIZATION

The set of all Pareto-optimal solutions is termed the Pareto-optimal set,
efficient set or admissible set. Their corresponding objective vectors are
called the nondominated set.

Fonseca and Fleming (1995), categorized the evolutionary based tech-
niques for multiobjective optimization into three approaches: plain ag-
gregating approaches, population-based non-Pareto approaches, and Pa-
reto-based approaches. A comprehensive survey of the different tech-
niques under these three categories can be found in Coello (1999), in
Veldhuizen (1999) and in the last two chapters of this book.

In multiobjective optimization, determining the quality of solutions
produced by different evolutionary algorithms is a serious problem for
researchers because there is no well accepted procedure in the litera-
ture. The problem is certainly difficult due to the fact that, unlike
single-objective optimization, in this case we need to compare vectors
(representing sets of solutions).

The chapter is organized as follows. We will start by surveying the
most important work on performance assessment methodologies reported
in the specialized literature, describing each proposal and analyzing some
of their drawbacks. Then, we will present a brief comparative study of
the main metrics discussed and we will conclude with some possible
paths of future research in this area.

2. Assessment Methodologies

The definition of reliable assessment methodologies is very important
to be able to validate an algorithm. However, when dealing with mul-
tiobjective optimization problems, there are several reasons why the as-
sessment of results becomes difficult. The initial problem is that we will
be generating several solutions, instead of only one (we aim to generate
as many elements as possible of the Pareto optimal set). The second
problem is that the stochastic nature of evolutionary algorithms makes
it necessary to perform several runs to assess their performance. Thus,
our results have to be validated using statistical analysis tools. Finally,
we may be interested in measuring different things. For example, we
may be interested in having a robust algorithm that approximates the
global Pareto front of a problem consistently, rather than an algorithm
that converges to the global Pareto front but only occasionally. Also,
we may be interested in analyzing the behavior of an evolutionary algo-
rithm during the evolutionary process, trying to establish its capabilities
to keep diversity and to progressively converge to a set of solutions close
to the global Pareto front of a problem.

Assessment Methodologies for MEAs 179

The previous discussion is a clear indication that the design of metrics
for multiobjective optimization is not easy. The next topic to discuss is
what to measure. It is very important to establish what sort of results we
expect to measure from an algorithm so that we can define appropriate
metrics.

Three are normally the issues to take into consideration to design a
good metric in this domain (Zitzler et al., 2000):

1 Minimize the distance of the Pareto front produced by our algo-
rithm with respect to the global Pareto front (assuming we know
its location).

2 Maximize the spread of solutions found, so that we can have a
distribution of vectors as smooth and uniform as possible.

3 Maximize the number of elements of the Pareto optimal set found.

Next, we will review some of the main proposals reported in the lit-
erature that attempt to capture these three issues indicated above. As
we will see, none of these proposals really captures the three issues in a
single value. In fact, to attempt to produce a single metric that captures
these three issues may prove fruitless, since each of these issues refers to
different performance aspects of an algorithm. Therefore, their fusion
into a single value may be misleading. Interestingly, the issue of design-
ing a good assessment measure for this domain is also a multiobjective
optimization problem. The techniques that have attempted to produce
a single value to measure the three issues previously discussed, are re-
ally some form of an aggregating function and therefore the problems
associated with them (Coello, 1999). It is therefore, more appropriate
to use different metrics to evaluate different performance aspects of an
algorithm.

2.1 A Short Survey of Metrics

As we will see in our following survey of metrics, most of the current
proposals assume that the global Pareto front (PFgopar) of the multiob-
jective optimization under study is known or it can be generated (e.g.,
through an enumerative approach).

If that is the case, we can test the performance of a multiobjective
evolutionary algorithm (MEA) by comparing the Pareto fronts produced
by our algorithm (PF,p,) against the global Pareto front (PFgiopat')
and then determine certain error measures that indicate how effective is

'We have adopted a notation similar to the one proposed by Veldhuizen (Veldhuizen, 1999).

180 EVOLUTIONARY OPTIMIZATION

the algorithm analyzed. The error rate and generational distance metrics
discussed next make this assumption.

2.1.1 Error Rate. This metric was proposed by Veldhuizen
(1999) to indicate the percentage of solutions (from PFypte:y,) that are
not members of PFyopq:

n »
ER= L%l—e—’ (7.1)

where n is the number of vectors in PFopain; € = 0if vector 7 is
a member of PFy,,, and e; = 1 otherwise. It should then be clear
that ER = 0 indicates an ideal behavior, since it would mean that all
the vectors generated by our MEA belong to PFjyope. Note that this
metric requires knowing the number of elements of the global Pareto
optimal set, which is often impossible to determine. Veldhuizen and La-
mont (1998,1999) have used parallel processing techniques to enumerate
the entire intrinsic search space of an evolutionary algorithm, so that
PFyopa1 can be found. However, they only reported success with strings
of £ 26 bits. To enumerate the entire intrinsic search space of real-
world multiobjective optimization problems with high dimensionality is
way beyond the processing capabilities of any computer (otherwise, any
multiobjective optimization problem could be solved by enumeration).

This metric clearly addresses the third of the issues discussed in Sec-
tion 2.

2.1.2 Generational Distance. The concept of generational
distance (GD) was introduced by Veldhuizen and Lamont (1998) as a
way of estimating how far are the elements in PFypgin from those in
PFyopq and is defined as:

S g2
Gp = Y=imt (7.2)

n

where nis the number of vectors in PFypeqin, and d; is the Euclidean
distance (measured in objective space) between each of these and the
nearest member of PFgpe. It should be clear that a value of GD = 0
indicates that all the elements generated are in P Fgopq;. Therefore, any
other value will indicate how “far” we are from the global Pareto front of
our problem. Similar metrics were proposed by Rudolph (1998), Schott
(1995), and Zitzler et al. (2000).

This metric also refers to the third issue discussed in Section 2

Assessment Methodologies for MEAs 181

2.1.3 Spread. The spread measuring techniques measure the
distribution of individuals in PFypiai, over the nondominated region.
For example, Srinivas and Deb (1994) proposed the use a chi-squared

distribution:
g+l ne — 7\ 2
P = N .
S Z(-) (7.3)

where: ¢ is the number of desired (Pareto) optimal points (it is as-
sumed that the (g+1)-th subregion is dominated by the g-th subregion),
n; is the number of individuals in the i-th niche (or subregion (Deb and
Goldberg, 1989)) of the nondominated region, fi; is the expected num-
ber of individuals present in the i-th niche, and af is the variance of the
individuals present in the i-th subregion of the nondominated region.
Deb (1989) had previously used probability theory to estimate that:

o = (1 ~ %),i =1,2,.y4, (7.4)

where P is the population size. Since the (g + 1)-th subregion is a
dominated region, then figr1 = 0 (ie., we do not want to have any
individuals in that region). Also, Deb’s study showed that:

q
Tg1= Y07 (7.5)
=1

Then, if SP=0, it means that our MEA has achieved an ideal distri-
bution of points. Therefore, low values of SP imply a good distribution
capacity of a given MEA.

To analyze the distribution using this measure, the nondominated
region is divided into a certain number of equal subregions (this number
is given by the decision maker). Knowing the population size used by the
MEA under study, we can compute the amount of expected individuals
in each subregion. This value is then used to compute the deviation
measure indicated above.

A similar metric, called “efficient set spacing” (ESS) was proposed by
Schott (1995):

ESS=\| 1y (- di)? (7.6)

182 EVOLUTIONARY OPTIMIZATION

where:

ds = wing { |71 = A1 +1£5 - A1} (7.7)

where: j = 1,...,e, and d refers to the mean of all d; and e is the
number of elements of the Pareto optimal set found so far. If ESS =0,
then it means that our MEA is giving us an ideal distribution of the
elements of our nondominated vectors.

Schott’s approach is based on a Holder metric of degree one (Horn
and Nafpliotis, 1993) and measures the variance of the distance of each
member of the Pareto optimal set (found so far) with respect to its closest
neighbor. Note, however, that, as indicated by Veldhuizen (1999), this
metric has to be adapted to consider certain special cases (e.g., disjoint
Pareto fronts), and it may also be misleading unless it is combined with
a metric that indicates the number of elements of the global Pareto
optimal set found (e.g., if we produce only two solutions, this metric
would indicate an ideal distribution).

Although none of these spread metrics really requires that we know
PFyiopal, they both implicitly assume that our MEA has converged to
global nondominated solutions. Otherwise, knowing that our algorithm
produces a good distribution of solutions may become useless.

It should be clear that these metrics refer to the second issue discussed
in Section 2

2.14 Space Covered. Zitzler and Thiele (1999) proposed a
similar metric called “Size of the Space Covered” (SSC). This metric
estimates the size of the global dominated set in objective space. The
main idea behind this metric is to compute the area of objective function
space covered by the nondominated vectors that our MEA has generated.
For biobjective problems, each dominated vector represents a rectangle
defined by the points (0,0) and (f1{(x:), fo(x;)), where fi(x;) and fa(z;)
are nondominated solutions. Therefore, SSC is computed as the union
of the areas of all the rectangles that correspond to the nondominated
vectors generated. However, the main drawback of this metric is that
it may be misleading when the shape of the Pareto front is non-convex
(Zitzler and Thiele, 1999).

Laumanns et al. (1999), used the concept of space coverage for com-
paring problems with more than two objectives. In their paper, they
considered an m-dimensional cuboid as a reference set, from which the
MEA under investigation should cover the maximum possible dominated
space. Every nondominated solution gives a cone of dominated solutions.
The intersection of this cone with the reference cuboid (which is also a

Assessment Methodologies for MEAs 183

cuboid) adds to the dominated volume. In calculating the dominated
volume, the overlapping parts of different solutions are not counted mul-
tiple times. In this method, the reference cuboid is developed using the
single objective optimal solutions. That means the single objective op-
timal solution must be either known or computed before judging the
quality of a MEA. If the single objective solutions are not known, for a
problem with m functions, one has to solve m single objective problems
to generate the reference cuboid. Potentially, this could be a expen-
sive process (computationally speaking), particularly when dealing with
real-world applications.

The value of space coverage varies with the number of nondominated
solution points and their distribution over the Pareto front. We can then
see that this metric tries to combine into a single value the three issues
discussed in Section 2 Therefore, as indicated by Zitzler et al. (2000) the
metric will be ineffective in those cases in which two algorithms differ in
more than one of these three criteria previously mentioned (i.e., distance,
spread and number of elements of the global Pareto optimal set found).
That is why Veldhuizen (1999) suggested to use a ratio instead, but his
metric also assumes knowledge of P Fggpal-

2.1.5 Coverage Metric. Zitzler and Thiele (1999) proposed
another metric for comparing the performances of different MEAs. In
this case, two nondominated sets are compared calculating the fraction of
each of them that is “covered” (or dominated) by the other one. Suppose
there are two algorithms Al and A2 to compare their performances. In
this method, the resulting set of nondominated points from a single
run of algorithm A1 and another from a single run of algorithm A2 are
processed to yield two numbers: the percentage of points from algorithm
A1 which are equal to or dominated by points from A2, and vice versa.
Statistical tests can be performed on the numbers yielded from several
such pairwise comparisons.

Let X/, X" C X be two sets of decision vectors. The function CM
maps the ordered pair (X', X”) to the interval [0,1] (Zitzler and Thiele,
1999):

|{a" € X";d' € X':a =a"}|
| X"

IfCM (X', X") = 1, then it means that all points in X" are dominated
by or are equal to points in X'. If CM (X', X") = 0, then it means that
none of the points in X” are covered by the set X'.

This method can be used to show whether the outcomes of one algo-
rithm dominate the outcomes of another algorithm without indicating

CM(X', X") =

184 EVOLUTIONARY OPTIMIZATION

how much better it is. Also, note that this comparison technique does
not check the uniformity of solution points along the trade-off surface.

Another problem with this approach is that it may return a better
value for an algorithm that produces a single vector, closer to the global
Pareto optimal front than for another algorithm that produces several
well-distributed vectors that are, however, farther from the global Pareto
optimal front (Knowles and Corne, 2000).

This metric only refers to the first issue discussed in Section 2 In fact,
this metric is meant to complement the Space Covered metric previously
discussed (Zitzler and Thiele, 1999). In his dissertation, Zitzler (1999)
proposed another metric called “Coverage difference of two sets”, that
solves some of the problems of the Coverage Metric.

2.1.6 Statistical Comparison. MEAs are usually run several
times to end up with a set of alternative solutions for MOPs from which
the decision maker has to choose one. So, when we compare different
MEA:s, it is logical to compare them statistically instead of comparing
only scalar values as in the single objective case.

An statistical comparison method called “attainment surfaces” was in-
troduced by Fonseca and Fleming (1996). Consider the approximations
to the Pareto optimal front for two algorithms A1 and A2 as shown in
Figure 7.1. The lines joining the points (solid for A1 and dashed for A2)
indicate the so-called attainment surfaces. An attainment surface divides
objective space into two regions: one containing vectors which are dom-
inated by the results produced by the algorithm, and another one that
contains vectors that dominate the results produced by the algorithm.
As shown in Figure 7.1, a number of sampling lines (L1, L2,) can be
drawn from the origin, which intersect the attainment surfaces, across
the full range of the Pareto front (trade-off surfaces obtained). The
range of the Pareto surface is usually specified by the decision maker.
For a given sampling line, the intersection of an algorithm closer to the
origin (assuming minimization for both objectives) is the winner. In
our case, algorithm A1 is winner for line L3 and A2 is winner for line
L4. Fonseca and Fleming’s idea was to consider a collection of sampling
lines which intersect the attainment surfaces across the full range of the
Pareto frontier.

If MEAs are run r times, each algorithm will return v attainment
surfaces, one from each run. Having these r attainment surfaces, some
from algorithm A1 and some from algorithm A2, a single sampling line
yields = points of intersection, one for each surface. These intersections
form a univariate distribution, and therefore, we can perform standard
non-parametric statistical procedures to determine whether or not the

Assessment Methodologies for MEAs 185

Figure 7.1. Sampling the Pareto frontier using lines of intersection

intersections for one of the algorithms occurs closer to the origin with
some statistical significance. Such statistical tests have been performed
by (Knowles and Corne, 2000) for each of several lines covering the
Pareto tradeoff area. Insofar as the lines provide a uniform sampling
of the Pareto surface, the result of this analysis yields two numbers—a
percentage of the surface in which algorithm Al outperforms algorithm
A2 with statistical significance, and that when algorithm A2 outperforms
algorithm Al.

Knowles and Corne (2000) presented their results of a comparison in
the form of a pair [al,a2], where al gives the percentage of the space (i.e.
the percentage of lines) on which algorithm A1 was found statistically
superior to A2, and a2 gives the similar percentage for algorithm A2.
Typically, if both A1 and A2 are ‘good’, then al + a2 j 100. The
quantity [100 -~ (al + a2)], of course, gives the percentage of the space
on which the results were statistically inconclusive. They use statistical
significance at the 95 percent confidence level. Knowles and Corne (2000)
also extended their comparison methodology for comparing more than
two algorithms.

If the algorithms are competitive, the results may vary with the num-
ber of sampling lines drawn since the procedure considers only the in-
tersection points of sampling lines and attainment surfaces. Knowles
and Corne (2000) proposed that 100 lines must be adequate, although,
obviously, more lines the better. They have shown experimentally that

186 EVOLUTIONARY OPTIMIZATION

the percentage of the space (@l + a2) increases, to give statistically
significant results, with the increased number of lines.

A drawback of this approach is that it remains unclear how much bet-
ter is one algorithm from another one against which it is being compared
(Zitzler, 1999). An important aspect of this metric, however, is that the
global Pareto optimal set does not need to be known.

Note that this metric is similar to the Coverage Metric, since they both
compare the outcomes of two algorithms but none allows to determine
how much better is an algorithm compared to others. This metric is also
addressing only the first of the issues discussed in Section 2

In more recent work, da Fonseca et al. (2001) extended their orig-
inal proposal relating their attainment function definition to random
closed set theory (Matheron, 1975). Under this scheme, the attainment
function can be seen as a generalization of the multivariate cumulative
distribution function. The metric, in fact, addresses the three issues dis-
cussed in Section 2 However, its main drawback is that computing the
multivariate empirical cumulative distribution function may be quite dif-
ficult and very expensive (computationally speaking) (da Fonseca et al.,
2001).

3. Discussion

In practice, P Fyjopq; is a collection of points on the global Pareto front.
To make metrics such as the Error Rate (ER) and Generational Distance
(GD) meaningful, we must have a large number of points without any
gap so that the global Pareto front looks like a continuous line instead
of a dotted line.

Suppose that we have two algorithms (A1 and A2) to compare with
respect to PFyopq. Algorithm Al produces only a few alternative solu-
tions and all of these solutions are scattered and are members of P Fgjopa,
then ER (and GD) being zero indicates that the algorithm produces
perfect results. Algorithm A2 produces many alternative but evenly dis-
tributed solutions. The ER (same for GD) value of A2 is greater than
zero since there are few points who are not members of PFyspq;. Should
we say Al is better than A2? In a multiobjective decision process, more
alternative solutions mean more flexibility to the human decision maker.
Though the Error Rate and Generational Distance for Al are zero, the
number of alternative solutions and their distributions are not favorable
for a good decision making process. So, it should be clear that ER and
GD are not sufficient to judge the performance of MEAs.

The Error Rate and Generational Distance can be used, when the
Pareto fronts are known, to get an indication of errors involved with the

Assessment Methodologies for MEAs 187

obtained front. However, for an unsolved problem, it is impossible to
know its Pareto front beforehand.

The Spread metric may help to judge an algorithm when the global
Pareto front is unknown (although, this metric implicitly assumes that
convergence to the global Pareto front has been achieved). However, it
only judges the uniformity of solution points over different subregions
without indicating the overall quality of solutions.

The Space Covered metric shows the dominated space covered by
the solutions obtained from an algorithm. This metric, however, may be
misleading when the Pareto front of the problem is concave.

The Coverage Metric shows whether the outcomes of one algorithm
dominate the outcomes of another algorithm without indicating how
much better it is. This comparison technique does not check the uni-
formity of solution points along the Pareto trade-off surface. Therefore,
this metric will be misleading when algorithm A1 produces only one
vector that is closer to the global Pareto front of the problem than the
solutions produced by algorithm A2, which are uniformly distributed
but are dominated by the solutions of Al.

The Statistical Comparison technique seems to be reasonably good
in comparing different MEAs though the results may vary with the num-
ber of sampling lines. In contrast to other methods, this method is judg-
ing the overall quality of Pareto trade-off surface based on the sample
information (taking only points on the intersection of attainment sur-
faces and sampling lines). In addition it does not explicitly measure
the uniformity of the solutions points. Nevertheless, this metric is also
incapable of establishing how much better is a certain algorithm with
respect to others.

As discussed earlier, decision makers are interested in a good number
of uniformly distributed solution points on the trade-off surface along
their relative optimality. By the term relative optimality for a two
objective minimization problem, we mean, the solution points (when
plotted one objective versus the other) must be as close to the origin
(0,0) as possible in a given subregion. No comparison technique gives a
clear indication about the relative performance of an algorithm. However
a combination of a few techniques and some other simple considerations
may help to compare two or more algorithms up to a certain level.

The first thing is to plot the Pareto fronts and inspect visually their
relative locations, relative number of points in each front and their distri-
bution. The visual inspection is acceptable when one algorithm clearly
outperforms the other. This method is limited to two or three function
problems only. When the algorithms are very competitive, the statisti-
cal comparison along with the space covered, number of solution points,

188 EVOLUTIONARY OPTIMIZATION

average distance between neighboring points (with their distribution),
and average distance between the origin (or any other reference point)
and the solution points (with their distribution) may help to compare
two or more MEAs.

There are other proposals for performance assessment measures in
the specialized literature. For example, Zitzler et al. (2000) proposed
a family of scale-dependent measures. Esbensen and Kuh (1996) and
Ang et al. (2001) proposed the use of a utility function to determine the
quality of the solutions produced by a MEA. This metric considers only
nearness to the global Pareto optimal front, but not spread or number of
elements achieved. Veldhuizen (1999) proposed a multiobjective version
of the “progress measure” metric proposed by Thomas Bick (1996). In
this case, the relative convergence improvement of the MEA is measured.
The main drawback of this metric is that it may be misleading in certain
situations (e.g., when we find a single vector that belongs to a Pareto
front closer to the global Pareto front than those vectors previously found
by the algorithm).

However, it is important to keep in mind that combining the three
issues discussed before is still an open research area, and it currently
seems better to apply independently more than one metric to the same
problem and analyze the combination of results found.

Notice also that some specific domains may allow the definition of
more precise metrics. Such is the case of multiobjective combinatorial
optimization, in which several quality measures have been proposed (see
for example (Jaszkiewicz et al., 2001; Carlyle et al., 2001)).

4. Comparing Two Algorithms: An Example

In evolutionary computation, when comparing two algorithms, it is
considered common practice that they both have the same representa-
tion (e.g., binary), operators (i.e., crossover and mutation), and param-
eters (i.e., crossover and mutation rates, population size, etc.) on all
the functions to be tested. Otherwise, the comparison is not considered
fair. For example, the comparison between an algorithm AL; with bi-
nary representation (with one-point crossover and bit-flip mutation) and
another algorithm ALs with real number representation (with Gaussian
mutation) would be treated as an improper comparison even if they both
use the same parameters. If different parameters are used (e.g., different
population sizes), it may become obvious to anyone that the amount of
fitness function evaluations of the algorithms compared will be different
and, therefore, any comparison will be unfair. However, if only the rep-
resentation and operators are different, it is perhaps not so obvious why

Assessment Methodologies for MEAs 189

the comparison is unfair. The reasons for that assumption are related to
the role of the representation and the genetic operators in an evolution-
ary algorithm (Whitley et al., 1998; Caruana and Schaffer, 1988; Ronald,
1997; Eshelman et al., 1989; Spears and Jong, 1991; Fogarty, 1989).

If the representation, operators of two algorithms are same, the su-
periority of one algorithm over the other really shows the strength of
the algorithmic design for the given representation and operators. We
must mention here that there is a lot of empirical evidence regarding
the fact that the real number representation works better than binary
representation for most real valued problems (Michalewicz, 1996).

From the optimization point of view, the quality of solutions and
computational complexity of the algorithms are only two parameters
to be considered when comparing any two algorithms with the same
starting solution. If the algorithm ALs produces better results than ALy
and has a lower computational complexity (i.e., lower computational
time), the algorithm AL can be considered as the better algorithm
irrespective of representation and operators. Of course, one has to test
a sufficient number of problems including extreme cases to conclude the
quality of an algorithm. In evolutionary algorithms, the same rule can be
applied using equal population size as equivalent to same initial solution.

In this section, we compare two algorithms of different representations,
not to be back to the debate of valid or invalid comparison, but just to
demonstrate the assessment methodologies described in this chapter.
The two algorithms used in this comparison are: Differential Evolution
based Multiobjective Algorithms (Abbass et al., 2001), referred as PDE
in this chapter, and Strength Pareto Evolutionary Algorithm (Zitzler
and Thiele, 1999), referred as SPEA. SPEA uses binary representa-
tion with one-point crossover and bit-flip mutation and PDE uses real
number representation with Gaussian mutation. We use only one test
problem 71 from (Abbass et al., 2001) that was also tested by (Zitzler
and Thiele, 1999).

The first method, reported in this section, is the graphical presenta-
tion of function values. The outcomes of the first five runs of the test
function from each algorithm were unified. Then the dominated solu-
tions are deleted from the union set, and all the nondominated ones are
plotted. The figure is reproduced from (Abbass et al., 2001). As you
can see the plot in 7.2, PDE clearly shows superiority over SPEA.
From this observation, one may think that PDE is better than SPEA
for any or all runs for this test problem.

The second comparison method is to measure the coverage of two
solution sets produced by the two algorithms. The value of the coverage
metric, calculated from 20 runs, of average 98.65 indicates that PDE

190 EVOLUTIONARY OPTIMIZATION

] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7.2. Pareto frontier for PDE and SPEA

covers SPEA for most cases, but not for all of them. However, SPEA
also covers PDE for a few occasions. That means, PDE is not better
than SPEA for all cases.

The statistical comparison, using the solutions of 20 runs, shows that
[al,a2] = [84.30, 15.10]. That means, PDE is statistically superior to
SPEA for 84.30 percentage of the space (i.e. the percentage of lines)
and SPEA is statistically superior to PDE for 15.10 percentage. The
quantity [100 - (al + a2)] = 0.60, of course, gives the percentage of
the space on which the results were statistically inconclusive. We use
statistical significance at the 95 percent confidence level and the number
of lines equal to 100. For SPEA, the value of statistical comparison
metric is better than the coverage metric. Once again, SPEA is not
that bad compared to PDE as we thought after visual inspection.

The average space coverage by PDE and SPEA are 0.341045 and
0.369344 respectively. The average spacing between the adjacent solu-
tion points are 0.1975470 and 0.2447740 for PDE and SPEA respec-
tively. The average distance from the origin to the solution points are
0.6227760 and 0.7378490 for PDE and SPEA respectively.

From the above indicators, one can conclude easily that PDE solu-
tions are better than SPEA for the given test problem. Although the
amount of computations required by the two algorithms, to solve this

Assessment Methodologies for MEAs 191

test problem, is very much similar (in terms of fitness function evalua-
tions), the PDE algorithm gives special attention to the uniformity of
the solution points in each generation (Abbass et al., 2001).

5. Conclusions and Future Research Paths

In this chapter, we have reviewed some of the most important pro-
posals for metrics found in the literature on evolutionary multiobjective
optimization. As we have seen, most of the proposals defined in this
context normally consider only one of the three fundamental aspects
that we need to measure when dealing with multiobjective optimization
problems: closeness to the global Pareto front, spread along the Pareto
front or number of elements of the Pareto optimal set found.

As mentioned before, several issues still remain as open paths for
future research. Consider for example the following:

» [t may be important to consider additional issues such as efficiency
(e.g., CPU time or number of fitness function evaluations) in the
design of a metric. No current metrics consider efficiency as an-
other factor to be combined with the three issues previously dis-
cussed (it tends to be measured independently or to be considered
fixed), although in some recent work by Ang et al.(2001), they
propose to use a metric proposed by Feng et al. (1998) (called
“optimizer overhead”) for that sake. However, this metric also
(implicitly) assumes knowledge of the global Pareto front of the
problem when dealing with multiple objective optimization prob-
lems.

m Few metrics are really used to measure progress of MEAs through
generations. Studies in which such progress is analyzed are nec-
essary to understand better the behavior of MEAs, particularly
when dealing with difficult problems.

s There is a notorious lack of comparative studies in which several
metrics and MEAs are used. Such studies would not only indicate
strenghts and weaknesses of MEAs, but also of the metrics used
to compare them.

a There are no formal studies that indicate if measuring performance
in phenotypic space (the usual norm in evolutionary multiobjec-
tive optimization) is better than doing it in genotypic space (as in
operations research) (Veldhuizen, 1999). Most researchers tend to
use the performance assessment measures found in the literature
without any form of analysis that indicates if they are suitable for
the technique and/or domain to which they will be applied.

192 EVOLUTIONARY OPTIMIZATION

= New metrics are of course necessary, but their type is not necessar-
ily straightforward to determine. Statistical techniques seem very
promising (da Fonseca et al., 2001), but other approaches such
as the use of hyperareas looks also promising (Zitzler and Thiele,
1999). The real challenge is to produce a metric that allows to
combine the three issues previously mentioned (and perhaps some
others) in a non-trivial form (we saw the problems when using an
aggregating function for this purpose). If such a combination is not
possible, then it is necessary to prove it in a formal study and to
propose alternatives (i.e., to indicate what independent measures
need to be combined to obtain a complete evaluation of a MEA).

= Publicly-available test functions and results to evaluate multiob-
jective optimization techniques are required, as some researchers
have indicated (Veldhuizen, 1999; Ang et al., 2001). It is important
that researchers share the results found in their studies, so that we
can build a database of approximations to the Pareto fronts of
an important number of test functions (particularly, of real-world
problems). The EMOO repository at: http: //www.lania.mx/ ccoello
/EMOO/ is attempting to collect such information, but more efforts
in that direction are still necessary.

Acknowledgments

The second author acknowledges support from the mexican Consejo
Nacional de Ciencia y Tecnologia (CONACyT) through project number
34201-A.

References

Abbass, H., Sarker, R., and Newton, C. (2001). PDE: A Pareto Fron-
tier Differential Evolution Approach for Multiobjective Optimisation
Problems. In Proceedings of the Congress on Evolutionary Computa-
tion 2001, pages 971-978. Seoul, Korea.

Ang, K., Li, Y., and Tan, K. C. (2001). Multi-Objective Benchmark
Functions and Benchmark Studies for Evolutionary Computation. In
Proceedings of the International Conference on Computational Intel-
ligence for Modelling Control and Automation (CIMCA °2001), pages
132-139, Las Vegas, Nevada.

Bick, T. (1996). Evolutionary Algorithms in Theory and Practice. Ox-
ford University Press, New York.

Carlyle, W. M., Kim, B., Fowler, J. W., and Gel, E. S. (2001). Com-
parison of Multiple Objective Genetic Algorithms for Parallel Ma-
chine Scheduling Problems. In Zitzler, E., Deb, K., Thiele, L., Coello,

REFERENCES 193

C. A. C,, and Corne, D., editors, First International Conference on
Evolutionary Multi-Criterion Optimization, pages 472-485. Springer-
Verlag. Lecture Notes in Computer Science No. 1993.

Caruana, R. and Schaffer, J. D. (1988). Representation and Hidden Bias:
Gray vs. Binary Coding for Genetic Algorithms. In Proceedings of the
Fifth International Conference on Machine Learning, pages 132-161,
San Mateo, California. Morgan Kauffman Publishers.

Coello, C. A. C. (1999). A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques. Knowledge and Information
Systems. An International Journal, 1(3):269-308.

da Fonseca, V. G., Fonseca, C. M., and Hall, A. O. (2001). Inferential
Performance Assessment of Stochastic Optimisers and the Attainment
Function. In Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C., and
Corne, D., editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 213-225. Springer-Verlag. Lec-
ture Notes in Computer Science No. 1993.

Deb, K. (1989). Genetic Algorithms in Multimodal Function Optimiza-
tion. Technical Report 89002, The Clearinghouse for Genetic Algo-
rithms, University of Alabama, Tuscaloosa, Alabama.

Deb, K. and Goldberg, D. E. (1989). An Investigation of Niche and
Species Formation in Genetic Function Optimization. In Schaffer,
J. D., editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 42-50, San Mateo, California. George Ma-
son University, Morgan Kaufmann Publishers.

Esbensen, H. and Kuh, E. S. (1996). Design space exploration using the
genetic algorithm. In IEEE International Symposium on Circuits and
Systems (ISCAS’96), pages 500-503, Piscataway, NJ. IEEE.

Eshelman, L. J., Caruana, R. A., and Schaffer, J. D. (1989). Biases in
the Crossover Landscape. In Schaffer, J. D., editor, Proceedings of the
Third International Conference on Genetic Algorithms, pages 10-19,
San Mateo, California. Morgan Kaufmann Publishers.

Feng, W., Brune, T., Chan, L., Chowdhury, M., Kuek, C., and Li, Y.
(1998). Benchmarks for Testing Evolutionary Algorithms. In Proceed-
ings of the Third Assia-Pacific Conference on Control and Measure-
ment, pages 134-138, Dunhuang, China.

Fogarty, T. C. (1989). Varying the Probability of Mutation in the Ge-
netic Algorithm. In Schaffer, J. D., editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 104—109, San
Mateo, California. Morgan Kaufmann Publishers.

Fonseca, C. M. and Fleming, P. J. (1995). An Overview of Evolutionary
Algorithms in Multiobjective Optimization. Evolutionary Computa-
tion, 3(1):1-16.

194 EVOLUTIONARY OPTIMIZATION

Fonseca, C. M. and Fleming, P. J. (1996). On the Performance As-
sessment and Comparison of Stochastic Multiobjective Optimizers.
In Voigt, H.-M., Ebeling, W., Rechenberg, 1., and Schwefel, H.-P., ed-
itors, Parallel Problem Solving from Nature—PPSN 1V, Lecture Notes
in Computer Science, pages 584—593, Berlin, Germany. Springer-Verlag.

Horn, J. and Nafpliotis, N. (1993). Multiobjective Optimization using
the Niched Pareto Genetic Algorithm. Technical Report IlliGAIl Re-
port 93005, University of Illinois at Urbana-Champaign, Urbana, Illi-
nois, USA.

Jaszkiewicz, A., Hapke, M., and Kominek, P. (2001). Performance of
Multiple Objective Evolutionary Algorithms on a Distribution System
Design Problem—Computational Experiment. In Zitzler, E., Deb, K.,
Thiele, L., Coello, C. A. C., and Corne, D., editors, First International
Conference on Evolutionary Multi-Criterion Optimization, pages 241—
255. Springer-Verlag. Lecture Notes in Computer Science No. 1993.

Knowles, J. D. and Corne, D. W. (2000). Approximating the Nondom-
inated Front Using the Pareto Archived Evolution Strategy. Evolu-
tionary Computation, 8(2):149-172.

Laumanns, M., Rudolph, G., and Schwefel, H.-P. (1999). Approximating
the Pareto Set: Concepts, Diversity Issues, and Performance Assess-
ment. Technical Report CI-72/99, Dortmund: Department of Com-
puter Science/LLS11, University of Dortmund, Germany. ISSN 1433-
3325.

Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley
& Sons, New York.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evo-
lution Programs. Springer-Verlag, New York, third edition.

Ronald, S. (1997). Robust encodings in genetic algorithms. In Michalewicz,
D. D. . Z., editor, Evolutionaty Algorithms in Engineering Applica-
tions, pages 30—44. Springer-Verlag.

Rudolph, G. (1998). On a Multi-Objective Evolutionary Algorithm and
Its Convergence to the Pareto Set. In Proceedings of the 5th IEEE
Conference on Evolutionary Computation, pages 511-516, Piscataway,
New Jersey. IEEE Press.

Schott, J. R. (1995). Fault Tolerant Design Using Single and Multicrite-
ria Genetic Algorithm Optimization. Master’s thesis, Department of
Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, Massachusetts.

Spears, W. M. and Jong, K. A. D. (1991). An Analysis of Multi-Point
Crossover. In Rawlins, G. E., editor, Foundations of Genetic Algo-
rithms, pages 301-315. Morgan Kaufmann Publishers, San Mateo,
California.

REFERENCES 195

Srinivas, N. and Deb, K. (1994). Multiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms. Evolutionary Computation,
2(3):221-248.

Veldhuizen, D. A. V. (1999). Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations. PhD thesis, Depart-
ment of Electrical and Computer Engineering. Graduate School of En-
gineering. Air Force Institute of Technology, Wright-Patterson AFB,
Ohio.

Veldhuizen, D. A. V. and Lamont, G. B. (1998). Multiobjective Evolu-
tionary Algorithm Research: A History and Analysis. Technical Re-
port TR-98-03, Department of Electrical and Computer Engineering,
Graduate School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio.

Veldhuizen, D. A. V. and Lamont, G. B. (1999). Multiobjective Evo-
lutionary Algorithm Test Suites. In Carroll, J., Haddad, H., Oppen-
heim, D., Bryant, B., and Lamont, G. B., editors, Proceedings of the
1999 ACM Symposium on Applied Computing, pages 351-357, San
Antonio, Texas. ACM.

Whitley, D., Rana, S., and Heckendorn, R. (1998). Representation Issues
in Neighborhood Search and Evolutionary Algorithms. In Quagliarella,
D., Périaux, J., Poloni, C., and Winter, G., editors, Genetic Algo-
rithms and Evolution Strategies in Engineering and Computer Sci-
ence. Recent Advances and Industrial Applications, chapter 3, pages
39-57. John Wiley and Sons, West Sussex, England.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimiza-
tion: Methods and Applications. PhD thesis, Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computa-
tion, 8(2):173-195.

Zitzler, E. and Thiele, L. (1999). Multiobjective Evolutionary Algo-
rithms: A Comparative Case Study and the Strength Pareto Ap-
proach. IEEE Transactions on Evolutionary Computation, 3(4):257—-
271.

This page intentionally left blank

v

HYBRID ALGORITHMS

This page intentionally left blank

Chapter 8

UTILIZING HYBRID GENETIC
ALGORITHMS

Jeffrey A. Joines and
Michael G. Kay

Abstract

Keywords:

Genetic algorithms (GAs) have been shown to be quite effective at solv-
ing a wide range of difficult problems. They are very efficient at ex-
ploring the entire search space; however, they are relatively poor at
finding the precise local optimal solution in the region in which the
algorithm converges. Hybrid GAs are the combination of local improve-
ment procedures, which are good at finding local optima, and genetic
algorithms. Hybrid GAs have been shown to be quite effective at solv-
ing a wide range of problems. How the GA (the global explorer) and
the local improvement procedure (the local exploiter) are combined is
extremely important with respect to the final solution quality as well
as the computational efficiency of the algorithm. Several different com-
bination strategies will be investigated to determine the most effective
method. Furthermore, a new adaptive memory technique will be used
to enhance these methods.

Hybrid GAs, Lamarckian Evolution, Baldwin Effect, Random Linkage,
Global Optimization, Clustering Methods

1. Introd Vuction

There exists a great deal of literature on various optimization tech-
niques. In general, it is extremely difficult to locate the optimal set of
values for a system. However, for systems with special structures, e.g.,
convex of linear functions, etc., optimization may be relatively easy. For
example, consider the optimization of the continuous, unbounded uni-
variate function, y = —z2. Simple calculus methods provide a simple
solution finding the maximum of such simple functions (i.e., set the first
derivative equal to zero and solve for z and then use the second deriva-

200 EVOLUTIONARY OPTIMIZATION

tive at that point to determine if it iS a maximum, minimum, or an
inflection point). For our simple function, % =—22z =0 whenz = 0
and the second derivative is always negative thus indicating z = 0 is a
maximum. However, not all equations yield to such simple solutions to
solve equations, e.g. y = zcos(z), % = cos(z) — zsin(z) = 0, which of
course has an infinite number of solutions (and can not be solved).

The problem of unsolvable equations led to the development of nu-
merical methods for searching for solutions to equations, i.e., searching
for the value(s) of 2 that yields g—z— = 0. A great number of these search
methods have been developed, e.g., gradient search, conjugate gradient
search, Newton-Raphson search, etc. However, all of these search rou-
tines only find a single root to the equation. When the equation has
multiple roots, as ¥ = zcos(z) does, the search will only find one local
extreme point, not necessary the globally optimal point. For example,
y = ¢ + 10sin(52) + 7cos(4x) is a simple multi-modal uni-variate prob-
lem seen in Figure 8.1. If a hill-climbing technique is started at 2 = 2
or ¢ = 7, the technique will climb to the top of only the current hill
which represents two local maxima as seen in Figure 8.1. Obvious other
starting points could be used to find the global optimal for such a simple
function. This multi-start procedure will discussed later.

© Starting Poifts |
* Local Maxima

Figure 8.1. Simple Uni-variate Function

If the variables of interest are discrete (i.e., variables can only take
on whole numbers), the searching process becomes even harder. Also,
if the problem does not have gradients, these previous methods will not
work. Exact algorithms are guaranteed to find the optimal solution
(e.g., simplex algorithm for linear continuous programming problems
while branch and bound/cut algorithms can be used for linear integer

Hybrid Genetic Algorithms 201

program). Exact algorithms are limited to problems of certain structure
or size to work. Therefore, stochastic search techniques like genetic algo-
rithms and simulated annealing were developed as means of overcoming
the local nature of more traditional search techniques as well as their
limitations of certain structures, e.g., continuous and linear. Further-
more, whereas traditional search techniques use characteristics of the
problem to determine the next sampling point (e.g., gradients, Hessians,
linearity, and continuity), stochastic search techniques make no such as-
sumptions. Instead, the next sampled point(s) is(are) determined based
on stochastic sampling/decision rules rather than a set of deterministic
decision rules.

A large number of heuristic search algorithms are available for func-
tion optimization, which provide (possibly) suboptimal solutions in poly-
nomial time with no guarantee on their quality. For example, local im-
provement procedures (LIPs) search a “neighborhood” of starting solu-
tion until either first improvement or best improvement (local optimum)
is found. Recently, a lot of attention has been directed at exploring the
efficiency of meta-heuristics for solving hard search problems. Meta-
heuristics guide the application and use of local heuristics, e.g., one
heuristic might determine the starting point for a lower level heuristic.
They are used to search the many local optima which most local heuris-
tics find, attempting to locate the global optimum. This approach has
met with a good deal of success (Golver and Laguna, 1997; Joines and
Culbreth, 1999; Michalewicz, 1996). Each of these heuristics, e.g., simu-
lated annealing, genetic algorithms, tabu search, etc., has been shown to
be effective at finding good solutions efficiently. Random restart (mul-
tistart), the simplest meta-heuristic, generates a set of random starting
solutions, applies the LIP to each of these starting solution, and re-
ports the best solution found. However, no past information is utilized
to guide the search. Tabu search a meta-heuristic often used for com-
binatorial problems retains memory of solutions previously visited via
or a tabu list of current LIP neighborhood. The list is used to avoid
cycling and memory outside of neighborhood used to promote diversifi-
cation and intensification strategies. The concepts of long term memory
in GAs will be addressed in Section 3.1. Tabu search has been shown
to out perform GAs on certain classes of problems (Golver and Laguna,
1997; Joines et al., 2000b), likewise, GAs have been shown to out per-
form simulated annealing (Houck et al., 1996b) as well as Tabu search
(Joines et al., 2000b). Therefore, according to the "No Free Lunch”
theorem (Wolpert and Macready, 1997), algorithms which are tuned for

202 EVOLUTIONARY OPTIMIZATION

one problem do well for these problems but will perform poorly on other
classes of problems.

This chapter presents an empirical analysis of the use of genetic algo-
rithms utilizing local improvement procedures to solve a variety of test
problems. Several different hybridization schemes will be explored. Sec-
tion 2 describes how GAs can be hybridized by incorporating local im-
provement procedures into the algorithm, Incorporating local improve-
ment procedures gives rise to the concepts of Larmarckian evolution, the
Baldwin Effect, and partial Lamarckianism, all of which are explained
in Section 2.1. Also, the concept of a one-to-one genotype to phenotype
mapping is reviewed, where genotype refers to the space the GA searches
while the phenotype refers to the space of the actual problem. The first
set of experiments applies these concepts to three different classes of
problems described in Section 2.2: five different multi-modal nonlinear
function optimization problems, the location-allocation problem, and the
manufacturing cell formation problem. Section 2.3 presents the results
of a series of empirical tests of the various search strategies described
in Section 2.1 and a partial Lamarkian method is shown to be the most
effective in terms of solution quality and computational efficiency. How-
ever, even the Lamarkian schemes waste valuable computational time by
repeating local searchers in the same basins of attraction (i.e., local min-
ima). Therefore, Section 3 presents a hybridization method that utilizes
adaptive memory to overcome this limitation. In Section 3.1, Random
Linkage (a stochastic search technique that utilizes adaptive memory
to determine when to apply the local search) is explained. Section 3.2
describes EARL, which is the combination of the adaptive memory pro-
cedure in Random Linkage with a hybrid genetic algorithm to produce a
more computational efficiency algorithm. The second set of experiments
in Section 3.3 demonstrates that EARL is more computational efficient
in finding the best solution as compared to the best Lamarkian schemes
and pure Random Linkage.

2. Hybridizing GAs with Local Improvement
Procedures

Many researchers (Chu and Beasley, 1995; Davis, 1991; Houck et al.,
1997; Houck et al., 1996a; Joines et al., 2000a; Michalewicz, 1996; Ren-
ders and Flasse, 1996) have shown that GAs perform well for global
searching because they are capable of quickly finding and exploiting
promising regions of the search space, but they take a relatively long
time to converge to a local optimum. For example, Figure 8.2 shows
three replications of a typical GA run for the 100 x 40 manufacturing cell

Hybrid Genetic Algorithms 203
formation problem described in Section 2.2 (i.e., 140 nonlinear integer
variable problem) of Chandrasekharan and Rajagopalan (1987) (referred
to as Chan). The GA quickly finds a good solution but requires many
more generations to reach the optimal solution (or the best known so-
lution). Table 8.1 shows the number of generations for each replication
along with the mean number of operations to reach a certain percent
of optimal. On average, the GA reaches 90% of optimal after only 65%
of the total computational time. It takes approximately a third of the
time to go from 90% of optimal to exact optimal. Michalewicz (1996)
and Joines (1996c) developed two mutation operators to help increase
the exploitation of the local solution. However, these methods still fall
short of helping with the local exploitation.

Table 8.1. The Number of Generations Needed to Reach % Optimal for Chan Dataset
% of Repl. 1 Repl. 2 Repl. 3 Mean
Optimal Gen(%Gen) | Gen(%Gen) | Gen(%Gen) | Gen(%Gen)

10 2 (0.2) 5 (0.3) 3 (0.2) 33 (0.2)
25 108 (10.4) 95 (6.1) 89 (5.2) 97.3 (6.8)
50 294 (28.3) | 265 (16.9) | 256 (15.0) | 271.7 (18.9)
75 440 (42.3) | 441 (28.2) | 884 (51.7) | 588.3 (40.9)
90 623 (60.0) | 1021 (65.2) | 1173 (68.6) | 939.0 (65.3)
95 657 (63.2) | 1233 (78.7) | 1275 (74.5) | 1055.0 (73.3)
99 855 (82.3) 1566 (100.0) | 1711 (100.0) 1377.3 (95.7)
100 1039 (100.0) | 1566 (100.0) | 1711 (100.0) | 1438.7 (100.0)

—— Faplication 1
- - Raplication 2
++ Fnplication 3

400 600 8OO

1000 1200 1400 1600 1800
Humber of Ganarations

Figure 8.2. The Solution Quality of the GA versus Generations for Chan Dataset

Local improvement procedures (LIPs), e.g., two-opt switching for
combinatorial problems and gradient descent for unconstrained nonlin-
ear problems, quickly find the local optimum of a small region of the
search space, but are typically poor global searchers. Because these

204 EVOLUTIONARY OPTIMIZATION

procedures do not guarantee optimality, in practice, several random
starting points are generated and used as input into the local search
technique and the best solution is recorded. This global optimization
technique (multistart) has been used extensively but is a blind search
technique since it does not take account past information (Houck et al.,
1996a; Rinnooy-Kan and Timmer, 1987; Locatelli and Schoen, 1999).
GAs, unlike multistart, utilize past information in the search process.
Therefore, LIPs have been incorporated into GAs in order to improve
their performance through what could be termed “learning.” Such hy-
brid GAs have been used successfully to solve a wide variety of problems
(Chu and Beasley, 1995; Houck et al., 1997; Houck et al., 1996a; Joines et
al., 2000a; Joines et al., 2000b; Michalewicz, 1996; Renders and Flasse,
1996). Houck et al. (1995) showed that for the continuous location—
allocation problem, a GA that incorporated a LIP outperformed multi-
start and a two-way switching procedure, where both methods utilized
the same LIP as the hybrid GA.

There are several ways LIPs can be incorporated into a GA. The par-
ticular combination is extremely important in terms of possible solution
quality and computational efficiency. We need to find the right mix of
local exploitation versus global exploration. The following methods are
used in the experimentation described in Section 2.2 in order to gain
insight into which implementation method is best.

I Run the GA without the LIP and then apply it to the final solution
obtained by the GA. This allows the precise local optimum around
the final solution to be found.

2 Use the LIP as the GA’s evaluation function. (Recall, the GA
makes no assumptions on the form of the objective, only that it
map the individuals in the population into a totally ordered set.)
The LIP is used to evaluate individuals in the population (i.e.,
determine the best objective value for this starting assignment).
In this context, the GA generates starting location for the LIP
similar to the multi-start procedure. However, past information is
being used to drive the global searching.

3 Apply the LIP as a genetic operator in the same manner as any
mutation operator. In this approach, the LIP is only applied to a
small portion of the parents (i.e., the parents selected to undergo
this type of mutation) rather than all of the children created. Chu
and Beasily (1995) used a LIP as a genetic operator for the gener-
alized QAP. For the generalized QAP, the LIP was computational
expensive and applying it only a few times per generation was

Hybrid Genetic Algorithms 205

best. However, Joines and other (Joines et al., 1996d; Joines et
al., 2000a) showed for several versions of the manufacturing cell
formation problem (an non-linear integer programming problem),
that LIP genetic operator was not as good as utilizing it directly
as an evaluation function.

Incorporating a LIP as an evaluation function gives rise to the concepts
of the Baldwin Effect and Lamarckian evolution. Also, the concept
of a one-to-one genotype to phenotype mapping is introduced, where
genotype refers to the space the GA searches while the phenotype refers
to the actual problem space.

2.1 The Baldwin Effect and Lamarckian
Evolution

Local improvement procedures have been incorporated into GAs in or-
der to improve the algorithm’s performance through learning. There are
two basic models of evolution that have been used to incorporate learning
into a GA: the Baldwin Effect and Lamarckian evolution. The Baldwin
Effect allows an individual’s fitness (phenotype) to be determined based
on learning, i.e., the application of local improvement. Like natural
evolution, the result of the improvement does not change the genetic
structure (genotype) of the individual, it just increases the individual’s
chances of survival. Lamarckian evolution, in addition to using learn-
ing to determine an individual’s fitness, changes the genetic structure of
an individual to reflect the result of the learning. Both “Baldwinian”
and “Lamarckian” learning have been investigated in conjunction with
hybrid GAs.

2.1.1 Baldwin Effect. The Baldwin Effect, as utilized in GAs,
was first investigated by Hinton and Nolan (1987) using a flat landscape
with a single well representing the optimal solution. Individuals were
allowed to improve by random search, which in effect transformed the
landscape to include a funnel around the well. They showed that, with-
out learning, the GA fails; however, with the random search, the GA is
capable of finding the optimum.

Whitley et al. (1994) demonstrated that “exploiting the Baldwin Ef-
fect need not require a needle in a haystack and improvements need not
be probabilistic.” They showed that a LIP can, in effect, change the
landscape of the fitness function into flat landscapes around the local
basins (see Figure 8.3). This transformation increases the likelihood of
allocating more individuals to certain basins, i.e., we are conceptually
searching a step function. It is much easier for an algorithm to hit a step

206 EVOLUTIONARY OPTIMIZATION

=200 —
—— Fitness, no learmning
- - Fitness after ascent to kocal oplima
) - - Fitness after n—steps of hill climber
= 45 5 55 [} 65 7 75 8 85 9
X
Type of Before Learning | After Learning
Learning x f(x) X f(x)

Baldwinian Learning | 5.00 -42.49 5.00 91.56
Lamarckian Learning | 5.00 -42.49 4.63 91.56

Figure 8.3. ‘Transformed Fitness Landscape using Learning (Adapted from Whitley
et al., 1994)

then the precise local minimum. Reaching the local optima from every
point in the search space may be computational unattractive. However,
as seen in Figure 8.3, allowing the LIP to perform only n steps produces
smaller fiat regions around the basins of attraction, giving similar ben-
efits. This allows the user to control the amount of global exploration
versus local exploitation. In a comparison of Baldwinian and Lamarck-
ian learning, Whitley et al. (1994) showed that utilizing either form of
learning is more effective than the standard GA approach without the
LIP (a bitwise steepest ascent algorithm performed on a binary repre-
sentation). They argued that, while Lamarckian learning is faster, it
may be suspectable to premature convergence to a local optimum as
compared to Baldwinian learning. Their results were inconclusive.

2.1.2 Lamarckian Evolution. Lamarckian learning forces
the genotype to reflect the result of some form of local improvement
(see Figure 8.3). This results in the inheritance of acquired or learned
characteristics that are welladapted to the environment. The improved
individual is placed back into the population and allowed to compete
for reproductive opportunities. However, Lamarckian learning inhibits
the schema processing capabilities of genetic algorithms (Whitley et al.,
1994). Changing the genetic information in the chromosomes results

Hybrid Genetic Algorithms 207

in a loss of inherited schema, altering the statistical information about
hyperplane partitions implicitly contained in the population.

While Lamarckian learning may disrupt the schema processing of a
genetic algorithm, Baldwinian learning certainly aggravates the prob-
lem of multiple genotype to phenotype mappings. A GA works on both
genotypes and phenotypes. A genotype refers to the composition of the
values in the chromosome or individual in the population, whereas a
phenotype refers to the solution that is constructed from a chromosome.
In a direct mapping, there is no distinction between genotypes and phe-
notypes. For example, to optimize the function 5cos(x;) — sin(2z2),
a typical representation for the chromosome would be a vector of real
numbers (21, ®2), which provides a direct mapping to the phenotype.
However, for some problems, a direct mapping is not possible or desired
(Nakano, 1991). The most common example of this is the traveling
salesperson problem with an ordinal representation. Here, the genotype
is represented by an ordered list of cities to visit. The phenotype is a
tour, and any rotation of the chromosome yields the same tour; thus,
any rotation of a genotype results in the same phenotype. For example,
the two tours (1,2,3,4) and (3,4,1,2) have different genotypes since their
gene strings are different, but both strings represent the same tour and
thus have the same phenotype.

It has been noted that having multiple genotypes map to the same
phenotype may confound the GA (Hinton and Nolan, 1987; Nakano,
1991). This problem also occurs when an LIP is used in conjunction with
a GA. Consider the example of maximizing sin(z). Suppose a simple
gradient-based LIP is used to determine the fitness of a chromosome.
Then any genotype between [—7/2, 37 /2] will have the same phenotype
value of 1.

2.1.3 Partial Lamarckianism. Hybrid genetic algorithms
need not be restricted to operating in either a pure Baldwinian or pure
Lamarckian manner. Instead, a mix of both strategies, or what is termed
“partial Lamarckianism” (Houck et al., 1997; Joines et al., 2000a) could
be employed. For example, a possible strategy is to update the genotype
to reflect the resulting phenotype in 50% of the individuals. While this
50% partial Lamarckian strategy has no justification in natural evolu-
tion, for simulated evolution this mix is as valid as either pure Lamar-
ckian or pure Baldwinian search.

Orvosh and Davis (1994) advocated the use of a 5% rule for updat-
ing individuals when employing repair functions in genetic algorithms
to solve constrained optimization problems. All infeasible solutions gen-
erated by the genetic algorithm are repaired to the feasible domain in

208 EVOLUTIONARY OPTIMIZATION

order to determine their fitness. The 5% rule dictates that 5% of the in-
feasible individuals have their genetic representation updated to reflect
the repaired feasible solution. This partial updating was shown on a set
of combinatorial problems to be better than either no updating or always
updating. However, Michalewicz (1996) determined that a higher per-
centage update 20-25% did better when using repair functions to solve
continuous constrained nonlinear programming problems.

Previous research has concentrated either on the comparison of pure
Lamarckian and pure Baldwinian search, or the effectiveness of partial
repair for constrained optimization. This chapter examines the use of
partial Lamarckianism with regard to the use of LIPs on the cell forma-
tion problem(Houck et al., 1997).

2.2 First Set of Experiments

To investigate the trade-off of disrupted schema processing in Lamar-
ckian learning and of multiple genotype mapping to the same phenotype
in Baldwinian learning, a series of experiments using LIPs as evaluation
functions and as genetic operators were performed on several different
cell formation test problem instances. For each test problem instance,
the GA was run with varying levels of Lamarckianism from 0% (pure
Baldwinian) to 100% (pure Lamarckian) to determine if there is a trend
between the two extremes, or if combinations of Baldwinian learning and
Lamarckian learning were beneficial. In these experiments, individuals
are updated to match the resulting phenotype with a probability of O,
5, 10, 20, 30, 40, 50, 60, 80, 90, 95, 100%. The GA was also run us-
ing the LIP as a mutation operator instead to determine if this method
of hybridization is better in terms of computational efficiency and/or
quality of solution. In these experiments, the number of LIP mutations
performed was 3, 4, 5, or 6. A pure genetic approach, i.e., no local
improvement, was used for comparison purposes.

Each run of the GA was replicated 30 times, with common random
seeds. The genetic algorithm parameters used in these experiments are
defined in Table 8.2. The genetic algorithm is of a form advocated by
Michalewicz (1996) and uses a floating point (real-valued) representa-
tion with three real-valued crossovers (simple, heuristic, and arithmetic)
and five real-valued mutations (boundary, uniform, multi-uniform, non-
uniform, and multi-non-uniform). However, for the cell formation prob-
lems, the GA is modified to work with integer variables (Joines et al.,
1994b). A normalized geometric ranking scheme used as the selection
procedure (Houck et al., 1997). The GA was terminated when either the
optimal or best known solution was found or after one million function

Hybrid Genetic Algorithms 209

evaluations were performed. Using function evaluations allows a direct
comparison between the hybrid GA methods and the pure GA (i.e., no
local improvement) because it takes into account the cost of using a LIP
(i.e., the number of function evaluations generated by the LIP)

Table 8.2. Parameters Used in the Experiments

Parameter Value
Boundary Mutation Operators 4
Uniform Mutation Operators 4
Multi-Uniform Mutation Operators 4
Non-Uniform Mutation Operators 4
Multi-Non-Uniform Mutation Operators 8

Arithmetic Crossover Operators
g, the prob. of selecting the best individual 0.08
Maximum no. of Function Evaluations 1,000,000
Population Size 80

(=2]

Multiple instances of seven different test problems were used in this
investigation to ensure that any effect observed (1) held across different
classes of problems as well as different sized instances of the problem
and (2) was not due to some unknown structure of the specific class of
problem selected, specific instance chosen, or the particular local im-
provement procedure used. The first five test problems are bounded
nonlinear optimization test problems taken from the literature, while
the last two problems are the location-allocation and manufacturing cell
formation problems. For each of the nonlinear optimization problems,
three different size instances (n = 2, 10, 20) were used in the study. For
both the location-allocation and cell formation problems, two different
sized instances were used.

2.2.1 Brown’s Almost Linear Function. The first test prob-
lem comes from a standard test set of nonlinear optimization problems
(More et al., 1981) and is as follows:

n

F) =Y ((fi(@)% forzs € [-25,25) (8.1)

=1

where

fi(z) = {xi+Z?=l‘;L'j_(n+1)a fori=1,..,n-1

n —
Hj:l""j—L fori=n

210 EVOLUTIONARY OPTIMIZATION

The function is not linearly separable and has the basic form of a non-
linear least squares problem. Three different instances of this problem
were used for this investigation: a 2-dimensional instance (Brown-2),
a 10-dimensional instance (Brown-10), and a 20-dimensional instance
(Brown-20).

2.2.2 Corana Function. The next test problem consists of
three instances of the modified Corana problem: a 2-, 10-, and 20-

dimensional instance (Corana-2, Corana-10, and Corana-20, respectively).
This problem comes from a family of continuous nonlinear multimodal

functions developed by Corana et al. (1987) to test the efficiency and ef-

fectiveness of simulated annealing as compared to stochastic hill-climbing

and Nelder-Mead optimization methods. This parametrized family of

test functions contains a large number of local minima. The function

can be described as an n-dimensional parabola with rectangular pockets

removed and with the global optimum always occurring at the origin.

These functions are parameterized with the number of dimensions (n),

the number of local optima, and the width and height of the rectangular

pockets. As formulated in Corana et al. (1987), the function proved to

be too easy: all the learning methods found the optimal solution every

time with the same amount of computational effort. Therefore, the first

condition in the definition of g(z;) below was modified so that rectan-

gular troughs, instead of pockets, are removed from the function. This

was accomplished by eliminating the restriction that all, instead of any,

x; satisfy and all k; are not zero. The modified Corana function is as

follows:

n
flz)= Z cig(z;),for ¢; € ¢ and z; € [—10000, 10000] (8.2)

i=1

where

(2:) = 0.1521-2, if kis; —t; < x; < kis; + t;, for any integer k;
g\&i) = x2 otherwise

Hybrid Genetic Algorithms 211

kisi+t: ifk; <0
z=<X0 ifk; =0
kis; — ifk; >0

(1, 1000, 10, 100, 1, 10, 100, 1000, 1, 10, ...

= 100, 1000, 1, 10, 100, 1000, 1, 10, 100, 1000)
8; = 0.2
t; = 0.05
2.2.3 Griewank Function. The Griewank function is the

third test problem, again with three instances of 2, 10, and 20 dimen-
sions, respectively (Griewank-2, Griewank-10, and Griewank-20). The
Griewank function is a bounded optimization problem used by Whitley
et al. (1994) to compare the effectiveness of Lamarckian and Bald-
winian search strategies. The Griewank function, like Brown’s almost
linear function, is not linearly separable, and is as follows:

Flao) = Z o6~ Cos(\;’2,)—1, for z; € [-512,511) (8.3)

2.24 Rastrigin Function. The next test problem, with
three instances of 2, 10, and 20 dimensions (Rastrigin-2, Rastrigin-10,
and Rastrigin-20), is also a bounded minimization problem taken from
Whitely et al. (1994). The functional form is as follows:

f(z)=10n+ > (x7 — 10cos(2rs;)), for z; € [-5.12,5.11] (8.4)
i=1

2.2.5 Schwefel Function. The last nonlinear test problem,
with three instances of 2, 10, and 20 dimensions (Schwefel-2, Schwefel-10,
and Schwefel-20), is also a bounded minimization problem taken from
Whitley et al. (1994). The functional form is as follows:

fz)=nV + Z —asin(+/|z;|),for z; € [-512,511] (8.5)
i=1

where

V = min{—zsin(+/|z;|), z € [—512,511]

212 EVOLUTIONARY OPTIMIZATION

V depends on system precision; for our experiments,
V = 418.9828872721625.

For these five nonlinear optimization test problems, a sequential quad-
ratic programming (SQP) optimization method was used as the LIP.
SQP is a technique used to solve constrained nonlinear programming
problems. SQP works by first computing the descent direction by solv-
ing a standard quadratic program using a positive definite estimate of
the Hessian of the Lagrangian. A line search is then performed to find
the feasible minimum of the objective along the search direction. This
process is repeated until the algorithm converges to a local minimum, or
exceeds a certain number of iterations. For the purposes of this study,
SQP was stopped after 25 iterations if it had not found a local optimum.
Therefore, we are limiting the amount of local exploitation. A full de-
scription of the SQP used in this study can be found in (Lawrence et al.,
1994).

2.2.6 Location-Allocation Problem. The continuous loca-
tion -allocation problem, as described in (Houck et al., 1996b), is used as
the next test problem. The location-allocation (LA) problem, a type of
nonlinear integer program, is a multifacility location problem in which
both the location of n new facilities (NFs) and the allocation of the
flow requirements of m existing facilities (EFs) to the new facilities are
determined so that the total transportation costs are minimized. The
location-allocation problem is a difficult optimization problem because
its objective function is neither convex nor concave, resulting in multiple
local minima (Cooper, 1972). Optimal solution techniques are limited to
small problem instances (less than 25 EFs for general I, distances (Love
and Juel, 1982) and up to 35 EFs for rectilinear distances (Love and
Juel, 1982)). Two rectilinear distance instances of this problem were
used in the investigation: a 200 EF by 20 NF instance (LA-200) and
a 250 EF by 25 NF instance (LLA-250), both taken from (Houck et al.,
1996b).

Given m EFs located at known points a4, j = 1,...,m, with associated
flow requirements wj, j = 1, ..., m, and the number of NF's, n, fromwhich
the flow requirements of the EFs are satisfied, the location-allocation
problem can be formulated as the following nonlinear program:

Hybrid Genetic Algorithms 213

n m
Minimize Z Z wi;d(X;, aj) (8.6)
i=1 j=1
n
Subject to Z?Uij=TUj,j=1,...,m
i=1
wi; > 0,i=1,...,mj=1...,m

where the unknown variable locations of the NFs, X;,i = 1,...,n, and
the flows from each NF ¢ to each EF j,wjj,i = 1,...,n,7 = 1,...,m, are
the decision variables to be determined, and d(X,-,aj) is the distance
between NF ¢ and EF j. An infinite number of locations are possible
for each NF i since each X; is a point in a continuous, typically two-
dimensional, space.

The genetic algorithm approach to solve this problem, described in
detail in (Houck et al., 1996b), is used in these experiments. The indi-
viduals in the GA are a vector of real values representing the starting
locations for the new facilities. Based upon these locations for the new
facilities, the optimal allocations are found by allocating each existing
facility to the nearest new facility. The total cost of the resulting net-
work is then the weighted sum of the distances from each existing facility
to its allocated new facility. The alternate location-allocation method
developed by Cooper (1972) is used as the LIP for this problem. This
method quickly finds a local minimum solution given a set of starting
locations for the new facilities. This procedure works by starting with a
set of new facility locations; it then determines an optimal set of alloca-
tions based on those locations, which for this uncapacitated version of
the problem reduces to finding the closest new facility to each existing
facility. The optimal new facility locations for these new allocations are
then determined by solving n single facility location problems, which
is in general a nonlinear convex optimization problem. This method
continues until no further allocation changes can be made.

2.2.7 Cell Formation Problem. The manufacturing cell
formation problem, as described in (Joines et al., 2000a; Joines et al.,
1994b; Joines et al., 1996d), is the final test problem. The cell formation
problem, a type of nonlinear integer programming problem, is concerned
with assigning a group of machines to a set of cells and assigning a series
of parts needing processing by these machines into families. The goal is
to create a set of autonomous manufacturing units that eliminate inter-
cell movements (i.e., a part needing processing by a machine outside its
assigned cell). Two instances of this problem were in the investigation:

214 EVOLUTIONARY OPTIMIZATION

a 22 machine by 148 part instance (Cell-1) and a 40 machine by 100 part
instance (Cell-2).

Consider an m machine by n part cell formation problem instance
with a maximum of k cells. The problem is to assign each machine and
each part to one and only one cell and family, respectively. Joines et
al. (1994b) developed an integer programming model with the following
set variable declarations that eliminate the classical binary assignment
variables and constraints:

x; =1, if machine ¢ is assigned to cell !
y; =1, if part 7 is assigned to family !

The model was solved using a GA. In the GA, the individuals are
a vector of integer variables representing the machine and part assign-
ments (Z1,Z2, ..., Tms Y1 Y2, ..., Yn). This representation has been shown
to perform better than other cell formation methods utilizing the same
objective (Joines et al., 1996c). The following ’grouping efficacy” mea-
sure (I') is used as the evaluation function:

Maximize [= ——2 (8.7)
e+ ey
where
e=¢e,+ ey

k
€y = ZDi — di
i=1

Grouping efficacy tries to minimize a combination of both the number
of exceptional elements, ¢, (i.e., the number of part operations performed
outside the cell), and the process variation, €, (i.e., the discrepancy of
the parts’ processing requirements and the processing capabilities of the
cell). Process variation for each cell i is calculated by subtracting from
the total number of operations a cell can perform, D;, the number part
operations that are performed in the cell, d;. The total process variation
is the sum of the process variation for each cell. Exceptional elements
decrease since the material handling cost for transportation within a
cell is usually less than the cost of the transportation between cells.
Process variation degrades the performance of the cell due to increased
scheduling, fixturing, tooling, and material handling costs.

A greedy one-opt switching method, as described in (Joines et al.,
2000a), was used as the LIP. Given an initial assignment of machines

Hybrid Genetic Algorithms 215

and parts to cells and families, respectively, the LIP uses a set of im-
provement rules developed by Ng (1993) to determine the improvement
in the objective function if machine i is switched from its current cell
to any of the remaining k£ — 1 cells. The procedure repeats this step for
each of the m machines as well as each of the n parts, where each part
is switched to k — 1 different families.

2.3 Summary of Results

Because GAs have few theoretical properties, computation experimen-
tation is performed to validate an algorithm’s effectiveness. Therefore, to
ensure correct conclusions, careful experimentation and statistical anal-
ysis needs to be performed. For more information on constructing and
analayzing experiments, see the studies by Barr et al. (1995), Hooker
(1995), and Houck et al. (1997).

For the 30 replications of each problem instance, both the mean num-
ber of function evaluations and the mean final function values were de-
termined. To ensure the validity of the subsequent analysis of variance
(ANOVA) and multiple means tests, each data set was tested first for
normality and second for homogeneity of the variances among the differ-
ent search strategies. The Shapiro-Wilk test for normality was performed
on the results at o« = 0.05. Since there is no established test for vari-
ance homogeneity (SAS, 1990), visual inspection was used to determine
if there were significant variance differences. If there were significant dif-
ferences and there existed a strong linear relationship between the means
and standard deviations (i.e., a linear regression correlation greater than
0.8), a logarithmic transformation was used. For the number of func-
tional evaluations, standard deviations equal to zero (which correspond
to the search strategy terminating after one million functional evalua-
tions), were removed from the linear regression since these values were
not due to randomness. For those results passing the Shapiro-Wilk test
for normality, an ANOVA was conducted for both the number of func-
tion evaluations and the final functional value. If the ANOVA showed a
significant effect, o > 0.01, the means of each of the 12 different search
strategies considered, namely, no local improvement (referred to as N),
pure Baldwinian (referred to 0), pure Larmarckian (100), and nine levels
of partial Lamarckian (referred to as 5, 10, 20, 40, 50, 60, 80, 90, and 95,
respectively), were compared using a multiple means comparison meth-
ods. Three different statistical methods exist for performing a multiple
means comparison: the Duncan approach to minimize the Bayesian loss
function; Student-Newman-Keuls (SNK), a multiple range test using a
multiple stage approach; and an approach developed by Ryan, Einot and

216 EVOLUTIONARY OPTIMIZATION

Gabriel, and Welsch (REGW), which is also a multiple stage approach
that controls the maximum experimentwise error rate under any com-
plete or partial hypothesis. Each of the tests were conducted using the
general linear models routine in SAS v6.09 (SAS, 1990). There is no
consensus test for the comparison of multiple means. In general, all the
tests could be ran to determine the groups (Houck et al., 1997; Joines
et al., 2000a). For this chapter, the SNK test was chosen.

The multiple means composition methods are statistical tests that
provide information on sets of means whose differences are statistically
significant. The strategies assigned to the best group are shaded. The
rank indicates the rank of the various means where one is better. To
concisely present the main results of the SNK statistical test, Tables 8.3
and 8.4 show rankings of each search strategy with respect to the fitness
of the final result and the number of function evaluations required, re-
spectively. For each strategy, the rankings were determined by finding
the group which yielded the best results for each test problem instance
as determined by the SNK means analysis. If the strategy was placed
into a single group, that group’s rank was used; however, if the method
was placed into several overlapping groups, the method was placed into
the group with the best rank. Therefore, these rankings represent how
many groups of means are significantly better for each test problem in-
stance. The SNK multiple means test was arbitrarily chosen for these
rankings. Table 8.3 shows the rankings for the final fitness of the solu-
tions returned by each of the search strategies, where 1 represents the
best rank and is shaded, 2 represents the next best rank, etc. All of
the strategies employing at least 20% Lamarckian learning consistently
found the optimal solution. However, the pure Baldwinian (0%) and
the 5 and 10% partial Lamarckian strategies did find significantly worse
solutions for several test problem instances. The GA employing no lo-
cal improvement procedure (N) is included to provide a comparison with
how efficiently the local search procedure utilizes function evaluations as
compared to a pure genetic sampling approach. For most of these test
problem instances, the use of the local improvement procedure (LIP)
significantly increases the efficiency of the genetic algorithm.

Table 8.4 shows the rankings for the number of function evaluations
required to locate the final functional value returned by each of the
search strategies. The table shows an interesting trend: neither the
pure Lamarckian (100) nor pure Baldwinian (0) strategies consistently
yielded the best performance; this was also observed by Whitley et al.
(1994). Using a binary representation and a bitwise steepest ascent LIP,
Whitley et al. (1994) demonstrated that a Baldwinian search strategy
was preferred for the 20-dimensional Schwefel function while the results

Hybrid Genetic Algorithms 217

Table 8.3. Rank of Solutions (SNK)

Problem Search Strategy
10 | 20

Instance
Brown-2f
Brown-10
Brown-20
Corana-27
Corana-10
Corana-20
Griewank-27t
Griewank-10
Griewank-20
Rastrigin-21
Rastrigin-107
Rastrigin-20
Schwefel-21
Schwefel-10
Schwefel-20
LA-200
LA-250

Cell-1 i !

Cell-2 2 |2 R
- Failed Shapiro-Wilk test,
or ANOVA did not show significant effect at oo = 0.01

|z

;:. ICITCIES l\:'l—" l‘.rJCA.'I

in Table 8.4 show a preference for a Lamarckian search strategy when us-
ing a floating point representation and SQP. Also, a Lamarckian strategy
was preferred in Whitley et al. (1994) for the 20-dimensional Griewank
instance, whereas in this study a Baldwinian search strategy is preferred.

The results of this study and those of Whitley et al. (1994), together,
show that a combination of the problem, the representation, and the
local improvement procedure (LIP) all can influence the effectiveness of
either a pure Lamarckian or pure Baldwinian search strategy. However,
with respect to the representations and LIPs used in this study, a par-
tial Lamarckian strategy tends to perform well across all of the problems
considered. Taking a minimax approach, i.e., minimizing the worst pos-
sible outcome, the 20% and 40% partial Lamarckian search strategies
provide the best results. The worst ranking of each search strategy, in
terms of convergence speed, is shown as the last row of Table 8.4. Both
the 20% and 40% strategies yield, at worst, the third best convergence
to the optimal solution. The other search strategies, 0% and 5% par-
tial Lamarckian did not consistently find the optimal. Higher amounts

218 EVOLUTIONARY OPTIMIZATION

Table 8.4. Rank of Convergence Speed (SNK)

Problem Search Strategy

Instance N 0] 20| 4 50 | 60 | 80 | 90 | 95 | 100
Brown-2 2 S E e LT

Brown-10 6 3

Brown-20 4 2 Ll L]

Corana-2 2 o 111

Corana-10 4 4 3 2 2 2 2

Corana-20 3 3 3

Griewank-271
Griewank-10
Griewank-20
Rastrigin-2
Rastrigin-10
Rastrigin-20
Schwefel-21
Schwefel-10
Schwefel-20
LA-200
LA-250
Cell-1
Cell-2
Worst Rank | 7 [6 | &
t- Failed Shapiro-Wilk test,
or ANOVA did not show significant effect at a = 0.01

ok

po| 00| bof ro| | cof =] o en| =

4] 3] 3

of Lamarckianism, 50% to 100%, converge slower to the optimal solu-
tion. Since no single search strategy is dominant in terms of solution
quality and computational efficiency, the worst case performance of the
search strategy can be minimized across the entire set of test problems
examined by employing a 20% to 40% partial Lamarckian strategy. The
no local improvement search strategy (N) is shown for comparison to
demonstrate the effectiveness of hybrid genetic algorithms.

3. Adaptive Memory GA’s

In the previous section, it was shown that Baldwinian learning ag-
gravates the problem of multiple genotype to phenotype mappings. If
two individuals are different but map to the same local basin, the GA
will try to exponentially exploit both individuals especially since their
fitness would be the same through learning. If these two individuals
are crossed over to produce offspring in the same basin, computational
effort is wasted applying the local improvement procedure to find the

Hybrid Genetic Algorithms 219

same exact basin. Lamarckian evolution has been shown to help allevi-
ate this particular problem. In Lamarckian evolution, these individuals
would be identical and would reproduce clones of themselves if crossed
over. Thus, the local improvement procedure would not have to be ap-
plied since the children are the same as the parents. However, mutation
could still cause a problem since a slight change might leave the indi-
vidual in the same basin or in later generations the GA could create an
individual that falls in a basin already explored. Therefore, the local
improvement procedure would be reapplied to find the same basin again
even with Lamarckian evolution wasting valuable computational cycles
which could be used to explore other regions of the search space. In
order to prevent this phenomena from occurring, adaptive memory has
to be added to the GA to reduce the amount of wasted computation
owing to the rediscovery of the same local minimum.

3.1 Random Linkage

The benefits (i.e., non-linearity, multi-modal) of using stochastic search
methods like pure random search, simulated annealing, and genetic algo-
rithms have been shown. However, if the function is sufficiently regular,
local optimization is often relatively easy, and clustering methods may
be preferred, including multi-level single linkage, and random linkage
which are multistart procedures with memory.

Because the GA is working in the continuous domain, the tabu list
structure used as short term memory for combinatorial problems (e.g.,
the list of the past allocations, last pair-wise switches, etc.) will not
be an appropriate memory structure. Instead, using the concepts of
global optimization (Rinnooy-Kan and Timmer, 1987), hyperspheriods
are placed around the already examined points, thus marking a portion
of the search space as tabu.

Random linkage (RL) is a search strategy for solving global opti-
mization problems. The algorithm works by generating uniform random
starting search locations, and applying an accept/reject criteria to each
of the generated search locations. An accept decisions allows the algo-
rithm to apply a local search to the search location resulting in the dis-
covery of a local optimal point. The motivation behind the accept/reject
decision is to not allow the algorithm to start a local search in an area
too near an already found local optima. The random linkage algorithm
(Locatelli and Schoen, 1999) is depicted below.

220 EVOLUTIONARY OPTIMIZATION

Random Linkage Algorithm
1 k0.
2 Sample a single point X431 from the uniform distribution over 2.

3 Start a local search from X,; with probability
Pk (0k (Xk+1)),

where

(@) = min {lle - X F(X5) = f()}.

It is understood that dx(z) = oo ifno j exists such that f(X;) >

f(=).

4 If the stopping criteria is satisfied, then Stop; otherwise, repeat
from Step 2.

Random linkage is parameterized based upon the acceptance function
g; for example, the algorithm Best Start, where a local search is started
only if the sample point has a functional value better than any previously
seen, is obtained by letting ¢g(d) = 0, for all § < oo and @g(c0) = 1;
pure random search is achieved with ¢ (d) = 0, for all §; and multistart
with @(8) = 1, for all J.

Locatelli and Shoen (1999) go on to derive conditions on which allow
the random linkage algorithm to have the following interesting proper-
ties:

1 Convergence to the best function value observed to the global op-
timum value with probability 1.

2 The probability of starting a local search decreases to 0.

3 A finite number of local searches are initiated even if the algorithm
is run forever.

Random linkage provides a means for determining when a local search
is appropriate; however, it relies on uniform sampling to generate new
sample points. This requirement provides the algorithm the theoretical
convergence properties discussed above. However, it does no insure that
the algorithm is efficient for finding the global optimum of real func-
tions. Evolutionary algorithms are very efficient at locating interesting
areas of a search space, with hybrid algorithms employing local search
algorithms as part of their evaluation function. However, due to an evo-
lutionary algorithms tendency to exponentially exploit promising areas
of the search space, hybrid algorithms may be wasting computational
time repeating local searches.

Hybrid Genetic Algorithms 221

3.2 Evolutionary Algorithms with Random
Linkage

A combination of evolutionary algorithms with random linkage (EARL)
is developed in an attempt to produce an evolutionary algorithm which
does not repeat local searches by using RL’s accept/reject criteria. Even
though EARL uses the same accept/reject criteria as RL, it does not re-
tain the theoretical convergence properties of RL due to the non-uniform
sampling done by the evolutionary algorithm. Since an evolutionary al-
gorithm is free to choose crossover and mutations, the points sampled
by the algorithm can come from any possible distribution. However,
to investigate the effectiveness of EARL, a series of experiments was
conducted on with three real valued crossovers and five real valued mu-
tations described in detail in (Houck et al., 1997). Random linkage
was implemented in the evaluation function, where k is the number of
individuals evaluated so far during the course of the simulated evolu-
tion run, and was taken from (Locatelli and Schoen, 1999) described in
Equation (8.8).

Even though EARL uses the same accept/reject criteria as RL, it
does not retain the theoretical convergence properties of RL due to the
non-uniform sampling done by the evolutionary algorithm. Since an evo-
lutionary algorithm is free to choose crossover and mutations, the points
sampled by the algorithm can come from any possible distribution. How-
ever, to investigate the effectiveness of EARL, a series of experiments
was conducted.

Tabu regions are incorporated into the genetic algorithm by keeping
a list of points already generated by the GA to date; this list is allowed
to grow indefinitely. Every time the genetic algorithm generates a new
point, zg, itfirst determines the distance, §,to the nearest point already
generated (i.e., the nearest point on the list). The newly generated point,
Zk, is placed on the list only if the distance, 4, is greater than zero, which
avoids placing duplicated points onto the list. The algorithm then deter-
mines whether or not a local search should be performed based on this
distance. If a local search is deemed appropriate, local heuristic is run,
and the resulting local minimum is returned to the GA. Otherwise, no
local improvement is conducted, and the new point Z, and the objective
function value at this point are returned to the GA

To test the computational efficiency of both RL and EARL, an em-
pirical investigation of both the quality of solutions found, as well as the
computational efficiency, in terms of number of function evaluations of
the algorithms was conducted. To determine when to perform a local

222 EVOLUTIONARY OPTIMIZATION

search (i.e., an appropriate distance 4), the RL algorithm and EARL use
the following acceptance criteria , ¢(6), (Locatelli and Schoen, 1999):

0) < O.Sak
pr(8) = o5 050y < 6 < L5ay, (8.8)
1) Z 1.50zk

where

1/d
ap = w2 {I‘ (1 + g) u(Q)alng]

2 k
c = 4
d = dimension of problem
1(Q) = Lebesgue measure of search space.

¢r(6) provides the probability of starting a local search based on the
distance to the nearest point already generated, d. The tabu regions or
hyperspheres, oy, taken from (Locatelli and Schoen, 1999), are used by
to determine if a local search is necessary (See Figure 8.4).

20r | * |Initial Points 201 * Initial Points
s Next Poinls # Next Points
robabilistic Region | Probabilistic Region
15 151
2 10F 210
r-1 1 o
2 o
£ . = .
~ ~
x5 x5
or 0
o 5 10 15 20 0 5 10 N 20
)(1 Variable X, Variable
(a) Early Generations (b) Later in the Run

Figure 8./. Ellisphoid Hyperspheres that Represent Acceptance/Rejection Areas

All points within a radius of -12-ak are marked tabu, where k is the to-
tal number of search points generated by the genetic algorithm to date;
all points from %ak to %ak result in a probability of conducting a lo-

cal search. This yields a gradual boundary around previously explored

Hybrid Genetic Algorithms 223

points. This provides a criteria for determining whether or not to per-
form a local search in order to prevent starting local searches too close
to points already examined.

This measure yields a series of monotonically decreasing hyperspheres
() placed around each examined point (see Figure 8.4). Local search
is not applied to points generated inside the ellipsoid doughnuts, while
local search is always applied to points outside the doughnuts. If a point
falls on a doughnut, then a local search is applied with some positive
probability. Therefore, the size of the tabu regions around each of these
already examined points decreases as the search progresses (i.e., this
provides a short term memory similar to traditional tabu search). This
also overcomes the problem of unknown minima sizes, ensuring, that
smaller minima can be located as the search progresses. While at first
the emphasis of the search process is on diversity (see Figure 8.4a), due
to the large hyperspheres preventing much local search, as the search
continues, oy decreases so that, even though the probability of repeat-
ing a search increases, the probability of missing an unexplored local
minimum decreases (see Figure 8.4b). The two sub-figures of Figure 8.4
shows five initial points with their corresponding hyperspheres and the
three newly generated points ((5,6), (8,0.8), and (18,2)). If these points
were generated early in the run as seen in Figure 8.4a, the local search
will be applied to the first new point generated, not be applied to the
second point, and applied with some probability to the third point. From
Figure 8.4b which represents later in the run, the local search would be
applied to the first and third point generated as well as applied with
some probability to the second point. These two figures how local ex-
ploitation is increased over the run while early in the run more global
exploration is emphasized.

3.3 Experimentation and Results

Two versions of a standard hybrid genetic algorithm were used to
compare the results of RL and EARL, a 40% and 100% Lamarckian
strategy as advocated in Section 2.2. All four search strategies were
terminated when the solution value was within 1 x 1078 of the optimal,
or after one million function evaluations. Each of these test strategies
were used on the same five nonlinear test problems in Section 2.2.

Using the same analysis, Tables 8.5 and 8.6 represent the summary of
the SNK multiple means comparison test for solution quality and com-
putational efficiency respectively. As Table 8.5 indicates, only random
linkage was unable to consistently locate the optimal solution within the
1 million function evaluations. However for computational efficiency (as

224 EVOLUTIONARY OPTIMIZATION

seen in Table 8.6, EARL was the only method that was statistically in
the best group for all of the the problems tested.

Table 8.5. Rankings based on Fitness

Problem Instance | RL | 40% | 100% | EARL
Brown2
Brownl0 2
Brown20 2
Corana?2
CoranalQ 2
Corana20 2
Griewank2 2
Griewank10
Griewank20
Rastrigin2
Rastriginl0 2
Rastrigin20 2
Schwefel2
Schwefel10 2
Schwefel20 2

Table 8.6. Rankings based on Number of Evaluations

Problem Instance 100% | EARL
Brown2
Brownl10
Brown20
Corana2
Coranal0
Corana20

Griewank?2
Griewank10
Griewank20

Rastrigin2
Rastriginl0
Rastrigin20

Schwefel2

Schwefel10

Schwefel20

} - Duncan Grouping / SNK Grouping / REGWF Grouping

REFERENCES 225

4. Summary

Hybrid genetic algorithms use local improvement procedures as part
of the evaluation of individuals. For many problems there exists a
well developed, efficient search strategy for local improvement, e.g., hill-
climbers for nonlinear optimization. These local search strategies com-
pliment the global search strategy of the genetic algorithm, yielding a
more efficient overall search strategy. Second, they allow the GA to be
made more specific to the problem at hand since the LIP is designed to
work for that problem.

It was shown that a partial or full Lamarkian evolution provided the
best mix of solution quality and computational efficiency. However, evo-
lutionary algorithms are designed to exponentially exploit promising re-
gions of the search space. This can lead to wasted computational effort
re-applying a local search in a region already explored. Random linkage,
a search algorithm taken from global optimization, is designed to prevent
repeated searches by using an accept/reject function which determines
whether a local search is appropriate. Random linkage has powerful the-
oretic convergence properties which are based upon a random sampling
of the search space. However, since RL uses uniform sampling to gener-
ate search points, the algorithm is unable to exploit promising regions
of the search space. A combination of random linkage and evolutionary
algorithms was developed by using the accept/reject criteria of random
linkage in the evaluation function. This combination was developed so
as to retain the exploitation of evolutionary algorithms, but by using
the accept/reject criteria of RL avoiding repeated local searches due to
over-exploitation. This combination strategy was shown to be compu-
tationally efficient on a series of five nonlinear test problems. Currently,
the technique only works for continuous problems owing to the fact a
distance has to be computed.

References

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M.G.C. and Stewart Jr.,
W. R. (1995) Designing and reporting on computational experiments
with heuristic methods. Journal of Heuristics, 1(1):9-32.

Chandrasekharan, M. P. and Rajagopalan, R. (1987) Zodiac—an algo-
rithm for concurrent formation of part families and machine cells.
International Journal of Production Reseach, 25(6):835-850.

Chu, P. C. and Beasley, J. E. (1995) A genetic algorithm for the gener-
alised assignment problem. Technical report, The Management School
Imperial College London.

226 EVOLUTIONARY OPTIMIZATION

Cooper, L. (19972) The transportation-location problems. Operations
Research, 20:94-108.

Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987) Minimiz-
ing multimodal functions of continuous variables with the ” simulated
annealing” algorithm. ACM Transactions on Mathematical Software,
13(3):262-280.

Davis, L. and Orvosh, D. (1994) Using a genetic algorithm to opti-
mze problems with feasibility constraints. In /1994 IEEE International
Symposium Evolutionary Computation, pages 548-553, Orlando, FL

Davis, L. (1991) The Handbook of Genetic Algorithms. Van Nostrand
Reingold, New York.

Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer, Boston.

Hinton, G. E. and Nolan, S. J. (1987) How learning can guide evolution.
Complex Systems, 1:495-502.

Hooker, J. N. (1995) Testing heuristics: We have it all wrong. Journal
of Heuristics, 1(1):33-42. .

Houck, C. R., Joines, J. A. and Kay, M. G. (1996a) Comparison of
genetic algorithms, random restart, and two-opt switching for solving
large location-allocation problems. Computers & Operations Research,
23(6):587-596.

Houck, C. R., Joines, J. A. and Kay, M. G. (1996b) A genetic algo-
rithm for function optimization: A Matlab implementation. Technical
Report NCSU-IE Technical Report 95-09, North Carolina State Uni-
versity.

Houck, C. R., Joines, J. A. and Kay, M. G. (1997) Empirical investigation
of the benefits of partial lamarckianism. Evolutionary Computation,
5(1):31-60.

SAS Institute Inc. (1990) SAS/STAT User’s Guide. Cary, NC, 4th edi-
tion.

Joines, J. A., Culbreth, C. T. and King, R. E. (1996¢) Manufacturing cell
design: An integer programming model employing genetic algorithms.
IIE Transactions, 28(1):69-85.

Joines, J. A. and Culbreth, C. T. (1999) Job sequencing and inven-
tory control for a parallel machine problem: A hybrid-ga approach. In
D. Fogel and Z. Michalewicz, editors, Proceedings of 1999 IEEE Con-
ference on Evolutionary Computation, pages 579-585, Washington,
DC. Institute of Electrical and Electronics Engineers.

Joines, J. A., Kay, M. G. and Houck, C. R. (2000b) Characterizing search
spaces for tabu search and including adaptive memory into a genetic
algorithm. Journal of the Chinesse Institute of Industrial Engineers.

REFERENCES 227

Joines, J. A., Kay, M. G., King, R. E. and Culbreth, C. T. (2000a) A
hybrid genetic algorithm for manufacturing cell design. Journal of the
Chinesse Institute of Industrial Engineers.

Joines, J. A., King, R. E. and Culbreth, C. T. (1994) A comprehen-
sive review of manufacturing cell design. Technical Report NCSU-IE
Technical Report 94-20, North Carolina State University.

Joines, J. A., King, R. E. and Culbreth, C. T. (1996d) Moving beyond
the parts incidence matrix: Alternative routings and operations for the
cell formation problem. International Journal of Engineering Design
and Automation, to appear.

Joines, J. A. (1996) Hybrid Genetic Search for Manufacturing Cell De-
sign. Ph.d. thesis, North Carolina State University, Raleigh, NC, De-
cember 1996.

Lawrence, C., Zhou, J. L. and Tits, A. L. (1994) User’s guide for cfsqp
version 2.4: A ¢ code for solving (large scale) constrained nonlinear
(minimax) optimization problems. TR 94016rl, University of Mary-
land, Electrical Engineering Dept and Institute for Systems Research.

Locatelli, M. and Schoen, F. (1999) Random linkage: A family of ac-
ceptance/rejection algorithms for global optimization. Mathematical
Programming, 85(2):379-396.

Love, R. F. and Juel, H. (1982) Properties and solution methods for
large location-allocation problems with rectangular distances. Journal
Operations Research Society, 33:443-452.

Michalewicz, Z. (1996) Genetic Algorithms + Data Structures = Evolu-
tion Programs. Al Series. Springer-Verlag, New York, 3rd edition.
More, J. J., Garbow, B. and Hillstrom, K. (1981) Testing unconstrained
optimization software. ACM Transactions on Mathematical Software,

7(1):17-41.

Nakano, R. (1991) Conventional genetic algorithm for job shop problems.
In Proc. of the 4th ICGA, pages 474479, San Mateo, CA.

Ng, S. (1993) Worst-case analysis of an algorithm for cellular manufac-
turing. European Journal of Operational Research, 69(3):384-398.
Renders, J. -M. and Flasse, S. (1996) Hybrid methods using genetic
algorithms for global optimization. IEEE Transactions on Systems,

Man, and Cybernetics Part B:, 26(2):243-258.

Rinnooy-Kan, A. and Timmer, G. (1987) Stochastic global optimization
methods part I. Mathematical Programming, 39(1):27-56.

Whitley, D., Gordon, S. and Mathias, K. (1994) Larmarckian evolu-
tion, the Baldwin effect and function opimization. In Y. Davidor,
H.P. Schwefel, and R. Manner, editors, Parallel Problem Solving from
Nature-PPSN I1I, pages 6-15. Springer-Verlag.

228 EVOLUTIONARY OPTIMIZATION

Wolpert, D. H. and Macready, W. G. (1997) No free lunch theorems
for optimization. IEEE Transactioins on Evolutionary Computation,
1(1):53-66.

Chapter 9

USING EVOLUTIONARY ALGORITHMS
TO SOLVE PROBLEMS BY COMBINING
CHOICES OF HEURISTICS

Peter Ross and
Emma Hart

Abstract

Keywords:

Potential users of evolutionary algorithms (EAs) are often deterred
by the ‘black box’ nature of many of the available examples. Typically
an evolutionary algorithm is designed to search a problem’s solution
space directly, and the user simply waits for some stopping criterion
to take effect. However, the user usually gets no guarantees about the
quality of the fittest solution at that point. It is unsurprising, therefore,
that users may choose to use some simpler, cheaper heuristic method
whose performance is better understood and faster even though it may
well deliver poorer results. Commercial users in particular often have
good reason to be nervous about using EAs in situations in which their
business is likely to be judged on the quality of the EA’s result. How-
ever, there are ways in which they can still use EAs to very good effect.
This paper discusses one such way, namely using an EA to choose which
heuristics to apply at each stage in some sequential decision process. If
the available heuristics are individually acceptable, then a combination
of them is going to produce a better quality result than any of them indi-
vidually would. This can be guaranteed by the simple device of seeding
the initial population with chromosomes that employ just one heuristic
throughout. The paper describes some examples of this approach and
discusses possible developments of the idea.

Heuristics, hyper-heuristics, scheduling, timetabling

1. Introduction

Software vendors and academics often extol the virtues of evolutionary
algorithms as a means of exploring very large search spaces. Customers

230 EVOLUTIONARY OPTIMIZATION

are often justifiably skeptical, particularly if they only want something
that they know works well enough and quickly enough, rather than some-
thing which strives at great effort to find very high quality answers.
There are many good reasons for choosing a more traditional algorithm
over an EA, for example:

that algorithm has known performance bounds;

the algorithm is faster than any population-based method;

the algorithm has a good track record in commercial use;

there is less personal or organisational risk in ‘following the crowd’
than in opting for unfamiliar technology.

By contrast, the EA community has sometimes been guilty of looking
inward and failing to make proper comparisons with non-evolutionary
methods, or a proper case for using an EA at all. To be fair, it can
be very tricky to run proper comparisons; benchmark problem sets may
be unrealistic or unrepresentative of the user’s own problems, and al-
gorithms that contain stochastic elements will produce a spectrum of
results so that it can be hard to assess the true cost of obtaining a
minimally acceptable result by repeated runs.

In some cases it is possible for a user to tell whether an EA has
completely solved a problem. For example, penalty-based EAs often
calculate fitness by assigning a weight w; > 0 to constraint violations of
type ¢, and if there are p; of them the fitness is defined to be

f=1/01+ Zwim)

In this case, any chromosome with fitness 1.0 represents a perfect so-
lution. However, if the EA only finds chromosomes with lower fitness,
the user is left wondering whether the problem as given is unsolvable
or whether the EA is simply unable to discover any of the perfect so-
lutions, either because the EA is underpowered or because the choice
of weights was flawed. In many other cases the fitness function does
not even have a known maximum, and the EA essentially functions as a
fitness-improving black box.

On the other hand, familiar heuristics may have their drawbacks too.
Consider the bin-packing problem. In its simplest, idealised form there
are many bins of known, identical capacity and a number of items of
various sizes to be packed into as few bins as possible. The First Fit De-
creasing algorithm orders the items by size, largest first, and simply puts
each into the first bin in which it will fit, starting a new bin whenever

Combining choices of heuristics

231

necessary. Many companies some variation of this for packing tasks; it
is simple, fast and comprehensible. Johnson, in (Johnson, 1972), shows
that this algorithm uses no more than 116/9 + 1 bins where b is the op-
timal number, and that no other such algorithm can hope to do better
than this. However, consider the problem (attributed to R.L.Graham of
AT&T Bell Labs, (Hoffman, 1998)) of packing these items into bins of

size 524
442 252 127 106 37 10 10
252 252 127 106 37 10 9
252 252 127 85 12 10 9
252 127 106 84 12 10
252 127 106 46 12 10
The result uses seven bins:
Bin 1: 442 46 12 12 12
Bin 2: 252 252 10 10
Bin 3: 252 252 10 10
Bin 4: 252 252 10 10
Bin 5: 252 127 127 9 9
Bin 6: 127 127 127 106 37
Bin7: 106 106 106 85 84 37

but if the single item of size 46 is deleted, the algorithm needs eight bins

instead:
Bin 1: 442 37 37
Bin 2: 252 252 12
Bin 3: 252 252 12
Bin 4: 252 252 12
Bin 5: 252 127 127 10
Bin 6: 127 127 127 106 10 10 10
Bin 7: 106 106 106 85 8 10 10 9
Bin 8 9

As this shows, the heuristic can perform in an unexpected and undesir-
able way that is hard to anticipate: solving a sub-problem produces a
worse answer than solving the whole problem. There are of course more
sophisticated bin-packing algorithms than this, see (Coffman et al., 1997)

for a survey.

232 EVOLUTIONARY OPTIMIZATION

More generally, there are huge numbers of algorithms for finding
approximate solutions to OR-type problems, and in many cases there
are theoretical results about how well or badly they can perform; see
(Ausiello et al., 1999) for an introduction and a compendium of known
results for over 200 types of problem. However, experience suggests that,
given a heuristic or approximate algorithm, it is often possible to devise
examples that exploit its weaknesses in some way so that the heuristic
produces a relatively poor answer. Rather than merely accepting this
risk as the price of comparative simplicity, it is often possible to combine
choices of heuristic so as to produce better overall performance than any
one heuristic.

This paper describes examples of how EAs can be used to combine
choices of heuristics. The next section briefly considers pre-cursors of
this idea, in which a parameterised algorithm is used to solve some
problem and a GA is used to find good choices for those parameters.
The following ssections then describe examples in which a GA is used
to select choices of heuristic as part of an algorithm; these examples
are all drawn from the general area of scheduling and timetabling, and
illustrate variations on the theme. Finally there is a brief discussion of
how the general idea might be developed further.

2. GAs and parameterised algorithms

There are many examples in the literature in which a GA is used to
find a good set of parameters for some parameterised algorithm. Two
examples are briefly described below. This represents a useful step for-
ward from the naive approach of directly encoding a potential solution
in a chromosome. Direct encoding has the potential drawback that, for
complex real-world problems, the chromosome may need to be very long.
There is then a real danger that some parts of the finally-produced so-
lution may be due only to genetic drift, rather than because those parts
have been selected on the basis of their contribution to overall fitness.
Working with a parameterisation of some kind can help to keep chromo-
some length more under control.

The first example is a commercially very successful example, in which
a GA is used to configure the search for the best way to set up a robot
that mounts chpos and other parts onto computer boards. The second
example is dran from the world of futures trading.

Combining choices of heuristics 233

2.1 The Philips FCM robot

Fig. 9.1 shows a plan view of part of the ‘Fast Component Mounter’
robot sold by Philips for placing components such as chips onto surface-
mount boards.

/ robot ‘head’
‘ I -
@ @ § & ¥ | gripper
¢ § \Q c:‘/
N § \
9 T =17 COMponents
1]

:
:
+
E

feeder bays

Figure 9.1. Philips FCM robot

This is an idealised picture, for clarity. In practice there are 16 robot
heads and, unlike in the figure, each robot head can only reach a small
part (a vertical slice, narrower than shown) of a board. Boards advance
in lock-step beneath the heads. Each robot head has a suction gripper,
of one of various sizes; the grippers are not interchangeable during a
run. Components arrive via parts feeders, and a feeder for large parts
such as CPU chips can occupy up to three feeder bays. Each robot head
runs a cycle of picking up a part from one of the feeders associated with
it, moving the part to an alignment jig in order to get the part into a
known orientation, and then moving to the appropriate location on the
current board and inserting the part there.

The problem therefore is to decide: for each head, which type of grip-
per it has; for each head, which types of feeder it has and where they are
placed in the feeder bays; for each head, what alignment tooling it has;
for each feeder, which parts it feeds (a feeder need not feed just one type
of part, but the parts it feeds must be appropriate for the size of feeder).
The objective is to minimise the time taken to assemble each board. It is
not very practicable to treat the subtasks as separate optimisation prob-
lems, since there is no good way to evaluate a potential solution to any
one subtask in isolation. Attempts to develop approximate evaluation
functions have not been good enough to be useful.

234 EVOLUTIONARY OPTIMIZATION

The solution that was adopted was to use a set of numerically param-
eterised greedy algorithms for each of the subtasks. Each chromosome
in an EA contained one set of all the parameters for all the algorithms,
and was evaluated by running the algorithms and then timing the per-
formance of the resulting configuration, by straightforward simulation.
The parameters involved are essentially weights representing ‘desirabil-
ity’. In gripper assignment, a weight represents the desirability of using
a certain kind of gripper; in feeder assignment, there is weight represent-
ing the desirabiluty of assigning a certain feeder to a given head, that
already has an assigned gripper type from the previous stage of the al-
gorithm; and so on. The results have been extremely successful; despite
extensive efforts, it has not been possible to improve on the solutions
produced by the EA, either by computer or human means. Moreover, it
has not been necessary to tweak the EA for different sorts of board being
manufactured. Philips supply the EA with the robot, the particular EA
used is Eshelman’s very successful CHC algorithm. Further details can
be found in (Schaffer and Eshelman, 1996).

This approach represents an interesting alternative to what the text-
books often seem to recommend, namely some kind of direct attack on a
combinatorial optimisation task using, say, a permutation-based encod-
ing of solution ingredients.

2.2 Futures Trading: When To Buy

In the second example, see (Katz and McCormick, 1997) and (Katz
and McCormick, 2000), a GA is used to find a rule for deciding when
to enter a certain futures market, that is, at what moment to buy. The
idea is to find a combination of three rules, each chosen from a set of ten
possible parameterised rules, and the moment of entry is the moment
when all three rules return the value ‘true’.

Market information arrives in a continual stream of data-points, called
bars. One rule might say: “return true if the closing price n; bars ago
exceeds the closing price ngy bars ago by at least an amount *. Another
might say: “return true if the current price is above or below (according
to the value a binary variable v) a simple linear moving average of prices
over the last » bars”. There is a maximum of three parameters per
rule, possibly fewer as the second example rule suggests, and so the
chromosome consists of three block of four numbers, one block per rule.
Within a block, the first is an integer specifying which of the ten rules
the block refers to; the other three numbers are rule parameters.

As reported in (Katz and McCormick, 2000), this GA is capable of
finding reasonably good-quality market entry strategies, even though for

Combining choices of heuristics 235

the sake of good science a fixed and possibly sub-optimal market exit
strategy is used. Fitness is judged by overall profitability over a fairly
long period. Note that the chromosome is very short, and that the
three blocks need not refer to different rules — the entry condition may
therefore be determined by two or even just one of the ten parameterised
rules under consideration.

2.3 Discussion: parameterised algorithms

In both of the above examples, real-valued parameters are used to flesh
out some pre-determined algorithm. There are some clear advantages
over using a direct encoding, notably that the chromosome used can be
very much shorter than in a direct encoding and that there is at least
some possibility of analysing why the discovered solution works. There is
also at least the possibility of demonstrating that the GA has improved
upon some previously known algorithm, by choosing the parameters that
would represent that previously known algorithm and injecting the cor-
responding chromosome into the initial population.

Rather than using real-number parameterisations, the following sec-
tions describe examples drawn from our own experience in which the
idea is to use a GA to combine choices of heuristics that are already
known and used in the relevant application area. We refer to this as a
hyper-heuristic approach.

3. Job Shop Scheduling

The job-shop scheduling problem (JSSP) is well known as one of the
most difficult NP-hard problems that cannot be solved in polynomial
time. It has received a great deal of attention from the evolutionary
computing community because the general problem can serve as a simpli-
fied model of many practical scheduling problems. The general job-shop
problem assumes that 7 jobs must be processed on m machines and each
job follows a predefined job-specific route through the machines, and has
a fixed processing time p;,, on each machine. All operations are non-
preemptive. In the static version of the problem all jobs are available
for processing at time O, and the academic goal is usually to minimise
the makespan, the time taken for all jobs to complete. In the dynamic
version, each job has a release date r; at which it becomes available for
processing, and a due-date d; by which time it must complete. The im-
portance of each job is described by a weight w;. The dynamic version of
the problem has much more relevance to real life problems and hence is
of more benefit to study. Two types of dynamic JSP can be considered
— the deterministic problem in which all release dates and due-dates

236 EVOLUTIONARY OPTIMIZATION

are known at the start of the problem, and the stochastic problem, in
which jobs arrive at some unknown time in the future.

Many approximate and heuristic-based methods have been proposed
to attempt to find near-optimal solutions to large problems in realistic
time-scales, a large number of which include the use of evolutionary
algorithms. A wide variety of EA techniques have been proposed, using
many different representations and operators, and relating to a broad
spectrum of problems, e.g. (Bruns, 1997). All EA methods encounter
the problem of how to represent a potential schedule as a chromosome.
Early work in the field yielded two extremes of possible approaches to
representing schedules. Nakano and Yamada in (Nakano and Yamada,
1991) used a binary representation to encode schedules for benchmark
job-shop problems. A complex effort was required to design such an
encoding, and its use in a GA context needed specialised repair operators
to retain the ability to decode chromosomes as feasible schedules. The
other extreme, for example see (Bruns, 1993), is a direct encoding of a
schedule, in which an encoded schedule was a direct representation of the
schedule itself, with data structures and attributes designed to mimic the
real schedule. Hence no decoding of a chromosome was necessary but the
genetic operators needed to use much domain and constraint knowledge
to appropriately mutate schedules, and to maintain feasible schedules.
Thus the resulting algorithms were extremely problem-specific and could
not be generalised to other types of problems or even other instances of
the problem type under consideration. An intermediate approach uses
an indirect encoding in which a schedule building algorithm is combined
with genetic search through the space of potential inputs to the schedule
builder, for example see (Fang et al., 1993). The resulting schedules are
often fragile however, in that slight perturbations lead to large changes
in the schedule, and the chromosome representation gives little clue to
how and why the schedule was built, and is therefore difficult to modify
by hand.

However, a large number of fast and cheap heuristics are available
for the JSSP problem, accumulated over many years of research by the
Operations Research community. A sample of the available heuristics
is given in table 9.1 — each heuristic indicates which job should be
placed next in the schedule. For example, heuristic WSPT chooses the
job with the smallest weighted processing time, WLWKR chooses the job
with the least work remaining etc. A handful of EA applications, loosely
defined as Heuristic Combination Methods’ (HCM) have attempted to
take advantage of these heuristics by using an EA to search for successful
sequences in which to apply these heuristics in order to build a schedule.
There is no reason to rely on a single heuristic when building a schedule

Combining choices of heuristics 237

Rule l Description

WSPT Weighted shortest processing time

LWKR Weighted Least Work Remaining

WTWORK | Weighted Total Work

EGD Earliest Global Due Date

EOD Earliest Operational Due Date

EMOD Earliest Modified Operational Due Date

MST Modified Slack Time

SOP Slack per Operation

POPNR Lowest ratio of processing time of imminent operation to
weighted value of remaining operations

PSOP Weighted smallest sum of (next processing time + SOP)

PWKR Weighted smallest ratio of processing time to work re-
maining

RND Choose a Random operation from those operations that
cannot be chosen by another heuristic

Table 9.1. Heuristics Used for Dynamic Job-Shop Problems

— indeed, it seems obvious that varying the choice of heuristic according
to the particular stage of the scheduling process or to the size of the
job being processed makes sense. It is difficult of find some principled
method of making the choice of heuristic at each decision point, but an
EA can at least be used to search for successful combinations of such
heuristics.

Norenkov, see (Norenkov and Goodman, 1997), describes an EA in
which schedule synthesis is considered in two phases; first the jobs are
ordered by choosing one of a set of possible ordering rules, {A}, then
jobs are assigned to machines according to one of a set of assignment
rules {B}. A heuristic H is generated by combining a rule from set A
with one for set B. The GA described searches for the optimal sequence
of application of the set of possible heuristics. Using this algorithm, they
obtained promising results on a set of flow-shop scheduling problems.

Dorndorf and Pesch, see (Dorndorf and Pesch, 1995), proposed a
‘priority-rule based’ genetic algorithm, which uses some of the heuris-
tics defined in table 9.1. The EA they describe searches for the optimal
sequence of heuristics to use in which to choose jobs to place into the
schedule. However, these heuristics only specify which job should be
placed next in the schedule, they do not indicate where that job should
be placed. Dorndorf and Pesch rely on the Giffler and Thompson algo-

238 EVOLUTIONARY OPTIMIZATION

rithm ((G + 7T) in order to place jobs in the schedule. This algorithm
was proposed in 1960 and generates a solution in which it is guaran-
teed that the resulting schedule contains no idle time and none of the
operations can be finished earlier without delaying another operation.
This is known as an active schedule, and it can be proved that the op-
timum solution lies within the region of active schedules. An outline of
the G + T algorithm is given in figure 9.2. Dorndorf and Pesch’s algo-
rithm uses each heuristic to select an operation in step S4. They tested
this algorithm on a number of static job-shop benchmark problems, us-
ing makespan as the objective, obtaining results which have since been
superseded by other methods, for example see (Vaessens et al., 1996).
We proposed an extension to this method in (Hart and Ross, 1998;
Hart and Ross, 2000) for tackling dynamic job-shop scheduling prob-
lems. It was stated above that the optimal schedule is guaranteed to
fall within the space of active schedules. However, a subset of this space
is that of non-delay (ND) schedules in which operations are placed into
the schedule such that machine idle time is minimized. No machine is
kept idle if some operation can be processed. The method by which
members of this subset of schedules is generated is given in figure 9.3.
Therefore, for some problems, it may be sufficient to search only the
space of non-delay schedules, which is much smaller than the set of all
active schedules. However, there is no way of knowing a priori whether
the optimal schedule lies in this subset or not, therefore only searching
the non-delay subset could lead to a sub-optimal solution. Therefore the
method we propose extends the HCM by evolving both the method to
generate a set of schedulable operations (set G in figures 9.2 and 9.3, and
the heuristic which then chooses an operation from this set. Each gene
in the chromosome encodes a pair (Method, Heuristic), and there is one
gene for every decision point, i.e. every operation that must be sched-
uled. The representation guarantees a feasible solution, and straightfor-
ward recombination operators can be used which always produce feasible
offspring. We refer to this method as HGA — heuristically-guided GA.

31 Experiments

A series of experiments investigated the performance of HGA on a set
of 12 benchmark problems which varied in size from (10x3) to (50x8).
Each experiment was run using 4 different objective values for measuring
the quality of the schedule, resulting in 48 different experiments. The
objective values are defined in table 9.2. 12 heuristics were available
to the GA for selecting an operation. Other experiments investigated
the effect of fixing the choice of method to either ND or G+T, and

Combining choices of heuristics 239

[

Calculate the set C of all operations that can be scheduled next

2. Calculate the completion time of all operations in C, and let m* equal
the machine on which the minimum completion time ¢ is achieved.

3. Let G denote the conflict set of operations on machine m* - this is the

set of operations in C which take place on m*, and whose start time is
less than t.

4. Select an operation from G to schedule
5. Delete the chosen operation from C and return to step 1.

Figure 9.2. Giffler and Thompson Algorithm

1. Calculate the set C of all operations that can be scheduled next

2. Calculate the starting time of each operation in C and let G equal the
subset of operations that can start earliest

3. Select an operation from G to schedule

4. Delete the chosen operation from C and return to step 1.

Figure 9.3. Non Delay Algorithm

also the effect of including the RND heuristic which randomly selects an
operation. Results were compared to those obtained by using Priority-
Rules alone, and to two other evolutionary approaches; that of Fang
(1994), and a direct approach recently reported by Lin et al. (1997),
using a parallel GA they refer to as PGA, in which the chromosome
directly encoded a GANNT chart representing the schedule. In each
case we compared the best result found in 10 repeated experiments, to
those results reported by (Lin et al., 1997) and (Fang, 1994) (who also
report best of 10).

Experimental parameters. We use a parallel GA, with 5 sub-
populations of size 50 arranged in a ring, with migration of one chro-
mosome from one population to the next occurring every 5 generations,
in order to be consistent with the method used by Lin. The length of
a chromosome is equal to the number of operations to be scheduled.
Uniform crossover is used, and crossover always takes place between
gene pairs, so that an (M, H) schema is never destroyed by crossover.
A mutation operator mutates each heuristic in the genome to another
randomly chosen heuristic with probability p = 0.01. For each heuristic
mutated, the corresponding method allele is mutated with probability

240 EVOLUTIONARY OPTIMIZATION

Objective Function Objective | Normalised Definition

ETwt | Weighted Earliness | Minimize (z; Swi(Bj + ’I})) / (E ;w5 P_,-)
+ Tardiness
Fwt | Weighted Flowtime | Minimize >, wi(Cj - 'r,-]) / (ZJ wj Pj)
Twt | WEighted Tardiness | Minimize 2w J-T}% I EZ ;W5 PJ%

Lwt Weighted Lateness | Minimize 2 wili) /(22 wiP;

Table 9.2. Objective Function Definitions. If the completetion time of job j is C;
and the due-date dj, then the lateness L; is (C; —d;), the earliness E; is mawx(—L;,0)
and the tardiness T; as maz(L;,0). P; represents the total processing time of job j

0.5. We use a generational reproduction strategy, with rank selection.
All experiments are run for 1000 generations, to allow a fair comparison
with the experiments of Lin et al. (1997) and Fang (1994).

3.2 GA Parameters

Full results are given in (Hart and Ross, 1998). Here we summarise
the results by reporting the relative performance of HGA in each of
the 48 experiments compared to the other methods. This is shown in
table 9.3. The table shows in how many of the 48 experiments HGA
outperformed, equalled or underperformed the other methods. The table
shows that clearly HGA outperforms both Priority Rules and Fang’s
GA.. The performance of HGA is less robust when compared to those
results recently published by Lin — it outperforms Lin’s PGA in 18
cases, equals the results in a further 9 cases, and it is beaten in the
remaining 21 cases. However, Vasquez and Whitley (M.Vasquez and
D.Whitley, 2000) have since noted that they were unable to replicate
the results reported by Lin when re-implementing the algorithm, in a
paper on comparison of GAs for dynamic scheduling problems.

For all objectives, evolving the choice of scheduling method is bene-
ficial. Comparison of HGA to the simplified HGA in which the choice
of method is restricted to G&T only (called HGA(G&T)) shows that
in only 3 cases does the evolution of method hinder the search and
decrease performance. For the remaining cases, HGA produces better
results than HGA(G&T) in 25 cases, and equivalent results for the other
20 cases. Comparison to Non-Delay shows 4 cases where better results
are achieved using Non-Delay only. HGA produces better results than
HGA(ND) on 40 cases, and equivalent results on the remaining 4 cases.

Combining choices of heuristics 241

Priority Rules 1 Fang | Lin

Better Performance 44 40 18
Equal Performance 2 5 9
Worse Performance 2 3 21

Table 9.3. The table compares the performance of HGA to 3 other methods, and
shows in how many of the 48 experiments it beat the other methods, in how many
experiments it equalled the other methods, and in how many experiments it was
outperformed.

The decision as to whether or not to include the RND heuristic is
less clear. Comparison of the results shows that in just over half the
cases (28) no difference between results is observed. From the remaining
20 cases, better results are obtained in 9 cases by including the RND
allele, and worse results on 11 cases. Hence, although not including the
RND allele may prevent some operations from being chosen at some
points in the schedule, this appears to slightly outweigh the possible
disadvantages of including it, i.e. that the population may be unstable
from one generation to the next.

33 Conclusions about JSSP

This new GA which evolves a combination of scheduling algorithm
and heuristic choice to be used at each stage of the scheduling process
performed very well compared to other published results on benchmark
problems. In particular, evolving the choice of scheduling algorithm
appears to be highly beneficial. The representation is straightforward,
and can be used with standard recombination operators, which always
produce feasible solutions. The results are promising across a range
of problems and objectives when compared to others recently published.
The GA could perhaps be tuned further with respect to individual objec-
tives by using a specialised set of heuristics for the objective in question,
rather than the general set used here.

4. Scheduling chicken catching

We have also applied a hyper-heuristic approach to solving a real-
life scheduling problem faced by a local company which collects up to
1.3 million live chickens from farms geographically distributed across
Scotland and processes them at two factories. The scheduling must be
accomplished using a fixed resource of ’catching squads’ and vehicles,

242 EVOLUTIONARY OPTIMIZATION

in such a way that the factories are supplied with birds at a constant
rate and that all daily orders for birds are met. The problem is highly
constrained, with regard to regulations governing working conditions for
the workforce, rules concerning chicken welfare and to the number of
fixed resources available. For example, there are strict regulations gov-
erning the time that birds can be kept in vehicles before being processed,
hence the factory must operate almost on a just-in-time basis. Union
rules also govern the minimum and maximum amount of work that any
catching squad can do both daily and weekly, and there are also reg-
ulations concerning the number of hours that the vehicle drivers can
drive without a break. There are some restrictions also on the order in
which certain farms can be visited by catching squads in an attempt to
prevent the spread of disease between farms. Several practical consid-
erations must also be taken into account — for example, it is sensible
for a catching squad to work within a geographically constrained area,
rather than travelling backwards and forwards across the country, and it
is not practical for a squad to visit a farm to collect less than a complete
vehicle load of birds.

Scheduling the daily orders is a full time job for one employee who
performs the process manually. Whilst it is of interest to the factory to
minimise the resources required, the overriding aim is to produce practi-
cal daily schedules that meet the incoming orders. The problem breaks
down into two sub-problems. First, the daily orders (which consist of
large numbers of birds) must be split into smaller tasks that can be equi-
tably and practically distributed amongst the catching squads. Second,
these tasks must actually be distributed amongst the catching squads.
The task is akin to bin-packing, if a squad is considered as a bin, how-
ever standard heuristics for performing bin-packing cannot be applied
due to the constraints existing between items in each ’bin’ and between
bins. The manual scheduler accomplishes the task through application
of a number of rules of thumb, acquired over years of experience. The
heuristics are applied through intuition, and it is difficult to capture
in logic the reasoning behind the method of application. Therefore, in
order to try and automate the task, we need to find a method of know-
ing which of these heuristics to apply and when in order to produce
a practical schedule. A hyper-heuristic approach can again be used; a
hyper-heuristic must choose when and where to apply each of the lower-
level heuristics currently used manually. Again, we use an evolutionary
algorithm to evolve the sequence of application of the heuristics.

Combining choices of heuristics 243

4.1 The approach

The chromosome is represented as a matrix with three rows, and n
columns, one for each order to be processed. The first row represents the
order in which the daily orders should be scheduled. The second row rep-
resent the heuristics that should be used to split each order into smaller
sub-tasks, and the final row encodes the heuristics to use to assign the
sub-tasks to squads. Therefore each vertical column represents a triple
{order, split — heuristic, assign — heuristic}, defining how an order is
split and assigned. The matrix can effectively be considered as a list of
instructions for building a solution to a particular problem — however,
the instruction set is unique to each different problem solved and hence
tailored to solve any peculiarities of that problem. The approach is sim-
ilar to that taken by Norenkov and Goodman (1997), however in their
work they combined the heuristics for ordering and assigning operations
into new single heuristics; the GA then searched the space of the new
heuristics. In our approach, we evolve the choice separately.

Ten different heuristics are used to split the orders into smaller sub-
tasks. Seven heuristics are used to then assign these orders. The perfor-
mance of the GA was tested on the real data provided from eight different
days at the factory. In each case, we were able to find a practical solution
to the scheduling problem and the schedules appeared similar to those
currently being created by hand, suggesting that the hyper-heuristic was
indeed modelling the knowledge of the human scheduler. To illustrate
the necessity of applying different heuristics to different instances of the
same problem class, consider tables 9.4, 9.5. These tables show for each
problem, the frequency with which each heuristic was chosen in solving
the problem. In the case of the split heuristics, the distribution is clearly
not random, showing that each individual problem required a different
combination of heuristics in order to solve it. The distribution in fre-
quency for application of the assign heuristics however appears more
uniform; the distribution does not deviate significantly from the 14%
frequency that would be expected for each heuristic if the choice was
completely random.

Clearly the hyper-heuristic approach has been successful in this case.
We have shown that an individual heuristic or algorithm would have been
incapable of solving all the problems whereas our our hyper-heuristic ap-
proach produces successful results. Furthermore the company are able to
understand the method in which each schedule was built — this makes
the task of altering schedules due to any last minute changes in orders or
factory circumstances more straightforward. The method can be gener-
alised to other real-world problems which often contain a large amount

244 EVOLUTIONARY OPTIMIZATION

Test Case % heuristic applied to split an order

A|lB|c|D|E|F|G|H]|I]|J
1 84 3 11 1 1 0 1 0|0]O0O
2 78 6 2 1 1410 0 0 00
3 44 6 38310 0 0| 10 0 11
4 35 4 43 | 1 9 1 3 01133
5 50| 10 | 19 1 8 0 0 10)101|0
6 79 | 12 9 0 0 0 0 0100
7 47 (29 | 14 | O 0 0 6 3 1|0
8 43 33| 39| 1]|ofl2]1]0]o0

Table 9.4. Frequency of Application of Splitting Heuristic

of domain knowledge that is generally complex and often difficult to
formulate into exact procedures for solving problems. By encapsulating
the knowledge in the form of heuristics, and using an EA to find the op-
timal combination of these heuristics we considerably simplify the task.
The key advantage however lies in the flexibility that such a system
provides — real problems do not follow an exact pattern from day to
day, and each schedule may require a subtly different approach. Using
a hyper-heuristic approach, a unique schedule builder is built each time
a problem is solved, which takes account of the individual characteris-
tics of each problem. This results in a much more robust system that
copes well with variations within the data and hence can be used by the
factory as a reliable tool.

S. Timetabling

Yet another problem to which we have applied the hyper-heuristic ap-
proach is that of examination timetabling, for which many heuristics are
available due to the similarity between timetabling and graph-colouring
problems. In an exam timetabling problem there are some hard con-
straints: nobody can be in two places at once; room capacities cannot
be exceeded even though it may be practicable to schedule two or more
different exams in the same room at the same time; there may be a hard
limit of the number of available timeslots; there may be others, such
as restrictions on when certain exams can happen. Typically there will
also be some soft constraints, such as a wish to minimise the number of
instances in which some student takes two exams close together (‘near-

Combining choices of heuristics 245

Test Case | % heuristic being applied to assign an or der

A|B|c|D|E|F| @
1 15119 {12 | 15 | 14 | 13 11
2 8 14 | 13 | 13 | 13 | 28 12
3 16 | 16 | 10 | 13 | 18 | 16 11
4 21 | 16 4 25|13 | 10 11
5 8 22 | 156 9 23 | 16 7
6 14 { 18 | 18 | 12 | 13 | 13 14
7 17 | 21 8 14 | 18 | 11 11
8 26 | 16 | 10 | 15 | 11 10 12

Table 9.5. TFrequency of Application of Assignment Heuristic

clashes’). Unfortunately authors can differ as to what this concept of a
near-clash means. For some, only adjacent exams are near-clashes; for
others, small gaps of 1-3 free exam periods between exams will count,
with weightings used to express the fact that smaller gaps are less desir-
able than large ones. For yet others, near-clashes can only occur between
exams within the same day, so that a student who takes an exam at the
end of one day and another at the start of the next does not suffer a
near-clash. However, the basic problem of ensuring that nobody needs
to be in two places at once can be treated as a graph-colouring problem,
in which nodes represent exams, edges represent the constraint that the
joined nodes must not be in the same time-slot, and the task is to colour
the nodes so that no two nodes joined by an edge are the same colour.
Colours correspond to timeslots. There are many good approximation
methods for the graph-colouring problem, e.g. (Culberson, 1992; Petford
and Welsh, 1989). Perhaps the best-known is the DSATUR algorithm
(see Brelaz, 1979) which sequentially assigns colours to nodes. Nodes
are ordered according to the number of colours already assigned to ad-
jacent nodes, with tie-breaking by node degree. This algorithm an be
modified to do a modestly good job of solving exam timetable problems,
including soft constraints (Ross et al., 1997). EAs have also been heav-
ily investigated as tools for solving exam timetabling problems, see eg
(Burke and Ross, 1996; Carter, 1998).

Previous studies, e.g. see (Carter et al., 1995; Minton et al., 1992),
have shown that some heuristics are good at solving certain instances of
timetabling problem, but it is not clear which of the available heuristics
should be used for solving a given set of problems, or even for solving a

246 EVOLUTIONARY OPTIMIZATION

particular instance of a problem. Some strategies appear in general to
work well for some sets of problems, but occasionally an instance of the
problem demands a different approach. This may be due to particular
features of the problem which determine whether or not some heuristic
may be useful.

As an example, consider a problem in which there are a number of
very large exams to schedule. It may be necessary to attempt to pack
these exams in a manner that tries to leave many timeslots free, ie try
to pack those large ones into few timeslots, rather than spreading the
exams out, because otherwise one may run out of timeslots. Therefore, a
heuristic which paid attention to the packing question before considering
other constraints may well work better.

5.1 A hyper-heuristic timetabler

As reported in (Terashima-Marin et al., 1999), it makes sense to build
a timetable sequentially. The idea is to divide the task into two phases.
In the first phase, a certain strategy is chosen, and also a heuristic for
choosing which exam to consider next, and a heuristic for deciding which
timeslot to put it in. After a certain condition is met, the second phase
starts; this also applies a certain strategy and pair of heuristics. The
GA chromosome therefore encodes: (a) choices of strategy and heuris-
tics used in phase 1; (b) when to switch: either after placing o exams,
or after placing the largest N% of exams; (c) choices of strategy and
heuristics used in phase 2. The strategies considered are: (i) backtrack-
ing, in which a failure to place an exam causes the search to reconsider
earlier decisions, in reverse chronological order; (ii) forward checking,
in which placing an exam triggers lookahead to weed out future choices
that would be incompatible with it (iii) a simple Brelaz-like algorithm
in which neither lookahead nor backtracking occurs. The exam-choosing
heuristics used are

= By Number of instances, ie number of constraining exams, weighted
by number of people involved

» By Number of edges, ie constraining exams
s By Number of people taking the exam.

= By sum of the above three numbers

= At Random.

= By Number of instances on the nodes using the available colours.

Combining choices of heuristics 247

By Number of constraining exams on the nodes using the non-
available colours.

By Number of people on the nodes using the available colours.

Random (pre-established). At start this random ordering between
each pair of nodes is established so that when the same situation
is encountered a consistent decision is made.

The slot-choosing heuristics used are as follows, bearing in mind the
assumption that there are three slots per day:

By considering the available timeslots in the order:
1,4,7,..3,6,8,..2,5,8, ...

By considering the available timeslots in the order:
1,3,4, 6,7,9,..2,5,8, ...

By considering the available timeslots in the order:
1,n,3,n-2,...2,5,8, ...

By considering the available timeslots in the order:
1,2,3, ..., n.

By increasingly ordering the timeslots by the number of incoming
instances from the nodes in adjacent timeslots.

By increasingly ordering the timeslots by the number of incoming
edges from the nodes in adjacent timeslots.

By increasingly ordering the timeslots by the number of people
involved in exams in adjacent timeslots.

By increasingly ordering the timeslots by the sum of incoming
instances, edges, and people from the nodes in adjacent timeslots.

By increasingly ordering the timeslots by the number of exams
using each of them.

At random.

The GA was applied to problems from Carter’s set of large exam
timetabling problems at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/.
Table 9.6 gives some information about these problems.

Experiments were carried out using a GA with 5 populations each
of size 25, with migration between them every 10 generations, modified
tournament selection of size 5 and two-point crossover. There were five
runs per problem. Table 9.7 shows the results. In this table the entries

248 EVOLUTIONARY OPTIMIZATION

Max Sz Max
Problem Exams Students Exam [Edges Slots Seats
HECS92 81 2823 634 1363 18
STAF83 139 611 237 1381
YORF83 181 941 175 4706
UTES92 184 2750 482 1430
EARF83 190 1125 232 4793
TRES92 261 4360 407 6131 35 655
LSEF91 381 2726 382 4531
KFUS93 461 5349 1280 5893 20 1955
RYES93 486 11483 943 8872
CARF92 543 18419 1566 20305 40 2000
UTAS92 622 21266 1314 24249 38 2800
CARS91 682 16926 1385 29814 51 1550

Table 9.6. Carter’s real-life exam timetable problems.

in the ‘GA Avg’ (average over the five runs) and ‘GA Best’ columns
show the numbers of near-clashes occurring. In every case there were
no violations of hard constraints and no violations of room capacities.
It is also worth noting that some published results by other methods
show instead the average weighted number of near-clashes per student
in which, for example having adjacent exams attracts a weight of 16,
having a gap of one free period attracts a weight of 8 and so on. These
results are therefore very promising, even though it may in some cases
be possible to reduce the number of slots used by ignoring the minimise-
near-clashes preference. The ‘Best Strategy’ column shows the strategy
used, eg ‘BR(7,1)-BT(0,1) WL-24" means that in phase 1 a Brelaz-like
strategy was used with heuristic 7 for exam-choosing and heuristic 1 for
slot-choosing; in phase 2 a backtracking strategy was used employing
heuristic 0 for exam-choosing and heuristic 1 for slot-choosing; phase 1
ended after placing the top 24% of large exams.

In every case the GA was limited to a maximum of 625 evaluations;
the approach is fast.

It is interesting to observe the variation in best strategies, and in
particular that in five cases there was effectively only a single phase.

6. Discussion and future directions

The above examples have shown that combining simple heuristics in
a suitable sequence can be a good method of tackling complex problems.
EAs prove to be a useful tool for searching for such sequences. So far,

Combining choices of heuristics 249

GA | GA | Best
Problem Slots Seats | Avg. | Best | Strategy

HECS92 21 1250 | 190 | 154 | BR(7,1)-BT(0,1) WL-24
STAF83 15 600 | 932 | 821 | BR(8,2)-BT(3,0) Wa-127

YORF83 21 500 | 764 | 708 | BR(0,2)-FC(2,1) Wa-119
UTES92 12 1250 | 632 | 594 | BR(2,0)-BT(1,1) Wa-16
EARF83 24 700 | 723 | 723 | FC(4,0)

TRES92 27 655 | 599 | 586 | FC(4,1)-BT(3,0) WL-25
LSEF91 21 900 | 247 | 221 | BR(8,0)

KFUS93 24 1955 | 231 | 223 | BR(1,0)-FC(3,0) Wa-97
RYES93 27 2500 | 754 | 671 | BR(8,1)

CARF92 40 2000 | 285 | 285 | BR(2,0)

UTAS92 38 2800 | 936 | 902 | BR(0,0)-BR(6,2) Wa-262
CARS91 51 1550 | 170 | 130 | BR(8,0)

Table 9.7. Results of evolving heuristic choices for timetabling

some limited experimenting by us suggests that combining heuristics
often beats using a single heuristic throughout. This is tested by seeding
the initial population with chromosomes that represent single-heuristic
solutions and observing that evolution kills them off.

However, the specific idea of using a chromosome that encodes the
choice of heuristic for each choice-point seems imperfect. We suspect
that it works as well as it does because in many cases several heuristics
would each have produced the same choice at that decision-point. Some
investigation of the matter with the HGA for job-shop scheduling tends
to confirm this. That does suggest that the approach might break down
if the set of heuristics used was appreciably larger and more diverse; an
encoding that lists the heuristic to use at each choice-point would then
represent a colossal search space, perhaps without much duplication.

There are some other drawbacks to the EA approach which we intend
to address in future work. Although the hyper-heuristic approach is
an improvement on the traditional ’black-box’ EA, in that the solution
gives some information as to how the solution was created in terms of
the heuristics used, it still does not associate those heuristics with the
conditions that caused the heuristics to be invoked. Furthermore, an EA
approach which encodes the choice of heuristic at every decision point is
somewhat clumsy due to the risk of epistasis; each decision potentially
affects all subsequent decisions hence changing one decision can have
a catastrophic effect on the subsequent meaning of the chromosome. A
more useful hyper-heuristic approach would be one which produced rules

250 EVOLUTIONARY OPTIMIZATION

of the form ’under condition X apply heuristic Y’. An obvious candidate
for discovering rules of this form is to use classifier systems, and we
intend to investigate this approach in the future. Another possibility
is to investigate the use of genetic-programming techniques to evolve
ranking functions for each heuristic, that give an indication of when
they should be applied.

Finally, it should be intuitively clear that combining heuristics, at
least in the ways illustrated in this chapter, is unlikely to produce opti-
mal answers to problems. For many problems the cost of finding optima
can be very high, and it is usually necessary to build a lot of problem-
or domain-specific knowledge into the algorithms that aim to find op-
tima. A key point of hyper-heuristic methods is instead to improve
on known heuristics by combining them so that they make up for each
others weaknesses. EAs provide a good framework for doing that.

Acknowledgments

The authors gratefully acknowledge EPSRC support through research
grant GR/N36660.

References

Ausiello, G., Crescenzi, P., Gambosi, G., Kahn, V., Marchetti-Spaccamela,
A., and Protasi, M. (1999). Complexity and Approximation: Combina-
torial Optimisation Problems And Their Approximability Properties.
Springer-Verlag, Berlin.

Brelaz, D. (1979). New methods to colour the vertices of a graph. Com-
munications of the ACM, 22.

Bruns, R. (1993). Direct chromosome representation and advanced ge-
netic algorithms for production scheduling. In Forrest, S., editor, Pro-
ceedings of the Fifth International Conference on Genetic Algorithms,
San Mateo: Morgan Kaufmann, 352.

Bruns, R. (1997). Scheduling. In Bick, T., Fogel, D., and Michalewicz, Z.,
editors, Handbook of Evolutionary Computation, release 97/1, chapter
Part F: Applications of Evolutionary Computing, pages F1.5:1-9. IOP
Publishing Ltd and Oxford University Press.

Burke, E. and Ross, P. (1996). Practice and Theory of Automated Time-
tabling. Lecture Notes in Computer Science 1153. Springer, Berlin.
First International Conference, Aug-Sep 1995.

Carter, M. (1998). Practice and Theory of Automated Timetabling. Lec-
ture Notes in Computer Science. Springer, Berlin. Second Interna-
tional Conference, Aug 1997.

REFERENCES 251

Carter, M. W., Laporte, C., and Lee, S. Y. (1995). Examination timetab-
ling: Algorithmic strategies and applications. Working Paper 94-03,
University of Toronto Dept of Industrial Engineering.

Coffman, E., Garey, M., and D.S.Johnson (1997). Approximation algo-
rithms for bin-packing - a survey. In Hochbaum, D., editor, Approxi-
mation Algorithms for NP-hard Problems, PWS, Boston, 46-93.

Culberson, J. C. (1992). Iterated greedy graph coloring and the difficulty
landscape. Technical Report TR 92-07, Edmonton, Alberta Canada
T6G 2HI1. ftp ftp.cs.ualberta.ca pub/TechReports.

Dorndorf, U. and Pesch, E. (1995). Evolution based learning in a job
shop scheduling environment. Computers and Operations Research,
22(1):25-40.

Hart, E. and Ross, P. (1998). A heuristic combination method for solving
jobshop scheduling problems. In A.E.Eiben, T.Back, M.Schoenauer,
and H-P.schwefel, editors, Parallel Problem Solving From Nature -
PPSN V. Springer-Verlag.

Hart, E. and Ross, P. (2000). A systematic investigation of ga perfor-
mance on job shop scheduling problems. In et. al., S. C., editor, Real-
World Applications of Evolutionary Computing. Springer-Verlag.

Fang, H.-L. (1994). Genetic Algorithms in Timetabling and Scheduling.
PhD thesis, Department of Artificial Intelligence, University of Edin-
burgh.

Fang, H.-L., Ross, P., and Corne, D. (1993). A promising genetic algo-
rithm approach to job-shop scheduling, rescheduling, and open-shop
scheduling problems. In Forrest, S., editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, San Mateo: Morgan
Kaufmann, 375-382.

Hoffman, P. (1998). The Man Who Loved Only Numbers. Fourth Estate,
London.

Johnson, D. (1972). Near-optimal bin packing algorithms. Technical Re-
port TR-109, MIT Computing Laboratory, Cambridge, Mass.

Katz, J. and McCormick, D. (1997). Genetic algorithms and rule-based
systems. Technical Analysis of Stocks and Commodities, pages 46—60.

Katz, J. and McCormick. D. (2000). The Encyclopaedia of Trading Strate-
gies. Irwin Trader’s Edge. McGraw Hill, New York.

Lin, S.-C., Goodman, E., and Punch, W. (1997). A genetic algorithm
approach to dynamic job-shop scheduling problems. In Back, T., ed-
itor, Proceedings of the Seventh International Conference on Genetic
Algorithms, Morgan-Kaufmann, 481-489.

Minton, S., Johnston, M. D., Phillips, A. B., and Laird, P. (1992). Mini-
mizing conflicts: a heuristic repair method for constraint satisifaction
and scheduling problems. Artificial Intelligence, 58:161-205.

252 EVOLUTIONARY OPTIMIZATION

M.Vasquez and D.Whitley (2000). A comparison of genetic algorithms
for the dynamic job-shop scheudling problem. In et. al., D., editor,
Proceedings of the Genetic and Evolutionary Computation Conference
GECCO 2000. Morgan-Kaufmann.

Nakano, R. and Yamada, T. (1991). Conventional genetic algorithms for
job shop problems. In Belew, R. and Booker, L., editors, Proceedings
of the Fourth International Conference on Genetic Algorithms, San
Mateo: Morgan Kaufmann, 474-479.

Norenkov, I. and Goodman, E. (1997). Solving scheduling problems via
evolutionary methods for rule sequence optimization. Second World
Conference on Soft Computing.

Petford, A. and Welsh, D. (1989). A randomised 3-colouring algorithm.
Discrete Mathematics, 74:253-261.

Ross, P., Corne, D., and Hart, E. (1997). Some observations about GA-
based exam timetabling. In Proceedings of the Second Conference on
the Practice and Theory of A utomated Timetabling, Toronto, Canada.

Schaffer, J. and Eshelman, L. (1996). Combinatorial optimisation by ge-
netic algorithms: the value of the genotype/phenotype distinction. In
Goodman, E., Uskov, V., and Punch III, W., editors, EvCA96: Pro-
ceedings of the First International Conference on Evolutionary Com-
putation and its Applications, Moscow. Institute for High-performance
Computer Systems, Russian Academy of Sciences.

Terashima-Marin, H., Ross, P., and Valenzuela-Rendon, M. (1999). Evo-
lution of constraint-satisfaction strategies in examination timetabling.
In Banzhaf, W., Daida, J., Eiben, A., Garzon, M., Honavar, V., Jakiela,
M., and Smith, R., editors, Proceedings of the Genetic and Evolution-
ary Computation Conference: GECCO-99, San Mateo, CA. Morgan
Kaufmann, 635-642.

Vaessens, R., Aarts, E., and Lenstra, J. (1996). Job shop scheduling by
local search. INFORMS Journal of Computing, 8:302-317.

Chapter 10

CONSTRAINED GENETIC ALGORITHMS
AND THEIR APPLICATIONS IN
NONLINEAR CONSTRAINED
OPTIMIZATION *

Benjamin W. Wah and
Yi-Xin Chen

Abstract

1.

This chapter presents a framework that unifies various search mecha-
nisms for solving constrained nonlinear programming (NLP) problems.
These problems are characterized by functions that are not necessarily
differentiable and continuous. Our proposed framework is based on the
first-order necessary and sufficient condition developed for constrained
local minimization in discrete space that shows the equivalence between
discrete-neighborhood saddle points and constrained local minima. To
look for discrete-neighborhood saddle points, we formulate a discrete
constrained NLP in an augmented Lagrangian function and study var-
ious mechanisms for performing ascents of the augmented function in
the original-variable subspace and descents in the Lagrange-multiplier
subspace. Our results show that CSAGA, a combined constrained
simulated annealing and genetic algorithm, performs well when using
crossovers, mutations, and annealing to generate trial points. Finally,
we apply iterative deepening to determine the optimal number of gener-
ations in CSAGA and show that its performance is robust with respect
to changes in population size.

Introduction

Many engineering applications can be formulated as constrained non-
linear programming problems (NLPs). Examples include production
planning, computer integrated manufacturing, chemical control process-

*Research supported by National Aeronautics and Space Administration Contract NAS2-

37143.

254 EVOLUTIONARY OPTIMIZATION

ing, and structure optimization. These applications can be solved by
existing methods if they are specified in well-defined formulae that are
differentiate and continuous. However, only special cases can be solved
when they do not satisfy the required assumptions. For instance, sequen-
tial quadratic programming cannot handle problems whose objective and
constraint functions are not differentiate or whose variables are discrete
or mixed. Since many applications involving optimization may be for-
mulated by non-differentiable functions with discrete or mixed-integer
variables, it is important to develop new methods for handling these
optimization problems, inxxconstrained nonlinear programming

The study of algorithms for solving a disparity of constrained opti-
mization problems is difficult unless the problems can be represented
in a unified way. In this chapter we assume that continuous variables
are first discretized into discrete variables in such a way that the values
of functions using discretized variables approach those of the original
continuous variables. Such an assumption is valid when continuous vari-
ables are represented as floating-point numbers and when the range of
variables is small (say between 1073 and 10%). Intuitively, if discretiza-
tion is fine enough, then solutions found in discretized space are fairly
good approximations to the original solutions. The accuracy of solutions
found in discretized problems has been studied elsewhere (Wu, 2000).

Based on discretization, continuous and mixed-integer constrained
NLPs can be represented as discrete constrained NLPs as follows:'

minimize f(z) (10.1)
subject to ¢(z) <0 x = [z1,...,2,]" is a vector
h{z) =0 of bounded discrete variables.

Here, f(z)is a lower-bounded objective function, g(z) = [¢91(z),... ,
gr(x)]7 is a vector of k inequality constraints, h(z) = [hy(z), -+ , hm(z)]T
is a vector of m equality constraints. Functions f(z), g(z), and h(z)
are not necessarily differentiable and can be either linear or nonlinear,
continuous or discrete, and analytic or procedural. Without loss of gen-
erality, we consider only minimization problems.

Solutions to (10.1) cannot be characterized in ways similar to those
of problems with differentiable functions and continuous variables. In
the latter class of problems, solutions are defined with respect to neigh-
borhoods of open spheres with radius approaching zero asymptotically.
Such a concept does not exist in problems with discrete variables.

'For two vectors v and w of the same number of elements,v < w means that each element
of vis not less than the corresponding element of w. v > w can be defined similarly. 0, when
compared to a vector, stands for a null vector.

Nonlinear Constrained Optimization 255

Let X be the Cartesian product of the discrete domains of all vari-
ables in z. To characterize solutions sought in discrete space, we define
the following concepts on neighborhoods and constrained solutions in
discrete space:

Definition 1. Ny, (x), the discrete neighborhood (Aarts and Korst,
1989) of point € X is a finite user-defined set of points {2’ € X} such
that ' € Ny, (z) <> z € Ny,(z'), and that for any y',3* € X, itis

possible to find a finite sequence of points in X, yl, .-+, 7%, such that
Yyl e Ngn(y) fori=1, -k — 1.
Definition 2. Pointz € X iscalled a constrained local minimum

in discrete neighborhood (CLMy,) if it satisfies two conditions: a) z is
feasible, and b) f(z) < f(z'), for all feasible &’ € Ny, (z).

Definition 3. Point z € X is called a constrained global minimum
in discrete neighborhood (CGMg,) iff a) x is feasible, and b) for every
feasible point ' € X, f(z') > f(z). The set of all CGMy, is Xopt-
According to our definitions, a CG My, must also be a CLMy,.

In a similar way, there are definitions on continuous-neighborhood con-
strained local minima (CLMg,) and constrained global minima (CGMgy,).

We have shown earlier (Wah and Wu, 1999) that the necessary and
sufficient condition for a point to be a CLMy, is that it satisfies the
discrete-neighborhood saddle-point condition (Section 2.1). We have
also extended simulated annealing (SA) (Wah and Wang, 1999) and
greedy search (Wah and Wu, 1999) to look for discrete-neighborhood
saddle points SP;, (Section 2.2). At the same time, new problem-
dependent constraint-handling heuristics have been developed in the
GA community to handle nonlinear constraints (Michalewicz and Schoe-
nauer, 1996) (Section 2.3). Up to now, there is no clear understanding
on how to unify these algorithms into one that can be applied to find
CG My, for a wide range of problems.

Based on our previous work, our goal in this chapter is to develop an
effective framework that unifies SA, GA, and greedy search for finding
CGMy,. In particular, we propose constrained genetic algorithm (CGA)
and combined constrained SA and GA (CSAGA) that look for SPgp,.
We also study algorithms with the optimal average completion time for
findinga CGMyy,.

The algorithms studied in this chapter are all stochastic searches that
probe a search space in a random order, where a probe is a neighboring
point examined by an algorithm, independent of whether it is accepted
or not. Assuming p; to be the probability that an algorithm finds a
CGMjy, in its ** probe and a simplistic assumption that all probes are

256 EVOLUTIONARY OPTIMIZATION

1.0 T

0.8 |- —
0.6 =
Pr(NyP)
04 -

0.2 | -

0 I I I I
0 1000 2000 3000 4000 5000
NyP
a) Pr(NgP) approaches one asymptotically

I 1 I I
7000 -
6000 - 1
NgP
4000 + =
3000 -
| 1 1 |

0 1000 2000 3000 4000 5000
N,P
b) Existence of absolute minimum Nyp: P in Wf:ﬁ%

Figure 10.1. An example showing the application of CSAGA with P = 3 to solve a
discretized version of G1 (Michalewicz and Schoenauer, 1996) (Nop: P & 2000).

independent, the performance of one run of such an algorithm can be
characterized by N, the number of probes made (or CPU time taken),
and Pgr(N), the reachability probability that a CGMyy, is hit in any of
the N probes:
N
Pr(N)=1-T](1-p;), where N >0. (10.2)
j=1

Reachability can be maintained by reporting the best solution found by
the algorithm when it stops.

As an example, Figure 10.la plots Pr(NgP) when CSAGA (see Sec-
tion 3.2) was run under various number of generations Ny and fixed pop-
ulation size P = 3 (where N = NyP). The graph shows that Pr(N,P)
approaches one asymptotically as Ny P is increased.

Nonlinear Constrained Optimization 257

Although it is hard to estimate the value of Pr(/N') when a test prob-
lem is solved by an algorithm, we can always improve the chance of
finding a solution by running the same algorithm multiple times, each
with N probes, from random starting points. Given Pgr(N) for one run
of the algorithm and that all runs are independent, the expected total
number of probes to find a CGMy, is:

> Pr(N)(1— Pr(N)™'N x j =
i=1

N
—. 10.3
Pr(N) (103)

Figure 10.1b plots (10.3) based on Pr(NyP) in Figure 10.1a. In
general, there exists Nop that minimizes (10.3) because Pr(0) = 0,
limp,—o0 PrR(Ng) = 1, #{7\77 is bounded below by ze'ro, and m]\’m — 00
as N — o0o. The curve in Figure 10.1b illustrates this behavior.

Based on the existence of Npt, we present in Section 3.3 search strate-
gies in CGA and in CSAGA that minimize (10.3) in finding a CGMyj,.
Finally, Section 4 compares the performance of our algorithms.

2. Previous Work

In this section, we first summarize the theory of Lagrange multipliers
applied to solve (10.1) and two algorithms developed based on the theory.
We then describe existing work in GA for solving constrained NLPs.

2.1 Theory of Lagrange multipliers for solving
discrete constrained NLPs

Define a discrete equality-constrained NLP as follows (Wah and Wu,
1999; Wu, 2000):

min f(x) x is a vector of bounded (10.4)
x

subject to h(z) =0 discrete variables,

A generalized discrete augmented Lagrangian function of (10.4) is de-
fined as follows (Wah and Wu, 1999):

La(z,X) = f(@) + XTH (h(z)) + 5{|h@)IP, (105)

where H is a non-negative continuous transformation function satisfying
H(y) >0, Hy) = 0iff y = 0, and A = [A1, -+, Am]T is a vector of
Lagrange multipliers.

Function H is easy to design; examples include H(h(z)) = [|h1(z)},-- -,
|hm(@)|]T and H(h(z)) = [max(hi(z),0),- - ,max(hm(z),0)]T. Note

258 EVOLUTIONARY OPTIMIZATION

that these transformations are not used in Lagrange-multiplier methods
in continuous space because they are not differentiable at H(h{z)) = 0.
However, they do not pose problems here because we do not require their
differentiability.

Similar transformations can be used to transform inequality constraint
g;(z) <€ 0 into equivalent equality constraint max(g;(x),0) = 0. Hence,
we only consider problems with equality constraints from here on.

We define a discrete-neighborhood saddle point S Pan(2z*, *) with the
following property:

La(a*,) < La(@*,*) < Ly, \") (10.6)

forall z € Ny, (z*) and all A, \' € R™.. Note that although we use similar
terminologies as in continuous space, SFy, is different from SF,, (sad-
dle point in continuous space) because they are defined using different
neighborhoods.

The concept of SF,, is very important in discrete problems because,
starting from them, we can derive first-order necessary and sufficient
condition for C' LMy, that leads to global minimization procedures. This
is stated formally in the following theorem (Wah and Wu, 1999):

Theorem 1 First-order necessary and sufficient condition on CLMg,

(Wah and Wu, 1999). A point in the discrete search space of (10.4) is
a CLMy, iff it satisfies (10.6) for any A > A*

Theorem 1 is stronger than its continuous counterparts. The first-
order necessary conditions in continuous Lagrange-multiplier theory (Lu-
enberger, 1984) require CLM_, to be regular points and functions to be
differentiable. In contrast, there are no such requirements for C'LMy,.
Further, the first-order conditions in continuous theory (Luenberger,
1984) are only necessary, and second-order sufficient condition must be
checked in order to ensure that a point is actually a CLM,, (CLM in
continuous space). In contrast, the condition in Theorem 1 is necessary
as well as sufficient.

2.2 Existing algorithms for finding SPy,

Since there is a one-to-one correspondence between CG Mg, and S Py,,
it implies that a strategy looking for SPg, with the minimum objective
value will result in CG My,,. We review two methods to look for S Py,.

The first algorithm is the discrete Lagrangian method (DLM) (Wu,
1998). It is an iterative local search that looks for SPy, by updating
the variables in z in order to perform descents of Lg4 in the x subspace,
while occasionally updating the A variables of unsatisfied constraints in

Nonlinear Constrained Optimization 259

1. procedure CSA («, Ny)

2. set initial x «— [z1, + ,@n, A1, -, Ak]T
with random x, A « 0;

3. while stopping condition is not satisfied do

4. generate x' € Ny (x) using G(x,x');

5. accept X’ with probability Ar(x,x’)

6. reduce temperature by T « aT;

7. end_while

8. end_procedure

a) CSA called with schedule N, and rate «
procedure CSA;p
set initial cooling rate & «— ap and Ny — Nay;
set K + number of CSA runs at fixed o
repeat
for i +— 1 to K do call CSA(a, N,); end_for;
increase cooling schedule Ny «— pNy;
until feasible solution has been found and no
better solution in two successive increases of Ny;
8. end_procedure

I e e

b) CSArp: CSA with iterative deepening

Figure 10.2. Constrained simulated annealing algorithm (CSA) and its iterative-
deepening extension

order to perform ascents in the A subspace and to force the violated
constraints into satisfaction. When no new probes can be generated in
both the z and X subspaces, the algorithm has additional mechanisms
to escape from such local traps. It can be shown that the point where
DILM stops is a CLMg, when the number of neighborhood points is
small enough to be enumerated in each descent in the x subspace (Wah
and Wu, 1999; Wu, 2000). However, when the number of neighborhood
points is very large and hill-climbing is used to find the first point with
an improved Lg in each descent, then the point where DLM stops may
be a feasible point but not necessarily a SFyy,.

The second algorithm is the constrained simulated annealing (CSA)
(Wah and Wang, 1999) algorithm shown in Figure 10.2a. It looks for
S Py, by probabilistic descents in the x subspace and by probabilistic
ascents in the A subspace, with an acceptance probability governed by
the Metropolis probability. Similar to DLM, if the neighborhood of every
point is very large and cannot be enumerated, then the point where CSA
stops may only be a feasible point but not necessarily a SPg,.

Using G(x, x’) for generating trial point x’ in Ng,(x), Ap(x,x’) as the
Metropolis acceptance probability, and a logarithmic cooling schedule,

260 EVOLUTIONARY OPTIMIZATION

CSA has been proven to have asymptotic convergence with probability
one to CGMg, (Wah and Wang, 1999). This property is stated in the
following theorem:

Theorem 2 Asymptotic convergence of CSA. The Markov chain mod-
eling CSA converges to a CG My, with probability one.

Theorem 2 extends a similar theorem for SA that proves its asymp-
totic convergence to unconstrained global minima of unconstrained op-
timization problems. By looking for SFy, in the Lagrangian-function
space, Theorem 2 shows the asymptotic convergence of CSA to CG My,
in constrained optimization problems.

Theorem 2 implies that CSA is not a practical algorithm when used
to find CG My, in one run with certainty because CSA will take infinite
time.

In practice, when CSA is run once using a a finite cooling schedule
Ng, it finds a CG My, with reachability probability Pr(N,) < 1. To
increase its success probability, CSA with a finite N, can be run multiple
times from random starting points. Assuming that all the runs are
independent, a CGMpy, can be found in finite average time defined by
(10.3).

We have verified experimentally that the expected time defined in
(10.3) has an absolute minimum at Nyy. (Figure 10.1b illustrates the
existence of Ngp: for CSAGA.) It follows that, in order to minimize
(10.3), CSA should be run multiple times from random starting points
using schedule Npp;.

To find Ny at run time without using problem-dependent informa-
tion, we have proposed to use iterative deepening (Korf, 1985) by start-
ing CSA with a short schedule and by doubling the schedule each time
the current run fails to find a CGMy, (Wah and Chen, 2000). Since the
total overhead in iterative deepening is dominated by that of the last
run, CSArp (CSA with iterative deepening in Figure 10.2b) has a com-
pletion time of the same order of magnitude as that using Ny, when the
last schedule that CSA is run is close to Ny and that this run succeeds.
Figure 10.3 illustrates that the total time incurred by CSA;p is of the
same order as the expected overhead at Nop.

Note that Pr(Nyp) < 1 for one run of CSA at Nop. When CSA
is run with a schedule close to Ny and fails to find a solution, its
cooling schedule will be doubled and overshoots beyond Nys. To reduce
the chance of overshooting into exceedingly long cooling schedules and
to increase the success probability before its schedule reaches Ny, we
have proposed to run CSA multiple times from random starting points
at each schedule in CSArp. Figure 10.2b shows CSA that is run K = 3

Nonlinear Constrained Optimization 261

N,

e 7
PRN.Q) | B Bl B Ei

.. 5sagons

%2
=

i Total time for iterative
i deepening = 31¢

; ; ‘ Optimal time = 12¢
t 2t 4t 8t 16t loga(Na)

Figure 10.8. An application of iterative deepening in CSA;p.

times at each schedule before the schedule is doubled. Our results show
that such a strategy generally requires twice the average completion
time with respect to multiple runs of CSA using Ny, before it finds a
CGMy, (Wah and Chen, 2000).

23 Genetic algorithms for solving constrained
NLP problems

Genetic algorithm (GA) is a general stochastic optimization algorithm
that maintains a population of alternative candidates and that probes
a search space using genetic operators, such as crossovers and muta-
tions, in order to find better candidates. The original GA was devel-
oped for solving unconstrained problems, using a single fitness function
to rank candidates. Recently, many variants of GA have been developed
for solving constrained NLPs. Most of these methods were based on
penalty formulations that use GA to minimize an unconstrained penalty
function F(z), consisting of a sum of the objective and the constraints
weighted by penalties. Similar to CSA, these methods do not require
the differentiability or continuity of functions.

One penalty formulation is the static-penalty formulation in which all
penalties are fixed (Bertsekas, 1982):

Folm,y) = f() + D vilha(@) PP, (10.7)
i=1

where p > 0, and penalty vector v = {v1,7v2,-** ,¥m} is fixed and chosen
to be large enough so that

Folz*,7) < Fplz,y) Yo € X — Xopt and z* € Xy (10.8)

262 EVOLUTIONARY OPTIMIZATION

Based on (10.8), an unconstrained global minimum of (10.7) over z is a
CGMy, to (10.4); hence, it suffices to minimize (10.7) in solving (10.4).
Since both f(z) and |h;(z)| are lower bounded and x takes finite discrete
values, «y always exists and is finite, thereby ensuring the correctness of
the approach. Note that other forms of penalty formulations have also
been studied in the literature.

The major issue of static-penalty methods lies in the difficulty of se-
lecting a suitable 7. If v is much larger than necessary, then the terrain
will be too rugged to be searched effectively by local-search methods. If
it is too small, then feasible solutions to (10.7) may be difficult to find.

Dynamic-penalty methods (Joines and Houck, 1994), on the other
hand, address the difficulties of static-penalty methods by increasing
penalties gradually in the following fitness function:

Fla) = f(z) + (C x 1)* > |hi(z))?, (10.9)

j=1

where ¢ is the generation number, and C, «, and (are constants. In
contrast to static-penalty methods, (C x t)¢, the penalty on infeasible
points, is increased during evolution.

Dynamic-penalty methods do not always guarantee convergence to
CLMy, or CGMg,. For example, consider a problem with two con-
straints hj(z) = 0 and ho(x) = 0. Assuming that a search is stuck at an
infeasible point z’ and that for all z € Ngn(z'), 0 < |ha(z')]| < |h1(z)],
ha(a’)] > [ha(z)] > 0, and |hy(@)|P + |ha(2)P < [ha(@)|P + |ha(z))?,
then the search can never escape from z’ no matter how large (C X t)*
grows.

One way to ensure the convergence of dynamic-penalty methods is to
use a different penalty for each constraint, as in Lagrangian formulation
(10.5). In the previous example, the search can escape from z’ after
assigning a much larger penalty to hy(z’) than that to hi(z’).

There are many other variants of penalty methods, such as annealing
penalties, adaptive penalties (Michalewicz and Schoenauer, 1996) and
self-adapting weights (Eiben and Ruttkay, 1996). In addition, problem-
dependent operators have been studied in the GA community for han-
dling constraints. These include methods based on preserving feasibility
with specialized genetic operators, methods searching along boundaries
of feasible regions, methods based on decoders, repair of infeasible so-
lutions, co-evolutionary methods, and strategic oscillation. However,
most methods require domain-specific knowledge or problem-dependent
genetic operators, and have difficulties in finding feasible regions or in
maintaining feasibility for nonlinear constraints.

Nonlinear Constrained Optimization 263

-

Generate random Insert candidate(s) into list Generate new candidate(s)

initial candidate based on sorting criterion in the A subsubace
with initial A (annealing or deterministic) (probabilistic or greedy)

A loop

start

Generate new candidates
in the x subspace (genetic,

Stopping Update Lagrangian values
of all candidates in list

(annealing or determinisic)

conditions
met?

probabilistic, or greedy)

stop

Figure 10.4. An iterative stochastic procedural framework to look for SPy,.

In general, local minima of penalty functions are only necessary but
not sufficient to be constrained local minima of the original constrained
optimization problems, unless the penalties are chosen properly. Hence,
finding local minima of a penalty function does not necessarily solve the
original constrained optimization problem.

3. A General Framework to look for SP,,

Although there are many methods for solving constrained NLPs, our
survey in the last section shows a lack of a general framework that unifies
these mechanisms. Without such a framework, it is difficult to know
whether different algorithms are actually variations of each other. In
this section we present a framework for solving constrained NLPs that
unifies SA, GA, and greedy searches.

Based on the necessary and sufficient condition in Theorem 1, Figure
104 depicts a stochastic procedure to look for SFy,. The procedure
consists of two loops: the x loop that updates the variables in z in order
to perform descents of Ly in the = subspace, and the A loop that updates
the A variables of unsatisfied constraints for any candidate in the list in
order to perform ascents in the A subspace. The procedure quits when
no new probes can be generated in both the x and A subspaces.

The procedure will not stop until it finds a feasible point because it
will generate new probes in the A subspace when there are unsatisfied
constraints. Further, if the procedure always finds a descent direction
at x by enumerating all points in Nyg,(x), then the point where the
procedure stops must be a feasible local minimum in the z subspace of
Lg4(z,), or equivalently, a CLMgy,.

Both DLM and CSA discussed in Section 2.2 fit into this frame-
work, each maintaining a list of one candidate at any time. DLM entails
greedy searches in the x and A subspaces, deterministic insertions into

264 EVOLUTIONARY OPTIMIZATION

1. procedure CGA(P, Ny)

2 set generation number ¢ — 0 and A(t) « 0;

3 initialize population P(t);

4 repeat /* over multiple generations */

5. evaluate Lg(z, A(t)) for all candidates in P(t);
6 repeat /* over probes in z subspace */

7 y «— GA(select(P(t)));

8. evaluate L4(y, A) and insert into P(t)

9. until sufficient probes in z subspace;

10. A(t) « A(t) ® cH(h, P(t)); /* update A */
11. te—t+1;

12. until (¢t > N,)
13. end_procedure

a) CGA called with population size P
and number of generations N,.

procedure CGArp
set initial number of generations Ny = Noy;
set K = number of CGA runs at fixed Ny;
repeat /* iterative deepening to find CGMy, */
for i «— 1 to K do call CGA(P, Ny) end_for
set Ny — pNy (typically p = 2);
until N, exceeds maximum allowed or
(no better solution has been found in two
successive increases of Ny and N, > p°No
and a feasible solution has been found);
7. end_procedure

OO AW N

b) CGArp: CGA with iterative deepening

Figure 10.5. Constrained GA and its iterative deepening version.

the list of candidates, and deterministic acceptance of candidates until
all constraints are satisfied. On the other hand, CSA generates new
probes randomly in one of the z or A variables, accepts them based on
the Metropolis probability if Ly increases along the z dimension and de-
creases along the A dimension, and stops updating A when all constraints
are satisfied.

In this section, we use genetic operators to generate probes and present
in Section 3.1 CGA and in Section 3.2 CSAGA. Finally, we propose in
Section 3.3 iterative-deepening versions of these algorithms.

31 Constrained genetic algorithm (CGA)

CGA in Figure 10.5a was developed based on the general framework
in Figure 104. Similar to traditional GA, it organizes a search into a
number of generations, each involving a population of candidate points

Nonlinear Constrained Optimization 265

in a search space. However, it searches in the Lg space using genetic op-
erators to generate probes in the z subspace, either greedy or probabilis-
tic mechanisms to generate probes in the A subspace, and deterministic
organization of candidates according to their Ly values.

Lines 2-3 initialize to zero the generation number ¢ and the vector
of Lagrange multipliers A. The initial population P(t) can be either
randomly generated or user provided.

Lines 4 and 12 terminate CGA when the maximum number of allowed
generations is exceeded.

Line 5 evaluates in generation ¢ all candidates in P(t) using Lg(z, A(t))
as the fitness function.

Lines 6-9 explore the = subspace by selecting from P(t) candidates to
reproduce using genetic operators and by inserting the new candidates
generated into P(t) according to their fitness values.

After a number of descents in the x subspace (defined by the number of
probes in Line 9 and the decision box “search in A subspace?” in Figure
10.4), the algorithm switches to searching in the X subspace. Line 10
updates A according to the vector of maximum violations H(h(z), P(t)),
where the maximum violation of a constraint is evaluated over all the
candidates in P(¢). That is,

where h;(x) is the i** constraint function, H is the non-negative trans-
formation defined in (10.5), and c is a step-wise constant controlling how
fast A changes.

Operator @ in Figure 10.5a can be implemented in two ways in order
to generate a new A. Anew A can be generated probabilistically based
a uniform distribution in (%, %], or in a greedy fashion based on a
uniform distribution in (0,cH)]. In addition, we can accept new probes
deterministically by rejecting negative ones, or probabilistically using an
annealing rule. In all cases, a Lagrange multiplier will not be changed if
its corresponding constraint is satisfied.

3.2 Combined Constrained SA and GA
(CSAGA)

Based on the general framework in Figure 10.4, we design CSAGA by
integrating CSA in Figure 10.2a and CGA in Figure 10.5a into a com-
bined procedure. The new procedure differs from the original CSA in
two respects. First, by maintaining multiple candidates in a population,
we need to decide how CSA should be applied to the multiple candi-
dates in a population. Our evaluations show that, instead of running

266 EVOLUTIONARY OPTIMIZATION

1. procedure CSAGA(P, Ny)

2 set t « 0, Tp, 0 < & < 1, and P(¥);

3 repeat /* over multiple generations */

4. for i — 1 to g do /* SA in Lines 5-10 */

5. for j — 1 to P do

6 generate x; from Nay(x;) using G(x;j, x;);
7 accept X; with probability A7 (x;,xj)

8

. end.for
9. set T «— aT; /* set T for the SA part */
10. end_for
11. repeat /* by GA over probes in x subspace */
12. y — GA(select(P(1)));
13. evaluate Lq(y, A) and insert y into P(t);
14. until sufficient number of probes in z subspace;
15. t «— t + q; /* update generation number */

16. until {t > Ng)
17. end_procedure

Figure 10.6. CSAGA: Combined CSA and CGA called with population size P and
N, generations.

CSA corresponding to a candidate from a random starting point, it is
best to run CSA sequentially, using the best solution point found in one
run as the starting point of the next run. Second, we need to determine
the duration of each run of CSA. This is controlled by parameter ¢ that
was set to be 562 after experimental evaluations. The new algorithm
shown in Figure 10.6 uses both SA and GA to generate new probes in
the z subspace.

Line 2 initializes P(0). Unlike CGA, any candidate x = [z1,: -+ , Zp, A1,
o+, M) in P(¢) is defined in the joint 2 and A subspaces. Initially,
can be user-provided or randomly generated, and A is set to zero.

Lines 4-10 perform CSA using g probes on every candidate in the
population. In each probe, we generate probabilistically x} and accept
it based on the Metropolis probability. Experimentally, we set ¢ to be
%"-. As discussed earlier, we use the best point of one run as the starting
point of the next run.

Lines 11-15 start a GA search after the SA part has been completed.
The algorithm searches in the z subspace by generating probes using GA
operators, sorting all candidates according to their fitness values Ly after
each probe is generated. In ordering candidates, since each candidate
has its own vector of Lagrange multipliers, the algorithm first computes
the average value of Lagrange multipliers for each constraint over all
candidates in P(t) and then calculates Ly for each candidate using the
average Lagrange multipliers.

Nonlinear Constrained Optimization 267

Note that CSAGA has difficulties similar to those of CGA in deter-
mining a proper number of candidates to use in its population and the
duration of each run. We address these two issues in the CSAGA;p in
the next subsection.

3.3 CGA and CSAGA with iterative deepening

In this section we present a method to determine the optimal number
of generations in one run of CGA and CSAGA in order to find a CGMy,.
The method is based on the use of iterative deepening (Korf, 1985) that
determines an upper bound on Ny in order to minimize the expected
total overhead in (10.3), where Ny is the number of generations in one
run of CGA.

The number of probes expended in one run of CGA or CSAGA is
N = Ny4P, where P is the population size. For a fixed P, let PR(Ng) =
Pr(PNg) be the reachability probability of finding CGMyy,. From (10.3),
the expected total number of probes using multiple runs of either CGA
or CSAGA and fixed P is:

N___NP__, N
Pr(N) — Pr(N,P) Pr(Ny)

(10.11)

In order to have an optimal number of generations Ny, that mini-

mizes (10.11), E%%_) must have an absolute minimum in (0,00). This
g

condition is true since PR(NQ) of CGA has similar behavior as Pr(Ny)
of CSA. It has been verified based on statistics collected on PR(NQ)
and Ny at various P when CGA and CSAGA are used to solve ten
discretized benchmark problems GI1-G10 (Michalewicz and Schoenauer,
1996). Figure 10.1b illustrates the existence of such an absolute mini-
mum when CSAGA with P = 3 was applied to solve G1.

Similar to the design of C'SArp, we apply iterative deepening to esti-

mate Ny,,,. CGArp in Figure 10.5b uses a set of geometrically increasing
Ny to find a CGMyy:

Ny =p'No, i=0,1,... (10.12)

where Ny is the (small) initial number of generations.

Under each Ny, CGA is run for a maximum of K times but stops
immediately when a feasible solution has been found, when no better
solution has been found in two successive generations, and after the
number of iterations has been increased geometrically at least five times.
These conditions are used to ensure that iterative deepening has been
applied adequately. For iterative deepening to work, p > 1.

268 EVOLUTIONARY OPTIMIZATION

Let ISR(Ngi) be the reachability probability of one run of CGA under
Ny, generations, Bgy(f') be the expected total number of probes taken
by CGA with Ny, to find a CGMgn, and Brp(f') be the expected total
number of probes taken by CGArp in Figure 10.5b to find a solution of
quality f’ starting from Np generations. According to (10.11),

N
et (10.13)
PR(Ngopt)

The following theorem shows the sufficient conditions in order for
Bip(f') = O(Bopi(f"))-
Theorem 3 Optimality of CGArp and CSAGAp.
Bip(f') = O(Bopt(f)) #f

a)]SR(O) = 0, JSR(Ng) is monotonically non-decreasing for Ny in
(0,00); and limpy, c0 Pr(N,) < 1;

b) (1= Pr(Ng,p))<p < 1.

Bopt(f') = P

The proof is not shown due to space limitations.

Typically, p = 2, and Pr(Ng,,,) > 0.25 in all the benchmarks tested.
Substituting these values into condition (b) in Theorem 3 yields K > 2.4.
In our experiments, we have used K = 3. Since CGA is run a maximum
of three times under each Ng, By (f’) is of the same order of magnitude
as one run of CGA with Ny, ,.

The only remaining issue left in the design of CGA;p and CSAGA[p
is in choosing a suitable population size P in each generation.

In designing CGArp, we found that the optimal P ranges from 4 to
40 and is difficult to determine a priori. Although it is possible to choose
a suitable P dynamically, we do not present the algorithm here due to
space limitations and because it performs worse than CSAGAp.

In selecting P for CSAGArp, we note in the design of CSAsp in
Figure 10.2b that K = 3 parallel runs are made at each cooling schedule
in order to increase the success probability of finding a solution. For this
reason, we set P = K = 3 in our experiments. Our experimental results
in the next section show that, although the optimal P may be slightly
different from 3, the corresponding expected overhead to find a CG My,
differs very little from that when a constant P is used.

4. Experimental Results

We present our experimental results in evaluating CSA;p, CGArp
and CSAGAp on discrete constrained NLPs. Based on the framework

Nonlinear Constrained Optimization 269

in Figure 104, we first determine the best combination of strategies to
use in generating probes and in organizing candidates. Using the best
combination of strategies, we then show experimental results on some
constrained NLPs.

Due to a lack of large-scale discrete benchmarks, we derive our bench-
marks from two sets of continuous benchmarks: Problem G1-G10 (Micha-
lewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999) and Floudas
and Pardalos’ Problems (Floudas and Pardalos, 1990).

4.1 Implementation Details

In theory, algorithms derived from the framework, such as C S A,
CGA, and CSAGA, will look for SFPy,. In practice, however, it is im-
portant to choose appropriate neighborhoods and generate proper trial
points in z and A subspaces in order to solve constrained NLPs efficiently.

An important component of these methods is the frequency at which
A is updated. Like in CSA (Wah and Wang, 1999), we have set exper-
imentally in CGA and CSAGA the ratio of generating trial points in
z and A subspaces from the current point to be 20n to m., where n is
the number of variables and m is the number of constraints. This ratio
means that x is updated more often than A.

In generating trial points in the z subspace, we have used a dynam-
ically controlled neighborhood size in the SA part (Wah and Wang,
1999) based on the 1:1 ratio rule (Corana et al., 1987), whereas in the
GA part, we have used the seven operators in Genocop III (Michalewicz
and Nazhiyath, 1995) and L4 as our fitness function. In implementing
CSArp, CGArp and CSAGAp, we have used the default parameters
of CSA (Wah and Wang, 1999) in the SA part and those of Genocop
III (Michalewicz and Nazhiyath, 1995) in the GA part.

The generation of trial point X' in the A subspace is done by the
following rule:

)\;. =X +71 ¢ where j =1,--- ,m. (10.14)

Here, r; is randomly generated in [—1/2, +1/2] if we choose to generate
A probabilistically, and is randomly generated in [0, 1] if we choose to
generate probes in Ain a greedy fashion.

We adjust ¢ adaptively according to the degree of constraint viola-
tions, where

¢ =w® H(x) = [wiHi(x), waHa(z), - , wnHm(x)], (10.15)

® represents vector product, and H is the vector of maximum violations
defined in (10.10). When H;(z) is satisfied, A; does not need to be

270 EVOLUTIONARY OPTIMIZATION

Table 10.1. Timing results on evaluating various combinations of strategies in
CSAip, CGA;p and CSAGA;p with P = 3 to find solutions that deviate by 1%
and 10% from the best-known solution of a discretized version of G2. All CPU times
in seconds were averaged over 10 runs and were collected on a Pentinum III 500-MHz
computer with Solaris 7. ’—’ means that no solution with desired quality can be

found.

Probe Generation Strategy| Insertion [[Sol. 1% off CGMy,[Sol. 10% off CG My,

A subspace |« subspace Strategy |[CSACGACSAGA|CSACGA CSAGA

probabilistic| probabilistic | annealing [/6.91 23.99 4.89 [1.35 -— 1.03

probabilistic| probabilistic [deterministic||9.02 — 6.93 |1.35 2.78 1.03

probabilistic| deterministic | annealing — 18.76 - 89.21 2.40 -

probabilistic| deterministic |[deterministic|| — 16.73 - - 218 -
greedy probabilistic | annealing ||7.02 — 7.75 |1.36 — 0.90
greedy | probabilistic [deterministic||7.02 — 775 |1.36 -— 0.90
greedy |deterministic | annealing — 25.50 — 82.24 1.90 -
greedy | deterministic |deterministic|| — 25.50 - 82.24 1.90 -

updated; hence, ¢; = 0. In contrast, when a constraint is not satisfied,
we adjust ¢; by modifying w; according to how fast H;(x) is changing:

w; = { if Hi(z) > 0T

if Hi(z) <nT

where T is the temperature, and 79 = 1.25, m;=0.8, o = 1.0, and
71 = 0.01 were chosen experimentally. When H;(x) is reduced too
quickly (z.e., Hi(z) < nT), Hi(z) is over-weighted, leading to possi-
bly poor objective values or difficulty in satisfying other under-weighted
constraints. Hence, we reduce A;’s neighborhood. In contrast, if H;(z) is
reduced too slowly (i.e., Hi(z) > 10T"), we enlarge A;’s neighborhood in
order to improve its chance of satisfaction. Note that w; is adjusted using
T as a reference because constraint violations are expected to decrease
when T decreases.

In addition, for iterative deepening to work, we have set the following
parameters: p =2, K = 3, Ng = 10-n,, and Npyae = 1.0 x 108n,, where
ny is the number of variables, and Ny and Ny, are, respectively, initial
and maximum number of probes.

Mo wW;

T (10.16)

4.2

Due to a lack of large-scale discrete benchmarks, we derive our bench-
marks from two sets of continuous benchmarks: Problem G1-G10 (Micha-
lewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999) and Floudas
and Pardalos’ Problems (Floudas and Pardalos, 1990).

In generating a discrete constrained NLP, we discretize continuous
variables in the original continuous constrained NLP into discrete vari-

Evaluation Results

Nonlinear Constrained Optimization 271

ables as follows. In discretizing continuous variable z; in range [l;, u;],
where /; and u; are lower and upper bounds of z;, respectively, we force
z; to take values from the set:

{ai+9i;_aij)j_—_0,1,.--,s} ifb; —a; <1
{o+ 1, 5= 0L, [(bi—a)s]} ifbi—ai> 1,

A = (10.17)

where s = 1.0 x 107.

Table 10.1 shows the results of evaluating various combinations of
strategies in CSArp, CGArp, and CSAGA[p on a discretized version of
G2 (Michalewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999).
We show the average time of 10 runs for each combination in order to
reach two solution quality levels (1% or 10% worse than CGMy,, as-
suming the value of CGMy, is known). Evaluation results on other
benchmark problems are similar and are not shown due to space limita-
tions.

Our results show that CGAjp is usually less efficient than CSA;p
or CSAGAp. Further, CSA;p or CSAGA[p has better performance
when probes generated in the z subspace are accepted by annealing
rather than by deterministic rules (the former prevents a search from
getting stuck in local minima or infeasible points). On the other hand,
there is little difference in performance when new probes generated in the
A subspace are accepted by probabilistic or by greedy rules and when new
candidates are inserted according to annealing or deterministic rules. In
short, generating probes in the z and A subspaces probabilistically and
inserting candidates in both the = and A subspaces by annealing rules
leads to good and stable performance. For this reason, we use this
combination of strategies in our experiments.

We next test our algorithms on ten constrained NLPs G1-G10 (Micha-
lewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999). These
problems have objective functions of various types (linear, quadratic,
cubic, polynomial, and nonlinear) and constraints of linear inequalities,
nonlinear equalities, and nonlinear inequalities. The number of variables
is up to 20, and that of constraints, including simple bounds, is up to
42. The ratio of feasible space with respect to the whole search space
varies from 0% to almost 100%, and the topologies of feasible regions are
quite different. These problems were originally designed to be solved by
evolutionary algorithms (EAs) in which constraint handling techniques
were tuned for each problem in order to get good results. Examples
of such techniques include keeping a search within feasible regions with
specific genetic operators and dynamic and adaptive penalty methods.

272 EVOLUTIONARY OPTIMIZATION

Table 10.2. Results on CSArp, CGArp and CSAGA;p in finding the best-known
solution f* for 10 discretized constrained NLPs and their corresponding results found
by EA. (S.T. stands for strategic oscillation, H.M. for homomorphous mappings, and
D.P. for dynamic penalty. Brp(f*), the CPU time in seconds to find the best-known
solution f*, were averaged over 10 runs and were collected on a Pentinum 111 500-MHz
computer with Solaris 7. The best B;p(f*) for each problem is boxed.)

Prob.| Best EAs CSArp CGA[p CSAGA[p
ID | Sol. f* || Best f Method |B;p (f7)|Popt Bip(f7)|P Bip(f)[Popt Bin(f*)
Gl -15 -15 Genocop| 1.65 40 549 |3 1.64 2 1.31
G2 [-0.80362|(0.803553 S.T. | 7.28 |30 311.98 |3 [518]| 3 [5.18
G3| 10 1.0 ST. | 107 |30 1417 |3 [089 || 3 [0.89
G4 |-30665.5||-30664.5 H.M. 5 395 |3 095 [3 095
G5 | 42219 ||5126.498 D.P. | 288 |30 689 |3 27 | 2 [2.08
G6 |-6961.81|(-6961.81 Genocop| 0.99 4 7.62 |13 091 2 0.73

3 4

3 4

3 3

3 3

G7 |24.3062|| 2462 HM. | 651 |30 31.60 4.60 4.07
G8 |0.095825||0.095825 H.M. 0.11 30 0.31 0.13 0.10
G9 | 680.63 || 680.64 Genocop| 0.74 |30 5.67 [0.57 | 0.57
G10|7049.33 || 71479 HM. [[3.20]| 30 82.32 3.36 3.36

Table 10.2 compares the performance of CSA;p, CGArp, and CSAGAIp
with respect to Byp(f*), the expected total CPU time of multiple runs
until a solution of value f* is found. The first two columns show the prob-
lem IDs and the corresponding known f*. The next two columns show
the best solutions obtained by EAs and the specific constraint handling
techniques used to generate the solutions. Since all CSArp, CGArp
and CSAGA;p can find a CGMyy, in all 10 runs, we compare their per-
formance with respect to 7, the average total overhead of multiple runs
until a CG My, is found. The fifth and sixth columns show, respectively,
the average time and number of Lg(z, A} function evaluations CSAjrp
takes to find f*. The next two columns show the performance of CGArp
with respect to Py, the optimal population size found by enumeration,
and the average time to find f*. These results show that CGAjp is
not competitive as compared to CSArp, even when Ppp is used. The
results on including additional steps in CGArp to select a suitable P at
run time are worse and are not shown due to space limitations. Finally,
the last five columns show the performance of CSAGArp. The first
three present the average times and number of Lg(x, A) evaluations us-
ing a constant P, whereas the last two show the average times using Ppp¢
found by enumeration. These results show little improvements in using
Pypt. Further, CSAGAp has between 9% and 38% in improvement in
Brp(f*), when compared to that of CSAjp, for the 10 problems except
for G4 and G10.

Nonlinear Constrained Optimization 273

Table 10.3. Results on CSA;p and CSAGA;p with P = 3 in solving selected
Floudas and Pardalos’ discretized constrained NLP benchmarks (with more than
ny = 10 variables). Since Problem 5.x and 7.x are especially large and difficult and
a search can rarely reach their true CG My, we consider a CG My, found when the
solution quality is within 10% of the true CGMy,,. All CPU times in seconds were
averaged over 10 runs and were collected on a Pentium-III 500-MHz computer with
Solaris 7.

Problem f(z) CSAp CSAGAp

ID Best f* | n, Bip(f*) Bip(f*)
2.7.1(min) -394.75 | 20 35.11 sec. 14.86 sec.
2.7.2(min) -884.75 | 20 53.92 sec. 15.54 sec.

2.7.3(min) -8695.0 | 20 34.22 sec. 22.52 sec.
2.7.4(min) -754.75 | 20 36.70 sec. 16.20 sec.
2.7.5(min) -4150.4 [20 89.15 sec. 23.46 sec.
5.2(min) 1.567 46 || 3168.29 sec. | | 408.69 sec.
5.4(min) 1.86 32 || 2629.52 sec. | | 100.66 sec.
7.2(min) 1.0 16 824.45 sec. | | 368.72 sec.

7.3(min) 1.0 27 || 2323.44 sec. || 1785.14 sec.
7.4(min) 1.0 38 951.33 sec. | |487.13 sec.

Comparing CGArp and CSAGA[p with EA, we see that EA was only
able to find f* in three of the ten problems, despite extensive tuning and
using problem-specific heuristics, whereas both CGArp and CSAGA;p
can find f* for all these problems without any problem-dependent strate-
gies. It is not possible to report the timing results of EA because the
results are the best among many runs after extensive tuning.

Finally, Table 103 shows the results on selected discretized Floudas
and Pardalos’ benchmarks (Floudas and Pardalos, 1990) that have more
than 10 variables and that have many equality or inequality constraints.
The first three columns show the problem IDs, the known f*, and the
number of variables (n,) in each. The last two columns compare Brp(f*)
of CSA;p and CSAGA[p with fixed P = 3. They show that CSAGAp
is consistently faster than CSArp (between 1.3 and 26.3 times), espe-
cially for large problems. This is attributed to the fact that GA main-
tains more diversity of candidates by keeping a population, thereby al-
lowing competition among the candidates and leading SA to explore
more promising regions.

5. Conclusions

In this chapter we have presented new algorithms to look for discrete-
neighborhood saddle points in discrete Lagrangian space of constrained

274 EVOLUTIONARY OPTIMIZATION

optimization problems. Our results show that genetic algorithms, when
combined with simulated annealing, are effective in locating saddle points.
Future developments will focus on better ways to select appropriate
heuristics in probe generation, including search direction control and
neighborhood size control, at run time.

References

Aarts, E. and Korst, J. (1989) Simulated Annealing and Boltzmann Ma-
chines. J. Wiley and Sons.

Bertsekas, D. P. (1982) Constrained Optimization and Lagrange Multi-
plier Methods. Academic Press.

Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987) Minimizing
multimodal functions of continuous variables with the simulated an-
nealing algorithm. ACM Trans. on Mathematical Software, 13(3):262—
280.

Eiben, A. E. and Ruttkay, Zs. (1996) Self-adaptivity for constraint sat-
isfaction: Learning penalty functions. Proceedings of the 3rd IEEE
Conference on Evolutionary Computation, 258-261.

Floudas, C. A. and Pardalos, P. M. (1990) A Collection of Test Prob-
lems for Constrained Global Optimization Algorithms, volume 455 of
Lecture Notes in Computer Science. Springer-Verlag.

Joines, J. and Houck, C. (1994) On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems with
gas. Proceedings of the First IEEE International Conference on Evo-
lutionary Computation, 579-584.

Korf, R. E. (1985) Depth-first iterative deepening: An optimal admissible
tree search. Artificial Intelligence, 27:97-1009.

Koziel, S. and Michalewicz, Z. (1999) Evolutionary algorithms, homo-
morphous mappings, and constrained parameter optimization. Evolu-
tionary Computation, 7(1):19-44.

Luenberger, D. G. (1984) Linear and Nonlinear Programming. Addison-
Wesley Publishing Company, Reading, MA.

Michalewicz, Z. and Nazhiyath, G. (1995) Genocop III: A co-evolutionary
algorithm for numerical optimization problems with nonlinear con-
straints. Proceedings of IEEE International Conference on Evolution-
ary Computation, 2:647-651.

Michalewicz, Z. and Schoenauer, M. (1996) Evolutionary algorithms for
constrained parameter optimization problems. Evolutionary Compu-
tation, 4(1):1-32.

REFERENCES 275

Wah, B. W. and Chen, Y. X. (2000) Optimal anytime constrained simu-
lated annealing for constrained global optimization. Sixth Int’l Conf.
on Principles and Practice of Constraint Programming.

Wah, B. W. and Wang, T. (1999) Simulated annealing with asymptotic
convergence for nonlinear constrained global optimization. Principles
and Practice of Constraint Programming, 461-475.

Wah, B. W. and Wu, Z. (1999) The theory of discrete Lagrange multi-
pliers for nonlinear discrete optimization. Principles and Practice of
Constraint Programming, 28—42.

Wu, Z. (1998) Discrete Lagrangian Methods for Solving Nonlinear Dis-
crete Constrained Optimization Problems. M.Sc. Thesis, Dept. of Com-
puter Science, Univ. of Illinois, Urbana, IL.

Wu, Z. (2000) The Theory and Applications of Nonlinear Constrained
Optimization using Lagrange Multipliers. Ph.D. Thesis, Dept. of Com-
puter Science, Univ. of Illinois, Urbana, IL.

This page intentionally left blank

\%

PARAMETER SELECTION IN EAS

This page intentionally left blank

Chapter 11

PARAMETER SELECTION

Zbigniew Michalewicz,
Agoston E. Eiben and
Robert Hinterding

Abstract The issue of parameter selection in an evolutionary algorithm is one
of the most important elements in building a successful application.
In this chapter we revise the terminology connected with parameter
selection and control and discuss a classification of various methods
which have been studied by the evolutionary computation community
in recent years.

1. Introduction

The two major steps in applying any heuristic search algorithm to a
particular problem are the specification of the representation and the
evaluation (fitness) function. These two items form the bridge between
the original problem context and the problem-solving framework. When
defining an evolutionary algorithm (EA) one needs to choose its com-
ponents, such as variation operators (mutation and recombination) that
suit the representation, selection mechanisms for selecting parents and
survivors, and an initial population. Each of these components may have
parameters, for instance: the probability of mutation, the tournament
size of selection, or the population size. The values of these parameters
greatly determine whether the algorithm will find a near-optimum solu-
tion, and whether it will find such a solution efficiently. Choosing the
right parameter values, however, is a time-consuming task and consid-
erable effort has gone into developing good heuristics for it.

Globally, we distinguish two major forms of setting parameter values:
parameter tuning and parameter control. By parameter tuning we mean
the commonly practised approach that amounts to finding good values
for the parameters before the run of the algorithm and then running
the algorithm using these values, which remain fixed during the run. In

280 EVOLUTIONARY OPTIMIZATION

Section 2 we give arguments that any static set of parameters, having the
values fixed during an EA run, seems to be inappropriate. Parameter
control forms an alternative, as it amounts to starting a run with initial
parameter values which are changed during the run.

In this chapter (which is based on our earlier article (Eiben et al.,
1999)) we provide a comprehensive discussion of parameter control and
categorize different ways of performing it. The classification is based on
two aspects: how the mechanism of change works, and what component
of the EA is effected by the mechanism. Such a classification can be use-
ful to the evolutionary computation community, since many researchers
interpret terms like “adaptation” or “self-adaptation” differently, which
can be confusing. The framework proposed in (Eiben et al., 1999) was
intended to eliminate ambiguities in the terminology.

Some other classification schemes were proposed, e.g., (Angeline, 1995;
Hinterding et al., 1997; Smith and Fogarty, 1997), that use other divi-
sion criteria, resulting in different classification schemes. The classifi-
cation of Angeline (1995) is based on levels of adaptation and type of
update rules. In particular, three levels of adaptation: population-level,
individual-level, and component—level1 are considered, together with two
types of update mechanisms: absolute and empirical rules. Absolute
rules are predetermined and specify how modifications should be made.
On the other hand, empirical update rules modify parameter values by
competition among them (self-adaptation). Angeline’s framework con-
siders an EA as a whole, without dividing attention to its different com-
ponents (e.g., mutation, recombination, selection, etc). The classifica-
tion proposed by Hinterding, Michalewicz, and Eiben (1997) extends
that of (Angeline, 1995) by considering an additional level of adapta-
tion (environment-level), and makes a more detailed division of types
of update mechanisms, dividing them into deterministic, adaptive, and
self-adaptive categories. Here again, no attention is payed to what parts
of an EA are adapted. The classification of Smith and Fogarty (Smith
and Fogarty, 1997; Smith, 1997) is probably the most comprehensive. It
is based on three division criteria: what is being adapted, the scope of
the adaptation, and the basis for change. The last criterion is further di-
vided into two categories: the evidence the change is based upon and the
rule/algorithm that executes the change. Moreover, there are two types
of rule/algorithm: uncoupled/absolute and tightly-coupled/empirical,
the latter one coinciding with self-adaptation.

'Notice, that we use the term ‘component’ differently from (Angeline, 1995) where Angeline
denotes subindividual structures with it, while we refer to parts of an EA, such as operators
(mutation, recombination), selection, fitness function, etc.

Parameter Selection 281

The classification scheme discussed here is based on the type of update
mechanisms and the EA component that is adapted, as basic division
criteria. This classification addresses the key issues of parameter control
without getting lost in details (this aspect is discussed in more detail in
section 4).

This chapter is organized as follows. The next section discusses pa-
rameter tuning and parameter control. Section 3 presents an example
which provides some basic intuitions on parameter control. Section 4 de-
velops a classification of control techniques in evolutionary algorithms,
whereas Section 5 discusses briefly various techniques.

2. Parameter tuning vs. parameter control

During the 1980s, a standard genetic algorithm (GA) based on bit-
representation, one-point crossover, bit-flip mutation and roulette wheel
selection (with or without elitism) was widely applied. Algorithm design
was thus limited to choosing the so-called control parameters, or strategy
parametersz, such as mutation rate, crossover rate, and population size.
Many researchers based their choices on tuning the control parameters
“by hand”, that is experimenting with different values and selecting the
ones that gave the best results. Later, they reported their results of
applying a particular EA to a particular problem, paraphrasing here:

...for these experiments, we have used the following parameters: popu-
lation size of 100, probability of crossover equal to 0.85, etc.

without much justification of the choice made.

Two main approaches were tried to improve GA design in the past.
First, De Jong (1975) put a considerable effort into finding parameter
values (for a traditional GA), which were good for a number of numeric
test problems. He determined (experimentally) recommended values for
the probabilities of single-point crossover and bit mutation. His conclu-
sions were that the following parameters give reasonable performance
for his test functions (for new problems these values may not be very
good):

population size of 50

probability of crossover equal to 0.6
probability of mutation equal to 0.001
generation gap of 100%

scaling window: n = co

selection strategy: elitist.

Grefenstette (1986), on the other hand, used a GA as a meta-algorithm
to optimize values for the same parameters for both on-line and off-line

sz ‘control parameters’ or ‘strategy parameters’ we mean the parameters of the EA, not
those of the problem.

282 EVOLUTIONARY OPTIMIZATION

performance3 of the algorithm. The best set of parameters to optimize
the on-line (off-line) performance of the GA were (the values to optimize
the off-line performance are given in parenthesis):

population size of 30 (80)

probability of crossover equal to 0.95 (0.45)
probability of mutation equal to 0.01 (0.01)
generation gap of 100% (90%)

scaling window: n=1 (n =1)

selection strategy: elitist (non-elitist).

Note that in both of these approaches, an attempt was made to find
the optimal and general set of parameters; in this context, the word
‘general’ means that the recommended values can be applied to a wide
range of optimization problems. Formerly, genetic algorithms were seen
as robust problem solvers that exhibit approximately the same perfor-
mance over a wide range of problems (Goldberg, 1989), pp. 6. The con-
temporary view on EAs, however, acknowledges that specific problems
(problem types) require specific EA setups for satisfactory performance
(Béack et al., 1997). Thus, the scope of ‘optimal’ parameter settings is
necessarily narrow. Any quest for generally (near-)optimal parameter
settings is lost a priori (Wolpert and Macready, 1997). This stresses the
need for efficient techniques that help finding good parameter settings
for a given problem, in other words, the need for good parameter tuning
methods.

As an alternative to tuning parameters before running the algorithm,
controlling them during a run was realised quite early (e.g., mutation
step sizes in the evolution strategy (ES) community). Analysis of the
simple corridor and sphere problems in large dimensions led to Rechen-
berg’s 1/5 success rule (see section 3.1), where feedback was used to con-
trol the mutation step size (Rechenberg, 1973). Later, self-adaptation
of mutation was used, where the mutation step size and the preferred
direction of mutation were controlled without any direct feedback. For
certain types of problems, self-adaptive mutation was very successful
and its use spread to other branches of evolutionary computation (EC).

As mentioned earlier, parameter tuning by hand is a common prac-
tice in evolutionary computation. Typically one parameter is tuned at
a time, which may cause some sub-optimal choices, since parameters of-
ten interact in a complex way. Simultaneous tuning of more parameters,
however, leads to an enormous amount of experiments. The technical

*These measures were defined originally by De Jong (De Jong, 1975); the intuition is that
on-line performance is based on monitoring the best solution in each generation, while off-line
performance takes all solutions in the population into account.

Parameter Selection 283

drawbacks to parameter tuning based on experimentation can be sum-
marized as follows:

w Parameters are not independent, but trying all different combina-
tions systematically is practically impossible.

® The process of parameter tuning is time consuming, even if param-
eters are optimized one by one, regardless to their interactions.

m For a given problem the selected parameter values are not necessar-
ily optimal, even if the effort made for setting them was significant.

Other options for designing a good set of static parameters for an
evolutionary method to solve a particular problem include “parameter
setting by analogy” and the use of theoretical analysis. Parameter set-
ting by analogy amounts to the use of parameter settings that have
been proved successful for “similar” problems. However, it is not clear
whether similarity between problems as perceived by the user implies
that the optimal set of EA parameters is also similar. As for the the-
oretical approach, the complexities of evolutionary processes and char-
acteristics of interesting problems allow theoretical analysis only after
significant simplifications in either the algorithm or the problem model.
Therefore, the practical value of the current theoretical results on pa-
rameter settings is unclear. There are some theoretical investigations
on the optimal population size (Goldberg, 1989; Thierens, 1996; Harik
et al,, 1997; Goldberg et al., 1992) or optimal operator probabilities
(Goldberg et al., 1991; Theirens and Goldberg, 1991; Back, 1993; Schaf-
fer and Morishima, 1987), however, these results were based on simple
function optimization problems and their applicability for other types of
problems is limited.

A general drawback of the parameter tuning approach, regardless of
how the parameters are tuned, is based on the observation that a run of
an EA is an intrinsically dynamic, adaptive process. The use of rigid pa-
rameters that do not change their values is thus in contrast to this spirit.
Additionally, it is intuitively obvious that different values of parameters
might be optimal at different stages of the evolutionary process (Davis,
1989; Syswerda, 1991; Bick, 1992; Bick, 1992; Back, 1993; Hesser and
Minner, 1991; Soule and Foster, 1997). For instance, large mutation
steps can be good in the early generations helping the exploration of the
search space and small mutation steps might be needed in the late gen-
erations to help fine tuning the sub-optimal chromosomes. This implies
that the use of static parameters itself can lead to inferior algorithm
performance. The straightforward way to treat this problem is by using
parameters that may change over time, that is, by replacing a parame-

284 EVOLUTIONARY OPTIMIZATION

ter p by afunction p(t), where ¢ is the generation counter. However, as
indicated earlier, the problem of finding optimal static parameters for
a particular problem can be quite difficult, and the optimal values may
depend on many other factors (like the applied recombination operator,
the selection mechanism, etc). Hence designing an optimal function p(t)
may be even more difficult. Another possible drawback to this approach
is that the parameter value p(t) changes are caused by a deterministic
rule triggered by the progress of time ¢, without taking any notion of the
actual progress in solving the problem, i.e., without taking into account
the current state of the search. Yet researchers have improved their evo-
lutionary algorithms, i.e., they improved the quality of results returned
by their algorithms while working on particular problems, by using such
simple deterministic rules. This can be explained simply by superiority
of changing parameter values: suboptimal choice of p(t) often leads to
better results than a suboptimal choice of p.

To this end, recall that finding good parameter values for an evolu-
tionary algorithm is a poorly structured, ill-defined, complex problem.
But on this kind of problem, EAs are often considered to perform better
than other methods! It is thus seemingly natural to use an evolutionary
algorithm not only for finding solutions to a problem, but also for tuning
the (same) algorithm to the particular problem. Technically speaking,
this amounts to modifying the values of parameters during the run of the
algorithm by taking the actual search process into account. Basically,
there are two ways to do this. Either one can use some heuristic rule
which takes feedback from the current state of the search and modifies
the parameter values accordingly, or incorporate parameters into the
chromosomes, thereby making them subject to evolution. The first op-
tion, using a heuristic feedback mechanism, allows one to base changes
on triggers different from elapsing time, such as population diversity
measures, relative improvements, absolute solution quality, etc. The
second option, incorporating parameters into the chromosomes, leaves
changes entirely based on the evolution mechanism. In particular, nat-
ural selection acting on solutions (chromosomes) will drive changes in
parameter values associated with these solutions. In the following we
discuss these options illustrated by an example.

3. An example
Let us assume we deal with a numerical optimization problem:
optimize f(x) = f(z1,...,2n),
subject to some inequality and equality constraints:

g(x)<0@E=1,....,¢) and hy(x) =0 (j=q+ 1,...,m),

Parameter Selection 285

and bounds l; £ ; £ u; for 1 <4 < n, defining the domain of each

variable.

For such a numerical optimization problem we may consider an evolu-
tionary algorithm based on a floating-point representation, where each
individual x in the population is represented as a vector of floating-point
numbers

X={Z1,...,Zn).

3.1 Changing the mutation step size

Let us assume that we use Gaussian mutation together with arithmeti-
cal crossover to produce offspring for the next generation. A Gaussian
mutation operator requires two parameters: the mean, which is often set
to zero, and the standard deviation ¢, which can be interpreted as the
mutation step size. Mutations then are realized by replacing components
of the vector X by

zi = z; + N(0, o),

where N(0, o) isa random Gaussian number with mean zero and stan-
dard deviation ¢. The simplest method to specify the mutation mech-
anism is to use the same ¢ for all vectors in the population, for all
variables of each vector, and for the whole evolutionary process, for in-
stance, z} = z;+N(0,1). As indicated in Section 2, it might be beneficial
to vary the mutation step size.* We shall discuss several possibilities in

turn.

First, we can replace the static parameter ¢ by a dynamic parameter,
i.e., afunction o(t). This function can be defined by some heuristic rule
assigning different values depending on the number of generations. For
example, the mutation step size may be defined as:

o(t) =1-09. %,

where t is the current generation number varying from 0 to 7, which
is the maximum generation number. Here, the mutation step size o (t)
(used for all vectors in the population and for all variables of each vector)
will decrease slowly from 1 at the beginning of the run (¢ = 0) to 0.1 as
the number of generations ¢ approaches 7. Such decreases may assist the
fine-tuning capabilities of the algorithm. In this approach, the value of
the given parameter changes according to a fully deterministic scheme.
The user thus has full control of the parameter and its value at a given
time ¢ is completely determined and predictable.

Second, it is possible to incorporate feedback from the search process,
still using the same ¢ for all for vectors in the population and for all vari-
ables of each vector. A well-known example of this type of parameter

“There are even formal arguments supporting this view in specific cases, e.g., (Back, 1992;
Biack, 1992; Bick, 1993; Hesser and Ménner, 1991).

286 EVOLUTIONARY OPTIMIZATION

adaptation is Rechenberg’s ‘1/5 success rule’ in (1+1)-evolution strate-
gies (Rechenberg, 1973). This rule states that the ratio of successful
mutations® to all mutations should be 1/5, hence if the ratio is greater
than 1/5 then the step size should be increased, and if the ratio is less
than 1/5, the step size should be decreased:

if (¢ mod n = 0) then
a(t—n)/e, if ps > 1/5

o(t) =4 o(t—n)-c, if p, <1/5
a(t —n), if ps=1/5
else
a(t) =o(t—1);
fi

where p; is the relative frequency of successful mutations, measured over
some number of generations and 0.817 < ¢ < 1, (Béck, 1996). Using this
mechanism, changes in the parameter values are now based on feedback
from the search, and o-adaptation happens every n generations. The
influence of the user on the parameter values is much less direct here
than in the deterministic scheme above. Of course, the mechanism that
embodies the link between the search process and parameter values is
still a heuristic rule indicating how the changes should be made, but the

values of o(t) are not deterministic.

Third, it is possible to assign an ‘individual’ mutation step size to
each solution: extend the representation to individuals of length n + 1
as

{T1y. .+, Zn,0),

and apply some variation operators (e.g., Gaussian mutation and arith-
metical crossover) to x;’s as well as to the ¢ value of an individual. In
this way, not only the solution vector values (;'s), but also the mutation
step size of an individual undergoes evolution. A typical variation would
be:

o' =0 eNO®™) and

z; = z; + N(0,0'),

where 7gis a parameter of the method. This mechanism is commonly
called self-adapting the mutation step sizes. Observe that within the

self-adaptive scheme the heuristic character of the mechanism resetting
the parameter values is eliminated.®

5 A mutation is considered successful if it produces an offspring that is better than the parent.
®It can be argued that the heuristic character of the mechanism resetting the parameter
values is not eliminated, but rather replaced by a metaheuristic of evolution itself. However,
the method is very robust w.r.t. the setting of 7o and a good rule is 7o = 1/y/n.

Parameter Selection 287

Note that in the above scheme the scope of application of a certain
value of o was restricted to a single individual. However, it can be
applied to all variables of the individual: it is possible to change the
granularity of such applications and use a separate mutation step size
to each z;. If an individual is represented as

(Z1,...,Zn,01,...,0n),
then mutations can be realized by replacing the above vector according
to a similar formula as discussed above:

o) =a; - eNO®™) and

z; =z + N(0,07),
where 7p is a parameter of the method. However, as opposed to the
previous case, each component z; has its own mutation step size oy,
which is being self-adapted. This mechanism implies a larger degree of
freedom for adapting the search strategy to the topology of the fitness
landscape.

3.2 Changing the penalty coefficients

In the previous subsection we described different ways to modify a
parameter controlling mutation. Several other components of an EA
have natural parameters, and these parameters are traditionally tuned
in one or another way. Here we show that other components, such as the
evaluation function (and consequently the fitness function) can also be
parameterized and thus tuned. While this is a less common option than
tuning mutation (although it is practicized in the evolution of variable-
length stuctures for parsimony pressure (Zhang and Miihlenbein, 1995)),
it may provide a useful mechanism for increasing the performance of an

evolutionary algorithm.

When dealing with constrained optimization problems, penalty func-
tions are often used. A common technique i1s the method of static
penalties (Michalewicz and Schoenauer, 1996), which requires fixed user-
supplied penalty parameters. The main reason for its wide spread use
is that it is the simplest technique to implement: It requires only the
straightforward modification of the evaluation function eval as follows:

eval(x) = f(x) + W - penalty(x),

where f is the objective function, and penalty(x) is zero if no violation
occurs, and is positive,” otherwise. Usually, the penalty function is
based on the distance of a solution from the feasible region, or on the
effort to “repair” the solution, i.e., to force it into the feasible region. In
many methods a set of functions f; (1 < j < m) is used to construct
the penalty, where the function f; measures the violation of the j-th

"For minimization problems.

288 EVOLUTIONARY OPTIMIZATION

constraint in the following way:

— max{O,g~(x)}, 'Lf 1 _<_.7 < q
o = { ot eI

W is a user-defined weight, prescribing how severely constraint violations
are weighted.8 In the most traditional penalty approach the weight W
does not change during the evolution process. We sketch three possible
methods of changing the value of W.

First, we can replace the static parameter W by a dynamic parameter,
e.g., a function W(¢). Just as for the mutation parameter o, we can
develop a heuristic which modifies the weight W over time. For example,
in the method proposed by Joines and Houck (1994), the individuals are
evaluated (at the iteration t) by a formula, where

eval(x) = f(x) + (C - t)® - penalty(x),
where C and « are constants. Clearly,
W) = (-1,

the penalty pressure grows with the evolution time.

Second, let us consider another option, which utilizes feedback from
the search process. One example of such an approach was developed by
Bean and Hadj-Alouane (1992), where each individual is evaluated by
the same formula as before, but W(t) is updated in every generation t
in the following way:

(1/81) - W(t), ifb'eF
forallt —k+1<i<t
Wit+1)=< B W(t), ifbteS—F
forallt—k+1<i<t
W (t), otherwise.

In this formula, S is the set of all search points (solutions), F C S is a
set of all feasible solutions, bt denotes the best individual in terms of the
function eval in generation ¢, 81,82 > 1 and f; # (2 (to avoid cycling).
In other words, the method decreases the penalty component W (t+1) for
the generation ¢+ 1 if all best individuals in the last k& generations were
feasible (i.e., in F), and increases penalties if all best individuals in the
last & generations were infeasible. Ifthere are some feasible and infeasible
individuals as best individuals in the last k generations, W (¢t+1) remains
without change.

80Of course, instead of W it is possible to consider a vector of weights w = (w1, ..., wm) which
are applied directly to violationfunctions f;{x). In such a case penalty(x) = 3,7, w; f3(x).
The discussion in the remaining part of this section can be easily extended to this case.

Parameter Selection 289

Third, we could allow self-adaptation of the weight parameter, simi-
larly to the mutation step sizes in the previous section. For example, it
is possible to extend the representation of individuals into

{z1,...,%n, W),

where W is the weight. The weight component W undergoes the same
changes as any other variable z; (e.g., Gaussian mutation, arithmetical
crossover). However, it is unclear, how the evaluation function can ben-
efit from such self-adaptation. Clearly, the smaller weight W, the better
an (infeasible) individual is, so it is unfair to apply different weights to
different individuals within the same generation. It might be that a new
weight can be defined (e.g., arithmetical average of all weights present
in the population) and used for evaluation purpose; however, to our best
knowledge, no one has experimented with such self-adaptive weights.

To this end, it is important to note the crucial difference between
self-adapting mutation step sizes and constraint weights. Even if the
mutation step sizes are encoded in the chromosomes, the evaluation of
a chromosome is independent from the actual value of ¢’s. That is,

eval((x,0)) = f(x)

for any chromosome (x, o). In contrast, if constraint weights are encoded
in the chromosomes, then we have

eval((x,W)) = fw(x)

for any chromosome (x, W). This enables the evolution to ‘cheat’ in the
sense of making improvements by modifying the value of W instead of
optimizing f and satisfying the constraints.

33 Summary

In the previous subsections we illustrated how the mutation oper-
ator and the evaluation function can be controlled (adapted) during
the evolutionary process. The latter case demonstrates that not only
the traditionally adjusted components, such as mutation, recombina-
tion, selection, etc., can be controlled by parameters, but so can other
components of an evolutionary algorithm. Obviously, there are many
components and parameters that can be changed and tuned for opti-
mal algorithm performance. In general, the three options we sketched
for the mutation operator and the evaluation function are valid for any
parameter of an evolutionary algorithm, whether it is population size,
mutation step, the penalty coefficient, selection pressure, and so forth.

The mutation example of Section 3.1 also illustrates the phenomenon
of the scope of a parameter. Namely, the mutation step size parameter
can have different domains of influence, which we call scope. Using the

290 EVOLUTIONARY OPTIMIZATION

{(x1,...,2n,01,...,0n) model, a particular mutation step size applies
only to one variable of a single individual. Thus, the parameter o; acts
on a subindividual level. In the (x1,...,Zn,0) representation the scope
of ¢ is one individual, whereas the dynamic parameter o(t) was defined
to affect all individuals and thus has the whole population as its scope.

These remarks conclude the introductory examples of this section; we
are now ready to attempt a classification of parameter control techniques
for parameters of an evolutionary algorithm.

4. Classification of Control Techniques

In classifying parameter control techniques of an evolutionary algo-
rithm, many aspects can be taken into account. For example:

1 What is changed? (e.g., representation, evaluation function, oper-
ators, selection process, mutation rate, etc.).

2 How the change is made? (i.e., deterministic heuristic, feedback-
based heuristic, or self-adaptive).

3 The scope/level of change (e.g., population-level, individual-level,
etc.).

4 The evidence upon which the change is carried out (e.g., monitor-
ing performance of operators, diversity of the population, etc.).

In the following we discuss these items in more detail.

To classify parameter control techniques from the perspective of what
is changed, it is necessary to agree on a list of all major components of
an evolutionary algorithm (which is a difficult task in itself). For that
purpose, assume the following components of an EA:

m Representation of individuals.

= Evaluation function.

= Variation operators and their probabilities.

= Selection operator (parent selection or mating selection).

® Replacement operator (survival selection or environmental selec-
tion).

® Population (size, topology, etc.).

Note that each component can be parameterized, and the number of
parameters is not clearly defined. For example, an offspring produced

Parameter Selection 291

by an arithmetical crossover of k& parents xj,...,X; can be defined by
the following formula

vV=a1X]+ ...+ arXg,

whereay, ..., ax, and k can be considered as parameters of this crossover.
Parameters for a population can include the number and sizes of subpop-
ulations, migration rates, etc. (this is for a general case, when more then
one population is involved). Despite the somewhat arbitrary character of
this list of components and of the list of parameters of each component,
we will maintain the “what-aspect” as one of the main classification fea-
tures. The reason for this is that it allows us to locate where a specific
mechanism has its effect. Also, this is way we would expect people to
search through a survey, e.g., “I want to apply changing mutation rates,
let me see how others did it”.

As discussed and illustrated in Section 3, methods for changing the
value of a parameter (i.e., the “how-aspect”) can be classified into one
of three categories:

m Deterministic parameter control.
This takes place when the value of a strategy parameter is altered
by some deterministic rule. This rule modifies the strategy param-
eter deterministically without using any feedback from the search.
Usually, a time-varying schedule is used, i.e., the rule will be used
when a set number of generations have elapsed since the last time
the rule was activated.

® Adaptive parameter control.
This takes place when there is some form of feedback from the
search that is used to determine the direction and/or magnitude
of the change to the strategy parameter. The assignment of the
value of the strategy parameter may involve credit assignment, and
the action of the EA may determine whether or not the new value
persists or propagates throughout the population.

n Self-adaptive parameter control.

The idea of the evolution of evolution can be used to implement the
self-adaptation of parameters. Here the parameters to be adapted
are encoded into the chromosomes and undergo mutation and re-
combination. The better values of these encoded parameters lead
to better individuals, which in turn are more likely to survive and
produce offspring and hence propagate these better parameter val-
ues.

This terminology leads to the taxonomy illustrated in Figure 11.1.

292 EVOLUTIONARY OPTIMIZATION

Parameter setting
before the run . during the run
Parameter tuning Parameter control
; |
Deterministic Adaptive Self-adaptive

Figure 11.1. Gobal taxonomy of paremeter setting in EAs

Some authors have introduced a different terminology. Angeline (1995)
distinguished absolute and empirical rules corresponding to uncoupled
and tightly-coupled mechanisms of Spears (1995). Let us note that the
uncoupled/absolute category encompasses deterministic and adaptive
control, whereas the tightly-coupled/empirical category corresponds to
self-adaptation. We feel that the distinction between deterministic and
adaptive parameter control is essential, as the first one does not use any
feedback from the search process. However, we acknowledge that the
terminology proposed here is not perfect either. The term “determinis-
tic” control might not be the most appropriate, as it is not determinism
that matters, but the fact that the parameter-altering transformations
take no input variables related to the progress of the search process.
For example, one might randomly change the mutation probability after
every 100 generations, which is not a deterministic process. The name
“fixed” parameter control might form an alternative that also covers this
latter example. Also, the terms “adaptive” and ‘“‘self-adaptive” could be
replaced by the equally meaningful “explicitly adaptive” and “implicitly
adaptive” controls, respectively. We have chosen to use “adaptive” and
“self-adaptive” for the widely accepted usage of the latter term.

As discussed earlier, any change within any component of an EA may
affect a gene (parameter), whole chromosomes (individuals), the entire
population, another component (e.g., selection), or even the evaluation
function. This is the aspect of the scope or level of adaptation (An-
geline, 1995; Hinterding et al., 1997; Smith and Fogarty, 1997; Smith,
1997). Note, however, that the scope/level usually depends on the com-
ponent of the EA where the change takes place. For example, a change
of the mutation step size may affect a gene, a chromosome, or the entire

Parameter Selection 293

population, depending on the particular implementation (i.e., scheme
used), but a change in the penalty coefficients always affects the whole
population. So, the scope/level feature is a secondary one, usually de-
pending on the given component and its actual implementation.

The issue of the scope of the parameter might be more complicated
than indicated in Section 3.3, however. First of all, the scope depends
on the interpretation mechanism of the given parameters. For example,
an individual might be represented as

<$1’- Ty TLy e300, ALy - ~aan(n—1)/2)’

where the vector & denotes the covariances between the variables o4, . . .,
on. In this case the scope of the strategy parameters in o is the whole in-
dividual, although the notation might suggest that they act on a subindi-
vidual level.

The next example illustrates that the same parameter (encoded in
the chromosomes) can be interpreted in different ways, leading to differ-
ent algorithm variants with different scopes of this parameter. Spears
(1995), following (Fogel and Atmar, 1990), experimented with individu-
als containing an extra bit to determine whether one-point crossover or
uniform crossover is to be used (bit 1/0 standing for one-point/uniform
crossover, respectively). Two interpretations were considered. The first
interpretation was based on a pairwise operator choice: If both parental
bits are the same, the corresponding operator is used, otherwise, a ran-
dom choice is made. Thus, this parameter in this interpretation acts
at an individual level. The second interpretation was based on the bit-
distribution over the whole population: If, for example 73% of the pop-
ulation had bit 1, then the probability of one-point crossover was 0.73.
Thus this parameter under this interpretation acts on the population
level. Note, that these two interpretations can be easily combined. For
instance, similar to the first interpretation, if both parental bits are
the same, the corresponding operator is used. However, if they differ,
the operator is selected according to the bit-distribution, just as in the
second interpretation. The scope/level of this parameter in this inter-
pretation is neither individual, nor population, but rather both. This
example shows that the notion of scope can be ill-defined and very com-
plex. These examples, and the arguments that the scope/level entity is
primarily a feature of the given parameter and only secondarily a fea-
ture of adaptation itself, motivate our decision to exclude it as a major
classification criterion.

Another possible criterion for classification is the evidence used for
determining the change of parameter value (Smith and Fogarty, 1997;
Smith, 1997). Most commonly, the progress of the search is monitored,

294 EVOLUTIONARY OPTIMIZATION

e.g., the performance of operators. It is also possible to look at other
measures, like the diversity of the population. The information gathered
by such a monitoring process is used as feedback for adjusting the pa-
rameters. Although this is a meaningful distinction, it appears only in
adaptive parameter control. A similar distinction could be made in de-
terministic control, which might be based on any counter not related to
search progress. One option is the number of fitness evaluations (as the
description of deterministic control above indicates). There are, how-
ever, other possibilities, for instance, changing the probability of muta-
tion on the basis of the number of executed mutations. We feel, however,
that these distinctions are of a more specific level than other criteria and
for that reason we have not included it as a major classification criterion.

So the main criteria for classifying methods that change the values of
the strategy parameters of an algorithm during its execution are:

1 What is changed?
2 How is the change made?

Our classification is thus two-dimensional: the type of control and the
component of the evolutionary algorithm which incorporates the pa-
rameter. The type and component entries are orthogonal and encompass
typical forms of parameter control within EAs. The type of parameters’
change consists of three categories: deterministic, adaptive, and self-
adaptive mechanisms. The component of parameters’ change consists of
six categories: representation, evaluation function, variation operators
(mutation and recombination), selection, replacement, and population.

5. Various forms of control

To discuss the experimental efforts of many researchers to control the
parameters of their evolutionary algorithms, it it useful to select an or-
dering principle to group existing work based on what is being adapted.
In Eiben et al. (1999), we provide a full survey of various forms of control
which have been studied by the evolutionary computation community
in recent years. In that paper we have selected an ordering principle
to group existing work based on what is being adapted. Consequently,
the discussion corresponded to the earlier list of six components of an
EA and we just briefly indicated what the scope of the change is. So,
in Eiben et al. (1999), we discussed control of representation, evalua-
tion function, mutation and crossover operators and their probabilities,
parent selection, replacement operator, and population.

As we explained in the introduction, ‘control of parameters in EAs’
includes any change of any of the parameters that influence the action

Parameter Selection 295

of the EA, whether it is done by a deterministic rule, feedback-based
rule, or a self-adaptive mechanism.” Also it is possible to control the
various parameters of an evolutionary algorithm during its run. How-
ever, most studies considered control of one parameter only (or a few
parameters which relate to a single component of EA). This is probably
because (1) the exploration of capabilities of adaptation was done exper-
imentally, and (2) it is easier to report positive results in such simpler
cases. Combining forms of control is much more difficult as the interac-
tions of even static parameter settings for different components of EA’s
are not well understood, as they often depend on the objective function
(Hart and Belew, 1991) and representation used (Tate and Smith, 1993).
Several empirical studies have been performed to investigate the inter-
actions between various parameters of an EA (Eshelman and Schaffer,
1993; Schaffer et al., 1989; Wu et al., 1997). Some stochastic mod-
els based on Markov chains were developed and analysed to understand
these interactions (Chakraborty et al., 1996; Nix and Vose, 1992; Suzuki,
1993; Vose, 1992).

In combining forms of control, the most common method is related to
mutation. With Gaussian mutation we can have a number of parameters
that control its operation. We can distinguish the setting of the standard
deviation of the mutations (mutation step size) at a global level, for each
individual, or for genes (parameters) within an individual. We can also
control the preferred direction of mutation.

In evolution strategies (Schwefel, 995), the self-adaptation of the com-
bination of the mutation step-size with the direction of mutation is quite
common. Also the adaptation of the mutation step-size occurs at both
the individual and the gene level. This combination has been used in
EP as well (Saravanan and Fogel, 1994). Other examples of combining
the adaptation of the different mutation parameters are given in Yao
et al. (1997) and Ghozeil and Fogel (1996). Yao ef al. combine the
adaptation of the step size with the mixing of Cauchy and Gaussian mu-
tation in EP. Here the mutation step size is self-adapted, and the step
size is used to generate two new individuals from one parent: one using
Cauchy mutation and the other using Gaussian mutation; the “worse”
individual in terms of fitness is discarded. The results indicate that
the method is generally better or equal to using either just Gaussian or
Cauchy mutations even though the population size was halved to com-
pensate for generating two individuals from each parent. Ghozeil and

°Note that in many papers, the term ‘control’ is referred to as ‘adaptation’.

296 EVOLUTIONARY OPTIMIZATION

Fogel compare the use of polar coordinates for the mutation step size and
direction over the generally used cartesian representation. While their
results are preliminary, they indicate that superior results can be ob-
tained when a lognormal distribution is used to mutate the self-adaptive
polar parameters on some problems.

Combining forms of control where the adapted parameters are taken
from different components of the EA are much rarer. Hinterding et
al. (1996) combined self-adaptation of the mutation step size with the
feedback-based adaptation of the population size. Here feedback from a
cluster of three EAs with different population sizes was used to adjust
the population size of one or more of the EAs at 1,000 evaluation epochs,
and self-adaptive Gaussian mutation was used in each of the EAs. The
EA adapted different strategies for different type of test functions: for
unimodal functions it adapted to small population sizes for all the EAs;
while for multimodal functions, it adapted one of the EAs to a large but
oscillating population size to help it escape from local optima. Smith
and Fogarty (1996) self-adapt both the mutation step size and preferred
crossover points in a EA. Each gene in the chromosome includes: the
problem encoding component; a mutation rate for the gene; and two
linkage flags, one at each end of the gene which are used to link genes into
larger blocks when two adjacent genes have their adjacent linkage flags
set. Crossover is a multiparent crossover and occurs at block boundaries,
whereas the mutation can affect all the components of a block and the
rate is the average of the mutation rates in a block. Their method was
tested against a similar EA on a variety of NK problems and produced
better results on the more complex problems.

The most comprehensive combination of forms of control is by Lis
and Lis (1996), as they combine the adaptation of mutation probabil-
ity, crossover rate and population size, using adaptive control. A parallel
GA was used, over a number of epochs; in each epoch the parameter set-
tings for the individual GAs was determined by using the Latin Squares
experiment design. This was done so that the best combination of three
values for each of the three parameters could be determined using the
fewest number of experiments. At the end of each epoch, the middle
level parameters for the next epoch were set to be the best values from
the last epoch.

It is interesting to note that all but one of the EAs which combine
various forms of control use self-adaptation. In Hinterding et al. (1996)
the reason that feedback-based rather than self-adaptation was used to
control the population size, was to minimize the number of separate
populations. This leads us to believe that while the interactions of static
parameters setting for the various components of an EA are complex,

Parameter Selection 297

the interactions of the dynamics of adapting parameters using either
deterministic or feedback-based adaptation will be even more complex
and hence much more difficult to work out. Hence it is likely that using
self-adaptation is the most promising way of combining forms of control,
as we leave it to evolution itself to determine the beneficial interactions
among various components (while finding a near-optimal solution to the
problem).

However, it should be pointed out that any combination of various
forms of control may trigger additional problems related to “transitory”
behavior of EAs. Assume, for example, that a population is arranged in
a number of disjoint subpopulations, each using a different crossover. If
the current size of subpopulation depends on the merit of its crossover,
the operator which performs poorly (at some stage of the process) would
have difficulties “to recover” as the size of its subpopulation shrinked
in the meantime (and smaller populations usually perform worse than
larger ones). This would reduce the chances for utilizing “good” opera-
tors at later stages of the process.

6. Discussion

The effectiveness of an evolutionary algorithm depends on many of its
components, e.g., representation, operators, etc., and the interactions
among them. The variety of parameters included in these components,
the many possible choices (e.g., to change or not to change?), and the
complexity of the interactions between various components and parame-
ters make the selection of a “perfect” evolutionary algorithm for a given
problem very difficult, if not impossible.

So, how can we find the “best” EA for a given problem? As discussed
earlier, we can perform some amount of parameter tuning, trying to find
good values for all parameters before the run of the algorithm. However,
even if we assume for a moment that there is a perfect configuration,
finding it is an almost hopeless task. Figure 11.2 illustrates this point:
the search space Sga4 of all possible evolutionary algorithms is huge,
much larger than the search space Sp of the given problem P, so our
chances of guessing the right configuration (if one exists!) for an EA are
rather slim (e.g., much smaller than the chances of guessing the optimum
permutation of cities for a large instance of the traveling salesman prob-
lem). Even if we restrict our attention to a relatively narrow subclass,
say Sga of classical GAs, the number of possibilities is still prohibitive.lo

1A subspace of classical genetic algorithms, Sg4 C Sga, consists of evolutionary algo-
rithms where individuals are represented by binary coded fixed-length strings, which has two
operators: 1-point crossover and a bit-flip mutation, and it uses a proportional selection.

298 EVOLUTIONARY OPTIMIZATION

Note, that within this (relatively small) class there are many possible
algorithms with different population sizes, different frequencies of the
two basic operators (whether static or dynamic), etc. Besides, guessing
the right values of parameters might be of limited value anyway: in this
chapter we have argued that any set of static parameters seems to be
inappropriate, as any run of an EA is an intrinsically dynamic, adaptive
process. So the use of rigid parameters that do not change their val-
ues may not be optimal, since different values of parameters may work
better/worse at different stages of the evolutionary process.

Sca

EA

Pm

Figure 11.2. An evolutionary algorithm EA for problem P as a single point in the
search space Sga of all possible evolutionary algorithms. EA searches (broken line)
the solution space Sp of the problem P. Sga represents a subspace of classical
GAs, whereas Sp,,, — a subspace which consists of evolutionary algorithms which are
identical except their mutation rate py,.

On the other hand, adaptation provides the opportunity to customize
the evolutionary algorithm to the problem and to modify the configu-
ration and the strategy parameters used while the problem solution is
sought. This possibility enables us not only to incorporate domain in-
formation and multiple reproduction operators into the EA more easily,
but, as indicated earlier, allows the algorithm itself to select those val-
ues and operators which provide better results. Of course, these values
can be modified during the run of the EA to suit the situation during
that part of the run. In other words, if we allow some degree of adap-
tation within an EA, we can talk about two different searches which
take place simultaneously: while the problem P is being solved (i.e., the
search space Sp is being searched), a part of Sg4 is searched as well for
the best evolutionary algorithm EA for some stage of the search of Sp.

Parameter Selection 299

However, in all experiments reported by various researchers only a tiny
part of the search space Sga was considered. For example, by adapting
the mutation rate p,, we consider only a subspace Sp,, (see Figure 11.2),
which consists of all evolutionary algorithms with all parameters fixed
except the mutation rate. Similarly, early experiments of Grefenstette
(1986) were restricted to the subspace Sg4 only.

An important objective of this chapter is to draw attention to the
potentials of EAs adjusting their own parameters on-line. Given the
present state of the art in evolutionary computation, what could be said
about the feasibility and the limitations of this approach?

One of the main obstacles of optimizing parameter settings of EAs
is formed by the epistasic interactions between these parameters. The
mutual influence of different parameters on each other and the combined
influence of parameters together on EA behaviour is very complex. A
pessimistic conclusion would be that such an approach is not appropri-
ate, since the ability of EAs to cope with epistasis is limited. On the
other hand, parameter optimization falls in the category of ill-defined,
not well-structured (at least not well understood) problems preventing
an analytical approach — a problem class for which EAs usually pro-
vide a reasonable alternative to other methods. Roughly speaking, we
might not have a better way to do it than letting the EA figuring it out.
To this end, note that the self-adaptive approach represents the highest
level of reliance on the EA itself in setting the parameters. With a high
confidence in the capability of EAs to solve the problem of parameter
setting this is the best option. A more sceptical approach would provide
some assistance in the form of heuristics on how to adjust parameters,
amounting to adaptive parameter control. At this moment there are
not enough experimental or theoretical results available to make any
reasonable conclusions on the (dis)advantages of different options.

A theoretical boundary on self-adjusting algorithms in general is form-
ed by the no free lunch theorem (Wolpert and Macready, 1997). How-
ever, while the theorem certainly applies to a self-adjusting EA, it rep-
resents a statement about the performance of the self-adjusting features
in optimizing parameters compared to other algorithms for the same
task. Therefore, the theorem is not relevant in the practical sense, be-
cause these other algorithms hardly exist in practice. Furthermore, the
comparison should be drawn between the self-adjusting features and the
human “oracles” setting the parameters, this latter being the common
practice.

It could be argued that relying on human intelligence and expertise is
the best way of drawing an EA design, including the parameter settings.
After all, the “intelligence” of an EA would always be limited by the

300 EVOLUTIONARY OPTIMIZATION

small fraction of the predefined problem space it encounters during the
search, while human designers (may) have global insight of the problem
to be solved. This, however, does not imply that the human insight
leads to better paremeter settings (see our discussion of the approaches
called parameter tuning and parameter setting by analogy in Section 2).
Furthermore, human expertise is costly and might not be easily available
for the given problem at hand, so relying on computer power is often the
most practicable option. The domain of applicability of the evolutionary
problem solving technology as a whole could be significantly extended
by EAs that are able to configurate themselves, at least partially.

At this stage of research it is unclear just “how much parameter con-
trol” might be useful. Is it feasible to consider the whole search space
SEa of evolutionary algorithms and allow the algorithm to select (and
change) the representation of individuals together with operators? At
the same time should the algorithm control probabilities of the opera-
tors used together with population size and selection method? It seems
that more research on the combination of the types and levels of pa-
rameter control needs to be done. Clearly, this could lead to significant
improvements to finding good solutions and to the speed of finding them.

Another aspect of the same issue is “how much parameter control is
worthwhile”? In other words, what computational costs are acceptable?
Some researchers have offered that adaptive control substantially com-
plicates the task of EA and that the rewards in solution quality are not
significant to justify the cost (Beasley et al., 1993). Clearly, there is
some learning cost involved in adaptive and self-adaptive control mech-
anisms. Either some statistics are collected during the run, or additional
operations are performed on extended individuals. Comparing the effi-
ciency of algorithms with and without (self-)adaptive mechanisms might
be misleading, since it disregards the time needed for the tuning process.
A more fair comparison could be based on a model which includes the
time needed to set up (to tune) and to run the algorithm. We are not
aware of any such comparisons at the moment.

On-line parameter control mechanisms may have a particular signif-
icance in nonstationary environments. In such environments often it is
necessary to modify the current solution due to various changes in the
environment (e.g., machine breakdowns, sickness of employees, etc). The
capabilities of evolutionary algorithm to consider such changes and to
track the optimum efficiently have been studied (Angeline, 1997; Bick,
1998; Vavak et al., 1996; Vavak et al., 1997). A few mechanisms were
considered, including (self-)adaptation of various parameters of the al-
gorithm, while other mechanisms were based on maintenance of genetic
diversity and on redundancy of genetic material. These mechanisms

REFERENCES 301

often involved their own adaptive schemes, e.g., adaptive dominance
function.

It seems that there are several exciting research issues connected with
parameter control of EAs. These include:

Developing models for comparison of algorithms with and without
(self-)adaptive mechanisms. These models should include station-
ary and dynamic environments.

Understanding the merit of parameter changes and interactions
between them using simple deterministic controls. For example,
one may consider an EA with a constant population-size versus an
EA where population-size decreases, or increases, at a predefined
rate such that the total number of function evaluations in both
algorithms remain the same (it is relatively easy to find heuristic
justifications for both scenarios).

Justifying popular heuristics for adaptive control. For instance,
why and how to modify mutation rates when the allele distribution
of the population changes?

Trying to find the general conditions under which adaptive control
works. For self-adative mutation step sizes there are some universal
guidelines (e.g., surplus of offspring, extinctive selection), but so
far we do not know of any results regarding adaptation.

Understanding the interactions among adaptively controlled pa-
rameters. Usually feedback from the search triggers changes in
one of the parameters of the algorithm. However, the same trig-
ger can be used to change the values of other parameters. The
parameters can also directly influence each other.

Investigating the merits and drawbacks of self-adaptation of several
(possibly all) parameters of an EA.

Developing a formal mathematical basis for the taxonomy for pa-
rameter control in evolutionary algorithms in terms of functionals
which transform the operators and variables they require.

In the next few years we expect new results in these areas.

References

Angeline, P. (1995). Adaptive and self-adaptive evolutionary computa-
tion. In M., P, Y., A., RJ., M., D, F., and T., F., editors, Com-
putational Intelligence: A Dynamic System Perspective, IEEE Press,
152-161.

302 EVOLUTIONARY OPTIMIZATION

Angeline, P. (1997). Tracking extrema in dynamic environments. In Pro-
ceedings of the 6th Annual Conference on Evolutionary Programming,
335-345.

Bick, T. (1992). The interaction of mutation rate, selection, and self-
adaptation within a genetic algorithm. In Ménner, R. and Manderick,
B., editors, Proceedings of the 2nd Conference on Parallel Problem
Solving from Nature, North-Holland, 85-94.

Bick, T. (1992). Self-adaption in genetic algorithms. In Varela, F. and
Bourgine, P., editors, Toward a Practice of Autonomous Systems: Pro-
ceedings of the st European Conference on Artificial Life, MIT Press,
263-271.

Biack, T. (1993). Optimal mutation rates in genetic search. Proceedings
of the 5th International Conference on Genetic Algorithms, Forrest,
S., editor, Morgan Kaufmann, 2-8.

Bick, T. (1996). Evolutionary Algorithms in Theory and Practice. Ox-
ford University Press, New York.

Bick, T. (1998). On the behavior of evolutionary algorithms in dynamic
environments. In Proceedings of the 5th IEEE Conference on Evolu-
tionary Computation, IEEE Press, 446-451.

Bick, T., Fogel, D., and Michalewicz, Z., editors (1997). Handbook of
Evolutionary Computation. Institute of Physics Publishing Ltd, Bris-
tol and Oxford University Press, New York.

Bean, J. and Hadj-Alouane, A. (1992). A dual genetic algorithm for
bounded integer programs. Tr 92-53, Department of Industrial and
Operations Engineering, The University of Michigan.

Beasley, D., Bull, D., and Martin, R. (1993). An overview of genetic
algorithms: Part 2, research topics. University Computing, 15(4):170-
181.

Chakraborty, U., Deb, K., and Chakraborty, M. (1996). Analysis of se-
lection algorithms: A markov chain approach. Evolutionary Compu-
tation, 4(2):132-167.

Davis, L. (1989). Adapting operator probabilities in genetic algorithms.
In Grefenstette, J., editor, Proceedings of the st International Con-
ference on Genetic Algorithms and Their Applications, pages 61-69.
Lawrence Erlbaum Associates.

De Jong, K. (1975). The Analysis of the Behavior of a Class of Genetic
Adaptive Systems. PhD thesis, Department of Computer Science, Uni-
versity of Michigan, Ann Arbor, Michigan.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter con-
trol in evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 3(2):124-141.

REFERENCES 303

Eshelman, L. and Schaffer, J. (1993). Crossover niche. Proceedings of
the 5th International Conference on Genetic Algorithms, Forrest, S.,
editor, Morgan Kaufmann, 9-14.

Fogel, D. and Atmar, J. (1990). Comparing genetic operators with Gaus-
sian mutations in simulated evolutionary processes using linear sys-
tems. Biological Cybernetics, 63:111-114.

Ghozeil, A. and Fogel, D. (1996). A preliminary investigation into di-
rected mutations in evolutionary algorithms. Proceedings of the 4th
Conference on Parallel Problem Solving from Nature, number 1141 in
Lecture Notes in Computer Science. Springer, Berlin., 329-335.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley.

Goldberg, D., Deb, K., and Clark, J. (1992). Genetic algorithms, noise,
and the sizing of populations. Complex Systems, 6:333-362.

Goldberg, D., Deb, K., and Theirens, D. (1991). Toward a better under-
standing of mixing in genetic algorithms. Proceedings of the 4th In-
ternational Conference on Genetic Algorithms, Belew, R. and Booker,
L., editors, Morgan Kaufmann, 190-195.

Grefenstette, J. (1986). Optimization of control parameters for genetic
algorithms. IEEE Transactions on Systems, Man, and Cybernetics,
16(1):122-128.

Harik, G., Cantu-Paz, E., Goldberg, D., and Miller, B. (1997). The gam-
bler’s ruin problem, genetic algorithms, and the sizing of populations.
In Proceedings of the 4th IEEE Conference on Evolutionary Compu-
tation, IEEE Press, 7-12.

Hart, W. and Belew, R. (1991). Optimizing an arbitrary function is
hard for the genetic algorithms. Proceedings of the 4th International
Conference on Genetic Algorithms, Belew, R. and Booker, L., editors,
Morgan Kaufmann, 190-195.

Hesser, J. and Manner, R. (1991). Towards an optimal mutation prob-
ability for genetic algorithms. In Schwefel, H.-P. and Minner, R.,
editors, Proceedings of the Ist Conference on Parallel Problem Solv-
ing from Nature, number 496 in Lecture Notes in Computer Science,
Springer-Verlag, 23-32.

Hinterding, R., Michalewicz, Z., and Eiben, A. (1997). Adaptation in
evolutionary computation: A survey. In Proceedings of the 4th IEEE
Conference on Evolutionary Computation, IEEE Press, 65-69.

Hinterding, R., Michalewicz, Z., and Peachey, T. (1996). Self-adaptive
genetic algorithm for numeric functions. Proceedings of the 4th Con-
ference on Parallel Problem Solving from Nature, number 1141 in Lec-
ture Notes in Computer Science. Springer, Berlin, 420-429.

304 EVOLUTIONARY OPTIMIZATION

Joines, J. and Houck, C. (1994). On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems with
GAs. In Proceedings of the Ist IEEE Conference on Evolutionary
Computation, 1EEE Press, 579-584.

Lis, J. and Lis, M. (1996). Self-adapting parallel genetic algorithm with
the dynamic mutation probability, crossover rate and population size.
In Arabas, J., editor, Proceedings of the st Polish National Confer-
ence on Evolutionary Computation, pages 324-329. Oficina Wydawnica
Politechniki Warszawskie;j.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for
constrained parameter optimization problems. Evolutionary Compu-
tation, 4:1-32.

Nix, A. and Vose, M. (1992). Modelling genetic algorithms with markov
chains. Annals of Mathematics and Artificial Intelligence, 5:79-88.
Rechenberg, R. (1973). Evolutionsstrategie: Optimierung technischer Sys-
eme nach Prinzipien der biologischen Evolution. Frommann-Holzboog,

Stuttgart.

Saravanan, N. and Fogel, D. (1994). Learning strategy parameters in evo-
lutionary programming: An empirical study. In Sebald, A. and Fogel,
L., editors, Proceedings of the 3rd Annual Conference on Evolutionary
Programming. World Scientific.

Schaffer, J., Caruana, R., Eshelman, L., and Das, R. (1989). A study of
control parameters affecting online performance of genetic algorithms
for function optimization. In Schaffer, J., editor, Proceedings of the 3rd
International Conference on Genetic Algorithms, Morgan Kaufmann,
51-60.

Schaffer, J. and Morishima, A. (1987). An adaptive crossover distribution
mechanism for genetic algorithms. In Grefenstette, J., editor, Proceed-
ings of the 2nd International Conference on Genetic Algorithms and
Their Applications, Lawrence Erlbaum Associates, 36-40.

Schwefel, H.-P. (995). Evolution and Optimum Seeking. Wiley, New York.

Smith, J. (1997). Self Adaptation in Evolutionary Algorithms. PhD the-
sis, University of the West of England, Bristol.

Smith, J. and Fogarty, T. (1996). Adaptively parameterised evolutionary
systems: Self adative recombination and mutation in a genetic algo-
rithm. Proceedings of the 4th Conference on Parallel Problem Solving
from Nature, number 1141 in Lecture Notes in Computer Science.
Springer, Berlin, 441-450.

Smith, J. and Fogarty, T. (1997). Operator and parameter adaptation
in genetic algorithms. Soft Computing, 1(2):81-87.

Soule, T. and Foster, J. (1997). Code size and depthe flows in genetic
programming. In Koza, J., Deb, K., Dorigo, M., Fogel, D., Garzon,

REFERENCES 305

M,, Iba, H., and Riolo, R., editors, Proceedings of the 2nd Annual
Conference on Genetic Programming, MIT Press, 313-320.

Spears, W. (1995). Adapting crossover in evolutionary algorithms. In
McDonnell, J., Reynolds, R., and Fogel, D., editors, Proceedings of
the 4th Annual Conference on Evolutionary Programming. MIT Press,
367-384.

Suzuki, J. (1993). A markov chain analysis on a genetic algorithm. Pro-
ceedings of the 5th International Conference on Genetic Algorithms,
Forrest, S., editor, Morgan Kaufmann, 146-153.

Syswerda, G. (1991). Schedule optimization using genetic algorithms. In
Handbook of Genetic Algorithms, Van Nostrand Reinhold, 332-349.
Tate, D. and Smith, E. (1993). Expected allele coverage and the role of
mutation in genetic algorithms. Proceedings of the 5th International
Conference on Genetic Algorithms, Forrest, S., editor, Morgan Kauf-

mann., 31-37.

Theirens, D. and Goldberg, D. (1991). Mixing in genetic algorithms. Pro-
ceedings of the 4th International Conference on Genetic Algorithms,
Belew, R. and Booker, L., editors, Morgan Kaufmann, 31-37.

Thierens, D. (1996). Dimensional analysis of allele-wise mixing revisited.
Proceedings of the 4th Conference on Parallel Problem Solving from
Nature, number 1141 in Lecture Notes in Computer Science. Springer,
Berlin, 255-265.

Vavak, F., Fogarty, T., and Jukes, K. (1996). A genetic algorithm with
variable range of local search for tracking changing environments. Pro-
ceedings of the 4th Conference on Parallel Problem Solving from Na-
ture, number 1141 in Lecture Notes in Computer Science. Springer,
Berlin, 376-385.

Vavak, F., Jukes, K., and Fogarty, T. (1997). Learning the local search
range for genetic optimisation in nonstationary environments. In Pro-
ceedings of the 4th IEEE Conference on Evolutionary Computation,
IEEE Press, 355-360.

Vose, M. (1992). Modeling simple genetic algorithms. In Whitley, L.,
editor, Foundations of Genetic Algorithms, Morgan Kauffmann, 2,
63-74.

Wolpert, D. and Macready, W. (1997). No free luch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67-
82.

Wu, A., Lindsay, R., and Riolo, R. (1997). Empirical observation on
the roles of crossover and mutation. In Béck, T., editor, Proceedings
of the 7th International Conference on Genetic Algorithms, Morgan
Kaufmann, 362-369.

306 EVOLUTIONARY OPTIMIZATION

Yao, X., Lin, G., and Liu, Y. (1997). An analysis of evolutionary algo-
rithms based on neighbourhood and step sizes. Proceedings of the 6th
Annual Conference on Evolutionary Programming, number 1213 in
Lecture Notes in Computer Science. Springer, Angeline, P., Reynolds,
R., McDonnel, J., and Eberhart, R., editors, Berlin, 297-307.

Zhang, B. and Miihlenbein, H. (1995). Balancing accuracy and parsi-
mony in genetic programming. Evolutionary Computation, 3(3):17-38.

VI

APPLICATION OF EAS TO PRACTICAL
PROBLEMS

This page intentionally left blank

Chapter 12

DESIGN OF PRODUCTION FACILITIES
USING EVOLUTIONARY COMPUTING

Alice E. Smith and
Bryan A. Norman

Abstract This chapter discusses the use of genetic algorithms for the design of
industrial facilities. Block design of the location of departments or work
centers is integrated with the detailed design of aisle structure, material
handling system, machine placement and input/output locations. An-
other aspect is to improve the design optimization objective function
by matching the choice of flowpath distance metric with the type of
material handling system. A modular approach has been taken where
various aspects of this evolutionary facility design framework can be
used independently or in conjunction with one another.

Keywords: facility design, genetic algorithms, material handling, flowpaths

1. Introduction

Facility design problems generally involve the partition of a build-
ing into departments (work centers or cells) along with a material flow
structure and a material handling system to link the departments. The
primary objective of the design problem is to minimize the costs as-
sociated with production and materials movement over the lifetime of
the facility. Such problems occur in many organizations, including man-
ufacturing cell layout, hospital layout (Elshafei, 1977), semiconductor
manufacturing, construction site management (Yeh, 1995) and service
center layout. They also occur in environmental management of forests,
wetlands, etc. (Bos, 1993) By any monetary measure, facilities design
is an important problem and one that has assumed even greater im-
portance as manufacturers strive to become more agile and responsive
(Tompkins, 1997). For U.S. manufacturers, between 20% to 50% of total
operating expenses are spent on material handling and an appropriate

310 EVOLUTIONARY OPTIMIZATION

facility design can reduce these costs by at least 10% to 30% (Meller and
Gau, 1996). Altering facility designs due to incorrect decisions, forecasts
or assumptions usually involves considerable cost, time and disruption of
activities. On the other hand, good design decisions can reap economic
and operational benefits for a long time.

The problem primarily studied in the literature has been “block lay-
out” which specifies the placement of the departments, without regard
for aisle structure and material handling system, machine placement
within departments or input/output locations. Block layout is usually
a precursor to these subsequent design steps, termed “detailed layout”.
Two recent survey articles on the block layout problem are by Kusiak
and Heragu (1987) and by Meller and Gau (1996). A block layout where
departments may have different areas and/or different shapes precludes
assigning ndepartments to mdistinct locations as is done in the popular
quadratic assignment problem (QAP) formulation of block layout, which
requires all departments be of identical shape and size. For unequal area
departments, the first formulation appeared in (Armour et al.,, 1963) as
follows. There is a rectangular region, A, with fixed dimensions H and
W, and a collection of » required departments, each of specified area a;
and dimensions (if rectangular) of h; and w;, whose total area = A =
HW. There is a material flow £} associated with each pair of depart-
ments (4,k) which generally includes a traffic volume in addition to a unit
cost to transport that volume. There may also be fixed costs between
departments j and k. The mathematical objective is to partition A into n
subregions representing each of the n departments, of appropriate area,
in order to:

n

min = zn: CF; pdjpm (12.1)

j=1 k=1
ek

where Cis the cost to transport one unit of flow for one unit of distance
and dj 11 is the distance (using a pre-specified metric, most commonly
shortest rectilinear between centroids) between department j and de-
partment % in the layout II. They approached this problem by requiring
all departments to be made up of contiguous rectangular unit blocks,
and then applied departmental adjacent pairwise exchange. Other unit
block approaches include Bazaraa (1975), Hassan et al. (1986), Meller
and Bozer (1996) and Ziai and Sule (1991). Drawbacks of the unit block
approach are that departmental shapes can be impractical and each de-

partment must be artificially discretized into blocks.
A general linear programming approach was formulated by Montreuil
and others (Montreuil and Ratliff, 1989; Montreuil et al., 1993) to avoid

Design of Production Facilities 311

departmental overlap and minimize interdepartmental flow costs, when
first given a “design skeleton”. Drawbacks of the mathematical program-
ming approach are: (a) inability to enforce exact departmental areas, (b)
rapid increase in the number of variables and constraints as the problem
size increases, and (c) dependence on an initial layout skeleton. Re-
lated approaches (e.g., Imam and Mir (1993) and Welgama and Gibson
(1996)) have the disadvantage that the final layout is a central cluster
of departments that may be very different in shape than the normal
rectangular bounding area HW. Another approach is to use graph the-
ory to develop the optimal relative locations of the department. Foulds
and others (Foulds et al., 1985; Foulds and Robinson, 1976; Foulds and
Robinson, 1978) pioneered this approach, however it suffers from a rapid
increase in search space size as the design problem size increases and the
difficulty in translating the graph to a block layout that resembles a
physical facility.

There are other basic formulations for unequal area block layout. One
is slicing trees, where the departments and the bounding facility are
required to be rectangular and the layout is represented by alternating
vertical and horizontal slices(Cohoon and Paris, 1987; Tam, 1992a; Tam,
1992b). A related formulation is the flexible bay structure (Figure 12.1)
(Tate and Smith, 1995). This structure first allows slices in a single
direction, creating bays, which are then sub-divided into departments
by perpendicular slices. Although the flexible bay formulation is slightly
more restrictive than the slicing tree formulation, it does allow a natural
aisle structure to be inherently created in the layout design, a property
that may be useful.

The objective of the work described in this chapter is to provide a
comprehensive design framework by integrating both “block layout” (the
sizing, shaping and locating of departments or work centers) and ‘“de-
tailed design” (choosing and siting input/output (I/O) stations' , aisles,
material handling systems (MRS), material flowpaths, flow within de-
partments). The method of representing the planar facility region and
its division into departments, cells or work areas is the flexible bay struc-
ture (Tate and Smith, 1995). To provide departments that are physically
reasonable, a maximum aspect ratio constraint for each department is
imposed. The lower this constraint, the more square the departments
are forced to be. The solution approach uses one of the most widely
applied evolutionary computation techniques, genetic algorithms (GA),
which is supplemented with problem specific heuristics. Since a GA is

'Also called pick up (P) and delivery (D) points.

312 EVOLUTIONARY OPTIMIZATION

an improvement heuristic, even large design problems can be well solved
in realistic computation time. Furthermore, the identification of a set
(population) of superior solutions, that is inherent in a GA, could be
useful for facility design.

Basic assumptions made for this chapter are:
» This is a greenfield (new) facility.
m The departments and the facility are rectangular and planar.

m The department areas are fixed and sum to the facility area (equiv-
alently, excess facility area is included as “dummy” departments).

= Aisles have negligible area compared to the facility area.

» Aisle capacity and direction of flow are not considered (i.e., two
way flow through each aisle is allowed).

m Material flow occurs between department I/O points around the
perimeters of departments.

» Projected material flow volumes and unit cost of material handling
are known with certainty.

2. Design for Material Flow When the Number
of I/0 Points is Unconstrained

The first step is to explicitly consider the material flow paths as the
block layout is designed. To do this block layouts are constructed using
the flexible bay representation introduced in (Tate and Smith, 1995).
However, the layouts were evaluated by assuming that material must
move along the perimeters of the departments in the layout and not
through the middle of them. This distance metric is known as the con-
tour distance (Norman et al., 1998; Norman et al., 2001; Sinriech and
Edouard, 1996; Sinriech and Tanchoco, 1995; Sinriech and Tanchoco,
1997). The contour distance represents a more realistic estimate of how
material moves along aisles through an actual facility than either the
rectilinear or Euclidean distance metrics that run between department
centroids. Initially, it is assumed that each department can have an un-
constrained number of material entry and exit points and block layouts
are constructed to minimize the total material travel distance.

Due to the structure of the contour measure the set of candidate
I/0 points for a department can be limited to the locations where that
department intersects the corner of any of its adjacent departments, as

Design of Production Facilities 313

proven in (Norman et al., 2001). Using the example of Figure 12.1, the
candidate I/O points include all of the shaded circles in the left portion
of the figure. To clarify the contour distance measure, if the I/Os used
were as shown on the right, the material will traverse over the perimeters
shown by the dashed line.

Figure 12.1. A flexible bay block layout with candidate I/O points (left) and implied
flowpaths for selected I/O points (right)

When each department can have an unconstrained number of I/O sta-
tions the interdepartmental aisle travel distances can be found by formu-
lating the problem as one of finding the shortest path on a network. All
of the arc lengths in the resulting shortest path problem will be positive
since they represent physical distances. The shortest path problem with
positive arc lengths has been well studied in the network optimization
literature and efficient algorithms exist for solving this problem (Ahuja
et al.,, 1993). This makes it possible to quickly evaluate the actual aisle
travel distance for each layout that is generated during the search pro-
cess. The objective function of the integrated optimization is:

n n
Z(M) =Y > CF;;dij +m*(Zseas — Zan) (12.2)

=
where mis the number of departments in layout II which violate
the aspect ratio constraint, Zyeqs is the objective function value for the
best feasible solution found so far, and Z,y; is the unpenalized objective
function value for the best solution found so far. The penalty function
is a variation of the adaptive one by Smith and others (Coit and Smith;
Coit et al., 1996; Smith and Tate, 1993). In this case d;; is defined as

314 EVOLUTIONARY OPTIMIZATION

the shortest rectilinear distance along departmental contours between
the 1/0 stations of departments ¢ and 7 as given by:

dij =min{d;jr;: k € Loc;, | € Locy} (12.3)

where Loc; and Loc; are the set of candidate I/0 locations for depart-
ments 4 and j, respectively, and d; x ;; is the shortest distance, following
the department contours, from candidate I/O location k of department
i to candidate I/O location ! of department 7.

The block layout GA works with a variable length encoding of the
layout where there is a one to one correspondence between each encod-
ing and each layout. The encoding is a permutation of departments
that specifies their order within the layout, with a concatenated string
indicating where the bay breaks within the permutation occur. For ex-
ample, the flexible bay layout of Figure 12.1 would be represented with
the following encoding:

GAFHBEKCLMIJD4711

where the last three characters indicate bay breaks after departments H,
K and L

The algorithm begins with a randomly generated initial population of
chromosomes. In each generation, crossover and mutation are applied
to create new solutions. Solutions are selected for crossover using a
rank-based quadratic method and the worst solutions are deleted during
each generation to maintain a constant population size. Tate and Smith
(1995) includes the details of these. Crossover is accomplished through
a variant of uniform crossover, where two parents create one offspring.
The department sequence is subject to uniform crossover with repair to
ensure feasible permutations. The bay structure is taken directly from
one parent or another with equal probability. The child is evaluated and
the worst solution from the current population is deleted and the child
solution is added to the population.

Crossover and mutation are performed independently of each other.
Mutation is performed by randomly selecting members of the current
population with both parents and offspring each having an equal prob-
ability of selection. Mutation consists of either permutation altering
(50%), or adding (25%) or deleting (25%) a bay. The permutation mu-
tation is inversion between two randomly selected departments. The
mutated solutions are evaluated and replace the worst solutions in the
current population.

Each new solution that is generated using crossover or mutation is
evaluated using the following evaluation procedure:

1 Determine the current facility design from the chromosome

Design of Production Facilities 315

2 Calculate the number of infeasible departments regarding the as-
pect ratio constraint

3 Construct a network of nodes corresponding to each department
in the design and its candidate I/O locations

4 Find the shortest path between each pair of nodes in the network

5 Sum the flow costs along the shortest path according to equation
2

The GA settings were the same as in (Tate and Smith, 1995): population
size of 10, mutation rate of 50% (5 mutants per generation) and number
of generations generated = 100,000.

Figure 12.2 compares the best Tate and Smith (1995) layout for the
classic 20 department Amour and Buffa problem (Armour et al., 1963)
using an aspect ratio constraint of 3 to the best one found using the
contour distance based algorithm of this section. The implicit centroid
to centroid aisles result in parallel paths that traverse departments, and
traffic through departments that would normally be unacceptable in
actual facilities while the contour distance metric with the selected 1/Os
is much closer to a workable physical design. More results can be found
in (Norman et al., 2001).

3. Design for Material Flow for a Single I/O
Point

A logical extension to the ideas presented in the previous section is
to consider the case where there are a limited number of I/O points for
each of the departments. First, a single I/O point per department is
considered by optimizing the I/O placement for a given block layout.
This problem can be modeled as a Mixed Integer Programming (MIP)
problem. Problem instances with 14 or fewer departments can be solved
with standard solvers such as CPLEX (1999). Unfortunately, the prob-
lems do not scale up readily so it is necessary to use heuristic methods
to solve larger problems. Two classes of heuristics have been developed
(Arapoglu et al., 1999) and these are now described in more detail.

The first is a constructive greedy heuristic that temporarily assigns
flows to different I/O locations in the departments based on the data in
the from-to chart. The I/O location for one department is fixed and the
problem is resolved. This process is repeated until all of the departments’
I/0 locations are fixed. This solution is transformed to a local optimum
by perturbing the I/O locations for each department considering one
department at a time. The best perturbation is noted and the layout

316 EVOLUTIONARY OPTIMIZATION

2 i
16 = & =
20
9 17 M 8 -
9 6
19 ?
®
11 10
[] 13 e 18
15 14 3 .
1
6 5
11
18
2 12 17
4
5
©
8
19
9 10
20 } { 15 16
1 3 14
13

Figure 12.2. 1/0 points and implied flow paths (dashed) for the centroid rectilinear
distance mcasure (top) and the contour distance measure (bottom) for the Armour
and Buffa problem with a maximum aspect ratio constraint of 3.

is modified accordingly. This perturbation procedure is repeated and it
stops when there is no more improvement possible. The entire procedure
is quite fast and only requires seconds for problems with 50 departments.

The second heuristic utilizes a GA methodology to determine near-
optimal I/O assignments. A permutation encoding is used to represent
a given allocation of I/O locations to the departments. Each candidate
I/0 location is numbered (to a maximum of 2N — 2) and it is possi-
ble that two neighboring departments might use the same location as
their I/0. In that case the same I/O number is used to represent both
I/0s. The example below denotes the encoding corresponding to the lay-
out given in Figure 12.3 using the I/O numbering specified on the figure.

Department A B C D E F G H I J K L M
I/0 Locations 3 0 15 18 11 5 2 6

Design of Production Facilities 317

Figure 12.8. Candidate I/O points arbitrarily numbered with one selected for each
department.

The fitness of a given solution is the cost of the material flow between
each pair of departments using the selected I/O locations and the contour
distance metric.

The GA mechanisms were chosen based on experimentation, and al-
though this set provides superior performance, many other GA param-
eters and evolution mechanisms will provide similar performance. From
the old generation of 50, one parent is selected using a tournament of size
2 while the other parent is selected randomly from the population (ex-
cluding the parent already selected via the tournament). Biased uniform
crossover with probability of 1.0 is applied to produce one offspring, with
a preference of 0.70 for alleles from the fitter parent. Note that every
crossover produces a feasible allocation of I/O locations and thus, there
was no repair needed. This continues until 50 offspring are created each
generation.

The offspring are subject to mutation with a probability of 0.5. Every
allele is tested for mutation individually and independently with a pres-
elected mutation probability of 0.10. If an allele is chosen for mutation,
the new allele is selected randomly from the feasible I/O locations for
that department, not including the current value. Again, every muta-
tion results in a feasible allocation of I/O locations. A wide variety of
combinations of mutation probabilities were tried with the result that
the GA is very robust from mutation probabilities ranging from 0.05 to
1.0, however 0.5 is marginally better than the others.

The 50 mutated offspring are combined with 10 elite solutions from
the old population and sorted. The top 50 solutions are kept to form the

318 EVOLUTIONARY OPTIMIZATION

new population. The GA is terminated after 500 consecutive generations
without any improvement in the best objective function value.

The relaxed MIP lower bound, the objective function results of the IP,
the constructive heuristic, and a summary of fiveruns GA are compared
in Table 12.1 for four versions of the Armour and Buffa (Armour et
al., 1963) 20 department problem. The GA was very consistent with
all seeds finding the optimal solution for each problem instance with a
known optimal solution except for the first instance. The best solution
of the GA equals or betters the constructive heuristic in every case,
although the amount of improvement varies.

A comparison of computational effort is germane. In Table 12.1, the
CPU times in seconds on a Sun Ultra Enterprise-2 workstation with dual
200Mhz Sparc CPUs are presented for the constructive heuristic and one
run of the GA. The IP, of course, took considerably more time for each
problem instance. The GA required about 50 times longer than the
constructive heuristic. A strategy balancing computational effort with
solution quality would use the constructive heuristic as an optimization
subroutine for most of the block layout design optimization and use
the GA as the optimization subroutine for the best few solutions of the
population in the later generations.

Table 12.1. Results Comparing GA with Constructive Heuristic,

Problem | Lower | Integer | Const | Best GA | Const GA
Bound | Program | Heur. | GA CV | Heur. CPU(s)
CPU(s)
A&B 1 223.17 | 344.82 357.02 | 345.89 | 0.01 | 0.14 9.61
A&B 2 202.19 | 334.94 345.68 | 334.94 | 0.00 | 0.17 7.95
A&B 3 391.39 | 461.42 497.32 | 461.42 | 0.00 | 0.20 8.20
A&B 4 315.47 | 441.87 490.45 | 441.87 | 0.00 | 0.27 9.42
4. Considering Intradepartmental Flow

In addition to constraining the number of I/O points in each depart-
ment it is also important to consider any intradepartmental flow patterns
that may exist. A first step, as described in detail in (Norman et al.,
2000), is to consider designs where there are separate input (I) locations
and output (O) locations. Consider departments E, G and N in Fig-
ure 12.4 where each exhibits a common type of intradepartmental flow
pattern. Department E has a U-shaped flow, department G has a linear
flow and department N has a circular flow. However, in departments E
and G the input point for the department is distinct from the output

Design of Production Facilities 319

point. Modeling this situation as one or two I/O locations would be
incorrect and could lead to designs that would not perform well in prac-
tice. It may also be necessary to include constraints that require that
the I location be on the opposite (or same) side of the department as the
O location as would arise in a linear (or U-shaped) layout. Little work
has previously been done investigating these intradepartmental flow pat-
terns but the methodology presented above can be adapted to handle
this additional consideration by adding constraints on the number and
location of 1/Os for each department.

I J K
-]
AlE {ejo e ™ —| | ——— V] (-
M 1 N 1y -
C > o ¢ !
TSN 4 «{4— >
: E : F G: H Y
AN ! — —
o . ¢ 1
S R_ N A)
Figure 12.4. UL and C type intrade- Figure 12.5. Variations of U, L and C
partment flows. flows.

Assumptions made in this section are that department locations have
already been determined (the block layout is chosen) and that the flow
pattern type for each department is known. It is assumed that for a
U-shaped flow, material enters the department at one corner and exits
at another corner. Given this assumption, there are eight different U-
shaped flow possibilities. The first row of Figure 12.5 shows four of these
and the other four can be constructed by reversing the flow directions
on each diagram. In a similar manner it is assumed that the linear flows
go from the midpoint of one side of the department to the midpoint of
the opposite side of the department as indicated in the second row of
Figure 12.5. Flows in a circular flow pattern enter and exit at the same
location as indicated in the third row of Figure 12.5. Theoretically,
the 1/0 location for a circular flow pattern could be anywhere on the
department perimeter but using the results discussed in section 2 only
the four corners and all locations where the department intersects either
the corner or midpoint of one side of any other department need to be
considered.

320 EVOLUTIONARY OPTIMIZATION

Potential I and O sites are numbered in a structured way. For any
department, point 1 refers to the bottom left corner of the department,
point 2 refers to the midpoint of the left side, point 3 refers to the
top left corner, points 4 and 5 refer to the midpoints of the bottom
and top edges respectively, and points 6, 7, and 8 refer to the bottom,
midpoint, and top of the right side of the department. Points 9 and
greater refer to any additional points where the department intersects
either the midpoints or corner points of a side of another department.
The numbering for points greater than or equal to 9 begins on the left
side of the department, then continues to the bottom of the department,
followed by the top and then the right side of the department. For a
U-shaped flow the I/O points can only be at locations 1, 3, 6, and 8
because these represent the four corner points (note only certain pairs
represent feasible U-shaped flows). For a linear flow the I/O points can
only be at locations 2, 4, 5, and 7 because these represent the midpoint
locations for each side. For a circular flow the I/O point can be at any of
the locations 1 to 8 or at locations 9 to p; where p; is dependent on the
physical layout of the departments. The number of candidate locations
can be reduced if the flow patterns for the departments adjacent to
department ¢ are known.

Once all candidate I and O locations have been determined for all
departments, the material flow network can be constructed. This net-
work consists of nodes at each department’s candidate I and O locations
and arcs consisting of the departmental edges connecting these nodes.
It is possible to determine the distance between the I and O locations
of each pair of departments by solving a shortest path problem on the
underlying network (Ahuja et al., 1993). These distances represent the
contour distances for moving material between departments.

In the GA, chromosomes consist of genes that carry the necessary in-
formation about the I/O points for each department. A chromosome has
n genes for a layout with n departments where each gene corresponds to
a department. Shown below is an example chromosome with five genes
corresponding to the I/O pairs for each of five departments in a layout.

Chromosome (4,4; 6,1; 3,8; 5,4; 7,2)

Department 1 2 3 4 5
Input 4 6 3 5 7
Output 4 1 8 4 2

The first department has its I point at node 4 in the layout and its
O point at node 4 in the layout. Thus, any flow to department one will
enter via node four and will exit via node four. The other genes have

Design of Production Facilities 321

the same structure and meaning. It is necessary to select I/O points
in such a way that they form a feasible pair by representing one of the
three flow pattern types. For example, the pair (1,2) would never be
permitted since this does not represent any of the flow pattern types.

Creating a set of feasible lists for each flow pattern type solves the
feasibility problem that may arise when creating random I/O pair as-
signments. These lists are used in the GA when there is a need to create
a random I/O assignment. For example, if department 2 has an L flow
pattern type then it can only have one of the four I/0O assignments shown
in Figure 12.5. Note that the number of C candidate I/O assignments
will vary from department to department.

A population size of 150 was used as was an elitist strategy where the
best 30% are copied exactly from one generation to the next. The GA
uses the same selection and biased uniform crossover earlier described.
The rate of mutation is governed by two parameters. First, 10% of the
population undergo mutation. Second, in a member of the population
that is selected for mutation, 10% of the alleles are changed. If the I/O
pair is changed for departments with flow type C or L the new I/O pair is
randomly generated from the candidate list of I/O pairs and is required
to be different from the current I/O pair. If a department with flow type
U is mutated then either I or O, or both, are changed. The mutated
chromosome replaces the original chromosome in the new population.

Two layouts that utilize the flow data from the 20 department problem
of Armour and Buffa (Armour et al., 1963) were used to create 12 test
problems of single and mixed intradepartment flows. Results, over 10
runs of each problem, shown in Table 12.2 indicate that the GA provides
optimal or near optimal solutions regularly. Each GA run took less than
25 seconds of CPU time on a Sun Spare 20 workstation.

S. Material Handling System Design

Another aspect of improving facility design using an evolutionary ap-
proach is the choice of distance metric. This should depend on the
material handling system (MHS). The movement of an overhead crane
is best measured by the Tchebyshev distance metric (the maximum of
the movement in either the x or the y direction). However, fork trucks
and AGVs have to follow the aisle structure traveling around depart-
ments and should be modeled using the contour distance metric. For
other MHS, such as conveyors, a Euclidean distance metric is most ap-
propriate.

As in the work earlier in this chapter, it has been generally implicitly
assumed that the unit handling costs and the distance metric are the

322 EVOLUTIONARY OPTIMIZATION

Table 12.2. Results from intradepartmental flow test problem.

Problem || Flow Pattern [Optimal or GA

Best Known | MIN | MAX | AVG
AB-20-1 All C 3448 * 347.5 | 357.8 | 350.7
AB-20-1 AllU 440.1 440.1 | 4549 | 445.4
AB-20-1 || AIL 673.8 673.8 | 681.9 | 676.7
AB-20-1 Mixed 1 507.2 507.2 | 511.3 | 508.6
AB-20-1 Mixed 2 489.5 489.5 | 495.8 | 492.4
AB-20-1 Mixed 3 477.8 478.3 | 484.4 | 479.9
AB-20-2 || A1C 3349 * 335.1 | 3445 | 339.5
AB-20-2 AllU 432.2 432.2 | 434.0 | 4324
AB-20-2 || AlL 712.6 712.6 | 719.0 | 716.8
AB-20-2 || Mixed 1 518.2 518.2 | 525.2 | 520.3
AB-20-2 || Mixed 2 535.2 535.2 | 541.9 | 536.3
AB-20-2 || Mixed 3 543.0 544.3 | 549.7 | 546.0

*

indicates the optimal solution was verified using CPLEX

same for all flows within a facility. But in real-life problems, handling
costs differ for different MH devices, and similarly, different materials
and departments are best served by different MH systems. In the novel
formulation of (Smith et al., 2000) the total material handling cost for
a block layout is expressed as follows:

m n n
Total Cost = Z Z Z (i FijUrij + Iiiz) (12.4)
k=1 i j#i
where,

dy;; distance between departments 4,7 using the prespecified metric
for MHS type %

Fi; volume of material flow between departments 4, j

Uk unit handling cost when MHS type k is used

Iy;; first cost when MHS type & is used

n number of departments

m number of types of MHS

This optimization problem was solved with the same GA that was
introduced in section 2 with a population size of 20 and a mutation rate
of 0.5. Selection, crossover and mutation are the same as in section 2.

Test problems were adapted from the well-known 10-department van
Camp test problem (van Camp et al., 1991) using an aspect ratio con-

REFERENCES 323

straint of 3. The flow volumes between departments are taken from
original test problem and a distance metric (material handling device)
was randomly assigned for each flow according to three sets of probabil-
ities specified below:

s 50% Euclidean, 25% rectilinear, 25% Tchebyshev
m 25% Euclidean, 50% rectilinear, 25% Tchebyshev

= 25% Euclidean, 25% rectilinear, 50% Tchebyshev

First and unit costs were developed tor each MHS. tor Euclidean,
these are 75 and 1.2, respectively. For rectilinear, they are 15 and 1.5,
respectively and for Tchebyshev, they are 100 and 0.75, respectively. The
best layouts over ten random number seeds are shown in Figure 12.6.
Note that the type of MHS strongly affects block layout and flowpaths.
Also note that the distance metrics assume movement between depart-
ment centroids. A next step is to link this idea of heterogeneous MHS
with the contour distance metric and I/O placement methods discussed
in the previous sections.

6. Concluding Remarks

Facility design is a difficult problem and one that has not received
enough support from the literature, primarily because of the computa-
tional challenges. With the advent of powerful metaheuristics coupled
with great improvements in computational speed and capacity, a new
generation of analytic tools for facility design is possible. This chapter
has described several methods for formulating and solving more realistic
versions of the facility design problem. Each method includes evolution-
ary computation as a primary optimisation method. These approaches
can be utilised together or individually depending on the problem to
be solved and the amount of computational effort allowed. These ap-
proaches allow for an integration of block and detailed design, and in-
clusion of the important factors of flow within departments and material
handling device used for each flow.

Acknowledgments

The authors gratefully acknowledge U.S. National Science Foundation
grant DMI-990832 for supporting this research.

324 EVOLUTIONARY OPTIMIZATION

-0

______ ra

(?')w
ST
@t

50% E, 25% R, 25% T.

@_O— =43 ®
(i)_ }

_Qm 7 @ 7l @

25% E, 50% R, 25% T.

ik

(Dl FoSio

25%E, 25% R, 50% T.

Figure 12.6. Layouts when considering different material handling devices within a
single facility.

References

Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. (1993). Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Upper Saddle,
NIJ.

Armour, G. C. and Buffa, E. S. (1963). A heuristic algorithm and simula-
tion approach to relative allocation of facilities. Management Science,
9, 294-309.

REFERENCES 325

Arapoglu, R. A., Norman, B. A. and Smith, A. E. (1999). Locating Input
and Output Points in Facilities Design: A Comparison of Construc-
tive, Evolutionary and Exact Methods. Technical Report, 99-1, Dept.
of Industrial Engineering, University of Pittsburgh, to appear /IEEE
Transactions on Evolutionary Computation.

Bazaraa, M. S. (1975). Computerized layout design: A branch and bound
approach. AIIE Transactions, 7(4), 432-438.

Bos, J. (1993). Zoning in forest management: a quadratic assignment
problem solved by simulated annealing. Journal of Environmental
Management, 37, 127-145.

Cohoon, J. P. and Paris, W. D. (1987). Genetic placement. /[EEE Trans-
actions on Computer-Aided Design, 6, 956-964.

Coit, D. W. and Smith, A. E. (1996). Penalty guided search for reliability
design optimization. Computers and Industrial Engineering, 40, 895-
904.

Coit, D. W., Smith, A. E. and Tate, D. M. (1996). Adaptive penalty
methods for genetic optimization of constrained combinatorial prob-
lems. INFORMS Journal on Computing, 8, 173-182.

CPLEX Optimization Inc.. CPLEX 6.0 User Documentation, 1999, web:
www.cplex.com.

Elshafei, A. N. (1977). Hospital layout as a quadratic assignment prob-
lem. Operational Research Quarterly, 28, 167-179.

Foulds, L. R., Gibbons, P. B. and Giffin, J. W. (1985). Facilities layout
adjacency determination: An experimental comparison of three graph
theoretic heuristics. Operations Research, 33, 1091-1106.

Foulds, L. R. and Robinson D. F. (1976). A strategy for solving the plant
layout problem. Operational Research Quarterly 27, 845-855.

Foulds, L. R. and Robinson D. F. (1978). Graph theoretic heuristics
for the plant layout problem. International Journal of Production Re-
search, 16, 27-37.

Hassan, M. M. D., Hogg, G. L. and Smith, D. R. (1986). Shape: A
construction algorithm for area placement evaluation. International
Journal of Production Research, 24, 1283-1295.

Imam, M. H. and Mir, M. (1993). Automated layout of facilities of un-
equal areas. Computers and Industrial Engineering, 24, 355-366.

Kusiak, A. and Heragu, S. S. (1987). The facility layout problem. Euro-
pean Journal of Operational Research, 29, 229-251.

Meller, R. D. and Bozer, Y. A. (1996). A new simulated annealing al-
gorithm for the facility layout problem. International Journal of Pro-
duction Research, 34, 1675-1692.

326 EVOLUTIONARY OPTIMIZATION

Meller, R. D. and Gau, K.-Y. (1996). The facility layout problem: Re-
cent and emerging trends and perspectives. Journal of Manufacturing
Systems, 15, 351-366.

Montreuil, B. and Ratliff, H. D. (1989). Utilizing cut trees as design
skeletons for facility layout. IIE Transactions, 21, 136-143.

Montreuil, B., Venkatadri, U. and Ratliff, H. D. (1993). Generating a
layout from a design skeleton. IIE Transactions, 25, 3-15.

Norman, B. A., Smith, A. E. and Arapoglu, R. A. (1998). Integrated
facilities layout using a perimeter distance metric. Parallel Problem
Solving from Nature (PPSN V) (A. E. Eiben, T. Baeck, M. Schoe-
nauer and H.-P. Schwefel, editors), Lecture Notes in Computer Science
1498, Springer-Verlag, Berlin, Germany, 937-946.

Norman, B. A., Smith, A. E. and Arapoglu, R. A. (2001). Integrated
facilities layout using a perimeter distance measure. I[IE Transactions,
33, 337-344.

Norman, B. A., Smith, E. A., Yildirim, E. and Tharmmaphornphilas,
W. (2000). An Evolutionary Approach to Incorporating Intradepart-
mental Flow into Facilities Design. Technical Report 00-02, Dept. of
Industrial Engineering, University of Pittsburgh, 2000, to appear Ad-
vances in Engineering Software.

Sinriech, D. and Edouard, S. (1996). A genetic approach to the material
flow network design problem in SFT based systems. Proceedings of
the Fifth IE Research Conference, 411416.

Sinriech, D. and Tanchoco, J. M. A. (1995). An introduction to the seg-
mented flow approach for discrete material flow systems. International
Journal of Production Research, 33, 3381-3410.

Sinriech, D. and Tanchoco, J. M. A. (1997). Design procedures and im-
plementation of the segmented flow topology (SFT) for discrete man-
ufacturing systems. HE Transactions, 29, 323-335.

Smith, A. E., Ozdemir, G., and Norman, B. A. (2000). Explicitly in-
corporating multiple material handling systems within block layout
design. Material Handling Research Colloquium, Material Handling
Institute of America, June 2000, CD Rom format.

Smith, A. E. and Tate, D. M. (1993). Genetic optimization using a
penalty function. Proceedings of the Fifth International Conference
on Genetic Algorithms, 499-505.

Tarn, K. Y. (1992a). Genetic algorithms, function optimization, and fa-
cility layout design. European Journal of Operational Research, 63,
322-346.

Tam, K. Y. (1992b). A simulated annealing algorithm for allocating
space to manufacturing cells. International Journal of Production Re-
search, 30, 63-87.

REFERENCES 327

Tate, D. M. and Smith, A. E. (1995). Unequal-area facility layout by
genetic search. IIE Transactions, 27, 465-472.

Tompkins, J. A. (1997). Facilities planning: A vision for the 21st century.
IIE Solutions, August 1997, 18-19.

van Camp, D. J., Carter, M. W. and Vannelli, A. (1991). A nonlinear
optimization approach for solving facility layout problems. European
Journal of Operational Research, 57, 174-189.

Welgama, P. S. and Gibson, P. R. (1996). An integrated methodology
for automating the determination of layout and materials handling
system. International Journal of Production Research, 34, 2247-2264.

Yeh, [.-C., (1995). Construction-site layout using annealed neural net-
work. Journal of Computing in Civil Engineering, 9, 201-208.

Ziai, M. R. and Sule, D. R. (1991). Computerized facility layout design.
Computers and Industrial Engineering, 21, 385-389.

This page intentionally left blank

Chapter 13

VIRTUAL POPULATION AND
ACCELERATION TECHNIQUES FOR
EVOLUTIONARY POWER FLOW
CALCULATION IN POWER SYSTEMS

Kit Po Wong and

An Li

Abstract

Keywords:

This paper first introduces the concept of virtual population for the
formation of high quality chromosomes or individuals in a population.
It then describes the numerical acceleration and analytical acceleration
techniques for the creation of the virtual population. The new concept
and the developed acceleration techniques are embedded into the stan-
dard GA algorithm to form the Accelerated Genetic Algorithm (AGA).
The power and usefulness of the new concept and techniques are demon-
strated through the applications of AGA to solving the Branin RCOS,
De Jong 1 and Colville problems. The load flow problem in power
systems is then introduced. The new techniques developed are incorpo-
rated in a constrained genetic algorithm based load flow algorithm. The
enhanced algorithms are then applied to solving the load flow problem
of the Klos-Kerner power system under very heavy-load condition.

genetic algorithm, optimisation, power system, load flow

1. Introduction

Evolutionary computation offers several algorithms for solving optimi-
sation problems. These algorithms consist of Genetic Algorithms (GAs),
Evolutionary Programming (EP) and Evolutionary Strategies (ES) (Hol-
land, 1975; Goldberg, 1989). These approaches are adaptive and have
the ability to determine the global optimum solution. They can be taken
as search techniques based on an analogy with biology in which a group
or population of solutions evolves generation by generation through nat-
ural selection. In their implementations, for the GA case for example,

330 EVOLUTIONARY OPTIMIZATION

a population of candidate solutions, which are referred to as chromo-
somes, evolves to an optimum solution through the operation of genetic
operators consisting of reproduction, crossover, and mutation.

There are many factors affecting the robustness and speed of the evo-
lutionary optimisation algorithms. A basic factors are the size of the
population of chromosomes in GA or individuals in EP and the number
of generations. However, when the population size is increased more
than its minimum size, the computation time for the evolution process
to find the optimum solution can be increased if the number of gener-
ations required for obtaining the optimal solutions cannot be reduced
sufficiently. Here the minimum population size is defined as the mini-
mum size required by the algorithm to find the global optimum solution
for any number of trials. The minimum population size can be reduced
by forming high quality chromosomes in a population.

This paper first introduces the concept of virtual population for the
formation of high quality chromosomes in a population. It then devel-
ops two kinds of solution acceleration techniques, namely numerical and
analytical acceleration techniques, for forming and processing the vir-
tual population. While the new concept and the acceleration techniques
are applicable to all the evolutionary optimisation algorithms, they are,
in this paper, embedded into the standard GA algorithm to form the
Accelerated Genetic Algorithm (AGA). The effectiveness and power of
the new concept and techniques are demonstrated through the applica-
tions of AGA to the Branin RCOS, De Jong 1 and Colville problems
(Michalewicz, 1996).

Turning to the operation and planning of power systems, it is required
to determine the voltage profile and power flow in the network system
under some specified loading conditions. This problem is called the
load flow or power flow problem and is a very fundamental problem
for power system operation and planning engineers. It is well-known
that under very heavy-load condition, conventional method based on
Newton-Raphson method can fail to find the load flow solution due to
the singularity of the system Jacobian matrix. By treating the load
flow problem as an optimisation problem, the authors have developed a
constrained GA load flow (CGALF) (Wong et al., 1997) algorithm, which
is capable of determining the load flow solution when the power system
is operating at its ceiling operation point. However, its computational
efficiency needs to be greatly improved.

To enhance the robustness and reduce the computational requirement
of CGALF, the solution acceleration techniques developed in this paper
are incorporated into this algorithm to form two algorithms CGALFA
and CGALFB. For the purposes of demonstrating and comparing the

Virtual Population and Acceleration Techniques 331

power and the performance of CGALFA and CGALFB, application stud-
ies performed on the Klos-Kerner 11-node system are presented in the
paper. The Klos-Kerner test systems are adopted in the present work
because it is a practical system and is of particular interest when it is
under the heavy-load condition. CGALFB has been found to be very
powerful, robust and efficient.

2. Concept of Virtual Population

The standard GA will be taken as the reference in the following sec-
tions. A virtual population consists of the current population of can-
didate solution chromosomes and a number of new populations derived
from the current population as shown in Fig. 13.1. The use of the virtual
population will enable a new population with sufficient diversity to be
formed particularly in the early stage of the evolutionary process. This
offers an efficient way to prevent premature convergence from happen-
ing. In Fig. 13.1, the new populations A to N are derived from the
current population by solution acceleration techniques to be developed.
From the populations in the virtual population, chromosomes are to be
selected to form the resultant population as shown in Fig. 13.1.

population Al population B + =« =+t = population N

virtual population

Figure 18.1. Formation of virtual and resultant populations of candidate solutions

While Fig. 13.1 shows a scheme for forming the new populations A
to N through the use of solution acceleration techniques, there can be
other possible ways to establish the new populations. An example of this

332 EVOLUTIONARY OPTIMIZATION

is to form population B by applying a solution acceleration technique to
the combined current population and population A.

3. Solution Acceleration Techniques
3.1 Numerical Solution Acceleration

To implement the scheme shown in Fig. 13.1 or its variants, efficient
solution acceleration techniques must first be developed. Some solution
acceleration techniques have previously been employed in conventional
iterative methods for determining the solutions of unknown variables in
a set of simultaneous equations. In the power system field, an acceler-
ation method was designed and embedded in the iterative Gauss-Siedel
method (Grainger and Stevenson, 1994) for solving the load flow prob-
lem. In that method, the accelerated solution of variable at the pth
iteration is estimated from its solutions at the pth and the (p — 1)th
iterations according to

2bo = 2Pt + a(a? — zP71) (13.1)

where « is a constant coefficient. When « is unity, there is no solu-
tion acceleration. The acceleration mechanism is initiated by setting
the value of « to a value greater than unity. For most electric power
networks, « has been found experimentally to be about 1.6. A similar
method has been designed for the iterative Newton-Raphson method to
find the solutions for ill-conditioned load flow equations. In this case, the
value of « is found by solving a cubic equation (Iwamoto and Tamura,
1981).

Based on the solution acceleration concept in the above technique,
the authors have developed a solution acceleration methodology (Wong
and Li, 1997) for improving the convergence characteristics of genetic al-
gorithms. In that method, it is assumed that the best solution Vi, in
the current population P is the closest solution to the global optimum.
If the assumption holds, then searching the solution space in the neigh-
bourhood of the best candidate solution will produce solutions closer to
the global optimum. This can be implemented by updating the other
candidate solutions in population P according to the expression below.

Vacc = Vbest +)‘(Vbest - V) (13'2)

where V is a candidate solution in the current population and V., is
the accelerated V. Parameter A is the acceleration factor, its value is
in the range of O to 1. Fig. 13.2 gives a graphical interpretation to this

Virtual Population and Acceleration Techniques 333

solution acceleration method.

Vac

optimum

(1 Videt
-Av

A J

Figure 18.2. Graphical interpretation of the numerical solution acceleration method

3.2 Analytical Solution Acceleration

While the acceleration method developed in the last section is numer-
ical, analytical acceleration techniques based on gradients can also be
established. One example of the analytical acceleration techniques is to
use the derivatives of the objective function to be optimised as a solution
accelerator. Consider the following unconstrained optimisation problem:

min f(’l)l,vz, ...,’UN) (13.3)

The accelerated candidate solution, Vg, is formed by accelerating the
old candidate solution V using its gradient according to

Vacc =V + .U'U[f(vbest) - f(V)] (13'4)

where V = [v1,v2, ..., oy}t U =[1,1,..., 1]}, Vi is the best candidate
solution in the current population, and u is a matrix of derivatives given
in the following:

334 EVOLUTIONARY OPTIMIZATION

The matrix p will be the inverse of a Jacobian matrix when the problem
described by equation (13.3) consists of N independent equations with
N variables.

4. Accelerated GA and Acceleration Schemes

The utilisation of the different acceleration methods such as those de-
scribed in Section 3 to form the new populations A to N in the virtual
population will provide more diversity of the chromosomes that the evo-
lutionary process requires for determining the global optimal solution.
By incorporating the virtual population scheme in Fig. 13.1 and the
solution acceleration techniques into the standard GA algorithm, an ac-
celerated GA (AGA) can be formed. In AGA, the 2-point crossover and
uniform mutation methods are used. The probability of crossover is 0.9
and that of mutation is 0.01. The Roulette Wheel selection scheme is
adopted.

The following four schemes are designed and used to form the resul-
tant population from the current population using the concept of virtual
population and the developed solution acceleration techniques:

Scheme (a)
The current population is accelerated using the numerical acceleration
method in Section 3.1. This scheme is denoted by the symbol (C' = N);

Scheme (b)
The current population is accelerated using the analytical acceleration
method in Section 3.2. This scheme is denoted by the symbol (C = A);

Scheme (c¢)

The population obtained in scheme (a) is further accelerated using the
analytical acceleration method as in scheme (b) to form the resultant
population. This scheme is denoted by the symbol (C' = N = A);

Scheme (d)

The candidate solutions in the populations found in schemes (a) and (b)
are ranked according to their fitness. The best £ solutions are selected
to form the resultant population of size k. This scheme is denoted by
the symbol (C = NUC = A).

In the above schemes, scheme (a) which employs only the numeri-
cal acceleration has resently been reported in (Wong and Li, 1997). It
represents the most recent accelerated genetic algorithm and has been

Virtual Population and Acceleration Techniques 335

applied to the load flow problem of practical power systems (Wong et al.,
1997) including the IEEE 118-node power system. This scheme has also
been incorporated into EP for solving the environmentally-constrained
economic dispatch problem in the operation of power systems (Wong
and Yuryevich, 1998). The new schemes (b)-(d) will be compared with
scheme (a) in the present application studies.

5. Validation of Methods

The AGA was applied to solving the Branin RCOS, De Jong 1 and
Colville problems (Michalewicz, 1996). In solving these problems, the
four schemes described in Section 4 were used. AGA was executed on a
Pentium Pro 200 computer for a total of 100 trials with each of the four
schemes. In each trial, the maximum number of generations is 500. For
all trials, the probability of crossover is set to 0.9 and the probability of
mutation is set to 0.01.

Table 13.1. Performance Evaluation
[Branin RCOS [De Jong 1 | Colville

Scheme [Sin Z E | Smin g E | Smin £)
a 120 2.00 240.00 30 18.09 542.70 - -
b 30 5.06 151.80 26 6.28 163.28 200 249.94 49988
c 20 3.00 60.00 22 4.00 88.00 200 30.19 6038
d 30 3.20 96.00 30 5.92 177.60 200 31.34 6268
Sin : minimum population size

g : average number of executed generations per trial
E : number of evaluations = Spin*

The results at the minimum population size found for each scheme
are tabulated in Table 13.1. The definition of minimum population size
has been given in Section 1. The associated average execution times in
Table 13.2 are over 100 trials. The results in Table 13.1 show that the
earlier acceleration method (Wong and Li, 1997), scheme (a), cannot
solve the Colville problem. While it can solve the Branin RCOS and De
Jong 1 problems, it requires a bigger minimum population size Sy, and
a larger number of evaluations E than the new schemes (b) - (d).

Table 13.2. Average execution time (second) per trial
Scheme Branin RCOS DeJong1 Colville
a 0.004210 0.013730 -
b 0.004110 0.004510 1.271270
c 0.002400 0.002900 0.163540
d 0.009710 0.020020 3.397990

336 EVOLUTIONARY OPTIMIZATION

Amongst all the new schemes, scheme (c) is the best because it re-
quires (i) the least minimum population size and much lower number of
evaluations for solving the Branin RCOS and De Jong 1 problems and
(i) the lowest number of evaluations for solving the Colville problem.
While the number of evaluations can be a good index for indicating
the performance of the schemes, the average executing time per trial
is another important index. Scheme (c¢) requires the least computing
time. For the Colville problem, it takes only 4.8 % of the computing
time needed by scheme (d) and only 129 % of that of scheme (b). The
behaviour of schemes (¢) can be examined further by applying it to
problems described by sets of simultaneous equations instead of a single
function with multiple variables as in the present studies. For complete-
ness, the value of A in equation 13.2 employed in schemes (a), (¢) and
(d) for the three problems are tabulated in Table 13.3.

Table 13.3. Value of acceleration coefficient A
Scheme Branin RCOS De Jong 1 Colville
a 0.2 0.3 -
b - - &
c 0.2 0.3 1.0
d 0.2 0.3 1.0

The standard GA was also applied to solving the three test problems.
However, it cannot solve the Colville problem for a population size of
200 although it can deal with the Branin RCOS and De Jong 1 problems
with success rates of 29% and 52% respectively. The average number of
generations needed by standard GA for these two cases are 404 and 394
respectively. The standard GA is extremely inferior to AGA with any
of the acceleration schemes (a)-(d).

6. Further Improvement: Refined Scheme (¢)

While scheme (c) has been found above to be the best scheme amongst
schemes (a) - (d), its computational speed can be further reduced by
refining it using the following procedure:

Instead of accelerating all the chromosomes in the population obtained
in scheme (a) using the analytical acceleration method, only a percent-
age of the best chromosomes is accelerated. While this retains the power
of the analytical acceleration method, this also reduces the computing
time. The accelerated chromosomes and the remaining chromosomes in
the original population combine to form the resultant population. For

Virtual Population and Acceleration Techniques 337

convenience, this procedure is referred to as Refined Scheme (c). Apply-
ing Refine Scheme (c) to the Branin RCOS and De Jong F1 problems,
it has been found experimentally that only between 20% and 40% of
the chromosomes need to be accelerated analytically and the average
execution time per trial is 0.001673 sec and 0.002438 sec. respectively.
Comparing the execution times in row 4 of Table 13.2, it can be observed
that there is a large execution time reduction in the Branin RCOS case
and some execution time reduction in the De Jong FI case. For the
Colville problem, the range of percentage found is from 30% to 60%
and the average execution time per trial is 0.034588 sec. Comparing
to 0.16354 sec. as shown in Table 13.2 for the 100% case, that is, the
original scheme (c), there is a very large reduction in execution time.
These results show the effectiveness of the Refine Scheme (c).

7. The LLoad Flow Problem in Electrical Power
Networks

The load flow or power flow problem can be described mathematically
as follows. Consider there are a total number of N nodes in a power
system. At any node ¢, the nodal active power, F; , and reactive power,
Qi, are given by:

N

Jj=1 j=1

N
Q: =F, Z(GUE BiFj) — E; Y (Gi;F; + By Ey) (13.6)
j=1 ij=1

where G;; and Bj; are the (i, j)th element of the admittance matrix. E;
and £; are real and imaginary parts of the voltage at node ¢. If node ¢
is a PQ-node where the load demand is specified, then the mismatches
in active and reactive powers, AF; and AQ); respectively, are given by

AP, = |P? — P (13.7)

AQ; = Q" — Qi (13.8)

in which P? and Q;¥ are the specified active and reactive powers at
node 4. When node i is a PV-node, the magnitude of the voltage, V;*
and the active power generation at ¢ are specified. The mismatch in
voltage magnitude at node i can be defined as

338 EVOLUTIONARY OPTIMIZATION
AV, = [V — V) (13.9)

and the active power mismatch is given in eqn. (13.7). In eqn. (13.9), V;
is the calculated nodal voltage at PV-node ¢ and is given by

Vi = \/E} + F? (13.10)

The unknown variables in this problem are (i) the voltages at the PQ-
nodes and (ii) the real and imaginary parts of the voltages at the PV-
nodes and the reactive powers of the generators connected to the PV-
nodes. It is required to determine the values of the variables such that
the mismatches in eqns. (13.7) - (13.9) are zero.

Apart from solving the load-flow problem by the conventional meth-
ods, the problem can be viewed as an optimisation problem, in which
an objective function H is to be minimised. The objective function can
be defined as the total mismatch and be expressed as

H= Y |P?P-PP+ > QP — Qif” + > VP — i)
kENpg+Npy k€Npg ke Ny,
(13.11)

where Npq , Npy are the total numbers of PQ-nodes and PV-nodes re-
spectively. When the power flow problem is solvable, the value of H is
zero or in the vicinity of zero at the end of the optimisation process. If
the problem is unsolvable, the value of H will be greater than zero. The
square root of H can be regarded as the minimum distance between the
solution point in the unsolvable region and the boundary of the solvable
region.

8. Accelerated Constrained Genetic Algorithms
for Load Flow Calculation

A constrained-GA load flow (CAGLF) algorithm (Wong et al., 1997)
has been developed by the authors for minimising the objective func-
tion in eqn. 13.11 for the load flow problem. The pseudo code of the
algorithm is described in Table 13.4 below.

The details of the constraint satisfaction technique in the CGALF al-
gorithm can be found in Wong et al. (1997). Central to the constraint
satisfaction technique is to the modification of the network nodal volt-
ages in the chromosomes according to the constraint voltage expressions

Virtual Population and Acceleration Techniques 339

which are derivable from eqns. 13.5 - 13.10 and by setting the mis-
matches in eqns. 13.7 - 139 to zero. To improve the robustness and
computational speed of CGALF, the Refine Scheme (c) has been incor-
porated into CGALF to form the CGALFB algorithm. In CGALFB only
25% of the chromosomes in the population are accelerated analytically.
For comparison purposes, scheme (a) is also incorporated in CGALF
to form the CGALFA algorithm. The performances of CGALFA and
CGALFB are illustrated in the next section by their applications to the
Klos-Kerner 11-node power system (Klos and Kerner, 1975).

9. Klos-Kerner 11-Node System Studies

Fig, 13.3 shows the Klos-Kerner 11-node (KK11) test system. Node
1 is the slack node at a voltage level of 1.05 p.u. and nodes 5 and 9 are
PV nodes with target voltages of 1.05 p.u. and 1.0375 p.u. respectively.
The network data of KK11 are given in Table 13.5. The system loading
condition is very heavy and is given in Table 13.6.

Under the given heavy-load condition, in Reference (Klos and Kerner,
1975), Klos and Kerner presented two very near normal solutions, the
nodal voltage solutions of which only differ in the third or fourth deci-
mal place. However, the total squared mismatch of the two solutions are
0.058745 and 0.058730. If 0.001 p.u. on 100 MVA base is assumed to
be the solution tolerance, the active and reactive power mismatches at
the nodes are greater than this tolerance. These power mismatches are
therefore too high and the two near normal solutions found by Klos and
Kerner under the specified loading condition may not be valid. ~ This
test case has been presented to a Newton-Raphson Load Flow (NRLF)
program. Using 0.001 p.u. on 100 MVA base as the tolerance for the
power mismatch and 0.001 p.u. voltage as the tolerance for voltage mis-

Table 18.4. Pseudo code of the CGALF algorithm Set the generation

Set the generation counter g to 0;
Initialise population of chromosomes P(g) at generation g;
Evaluate fitness of chromosomes in P(g);
While notterminate {
Generate P(g + 1) from P(g);
Update P(g + 1) using the constraint satisfaction technique;
Accelerate P(g + 1) using acceleration techniques g = g + 1;
Evaluate fitness of chromosomes of P(g);
Store fittest chromosome;

}

340 EVOLUTIONARY OPTIMIZATION

B R R TR

4L L g..
v 3 v ? .

Figure 13.3. KKI11 test system

Table 13.5. Network data of the KK 11 test system

Node Connection Series Impedance Shunt Admittance
(sending) (receiving) (p.u.) (p.u.)
1 2 0.00250 0.0188 0.640
1 10 0.00500 0.0375 1.280
2 3 0.00125 0.0125 0.258
2 11 0.00625 0.0625 1.600
3 4 0.00375 0.0312 0.640
3 6 0.00438 0.0375 1.280
4 5 0.00312 0.0312 0.960
4 6 0.00312 0.0312 0.960
4 11 0.00188 0.0125 0.320
5 7 0.00625 0.0625 1.600
6 7 0.00625 0.0625 1.600
T 8 0.00125 0.0125 0.256
8 9 0.00188 0.0188 0.480
9 10 0.00125 0.0125 0.320
10 11 0.00312 0.0312 0.960

system power base is 100 MVA

match, NRLF fails to converge to a solution after 20 iterations and the
total squared mismatch H is 0.005687. Corresponding to the adopted
tolerance of 0.001 p.u., the value of H should be equal to or smaller than
0.000020. One possibility here is that the given loading condition leads
to the situation that the load-flow equation set is unsolvable. The sec-
ond possibility is that the given loading condition is at the steady-state
ceiling point of the system, that is at the saddle-nose bifurcation point,
at which the Jacobian matrix in NRLF is singular. The third possibil-

Virtual Population and Acceleration Techniques 341

Table 13.6. Specified generation, loads and nodal voltages for KK 11 test system

Node No. Vor 0;" i Q"
1) (pu) (deg) (pu) (pu)
1 1.05 [i] - -
2 - - -9.00 -2.00
3 - - -16.5095 -1.00
4 - - -25.00 -2.00
5 1.05 - 10.00 -
6 - - 0.00 0.00
7 - - -12.00 -0.80
8 - - -4.00 -0.50
9 1.0375 - 25.00 -
10 - - -8.00 -2.00
11 - - 9.00 6.30

ity is that this loading condition is near the saddle-nose point and the
Jacobian is nearly singular causing NRLF to diverge.

9.1 Results Obtained by CGALFA

The CGALFA algorithm developed has been applied to the system
under the specified heavy-load condition. The parameter settings for
executing CGALFA are as follows: The probability of crossover is 0.9,
the probability of mutation is 0.01, the population size is 100, and the
maximum number of generations or iterations is 100. The initial can-
didate solution chromosomes are formed randomly in the voltage range
from 0.0 p.u. to 1.2 p.u. and in the voltage phase angles range be-
tween 0° and —180°. These ranges are also employed in the mutation
operation.

Table 13.7. Best solution for the heavy-load case by CGALFA

Mismatches
Node No. ‘f‘ 9" ﬂp‘ &Q‘ EQ‘ H
(i) (p.u.) (deg.) (p-u.) (p-u.) (p.u.)

1.050000 0.000000 - - -0.000131
0.722943 -36.733223 -0.001387 -0.004189 -
0.712220 -57.940029 -0.005795 -0.002203 -
0.816123 -56.339577 -0.003992 -0.002477 -
1.050146 -40.259895 -0.004489 - -0.000146
0.816222 -54.381390 -0.003340 -0.002306 -
0.904489 -45.357384 -0.002360 -0.000367 -
0.920475 -34.486439 -0.001586 0.000821 -
1.037502 -15.482958 -0.000944 - -0.000002
0.964997 -20.607037 -0.000549 -0.000544 -
0.887599 -39.122875 -0.001139 -0.001696 -

0.000131

e
o= R N

342 EVOLUTIONARY OPTIMIZATION

The solution found by CGALFA is tabulated in Table 13.7. The total
squared mismatch is 0.000131 due to the voltage magnitude mismatch at
node 5 and the active and reactive power mismatches at the PQ nodes.
The fact that the voltage magnitude mismatch at node 5 is non-zero
indicates that the present load flow problem is unsolvable. Owing to the
insolvability of the problem, NRLF does not converge to a solution. It
follows that the two very near solutions given by Klos and Kerner (1975)
are not valid solutions. By reducing the original system load demand by
0.04% and by sharing the reduction evenly throughout all the PQ nodes
in the system, a ceiling point is found and the solution is unique subject
to the 0.001 p.u. tolerance. This solution is summarised in Table 13.8.
It is obtained at the 12th iteration where the total squared mismatch is
0.0000048.

Table 18.8. Best solution for the heavy-load case by CGALFA with 0.04% load
reduction

Mismatches

Node No. Vi &; AP AQ; AQ; H
(i) (p.u.) (deg.) (p.u.) (p.u.) (p.u.)
1 1.050000 0.000000 - - -
2 0.724861 -36.629562 -0.000299 -0.000759
3 0.714262 -57.727352 -0.000879 -0.000838
4 0.817576 -56.150093 -0.000944 -0.000234 -
5 1.050000 -40.104637 -0.000324 - 0.000000
6 0.817744 -54.203972 -0.000633 -0.000602 - 0.00000480
i 0.905111 -45.222538 -0.000387 0.000029 -
8 0.920962 -34.376129 -0.000500 -0.000191 -
9 1.037500 -15.398665 -0.000324 - 0.000000
10 0.965454 -20.534266 -0.000017 -0.000024 -
11 0.888948 -38.999729 -0.000476 -0.000302

The execution time is about 4.58 sec. per iteration on a Pentium 90
personal computer. However, out of 30 trials, CGALFA converged to the
solution only two times. Fig. 134 shows the convergence characteristic
of CGALFA in 100 iterations for this case. In comparison, NRLF fails to
converge to a solution at this revised loading condition. In addition, it
fails to converge until the original total loading of the system is reduced
by 0.05%.

9.2 Results Obtained by CGALFB

On applying the CGALFB algorithm to the KK11 test system under
the heavy-load condition but with the total system load demand reduced
by 0.04% as in the above case, the parameter settings for executing
CGALFB are the same as those for CGALFA in Section 9.1 above but

Virtual Population and Acceleration Techniques 343

with a population size of 50 which is half of the previous size. With
voltage magnitude range of 0.9 to 1.2 p.u. and phase range of 0.0 to
-30.0 deg. for the initialisation of the population and for mutation.
CGALFB took only an average of 9 iterations to converge and the results
are tabulated in Table 13.9. The computing time on a Pentium Pro 200
computer was .23 seconds per iteration on average. Out of 100 trials, all
trials converged to the solution. This study confirms that the CGALFB
algorithm is far superior to CGALFA in the quality of the solution and
convergence characteristics.

At 0.05% or more system load reduction, CGALFB takes 3 iterations
to converge to the solution when the population size is 50 and it takes
only 5 to 6 iterations with a population size of 4, which is also found to
be the minimum size. This performance cannot be achieved by CGALF
and CGALFA.

10. Conclusions

The concept of virtual population and numerical and analytical so-
lution acceleration techniques for improving the robustness of genetic
algorithms have been developed. This paper has also introduced a defi-
nition of the minimum population size. Four acceleration schemes plus
Refined Scheme (c) have been proposed and incorporated into GA to

R S e e g T i i o
|
1.00E+02 |

1.00E+01

1.00E+00

.00E-0X

[

.00E-02

-

.00E-03

Total squared mismatéh
-

=

.00E-04

[

.00E-05

-

.D0E-0& t { + t+ + +
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of iterations

Figure 13.4. Convergence characteristic of CGALFA

344 EVOLUTIONARY OPTIMIZATION

Table 13.9. Solution for the heavy-load case by CGALFB with 0.04% load reduc-
tion

Mismatches

Node No. Vi 8 AF; FaY# R FaY# P H
(i) (p.u.) (deg.) (pu.) (p.u.) (p.u.)
1 1.050000 0.000000 - - -
2 0.724098 -36.665249 -0.000322 -0.000970
3 0.713425 -57.805126 -0.000910 -0.000498
4 0.816968 -56.216946 -0.000984 -0.000608 -
5 1.050000 -40.158127 -0.000500 - 0.000000
6 0.817096 -54.267612 -0.000500 -0.000497 - 0.00000736
7 0.904844 -45.266586 -0.000594 0.000347 -
8 0.920765 -34.410599 -0.000819 -0.000348 -
9 1.037500 -15.423858 -0.000498 - 0.000000
10 0.965285 -20.555542 -0.000774 -0.000496 -
11 0.888394 -39.040169 -0.000815 -0.000360

form the AGA. AGA has been validated by applying it to the Branin
RCOS, De Jong F1 and Colville problems. The results have shown that
the acceleration scheme Refine Scheme (c) has the best performance.
This finding is applicable to other evolutionary optimisation algorithms.

By incorporating scheme (a) and Refine Scheme (c) in the CGALF
algorithm, CGALFA and CGALFB have been formed respectively. Us-
ing CGALFA, it has also been found that the solvability of the load
flow problem of KK11 under heavy-load condition can be achieved by a
reduction in load demand of 0.04%. CGALFA offers much better per-
formance than the Newton Raphson method as the latter method fails
to converge at the vicinity of the ceiling load point. The same appli-
cation studies have also been carried out using CGALF and CGALFB.
The results have shown that CGALF is inferior to CGALFA. They have
also shown that CGALFB is far superior to CGALFA in robustness and
convergence characteristics. This finding confirms the effectiveness and
power of the virtual population concept and acceleration methods, in
particular Refine Scheme (c) in Section 6, when applied to CGALF for
solving the load flow problem. CGALFB has also been applied to de-
termining the network loadability limit of some IEEE standard power
systems and the results can be found in Reference (Wong et al., 1999).

References

Goldberg, D. (1989). Genetic Algorithms in Search, Optimisation and
Machine Learning. Addison-Wesley.

Grainger, J. and Stevenson, J. (1994). Power System Analysis. McGraw-
Hill, Inc.

Holland, J. (1975). Adaption in Natural and Artificial Systems. Ann
Arbor: University of Michigan Press.

REFERENCES 345

Iwamoto, S. and Tamura, Y. (1981). A load flow calculation method for
ill-conditioned power systems. I[EEE Trans. on Power Apparatus and
Systems, PAS-100(4):1736-1743.

Klos, A. and Kerner, A. (July 1975). The non-uniqueness of load flow so-
lutions. Proc. 5th Power Sys-tem Computation Conf. (PSCC), Cam-
bridge, UK, V.3.1:1-8.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution
programs, 3rd rev. extended ed. Springer-Verlag.

Wong, K. and Li, A. (1997). A technique for improving the conver-
gence characteristic of genetic algorithms and its application to a
genetic-based load flow algorithm. Simulated Evolution and Learn-
ing, JH Kim, X. Yao, T. Furuhasi (Eds), Lecture Notes in Artificial
Intelligence 1285, 167-176.

Wong, K., Li, A., and Law, M. Y. (1997). Development of constrained
genetic-algorithm load-flow method. IEE Proc.-Gener. Transm. Dis-
trib., 144(2):91-99.

Wong, K., Li, A., and Law, M. Y. (1999). Advanced constrained-genetic-
algorithm load flow method. IEE Proc.-Gener. Transm. Distrib., 146(6):
609-616.

Wong, K. and Yuryevich, J. (1998). Evolutionary-programming-based
algorithm for environmentally-constrained economic dispatch. IEEE
Trans. on Power Systems, 13(2):301-306.

This page intentionally left blank

VIl

APPLICATION OF EAS TO THEORET-
ICAL PROBLEMS

This page intentionally left blank

Chapter 14

METHODS FOR THE ANALYSIS OF
EVOLUTIONARY ALGORITHMS ON
PSEUDO-BOOLEAN FUNCTIONS"

Ingo Wegener

Abstract Many experiments have shown that evolutionary algorithms are useful
randomized search heuristics for optimization problems. In order to
learn more about the reasons for their efficiency and in order to obtain
proven results on evolutionary algorithms it is necessary to develop a
theory of evolutionary algorithms. Such a theory is still in its infancy. A
major part of a theory is the analysis of different variants of evolutionary
algorithms on selected functions. Several results of this kind have been
obtained during the last years. Here important analytical tools are
presented, discussed, and applied to well-chosen example functions.

1. Introduction

Evolutionary algorithms are randomized search heuristics with many
applications, e.g., in optimization, adaptation, classification, control sys-
tems, or learning. Here we focus on optimization (for an overview on the
whole area we refer to Béck, Fogel, and Michalewicz, 1997; Fogel, 1995;
Goldberg, 1989; Holland, 1975; Schwefel, 1995). Despite the many suc-
cessful experiments with evolutionary algorithms a theory on evolution-
ary algorithms is still in its infancy. This holds in particular if one com-
pares the state of the art with the situation on problem-specific deter-

"This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Center “Computational Intelligence” (SFB 531).

350 EVOLUTIONARY OPTIMIZATION

ministic exact optimization algorithms (Cormen, Leiserson, and Rivest,
1990), deterministic approximation algorithms (Hochbaum, 1997), or
randomized optimization and approximation algorithms (Motwani and
Raghavan, 1995). One reason is that evolutionary algorithms have been
developed by engineers, while the other disciplines have been created by
theoreticians (leading sometimes to a lack of experimental knowledge).
Moreover, the fundamental idea of evolutionary algorithms is to obtain
robust problem-independent search heuristics with a good behavior on
many problems from a large variety of problems (this statement remains
true, although many evolutionary algorithms also use problem-specific
components). This variety of problems makes the analysis of evolution-
ary algorithms much harder than the analysis of problem-specific algo-
rithms (which often are designed in order to make an analysis possible).
Nevertheless, progress on the design and the application of evolutionary
algorithms will gain a lot from a theoretical foundation. Nowadays, we
are able to analyze evolutionary algorithms without crossover on many
functions and evolutionary algorithms with crossover on some functions.
The functions are not examples from real-world applications but exam-
ple functions describing some typical issues of functions (fitness land-
scapes) or are chosen to show some extreme behavior of evolutionary al-
gorithms. Also very strange functions can be useful in order to disprove
widely accepted conjectures or to show the differences between variants
of evolutionary algorithms. Altogether, we find a list of interesting the-
oretical results on evolutionary algorithms, in particular, during the last
years. The purpose of this contribution is to present some of the most
important tools for such results.

In Section 2, we discuss differences between discrete and non-discrete
state spaces and why we investigate the optimization of pseudo-boolean
functions f: {0,1}"* — R. The aim of an analysis of an evolutionary
algorithm is the investigation of certain performance measures. This
paper focusses on expected run times and the success probability within
reasonable time bounds. The reasons for this decision are presented in
Section 3. Since several example functions are used for different purposes
all these functions are defined in Section 4. The following three sections
show how tail inequalities (Section 5), the coupon collector’s theorem
(Section 6), and results on the gambler’s ruin problem (Section 7) can be
applied to the analysis of evolutionary algorithms. Another main idea is
to measure the progress of an evolutionary algorithm not with respect to
the considered fitness function but with some cruder scale. In Section 8
and Section 9, upper and lower bounds on the expected run time of
evolutionary algorithms are proved using levels based on intervals of
fitness values. The method of using so-called potential functions for the

Methods for the analysis of EAs on pseudo-boolean functions 351

analysis of algorithms is well established. We discuss the first successful
application of this powerful tool for evolutionary algorithm in Section 10.
Finally, in Section 11, we present the method of designing “typical runs”
of an evolutionary algorithm. Then we can bound the time of a typical
run and can estimate the failure probability, i.e., the probability that a
run is not typical.

2. Optimization of pseudo-boolean functions

Although many of our methods and results can be transferred to the
non-discrete case, we focus here on the somehow simpler or clearer case
of discrete functions. We also abstract from possible constraints which
leads to the search space S = {0,1}".

Definition 4. Functions f: {0,1}" — R are called pseudo-boolean.
Without loss of generality we investigate the maximization of pseudo-
boolean fitness functions. While technical systems lead to non-discrete
search spaces, the whole area of combinatorial optimization leads to our
scenario. Pseudo-boolean functions always have optimal search points.
Search heuristics evaluate each point of the search space in expected
finite time implying that expected run times are finite. Moreover, the
search space has some nice features. The minimal Hamming distance
between different points is 1 while the maximal distance is n. Hence,
evolutionary algorithms with fixed mutation probabilities or fixed ex-
pected length of mutation steps can optimize pseudo-boolean functions
efficiently. For fitness functions on R" and even on some compact sub-
space of R™ it is necessary to decrease the expected length of steps in
order to approximate the optimum. Nevertheless, the chance of meeting
the optimum exactly is often 0.

In order to present the techniques to analyze evolutionary algorithms
for simple examples we often investigate the perhaps simplest random-
ized search heuristic belonging to the class of evolutionary algorithms.

Algorithm 1 (1+1)EA
- Choose © = (z1,...,2,) € {0,1}" randomly.

~ Let ©' be the result of mutating z, i.e., the bits of x; are generated
independently and x;, = T; with the mutation probability 1/n and
x; = z; otherwise.

—Replace z with ' iff f(z') > f(z).

— Repeat the last two steps until a stopping criterion is fulfilled.

352 EVOLUTIONARY OPTIMIZATION

Often we consider the Markov process describing the randomized
search with the (1+1)EA as infinite process without stopping rule. Then
we are interested in the first point of time where something nice hap-
pens, e.g., the first point of time where a global optimal search point is
evaluated. The investigation of the (1+1)EA is less limited as one may
believe. We may use the multi-start option, i.e., we consider p indepen-
dent runs of the (1+1)EA. This is often better or at least as good as
the consideration of a population of size p. The independency of runs
ensures the diversity. For larger populations, one has to ensure the diver-
sity by certain tricks. A population size of 1 does not admit crossover.
However, the analysis of evolutionary algorithms without crossover is
difficult enough and we consider evolutionary algorithms with crossover
only in Section 11. The mutation probability of 1/n is the most often rec-
ommended choice (Béck, 1993). Alternating mutation probabilities by
self-adaptation have been investigated by Beyer (1996) and Bick (1998)
and a dynamic variant of the (1+1)EA has been analyzed by Jansen and
Wegener (2000a).

3. Performance measures

The analysis of an algorithm is the task to describe quantitatively the
behavior of the algorithm. Let X be the random variable measuring the
first point of time when some event happens. The most natural choice
of such an event is that an optimal search point is evaluated. However,
one may also consider the case that some search point whose fitness
is sufficiently close to the fitness of an optimal point or the case that
some search point is sufficiently close to an optimal point. The run time
analysis of a randomized algorithm consists of

— the computation or estimation of E(Xy),

— the analysis of the so-called success probability distribution
Pr(X; <t), and

— the analysis of the best case, worst case, or average case of E(Xy)
and Pr(X; < t)with respect to functions f from some class F of
functions.

The investigation of the success probability includes the investigation
of multi-start variants. E.g., if Pr(X; < t) > %L-,n independent runs
have after ¢ steps a success probability of at least 1 — (1 — %)" >1-
e~ !, nlogn independent runs improve the success probability to 1 —O(%)
and n? runs even to 1 — 27" There are examples where E(X;) grows
exponentially while the success probability after a polynomial number
of steps is bounded below by a positive constant.

Methods for the analysis of EAs on pseudo-boolean functions 353

Expected run time and success probability are global performance
measures and are those performance measures which typically are used
for randomized algorithms (see Motwani and Raghavan, 1995). In the
theory of evolutionary algorithms many other aspects are considered.
These other performance measures are of certain value, but we think
that their analysis finally is only a tool to get results on the global behav-
ior. In order to understand the global behavior it is useful to understand
the local behavior. Quality gain and progress rate (see Bick, Fogel, and
Michalewicz, 1997) are such local performance measures which describe
the behavior of a single step. The schema theorem also is a result which
guarantees a certain behavior for one step. For Markov processes (like
evolutionary algorithms) the transition probabilities for one step deter-
mine the global behavior. However, the local performance measures are
so-called “insufficient statistics” implying that in general it is not possi-
ble to deduce statements on the global behavior. Examples where these
local performance measures give “wrong hints” are contained in Jansen
and Wegener (2000b). Our global performance measures describe the
behavior within reasonable time bounds. We think that the limit be-
havior is of much less interest. Even for state spaces like S = R™ we look
for a good behavior within reasonable time bounds and not in the limit.
Finally, interesting results have been obtained by modelling evolutionary
algorithms as dynamical systems. However, this model implicitly works
with infinite populations and one has to carefully investigate the differ-
ence between infinite populations, finite populations, and populations of
reasonable size. Rabani, Rabinovich, and Sinclair (1998) have obtained
first results how to control the difference between these cases.

4. Selected functions

Here we give an overview on the functions investigated in this paper
as examples.

Definition 5. A pseudo-boolean function f: {0,1}* — R is a
degree-k function with N non-vanishing terms if it can be represented

as
flza,...,zp) = Z w; Hmj

1<i<N jeS;

where w; € R — {0} and the size of the sets S; € {1,...,n}is bounded
above by k. Degree-1 functions are called linear and degree-2 functions
are called quadratic.

The following two linear functions are of particular interest. They are

the extreme examples of equal and strongly different weights.

354 EVOLUTIONARY OPTIMIZATION
Definition 6.

ONEMAX(z1,...,2p) = ||z|| :=21 + - - + 2n.
BV(zy,...,2,) = O lpy 4+ 2" 220 + -+ 2pi + T,
where BV stands for binary value.

Unimodal functions are those functions where the global optimum is
unique and can be reached from each point by 1-bit mutations.

Definition 7. A pseudo-boolean function is called unimodal if it has
a unique global optimum and all other search points have a Hamming
neighbor with a larger fitness.

We consider the special unimodal function LO (leading ones) and the
class of path functions.

Definition 8. '
LO(z1,...,%n) = max{i|z; = --- = z; = 1and (i = nor zip1 = 0)}
measures the length or the longest prefix consisting of ones only.

Definition 9. A path p starting at a € {0,1}" isdefined by a
sequence of points p = (po, ..., ;) where pp = a and H(p;,pi+1) =1. A
function f: {0,1}" — Ris a path function with respect to the path p if
flpig1) > f(pi) for 0 < i <1—1 and f(b) < f(a) for all b outside the
path.

Definition 10. SP (shor‘p path) is defined with respect to the path
p= (po,...,pn) Where p; = 1'0"* by

n 41 if x = p;
SP(z1,.- 2n) = {n —||z|| otherwise.

Long path functions are defined on exponentially long paths. They
were first introduced by Horn, Goldberg, and Deb (1994). Their long
path functions admit the possibility of shortcuts namely a mutation
flipping O(1) bits and replacing p; with p; where j — i is exponentially
large. This can make them easy for evolutionary algorithms as shown
by Rudolph (1997) who also introduced long path functions with the
additional property that for each p; there is at most one successor on the
path with Hamming distance d if d < n/2. Moreover, he has specified
the fitness values outside the path to obtain a unimodal function which
is difficult for the (1 + 1)EA. The exact definition is not necessary here.
We call this function LP (long path).

Methods for the analysis of EAs on pseudo-boolean functions 355

Another interesting issue is the investigation of evolutionary algo-
rithms in the presence of plateaus, i.e., connected subsets of the input
space with constant fitness and with only few neighbored points with
a better fitness. The following function is a good example for such a
function.

Definition 11. The function SPP (short path as plateau) is defined
with respect to the path p = (po,...,pn) Where p; = 1*0"* by

2n ifx=1"
SPP(z1,...,zp) = ¢ n ifx=p,i<n
n—||z|| otherwise.

Finally, we introduce two special functions where the first one has the
property of giving wrong hints and the second one is a special example
for the investigation of the power of crossover.

Definition 12.

TRAP S =
(21, Tn) {n —||z]| otherwise.

JUMP™(an ... 0) {nxn if |[z]] < n—m or |jz]| =n

n —||z|] otherwise.

5. Tail inequalities

Tail inequalities are useful to turn expected run times into upper
time bounds which hold with overwhelming probability. Moreover,
for many intermediate results, expected values sometimes are useless.
A mutation flips on the average one bit, but we are interested in the
probability of flipping more than £ bits simultaneously. A random search
point contains on the average n/2 ones, but what do we know about the
probability of less than, e.g., n/3 ones? The simplest tail inequality
is Markov’s inequality which is the basis of other tail inequalities. We
present the result with its proof to show the underlying ideas.

Theorem 1 (Markov’s inequality) Let X be a random variable taking
only non-negative values. Then forall t > 0

Pr(X = t) < E(X)/t.

356 EVOLUTIONARY OPTIMIZATION

The result follows by estimating all X-values from [0,t) by O and all
other X-values by t¢:

E(X) = Zx'Pr(X=x)=Zx-Pr(X=x)+Zw-Pr(X=w)

<t >t
> 0+t -Pr(X >t).

In particular, Pr(X > 2E(X)) < 1/2 or Pr(X < 2E(X)) > 1/2 proving
that with a probability of at least 1 — (1/2)* one out of k& independent
trials (or runs) has a value of less than 2E(X).

Other tail inequalities like Tschebyscheff’s inequality and Chernoff’s
inequality are applications of Markov’s inequality. In the first case the
probability of large deviations from the expected value is bounded, i.e.,
Pr(|X — E(X)| > €). Before applying Markov’s inequality the inequality
is replaced with the equivalent inequality |X — E(X)|? > 2. E.g., for
e = 1/2, the estimation of z2 by 0 for 2 < 1/4 is more precise than
the estimation of z by 0. For z > 1/4, z? is estimated by 1/16 instead
of estimating # by 1/4. For small > 1/4 this is a better estimate,
but for larger x it gets worse. Hence, one may hope to get sometimes
better results. Chernoff has used the “even more convex” function e'®
and X <t is replaced with e=*X > et for an appropriate value of s.
We summarize the results (for the proofs see Motwani and Raghavan

(1995)).

Theorem 2 (Tschebyscheff’s inequality) Let X be a random variable
whose variance V(X) exists. Then forall € >0

Pr(jX ~ E(X)| > &) < V(X)/e%
(Chernoff’s inequality) Let X1, ..., Xn be independent random variables
taking values in {0,1} and letp; = Pr(X; =1). Then E(X) =pi+---+
pn forX =X14+ -+ Xy and for0< 6 <1
Pr(X < (1 - 8)E(X)) < ¢ BX)¥/2

and for all § > 0

of E(X)
< s ot
Pr(X > (1+6)E(X)) < {(1 n 5)1+5}
If py = -+ = pp = p, X is binomially distributed and E(X) = np. The

probability bounds are exponentially small with respect to n if 4 is con-
stant. The probability that a random string has less than n/3 ones can
be bounded by ¢="/36 (choose § = 1 implying that (1—6)E(X) = n/3).

Methods for the analysis of EAs on pseudo-boolean functions 357

The probability that one chosen bit flips in n? steps less than n/2 times
can be bounded by e”™® (BE(X) = n,6 = 1/2). Even the probability
that it flips less than n — n%* times can be bounded by the asymp-
totically vanishing value of e~n'/?/2 (E(X) = n,6 = n~1/4). Hence,
Chernoff’s inequality gives concrete bounds (not only asymptotic ones)
and it shows that the value of a binomially distributed random variable
is with overwhelming probability very close to its expected value. This
implies the following procedure. Produce an estimate by working in
situations where Chernoff’s inequality is applicable with expected val-
ues as “true” values. This leads to conjectures which often (with some
weakening) can be proved rigorously.

6. The coupon collector’s theorem

ONEMAX is perhaps the simplest function essentially depending on
all variables and having a unique global optimum. Already Miihlen-
bein(1992) has proved an O(rnlogn) bound on the expected run time of
the (1+1)EA on ONEMAX. This bound follows directly from a general
upper bound technique presented in Section 8. What about a lower
bound?

First, we present the coupon collector’s theorem and then we argue
why this result leads to an Q{nlogn) lower bound on the expected run
time of the (1+1)EA on ONEMAX. Consider the following experiment.
There are m bins. Somebody throws randomly and independently balls
into the bins and stops when each bin contains at least one ball. We
are interested in the random number of balls in all bins together. The
problem is equivalent to the problem of collecting coupons (pictures with,
e. g., football players). There are n different types of coupons. We buy
coupons until we have a complete collection of coupons. The expected
time until we obtain a specific coupon equals . However, we have to
wait for the last coupon.

Theorem 3 (Coupon collector’s theorem)
Let X be the random waiting time in the coupon collector’s scenario.
Then

lim Pr(X <nlnn-—cn)=e*
n—0o0

and ~
lim Pr(X >nlnn+cn)=1—e"¢".
n—00
The proof of this result is contained in Motwani and Raghavan (1995).
The theorem is described as limit behavior. The bounds for sufficiently

large n are close to the limit values. Such a result is also called a sharp

358 EVOLUTIONARY OPTIMIZATION

threshold result, since the constant factor for the leading term nlnn is
given exactly and the probability even of small deviations is very small.

Now we apply this result to the analysis of the (1+1)EA on ONEMAX
(Droste, Jansen, and Wegener (1998a)). The probability that the first
search point has less than 2n/3 onesis overwhelmingly large (Chernoff’s
bound). It is necessary that each O-bit flips at least once. We investigate
nlnn + cn steps and only n/3 bit positions which are initialized by
0. Again we can apply Chernoff’s bound. With large probability, the
number of flipping bits is bounded above by %;nlnn + c¢n. We consider
the n/3 bit positions as bins and the flipping bits as balls. However,
the balls are not totally independent. If during one step at least two
bits flip, these bits are at different positions. It is possible to bound
the difference between the real situation and the situation of the coupon
collector’s theorem. This also is a general rule. One often can apply
results from probability theory — but not in their pure form.

Theorem 4 The expected run time of the (I+1)EA on ONEMAX is
bounded above by e - n - (Inn + 1). For each constant d > O there is a
constant ¢ such that the success probability of the (1+1)EA on a function

with a unique global optimum within nlnn — cn steps is bounded above
by d.

With a more careful analysis one will even get better lower bounds
for ONEMAX. However, the crucial fact is that the coupon collector’s
theorem leads to a lower bound for a large class of functions.

7. The gambler’s ruin problem

The classical gambler’s ruin problem is the following one. Alice owns
a dollars and Bob owns b dollars. They are throwing coins and Alice
pays Bob one dollar if the coin shows head and receives one dollar from
Bob for tails. The game stops if somebody gets ruined. The problem is
to compute the probability that Alice gets ruined and how long it does
take until the game stops.

We may use ideas from the solution of the gambler’s ruin problem in
order to analyze the (1 + 1)EA on SPP, the short path with n+ 1 points
where n of them have the same fitness (they belong to the plateau) and
the last point is the global optimum. Since the function is defined as
n—ONEMAX outside the path, it follows from the analysis of ONEMAX
that the (1 + 1)EA needs an expected time of O(nlogn) to reach the
plateau. With overwhelming probability, the plateau is reached close to
0", Hence, we have to analyze the behavior of the (1 + 1)EA on the
plateau. Only other points from the plateau and the global optimum
are accepted. The situation is similar to the gambler’s ruin problem —

Methods for the analysis of EAs on pseudo-boolean functions 359

with some differences. The probability of accepting a different search
point equals @(%) (otherwise, no bit is flipped or a search point outside
the path is reached). The conditional probability of an accepted step of
length 1is 1— @(%), and, for 7 > 2, the conditional probability of a step
length of j equals ©((£)7~1). One has to control with some technical
effort the influence of steps of length j > 2. The steps of length 1 from
10"~% 0 < 4 < n, reach the points 1?7107~#+! and 1:+107~#~1 each with
probability 1/2 — like in the gambler’s ruin problem. Nobody is ruined
at 0", but all accepted new strings have more ones.

The main part of the analysis is easy. In order to generalize the result,
we consider a plateau length / and a phase of length cni?, ca large
enough constant. By Chernoff’s bound, the number of accepted steps is
with overwhelming probability at least ¢/{? (where ¢’ can be chosen as
any constant by increasing c). Here we ignore all accepted steps whose
length is at least 2 (for these details see Jansen and Wegener, 2000b).
We want to estimate the probability that the number of “increasing
steps”, 1.e., steps of length 1 which increase the number of ones, is at
least ¢/I2/2+1/2. Such an event implies that we have reached the global
optimum. By symmetry, the probability of at most ¢/I?/2 increasing
steps, equals 1/2. The binomial distribution with parameters m and
1/2 has its highest value at {m/2] where the probability is bounded
above by am~1/2 for some constant a. Hence, the probability of at
least ¢'1/2 and at most ¢'l2/2+1/2 increasing steps is bounded above by
(1/241) -« (<1?/2)~1/2 which can be bounded by 1/4 for large enough
¢. This implies a success probability of at least 1/4 and the expected
number of phases before a first success is at most 4. Hence, the expected
time to pass a plateau which is a path of length / is bounded above by
O(nl?). If the fitness is increasing along the path, the expected run time
equals ©(nl) (see Section 8). Obviously, it is easier to follow a path with
increasing fitness, but even a path giving no hints is no real obstacle for
the (1 + 1)EA. The following theorem describes the result for SPP where
l=n.

Theorem 5 The expected run time of the (1 + 1) EA on SPP is bounded

above by O(n3). The success probability forn* steps is bounded below by
1 - 279,

It is also possible to prove a matching lower bound on the expected

run time.

8. Upper bounds by artificial fitness levels

The following upper bound technique is based on a suitable partition
of the search space according to the fitness function.

360 EVOLUTIONARY OPTIMIZATION

Definition 13. For A,B C {0,1}" and f: {0,1}" — R the relation
A <y B holds if f(a) < f(b) forall @ € A and b € B. A <;-partition
of {0,1}" is a partition of {0,1}" into non-empty sets Aj,..., Ap such
that Ay <p Aa <j -+ <f Ay and all a € Ay, are global optima.

Lemma 1 Let Ay, ..., Am be a <g-partition, let p(A;) be the probabil-
ity that a randomly chosen search point belongs to Aj;, let s(a) be the
probability that a mutation of a € A; belongs to Ai41U -+ U Ay, and let
s; = min{s(a)|a € A;}. Then

BXp)<) plA)(sit+ syl st +sply
1<i<m—1

The proof of Lemma 1 is very simple. The second inequality is trivial
and the first inequality is based on the law of total probability. When
starting in A;, the expected time to leave A; is bounded above by s; !
and we have to leave only some of the sets A, ..., Am—1. Nevertheless,
this result is surprisingly powerful. However, it is crucial to choose an
appropriate <j-partition. We start with simple applications leading to
asymptotically optimal bounds.

For ONEMAX let A; contain all points with ¢ ones, 0 < ¢ < n. For
x € A; there are n —1 1-bit mutations leading to A;+; (if ¢ < n). Hence,
siz(n—-i)i(1-1>el (n~i) 1 and

1 1 1
sal+'--+s;1 Se-n(—l—+§+-~+ﬁ> <e-n-(Inn+1).

This bound can be improved by considering the probabilities p(A4;), but
the improvement saves only a linear additive term. A corresponding
lower bound has been presented in Section 6.

For LO let A; contain all points with fitness ¢, i.e., starting with ¢ but
not with 7 + 1 ones. For z € A; there is one 1-bit mutation leading to
Aiiq (if i < n). Hence, s; > e~ ! % and we obtain the upper bound e n?
where [is the length of the path. A corresponding lower bound will be
presented in Section 9.

For path functions we assume that the values outside the path are
chosen in such a way that the path is reached quickly (e.g., n—~ONEMAX
if 0" is the source of the path). The expected run time for the first point
on the path is denoted by t(n). For the rest of the search let A; contain
the ith point of the path. Since there is by definition a 1-bit mutation
to the successor on the path, we get an upper bound for the expected
run time of size e - n -1+ t(n). A corresponding lower bound will be
presented in Section 9.

Methods for the analysis of EAs on pseudo-boolean functions 361

These considerations can be generalized to all unimodal functions,
since there is always a 1-bit mutation improving the fitness. If the uni-
modal function f takes w(f) different values, the expected run time of
the algorithm can be bounded above by e-n - (w(f) —1). The function
BV (binary value) is unimodal and takes the maximal number of 2% dif-
ferent values. The upper bound e-n - (2" — 1) on the expected run time
is correct. However, this bound seems to be far from optimal. Sitting in
0171, it is very likely that the next accepted step improves the fitness
by much more than 1.

We investigate the class of degree-k functions f with N non-vanishing
weights which are all positive (Wegener and Witt, 2000). We number the
N positive weights in non-increasing order: wy > wg > -+ > wy > 0.
Then we use thefollowing <j-partition Ao, ..., Ay where

Ai:{x|’w1+...+wiSf(:1;)<u)1+...+wi+1}
for 0<i< N -1and
AN={5’7|f($)=w1+-~+wN}.

For z € A; there is some 7 € {1,...,i + 1} such that the wj-term is
not activated, i.e., not all bits belonging to S; are equal to 1. The
mutation where all 0-bits belonging to S; flip activates the wj-term.
This increases the f-value by at least w;. Here it is essential that all
weights are non-negative. By definition of A;, the resulting search point
belongs to A;+1 U--+U Ay. Since we consider a mutation of at most
|S;] £ k bits, s;° l<e-nk leading to an upper bound on the expected run
time of e -n* - N. For linear functions, negative weights can be replaced
with positive weights without changing the behavior of the (1+1)EA.
Variables x; with w; < 0 are replaced with T; = 1 — 2;.For degree-k
functions, & > 2, such a replacement can create new negative weights.
Since N < n for linear functions, we obtain an e - n? upper bound
for all linear functions and the upper bound for BV is decreased from
exponential to quadratic. An even better upper bound will be presented
in Section 10. We summarize our results.

Theorem 6 The following upper bounds hold for the expected run times
of the (1+1)EA:

- e-n-(Inn+1) for ONEMAX,
— e-n? for all linear functions,

- e-n*. N for all degree-k functions with N non-vanishing weights
which all are positive,

362 EVOLUTIONARY OPTIMIZATION
- e-n? for LO,

— e-n -1 for path functions on paths of length lif the search starts
on the path,

— e-n- N for all unimodal functions taking at most N + 1 different
values.

9. Lower bounds by artificial fitness levels

We look for a lower bound result corresponding to the upper bound of
Lemma 1. We use the notations of Lemma 1. If the initial search point
belongs to A;, i < m, the search has to leave A;. Let p; = max{s(a)|a €
A;}. Then the expected time to leave A; is bounded below by p;*
leading to the following result.

Lemma 2 E(X;) > Y p(d)ut.

1<i<m—1
Lemma 2 is less powerful than Lemma 1. The reason is that we usually
do not reach a global optimum from A;. Hence, we should investigate
how many A-levels we usually pass in one step. Such an approach has
been realized for LO and path functions by Droste, Jansen, and Wegener
(1998Db).

For LO we investigate the stochastic process behind the (1 + 1)EA
more carefully. If we have produced a string © where LO(z) = i, then
z1 = - =x; = 1, ;41 = 0, and (zj42,...,2,) is a random string.
The last property is easy to prove and essential. If a step increases the
fitness, we know that none of the first bits is flipping, the (i 4+ 1)st
bit flips and the new suffix (zj,,,...,25) again is a random string.
We have k “free-riders” if exactly % leading bits of (z},,,...,2}) are
ones. The production of free-riders can be described by the following
stochastic process. We have a random bit string a = (a1,as,...). The
number of ones between two consecutive zeros describes the number of
free-riders. The probability that we have more than 2n/3 free-riders
during n/3 fitness-increasing steps (including the initialization) is equal
to the probability that a random string from {0, 1}" contains more than
2n/3 ones. By Chernoff’s bound this probability is exponentially small.
Hence, we have to wait with overwhelming probability for at least n/3
fitness-increasing steps. The probability of a fitness-increasing step is
bounded above by 1/n, since one special bit has to flip. Another ap-
plication of Chernoff’s bound shows that with overwhelming probability
n?/6 steps are not enough to have n/3 fitness-increasing steps.

In the following we investigate the long path function LP. It is suffi-
cient to know that the path length is I = @(n"/ 22”1/2). Each point p; on

Methods for the analysis of EAs on pseudo-boolean functions 363

the path has for each d < n'/? at most one successor ¢’ on the path such
that H(p;,p") =d. If i +d <1, H(pi, pi+a) = d. Moreover, the fitness
outside the path is defined in such a way that we can assume that the
path is reached for the first time in its first half. The idea is to estimate
the expected progress along the path during one step.

The probability that at least n1/2 bits flip simultaneously, can be
bounded by 9-Q(n'?logn) For such cases we estimate the progress by
the simple upper bound [leading to a contribution of 9—Un'/2logn) (g
the expected progress. If less than n'/? bits flip simultaneously, only one
special k-bit mutation is accepted and leads to a progress of k on the
path. The probability of a special k-bit mutation is bounded above by
n~*. Hence, the expected progress in one step is bounded above by

Z k.-n-k + 2—Q(n1/2 log n) < 2 + 2—3’2(711/2 logn)
1<k<nl/2 "

The expected progress within I - n/5 steps is bounded above by (-g— +
0(1))! and we need a progress of {/2. Markov’s inequality proves a bound
of Q(l - n) on the expected run time of the (1 + 1)EA on LP.

Theorem 7 The following lower bounds hold on the expected run times
of the (1 + 1)EA:

- n2/6 — o(n?) for LO.

- Q(In) for long path functions where | = O(n1/22nw) not allowing
short cuts by at most n1/2 flipping bits and the property that the
path is reached with constant positive probability in the first half.

Such a long path function where I = O(n!/ 22"1/2) has been defined
proving that unimodal functions can be hard for the (1 + 1)EA.

10. Potential functions

The general upper bound for unimodal functions leads to a bad upper
bound for BV (binary value). The design of a problem-specific <j-
partition allows a simple proof of a quadratic upper bound. The same
holds for all linear functions. We have a gap between the Q(nlogn)
lower bound from Section 6 and the O(n?) upper bound from Section 8.
Droste, Jansen and Wegener (1998a) have improved the upper bound
to O(nlogn). It is difficult to control the Hamming distance to the
global optimum which, under the assumption wi > «++ > wy, > 0, equals
1™, Hence, the idea is to measure the progress with respect to some
well-chosen measure. The idea of <j-partitions is already a step into

364 EVOLUTIONARY OPTIMIZATION

this direction. These partitions have the advantage that only strings
from A; U--- U Ap can be accepted from z € A;. Hence, the function
g(t) describing the index of the A-set containing the actual search point
after ¢ steps is a non-decreasing function. The asymptotically exact
bound for linear functions has been obtained only by using a so-called
potential function where it is quite likely that the value of the potential
decreases in some steps. In particular, these potential functions do not
depend on the special values of the linear function f.

The new method is easier to explain for BV. The potential function
equals ONEMAX, the number of ones in the string. To be precise, the
following is important:

— the (1+1)EA uses the fitness function f in order to decide whether
the old search point is replaced with its mutant,

— the people analyzing the (1+1)EA use the potential function p to
measure the progress.

A step is called successful if the mutant 2’ is different from its parent
x and replaces z. The crucial step is to estimate the expected number
of steps until the (1+1)EA produces from z with p(z) = ¢ a search
point ' with a higher p-value. We distinguish between successful and
unsuccessful steps. Knowing the expected number of successful steps it
is in this special situation not too difficult to bound the expected number
of unsuccessful steps.

BV has the advantage that a successful step has a simple description.
A step is successful iff the leftmost flipping bit is a 0. All other bits
flip with mutation probability 1/n even under the assumption that the
step is successful. Knowing that = contains ¢ ones we do not know how
many are to the right of the leftmost flipping bit which is a zero. Hence,
we pessimistically analyze a provable slower Markov process assuming
that only the leftmost flipping bit is a flipping O and that n — 4 1-bit
positions have the chance to flip to 0. Now we run into difficulties.
The expected progress with respect to the potential function can only
be bounded below by 1 — % = % leading to an expected number of
at most n/i successful steps before the p-value has increased. The last
conclusion follows from Wald’s identity. For BV, a simple trick works.
We restrict our attention to the first n/2 partitions. The behavior of the
second half of the n bits has no influence on the decision whether the
actual first half of the string is changed by the (1+1)EA. The expected
progress is now bounded below by 1/2 leading to an expected number
of at most two successful steps before the p-value has increased. This
leads after some calculations on the number of unsuccessful steps to an
O(nlogn) bound for the time until the actual search point starts with

Methods for the analysis of EAs on pseudo-boolean functions 365

n/2 ones. The second half can be treated in the same way. Only the
number of unsuccessful steps has to be multiplied by (1 — %)"/ 22
the probability that no bit of the first half flips. This describes the proof
method for the special case of BV. There are many places where the
very special properties of BV have been used.

Surprisingly, there is one special linear function serving as a potential
function for all linear functions. This function is

ple)=2-(@1+ - +2pp) + 1 @nja41+ -+ 2n)

This potential function is somehow a compromise between equal weights
(ONEMAX) and very different weights (BV). By an involved and tedious
case inspection, it can be shown that the expected number of successful
steps until the value of the potential function p has increased is bounded
above by a constant (independent from the starting point). Then the
methods discussed for the analysis of the (1+1)EA on BV can be gen-
eralized to lead to the proposed bound.

Theorem 8 The expected run time of the (I+1)EA on an arbitrary
linear function is bounded above by O(nlogn).

11. Investigations of typical runs

The sections on tail inequalities and the coupon collector’s theorem
have shown that stochastic experiments or stochastic processes have a
“typical global behavior”, although the local behavior is unpredictable.
Tossing coins one has no idea about the outcome of a toss. Tossing
independently many coins we also have no idea about a certain coin,
but we have very tight bounds describing the number of heads — if we
allow an exponentially small error probability. The same is true for the
coupon collector. Obtaining the next coupon she or he can only hope for
a coupon which she or he does not hold yet. Obtaining g(n) coupons,
for each value of g(n) outside a small interval one can be almost sure to
obtain all different coupon types or one can be almost sure that some
coupons are missing. The same holds for evolutionary algorithms. The
behavior within one step or a few steps has a large uncertainty, although
one can obtain bounds for the global behavior which have a very small
error probability.

The idea is to investigate search phases of well-chosen lengths. During
each phase we expect a certain behavior of the (1+1)EA. Runs of the
(1+1)EA fulfilling the aims of all phases are called “typical”’. We should
choose our definition in a way that the run time of a typical run has
properties we expect to happen with overwhelming probability. The
essential point is to prove an upper bound on the failure probability, i.e.,

366 EVOLUTIONARY OPTIMIZATION

the probability of a non-typical run. This can be done by adding the
failure probabilities for the different phases. Sometimes, we get better
results if we ensure that the different failure events are independent.
Otherwise, we can bound the failure probability for the ith phase using
the assumption that the first ¢ — 1 phases were free of failures.

A simple application of this method is the analysis of the (1+1)EA
on TRAP. The simple upper bound n"™ holds for all pseudo-boolean
functions (Droste, Jansen, and Wegener, 1998b). We expect that this
bound is quite tight for TRAP, since TRAP gives everywhere (except at
the global optimum) wrong hints. However, the initial search point has
approximately n/2 ones and the probability that mutation creates the
global optimum is approximately n~"/2. The expected waiting time for
an event with such a success probability is approximately nv2 only
the square root of n™.

Now we consider a typical run consisting of three phases:

— the initialization phase, we expect an initial string with less than
(2/3) ones,

~ the phase of thefirst cn?logn steps, we expect to have 0" as last
actual search point,

— the phase of the remaining steps starting with 0", the expected
run time equals n™.

Without failures during the first two phases we have 0™ as actual point
and accept only 1" as new search point. The probability that mutation
produces 1" from 0" equals n~" leading to an expected waiting time
of n™. The failure probability of the first phase is 27" (Chernoff’s
bound). If there was no failure in the first phase, a failure in the second
phase implies that we either flip at least n/3 steps in one step (failure
type 1) or the optimization of n — ONEMAX takes more than cn?logn
steps (failure type 2). The probability of a failure of type 1 in one step
is bounded above by rfe = 2=%(nlogn) leading to an upper bound of

en®(logn)2~%nlogn) — 9=Qnlogn) for the whole phase. We know that
the expected run time of the (1+1)EA on n — ONEMAX is bounded
above by c'nlogn for some constant ¢’. Let ¢ = 2¢. Then we get n
independent subphases of length 2¢'nlogn each. The probability that a
subphase is unsuccessful is bounded above by 1/2 (Markov’s inequality)
leading to a 27" bound for the probability of type 2 failures. (It is
possible to obtain even better bounds.) Altogether, with probability
1 — 27" no failure occurs leading to an expected run time of n™. This
proves the following result.

Methods for the analysis of EAs on pseudo-boolean functions 367

Theorem 9 The expected run time of the (1+1)EA on TRAP is boun-
ded above by n™ and below by (1 — 2=SHm))pn,

A more sophisticated application of this method has been presented
by Jansen and Wegener (1999). Crossover is known as one of the funda-
mental operators of evolutionary algorithms. Nevertheless, Jansen and
Wegener (1999) were the first to prove rigorously for a function, namely
JUMP™ for m = |logn], that the expected run time of evolutionary
algorithms without crossover grows superpolynomially (nf{l°8m)} while
a steady-state genetic algorithm with population size n and the small
crossover probability p. = 1/(nlogn) has a polynomial expected run
time.

Theorem 10 Each evolutionary algorithm without crossover needs for
JUMP™, m = |logn|, with large probability superpolynomial time. A
steady-state genetic algorithm with population size n and probability p, =
1/(nlogn) for uniform crossover has an expected run time on JUMP™
which is bounded above by O(n3logn).

We discuss the problems with the proof of an upper bound for the
steady-state EA. It seems easy to obtain a population consisting only
of individuals with exactly m zeros (or even an optimal individual).
Uniform crossover on two individuals which have m zeros each and the
zeros at different positions has a probability of exactly 272" > 1/n?
to produce the global optimum 1" and the probability that mutation
does not destroy 1™ is approximately e~!. The expected waiting time
increases to O(n3logn) because of the small crossover probability. This
small probability simplifies the control of the hitchhiking effect. If we
choose two random strings with m zeros, it is very likely to have the zeros
at different positions. Crossover and selection destroy the independency
of the individuals of the initial population. It gets more likely that
individuals share zeros. The proof of Theorem 10 is possible with the
following definition of a typical run. Since the estimation of the failure
probabilities is too complicated to be presented here in detail, we also
do not present the chosen phase lengths.

We expect that after the first phase either we have found the optimum
or that all individuals have exactly m zeros. The failure probability can
be estimated using a generalization of the coupon collector’s theorem
and Chernoff’s bound. After the second phase we expect that either
we have found the optimum or all individuals still have exactly m zeros
and for each bit position the number of individuals with a zero at this
position is bounded above by n/(4m). We sum the exponentially small
failure probabilities for the n different bit positions. The small crossover

368 EVOLUTIONARY OPTIMIZATION

probability makes it possible to consider crossover as a bad event which
increases the number of individuals with a zero at the considered posi-
tion. For the third phase we expect that for no bit position and no point
of time the number of individuals with a zero gets larger than n/(2m).
This implies a probability of at least 1/2 that two individuals have no
zero in common and crossover can work. Hence, we expect to find the
optimum during the third phase.

Conclusion

The analysis of evolutionary algorithms can be based on methods
from the analysis of classical deterministic and randomized algorithms.
Some tools which seem to be of large value for evolutionary algorithms
have been presented, discussed, and applied. This has led to a num-
ber of results on the expected run time and the success probability of
evolutionary algorithms.

References

Bick, T. (1993). Optimal mutation rates in genetic search. Proc. of 5th
ICGA (Int. Conf. on Genetic Algorithms), 2-8.

Bick, T. (1998). An overview of parameter control methods by self-
adaptation in evolutionary algorithms. Fundamenta Informaticae 35,
51-66.

Bick, T., Fogel, D. B., and Michalewicz, Z. (Eds). (1997). Handbook of
Evolutionary Computation. Oxford Univ. Press.

Beyer, H.-G. (1996). Toward a theory of evolution strategies: Selfadapta-
tion. Evolutionary Computation 3, 311-347.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction
to Algorithms. MIT Press.

Droste, S., Jansen, T., and Wegener, 1. (1998a). A rigorous complexity
analysis of the (1+1) evolutionary algorithm for separable functions
with Boolean inputs. Evolutionary Computation 6, 185-196.

Droste, S., Jansen, T., and Wegener, I. (1998b). On the optimization of
unimodal functions with the (1+1) evolutionary algorithm. Proc. of
PPSN V (Parallel Problem Solving from Nature), LNCS 1498, 13-22.

Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philoso-
phy of Machine Intelligence. IEEE Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison Wesley.

Hochbaum, D. S. (1997). Approximation Algorithms for NP-Hard Prob-
lems. PWS Publ. Co., Boston.

REFERENCES 369

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The
University of Michigan Press.

Horn, J., Goldberg, D. E., and Deb, K. (1994). Long path problems.
Proc. of PPSN III (Parallel Problem Solving from Nature), LNCS
866, 149-158.

Jansen, T., and Wegener, 1. (1999). On the analysis of evolutionary al-
gorithms — a proof that crossover really can help. Proc. of ESA 99
(European Symp. on Algorithms), LNCS 1643, 184-193.

Jansen, T., and Wegener, I. (2000a). On the choice of the mutation
probability for the (1+1)EA. Proc. of PPSN VI (Parallel Problem
Solving from Nature), LNCS 1917, 89-98.

Jansen, T., and Wegener, 1. (2000b). Evolutionary algorithms — how to
cope with plateaus of constant fitness and when to reject strings of
the same fitness. Submitted to IEEE Trans. on Evolutionary Compu-
tation.

Motwani, R., and Raghavan, P. (1995). Randomized Algorithms. Cam-
bridge Univ. Press.

Miihlenbein, H. (1992). How genetic algorithms really work. I. Mutation
and hillclimbing. Proc. of PPSN II (Parallel Problem Solving from
Nature), 15-25.

Rabani, Y., Rabinovich, Y., and Sinclair, A. (1998). A computational
view of population genetics. Random Structures and Algorithms 12,
314-334.

Rudolph, G. (1997). How mutations and selection solve long path prob-
lems in polynomial expected time. Evolutionary Computation 4, 195
205.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley.

Wegener, 1., and Witt, C. (2000). On the behavior of the (1+1) evolu-
tionary algorithm on quadratic pseudo-boolean functions. Submitted
to Evolutionary Computation.

This page intentionally left blank

Chapter 15

A GENETIC ALGORITHM HEURISTIC
FOR FINITE HORIZON

PARTIALLY OBSERVED

MARKOYV DECISION PROBLEMS

Alex Z.-Z. Lin,
James C. Bean and
Chelsea C. White III

Abstract

1.

The partially observed Markov decision problem (POMDP) is a gen-
eralization of a Markov decision problem (MDP) that allows for noise
corrupted and costly observations of the underlying system state. The
value function of the POMDPis known to be piecewise affine and con-
vex (PAC) in the probability mass vector (pmv) over the state space.
Most exact solution procedures determine the minimal set of affine func-
tions that describes the value function. This determination tends to re-
quire significant computational resources, and as a result these solution
procedures can only solve small-scale problems.

In this paper, we develop a heuristic approach, DC-NICHE, for
constructing suboptimal designs for the finite horizon POMDP and
present error bounds. We use the genetic algorithm to construct ap-
proximations of the minimal set of affine functions that describes the
value function. Numerical results indicate that 1) these heuristics can
quickly yield high quality solutions for a set of small-scale problems
where exact solutions are feasible; and 2) can provide suboptimal de-
signs for realistically sized problems.

Introduction

This paper presents a procedure for constructing a suboptimal strat-
egy for the finite horizon partially observed Markov decision problem
(POMDP) with finite state, action, and observation sets. This pro-
cedure uses a genetic algorithm (GA) and is based on the fact that

372 EVOLUTIONARY OPTIMIZATION

the optimality equation for the POMDP is piecewise affine and convex
(PAC) in the probability mass vector (pmv) over the state space. This
procedure permits the consideration of relatively large, realistically sized
problems.

The (completely observed) Markov decision problem (MDP) is a
model of sequential decision making under uncertainty which assumes
that the decision-maker has access to the exact value of the current state
of the system without cost. Surveys of the MDP can be found in (White,
1985; White, 1988; White, III and White, 1989). The POMDP is an
extension of the MDP that relaxes this assumption and hence permits
costly and/or noise corrupted state observations. For example, consider
the situation where a physician selects diagnostic and/or treatment de-
cisions on the basis of the patient’s signs, symptoms and lab test results,
rather than on the patient’s underlying, and likely unobservable, state
of health. Other examples can be found in (Smallwood and Sondik,
1973; White, III and White, 1989).

Relative to the MDP, the enhanced validity of the POMDP is
at the expense of its tractability in two ways. First, the POMDP
is more data intensive than the MDP, additionally requiring informa-
tion regarding how observations are related to state and action values.
Second, current numerical solution procedures for the POMDP are
not tractable for realistically sized problems. See (Lark, 1989; Love-
joy, 1991; Monahan, 1982; Platzman, 1980; Smallwood and Sondik,
1973; Sondik, 1971; Sondik, 1978; White, III and Scherer, 1989; White,
III and Scherer, 1994) for further discussions. In this paper we partially
address this limitation.

This chapter is organized as follows. In Section 2, the POMDP
is defined and several fundamental results are presented on which our
heuristics are based. The basics of GA are discussed in Section 3 within
the context of the POMDP. Section 4 reviews the concept of random
keys and presents the GA-based heuristic DC-NICHE. Procedures for
reducing the complexity of the problem are presented. Error bounds are
discussed in Section 5. The numerical evaluation in Section 6 compares
the GA-based heuristic with two other algorithms. These results indi-
cate that DC-NICHE performs especially well. Section 7 summarizes
research results.

2. Partially Observed MDP
2.1 Definition

Let S, A, and Z be finite sets representing the state, action, and obser-
vation spaces, respectively. Let {0,1,...,7 —1} be the set of stages (or

A GA Heuristic For Finite Horizon POMDPs 373

epochs),where the problem horizon T is finite (T < 00). Assume the state
process {s(t), t =0,1,...,T}, action process {a(t), t =0,1,...,T—1},
and observation process {z(t), t = 1,2,...,T — 1} are linked by the
probabilities P(2,a) = {p;j(z,a)}, where

pij(z,0) = Pls(t+1) = j,2(t + 1) = z | s(t) =4, a(t) = a].

Thus, if the underlying state of the process is s(t) and the action selected
is a(t) at stage t, then the underlying state makes transition to state
s(t+1) and z(t+1) is observed at stage t+1, according to the probability
kernel P(z, a).

Let 7(i,a) be the reward accrued at stage t, given s(t) = i and a(t) =
a, and let 7(4) be the reward received at terminal stage 7, given s(T') = 1.
We assume the action at stage ¢ is selected on the basis of the history at
stage ¢, which is comprised of an a priori pmv on S, all past and present
observations, and all past actions selected. A function mapping the set of
histories at stage ¢ into the action set is a policy at stage t; a sequence of
policies, one for each stage t = 0,1,...,T —1, is a strategy. The problem
objective is to determine a strategy that maximizes the total expected
discounted reward to be accrued over the problem horizon, relative to
the set of all strategies, conditioned on the a priori pmyv.

2.2 Preliminary Results

Let X ={x: 2,20, i €8, Y ,cqzi =1}. Define z(t) = {z;(¢), i €
S}, where z;(t) is the probability that s(t) = 4, given the history at stage
t. It is shown in (Smallwood and Sondik, 1973; White, III, 1991) that the
resulting process, the information process {x(t), ¢ = 0,1,...,T}, is a
sufficient statistic for the POMDP. Hence, it is sufficient to base action
selection at stage ¢ on x(t). Let v¢(x) be the maximum expected total
discounted reward to be accrued from stage ¢ through the terminal stage
T, given x(t) = x. Then it has been shown in (White, III, 1991) and
elsewhere that the following optimality equation and boundary condition
hold:

v(x) = maxgea {xr(a) +BY,cz0(2% a)ver1[A(z x,0)]}, (15.1)
vr(x) = X, |

where a(z,x,a) = xP(z, a)1, Lis a vector ofones, A(z,%x,a) = xP(z,a)/
o(z,x,a), o(z,x,a) # 0, T = {F(3), ¢« € 8} and § > 0 is the discount
factor. We remark that A(z,x,a) is the pmv at stage t+ 1 when z(t +
1) = 2z, x(t) = %, and a(t) = @, and o(z,x%,a) is the probability of
observing z at stage t+ 1, given that x(¢) = x and a(t) = a. An optimal
strategy is composed of policies which for stage ¢ selects an action that

374 EVOLUTIONARY OPTIMIZATION

causes the maximum to be attained in (15.1) when x(t) = x (White, III,
1991). Hence, solving the optimality equation for ¢ = 0,1,...,T is key
to determining an optimal strategy. We now examine structural results
that lead to the solution of the optimality equation.

2.3 Structural Results

We say that a real-valued function f on X is piecewise affine and
convex (PAC) if and only if there exists a finite set I" such that f(x) =
max{xy : v € I'}. The foundation of our approach is the fact that if vs14
is PAC, then v is PAC, and since v is PAC, v;is PAC for all £ (White,
III, 1991). We endeavor to determine v; from w1 by determining I'y,
given I'yy1, where vi(x) = max{xy : v € I't} and ve41(x) = max{xy :
~v € I't41}. We now show how such a set I'; can be constructed, given
I'iy1. Define G(T) = Uzea {r(a) + 8Y,c7 Plz,a)y* : v* € T}. Note
that

I

maxgea {xr(a)+

B> ez 0(2,%x,a) max [A(z,%,a)y: v € Ty}
maxgeA {xr(a) + ﬂ ZzeZ max [XP(Z> a)7 -y € Pt-}—l]}
max {xy: v € G(I't11)}.

ve(x)

1l

That is, G is a recursion operator on a set of affine functions defining a
value function.

24 PURGE Operator

Thus, we could set I'y = G(I'ty+1). However, G(I't+1) usually con-
tains many redundant vectors, where v is redundant if v;(x) is strictly
greater than x+vy for all x € X. From both storage and computational
perspectives, there is value in keeping the cardinality of I'; as small as
possible and hence removing as many redundant vectors from G(I';11)
as possible in order to define I';. Let the operator PURGE be such
that IV = PURGE(I) is the subset of I' having the smallest cardinality
that satisfies max{xy: v € I'} = max{xy: v € '} forall x€ X. Each
element in set I is referred to as a defining vector. Existence of such a
subset is assured by results in (Littman et al., 1995). Then ideally we
would want to select I'y = PURGE(G(T'¢41)).

Further examination of the PURGE operation will prove useful. De-
fine

1 Fortwo sets Ty and Uy, let Ty @ T = {y1+v2: 71 € 1, 72 € Ia}.
2 Forscalar 8 and set T, let BT' = {fy: v € I'}.
3 Forvectory' and setT, lety +T'={y +~v: y€T'}.

A GA Heuristic For Finite Horizon POMDPs 375
It is straightforward to show that for o € {+,U} and for K > 2,

PURGE(Y; 0 -0Yg) = PURGE(PURGE(Y10---0Yg_1)oYk),

(15.2)
where Y,k = 1,..., K, are given sets. These properties suggest the
following decompositions:

IyY = PURGE({P(z,a)y: v€Ti}), (15.3)
¢ = PURGE ({r(a) +,HZ'yz : v e Fff1}> , (15.4)
2€Z
I, = PURGE (U rg) : (15.5)
acA

We remark that the cardinality of I';}; is usually much smaller than
the cardinality of I';11, and hence the PURGE step described in (15.3)
is especially useful in removing redundant vectors. As noted in (Eagle,
1984), a procedure we also have found that is useful for quickly removing
redundant vectors in {P(z,a)y : v € T'} is: remove 4" from T if there is
a+' €T such that v} > +; for all i € S.

2.5 ¥ Operator

We now introduce the operator ¥ that will be useful in describing
our heuristic. For any X' C X, let ¥(I',X) = {¥({I',x) : x' €
X'}, where ¥(IV,x) = 4/ if and only if (i) v/ € G(I') and (4i) X'y >
x'v ¥ v € G(IY). Note that ¥(I',X) = PURGE(G(I")). Ideally, we
seek the collection of sets {I'y,t = 0,1,...,T'}, where I'; = ¥(T';11,X)
and 't = {F}. The difficulty with determining ¥(I',X) is that X
is uncountable. The following result provides further insli,ght into the
properties of G and ¥. The proof is straightforward. Let I < [if and
only if max{xy" : 7" €'} < max{xy': 4 € }forall x € X.

Lemma 1
10" CI, then T < .
2 IfT" <V, then ¥(I",X") < (I, X"), V X' C X.
31T T, then G(I'") C G(TY).

4 F X" X' cX, then ¥(I',X") C ¥(I', X').

376 EVOLUTIONARY OPTIMIZATION

2.6 Determination of ¥(T',e)

The key result to determine ¥(I',x) on which our heuristic is based
is

Lemma 2 Given Uyyy and arbitrary X' € X, there exists a~' € Ty such
that v(x") = x'y' and an optimal action for stage t, assuming x(t) = x'.

Proof: For each z € Z and a € A, let y(z,a) € T{Y be such that
Z,a

x'y(z,a) > x'y forall v € Ty} Let o’ € A be such that for all a € A

x' [r(a') +83 1z, a')] >/ [r(a) +83 4, a>] .

2€Z z€Z

Then ' = r(a’) + 8 ,cz7(2,d") € ¥(I't41,X) and @’ is an optimal
action at stage ¢, given x(t) = x’.

This result suggests that if we carefully select a finite set of so-called
witness points, {xl,...,xM} C X and use these points to construct
corresponding defining vectors {~%,... ,fyM} C ¥([¢41,X), we may pro-
duce a good approximation of PURGE(G([';11)). Ideally, we wish
to select a finite set X' such that ¥(I'y11,X') = U(Tyy1, X). We re-
mark that given this key result, determining ¥(I", X’), for finite X/, is
straightforward. In this paper, we will use a GA to determine such a
set of witness points in order to construct a set of y-vectors that serves
as an approximation to the POMDP value function.

3. Basics of Genetic Algorithms

Genetic algorithms, introduced in the mid-60’s (Fogel, 1962; Fogel
et al., 1965; Holland, 1975) aim to solve complex problems by a paradigm
from biological evolution. A population of solutions is constructed. A
next generation is derived from the old population with operations that
promote survival-of-the-fittest. Over many generations the solutions in
the population tend to improve until the best of the population is (hope-
fully) near optimal. In the context of the discussion above, a population
is a set of witness points.

There are several key components to a GA approach: solution en-
coding, fitness evaluation functions, reproduction processes, and stop-
ping criteria. Instantiations of these fundamental aspects of GAs are
presented below as we build a GA for the POMDP. See (Holland,
1975; Davis, 1991; Goldberg, 1989c; Michalewicz, 1996) for additional,
general information on GAs.

A GA Heuristic For Finite Horizon POMDPs 377

3.1 Encoding Schemes

A chromosome is an encoding of a solution and is a vector of variables
in R™. A gene is an element of that chromosome vector; an allele is a
numerical value taken by a gene. In the context of the POMDP we
propose the following encoding scheme. Recall that we are attempting
to find a good set of witness points in X. Let the i** gene of the chromo-
some denote the probability that the system is in state ¢. For a 3-state
problem, the chromosome is an information state x € R3, z,, one of its
elements, is called a gene, and if 2 = 0.3 then the second gene has allele
0.3. Since each chromosome is a distribution, a feasible assignment of
alleles must sum to one and each allele must be non-negative. This re-
quirement creates issues with offspring feasibility that will be discussed
and resolved in Section 3.3.

3.2 Fitness Evaluation Function

We now determine the real-valued fitness evaluation function (FEF)
that will be used to measure the fitness of a chromosome.

3.2.1 Selection of the FEF. An FEF for the POMDP
should measure the difference between a value function and its approx-
imation with the intent of improving the quality of the approximation.
Given an information state, z, a natural candidate for the FEF is

x,[, V) = max [x7] — max [x7] . 15.6
£, I") = mage [x7] — max o] (15.6)

Assume that T is the «y-vector set sought, I" is its approximation, and
both contain no redundant vectors. In results presented later in this
paper, we will construct the approximation IV so that IV € I". Three
characteristics of the function f(x,I',I") are:

1 f I¥=T, then f(x,I',I') =0 for all x € X.
2 If IV CT, then f(x,T,IY) >0 for all x € X.

3IfIY¥ C T and IV # T, then there exists an x’ € X such that
F(x,T,T") > 0.

The function f(x,I¥,T'$A) has two limitations. First, all of the in-
formation states with O fitness value are indifferent. They provide no
guidance toward identifying peaks for the GA. Second, the GA has little
reason to favor information states close to boundaries or corners in the
PAC function. Our numerical experience indicates that many missing

378 EVOLUTIONARY OPTIMIZATION

~-vectors are at these corners. To resolve these two issues, we will use
the function

v reay _ J JOGTE,TER) if f(x, T, TEA) > 0
roert,res) = { AT ferhea) 2o s

as the FEF, where A(x,['GA) = maxffe)F?A [xv] — MaX,crGA [xv], and
)

max_ci.ca [x4] is the second-best value from I'SA when all y-vectors are
t

evaluated at x.

We motivate our interest in using F(x, Y, I'#A) as the FEF as fol-
lows. If f(x/,T¥,T'S4A) > 0, then a new defining y-vector can be found,
so set the fitness of the witness point x’ to be equal to f(x',I'}¥,'F4),
If f(x,T¥,THA) = 0, this information state finds an existing vector in
I'GA 50 set the fitness of such an information state to be equal to the
difference between the second-best and the best function value that TG4
can attain at information state x. This function can help the GA dif-
ferentiate information states and can drive the population toward the
undiscovered regions. These regions are most likely found at corners or
boundaries.

3.2.2 Characteristics of F(x, I‘;I’ , I‘?A). Use of F(x, ¥, I'S4A)
as the FEF generates two types of local maxima: those with fitness value
less than or equal to O and those with fitness value strictly greater than
0. The first type will not give new defining vectors and are referred to as
fruitless attractors. The second type gives new defining vector(s) and are
referred to as fruitful attractors. In general, there are two characteristics
of F(x,T'¥,TEA): a) the number of attractors can grow large, and b) the
number of fruitless attractors may outnumber fruitful attractors. Thus,
we hypothesize that the degree of difficulty faced by the GA increases
as the number of defining vectors identified increases.

This hypothesis, in fact, touches the core issue of what makes a prob-
lem difficult for a GA. Several criteria, such as isolation, deception,
and multimodality (Goldberg, 1993), have been suggested as measures
of a problem’s level of difficulty for a GA. See (Goldberg, 1989a; Gold-
berg, 1989b; Goldberg, 1991; Goldberg et al., 1992; Horn and Goldberg,
1995; Whitley, 1991) for further discussion. The function f(x,T¥,T&A)
has a high degree of isolation where fruitful attractors are closely sur-
rounded by points with low fitness value. The isolation level of the FEF
F(x,T¥,TGA) is low, while its level of deception (fruitless attractors)
and multimodality (more than one attractor) are both higher. Despite
these difficulties, preliminary numerical results reported in (Lin, 1999)
suggest that the use of F(x, T, T'S4) will most likely yield a better ap-

A GA Heuristic For Finite Horizon POMDPs 379

proximation to a solution. To counter the difficulties in F(x, ¥, TGA)
we will exploit certain problem-domain knowledge in a partially guided
search scheme presented in Section 4.2.1.

3.3 Reproduction Processes

The three common operations in GAs are selection, crossover, and
mutation. Selection determines which chromosomes will bear offspring.
Typically, chromosomes with higher fitness are preferred (Holland, 1975).
Crossover performs the transformation of parents into offspring. Muta-
tion adds randomness to the process, making it ergodic.

In selecting chromosomes for breeding the next generation, we pool
chromosomes in the old population together with the set of witnesses
corresponding to the «-vectors in the current IS4, For selection, the
basic idea is to pair two distinct chromosomes hitting different identified
defining vectors. This tends to reduce the occurrence of fruitless points
that arise when both parents witness the same defining vector.

Typical crossover operators include one-point crossover, two-point
crossover (Cavicchio, Jr., 1970; Goldberg, 1989c), and uniform crossover
(Spears and De Jong, 1991; Syswerda, 1989). We now illustrate one-
point crossover for the POMDP information state encoding. Recall
that a chromosome in our encoding is an information state and that an
information state is a probability distribution. Two such information
states for a 3-state problem are (.2, .2, .6) and (.4, .4, .2). The chromoso-
mal representation of such information states is simply the probability
vector itself. A one-point crossover would cleave each chromosome at
some point, say after the first gene, and exchange leading segments.
Performing that operation over the two example chromosomes gives two
offspring (.2, .4, .2) and (.4, .2, .6). Neither sum to 1 as is necessary for a
probability mass vector. See (Michalewicz, 1996) for remedial methods
to deal with this offspring infeasibility problem. An obvious fix is to nor-
malize by dividing each allele by the sum of alleles for that chromosome.
For example, (.2, 4,.2) and (4, .2,.6) become (%,3,3) and (3,%,%).
Note that multiple chromosomes will map to the same probability mass
vector. This could confound the GA, though we saw no evidence of
that in our experiments. Alternatively, specialized crossover operators
(e.g., linear convex combination), repair-mechanisms (e.g., normaliza-
tion), constraint handling techniques (Michalewicz, 1996), or random
keys (Bean, 1994) can be used to ensure the feasibility of offspring. We
remark that preliminary numerical experiments in (Lin, 1999) show that
random keys performs better than the other schemes in terms of solu-
tion quality yielded and number of defining vectors identified. Hence,

380 EVOLUTIONARY OPTIMIZATION

we adopt the random keys approach in the GAs presented later in this
chapter.

The use of random keys places no restriction on crossover operators.
To probabilistically enhance the diversity of the population, we propose
a composite crossover operator over two chosen parents to create two
offspring. This operator, which involves uniform crossover and linear
combination, is detailed in the appendix.

We adopt two types of mutation: immigration and the Move_to_Bound-
ary operation. Immigration randomly generates a few new points to
be included in each new population. Their genetic material is mixed
through the population in subsequent generations. Move_to_Boundary
randomly selects a gene of a chromosome and forces the allele of that
gene to become 0, bringing that chromosome to the boundary corre-
sponding to the selected gene. This re-expands the search by countering
the tendency to regress to the mean.

34 Stopping Conditions

To determine the stopping time in the GA search, three possible cri-
teria are used in combination: no new defining vectors found in several
consecutive generations, a generation threshold on the number of gen-
erations, and return rate of the GA (the ratio of the number of newly
found defining vectors in a single run of GA to its population size). Use
of these criteria is described in Section 4.

4. Proposed Genetic Algorithm Heuristic

In this section, we present a GA-based heuristic for determining
a finite witness point set W; for the operation I'GA = \I!(I‘g_“},Wt).
This heuristic, called DC-NICHE, is discussed in Section 4.2. Section
4.1 presents random keys, the foundation of the heuristic. Section 4.4
presents complexity reduction procedures.

4.1 Random Keys

Random keys (Bean, 1994) is a robust yet simple method to ensure the
feasibility of offspring without disrupting the search. Successful applica-
tions can be found in (Bean, 1994; Hadj-Alouane et al., 1999; Norman
and Bean, 2000; Norman and Bean, 1999; Norman and Bean, 1997). It
is very similar to the Argot strategy in (Shaefer and Smith, 1988). Note
that the literature is limited to discrete solution spaces. In this paper we
extend the use of random keys to the information space, a continuous
space.

A GA Heuristic For Finite Horizon POMDPs 381

The random keys GA works with two spaces: search space and literal
space. In genetic terminology, the random keys are a genotype and the
normalized information vector is a phenotype. All of the GA operators
act upon the search space, the genotypes. Then each individual chromo-
some is transformed into a feasible solution and evaluated in the literal
space. Figure 15.1 (a) depicts the random keys processes. The random
keys representation encodes a solution with random numbers. A map-
ping decodes the solution. The search space typically is a unit hypercube
in R"™. For this problem, the mapping function to decode the solution
is normalization. Figure 15.1 (b) gives an example of a 3-state problem.
The random keys approach differs from the simple normalization in that
the unnormalized random keys are maintained. The normalization is
used to obtain a fitness value rather than to alter the chromosome. This
difference is crucial in that it reduces disruption of the search.

Search Space Literal Space Evaluation
. of Fitness
chromosomes solutions
evaluation A
function

mappin,

normalizing

J (.4, .4, .8) (.25, .25, .50)

(a) The random keys process (b) A 3-state problem
Figure 15.1. The random keys process and an example for a 3-state problem

Recall that Wy represents the set of witness points used to construct
the v-vector set [S4; ie., TSA = ¥(IE4,W;). We assume W, =
Wie¥ U Wey1. The algorithm Basic GA summarizes the pseudocode of
the basic genetic algorithm (GA) for the finite horizon POMDP, and
Table 15.1 provides definitions of the notation used.

There are two loops in Basic GA. The outer loop is for the problem
horizon to be solved, (¢,7"). The inner loop is the core of GA. Step 1.0
initializes parameters. Step 1.1 sets up an initial population for the
GA. The members of this initial population come from three sources:
the set of old witnesses, We41, extreme points of the information space,
and randomly generated points. This step also constructs an initial I'-set
for the value function at stage ¢, '&2. For the purpose of computational
performance, the y-vectors in 'S4 are uniquely numbered in the order

382 EVOLUTIONARY OPTIMIZATION

n = the generation counter for the GA.
P = the population for the nth generation at stage t.
N; = the size of the population at stage t.
N* = the minimal size of the population.
b = a constant multiplier.
W: = aset of witnesses for stages t to T, each of them
termed as an old witness.
Wpe¥ = a set of witnesses associated with the I-set for stage £.
W = aset of witnesses identified only at n** generation in the
reproduction processes for stage t.
B} = the pool of parents selected to breed the next population Pt"""1
My _rate = the minimal threshold of yield rate of the new defining vector
in a generation, > 0.
rorate = the yield rate of new defining vectors
— fraction of new points witnessing new vectors.
Moy_sun = the maximal consecutive generations yielding
insufficient (r_rate < My_rate) new defining vectors, > 1
Orun = the counter for tracking the number of generations that
yield insufficient defining vectors in a row.
Mg timit = _the maximal generation limit, > 1.

Table 15.1. Definitions of parameters used in the basic GA

they are identified. Step 1.2 checks the termination criteria. Step 1.3,
the reproduction process, is the core of the GA and drives the initial
population toward desirable solutions. There are four sub-steps here.
Step 1.3.1 focuses the search on corners. Step 1.3.2 selects the pool
of parents. Step 1.3.3 is the crossover operation between two randomly
selected parents from B, and is purposely left unspecified. The next
section of the paper proposes the strategy DC-NICHE to accomplish this
step. In Step 1.3.4 Partial_ Guided operator exploits the structure of
the evaluation function defined in equation (15.7), and will be discussed
later. Move_to Boundary and immigration operations are the mutation
operators. Note thatt,T,T";, and P?A are defined as before, except that
I'y is approximated by the solution set obtained by I‘tGA. The notation

x «— Yy, x+ +, and x — — denote to overwrite & with g, increment z by
1, and decrement x by 1, respectively.
Basic GA {

Step 0. Set t — T —1, F?_Al — @, Xr — 0, Ty « {7}
Step 1. Stop the GA ift < 0. Otherwise continue.
Step 1.0. Set n « 0, X" —), N* — 100, b < 3, and
Ny — max{N* |Dys1| + (T' = t)b}. Let O_run «— —1.
Step 1.1. Initialize a population P{* withsize N; consisting of
the following three groups:
Old witnesses: If X;y1 # 0, evaluate and include old
witnesses yielding new defining vectors to P;* as well as to

A GA Heuristic For Finite Horizon POMDPs 383

A, and the associated defining vectors to ['GA,

Extreme points: If|A7*%| < Ny, evaluate and include
extreme points of X yielding new defining vectors to P
as well as to A{*¢", and the associated defining vectors
to I'SA, Extreme points of X are e;, i € S, whose "
entry is 1; O elsewhere.

Random points: If [Wpe¥| < N, evaluate and include (N;—
|[Wgevl) randomly generated points to P*. If any of
them yields new defining vectors, include it to W***, and
the associated defining vector to IS4,

Modify Ni: Ny «— max {|Wpe¥|, N}

Step 1.2. Stop and go to Step 2 if a) no new defining vectors
are found in O_run > My_ry, generations in a row,

or b) n > M, jimi- Continue otherwise.

Step 1.3 Reproduction processes

Step 1.3.1 Negate the fitness of new witnesses in Wi if
positive, and set W « §.

Step 1.3.2 The pool of parents By to breed a new population
PPt consists of all witnesses in W% and chromosomes
in P*. Hence, By «— (Wp¥ U P[").

Step 1.3.3 Perform crossover between randomly selected
parents from BY and include new witnesses into the
set W and the associated defining vectors to 'S4,

Step 1.3.4 Perform Partial_ Guided, Move_to_Boundary, and
immigration operation and include any new witnesses to
the set W and the associated defining vectors to TG4,

124

Step 14 Compute r_rate «— y If rrate < M, _rate,

0_run + +; otherwise 0_run « 0. Set P! — PP,
WP X UW, n+ +, and go to Step 1.2.
Step 2. Set W; < Wypa UWPY Ty « T'6A ¢ — — and go to
Step 1.

4.2 Stratifying the GA Search: DC-NICHE

In this section, we present our GA-based procedure, DC-NICHE,
for determining the witness point sets Wy, t = 0,1,...,7 — 1. The
FEF defined in Section 3 is typically multimodal. If an attractor is
fruitful (fruitless), it is defined by previously unidentified (identified)
v-vector(s). A typical GA will search for the global optimum of this
function. However, we are interested in all attractors, especially fruitful

384 EVOLUTIONARY OPTIMIZATION

attractors, to determine undiscovered <y-vectors. To stratify the search
we employ niche approaches from the GA literature.

There are several niche schemes related in the GA literature, in-
cluding crowding (De Jong, 1975; Mahfoud, 1995), spatial selection
(Gorges-Schleuter, 1990; Davidor, 1991), and fitness sharing (Holland,
1975; Goldberg and Richardson, 1987; Holland, 1992). Niching corre-
sponds to a natural phenomenon that similar species, in general, will
compete for the limited resources available in the same living niche.
Niching methods are techniques to promote the formation and mainte-
nance of several stable subpopulations by promoting population diversity
(Mahfoud, 1995). Each subpopulation is expected to give near-local-
optimum solutions. Therefore, a niching GA is expected to produce
multiple distinct solutions in a single run. For our nonlinear function,
we hope to find multiple fruitful attractors and, hence, multiple new
y-vectors.

The deterministic-crowding niche algorithm (DC-NICHE) uses crowd-
ing, a specific selection scheme that promotes diversity. The basis of
crowding is a method to measure distance between chromosomes. The-
ory and methods of measuring the similarity between two elements can
be found in (Goldberg, 1989c; Holland, 1992). For the purpose of com-
putational speed, the maximum componentwise deviation between two
elements is employed. In particular, this algorithm is modified from de-
terministic crowding in (Mahfoud, 1995). When two parents bear two
offspring, we choose to keep the parents or to replace them with the
offspring based on the closeness of the parents to the offspring. Further,
which parent is replaced by which offspring is selected to intensify niche
formation.

The basic mechanism of pairing up parents and children employed in
this modified crowding scheme is demonstrated in Figure 15.2 (Mahfoud,
1995). Let pi, pa be two randomly chosen parents and ci, ¢z be their
offspring. We will discuss how the parents are chosen later. Let d;; be
the maximum componentwise deviation between p; and ¢;, and let F'(p;)
be the fitness of parent p;, 4,7 = 1,2. The exact scheme is given in the
pseudocode in Figure 15.2.

To implement DC-NICHE replace Step 1.3.3 in the algorithm of
Basic GA with the pseudocode sketched as the following, termed as
Step 1.3.30¢-N ICHE - This pseudocode details the crossover mecha-
nism for the DC-NICHE algorithm, where the composite crossover op-
erator is defined in the appendix. We remark that its Step 1.3.3.1,
not only reduces the occurrence of fruitless points that arise when both
parents witness the same defining vector, but probabilistically favors the
defining vectors with larger defining regions. Step 1.3.3.2 increases the

A GA Heuristic For Finite Horizon POMDPs 385

F'(p1) F'(¢;)

diy
51 €1 if(diy +da2z < dia +day)
B , P —a if(F'(p1) < F'(e1))

~d - :
T P2 — ¢z if(F'(p2) < F'(c2))

~

p <. else
F'(p2) % T < Fl(e) p1— 2 if(F'(p1) < F'(c2))

< d s p2 — c1 if(F'(p2) < F'(c1))
P2 4 C2 end

Figure 15.2. Illustration of crowding scheme

probability of witnesses associated with defining vectors having smaller
defining regions to be selected as parents. Note that Step 1.3.3.1.1
defines the selection method on the current population without replace-
ment, while the selection method on a set of witnesses for Step 1.3.3.2
is carried out with replacement.

Step 1.8.3PC-NICHE Cressover operation step for
the DC-NICHE algorithm {

Step 1.3.3.1 Let &’ be the number of distinct y-vectors
following the last generation. Let h be the total number
of chromosomes contributed by Move_to_Boundary,
immigration, and Partial_Guided operations in the new
population. Each defining vector is uniquely numbered.
Define k = min{%, Lﬁtgiﬁj} Then perform the
following steps & times:

Step 1.3.3.1.1 Without replacement, randomly select two
distinct parents, p; and pa2, hitting different identified
defining vectors.

Step 1.3.3.1.2 Perform a composite crossover on p; and ps
to create two offspring, ¢; and ca.

Step 1.3.3.1.3 Evaluate the two newly bred offspring.

Step 1.3.3.1.4 Execute the modified crowding scheme
illustrated in Figure 15.2 to pair up parents and
offspring and meanwhile to determine who should
survive into the next generation for each parent-child
pair.

Step 1.3.3.2 Define m = max{0, | =2%=h |} performing
m crossover steps as described in Step 1.3.3.1, except

386 EVOLUTIONARY OPTIMIZATION

a) both parents are randomly selected from the set W{*%,
instead of from P, and b) parents are selected with
replacement.

4.2.1 Partially Guided Search. We can enhance DC-NICHE
with partially guided search. This search scheme is not time consuming
and slightly improves the solution discovered. Each 7' € T84 is associ-
ated with a witness, X. Let ’yz € F?A be the second best vector in F?A
when evaluated at X. These vectors cross at

(xeX: (' -+)x =0} (15.8)

If one of these crossing points, x*, witnesses a new defining vector, then
add the vector to I‘tGA. If not, then move X along the direction toward
x* some random amount. Then the updated X remains a witness, but

moves closer to a corner or boundary.

4.3 Complexity Reduction Procedures

The complexity of the proposed GA is O(Y|A||Z||S|[TG4), where T
is the total number of points in the population when GA stops running.
Thus, if a defining vector is discarded from I‘g_‘}, then the computation
will be reduced by O(Y|A||Z||S]). The actual reduction can be magni-
fied if many defining vectors are discarded from Fgﬁ‘ because Y often
decreases when 'S4 gets smaller. This observation motivates discard-
ing some defining vectors that may contribute negligibly to the function
value. We refer to this as the I'~cut mechanism, which is motivated from
the approximation schemes in (Cassandra et al., 1997).

If a newly discovered defining vector alters the fitness function by a
very small amount, we will discard it at the risk of loss of optimality. The
impact of this lost vector may propagate to earlier stages. An analysis
of error caused by this propagation is presented in Section 5.

Let ¢ be the fitness threshold for including a new defining vector, 7.
Let I" be the set of known defining vectors prior to discovering . Our
theoretical objective is to discard 7y if supyex F(x, T U {v},T') < €. This
is time-consuming to evaluate in practice. In our GA heuristics, a new
defining vector identified by x will not be included into T'if F(x,I" U
{7},T) < ¢. This may lead to greater error than € as the initial error
propogates through the recursion.

We can refine this process by recognizing that defining vectors identi-
fied early in the process have a greater impact on propagated error. We

A GA Heuristic For Finite Horizon POMDPs 387

then use lower € values if the cardinality of T" is small, and increase ¢ as
IT'| increases.

In Lin (1999), two examples of threshold functions, . and C,, were
proposed and numerically investigated. Fitness threshold function C,
is a constant function with very small positive value, ¢ > 0. Fitness
threshold function C, is a piecewise linear function and is bounded above
by 0.005 if TS| > 400. Its precise definition is presented in Table A.3
in the appendix. Preliminary numerical results show that, in general,
the proposed GAs with the use of fitness threshold function C, yield
good approximations and are computationally tractable. Thus, we will
adopt this fitness threshold function in Section 6.

5. Heuristic Performance Measures

This section discusses three measures to study the performance of
several algorithms for the POMDP.

5.1 Error Upper Bound, 7

The error upper bound between two PAC value functions represented
by T'; and IS4 is defined as 7, = maxyex f(x, Ty, TSA). This ‘a posteri-
ori” error upper bound will be computed using a mixed integer program
(MIP) to evaluate the quality of the solutions produced by the heuris-
tics. The exact I'-sets, I';’s, are obtained through use of the most efficient
optimal algorithm thus far reported (Cassandra et al., 1997), which is
referred to as Ip-best.

Let H be a sufficiently large positive number and let the 0 —1 variable
y correspond to vector «y in I'y. The v(x) is defined as before and z;(x)
is its approximation yielded by the GA. The following MIP, having
as its objective to maximize the difference of two PAC value functions,
[ve(x) — 2z¢(x)] = f(x,Ty, TEA), yields the error upper bound, 7, and is
defined as follows:

= MAX wv(x) — z(x)
ST. w(x) <xy+(1-yy)H, forall y €I},
qurt Yy = 1,
yy € {0,1}, for all y € Ty,
z(x) > x, for all y € TGA,
x € X.

(15.9)

The value of 7, signifies the maximum error caused by the heuristic
solution at stage t. If ¢ = 0, then the heuristic solution is in fact
optimal. Ifn; > 0, then the difference between the heuristic PAC curve
and the optimal PAC curve is no greater than 7.

388 EVOLUTIONARY OPTIMIZATION

However, for 1p-best the POMDP is intractable when problem sizes
grow. Thus, it becomes infeasible to compute 7; directly. Alternatively,
we will compute the error estimate caused by our heuristic solutions, 7,
relative to an approximation constructed by the 1p-best with the e-I'-
cut operation (denoted as Ip-best(€)). Let the approximate solution set
obtained with lp-best(e) be denoted as I'f.

An e-I'-cut prunes defining vectors with function value improvement
less than € > 0 much as in Section 4.3, though applied to Ip-best. As-
suming e is used throughout, Ip-best(e) recursively uses this e-I'-cut step
at most (2 x |A||Z| — 1) times in order to construct I'f. The error of
the 1p-best(e), nip ~b63t(e), is the accumulation of errors attributed to the
implementation of lp-best(¢) to solve (15.3-15.5):

We remark, based upon our numerical results reported later, that
the approximate PAC curve constructed by Ip-best(¢) could be entirely
below the optimal PAC curve, especially when 1Z] gets large.

When we substitute I'; for I'y, this MIP yields the error estimation, 7,
associated with the heuristic solution; i.e., 7f = maxxex f(x, I‘;,FtGA).
Note that nf can be negative. If ni < 0, then the entire heuristic PAC
curve is above that of Ip-best(e) by at least —nf. If ni > 0, then the
difference between our heuristic PAC curve and the lp-best(e) PAC
curve is no greater than nf. However, it is possible that portions of

our heuristic PAC curve may give better function values than that of
Ip-best(e).

The relation among 7, 75, and nip ~best(c) (= maxxex f(x,T¢, 1)) can
be characterized as follows:
0 < e = NaXxeX f(x’ Ft) FtGA)
= maxeex {£(x,T§,TFA) + f(x,T;,T%) }
lp—best(e)

< mptn

This suggests a way to compute a looser error upper bound of 7, nf +

nip *beSt(e), if it is infeasible to obtain #; directly. The derivation of such

a bound, nép “beSt(e), is a topic for future research. We will only report

the results of n;’s in Section 6.

5.2 Error Ratio Upper Bound, p

The error ratio upper bound, p; = maXxeXx %, is the maximal

error ratio of the heuristic PAC curve relative to the optimal PAC
curve. Considering a pair of defining vectors v € I'; and v* € IS4 at
a time, we obtain this value p; from solving |T¢||T$#| such nonlinear

A GA Heuristic For Finite Horizon POMDPs 389

models as:
pif= MAX o)
ST. xv¥>xvy, for all v € I'y;
xv? > xv, for all y € TGA,
x € X.

(15.10)

Each such model computes the local maximum errorratio, p;’*, over the
intersection of the defining regions of 4¥ and «*, Dx(v%,v*), as defined
by the set of constraints in (15.10). Thus,

U2
Pt 7°enr,n '?3(61“?“ Pe

A pair of 4¥ and +? is referred to as a feasible pairif Dx(vy¥,v*} # 0.
We remark that assuming v¥x > 0 (as it is in the examples tested in
this paper), and ¥ and ~* is a feasible pair, the implications of the sign
of p;' * is the same as that of 7. However, the region considered now is
Dx(y",~%), not X. Note that p§ is analogously defined.

In fact, (15.10) is a linear fractional program, whose solution proce-
dure has been established in (Charnes and Cooper, 1962; Murty, 1983).
The theory and procedure employing two LPsto solve (15.10) is detailed
in (Murty, 1983). Technical detail is presented in (Lin, 1999).

53 Total Used Points, T

To obtain I (C,;A for approximating the value function at the cur-
rent stage requires determination of all other I'-sets from stage 1 to
stage T'— 1. At staget, our proposed GAs will generate many points,
my (= |WPe¥]), to construct an approximation of the value function

sought. Ideally, we would like to use as few points (¥ = f__}} mg)
as possible while constructing a good approximation. Moreover, based
upon numerical experiences, we found that for £ = 0,1,...,7 — 1, the

number, my, helps to define the design parameter d; at stage t for the
fixed grid based method in (Lovejoy, 1991). This is justified in Section
6 by the high quality solution yielded by the informed fixed grid method
IFG).

The IFGis a modified procedure of the fixed grid method in (Lovejoy,
1991). In (Lovejoy, 1991), the grid of points is generated by triangulating
the original simplex X with the design parameter d, divisions over each
face of X. The value of d is closely related to the quality of approximation
derived from the corresponding grid of points. As indicated in (Lovejoy,
1991), the number of points will explode for high values of ISI and d,
and there are no a priori bounds available to aid in choosing the grid

390 EVOLUTIONARY OPTIMIZATION

appropriate for a desired solution quality. Rather, the IFG method first
decides a di-value to define a grid of points XIFG such that |XIFG| is
as close to my as possible. Given the set X%F G and Fg‘?, determining

the approximate PAC curve of the IFG method, ¥(I{F$, XiFG), is
straightforward.

6. Numerical Results

This section reports tests on performance of three approximation
methods: DC-NICHE (presented here), informed-fixed-grid (IFG) (Love-
joy, 1991), and lp-best(e) (Cassandra et al., 1997).

Experiments were run on 2 examples from (Cheng, 1988) and 8 ran-
domly generated examples. These 10 examples are briefly described in
Table A.1 in the appendix. We assume a horizon of 7 = 20. Parameter
values for DC-NICHE are detailed in Table A.2. Note that the fitness
threshold function Cy is also used to screen points in the IFG approach
and thus the defining vectors they identify. The solution obtained by
the Ip-best(e) method with € = .01 is the reference point of comparison.
That is, all errors are reported by deviation from the value obtained by
the Ip-best(e=.01).

The criteria to evaluate the performance of an algorithm are the error
upper bound (n), the error ratio upper bound (p), the total run-time
(7), and the total number of points sampled (Y). In general, we favor
an algorithm with small 7, small p, small 7, and small Y.

Tables 15.2, 15.3, 154, and 15.5 summarize the numerical results.
Note that, 1§ o9 is an error estimation that the corresponding algorithm
can produce relative to the solution of the lp-best(e) at stage 0. We
find this by solving the corresponding MIP model in (15.9). The other
criteria, p§ 20, 70,20, and Yo 20 are defined and interpreted in a similar
manner. A negative value of 7§ 5, signifies that the corresponding algo-
rithm obtains a better approximation than the solution of the Ip-best(e).

Table 15.2 shows the solution quality for the four approaches. For
the small problems (p444, p533) DC-NICHE and IFG produce virtu-
ally equivalent solutions that are better than Ip-best(e=.01). For the
problems with large state spaces (p2044, p3044, p5044, p10044), lp-
best(e=.01) is superior for at least one information state for each prob-
lem. For the problems with large observation spaces (p4204, p4034,
p4504, p41004) DC-NICHE and IFG consistently beat Ip-best{e=.01).
Algorithm DC-NICHE is generally best over all classes of problems.

Recall from Section 5.2 that the relative percent error value, pf, is
computed in a manner biased toward lp-best(e). For each feasible pair
of defining vectors with joint definingregion D, Ip-best(¢) is declared the

A GA Heuristic For Finite Horizon POMDPs 391

Table 15.2. Comparisons among various algorithms: solution quality

strategy DC-NICHE IFG

examples 6,20 £5.20 76,20 P5,20
pd4d4 -.016513 | -.000104 -.016513 | -.000104
p533 -.000788 | -.000005 -.000788 | -.000005
p2044 013921 .001527 .017160 .001852
p3044 1032403 006549 1035069 .008731
p5044 .081604 .016302 094347 .023442
pl0044 1042361 .031873 .042361 .033579
p4204 -.089557 | -.006800 -.089527 | -.006784
p4304 -.420670 | -.080633 -.423378 | -.080619
p4504 -.351439 | -.006524 -.346330 | -.006530
p41004 -.392682 | -.049614 -.390409 | -.049521

Table 15.3. Comparisons among various algorithms: distribution of feasible-pair-
win-percentage vs. Ip-best(e), %

problem method feasible pairs | win % |
p2044 DC-NICHE 89 91.01
IFG 88 03.18
p3044 DC-NICHE 2150 86.70
IFG 2216 90.88
p5044 DC-NICHE 89167 49.50
IFG 81105 38.58
pl0044 DC-NICHE 68248 89.06
IFG 75426 88.89

winner if it wins for even a single information state. To gain a better un-
derstanding of the large state problems where lp-best(e) was the overall
winner, we investigated what fraction of feasible pairs contain informa-
tion points that favor Ip-best(e). Table 15.3 shows that for all problems
except p5044, DC-NICHE wins for approximately 90% of feasible pairs.
For p5044, DC-NICHE and lp-best(e) roughly split the region.

Run time of the various heuristics is compared in Table 15.4. Since
DC-NICHE and IFG all sample the information space, Table 15.5 com-
pares the number of sample points necessary to obtain the results above.

7. Summary

The main contribution of this paper is the development of a GA-based
procedure for determining high-quality, suboptimal designs for moder-
ately sized finite horizon POMDPs. This GA is based on a random
keys search of the information space stratified by a niching approach.
This algorithm, DC-NICHE, was compared to two algorithms in the
literature, IFG and Ip-best, on 10 test problems.

392

EVOLUTIONARY OPTIMIZATION

Table 15.4. Comparisons among various algorithms

Table 15.5. Comparisons among various algorithms:

: total run time

strategy | DC-NICHE | IFG | Ip-best(e)
examples | 7930 T30 | Tozo
padd 53 5.5 14.8
p533 17 1.7 6.6
p2044 2.5 43 14.3
p3044 148 | 352 73.9
p5044 175.5 173.5 3385.0
pl0044 549.8 939.7 2159.1
p4204 57.1 | 53.8 199.1
p4304 241.2 302.6 742.2
pd504 298.9 335.9 142.7
p41004 643.2 673.3 229.8

strategy | DC-NICHE IFG
example To,20 To,20 d-values
p444 24314 30011 12-27
p533 14172 19052 8-13
p2044 9737 30800 3
p3044 12842 76725 2-3
p5044 24355 25500 2
pl0044 25634 96050 1-2
p4204 17041 19239 11-17
p4304 24868 27835 11-20
p4505 20732 25219 11-19
p41004 21996 26323 11-19

number of points evaluated

Solution quality is difficult to measure for this problem since the out-
put is not a single value, but a function mapping information state to
value. Our first comparisons were very conservative in that they heavily
favored lp-best. We measured the minimum advantage DC-NICHE had
over Ip-best for any information state. Hence, if 1p-best won for a single
information state, it would be declared the overall victor. Despite this
conservative approach, DC-NICHE produced superior solutions on six
of the ten problems. That is, DC-NICHE produced a better solution
for every information state for each of these six problems. For the four
problems where Ip-best produced a superior solution for some informa-
tion state, we did a detailed analysis of all information states. For these
four problems, we found that DC-NICHE produced better solutions for,
on average, 79% of the information states.

Comparing DC-NICHE to the fixed grid approach, IFG, was a closer
comparison. In head-to-head comparison, DC-NICHE held a slight four
wins, three losses, three ties advantage. The average fitness values pro-
duces favored DC-NICHE, but not to a significant level.

REFERENCES 393

In computation speed, DC-NICHE had a much more substantial ad-
vantage. It solved the suite of ten problems in 1990.0 seconds, compared
to 2525.5 seconds for IFG and 6967.5 for Ip-best.

In conclusion, DC-NICHE produced, on average, better solutions than
IFG or Ip-best on these test problems, and did it in significantly less
time.

Acknowledgments

This work was supported by the National Science Foundation under
Grant DMI-9634712. We would like to thank Lidore Amit and Erin
Eisenberg for running the computational tests and for other contribu-
tions to this paper. We would also like to thank Anthony Cassandra for
his sharing the source codes for solving the POMDP.

References

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing
and optimization. ORSA Journal of Computing, 6 (2):154-160.

Cassandra, A. R., Littman, M. L., and Zhang, N. L. (1997). Incremen-
tal pruning: a simple, fast, exact algorithm for partially observable
Markov decision processes. Technical report, Dept. of Computer Sci-
ence, Brown University.

Cavicchio, Jr., D. J. (1970). Adaptive Search Using Simulated Evolution.
PhD thesis, University of Michigan, Ann Arbor.

Charnes, A. and Cooper, W. W. (1962). Programming with linear frac-
tional functionals. Naval Research Logistics Quarterly, 9:181-186.
Cheng, H.-T. (1988). Algorithms for partially observable Markov deci-
sion processes. PhD thesis, University of British Columbia, British

Columbia, Canada.

Davidor, Y. (1991). A naturally occurring niche and species phenomenon:
the model and first results. In Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufmann.

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, University of Michigan.

Eagle, J. N. (1984). The optimal search for a moving target when the
search path is constrained. Operations Research, 32:1107-1115.

Fogel, L. J. (1962). Autonomous automata. Industrial Research, 4:14—19.

Fogel, L. J., Owens, A., and Walsh, M. J. (1965). Artificial intelligence
through a simulation of evolution. In Proceedings of the 2nd Cyber-
netic Sciences Symposium, pages 131-155. Spartan Books, Washing-
ton.

394 EVOLUTIONARY OPTIMIZATION

Goldberg, D. E. (1989a). Genetic algorithms and Walsh functions: Part
I, a gentle introduction. Complex Systems, 3:129-152.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part
II, deception and its analysis. Complex Systems, 3:153-171.

Goldberg, D. E. (1989c). Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Publishing Company, Inc.

Goldberg, D. E. (1991). Construction of high-order deceptive functions
using low-order Walsh coefficients. Annals of Mathematics and Arti-
ficial Intelligence, 5:35-48.

Goldberg, D. E. (1993). Making genetic algorithms fly: a lesson from the
wright brothers. Advanced Technology for Developers, 2:1-8.

Goldberg, D. E., Deb, K., and Horn, J. (1992). Massive multimodality,
deception, and genetic algorithms. In Minner, R. and Manderick, B.,
editors, Parallel Problem Solving from Nature, Amsterdam: North-
Holland, 2, 37-46.

Goldberg, D. E. and Richardson, J. J. (1987). Genetic algorithms with
sharing for multimodal function optimization. In Proceedings of 2nd
International Conference on Genetic Algorithms, Lawrence Erlbaum
Publishers.

Gorges-Schleuter, M. (1990). Explicit parallelism of genetic algorithms
through population structure. Parallel Problem Solving from Nature,
Springer-Verlag.

Hadj-Alouane, A. B., Bean, J. C., and Murty, K. G. (1999). A hybrid
genetic/optimization algorithm for a task allocation problem. Journal
of Scheduling, 2:189-201.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The
Universiy of Michigan.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems.
Cambridge, MA: MIT press.

Horn, J. and Goldberg, D. E. (1995). Genetic algorithms difficulty and
the modality of fitness landscapes. In Whitley, L. D. and Vose, M. D.,
editors, Foundations of Genetic Algorithms, Morgan Kaufmann, San
Mateo, CA, 3, 243-269.

Lark, J. W. (1989). A heuristic search approach for solving finite hori-
zon, completely unobserved Markov decision processes. PhD thesis,
University of Virginia.

Lin, A. Z.-Z. (1999). A hybrid genetic/optimization algorithm for a class
of sequential decision models. PhD thesis, University of Michigan,
Michigan, U.S.A.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Effi-
cient dynamic programming updates in partially observable Markov

REFERENCES 395

decision processes. Technical Report CS-95-19, Dept. of Computer
Science, Brown University.

Lovejoy, W. S. (1991). Computationally feasible bounds for partially
observed Markov decision processes. Operations Research, 39:162-175.

Mahfoud, S. W. (1995). Niching method for genetic algorithms. PhD
thesis, University of Illinois at Urbana-Champaign.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evo-
lution Programs. Springer-Verlag.

Monahan, G. E. (1982). A survey of partially observable Markov decision
processes: theory, models, and algorithms. Management Science, 28:1—
16.

Murty, K. G. (1983). Linear Programming. John Wiley & Sons, Inc.

Norman, B. A. and Bean, J. C. (1997). A random keys genetic algorithm
for job shop scheduling. Engineering Design and Automation, 3:145—
156.

Norman, B. A. and Bean, J. C. (1999). A genetic algorithm methodology
for complex scheduling problems. Naval Research Logistics, 46:199—
211.

Norman, B. A. and Bean, J. C. (2000). Operation scheduling for parallel
machine tools. /IE Transactions, 32:449-459.

Platzman, L. K. (1980). Optimal infinite-horizon undiscounted control
of finite probabilistic systems. SIAM Journal of Control Optimization,
18:362-380.

Shaefer, C. G. and Smith, S. J. (1988). The argot strategy ii: Combinato-
rial optimizations. Technical report, Thinking Machine Corporation.

Smallwood, R. D. and Sondik, E. J. (1973). The optimal control of par-
tially observable Markov decision processes over a finite horizon. Op-
erations Research, 21:1071-1088.

Sondik, E. J. (1971). The optimal control of partially observable Markov
processes. PhD thesis, Standford University, California, USA.

Sondik, E. J. (1978). The optimal control of partially observable Markov
decision processes over the infinite horizon: discounted costs. Opera-
tions Research, 24:282-304.

Spears, W. M. and De Jong, K. A. (1991). On the virtues of parame-
terized uniform crossover. In Proceedings of the Fourth International
Conference on Genetic Algorithms, 230-236.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Pro-
ceedings of the Third International Conference on Genetic Algorithms,
2-9.

White, D. J. (1985). Real applications of Markov decision processes.
Interfaces, 15:7-83.

396 EVOLUTIONARY OPTIMIZATION

White, D. J. (1988). Further real applications of Markov decision pro-
cesses. Interfaces, 18:55-61.

White, III, C. C. (1991). A survey of solution techniques for the partially
observed Markov decision processes. Annals of Operations Research,
32:215-230.

White, III, C. C. and Scherer, W. T. (1989). Solution procedures for
partially observed Markov decision processes. Operations Research,
37:791-797.

White, III, C. C. and Scherer, W. T. (1994). Finite-memory suboptimal
design for partially observed Markov decision processes. Operations
Research, 42:439-455.

White, III, C. C. and White, D. J. (1989). Markov decision processes.
European Journal of Operations Research, 39:1-16.

Whitley, D. (1991). Fundamental princlples of deception in genetic search.
In Rawlins, G. J. E., editor, Foundations of Genetic Algorithms, pages
221-241. Morgan Kaufmann, San Mateo, CA.

APPENDIX A 397

Appendix

A. Let p1 and p2 be two chosen parents, and ¢1 and ¢ be the two offspring created
by the composite crossover operatorapplied to p1 and pa. Let o, on, 2 € [0,1]
be three randomly generated scalars. The « is termed as favorable tendency
between parents. The composite crossover operator is defined as follows:

Crossover Step: For each gene i € 8, do the following:
Step 1 Randomly generate three values: «, a1, ae.
Step 2 Randomly perform either uniform crossover or linear combina-
tion crossover between p; (£) and p2{?) to create ¢, (i) and ca(s).
Uniform Crossover: Set c1(i) = api(i) and cz(3) = aspa(s) if
a < 0.7; otherwise, set ¢1(i) = aupa(f) and ea(i) = azp1(d).
Linear Combination: Set c¢1(3) = aipi(2) + (1 - o1)p2(¢) and
c2(2) = aap1 (i) + (1 — ax)p2(4) if & < 0.7; otherwise, set ¢1(3) =
(1 = a1)p1(d) + onpa(i) and c3(é) = (1 — 2)p1 (i) + a2p2(3).
Perturbation Step Perform give_N_share operator on the two offspring. In
give_N_share operator, each gene gives away some random portion of its

alleles, and at the same time also receives some alleles from the other
genes.

B. Data sets for test examples are listed in Table A.1. The examples p2044, p3044,
p5044, and p10044 are referred to as S-examples as the only parameter among
these examples to change is the cardinality of the state space S. Similarly, the
examples p4204, p4304, p4504, and p41004 are referred to as Z-examples.

C. General parameters for the GA are listed in Table A.2, where C, () isdefined

in Table A.3. The maximum number of generations for stage ¢ is defined as:
Go + (T —t) x AG.

Table A.1. Data setting for 10 Test Examples

Example #State | #Action | #Observation | Discount
p444 (Cheng, 1988) 1 1] 1.00
p533 (Cheng, 1988) 5 3 3 1.00

p2044 20 4 4 0.87
p3044 30 4 4 0.90
p5044 50 4 4 0.95
p10044 100 4 4 0.875
p4204 4 4 20 0.87
p4304 4 4 30 0.90
p4504 4 4 50 0.95
p41004 4 4 100 0.875

398

EVOLUTIONARY OPTIMIZATION

Table A.2. Parameter settings for DC-NICHE.

Parameter

Value

distribution of points
offspring-feasibility-ensuring scheme
fitness evaluation function

fitness threshold function

minimal population size

initial number of generations, Go
number of extra generations, AG
Mutations ratio

Move_To_Boundary ratio
partially-guided search ratio
Favorable tendency Among Parents %
Return rate threshold, My _rate
Maximal consecutive zero runs, Mo_run

uniform over hypercube
random keys approach
F(x, l";l', T‘?A}

Cu(e)

100

10

3

1%

1%

1%

70

0.05

2

Table A.8. Definition for the fitness threshold function C,

400— 5x 10-3

Tl Cu(IT])
0-100 | 1077 4+ (10~ 'Y — 10~ 1H)|I]
100 — 150 | 1078 4 2(10~9 = 10~ 1°)(|T| — 100)
150 — 200 | 10~7 4 2(10=% — 10~ 9)(|T"} — 150)
200 — 300 | 104 + (105 — 10~¢)(|"| — 200)
300 — 400 | 1073 4 4 x 10~5(|T| — 300)

Chapter 16

USING GENETIC ALGORITHMS TO
FIND GOOD K-TREE SUBGRAPHS

Elham Ghashghai and
Ronald L. Rardin

Abstract Many combinatorial problems which are (NP) hard on general graphs
yield to polynomial algorithms when restricted to k-trees which are
graphs that can be reduced to the k-complete graph by repeatedly re-
moving degree k vertices having completely connected neighbors. We
present a genetic algorithm which seeks a heuristic optimum solution by
generating an evolving population of k-tree subgraphs. Each is evalu-
ated by computing an exact optimum over the subgraph, which provides
a feasible solution over the original graph. Then we validate our algo-
rithm by testing it on the task of finding a minimum total cost 3-tree
in a complete graph.

1. Introduction

Genetic Algorithms (GAs) form a class of heuristic searches that im-
itate natural selection. They maintain an evolving collection or popula-
tion of solutions throughout the search. The basic concepts of GAs were
developed by Holland in 1975 (Holland, 1975). Goldberg (1989) com-
ments that GAs are more efficient and flexible than other traditional
heuristic search methods since GAs start from a set of solutions and not
a single one, and also because they use the objective function value as
opposed to other auxiliary knowledge (Goldberg, 1989).

In the last few years there has been an increasing interest in using
GAs for solving a wide variety of optimization problems due to their ef-
ficiency, robustness and flexibility. On the other hand, the richness and
decomposibilty of k-trees have been very attractive to many researchers
for solving a variety of combinatorial optimization problems that are
known to be (NP) hard on general graphs, but can be solved in poly-

400 EVOLUTIONARY OPTIMIZATION

nomial time when restricted to k-trees (Arnborg et al., 1997; Arnborg
and Proskurowski, 1986; Arnborg and Proskurowski, 1989; Coullard et
al., 1991; Coullard et al., 1991b; Granot and Skorin-Kapov, 1988; Wald
and Colbourn, 1982).

The problem with this approach is that a given graph may not be a
k-tree (for example a complete graph), and even when a graph is known
to be a k-tree, determining the size of k (width of the graph) is itself
(NP) hard (Bienstock, 1991).

Our research aims at using genetic algorithms to find a “good” k-tree
subgraph in a general graph. The optimal solution on this subgraph
is an approximation of the optimal solution on the complete graph. In
particular, we focus on Strong k-Connectivity Problem (SKCP) which
seeks a minimum cost subgraph of a general graph in which any sites or
links can fail as long as no k of them are mutually adjacent. This problem
is equivalent to finding a minimum cost k-tree, which is a generalization
of IFI networks. An IFI network is one in which any sites or links can
fail as long as no two of them are adjacent. Farely, Wald and Colbourn
show that this problem is in fact a 2-tree (Wald and Colbourn, 1982).
Beltran et al. heuristicly construct minimum cost IFI (2-tree) networks
(Beltran and Skorin-Kapov, 1994). In general a k-tree is a network such
that any sites or links can fail as long as no k of them are adjacent.

In this chapter we focus on the application of our algorithm to 3-trees.
The extension to k-trees is straightforward. In Section 2 definitions of k-
trees and decomposition trees are given. In Sections 3 and 4, we discuss
the algorithm paradigm and implementation in detail. Computational
results are discussed in Section 5.

2. k-Trees

Graph theoretic terminology used here generally follows Bondy and
Murty (1976). A special class of graphs known as k-trees is defined
recursively as follows. A k-tree on k vertices is a k-clique (complete
graph on k vertices). If G is a k-tree on n vertices, then we can construct
G’, ak-tree on n+1 vertices, by making the (n+ 1) st vertex adjacent to
each vertex of a k-clique of G. Equivalently we can say that, k-trees are
perfect elimination graphs, that is, graphs G = (V, E) for which there
exists an ordering of the V(G) such that each vertex forms a k+1 clique
with its neighbors just before it is eliminated (Rose, 1974).

Figure 16.1 illustrates the construction of a 3-tree. A 3-clique (i.e. a
triangle) is the most elementary 3-tree. To construct a 3-tree on four
vertices, connect a fourth vertex to each vertex of the original triangle.
This will create a simplex with four triangles. To add a fifth, connect

Finding Good k-Tree Subgraphs 401

Figure 16.1. 3-tree Construction

another vertex to each vertex of any one of the existing triangles, an so
forth.

FPartial k trees are edge subgraphs of k-trees. In developing linear-
time algorithms for 3-trees it is sufficient to address only full (maximal)
cases, because a partial 3-tree can be embedded in a (complete) 3-tree
in linear time (Matousék and Thomas, 1991).

2.1 Decomposition Trees

A graph G(V, E) is a k-tree if and only if every minimal separator
of any distinct non-adjacent vertices is a k-clique (Rose, 1974). For
example, the triangle BCD separates vertices A and H in the 3-tree of
Figure 1.

This property leads naturally to a decomposition of any 3-tree into
simplices that intersect in separating triangles. Figure 16.2 illustrates a
decomposition tree of a 3-tree on eight vertices. Such a decomposition can
be constructed in linear time (Corneil and Keil, 1987). An enumeration
of the nodes in any decomposition tree can be obtained by a breadth
search. Later in this paper we use this characteristic of k-trees to encode
them for genetic search.

3. Algorithm Paradigm and Terminology

Genetic Algorithms operate on a set (usually of fixed size) of solutions,
called a population which evolves through a sequence of generations. The
first set of solutions which is randomly generated is referred to as the
initial population. The process moves from one generation to another by
breeding new solutions. Transitions from one generation to the next are

402 EVOLUTIONARY OPTIMIZATION

ABCD

BCDF

<

Figure 16.2. Decomposition Tree

based on the objective function values, i.e., the best solutions stay, and
more are generated by breeding.

There are many variations of genetic algorithms. They differ mainly in
their implementations of three essential operators; reproduction, crossover
and mutation. The details must therefore be expressed for each algo-
rithm, and we do so in the next section.

3.1 Transition From One Generation to the Next

Reproduction occurs through copying a fixed number of best solutions
(elite) from the current generation into the next. This is called an elitist
strategy.

Crossover is a process by which two solutions combine to create two
new offspring. In this paper we use a one-point crossover scheme as
follows. Assume that each solution is somehow encoded as a string of
D entries. We pick an integer p, the crossover point, randomly from
(1,2, ..., D). In a one-point crossover, the two parent strings break at
the crossover point, and switch tails to create two offspring. The parents
are annihilated in the process. For example consider two sequences of
nodes, (1,2,3,4,5,6,7) and (7,6,5,3,1,2,4). Assume that the crossover
point is p = 2. Figure 16.3 shows the two offspring after crossover:
(1,2,5,3,1,2,4) and (7,6,3,4,5,6,7).

The above crossover operator may produce invalid strings. For exam-
ple, if strings are supposed to be a permutation of a set of nodes, then

Finding Good k-Tree Subgraphs 403

crossover point =2

1 2|E3 4 EL__fs__ 7}
7 6(5 3 1 _g___4_

()3 \b)
.p.ic.o!
| ml_‘lr

-\] —
I

Figure 16.3. Crossover with Infeasible Offspring

a string containing repeated nodes is invalid, as happens in the previous
example.

To overcome this problem we represent a D-sequence with a sequence
of D random numbers from [0,1]. Such a sequence is known as a random
key (Bean, 1994). The mapping from a random key to the original
sequence is accomplished by first enumerating the components of the key
in ascending order. The original sequence will be the respective positions
of the random numbers in the enumeration. For example, consider the
key (.80, .31, .62, .01, .42). In this sequence .01 is the smallest number
and is in position 4. Therefore, node 4 is the first component of the
node sequence. Altogether, (.80, .31, .62, .01, .42) represents the sequence
(4,2,5,3,1). We perform the one-point crossover on the random keys.
The offspring will then be mapped back to node sequences.

The elitist strategy is prone to premature convergence where all or
nearly all the population consists of identical solutions. Traditionally,
this problem is overcome by a mutation process which occasionally and
randomly alters the value at a string position.

In our research we used, instead, Bean’s approach of introducing a
few randomly generated solutions to each generation(Bean, 1994). This
operation, known as immigration, slows down the process of population
convergence by adding diversity. Immigration was chosen because it
avoids infeasible encodings which can easily arise from random changes
as we will see in Section 4. The same routines used to generate the initial
population produce random immigrants. Immigration also provides a
basis for evaluating solutions as we will see in Section 5.

Figure 16.4 schematically shows the transition from one generation
to the next. The evolutionary process is eventually truncated when
improvement falls below a specified level.

4. Genetic Algorithm Implementation

A critical issue in applying a genetic algorithm is to devise an encoding
of the solutions that is capable of spanning the solution set without

404 EVOLUTIONARY OPTIMIZATION

T Copy Best T+1
ELITE "

Cross-

over

f Immigration

Figure 16.4. Generation T to Generation T + 1

including infeasible ones. Also the encoding should be unbiased, i.e.,
all solutions should be equally likely. Another important consideration
is to avoid infeasibility of offspring after crossover to avoid the use of
penalty costs. Still other issues are implementation parameters such as
population size, the ratio of elite, immigration and crossover, and the
stopping criteria which affect the efficiency of the implementation.

4.1 Encoding k-tree Subgraphs

Consider the decomposition tree discussed in Section 2.1. A natu-
ral way to encode a k-tree and in particular a 3-tree is to present the
topology of a decomposition and its sequence of nodes (see Figure 2).
These representations are called the fopology and sequence strings re-
spectively. We represent the topology of any decomposition tree by a
string of k-tuples ‘with binary components. The jth k-tuple in the string
corresponds to the jth node in the decomposition tree taking nodes in
breadth first sequence. Each component in a k-tuple represents a child
(or lack thereof) in the respective position for the corresponding node.
That is, 1°’s show where new vertices are inserted to creat children as
the 3-tree grows. For example, assume that the triple (110) is in the
3rd position of the string. It means the 3rd node in the decomposition
tree has a first and a second child and no third. We use the notations
Sy and Tp for the sequence and topology strings respectively, where N
is the number of vertices in the graph and D is the number of nodes
(k-cliques) in the decomposition graph.

As an example, consider Figure 16.2 again. Start with a simplicial
node as the root, R. ABRC is the root simplex. The specific choice of
the sequence of letters will be justified later. Now R being the root, the

Finding Good k-Tree Subgraphs 405

next vertex, D, will have to be connected to the ABC face, and ABCD
has to be the first (and only) child of the root simplex. This corresponds
to topology string (100) with the sequence string (ABRCD). The sim-
plex ABCD has three available free faces. By that we mean that we can
add a new node to any of the faces except the ABC face. It is a matter
of convention how we number the children.

In our algorithm we make a convention that the next child will be
a first child, if it is connected to the ABD face, a second child if con-
nected to the ACD face, and a third, if connected to the BCD face.
This also justifies the naming of the root simplex, in as much as it can
have only one child. In Figure 2, the next vertices, £ and F, are con-
nected to ABD and BCD respectively. There is no third child for this
simplex, hence our sequence and topology strings are (ABRCDEF) and
(100, 110). The simplex ABDE has no child, BCDF has only a first
child BCFH, and BCFH has no child. Thus the complete topology
and sequence strings for this graph are 75 = (100, 110,000, 100,000) and
Sg = (ABRCDEFH) respectively.

4.2 Generating Decomposition Trees Randomly

As mentioned in the previous section, the initial population should
be a “good” representative of the whole population space. To achieve
this, we should be able to generate decomposition trees with all types
of topologies. In other words, the likelihood of getting a narrow tree
should be comparable to that of getting a bushy one. Our prototype
is a decomposition tree for a 3-tree, but our algorithm can be easily
generalized to k-trees by simply changing 3 to & for any fixed k.

We generate a topology string in two stages. First we generate a
sequence (Cp) Where C,, € {0,1,2,3} is the number of children of node
n in the decomposition tree. This is done iteratively, starting from the
root node. In each iteration, we have to decide to which of the existing
nodes (potential parents) we must assign the next node. The sequence
is complete when all the nodes (except the root) have been assigned to
some parent. In the second stage, for each Cy,, we randomly generate a
triple of Cy, 1’sand the rest 0’s. This will determine the position of each
child as described earlier.

A step by step description of the first stage is as follows. At the
outset of the problem, we generate 3 unif[0,1] numbers Wy, W and Wj.
These numbers will determine the proportion of nodes with 0, 1, 2 or 3
children. At each iteration, we assign the weight W; to any node that
has already been assigned ¢ children. Each node will then have a chance
of receiving the next child proportional to the weight assigned to it. For

406 EVOLUTIONARY OPTIMIZATION

notational convenience, we let W3 = 0, signifying the fact that a node
with 3 children cannot have another child.

More precisely, suppose that by iteration ¢ we have established the
parent-child relation of the first ¢ nodes. If node n € {1,...,t} has been
assigned n; € {0,1,2,3} children, then we assign to it the weight Wy,;.
In iteration (t + 1), node (t + 1) will become a child of node n with

t

probability p(™ = W,/ Z Wi;. Notice that in the competition for the
k=1

next child, the weights W; determine which type of parents have a better

chance.

4.3 Crossover Operator

The intuition behind the crossover operator is that it mixes charac-
teristics of the parents. Such characteristics could be as specific as a
particular arrangement of the edges or as vague as the general shape of
the parent trees. Consider the example depicted in Figure 16.5. The
decomposition trees, ordered in depth first search, are cut along with
their node sequences from the crossover point and the tails are swapped.
On the one hand, offspring 1 and 2 inherit intact sections of parents 1
and 2. On the other hand, the first offspring is narrower than parent
1 while the second one is bushier than parent 2. One hopes that good
characteristics will survive and evolve through generations because the
best (elite) solutions have more chance to reproduce.

The concept is translated to the following procedure. The topology
and sequence strings are crossedover simultaneously. We crossover the
two topology sequences after p 1s (simplices), which corresponds to p+3
vertices in the sequence string. We also crossover the random keys for
the parents, and decode the new keys to get the new sequence strings.
Figure 16.6 illustrate an example when p = 2.

S. Computational Results

Our computational results are based on applying the algorithm to
the problem of a minimum total cost 3-tree on three sets of complete
graphs of sizes 30, 50 and 80 nodes. Nodes were generated randomly
as independent and identically distributed points (x, y) uniformly over
[0, 1000] x [0,1000]. The underlying networks are complete graphs in the
Euclidean plane, and arc costs are the lengths. Programming was done
in C and all computation times are reported in seconds on Sun/Sparc.

Finding Good k-Tree Subgraphs 407

HHHE-OO-

Parent Decomposition Trees

CaCRCACAY

P , Sy
Offspring Decomposition Trees

Figure 16.5. Decomposition Tree-Based Crossover Scheme

408 EVOLUTIONARY OPTIMIZATION

p=2
[100,100/011, 000, 000 (100, 100, 100, 010, 000
(100, 001} 100, 010, 000/ (100,001, 071, 000, 000)
p+3=5
01.12 22 34 56[.67 .71}/ 01.12 22 .34 5622 .44)
H
A
71 .65.52 .23 11/@2.44)\ 71 .65 .52 .23 .11[.67.71

N\ g
s

Figure 16.6. Crossover Topology and Sequence Strings

5.1 Preliminary Experiment

Preliminary experimentation suggested that the algorithm is not sen-
sitive to moderate changes in the elite and immigration ratios as long as
the fractions are about .20 and .03 respectively. These numbers are also
consistent with the literature (Bean, 1994) of elitist strategies.

To find a suitable population size, we tested the algorithm with dif-
ferent population sizes on three problem instances for each problem size,
each with five different runs starting from a different initial population.
Table 5.1 gives a summary of performance for each case.

We chose our population sizes as scalar multiples of VN, where N is
the number of nodes. We tested multiplications 5, 10, 20 and 25. For
each problem size, the number of function evaluations was fixed. Thus
bigger populations implied fewer generations.

There were a total of 4 x 5 = 20 runs for each problem instance. The
minimum over all 20 runs is the best known solution used for compar-
ison purposes. For each problem instance, the average, minimum and
maximum percent errors from the best known are also reported in Table
5.1. The errors decreased as the population size increased from 5v'N to
20v/N, and increased again for higher population sizes. Therefore, we
fixed a population size of 20+/N for all further investigations.

5.2 Main Experiment

Our main experiment consisted of applying our algorithm to the prob-
lem of a minimum total cost 3-tree on three sets of complete graphs of
sizes 30, 50 and 80 nodes. Five problem instances of each of the above
sizes were randomly generated, and each problem was run with 10 dif-

Finding Good k-Tree Subgraphs 409

Table 16.1. Impact of Population Size on Solution Quality

Error vs. Best (%)
[Pop. xVN)[[5 [10 [15 T 20
Nodes = 30
Avg 9.02 6.17 4.98 6.19
Ins 1 | Min 4.18 1.84 2.20 0.00
Max 17.61 | 15.15 8.64 | 15.13
Avg 12.99 | 11.53 7.84 | 14.26
I Ins 2 | Min 4.57 5.20 0.00 4.99
Max 20.91 | 16.17 | 13.51 | 22.99
Avg 10.91 9.13 8.50 | 13.26
Ins 3 | Min 5.17 6.40 0.00 | 4.99
Max 16.56 | 10.15 | 15.36 | 20.99
Overall Avg 10.97 | 8.94 7.11 | 11.24
H Nodes = 50
Avg || 855] 811 5.18] 3.78
Ins 1 | Min 251 296 0.00| 041
Max 13.74 | 14.22 9.19 6.70
Avg 8.11 5.18 3.78 4.69 ||
Ins 2 | Min 2.96 0.00 0.41 0.00
Max 14.22 9.19 6.70 | 10.17
Avg 983 | 7.16 | 8.59 | 10.34
Ins 3 | Min 3.47 2.48 2.68 5.16
Max 12.01 | 10.95 | 13.41 | 17.20
Overall Avg 883 | 682 | 585 | 6.27
u Nodes = 80
Avg 5.75 6.49 4.25 6.74
Ins 1 | Min 0.00 5.20 0.40 4.00
Max 13.19 | 8.04 | 6.58 | 10.11
Avg 13.69 | 10.28 8.01 3.80
Ins 2 | Min 12.02 5.03 2.06 0.00
Max 17.80 | 15.41 | 12.20 9.93
| Avg 2.83 4.90 5.53 6.90
Ins 3 | Min 0.44 | 0.15 0.20 0.01
Max 4.66 | 7. 85 9.66 | 12.03
Overall Avg 7.42 7.22 5.93 5.81

410 EVOLUTIONARY OPTIMIZATION

Table 16.2. Number of Generations in Main Experiment

Prob Size 30 | 50 80

Avg | 122 | 471 | 578
Ins1 || Min | 56 | 345 | 314
Max | 227 | 645 | 1123
Avg | 177 | 406 600
Ins2 || Min | 92| 166 | 140
Max | 256 | 696 | 956
Avg [166 | 391 | 612
Ins 3 || Min | 104 | 166 | 189
Max | 261 | 707 | 1133
Avg | 189 | 349 | 761
Ins4 || Min | 116 | 98 | 304
Max | 255 | 631 | 1137
Avg | 154 | 437 | 657
Ins5 || Min | 51| 219 | 282
Max | 261 | 656 | 1131
Overall Avg | 161 | 411 | 641

ferent initial populations. Each run was truncated after objective value
stabilized and no improvement occurred. Table 5.2 reports the average,
minimum and maximum number of generations before the algorithm
converged. The CPU times for generating and processing each gener-
ation in 30, 50 and 80 nodes were .18, .26, 1.40 seconds respectively.

53 Heuristic Solution Quality

One of the most difficult issues in empirical testing of heuristics is to
estimate how close heuristic solutions come to true optimal values. We
evaluated our algorithm in three ways.

First, we compared our results to a purely random search. For each
problem instance in 30, 50 and 80 nodes, 90,000, 300,000 and 2,600,000
random feasible solutions were generated. Random solutions for each
problem were divided into ten batches and the best objective value of
each batch was found. Figure 16.7 shows the distribution of the percent
error of the best random solutions against our heuristic. GA’s best found
solution is superior to the best random solutions by at least 25%.

We also used Golden and Alt’s (1979) procedure to estimate the global
minimum. Given n independent samples from a specific instance of

Finding Good k-Tree Subgraphs 411

1.2 T T T T T T T
1F F
08} J
) randomly
CDF g6 | ¢ genetic algorithm generated
/ (from initial &
immigration)
04} |]
02} /
./I
0 L L A1 L L 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Error Ratio Relative to the Best Found Solution

Figure 16.7. Cumulative Distribution of Errors in Main Experiment

a (minimizing) combinatorial optimization problem, with each sample
consisting of m solution values, we can obtain an estimate and the cor-
responding confidence interval on the true optimal value z*. Specifically,
suppose we order the sample minima zj;) < 2zjg) < ... < 2]} Then for
large m and n the distribution of the least sample minimum 2[y} is ap-
proximately Weibull. Derigs (1985) derives the confidence interval with
Prob{z < 2* < 2y} & 1 —e " where 2z = () — b) and 2, = z(1)- The
scale and location parameters a and b are estimated by

2% — (2121)?
2] + 2] — 242

a=

(e 0 b

= Z{|.3n+1]] — @

and the shape parameter c is irrelevant.

Starting with 10 random initial populations and applying the genetic
algorithm, we obtained n = 10 best solutions. Each is the minimum of
all solutions produced during the run, whether retained in the popula-
tion or not, and the values are presumably independent sample points
because of the random start. Using the above method to estimate the
global minimum, the average percent error of our best solutions to the
estimated true minimum was 6.11%, 4.21% and 4.08% for problem sets
of size 30, 50 and 80 respectively.

412 EVOLUTIONARY OPTIMIZATION

Table 16.3. Percent Error Versus The Best Found Solution in Main Experiment

Prob Size 30 50 80
Ins1 || Avg | 5.17 | 3.25 | 2.76
Max | 11.80 | 5.97 | 5.26
Ins2 || Avg | 5.00 | 5.60 | 3.56
Max | 12.51 | 13.27 | 7.98
Ins3 || Avg | 850 | 6.88 | 6.28
Max | 15.88 | 8.90 | 10.19
Ins4 || Avg | 4.75 | 2.33 | 4.12
Max | 880 | 5.16 | 9.51
Ins 5 || Avg | 5.94 | 3.99 | 4.12
Max | 1290 | 7.60 | 6.20
Overall Avg | 5.87 | 441 | 4.17

Finally, we compared each run with the best found solution over all
10 runs to measure robustness. In Table 16.7, the average and maximum
errors relative to the best solution are given. The variability was 5.1% on
the average. The overall conclusion is that our procedure results in error
between 2.5 and 10% of the true optimum, which compared to the 25%
error in randomly generated solutions is a considerable improvement.

6. Concluding Remarks and Further Research

The goal of this research was to develop a genetic-algorithm-based
scheme for finding good k-trees. Results above suggest that the proposed
methods are effective when a minimum total weight 3-tree is sought. Fu-
ture research will seek to extend our approach to cases where a heuristic
optimum for a more complicated combinatorial optimization is obtained

by applying an optimal algorithm on each k-tree visited in the GA search
and retaining the best solution found.

References

Arnborg, S., Corneil, D. G. and Proskurowski, A. (1997). Complexity of
finding embeddings in a k-tree. SIAM J. Alg. Disc. Math., 8, 277-284.

Arnborg, S. and Proskurowski, A. (1986). Characterization and recog-
nition of partial 3-trees,” SIAM J. Alg. Disc. Math., 7, 305-314.

Arnborg, S. and Proskurowski, A. (1989). Linear time algorithms for

NP-hard problems restricted to partial k-trees. Disc. Appl. Math.,
23, 11-24.

REFERENCES 413

Bean, J. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA journal on Computing, 6, 154-160.

Beltran, H.F., and Skorin-Kapov, D. (1994). On minimum cost isolated
failure immune networks. Telecommunication Systems 3, 2.

Bienstock, D. (1991). Graph searching, path-width, tree-width and re-
lated problems (a survey). DIMA CS Ser. in Discrete Mathematics and
Theoretical Computer Science, 5, 33-49.

Bondy, J. A. and Murty, U.S.R. (1976). Graph Theory with Applications,
North Holland.

Corneil, D. G. and Keil, J. M. (1987). A dynamic programming approach
to the dominating set problem on k-trees. SIAM J. Alg. Disc. Math.,
8, 535-543.

Coullard, C. R., Rais, A., Rardin, R. L. and Wagner, D. K. (1991).
The 2-connected Steiner subgraph polytope for series-parallel graphs.
Technical Report 91-32, Purdue University, West Lafayette, Indiana.

Coullard, C. R., Rais, A., Rardin, R. L. and Wagner, D. K. (1991b). The
dominant of the 2-connected Steiner subgraph polytope for Wy-free
graphs. Technical Report 91-34, Purdue University, West Lafayette,
Indiana.

Derigs, U. (1985). Using Confidence Limits for the Global Optimum in
Combinatorial Optimization. Operations Research, 33, 1024-1049.
El-Mallah, E. S. and Colbourn, C. J. (1988). Partial k-tree algorithms.

Congressus Numerantium, 64, 105-119.

El-Mallah, E. S. and Colbourn, C. J. (1990). On two dual classes of
planar graphs. Discrete Mathematics, 80, 21-40.

Glover, F. and Laguna, M. (1993). in C. Reeves editor. Modern Heuristic
Techniques for Combinatorial Problems, John Wiley.

Granot, D. and Skorin-Kapov, D. (1988). On some optimization prob-
lems on k-trees and partial k-trees. Discrete Appl. Math..

Golden, B.L. and Alt, F.B. (1979). Interval Estimation of a Global Op-
timum for Large Combinatorial Problems. Naval Research Logistics
Quarterly, 26, 69-77.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning,. Addison-Wesley.

Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann
Arbor: The University of Michigan Press.

Matousek, J. and Thomas, R. (1991). Algorithms finding tree-decomposi-
tions of graphs. J. Algorithms, 12, 1-22.

Rose, D. J. (1974). On Simple Characterizations of k-trees. Discrete
Mathematics, 7, 317-322.

Wald, J. A. and Colbourn, C. J. (1982). Steiner Trees, Partial 2-trees,
and Minimum IFI Networks. Networks, 13, 159-167.

This page intentionally left blank

Index

Acceleration mechanism, 332 Constrained simulated annealing, 259
Adaptation, 280 Constraint handling techniques, 379
Adaptive parameter control, 291 Constraint handling, 129, 154
Adaptive penalties, 72, 89, 262 Constraint handling: Hybrid methods, 78
Adaptive process, 283 Constraint satisfaction technique, 338
Affine functions, 374 Constraint satisfaction, 67
Aggregating functions, 121 Constraint weights, 289
Analytical acceleration techniques, 333 Constraints, 4
Annealing penalties, 262 Constructive greedy heuristic, 315
Arithmetical crossover, 285 Continuous location -allocation problem, 212
Artificial fitness levels, 362 Control of parameters in EAs, 294
Assessment methodologies, 178 Control of representation, 294
Asymptotic convergence, 260 Control parameters, 281
Augmented Lagrangian function, 257 Convergence characteristics, 342-343
Baldwin effect, 63, 205 Convergence rate, 35
Baldwinian learning, 206 Convergence, 35
Barrier function, 20 Convex, 4
Behavioral memory, 66, 74 Coupon collector’s theorem, 357, 365
Bicycle Frame Design, 171 Coverage Metric, 183
Bin packing, 61, 230 Crossover operators, 379, 406
Binary representation, 206 Crossover rate, 281
Binary tournament selection, 151 Crossover, 34, 41, 70, 239, 379, 402
Bit mutation, 281 Death penalty, 63, 73
Bit-flip mutation, 43, 281 Deceptive problems, 36
Bit-representation, 281 Decision variables, 4
Bitwise steepest ascent algorithm, 206 Decoders, 60, 77
Cantilever plate design, 163 Decomposition graph, 404
Cauchy mutation, 43, 295 Decomposition trees, 405
Cell formation problem, 213 Deterministic approximation algorithms, 350
Chernoff’s inequality, 356 Deterministic parameter control, 291
Circular flow, 319 Deterministic-crowding niche, 384
Classifier systems, 38 Differentiable, 4
Co-evolution, 39 Discrete Lagrangian method, 259
Combinatorial optimization problems, 61, Discrete recombination, 31, 41

399 Discrete-neighborhood saddle point, 258
Combinatorial optimization, 135, 351 Distance metric, 321, 323
Complexity Reduction Procedures, 386 Dynamic job-shop scheduling, 238
Composite crossover operator, 380 Dynamic parameter, 285, 288
Computational complexity, 36 Dynamic penalties, 71, 89
Computational speed, 339 Dynamic scheduling problems, 240
Concave, 4 Dynamic-penalty methods, 262
Constrained genetic algorithm, 255 Efficient data structures, 135
Constrained nonlinear programming, 212 Electrical Power Networks, 337

Constrained optimization, 89, 260 Elitist selection, 46

416

Elitist strategy, 402-403

Empirical testing of heuristics, 410

Encoding, 377

Enrichment Evaluations, 133

Environmental selection, 290

Error Rate, 180

Error upper bound, 387

Euclidean, 323

Evaluation function, 294

Evaluation function: infeasible individuals,
61

Evaluation, 162

Evolution strategies, 28, 30, 100

Evolutionary algorithms with random
linkage, 221

Evolutionary algorithms, 29

Evolutionary constrained optimization, 88

Evolutionary Multi-Objective Optimization,
118

Evolutionary optimisation algorithms, 330

Evolutionary programming, 29, 32

Exact optimization algorithms, 350

Examination timetabling, 244

Expected length of mutation steps, 351

Facility design, 321

First Fit Decreasing algorithm, 230

Fitness distance correlation, 36

Fitness landscape, 36

Fitness scaling, 45

Flexible bay representation, 312

Flow-shop scheduling problems, 237

Gambler’s ruin problem, 358

Gaussian mutation, 31-33, 43, 285, 295

Generalized QAP, 204

Generate-and-test, 39

Generational Distance, 180

Genetic algorithms, 29, 34

Genetic programming, 29

Global competitive ranking, 99

Global optimal search, 352

Global Pareto front, 179

Global Pareto-optimal, 150

Global performance measures, 353

Goal Attainment, 126

Goal programming, 10, 126, 150

Gradient descent, 203

Gradient search procedure, 18

Greedy one-opt switching method, 214

Griewank function, 211

Hamming distance, 354, 363

Hamming neighbor, 354

Heavy-load condition, 342

Heuristic Combination Methods, 236

Heuristic methods, 315

Heuristically-guided GA, 238

Hill-climbing, 40

Hoister Plate Design, 167

EVOLUTIONARY OPTIMIZATION

Hybrid Approach, 155
Hybrid genetic algorithms, 207
Hybrid methods, 68
Hybrid multi-objective optimization, 172
Hyper-heuristic approach, 235, 241
Integer programming, 10

binary integer, 11

BIP, 11

branch and bound algorithm, 12

branch-and-cut algorithms, 13

cutting planes, 13

mixed integer, 10

pure integer, 10
Interior-point methods, 9
Intermediate recombination, 31, 41
Iterative deepening, 260, 267
Job-shop scheduling problem, 235
KKT conditions, 19
Kuhn-Tucker conditions, 120-121
Lagrange multipliers, 257
Lagrange-multiplier theory, 258
Lamarckian evolution, 64
Lamarckian learning, 206
Lamarkian schemes, 202
Learning, 37
Levels of adaptation, 280
Linear flow, 319
Linear programming, 5, 310
Linear, 4
LIP genetic operator, 205
Load flow problem, 337
Load flow solution, 330
Local improvement procedures, 203
Local Pareto-optimal, 150
Maintaining feasibility, 65
Management science, 3
Manufacturing cell layout, 309
Markov decision problem, 371
Markov process, 352, 364
Markov’s inequality, 356
Material flow paths, 312
Material handling system, 321
Mathematical model, 3
Mating selection, 290
Metaheuristics, 24
Method of ranking individuals, 95
Michigan approach, 38
Min-max approach, 126
Min-max method, 150
Minimal Hamming distance, 351
Mixed Integer Programming, 315
Multi-Objective Genetic Algorithm, 123
Multi-objective optimization, 147
Multicriteria decision making, 9
Multiparent crossover, 296
Multistart procedures, 219
Mutation rate, 281

INDEX

Mutation step size parameter, 289
Mutation step size, 282, 285, 296
Mutation, 31, 42, 151, 239, 314, 379
Necessary and sufficient condition, 258, 263
Nelder-Mead optimization methods, 210
Neural networks, 38
Newton’s method, 18
Newton-Raphson method, 332
Niche approaches, 384
Niche schemes, 384
Niched Pareto Genetic Algorithm, 125
No Free Lunch theorem, 202
Non-dominated set, 150
Non-linear integer programming, 205
Non-Pareto approaches, 178
Nonconvex, 4
Nondifferentiable, 4
Nondominated Sorting Genetic Algorithm,
125

Nondominated vectors, 119
Nonlinear multimodal functions, 210
Nonlinear optimization problems, 209
Nonlinear programming, 13

convex, 17

Linearly constrained, 16

nonconvex, 17

quadratic, 17

unconstrained, 16
Nonlinear, 4
Number of generations, 341
Numerical acceleration method, 332
Numerical acceleration, 334
Objective function, 4
Offspring, 402
One-point crossover, 281, 379, 402
Operations research problems, 60
Operations research, 3
Operations Research, 236
Optimal operator probabilities, 283
Optimal parameter settings, 282
Optimal population size, 283
Optimal Shape Design, 159
Optimization, 3, 36
Over-penalization, 92, 99
Parameter control, 280-281
Parameter settings, 150, 341
Parameter tuning, 280-281
Parameterised algorithm, 232
Parent selection, 290, 294
Pareto Archived Evolution Strategy, 127
Pareto optimal set, 119
Pareto optimum, 119
Pareto-based approaches, 178
Pareto-optimal set, 148
Pareto-optimal solutions, 147
Partial k trees, 401
Partially Guided Search, 386

417

Partially Observed MDP, 373
Penalty formulations, 261
Penalty function method, 89
Penalty functions, 20, 70, 287
Penalty methods, 64, 97
Penalty parameters, 287
Perfect elimination graphs, 400
Performance measures, 353
Permutation mutation, 314
Piecewise affine and convex, 372
Pitts approach, 38
Plateaus, 355
Population size, 279, 281, 341, 408
Population

size, 290

topology, 290
Power flow problem, 337
Power flow, 330
Power systems, 330
Preference Ranking Organization Method,

133

Preferred direction of mutation, 282
Premature convergence, 331
Probability mass vector, 372
Probability of crossover, 335
Probability of mutation, 279, 335
Pseudo-boolean, 351
Pure Baldwinian, 207
Pure Lamarckian, 207
Pure Random Linkage, 202
PURGE Operator, 374
Quadratic assignment problem, 310
Quality chromosomes, 330
Quality of the solution, 343
Random keys, 379, 381, 403
Random-bit mutation, 44
Randomized optimization, 350
Randomized search heuristic, 351
Randomized search, 352
Rank selection, 240
Rank-based selection, 45
Ranking procedure, 93
Recombination, 31, 41, 102, 151, 241
Recursion operator, 374
Repair-mechanisms, 379
Repairing methods, 75
Replacement operator, 294
Representation, 160
Reproduction strategy, 240
Reproduction, 402
Robustness, 339
Roulette wheel selection, 44, 281
Saddle points, 255
Selection, 30, 44, 379
Self-adaptation of mutation, 282
Self-adaptation, 31-32, 280
Self-adapting mutation step sizes, 289

418

Self-adaptive mutation, 282
Self-adaptive parameter control, 291
Sequence strings, 404
Sequential quad-ratic programming, 212
Sequential quadratic programming, 254
Simplex method, 8

dual simplex, 8

network simplex, 9
Simply-supported plate design, 165
Simulated annealing, 39-40, 255
Simulation, 22

continuous, 24

discrete-event, 24
Single-point crossover, 281
Solution acceleration techniques, 331-332
Space Covered, 182
Specialized operators, 65
Spread, 181
Static parameters, 298
Static penalties, 70, 287
Static-penalty formulation, 261
Statistical Comparison, 184
Stochastic experiments, 365
Stochastic hill-climbing, 210
Stochastic optimization algorithm, 261
Stochastic processes, 365
Stochastic ranking, 94, 99, 105
Stochastic search methods, 219
Stochastic systems, 24

EVOLUTIONARY OPTIMIZATION

Strategy parameters, 281

Strength Pareto Evolutionary Algorithm,
127

Strong k-Connectivity Problem, 400

Survival selection, 290

Tabu search, 39

Tail inequalities, 355

Tchebycheff method, 150

Tchebyshev distance metric, 321

Topology, 404

Tournament selection, 32, 45

Tournament size of selection, 279

Tschebyscheff’s inequality, 356

Tuning the control parameters, 281

Two-point crossover, 379

U-shaped flow, 319

Unconstrained optimization, 260

Unconstrained penalty function, 261

Under-penalization, 92

Uniform crossover, 42, 239, 314, 379

Uniform mutation, 334

Unimodal functions, 354, 363

Vector Evaluated Genetic Algorithm, 122

Vector maximum problem, 120

Virtual population scheme, 334

Virtual population, 330-331

Voltage profile, 330

Walsh functions, 36

Weighted sum approach, 150

