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There are in fact two things, science and opinion;
the former begets knowledge, the later ignorance.

— Hippocrates (460-377 BC), Greek physician



Preface

In recent years, there has been a dramatic increase in the application of opti-
mization techniques to the delivery of health care. This is in large part due
to contributions in three fields: the development of more and more efficient
and effective methods for solving large-scale optimization problems (opera-
tions research), the increase in computing power (computer science), and the
development of more and more sophisticated treatment methods (medicine).
The contributions of the three fields come together because the full poten-
tial of the new treatment methods often cannot be realized without the help
of quantitative models and ways to solve them. As a result, every year new
opportunities unfold for obtaining better solutions to medical problems and
improving health care systems.

This handbook of optimization in medicine is composed of carefully ref-
ereed chapters written by experts in the fields of modeling and optimization
in medicine and focuses on models and algorithms that allow for improved
treatment of patients. Examples of topics that are covered in the handbook
include:

• Optimal timing of organ transplants;
• treatment selection for breast cancer based on new classification schemes;
• treatment of head-and-neck, prostate, and other cancers; using conven-

tional conformal and intensity modulated radiation therapy as well as
proton therapy;

• optimization in medical imaging;
• classification and data mining with medical applications;
• treatment of epilepsy and other brain disorders;
• optimization for the genome project.

We believe that this handbook will be a valuable scientific source of infor-
mation to graduate students and academic researchers in engineering, com-
puter science, operations research, and medicine, as well as to practitioners
who can tailor the approaches described in the handbook to their specific
needs and applications.
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We would like to take the opportunity to express our thanks to the authors
of the chapters, the anonymous referees, and Springer for making the publi-
cation of this volume possible.
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Optimizing Organ Allocation and Acceptance

Oguzhan Alagoz1, Andrew J. Schaefer2, and Mark S. Roberts3

1 Department of Industrial and Systems Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706
alagoz@engr.wisc.edu

2 Departments of Industrial Engineering and Medicine, University of Pittsburgh,
Pittsburgh, Pennsylvania 15261
schaefer@ie.pitt.edu

3 Section of Decision Sciences and Clinical Systems Modeling, Division of General
Internal Medicine, School of Medicine, University of Pittsburgh, Pittsburgh,
Pennsylvania 15213
robertsm@upmc.edu

1.1 Introduction

Since the first successful kidney transplant in 1954, organ transplantation
has been an important therapy for many diseases. Organs that can safely be
transplanted include kidneys, livers, intestines, hearts, pancreata, lungs, and
heart-lung combinations. The vast majority of transplanted organs are kidneys
and livers, which are the focus of this chapter. Organ transplantation is the
only viable therapy for patients with end-stage liver diseases (ESLDs) and
the preferred treatment for patients with end-stage renal diseases (ESRDs).
As a result of the the urgent need for transplantations, donated organs are
very scarce. The demand for organs has greatly outstripped the supply. Thus
organ allocation is a natural application area for optimization. In fact, organ
allocation is one of the first applications of medical optimization, with the
first paper appearing 20 years ago.

The United Network for Organ Sharing (UNOS) is responsible for manag-
ing the national organ donation and allocation system. The organ allocation
system is rapidly changing. For instance, according to the General Account-
ing Office, the liver allocation policy, the most controversial allocation system
[14], has been changed four times in the past six years [17, 28]. The multiple
changes in policy over a short time period is evidence of the ever-changing
opinions surrounding the optimal allocation of organs. For example, although
the new liver allocation policy is anticipated to “better identify urgent patients
and reduce deaths among patients awaiting liver transplants” [28], anecdotal

P.M. Pardalos, H.E. Romeijn (eds.), Handbook of Optimization in Medicine, 1
Springer Optimization and Its Applications 26, DOI: 10.1007/978-0-387-09770-1 1,
c© Springer Science+Business Media LLC 2009



2 O. Alagoz et al.

evidence suggests that there is some question among the transplant commu-
nity as to whether the new allocation rules are satisfactory [10, 26].

UNOS manages organ donation and procurement via Organ Procure-
ment Organizations (OPOs), which are non-profit agencies responsible for
approaching families about donation, evaluating the medical suitability of
potential donors, coordinating the recovery, preservation, and transportation
of organs donated for transplantation, and educating the public about the
critical need for organ donation. There are currently 59 OPOs that operate
in designated service areas; these service areas may cover multiple states, a
single state, or just parts of a state [28]. The national UNOS membership is
also divided into 11 geographic regions, each consisting of several OPOs. This
regional structure was developed to facilitate organ allocation and to provide
individuals with the opportunity to identify concerns regarding organ pro-
curement, allocation, and transplantation that are unique to their particular
geographic area [28].

Organs lose viability rapidly once they are harvested, but the rate is organ-
specific. The time lag between when an organ is harvested and when it is
transplanted is called the cold ischemia time (CIT). During this time, organs
are bathed in storage solutions. The limits of CIT range from a few hours
for heart-lung combinations to nearly three days for kidneys. Stahl et al.
[24] estimated the relationship between CIT and liver viability. The Scientific
Registry of Transplant Recipients states that the acceptable cold ischemia
time limit for a liver is 12 to 18 hours [22], whereas the Center for Organ
Recovery and Education gives the maximum limit as 18 to 24 hours [5].

There are two major classes of decision makers in organ allocation. The
first class of decision makers is the individual patient, or the patient and his
or her physician. Typically, the objective for such a perspective is to maximize
some measure of that patient’s benefit, typically life expectancy. The second
class may be described as “society,” and its goal is to design an organ allo-
cation system so as to maximize some given criteria. Some examples of these
criteria include total clinical benefit and some measure of equity. Equity is a
critical issue in the societal perspective on organ allocation as there is con-
siderable evidence that certain racial, geographic, and socioeconomic groups
have greater access to organs than do others [27].

We limit our discussion to the U.S. organ allocation system. The remain-
der of this chapter is organized as follows. In Section 1.2, we describe the
kidney allocation system, and in Section 1.3, we detail the liver allocation
system. These two organs comprise the vast majority of organ transplanta-
tions; the details for other organs are described on the UNOS webpage [28].
Previous research on the patient’s perspective is discussed in Section 1.4, and
the societal perspective is described in Section 1.5. We provide conclusions
and directions for future work in Section 1.6.
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1.2 Kidney Allocation System

More than 60,000 patients are on the nationwide kidney waiting list. In 2003,
15,000 patients received a kidney transplant, of which more than 40% were
from living donors [29]. The kidney waiting list and number of transplants
are larger than those of all other organs combined. However, this need is
somewhat mitigated by the fact that an alternate kidney replacement therapy
(dialysis) is widely available. We describe the kidney allocation system as
of late 2004 below. This allocation system is subject to frequent revision;
readers are referred to the UNOS webpage [28] for updates to these and other
allocation policies.

Kidneys are typically offered singly; however, there are certain cases when
a high risk of graft failure requires the transplant of both kidneys simultane-
ously. UNOS defines two classes of cadaveric kidneys: standard and expanded.
Kidneys in both classes have similar allocation mechanisms, as described
below. Expanded-criteria kidneys have a higher probability of graft failure
and are distinguished by the following factors:

1. Age: kidneys from some donors between 50 and 59 years and kidneys from
every donor older than 60 years are expanded-criteria kidneys.

2. Level of creatinine in the donor’s blood, which is a measure of the adequacy
of kidney function: kidneys from donors with higher creatinine levels may
be considered expanded-criteria kidneys.

3. Kidneys from donors who died of cardiovascular disease may be considered
expanded-criteria.

4. Kidneys from donors with high hypertension may be considered expanded-
criteria.

Patients who are willing to accept expanded-criteria kidneys do not have their
eligibility for regular kidneys affected.

The panel-reactive antibody (PRA) level is a measure of how hard a patient
is to match. It is defined as the percentage of cells from a panel of donors with
which a given patient’s blood serum reacts. This estimates the probability that
the patient will have a negative reaction to a donor; the higher the PRA level,
the harder the patient is to match.

A zero-antigen mismatch between a patient and a cadaveric kidney occurs
when the patient and donor have compatible blood types and have all
six of the same HLA-A, B, and DR antigens. There is mandatory sharing
of zero-antigen-mismatched kidneys. When there are multiple zero-antigen-
mismatched kidneys, there is an elaborate tie-breaking procedure that con-
siders factors including the recipient’s OPO, whether the patient is younger
than 18, and certain ranges of PRA level. One interesting concept is that of
debts among OPOs. Except in a few cases, when a kidney is shared between
two OPOs, the receiving OPO must then share the next standard kidney it
harvests in that particular blood type category. This is called a payback debt .
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An OPO may not accumulate more than nine payback debts at any time. Pri-
ority for matching zero-antigen-mismatched kidneys is given to patients from
OPOs that are owed payback kidneys. The full description of the tie-breaking
procedure is available from the UNOS webpage [28].

If a kidney has no zero-antigen mismatches, kidneys with blood type O
or B must be transplanted into patients with the same blood type. In gen-
eral, kidneys are first offered within the harvesting OPO, then the harvesting
region, and finally nationally. Within each of these three categories, patients
who have an ABO match with the kidney are assigned points, and each kidney
is offered to patients in decreasing order of points. A patient has the opportu-
nity to refuse a kidney for any reason without affecting his or her subsequent
access to kidneys.

Once minimum criteria are met, patients begin to acquire waiting time.
One point is given to the patient who has been on the waiting list the longest
amount of time. All other patients are accorded a fractional point equal to
their waiting time divided by that of the longest-waiting patient. A patient
receives four points if she has PRA level 80% or greater. Patients younger
than 11 years old are given four points, and patients between 11 and 18 years
of age are given three points. A patient is given four points if he or she has
donated a vital organ or segment of a vital organ for transplantation within
the United States. For the purposes of determining the priority within the
harvesting OPO, a patient’s physician may allocate “medical priority points.”
However, such points are not considered at the regional or national levels.

It is interesting to note that, excluding medical priority points, points
based on waiting time can only be used to break ties among patients with
the same number of points from other factors. In other words, kidneys are
allocated lexicographically: the first factors are PRA level, age, and so on.
Only among tied patients in the first factors is waiting time considered.

1.3 Liver Allocation System

This section describes the current liver allocation system. Basic knowledge
of this system is necessary to understand the decision problem faced by the
ESLD patients and the development of the decision models. The UNOS Board
of Directors approved the new liver allocation procedure for implementation
as of February 28, 2002 [28].

UNOS has different procedures for adult and for pediatric patients.
Because researchers consider only the adult patients, we describe only the
adult liver allocation procedure. UNOS maintains a patient waiting list that
is used to determine the priority among the candidates. Under the current
policy, when a liver becomes available, the following factors are considered
for its allocation: liver and patient OPO, liver and patient region, medical
urgency of the patient, patient points, and patient waiting time.
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The medical urgency of the adult liver patients is represented by UNOS
Status 1 and Model for End Stage Liver Disease (MELD) scores. According
to the new UNOS policy, a patient listed as Status 1 “has fulminant liver
failure with a life expectancy without a liver transplant of less than seven
days” [28]. Patients who do not qualify for classification as Status 1 do not
receive a status level. Rather, these patients will be assigned a “probability
of pre-transplant death derived from a mortality risk score” calculated by the
MELD scoring system [28]. The MELD score, which is a continuous function
of total bilirubin, creatinine, and prothrombin time, indicates the status of
the liver disease and is a risk-prediction model first introduced by Malinchoc
et al. [16] to assess the short-term prognosis of patients with liver cirrhosis
[30]. Wiesner et al. [30] developed the following formula for computing MELD
scores:

MELD Score =
10× [0.957× ln(creatinine mg/dl) + 0.378× ln(bilirubin mg/dl)

+ 1.120× ln(INR) + 0.643× Ic]

where INR, international normalized ratio, is computed by dividing prothrom-
bin time (PT) of the patient by a normal PT value, mg/dl represents the
milligrams per deciliter of blood, and Ic is an indicator variable that shows
the cause of cirrhosis, i.e., it is equal to 1 if the disease is alcohol or cholestatic
related and it is equal to 0 if the disease is related to other etiologies (causes).
As Wiesner et al. [30] note, the etiology of disease is removed from the for-
mula by UNOS. In addition to this, UNOS makes several modifications to the
formula: any lab value less than 1 mg/dl is set to 1 mg/dl, any creatinine level
above 4 mg/dl is set to 4 mg/dl, and the resulting MELD score is rounded
to the closest integer [28]. By introducing these changes, UNOS restricts the
range of MELD scores to be between 6 and 40, where a value of 6 corresponds
with the best possible patient health and 40 with the worst.

Kamath et al. [15] developed the MELD system to more accurately mea-
sure the liver disease severity and to better predict which patients are at risk
of dying. However, there are concerns about the accuracy of the MELD sys-
tem. First, there were some biases in the data used to develop the model. For
instance, the data available to the researchers were mostly based on patients
with advanced liver disease [16]. Furthermore, the MELD system was vali-
dated on the patients suffering from cirrhosis [30], therefore it is possible that
the MELD system does not accurately measure the disease progression for
other diseases, e.g., acute liver diseases. Moreover, as stated, although they
presented data to indicate that the consideration of patient age, sex, and body
mass is unlikely to be clinically significant, it is possible that other factors,
including a more direct measurement of renal function (iothalamate clear-
ance), may improve the accuracy of the model [15]. Additionally, the MELD
system was validated on only three laboratory values: creatinine and bilirubin
levels and prothrombin time. Thus, it is possible that the MELD system does



6 O. Alagoz et al.

not accurately consider patients with liver cancer because they would score as
if they were healthy [10]. Consequently, relying mainly on laboratory results
may not be the best solution for all patients [9].

Patients are stratified within Status 1 and each MELD score using patient
“points” and waiting time. Patient points are assigned based on the compat-
ibility of their blood type with the donor’s blood type. For Status 1 patients,
candidates with an exact blood type match receive 10 points; candidates with
a compatible, though not identical, blood type receive 5 points; and a can-
didate whose blood type is incompatible receives 0 points. As an exception,
though type O and type A2 (a less common variant of blood type A) are
incompatible, patients of type O receive 5 points for being willing to accept a
type A2 liver. For non–Status 1 patients with the same MELD score, a liver is
offered to patients with an exact blood type match first, compatible patients
second, and incompatible patients last. If there are several patients having
the same blood type compatibility and MELD scores, the ties are broken with
patient waiting time. The waiting time for a Status 1 patient is calculated only
from the date when that patient was listed as Status 1. Points are assigned to
each patient based on the following strategy: “Ten points will be accrued by
the patient waiting for the longest period for a liver transplant and propor-
tionately fewer points will be accrued by those patients with shorter tenure”
[28]. For MELD patients, waiting time is calculated as the time accrued by
the patient at or above his or her current score level from the date that he or
she was listed as a candidate for liver transplantation.

Figure 1.1 shows a schematic representation of the liver allocation system.
In summary, the current liver allocation system works as follows: every liver
available for transplant is first offered to those Status 1 patients located within
the harvesting OPO. When more than one Status 1 patient exists, the liver
is offered to those patients in descending point order where the patient with
the highest number of points receives the highest priority. If there are no
suitable Status 1 matches within the harvesting OPO, the liver is then offered
to Status 1 patients within the harvesting region. If a match still has not been
found, the liver is offered to all non–Status 1 patients in the harvesting OPO
in descending order of MELD score. The search is again broadened to the
harvesting region if no suitable match has been found. If no suitable match
exists in the harvesting region, then the liver is offered nationally to Status 1
patients followed by all other patients in descending order of MELD scores.

UNOS maintains that the final decision to accept or decline a liver “will
remain the prerogative of the transplant surgeon and/or physician responsible
for the care of that patient” [14]. The surgeon and/or the physician have
very limited time, namely one hour, to make their decision [28] because the
acceptable range for cold ischemia time is very limited. Furthermore, as the
Institute of Medicine points out, there is evidence that the quality of the
organ decreases as cold ischemia time increases [14]. In the event that a liver
is declined, it is then offered to another patient in accordance with the above-
described policy. The patient who declines the organ will not be penalized
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Donated Liver

Status 1 patients in the OPO

Status 1 patients in the US

Status 1 patients in the region

Non-status 1 patients in the OPO

Non-status 1 patients in the US

Non-status 1 patients in the region

Fig. 1.1. Current liver allocation system.

and will have access to future livers. Organs are frequently declined due to
low quality of the liver. For example, the donor may have had health problems
that could have damaged the organ or may be much older than the potential
recipient, making the organ undesirable [13].

1.4 Optimization from the Patient’s Perspective

This section describes the studies on the optimal use of cadaveric organs for
transplantation that maximizes the patient’s welfare. Section 1.4.1 summa-
rizes studies that consider the kidney transplantation problem. Section 1.4.2
describes studies that consider the liver transplantation problem.

1.4.1 Optimizing kidney transplantation

David and Yechiali [6] consider when a patient should accept or reject an
organ for transplantation. They formulate this problem as an optimal stop-
ping problem in which the decision maker accepts or reject offers {Xj}∞0 that
are available at random times {tj}∞0 , where {Xj}∞0 is a sequence of inde-
pendent and identically distributed positive bounded random variables with
distribution function F (x) = P (X ≤ x). If the patient accepts the offer at time
tj , the patient quits the process and receives a reward β(tj)Xj , where β(t) is a
continuous nonincreasing discount function with β(0) = 1. If the patient does
not accept the offer, then the process continues until the next offer, or patient
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death. The probability that the decision maker dies before the new offer arrives
at time tj+1 is given by the variable 1−αj+1 = P (T ≤ tj+1|T > tj) defined by
T , the lifetime of the underlying process. Their objective is to find a stopping
rule that maximizes the total expected discounted reward from any time t
onward.

They first consider the case in which the offers arrive at fixed time points
and there are a finite number of offers (n) available. In this case, they observe
that the optimal strategy is a control-limit policy with a set of controls{
λj

n

}n

j=0
, and an offer Xj at time tj is accepted if and only if βjXj > λj

n,
where λj

n is the maximum expected discounted reward if an offer at time tj
is rejected. Because for each j ≤ n,

{
λj

n

}∞
n=0

is a nondecreasing bounded
sequence of n, it has a limit lj .

They extend their model to the infinite-horizon problem in which the offers
arrive randomly. They prove that if the lifetime distribution of the decision
maker is increasing failure rate (IFR) [4], then the optimal policy takes the
form of a continuous nonincreasing real function λ(t) on [0,∞), such that an
offer x at time t is accepted if and only if β(t)x ≥ λ(t). λ(t) is equal to the
future expected discounted reward if the offer is rejected at time t, and an
optimal policy is applied thereafter. They show that the IFR assumption is a
necessary assumption in this setting.

David and Yechiali also consider the case where the arrivals follow a nonho-
mogeneous Poisson process. They consider several special cases of this model
such as the organ arrival is nonhomogeneous Poisson with nonincreasing inten-
sity and the lifetime distribution is IFR. In this case, they prove that the
control limit function λ(t) is nonincreasing, so that a patient becomes more
willing to accept lower quality organs as time progresses. They obtain a bound
for the λ(t) for this special case.

They provide an explicit closed form solution of the problem when the life-
time distribution is Gamma with homogenous Poisson arrivals. They present
a numerical example for this special case using data related to the kidney
transplant problem.

Ahn and Hornberger [1] and Hornberger and Ahn [11] develop a discrete-
time infinite horizon discounted Markov decision process (MDP) model for
deciding which kidneys would maximize a patient’s total expected (quality-
adjusted) life. In their model, the patient is involved in the process of determin-
ing a threshold kidney quality value for transplantation. They use expected
one-year graft survival rate as the criterion for determining the acceptability of
a kidney. The state space consists of the patient state and includes five states:
alive on dialysis and waiting for transplantation (S1); not eligible for trans-
plantation (S2); received a functioning renal transplant (S3); failed transplant
(S4); and death (S5). They assume that the patient assigns a quality-of-life
score to each state. They use months as their decision epochs because of the
sparsity of their data. The patient makes the decision only when he or she is
in state (S1). The quality-adjusted life expectancy (QALE) of the patient in
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state (S1) is a function of (1) QALE if a donor kidney satisfying eligibility
requirements becomes available and the patient has the transplantation, (2)
QALE if an ineligible donor kidney becomes available and the patient is not
transplanted, and (3) the quality of life with dialysis in that month. Because
of the small number of states, they provide an exact analytical solution for
threshold kidney quality.

They use real data to estimate the parameters and solve the model for four
representative patients. The minimum one-year graft survival rate, d∗, differs
significantly among the four patients. They compare their results with what
might be expected by using the UNOS point system for four representative
donor kidneys. They also perform a one-way sensitivity analysis to measure
the effects of the changes in the parameters. Their results show that the
important variables that affect the minimum eligibility criterion are quality
of life assessment after transplant, immunosuppressive side effect, probability
of death while undergoing dialysis, probability of death after failed transplant,
time preference, and the probability of being eligible for retransplantation.

1.4.2 Optimizing liver transplantation

Howard [12] presents a decision model in which a surgeon decides to accept
or reject a cadaveric organ based on the patient’s health. He frames the organ
acceptance decision as an optimal stopping problem. According to his model,
a surgeon decides whether or not to accept an organ of quality q ∈ (0, q] for a
patient in health state h ∈ (0, h], where the state q = 0 describes a period in
which there is no organ offer and the state h = 0 corresponds with death. The
organ offers arrive with distribution function f(q). If the surgeon rejects the
organ, the patient’s health evolves according to a Markov process described
by f(h′|h), where f(h′|h) is IFR. If the surgeon accepts an organ offer, then
the probability that the operation is successful in period t + 1 is a function
of current patient health h and organ offer q and is denoted by p(h, q). If the
patient’s single period utility when alive is u and the immediate reward of a
successful operation is B, the total expected reward from accepting an organ
at time t, EV TX(h, q) and from rejecting an organ at time t, EV W (h) are as
follows:

EV TX(h, q) = p(h, q)B,

and

EV W (h) =
∫

q

∫

h

V W (h′, q′)f(h′|h)f(q′)dh′dq′,

where V W (h, q) is defined by the following set of equations:

V W (h, q) = u + δ max
{
EV TX(h, q), EV W (h)

}
,

where δ is the discount factor.
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Howard estimates the parameters in his decision model using liver
transplantation data in the United States. However, he does not provide
any structural insights or numerical solutions to this decision model. Instead,
he provides statistical evidence that explains why a transplant surgeon may
reject a cadaveric liver offer. His statistical studies show that as the wait-
ing list has grown over time, the surgeons have faced stronger incentives to
use lower quality organs. Similarly, the number of organ transplantations
has increased dramatically in years when the number of traumatic deaths
decreased.

Howard also discusses the trends in organ procurement in light of his find-
ings and describes some options to the policy makers who believe that too
many organs are discarded. One option is to use the results of a decision that
calculates the optimal quality cutoff and enforce it via regulations. Another
option is to penalize hospitals that reject organs that are subsequently trans-
planted successfully by other transplant centers. It is also possible to imple-
ment a dual list system in which the region maintains two waiting lists, one
for patients whose surgeons are willing to accept low-quality organs and one
for patients whose surgeons will accept only high-quality organs.

Alagoz et al. [2] consider the problem of optimally timing a living-donor
liver transplant in order to maximize a patient’s total reward, for example,
life expectancy. Living donors are a significant and increasing source of livers
for transplantation, mainly due to the insufficient supply of cadaveric organs.
Living-donor liver transplantation is accomplished by removing an entire lobe
of the donor’s liver and implanting it into the recipient. The non-diseased liver
has a unique regenerative ability so that a donor’s liver regains its previous
size within two weeks. They assume that the patient does not receive cadaveric
organ offers.

In their decision model, the decision maker can take one of two actions at
state h ∈ {1, . . . , H}, namely, “Transplant” or “Wait for one more decision
epoch,” where 1 is the perfect health state and H is the sickest health state. If
the patient chooses “Transplant” in health state h, he or she receives a reward
of r(h, T ), quits the process, and moves to absorbing state “Transplant” with
probability 1. If the patient chooses to “Wait” in health state h, he or she
receives an intermediate reward of r(h,W ) and moves to health state h′ ∈
S = {1, . . . , H + 1} with probability P (h′|h), where H + 1 represents death.
The optimal solution to this problem can be obtained by solving the following
set of recursive equations:

V (h) = max

{

r(h, T ), r(h,W ) + λ
∑

h′∈S

P (h′|h)V (h′)

}

, h = 1, . . . , H,

where λ is the discount factor, and V (h) is the maximum total expected
discounted reward that the patient can attain when his or her current health
is h.
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They derive some structural properties of this MDP model including a set
of intuitive sufficient conditions that ensure the existence of a control-limit
policy. They prove that the optimal value function is monotonic when the
transition probability matrix is IFR and the functions r(h, T ) and r(h,W ) are
nonincreasing in h. They show that if one disease causes a faster deterioration
in patient health than does another and yet results in identical post-transplant
life-expectancy, then the control limit for this disease is less than or equal to
that for the other. They solve this problem using clinical data. In all of their
computational tests, the optimal policy is of control-limit type. In some of the
examples, when the liver quality is very low, it is optimal for the patient to
choose never to have the transplant.

Alagoz et al. [3] consider the decision problem faced by liver patients on
the waiting list: should an offered organ of a given quality be accepted or
declined? They formulate a discrete-time, infinite-horizon, discounted MDP
model of this problem in which the state of the process is described by patient
state and organ quality. They consider the effects of the waiting list implicitly
by defining the organ arrival probabilities as a function of patient state.

They assume that the probability of receiving a liver of type � at time
t + 1 depends only on the patient state at time t and is independent of the
type of liver offered at time t. According to their MDP model, the decision
maker can take one of two actions in state (h, �), where h ∈ {1, . . . , H + 1}
represents patient health and � ∈ SL represents current liver offer. Namely,
“Accept” the liver � or “Wait for one more decision epoch.” If the patient
chooses “Accept” in state (h, �), he or she receives a reward of r(h, �, T ), quits
the process, and moves to absorbing state “Transplant” with probability 1.
If the patient chooses to “Wait” in state (h, �), then he or she receives an
intermediate reward of r(h,W ) and moves to state (h′, �′) ∈ S with probability
P(h′, �′|h, �). The optimal solution to this problem is obtained by solving the
following set of recursive equations [18]:

V (h, �) = max

⎧
⎨

⎩
r(h, �, T ), r(h,W ) + λ

∑

(h′,�′)∈S

P(h′, �′|h, �)V (h′, �′)

⎫
⎬

⎭
,

h ∈ {1, . . . , H}, � ∈ SL, (1.1)

where λ is the discount factor, and V (h, �) is the maximum total expected
discounted reward that the patient can attain when his or her current state
is h and the current liver offered is �.

Alagoz et al. derive structural properties of the model, including conditions
that guarantee the existence of a liver-based and a patient-based control-limit
optimal policy. A liver-based control-limit policy is of the following form: for
a given patient state h, choose the “Transplant” action and “Accept” the
liver if and only if the offered liver is of type 1, 2, . . . , i(h) for some liver state
i(h) called the liver-based control limit. Similarly, a patient-based control-limit
policy is of the simple form: for a given liver state �, choose the “Transplant”
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action and “Accept” the liver if and only if the patient state is one of the
states j(�), j(�)+1, . . . ,H, for some patient state j(�) called the patient-based
control limit.

The conditions that ensure the existence of a patient-based control-limit
policy are stronger than those that guarantee the existence of a liver-based
control-limit policy. They compare the optimal control limits for the same
patient listed in two different regions. They show that if the patient is listed
in region A where he or she receives more frequent and higher quality liver
offers than in region B, then the optimal liver-based control limits obtained
when he or she is listed in region A are lower than those obtained when he or
she is listed in region B.

They use clinical data to solve this problem, and in their experiments
the optimal policy is always of liver-based control-limit type. However, some
optimal policies are not of patient-based control-limit type. In some regions,
as the patient gets sicker, the probability of receiving a better liver increases
significantly. In such cases, it is optimal to decline a liver offer in some patient
states even if it is optimal to accept that particular liver offer in better patient
states. Their computational tests also show that the location of the patient
has a significant effect on liver offer probabilities and optimal control limits.

1.5 Optimization from the Societal Perspective

This section describes the studies on optimal design of an allocation system
that maximizes the society’s welfare. Section 1.5.1 summarizes studies that
consider the general organ allocation problem. Section 1.5.2 describes studies
that consider the kidney allocation problem.

1.5.1 Optimizing general organ allocation system

Righter [19] considers a resource allocation problem in which there are n activ-
ities each of which requires a resource, where resources arrive according to a
Poisson process with rate λ. Her model can be applied to the kidney alloca-
tion problem, where resources represent the organs and activities represent
the patients. When a resource arrives, its value X, a nonnegative random
variable with distribution F (·), becomes known, and it can either be rejected
or assigned to one of the activities. Once a resource is assigned to an activ-
ity, that activity is no longer available for further assignments. Activities are
ordered such that r1 ≥ r2 ≥ · · · ≥ rn ≥ 0, where ri represents the activity
value. Each activity has its own deadline that is exponentially distributed
with rate αi and is independent of other deadlines. When the deadline occurs,
the activity terminates. The reward of assigning a resource to an activity is
the product of the resource value and the activity value. The objective is to
assign arriving resources to the activities such that the total expected return
is maximized. If all activity deadlines are the same, i.e., αi = α for all i, then
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the optimal policy has the following form: assign a resource unit of value x
to activity i if vi(α) < x ≤ vi−1(α), where each threshold vi(α) represents
the total expected discounted resource value when it is assigned to activity i
under the optimal policy. She defines v0(α) = ∞ and vn+1(α) = 0. Further-
more, v0(α) > v1(α) > · · · > vn(α) > vn+1(α), where vi(α) does not depend
on n for n ≥ i, and vi(α) does not depend on rj for any j.

Righter analyzes the effects of allowing the parameters to change according
to a continuous time Markov chain on the structural properties of the optimal
value function. She first assumes that the arrival rate of resources change
according to a continuous Markov chain whereas all other model parameters
are fixed and proves that the optimal policy still has the same structure,
where the thresholds do not depend on the rj but depend on the current
system state (environmental state). She then considers the case in which the
activity values and deadline rates change according to a random environment
and proves that the thresholds and the total returns are monotonic in the
parameters of the model. In this case, the thresholds depend on the rj ’s as
well as the environmental state. She also provides conditions under which
model parameters change as functions of the environmental state that ensure
the monotonicity of the total returns.

David and Yechiali [7] consider allocating multiple organs to multiple
patients where organs and patients arrive simultaneously. That is, an infi-
nite random sequence of pairs (patient and organ) arrive sequentially, where
each organ and patient is either of Type I with probability p or of Type II
with probability q = 1 − p. When an organ is assigned to the candidate, it
yields a reward R > 0 if they match in type or a smaller reward 0 < r ≤ R
if there is a mismatch. If an organ is not assigned, it is unavailable for future
assignments, however, an unassigned patient stays in the system until he or
she is assigned an organ. The objective is to find assignment policies that
maximize various optimality criteria.

David and Yechiali first consider the average reward criterion. A policy π
is average-reward optimal if it maximizes the following equation:

φπ(s) = lim inf
t→∞

E
[∑t−1

n=0 rπ(n)|initial state = s
]

t
,

where rπ(n) is the average reward earned in day n, and states are represented
by pairs (i, j) denoting i Type I and j Type II candidates waiting in the
system (0 ≤ i, j < ∞). They prove that when there are infinitely many
organs and patients, the optimal policy is to assign only perfect matches for
any 0 ≤ p ≤ 1 and 0 ≤ r ≤ R, and the optimal gain is the perfect-match
reward, R. If there exist at most k patients, then the reasonable policy of
order k is the optimal policy, where a reasonable policy of order k is defined
as follows. A policy is a reasonable policy of order k if it satisfies the following
conditions: (i) assign a match whenever possible and (ii) assign a mismatch
when n1 candidates are present prior to the arrival, with k being the smallest
number n1 specified in (ii).
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David and Yechiali then consider the finite- and infinite-horizon discounted
models. They show that for a finite-horizon model, the optimal policy has the
following form: assign a perfect match when available, and assign a mismatch
if and only if r > r∗n,N , where r∗n,N is a control limit that changes with
the optimal reward-to-go function when there are n Type I candidates and
N periods to go. Unfortunately, they could not find a closed-form solution
for r∗n,N . They also show that the infinite-horizon discounted-reward optimal
policy is of the following form: assign a perfect match when available, and
assign a mismatch according to a set of controls

r∗1 ≥ r∗2 ≥ · · · ≥ r∗k−1 ≥ r∗k ≥ · · ·

on r and according to k, where k represents the number of mismatching can-
didates in the system and rk are a set of control limits on r.

David and Yechiali [8] consider allocating multiple (M) organs to mul-
tiple (N) patients. Assignments are made one at a time, and once an
organ is assigned (or rejected), it is unavailable for future assignments.
Each organ and patient is characterized by a fixed-length attribute vector
X = (X1,X2, . . . , Xp), where each patient’s attributes are known in advance,
and each organ’s attributes are revealed only upon arrival. When an offer is
assigned to a patient, the two vectors are matched, and the reward is deter-
mined by the total number of matching attributes. There are at most p + 1
possible match levels. The objective is to find an assignment policy that max-
imizes the total expected return for both discounted and undiscounted cases.
They assume that p equals 1, so that each assignment of an offer to a candi-
date yields a reward of R if there is a match and a smaller reward r ≤ R if
there is a mismatch.

They first consider the special case in which M ≥ N , each patient must
be assigned an organ, and a fixed discount rate (α) exists. They assume that
f1 ≤ f2 ≤ · · · ≤ fN , where f1, . . . , fN are the respective frequencies P{X =
a1}, . . . , P{X = aN}, the N realizations of the attribute vector. Using the
notation (f) for (f1, . . . , fN+1) and (f−1) for (f1, . . . , fi−1, fi+1, . . . , fN+1), the
optimality equations are

VN+1,M+1(f )|X1 = max

⎧
⎨

⎩

R + αVN,M (f−1)|{X1 = ai} (match)
r + α maxk VN,M (f−k) (a mismatch)
αVN+1,M (f ) (rejection),

where VN,M (f ) is the maximal expected discounted total reward when there
are N waiting patients with N attribute realizations (a1, . . . , aN ) and M offers
available. They prove that if N < M and a1, . . . , aN are distinct, the optimal
policy is to assign a match whenever possible and to reject a mismatch or
assign it to a1 depending on whether αξ1 ≥ r or αξ1 < r, where ξ1 = f1R +
(1− f1)r.

David and Yechiali then consider the case where M = N and no rejections
are possible. In this case, the optimal policy is as follows: if an offer matches
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one or more of the candidates, it is assigned to one of them. Otherwise it is
assigned to a candidate with the rarest attribute.

Finally, they relax the assumption that all candidates must be assigned
and M ≥ N . In this case, they prove that the optimal policy is to assign the
organs to one of the candidates if a match exists and to assign to a1 when
f1 < ϕ, where ϕ is a function of fi’s and can be computed explicitly for some
special cases.

Stahl et al. [23] use an integer programming model to formulate and solve
the problem of the optimal sizing and configuration of transplant regions
and OPOs in which the objective is to find a set of regions that optimizes
transplant allocation efficiency and geographic equity. They measure efficiency
by the total number of intra-regional transplants and geographic equity by the
minimum OPO intra-regional transplant rate, which is defined as the number
of intra-regional transplants in an OPO divided by the number of patients on
the OPO waiting list.

They model the country as a simple network in which each node represents
an OPO, and arcs connecting OPOs indicate that they are contiguous. They
assume that a region can consist of at most nine contiguous OPOs, an OPO
supplies its livers only to the region that contains it, and both transplant
allocation efficiency and geographic equity could be represented as factors in
a function linking CIT and liver transport distance. They also assume that
the probability of declining a liver offer, which is measured by the liver’s
viability, is solely dependent on its CIT. Primary nonfunction occurs when a
liver fails to work properly in the recipient at the time of transplant. They
use two functional relationships between primary nonfunction and CIT: linear
and polynomial.

Stahl et al. solve an integer program to find the optimal set of regions
such that the total number of intra-regional transplants are maximized. They
define the binary variable xj for every possible region j such that it is equal
to 1 if region j is chosen and is equal to 0 if region j is not chosen. Then, the
integer program is as follows:

max

⎧
⎨

⎩

∑

j∈J

cjxj :
∑

j∈J

aijxj = 1, i ∈ I;xj ∈ {0, 1}, j ∈ J

⎫
⎬

⎭
, (1.2)

where I is the set of all OPOs; J is the set of all regions; aij = 1 if region j
contains OPO i, and 0 otherwise; and cj represents the total number of intra-
regional transplants for region j. They provide a closed-form estimate of cj .
If the number of regions is constrained to be equal to 11, then the constraint∑

j∈J xj = 1 is added. The integer program defined in (1.2) does not consider
the geographic equity. Let fij and λmin represent the intra-regional transplant
rate in OPO i contained in region j and the minimal local transplant rate,
respectively. Then, the integer program considering the geographic equity can
be reformulated as follows:
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max

⎧
⎨

⎩

∑

j∈J

cjxj + ρλmin :
∑

j∈J

aijxj = 1, i ∈ I;

∑

j∈J

fijxj − λmin ≥ 0, i ∈ I; xj ∈ {0, 1}, j ∈ J

⎫
⎬

⎭
, (1.3)

where ρ is a constant that indicates the importance the decision makers place
on the minimum transplant rate across OPOs versus intra-regional trans-
plants. Hence, changing ρ will provide a means for balancing the two conflict-
ing factors, transplant allocation efficiency and geographic equity.

Stahl et al. conduct computational experiments using real data to compare
the regional configuration obtained from their model to the current configura-
tion. The optimal sets of regions tend to group densely populated areas. Their
results show that the proposed configuration resulted in more intra-regional
transplants. Furthermore, for all values of ρ, the minimum intra-regional trans-
plant rate across OPOs is significantly higher than that in the current regional
configuration. However, as ρ increases, the increase over the current config-
uration diminishes. They also perform sensitivity analyses, which show that
the outcome is not sensitive to the relationship between CIT and primary
nonfunction.

1.5.2 Optimizing the kidney allocation system

Zenios et al. [31] consider the problem of finding the best kidney allocation
policy with the three-criteria objective of maximizing total quality-adjusted
life years (QALYs) and minimizing two measures of inequity. The first mea-
sures equity across various groups in terms of access to kidneys, and the
second measures equity in waiting times. They formulate this problem using
a continuous-time, continuous-space deterministic fluid model but do not pro-
vide a closed-form solution.

In their model, there are K patient and J donor classes. They assume
that patients of class k = 1, . . . , KW are registered on the waiting list and
patients of class k = KW + 1, . . . ,K have a functioning graft. The state
of the system at time t is described by the K-dimensional column vector
x(t) = (x1(t), . . . , xK(t))T , which represents the number of patients in each
class. Transplant candidates of class k ∈ {1, . . . , KW } join the waiting list at
rate λ+

k and leave the waiting list with rate μk due to death or due to organ
transplantation. Organs of class j ∈ {1, . . . , J} arrive at rate λ−

j , from which
a fraction vjk(t) is allocated to transplant candidates k. Note that vjk(t) is a
control variable and ujk(t) = λ−

j vjk(t) is the transplantation rate of class j
kidneys into class k candidates. When a class j kidney is transplanted into a
class k ∈ {1, . . . , KW } patient, the class k patient leaves the waiting list and
becomes a patient of class c(k, j) ∈ {KW + 1, . . . ,K}. Furthermore, c(k, j)
patients depart this class at rate μc(k,j) per unit time; a fraction qc(k,j) ∈ [0, 1]
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of these patients are relisted as patients of class k as a result of graft failure,
whereas a fraction 1− qc(k,j) of them exit the system due to death.

The system state equations are given by the following linear differential
equations:

d

dt
xk(t) = λ+

k − μkxk(t)−
J∑

j=1

ujk(t) +
J∑

j=1

qc(k,j)μc(k,j)xc(k,j)(t);

k = 1, . . . ,KW , (1.4)

d

dt
xk(t) =

J∑

j=1

KW∑

i=1

uji(t)1{c(i,j)=k} − μkxk(t); k = KW + 1, . . . ,K, (1.5)

and are subject to the state constraints

xk(t) ≥ 0; k = 1, . . . ,K. (1.6)

The organ allocation rates u(t) must satisfy the following constraints:

KW∑

k=1

ujk(t) ≤ λ−
j ; j = 1, . . . , J, (1.7)

ujk(t) ≥ 0; k = 1, . . . ,KW and j = 1, . . . , J. (1.8)

Zenios et al. note that this model ignores the three important aspects of
the kidney allocation problem: crossmatching between donor and recipient,
unavailability of recipients, and organ sharing between OPOs. The model
assumes that the system evolution is deterministic. They use the QALY to
measure the efficiency of the model. Namely, they assume that UNOS assigns
a quality of life (QOL) score hk to each patient class k = 1, . . . , K, and the
total QALY over a finite time horizon T is found using

∫ T

0

K∑

k=1

hkxk(t)dt.

For a given allocation policy u(t) = (u1.(t)T , . . . , uJ.(t)T , where uj.(t) =
(uj1(t), . . . ,
ujKW

(t))T , their first measure of equity, waiting time inequity, is calculated
by

1
2

∫ T

0

KW∑

k=1

KW∑

i=1

λk(t, u(t))λi(t, u(t)) ·
(

xk(t)
λk(t, u(t))

− xi(t)
λi(t, u(t))

)2

dt,

where λ(t, u(t)) = (λ1(t, u(t)), . . . , λKW
(t, u(t))) represents the instantaneous

arrival rate into class k under allocation policy u(t).
The second measure of equity considers the likelihood of transplantation.

They observe that
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lim
T→∞

∫ T

0

∑J
j=1 ujk(t)dt

λ+
k T

gives the percentage of class k patients who receive transplantation. Then the
vector of likelihoods of transplantation is given by

∫ T

0
D̃u(t)dt

λ+T
,

where D̃ ∈ RKW ×KW J is a matrix with components

D̃ki =
{

1 if i mod KW = k;
0 otherwise.

Because this form is not analytically tractable, they insert the Lagrange mul-
tipliers γ = (γ1, . . . , γKW

)T into the objective function using the following
expression in the objective function:

∫ T

0

γT D̃u(t)dt.

They combine the three objectives and the fluid model to obtain the fol-
lowing control problem: choose the allocation rates u(t) to maximize the tri-
criteria objective of

∫ T

0

(

β

K∑

k=1

hkxk(t)

− (1− β)
KW∑

k=1

KW∑

i=1

λk(t, u(t))λi(t, u(t)) ·
(

xk(t)
λk(t, u(t))

− xi(t)
λi(t, u(t))

)2

+ γT D̃u(t)

)

dt,

subject to (1.4)–(1.8), where β ∈ [0, 1].
Because there does not appear to be a closed-form solution to this prob-

lem, they employ three approximations to this model and provide a heuristic
dynamic index policy. At time t, the dynamic index policy allocates all organs
of class j to the transplant candidate class k with the highest index Gjk(t),
which is defined by

Gjk = πc(k,j)(x(t))− πk(x(t)) + γk,

where πc(k,j)(x(t)) represents the increase in

β

K∑

k=1

hkxk(t)−(1−β)
KW∑

k=1

KW∑

i=1

λk(t, u(t))λi(t, u(t))·
(

xk(t)
λk(t, u(t))

− xi(t)
λi(t, u(t))

)2

if an organ of class j is transplanted into a candidate of class k at time t.
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Zenios et al. construct a simulation model to compare the dynamic index
policy to the UNOS policy and an FCFT (first-come first-transplanted) policy.
They evaluate the effects of the dynamic index policy on the organ allocation
system for several values of β and γ. They consider two types of OPOs: a
typical OPO and a congested OPO, where the demand-to-supply ratio is much
higher than that of a typical OPO. Their results show that the the dynamic
index policy outperforms both the FCFT and UNOS policy.

Su and Zenios [25] consider the problem of allocating kidneys to the trans-
plant candidates who have the right to refuse the organs. They use a sequential
stochastic assignment model to solve variants of this problem. They assume
that the patients do not leave the system due to pre-transplant death.

Their first model considers the case when the patient does not have the
right to reject an organ. This model also assumes that there are n trans-
plant candidates with various types to be assigned to n kidneys, which arrive
sequentially−one kidney in each period. The type of kidney arriving at time
t is a random variable {Xt}n

t=1, where {Xt}n
t=1 are independent and identi-

cally distributed with probability measure P over the space of possible types
X . There are m patient types where the proportion of type i candidates is
denoted by pi. When a type x kidney is transplanted into a type i patient,
a reward of Ri(x) is obtained. The objective is to find an assignment policy
I = (i(t))t=1,...,n that maximizes total expected reward, E

[∑n
t=1 Ri(t)(Xt)

]
,

where i(t) denotes the candidate type that is assigned to the kidney arriving
at time t. The optimization problem is to find a partition {A∗

i }
m
i=1 to

max
{A1,...,Am}

∑m
i=1 E[Ri(X)1{X∈Ai}]

such that P (Ai) = pi i = 1, . . . ,m,

where 1{X∈Ai} is the indicator function, which takes the value of 1 if X ∈ Ai

and 0 if X /∈ Ai, and {Ai}m
i=1 is a partition of the kidney space X .

They analyze the asymptotic behavior of this optimization problem and
prove that the optimal partitioning policy is asymptotically optimal as n →
∞. This result reduces the sequential assignment problem into a set partition-
ing problem. If the space X consists of k discrete kidney types with probability
distribution (q1, . . . , qk), then the partition policy can be represented by the
set of numbers {aij}1≤i≤m,1≤j≤k such that when a kidney of type j arrives,
it is assigned to a candidate of type i with probability aij/

∑m
i=1 aij , where

aij is the joint probability of a type i candidate being assigned a type j kid-
ney. Then the optimal partition policy is given by the solution {a∗

ij} to the
following assignment problem:

max
{aij}

m∑

i=1

k∑

j=1

aijrij

such that
m∑

i=1

aij = qj j = 1, . . . , k
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k∑

j=1

aij = pi i = 1, . . . ,m.

They derive the structural properties of the optimal policy under different
reward functions including multiplicative reward structure and a match-
reward structure, in which if the patient and kidney types match the trans-
plantation results in a reward of R, and if there is a mismatch then the
transplantation results in a reward of r < R. They show that if the reward
functions satisfy the increasing differences assumption, i.e., Ri(x) − Rj(x) is
increasing in x, then the optimal partition is given by A∗

i = [ai−1, ai), where
ao = −∞, am =∞, and

Pr(X ≤ ai) = p1 + · · ·+ pi.

Su and Zenios then consider the problem of allocating kidneys to the
patients when the patients have the right to refuse an organ offer and measure
the effects of patient autonomy on the overall organ acceptance and rejection
rates. In this model, they assume that an organ rejected by the first patient will
be discarded. They define a partition policy A = {Ai} as incentive-compatible
if the following condition holds for i = 1, . . . ,m:

inf
x∈Ai

Ri(x) ≥ δ

pi
· E[Ri(X)]1{X∈Ai},

where δ is the discount rate for future rewards. Intuitively, a partition policy
will be incentive-compatible if each candidate’s reward from accepting a kid-
ney offer is no less than their expected reward from declining such an offer.
They add the incentive-compatibility (IC) constraint to the original optimiza-
tion problem to model candidate autonomy. They find that the inclusion of
candidate autonomy increases the opportunity cost each candidate incurs from
refusing an assignment and make such refusals unattractive.

They perform a numerical study to evaluate the implications of their ana-
lytical results. Their experiments show that as the heterogeneity in either
the proportion of candidates or the reward functions increases, the optimal
partitioning policy performs better. They compared the optimal partition-
ing policy to a random allocation policy with and without the consideration
of candidate autonomy. In general, the optimal partition policy performed
much better than a random allocation policy. Additionally, candidate auton-
omy can have a significant impact on the performance of the kidney allocation
system. However, the optimal partitioning policy with the inclusion of IC con-
straints performs almost as well as the optimal policy when candidates are
not autonomous. This is because the inclusion of IC constraints eliminates the
variability in the stream of kidneys offered to the same type of candidates.

Roth et al. [20] consider the problem of designing a mechanism for direct
and indirect kidney exchanges. A direct kidney exchange involves two donor-
patient pairs such that each donor cannot give his or her kidney to his or her
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own patient due to immunological incompatibility, but each patient can receive
a kidney from the other donor. An indirect kidney exchange occurs when a
donor-patient pair makes a donation to someone waiting for a kidney, and
the patient receives high priority for a compatible kidney when one becomes
available. The objective is to maximize the number of kidney transplants and
mean quality of match.

Let (ki, ti) be the donor-recipient pair, where ki denotes kidney i from
live donor and ti denotes patient ti, and K denotes the set of living donors
at a particular time. Each patient ti has a set of compatible kidneys, Ki ⊂
K, over which the patient has heterogenous preferences. Let w denote the
option of entering the waiting list with priority reflecting the donation of
his or her donor’s kidney ki. Let Pi denote the patient’s strict preferences
over Ki ∪ {ki, w}, where Pi is the ranking up to ki or w, whichever ranks
higher. A kidney exchanging problem consists of a set of donor-recipient pairs
{(k1, t1), . . . , (kn, tn)}, a set of compatible kidneys Ki ⊂ K = {k1, . . . , kn}
for each patient ti, and a strict preference relations Pi over Ki ∪ {ki, w} for
each patient ti. The objective is to find a matching of kidneys/wait-list option
to patients such that each patient ti is either assigned a kidney in Ki ∪ {ki}
or the wait-list option w, while no kidney can be assigned to more than one
patient but the wait-list option w can be assigned to more than one patient.
A kidney exchange mechanism selects a matching for each kidney exchange
problem.

Roth et al. [20] introduce the Top Trading Cycles and Chains (TTCC)
mechanism to solve this problem and show that the TTCC mechanism always
selects a matching among the participants at any given time such that there
is no other matching weakly preferred by all patients and donors and strictly
preferred by at least one patient-donor pair. They use a Monte Carlo simula-
tion model to measure the efficiency of the TTCC mechanism. Their results
show that substantial gains in the number and match quality of transplanted
kidneys might result from the adoption of the TTCC mechanism. Further-
more, a transition to the TTCC mechanism would improve the utilization
rate of potential unrelated living-donor kidneys and Type O patients without
living donors.

In another work, Roth et al. [21] consider the problem of designing a mech-
anism for pairwise kidney exchange, which makes the following two simplify-
ing assumptions to the model described in [20]: (1) they consider exchanges
involving two patients and their donors and (2) they assume that each patient
is indifferent between all compatible kidneys. These two assumptions change
the mathematical structure of the kidney exchange problem, and the prob-
lem becomes a cardinality matching problem. Under these assumptions, the
kidney exchange problem can be modeled with an undirected graph whose
vertices represent a particular patient and his or her incompatible donor(s)
and whose edges connect those pairs of patients between whom an exchange is
possible, i.e., pairs of patients such that each patient in the pair is compatible
with a donor of the other patient. Finding an efficient matching then reduces
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to finding a maximum cardinality matching in this undirected graph. They
use results from graph theory to optimally solve this problem and give the
structure of the optimal policy.

1.6 Conclusions

Organ allocation is one of the most active areas in medical optimization.
Unlike many other optimization applications in medicine, it has multiple per-
spectives. The individual patient’s perspective typically considers the patient’s
health and how he or she should behave when offered choices, e.g., whether or
not to accept a particular cadaveric organ or when to transplant a living-donor
organ. The societal perspective designs an allocation mechanism to optimize
at least one of several possible objectives. One possible objective is to maxi-
mize the total societal health benefit. Another is to minimize some measure
of inequity in allocation.

Given the rapid changes in organ allocation policy, it seems likely that new
optimization issues will arise in organ allocation. A critical issue in future
research is modeling disease progression as it relates to allocation systems.
The national allocation systems are increasingly using physiology and lab-
oratory values in the allocation system (e.g., the MELD system described
in Section 1.3). Furthermore, new technologies may mean more choices to
be optimized for patients in the future. For example, artificial organs and
organ assist devices are becoming more common. Given the intense emotion
that arises in organ allocation, more explicit modeling of the political con-
siderations of various parties will yield more interesting and more applicable
societal-perspective optimization models.
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Abstract. “An ounce of prevention is worth a pound of cure.” In healthcare, this
well-known proverb has many implications. For several of the most common can-
cers, the identification of individuals who have early-stage disease enables early
and more effective treatment. Historically, however, the effectiveness of and the fre-
quency with which to perform these screening tests have been questioned. This is
particularly true for breast cancer where survival is highly correlated with the stage
of disease at detection. Breast cancer is the most common noncutaneous cancer in
American women, with an estimated 240,510 new cases and 40,460 deaths in 2007
(http://www.cancer.gov). Mammography is currently the only screening method
recommended by American Cancer Society (ACS) Guidelines for Breast Cancer
Screening: Update 2003 for community-based screening (Smith et al. [33]). Mam-
mography seeks to detect cancers too small to be felt during a clinical breast exam-
ination by using ionizing radiation to create an image of the breast tissue. However,
screening mammography detects noncancerous lesions as well as in situ and inva-
sive breast cancers that are smaller than those detected by other means. The ACS
suggests that establishing the relative value between screening and non-screening
factors is complex and can be only indirectly estimated. Operations researchers have
a unique opportunity to determine the optimal future for breast cancer screening
and treatment by developing models and mechanisms that can accurately describe
the dynamic nature of quality costs as well as the interaction between such costs,
resulting activities, and system improvement. This is not a new question; in addition
to a rich body of empirical breast cancer research, there is more than 30 years of
mathematical-modeling-based breast cancer screening research. In this chapter, we
present a critical analysis of optimization-based models of the breast cancer screening
decision problem in the literature and provide guidance for future research direc-
tions.

2.1 Introduction

“An ounce of prevention is worth a pound of cure” — a well-known proverb —
is a simple description of the advantages of proactive health maintenance: per-
sonal activities intended to enhance health or prevent disease and disability.

P.M. Pardalos, H.E. Romeijn (eds.), Handbook of Optimization in Medicine, 25
Springer Optimization and Its Applications 26, DOI: 10.1007/978-0-387-09770-1 2,
c© Springer Science+Business Media LLC 2009
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For several of the most common cancers, cardiovascular diseases, and other
illnesses, examining seemingly healthy individuals to detect a disease before
the surfacing of clinical symptoms enables early and more effective treatment
(Parmigiani [28]). Screening, in particular, is one of the most important areas
both in clinical practice and research in medicine today (United States Pre-
ventive Services Task Force, 2003). Historically, however, the effectiveness of
and the frequency with which to perform these screening tests have been ques-
tioned. In fact, medical economist Louise Russell (Russell [30]) contests this
well-known proverb in her text of the same name, which challenges the con-
ventional wisdom that more frequent screening is necessarily better. Cancer
screening, in particular, has received much of this attention. Russell, for exam-
ple, argues that standard recommendations such as annual Pap smears for
women and prostate tests for men over 40 are, in fact, simply rules of thumb
that ignore the complexities of individual cases and the trade-offs between
escalating costs and early detection (Russell [31]). Rising healthcare costs
exacerbate these concerns. Healthcare costs account for a high fraction of the
gross domestic product in industrial countries, ranging from approximately
7% in the United Kingdom to 14% in the United States. In the United States,
this percentage is projected to exceed 16% by 2010. These growing costs are
especially noteworthy in today’s economy, as policymakers are forced to trim
healthcare benefits or other social services, and healthcare systems are under
significant pressure to control expenditures and improve performance (Baily
and Garber [2]). Both public and private payers are demanding increased effi-
ciency and “value for money” in the provision of healthcare services (Earle
et al. [10]).

In addressing these concerns, some medical experts question the value of
screening tests for cancers, including breast and ovarian cancers in women,
prostate cancer in men, and lung cancer in both sexes. A key issue in determin-
ing the effectiveness of testing is whether the tests can adequately distinguish
between nonmalignant and malignant tumors so that patients with nonmalig-
nant tumors are not subjected to the risks of surgery, radiation, or chemother-
apy. This debate is further complicated because the ability of screening tests
to detect very tiny tumors in the breast, prostate, and other organs has far
outpaced scientists’ understanding of how to interpret and respond to the
findings (The New York Times, April 14, 2002).

Olsen and Gotzsche [26] suggested that breast cancer screening might be
ineffective in terms of outcomes (also refer to Gotzsche and Olsen [15]). The
authors evaluated the randomized trials of breast cancer screening through
meta-analysis, concluding that five of the seven trials were flawed and should
not be regarded as providing reliable scientific evidence. Further, they con-
cluded that there is no reliable evidence that screening reduces breast can-
cer mortality. Although numerous guideline groups, national health boards,
and authors dispute Olsen and Gotzsche’s methodology and conclusions, the
Olsen and Gotzsche article reignited a debate about the value of breast can-
cer screening and put into question some of the evidence-based support for
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the cost-effectiveness of breast cancer screening. In fact, according to the
American Cancer Society (ACS), the inherent limitations of the breast cancer
screening randomized control trials (RCTs) in estimating mammography ben-
efits have led to increased interest in evaluating community-based screening
(Smith et al. [33]). The question is whether routine mammograms should be
recommended and, if so, for whom (The Wall Street Journal, February 26,
2002). Mammograms obviously aid in the detection and diagnosis of breast
cancer. At issue is whether the breast cancer screening test makes any differ-
ence in preventing breast cancer deaths (The New York Times, February 1,
2002).

There seems to be a consensus that we could do better, but the question
is how. By improving the management and/or treatment of diseases, decision
makers can alleviate spending pressure on their systems while maintaining
outcomes, or even improve outcomes without increasing spending (Baily and
Garber [2]). To provide these policymakers with an informed understand-
ing of system and health maintenance, operations researchers have a unique
opportunity to determine the optimal future for breast cancer screening and
treatment by developing models and mechanisms that can accurately describe
the dynamic nature of quality costs as well as the interaction between such
costs, resulting activities, and system improvement.

2.1.1 Background on breast cancer and mammography techniques

Breast cancer

Breast cancer is a disease in which malignant cancer cells form in the tissues
of the breast. Breast cancer is a progressive disease that is classified into a
variety of histological types. The standard taxonomy for categorizing breast
cancer is given by the American Joint Committee on Cancer staging system
based on tumor size and spread of the disease. According to this taxonomy,
patients with smaller tumors are more likely to be in the early stage of the
disease, have a better prognosis, and are more successfully treated.

It is the most common noncutaneous cancer in American women, with an
estimated 267,000 new cases and 39,800 deaths in 2003 (http://www.cancer.
gov). The average lifetime cumulative risk of developing breast cancer is 1 in
8. Breast cancer incidence, however, increases with age. For the average 40-
year-old woman, the risk of developing breast cancer in the next 10 years is
less than 1 in 60. The 10-year risk of developing breast cancer for the average
70-year-old woman, however, is 1 in 25.

Screening by mammography

Mammography is currently the only screening method recommended by ACS
Guidelines for Breast Cancer Screening: Update 2003 for community-based
screening (Smith et al. [33]). Mammography seeks to detect cancers too small
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to be felt during a clinical breast examination by using ionizing radiation to
create an image of the breast tissue. The examination is performed by com-
pressing the breast firmly between a plastic plate and an x-ray cassette which
contains special x-ray film. Screening mammography detects noncancerous
lesions as well as in situ and invasive breast cancers that are smaller than
those detected by other means. Mammography screening reduces the risk of
mortality by increasing the likelihood of detecting cancer in its preclinical
state, thus allowing earlier treatment and more favorable prognoses associated
with early-stage cancers (Szeto and Devlin [34]).

Currently, mammography is the best way available to detect breast cancer
in its earliest, most treatable stage, on average 1.7 years before a woman can
feel the lump (The National Breast and Cervical Cancer Early Detection Pro-
gram, 1995). The remaining unanswered question, however, is whether “rou-
tine” mammograms should be recommended and, if so, beginning and ending
at what ages (The Wall Street Journal, February 26, 2002). The reason this
question remains open is because mammograms do not achieve perfect sensi-
tivity (a true positive) or specificity (a true negative). As a result, the issue of
adverse consequences of screening for women who do not have breast cancer,
as well as women who have early-stage breast cancer that will not progress,
has become one of the core issues in recent debates about mammography
(Smith et al. [33]).

Mammography efficacy

Sensitivity refers to the likelihood that a mammogram correctly detects the
presence of breast cancer when breast cancer is indeed present (a true posi-
tive). Sensitivity depends on several factors, including lesion size, lesion con-
spicuousness, breast tissue density, patient age, hormone status of the tumor,
overall image quality, and the interpretive skill of the radiologist. Retrospec-
tive correlation between mammogram results with population-based cancer
registries shows that sensitivity ranges from 54% to 58% in women under 40
and from 81% to 94% in those over 65 (http://www.cancer.gov).

Specificity refers to the likelihood that a mammogram correctly reports
no presence of breast cancer when breast cancer is indeed not present (a true
negative). Mammography specificity directly affects the number of “unnec-
essary” interventions performed due to false-positive results, including addi-
tional mammographic imaging (e.g., magnification of the area of concern),
ultrasound, and tissue sampling (by fine-needle aspiration, core biopsy, or
excision biopsy). It is interesting to note that the emotional effects of false
positives are often assumed to be negligible in most mathematical models for
mammography, although scarring from surgical biopsy can mimic a malig-
nancy on subsequent physical or mammographic examinations. Patient char-
acteristics associated with an increased chance of a false-positive result include
younger age, increased number of previous breast biopsies, family history of
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breast cancer, and current estrogen use. Radiologist characteristics associ-
ated with an increased chance of a false-positive result include longer time
between screenings, failure to compare the current image with prior images,
and the individual radiologist’s tendency to interpret mammograms as abnor-
mal (cancer.gov). Although the average specificity of mammography exceeds
90%, this rate varies with patient age; the specificity rate for women ages
40 through 49 is 85% to 87%, and for women over age 50 it is 88% to 94%
(http://www.womenssurgerygroup.com).

2.1.2 Mammogram screening recommendations

The 2003 American Cancer Society guidelines recommend that women at
average risk should begin annual mammography screening at age 40. Although
the potential for mammography screening to reduce the risk of breast cancer
mortality is generally accepted for women older than 50, some authors argue
that the benefits for younger women are less certain because the incidence of
the disease, as well as the efficacy of the screening test, are lower in younger
women. That is, younger women are less likely to develop breast cancer and
more likely to receive false test results.

On the other hand, the ACS Guidelines for Breast Cancer Screening:
Update 2003 (Smith et al. [33]) states that the importance of annual screen-
ing is clearly greater in premenopausal women (<55) compared with post-
menopausal women. The guidelines speculate that younger women might
benefit from more frequent screening because the disease is more aggressive
in younger women (Althuis et al. [1]; Brenner and Hakulinen [6]; Foxcroft et
al. [13]; Kroman et al. [19]; Mathew et al. [24]). Peer et al. report that in
patients younger than 50, tumors have a median doubling time of 80 days,
whereas the tumors in patients ages 50 to 70 have a median doubling time of
157 days, and tumors in patients older than 70 have a median doubling time
of 188 days (Michaelson et al. [25]).

Screening for women with increased risk

The ACS guidelines admit that the age at which screening should be ini-
tiated for women at high risk is not well established and speculate that
women at increased risk might benefit from additional screening strategies
beyond those offered to women of average risk, such as earlier initiation of
screening, shorter screening intervals, or the addition of screening modalities
(such as ultrasound or magnetic resonance imaging (MRI)). A woman’s risk
of breast cancer is higher if her mother, sister, or daughter has had breast
cancer, especially if the family member developed the disease before age 40
(http://www.cancer.gov). A woman’s risk can increase by as much as 50%
if her mother has had breast cancer and by 25% if her sister has had breast
cancer (Collaborative Group on Hormonal Factors in Breast Cancer, 2001).
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Screening the elderly

Similar uncertainty surrounds recommendations for elderly women and women
with high comorbidity, i.e., high risk of contracting and dying from other
diseases. Postmenopausal women frequently have one or more preexisting
comorbid conditions (e.g., heart disease, chronic obstructive pulmonary dis-
ease, diabetes, hypertension, and arthritis) at the time of breast cancer diag-
nosis (Yancik et al. [35]). Yancik et al. [35] found that comorbidity in older
patients also may limit the ability to obtain prognostic information (i.e., axil-
lary lymph node dissection) and tend to minimize treatment options (e.g.,
breast-conserving therapy). In light of these facts, the 2003 American Cancer
Society guidelines state that screening decisions in “older women” should be
individualized by considering the potential benefits and risks of mammogra-
phy in the context of current health status and estimated life expectancy but
offer no concrete recommendations.

The ACS suggests that establishing the relative value between screening
and non-screening factors is complex and can be only indirectly estimated.
“Insofar as additional RCTs of breast cancer screening are unlikely, the
evaluation of service screening represents an important new development for
several reasons, specifically by measuring the value of modern mammography
in the community and measuring the benefit from mammography screening
to women who actually get screened (Smith et al. [33]).” These statements
demonstrate the need for mathematical modeling and simulation to evaluate
the impact of screening.

2.2 Optimization Models for Mammography Screening

To address this concern, a number of studies have examined the relationship
between screening and mortality reduction (see, e.g., Szeto and Devlin [34];
Beemsterboer [4]; de Koning [9]). In addition to the empirical breast cancer
research, there exists a body of mathematical-modeling-based breast cancer
research. This research has important implications for physician and patient
decision making as well as for insurance pricing. It seeks to address the cur-
rent mammography screening debate and shows great promise as a means
for developing and evaluating cost-effective screening and treatment policies
for breast cancer as well as other health screening problems. There are sev-
eral research issues to be addressed to further this field, e.g., risk estimation,
defining patient costs, dealing with multiple decision makers, and so forth.
Although there are many models in the literature focusing on modeling the
disease progression (Retsky et al. [29]), with some based on Markov processes
(e.g., Chen et al. [8]), our discussion will highlight those optimization-based
models that also incorporate the decision process.

Kirch and Klein [18] developed an early model for determining exami-
nation schedules for the detection of age-dependent diseases such as breast
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cancer. Their model minimizes the expected detection delay for a given num-
ber of examinations. They specify the age span for which the examination
schedule is to be developed and assume that it consists of n equal-length
periods, specifically five-year periods. Further, they assume that each period
starts with an examination and that all examinations within a period are at
equal intervals. For this model, they demonstrate that an optimal examina-
tion schedule is nonperiodic; specifically, the frequency of examination will be
either approximately or exactly proportional to the square root of the age-
specific incidence probability of the disease. For breast cancer examinations,
they demonstrate that optimal nonperiodic schedules will result in savings of
2% to 3% in the expected number of examinations when periodic and nonpe-
riodic schedules have the same expected detection delay. One major limitation
of their model is that they assume examinations are perfect or error-free.

Shwartz [32] developed one of the earliest and most complex mathematical
models to address the breast cancer screening problem. He defines 21 disease
states consisting of seven tumor-size categories and, for each size category,
three lymph-node involvement levels. He hypothesizes that tumors grow expo-
nentially with a random growth rate and uses data from tumor-doubling times
to estimate the distribution of tumor growth rates in the population of women
who have been treated for breast cancer. Shwartz acknowledges that there is
no “unarbitrary” method for determining lymph-node involvement levels for
tumors detected by screening due to a lack of data. Shwartz [32] incorpo-
rates non-stationarity, i.e., age-dependency, for incidence and mortality rates,
and assumes stationary test-efficacy and disease aggression. Shwartz uses his
model to predict the benefits of alternative screening strategies in terms of life
expectancy gain by considering both the probability of lymph node involve-
ment at detection and the probability of recurrence. However, Shwartz’s model
does not incorporate the possibility of false-positive test results and assumes
the decision maker knows disease state information.

Ozekici and Pliska [27] model disease progression as a delayed Markov
process in which the sojourn time in the good state is a general, non-negative
random variable, and the progression through the deterioration states follows
a Markov process. Their model determines the optimal inspection schedule by
minimizing the total expected value of the following costs: inspection costs,
false-positive (supertest or biopsy) costs, true positive-costs as a function of
disease state, and false-negative costs as a function of disease state. They
acknowledge that these costs, particularly the true-positive and false-negative
costs, are quite subjective and difficult to estimate in practice. Some other lim-
itations of this model are that it does not include death as a possible state and
uses stationary transition probabilities and test efficacy parameters. Further,
their model assumes that once the disease is “apparent to the individual,” no
diagnosis is necessary.

Parmigiani [28] developed a Bayesian framework for examining the effect
of age on the optimal schedule of examinations. He presented a general, non-
Markovian stochastic process to model disease progression that includes a
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death state, although he did not distinguish breast cancer death and non–
breast cancer death. Parmigiani acknowledged one of the significant limita-
tions of modeling for breast cancer: that data required to determine the form
and parameters of general sojourn time distributions is often not available.
He assumed that the sensitivity of the screening test is a function of patient
age and the sojourn time in the detectable preclinical disease state. Screen-
ing schedules are chosen to minimize total expected cost, including examina-
tion costs (financial charges, undesired side effects, psychological stress, etc.),
mortality/morbidity costs, and treatment costs that depend on the timing of
detection. Parmigiani suggested generating trade-off curves as a function of
these costs and quality of life judgments. Parmigiani examined the dynamics
of test-efficacy, incidence rate, disease aggression, and mortality rate; however,
he did so for each factor in isolation.

Zelen [36] developed a weighted utility function for determining the opti-
mal screening schedule. The utility function is equivalent to a fixed budget
that allows for a fixed number of examinations. This utility function is linear
in the probabilities of finding a case at examination and of being clinically
incident between examinations. For this model, Zelen proves that if the dis-
ease incidence is independent of time, then a necessary and sufficient condition
for the screening intervals to be equally spaced is that the sensitivity of the
examination be equal to one. Further he derives the equations for the optimal
intervals and shows they depend on the distribution of the preclinical sojourn
times and the sensitivity of the test. Zelen proves if the sojourn distribution
is exponential, the optimal intervals are equal except for the first and the
last intervals. Zelen acknowledges that selection of the weights for the utility
function is both critical and fairly difficult given the available data. Another
limitation of this model is that it does not involve penalties or discounting for
false-positive diagnoses and it does not address the question of when screening
should begin.

To address some of these limitations, Lee and Zelen [21, 22] and Lee
et al. [20] developed a stochastic model that predicts breast cancer mortal-
ity for different examination schedules and screening modalities as a function
of the stage shift distribution, examination schedules, population age distri-
bution, follow-up time, and survival conditional on stage at diagnosis. Their
model consists of three health states: disease-free or nondetectable state; a
preclinical state, in which an individual has disease but is asymptomatic and
detectable by examination; and a clinical state in which the disease has been
diagnosed by routine methods. Their model assumes the natural history of the
disease is progressive, and any benefit from earlier diagnosis is due to change
in the distribution of disease stages at diagnosis (stage shift). They applied
their model to eight randomized clinical trials and found the model predicted
the reduction in mortality for seven of the eight trials within the reported
confidence levels. They explore the relationship between reduction in disease-
specific mortality and schedule sensitivity and lifetime schedule sensitivity.
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The main features of their schedules are the initial age to begin a scheduled
examination program, the intervals between subsequent examinations, and
the number of examinations. Their evaluation of schedules compares exami-
nation schedules with equal intervals between examinations as well as stag-
gered schedules using a threshold method. Their threshold method constructs
examination schedules so that the probability of an individual being in the
preclinical state is always bounded by a preselected value. They also intro-
duce the concept of schedule sensitivity, the ratio of the expected number of
cases diagnosed on scheduled examinations to the expectation of the total
number of cases. By combining the threshold and schedule sensitivity meth-
ods, they assess the trade-offs between the initial age at examination and the
cost per case found. Calculation of the schedule sensitivities requires data on
age-specific incidence of disease, sensitivity of the screening modalities, and
distribution of sojourn times in the preclinical state. Lee and Zelen (1998)
acknowledge one limitation is that sojourn time distribution tends to be less
readily available.

Mangasarian et al. [23] did not focus on screening schedule develop-
ment but developed linear programming–based machine-learning techniques
to increase the accuracy and objectivity of breast cancer diagnosis and prog-
nosis. Their techniques use characteristics of individual cells, obtained from
minimally invasive fine-needle aspirate, to discriminate benign from malignant
breast lumps. Given two matrices, one of malignant vectors and the other of
benign vectors, in general, the two sets are not strictly linearly separable.
Hence they solve a linear program that minimizes the average sum of their
violations. Their linear program will generate a strict separating plan if it
exists or it will minimize the average sum of the violations. In addition, they
have developed a method that constructs a surface that predicts when breast
cancer is likely to recur in patients who have had their cancers excised. The
linear-program-based recurrence surface approximation is based on the idea of
constructing a surface that bounds from above the disease-free survival times
for the nonrecurring training cases and closely bounds from below the time to
recur times of the recurrent training cases. The method is unique in its ability
to handle cases for which cancer has not recurred (censored data) as well as
cases for which cancer has recurred at a specific time.

Baker [3] developed a model of breast cancer screening in which the pro-
cesses of tumor development and growth, detection of tumors at screening, pre-
sentation of women with cancers to physicians (non–screen detected cancers),
and survival after diagnosis are modeled parametrically using maximum like-
lihood estimation. The model is fit to data from the Northwest of the United
Kingdom for 413 women who screened positive and for 761 women who devel-
oped interval cancers. Her model does not require a Markov assumption and
does not discretize state variables such as tumor size; they are modeled as
continuous variables. The model is an evaluation tool used to assess different
screening policies. Baker defines the cost of breast cancer to be the sum of
the cost of screening and the cost of person years of life lost (PYLL) due to
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cancer. To evaluate the cost of a policy requires the specification of the num-
ber of screens that could be paid for with the cost of one month of life. Baker
derives a range of optimal policies by varying the value placed on human life.
As the cost of screening decreases, the optimal policy requires screening most
intensively in the 40 to 48 age range, in which at higher screening cost, no
screens at all would have been done. The model recommends most screening
effort going to where it reduces PYLL due to cancer only slightly, given suffi-
cient money devoted to screening. Some limitations of this model include: the
sample data used was small, the model’s parameterization does not allow it
to fit the data well, the model does not include non-invasive breast cancers,
and the cost associated with person years of life lost is quite subjective and
difficult to estimate.

Michaelson et al. [25] developed a computer simulation method, based on
the rates of breast cancer growth and spread, to evaluate the ability of different
screening intervals to detect breast cancer prior to distant metastatic spread.
In their model, breast cancer incidence, mortality rate, and disease aggression
are assumed to be constant with respect to patient age.

Gunes et al. [16] developed a system dynamics model for breast cancer
screening incorporating dynamics of healthcare states, program outreach, and
the screening volume quality relationship. Their model is unique in that it
takes a more inclusive view of screening that addresses the public health
concerns for screening implementation. They view breast cancer screening
provision as a problem of matching supply (screening service) and demand
(participation in the program, screening frequency) while ensuring sufficient
quality (high sensitivity and specificity of the test). Their focus is not the
screening schedule but to reduce breast cancer deaths, keeping system cost
in mind. Their results indicate a strong relation between screening quality
and the cost of screening and treatment and emphasize the importance of
accounting for service dynamics when assessing the performance of healthcare
intervention.

The aforementioned models, with the exception of Mangasarian et al. [23],
focus on the screening decision and address the treatment decision as a sepa-
rate problem (refer to Shwartz [32]; Ozekici and Pliska [27]; Parmigiani [28];
and Zelen [36]). Most of these models also assume a fixed screening interval
and solve for the optimal interval length. These decision models assume either
the disease state is observable or that perfect information through biopsy will
be available, e.g., Ozekici and Pliska [27].

Ivy [17] uses the partially observable Markov decision process (POMDP)
structure to develop a medical decision-making tool for determining a “cost-
effective” methodology for mammography screening and breast cancer treat-
ment. Specifically, this model explores mammography screening from the
payer and patient perspectives. The model identifies those breast cancer
detection and treatment actions that minimize the total expected cost over
the lifetime of a patient and identifies screening policies that maximize the
total expected patient utility over the patient’s lifetime. Ivy [17] defines
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cost-effective screening strategies according to efficient frontiers developed
using a constrained POMDP-based model for balancing patient and payer
costs. This model incorporates the diagnosis of the disease, its treatment, and
is unique in that it incorporates the uncertainty associated with the partial
observability of the disease process by the decision maker and the uncertainty
associated with the outcome of the treatment in determining the effective-
ness of screening for a given patient. Another unique feature of this model is
that it integrates the screening and treatment decisions. However, this model
does not address the age dynamics associated with screening efficacy and
death rates. Ivy acknowledges it can be difficult to estimate disease costs and
patient utilities.

In the following section, we will discuss in chronological order a represen-
tative sample of several of the aforementioned models in greater detail.

2.3 Models for Scheduling Screening Examinations

2.3.1 Kirch and Klein [18]

As mentioned in Section 2.2, Kirch and Klein developed a general model for
minimizing the expected detection delay for a given number of examinations.
A class of optimal schedules was found by varying the allowed number of
examinations. To do so, the age span for which a schedule is to be developed
was specified, consisting of n equal-length periods. They assumed each period
starts with an examination, all examinations within a period are at equal
intervals, and examinations are error-free.

In their model, Kirch and Klein defined T as the disease detection point,
the earliest time that the disease could be detected by an examination. Then
the detection delay is the time between T and the time of actual detection,
which occurs only if an examination is scheduled. xi is defined as the number
of examinations scheduled for the ith period, then the length of the inter-
examination interval is 60/xi and 0 < T < 60/xi, where periods are assumed
to be five years in length because age-specific disease incidence rates are usu-
ally tabulated for five-year periods.

Kirch and Klein’s model is based on the following logic: If disease is
detected in the ith period, this is the result of either (1) patient compli-
ance resulting in an examination or (2) a scheduled examination. If disease
is detected due to patient compliant, they defined D as the patient detection
delay, the length of time between the detectability point and the examination.
In their paper, Kirch and Klein considered two cases: (1) if D is constant and
(2) if D is a random variable with a known distribution. We will discuss the
first case in detail.

If D is constant, they defined Q as the detection delay if the disease
becomes detectable in the ith period: Q is a function of the length of the
interval between scheduled examinations in the ith period, the location of the
detectability point T , and D, i.e.,
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Q(xi;D,T ) =
{

D if T + D ≤ 60/xi

60/xi − T if T + D > 60/xi

Assuming T is a continuous random variable over (0, 60/xi), they defined the
conditional expected delay, given that the disease becomes detectable during
the ith period, as

E (Q(xi;D)) = D

∫ 60/xi−D

0

+
∫ 60/xi

60/xi−D

(60/xi − t) fT (t) dt.

They assumed T is uniformly distributed, so this reduces to

E (Q(xi;D)) =
{

D (1−Dxi/120) if 1 ≤ xi ≤ 60/D
30/xi if xi > 60/D

which is a convex decreasing function of xi.
Kirch and Klein proposed a constrained optimization model that mini-

mizes the expected detection delay for a given schedule (x1, . . . , xn) and given
constant detection delay D, as

G(x1, . . . , xn;D) =
n∑

i=1

piE (Q(xi;D))

where pi is the conditional probability that the detectability point occurs in
period i, given that it will occur sometime within the n periods of interest.
They minimized G subject to a bound, K, on the expected number of exam-
inations for patients who do not get the disease, i.e.,

n∑

i=1

i∑

j=1

xjqi ≤ K

where qi is the probability that the patient dies in the ith period and xi ≥ 1,
i = 1, . . . , n. Because E (Q(xi;D)) is convex, G is a convex combination of
convex functions. Therefore, Kirch and Klein used the Kuhn–Tucker theorem
to determine the necessary and sufficient conditions for a feasible schedule to
be optimal, i.e.,

λ(K) = E (Q′(xi;D))
pi

si
for all xi > 60/D

and
E (Q′(xi;D))

pk

sk
> λ(K) for xk = 1

where si is the probability of surviving to the start of period i. Similarly,
Kirch and Klein determined the corresponding optimality conditions for the
case when D is a random variable.

In the application of this model to breast cancer, assuming D is constant
and equal to 18 months, Kirch and Klein calculated the expected number of
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examinations per patient for a given detection delay and determined that for
the same detection delay, the optimal non-periodic schedules involve 2% to
3% fewer expected examinations than do the periodic schedules. They used
1963–1965 breast cancer age-specific incidence rates (ri) in Connecticut, for
women ages 25 to 79, to estimate the conditional incidence probabilities (pi),
where

pi =
siri∑n

j=1 sjrj
for i = 1, . . . , n.

They used the 1967 United States estimated survival probabilities for white
females for si.

2.3.2 Shwartz [32]

As mentioned in Section 2.2, for his model of breast cancer development,
Shwartz defined 21 disease states, consisting of seven tumor sizes and, for each
size category, three lymph-node involvement levels. He defined the following
state and transition rate variables:

• S(t) = tumor volume at tumor age t
• S(0) = tumor volume at time 0
• i(A) = rate at which a tumor develops at age A
• n(t) = rate at which a group of lymph nodes becomes involved at tumor

age t
• c(t) = rate at which a tumor surfaces clinically at tumor age t
• hp(T ) = rate at which death from breast cancer occurs at T years after

treatment, given that the tumor was detected in prognostic class p
• p is a function of tumor size and number of lymph nodes involved
• d(A) = rate at which death from causes other than breast cancer occurs

at age A

Shwartz hypothesized that tumors grow at an exponential rate, Λ. He used
data on tumor-doubling times to estimate the distribution of tumor growth
rates in the population of women who have been treated for breast cancer. He
considered two distributions to model the growth rate, the hyperexponential
(which predicts slower-growing tumors) and lognormal distributions.

Shwartz evaluated screening strategies for a woman as a function of her
current age, at-risk category, and compliance level (i.e., the probability that
the woman complies with any future planned screen), incorporating the false-
negative rate of a screen by tumor size category, the probability a tumor is
missed on v screens, and the amount of radiation exposure per screen. A
screening strategy (policy) is defined by the number of screens to be given to
a woman over her lifetime and the age at which the mth screen will be given,
m = 1, . . . , n. He considered independent and dependent false negatives on
successive screens. He defined dependence by the following rule: If the tumor
is in the same size category in screens v − 1 and v, then probability of false
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positive in v screens is equal to the probability of false negative in v−1 screens,
otherwise the screens are independent.

Shwartz used this disease model to determine the disease state of a woman
at the time of detection (incorporating detection by screening or clinical
surfacing). For a woman in risk category R with compliance probability g,
Shwartz defined:

• φR,g(u, j, A|λk) = the probability that a woman of current age Ac develops
breast cancer at age u (u may be ≤ Ac) and that at age A, A ≥ Ac, she
is alive, the tumor has not surfaced clinically, and the tumor is in lymph-
node category j, j = 1, 2, 3, given that when she develops the disease, her
tumor has growth rate λk.

• PR,g(i, j, A|λk)Δt = the probability that a woman of current age Ac devel-
ops breast cancer and that at age A, A ≥ Ac, she is alive and the disease
is detected in tumor size category i, i = 1, . . . , 7 and lymph-node category
j, j = 1, 2, 3 between age A and age A+Δt, given that when she develops
the disease, her tumor has growth rate λk.

• OR,g(A|λk)Δt = the probability that a woman of current age Ac develops
breast cancer and that she will die from causes other than breast cancer
between A and A+Δt, A ≥ Ac, given that when she develops the disease,
her tumor has growth rate λk.

If no screens are given,

φ(u, j, A|λk) = Ri(u)e−RiuLj(A− u)e−C(A−u) e−D(A)

e−D(Ac)

P (S∗(A− u), j, A|λk) Δt =
∫ A

0

φ(u, j, A|λk)c(A− u)Δt du

where S∗(t) = size category of the tumor at tumor age t and

O(A|λk)Δt =
∫

φ(u, j, A|λk)d(A)Δt du.

Assuming screening strategy Em, m = 1, . . . , n, where E0 = 0 and En+1 =
110. Then for 1 ≤ e ≤ n, and Ee < A < Ee+1, the probability of an interval
cancer, i.e., that the disease surfaces in some disease state (i, j) between screen
e and e + 1, is

P (S∗(A− u), j, A|λk) =
e+1∑

y=1

∫ min(Ey,A)

Ey−1

φ(u, j, A|λkc(A− u)θΔtX(e + 1− y) du.

Shwartz proposed calculating this for all e, e = 1, . . . , n to determine the
total probability that the disease will surface between planned screens; then
the probability of being detected at some screen Ee is
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P (S∗(Ee − u), j, Ee|λk) =
e∑

y=1

∫ Ey

Ey−1

φ(u, j, Ee|λkX(e− y) (1− q (S∗(E − u))) g du.

This can be calculated for all screens, and by appropriate summing he can
determine P (i, j, A|λk) and O(A|λk) for any screening strategy. In addition,
he adjusted i(A) to account for the possibility of breast cancer induced from
the radiological exposure associated with a screen.

In order to calculate P (i, j, A) and O(A) from P (i, j, A|λk) and O(A|λk),
Shwartz must estimate the probability that a woman develops a tumor that
has a growth rate of λk, for k = 1, . . . , 16. Shwartz estimated the tumor growth
rate parameters and lymph node involvement parameters based on the Bross
et al. [7] model using a pattern search procedure.

Shwartz’s model is a policy evaluation model rather than an optimization
model. He evaluated various screening policies (those presented all assume
uniform screening intervals from yearly screening to screening every ten
years) and evaluated various potential decision metrics: number of screens,
life expectancy, percentage of possible gain realized, life expectancy if breast
cancer surfaces, probability of no lymph node involvement at detection, and
probability of no recurrence. Though this model has the potential to incor-
porate various tumor growth rates, compliance levels, and dependent false
negatives, the results presented assume prognosis is independent of tumor
growth rate, perfect compliance, and independent false negatives. In addition,
Shwartz assumed that the threat of death from breast cancer is constant. Fur-
ther, Shwartz acknowledged that there is no “unarbitrary” method for deter-
mining lymph-node involvement levels for tumors detected by screening (as
the data are only for tumors that clinically surface).

2.3.3 Ozekici and Pliska [27]

Ozekici and Pliska presented a stochastic model using dynamic programming
for their optimization. Their model of disease progression followed a Markov
process with state space E = {0, 1, . . . , k,Δ}, where state 0 is the good or no
tumor state and state Δ is absorbing and represents the failure state defined
as sickness that is apparent to the individual. The remaining states represent
increasing levels of defectiveness (e.g., increasing tumor size, but the condition
is not recognized by the individual). They defined Xt as the state of the
deterioration process at time t and Tn as the time of the nth transition where
T0 = 0. {Xt; t ≥ 0} is an increasing process with the Markov transition matrix

P (i, j) = P
(
XTn+1 = j|XTn

= i
)

where P (i, j) = 0 if j ≤ i. Uniquely, Ozekici and Pliska defined a delayed
Markov process with G, the sojourn time in state 0 with the corresponding
distribution function F where α ≡ F (∞) < 1, i.e., with probability 1− α the



40 J.S. Ivy

individual never contracts the disease. For all other states, they assumed the
sojourn time in state i is exponentially distributed whenever 1 ≤ i ≤ k.

Ozekici and Pliska defined an inspection schedule in which inspections are
binary and imperfect. If an inspection indicates that disease is present, the
patient is treated and is assumed to leave the model, i.e., once the deterioration
is detected through a true-positive outcome, the decision process ends. If
the underlying state is i, they defined ui as the probability the corrective
action will be unsuccessful and failure will occur (in the context, however,
this is a bit unclear because they do not include a death state); and they
assumed u1 < u2 < · · · < uk, i.e., the earlier the disease state, the more likely
the medical treatment will be successful. Though they assumed inspections
are imperfect, they assumed it is possible to identify false positives with a
supertest such as a biopsy, which does not affect the deterioration process. If
an inspection yields a positive outcome in a defective state, then corrective
action is taken, the deterioration process is affected, and no more tests are
performed. As soon as the processes reaches state Δ, the failure is known to
the inspector, and no further tests are performed.

Their model selects the inspection schedule that minimizes the expected
cost, where an inspection schedule defines when to inspect based on the
observed history. The observed history is defined by ti, the time of the ith

inspection, and Yi the corresponding inspection outcome. Fn is the observed
history just after the nth inspection, Fn = {t1, Y1, t2, Y2, . . . , tn, Yn}. Ozekici
and Pliska identify the potential outcomes of an inspection. If Yn = 1 and
this is a true positive, the problem ends at time tn. If Yn = 1 and this is a
false positive or if Yn = 0, then the problem continues and the inspector must
chose an action, τ , from the set {−1, R+} where the action τ = −1 means
no more inspections and τ = R+ ≡ [0,∞) means perform the next inspection
after τ more time units.

Because of the delayed Markov process structure of their model, Ozekici
and Pliska are able to transform the intractable Markov decision chain Fn into
a simpler one by using the sufficient statistic (tn, p) where p ≡ (p0, p1, . . . , pk)
is the conditional probability distribution of the state of the underlying dete-
rioration process immediately after the time tn inspection given the history
Fn. This facilitates their ability to model and solve for the optimal inspection
schedule using dynamic programming. They defined the following dynamic
program for determining the inspection schedule that minimizes expected
cost, where the minimum expected cost during (t,∞) given P (Xt = i) = p
for i ∈ EΔ, is

v(t, p) =

min

{
a(t, p),
infτ≥0

[
c(t, τ, p) + b(t, τ, p)v (t + τ, h(t, τ, p)) + d(t, τ, p)v(t + τ, Î)

]
,

with a(t, p) defined as the expected cost of failure if no more inspections are
scheduled, c(t, τ, p) as the expected value of costs incurred during (t, t + τ ],
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b(t, τ, p) as the probability that inspection occurs at time t+τ with a negative
outcome, i.e., Yt+τ = 0, and d(t, τ, p) as the probability that inspection occurs
at time t + τ with a false-positive outcome.

In applying their model to breast cancer, Ozekici and Pliska discretized
time into six-month periods with period t = 0 corresponding with 20 years of
age and T = 140 corresponding with 70 years at age 90, then they determined
the distribution F by distributing the mass α on the discrete set {0, 1, . . . , 140}
according to the age distribution of breast cancer given in Eddy [11] where the
distribution F is assumed to be uniform over each five-year interval. The age
distribution data of breast cancer are based on age of detection rather than
age at which the cancer is first detectable. They assumed a single preclinical
stage and estimated the value for the probability of curing the disease based
on Shwartz’s [32] model. They derived their cost parameters from Eddy et al.
[12] and varied the cost of failure as they assumed it includes the value of the
loss of life, which they acknowledged does not have a uniformly agreed upon
value.

2.3.4 Parmigiani [28]

Parmigiani developed a four-state stochastic model natural where state I is
disease is absent or too early to be detectable, state II is detectable preclinical
disease, state III is clinical or symptomatic disease, and state IV is death.
Transitions are from I to II, II to III, and any state to IV. Transitions from
I and II to IV represent death from other causes, and transitions from III to
IV may have any cause. He assumed the patient is disease-free at the start
of the problem and defined Y and U as the sojourn times in states I and II,
respectively, where Y + U is the age of the patient when clinical symptoms
surface. fII(y) and fIV (y) are defined as the transition densities from I to II
and I to IV; hIII(u|y) and hIV (u|y) are the conditional transition densities
from II to III and IV, given arrival in II at time y. All densities are assumed to
be continuous. Parmigiani defined the state transition probabilities as follows:

• ξ =
∫∞
0

fII(y) dy < 1 is the probability of transition from I to II;
• θIII(y) =

∫∞
0

hIII(u|y) du is the probability the disease reaches III given
an arrival in II at time y;

• θIII =
∫∞
0

θIII(y)fII(y) dy is the marginal probability of contracting the
disease and reaching the clinical stage.

Parmigiani defined β(x, u), the sensitivity of the screening test or the proba-
bility the test detects the disease if the patient is in state II, as a function of
the patient age, x, and the sojourn time, u, in II at examination time. Further
he assumed that for cancer, β is increasing in u.

Parmigiani defined an examination schedule as a sequence τ = {τi}i =1,2,...,
where τi is the time of the ith examination and τ0 = 0. n = sup{i : τi < ∞}
is the number of planned examinations, finite or infinite, and if n is infinite,
FII(limi→∞ τi) = 1. He assumed that screening examinations occur until the
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disease is detected in state II, or the individual reaches state III, IV, or age
τn, and if the exam is positive, treatment follows and screening terminates.
Parmigiani also assumed that an unplanned examination is necessary to iden-
tify disease that has reached the clinical stage.

Examination schedules were chosen based on expected losses, for which
Parmigiani proposed a general function, Ls(y, u), for losses associated with
disease-associated factors, such as mortality, morbidity, and treatment, where
y and u are the sojourn times in I and II and where s is II for screen detection,
III for clinical detection, and IV for death from other causes. The schedule
affects losses through s and may enter directly when s = II. Parmigiani
required that L must be continuous and differentiable in y and u. Further,
Parmigiani made assumptions about the structure of L. He assumed: (i) a
longer sojourn time in II increases losses so ∂Ls/∂u > 0 for s = II, III; (ii)
LII(y, u) ≤ LIII(y, u) for every (y, u) so early detection is always advanta-
geous; and (iii) LII(y, u) ≤ LIII(y, u) for every (y, u) survival is preferred to
death.

The optimal schedule was chosen to minimize the total expected loss or
risk: R(τ) ≡ kI(τ) + cL(τ). Parmigiani defined I(τ) as the expected number
of examinations (which is a function of the expected number of false nega-
tives and the examination sensitivity) and L(τ) as the expected value of the
function of L for a fixed schedule τ ; the expectations are taken with respect
to the joint distribution of Y and U and are assumed finite. The optimal τ
depends on k and c only through the k/c; however, Parmigiani acknowledged
that it can be difficult to specify this ratio.

Parmigiani considered the two components of this loss function in deter-
mining the optimal examination schedule. Specifically, given a transition from
I to II at age y, the loss has a deterministic component, depending on the num-
ber of examinations already performed, and a stochastic component, depend-
ing on U and on the number of false negatives. He defined λi(y) as the expected
value of the stochastic component, conditional on y ∈ (τi−1, τi]. Parmigiani
determined that the optimal examination schedule τ must satisfy

λi+1(τi)− λi(τi) =
i∑

k=1

∫ τk

τk−1

∂λk(y)
∂τi

fII(y)
fII(τi

dy − k

c

(
fIV (τi)
fII(τi

+ 1
)

i = 1, 2, . . . .

This gives the optimal increment in the λ’s as a function of the previous exam-
ination ages so it is possible to utilize this recursive structure for numerical
solution.

2.3.5 Zelen [36]

Zelen presented a model of a person’s health consisting of three possible states:
S0, a health state where an individual is free of disease or has disease that
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cannot be detected by any specific diagnostic examination; Sp, preclinical
disease state where an individual unknowingly has disease that can be detected
by a specific examination; and Sc, the state where the disease is clinically
diagnosed. The disease is progressive transitioning from S0 to Sp to Sc. β is
the test sensitivity, the probability of the examination detecting an individual
in Sp conditional on being in Sp. P (t) is the prevalence of preclinical disease,
the probability of being in Sp at time t; w(t)Δt is the probability of making the
transition from S0 to Sp during (t, t+Δt). I(t) is the point incidence function
of the disease, where I(t)Δt is the probability of making the transition from
Sp to Sc during (t, t + Δt). Define q(t) as the probability density function of
the sojourn time in Sp where Q(t) =

∫∞
t

q(x) dx where t is time relative to
when the individual entered Sp. For P (t), w(t), and I(t), t is time relative to
a time origin.

For the interval [0, T ] within which are n + 1 examinations at the ordered
time points t0 < t1 < t2 < · · · < tn, Zelen denotes the ith interval by (ti−1, ti)
and its length by Δi = ti − ti−1 for I = 1, 2, . . . , n where t0 = 0 and tn = T .
The comparison of different screening programs is made based on the following
utility function, which allows for exactly n + 1 examinations:

Un+1 = Un+1(β, T ) = A0D0(β) + A

n∑

r=1

Dr(β)−B

n∑

r=1

Ir(β).

The weights A0 and A represent the probability of a cure when disease is found
through screening examination, and B represents the probability of cure for
an interval case. Dr(β) is the probability that the disease is detected at the rth

screening examination, when the sensitivity is β where r = 0 corresponds with
the first screening examination. Dr(β) = βP (tr− |r) where tr− = limδ↓0(tr−δ)
and P (t|r) is the probability of being in state Sp at time t (tr−1 ≤ t ≤ tr) after
having r examinations at time t0 = 0, t1, t2, . . . , tr−1, i.e., the probability of
having undiagnosed preclinical disease at time t. If the weights represent the
probability of a cure, then Un+1 represents the difference in cure rates between
those found on examination compared with interval cases. The optimal spacing
of the examinations can be found by determining the values of {tr} that
maximize Un+1. The solutions for systems of equations defining the optimal
intervals require knowledge of the preclinical sojourn time distribution.

To apply this model to breast cancer mammography screening requires the
estimation of q(t), β, and θ = B/A. Zelen used data from the Swedish two-
county trial and the Health Insurance Plan of Greater New York (HIP) studies.
Based on the finding from the HIP study that the mean age of women diag-
nosed on the first examination was identical to that of the control group (the
no examination group) clinically diagnosed with breast cancer, Zelen applied
the proof of Zelen and Feinleib [37] to justify the assumption of exponen-
tially distributed preclinical sojourn times. His estimations of β, examination
sensitivity, and m, the mean of the preclinical sojourn time, are based on
the Swedish two-county trial; however, he acknowledges that the confidence
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intervals for both are wide and so the values of β are varied from 0.85 to 1 in
increments of 0.05. He defined the weights A0, A, and B as the probabilities
of having no axillary nodal involvement at the time of diagnosis where no
distinction is made between A0 and A due to the limitations of the existing
data.

Zelen determined the optimal equal-interval screening program and com-
pared it with the recommended annual screening program using compara-
ble sensitivities, screening horizons, and number of examinations. The major
assumption of this model was that of a stable disease model. Under the sta-
ble disease model, the transition into Sp is assumed to be independent of
time. If the incidence of the disease is dependent on age, then Zelen indicated
that a constant interval between examinations is not optimal even when the
sensitivity is one.

In the next section, we will discuss the disease structure and the decision
process for most of the aforementioned models using Ivy [17] as a guide.

2.4 Optimization Models for Breast Cancer Screening
(and Treatment)

2.4.1 Modeling disease development and progression

Optimization models for breast cancer typically define a finite number of dis-
ease states to represent the progression of breast cancer. The typical state
definitions are disease-free, preclinical disease (the individual has the disease
but is asymptomatic and unaware of it (Lee and Zelen [21]), and clinical
disease. Some models also include death as a possible state with a few distin-
guishing death from breast cancer from non–breast cancer death. It should
be noted that Shwartz [32] presents a significantly more detailed represen-
tation for the disease progression including 21 disease states. However, his
model requires several assumptions about the state transition rates. For each
of these models, the disease progression is modeled based on a Markov assump-
tion with a few exceptions. Ozekici and Pliska [27] model disease progression
as a delayed Markov process in which the transition from no cancer to the
preclinical disease state (the sojourn time) is a general, non-negative ran-
dom variable. Parmigiani [28] and Baker [3] assume a general, non-Markovian
stochastic process to model disease progression. Zelen [36] and Lee and Zelen
[22] assume models of a more general disease progression with exponential
transition rates presented as a possible and reasonable assumption for the
development of breast cancer.

As shown in Figure 2.1, in applying her decision-making model for breast
cancer screening, Ivy [17] defines the patient’s condition to be in one of three
states: “no disease (NC),” “non-invasive (in situ) breast cancer,” and “invasive
breast cancer.” In situ breast cancer refers to breast cancer that “remains in
place” and has not spread through the wall of the breast cell. Ductal carcinoma
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Fig. 2.1. An example of a breast cancer state transition diagram from Ivy [17].

in situ (DCIS) is the most common type of in situ cancer (accounting for
approximately 87% of the in situ breast cancer cases diagnosed among women)
and is breast cancer at its earliest and most curable stage — still confined to
the ducts. DCIS often occurs at several points along a duct and appears as
a cluster of calcifications, or white flecks, on a mammogram. Most cases of
DCIS are detectable only by mammography. Because of its potential to recur
or to become invasive, DCIS is treated with excision (or lumpectomy and
radiotherapy) if the area of DCIS is small or with mastectomy if the disease
is more extensive. Invasive ductal carcinoma (IDC) accounts for 70% to 80%
of invasive breast cancer cases. It begins in a duct, breaks through the duct
wall, and invades the supporting tissue (stroma) in the breast. From there, it
can metastasize to other parts of the body. IDC is usually detected as a mass
on a mammogram or as a palpable lump during a breast exam.

The state transition diagram in Figure 2.1 illustrates the patient’s pro-
gression across the three states of breast cancer. The state transition rates,
β0(t) and β1(t), are typically time dependent to reflect the impact of patient
age on the disease progression. Once the patient enters the IDC state, she
remains there until some exogenous action is taken, or until she dies from
breast cancer (DBC) or from another cause (DOC). Notice a patient can die
from other causes from each of the patient condition states. The Ivy model
differs from other models of breast cancer in the following ways: Typically,
disease is defined as preclinical (which may include both non-invasive disease
and early invasive disease) and clinical rather by non-invasive versus invasive
disease; and distinguishing death from breast cancer from death from other
causes.

2.4.2 Monitoring the patient condition

In the modeling of breast cancer monitoring and decision making, there are
many types of available information; two of the most common information
sources are

• annual clinical breast exam (CBE) with the outcome: lump or no lump;
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• mammogram available only for a fee with the outcome: “abnormal” or
“normal” in the simplest case. (Note that it is possible to generalize this
outcome to follow a continuous distribution.)

The information available through mammography is typically assumed to
be superior to the information available from a CBE. Mammography locates
cancers too small to be felt during a clinical breast examination. It is the best
way to detect breast cancer in its earliest, most treatable stage, an average
of 1.7 years before a woman can feel the lump. As this suggests, the Type I
information does not distinguish between the NC and DCIS states. For both
types of monitoring observations, in Ivy [17] the parameters for the Bernoulli
distributions represent probabilities of a true positive (i.e., sensitivity), a false
positive, a true negative (i.e., specificity), and a false negative for a CBE and
a mammogram. Some authors also consider self-breast exams, and many do
not specify a particular screening (or examination) modality.

2.4.3 Decision process

Applying the Ivy [17] model to this situation, the decision maker must first
decide whether to pay for a mammogram and then select the appropriate
treatment action. It is assumed that if the decision to have a mammogram
is made and the mammogram is abnormal, a biopsy will be performed. It is
assumed that a second action may be selected within the same time period
that the mammography is performed. If a mammogram is selected, the deci-
sion maker has the following options: do nothing, perform a lumpectomy (with
radiation), or perform a mastectomy (with reconstruction). The decision tree
in Figure 2.2 summarizes the sequence of decisions. Notice, treatment deci-
sions such as a lumpectomy and mastectomy are made only with a prior
mammogram. In this decision model, the patient’s condition is known with
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Fig. 2.2. An example of a breast cancer decision tree from Ivy [17].
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certainty only immediately after a mastectomy, when the patient is assumed
to be in a “treated” cancer-free (TrNC) state.

2.4.4 The optimization model

The decision maker’s objective is to select the course of action (i.e., when
to have a mammogram and, given the information provided by the mammo-
gram, what course of action to take) that minimizes the total expected cost
over the lifetime of the patient or population of patients with similar risk
characteristics. In many of the breast cancer screening optimization models,
the models evaluate specified screening schedules, and the optimal screening
policy is one that results in the smallest cost. These policies are not fully
dynamic in nature, and the optimization model does not drive the selection
of the optimal policy in the traditional sense. Frequently, the structure of the
screening policy is predefined (e.g., a threshold policy; Lee and Zelen [21]),
and then the “best” policy is selected among various predefined alternatives.

Ivy [17] extends a cost-minimization model to model the patient’s perspec-
tive by defining utilities for patient conditions and treatment and screening
actions with the objective of minimizing the total expected utility-loss (where
utility-loss = 1−utility). The patient’s objective is to maximize the effective-
ness of screening and treatment in terms of survival and quality of life with
the goal of determining when to have a mammogram and the appropriate
(“best”) treatment given the results. The screening and treatment effective-
ness is expressed in terms of the patient’s utility, where the patient’s objective
is to maximize the total expected utility over their screening lifetime.

In order to define a cost-effective screening and treatment strategy, Ivy
[17] balances both the payer’s and the patient’s objectives. Ivy [17] devel-
ops an efficient frontier in order to explore the relationship between patient
and payer preferences and to determine conditions for the cost-effectiveness
of mammography screening. Ivy [17] presents a constrained cost model that
minimizes total expected cost subject to constraints on total expected utility-
loss.

2.5 Areas for Future Research

Although there has been more than 30 years of research devoted to developing
optimization models for breast cancer screening, most of these models have
not had their desired impact. Our models are currently not influencing breast
cancer screening policy or physician-patient decision making. In general, these
are all good, general models; the devil is in the details. The question is how
can we best implement, specifically and accurately parameterize these models,
so that they may be applied effectively for improved breast cancer decision
making.
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The need for this research is especially evident now, particularly for the
uninsured population in the 40 to 49 age group. For example, in 2002, the state
of Michigan changed the age to qualify for screening mammograms from 40 to
50 for low-income women with a normal clinical breast exam who participate
in the Breast and Cervical Cancer Control Program. Although this may result
in budget savings in the short-term, the impact of later detection of possibly
more advanced stages of breast cancer could result in significantly greater
infrastructure costs.

As operations researchers and mathematical modelers, we have a rich
opportunity to influence the direction of screening policy and improve the
quality of screening outcomes. Through mathematical modeling and optimiza-
tion, it is possible to determine the impact of screening policies on various
populations without costly and invasive clinical trials. It is possible to answer
questions that it would never be possible to answer in a clinical trial either
due to the expense or the infeasibility of such studies. Through optimization
and mathematical modeling, it is possible for truly patient-centered care to
become a reality.

However, the application of optimization models to mammography screen-
ing requires several considerations.

a. Ensuring the models are realistic while retaining enough simplicity to make
the model useful. There are several simplifying assumptions in the appli-
cation of optimization models to breast cancer detection and treatment:
The cancer stages are reduced to three states, the disease is assumed to
progress from non-invasive to invasive cancer, and the treatment options
are simplified or excluded.

b. Simplifying the user interface. In Ivy [17], for example, the model requires
the decision maker to estimate the risk of each stage of the disease and
express these risks probabilistically. Other models require similar complex
computations. A user interface must be developed to simplify these tasks
as risk factors have important implications for the screening and treatment
decisions.

c. Incorporating the preferences of multiple decision makers. The physician,
patient, and payer are all decision makers. Each has a different objective
function, e.g., maximizing the probability of survival (or quality of life),
minimizing cost, or some combination of these objectives.

d. Changing the focus of screening from simple death avoidance to disease
incidence reduction. Because the goal of screening is to reduce the inci-
dence of advanced disease, the screening interval should be set for a period
of time in which adherence to routine screening is likely to result in the
detection of the majority of cancers while they are still occult and localized
(Smith et al. [33]).

e. Defining cost. An accurate cost estimate (i.e., the dollar cost associated
with performing a procedure, the patient cost in terms of the effect on the
patient’s quality of life, and the cost of each disease state) is necessary
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for determining the cost-effectiveness of mammography. This is one of
the most challenging issues associated with the cost-minimization and
cost-effectiveness components of this research. Cost-effectiveness for med-
ical applications has a very different meaning than cost-effectiveness in
machine maintenance and other manufacturing fields. It is much easier
to quantify the cost associated with deteriorated equipment than with a
deteriorated health state. But understanding and quantifying this cost is
critical to understanding and quantifying the true value of screening.

f. Accurately estimating risk. The current standard for estimating breast can-
cer risk is the Gail model (Gail et al. [14]). The Gail model is a logis-
tic regression model based on sample data from white American females
who are assumed to participate in regular screenings. The applicability
of this model to other populations is not clear. In fact, although African-
American women are at increased risk of breast cancer mortality compared
with white American women, the Gail model is known to underestimate
breast cancer risk in African-American women. Further, Bondy and New-
man [5] find that African-American ethnicity is an independent predictor
of a worse breast cancer outcome. The higher breast cancer mortality rate
among African-American women is related to the fact that, relative to
white women, a larger percentage of their breast cancers are diagnosed
at a later, less treatable stage. This is due in part to early incidence and
possibly more aggressive cancers.

It is possible to define and address the implications of this disparity with
the optimization models such as the ones described here. In addition, this
research can be used to investigate the impact of biologically aggressive breast
cancers on younger women in relation to screening and treatment policies.
As mentioned earlier, according to the American Cancer Society Guidelines
for Breast Cancer Screening: Update 2003, though annual screening likely is
beneficial for all women, the importance of annual screening clearly is greater
in pre- versus post-menopausal women. However, this benefit is not reflected
in existing screening policy.

Optimization models stand to offer substantial benefits to society in
terms of improved public policy and healthcare delivery. The outcomes of
this research can provide breast cancer screening policy insights, useful at
the physician/patient level, but with public-policy-level implications as well.
These models have great potential to help resolve currently unanswered ques-
tions concerning the relationship between screening policy and mortality risk
for average-risk women, as well as for women at high risk and/or with exist-
ing comorbid conditions. The outcomes of this research also could provide
information that may impact ACS policy recommendations for breast can-
cer screening intervals and/or technologies. Further, the framework of these
models also is easily extendable to other types of disease screening, such as
cervical cancer screening, colorectal cancer screening, and pregnancy-based
HIV screening.
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Abstract. This chapter describes recent advances in optimization methods for
three-dimensional conformal radiation treatment (3DCRT) planning. A series of
optimization models are discussed for optimizing various treatment parameters:
beam weight optimization, beam angle optimization, and wedge orientation. It is
well-known that solving such optimization models in a clinical setting is extremely
difficult. Therefore, we discuss solution time reduction methods that are easy to use
in practice. Techniques for controlling dose-volume histograms (DVHs) are described
to meet the treatment planner’s preference. Finally, we present a clinical case study
to demonstrate the computational performance and effectiveness of such approaches.

3.1 Introduction

3.1.1 Background

Cancer is the second leading cause of death in the United States [1]. Treatment
options are determined by the type and the stage of the cancer and include
surgery, radiation therapy, chemotherapy, and so forth. Physicians often use
a combination of those treatments to obtain the best results. Our aim is to
describe techniques to improve the delivery of radiation to cancer patients.
We will focus on using optimization approaches to improve the treatment
planning process. The objective of treatment planning problems is to control
the local tumor (target) volume by delivering a uniform (homogeneous) dose
of radiation while sparing the surrounding normal and healthy tissue. A major
challenge in treatment planning is the presence of organs-at-risk (OARs). An
OAR is a critical structure located very close to the target for which the
dose of radiation must be severely constrained. This is because an overdose of
radiation within the critical structure may lead to medical complications. OAR
is also termed “sensitive structure” or “critical structure” in the literature.
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a b

Fig. 3.1. External beam therapy machine: (a) a linear accelerator and (b) a multileaf
collimator.

External-beam radiation treatments are typically delivered using a linear
accelerator (see Figure 3.1(a)) with a multileaf collimator (see Figure 3.1(b))
housed in the head of the treatment unit. The shape of the aperture through
which the beam passes can be varied by moving the computer-controlled leaves
of the collimator. There are two types of radiation treatment planning: for-
ward planning and inverse planning. In forward planning, treatment plans
are typically generated by a trial and error approach. An improved treat-
ment plan is produced by a sequence of experiments with different radiation
beam configurations in external beam therapy. Because of the complexity of
the treatment planning problem, this process, in general, is very tedious and
time-consuming and does not necessarily produce “high-quality” treatment
plans. Better strategies for obtaining treatment plans are therefore desired.
Because of significant advances in modern technologies such as imaging tech-
nologies and computer control to aid the delivery of radiation, there has been a
significant move toward inverse treatment planning (it is also called computer-
based treatment planning). In inverse treatment planning, an objective func-
tion is defined to measure the goodness (quality) of a treatment plan. Two
types of objective functions are often used: dose-based models and biologi-
cal (radiobiological) models. The biological model argues that optimization
should be based on the biological effects resulting from the underlying radi-
ation dose distributions. The treatment objective is usually to maximize the
tumor control probability (TCP) while keeping the normal tissue complication
probability (NTCP) within acceptable levels. The type of objective functions
we use in this chapter is based solely on dose, meaning that achieving accu-
rate dose distributions is the main concern. The biological aspect is implicitly
given by the physician’s prescription. The inverse treatment planning pro-
cedure allows modeling highly complex treatment planning problems from
brachytherapy to external beam therapy. Examples of these more complex
plans include conformal radiotherapy, intensity modulated radiation therapy
(IMRT) [10, 15, 27, 30, 54], and tomotherapy [16, 26].
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3.1.2 Use of optimization techniques

Radiation treatment planning for cancer patients has emerged as a challenging
application for optimization [3, 4, 5, 8, 24, 25, 47, 52, 53, 55]. Two major goals
in treatment planning are speed and quality. Solution quality of a treatment
plan can be measured by homogeneity, conformity, and avoidance [18, 19, 31,
33, 32]. Fast solution determination in a simple manner is another essential
part of a clinically useful treatment planning procedure. Acceptable dose levels
of these requirements are established by various professional and advisory
groups.

It is important for a treatment plan to have uniform dose distributions
on the target so that cold and hot spots can be minimized. A cold spot is a
portion of an organ that receives below its required dose level. On the other
hand, a hot spot is a portion of an organ that receives more than the desired
dose level. The homogeneity requirement ensures that radiation delivered to
tumor volume has a minimum number of hot spots and cold spots on the
target. This requirement can be enforced using lower and upper bounds on the
dose or approximated using penalization. The conformity requirement is used
to achieve the target dose control while minimizing the damage to OARs or
healthy normal tissue. This is generally expressed as a ratio of cumulative dose
on the target over total dose prescribed for the entire treatment. This ratio can
be used to control conformity in optimization models. As we mentioned earlier,
a great difficulty of producing radiation treatment plans is the proximity of the
target to the OARs. An avoidance requirement can be used to limit the dose
delivered to OARs. Finally, simplicity requirements state that a treatment
plan should be as simple as possible. Simple treatment plans typically reduce
the treatment time as well as implementation error.

In this chapter, we introduce a few optimization models and solution tech-
niques that are practically useful to automate an external-beam radiation
treatment planning process. Potential benefits of the automated treatment
planning process include the reduction in planning time and improved quality
of dose distributions of treatment plans. Such planning systems should depend
less on the experience of the treatment planner. In other words, treatment
planners will expedite their learning curve much faster in this automated sys-
tem than in the conventional forward planning system. However, it should be
noted that the treatment goals may vary from one planner to another. There-
fore, an automated treatment planning system must be able to self-adjust to
these changes and accommodate different treatment goals.

3.2 Three-dimensional Conformal Radiation Therapy

Although IMRT delivers superb quality treatment plans, optimizing IMRT
plans within a clinically acceptable time frame still remains a challenging
task. Therefore, we focus on the conventional three-dimensional conformal
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radiotherapy (3DCRT) techniques [31, 33, 32]. This approach has several
advantages over an IMRT plan optimization. First, the optimization proce-
dure is much simpler because we do not consider each pencil beam in the opti-
mization model. Second, both fluence map optimization and leaf-sequencing
optimization are not required. Beam shapes and their uniform monitor units
are determined as a result of beam weight optimization. Therefore, much
faster solution determination can be achieved. Third, monitor units contain
real values. Note that an IMRT plan optimization requires discretized fluence
maps for leaf-sequencing, which can easily introduce discretization error to
the model. Finally, significantly less beams are used for the treatment, which
has a practical advantage over IMRT.

One of the main strategies for minimizing morbidity in 3DCRT is to reduce
the dose delivered to normal tissues that are spatially well separated from the
tumor. This can be done by using multiple beams from different angles.

3.2.1 Effect of multiple beams

A single radiation beam leads to a higher dose delivered to the tissues in
front of the tumor than to the tumor itself. In consequence, if one were to
give a dose sufficient to control the tumor with a reasonably high probability,
the dose to the upstream tissues would likely lead to unacceptable morbidity.
A single beam would only be used for very superficial tumors, where there is
little upstream normal tissue to damage. For deeper tumors, one uses multiple
cross-firing beams delivered within minutes of one another: All encompass the
tumor, but successive beams are directed toward the patient from different
directions to traverse different tissues outside the target volume. The delivery
of cross-firing beams is greatly facilitated by mounting the radiation-producing
equipment on a gantry, as illustrated in Figure 3.1(a).

Several directed beams noticeably change the distribution of dose, as is
illustrated in Figure 3.2. As a result, dose outside the target volume can often
be quite tolerable even when dose levels within the target volume are high
enough to provide a substantial probability of tumor control.
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Fig. 3.2. Effect of multiple beams. (a) Single beam: tissue on top receives significant
dose; (b) five beams: a hot spot is formed by five beams.
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Fig. 3.3. A beam’s-eye view is a 2D shape of a tumor viewed by the beam source
at a fixed angle.

3.2.2 Beam shape generation and collimator

The leaves of the multileaf collimator are computer controlled and can be
moved to the appropriate positions to create the desired beam shape. From
each beam angle, three-dimensional anatomical information is used to shape
the beam of radiation to match the shape of the tumor. Given a gantry angle,
the view on the tumor that the beam source can see through the multileaf
collimator is called the beam’s-eye view of the target (see Figure 3.3); [20].
This beam’s-eye view (BEV) approach ensures adequate irradiation of the
tumor while reducing the dose to normal tissue.

3.2.3 Wedge filters

A wedge (also called a “wedge filter”) is a tapered metallic block with a thick
side (the heel) and a thin edge (the toe) (see Figure 3.4). This metallic wedge
varies the intensity of the radiation in a linear fashion from one side of the
radiation field to the other. When the wedge is placed in front of the aperture,
less radiation is transmitted through the heel of the wedge than through the
toe. Figure 3.4(b) shows an external 45◦ wedge, so named because it produces
isodose lines that are oriented at approximately 45◦. The quality of the dose
distribution can be improved by incorporating a wedge filter into one or more
of the treatment beams. Wedge filters are particularly useful in compensating
for a curved patient surface, which is common in breast cancer treatments.



58 G.J. Lim

Fig. 3.4. Wedges: (a) a wedge filter; (b) an external wedge.

Two different wedge systems are used in clinical practice. In the first sys-
tem, four different wedges with angles 15◦, 30◦, 45◦, and 60◦ are available,
and the therapist is responsible for selecting one of these wedges and inserting
it with the correct orientation. In the second system, a single 60◦ wedge (the
universal wedge) is permanently located on a motorized mount located within
the head of the treatment unit. This wedge can be rotated to the desired
orientation or removed altogether, as required by the treatment plan.

Lim et al. [33] show in the following theorem that a treatment plan that
requires the use of a wedge is in some cases equivalent to one that uses a wedge
with different properties in combination with an open (unwedged) beam of
the same shape. This result implies that a single “universal” wedge suffices in
designing a wide range of treatment plans; not much is to be gained by using
a range of wedges with different properties.

Theorem 1. When a universal wedge is appropriately used for radiation ther-
apy, all plans deliverable by the four-wedge systems can be reproduced.

3.2.4 Radiation treatment procedure

1. The patient is immobilized in an individual cast so that the location of the
treatment region remains the same for the rest of the treatment process.

2. A CT scan is performed with the patient in the cast to identify the three-
dimensional shapes of organs of interest.

3. Conformal treatment plans are generated using the organ geometries.
4. Treatments are performed 5 times a week for 5 to 7 weeks.

3.2.5 Treatment planning process

A typical treatment planning process of a 3DCRT includes the following tasks:

1. Beam’s-eye view generation for each beam (gantry) angle.
2. Dose matrix calculation for each beam angle.
3. Optimal treatment parameter generation.
4. Treatment plan validation and implementation.
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There are several input data required for optimization models in radiation
treatment planning. The first input describes the machine that delivers radia-
tion. The second and troublesome input is the dose distribution of a particular
treatment problem. A dose distribution consists of radiation dose contribu-
tion to each voxel of the region of interest when unit radiation intensity is
exposed from a fixed gantry angle. It can be expressed as a functional form
or a set of data. However, difficulties of using such distributions include high
nonlinearity of the functional form, or the large amount of data that specifies
the dose distribution. This problem needs to be overcome in a desirable auto-
mated treatment planning tool. The third common input is the set of organ
geometries that are of interest to the physician. Further common inputs are
the desired dose levels for each organ of interest. These are typically provided
by physicians. Other types of inputs can also be specified depending on the
treatment planning problems. However, a desirable treatment planning sys-
tem should be able to generate high-quality treatment plans with minimum
additional inputs and human guidance.

3.3 Formulating the Optimization Problems

3.3.1 Optimizing beam weights

We start with the simplest model, in which the angles from which beams are to
be delivered are selected in advance, wedges are not used, and the apertures
are chosen to be the beam’s-eye view from each respective angle. All that
remains is to determine the beam weights for each angle.

We now introduce notation that is used below and in later sections. The
set of beam angles is denoted by A. We let T denote the set of all voxels that
comprise the PTV (Planning Target Volume), S denote the voxels in the OAR
(Organ-At-Risk: typically this is a collection of organs Sp, p = 1, . . . , m), and
N be the voxels in the normal tissue. We use Δ to denote the prescribed
dose level for each PTV voxel, and the hot spot control parameter φ defines a
dose level for each voxel in the critical structure that we would prefer not to
exceed. The beam weight delivered from angle A is denoted by wA, and the
dose contribution to voxel (i, j, k) from a beam of unit weight from angle A
is denoted by DA,(i,j,k). (It follows that a beam of weight wA produces a dose
of wADA,(i,j,k) in voxel (i, j, k).) We obtain the total dose D(i,j,k) to voxel
(i, j, k) by summing the contributions from all angles A ∈ A. We use DA,Ω

(and DΩ) to denote the submatrices consisting of the elements DA,(i,j,k) (and
D(i,j,k)) for all (i, j, k) in a given set of voxels Ω.

The beam weights wA, for A ∈ A, are nonnegative and are the unknowns
in the optimization problem. The general form of this problem is
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min
w

f(DΩ) s.t.

DΩ =
∑

A∈A
wADA,Ω, Ω = T ∪ S ∪ N ,

wA ≥ 0, ∀A ∈ A.

(3.1)

The choice of objective function f(DΩ) in (3.1) depends on the specific
goal of the treatment planner. In general, the objective function measures
the mismatch between the prescription and the delivered dose. For voxels in
the PTV region T , there may be terms that penalize any difference between
the delivered dose and the prescribed dose. For the voxels in each OAR Sp

(p = 1, . . . , m), there may be terms that penalize the amount of dose in excess
of φp, the desired upper bound on the dose to voxels in Sp. For simplicity of
exposition, we consider only a single OAR from now on. The objective often
includes terms that penalize any dose to voxels in the normal region N .

The L1-norm (sum of absolute values) and squared L2 norm (sum of
squares; see [11]) are both used to penalize difference between delivered and
desired doses in the objective f(DΩ). Two possible definitions of f based on
these norms are

f(DΩ) = λt
‖DT −ΔeT ‖1

|T | + λs
‖(DS − φΔeS)+‖1

|S| + λn
‖DN ‖1
|N | , (3.2)

f(DΩ) = λt
‖DT −ΔeT ‖22

|T | + λs
‖(DS − φΔeS)+‖22

|S| + λn
‖DN ‖22
|N | . (3.3)

The notation (·)+ := max(·, 0) in the second term defines the overdose to
voxels in the OAR, and eT is the vector whose components are all 1 and
whose dimension is the same as the cardinality of T (similarly for eS). The
parameters λt, λs, and λn are nonnegative weighting factors applied to the
objective terms for the PTV, OAR, and normal tissue voxels, respectively,
and |T |, |S|, and |N | denote the number of voxels in these respective regions.

An objective function based on L∞-norm terms (3.4) allows effective penal-
ization of hot spots in the OAR and of cold spots in the PTV. We define such
a function by

λt‖(DT −ΔeT )‖∞ + λs‖(DS − φΔeS)+‖∞ + λn‖DN ‖∞. (3.4)

Combinations of these objective functions can be used to achieve specific
treatment goals, as described later.

Problems of the form (3.1) in which f is defined by (3.2) or (3.4) can be
formulated as linear programs using standard techniques. For example, the
term λs‖(DS−φdeS)+‖1/ |S| in (3.2) can be modeled by introducing a vector
VS into the formulation, along with the constraints VS ≥ DS − φdeS and
VS ≥ 0, and including the term (λs/ |S|)eT

SVS in the objective. Problems in
which f is defined by (3.3) can be formulated as convex quadratic programs.

The treatment planner’s goals are often case specific. For example, the
planner may wish to keep the maximum dose violation on the PTV low and
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also to control the integral dose violation on the OAR and the normal tissue.
(Note that L∞-norm is recommended on the OAR only if it is a serial organ
that must limit a maximum radiation dose in order to avoid medical complica-
tions.) These goals can be met by defining the objective to be a weighted sum
of the relevant terms. For the given example, we might obtain the following
definition of f(DΩ) in (3.1):

λt‖DT −ΔeT ‖∞ + λs
‖(DS − φΔeS)+‖1

|S| + λn
‖DN ‖1
|N | . (3.5)

In practice, voxels in the PTV that receive a dose within specified limits
may be acceptable as a treatment plan. Furthermore, voxels that receive below
the lower dose specification (cold spots) may be penalized more severely than
hot spots in the PTV. Therefore, we consider the following definition of f :

f(DΩ) = λ+
t ‖(DT − θuΔeT )+‖∞ + λ−

t ‖(θLΔeT −DT )+‖∞ (3.6)

+λs
‖(DS − φΔeS)+‖1

|S| + λn
‖DN ‖1
|N | .

In this objective, θL is the PTV cold-spot control parameter. If the dosage
delivered to a voxel in T falls below θLΔ, a penalty term for the violation is
added to the objective. Likewise, a voxel in the PTV incurs a penalty if the
dose exceeds θuΔ.

All the models described in this paper can accommodate this separation of
hot and cold spots. However, we simplify the exposition throughout by using
a combined objective function. Alternative objectives have been discussed
elsewhere. For example, the papers [40, 44] use score functions to evaluate
and compare different plans, whereas [23] use a multi-objective approach.

Building on the beam-weight optimization formulations described above,
we now consider extended models in which beam angles and wedges are
included in the optimization problem.

3.3.2 Optimizing beam angles

We now consider the problem of selecting a subset of at most K beam angles
from a set A of candidates while simultaneously choosing optimal weights for
the selected beams. In the model, the binary variables ψA, A ∈ A indicate
whether or not angle A is selected to be one of the treatment beam orien-
tations. The constraint wA ≤ MψA (for some large M) ensures that weight
wA is nonzero only if ψA = 1. The resulting mixed integer programming
formulation is as follows:

min
w,ψ

f(DΩ) s.t.

DΩ =
∑

A∈A
wADA,Ω, Ω = {T ∪ S ∪ N}

0 ≤ wA ≤MψA, ∀A ∈ A,∑
A∈A ψA ≤ K,

ψA ∈ {0, 1}, ∀A ∈ A.

(3.7)
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Some theoretical considerations of optimizing beam orientations are also dis-
cussed in [3]. A treatment plan involving few beams (say, 3 to 5) generally is
preferable to one of similar quality that uses more beams because it requires
less time and effort to deliver. Furthermore, it has been shown that, when
many beams are used (say ≥5), beam orientation becomes less important in
the overall optimization [9, 12, 15, 46]. In many cited cases, the objective is
to find a minimum number of beams that satisfy the treatment goals.

The beam angles and the weights can be selected either sequentially or
simultaneously. Most of the earlier work in the literature uses sequential
schemes [7, 21, 35, 42, 43], in which a certain number of beam angles are
decided first, and their weights are subsequently determined. Rowbottom
et al. [41] optimizes both variables simultaneously. To reduce the initial search
space, a heuristic approach to remove some beam orientations a priori is used,
while the overall optimization problem is solved with the simplex method and
simulated annealing. Prior information is included in the simultaneous opti-
mization scheme outlined in [39].

A different approach has been proposed by [22]. They address a geometric
formulation of the coplanar beam orientation problem by means of a hybrid
multi-objective genetic algorithm, which attempts to replicate the approach
of a (human) treatment planner while reducing the amount of computation
required. When the approach is applied without constraining the number
of beams, the solution produces an indication of the minimum number of
required beams. Webb [48] applies simulated annealing to a two-dimensional
treatment planning problem. Three-dimensional problems using simulated
annealing approach are described in [41, 49, 50, 51], and column generation
approaches are discussed in [37].

3.3.3 Optimizing wedge orientations

Several researchers have studied the treatment planning problem with wedges.
Xing et al. [56] optimize the beam weights for an open field and two orthogonal
wedged fields. Li et al. [29] describe an algorithm for selecting both wedge
orientation and beam weights, and [45] describes a mathematical basis for
selection of wedge angle and orientation. It is noted in [57] that including
wedge angle selection in the optimization makes for excessive computation
time. Design of treatment plans involving wedges is also discussed in [13].

Suppose that four possible wedge orientations are considered at each beam
angle: “north,” “south,” “east,” and “west.” At each angle A, we calculate
dose matrices for the beam’s-eye view aperture and for each of these four
wedge settings, along with the dose matrix for the open beam, as used in the
formulations above. We let F denote the set of wedge settings; F contains 5
elements in this case. Extending our previous notation, the dose contribution
to voxel (i, j, k) from a beam delivered from angle A with wedge setting F is
denoted by DA,F,(i,j,k), and we use DA,F,Ω to denote the collection of doses
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for all (i, j, k) in some set Ω. The weight assigned to a beam from angle A
with wedge setting F is denoted by wA,F .

To include wedges in the optimization problem, we do not simply replace A
by A×F in (3.7); there are some additional considerations. First, in selecting
beams, we do not wish to place a limit on the total number of beams delivered,
as in Section 3.3.2, but rather on the total number of distinct angles used. (In
the clinical situation, changing the wedge orientation takes relatively little
time.) It follows that a single binary variable suffices for each angle A, so we
can state the MIP model that includes beam orientation selection as follows:

min
w,ψ

f(DΩ) s.t.

DΩ =
∑

A∈A,F∈F
wA,FDA,F,Ω, Ω ∈ T ∪ S ∪ N ,

0 ≤ wA,F ≤MψA, ∀A ∈ A, ∀F ∈ F ,∑
A∈A ψA ≤ K, ψA ∈ {0, 1},∀A ∈ A.

(3.8)

A second consideration is that we do not wish to deliver two beams from
the same angle for two diametrically opposite wedge settings. We can accom-
modate this restriction by introducing separate binary variables πA,F for each
pair of angle A and orientation F . A less expensive approach is to postprocess
the solution whenever

{wA,south > 0 and wA,north > 0 } or {wA,west > 0 and wA,east > 0},

for any A, to zero out one of the weights for each pair.
To illustrate the postprocessing technique, consider the “west” and “east”

wedge orientations. We introduce a wedge transmission factor τ that defines
the reduction in dose caused by the wedge. Wedges are characterized by τ0 and
τ1, with 0 ≤ τ0 < τ1 ≤ 1 which indicate the smallest and largest transmission
factors for the wedge among all pencil beams in the field. Specifically, τ0

indicates the factor by which the dose is decreased for pencil beams along the
heel of the wedge, and τ1 is the transmission factor along the opposite (toe)
edge. Suppose now that we have a treatment plan in which for some A the
weight corresponding with the open beam (no wedge) is wA,open ≥ 0, and
the weights corresponding with the west and east beams are wA,west > 0 and
wA,east > 0, respectively. Suppose also for the moment that wA,west ≥ wA,east.
Lim et al. [33] show that an identical dose could be delivered to each affected
voxel (i, j, k) by using weight wA,open + wA,east(τ1 − τ0) for the open beam,
(wA,west − wA,east) for the west wedge, and 0 for the east wedge. A similar
result holds for the case of wA,west ≤ wA,east.

Note that if there are other constraints on the number of wedges being
used, we need to replace (3.8) by a formulation with additional binary vari-
ables πA,F .



64 G.J. Lim

3.3.4 Computing tight upper bounds on the beam weights

If the upper bound M on the beam weights wA,F is too large (as is usually
the case), the feasible set is larger and the algorithm often takes longer to
solve the problem. A key preprocessing technique to overcome this problem
is to calculate a stringent bound on the continuous decision variables ([36])
that allows M to be chosen sufficiently large to produce an optimal solution,
but not larger than necessary. We now describe a technique of this type for
problem (3.8).

Let μA be the maximum dose deliverable to the PTV by a beam angle A
with a unit beam intensity. Because the open beam delivers more radiation
to a voxel (per unit beam weight) than any wedged beam, we have

μA := max
F∈F, (i,j,k)∈T

DA,F,(i,j,k)

= max
(i,j,k)∈T

DA,(i,j,k), A = 1, 2, · · · , |A|, (3.9)

where, as before, DA,(i,j,k) denotes the dose delivered to voxel (i, j, k) from a
unit weight of the open beam at angle A. For a given angle A, the maximum
dose deliverable to a PTV voxel using wedge filters is given as follows:

μA

⎛

⎝wA,0 + τ1

∑

F∈F\{0}
wA,F

⎞

⎠ , (3.10)

where 0 ∈ F denotes the open beam. Suppose now that we modify the model
in (3.8) to include explicit control of hot spots by introducing an upper bound
u on the dose allowed in any PTV voxel. We add the constraint

DT ≤ ueT (3.11)

to (3.8). By combining (3.11) with (3.10), we deduce that

wA,0 + τ1

∑

F∈F\{0}
wA,F ≤

u

μA
, ∀A ∈ A.

Accordingly, we can replace the constraint MψA ≥ wA,F in (3.8) by

wA,0 + τ1

∑

F∈F\{0}
wA,F ≤

(
u

μA

)
ψA, ∀A ∈ A, (3.12)

where ψA is the binary variable that indicates whether or not the angle A is
selected. The resulting optimization problem becomes
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min
w,ψ

f(DΩ) s.t.

DΩ =
∑

A∈A,F∈F
wA,FDA,F,Ω, Ω ∈ T ∪ S ∪ N ,

(u/μA)ψA ≥ wA,0 + τ1

∑

F∈F\0
wA,F

K ≥
∑

A∈A ψA,
wA,F ≥ 0, ∀A ∈ A, ∀F ∈ F ,
ψA ∈ {0, 1}, ∀A ∈ A ,∀F ∈ F .

(3.13)

Note that if we also impose an upper bound on dose level to normal-tissue
voxels, we can trivially derive additional bounds on the beam weights using
the same approach.

3.4 Solution Quality in Clinical Perspective

As we mentioned in Section 3.1, the solution quality of a treatment plan must
meet at least three basic requirements to be practically useful: conformity,
uniformity, and homogeneity. Researchers proposed several different visual-
izations to help the treatment planner in assessing the quality of a treatment
plan: tumor control probability (TCP), normal tissue complication probabil-
ities (NTCPs), dose-volume histogram (DVH), and dose distribution (dose
plot). Typically, the DVH and the three-dimensional radiation dose distribu-
tion are used as the means of evaluating the treatment quality.

3.4.1 Dose-volume histogram

Dose-volume histograms are a compact way to represent dose distribution
information for subsets of the treatment region. By placing simple constraints
on the shape of the DVH for a particular region, radiation oncologists attempt
to control the fundamental aspects of the treatment plan. For instance, the
oncologist is often willing to sacrifice some specified portion of an OAR (such
as the lung) in order to provide an adequate probability of tumor control
(especially if the OAR lies near the tumor). This aim is realized by requiring
that at least a specified percentage of the OAR must receive a dose less than
a specified level. DVH constraints are used to control uniformity of the dose
to the PTV and to avoid cold spots. For example, the planner may require all
voxels in the PTV to receive doses of between 95% and 107% of the prescribed
dose Δ.

Figure 3.5(a) shows a DVH example of a treatment plan based on a
prostate tumor data. There are three lines: one for the PTV, one for the OAR,
and the third for the normal tissue. The point p can be interpreted as 50%
of the entire volume of target region receiving 100% or less of the prescribed
dose level. Ideally, we aim to achieve a solution such that the DVH of the
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Fig. 3.5. Solution quality is typically assessed by (a) DVH and (b) radiation
dose plot.

target region is perpendicular at relative dose 1.0 (i.e., all PTV voxels receive
the exact amount of the prescribed dose) and the DVHs of the OARs and the
normal tissues are perpendicular at relative dose 0 (i.e., they receive no dose
at all). A dose plot is another useful visualization tool to measure the solution
quality. A series of dose plots can provide positional information of the organs
and the dose distribution to verify if a treatment plan meets the treatment
goals. Figure 3.5(b) shows an axial slice of the dose distribution. This plot
shows that the high-dose-radiation region conforms to the PTV whereas the
OAR receives a very low radiation dose. Overall, this solution was designed
such that more than 90% of the OAR receives a radiation dose below 30% of
the target prescribed dose level.

3.4.2 DVH control techniques

Suppose that our aim is to control the DVH such that no more than α% of
the PTV receives β Gy or higher. Mathematically such constraints can be
written as follows:

∑

(i,j,k)∈T
ID(i,j,k)>β

|T | ≤ α,
(3.14)

where ID(i,j,k)>β is an indicator variable that takes 1 if the total dose on the
voxel(i, j, k) receives higher than β Gy, otherwise 0, and α ∈ [0, 1] . Simi-
lar constraints can be defined for all organs of interest. Therefore, it is not
difficult to see that adding such constraints to any optimization models can
lead to an NP-hard problem. Therefore, researchers have proposed algorithms
that converge to local solutions. Such algorithms include Simulated Anneal-
ing, Implicit DVH Control by optimization model parameters, and Column
Generation Approach. In this subsection, we will discuss an approach of [33] to
implicitly control DVH using optimization control parameters. This approach
is very simple and easy to use and can deliver a desired DVH most of the time.
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Implicit DVH control for 3DCRT

Modelers usually are advised to update the weights (λ+
t , λ−

t , λs, λn) to achieve
DVH control. However, as pointed out in [14], understanding the relationship
between the λ values and their intended consequences is far from straightfor-
ward. Rather than focusing the tuning efforts on these weights, we can manip-
ulate other parameters in the model; specifically, the PTV control parameters
θU and θL and the hot-spot control parameter φ in (3.6). We describe these
techniques with reference to the problem in (3.7).

In this approach, homogeneity is controlled by θL and θU , which define the
lower and upper bounds on the dose to PTV voxels (we have θL ≤ 1 ≤ θU ).
The conformity constraints, which require the dose to the normal tissue to
be as small as possible, can be implemented by increasing the weight λn on
the normal-tissue term in the objective. Avoidance constraints, which take
the form of DVH constraints on the OAR, are implemented via the hot-spot
control parameter φ.

Choice of norms in the objective functions

One can use infinity-norms to control hot and cold spots in the treatment
region, and L1-norm penalty terms are useful for controlling the integral dose
over a region. Here we illustrate the effectiveness of using both types of terms
in the objective by comparing results obtained from an objective with only
L1 terms with results for an objective with both L1 and infinity-norm terms.
Specifically, we compare the function in (3.6) (with λ+

t = λ−
t = λs = λn =

1) against a function in which the infinity norms in the first two terms are
replaced by L1 norms, scaled by the cardinality of the target set.

We use data from a pancreatic tumor that includes four critical structures
(two kidneys, the spinal cord, and the liver) in the vicinity of the tumor for
this illustration. The optimization parameters are set as follows: θL = 0.95,
θU = 1.07, φ = 0.2, and K = 4.

As might be expected, (3.6) has better control on the PTV as shown in
Figure 3.6; the infinity-norm yielded a stricter enforcement of the constraints
on the PTV. The two objective functions can produce a similar solution if the
values of λt’s are chosen appropriately. It is noted in [33] that it is easier to
choose an appropriate value of λt for the L∞ penalty than it is to tune this
parameter for the L1 norm. (In the normal and OAR regions, the difference
in quality of the solutions obtained from these two alternative objectives was
insignificant.)

DVH control on the PTV

Here we consider the optimization problem (3.7) with objective function
f(DΩ) defined by (3.6). We aim to attain homogeneity of the dose on T
without sacrificing too much quality in the dose profile for the normal region
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Fig. 3.6. Dose-volume Histogram on the PTV.
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Fig. 3.7. DVH control for different choices of parameter θL.

and OAR. As discussed above, the key parameters in (3.6) with respect to this
goal are θU and θL. In this experiment, we fix θU = 1.07, and try the values
0.7, 0.8, 0.9, 0.94 for the lower-bound fraction θL. Figure 3.7 shows four DVH
plots based on the four different values of θL. For each value, we find that
100% of the PTV receives more than the desired lower bound θL; we manage
to completely avoid PTV cold spots in this example. We might expect that
larger values of θL (which confine the target dose to a tighter range) would
result in a less attractive solution in the OAR and the normal tissue, but
it turns out that the loss of treatment quality is not significant. Therefore,
the use of θU and θL to implement homogeneity constraints appears to be
effective.
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DVH control on the OAR

We show here that the dose to the OAR can be controlled by means of the
parameter φ in (3.6), assuming that the weights λt, λs, and λn have been fixed
appropriately. As shown in Figure 3.8(a), we set φ to various values in the
range [0, 1]. For φ = 0.5, almost all of the OAR receives dose less than 50%
of the prescribed target dose. Similar results hold for the values φ = 0.2 and
φ = 0.1. (For φ = 0.1, about 20% of the OAR receives more than 10% of the
prescribed dose, but only about 5% receives more than 20% of the prescribed
dose.) Better control of the dose to OAR causes loss of treatment quality on
the PTV and the normal tissue, but Figure 3.8 shows that the degradation is
not significant.

Note that if our goal is to control hot spots in the OAR rather than the
integral dose, we could replace the term ‖(DS − φΔeS)+‖1 in the objective
(3.6) by its infinity-norm counterpart ‖(DS − φΔeS)+‖∞.

The parameter φ can be updated on a per-organ basis if the DVH require-
ment for a given OAR is not satisfied. Furthermore, there can be some conflict
between the goals of controlling DVH on target and non-target regions, as the
proximity of PTV to normal regions and OAR makes it inevitable that some
nontarget voxels will receive high doses. If the PTV dose control is most
important (as is usually the case), the control parameters θL, θU , φ should
be chosen with (θU − θL) small and φ as a fairly large (but smaller than 1)
fraction of the prescribed target dose Δ. However, if the OAR dose control
is most important, a smaller value of φ should be used in conjunction with
L1-norm penalties for the OAR terms in the objective. In addition, a larger
value of (θU − θL) is appropriate in this case.

DVH control via wedges

In general, the use of wedges gives more flexibility in achieving adequate
coverage of the tumor volume while sparing normal tissues. To show the effect
of wedges, we test the optimization models on a different set of data from the
one used in the subsections above, from a prostate cancer patient. Figure 3.9
shows DVH graphs obtained for a treatment plan using wedges (3.13) and one
using no wedges (3.15). Conventionally, 4 or 6 beams are usually used to treat
cases of this type. However, we use three beam angles (K = 3) to emphasize
the effect of wedges. Figure 3.9(a) shows that a significant improvement on the
OAR is achieved by adding wedges. In Figure 3.9(b), we see that there is also a
slight improvement in the DVH for the PTV and little difference between the
wedge and no-wedge cases for the normal tissue. Note that it took 3 minutes
23 seconds to solve the optimization problem without the wedge whereas it
took 5 minutes 45 seconds with the wedge parameter.
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Fig. 3.8. DVH control for different values of parameter φ: (a) OAR; (b) PTV; (c)
normal.
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Fig. 3.9. Effect of wedges on the DVHs in a prostate cancer case with 3 beam
angles: (a) Organ at risk; (b) target and normal.

3.5 Solution Time Reduction Techniques

Most optimization models discussed in this chapter involve numerous variables
(some of them discrete) and a large amount of data, mostly in the form of
dose matrices. Therefore, the optimization problem is time-consuming to con-
struct and solve. In this section, we describe techniques to reduce the solution
time. First, optimization problem size can be reduced by carefully selecting
voxels that have direct impact on the final solution. For example, a substan-
tial amount of voxels on the normal tissue can be easily removed (by 50% or
more). This is because a typical treatment volume contains a vast amount of
voxels that may not receive any radiation.

Second, solving the mixed-integer programming (MIP) problems in a clin-
ical setting becomes extremely difficult. Therefore, there is a need to speed
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up the solution process. One of such methods solves a lower-resolution prob-
lem first to identify the most promising beam angles, then considers only
these angles in solving the full-resolution problem. Legras et al. [28] describe
a multiphase approach in which linear programs are solved to determine the
most promising beam angles, with a refined solution being obtained from a
final nonlinear program. Lim et al. [33] propose a similar method, three-phase
approach, where each of the phases involves the solution of MIPs in which the
angles are selected explicitly. The phases differ from each other in the reduced
sets of voxels that are used as the basis of the problem formulation.

3.5.1 Normal tissue voxel reduction

Preprocessing

In practice, a fixed number of equi-spaced beam angles are often considered in
the treatment planning. Some voxels N̄ between two beam angles may never
receive any radiation or they may receive an insignificant amount of radiation
for the treatment planning, i.e.,

N̄ :=
{
(i, j, k) ∈ N | D(i,j,k) ≤ ε

}
.

We can simply exclude such voxels from the optimization models a priori. For
example, when 36 beam angles are considered for a prostate case example,
the total number of normal voxels is reduced from 136,000 voxels to 60,000
voxels (about 56% reduction with ε = 10−5). Further voxel reduction can be
achieved by reducing the grid resolution on the normal tissues.

Reducing resolution in the normal tissue

Because the main focus of the planning problem is to deliver enough dose to
the PTV while avoiding organs at risk, the dosage to normal regions that are
some distance away from the PTV need not be resolved to high precision. It
suffices to compute the dose only on a representative subset of these normal-
region voxels and use this subset to enforce constraints and to formulate their
contribution to the objective.

Given some parameter ρ, we define a neighborhood of the PTV as follows:

Rρ(T ) := {(i, j, k) ∈ N | dist ((i, j, k), T ) ≤ ρ, } ,

where dist ((i, j, k), T ) denotes the Euclidean distance of the center of the
voxel (i, j, k) to the PTV. We also define a reduced version N1 of the normal
region, consisting only of the voxels (i, j, k) for which i, j, and k are all even;
that is

N1 := {(i, j, k) ∈ N | i mod 2 = j mod 2 = k mod 2 = 0} .
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Finally, we include in the optimization problem only those voxels that are
close to the PTV, or that lie in an OAR; or that lie in the reduced normal
region; that is,

(i, j, k) ∈ T ∪ S ∪Rρ(T ) ∪N1,

(see related work in [2, 34]). Because each of the voxels (i, j, k) ∈ N1 effectively
represents itself and seven neighboring voxels, the weights applied to the voxels
(i, j, k) ∈ N1 in the objective functions (3.2) and (3.3) should be increased
correspondingly. An appropriate replacement for the term ‖DN ‖1/|N | in (3.2)
could then be

‖DRρ(T )‖1 + ‖DN1‖1 (|N \ Rρ(T )|/|N1|)
|N | .

3.5.2 A three-phase approach

This is a multiphase approach that “ramps up” to the solution of the full prob-
lem via a sequence of models. Essentially, the models are solved in increasing
order of difficulty, with the solution of one model providing a good starting
point for the next. The models differ from each other in the selection of voxels
included in the formulation and in the number of beam angles allowed.

If the most promising beam angles can be identified in advance, the full
problem can be solved with a small number of discrete variables. One simple
approach for removing unpromising beam angles is to remove from consid-
eration those that pass directly through any OAR [41]. A more elaborate
approach [38] introduces a score function for each candidate angle, based on
the ability of that angle to deliver a high dose to the PTV without exceeding
the prescribed dose tolerance to OAR or to normal tissue located along its
path. Only beam angles with the best scores are included in the model.

These heuristics can reduce solution time appreciably, but their effect on
the quality of the final solution cannot be determined a priori. We propose
instead the following incremental modeling scheme, which obtains a near-
optimal solution within a small fraction of the time required to solve the
original formulation directly. Our scheme proceeds as follows.

Phase 1: Selection of promising beam angles

The aim in this phase is to construct a subset of beam angles A1 that are likely
to appear in the final solution of (3.8). (A similar technique can be applied
to (3.13).) We solve a collection of r MIPs, where each MIP is constructed
from a reduced set of voxels consisting of the voxels in the PTV, a randomly
sampled 10% of the OAR voxels (S ′), and the voxels in Rρ(T ); that is,

Ω1 = {T ∪ S ′ ∪Rρ(T )}.

We define A1 as the set of all angles A ∈ A for which wA > 0 for at least one
of these r sampled problems.
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Phase 2: Treatment beam angle determination

In the next phase, we select K or fewer treatment beam angles from A1. We
solve a version of (3.8) using A1 in place of A and a reduced set of voxels
defined as follows:

Ω2 = {T ∪ S ∪ Rρ(T ) ∪N1}.
Note that |A1| is typically greater than or equal to K, so the binary variables
play a nontrivial role in this phase.

Phase 3: Final approximation

In the final phase, we fix the K beam angles (by fixing ψA1 = 1 for the
angles selected in Phase 2 and ψA = 0 otherwise) and solve the resulting
simplified optimization problem over the complete set of voxels. This final
approximation typically takes much less time to solve than does the full-scale
model, because of both the smaller amount of data (due to fewer beam angles)
and the absence of binary variables.

Although there is no guarantee that this technique will produce the same
solution as the original full-scale model (3.8), Lim et al. [33] have found that
the quality of its approximate solution is close to optimal based on several
numerical experiments.

3.6 Case Study

In this section, we present the computational performance of the three-phase
approach introduced in Section 3.5.2 coupled with the sampling strategy. Our
test data is the pancreatic data set introduced in Section 3.4.2. This data
consists of 1,244 voxels in the PTV, 69,270 voxels in the OAR, and 747,667
voxels in the normal region.

The specific optimization model considered in this section is as follows:

min
w,ψ

f(DΩ) s.t.

DΩ =
∑

A∈A
wADA,Ω, Ω = T ∪ S ∪ N ,

DT ≤ ueT ,
0 ≤ wA ≤MψA, ∀A ∈ A,∑

A∈A
ψA ≤ K,

ψA ∈ {0, 1}, ∀A ∈ A,

(3.15)

where f(DΩ) is defined by (3.6). Optimization model parameters in (3.15) are
as follows: θL = 0.95, θu = 1.07, φ = 0.2, K = 4, λ+

t = λ−
t = λs = λn = 1,

u = 1.15, and |A| = 36. The set of angles A consists of angles equally spaced
by 10◦ in a full 360◦ circumference. Dose matrices are calculated based on a
BEV for each beam angle.
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Computational performance of the three-phase approach

First, the optimization model (3.15) was solved using the full set of voxels. The
MIP solver was set to terminate when the gap between upper and lower bound
of the objective value falls below 1% (in relative terms). This calculation and
the others in this section were performed on a Pentium 4, 1.8 GHz PC running
Linux. The problems were modeled in the GAMS modeling language [6], and
CPLEX 7.1 was used as the linear programming (LP) and MIP solver.

Figure 3.10 shows changes of upper and lower bounds on the optimal
objective value as the iteration number increases, where iteration count is the
total number of branch-and-bound nodes explored. Only slight improvements
to the upper bound (which represents the best integer solutions found to date)
occur after the first 220,000 iterations, and the lower bound of the objective
value increases slowly beyond this point. We set the “big M” value to 2 for
this experiment. The total computation time of over 112 hours is shown in
column I of Table 3.1. This table also shows the effects of the computational
speedups described in Section 3.5. In columns II, III, and IV we use the tight
bound (3.12) on wA, specialized to the case in which no wedges are used. Note
that the constraint wA ≤ MψA in (3.15) was replaced by wA ≤ (u/μA)ψA.
In addition, column III shows the effects of using the reduced-voxel version
of the problem discussed in Section 3.5.1. Finally, column IV shows results
obtained with the three-phase approach of Section 3.5.2 using r = 10.

For purposes of comparing the quality of the computational results
obtained with these four approaches, the final objective values are calcu-
lated on the full set of voxels. To three significant figures, these values were
the same. The next rows in Table 3.1 show the CPU times required (in
hours) for each of the four experiments and the savings in comparison with
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Fig. 3.10. Progress of upper and lower bounds during MIP algorithm.
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Table 3.1. Comparisons among different solution schemes.

I II III IV

Approach Single Solve Single Solve Reduced Model Three-Phase

Bound (M) 2 u/μA u/μA u/μA

Final objective 0.0342 0.0342 0.0342 0.0342

Time (hours) 112.3 93.5 29.9 0.5

Time saved (%) - 16.8 73.3 99.5

the time in column I. By comparing columns I and II, we can see that a
modest reduction is obtained by using the tighter bound. Column III shows
a computational savings of almost three quarters, without degradation of
solution quality, when a reduced model is used. Note that the reduced model
has 1,244 voxels in the PTV, 14,973 voxels in the OAR, and 96,154 voxels
in the normal tissue (i.e., 86% total voxel reduction). The most dramatic
savings, however, were for the three-phase scheme, which yielded a savings
of 99.5% over the direct solution scheme with no appreciable effect on the
quality of the solution.

The difficulty of the full problem arises in large part from the hot-spot and
cold-spot control terms. Using looser values for these parameter values speeds
up the the solution time considerably.

Solution quality

Let us examine the quality of a solution that 3DCRT can produce. We use
the three-phase approach in the treatment planning to speed up the solution
generation. Wedges are included in the formulation. The specific goals of the
treatment plan were defined as follows:

1. Four beam angles.
2. As the highest priority, the target volume should receive a dose of between

95% and 107% of the prescribed dose.
3. 90% of each OAR should receive less than 20% of the target prescribed

dose level.
4. The integral dose delivered to the normal tissue should be kept as small

as possible.

Figure 3.11 shows DVH plots of this experiment. The homogeneity con-
straints are satisfied for the PTV; every voxel in the PTV receives between
95% and 107% of the prescribed dose. It is also clear that approximately 90%
of each OAR receives at most 20% of the target prescribed dose, as speci-
fied; the DVH plot for each OAR passes very close to the point (0.2, 0.1) that
corresponds with the aforementioned treatment goal.

Figure 3.12 shows isodose lines on the slices through the treatment region
obtained by computed tomography. The PTV is outlined within four iso-
dose lines. The outermost line is 20% isodose line, which encloses a region in
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Fig. 3.11. Dose-volume Histogram at optimum.

Fig. 3.12. Isodose plots: (a) axial; (b) sagittal. Lines represent 20%, 50%, 80%, and
95% isodoses (20% line outermost).

which the voxels receive a dose of at least 20% of the PTV prescribed dose.
Moving inwards toward the PTV, we see 50%, 80%, and 95% isodose lines.
Figure 3.12(a) shows an axial slice. The kidneys are outlined as two circles
directly below the PTV. As can be seen, the PTV lies well inside the 95% iso-
dose line, and the dose to the organs at risk remains reasonable. Figure 3.12(b)
shows a sagittal view of the PTV with those four isodose lines also.

The three-phase approach outlined here has been used in a number of other
studies. Examples of the benefits of this procedure on breast, pancreatic, head
and neck cases, for example, can be found in [17].
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3.7 Discussion

Three-dimensional conformal radiation therapy (3DCRT) is widely used in
practice due to its simplicity when compared with other commercially avail-
able radiation delivery techniques and its ability to generate good-quality solu-
tions. We have introduced optimization models and computational approaches
for 3DCRT planning. Most of the models discussed in this chapter are based on
mixed integer programming (MIP). The strength of MIP is that it guarantees
global optimality. However, it is extremely difficult to solve such optimization
models on real patient data because the problem size becomes very large,
say over 500,000 constraints, 500,000 variables (including integer variables,
especially when the DVH constraints (3.14) are imposed), and it requires sig-
nificant computational efforts. Therefore, many researchers have developed
various solution techniques that can solve the problem quickly and be eas-
ily used in a clinical setting. Some of them are based on entirely heuristic
methods whereas others are a combination of optimization techniques and
heuristic approaches. As we showed in this chapter, the three-phase approach
appears to be an excellent choice for 3DCRT planning when it is coupled with
a sequential sampling for reducing the beam angle set. More studies need to be
done for imposing DVH constraints while solving the problem in a reasonable
time.
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Abstract. Inverse approaches and, in particular, intensity modulated radiother-
apy (IMRT), in combination with the development of new technologies such as
multileaf collimators (MLCs), have enabled new potentialities of radiotherapy for
cancer treatment. The main mathematical tool needed in this connection is numer-
ical optimization. In this article, the continuous optimization approaches that have
been proposed for the computation of optimal or locally optimal beam and beamlet
intensities respectively are surveyed, and an approach of the authors is described
in detail. Also, the use of optimization in connection with intensity modulated pro-
ton therapy (IMPT) and, in particular, with the IMPT spot-scanning technique is
discussed.

4.1 Introduction

4.1.1 Radiotherapy treatment planning

Radiation therapy is an essential medical tool for cancer treatment. About
500, 000 patients in the United States and 150, 000 patients in Germany are
treated yearly by radiation therapy. The hazard with radiotherapy, however, is
that it does not only destroy tumor cells, but similarly also affects healthy tis-
sue. Therefore, based on the images of computed tomography, for each patient
a compromise has to be found between the two conflicting goals: to deposit
a sufficiently high dose into the planning target volume(s) (PTVs), i.e., the
tumor(s) and/or the possibly involved tissue, and to simultaneously spare,
as much as possible, the organs at risk (OARs) and the other healthy tis-
sue. As a consequence, radiotherapy treatment planning involves the selection
of several suitable directions for the incident beams and the determination
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of beam intensities or, if these are modulated, beamlet intensities so that,
through superposition of the doses delivered by the single beams or beamlets
respectively, a desired dose is deposited in the PTVs and simultaneously no
critical doses are administered to the normal-tissue volumes. (Introductions
into the field are found, e.g., in [16, 24, 54, 62, 108, 124, 125].)

Conventionally in radiotherapy, the radiation is produced by beams of
highly energetic photons delivered by a linear accelerator . The treatment
itself is standardized in most hospitals. Depending on the position and the
type of the tumor(s), the number of radiation fields or beams respectively is
prescribed (typically between 2 and 5), the field or beam angles are essentially
predetermined, and the beam intensities are homogeneous or have a constant
gradient. The radiation fields are rectangular, and often custom-made aper-
tures or multileaf collimators (MLCs) are used to cover parts of the fields and
thereby protect portions of the patient’s body. (A MLC consists of typically
25–60 tungsten slabs that can be shifted from each of two opposite sides by
computer control.)

In case of such a conventional approach, an individual treatment plan is
normally obtained by a trial-and-error procedure, where the radiation effects
of a few differing arrangements are considered with respect to their dose dis-
tributions. In contrast with this forward approach, an inverse approach starts
from the definition of treatment goals, defined by requirements on the doses
for the PTVs and the OARs, and it results in the problem of finding beam
or beamlet intensities for a certain number of well-positioned radiation fields
such that the delivered doses meet these requirements or are close to them
(e.g., [18, 19, 27]). Hence, in an inverse approach, restrictions on doses are
often established in form of inequalities or equalities, and goals are described
by one or, as in case of a multicriteria approach, by several objective functions.
Thus an inverse approach naturally is connected with numerical optimization.

Many articles over the past 20 years have dealt with the improvement
of conventional arrangements by inverse approaches, and the work in this
direction still continues. Simultaneously and starting with the seminal works
of Brahme et al. [23, 26] and planning techniques by Censor et al. [11, 31, 32],
research on the more complex inverse approach of intensity modulated radi-
ation therapy (IMRT) emerged and has attracted a rapidly growing interest.
This approach, first employed clinically around 1994, “is regarded by many in
the field as a quantum leap forward in treatment delivery capability” [62]. In
IMRT, the photon beams are split into thousands of beamlets or pencil beams,
which enables the creation of much more sophisticated and precise dose dis-
tributions and thereby renders possible the treatment of cancer patients by
radiotherapy who could not be treated adequately before. Mathematically,
IMRT leads to large-scale optimization problems.

4.1.2 Optimization models

For the optimization of an IMRT treatment plan, a variety of parameters
may be considered. Besides the beamlet weights determining the beamlet
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intensities, the main degrees of freedom are the number of beams used, the
beam angles, and parameters connected with the realization of an intensity
profile by a MLC. Ideally, all of these parameters should enter an optimiza-
tion model, and experiments in this direction also have been performed. How-
ever, in particular, if integer variables are included in a model to find, for
example, an optimal set of r beams from a given set of s ≥ r beams with
prescribed angles (e.g., [45, 47, 79]), the size of the resulting problems and the
state-of-the-art of mixed-integer programming exclude nonlinear functions in
the model. Therefore, currently, the optimization of IMRT treatment plans
requires the a priori decision whether integer variables are allowed in the
model, in which case only linear functions should be used for the beamlet
weights optimization, or whether certain parameters as beam angles and beam
directions are fixed so that nonlinear constraints can be explored.

The relevance of biological treatment goals for radiotherapy, leading to
nonlinear constraints corresponding with equivalent uniform dose (EUD) or
partial volume (PV) constraints, has been generally acknowledged during
the past years (see Section 4.3.8). On the other hand, nonlinear program-
ming is associated with the risk that local minimizers are computed, having
an objective function value far away from the global minimum value. For
this reason, some researchers have substituted or approximated intrinsically
nonlinear conditions by (a typically much larger number of) linear or con-
vex constraints. For example, the nonlinear convex EUD function of [93]
has been replaced by an expression that results in a large number of linear
constraints ([121]), or a convex objective function defined for each volume
element of the irradiated volume has been approximated by a finite number
of linear constraints ([103]). Several authors have implemented dose-volume
constraints (see Section 4.3.8) by means of binary variables and have used
mixed-integer linear programming (MILP) in order to take partial volume
effects into account, which naturally are described by nonconvex functions
(e.g., [13, 76, 79, 100]). Such treatment of dose-volume effects, however, can
lead to tens or hundreds of thousands of additional binary variables, which
increases the complexity of the problem considerably.

In this connection, it is important to note that the process of finding an
optimal IMRT treatment plan cannot be fully automated, as it requires the
participation of an expert, who has to set up the treatment goals, to evaluate
the computed treatment plan, and to modify, quite commonly, the original
goals, assessing simultaneously the related risks for the patient. By their
experience, experts often have a good feeling for reasonable beam numbers
and beam directions in a particular case. Also the avoidance of selecting beam
angles in an optimal way and hence of binary variables, as described above,
may be partially compensated for by the use of a slightly increased number
of beams ([116]).

Therefore we prescribe the number of beams and beam angles (as demand
most clinical software packages) and give preference to the improvement of
the model for beamlet weights optimization in the framework of continuous
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optimization by respecting biological considerations ([10]). Our model may be
supplemented by a heuristic procedure to “optimize” the beam angles ([85]).
Also, in order to translate an obtained intensity profile into a sequence of
MLC openings, an iterative procedure can be executed that normally leads
only to small loss concerning the optimality of the goals ([8]).

Other, partly MILP, optimization procedures for leaf sequencing were pro-
posed in ([13, 15, 42, 46, 58, 70, 71, 72, 74, 77, 84, 102, 110, 111, 118, 130]).
Most procedures require the solution of a beamlet weights optimization pro-
gram in a first phase, so that this program should yield relatively smooth
weight profiles that can be converted into MLC openings efficiently. In this
connection, proper measures have recently been studied to cope with the
ill-posedness of beamlet weights optimization problems and, thereby, to avoid
the computation of strongly oscillating weight profiles ([5, 7, 29, 39, 97]).

The problem of finding an IMRT treatment plan necessitates compromises
between competing goals that may be rated differently. Accordingly, some
authors recently have investigated this problem in the framework of multi-
criteria optimization, with the aim to produce a set of treatment plans that
relate to different weightings of the objectives ([22, 41, 57, 75, 104]). However,
multicriteria optimization requires a multiple of the computation time needed
for ordinary optimization of similar type, so that, at the current stage of devel-
opment of the field, clinical practicability forces the number of objectives to
be small and the involved functions to be linear or convex.

The authors handle the IMRT treatment planning problem as an ordinary
optimization problem in continuous variables, and they combine the solution
of the problem with a sensitivity analysis in order to detect those constraints
of the problem for which small changes in bounds have the largest effect on
the EUD in the target. In this way normally only one or few constraints of the
problem have to be changed if original treatment goals have to be relaxed.

The problems themselves resulting from our approach are convex or non-
convex optimization problems, which have the beamlet weights as variables
and typically contain only 10–25 constraints apart from the simple bounds for
the beamlet weights. This is distinguished, for example, from linear models
that include at least one inequality constraint and, by that, one additional
slack variable for each volume element. Moreover, it is shown in this paper
that our optimization model and algorithm for its solution, both presented in
[10], can also be extended to the much larger problems of intensity modulated
proton therapy (IMPT) treatment planning and can yield optimal solutions
for these within a few minutes of computing times.

4.1.3 Organization of the chapter

The general tools and our notation for the description of IMRT treatment
planning problems are given in Section 4.2. In Section 4.3, we review the most
prominent approaches to continuous beamlet weights optimization for inverse
treatment planning, where we distinguish between linear programming, linear
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approximation, piecewise linear approximation, and multicriteria models and
models that include or attempt to simulate nonlinear conditions on the doses
representing probability measures, partial volume or equivalent uniform dose
requirements. The description of the latter models encompasses a detailed dis-
cussion of our approach from [10]. A sensitivity analysis used in combination
with this is presented in Section 4.4. Finally, in Section 4.5, we consider treat-
ment planning in connection with the 3D spot scanning technique of IMPT.
The paper concludes in Section 4.6 with a clinical case example for both IMRT
and IMPT, for which the optimization was performed with the barrier-penalty
multiplier method from [10].

4.2 Preliminaries

Radiotherapy and IMRT in particular require the selection of a number p of
radiation fields, also called incident beams, and, associated with that, p beam
angles, where for practical reasons normally p is a number between 3 and 6
and is smaller than 12. As we have argued in the introduction, we assume
here that the fields and beam angles are predetermined either by experience
of an expert, referring to the type and position of the tumor in relation to sur-
rounding OARs, or by trial-and-error. Clearly, for a fixed number of beams,
the continuous optimization of both doses and beam directions would be desir-
able but is impeded by the computationally expensive dependence of the dose
absorbed in the patient’s body on the orientation of the radiation fields and
by the combinatorial nature of the problem.

The IMRT treatment problem is fully discretized according to techniques
that have been suggested first in ([11, 31, 32]). Each of the p radiation fields
is a 2D region with a polygonal boundary, normally originating from a pro-
jection of the PTVs onto a plane at the position of the collimator. Each
(remaining) field j is partitioned into nj rectangular field elements of equal
size, also denoted as bixels (see Figure 4.1), where typically the number nj

Fig. 4.1. Discretization of radiation field and body.
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varies between 100 and 2,000. Accordingly, each of the p beams is divided into
nj beamlets or pencil beams respectively so that the total number of beamlets
over all fields amounts to n =

∑p
j=1 nj .

The portion of the human body to be irradiated is considered to be divided
into q not necessarily disjoint 3D volumes that represent the PTVs and the
regions of normal tissue as, e.g., OARs. Furthermore, the �th of these q vol-
umes is partitioned into m� cubic volume elements or voxels of equal size,
having a side length of normally ≥ 2 mm. Typically q is smaller than 15, and
the total number m =

∑q
�=1 m� of voxels is of order 105 or 106. We number

all volume elements consecutively from 1 to m and let V� (� = 1, . . . , q) be
the index set of all elements belonging to the �th volume, having a cardinality
|V�|. For convenience, we also identify V� with the �th volume itself.

Let now djk ≥ 0 be the dose deposited in the jth volume element by the
k-th beamlet at unit beam intensity and let D = (djk) be the resulting m×n
dose matrix. This matrix D needs to be determined for each individual patient,
which can be done by a Monte Carlo simulation of the radiation transport
through the patient ([78]) or with sufficient accuracy by a method that adapts
a dose distribution computed for a homogeneous medium, so-called pencil
beam kernels, to the geometry and density distribution of the patient ([2]).
The dose matrix D is sparse because the kth beamlet predominantly affects
volume elements only in proximity of its line of propagation. Typically, at a
reasonable cutoff for the minimal dose, less than 3–8% of the coefficients of D
are nonzero so that D can be stored in a closed form.

For the optimization process, the matrix D is assumed to be known. Then
the goal of IMRT is to find, for each beamlet and according to the optimization
goals of the respective model, a suitable nonnegative beamlet weight defining
its radiation intensity. The total dose absorbed by the jth volume element is
linearly dependent on the vector φ ≥ 0 of beamlet weights, φ = (φ1, . . . , φn)�,
and is given by

D�
j φ =

n∑

k=1

djkφk ≥ 0, (4.1)

where D�
j contains the entries of the jth row of the dose matrix D. The n

beamlet weights φk ≥ 0 are unknowns of an optimization model for IMRT
treatment planning.

The technical realization of a set of beamlet weights or an intensity profile,
which nowadays is typically performed by a MLC, is a difficult problem in
itself which is not discussed here (see the references given in Section 4.1.2).
A MLC is part of the treatment machine and can expose a polygonal geome-
try formed by automatically shifted tungsten leaves. Hence, following the dose
optimization, an intensity pattern has to be found for each field, which is close
to the optimal profile determined by the optimization process and which can
be generated by a relatively small number (typically 10–30) of MLC openings
(see Figure 4.2). Clearly, the a priori inclusion of a comprehensive set of con-
straints into an optimization model, which would guarantee that the optimal
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Fig. 4.2. Intensity modulation by superposition of MLC-shaped fields. Dark gray
bars from top and bottom symbolize the tungsten leaves, white area in the centers
symbolizes the exposed area of the field. On the right, total intensity levels are
symbolized by gray values.

dose obtained by the model is realizable by a MLC, would be desirable (see
[37, 107, 117, 119] for approaches in this direction). However, for the opti-
mization model used by the authors and by a heuristic reoptimization of the
MLC field shapes, the loss in dose quality caused by the translation of an opti-
mal intensity profile to deliverable MLC field segments can be kept small and
amounts to 0–5% of the target EUD, depending on the case complexity ([8]).

4.3 Optimization Models for IMRT Treatment Planning

4.3.1 Introduction

In this section, we discuss the main continuous optimization models related
to inverse approaches for radiotherapy treatment planning. Considering the
huge number of papers existing in this regard, we do not intend here to pro-
vide a complete review on the topic, but rather to survey the most prevalent
ideas and problem types and point out their differences in terms of gains and
drawbacks. In addition we present our own approach in detail.

In our review, we do not distinguish between inverse radiotherapy treat-
ment planning with and without intensity modulation, as the models used for
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intensity optimization of unmodulated beams have likewise or similarly been
applied to IMRT or could in principle be applied to that. Often, and naturally
before IMRT had been invented, the number of incident beams and hence con-
tinuous variables in the optimization problem were generally less than 12 and
rarely more than 36. In contrast with that, the number of beamlets and hence
continuous variables for IMRT typically amounts to 3,000–8,000, whereas an
optimization problem for IMPT treatment planning, having the same math-
ematical appearance as a model for IMRT, may possess 40,000 variables and
more (see Section 4.5). Also, for IMRT and IMPT, the resolution in regard
to volume elements has to be increased considerably so that the responses of
tissues to the inhomogeneous intensities caused by modulation of the beams
can be traced appropriately.

Three special treatment techniques of radiotherapy are tomotherapy, inten-
sity modulated arc therapy (IMAT), and radiosurgery (see [16, 108], [135,
136], and [49, 62], respectively, for descriptions). Tomotherapy employs a
specifically designed treatment machine that can deliver a narrow intensity
modulated fan beam from a large number of fixed beam directions. While
the radiation source rotates around the patient, the patient couch position
is stepped forward so that the radiation source follows a helical trajectory
relative to the patient. IMAT, on the other hand, employs a standard lin-
ear accelerator to deliver a constant beam while the radiation source rotates
around the patient. During the delivery of such an arc, the field shape can
change by virtue of a MLC. By repeating the rotation several times with var-
ious field shapes, a modulated fluence profile per arc angle results. Finally,
radiosurgery is a quite specialized treatment technique, which has been pri-
marily designed to destroy malignancies in the brain. The basic mathematical
ideas used for treatment planning in case of these three techniques are simi-
lar to those for IMRT and are therefore included in our discussion (see, e.g.,
[44, 48, 49, 80, 109] for some recent developments concerning these topics).

For x ∈ R
r, we employ the �p-norm

‖x‖p =

(
r∑

i=1

|xi|p
)1/p

(1 ≤ p <∞), ‖x‖∞ = max
i=1,...,r

|xi| ,

where the dimension r of the space is assumed to be clear from the circum-
stances. The nonnegative vector [x]+ is defined by

[x]+ = (max{0, xi})i=1,...,r ,

and e ∈ R
r is the vector with all elements being 1. Furthermore, the |V�| × n

matrix with lines D�
j , j ∈ V�, for some � is denoted by D(�). Concerning

standard concepts and algorithms of optimization used in our presentation,
we refer to textbooks on optimization as, e.g., [14, 51, 95].

Remark 1. If an optimization problem in R
n is a convex problem, each sta-

tionary point, i.e., each point that satisfies the first-order necessary optimality



4 Optimization of Intensity Modulated Radiotherapy 91

conditions of the problem, is a local minimizer, and each local minimizer also
is a global minimizer, i.e., a “solution” of the problem. Furthermore, the solu-
tion set of a convex problem is a convex set, and therefore a convex problem
either has no solution (consider the problem minx∈R ex), a unique solution, or
infinitely many solutions (e.g., [51]).

For standard descent algorithms in optimization, convergence is proven
only, under suitable assumptions, to a stationary point, and for different start-
ing points such an algorithm may converge to distinct stationary points, if
there exists more than one such point. Thus, in case of a convex problem and
under proper assumptions, a descent algorithm always converges to a global
minimizer, but applied to a nonconvex problem it may get trapped in a point
that is not a local minimizer as, e.g., a saddle point if the problem is uncon-
strained. The latter event has to be taken into account in case of nonconvex
radiotherapy treatment planning models.

There is some confusion in the area concerning convexity. For example, a
local minimizer of a strongly quasiconvex function (see the much cited paper
[43]), if such exists, also is its unique global minimizer, but a strongly qua-
siconvex function can have saddle points ([12, p. 113]) and no local mini-
mizer at all. (Consider the strongly quasiconvex functions f(x) = x3 and
f(x) = x3(x + 1).) Moreover, the existence of nonglobal local minimizers
sometimes is erroneously thought to be connected with the use of certain
gradient algorithms. Thus, an algorithm that finds “multiple solutions” with
distinct objective function values in case of a convex optimization problem
simply does not properly converge.

4.3.2 Linear programming models with dose bound constraints

Surveys on inverse approaches are found, e.g., in [54, 62, 108, 124, 125]. In the
early approaches, one treatment goal for each volume V� was to not exceed
an upper dose bound of Δu

� Gy, i.e., to satisfy the linear constraints

D�
j φ ≤ Δu

� , j ∈ V�. (4.2)

Typically, for each PTV V�, this was combined with the requirement to not
fall short of a lower dose bound of Δl

� Gy with Δl
� < Δu

� and hence to fulfill
the constraints

D�
j φ ≥ Δl

�, j ∈ V�. (4.3)

The purpose of such lower bound constraints is to guarantee a specified dose
and, in combination with upper bounds as in (4.2), a nearly homogeneous
dose in the targets. Sometimes, for the sake of a uniform description for all
volumes, a lower dose bound is added also for each normal-tissue volume,
where this can be set to zero. In this way, a large system of linear inequalities

A�φ ≤ b� (� = 1, . . . , q), φ ≥ 0, (4.4)
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is obtained, with A� ∈ R
s�×n, b� ∈ R

s� , φ ∈ R
n, and s1 + · · · + sq ≥ m � n,

where different actions described in the following have been taken to deal with
such system.

Some authors have been of the opinion that each vector φ of the (often
relatively small) feasible set of the system in (4.4) would be of equal clinical
value and have proposed algorithms to find such a vector, where special mea-
sures have to be considered in case the feasible set is empty (see, e.g., [34]
and, for a more recent development, [131]). A feasible point of a linear system
of inequalities can be computed by phase 1 of the simplex algorithm. More-
over, the inequalities satisfied with equality or almost equality for a solution
of phase 1 give information about the constraints that should be relaxed in
case of infeasibility.

Most authors, however, sought a feasible vector for the system in (4.4)
that minimizes or maximizes some objective function, where different views
have been taken concerning a suitable goal to be reached. For that we let
P ⊆ {1, . . . , q} be some index set, Π =

∑
�∈P |V�| be the total number of

elements in volumes V� (� ∈ P), and

fP(φ) =
1
Π

∑

�∈P

∑

j∈V�

D�
j φ =

1
Π

∑

�∈P

∥
∥D(�)φ

∥
∥

1
(4.5)

be the integral dose over these volumes. Then, if Q = {1, . . . , q} is the index
set of all volumes, N that of all normal-tissue volumes including OARs, and
T that of all PTVs, typical goals have been the minimization of fQ(φ) or
fN (φ) and the maximization of fT (φ) or fT (φ) − fN (φ) (see [105] for the
latter). In these functions, the factor related to 1/Π can be ignored for the
minimization, and each sum

∥
∥D(�)φ

∥
∥

1
may be weighted differently, according

to its presumed importance.
In addition, maximization of the minimal dose in the PTVs was suggested

(e.g., [81, 86, 100]), which is equivalent to maximization of the variable τ over
all vectors (φ, τ) under the additional constraints τ ≤ D�

j φ (j ∈ V�, � ∈ T ).
Finally, the minimization of a linear combination of some linear functions has
been suggested, including the integral dose over all volumes and the maximum
beamlet weight ([59]). The latter goal can be expressed by a new variable φmax

and the inclusion of the additional constraints

φk ≤ φmax (k = 1, . . . , n). (4.6)

Also, in [81], an objective function containing linear penalties on critical beam-
let weights was investigated.

The resulting linear programming (LP) problems include at least one
inequality constraint for each voxel. Therefore, in case of IMRT, these prob-
lems comprise tens or hundreds of thousands of inequality constraints and
as many slack variables in addition to the n unknown beamlet weights, as
most codes start from the standard form of a LP problem, which requires the
introduction of such variables. If new variables dj with
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dj = D�
j φ (j = 1, . . . , m) (4.7)

are introduced in the problem for the doses and the inequalities are written
in terms of these dj ’s as several authors do, the problem is even enlarged
by m variables and equality constraints. Thus LP treatment planning prob-
lems typically are large-scale problems in regard to the number of variables
and constraints, even for conventional radiotherapy with unmodulated beams.
Such problems usually have been solved by the simplex algorithm and, more
recently, also by software packages as CPLEX (e.g., [86, 103, 108]), which
includes a LP barrier interior-point method in addition to the simplex algo-
rithm.

4.3.3 Linear programming models with elastic constraints

In clinical routine, initial treatment goals often turn out to be too restrictive.
Consequently, a natural shortcoming of any optimization problem including
both upper and lower dose bounds is that the related inequalities may be
inconsistent. For this reason, elastic constraints have been introduced, which
include parameters that allow some over- and underdosage of volume elements
and thereby avoid the possible infeasibility of the inequality system.

In the quite general framework of [61] and [62], a system A�φ ≤ b� is
replaced, for example, by

A�φ ≤ b� + θ�u�, (4.8)

where u� > 0 is a given vector from R
s� , whose components weight the allowed

amount of violation for the constraints in (4.8), and θ� ≥ 0 is a variable that
controls the (weighted) maximum violation of this system. (More generally
u�θ� can be a matrix-vector product, for example with u� = I, for an unknown
vector θ� ≥ 0.) Then, e.g., the objective function

∑q
�=1 w�θ� with importance

weights w� > 0 is minimized with respect to (φ, θ�) ≥ 0 and the constraints
in (4.8) for all �. Note that the feasible set of such a problem is nonempty
because, for given φ, each vector (φ, θ�) ≥ 0 with sufficiently large θ� satisfies
the inequality system in (4.8). Elastic constraints were similarly employed for
a LP problem in [59] and for a multicriteria weighted sum approach in [57], in
which the weights w� of the objective function

∑
� w�θ� are varied (see Section

4.3.7).
Note that, for u� = e in (4.8), the problem of minimizing the term w�θ�

alone over all vectors (φ, θ�) ≥ 0 under the constraints in (4.8) is equivalent
with the problem of minimizing, over all φ ≥ 0, the function

F�(φ) =
∥
∥[A�φ− b�]+

∥
∥
∞ , (4.9)

i.e., the maximum violation of the system A�φ ≤ b�. Moreover, if V� is a target
volume and the system in (4.8) stands for

Δ�e− θ�e ≤ D(�)φ ≤ Δ�e + θ�e (4.10)
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with some dose Δ� > 0, it is equivalent with the linear Chebyshev approxima-
tion problem of minimizing

F�(φ) = ‖A�φ− b�‖∞ (4.11)

with respect to φ ≥ 0 ([40]). Thus, problems with elastic constraints are
closely related to certain minimum norm problems discussed in Sections 4.3.5
and 4.3.6.

4.3.4 Further linear programming related results

An attempt to overcome some limitations while still remaining in the frame-
work of LP is provided in [103], where a convex voxel-based objective function,
as it is given, for instance, in Sections 4.3.6 and 4.3.8 below, is approximated
by a piecewise linear function. In this way, however, at least K ·m inequality
constraints and hence slack variables are added to the problem, where, for the
numerical results, K was a number between 2 and 4. Also, several authors,
including those of [103], suggest LP approaches to deal with partial-volume
constraints. The latter approaches are discussed in Section 4.3.8.

Robust LP (and second-order cone programming) approaches respecting
uncertainties in regard to the patient positioning or the dose matrix were
recently studied in [38] and [98]. In connection with LP models for radio-
therapy treatment planning, the results of [99] show that the choices of the
problem formulation and the algorithm for its solution are quite relevant in
order to solve the large-scale LP problems within clinically acceptable compu-
tation times. (See also the work in [104] on equivalent problem formulations
in this context.)

4.3.5 Linear approximation models

The possible inconsistency of the constraints in a LP approach to the treat-
ment planning problem has stimulated the study of various constrained linear
approximation problems, with the aim of finding an intensity weight vector
that is nearest to the desired goals in some sense. Some authors have consid-
ered the (squared) simple-bound constrained linear least-squares approxima-
tion problem

min
φ≥0

q∑

�=1

w�
1
|V�|

‖A�φ− b�‖22 (4.12)

(e.g., [63, 132, 133]). Alternatively, the simple-bound constrained Chebyshev
approximation problem

min
φ≥0

max
1≤�≤q

{
w�

1
|V�|

‖A�φ− b�‖∞
}

(4.13)

was investigated ([60]). Both problems always have a solution (cf. Remark 2
below). However, minimum norm problems of this type can be interpreted as
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an attempt to find an approximate solution of an overdetermined system of
equations and hence force all normal tissue volumes to receive doses closely
below or above the allowed maximum doses, which usually is not desirable.

The latter drawback is remedied if, for all normal-tissue volumes, one
approximates zero doses with respect to the (squared) weighted �2-norms,
under homogeneity constraints on the targets. Such a way of proceeding results
in the solution of a constrained linear least-squares approximation problem of
the type

minimize
∑

�∈N
w�

1
|V�|

∥
∥D(�)φ

∥
∥2

2

s.t. A�φ ≤ b�(� ∈ T ), (4.14)
φ ≥ 0,

where the inequality system stands for lower and upper dose bounds ([67]).
The problem in (4.14) resembles the aforementioned simpler LP problem for
the objective function (4.5) with P = N and additional importance weights.

Interchange of the roles of T andN in (4.14) yields the alternative problem

minimize
∑

�∈T
‖A�φ− b�‖22

s.t. A�φ ≤ b�(� ∈ N ), (4.15)
φ ≥ 0,

which was investigated, e.g., in [81] (see also the references in [62]). The matrix
inequality constraints in (4.15) typically result from upper dose bounds for
healthy volumes so that φ = 0 is feasible for the problem. Simultaneous min-
imization with respect to a given set of normal tissue dose bounds b� (� ∈ N )
was recently studied in [138].

Instead of the squared �2-norm in (4.14) and (4.15), one may exploit the
maximum norm, which for problem (4.15) was done in [28]. Other meaningful
variations of linear minimum norm problems can be found, for example, in
[62] and [108]. In particular, the linear least-squares problems with linear
constraints can be written as ordinary quadratic programming (QP) problems,
and (linearly constrained) problems involving the �1- or �∞-norm typically
can be transformed straightforwardly into LP problems ([40]). The latter is
true for all l∞-problems given here. Thus the l2-problems can be solved by an
algorithm for QP or some nonlinear programming (NLP) method like a penalty
type method ([67]) or a gradient projection method ([16, 19]), and (linearly
constrained) linear Chebyshev approximation problems can be solved by the
Simplex algorithm or an interior-point method.

4.3.6 Piecewise linear approximation models and extensions

A very popular modification of the least-squares approach in (4.12), which
avoids its drawbacks and includes only simple-bound constraints, is to let
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only those constraints of the system in (4.4) enter the linear approximation
problem, at least for the normal-tissue volumes, which are violated for φ (e.g.,
[16, 17, 19, 47, 66, 115, 128]). The resulting convex simple-bound constrained
piecewise linear least-squares problem has the form

min
φ≥0

q∑

�=1

w�
1
|V�|

F�(φ) (4.16)

where F� equals either the quadratic function

F�(φ) = ‖A�φ− b�‖22 (4.17)

or the piecewise quadratic function

F�(φ) =
∥
∥[A�φ− b�]+

∥
∥2

2
. (4.18)

The importance weights w� ≥ 0, not all being zero, may be normalized such
that

w = (w1, . . . , w�)�, ‖w‖1 =
q∑

�=1

w� = 1. (4.19)

Typically, the quadratic function in (4.17) is used for a PTV and the piecewise
quadratic function in (4.18) for each other volume (e.g., [16, 19, 47, 66, 115]).
This approach has been realized in most clinical software, e.g., in the package
KonRad of the German Cancer Research Center in Heidelberg ([21, 96]).

The least-squares type problem in (4.16) has been solved, for example, by
a scaled gradient projection algorithm ([16]), a variant of a Newton projection
method ([47]), and an active set method ([66]). Some authors also heuristi-
cally adapt gradient type methods for unconstrained problems, like conjugate
gradient methods, to problems with constraints. Others consider a piecewise
linear least-squares problem including functions of type (4.18) as an ordinary
QP problem, which, however, can lead to failures. Note that the function in
(4.18) possesses a continuous first derivative on R

n but typically is not twice
continuously differentiable everywhere. (If existence of second derivatives is
required for an algorithm, the power 2 in (4.18) has to be increased by at
least 1.)

Observe that, if F� in problem (4.16) is defined through (4.18) for all � ∈
{1, . . . , q} as in [16], each feasible point of the related linear inequality system
is a minimizer of (4.16) with objective function value zero. Hence, in this case,
the least-squares type approach in (4.16) is distinguished from the approach
of searching for a feasible point of a linear inequality system, mentioned in
Section 4.3.2, only insofar as the types of these problems motivate the use of
different algorithms and different measures in case the system is inconsistent.

For the linear feasible-point approach, in [131] an algorithm is discussed
that always finds the unique feasible point for which ‖φ‖2 becomes minimal.
This latter approach may be viewed as an attempt to find a feasible point
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that produces a small integral dose over the irradiated volume. The feasible
point of a linear system having minimal Euclidean norm could also be found
by solution of a linearly constrained QP problem with objective function ‖φ‖22
([30]). If the squared Euclidean norm ‖φ‖22 in this problem would be exchanged
for the maximum norm φmax = ‖φ‖∞, serving the same goal, the problem
could be solved as a LP problem with the additional constraints from (4.6).
Also observe in this connection that, if the maximum norm is employed rather
than the squared �2-norm (see (4.9)–(4.11)), then problem (4.16) is equivalent
to the LP problem

minimize

q∑

�=1

w�
1
|V�|

θ�

s.t. A�φ ≤ b� + θ�e(� = 1, . . . , q),
(φ, θ) ≥ 0,

for θ = (θ1, . . . , θ�)�, which just is a prominent case of the LP elastic con-
straints approach from [61] and [62].

Our discussion reveals that there exist close relations between many of the
LP, the feasible-point, and the (piecewise) linear approximation models to the
IMRT treatment planning problem. By their nature, all of these problems are
linear in the sense that, for each volume V�, they relate to the linear system
A�φ ≤ b� representing a dose bound and that they are distinguished only by
measuring possible constraint violations in different ways.

From the computational point of view, it may also be desirable to deal
with such linear systems only. But, as is well-known, the response of a com-
plex organ to radiation does depend on the absorbed dose in a nonlinear way
and not only on the amount of dose violations in the individual volume ele-
ments (see Section 4.3.8). Also, the linearity of an approach normally requires
the presence of at least one constraint for each voxel, but it is by no means
clear that a LP problem with a very large number of inequality constraints is
preferable to, for example, a nonlinear convex problem with few if any inequal-
ity constraints apart from the bounds φ ≥ 0. Furthermore, large numbers of
quite similar linear constraints generated by some discretization process (con-
cerning, e.g., the volumes) typically lead to very ill-conditioned constraint
matrices and hence may be liable to numerical difficulties.

A first natural extension of the model in (4.16)–(4.19) would be to consider,
for each volume V�, a constraint

G�(φ) ≤ 0

with a sufficiently smooth goal function G� defined on a proper subset of R
n,

where for simplicity we assume here the presence of only one goal for each
volume. Then, in generalization of problem (4.16), we arrive at the problem

min
φ≥0

q∑

�=1

w�
1
|V�|

[G�(φ)]2(+) , (4.20)
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where [ · ]2(+) stands for either [ · ]2 or [ · ]2+. This is a convex optimization
problem if, for example, G� in a term [G�(φ)]2+ is a convex and in a term
[G�(φ)]2 a linear function.

Remark 2. All minimization problems, studied up to this point in Section 4.3
and preceding problem (4.20), are convex optimization problems. For the LP
and the linearly constrained QP problems of this and the previous subsections,
existence of a solution is guaranteed if the set of feasible points is nonempty, as
their objective functions are bounded below by zero on the respective feasible
sets (e.g., [126, p. 130]). For problem (4.16)–(4.19), the existence of a solution
can be proved along the lines of the proof given for the example case in [10]. A
sufficient condition for the existence of only one solution is that the objective
function is strictly convex (e.g., [14, 51]). In particular, the objective function
related to a linear least-squares problem is strictly convex if the matrix A,
associated with such problem, has full column rank or, equivalently, if A�A
is nonsingular (e.g., [95]).

4.3.7 Multicriteria optimization models

The choice of the weights w� in (4.16) and (4.20) respectively is quite arbitrary.
For a prescribed selection of these weights, the maximum amount of a possible
constraint violation for a particular volume at a solution of the problem is not
predictable and may turn out to be not acceptable clinically. In fact, it has
been reported that computed doses are extremely sensitive to the selection of
weights (e.g., [57, 86]). Therefore, by trying different settings of weights, one
may end up in a very time-consuming trial-and-error process.

From its nature, the problem of finding a radiotherapy treatment plan is
a multicriteria optimization problem (e.g., [69]) with a finite number of well-
defined objective functions. Such a problem is associated with a manifold of
solutions, the (Edgeworth–) Pareto minimal points , which refer to the dif-
fering importance that may be given to the single objectives. These Pareto
minimizers are closely related to minimizers of the scalar optimization prob-
lem in (4.16) that are obtained for different weight vectors w > 0. If the F�

(� = 1, . . . , q) are any convex functions, a solution of problem (4.16) for a
given vector w > 0 is a properly (Edgeworth–) Pareto minimal point of the
problem associated with the q objectives F�, and, conversely, each properly
(Edgeworth–) Pareto minimal point of that problem solves problem (4.16) for
some weights w > 0 ([69, p. 299]).

The determination of Pareto minimizers via such scalar optimization prob-
lem is known in the framework of multicriteria optimization as the weighted
sum approach. In practice, usually a finite set of optimization problems as
in (4.16) is solved for a proper discrete set of weight vectors w ≥ 0, where
typically all vectors w with ‖w‖1 = 1 from a uniform grid in [0, 1]q are cho-
sen. Then either solutions for all of these problems are offered to the decision
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maker or the solution of these scalar problems is accompanied by some deci-
sion process, according to which irrelevant solutions are ignored and a suitable
solution is extracted for use.

Several authors have recently studied multicriteria weighted sum
approaches for radiotherapy treatment planning. In [134], the problem in
(4.12) is studied in a multicriteria setting, and the obtained plans are evalu-
ated by a dose-volume histogram function. Another approach of this type is
discussed in [75] (and similarly in [41]) for

F(φ) = w1

∑

�∈T

1
|V�|

∥
∥D(�)φ−Δ�e

∥
∥2

2
+ w2

∑

�∈NT

1
|V�|

∥
∥D(�)φ

∥
∥2

2

+
∑

�∈O
w3,�

1
|V�|

∥
∥
∥
[
D(�)φ−Δ�e

]
+

∥
∥
∥

2

2
, (4.21)

where the Δ� are reference doses and T , O, and NT are the index sets of all
volumes representing PTVs, OARs, and the remaining normal tissues respec-
tively. Solutions are computed for all weights w ≥ 0 on a uniform mesh in
the cube [0, 1]|T |+|NT |+|O| so that the number of structures (at most 6 in
([75])) and the width of this mesh determines the total number of problems
to be solved. Naturally, especially for high-dimensional problems, this number
needs to be kept small. (Compare, e.g., the example case of Section 4.6 and
those in [10], which include up to 25 goals for head-and-neck cancer cases.)

The scalar problem of minimizing the convex function in (4.21) subject
to the simple bounds φ ≥ 0 could be solved, for example, by some gradient
projection method. In order to arrive at an unconstrained optimization prob-
lem, the authors of [41] and [75] recommend instead replacing the weights φk

by weights ψ2
k = φk. However, this transformation may have consequences

concerning the convergence of the algorithm ([51, p. 147]) and, what is not
mentioned, transforms the convex problem into a nonconvex one so that non-
global local minimizers have to be discussed. (The function f(x) = (x − a)2

with some a > 0 is convex, but g(y) = (y2 − a)2 is not.) Then the nonconvex
problems are solved by a conjugate gradient method ([41]) and the limited
memory BFGS method (e.g., [95]) respectively. Note at this point that sev-
eral authors use (quasi-) Newton type methods that directly or indirectly need
second derivatives, though these do not exist in all points, for example, when
functions including expressions of type ‖[ · ]+‖22 are used. But such action is
known to possibly lead to very slow convergence ([114]), as the iteration num-
bers reported in [75] also seem to indicate.

In [57], a linear multicriteria weighted sum approach is studied using elastic
constraints (see Section 4.3.3), where the allowed maximum violations of the
constraints for the various structures form the objectives. The approach is
combined with a strategy to find a certain representative subset of Pareto
solutions rather than to compute solutions for all weights vectors of a given
discrete set, and some numerical experiments are presented.
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A more sophisticated multicriteria optimization approach, which requires
the solution of optimization problems including constraints on the various
goals, is developed in [22] and [120]. The aim again is to find suitable repre-
sentatives of the set of Pareto minimizers, where the total number of problems
to be solved does not depend on the fineness of some mesh, but only on the
number q of goals (which should not exceed about 6, as is said). This approach
also makes use of the EUD model (see (4.25) in Section 4.3.8) where, for the
numerical realization, the �p-norm, 1 < p < ∞, on the dose in the EUD
function ([93]) is replaced by a suitable convex combination of the �1- and
�∞-norm ([121]). This replacement has the advantage of leading to LP prob-
lems, but means that a single nonlinear convex constraint for a volume V� is
exchanged for |V�| linear constraints. Strategies to reduce the large number of
linear constraints are implemented, and numerical experience with the total
approach is reported.

The authors of [104] discuss a unifying framework providing conditions
under which multicriteria optimization problems including well-known non-
convex treatment planning criteria can be transformed into problems with
convex criteria, having the same set of Pareto minimizers.

4.3.8 Nonlinear conditions

General discussion

The LP and similarly the linear and piecewise linear approximation models
for IMRT considered up to this point are merely based on physical criteria,
i.e., on measurable physical quantities such as volumes and doses. It has been
observed by a number of authors that such approaches have serious limita-
tions (see, e.g., the discussions and references in [24, 88, 127, 129]). They take
the biology of radiation into account only insofar as they try to avoid crit-
ical structures, but they do not adequately model the responses of healthy
and tumorous tissues to radiation, which behave neither linearly nor quadrat-
ically. The sensitivity of a healthy organ to radiation does not simply depend
on the maximum dose absorbed by some of its volume elements, but rather
on the total dose distribution in the organ. Moreover, for example, a cold
spot, i.e., a small underdosed volume, in a target may not greatly influence a
quadratic objective formed by the differences of desired and actual doses, but
may significantly reduce the tumor control probability.

Therefore the insertion of biological considerations for both dose prescrip-
tions and the rules for control of their violation have been proposed (e.g.,
[20, 25, 53, 88, 89, 101]), and alternative biological optimization models, which
respect the dose responses of the different tissues and the response to inhomo-
geneous dose distributions, have been developed (e.g., [3, 6, 9, 10, 55, 73, 123]).
Biological conditions are inherently nonlinear so that their direct implementa-
tion necessarily leads to large-scale nonlinear convex or nonconvex optimiza-
tion problems. Naturally, the problems may have multiple local minimizers,



4 Optimization of Intensity Modulated Radiotherapy 101

but in general clinically usable solutions seem to have been found (see
[17, 43, 106] for studies in this connection).

Probability functions and an overdosage penalty constraint

Several authors have studied objective functions in an optimization model,
representing normal tissue complication probability (NTCP) and tumor con-
trol probability (TCP). The authors of [123] optimize, by a gradient technique,
an objective function including both probabilities and dose-volume criteria in
addition. In [54], which integrates earlier results from [55, 56, 112, 113], various
formulations of optimization problems with biologically motivated linear con-
straints and a nonlinear objective function have been studied, including the
probability of uncomplicated tumor control P+ = PB − PB∩I as an objective
function, where PB is the probability of tumor control and PB∩I is the prob-
ability of simultaneous tumor control and severe normal-tissue complications.
For the solution of these (by today’s standards relatively small) problems,
several algorithms based on an augmented Lagrangian approach have been
compared with a Sequential Quadratic Programming (SQP) method, where it
was found that the augmented Lagrangian approach, combined with a limited
memory BFGS method, was the most favorable one. In [66], a probability func-
tion P− = 1 − P++ was minimized under the constraints φ ≥ 0 by an active
set method, where P++ is taken from [1] and similar to P+ (see the discussion
in [54]). It has been remarked, however, that these types of probability func-
tions “are simplistic, and the data they rely on are sparse and of questionable
quality” ([123]).

The authors of this paper favor the use of the logarithmic tumor control
probability (LTCP)

LTCP(φ;V,Δ, α) =
1
|V |

∑

j∈V

exp(−α (D�
j φ−Δ)) (4.22)

for each PTV V as objective function ([10]), where Δ > 0 is the dose value
requested for V and α > 0 is a constant related to cell survival and the only
biological constant needed. Minimization of this convex function is easily seen
to be equivalent to the maximization of the TCP function (see [91])

∏

j∈V

exp
{
− 1
|V | exp(−α (D�

j φ−Δ))
}

.

In the absence of, e.g., adequate dose bounds on the normal tissue volumes,
minimization of the LTCP could result in a prohibitively high dose in the
targets (as is observed in [62, p. 4–25]). Therefore, for each PTV V , the
authors use a quadratic overdosage penalty (QOP) constraint of the type

QOP(φ;V,Δ, δ) =
1
|V |

∑

j∈V

[D�
j φ−Δ]2+ − δ2 ≤ 0, (4.23)
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where δ > 0 is a given bound. Such a constraint prevents an excessively high
dose in V and simultaneously allows a mild mean violation of the acceptable
dose value Δ in V by some δ. A constraint of this type is also applied to permit
a certain overdosing of some volume V neighboring a PTV, as a sharp dose
drop from the PTV to V is not realizable physically. Note that the function
QOP( · ;V,Δ, δ) is once but not twice continuously differentiable everywhere,
so that the power 2 in QOP has to be increased by at least one if second
derivatives of functions are needed in an algorithm.

In this connection, observe that an underdosage in some voxels of V for
a solution of an optimization problem, involving a term as in (4.22) in its
objective function, would lead to positive powers in the exponential function
and hence tends to affect the objective function value considerably more than
in case of a quadratic (type) function. This observation implies intuitively,
though not rigorously, that using an additional minimum dose constraint for V
as in (4.3) would not significantly increase the actual minimum dose attained
by such a program. Therefore, like other authors, we avoid the implementation
of lower dose bounds as they may cause infeasibility of the program and hence
difficulties for algorithms. In either case, when cold spots are detected in a
target or if a system of constraints turns out to be inconsistent, the original
treatment goals need to be reconsidered and modified.

Partial volume conditions

It has been generally accepted that, for each involved critical parallel organ
(lung, parotid gland, kidney, etc.), an optimization model should reflect the
property that a certain percentage of such an organ can be sacrificed without
serious consequences for the patient, if this is of advantage for the overall
treatment. Thus, instead of merely pursuing the goal for a particular parallel
OAR to stay below an upper dose bound, the model should provide a solution
exhibiting an acceptable dose distribution for this organ in regard to the
dose versus the percentage-of-volume. Such a relationship can be depicted in
a cumulative dose-volume histogram (DVH) and is typically considered, in
combination with other criteria, to evaluate the quality of a treatment plan.

In this connection, many authors start from an ideal clinical DVH curve
and seek dose distributions that match these inherently nonlinear curves at
one or multiple points. Constraints in a model that are designed for this
purpose are often denoted as dose-volume (DV) constraints (see Figure 4.3
and, e.g., [54, p. 32] for a summary of the application of such constraints).

Though we intend to concentrate on continuous optimization models, we
would like to point out that a mathematically rigorous description of pointwise
DV constraints can be given by mixed-integer linear constraints. For that, a
binary variable yj ∈ {0, 1} is assigned to each element of the respective volume
V�, depending on its dose level, and dose-bound constraints for V� including
these new variables as, e.g.,

D�
j φ ≤ Δu

� + 100 ∗ yj , j ∈ V�,
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Fig. 4.3. Cumulative DVH of a rectum in a prostate example case. Four DV con-
straints were set for the optimzation: (40 Gy/50%), (60 Gy/30%), (70 Gy/10%),
(75 Gy/5%). Each constraint ensures that no more than y% of the organ volume
receives more than x Gy dose. The treatment dose of the prostate was 84 Gy.

are combined with an additional constraint that only allows a desired portion
p� ∈ (0, 1] of these binary variables to be 1, e.g.,

∑

j∈V�

yj ≤ p� |V�| .

The solution of related large-scale MILP programs has been studied, e.g., in
[13, 76, 79, 86].

Some authors suggest the inclusion of certain continuous linear DV con-
straints to remain within a LP framework. In [90] several “collars” around a
target are formed and an upper dose-bound constraint of type (4.2) is used for
each such neighborhood, where the dose bound is decreasing with increasing
distance from the target, and the thickness of the collars is determined by
the percentage of volume elements that shall be below the given bound. This
procedure is modified for IMRT in [59] where, in addition to the distance from
the target, a heuristic concerning the expected number of beamlets meeting a
structure is used in order to select the voxels related to a certain dose bound.
In [103], a new type of linear constraints, derived from a technique used in
finance, bounds the tail averages of DVHs, but entails a number of artificial
variables proportional to the number of voxels of the respective structures.

While in these approaches the LP program remains unchanged during
the iteration process, the authors of [86] employ dose bounds as in (4.2) for
subvolumes of a particular structure and make use of sensitivity information
to adapt the respective voxel sets in each iteration, in case DVH requirements
are not satisfied for the current solution. A dynamic adaptation of such linear
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bounds is also applied in [65] in combination with a least-squares objective
function for the PTVs. However, it is not clear whether these latter procedures
always converge to a desired solution.

Another technique for respecting DV conditions, which is applied by some
authors and was developed in [21] in connection with the least-squares type
problem (4.16)–(4.19), is to check at each iteration whether the current solu-
tion meets a particular DVH specification, and, if not, to add a “penalty”
w�[D�

j φ −Δ]2+ for certain j ∈ V� to the objective function as, e.g., for all or
some of those voxels that exceed a desired dose Δ, assuming that the number
of these voxels is greater than a permitted number (e.g., [109, 115]). Differing
from that, in [36], a continuous, though not everywhere differentiable, linear-
quadratic “penalty” function defined on the total respective volume is added
to a least-squares function for the PTVs, where this penalty is multiplied by a
factor depending on the current fraction of the structure surpassing a required
dose. Similarly, in [35], a least-squares error function is adapted properly in
each iteration so that a sequence of least-squares approximation problems is
solved. Hence, in these approaches the objective functions of the optimization
models are redefined during the iteration process, and it is not clear to what
point such procedure converges, in case it converges at all.

The authors of [87] extend the approach of searching for a feasible point of a
certain linear system (see Section 4.3.2) to include a new type of (nonconvex)
quasi-convex DV constraints and report satisfying results for an algorithm,
which has originally been designed for the solution of the convex feasibility
problem only.

Objections to pointwise DV conditions are that it is unclear how many
of such conditions are needed to obtain an acceptable DVH curve and that
the precise fulfillment of such conditions is a somewhat artificial goal and not
justified medically. Usually also several DVHs have to be considered simulta-
neously so that their a priori fixing by pointwise DV conditions may entail a
significant loss of freedom in the search space for the beamlet weights, while
modified conditions would still be medically tolerable and could result in an
overall improvement for the patient. On the other hand, trial-and-error proce-
dures in this respect are very time consuming. Furthermore, some approaches
that alter definitions of objective functions or constraint sets during the per-
formance of an algorithm lack a rigorous mathematical convergence analysis
and are therefore uncertain concerning their outcomes.

The direct translation of a dose-versus-percentage constraint into a con-
tinuous mathematical condition, however, is known to lead to a nonlinear
constraint. The authors apply the partial volume (PV) constraint

PV(φ;V,Δ, p, ζ) =
1
|V |

∑

j∈V

( 1
ΔD�

j φ)p

1 + ( 1
ΔD�

j φ)p
− ζ ≤ 0 (4.24)

with some constant ζ ∈ (0, 1) for each parallel OAR V (see [3, 6, 68] for
details). For example, in relation to our example case in Section 4.6, the data
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Δ = 20, p = 3, and ζ = 0.1 for the right parotid gland express that, at a dose
of 20 Gy, a volume element of this organ loses 50% of its function (e.g., the
production of saliva) and that at most 10% of the total function of the organ
may be lost.

The constraint in (4.24) is formed by the sigmoidal function σ(x) =
xp/(1 + xp), which has a relatively smoothly increasing step and hence offers
some freedom concerning the dose distribution in V . (Alternative experiments
with the sigmoidal error function can be found in [101, 108].) Note in this con-
nection that constraints of type (4.24) can also be utilized to obtain continuous
pointwise DV constraints as discussed above, when the step of the sigmoidal
function is contracted ([123]).

Equivalent uniform dose conditions

In contrast with conventional radiation therapy, IMRT normally leads to
nonuniform dose distributions in organs. Niemierko ([93]) has introduced the
(generalized) equivalent uniform dose (EUD)

⎧
⎨

⎩
1
|V |

∑

j∈V

(D�
j φ)p

⎫
⎬

⎭

1/p

(4.25)

as a model for a biologically permissible nonuniform dose distribution in a
volume V that, in regard to the irradiation response, is comparable with a
uniform dose distribution of Δ Gy. In this function, p ∈ Z is some tissue-
specific power, which is negative for PTVs and positive for OARs. Note that
for p = 1, the function in (4.25) becomes the mean dose and for p = ∞ the
maximum dose for V , both used above. The EUD concept has by now been
widely accepted, in particular for serial organs, i.e., the spinal cord, nerves,
and all other structures that can be seriously damaged by a high dose in a
small spot. It has been observed that the use of the EUD model can lead to
greater normal tissue sparing, compared with merely dose-based optimization
[129]. “Inverse planning based on the probabilities of tumor control and normal
tissue complication remains the ultimate goal, and the equivalent uniform dose
is a step in this direction” [122].

The EUD concept was applied for optimization in [10, 22, 97, 103, 120,
122, 121, 127, 129]. In particular, the authors of [129] investigate an objective
function that makes use of the EUD model for tumors as well as normal tissues.
The resulting nonconvex function is minimized by a gradient technique. In
[127], the EUD-based model is combined with a dose-volume approach to
further improve the treatment plans, and in [137] various gradient algorithms
are compared for dose-volume-based and EUD-based objective functions. The
recent convex approach from [120, 122] employs an upper bound on the EUD
as an optimization constraint for all OARs and PTVs and a lower bound on
the EUD of the PTVs. In this way, a convex constraint set is obtained and
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a quadratic least-squares error function, which is adapted in each iteration
similarly as it has been suggested in [21] for DV constraints (see above), is
minimized over this set by a componentwise Newton method that is combined
with a projection technique. In [97], several variants of a gradient projection
algorithm are investigated to solve nonlinear optimization problems with an
EUD-based objective function and nonnegativity constraints on the weights.

The authors themselves employ an EUD constraint of the type

EUD(φ;V,Δ, p, ε) =
1
|V |

∑

j∈V

(
1
Δ

D�
j φ

)p

− εp ≤ 0 (4.26)

for each serial OAR V only, where Δ > 0 is some given dose value, ε > 0 a
given constant, and p ≥ 1 some tissue-dependent power ([10]). For instance,
in the optimization problem of the example case in Section 4.6, we include
an EUD constraint for the spinal cord with the settings Δ = 28, p = 12, and
ε = 1. This constraint allows a tiny excess of 28 Gy for fractions of this organ,
with the extent of overdosage depending on the size of the volume in which it
occurs. Note that a single convex constraint as in (4.26) normally can replace
the |V | linear constraints entering a program if an upper dose bound as in
(4.2) is used for V .

Remarks on the model of the authors

The functions LTCP , QOP , and EUD are nonquadratic convex, and the
function PV is nonconvex. Moreover, in this ideal description concerning the
beamlet weights (see [10] for this), the zero vector is feasible for the respective
constraints. Therefore, use of these functions leads to a feasible convex or, if
the irradiation of, e.g., parotid glands and lungs is to be controlled, nonconvex
optimization problem with sufficiently smooth functions in n variables. Tech-
nical limitations of a MLC may enforce additional constraints on the weights
that have to be included in the program (see [7, 8] for examples). However,
in contrast with, for example, LP models, the model of the authors involves
rarely more than 15–20 constraints besides the constraints φ ≥ 0.

The nonlinear optimization problems resulting from this model are solved
by a barrier-penalty multiplier method ([10]) and combined with a sensitivity
analysis discussed in the following section. For the solution of the subproblems
in the algorithm, a conjugate gradient method is used, as such a method
is well suited to deal with the typical ill-conditionedness of beamlet weight
optimization problems mentioned in the introduction (see [5, 10] and the
recent results in [52]). For ill-conditioned problems of the occurring type, a
conjugate gradient method finds a good approximate solution with respect to
the optimal objective function value in relatively few iterations (but normally
not with respect to the variables) and can be used in a regularizing manner
in the sense that it can be stopped before serious ill-conditioning starts (see
also [29, 97] in this connection).
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In view of the possible nonconvexity and hence the existence of nonglobal
local minimizers of our optimization problems, we would like to mention that,
in all our experiments, different starting points for the barrier-penalty algo-
rithm have led to “solutions” with objective function values of equal orders
of magnitudes. Our algorithm needed typically 3–5 minutes of execution time
by a Xeon 2.66 GHz processor for standard cases and up to 30 minutes for
complex cases of a set of several hundred clinical case examples. Both, the algo-
rithm and the sensitivity analysis, were implemented in the software package
HYPERION, which was developed at the University Hospital in Tübingen
and is used already in daily clinical routine in several hospitals in Germany
and the United States.

4.4 Sensitivity Analysis

In clinical routine, the initially provided dose distribution framework, which
is needed for the development of a treatment plan, often defines constraints
for the OARs that are not compatible with the desired PTV dose, so that an
obtained solution is unacceptable and the constraints need to be relaxed in a
controlled and sensible manner. The relaxation of bounds on the other hand
can result in serious consequences for the patient and therefore has to include
the considerations of physicians.

In order to come to proper decisions in this regard and to simultane-
ously avoid a time-consuming trial-and-error process, the physicians can be
supported for the IMRT treatment optimization model of the authors by a
sensitivity analysis, which was introduced in [4] and is developed in this sec-
tion. Sensitivity analysis is a standard tool in optimization ([14, 50]) and was
used for linear models in radiotherapy treatment planning already in, e.g.,
[33, 34, 86].

Let f : R
n → R be the objective function and gi(φ) ≤ c be some constraint

of the problem. Furthermore, let φ∗(0) be the solution of the problem for
c = 0 and let λ∗

i ≥ 0 be the related Lagrange multiplier. Next consider f as a
function depending on c, i.e., as f(φ(c)). Then a standard result of sensitivity
analysis in optimization says that, under suitable assumptions and for |c|
sufficiently small, the problem has a local minimizer φ∗(c) and

∂f

∂c
(φ∗(c))c=0 = −λ∗

i

(see [14, p. 315] and [50]). Thus, for some small perturbations c, one arrives at

f(φ∗(c))− f(φ∗(0))
c

≈ −λ∗
i , (4.27)

saying that a relaxation of the inequality constraints with the largest multi-
pliers causes the largest local changes of the optimal objective function value.



108 R. Reemtsen and M. Alber

It is relevant that, in case the objective function f equals the LTCP of a
single target V , i.e., if f(φ) =LTCP(φ;V,Δ, α) for some prescribed dose value
Δ, the change in the optimal value of the problem by a small relaxation of
an inequality constraint can also be translated into a change of the EUD in
V , which is a more significant number for the physicians. The EUD for the
dose distribution in V , differing from the function in (4.25) that sometimes is
denoted as the generalized EUD, is defined by

E(φ;V, α) = − 1
α

log

⎧
⎨

⎩
1
|V |

∑

j∈V

exp(−α D�
j φ)

⎫
⎬

⎭

([92]) and, for f as assumed, can be written in the form

E(φ;V, α) = − 1
α

log {f(φ) exp(−αΔ)} .

Thus, in this case, the change of the EUD in the target

δEUD = E(φ∗(c);V, α)− E(φ∗(0);V, α)

affected by a constraint perturbation c is given, with (4.27), approximately by

δEUD ≈ −
1
α

[log {f(φ∗(0))− λ∗
i c} − log {f(φ∗(0))}]

= − 1
α

log
{

1− λ∗
i c

f(φ∗(0))

}
. (4.28)

Note in this connection that, ideally, f(φ∗(0)) would equal 1 and that one has
δEUD ≈ 0 in case λ∗

i = 0, which in particular is true if gi is inactive at the
solution, i.e., if gi(φ∗(0)) < 0 (e.g., [95]).

Thus, via the size of the Lagrange multipliers, a sensitivity analysis as
described guides the decision making of the expert in regard to those bounds
for which small enlargements have the largest effects with respect to the
desired target dose, where the quantitative information given by (4.28) is
reasonably accurate if these enlargements are small (see [4] and the numerical
results in Section 4.6). Typically, in the clinical practice, only few dose-limiting
objectives for sensitive structures conflict seriously with the target objectives
so that, in general, only 1 to 4 bounds in a program need to be relaxed,
whereas all others can be kept unchanged. This reduces the amount of user
interaction to a small number of well-directed trials.

For the treatment planning model of the authors, the biological interpreta-
tion of a change of bounds is immediate. For example, if ζ in a PV constraint
of type (4.24) is increased from 0.3 to 0.4, this means that the percentage of
a volume to be sacrificed in the worst case is raised from 30% to 40%. In con-
trast with that, for least-squares type or multicriteria approaches, the effect
for a single volume by a change of desired dose bounds, percentages of a vol-
ume, or importance weights is not known, and typically such changes lead to
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alterations in the optimal doses for all volumes. For multicriteria approaches
in particular, it was observed that computed doses are very sensitive to the
selection of weights ([57, 86]).

4.5 Intensity Modulated Proton Therapy

About 60 years ago, it was proposed that irradiation with beams of protons
or heavy ions would often be a better tool for cancer treatment than would be
conventional irradiation with photons. In contrast with photons, which deposit
the maximum dose near the beginning of their path through the body, protons
deliver the maximum dose briefly before they stop and only relatively little
before and almost none behind this point (see Figure 4.4).

The depth of the Bragg peak , i.e., the position of maximum dose deposi-
tion, is directly correlated with the energy of the incident particles and can
be tuned precisely. Hence, by modulating the kinetic energy of the particles
and the beam intensities, i.e., the exposure times of the beams, one can gen-
erate a nearly homogeneous spread-out Bragg peak (SOBP) in the direction
of the beam. This can be performed with passive scattering techniques, where
the proton beam passes through rotating devices of angularly variable thick-
ness that reduce the particle energy for an appropriate, fixed fraction of the
rotation time. In contrast, in intensity modulated proton therapy (IMPT),
the exposure time of the proton beam for every scanning position and every
beam energy is a free variable. This technique is also called spot scanning (SC),
which highlights the fact that the irradiated volume is covered by Bragg peaks
of narrow beams that are scanned in 3 dimensions (two lateral deflections and
the depth via the particle energy).

Depth [cm]

D
os

e

Fig. 4.4. Schematic depth dependence of 6 MV photons (solid line), a pro-
ton beam at fixed energy (solid filled curve), and a superposition of proton
beams of various energies (thin lines) yielding a SOBP (from http://p-therapie.

web.psi.ch/wirkung1.html).
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Experience and small-scale case studies show that, compared with conven-
tional photon radiotherapy, proton therapy normally leads to similar results in
terms of the targets but may yield some or much improvement concerning the
OARs and considerable improvement in regard to the total dose administered
to the patient. (In a case study of [94], the total dose was reduced, relative to
the dose obtained by IMRT, with the SC technique by about 46%.) The lat-
ter fact is relevant especially when children have to be irradiated. However, in
contrast with the case of photons, the sharpness of the proton profiles requires
a highly precise set-up of the planning problem and the treatment by IMPT,
since any error in these can be fatal if OARs are very close to the tumor.

For a long time, the technical problems and costs to perform irradiation
with protons and other heavy charged particles have been prohibitive, at least
for application on a large scale. In particular, the Paul Scherrer Institute (PSI)
in Villigen, Switzerland, has played a pioneering role in overcoming some of
these problems ([82, 83]) so that, during the past years, the spot scanning has
attracted considerable interest and is currently being implemented in many
places. The recent success with proton therapy also has led to the develop-
ment of cyclotrons exclusively for proton therapy, whereas, in the past, the
cyclotrons needed for the proton acceleration had been constructed primar-
ily for research in atomic physics and not for medical applications. Several
dedicated proton sites will go into operation in the near future.

Treatment planning tools for proton therapy are not as far developed yet
as for conventional therapy with photons. However, the optimization models
discussed earlier in this paper can be straightforwardly transferred to the SC
technique. In contrast with IMRT, where the beamlet intensities, determining
the number of variables in an optimization model, depend on 2 parameters
(the position in the fields), in case of IMPT with the SC technique these
are specified by 3 parameters (position in the fields and particle energy). On
the other hand, due to the favorable properties of protons, irradiation of a
patient by IMPT is performed normally only from 2 or 3 directions. In total,
the optimization model has the same appearance as for IMRT. However, the
dose matrix D = (djk) is computed differently and has a considerably larger
number of columns because of the third dimension of beamlet variability. In
this context, it is remarkable that an obtained proton beam intensity profile
can be realized directly up to some negligible deviations so that, in contrast
with IMRT, no translation into MLC openings is needed.

Optimization problems for IMPT with the SC technique can have 40,000
variables and more. This fact and the newness of the method explain why
only very few references can be found commenting on an optimization model
and algorithms for IMPT treatment planning. In [82], application of a least-
squares approach is reported, which is said to be similar to the one used in
[64] and [19] (which is not purely least-squares) and is known as a method
for image reconstruction, e.g., in computed tomography. The authors of [94]
employ the least-squares type approach from [17] and [96], which has also
been implemented in the software package KonRad (see Section 4.3.6). In the
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following section, it is shown by a clinical example case that our approach and
algorithm from [10] can also be successfully applied to IMPT.

4.6 Example Case

The patient of our example case was an 11-year-old boy having a rhab-
domyosarcoma, which reached from the interior of the lower jaw to the base of
the skull. Irradiation of the patient by conventional radiotherapy was impos-
sible as the tumor had infiltrated the second vertebra and because of the
proximity of the tumor to the optic chiasm, optical nerves, and the brain
stem. The decision was made to irradiate the vertebra with 36 Gy to avoid
unilateral growth inhibition and simultaneously spare the spinal cord. The
volume of gross tumor was treated to 57.6 Gy, the volume of suspected micro-
scopic expansion to 48.6 Gy. The organs at risk (chiasm, optical nerves, eyes,
spinal cord, brain stem) were defined with a 3-mm margin for setup errors,
and a dose reduction in the overlap of the optical chiasm and the PTV was
accepted.

The constraints of the optimization model are of the type introduced and
explained in Section 4.3.8. In total, constraints for 12 volumes entered the
optimization model. In particular, V1 is the gross tumor volume (GTV), i.e.,
the solid tumor, V2 ⊇ V1 is the clinical target volume (CTV), which is the GTV
together with a margin in which tumor cells are suspected, and V3 ⊇ V2 is
the planning target volume (PTV), which adds a safety margin to the CTV,
in order to respect small movements of the patient and other inaccuracies.
The optimization model had the following form, where “V� ± 5 mm” means
that an area of 5 mm width was added or subtracted respectively from V�.
In particular, the remaining volume “V12 − 5 mm” consists of the entire head
and neck not otherwise classified as organ at risk or target volume, with an
additional margin of 5 mm around all targets.

minimize LTCP(φ;V1, 57.6, 0.25) + LTCP(φ;V2, 48.6, 0.25)
+LTCP(φ;V3, 36, 0.25)

s.t. QOP(φ;V1, 57.6, 1) ≤ 0 (GTV),
QOP(φ;V2 \ V1, 57.6, 0.2) ≤ 0 (CTV),

QOP(φ;V2 \ (V1 + 5mm) , 48.6, 1) ≤ 0 (CTV),
QOP(φ;V3 \ V2, 48.6, 0.3) ≤ 0 (PTV),

QOP(φ;V3 \ (V2 + 5mm) , 36, 1) ≤ 0 (PTV),
EUD(φ;V4, 8, 12, 1) ≤ 0 (right eye),

EUD(φ;V5, 14, 12, 1) ≤ 0 (left eye),
EUD(φ;V6, 40, 12, 1) ≤ 0 (optic chiasm),
EUD(φ;V7, 28, 12, 1) ≤ 0 (r. optical nerve),
EUD(φ;V8, 40, 12, 1) ≤ 0 (l. optical nerve),
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EUD(φ;V9, 28, 12, 1) ≤ 0 (spinal cord),
EUD(φ;V10, 28, 12, 1) ≤ 0 (brain stem),
PV(φ;V11, 3, 20, 0.1) ≤ 0 (right parotid),

QOP(φ;V12 − 5mm, 30, 0.1) ≤ 0 (remaining vol.),
φ ≥ 0.

For image processing, 112 computed tomographic slices with 3 mm spacing
had been generated. A 18 × 21 × 33 cm3 box was irradiated, and the size of
a volume element was 2 × 2 × 2 mm3 so that the total number of volume
elements amounted to about m = 1,600,000, of which about 50% belonged
to the patient’s body. For the application of IMRT, 7 radiation fields were
used, partitioned in field elements of 10 × 2 mm2 size. The number of field
elements and beamlets respectively totaled n = 3,727 so that each field had
about 532 elements on average. In contrast with that, for IMPT, only 2 beam
directions were chosen. The beams were scanned over a 3× 3× 2.4 mm3 grid
(x×y×energy), resulting in n = 47,043 proton spots, where the number of the
spots equals the product of the number of beam directions and of those grid
points of the scanning grid that belong to the PTV. The maximum proton
energy needed to cover the PTV was 138 MeV.

Consequently, the optimization problem had n = 3,727 (IMRT) and n =
47,043 (IMPT) variables respectively and contained 14 inequality constraints
apart from the n nonnegativity constraints φ ≥ 0. In both cases, the problem
was solved with the algorithm introduced in [10]. Some characteristic numbers
for its performance are listed in Table 4.1, where the CPU times refer to a
Xeon 2.66 GHz processor. The given results show the typical behavior of the
algorithm. (The average sizes of a set of 127 clinical problems and the average
iteration numbers for their solution in case of IMRT can be found in [10].)
As for most nonlinear optimization algorithms, the computed solution of our
algorithm normally is not a feasible, but only an almost feasible point, where
the maximum amount of constraint violations naturally depends on the size of
the stopping threshold used and, for our settings, typically corresponds with
much less than 0.5% of the EUD of the respective organ.

Both plans were optimized with the same set of OAR constraints. Given
that the obtained solutions have to satisfy these constraints, noticeable differ-
ences could only be found in the target volume dose distributions and the total

Table 4.1. Performance of algorithm.

Results IMRT IMPT

No. outer iterations 3 6
No. inner iterations 148 274
Average no. inner iterations per outer iteration 49 46
No. objective function evaluations for step size 1,413 2,595
Average no. objective function evaluations 10 9
CPU time (minutes:seconds) 5:41 10:51
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dose delivered to the entire normal tissue (see the isodose lines in Figure 4.5).
Because of the superior properties of protons, the total normal tissue dose is
clearly much lower, especially in the brain. However, the target coverage of
both plans is comparable. This is a consequence of the comparatively shallow
lateral gradient and large diameter of scanned proton beams that partially off-
sets the advantages of protons compared with photons in cases where OARs
are extremely close to target volumes. Still, for pediatric cases in particular,
IMPT is the superior method.

Finally, Table 4.2 shows sensitivity results for the obtained IMRT solution.
Each figure signifies the predicted amount by how many Gy the EUD in the
GTV, CTV, and PTV respectively would increase if the respective constraint
i were relaxed in such a way that, if it is a QOP constraint (see (4.23)), δ is
replaced by δ+1, if it is a partial volume constraint (see (4.24)), ζ is replaced by
1.01ζ, and if it is an EUD constraint (see (4.26)), Δpεp is replaced by (Δ+1)pεp

after the constraint has been multiplied by Δp. Also the change δEUD in
(4.28) for the objective function obtained by such a relaxation is partitioned
into three portions for the terms relating to the GTV, the CTV, and the

Fig. 4.5. Transversal section close to the base of skull of the example case. Left,
IMRT; right, IMPT. The isodose lines correspond with 25%, 50%, 60%, 70%, 95%,
112.5% of the prescription dose to the CTV of 48.6 Gy.

Table 4.2. Predicted changes of EUD.

No. constr. 1 2 3 4 5 6–10 11 12 13 14

GTV 0.3 0.3 0.3 0.1 0.4 0.0 0.1 0.4 0.0 0.4
CTV 0.1 0.1 0.3 0.0 0.4 0.0 0.3 0.4 0.2 0.4
PTV 0.1 0.1 0.2 0.0 0.5 0.0 0.3 0.3 0.2 0.4
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Table 4.3. Resulting changes of EUD.

Prescribed Obtained Pred. change Resulting

GTV 57.6 55.0 0.3 55.3
CTV 48.6 45.5 0.3 46.0
PTV 36.0 34.6 0.2 34.8

PTV by proper division of the Lagrange multiplier λ∗
i into three portions

λ∗
i,j (j = 1, 2, 3). If ∇f∗

1 , ∇f∗
2 , and ∇f∗

3 are the gradients of these terms and
∇g∗i is that of the constraint i in the solution, then λ∗

i,j is taken as λ∗
i times

the weight factor
∣
∣∇f∗T

j ∇g∗i /(∇f∗
1 +∇f∗

2 +∇f∗
3 )�∇g∗i

∣
∣. The latter weight is

straightforwardly motivated by consideration of the gradient condition of the
first-order necessary optimality conditions for the problem (e.g., [95]).

Results that actually are obtained are recorded in Table 4.3 for the case
that the QOP constraint 3 is relaxed in the aforesaid way and the problem
is solved again with this altered constraint. Column 2 in this table gives the
prescribed EUD, column 3 the obtained one in the solution, column 4 the pre-
dicted change of the EUD (see Table 4.2), and column 5 the resulting EUD
for the solution of the modified problem. Concerning the resulting EUD for
the CTV, observe that a relaxation by 1 for this QOP constraint is rather
large and that the estimate in (4.28) only holds for sufficiently small changes
of the bounds. Thus, predictions are not always correct, but, in any case, con-
sideration of the multipliers guides the way to the most dominant constraints
for a solution in regard to a requested change of the EUD in the targets.
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Abstract. The inverse treatment planning problem of IMRT is formulated as a
multicriteria optimization problem. The problem is embedded in the more general
family of design problems. The concept of virtual engineering, when interpreted as an
optimization paradigm for design problems, reveals favorable structural properties.
The numerical complexity of large-scale instances can then be significantly reduced
by an appropriate exploitation of a structural property called asymmetry.

Methods to treat the multicriteria problem appropriately are developed. The
methods proposed serve as ingredients for a system that incorporates (a) calcula-
tions of efficient IMRT plans possessing high clinical quality and (b) an interactive
decision-making framework to select solutions. The plan calculations are done fast
even for relatively large dimensions by exploiting the asymmetry property. They
result in a database of plans that delimit a large set of clinically relevant plans.
A sophisticated navigation scheme allows one to obtain plans that conform to the
preference of the decision-maker while conveying the chances and limitations of each
interaction with the system. The resulting workflow can be embedded into the clin-
ical decision-making process to truly address the multicriteria setting inherent to
IMRT planning problems.

5.1 The IMRT Treatment Planning Problem

Radiotherapy is, besides surgery, the most important treatment option in
clinical oncology. It is used with both curative and palliative intention, either
solely or in combination with surgery and chemotherapy. The vast majority of
all radiotherapy patients is treated with high-energy photon beams. Hereby,
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Fig. 5.1. The gantry moves around the couch on which the patient lies. The couch
position may also be changed to alter the beam directions.

the radiation is produced by a linear accelerator and delivered to the patient
by several beams coming from different directions (see Figure 5.1).

In conventional conformal radiation therapy, only the outer shape of each
beam can be smoothly adapted to the individual target volume. The inten-
sity of the radiation throughout the beam’s cross section is uniform or only
modified by the use of pre-fabricated wedge filters. This, however, limits the
possibilities to fit the shape of the resulting dose distribution in the tissue to
the shape of the tumor, especially in the case of irregularly shaped non-convex
targets like para-spinal tumors.

This limitation is overcome by a technique called intensity modu-
lated radiation therapy (IMRT) [77]. Using multileaf collimators (MLCs)
(see Figure 5.2), the intensity is modulated by uncovering parts of the beam
only for individually chosen opening times (monitor units) and covering the
rest of the beam opening by the collimator leafs. This allows for a more precise
therapy by tightly conforming the high dose area to the tumor volume.

An IMRT treatment plan is physically characterized by the beam arrange-
ment given by the angle of the couch relative to the gantry and the rotation
angle of the gantry itself and by the intensities on each beam (see Figure 5.1).
The treatment aim is to deliver sufficient radiation to the tumor while spar-
ing as much of the healthy tissue as possible. Finding ideal balances between
these inherently contradictory goals challenges dosimetrists and physicians in
their daily practice.

The treatment planning problem is to find an optimal set of parameters
describing the patient treatment. Although the choice of a particular delivery
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Fig. 5.2. A multileaf collimator (MLC). The square opening in the center of the
machine is partially covered by leafs, each of which can be individually moved (pic-
ture from [66]).

b90

b0

Organs at risk  

Target

Fig. 5.3. Optimization of the setup geometry is highly non-convex even for the
single-beam case.

scheme (radiation modality, energies, fractionation, etc.) is by far not a trivial
decision to make, it will be considered given in our context.

Finding an optimal setup geometry and an optimal set of intensity maps
using a global optimization model [13, 40] has the disadvantage that the
resulting problem is highly non-convex, as the following single-beam exam-
ple demonstrates. Assume the target is given by the rectangular shape in the
middle of Figure 5.3 and the smaller rectangular structures at the corners of
the target are critical volumes.

The beam may be arranged anywhere on the depicted circle. Then the
optimal beam direction is given by beam b90. A search for this optimum may,
however, get stuck in a local minimum like beam b0. Notice that the search
would have to make a very big change in the current solution to leave this local
optimum. Coupling beam orientation search with the optimization of inten-
sity maps results in a non-convex objective function, and traditional search
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methods designed for convex situations are prone to get stuck in local optima
[8]. Consequently, empirical and heuristic search methods with no quality
guarantees are used to decide on the geometry setup. Most studies that have
addressed the problem of beam orientation in IMRT employ stochastic opti-
mization approaches including evolutionary or simulated annealing algorithms
in which intensity map optimization is performed for every individual selection
of beam orientations [8, 54, 69].

Beam geometry optimization is still an interesting problem in its own
right and it has been addressed in many publications (see, e.g., [46, 53, 54]
and the references listed there). Brahme [11] mentions some techniques useful
to handle setups with only a few beams. However, in this chapter we will not
discuss any such solution approaches but merely assume that the irradiation
geometry is given.

On the other hand, a very detailed search on the potential beam posi-
tions is in many cases not necessary. If the critical part of the body is covered
by the beam’s irradiation, the optimization of the intensity maps will miti-
gate the errors due to non-optimal beam directions substantially. However, in
some cases like head-and-neck treatments, computer-based setup optimization
might be of considerable value.

Aside from the dose distribution resulting from the beam geometry, its
complexity also has to be considered when evaluating the quality of a treat-
ment plan. In most cases (see, e.g., [7, 9, 11, 25]), an isocentric model is used
for the choice of the setup geometry, i.e., the central rays of the irradiation
beams meet in one single point, the isocenter of irradiation (see Figure 5.4).

To further facilitate an automated treatment delivery, usually a coplanar
beam setting is used. Then the treatment can be delivered completely by

Fig. 5.4. Intensity maps for different beam directions intersecting at the tumor.
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just rotating the gantry around the patient without the need to rotate or
translate the treatment couch between different beams. This leads to shorter
overall treatment times, which are desirable both for stressing the patient as
little as possible and for minimizing the treatment costs.

In the classic approach to solve the treatment planning problem, “forward
treatment planning” has been the method of choice. The parameters that char-
acterize a plan are set manually by the planner, and then the dose distribution
in the patient is calculated by the computer. If the result is not satisfactory,
the plan parameters are changed again manually, and the process starts over.
As the possibilities of radiotherapy become more sophisticated (namely with
intensity modulation), Webb argues [76, Chapter 1.3] that “it becomes quite
impossible to create treatment plans by forward treatment planning because:

• there are just too many possibilities to explore and not enough human time
to do this task

• there is little chance of arriving at the optimum treatment plan by trial-
and-error

• if an acceptable plan could be found, there is no guarantee it is the best,
nor any criteria to specify its precision in relation to an optimum plan.”

Furthermore, there is no unified understanding of what constitutes an opti-
mal treatment plan, as the possibilities and limitations of treatment planning
are case-specific.

Therapy planning problems have in the past two decades been modeled
using an inverse or backward strategy (see the survey paper [11]): given desired
dose bounds, parameters for the treatment setup are found using computerized
models of computation.

The approach to work on the problem from a description of a desired
solution to a configuration of parameters that characterizes it is an established
approach in product design called virtual engineering.

5.2 Optimization as a Virtual Engineering Process

In this section, we introduce our understanding of the concept of virtual engi-
neering, together with the involved mathematical structures. We then argue
that multicriteria optimization is the appropriate tool to realize virtual engi-
neering. Then we discuss existing strategies to cope with multicriteria opti-
mization problems and introduce our method.

Virtual engineering has been used in various disciplines, and there are
many ways to interpret its meaning. In software development, for example, the
functionality of a program is specified before the first line of code is written.
Another typical example of virtual engineering is a company using an envi-
sioned or existing product as a model for development. It is possible to extract
the same concept of all formulations of virtual engineering: one of an inverse
approach to solve a problem. This means that the solution is obtained from
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Fig. 5.5. Illustration of the virtual engineering concept.

Fig. 5.6. Illustration of the spaces involved in the general design problem.

the specification of ideal properties, rather than from a syntactical descrip-
tion of parameters and some recipe. The setting we find in IMRT planning
is typical of a large-scale design problem. Refer to Figures 5.5 and 5.6 for an
illustration of the following discussion. In order to maintain an abstract setting
here, we will only assume that there exists the need to tailor a complex design
d(x) contained in the design space D (a physical product, a treatment plan,
a financial portfolio, etc.) depending on an element x of the space of parame-
ters X (part configurations, beamlet intensities, investments, etc.) that fulfills
certain constraints. Given design parameters that distinguish a solution, it
can be simulated with the help of a “virtual design tool.” This aid possesses
the capability to virtually assemble the final solution when given the setup
parameters and relevant constraints, effectively constructing an element of D.
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This element is then evaluated using functions fk : D → R. Their com-
bination yields a vector valued mapping f = (fk)k∈K : D → Y from D into
an evaluation space Y. The elements f(d) ∈ Y provide a condensed informa-
tion on the design quality and thus direct the design process. Formulation
of restrictions and desirable goals on the evaluations yields an optimization
problem based on the criterion functions Fk = fk ◦ d.

Focusing on the design process, the main difference to forward engineering
is that the reverse approach is a more systematic solution procedure. Although
the iterations in forward engineering resemble a trial-and-error approach, it is
the mathematical optimization that is characteristic for our virtual engineer-
ing concept.

Because a complex design usually cannot be assigned a single “quality
score” accepted by any decision-maker, there are typically several criterion
functions Fk, k ∈ K. Thus, the problem is recognized as a multicriteria opti-
mization problem

F(x) → min subject to (5.1)
x ∈ X ⊆ X,

where F(x) = (Fk(x))k∈K, and X is the set of all x that fulfill the problem-
specific constraints.

The quest for a solution that has a single maximal quality score should
be transformed to one for solutions that are Pareto optimal [24] or efficient .
A solution satisfying this criterion has the property that none of the individual
criteria can be improved while at least maintaining the others. The affirmative
description is: if a Pareto optimal solution is improved in one criterion, it will
worsen in at least one other criterion. A solution is weakly Pareto optimal or
weakly efficient if there is no solution for which all the criterion functions can
be improved simultaneously. Or, put differently: if the solution is improved in
one criterion, there is at least one criterion that cannot be improved. The set
of all Pareto optimal solutions in X is called the Pareto set and denoted by
XPar. The set of all evaluations of the Pareto set is called the Pareto boundary
and denoted by F(XPar).

5.2.1 Multicriteria optimization strategies

A realization of the conventional forward strategies mentioned before is a
method we label the “Human Iteration Loop”: this is depicted in Figure 5.7.
This strategy has several pitfalls that are all avoidable. First, the decision-
maker is forced to transform the several criteria into a scalarized objec-
tive function. A scalarization of a multicriteria optimization problem is a
transformation of the original problem into a single or a family of scalar
optimization problems to create single solutions that are at least weakly effi-
cient. A standard scalarization, for example, is the weighted sum approach
(see Section 5.3.3). Weights in this scalarization approach are nothing but an
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Fig. 5.7. Human iteration loop described as method of successive improvements.

attempt to translate the decision-maker’s ideal into artificial weights. This
artificial nature results from having to quantify global trade-off rates between
different criteria that are often of very different nature. We will address some
issues with scalarizations in Section 5.3.

Further, given a large dimension of X, it is impossible to ask the decision-
maker for optimization parameters like weights that directly lead to an ideal
solution. An iterative adjustment of the parameters converges to a solution
that hardly incorporates any wishes that are not explicitly modeled. It is
perhaps even presumptuous to expect a decision-maker to specify an ideal
solution in terms of the criteria exactly, let alone to ask for exact global
trade-offs between objectives.

Moreover, initial demands on the solution properties might very well be
reverted when the outcome is seen as a whole. This may be a result of the
realization that the initial conviction of an ideal was blemished or simply the
realization that the description was not complete. In any case, any model of
an ideal that is “cast in stone” and inflexible is detrimental to the design pro-
cess. A truly multicriteria decision-making framework would allow for flexible
modeling because it is able to depict more information.
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With a large number of criteria comes a high-dimensional Pareto boundary
and with this a large number of directions to look for potential solutions for
our problem. For this reason, there exist methods that attempt to convey the
shape of the boundary to the decision-maker. This is most often done implic-
itly, either by giving the decision maker a myriad of solutions that approximate
the boundary or by interactively calculating representative solutions that are
Pareto optimal. Miettinen [47, Part II] adopts the following classification of
methods to attain practical solutions:

1. no-preference methods
methods where no preference information is used, i.e., methods that work
without specification of any preference parameters

2. a posteriori methods
preference is used a posteriori, i.e., the system generates a set of Pareto
optimal solutions of which the decision maker selects one

3. a priori methods
where the decision maker has to specify his preferences through some
parameters prior to the calculation and

4. interactive methods
where preferences are not necessarily stated prior to calculations, but are
revealed throughout.

The large-scale situation in treatment planning forbids the application of
purely interactive methods, and pure a priori methods are not flexible enough
for our demands. With a posteriori methods in the strict sense usually comes
a complex re-evaluation after the actual optimization, whereas no-preference
methods do not allow any goal-directed planning.

We therefore develop in the later sections a hybrid method where some
information is given a priori and used to automatically attain a set of Pareto
optimal points. The final plan is selected using a real-time interactive method
that works on pre-computed plans obtained via an a posteriori method. In
a sense, the methodology described here incorporates advantages of all the
methods classified above. Unlike the Human Iteration Loop, our method does
not require the decision-maker to formulate an individual scalarization prob-
lem. Rather, after specifying aspired values and bounds, the user will be pre-
sented with a database of Pareto optimal solutions calculated offline, which
can be navigated in real-time in a clever way to choose a plan that is in
accordance with the preferences of the decision-maker.

In Section 5.3, we will describe how the solutions are obtained, and in
Section 5.5, we will address the issues faced when selecting from a range of
solutions. Note that the pre-computation of plans is done without any human
interaction, thus taking the Human out of the mundane Iteration Loop. But
even if the user is left out of the optimization, with high dimensions of the
spaces involved comes a costly computation of a candidate solution set. Thus,
the problems that need to be solved have to be manageable by an optimization
routine.
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Specifying properties a solution should have, to return to the idea of virtual
engineering, implicitly places restrictions on the parameters. As the parame-
ters are not evaluated directly, the mapping d : X→ D necessarily becomes a
“subroutine” in the iterations of the optimization process – only a design can
be qualitatively judged in a meaningful way. Many descent algorithms used
in optimization evaluate the objective function rather often during run-time,
making this subroutine a significant driver for the complexity.

In applications, this subroutine often corresponds with time-consuming
simulations. In the IMRT case it is the dose mapping, which is a costly cal-
culation if the degree of discretization is rather fine. A method to cope with
this computational difficulty has to be established. Fortunately, typical design
problems have a numerical property that, if exploited, makes the many nec-
essary computations possible: asymmetry.

5.2.2 Asymmetry in linear programming

Typical design problems are asymmetric in the sense that the number of
parameters is rather small compared with the description of the corresponding
design like, e.g., its characterization by the criterion values or its discrete
representation in the design space with dim(X)� dim(D).

The latter case is well-known in linear optimization: according to [6], the
number of pivot steps that a simplex method needs to reach the solution of a
linear optimization problem strongly depends on the surface structure of the
polyhedral feasible region in the vicinity of the solution, i.e., on the number
of linear constraints defining facets close to the optimum.

Furthermore, in absence of strong degeneracy, the number of linear con-
straints that characterize a feasible element x ∈ X of the parameter space
is about dim(X). If, for example, these constraints arise from bounds on the
different components of the corresponding design d(x) ∈ D obtained under
the linear mapping d : X→ D, there are rather few active constraints in com-
parison with the other roughly dim(D) − dim(X) inactive constraints, which
play no role in this particular x.

This asymmetry is often exploited by aggregation methods, see [22]. Con-
sider the linear problem

cT x → min subject to (5.2)
Ax ≤ b

where c ∈ X and A ∈ R
dim(D)×dim(X) is a matrix with the row vectors aj , i.e.,

d(x) = Ax.
If there were comparably few inequalities aj · x ≤ bj that are fulfilled

with equality in a neighborhood of the solution x∗ and thus require exact
knowledge of the values aj · x to characterize the solution, using more or less
exact approximations of the other values would not affect the solution at all.
In other words, one could get away with an approximate A′, which is ideally
of a much simpler form and thus allows a faster evaluation of the approximate
mapping d′ : x �→ A′x.
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Aggregation methods would then construct such an A′ by replacing fami-
lies of similar inequalities by single surrogate ones that form an approximation
of the surface structure of the feasible region with a moderate approximation
error. An aggregation method called the adaptive clustering method, which was
invented in the context of IMRT plan optimization, is presented in Section 5.4.

To summarize,

1. virtual engineering problems naturally lend themselves to formulations of
multicriteria optimization problems,

2. the multicriteria setting can be coped with by appropriate optimization
methods and clever schemes for selecting a solution (presented in later
sections), and

3. in order to manage the computations, the asymmetry inherent to many
design problems can be exploited.
In the following section we describe the a posteriori part of the multicrite-

ria framework for the treatment planning problem. The interactive component
is the subject of Section 5.5.

5.3 Multicriteria Optimization

In IMRT, the multicriteria setting stems from the separate evaluations of
a dose distribution in the various volumes of interest (VOIs). As there is
typically no solution that simultaneously optimizes all criterion functions,
there exist trade-offs in changing from one treatment plan to another.

There are many examples in which some organs are natural “opponents.”
In cases of prostate cancer, the rectum and the bladder are such opponents
(see Figure 5.8). In head-and-neck cases, sparing more of the spinal cord typ-
ically means inflicting more damage on the brain stem or the parotid glands.

Fig. 5.8. Exemplary prostate case where the target volume is situated between two
critical structures.
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Another example of conflicting goals is the aspired homogeneity of the dose
distribution in the target versus the overdosage of some risk VOI. Also, choos-
ing more than one criterion for a volume renders the problem multicriterial.

IMRT planning using multicriteria optimization formulations and tech-
niques has been a fruitful area of research in recent years. Among the earliest
approaches is the weighted sum method of Haas [27] who employed a genetic
algorithm to search for “good” scalarization weights. Some ideas to include
the decision-maker further into the solution generation process was developed
by a subset of the authors of [27] in [26]. In essence, this was another form of a
Human Iteration Loop. Cotrutz et al. [15] first applied multicriteria optimiza-
tion to inverse IMRT planning. However, they could only achieve reasonable
computation times for the case of two to three criteria.

Multiobjective linear programming formulations were also proposed, for
example in [29] or [28]. Holder [29] applied some results from interior point
methods to attain solutions of a multiobjective linear programming formu-
lation with different solution characteristics. Hamacher and Küfer [28] put
more focus on “attractive” dose distributions by first formulating a (mixed
integer, linear) inequality system to specify allowable ranges for dose values
in volume parts and then minimizing maximal deviations from this range of
“ideal” dose. They proposed a continuous relaxation to be solved by stan-
dard linear programming (LP) techniques. Küfer et al. [37] use a linear model
based on the equivalent uniform dose concept presented in [71] by a subset of
the authors. Yet, the restriction to linear modeling limits the possibilities to
formulate clinically meaningful objective functions.

There have also been several suggestions of global nonlinear optimization
models. Solutions to these problems are most often found by some evolutionary
scheme or a randomized algorithm. In both cases, it is very difficult to make
statements about the quality of the solutions. Lahanas et al. [38] describe an
approach to a global formulation, together with some decision support using
projections of the Pareto front on 2 dimensions. Their methodology suffers
from the non-convexity and the resulting complexity in solving the problem,
as well as from the limited flexibility in the decision-making process: the set
of solutions they calculate is a static set, unaltered once created.

We use a convex nonlinear modeling that covers the shortcomings of the
approaches mentioned above. Its ingredients will be described in the next two
sections. In Section 5.3.1, we specify the criterion functions we use, and in
Section 5.3.2, we introduce the constraints of our model. In the remainder of
the section, we discuss the applicability of different multicriteria optimization
approaches.

5.3.1 Modeling the inverse treatment planning problem

An oncologist assesses the quality of a treatment plan predominantly based on
the shape of the dose distribution. Because there does not exist an accepted
notion of how to judge the quality of a dose distribution even for individual
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Fig. 5.9. Exemplary DVH curve with the resulting EUDs for a parallel and a serial
organ.

organs, we will discuss some common choices. For a more complete survey,
see [67] and the references therein.

A popular choice are so called DVH constraints. The dose-volume his-
togram (DVH) depicts for each VOI the volume percentage that receives at
least a certain dose as a function of the dose (see Figure 5.9). It thus condenses
the information present in the dose distribution by neglecting geometric infor-
mation.

A DVH constraint enforces one of the curves to pass above or below a
specified dose-volume point. So either the percentage of volume that receives
less than the specified dose or the volume that receives more than a specified
dose is restricted for the chosen VOI. DVH constraints are widely used, in
particular some clinical protocols are formulated using DVH constraints.

Unfortunately, incorporating DVH constraints into the optimization
results in a nonconvex feasible region and thus a global optimization problem.
Hence, given a local optimum of the problem, there is no guarantee for global
optimality. Therefore, either an enormous computational effort has to be
spent for finding all local optima or a suboptimal solution, whose deficiency
in quality compared with the global optimum is unknown, has to be accepted.

Hence, convex evaluation functions of the dose distribution in a VOI have
been devised that try to control the DVH. For a numerical treatment of the
planning problem, the relevant part of the patient’s body is partitioned into
small cubes called voxels Vj . Then the dose distribution can be expressed as
a vector of values d(Vj) with one dose value per voxel. Using this notation,
one such evaluation function is

fk(d) :=
∑

Vj⊆Rk

(max{d(Vj)− Uk, 0})q
, q ∈ [1,∞), (5.3)
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where Rk is some risk VOI. This function penalizes the parts of the volume,
where the dose distribution exceeds a specified threshold Uk. In terms of the
DVH curve, this function penalizes nonzero values beyond the threshold of Uk.

In [57], Romeijn et al. propose a different type of dose-volume constraint
approximation, which yields a piece-wise linear convex model analogous to
the well-known Conditional Value-at-Risk measure in financial engineering.

Another approach to quantify the quality of a dose distribution in a VOI
considers the biological impact. The biological impact is assessed using sta-
tistical data on the tumor control probability (TCP) and the normal tissue
complication probability (NTCP) [76, Chapter 5]. These statistics are gained
from experiences with thousands of treated patients, see, e.g., [21].

The concept of equivalent uniform dose (EUD) was first introduced by
Brahme in [10]. The EUD is the uniform dose that is supposed to have the
same biological impact in a VOI as a given non-uniform dose distribution and
depends on the type of the VOI.

The most well-known is Niemierko’s EUD concept [51], which uses the
La-norm to compute the EUD:

fk(d) =

⎛

⎝ 1
#{Vj ⊆ Rk}

·
∑

Vj⊆Rk

d(Vj)a

⎞

⎠

1
a

, a ∈ (−∞, 0) ∪ (1,∞). (5.4)

Figure 5.9 illustrates EUD evaluations of a given DVH for two different
a-parameters. The dotted and the dashed lines are EUD measures with a
about 1 and a close to ∞, respectively. Organs that work in parallel, i.e.,
organs such as lungs or kidneys that are viable even after part is impaired,
are evaluated with an a close to 1, whereas serial organs, i.e., structures that
depend on working as an entity like the spinal cord, are evaluated with high
a values.

Romeijn et al. [59] show that for multicriteria optimization, many common
evaluation functions can be expressed by convex functions yielding the same
Pareto set.

The numerical solutions presented later are calculated using Niemierko’s
EUD concept for the risk VOIs and a variant of (5.3) for the upper and lower
deviations in tumor volumes. However, the methods described in this paper
are valid for any set of convex evaluation functions.

5.3.2 Pareto solutions and the planning domain

Our method is based on gathering preference information from the decision
maker after the automatic calculation of some Pareto solutions. It is neither
possible nor meaningful to calculate all efficient solutions. It is impossible
because in the case of convex evaluation functions, the Pareto set is a con-
nected subset of the set of feasible solutions [75] and therefore uncountable. It
is also not meaningful as there are many Pareto solutions that are clinically
irrelevant.
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Fig. 5.10. Exploration of the Pareto set for a head-and-neck case by enumeration
methods. Every dot represents a treatment plan. A total of 16×16 = 256 plans were
generated. The large round dots represent the Pareto set for this case, i.e., the set
of efficient treatment plans.

For instance, in the example given in Figure 5.10, one would not go from
point A with dose levels of 11 Gy in the spinal cord and 13 Gy in the parotid
gland to the upper left efficient solution with dose levels of 9 Gy (spinal cord)
and 33 Gy (parotid gland). In other words, the 2 Gy dose reduction in the
spinal cord at this low dose level is not worth the “price” of a 20 Gy dose
increase in the parotid gland, which may cause xerostomia.

To avoid unnecessary computations, we focus on parts of the Pareto bound-
ary that contain clinically meaningful plans. Because it is easier to classify
clinical irrelevance than relevance, we try to exclude as many irrelevant plans
as possible and call the remaining set of possible plans the planning domain.

To exclude plans that exceed the clinically acceptable values in the criteria,
hard constraints are added. Let F be the vector of criteria and x be the vector
of beamlet intensities, see Section 5.4, the so called intensity map. Then, these
box constraints

F(x) ≤ u

for upper bounds u should be set rather generously in order to allow a flexible
range of solution outcomes. Of course, the more flexible this range is chosen,
the more calculations will be necessary.

In exceptional cases, i.e., if they are chosen too strict, they may lead to
infeasibility. This serves as an indication to the decision-maker that the initial
appraisal of the situation was utopian. If after a relaxation of the box con-
straints there are still no feasible solutions, the oncologist may realize that
more irradiation directions, i.e., more degrees of freedom, are needed to find
a clinically acceptable solution and alter the geometry accordingly.
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5.3.3 Solution strategies

Usually, multicriteria problems are solved by formulating multiple scalarized
versions of the problem. There are several standard methods along with their
variations that can be used to scalarize the multicriteria problem and that
exhibit different characteristics. In this section, we introduce some standard
scalarizations and the one used in this work.

Once a planning domain is fixed, the problem to solve is given by

F(x) → min subject to (5.5)
x ∈ Xu,

where
Xu := {x ≥ 0 | F(x) ≤ u}

is the set of feasible intensity maps.
In the weighted sum approach, weights wk > 0 are chosen for each eval-

uation function Fk, k ∈ K and the weighted sum of the function values is
minimized. ∑

k∈K
wkFk(x) → min subject to (5.6)

x ∈ Xu.

For convex multicriteria problems, every set of positive weights yields a
Pareto optimal plan, and every Pareto optimal plan is an optimum of (5.6)
for an appropriate set of non-negative weights (see [47, Chapter 3.1] for more
details).

Another standard approach is the ε-constraint method.
Fl(x) → min subject to (5.7)
Fk(x) ≤ εk for all k ∈ K

x ∈ Xu,

where all l ∈ K must be minimized successively to ensure Pareto optimality.
The bounds εk are varied to obtain different results. If chosen appropriately,
every Pareto optimal plan can be found [47]. The ε-constraint method is
typically used to compute a fine grid of solutions on the Pareto boundary.

A further approach is the compromise programming or weighted metric
approach [47, 85, 88]. Here, a reference point is chosen, and the distance to
it is minimized using a suitable metric. The reference point must be outside
the feasible region to ensure (weak) Pareto optimality. The ideal point (the
point given by the minima of the individual criteria) or some utopia point (a
point that is smaller than the ideal point in each component) can be used as
reference points.

The different components of F(x) are scaled to obtain different solutions.
Alternatively, the metric can be varied, or both. The solutions obtained are
guaranteed to be Pareto optimal if the metric is chosen appropriately and the
scaling parameters are positive.
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A popular choice is the Tchebycheff problem

max
k∈K

{σkFk(x)} → min subject to (5.8)

F(x) ≤ u

x ∈ Xu.

Solutions to (5.8) are in general weakly efficient. For that reason, the objec-
tive is often augmented by

ε
∑

k∈K
Fk(x),

with ε > 0 arbitrarily small, resulting in augmented Tchebycheff problems that
produce properly efficient solutions.

The scaling can be derived from ideal values for the criteria as in [37]. Still,
the choice of the scaling factors σk is difficult for the same reasons that it is
difficult to formulate a relevant planning domain: the decision-maker may not
know enough about the case a priori.

Note that scaling is not the same as choosing weights for a problem like
the weighted scalarization (5.6) above. The coefficients σk contain information
about the willingness to deteriorate relative to the specified reference point.
Thus, deviations from the treatment goals can be much better controlled by
reference point methods than by (5.6), as the solutions obtained by varying
weights provide no information about the trade-offs of the criteria, see [17].

The concept of achievement scalarization functions introduced in [78, 79]
and discussed in [47, 80] generalizes the weighted metrics approach. It allows
improvements that exceed the specified aspiration levels and thus does not
require a priori knowledge about the ranges of the different criteria.

The scalar problems our approach utilizes are so-called extreme compro-
mises. The extreme compromises successively minimize the maximum values
occurring in subsets of the criteria. They partition the set of criteria into the
subsets of active and inactive ones, then first care for the successive maxima
in the active criteria and thereafter treat the inactive criteria likewise.

Let ∅ �=M⊆ K be the set of indices of the active criteria. Define

πM : Y×K → K

such that

yπM(y,k) ≥ yπM(y,k′) for k, k′ ∈M, k ≤ k′

yπM(y,k) ≥ yπM(y,k′) for k, k′ �∈ M, k ≤ k′

πM(y, k) ≤ πM(y, k′) for k ∈M, k′ �∈ M.

in analogy to [19, Chapter 6.3], let

sort(y) :=
((

yπM(y,k)

)
k∈M ,

(
yπM(y,k)

)
k �∈M

)
.
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The solution of
sort (F(x)) → min subject to (5.9)

x ∈ Xu

is called extreme compromise for the active criteria M. It can easily be seen
that the extreme compromises are Pareto optimal for every non-empty setM.
The resulting criterion vector F(x∗) will consist of several groups of indices
with decreasing function value. Here, the groups lying in M and in K\M by
construction form independent scales.

The extreme compromise with all criteria active, i.e., M = K, is known
as lexicographic max-ordering problem [19], variant lexicographic optimization
problem optimization problem [61], or as nucleolar solution [44] and nucleolus
in game theory (see references in [44, 61]). The latter articles also describe
methods for computing it. Sankaran [61] is able to compute it solving |K|
optimization problems using |K| additional variables and constraints. We call
this particular extreme compromise the equibalanced solution.

The general extreme compromises can be determined by applying the
above method lexicographically to the two subsets. Alternatively, if upper
bounds and lower bounds for the criterion functions are known, the functions
can be scaled and shifted such that the largest values in the inactive criteria
are always smaller than the smallest values in the active criteria. Sankaran’s
algorithm will then directly yield the corresponding extreme compromise.

The interactive method presented in Section 5.5 works with a precomputed
approximation of the relevant part of the Pareto boundary. To construct such
approximations, the scalarizations presented in this section are repeatedly
used by higher level routines yielding the approximation. The applicability of
several common approximation schemes for our problem is discussed in the
following section.

5.3.4 Approximation of the Pareto boundary

Following the classification used in [60], we briefly discuss the applicability of
point-based approximations of the efficient set in X and point-based, outer,
inner, and sandwich approximations in Y := F(X ).

“Since the dimension of YPar := F(XPar) is often significantly smaller
than the dimension of XPar, and since the structure of YPar is often much
simpler than the structure of XPar,” it is worthwhile to search for a solution
in the outcome space YPar [5]. Thus, in IMRT planning, where the dimensions
are 4–10 for Y, and 400–2000 for X , it is futile to work with a point-based
approximation in X .

The methods for point-based approximations of F(XPar) usually fall into
one of the following categories:

1. they use fixed grids for the scalarization parameters [12, 55, 70],
2. state relations between approximation quality and distance of scalarization

parameters for arbitrary grids [1, 50] or
3. try to create a fine grid directly on the Pareto boundary [23, 62].
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The methods in (1) cover the scalarization parameter set whose dimension is
at least |K| − 1 with regular grids of maximum distance ε. The methods in
(2) and (3) in turn cover the Pareto boundary — which is in general a |K|− 1
dimensional manifold — with grids of maximum distance ε. In any case, the
number of points needed is at least

O
(
(1/ε)|K|−1

)
.

Such a number of points is neither tractable nor actually needed for our prob-
lem. We use interpolation yielding a continuous approximation of the Pareto
boundary to overcome the need for a fine grid.

The continuous approximation using convex combination is insensitive to
large gaps as long as the interpolates stay close to the Pareto boundary.
Hence, the distance between grid points is not an appropriate quality mea-
sure. Because of convexity, the interpolated solution is at least as good as the
interpolated F-vectors of the interpolation points (Figure 5.11).

Thus, if the distance between the convex hull of the pre-computed criterion
values and the Pareto boundary is small, so is the distance for the interpolated
plans. Note though, that the approximation attained by the convex hull of
the pre-computed plans will probably contain notably suboptimal points and
possibly convex combinations that approximate non-Pareto optimal parts of
the boundary of the feasible set.

The above reasoning motivates the use of distance-based methods for
approximating the Pareto boundary in the first phase of our hybrid proce-
dure. There are three types of distance-based methods:

• outer approximation methods
• inner approximation methods and
• sandwich approximation methods.

F1

F2

Fig. 5.11. The F-vector of the convex combination of solutions is in general better
than the convex combination of the original F-vectors.
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Outer approximation methods successively find new supporting hyper-
planes and approximate the Pareto boundary by the intersection of the cor-
responding half-spaces. The methods proposed by Benson [3] and Voinalovich
[74] for linear multicriteria problems are clearly not directly applicable to
our nonlinear case, although some of the ideas can be combined with inner
approximation methods to form sandwich approximation schemes.

Inner approximation methods [14, 16, 64] create successively more Pareto
optimal points and approximate the Pareto boundary with the close-by facets
of the convex hull of the computed points. Sandwich approximation methods
[35, 68] determine supporting hyperplanes for every computed Pareto opti-
mal point and use the corresponding half-spaces to simultaneously update the
outer approximation. Having an inner and outer approximation, the sandwich
approximation schemes are able to give worst-case estimates for the approxi-
mation error.

All methods mentioned try to choose the scalar subproblems such that
the maximal distance between the Pareto boundary and the approximation is
systematically reduced. The construction of the inner approximation is con-
ducted in all five methods by variations of the same basic idea:

1. create some starting approximation that consists of one face, i.e., a |K|− 1
dimensional facet;

2. find the Pareto point that is farthest from the chosen face by solving a
weighted scalarization problem with a weight vector that is perpendicular
to the face;

3. add the point to the inner approximation and update the convex hull;
4. if the approximation is not yet satisfactory, choose a face from the inner

approximation and go to 2, otherwise stop.

The methods are perfectly suited for our needs as they control the distance
to the Pareto boundary and systematically reduce it. Unfortunately, all of
them use convex hull computations as a subroutine in step 3 — a method
with immense computational expense and memory needs in higher dimensions.
The best available algorithms for convex hull computations usually work for
dimensions up to 9 [2, 14]. But the trade-off between computational and
memory expense for the convex hull subroutine against computational savings
due to well-chosen scalar problems reaches its breakeven point much earlier.

In multicriteria IMRT planning, often two to three nested tumor volumes
are considered, each having separate criterion functions for the lower and
upper dose deviation. Furthermore, several risk VOIs are within reach of the
tumor so that we can easily exceed the dimensionality where applying the
distance-based approximation methods is still reasonable.

Therefore, we either have to apply heuristic or stochastic approximation
approaches. The covered range plays a crucial role in the interactive selection
process, and there is no guarantee that a reasonable range is achieved with
stochastic procedures. Hence, we propose to use a heuristic to supply the
appropriate ranges and a stochastic procedure to improve the approximation
with further points.
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To achieve the ranges, we compute the extreme compromises for every
non-empty subset of K. The rationale behind the definition of the extreme
compromises is to fathom the possibilities for simultaneously minimizing a
group of criteria for all possible such groups (see Figure 5.12(a)).

Note that the solutions minimizing individual criteria, the so-called indi-
vidual minima, are contained in the extreme compromises. Thus, also the
convex hull of individual minima (CHIM) – the starting point for the inner
approximation in [16, 68] and a possible starting point in [35, 64] – is contained
in the convex hull of the extreme compromises. Figure 5.12(a) shows that the
extreme compromises cover substantially more than the CHIM, which is in
this case even sub-dimensional. This is due to the fact that two of the three
criteria share a common minimum.

a

b

Fig. 5.12. Extreme compromises in 3 dimensions. The integer sets state the active
set for the corresponding extreme compromise. The squares are individual minima.
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The extreme compromises are often not of high clinical relevance as the
inactive criteria may reach their upper bounds and are thus close to the plans
that were a priori characterized as clinically irrelevant.

The complexity of calculating the extreme compromises is exponential, as
the number of optimization problems of type (5.9) that have to be solved is
equal to the number of non-empty subsets of K which is 2|K| − 1.

Figure 5.12(b) shows the position of the extreme compromises for Y being
a bent open cube. Again the squares depict the individual minima. As one
can see, we need the full number of extreme compromises to cover the Pareto
boundary for this case. In the general case, the “grid” given by the extreme
compromises is distorted, with occasional degeneracies (see Figure 5.12(a)).

One method to reduce the number of computations is to group related
VOIs and treat them as one component. They are turned active or inactive as
a group and hence only count as one criterion in the exponential complexity
term. In a head-and-neck case, one could for example group the eyes with
their respective optical nerve as it is meaningless to spare one while applying
critical doses to the other.

To improve the approximation of the Pareto boundary, we add further
points to the approximation by a stochastic procedure. These points will most
likely not change the range of the approximation but improve the distance
between the approximation and the Pareto boundary. This allows us to better
convey the shape of the Pareto boundary to the planner in the navigation
process (see Section 5.5).

For the stochastic procedure, the scaling in an augmented Tchebycheff
problem (5.8) is chosen randomly from a uniform distribution. It is so far
an open question whether it is worthwhile to use non-uniform distributions,
which make it less likely that a new parameter set is chosen that is close to an
already used one. The distribution of the solutions for the non-uniform distri-
bution would clearly be better, but to update the distribution after the calcu-
lation of a solution and the evaluation of the distribution requires additional
computational effort that could thwart the effect of the improved distribution.

As it was mentioned in Section 5.2, the computation of the extreme
compromises and the intermediate points are technical and done without
any human interaction, so the calculations could for example run overnight.
Nonetheless, the overall number of solutions to be calculated can be large
making it essential to improve the speed of the individual calculations.

5.4 The Numerical Realization

In this section, we introduce the dose calculation used by our optimization
method. We then explain our approach to deal with the high dimensionality
of our problems that exploit the asymmetry introduced in Section 5.2.

The width of the leaves of the MLC used to apply the treatment implies
natural slices of each beam. A further dissection of each slice into rectangular
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Fig. 5.13. Schematic form of an intensity map for a head-and-neck case. Different
gray levels correspond with different intensities.

areas leads to a partition of the beam into beamlets. The intensity mod-
ulation of a beam is now given by the intensity values of each beamlet
(see Figure 5.13).

The discretization in the body volume is typically based on small cuboid-
shaped voxels Vj . The dose distribution on the volume can now be represented
by voxel-related dose values. As there are typically up to a few thousand
beamlets and several hundred thousand voxels, we are dealing with a truly
large-scale optimization problem. As a consequence of the superposition prin-
ciple of dose deposits in the volume in the case of photon therapy, the dose
distribution for an intensity vector then follows as

d : X → D,

x �→ P · x,

with the matrix P being the dose information matrix. The entry pji of this
matrix represents the contribution of the i-th beamlet to the absorbed dose in
voxel Vj under unit intensity. There are several methods to attain these values.
They might be calculated using the pencil beam approach, a superposition
algorithm, or some Monte Carlo method. In this chapter we do not discuss
this important issue; we assume P to be given in some satisfactory way.

5.4.1 The adaptive clustering method

Plan quality is measured by evaluating a dose distribution in the involved
clinical structures. Typically, during plan optimization the dose distribution
will attain an acceptable shape in most of the volume, such that the final
quality of a treatment plan strongly depends on the distribution in some
small volume parts. Often this effect is observed in regions where the descent
of radiation from the cancerous to the healthy tissue implies undesirable dose-
volume effects.

Based on this problem characteristic, several approaches to reduce the
computational complexity of the problem by manipulations in the volume have
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been tried (see the listing in [86]). These manipulations are done by heuristic
means prior to the optimization routine and incorporate, for example, the use
of large voxels in less critical volume parts, a restriction to the voxels located in
pre-defined regions of interest, or a physically motivated selection of voxels.
However, such heuristic problem modifications may lead to an insufficient
control on the dose distribution during the optimization and thus result in a
plan with inferior quality.

The adaptive clustering method overcomes these defects by an sequential
adaptation in the volume. It was introduced in [37] and it is discussed in detail
in [65]. We will thus only briefly explain it here and provide a small example
in Section 5.4.2.

In a preprocessing step, voxels with their corresponding dose information
are aggregated to clusters. This process is repeated to form a cluster hierarchy
(see Figure 5.14). This hierarchical discretization process is independent of
how dose distributions are evaluated — the same cluster hierarchy may be
used in several models with different criterion functions. Figure 5.15 shows
for a clinical head-and-neck case the progress of the hierarchical clustering
process in a transversal voxel layer.

Created only once for an IMRT planning problem, the resulting cluster
hierarchy then serves as a “construction kit” to generate adapted volume

Fig. 5.14. Illustration of the cluster hierarchy.

Fig. 5.15. The progress of the hierarchical clustering process in time in a transversal
voxel layer. In this layer, the clinical target volume is located on the right side, the
planning target volume on the left, and the spinal cord in the center. The remainder
is unclassified tissue. The voxels (left) are iteratively merged to clusters of increasing
size (center and right).
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Fig. 5.16. The adapted clusterings for a transversal voxel layer at the beginning
of the local refinement process (t = 0) and after the first (t = 1) and second (t = 2)
local refinement step. The filled clusters are the ones that were refined in the previous
step.

discretizations for the scalarized multicriteria planning problems. Each opti-
mization starts on a coarse clustering that consists of large clusters. The
method formulates a series of optimization problems, each of which solves
the planning problem on adapted volume discretization. While the optimiza-
tion runs, the algorithm gradually detects those volume parts responsible for
large contributions to the evaluation functions and replaces the corresponding
clusters in local refinement steps by smaller ones to improve the local control
on the dose distribution. Discretizations with clusters of different resolution
are called adapted clusterings. Transversal slices of such adapted clusterings
are shown in Figure 5.16.

Because of the individual adaptation of the volume structure during the
optimization by the local refinement process, the result is numerically optimal
with respect to the original problem but can be obtained with a significantly
smaller expense than a computation on the original voxel-based volume struc-
ture would have required. Numerical experiments on several sets of real clinical
data typically show a reduction in computation time by a factor of about 10
compared with an optimization on the original volume structure, where both
computations yield plans with almost identical evaluation function values.

5.4.2 Asymmetry in the inverse treatment planning problem

The decisively reduced computational expense obtained by the adaptive clus-
tering method traces back to the asymmetry of the inverse treatment planning
problem. Consider the treatment planning problem as a general design prob-
lem, see Section 5.2.2. The quality of a dose distribution in a VOI is measured
by an evaluation function f .

Assume that voxels with similar dose values that result from similar row
vectors p(V ) of the dose information have similar influence on the evaluation
functions. In case of fRk

for a VOI Rk, ∂
∂d(V )fRk

(d) is continuous in d. Then
the asymmetry is manifested in the following sense.



148 K.-H. Küfer et al.

Let x∗ be a solution to a scalarization of the planning problem like the
Tchebycheff problem (5.8) and P′ = (p′(V )) ∈ R

dim(D)×dim(X) be an approxi-
mation of P. Then

fRk
(P · x∗) ≈ fRk

(P′ · x∗) +
∑

V ⊆Rk

∂fRk

∂d(V )
(P′ · x∗) · (p(V )− p′(V ))x∗,

and a reasonable choice of p′(V ′) for each family of voxels V ′ with similar
partial derivatives and dose values yields fRk

(P′ ·x) ≈ fRk
(P ·x) with a very

moderate error. This means that the problem using P′ instead of P is then a
good approximation of the original problem.

The soundness of this approach follows from standard results of sensitiv-
ity analysis. As our approximations of the row vectors become better, i.e.,
maxV ‖p(V ) − p′(V )‖ → 0, the optimal solutions of the approximate prob-
lems converge to the optimal solutions of the original problem. However, even
larger ‖p(V ) − p′(V )‖ could be easily accepted, provided the resulting dose
differences (p′(V )− p′(V )) · x∗ only marginally affect the quality of the dose
distribution as measured by the criterion functions.

This implies the following conclusion: if one had an approximation P′

of P, for which P′ · x could be cheaply computed, then the optima of the
corresponding approximate problem would also be (almost) optimal for the
original problem but could be obtained with a much smaller computational
expense.

In contrast with many other optimization problems, the continuous back-
ground of this problem provides a possibility to exploit the asymmetry by
constructive means. Voxels lying in the vicinity of each other are irradiated
similarly by most of the beamlets and thus play a similar role in the opti-
mization. Critical voxels with a strong influence on the quality of the dose
distribution d and its evaluation will thus concentrate in local volume parts
that depend more or less continuously on d. Hence, a thorough examination
of the voxels to detect the critical ones also reveals the subspace of D that
requires a mapping with the original row vectors and the ones for which even
large gaps ‖p(V ) − p′(V )‖ can be accepted. This allows a highly efficient
construction of an approximate P′ as done in the adaptive clustering method.

To summarize, the concept of asymmetry provides a strategy to tackle
the large-scale optimization problems that have to be solved to generate a
database of plans. We are able to calculate efficient solutions of the original
multicriteria problem comparably fast.

5.5 Navigating the Database

When the plan database computation is finished, a vital part of the planning
is not yet accomplished. The planner still has to decide on a plan. Because
inspecting a plan usually involves sifting through all its slices, a manual inspec-
tion of all plans contained in the database is infeasible. In particular, when we
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additionally consider convex combination of plans and thus an infinite number
of plans, manual inspection is not an option.

We use an interactive multicriteria optimization method that works on the
convex hull X̂ := conv

{
x(l), l ∈ L

}
of pre-computed plans x(l), l ∈ L. User

actions are transformed into optimization problems on this restricted domain.
The restriction of domain together with the structural information gained
during the calculation of the database allows the problems to be solved in
real-time. Therefore, the execution of the interactive method feels more like
navigation than optimization.

The feeling of direct control is strengthened by constantly providing the
user with a visualization of the current solution and up-to-date estimates of
the ideal and the nadir point. The former is the combination of the individ-
ual minima of the criteria over the current domain. The latter combines the
maxima of the individual criteria over the Pareto optimal plans in the current
domain. Having thus a clear picture of the possibilities and limitations, the
planner’s decisions are based on a much firmer ground.

There are two basic mechanisms in our interactive method (patented for
radiotherapy planning by the Fraunhofer ITWM [72]):

• the restriction mechanism that changes the feasible region and
• a search mechanism called selection that changes the current solution.

The former updates the ideal and nadir point estimates when the user
changes the box constraint for a criterion. The latter searches for a plan that
best adheres to a planner’s wish.

A special variant of the restriction mechanism is the use of a lock, which is
a shortcut for restricting the chosen criterion to the current or better values.
Furthermore, the whole database can be re-normalized, i.e., all plans can be
scaled to a new mean dose in the target.

5.5.1 The restriction mechanism

The restriction mechanism allows the planner to set feasible hard constraints
on the criterion values a posteriori. He can thus exclude unwanted parts of the
Pareto boundary of Ŷ := F(X̂ ), the image of the restricted domain under the
vector of evaluation functions. Let X̂u :=

{
x ∈ X̂ : F(x) ≤ u

}
be the set of

solutions that are feasible for the current upper bounds u and Ŷu := F
(
X̂u

)

be the set of corresponding criterion vectors.
Every change in the right-hand side of the box constraints F(x) ≤ u

causes the system to update its estimate of the ideal and nadir point, thus
providing the planner with an update of the so-called planning horizon – the
multidimensional interval between the ideal and nadir point estimate.

This interval is important information for the decision maker, as “(t)he
ideal criterion values are the most optimistic aspiration levels which are pos-
sible to set for criteria, and the nadir criterion values are the most pessimistic
reservation values that are necessary to accept for the criteria” (see [36]).
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Minimum values: the ideal point

Let us now introduce some notation. The intensity maps of the pre-calculated
plans are combined into a matrix X :=

(
x(l)

)
l∈L with columns consisting of

the intensity maps. Likewise, the criterion vectors y(l) := F(x(l)), l ∈ L are
combined into a matrix Y =

(
y(l)

)
l∈L. Thus, the entry (k, l) of Y represents

the kth criterion value of the lth solution.
As the change of an upper bound in some criterion changes the feasible

region, it may alter the minima of the criteria as well. If the upper bound u
changes, the new ideal point can be found by solving the following problem
for each criterion function Fk ∈ K:

Fk(Xλ) → min subject to (5.10)
F(Xλ) ≤ u

λ ∈ Σ,

where Σ :=
{

λ ∈ R
|L|
+ : eT λ = 1

}
is the simplex of convex combination

coefficients.
The optimization problem (5.10) finds a convex combination, minimizing

the kth criterion, while observing the upper bounds u.
Problem (5.10) is convex because the functions Fk are convex and can

therefore be efficiently solved. However, it is not clear a priori how fast these
problems can be solved — at least it is not known if they can be solved
fast enough to allow a real-time navigation. Hence, a linear approximation of
(5.10) is formulated as:
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Fig. 5.17. A new upper bound for FR2 is introduced.
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(Yλ)k → min subject to (5.11)
Yλ ≤ u

λ ∈ Σ.

The linear problem (5.11) overestimates the true criterion values

Yλ =
(
F(x(l))

)

l∈L
λ ≥ F(Xλ) (5.12)

due to convexity. Therefore, the feasible region of problem (5.11) Λ′ := {λ ∈
Σ | Yλ ≤ u} is contained in the feasible region of the original problem (5.10):

Λ′ ⊆ Λ := {λ ∈ Σ | F(Xλ) ≤ u} (5.13)

Hence, the LP works on a subset of the original domain, and due to convex-
ity, its objective function is larger than the original convex objective function.
Therefore, the result gives an upper bound for the true minimum.

Depending on the computational complexity of the original formulation,
one can either solve the |K| original problems for the individual minima or
use the linear estimates.

Maximum values: the nadir point

A different problem is faced in finding the maximum values of the criteria. For
this, let û be the vector of the individual maxima contained in the database,
i.e., ûk := maxl∈L

{
y
(l)
k

}
. It can easily be shown that this is the nadir point

of the multicriteria problem restricted to X̂ . From the definitions, it directly
follows that X̂ = X̂û.

However, for general u the situation is not as straightforward. The problem
formulation to obtain the kth coordinate of the nadir point reads:

Fk(Xλ) → max subject to (5.14)
F(Xλ) ≤ u

F(Xλ) Pareto optimal
λ ∈ Σ.

Computing the exact nadir point components is a convex maximization
problem over a non-convex domain — the Pareto boundary — and thus
a global optimization problem, which is difficult to solve in three or more
dimensions (see, e.g., the abstract of [4]). In [81] an overview of methods for
optimization over the Pareto optimal set is given — a class of algorithms that
is more general, but can be used for the nadir point detection. More such
algorithms are proposed in [18, 30, 31, 42], all of which involve global opti-
mization subroutines and at best converge in finitely many iteration but are
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inappropriate for a real-time procedure. An exception is the algorithm pro-
posed in [20] that is less computationally involved, but as it heavily relies on
bicriteria subproblems, it only works for up to three criteria.

Because exact methods are intractable, heuristic estimates for the nadir
point have to be used. Estimates using the so-called payoff table (see, e.g., [47])
are problematic, because they can be too large or too small and arbitrarily
far away from the true value (see [32]). But in [20], small algorithmic changes
to the payoff table heuristic are proposed that make it either a lower or upper
bound for the true value. Applying these small changes to the problems solved
when looking for the ideal point, the improved payoff table entries can be
computed with almost no additional effort.

In [36], a heuristic to approximate the nadir point for linear multicriteria
optimization based on the simplex algorithm is proposed. It uses its objective
function to enforce Pareto optimality and successively changes the right-hand
side to maximize the currently considered criterion. Furthermore, a cutting
plane is used to cut off the part of the polyhedron that contains smaller values
than the most current estimate. The heuristic yields a lower bound for the true
nadir value, as in general it only detects local maxima. It involves no global
optimization subroutines and is thus eligible for our purposes. Additionally,
it can be stopped any time still yielding a lower bound for the nadir point;
although the estimate is less accurate then.

The heuristic works on the fully linearized problem and thus we still have
to calculate the true Fk(Xλ(k)) values for the optimal convex combination
coefficients λ(k) of problem (5.14) for all k ∈ K to get an estimate for the
nadir point of the convex problem.

Depending on the time restrictions and the problem complexity, one can
either evaluate the payoff tables in conjunction with the ideal point detec-
tion or use the more sophisticated nadir point heuristic above. Furthermore,
the payoff table heuristic can be used while the upper bound is changed, and
the simplex-based nadir point heuristic is used to correct the values when the
changes have taken place.

5.5.2 The selection mechanism

Thus far, the user can only manipulate the planning horizon but cannot change
the current solution. This is done with the selection mechanism.

The first solution shown can be any plan from the database. Usually, the
equibalanced solution is presented first. Now, the user can change one of the
criterion values of this solution within the bounds given by the ideal and nadir
point estimates. The system searches for a solution that attains the modified
value in the chosen criterion and degrades the other criterion values least
possible.

This search is accomplished by solving an achievement scalarization prob-
lem for a specifically chosen reference point. Let μ be the value chosen for Fk′ ,
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ȳ be the criterion vector of the former solution, and K′ := K \ {k′}. Then the
selection mechanism problem is formulated as

max
k∈K′

{Fk(Xλ)− ȳk}+ ε
∑

k∈K′

Fk(Xλ) → min subject to

F(Xλ) ≤ u (5.15)
Fk′(Xλ) = μ

λ ∈ Σ,

for a small ε > 0. Approximating again F(Xλ) by Yλ, we attain the linear
approximation

max
k∈K′

{(Yλ)k − ȳk}+ ε
∑

k∈K′

(Yλ)k → min subject to

Yλ ≤ u (5.16)
(Yλ)k′ = μ

λ ∈ Σ.

The problem (5.16) implicitly describes a path on the Pareto boundary param-
eterized by μ (see Figure 5.18).

The linear program (5.16) is solved using a Simplex algorithm. Because
the LP has |K| + 1 constraints, any basic feasible solution in the Simplex
iterations has at most |K|+1 non-zero elements. Therefore, only |K|+1 plans
enter the convex combination, making the complexity of executing the convex
combination predictable and in particular independent of the number of plans
in the database.

00

0 FR1

FR2
u

R1

FR3

u
R3

u
R2

Fig. 5.18. The chosen reference points (asterisks) and the corresponding solutions
(squares) found in the optimization problem (5.16).
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Because F(Xλ̂) ≤ Yλ̂ for the optimal λ̂ due to convexity, the resulting
k′th criterion value Fk′(Xλ̂) < μ is possibly smaller than expected (see also
Figure 5.11). If the deviation from the equality constraint is too large, one can
use a column generation process to improve the approximation: The matrix
Y is augmented by ŷ := F(Xλ̂) and the dimension of the vector λ is enlarged
by one. This results in an improved local approximation of the boundary of
Ŷu, thus improving the accuracy of the equality constraint for the solution of
the enlarged optimization problem (5.16).

Depending on the time restrictions and the problem complexity, the solu-
tion found through navigation could be used as a starting point for a post-
optimization that would push it to the Pareto boundary of the original
problem. To accomplish this, a combination of the ε-constraint method and
weighted sum or weighted metric method could be used. The point gained
can then be added to the database, thus improving the local approximation
of Yu’s Pareto boundary.

5.5.3 Possible extensions to the navigation

There are some possible extensions to the navigation making it even more
versatile. It is, for example, possible to add or remove criteria at any point
during the planning process. Of course having added a new criterion, the
solutions in the database are not Pareto optimal with respect to the new set
of functions over the original domain X , but they can at least be evaluated
under the additional criterion.

The new criterion may then of course be considered in the navigation,
and the navigation still selects the best possible choices over the restricted
domain X̂ . Using post-optimization techniques, the approximation of the now
higher dimensional Pareto boundary can again be locally improved, yielding
a good local picture of the new Pareto boundary, but revealing an incomplete
global picture, i.e., potentially bad estimates for the ideal and nadir point.

The navigation is independent of the way the plans in the database were
created. Hence, the database could stem from several manually set up opti-
mizations and the navigation then allows one to mix them. This is in particular
relevant, if the clinical case is well-known and the computation of the full set
of extreme compromises plus additional plans seems needless.

The independence from the creation process enables the addition of plans
at any stage. Therefore, single solutions could be added even after the com-
putation of a database. So automatic computations can be combined with
manually set up plans in arbitrary sequence.

5.5.4 The user interface for the navigation

The described mechanisms allow a workflow that is a distinct improvement
compared with something like a Human Iteration Loop (see Section 5.2). But
for implementing the improved workflow, an appropriate visualization and
manipulation tool is needed.
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Fig. 5.19. The navigation screen. The “star” on the left-hand side shows the
active and inactive planning horizon and the current solution. On the right the dose
visualization and the dose-volume histogram for the current solution are shown.

Figure 5.19 shows the user interface for the navigation tool. It is divided
into two parts. The left-hand side visualizes the database as a whole and
embeds the current solution into the database. The right-hand side dis-
plays the current plan’s dose-volume histogram and the dose distribution on
transversal, frontal, and sagittal slices.

The “star” on the left-hand side is composed of axes for the different crite-
ria. The criteria associated with the risk VOIs are combined into a radar plot,
whereas the criteria associated with tumor volumes are shown as separate
axes. The interval on the axes corresponds with the range of values contained
in the database for the respective criterion. The white polygon marks the
criterion values for the currently selected plan.

The shaded area represents the planning horizon. It is subdivided into the
active and the inactive planning horizons. The former is bounded on each axis
by the maximum and minimum values implied by the currently set restrictions,
and the latter is the currently excluded range contained in the database. Note
that the line connecting the minimum values of the active planning horizon is
the ideal point estimate, and the line connecting the maximum values is the
nadir point estimate for the currently set restrictions.

The line representing the currently selected plan has handles called selec-
tor at each intersection with an axis and triangles for the tumor-related axes.
Both can be grabbed with the mouse and moved to carry out the selection



156 K.-H. Küfer et al.

mechanism described above. The right-hand side of the screen displays the cor-
responding plans concurrently. The axes also contain restrictors represented
by brackets. They can also be grabbed with the mouse and moved to change
the upper bound for the corresponding criterion. When the planner moves a
restrictor, the active and inactive planning horizon are updated simultane-
ously.

The visualization is updated several — usually around seven — times a
second when a selector or restrictor is moved. This means that around 7 linear
problems of type (5.16) are solved and the corresponding convex combinations
are carried out every second while the user pulls a selector. For restrictor
movements 7|K| linear problems of type (5.11) and the same number of nadir
point heuristic problems are solved every second. Hence, instead of waiting
for the consequences of a parameter adjustment, the planner is immediately
provided with the resulting outcome.

5.5.5 Concluding remarks on decision-making

The proposed method offers a level of interactivity that is so far unknown in
radiation therapy planning. Neither is there a need to choose weights, classify
the criteria with regard to the level of satisfaction, or explicit choice of a ref-
erence point. Nor is it necessary to wait for the outcome of the corresponding
decision. The systems thus offers the possibility to overcome the Human Itera-
tion Loop, which is standard for current inverse IMRT planning. Furthermore,
we believe that working with criterion values only requires less experience in
using the planning system than do approaches based on abstract information
like weights.

The system offers two complementary mechanisms: one to change the cur-
rent plan and one to change the feasible region. Combining the two, the plan-
ner can successively adapt the current solution and the feasible region to his
or her current state of mind. In the end, the feasible region is narrowed down
to the a posteriori clinically relevant domain, and the current solution is set
to the planner’s favorite among that set.

The real-time response to any changes regarding the current solution and
planning horizon allow the user to get a feeling for the Pareto boundary.
Observing the changes in the criterion values implied by a modification of one
of the criteria gives the planner a feel for the sensitivity and thus for the local
interrelation. Observing the changes in the active planning horizon reveals the
global connection between the criteria complementing the planner’s mental
picture of the Pareto boundary.

The concurrent update of the visualizations of the current dose distribu-
tion on the right-hand side of the navigation screen allows the planner to apply
quality measures on the solutions that were not modeled into the optimiza-
tion problem. The system thus acknowledges the existence of further clinical
criteria that are relevant for the planner’s final decision.
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In summary, the decision-making process for the treatment planning prob-
lem described in this paper is a distinct improvement over the processes cur-
rently in action. Furthermore, its application is not limited to IMRT planning
and could be used for other reverse engineering processes as well.

5.6 Clinical Examples

This section presents the multicriteria optimization paradigm as it can be
realized in daily clinical practice. We will illustrate the new multicriteria
treatment planning by two clinical cases representing the most important
indications for IMRT, namely prostate and head-and-neck cancer.

5.6.1 Prostate cancer

Prostate cancer is the most frequent cancer in men in the Western world.
Studies showed that prostate cancer patients with still localized disease but
a high risk — which is derived from a histological grading score and the
concentration of the prostate specific antigen, PSA — will benefit from a
high-dose prostate irradiation. However, this dose is limited by the rectum,
which is located directly dorsal to the prostate, implying the risk of rectal
bleeding and incontinence [52].

Using IMRT instead of conventional radiotherapy, the dose distribution
can be better tailored to the target volume, lowering the rectum toxicity [87].
But even with IMRT, every treatment plan will be a clinical compromise
between the dose in the target volume and the dose to the rectum. Other
structures involved in prostate treatment planning are the bladder and the
femoral heads.

For the sake of simplicity, in the following we will only consider one target
volume and the rectum as main structures for this kind of planning problem.
After the planner has defined the organ contours and the beam geometry, the
multicriteria planning program calculates the plan database. Because there
are only two structures to consider, the database consists of the equibalanced
solution, two extreme compromises, and, in this example, 17 intermediate
plans summing up to 20 solutions, which were computed in approximately 10
minutes.

Because in this case the Pareto front is only two-dimensional, it can also
be plotted and shown completely in a graph, see Figure 5.20.

All plans are normalized to the same mean target dose, which greatly facil-
itates the comparison of different plans, because now only the homogeneity of
the target dose distribution, represented by the standard deviation sigma, has
to be judged against the rectum dose, which is represented by the equivalent
uniform dose, EUD.

The planning horizon can be seen as the range on the axes between the
respective coordinates of the extreme compromises in Figure 5.20. In this
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Fig. 5.20. Standard deviation in the target against EUD in the rectum.

example, the EUD of the rectum reaches from 18.0 Gy to 40.6 Gy. If the
lowest dose to one risk VOI is still too high to be acceptable, then the planner
knows immediately without any further calculation that the target dose has
to be reduced by re-normalizing the database.

Now the interactive planning process begins. We will defer the description
of a planning scenario to the next case, as navigating among the solutions in
2 dimensions is rather straightforward.

5.6.2 Head-and-neck cancer

Treatment planning for head-and-neck cancer can be a very challenging task.
The primary tumor can be located anywhere in the naso- and oropharyngeal
area, and regularly the lymphatic nodal stations have to be irradiated because
they are at risk of containing microscopic tumor spread. This results in big,
irregular-shaped target volumes with several risk VOIs nearby.

The salivary glands are such risk VOIs that are quite radiosensitive. The
tolerance dose of the biggest salivary gland, the parotid gland, is approxi-
mately a mean dose of 26 Gy [49]. The goal should be to spare at least one
of the parotid glands. Otherwise, the patient might suffer from xerostomia
(a completely dry mouth), which can significantly reduce the quality of life.
Other normal structures that have to be considered are (depending on the
specific case), e.g., the brain stem, the spinal cord, the esophagus and the
lungs.

If there is macroscopic tumor left, it can be considered as an additional tar-
get volume to be treated with a higher dose. This is known as simultaneously
integrated boost concept (SIB) [39, 48] and further increases the complexity
of the planning problem.

In Figure 5.21(a), the case of a lymphoepithelioma originating from the
left eustachian tube is shown. The database for this case contains 25 solutions
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Fig. 5.21. Navigation screens for the head-and-neck case: (a) at the beginning of
the planning process and (b) after some restrictions have been made — note the
significant difference in the remaining planning domain.
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and took 11 minutes to be computed. Again, the complete planning horizon
can be seen at first sight, and a first solution is presented to the planner.

Now the interactive planning process begins. By dragging either the target
homogeneity slider or one of the EUD sliders with the mouse, the treatment
planner can quickly explore all compromises between target dose and the doses
in critical volumes that are achievable with the given setup geometry.

While dragging one of the navigation sliders, the user wanders along the
Pareto boundary, and all information in the navigator window like the iso-
dose distribution and the dose-volume histogram is updated in real-time. The
program provides the possibility of locking or restricting an organ to exclude
unwanted parts from the navigation. By clicking the lock option for a specific
structure, all solutions with worse criterion values for the chosen organ than
the current one are excluded from further exploration. This is visualized by a
reduced planning horizon, see Figure 5.21(b). It allows for narrowing down the
solution space to the area that is of highest clinical relevance. Of course, the
lock can be reversed at any time, bringing back the broader planning horizon.

Complex planning problems can be interactively explored this way, and
the best clinical solution can be found in a short amount of time.

Unfortunately, the dynamics of changing the plan and the effect of direct
feedback is impossible to demonstrate in this printed chapter. There is a
smooth transition between the curves of the DVH display, and the planner
can decide quickly for the best clinical compromise.

5.6.3 General remarks

It is important to note that in daily practice, the mathematical details of the
implementation as they were described in the previous sections are almost
completely hidden from the treatment planner. Instead, we strived for an
interface as clean and easy to use as possible so that the planner can focus
on the specific case in all its clinical, not mathematical, complexity. This is a
crucial aspect for a broad acceptance in the radio-oncological community.

Because many hospitals worldwide already have introduced IMRT into
their clinical routine, the new planning scheme as proposed in this chapter
also has to be integrated into existing workflows. Treatment planning in radio-
therapy departments is usually a close collaboration between physicians and
physicists. After the images for treatment planning were acquired, the outlines
of the tumor target volume and the risk VOIs are defined. Then the beam
geometry and the intensity maps are determined, which is the core part of the
treatment planning process. When a certain plan is chosen for treatment, it is
dosimetrically verified using hospital-dependent verification procedures, and
finally the patient is treated. Today several commercial IMRT treatment plan-
ning programs exist for determining the beam setup and the intensity maps,
but all of them share the drawbacks of single-objective optimization men-
tioned previously. The new multicriteria planning program is able to replace
this core part of the workflow while leaving all other parts before and after it
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unchanged. The result is an improved plan quality and consequently proba-
bly better clinical outcome. At the same time, radiotherapy planning is made
easier to handle with reduced time requirements, facilitating an even broader
introduction of IMRT in radiotherapy departments.

5.7 Research Topics

The framework presented here is implemented in a prototype software by the
Fraunhofer ITWM. An academic version of it is available on the web page
http://www.project-mira.net. While the concepts have been tested and
validated at clinical sites like the DKFZ in Heidelberg and the Department
of Radiation Oncology at the Massachusetts General Hospital, there are still
many topics that need to be addressed to improve IMRT planning.

The beam geometry optimization problem was addressed in the introduc-
tion. Finding procedures to produce good directions is an ongoing research
effort at the ITWM.

While the optimization of the intensity maps is itself a challenging prob-
lem, there are still difficulties concerning the application of a planned treat-
ment. Because the optimized intensity maps are to be delivered with the help
of an MLC, a sequencing algorithm has to determine the configuration of
such hardware. There exist approaches to control the resulting “complexity”
of applying a treatment plan depending on the MLC hardware and method of
application. One approach to this end has been the incorporation of sequenc-
ing into the intensity map optimization problem. Romeijn et al. propose a
column generation scheme for the convex planning problem with linear con-
straints in [58]. The solutions resulted in sequences with a low number of
shapes – one measure of complexity in static sequencing.

An open question is, for example, the impact of the interpolation of plans
in our navigation routines on such approaches to reduce the complexity.

Another direction is the recent movement toward the dynamic plan adap-
tion to the organ geometry known as adaptive or 4D planning [33, 84]. Dur-
ing a treatment, the organ geometry in a patient changes. The impact of an
altered geometry to the quality of a plan may be detrimental if target regions
meant to receive high dose are close to critical structures. These changes are
usually grouped into the interfraction [45, 63, 82, 83, 84] and intrafraction
[33, 34, 41, 43, 56, 73, 89] changes.

The former are due to the patient losing weight or the tumor becoming
smaller over the time of treatment. They may be reacted upon by a short
re-optimization of the existing plans. The old plans should provide excellent
starting points in the optimization given that the changes are on a relatively
small scale.

The latter are due to breathing or digestion and are harder to tackle. Some
approaches try to anticipate forthcoming changes and incorporate that into
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the planning. Doing so, the optimization is very similar to the planning for
interfraction changes.

The complications faced by any reactive scheme that monitors the move-
ments of all critical structure during treatment and adjusts the plans online
are rather involved. In the future, however, with increasing sophistication of
the devices used to deliver treatment, these questions need consideration and
practical answers.
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Abstract. In delivering radiation therapy for cancer treatment, it is desirable to
deliver high doses of radiation to a target, while permitting only a low dosage to the
surrounding healthy tissues. In recent years, the development of intensity modulated
radiation therapy (IMRT) has made this possible. IMRT may be delivered by several
techniques. The delivery of IMRT with a multileaf collimator (MLC) requires the
delivery of radiation from several beam orientations. The intensity profile for each
beam direction is described as a MLC leaf sequence, which is developed using a
leaf sequencing algorithm. Important considerations in developing a leaf sequence
for a desired intensity profile include maximizing the monitor unit (MU) efficiency
(equivalently minimizing the beam-on time) and minimizing the total treatment time
subject to the leaf movement constraints of the MLC model. Common leaf movement
constraints include minimum and maximum leaf separation and leaf interdigitation.
The problem of generating leaf sequences free of tongue-and-groove underdosage also
imposes constraints on permissible leaf configurations. In this chapter, we present
an overview of recent advances in leaf sequencing algorithms.

6.1 Introduction

6.1.1 Problem description

The objective of radiation therapy for cancer treatment is to deliver high
doses of radiation to the target volume while limiting radiation dose on the
surrounding healthy tissues. For example, for head and neck tumors, it is nec-
essary for radiation to be delivered so that the exposure of the spinal cord,
optic nerve, salivary glands, or other important structures is minimized. In
recent years, this has been made possible due to the development of conformal
radio therapy. In conformal therapy, treatment is delivered using a set of radi-
ation beams that are positioned such that the shape of the dose distribution
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(a) (b)

Fig. 6.1. (a) A linear accelerator and (b) a multileaf collimator (the figures are
from http://www.lexmed.com/medical services/IMRT.htm).

“conforms” in three dimensions to the shape of the tumor. This is typically
achieved by positioning beams of varying shapes from different directions so
that each beam is shaped to conform to the projection of the target volume
from the beam’s-eye view and and to avoid the organs at risk in the vicinity
of the target.

Intensity modulated radiation therapy (IMRT) is the state of the art in
conformal radiation therapy. IMRT permits the intensity of a radiation beam
to be varied across a treatment area, thereby improving the dose confor-
mity. Radiation is delivered using a medical linear accelerator (Figure 6.1(a)).
A rotating gantry containing the accelerator structure can rotate around the
patient who is positioned on an adjustable treatment couch. Modulation of
the beam fluence can be achieved by several techniques. In compensator-based
IMRT, the beam is modulated with a preshaped piece of material called a com-
pensator (modulator). The degree of modulation of the beam varies depending
on the thickness of the material through which the beam is attenuated. The
computer determines the shape of each modulator in order to deliver the
desired beam. This type of modulation requires the modulator to be fabri-
cated and then manually inserted into the tray mount of a linear accelerator.
In tomotherapy-based IMRT, the linear accelerator travels in multiple circles
all the way around the gantry ring to deliver the radiation treatment. The
beam is collimated to a narrow slit, and the intensity of the beam is modulated
during the gantry movement around the patient. Care must be taken to ensure
that adjacent circular arcs do not overlap and thereby do not overdose tissues.
This type of delivery is referred to as serial tomotherapy. A modification of
serial tomotherapy is helical tomotherapy. In helical tomotherapy, the treat-
ment couch moves linearly (continuously) through the rotating accelerator
gantry. Thus each time the accelerator comes around, it directs the beam on
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a slightly different plane on the patient. In MLC-based IMRT, the accelerator
structure is equipped with a computer-controlled mechanical device called a
multileaf collimator (MLC, Figure 6.1(b)) that shapes the radiation beam,
so as to deliver the radiation as prescribed by the treatment plan. The MLC
may have up to 120 movable leaves that can move along an axis perpendic-
ular to the beam and can be arranged so as to shield or expose parts of the
anatomy during treatment. The leaves are arranged in pairs so that each leaf
pair forms one row of the arrangement. The set of allowable MLC leaf configu-
rations may be restricted by leaf movement constraints that are manufacturer
and/or model dependent.

The first stage in the treatment planning process in IMRT is to obtain
accurate three-dimensional anatomical information about the patient. This is
achieved using computed tomography (CT) and/or magnetic resonance (MR)
imaging. An ideal dose distribution would ensure perfect conformity to the
target volume while completely sparing all other tissues. However, such a
distribution is impossible to realize in practice. Therefore, doses to targets
and tolerable doses for critical structures are prescribed, and an objective
function that measures the quality of a plan is developed subject to these
dose-based constraints. Next, a set of beam parameters (beam angles, profiles,
weights) that optimize this objective are determined using a computer pro-
gram. This method is called “inverse planning” as resultant dose distribution
is first described and the best beam parameters that deliver the distribution
(approximately) are then solved for. It is to be noted that inverse planning
is a general concept and its implementation details vary vastly among var-
ious systems. After the inverse planning in MLC-based IMRT, the delivery
of radiation intensity profile for each beam direction is described as a MLC
leaf sequence, which is developed using a leaf sequencing algorithm. Impor-
tant considerations in developing a leaf sequence for a desired intensity profile
include maximizing the monitor unit (MU) efficiency (equivalently minimizing
the beam-on time) and minimizing the total treatment time subject to the leaf
movement constraints of the MLC model. Finally, when the leaf sequences for
all beam directions are determined, the treatment is performed from various
beam angles sequentially using computer control. In this chapter, we present
an overview of recent advances in leaf sequencing algorithms.

6.1.2 MLC models and constraints

The purpose of the leaf sequencing algorithm is to generate a sequence of
leaf positions and/or movements that faithfully reproduce the desired inten-
sity map once the beam is delivered, taking into consideration any hardware
and dosimetric characteristics of the delivery system. The two most common
methods of IMRT delivery with computer-controlled MLCs are the segmen-
tal multileaf collimator (SMLC) and dynamic multileaf collimator (DMLC).
In SMLC, the beam is switched off while the leaves are in motion. In other
words, the delivery is done using multiple static segments or leaf settings.
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This method is also frequently referred to as the “step and shoot” or “stop
and shoot” method. In DMLC, the beam is on while the leaves are in motion.
The beam is switched on at the start of treatment and is switched off only at
the end of treatment. The fundamental difference between the leaf sequences
of these two delivery methods is that the leaf sequence defines a finite set of
beam shapes for SMLC and trajectories of opposing pairs of leaves for DMLC.

In practical situations, there are some constraints on the movement of
the leaves. The minimum separation constraint requires that opposing pairs
of leaves be separated by at least some distance (Smin) at all times during
beam delivery. In MLCs, this constraint is applied not only to opposing pairs
of leaves (intra-pair minimum separation constraint), but also to opposing
leaves of neighboring pairs (inter-pair minimum separation constraint). For
example, in Figure 6.2, L1 and R1, L2 and R2, L3 and R3, L1 and R2, L2
and R1, L2 and R3, L3 and R2 are pairwise subject to the constraint. The
case with Smin = 0 is called interdigitation constraint and is applicable to
some MLC models. Wherever this constraint applies, opposite adjacent leaves
are not permitted to overlap.

In most commercially available MLCs, there is a tongue-and-groove
arrangement at the interface between adjacent leaves. A cross section of two
adjacent leaves is depicted in Figure 6.3. The width of the tongue-and-groove
region is l. The area under this region gets underdosed due to the mechanical
arrangement, as it remains shielded if either the tongue or the groove portion
of a leaf shields it.

Fig. 6.2. Inter-pair minimum separation constraint.

l

Radiation

Leaf
movement 

Tongue

Groove

Fig. 6.3. Cross section of leaves.
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Maximum leaf spread for leaves on the same leaf bank is one more MLC
limitation, according to which no two leaf positions on the same bank can
be more than a fixed distance apart throughout the whole leaf sequence. This
necessitates a large field (intensity profile) to be split into two or more adjacent
abutting sub-fields. This is true for the Varian MLC (Varian Medical Systems,
Palo Alto, CA), which has a field size limitation of about 15 cm. The abutting
sub-fields are then delivered as separate treatment fields. This often results in
longer delivery times, poor MU efficiency, and field matching problems.

This chapter is organized as follows. In Section 6.2, we present leaf sequenc-
ing algorithms for the SMLC model. Leaf movement constraints studied
include minimum separation constraint (which includes interdigitation as a
special case) and the tongue-and-groove constraint (to eliminate the tongue-
and-groove effect). In Section 6.3, algorithms for DMLC with or without the
interdigitation constraint are developed. In Section 6.4, we study the problem
of splitting large intensity modulated fields for models where a maximum leaf
spread constraint applies. Finally, in Section 6.5, we provide a summary of
recent work on optimizing the number of sements for SMLC delivery.

6.2 Algorithms for SMLC

In this section we study the leaf sequencing problem for SMLC. We first
introduce the notation that will be used in the remainder of this chapter. We
present the leaf sequencing algorithm for a single leaf pair and subsequently
extend it for multiple leaf pairs.

6.2.1 Single leaf pair

The geometry and coordinate system used are shown in Figure 6.4(a). Con-
sider the delivery of an intensity map produced by the optimizer in the inverse
planning stage. It is important to note that the intensity map from the opti-
mizer is always a discrete matrix. The spatial resolution of this matrix is

Radiation Source Radiation
  Beams

Right LeafLeft Leaf

xi x(a)

I

x0 x1 xm x
(b)

Fig. 6.4. (a) Geometry and coordinate system and (b) profile generated by the
optimizer.



174 S. Kamath et al.

similar to the smallest beamlet size. The beamlet size typically ranges from
5–10 mm. Let I(x) be the desired intensity profile along the x axis. The
discretized profile from the optimizer gives the intensity values at sample
points x0, x1, . . ., xm. We assume that the sample points are uniformly spaced
and that Δx = xi+1 − xi, 0 ≤ i < m. I(x) is assigned the value I(xi) for
xi ≤ x < xi+1, for each i. Now, I(xi) is our desired intensity profile, i.e.,
I(xi) is a measure of the number of MUs for which xi, 0 ≤ i < m, needs to be
exposed. Figure 6.4(b) shows a profile, which is the output from the optimizer
at discrete sample points x0, x1, . . . , xm.

Movement of leaves

In our analysis, we assume that the leaves are initially at the left most position
x0 and that the leaves move unidirectionally from left to right. Figure 6.5
illustrates the leaf trajectory during SMLC delivery. Let Il(xi) and Ir(xi)
respectively denote the amount of monitor units (MUs) delivered when the
left and right leaves leave position xi. Consider the motion of the left leaf. The
left leaf begins at x0 and remains here until Il(x0) MUs have been delivered.
At this time the left leaf is moved to x1, where it remains until Il(x1) MUs
have been delivered. The left leaf then moves to x3 where it remains until
Il(x3) MUs have been delivered. At this time, the left leaf is moved to x6,
where it remains until Il(x6) MUs have been delivered. The final movement
of the left leaf is to x7, where it remains until Il(x7) = Imax MUs have been
delivered. At this time the machine is turned off. The total beam-on time
(which we refer to as therapy time), TT (Il, Ir), is the time needed to deliver
Imax MUs. The right leaf moves to x2 when 0 MUs have been delivered; moves
to x4 when Ir(x2) MUs have been delivered; moves to x5 when Ir(x4) MUs
have been delivered; and so on. Note that the machine is off when a leaf is in
motion. We make the following observations:

1. All MUs that are delivered along a radiation beam along xi before the
left leaf passes xi fall on it. The greater the x value, the later the left leaf
passes that position. Therefore Il(xi) is a non-decreasing function.

I
Imax

Ii(x6)

Ii

Ir
Ii(x3)

Ii(x1)

Ii(x0)

x0 x1 x2 x3 x4 x5 x6 x7 x

Fig. 6.5. Leaf trajectory during SMLC delivery.
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2. All MUs that are delivered along a radiation beam along xi before the right
leaf passes xi are blocked by the leaf. The greater the x value, the later the
right leaf passes that position. Therefore Ir(xi) is also a non-decreasing
function.

From these observations, we notice that the net amount of MUs delivered
at a point is given by Il(xi)− Ir(xi), which must be the same as the desired
profile I(xi).

Optimal unidirectional algorithm for one pair of leaves

When the movement of leaves is restricted to only one direction, both the
left and right leaves move along the positive x direction, from left to right
(Figure 6.4(a)). Once the desired intensity profile, I(xi) is known, our problem
becomes that of determining the individual intensity profiles to be delivered
by the left and right leaves, Il and Ir, such that:

I(xi) = Il(xi)− Ir(xi), 0 ≤ i ≤ m. (6.1)

We refer to (Il, Ir) as the treatment plan (or simply plan) for I. Once we
obtain the plan, we will be able to determine the movement of both left and
right leaves during the therapy. For each i, the left leaf can be allowed to pass
xi when the source has delivered Il(xi) MUs. Also, we can allow the right
leaf to pass xi when the source has delivered Ir(xi) MUs. In this manner, we
obtain unidirectional leaf movement profiles for a plan.

From equation (6.1), we see that one way to determine Il and Ir from
the given target profile I is to begin with Il(x0) = I(x0) and Ir(x0) = 0;
examine the remaining xis from left to right; increase Il whenever I increases;
and increase Ir whenever I decreases. Once Il and Ir are determined, the
leaf movement profiles are obtained as explained in the previous section. The
resulting algorithm is shown in Figure 6.6. Figure 6.7 shows a profile and the
corresponding plan obtained using the algorithm. Clearly, the complexity of
the algorithm is O(m).

Ma et al. [14] show that Algorithm SINGLEPAIR obtains plans that are
optimal in therapy time. Their proof relies on the results of Boyer and Strait
[4], Spirou and Chui [16], and Stein et al. [17]. Kamath et al. [8] provide a
much simpler proof.

Theorem 1 (Kamath et al. [8]). Algorithm SINGLEPAIR obtains plans
that are optimal in therapy time. Let inc1, inc2, . . . , inck be the indices of the
points at which the desired profile I(xi) increases, i.e., I(xinci) > I(xinci−1).
The therapy time for the plan (Il, Ir) generated by Algorithm SINGLEPAIR
is
∑k

i=1[I(xinci)− I(xinci−1)], where I(xinc1−1) = 0.

Proof. Let Δi = I(xinci) − I(xinci−1). Suppose that (IL, IR) is a plan for
I(xi) (not necessarily that generated by Algorithm SINGLEPAIR). From the
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Algorithm SINGLEPAIR
Il(x0) = I(x0)
Ir(x0) = 0

For j = 1 to m do
If (I(xj) ≥ I(xj−1)
Il(xj) = Il(xj−1) + I(xj) − I(xj−1)
Ir(xj) = Ir(xj−1)

Else
Ir(xj) = Ir(xj−1) + I(xj−1) − I(xj)
Il(xj) = Il(xj−1)

End If
End for

Fig. 6.6. Obtaining a unidirectional plan.
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Fig. 6.7. A profile and its plan.

unidirectional constraint, it follows that IL(xi) and IR(xi) are non-decreasing
functions of x. Because I(xi) = IL(xi)− IR(xi) for all i, we get

Δi = (IL(xinci)− IR(xinci))− (IL(xinci−1)− IR(xinci−1))
= (IL(xinci)− IL(xinci−1))− (IR(xinci)− IR(xinci−1))
≤ IL(xinci)− IL(xinci−1).



6 Algorithms for Sequencing Multileaf Collimators 177

Summing up Δi, we get

k∑

i=1

[I(xinci)− I(xinci−1)] ≤
k∑

i=1

[IL(xinci)− IL(xinci−1)]

= TT (IL, IR).

Because the therapy time for the plan (Il, Ir) generated by Algorithm SIN-
GLEPAIR is

∑k
i=1[I(xinci)−I(xinci−1)], it follows that TT (Il, Ir) is minimum.

�

Theorem 2 (Kamath et al. [8]). If the optimal plan (Il, Ir) violates the
minimum separation constraint, then there is no plan for I that does not
violate the minimum separation constraint.

6.2.2 Multiple leaf pairs

We use a single pair of leaves to deliver intensity profiles defined along the
axis of the pair of leaves. However, in a real application, we need to deliver
intensity profiles defined over a 2D region. Each pair of leaves is controlled
independently. If there are no constraints on the leaf movements, we divide
the desired profile into a set of parallel profiles defined along the axes of
the leaf pairs. Each leaf pair i then delivers the plan for the corresponding
intensity profile Ii(x). The set of plans of all leaf pairs forms the solution
set. We refer to this set as the treatment schedule (or simply schedule). In
this section, we present leaf sequencing algorithms for SMLC with and with-
out constraints. The constraints considered are (i) minimum separation con-
straint and (ii) tongue-and-groove constraint and (optionally) interdigitation
constraint. These algorithms are from Kamath et al. [8] and Kamath et al. [9].

Optimal schedule without the minimum separation constraint

Assume we have n pairs of leaves. For each pair, we have m sample points.
The input is represented as a matrix with n rows and m columns, where the
ith row represents the desired intensity profile to be delivered by the ith pair
of leaves. We apply Algorithm SINGLEPAIR to determine the optimal plan
for each of the n leaf pairs. This method of generating schedules is described
in Algorithm MULTIPAIR (Figure 6.8). Because the complexity of Algorithm
SINGLEPAIR is O(m), it follows that the complexity of Algorithm MULTI-
PAIR is O(mn).

Theorem 3 (Kamath et al. [8]). Algorithm MULTIPAIR generates sched-
ules that are optimal in therapy time.

Boland et al. [3] and Ahuja and Hamacher [1] have developed network flow
algorithms that generate schedules that are optimal in therapy time. Baatar
et al. [2] also present optimal therapy time algorithms.
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Algorithm MULTIPAIR

For(i = 1; i ≤ n; i + +)

Apply Algorithm SINGLEPAIR to the ith pair of leaves to obtain plan (Iil, Iir)
that delivers the intensity profile Ii(x).

End For

Fig. 6.8. Obtaining a schedule.

Optimal algorithm with inter-pair minimum separation constraint

The schedule generated by Algorithm MULTIPAIR may violate both the
intra- and inter-pair minimum separation constraints. If the schedule has no
violations of these constraints, it is the desired optimal schedule. If there
is a violation of the intra-pair constraint, then it follows from Theorem 2
that there is no schedule that is free of constraint violation. So, assume that
only the inter-pair constraint is violated. We eliminate all violations of the
inter-pair constraint starting from the left end, i.e., from x0. To eliminate the
violations, we modify those plans of the schedule that cause the violations.
We scan the schedule from x0 along the positive x direction looking for the
least xv at which is positioned a right leaf (say Ru) that violates the inter-
pair separation constraint. After rectifying the violation at xv with respect to
Ru, we look for other violations. Because the process of eliminating a viola-
tion at xv may, at times, lead to new violations at xj , xj < xv, we need to
retract a certain distance (we will show that this distance is Smin, the min-
imum leaf separation) to the left, every time a modification is made to the
schedule. We now restart the scanning and modification process from the new
position. The process continues until no inter-pair violations exist. Algorithm
MINSEPARATION (Figure 6.9) outlines the procedure.

Let M = ((I1l, I1r), (I2l, I2r), . . . , (Inl, Inr)) be the schedule generated
by Algorithm MULTIPAIR for the desired intensity profile. Let N(p) =
((I1lp, I1rp), (I2lp, I2rp), . . . , (Inlp, Inrp)) be the schedule obtained after Step 2
of Algorithm MINSEPARATION is applied p times to the input schedule M .
Note that M = N(0).

To illustrate the modification process, we use an example (see Figure 6.10).
To make things easier, we only show two neighboring pairs of leaves. Suppose
that the (p+1)st violation occurs when the right leaf of pair u is positioned at
xv and the left leaf of pair t, t ∈ {u− 1, u + 1}, arrives at xu, xv − xu < Smin.
Let x′

u = xv−Smin. To remove this inter-pair separation violation, we modify
(Itlp, Itrp). The other profiles of N(p) are not modified. The new Itlp (i.e.,
Itl(p+1)) is as defined below

Itl(p+1)(x) =
{

Itlp(x) x0 ≤ x < x′
u

max{Itlp(x), Itl(x) + ΔI} x′
u ≤ x ≤ xm
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Algorithm MINSEPARATION
//assume no intra-pair violations exist

x = x0

While (there is an inter-pair violation) do

1. Find the least xv, xv ≥ x, such that a right leaf is positioned at xv and this right
leaf has an inter-pair separation violation with one or both of its neighboring
left leaves. Let u be the least integer such that the right leaf Ru is positioned
at xv and Ru has an inter-pair separation violation. Let Lt denote the left leaf
(or one of the left leaves) with which Ru has an inter-pair violation. Note that
t ∈ {u − 1, u + 1}.

2. Modify the schedule to eliminate the violation between Ru and Lt.
3. If there is now an intra-pair separation violation between Rt and Lt, no feasible

schedule exists, terminate.
4. x = xv − Smin

End While

Fig. 6.9. Obtaining a schedule under the constraint.
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Fig. 6.10. Eliminating a violation.

where ΔI = Iurp(xv)−Itl(x′
u) = I2−I1. Itr(p+1)(x) = Itl(p+1)(x)−It(x), where

It(x) is the target profile to be delivered by the leaf pair t. Because Itr(p+1)

differs from Itrp for x ≥ x′
u = xv − Smin, there is a possibility that N(p + 1)

has inter-pair separation violations for right leaf positions x ≥ x′
u = xv−Smin.

Because none of the other right leaf profiles are changed from those of N(p)
and because the change in Itl only delays the rightward movement of the
left leaf of pair t, no inter-pair violations are possible in N(p + 1) for x <
x′

u = xv − Smin. One may also verify that as Itl0 and Itr0 are non-decreasing
functions of x, so also are Itlp and Itrp, p > 0.

For N(p), p ≥ 0 and every leaf pair j, 1 ≤ j ≤ n, define Ijlp(x−1) =
Ijrp(x−1) = 0,Δjlp(xi) = Ilp(xi) − Ilp(xi−1), 0 ≤ i ≤ m and Δjrp(xi) =
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Irp(xi)−Irp(xi−1), 0 ≤ i ≤ m. Notice that Δjlp(xi) gives the time (in monitor
units) for which the left leaf of pair j stops at position xi. Let Δjlp(xi) and
Δjrp(xi) be zero for all xi when j = 0 as well as when j = n + 1.

Lemma 1 (Kamath et al. [8]). For every j, 1 ≤ j ≤ n and every i, 1 ≤
i ≤ m,

Δjlp(xi) ≤ max{Δjl0(xi),Δ(j−1)rp(xi + Smin),Δ(j+1)rp(xi + Smin)}. (6.2)

Proof. The proof is by induction on p. For the induction base, p = 0. Putting
p = 0 into the right side of equation (6.2), we get

max{Δjl0(xi),Δ(j−1)r0(xi + Smin),Δ(j+1)r0(xi + Smin)} ≥ Δjl0(xi).

For the induction hypothesis, let q ≥ 0 be any integer and assume that
equation (6.2) holds when p = q. In the induction step, we prove that the
equation holds when p = q + 1. Let t, u, and xv be as in iteration p− 1 of the
while loop of algorithm MINSEPARATION. After this iteration, only Δtlp

and Δtrp are different from Δtl(p−1) and Δtr(p−1), respectively. Furthermore,
only Δtlp(xw) and Δtrp(xw), where xw = xv − Smin may be larger than the
corresponding values after iteration p − 1. At all but at most one other x
value (where Δ may have decreased), Δtlp and Δtrp are the same as the
corresponding values after iteration p− 1.

Because xv is the right leaf position for the leftmost violation, the left leaf
of pair t arrives at xw = xv − Smin after the right leaf of pair u arrives at
xv = xw + Smin. After the modification made to Itl(p−1), the left leaf of pair
t leaves xw at the same time as the right leaf of pair u leaves xw + Smin.
Therefore, Δtlp(xw) ≤ Δur(p−1)(xw + Smin) = Δurp(xw + Smin).

The induction step now follows from the induction hypothesis and the
observation that u ∈ {t− 1, t + 1}. �
Lemma 2 (Kamath et al. [8]). For every j, 1 ≤ j ≤ n and every i, 1 ≤
i ≤ m,

Δjrp(xi) = Δjlp(xi)− (Ij(xi)− Ij(xi−1)) (6.3)

where Ij(x−1) = 0.

Proof. We examine N(p). The monitor units delivered by leaf pair j at xi are
Ijlp(xi)− Ijrp(xi) and the units delivered at xi−1 are Ijlp(xi−1)− Ijrp(xi−1).
Therefore,

Ij(xi) = Ijlp(xi)− Ijrp(xi) (6.4)
Ij(xi−1) = Ijlp(xi−1)− Ijrp(xi−1). (6.5)

Subtracting equation (6.5) from equation (6.4), we get

Ij(xi)− Ij(xi−1) = (Ijlp(xi)− Ijlp(xi−1))− (Ijrp(xi)− Ijrp(xi−1))
= Δjlp(xi)−Δjrp(xi).

The lemma follows from this equality. �
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Notice that once a right leaf u moves past xm, no separation violation
with respect to this leaf is possible. Therefore, xv (see algorithm MINSEPA-
RATION) ≤ xm. Hence, Δjlp(xi) ≤ Δjl0(xi), and Δjrp(xi) ≤ Δjr0(xi), xm −
Smin ≤ xi ≤ xm, 1 ≤ j ≤ n. Starting with these upper bounds, which are
independent of p, on Δjrp(xi), xm − Smin ≤ xi ≤ xm and using equations
(6.2) and (6.3), we can compute an upper bound on the remaining Δjlp(xi)s
and Δjrp(xi)s (from right to left). The remaining upper bounds are also inde-
pendent of p. Let the computed upper bound on Δjlp(xi) be Ujl(xi). It follows
that the therapy time for (Ijlp, Ijrp) is at most Tmax(j) =

∑
0≤i≤m Ujl(xi).

Therefore, the therapy time for N(p) is at most Tmax = max1≤j≤n{Tmax(j)}.

Theorem 4 (Kamath et al. [8]). Algorithm MINSEPARATION always ter-
minates.

Proof. As noted above, Lemmas 1 and 2 provide an upper bound, Tmax on
the therapy time of any schedule produced by algorithm MINSEPARATION.
It is easy to verify that

Iil(p+1)(x) ≥ Iilp(x), 0 ≤ i ≤ n, x0 ≤ x ≤ xm

Iir(p+1)(x) ≥ Iirp(x), 0 ≤ i ≤ n, x0 ≤ x ≤ xm

and that

Itl(p+1)(x′
u) > Itlp(x′

u)
Itr(p+1)(x′

u) > Itrp(x′
u).

Notice that even though a Δ value (proof of Lemma 1) may decrease at an xi,
the Iilp and Iirp values never decrease at any xi as we go from one iteration
of the while loop of MINSEPARATION to the next. Because Itl increases by
at least one unit at at least one xi on each iteration, it follows that the while
loop can be iterated at most mnTmax times. �

Theorem 5 (Kamath et al. [8]).

(a) When Algorithm MINSEPARATION terminates in step 3, there is no
feasible schedule.

(b) Otherwise, the schedule generated is feasible and is optimal in therapy time
for unidirectional schedules.

Elimination of tongue-and-groove effect with or without
interdigitation constraint

Figure 6.11 shows a beam’s-eye view of the region to be treated by two adja-
cent leaf pairs, t and t + 1. Consider the shaded rectangular areas At(xi)
and At+1(xi) that require exactly It(xi) and It+1(xi) MUs to be delivered,
respectively. The tongue-and-groove overlap area between the two leaf pairs
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Fig. 6.11. Tongue-and-groove effect.

over the sample point xi, At,t+1(xi), is colored black. Let the amount of MUs
delivered in At,t+1(xi) be It,t+1(xi). Ignoring leaf transmission, the following
lemma is a consequence of the fact that At,t+1(xi) is exposed only when both
At(xi) and At+1(xi) are exposed.

Lemma 3 (Kamath et al. [9]). It,t+1(xi) ≤ min{It(xi), It+1(xi)}, 0 ≤ i ≤
m, 1 ≤ t < n, where m is the number of sample points along each row and n
is the number of leaf pairs.

Schedules in which It,t+1(xi) = min{It(xi), It+1(xi)} are said to be free of
tongue-and-groove underdosage effects.

The following lemma provides a necessary and sufficient condition for a
unidirectional schedule to be free of tongue-and-groove underdosage effects.

Lemma 4 (Kamath et al. [9]). A unidirectional schedule is free of tongue-
and-groove underdosage effects if and only if,

(a) It(xi) = 0 or It+1(xi) = 0, or
(b) Itr(xi) ≤ I(t+1)r(xi) ≤ I(t+1)l(xi) ≤ Itl(xi), or
(c) I(t+1)r(xi) ≤ Itr(xi) ≤ Itl(xi) ≤ I(t+1)l(xi),

for 0 ≤ i ≤ m, 1 ≤ t < n.

Proof. It is easy to see that any schedule that satisfies the above conditions
is free of tongue-and-groove underdosage effects. So what remains is for us to
show that every schedule that is free of tongue-and-groove underdosage effects
satisfies the above conditions. Consider any such schedule. If condition (a) is
satisfied at every i and t, the proof is complete. So assume i and t such that
It(xi) �= 0 and It+1(xi) �= 0 exist. We need to show that either (b) or (c) is
true for this value of i and t. Because the schedule is free of tongue-and-groove
effects,

It,t+1(xi) = min{It(xi), It+1(xi)} > 0. (6.6)

From the unidirectional constraint, it follows that At,t+1(xi) first gets exposed
when both right leaves pass xi, and it remains exposed until the first of the
left leaves passes xi. Further, if a left leaf passes xi before a neighboring right
leaf passes xi, At,t+1(xi) is not exposed at all. So,

It,t+1(xi) = max{0, I(t,t+1)l(xi)− I(t,t+1)r(xi)} (6.7)
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where
I(t,t+1)r(xi) = max{Itr(xi), I(t+1)r(xi)}

and
I(t,t+1)l(xi) = min{Itl(xi), I(t+1)l(xi)}.

From equations (6.6) and (6.7), it follows that

It,t+1(xi) = I(t,t+1)l(xi)− I(t,t+1)r(xi). (6.8)

Consider the case It(xi) ≥ It+1(xi). Suppose that Itr(xi) > I(t+1)r(xi). It
follows that I(t,t+1)r(xi) = Itr(xi) and I(t,t+1)l(xi) = I(t+1)l(xi). Now from
equation (6.8), we get

It,t+1(xi) = I(t+1)l(xi)− Itr(xi)
< I(t+1)l(xi)− I(t+1)r(xi)
= It+1(xi)
≤ It(xi).

Thus It,t+1(xi) < min{It(xi), It+1(xi)}, which contradicts equation (6.6). So

Itr(xi) ≤ I(t+1)r(xi). (6.9)

Now, suppose that Itl(xi) < I(t+1)l(xi). From It(xi) ≥ It+1(xi), it follows that
I(t,t+1)l(xi) = Itl(xi) and I(t,t+1)r(xi) = I(t+1)r(xi). Hence, from equation
(6.8), we get

It,t+1(xi) = Itl(xi)− I(t+1)r(xi)
< I(t+1)l(xi)− I(t+1)r(xi)
= It+1(xi)
≤ It(xi).

Thus It,t+1(xi) < min{It(xi), It+1(xi)}, which contradicts equation (6.6). So

Itl(xi) ≥ I(t+1)l(xi). (6.10)

From equations (6.9) and (6.10), we can conclude that when It(xi) ≥ It+1(xi),
(b) is true. Similarly one can show that when It+1(xi) ≥ It(xi), (c) is true. �

Lemma 4 is equivalent to saying that the time period for which a pair of
leaves (say pair t) exposes the region At,t+1(xi) is completely contained by
the time period for which pair t + 1 exposes region At,t+1(xi), or vice versa,
whenever It(xi) �= 0 and It+1(xi) �= 0. Note that if either It(xi) or It+1(xi)
is zero, the containment is not necessary. We will refer to the necessary and
sufficient condition of Lemma 4 as the tongue-and-groove constraint condition.
Schedules that satisfy this condition will be said to satisfy the tongue-and-
groove constraint. van Santvoort and Heijmen [18] present an algorithm that
generates schedules that satisfy the tongue-and-groove constraint for DMLC.
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The schedule generated by Algorithm MULTIPAIR (Kamath et al. [8])
may violate the tongue-and-groove constraint. If the schedule has no tongue-
and-groove constraint violations, it is the desired optimal schedule. If there
are violations in the schedule, we eliminate all violations of the tongue-and-
groove constraint starting from the left end, i.e., from x0. To eliminate the
violations, we modify those plans of the schedule that cause the violations.
We scan the schedule from x0 along the positive x direction looking for the
least xw at which there exist leaf pairs u, t, t ∈ {u − 1, u + 1} that violate
the constraint at xw. After rectifying the violation at xw, we look for other
violations. Because the process of eliminating a violation at xw may at times
lead to new violations at xw, we need to search afresh from xw every time
a modification is made to the schedule. However, a bound of O(n) can be
proved on the number of violations that can occur at xw. After eliminating all
violations at a particular sample point, xw, we move to the next point, i.e., we
increment w and look for possible violations at the new point. We continue
the scanning and modification process until no tongue-and-groove constraint
violations exist. Algorithm TONGUEANDGROOVE (Figure 6.12) outlines
the procedure.

Let M = ((I1l, I1r), (I2l, I2r), . . . , (Inl, Inr)) be the schedule generated
by Algorithm MULTIPAIR for the desired intensity profile. Let N(p) =
((I1lp, I1rp), (I2lp, I2rp), . . . , (Inlp, Inrp)) be the schedule obtained after step 2
of Algorithm TONGUEANDGROOVE is applied p times to the input sched-
ule M . Note that M = N(0).

To illustrate the modification process, we use examples. To make things
easier, we only show two neighboring pairs of leaves. Suppose that the (p+1)th

violation occurs between the leaves of pair u and pair t = u+1 at xw. Note that
Itlp(xw) �= Iulp(xw), as otherwise, either (b) or (c) of Lemma 4 is true. In case
Itlp(xw) > Iulp(xw), swap u and t. Now, we have Itlp(xw) < Iulp(xw). In the
sequel, we refer to these u and t values as the u and t of Algorithm TONGUE-
ANDGROOVE. From Lemma 4 and the fact that a violation has occurred,
it follows that Itrp(xw) < Iurp(xw). To remove this tongue-and-groove
constraint violation, we modify (Itlp, Itrp). The other profiles of N(p) are not
modified.

Algorithm TONGUEANDGROOVE

x = x0

While (there is a tongue-and-groove violation) do

1. Find the least xw, xw ≥ x, such that there exist leaf pairs u, u + 1, that violate
the tongue-and-groove constraint at xw.

2. Modify the schedule to eliminate the violation between leaf pairs u and u + 1.
3. x = xw

End While

Fig. 6.12. Obtaining a schedule under the tongue-and-groove constraint.
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The new plan for pair t, (Itl(p+1), Itr(p+1)) is as defined below. If Iulp(xw)−
Itlp(xw) ≤ Iurp(xw)− Itrp(xw), then

Itl(p+1)(x) =
{

Itlp(x) x0 ≤ x < xw

Itlp(x) + ΔI xw ≤ x ≤ xm
(6.11)

where ΔI = Iulp(xw)− Itlp(xw). Itr(p+1)(x) = Itl(p+1)(x)− It(x), where It(x)
is the target profile to be delivered by the leaf pair t. Otherwise,

Itr(p+1)(x) =
{

Itrp(x) x0 ≤ x < xw

Itrp(x) + ΔI ′ xw ≤ x ≤ xm
(6.12)

where ΔI ′ = Iurp(xw) − Itrp(xw). Itl(p+1)(x) = Itr(p+1)(x) + It(x), where
It(x) is the target profile to be delivered by the leaf pair t. The former case is
illustrated in Figure 6.13 and the latter is illustrated in Figure 6.14. Note that
our strategy for plan modification is similar to that used by van Santvoort and
Heijmen [18] to eliminate a tongue-and-groove violation for dynamic multileaf
collimator plans.

Because (Itl(p+1), Itr(p+1)) differs from (Itlp, Itrp) for x ≥ xw, there is a
possibility that N(p + 1) is involved in tongue-and-groove violations for x ≥
xw. Because none of the other leaf profiles are changed from those of N(p), no
tongue-and-groove constraint violations are possible in N(p + 1) for x < xw.
One may also verify that as Itl0 and Itr0 are non-decreasing functions of x, so
also are Itlp and Itrp, p > 0.

Theorem 6 (Kamath et al. [9]). Algorithm TONGUEANDGROOVE gen-
erates schedules free of tongue-and-groove violations that are optimal in ther-
apy time for unidirectional schedules.

The elimination of tongue-and-groove constraint violations does not guar-
antee elimination of interdigitation constraint violations. Therefore the sched-
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Fig. 6.13. Tongue-and-groove constraint violation: case 1.
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Fig. 6.14. Tongue-and-groove constraint violation: case 2 (close parallel, dotted,
and solid line segments overlap, they have been drawn with a small separation to
enhance readability).

ule generated by Algorithm TONGUEANDGROOVE may not be free of inter-
digitation violations. The algorithm we propose for obtaining schedules that
simultaneously satisfy both constraints, Algorithm TONGUEANDGROOVE-
ID, is similar to Algorithm TONGUEANDGROOVE. The only difference
between the two algorithms lies in the definition of the constraint condition.
To be precise, we make the following definition.

Definition 1 (Kamath et al. [9]). A unidirectional schedule is said to sat-
isfy the tongue-and-groove-id constraint if

(a) Itr(xi) ≤ I(t+1)r(xi) ≤ I(t+1)l(xi) ≤ Itl(xi), or
(b) I(t+1)r(xi) ≤ Itr(xi) ≤ Itl(xi) ≤ I(t+1)l(xi),

for 0 ≤ i ≤ m, 1 ≤ t < n.

The only difference between this constraint and the tongue-and-groove
constraint is that this constraint enforces condition (a) or (b) above to be true
at all sample points xi including those at which It(xi) = 0 and/or It+1(xi) = 0.

Lemma 5 (Kamath et al. [9]). A schedule satisfies the tongue-and-groove-
id constraint iff it satisfies the tongue-and-groove constraint and the interdig-
itation constraint.

Proof. It is obvious that the tongue-and-groove-id constraint subsumes the
tongue-and-groove constraint. If a schedule has a violation of the interdigi-
tation constraint, ∃ i, t, I(t+1)l(xi) < Itr(xi) or Itl(xi) < I(t+1)r(xi). From
Definition 1, it follows that schedules that satisfy the tongue-and-groove-id
constraint do not violate the interdigitation constraint. Therefore a schedule
that satisfies the tongue-and-groove-id constraint satisfies the tongue-and-
groove constraint and the interdigitation constraint.
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For the other direction of the proof, consider a schedule O that satisfies
the tongue-and-groove constraint and the interdigitation constraint. From the
fact that O satisfies the tongue-and-groove constraint and from Lemma 4 and
Definition 1, it only remains to be proved that for schedule O,

(a) Itr(xi) ≤ I(t+1)r(xi) ≤ I(t+1)l(xi) ≤ Itl(xi), or
(b) I(t+1)r(xi) ≤ Itr(xi) ≤ Itl(xi) ≤ I(t+1)l(xi),

whenever It(xi) = 0 or It+1(xi) = 0, 0 ≤ i ≤ m, 1 ≤ t < n. When It(xi) = 0,

Itl(xi) = Itr(xi). (6.13)

Since O satisfies the interdigitation constraint,

Itr(xi) ≤ I(t+1)l(xi) (6.14)

and
I(t+1)r(xi) ≤ Itl(xi). (6.15)

From equations (6.13), (6.14), and (6.15), we get I(t+1)r(xi) ≤ Itr(xi) =
Itl(xi) ≤ I(t+1)l(xi). Thus (b) is true whenever It(xi) = 0. Similarly, (a) is
true whenever It+1(xi) = 0. Therefore, O satisfies the tongue-and-groove-id
constraint. �

Theorem 7 (Kamath et al. [9]). Algorithm TONGUEANDGROOVE-ID
generates schedules free of tongue-and-groove-id violations that are optimal in
therapy time for unidirectional schedules.

In the remainder of this section we will use “algorithm” to mean Algo-
rithm TONGUEANDGROOVE or Algorithm TONGUEANDGROOVE-ID
and “violation” to mean tongue-and-groove constraint violation or tongue-
and-groove-id constraint violation (depending on which algorithm is consid-
ered) unless explicitly mentioned.

The execution of the algorithm starts with schedule M at x = x0 and
sweeps to the right, eliminating violations from the schedule along the way.
The modifications applied to eliminate a violation at xw, prescribed by equa-
tions (6.11) and (6.12), modify one of the violating profiles for x ≥ xw. From
the unidirectional nature of the sweep of the algorithm, it is clear that the
modification of the profile for x > xw can have no consequence on violations
that may occur at the point xw. Therefore it suffices to modify the profile only
at xw at the time the violation at xw is detected. The modification can be
propagated to the right as the algorithm sweeps. This can be done by using
an (n × m) matrix A that keeps track of the amount by which the profiles
have been raised. A(j, k) denotes the cumulative amount by which the jth leaf
pair profiles have been raised at sample point xk from the schedule M gen-
erated using Algorithm MULTIPAIR. When the algorithm has eliminated all
violations at each xw, it moves to xw+1 to look for possible violations.It first
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sets the (w + 1)st column of the modification matrix equal to the wth column
to reflect rightward propagation of the modifications. It then looks for and
eliminates violations at xw+1 and so on.

The process of detecting the violations at xw merits further investigation.
We show that if one carefully selects the order in which violations are detected
and eliminated, the number of violations at each xw, 0 ≤ w ≤ m will be O(n).

Lemma 6 (Kamath et al. [9]). The algorithm can be implemented such
that O(n) violations occur at each xw, 0 ≤ w ≤ m.

Proof. The bound is achieved using a two-pass scheme at xw. In pass one, we
check adjacent leaf pairs (1,2), (2, 3), . . . , (n− 1, n), in that order, for possible
violations at xw. In pass two, we check for violations in the reverse order,
i.e., (n− 1, n), (n− 2, n− 1), . . . , (1, 2). So each set of adjacent pairs (i, i + 1),
1 ≤ i < n is checked exactly twice for possible violations. It is easy to see that
if a violation is detected in pass one, either the profile of leaf pair i or that of
leaf pair i+1 may be modified (raised) to eliminate the violation. However, in
pass two only the profile of pair i may be modified. This is because the profile
of pair i is not modified between the two times it is checked for violations
with pair i + 1. The profile of pair i + 1, on the other hand, could have been
modified between these times as a result of violations with pair i+2. Therefore
in pass two, only i can be a candidate for t (where t is as explained in the
algorithm) when pairs (i, i + 1) are examined. From this it also follows that
when pairs (i−1, i) are subsequently examined in pass two, the profile of pair
i will not be modified. Because there is no violation between adjacent pairs
(1, 2), (2, 3), . . . , (i, i+1) at that time and none of these pairs is ever examined
again, it follows that at the end of pass two there can be no violations between
pairs (i, i + 1), 1 ≤ i < n. �

Lemma 7 (Kamath et al. [9]). For the execution of the algorithm, the time
complexity is O(nm).

Proof. Follows from Lemma 6 and the fact that there are m sample points.�

6.3 Algorithms for DMLC

6.3.1 Single leaf pair

Movement of leaves

We assume that I(x0) > 0 and I(xm) > 0 and that when the beam delivery
begins, the leaves can be positioned anywhere. We also assume that the leaves
can move with any velocity v, −vmax ≤ v ≤ vmax, where vmax is the maxi-
mum allowable velocity of the leaves. Figure 6.15 illustrates the leaf trajectory
during DMLC delivery. Il(xi) and Ir(xi), respectively, denote the amount of
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Fig. 6.15. Leaf trajectory during DMLC delivery.

MUs delivered when the left and right leaves leave position xi. The total ther-
apy time, TT (Il, Ir), is the time needed to deliver Imax MUs. Note that the
machine is on throughout the treatment. All MUs that are delivered along a
radiation beam along xi before the left leaf passes xi fall on it, and all MUs
that are delivered along a radiation beam along xi before the right leaf passes
xi are blocked by the leaf. Thus the amount of MUs delivered at a point is
given by Il(xi)− Ir(xi), which must be the same as I(xi).

Maximum velocity constraint

As noted earlier, the velocity of leaves cannot exceed some maximum limit
(say vmax) in practice. This implies that the leaf profile cannot be horizontal
at any point. From Figure 6.15, observe that the time needed for a leaf to
move from xi to xi+1 is ≥ (xi+1 − xi)/vmax. If Φ is the flux density of MUs
from the source, the number of MUs delivered in this time along a beam
is ≥ Φ · (xi+1 − xi)/vmax. Thus Il(xi+1) − Il(xi) ≥ Φ ∗ (xi+1 − xi)/vmax =
Φ ·Δx/vmax. The same is true for the right leaf profile Ir.

Optimal unidirectional algorithm for one pair of leaves

As in the case of SMLC, the problem is to find plan (Il, Ir) such that:

I(xi) = Il(xi)− Ir(xi), 0 ≤ i ≤ m. (6.16)

Of course, Il and Ir are subject to the maximum velocity constraint. For
each i, the left leaf can be allowed to pass xi when the source has delivered



190 S. Kamath et al.

Il(xi) MUs, and the right leaf can be allowed to pass xi when the source has
delivered Ir(xi) MUs. In this manner we obtain unidirectional leaf movement
profiles for a plan.

Similar to the case of SMLC, one way to determine Il and Ir from the
given target profile I is to begin from x0; set Il(x0) = I(x0) and Ir(x0) = 0;
examine the remaining xis to the right; increase Il at xi whenever I increases
and by the same amount (in addition to the minimum increase imposed
by the maximum velocity constraint); and similarly increase Ir whenever I
decreases. This can be done until we reach xm. This yields Algorithm DMLC-
SINGLEPAIR. The time complexity of Algorithm DMLC-SINGLEPAIR is
O(m). Note that we move the leaves at the maximum velocity vmax when-
ever they are to be moved. The resulting algorithm is shown in Figure 6.16.
Figure 6.15 shows a profile I and the corresponding plan (Il, Ir) obtained
using Algorithm DMLC-SINGLEPAIR. Ma et al. [14] show that Algorithm
DMLC-SINGLEPAIR obtains plans that are optimal in therapy time. Their
proof relies on the results of Boyer and Strait [4], Spirou and Chui [16], and
Stein et al. [17]. Kamath et al. [10] provide a much simpler proof.

Theorem 8 (Kamath et al. [10]). Algorithm DMLC-SINGLEPAIR obtains
plans that are optimal in therapy time.

Proof. Let I(xi) be the desired profile. Let 0 = inc0 < inc1 < . . . < inck be
the indices of the points at which I(xi) increases. Thus xinc0, xinc1, . . . , xinck

are the points at which I(x) increases (i.e., I(xinci) > I(xinci−1), assume that
I(x−1 = 0)). Let Δi = I(xinci) − I(xinci−1), i ≥ 0. Suppose that (IL, IR)
is a plan for I(xi) (not necessarily the plan generated by Algorithm DMLC-
SINGLEPAIR). Because I(xi) = IL(xi)− IR(xi) for all i, we get

Δi = (IL(xinci)− IR(xinci))− (IL(xinci−1)− IR(xinci−1))
= (IL(xinci)− IL(xinci−1))− (IR(xinci)− IR(xinci−1))
= (IL(xinci)− IL(xinci−1)− Φ ·Δx/vmax)−

(IR(xinci)− IR(xinci−1)− Φ ·Δx/vmax).

Algorithm DMLC-SINGLEPAIR

Il(x0) = I(x0)
Ir(x0) = 0

For j = 1 to m do
If (I(xj) ≥ I(xj−1))
Il(xj) = Il(xj−1) + I(xj) − I(xj−1) + Φ · Δx/vmax

Ir(xj) = Ir(xj−1) + Φ · Δx/vmax

Else
Ir(xj) = Ir(xj−1) + I(xj−1) − I(xj) + Φ · Δx/vmax

Il(xj) = Il(xj−1) + Φ · Δx/vmax

End for

Fig. 6.16. Obtaining a unidirectional plan.
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Note that from the maximum velocity constraint IR(xinci) − IR(xinci−1) ≥
Φ · Δx/vmax, i ≥ 1. Thus IR(xinci) − IR(xinci−1) − Φ · Δx/vmax ≥ 0, i ≥
1, and Δi ≤ IL(xinci) − IL(xinci−1) − Φ · Δx/vmax. Also, Δ0 = I(x0) −
I(x−1) = I(x0) ≤ IL(x0) − IL(x−1), where IL(x−1) = 0. Summing up Δi,
we get

∑k
i=0[I(xinci) − I(xinci−1)] ≤

∑k
i=0[IL(xinci) − IL(xinci−1)] − k · Φ ·

Δx/vmax. Let S1 =
∑k

i=0[IL(xinci)−IL(xinci−1)]. Then, S1 ≥
∑k

i=0[I(xinci)−
I(xinci−1)] + k · Φ · Δx/vmax. Let S2 =

∑
[IL(xj) − IL(xj−1)], where the

summation is carried out over indices j (0 ≤ j ≤ m) such that I(xj) ≤
I(xj−1). There are a total of m + 1 indices of which k + 1 do not satisfy
this condition. Thus there are m − k indices j at which I(xj) ≤ I(xj−1). At
each of these j, IL(xj) ≥ IL(xj−1) + Φ ·Δx/vmax. Hence, S2 ≥ (m − k) · Φ ·
Δx/vmax. Now, we get S1 + S2 =

∑m
i=0[IL(xi)− IL(xi−1)] ≥

∑k
i=0[I(xinci)−

I(xinci−1)] + m · Φ · Δx/vmax. Finally, TT (IL, IR) = IL(xm) = IL(xm) −
IL(x−1) =

∑m
i=0[IL(xi) − IL(xi−1)] ≥

∑k
i=0[I(xinci) − I(xinci−1)] + m · Φ ·

Δx/vmax = TT (Il, Ir). Hence, the treatment plan (Il, Ir) generated by DMLC-
SINGLEPAIR is optimal in therapy time. �

6.3.2 Multiple leaf pairs

We present multiple leaf pair sequencing algorithms for DMLC without con-
straints and with the interdigitation constraint. These algorithms are from
Kamath et al. [10].

Optimal schedule without constraints

For sequencing of multiple leaf pairs, we apply Algorithm DMLC-SINGLE-
PAIR to determine the optimal plan for each of the n leaf pairs. This method
of generating schedules is described in Algorithm DMLC-MULTIPAIR
(Figure 6.17). The complexity of Algorithm DMLC-MULTIPAIR is O(mn).
Note that as x0, xm are not necessarily non-zero for any row, we replace x0

by xl and xm by xg in Algorithm DMLC-SINGLEPAIR for each row, where
xl and xg, respectively, denote the first and last non-zero sample points of
that row. Also, for rows that contain only zeroes, the plan simply places the
corresponding leaves at the rightmost point in the field (call it xm+1).

Theorem 9 (Kamath et al. [10]). Algorithm DMLC-MULTIPAIR gener-
ates schedules that are optimal in therapy time.

Algorithm DMLC-MULTIPAIR

For(i = 1; i ≤ n; i + +)

Apply Algorithm DMLC-SINGLEPAIR to the ith pair of leaves to obtain plan
(Iil, Iir) that delivers the intensity profile Ii(x).

End For

Fig. 6.17. Obtaining a schedule.
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Optimal algorithm with interdigitation constraint

The schedule generated by Algorithm DMLC-MULTIPAIR may violate the
interdigitation constraint. Note that no intra-pair constraint violations can
occur for Smin = 0. Thus the interdigitation constraint is essentially an inter-
pair constraint. If the schedule has no interdigitation constraint violations,
it is the desired optimal schedule. If there are violations in the schedule, we
eliminate all violations of the interdigitation constraint starting from the left
end, i.e., from x0. To eliminate the violations, we modify those plans of the
schedule that cause the violations. We scan the schedule from x0 along the
positive x direction looking for the least xv at which is positioned a right leaf
(say Ru) that violates the inter-pair separation constraint. After rectifying the
violation at xv with respect to Ru, we look for other violations. Because the
process of eliminating a violation at xv may at times lead to new violations
involving right leaves positioned at xv, we need to search afresh from xv every
time a modification is made to the schedule. We now continue the scanning
and modification process until no interdigitation violations exist. Algorithm
DMLC-INTERDIGITATION (Figure 6.18) outlines the procedure.

Let M = ((I1l, I1r), (I2l, I2r), . . . , (Inl, Inr)) be the schedule generated by
Algorithm DMLC-MULTIPAIR for the desired intensity profile. Let N(p) =
((I1lp, I1rp), (I2lp, I2rp), . . . , (Inlp, Inrp)) be the schedule obtained after Step
2 of Algorithm DMLC-INTERDIGITATION is applied p times to the input
schedule M . Note that M = N(0).

To illustrate the modification process, we use examples. There are two
types of violations that may occur. Call them Type 1 and Type 2 violations
and call the corresponding modifications Type 1 and Type 2 modifications.
To make things easier, we only show two neighboring pairs of leaves. Suppose
that the (p + 1)st violation occurs between the right leaf of pair u, which is
positioned at xv, and the left leaf of pair t, t ∈ {u− 1, u + 1}.

Algorithm DMLC-INTERDIGITATION

x = x0

While (there is an interdigitation violation) do

1. Find the least xv, xv ≥ x, such that a right leaf is positioned at xv and this
right leaf has an interdigitation violation with one or both of its neighboring
left leaves. Let u be the least integer such that the right leaf Ru is positioned
at xv and Ru has an interdigitation violation. Let Lt denote the left leaf with
which Ru has an interdigitation violation. Note that t ∈ {u − 1, u + 1}. In case
Ru has violations with two adjacent left leaves, we let t = u − 1.

2. Modify the schedule to eliminate the violation between Ru and Lt.
3. x = xv

End While

Fig. 6.18. Obtaining a schedule under the constraint.
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Fig. 6.19. Eliminating a Type 1 violation.

In a Type 1 violation, the left leaf of pair t starts its sweep at a point
xStart(t, p) > xv (see Figure 6.19). To remove this interdigitation violation,
modify (Itlp, Itrp) to (Itl(p+1), Itr(p+1)) as follows. We let the leaves of pair t
start at xv and move them at the maximum velocity vmax toward the right,
until they reach xStart(t, p). Let the number of MUs delivered when they
reach xStart(t, p) be I1. Raise the profiles Itlp(x) and Itrp(x), x ≥ xStart(t, p),
by an amount I1 = Φ · (xStart(t, p)− xv)/vmax. We get

Itl(p+1)(x) =
{

Φ · (x− xv)/vmax xv ≤ x < xStart(t, p)
Itlp(x) + I1 x ≥ xStart(t, p)

Itr(p+1)(x) = Itl(p+1)(x)− It(x)

where It(x) is the target profile to be delivered by the leaf pair t.
A Type 2 violation occurs when the left leaf of pair t, which starts its sweep

from x ≤ xv, passes xv before the right leaf of pair u passes xv (Figure 6.20).
In this case, Itl(p+1) is as defined below

Itl(p+1)(x) =
{

Itlp(x) x < xv

Itlp(x) + ΔI x ≥ xv

where ΔI = Iurp(xv) − Itlp(xv) = I3 − I2. Once again, Itr(p+1)(x) =
Itl(p+1)(x) − It(x), where It(x) is the target profile to be delivered by the
leaf pair t.

In both Type 1 and Type 2 modifications, the other profiles of N(p) are not
modified. Because Itr(p+1) differs from Itrp for x ≥ xv, there is a possibility
that N(p + 1) has inter-pair separation violations for right leaf positions x ≥
xv. Because none of the other right leaf profiles are changed from those of
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Fig. 6.20. Eliminating a Type 2 violation (close parallel dotted and solid line seg-
ments overlap; they have been drawn with a small separation to enhance readability).

N(p) and because the change in Itl only delays the rightward movement of
the left leaf of pair t, no interdigitation violations are possible in N(p + 1)
for x < xv. One may also verify that as Itl0 and Itr0 are feasible plans that
satisfy the maximum velocity constraints, so also are Itlp and Itrp, p > 0.

Lemma 8 (Kamath et al. [10]). In case of a Type 1 violation, (Itlp, Itrp)
is the same as (Itl0, Itr0).

Proof. Let p be such that there is a Type 1 violation. Let t, u, and v be
as in Algorithm DMLC-INTERDIGITATION. If (Itlp, Itrp) is different from
(Itl0, Itr0), leaf pair t was modified in an earlier iteration (say iteration q < p)
of the while loop of Algorithm DMLC-INTERDIGITATION. Let v(q) be the
v value in iteration q. If iteration q was a Type 1 violation, then xStart(t, p) ≤
xStart(t, q + 1) = xv(q) ≤ xv. So, iteration p cannot be a Type 1 violation. If
iteration q was a Type 2 violation, xStart(t, p) ≤ xStart(t, q) ≤ xv(q) ≤ xv.
Again, iteration p cannot be a Type 1 violation. Hence, there is no prior
iteration q, q < p, when the profiles (Itl, Itr) were modified. �

Lemma 9 (Kamath et al. [10]). For the execution of Algorithm DMLC-
INTERDIGITATION

(a)O(n) Type 1 violations can occur.
(b) O(n2m) Type 2 violations can occur.
(c) Let Tmax be the optimal therapy time for the input matrix. The time com-

plexity is O(mn + nmin{nm, Tmax}).
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Proof.

(a) It follows from Lemma 8 that each leaf pair can be involved in at most one
Type 1 violation as pair t, i.e., the pair whose profile is modified. Hence,
the number of Type 1 violations is ≤ n.

(b) We first obtain a bound on the number of Type 2 violations at a fixed
xv. Let u, t be as in Algorithm DMLC-INTERDIGITATION. Note that
u is chosen to be the least possible index. Let ui be the value of u in
the ith iteration of Algorithm DMLC-INTERDIGITATION at xv. ti is
defined similarly. Let umax

i = maxj≤i{uj}. If ti = ui−1, it is possible that
ui+1 = ti = ui − 1 and ti+1 = ui − 2. Note that in this case, ti+1 �= ui =
ui+1 + 1. Next, it is possible that ui+2 = ui − 2 and ti+2 = ui−3 (again
ti+2 �= ui − 1 = ui+2 + 1). In general, one may verify that ti = ui + 1
is possible only if umax

i = ui. If ti = ui + 1, then ui+1 ≥ ti = ui + 1,
since the violation between ui and ti has been eliminated and no profiles
with an index less than ti have been changed during iteration i at xv. It
is also easy to verify that ti = 1, ui = 2 ⇒ ui+1 ≥ umax

i , umax
i+2 > umax

i .
From this and ti ∈ {ui + 1, ui − 1} it follows that umax

i+umax
i

> umax
i . We

know that umax
1 ≥ 1. It follows that umax

2 ≥ 2, umax
4 ≥ 3, umax

7 ≥ 4 and
in general, umax

(i(i+1)/2)+1 ≥ i + 1. Clearly, for the last violation (say jth) at
xv, umax

j ≤ n and for this to be true, j = O(n2). So the number of Type 2
violations at xv is O(n2). Because xv has to be a sample point, there are
m possible choices for it. Hence, the total number of Type 2 violations is
O(n2m).

(c) Because the input matrix contains only integer intensity values, each viola-
tion modification raises the profile for one pair of leaves by at least one unit.
Hence, if Tmax is the optimal therapy time, no profile can be raised more
than Tmax times. Therefore, the total number of violations that Algorithm
DMLC-INTERDIGITATION needs to repair is at most nTmax. Combin-
ing this bound with those of (a) and (b), we get O(min{n2m,nTmax})
as a bound on the total number of violations repaired by Algorithm
DMLC-INTERDIGITATION. By proper choice of data structures and
programming methods it is possible to implement Algorithm DMLC-
INTERDIGITATION so as to run in O(mn + nmin{nm, Tmax}) time.

�

Note that Lemma 9 provides two upper bounds on the complexity of
Algorithm DMLC-INTERDIGITATION: O(n2m) and O(nmax{m,Tmax}).
In most practical situations, Tmax < nm and so O(nmax{m,Tmax}) can be
considered a tighter bound.

Theorem 10 (Kamath et al. [10]). Algorithm DMLC-INTERDIGITA-
TION generates DMLC schedules free of interdigitation violations that are
optimal in therapy time for unidirectional schedules.
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6.4 Field Splitting Without Feathering

In this section, we deviate slightly from our earlier notation and assume that
the sample points are x1, x2, . . . , xm rather than x0, x1, . . . , xm. All other
notation remains unchanged. The notation and algorithms are from Kamath
et al. [11]. Recently, Wu [20] has also developed efficient algorithms for field
splitting problems.

6.4.1 Optimal field splitting for one leaf pair

Delivering a profile using one field

An intensity profile I can be delivered in optimal therapy time using the
plan generated by Algorithm SINGLEPAIR. Algorithm SINGLEPAIR can be
directly used to obtain plans when I is deliverable using a single field. Let l
be the least index such that I(xl) > 0 and let g be the greatest index such
that I(xg) > 0. We will assume without loss of generality that l = 1. Thus the
width of the profile is g sample points, where g can vary for different profiles.
Assuming that the maximum allowable field width is w sample points, I is
deliverable using one field if g ≤ w; I requires at least two fields for g > w; I
requires at least three fields for g > 2w. The case where g > 3w is not studied
as it never arises in clinical cases. The objective of field splitting is to split a
profile so that each of the resulting profiles is deliverable using a single field.
Further, it is desirable that the total therapy time is minimized, i.e., the sum
of optimal therapy times of the resulting profiles is minimized. We will call
the problem of splitting the profile I of a single leaf pair into 2 profiles each of
which is deliverable using one field such that the sum of their optimal therapy
times is minimized as the S2 (single pair 2 field split) problem. The sum of the
optimal therapy times of the two resulting profiles is denoted by S2(I). S3 and
S3(I) are defined similarly for splits into 3 profiles. The problem S1 is trivial,
as the input profile need not be split and is to be delivered using a single
field. Note that S1(I) is the optimal therapy time for delivering the profile I
in a single field. From Theorem 1, S1(I) =

∑q
i=1[I(xinci)− I(xinci−1)], where

inc1, inc2, . . . , incq are the indices of the points at which I(xi) increases.

Splitting a profile into two

Suppose that a profile I is split into two profiles. Let j be the index at which
the profile is split. As a result, we get two profiles, Pj and Sj . Pj(xi) = I(xi),
1 ≤ i < j, and Pj(xi) = 0, elsewhere. Sj(xi) = I(xi), j ≤ i ≤ g, and
Sj(xi) = 0, elsewhere. Pj is a left profile and Sj is a right profile of I.

Lemma 10 (Kamath et al. [11]). Let S1(Pj) and S1(Sj) be the optimal
therapy times, respectively, for Pj and Sj. Then S1(Pj) + S1(Sj) = S1(I) +
Î(xj), where Î(xj) = min{I(xj−1), I(xj)}.
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We illustrate Lemma 10 using the example of Figure 6.21. The optimal
therapy time for the profile I is the sum of increments in intensity values
of successive sample points. However, if I is split at x3 into P3 and S3, an
additional therapy time of Î(x3) = min{I(x2), I(x3)} = I(x3) is required for
treatment. Similarly, if I is split at x4 into P4 and S4, an additional therapy
time of Î(x4) = min{I(x3), I(x4)} = I(x3) is required. Lemma 10 leads to an
O(g) algorithm (Algorithm S2, Figure 6.22) for S2. It is evident from Lemma
10 that if the width of the profile is less than the maximum allowable field
width (g ≤ w), the profile is best delivered using a single field. If g > 2w
two fields are insufficient. Thus it is useful to apply Algorithm S2 only for
w < g ≤ 2w. Once the profile I is split into two as determined by Algorithm
S2, the left and right profiles are delivered using separate fields. The total
therapy time is S2(I) = S1(Pj) + S1(Sj), where j is the split point.

Splitting a profile into three

Suppose that a profile I is split into three profiles. Let j and k, j < k, be the
indices at which the profile is split. As a result we get three profiles Pj , M(j,k)

and Sk, where Pj(xi) = I(xi), 1 ≤ i < j, M(j,k)(xi) = I(xi), j ≤ i < k, and
Sk(xi) = I(xi), k ≤ i ≤ g. Pj , M(j,k) and Sj are zero at all other points. Pj is
a left profile, M(j,k) is a middle profile of I, and Sk is a right profile.

Lemma 11 (Kamath et al. [11]). Let S1(Pj), S1(M(j,k)) and S1(Sk) be
the optimal therapy times, respectively, for Pj, M(j,k) and Sk. Then

S1(Pj) + S1(M(j,k)) + S1(Sk)
= S1(I) + min{I(xj−1), I(xj)}+ min{I(xk−1), I(xk)}
= S1(I) + Î(xj) + Î(xk).

Lemma 11 motivates Algorithm S3 (Figure 6.23) for S3. Note that for
Algorithm S3 to split I into three profiles that are each deliverable in one
field, it must be the case that g ≤ 3w. Once the profile I is split into three as
determined by Algorithm S3, the resulting profiles are delivered using separate
fields. The minimum total therapy time is S3(I) = S1(Pj) + S1(M(j,k)) +
S1(Sk). Algorithm S3 examines at most g2 candidates for (j, k). Thus the
complexity of the algorithm is O(g2).

Bounds on optimal therapy time ratios

The following bounds have been proved on ratios of optimal therapy times.

Lemma 12 (Kamath et al. [11]).

(a) 1 ≤ S2(I)/S1(I) ≤ 2
(b) 1 ≤ S3(I)/S1(I) ≤ 3
(c) 0.5 < S3(I)/S2(I) < 2.
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Fig. 6.21. Splitting a profile (a) into two; (b) and (c) show the left and right profiles
resulting from a split at x3; (d) and (e) show the left and right profiles resulting
from a split at x4
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Algorithm S2

Compute Î(xi) = min{I(xi−1), I(xi)}, for g − w < i ≤ w + 1.
Split the field at a point xj where Î(xj) is minimized for g − w < j ≤ w + 1.

Fig. 6.22. Splitting a single row profile into two.

Algorithm S3

Compute Î(xi) = min{I(xi−1), I(xi)}, for 1 < i ≤ w + 1, g − w < i ≤ g.
Split the field at two points xj , xk such that 1 ≤ j ≤ w + 1, g − w < k ≤ g,
0 < k − j ≤ w, and Î(xj) + Î(xk) is minimized.

Fig. 6.23. Splitting a single row profile into three.

Lemma 12 tells us that the optimal therapy times can at most increase by
factors of 2 and 3, respectively, as a result of a splitting a single leaf pair
profile into 2 and 3. Also, the optimal therapy time for a split into 2 can be
at most twice that for a split into 3 and vice versa.

6.4.2 Optimal field splitting for multiple leaf pairs

The input intensity matrix (say I) for the leaf sequencing problem is obtained
using the inverse planning technique. The matrix I consists of n rows and
m columns. Each row of the matrix specifies the number of monitor units
(MUs) that need to be delivered using one leaf pair. Denote the rows of I
by I1, I2, . . . , In. For the case where I is deliverable using one field, the leaf
sequencing problem has been well studied in the past. The algorithm that
generates optimal therapy time schedules for multiple leaf pairs (Algorithm
MULTIPAIR) applies algorithm SINGLEPAIR independently to each row Ii

of I. Without loss of generality, assume that the least column index containing
a non-zero element in I is 1 and the largest column index containing a non-
zero element in I is g. If g > w, the profile will need to be split. We define
problems M1, M2, and M3 for multiple leaf pairs as being analogous to S1,
S2, and S3 for single leaf pair. The optimal therapy times M1(I), M2(I), and
M3(I) are also defined similarly.

Splitting a profile into two

Suppose that a profile I is split into two profiles. Let xj be the column at
which the profile is split. This is equivalent to splitting each row profile Ii,
1 ≤ i ≤ n, at j as defined for single leaf pair split. As a result, we get two
profiles, Pj (left) and Sj (right). Pj has rows P 1

j , P 2
j , . . . , Pn

j and Sj has rows
S1

j , S2
j , . . . , Sn

j .

Lemma 13 (Kamath et al. [11]). Suppose I is split into two profiles at
xj. The optimal therapy time for delivering Pj and Sj using separate fields is
maxi{S1(P i

j )}+ maxi{S1(Si
j)}.
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Algorithm M2

Compute maxi{S1(P i
j )} + maxi{S1(Si

j)} for g − w < j ≤ w + 1.
Split the field at a point xj where maxi{S1(P i

j )} + maxi{S1(Si
j)} is minimized for

g − w < j ≤ w + 1.

Fig. 6.24. Splitting a multiple row profile into two.

Proof. The optimal therapy time schedule for Pj and Sj are obtained using
Algorithm MULTIPAIR. The therapy times are equal to maxi{S1(P i

j )} and
maxi{S1(Si

j)}, respectively. Thus the total therapy time is maxi{S1(P i
j )} +

maxi{S1(Si
j)}. �

From Lemma 13, it follows that the M2 problem can be solved by finding
the index j, 1 < j ≤ g such that maxi{S1(P i

j )}+ maxi{S1(Si
j)} is minimized

(Algorithm M2, Figure 6.24).
From Theorem 1, S1(P i

j ) =
∑

inci≤j [I(xinci) − I(xinci−1)]. For each i,
S1(P i

1), S1(P i
2), . . . , S1(P i

g) can all be computed in a total of O(g) time pro-
gressively from left to right. Thus the computation of S1s (optimal therapy
times) of all left profiles of all n rows of I can be done in O(ng) time. The same
is true of right profiles. Once these values are computed, step (1) of Algorithm
M2 is applied. maxi{S1(P i

j )}+ maxi{S1(Si
j)} can be found in O(n) time for

each j and hence in O(ng) time for all j in the permissible range. Thus the
time complexity of Algorithm M2 is O(ng).

Splitting a profile into three

Suppose that a profile I is split into three profiles. Let j, k, j < k, be the
indices at which the profile is split. Once again, this is equivalent to splitting
each row profile Ii, 1 ≤ i ≤ n at j and k as defined for single leaf pair split. As
a result, we get three profiles Pj , M(j,k), and Sk. Pj has rows P 1

j , P 2
j , . . . , Pn

j ,
M(j,k) has rows M1

(j,k),M
2
(j,k), . . . ,M

n
(j,k), and Sk has rows S1

k, S2
k, . . . , Sn

k .

Lemma 14 (Kamath et al. [11]). Suppose I is split into three profiles by
splitting at xj and xk, j < k. The optimal therapy time for delivering Pj,
M(j,k), and Sk using separate fields is maxi{S1(P i

j )} + maxi{S1(M i
(j,k))} +

maxi{S1(Si
k)}.

Proof. Similar to that of Lemma 13. �

Algorithm M3 (Figure 6.25) solves the M3 problem. The complexity anal-
ysis is similar to that of Algorithm M2. In this case though, O(g2) pairs of
split points have to be examined. It is easy to see that the time complexity of
Algorithm M3 is O(ng2).
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Algorithm M3

Compute maxi{S1(P i
j )} + maxi{S1(M i

(j,k))} + maxi{S1(Si
k)} for 1 < j ≤ w + 1,

g − w < k ≤ g, 0 < k − j ≤ w.
Split the field at two points xj , xk, such that 1 < j ≤ w + 1, g − w < k ≤ g,
0 < k−j ≤ w, and maxi{S1(P i

j )}+maxi{S1(M i
(j,k))}+maxi{S1(Si

k)} is minimized.

Fig. 6.25. Splitting a multiple row profile into three.

Bounds on optimal therapy time ratios

The following bounds have been proved on ratios of optimal therapy times.

Lemma 15 (Kamath et al. [11]).

(a) 1 ≤M2(I)/M1(I) ≤ 2
(b) 1 ≤M3(I)/M1(I) < 3
(c) 0.5 < M3(I)/M2(I) < 2

Lemma 15 tells us that the optimal therapy times can at most increase by
factors of 2 and 3, respectively, as a result of splitting a field into 2 and 3.
Also, the optimal therapy time for a split into 2 can be at most twice that
for a split into 3 and vice versa. These bounds give us the potential benefits
of designing MLCs with larger maximal aperture so that large fields do not
need to be split.

Tongue-and-groove effect and interdigitation

Algorithms M2 and M3 may be extended to generate optimal therapy
time fields with elimination of tongue-and-groove underdosage and (option-
ally) the interdigitation constraint on the leaf sequences. Consider the algo-
rithms for delivering an intensity matrix I using a single field with optimal
therapy time while eliminating the tongue-and-groove underdosage (Algo-
rithm TONGUEANDGROOVE) and also while simultaneously eliminating
the tongue-and-groove underdosage and interdigitation constraint violations
(Algorithm TONGUEANDGROOVE-ID). Denote these problems by M1′ and
M1′′, respectively (M2′, M2′′, M3′, and M3′′ are defined similarly for splits
into two and three fields). Let M1′(I) and M1′′(I), respectively, denote the
optimal therapy times required to deliver I using the leaf sequences generated
by these algorithms. To solve problem M2′, we need to determine xj where
M1′(Pj) + M1′(Sj) is minimized for g − w < j ≤ w + 1. Note that this is
similar to Algorithm M2. Using the fact that M1′ can be solved in O(nm)
time for an intensity profile with n rows and m columns (Lemma 7, Kamath
et al. [8]), and by computing M1′(Pj) and M1′(Sj) progressively from left to
right, it is possible to solve M2′ in O(ng) time. In case of M3′, we need to
find xj , xk, such that 1 < j ≤ w + 1, g − w < k ≤ g, 0 < k − j ≤ w, and
M1′(Pj)+M1′(M(j,k))+M1′(Sk) is minimized. M3′ can be solved in O(ng2)
time. The solutions for M2′′ and M3′′ are now obvious.



202 S. Kamath et al.

6.4.3 Field splitting with feathering

One of the problems associated with field splitting is the field matching prob-
lem that occurs in the field junction region due to uncertainties in setup and
organ motion. To illustrate the problem, we use an example. Consider the
single leaf pair intensity profile of Figure 6.26(a). Due to width limitations,
the profile needs to be split. Suppose that it is split at xj . Further suppose

x

x

x

xxj

e

e

(a)

 (b) (c)

(d)

x’j  xj x’j  xj

 xj  x’j 

I

I

I

I

Fig. 6.26. Field matching problem: The profile in (a) is the desired profile. It is
split into two fields at xj . Due to incorrect field matching, the left end of right
field is positioned at point x′

j instead of xj and the fields may overlap as in (c) or
may be separated as in (d). In (c), the dotted line shows the left profile, and the
dashed line shows the right profile. (b) shows these profiles as well as the delivered
profile in this case in bold. In (d), the left and right fields are separated, and their
two profiles together constitute the delivered profile, which is shown in bold. The
delivered profiles in these cases vary significantly from the desired profile in the
junction region. e is the maximum intensity error in the junction region, i.e., the
maximum deviation of delivered intensity from the desired intensity.
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that the left field is delivered accurately and that the right field is misaligned
so that its left end is positioned at x′

j rather than xj . Due to incorrect field
matching the actual profile delivered may be, for example, either of the pro-
files shown in Figure 6.26(b) or Figure 6.26(d), depending on the direction of
error. In Figure 6.26(b), the region between x′

j and xj gets overdosed and is a
hotspot. In Figure 6.26(d), the region between xj and x′

j gets underdosed and
is a coldspot.

One way to partially eliminate the field matching problem is to use the
“feathering” technique. In this technique, the large field is not split at one
sample point into two non-overlapping fields. Instead, the profiles to be deliv-
ered by the two fields resulting from the split overlap over a central feathering
region. The beam splitting algorithm proposed by Wu et al. [19] splits a large
field with feathering, such that in the feathering region the sum of the split
fields equals the desired intensity profile. Figure 6.27(a) shows a split of the
profile of Figure 6.26 with feathering. Figures 6.27(c) and 6.27(d) show the
effect of field matching problem on the split with feathering. The extent of
field mismatches is the same as those in Figures 6.26(b) and 6.26(d), respec-
tively. Note that while the profile delivered in the case with feathering is not
the exact profile either, the delivered profile is less sensitive to mismatch com-
pared with the case when it is split without feathering as in Figure 6.26. In
other words, the purpose of feathering is to lower the magnitude of maximum
intensity error e in the delivered profile from the desired profile over all sample
points in the junction region.

In this section, we extend our field splitting algorithms to incorporate
feathering. In order to do so, we define a feathering scheme similar to that
of Wu et al. [19]. However, there are two differences between the splitting
algorithm we propose and the algorithm of Wu et al. [19]. First, our feathering
scheme is defined for profiles discretized in space and in MUs as is the profile
generated by the optimizer. Second, the feathering scheme we propose defines
the profile values in the feathering region, which is centered at some sample
point called the split point for that split. Thus given a split point, our scheme
will specify how to split the large field with a feathering region that is centered
at that point. The split point to be used in the actual split will be determined
by a splitting algorithm that takes into account the feathering scheme. In
contrast, Wu et al. [19] always choose the center of the intensity profile as the
split point, as they do not optimize the split with respect to any objective.

We study how to split a single leaf pair profile into two (three) fields using
our feathering scheme such that the sum of the optimal therapy times of the
individual fields is minimized. We will denote this minimization problem by
S2F (S3F ). The extension of the methods develped for the multiple leaf pairs
problems (M2F and M3F ) is straightforward and is therefore not discussed
separately.
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Fig. 6.27. Example of field splitting with feathering: (a) shows a split of the profile
of Figure 6.26 with feathering. The dotted line shows the right part of the left profile,
and the dashed line shows the left part of the right profile. The left and right profiles
are shown separately in (b). (c) and (d) show the effect of field matching problem on
the split with feathering. The extent of field mismatches in (c) and (d) are the same
as those in Figures 6.26(b) and 6.26(d), respectively, i.e., the distances between xj

and x′
j are the same as in Figure 6.26. Note that the maximum intensity error e

reduces in both cases with feathering.

Splitting a profile into two

Let I be a single leaf pair profile. Let xj be the split point and let Pj and Sj

be the profiles resulting from the split. Pj is a left profile and Sj is a right
profile of I. The feathering region spans xj and d− 1 sample points on either
side of xj , i.e., the feathering region stretches from xj−d+1 to xj+d−1. Pj and
Sj are defined as follows
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Algorithm S2F

Find Pi and Si using equations (6.17) and (6.18), for g − w + d ≤ i ≤ w − d + 1.
Split the field at a point xj where S1(Pj)+S1(Sj) is minimized for g−w +d ≤ j ≤
w − d + 1.

Fig. 6.28. Splitting a single row profile into two with feathering.

Pj(xi) =

⎧
⎨

⎩

Ij(xi) 1 ≤ i ≤ j − d
�Ij(xi) · (j + d− i)/2d� j − d < i < j + d
0 j + d ≤ i ≤ g

(6.17)

Sj(xi) =

⎧
⎨

⎩

0 1 ≤ i ≤ j − d
Ij(xi)− Pj(xi) j − d < i < j + d
Ij(xi) j + d ≤ i ≤ g.

(6.18)

Note that the profiles overlap over the 2d−1 points j−d+1, j−d+2, . . . , j +
d− 2, j + d− 1. Therefore, for the profile I of width g to be deliverable using
two fields, it must be the case that g ≤ 2w − 2d + 1. Because Pj needs to be
delivered using one field, the split point xj and at least d−1 points to the right
of it should be contained in the first field, i.e., j + d− 1 ≤ w ⇒ j ≤ w− d+1.
Similarly, as Sj has to be delivered using one field j − (d − 1) > g − w ⇒
j ≥ g − w + d. These range restrictions on j lead to an algorithm for the
S2F problem. Algorithm S2F , which solves problem S2F , is described in
Figure 6.28. Note that the Pis and Sis can all be computed in a single left to
right sweep in O(d) time at each i. Thus the time complexity of Algorithm
S2F is O(dg).

Splitting a profile into three

Suppose that a profile I is split into three profiles with feathering. Let j and
k, j < k, be the two split points. As a result, we get three profiles Pj , M(j,k),
and Sk, where Pj is a left profile, M(j,k) is a middle profile of I, and Sk is
a right profile. In this case, there are two feathering regions, each of which
spans across 2d − 1 sample points centered at the corresponding split point.
One feathering region stretches from xj−d+1 to xj+d−1 and the other from
xk−d+1 to xk+d−1. Pj , M(j,k), and Sj are defined as follows

Pj(xi) =

⎧
⎨

⎩

Ij(xi) 1 ≤ i ≤ j − d
�Ij(xi) · (j + d− i)/2d� j − d < i < j + d
0 j + d ≤ i ≤ g

(6.19)

M(j,k)(xi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1 ≤ i ≤ j − d
Ij(xi)− Pj(xi) j − d < i < j + d
Ij(xi) j + d ≤ i ≤ k − d
�Ik(xi) · (k + d− i)/2d� k − d < i < k + d
0 k + d ≤ i ≤ g

(6.20)
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Algorithm S3F

Find Pj , M(j,k) and Sk using equations (6.19), (6.20) and (6.21), for g−2w+3d−1 ≤
j ≤ w − d + 1, g − w + d ≤ k ≤ 2w − 3d + 2 and k − j ≤ w − 2d + 1.
Split the field at two points xj , xk, where S1(Pj)+S1(M(j,k))+S1(Sj) is minimized,
subject to g − 2w + 3d − 1 ≤ j ≤ w − d + 1, g − w + d ≤ k ≤ 2w − 3d + 2 and
k − j ≤ w − 2d + 1.

Fig. 6.29. Splitting a single row profile into three with feathering.

Sj(xi) =

⎧
⎨

⎩

0 1 ≤ i ≤ k − d
Ij(xi)−M(j,k)(xi) k − d < i < k + d
Ij(xi) k + d ≤ i ≤ g.

(6.21)

The profiles Pj and M(j,k) overlap over 2d − 1 points, as do M(j,k) and Sk.
For the profile I to be deliverable using three fields, it must be the case
that g ≤ 3w − 2(2d − 1) = 3w − 4d + 2. Also, it is undesirable for the two
feathering regions to overlap. Thus g ≥ 4d − 2. For the feathering regions
to be well defined and for the split to be useful, it can be shown that g −
2w + 3d − 1 ≤ j ≤ w − d + 1 and that g − w + d ≤ k ≤ 2w − 3d + 2. Also,
k − j + 1 + 2(d− 1) ≤ w ⇒ k − j ≤ w − 2d + 1. Using these ranges for j and
k, we arrive at Algorithm S3F (Figure 6.29), which can be implemented to
solve problem S3F in O(dg2) time.

Tongue-and-groove effect and interdigitation

The algorithms for M2F and M3F may be further extended to generate opti-
mal therapy time fields with elimination of tongue-and-groove underdosage
and (optionally) the interdigitation constraint on the leaf sequences as is done
for field splits without feathering in Section 6.4.2. The definitions of problems
M2F ′ (M3F ′) and M2F ′′ (M3F ′′), respectively, for splits into two (three)
fields are similar to those made in Section 6.4.2 for splits without feathering.

6.5 Minimizing the Number of Segments

Several algorithms have been proposed for minimizing the total number of
segments required for treatment using SMLC. Some of these algorithms are
designed to minimize the number of segments without explicitly considering
the number of MUs in the optimization. Xia and Verhey [21] propose two
classes of such algorithms: sliding window algorithms and reducing level algo-
rithms. In sliding window algorithms, the left-most columns of the intensity
matrix are initially exposed so as to reduce the residual intensities in these
columns to zero. The columns are progressively exposed from left to right and
the residual intensities become zero from left to right during treatment. In the
reducing level algorithms, the intensity level of each segment is calculated as
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a function of the maximum intensity level in the residual matrix. Once the
intensity level is calculated, a mask pattern that determines which area of
the matrix is to be exposed using that intensity level is found. The process
of calculating the intensity level and mask pattern is iteratively performed
until the residual intensity matrix becomes zero. Xia and Verhey [21] propose
multiple schemes for determining the intensity level and mask pattern. Que
[15] proposes variations of the schemes of Xia and Verhey [21] and also com-
pares the performance of some of the published leaf sequencing algorithms.
Chen et al. [5] and Luan et al. [13] have proposed geometric and graph theo-
retic algorithms to minimize number of segments. Recently, algorithms have
also been developed that minimize the number of segments while also using
the optimum (minimum) number of MUs. Langer et al. [12] develop an inte-
ger programming formulation to minimize the number of segments subject to
optimal MUs. Engel [6] and Kalinowski [7] have developed algorithms that
heuristically minimize the number of segments while optimizing the number
of MUs. Below we describe the approaches of Langer et al. [12] and Engel [6].

6.5.1 Algorithm of Langer et al. [12]

Let T be the minimum number of MUs needed to deliver the profile I. T may
be computed using the expression in the proof of Theorem 3. Let Ii,j be the
desired number of MUs for the sample point (i, j) on the ith row, jth column.
During each unit of time t, 1 ≤ t ≤ T , either one MU is delivered to a sample
point or the sample point is shielded so that it receives no MUs. Let lti,j , rt

i,j

and dt
i,j be binary variables. The variable lti,j takes the value 1 if the ith left

leaf shields position (i, j) during the tth unit of time. Similarly, rt
i,j takes the

value 1 if the ith right leaf shields position (i, j) during the tth unit of time. If
neither leaf shields this position, then the variable dt

i,j takes the value 1 and
the sample point receives one MU. We have the following relationship

rt
i,j + lti,j = 1− dt

i,j (6.22)

where rt
i,j , l

t
i,j , d

t
i,j ∈ {0, 1}. From the geometry of the leaves we have,

rt
i,j ≤ rt

i,j+1 (6.23)

and
lti,j+1 ≤ lti,j . (6.24)

Because the number of MUs delivered at each sample point must match the
desired number of MUs,

T∑

i=1

dt
i,j = Ii,j . (6.25)

Variables ct
i,j and ut

i,j are used to keep track of changes in the state of
sample points. ct

i,j takes the value 1 if position (i, j) is not shielded during
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time unit t and is shielded during time unit t + 1. Similarly, ut
i,j takes the

value 1 if (i, j) is shielded during time unit t and is not shielded during time
unit t + 1,

−ct
i,j ≤ dt+1

i,j − dt
i,j ≤ ut

i,j (6.26)

where ut
i,j , c

t
i,j ∈ {0, 1}. If there is a change in the state of Ii,j from time unit

t to t + 1, then the variable st
i,j is 1,

ut
i,j + ct

i,j = st
i,j (6.27)

where st
i,j ∈ {0, 1}. If at least one sample point changes state between succes-

sive time units, we have a new segment. This is indicated by the variable gt

being set to 1,
n∑

i=1

m∑

j=1

st
i,j ≤ mngt. (6.28)

The number of segments is minimized by minimizing the sum of the gts

min
T−1∑

t=1

gt. (6.29)

The minimum number of segments subject to minimum number of MUs can
be found by minimizing the objective of equation (6.29) subject to equations
(6.22)–(6.28).

Unidirectional leaf movement can be enforced using the following con-
straints

rt
i,j − rt+1

i,j ≥ 0 (6.30)

lt+1
i,j − lti,j ≥ 0. (6.31)

The interdigitation constraint is described as follows

lti+1,j + rt
i,j ≤ 1 (6.32)

lti−1,j + rt
i,j ≤ 1. (6.33)

Finally, the tongue-and-groove constraint is enforced by the following
inequalities

−1 ≤ dt
i+1,j + dt′

i,j − dt
i,j − dt′

i+1,j ≤ 1, (t �= t′). (6.34)

Note that when the unidirectional leaf movement constraint is applied with
no other additional constraint, the minimum number of MUs is no more than
without the constraint. This follows from the fact that Algorithm MULTI-
PAIR generates a schedule that is optimal in MUs. For the problem with
the unidirectional and interdigitation constraints, the value of T is equal to
the number of MUs required for delivering the profile I using the schedule
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generated by Algorithm MINSEPARATION with Smin = 0. Similarly, for
the problem with the unidirectional and tongue-and-groove constraints, the
value of T is equal to the number of MUs required for delivering the profile I
using the schedule generated by Algorithm TONGUEANDGROOVE. It is to
be noted that these integer programming solutions use a very large number
of variables. Therefore, these solutions currently are applicable only for very
small matrices and are not practical for most clinical matrices.

6.5.2 Algorithm of Engel [6]

Engel [6] has proposed an algorithm that generates schedules that are optimal
in MUs and also heuristically minimizes the number of segments simultane-
ously. Let di,j = Ii,j − Ii,j−1, where Ii,0 = Ii,m+1 = 0. For each row Ii, the
TNMU (total number of monitor units)-row complexity, Ci(I) is defined as
follows:

Ci(I) =
m+1∑

j=1

max{0, di,j}. (6.35)

From Theorem 1, it follows that Ci(I), which equals the number of MUs for
the plan generated by Algorithm SINGLEPAIR, is the minimum number of
MUs required to deliver the intensity profile of row I. The TNMU complexity
of I, C(I) is defined as

C(I) = max
1≤i≤n

{Ci(I)}. (6.36)

This is the minimum number of MUs required to deliver profile I and is also
the number of MUs for the schedule generated by Algorithm MULTIPAIR.
From this fact, it follows that the class of algorithms of Figure 6.30 (Algorithm
MIN-TNMU) always yields a schedule with optimal MUs.

In Algorithm MIN-TNMU, S is a binary matrix. It is represented as an
n-tuple (S1, S2, . . . , Sn), where Si = [li, ri] is an interval, and

Sij =
{

1 j ∈ Si

0 otherwise.

Algorithm MIN-TNMU

While I �= 0

Find u > 0 and a segment S such that I ′ = I − uS is nonnegative and C(I ′) =
C(I) − u.
Output (u, S).
I = I − uS.

End While

Fig. 6.30. Obtaining a schedule that heuristically minimizes number of segments
subject to optimal number of MUs.
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The pair (u, S) where u and S are as in step 2 of Algorithm MIN-TNMU is
called an admissible segmentation pair. Note that for C(I ′) = C(I)− u to be
true, we require that Ci(I − uS) ≤ C(I)− u, 1 ≤ i ≤ n. The objective now is
to find a schedule that uses mimimum MUs and also minimizes the number
of segments. The first strategy used is as follows. Take the largest possible u
in each iteration of Algorithm MIN-TNMU, i.e., the greatest number umax

for which there exists a segment S such that (umax, S) is an admissible seg-
mentation pair. Call an interval Si = [li, ri] an essential interval if Si = Φ or
(di,li > 0 and di,ri+1 < 0). To determine umax, as described below, it can be
shown that it suffices to consider segments S for which the Sis are all essential
intervals. Let v(Si) be defined as follows.

v(Si) =

⎧
⎨

⎩

gi(I) Si = Φ
gi(I) + min{di,li ,−di,ri+1} li ≤ ri and gi(I) ≤ |di,li + di,ri+1|
(di,li − di,ri+1 + gi(I))/2 li ≤ ri and gi(I) > |di,li + di,ri+1|

where gi(I) = C(I) − Ci(I). It can be shown that u ≤ v(Si) follows from
Ci(I − uS) ≤ C(I)− u. Also, note that I − uS ≥ 0 from which it follows that
u ≤ w(Si), 1 ≤ i ≤ n, where

w(Si) =
{
∞ Si = Φ
minli≤j≤ri

Ii,j li ≤ ri.

Let u(Si) = min{v(Si), w(Si)}, 1 ≤ i ≤ n. Let ui = max{u(Si)} where the
max is taken over all essential intervals Si for row i of I. It can be shown that
umax = min1≤i≤n ui. Using the aforementioned results, it is possible to com-
pute umax and a segment S such that (umax, S) is an admissible segmentation
pair. Engel [6] also briefly discusses other choices for admissible segmentation
pairs, one of which results in a fewer number of segments than the process
above.

Kalinowski [7] has extended the work of Engel [6] to account for the inter-
digitation constraint.

6.6 Conclusion

In this chapter, we have reviewed some of the recent work on leaf sequencing
algorithms for multileaf collimation. The algorithms minimize the number of
MUs and/or the number of segments. Most of the algorithms have also been
adapted to account for machine dependent leaf movement constraints that
include the interdigitation constraint, the tongue-and-groove constraint, and
the maximum field width constraint.
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Abstract. Variational methods for image registration and image segmentation
based on energy minimization are presented. In image registration, approaches that
aim at minimizing a similarity measure + an appropriate regularization of the
displacement field are investigated. Also, image interpolation problems based on
optical flow techniques are considered. Several possible similarity measures as well
as regularization terms are discussed. Corresponding optimality conditions (Euler–
Lagrange equations) are derived, and numerical methods and graphical illustrations
of various computational outcomes are presented. In a second part, approaches to
image segmentation are introduced. General concepts such as region and edge grow-
ing are characterized and formulated as minimization problems. Then, two main
paradigms are discussed: geodesic active contours (snakes) and the Mumford–Shah
approach. Both techniques contain the edge set, which is a geometrical object, as
the unknown quantity such that the minimization problem can be cast as a shape
optimization problem. In order to cope with this aspect, techniques from shape sen-
sitivity analysis are introduced. Finally, their numerical realization within a level
set framework is highlighted.

7.1 Image Registration

Separate images of related objects are compared or aligned by at least implic-
itly conceiving a correspondence between like points. For example, two given
images may be of a single patient at different times, such as during a mammog-
raphy examination involving repeated imaging after the injection of a contrast
agent [55]. On the other hand, the images may be of a single patient viewed
by different imaging modalities, such as by magnetic resonance and computed
tomography to provide complementary information for image-guided surgery
[21]. In fact, images of two separate patients may even be compared to eval-
uate the extent of pathology of one in relation to the other [61]. Similarly,
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an image of a patient may be compared to an idealized atlas in order to
identify or segment tissue classes based upon a detailed segmentation of the
atlas [61]. When an explicit coordinate transformation connecting like points
is constructed, images are said to be registered. When a parameterized trans-
formation permits images to be morphed one to the other, images are said
to be interpolated. Because many applications involve the processing of sets
as opposed to pairs of images, it is also of interest to consider methods for
registering and interpolating image sequences.

Because the term registration is often used rather loosely in the context of
its applications, it may be useful to elaborate on the above description of what
registration is by stating what it is not. Note that by manipulating intensities
alone, it is possible to warp or morph one image into another without hav-
ing an explicit coordinate transformation identifying like image points. Thus,
image registration is not image morphing but can be used for such an applica-
tion. Similarly, a continuous warping of one image to another can be achieved
without registration, but a parameterized coordinate transformation can be
used to interpolate between images. Also, when complementary information
in separate imaging modalities is superimposed, images are said to be fused.
Because fusion too can be achieved by manipulating intensities alone, fused
images need not be registered but rather can be fused by registration.

In order to compute a transformation that matches given images, two main
ingredients are combined. First, there must be a measure of image similarity
to quantify the extent to which a prospective transformation has achieved the
matching goal [21]. Secondly, owing to the ill-posed nature of the registration
problem, very pathological transformations are possible but not desired, and
therefore a measure of transformation regularity is required [47]. Typically,
one determines the desired transformation by minimizing an energy functional
consisting of a weighted sum of these two measures.

The simplest image similarity measure is the sum of squared intensity dif-
ferences, which is natural when images are related by a simple misalignment.
Statistical measures have also been employed, and the correlation coefficient
has been recognized as ideal when the intensities of the two images are related
by a linear rescaling [62]. Also, the adaptation of thermodynamic entropy for
information theory has suggested mutual information as an image similarity
measure [43, 64], and a heuristically based normalized mutual information
has been found to work very well in practice [60]. In [65], it is found in
practice that highly accurate registrations of multimodal brain images can
be achieved with information-theoretic measures. Nevertheless, as recognized
in [54], mutual information contains no local spatial information, and ran-
dom pixel perturbations leave underlying entropies unchanged. Higher order
entropies including probabilities of neighboring pixel pairs can be employed to
achieve superior results for non-rigid registration [54]; however, the message
is that local spatial information in an image similarity measure is advanta-
geous. In [17], Gauss maps are used to perform morphological, i.e., contrast
invariant, image matching. Image level sets are also matched in [18] by using
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a Mumford–Shah formulation for registration. Higher order derivatives of the
optical flow equation residual are penalized for an image similarity measure in
[63] to obtain optical flows that do not require image structures to maintain
a temporally constant brightness. In [11], the optical flow equation residual is
replaced by a contrast invariant similarity measure that aligns level sets. In
[33], the constant brightness assumption is circumvented without differential
formulations by simply composing intensities with scaling functions.

The simplest approach to achieving regularity in a registration transfor-
mation is to use a low-dimensional parameterization. Before computing a very
general type of registration transformation, many practitioners often consider
first how well one of two natural classes of parameterized transformations man-
age to match given images: rigid and affine transformations. A rigid transfor-
mation is a sum of a translation and a rotation. An affine transformation is a
sum of a translation and a matrix multiplication that is no longer constrained
to be conformal or isometric. A registration or interpolation method may be
called generalized rigid or generalized affine if it selects a rigid or an affine
transformation, respectively, when one fits the given images [34]. The motiva-
tion for considering rigid or affine transformations, and generalizations thereof,
lies in their applicability in two important categories of biomedical imaging.
First, generalized rigid registration and interpolation are of particular inter-
est, for instance, to facilitate medical examination of dynamic imaging data
because of the ubiquity of rigid objects in the human body. Second, generalized
affine registration and interpolation are of particular interest, for instance, for
object reconstruction from histological data as histological sections may be
affinely deformed in the process of slicing. A leading application and demand
for non-rigid registration is for mammographic image sequences in which tis-
sue deformations are less rigid and more elastic [55]. This observation has
motivated the development of registration methods based on linear elasticity
[19], [53]. Some authors relax rigidity by constraining transformations to be
conformal or isometric [24]. Others employ a local rigidity constraint [40] or
allow identified objects to move as rigid bodies [42].

7.1.1 Variational framework

Image registration and interpolation can be visualized using the illustration
in Figure 7.1 for 2D images, in which two given images I0 and I1 are situated
respectively on the front and back faces of a box Q = Ω × (0, 1) where a
generic cross section of Q is denoted by Ω = (0, 1)N . In particular, the front
and back faces of Q are denoted by Ω0 and Ω1, on which I0 and I1 are
situated, respectively. The rectangular spatial coordinates in Ω are denoted
by x = (x1, . . . , xN ) and the depth or temporal coordinate by z.

The surfaces shown in Figure 7.1 are surfaces in which all but one of the
curvilinear coordinates ξ = (ξ1, . . . , ξN ) are constant, and the intersection of
these surfaces represents a trajectory through Q connecting like points in I0

and I1. The coordinates ξ(x, z) are initialized in Ω0 so that ξ(x, 0) = x holds,



216 M. Hintermüller and S.L. Keeling

x1
x2

z

ξ1

ξ2

ζ

I0 at z = 0

I1 at z = 1

Fig. 7.1. The domain Q with 2D images I0 and I1 on the front and back faces Ω0 and
Ω1, respectively. Curvilinear coordinates are defined to be constant on trajectories
connecting like points in I0 and I1.

and therefore the displacement vector within Q is d(x, z) = x− ξ(x, z). The
curvilinear coordinate system is completed by parameterizing a trajectory in
the depth direction according to ζ = z. Thus, a trajectory emanating from
the point ξ ∈ Ω0 is denoted by x(ξ, ζ). The coordinates in Ω1 of the finite
displacement from coordinates ξ in Ω0 are written as x(ξ) = x(ξ, 1). For those
points in Q situated on a trajectory joined to Ω1 but not necessarily to Ω0, let
y = (y1, . . . , yN ) and η = (η1, . . . , ηN ) be the counterparts to x and ξ defined
so that η(y, 1) = y holds in Ω1; thus, a trajectory emanating from the point
η ∈ Ω1 is denoted by y(η, ζ), and the finite displacement from Ω1 to Ω0 is
written as y(η) = y(η, 0). A trajectory tangent is given by (u1, . . . , uN , 1) in
terms of the optical flow defined as u = (u1, . . . , uN ) = xζ . Since it is not
assumed that every point in Ω0 finds a like point in Ω1, let the subsets of Ω0

and Ω1 with respect to which trajectories extend completely through the full
depth of Q be denoted respectively by Ωc

0 = {ξ ∈ Ω0 : x(ξ, ζ) ∈ Q, 0 < ζ < 1}
and Ωc

1 = {η ∈ Ω1 : y(η, ζ) ∈ Q, 0 < ζ < 1}. For those trajectories extending
incompletely through Q, define Ωi

0 = Ω0\Ωc
0 and Ωi

1 = Ω0\Ωc
1.

To perform image registration using a finite displacement field x, a func-
tional of the following form can be minimized:

J(x) = S(x) +R(x) (7.1)

where S(x) is an image similarity measure depending upon the given images I0

and I1, and R(x) is a regularity measure of the transformation x. To perform
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image registration and interpolation using an optical flow field u and an inter-
polated intensity I, a functional of the following form can be minimized:

J(u, I) = S(u, I) +R(u) (7.2)

where the intensity field I is constrained by the boundary conditions:

I(x, 0) = I0(x), I(x, 1) = I1(x) (7.3)

and S(u, I) quantifies the variation of intensity I in the flow direction (u, 1)
while R(x) is a regularity measure of the optical flow u. Trajectories through
the domain Q are defined by integrating the optical flow under boundary
conditions, i.e., by solving:

x(ξ, ζ) = ξ +
∫ ζ

0

u(x(ξ, ρ), ρ)dρ, ξ ∈ Ω0, ζ ∈ [0, 1] (7.4)

and a similar equation for y(η, ζ) with η ∈ Ω1 and ζ ∈ [0, 1]. A registration
is given by the coordinate transformation x(ξ, 1) and by the inverse transfor-
mation y(η, 0). The given images I0 and I1 are interpolated by the intensity
I.

7.1.2 Similarity measures

The simplest similarity measure involves the squared differences [I0(ξ) −
I1(x(ξ))]2 over Ωc

0. However, as discussed in detail in [34], Ωc
0 depends upon

x(ξ). To avoid having to differentiate the domain with respect to the dis-
placement for optimization, it is assumed that the images I0 and I1 can be
continued in RN by their respective background intensities, I∞0 and I∞1 , which
are understood as those intensities for which no active signal is measured. For
simplicity, it is assumed here that the background intensities are zero. With
such continuations, a similarity measure can be defined in terms of the sum
of squared differences as follows:

S1(x) =
∫

Ω0

[I0(ξ)− I1(x(ξ))]2 dξ (7.5)

where here and below I1(x(ξ)), ξ ∈ Ωi
0 is understood as zero. So that S1 is

independent of the order in which images are given, a similar integral over Ω1

may be added in (7.5) in which I0(y(η)), η ∈ Ωi
1 is understood as zero.

As illustrated in Figure 7.2, the finite displacements discussed above in
connection with (7.5) can be written equivalently in terms of trajectories
passing at least partly through Q and some impinging upon the side of the
box:

Γ = ∂Q\{Ω0 ∪ Ω1}. (7.6)
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Fig. 7.2. ζ́(ξ) and ζ̀(η) denote the ζ coordinates at which trajectories emanating
respectively from ξ ∈ Ωi

0 and η ∈ Ωi
1 meet Γ.

The corresponding intensity differences can be written equivalently in terms
of integrals of [dI/dζ]2 for an intensity I satisfying the boundary conditions
(7.3) as well as those illustrated in Figure 7.2:

I = 0 on Γ. (7.7)

Once such integrals of [dI/dζ]2 are transformed from the Lagrangian (trajec-
tory following) form to the Eulerian (local) counterpart, dI/dζ = ∇I ·u + Iz,
and transformation Jacobians such as 1/det[∇ξx] are neglected, the following
penalty on the optical flow equation residual [31] is obtained:

S2(u, I) =
∫

Q

[∇I · u + Iz]
2
dxdz (7.8)

subject to the boundary conditions (7.3) and (7.7).
To circumvent a constant brightness condition along trajectories, which in

the present context involves minimizing the variation of the intensity I along
a trajectory, the similarity may be defined in terms of intensity derivatives as
follows [63]:

S3(u, I) =
∫

Q

[∇|∇I| · u + |∇I|z]2 dxdz. (7.9)

To avoid the use of derivatives, the given data may instead be composed with
scaling functions so that the intensity I in (7.8) is constrained by the following
modification of (7.3):

I = σ0(I0) on Ω0, I = I1 on Ω1 (7.10)

in which only I0 is scaled, and I1 may be scaled similarly [33]. Furthermore,
both of the given images may be scaled reciprocally in order that the regis-
tration be independent of image order [33].
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The simplest statistical image similarity measure is the correlation
coefficient:

S4(x) =
∫

Ω0

[
I0(ξ)− μ(I0)

σ(I0)

] [
I1(x(ξ))− μ(I1 ◦ x)

σ(I1 ◦ x)

]
dξ (7.11)

where μ(I0) =
∫
Ω0

I0dx/meas(Ω0), with meas(Ω0) representing the Lebesgue
measure of Ω0, and σ(I0) = μ([I0 − μ(I0)]2) denote the mean value and vari-
ance of I0 respectively. Also, I1 ◦ x denotes the composition of I1 and x. So
that S4 is independent of the order in which images are given, a similar inte-
gral over Ω1 may be added in (7.11) as with (7.5). The similarity measures
(7.5) and (7.11) coincide when they are restricted to pure translation [47]. A
more complex statistical image similarity measure is the mutual information:

S5(x) = H(I0) + H(I1 ◦ x)−H(I0, I1 ◦ x) (7.12)

where, for images taking values in the interval [0, 1], the entropy H(A) of
image A and the joint entropy H(A,B) of images A and B are given by:

H(A) = −
∫ 1

0

p(A = a) log[p(A = a)]da

H(A,B) = −
∫ 1

0

∫ 1

0

p(A = a,B = b) log[p(A = a,B = b)]dadb.

(7.13)

Here, p(A = a) denotes the probability that the image A assumes the intensity
a, and p(A = a,B = b) denotes the probability that the images A and B
assume the intensities a and b simultaneously. So that S5 is independent of
the order in which images are given, the sum H(I0 ◦y)+H(I1)−H(I0 ◦y, I1)
may be added in (7.12) as with (7.5) and (7.11). For a simple example of
mutual information, let A and B be the following 2× 2 images:

A =
0 0
1 1

B =
0 1
0 1

. (7.14)

So the intensity values are {ai} = {0, 0, 1, 1} and {bj} = {0, 1, 0, 1} and
their probabilities are p(A = ai) = 1

2 = p(B = bj). Also, there are pre-
cisely four intensity pairs {(0, 0), (0, 1), (1, 0), (1, 1)}, each with probability
p(A = ai, B = bj) = 1

4 . The entropies of the two images are the same,
H(A) = H(B) = log(2). The joint entropy is H(A,B) = log(4), which is
larger than the joint entropy of A with itself, H(A,A) = log(2). Thus, a
transformation which rotates image B to be aligned with the image A would
minimize the mutual information. Note that this similarity measure operates
purely on intensity values and on pairs of intensity values, and it involves
no local spatial information. Such spatial information can be incorporated
by defining higher order entropies involving probabilities of neighboring pixel
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pairs [54]. On the other hand, the variational treatment of (7.12) and varia-
tions of it are more complicated than that of similarity measures such as (7.5)
with an explicit spatial orientation [47].

When finitely many clearly matching points are identified manually, or else
from particular features found in the images I0 and I1, these landmarks:

E�(x) = x(ξ�)− x� = 0, � = 1, . . . , L (7.15)

may be used as constraints in the optimization process for determining the
registration or interpolation. On the other hand, these landmarks may be used
exclusively to determine a parametric registration by minimizing the sum of
squared differences of the landmark residuals [22]:

S6(x) =
L∑

�=1

|x� − x(ξ�)|2. (7.16)

7.1.3 Regularity measures

The most easily determined registrations are those that are parametric and
low-dimensional. For instance, a transformation x could be computed as a
combination of thin plate spline functions:

x(ξ) =
N+1∑

m=1

αmPm(ξ) +
L∑

�=1

β�U(ξ − ξ�) (7.17)

where U(ξ)= |ξ|4−N log |ξ| for N even (or U(ξ)= |ξ|4−N for N odd) and {Pm}
is a basis for linear functions. The transformation in (7.17) that minimizes
the following regularity measure:

R1(x) =
∑

|α|=2

2!
α!

∫

Ω0

|∂α
ξ x|2dξ (7.18)

under the constraints in (7.15) is given by solving systems of the form [47]:
(

K BT

B 0

)(
ᾱ
β̄

)
=
(

x̄
0

)
(7.19)

for the ith component (x)i of x according to:

Kij = U(ξi − ξj), Bim = Pm(ξi), ᾱ = {(αm)i}N+1
m=1,

β̄ = {(β�)i}L
�=1, x̄ = {(x�)i}L

�=1.
(7.20)

In (7.18), 2!/α! is the multinomial coefficient for a multi-index α. Although
such registrations are easily computed and are often used, the transformation
can be pathological enough as to fail to be diffeomorphic [47].

On the other hand, the transformation x has been expressed in terms of
piecewise polynomial splines and determined by minimizing a weighted sum
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of the regularity measure (7.18) and the similarity measure (7.12) as seen in
[55]. Particularly because of the non-uniqueness of minimizers, the iterative
solution of such minimization problems is typically started with the rigid or
affine transformation

rigid: x(ξ) = τ + eW ξ, W = −WT, affine: x(ξ) = τ + Aξ (7.21)

which minimizes the similarity measure.
The kernel of the regularity measure (7.18) selects affine transformations

and it thus provides generalized affine registration in the sense that an affine
transformation is selected when one fits the data. On the other hand, the
kernel of (7.18) does not necessarily select a rigid transformation. In order to
select rigid transformations, it is necessary to consider the full non-linearized
elastic potential energy in a regularity measure of the following form [48]:

R2(x) =
∫

Ω0

|∇ξx
T∇ξx− I|2dξ. (7.22)

However, the corresponding optimality system is quite complex, and general-
ized rigid registration is achieved more easily below with optical flow [37]. A
convenient alternative to (7.22) is given by linearized elastic potential energy
[19, 53]:

R3(x) = R3(d + I) =
∫

Ω0

[
λ[∇ · d]2 + 1

2μ|∇dT +∇d|2
]
dξ (7.23)

although it does not seleted rigid transformations [37]. A visco-elastic fluid
model is adopted with the regularity measure [15, 47]:

R4(x) = R4(d + I) =
∫

Ω0

[
λ[∇ · dt]2 + 1

2μ|∇dT
t +∇dt|2

]
dξ (7.24)

where the transformation x is considered to depend on time t. In this case,
the optimality system for the functional, say, J(x) = S1(x) + νR4(x) leads
to an evolution equation which may be solved to steady state allowing the
regularizing effect of (7.24) to diminish with time.

By using optical flow, generalized affine registration and interpolation is
achieved with the regularity measure [34]:

R5(u) =
∫

Q

[ ∑

|α|=2

2!
α!
|∂α

xu|2 + γ|uz|2
]

dxdz (7.25)

and generalized rigid registration and interpolation is achieved using [37]:

R6(u) =
∫

Q

[
|∇xuT +∇xu|2 + γ|uz|2

]
dxdz. (7.26)

Although it is shown in [34] that non-autonomous flows are theoretically pos-
sible with these regularity measures, a z-dependence is not found in practice.
Thus, these integrals over Q can be replaced with integrals over Ω after setting
γ =∞.
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7.1.4 Optimality conditions

As an example of image registration by finite displacements, consider the
minimization of the following functional:

J11(x) = S1(x) + νR1(x). (7.27)

This functional is stationary when x satisfies:

0 =
1
2

δJ11

δx
(x, x̄) = B11(x, x̄)−F11(x, x̄), ∀x̄ ∈ H2(Ω,RN ) (7.28)

where Hm(Ω,RN ) is the Sobolev space of functions mapping Ω into RN with
Lebesgue square integrable derivatives up to order m, and B11 and F11 are
defined by [34]:

B11(x, x̄) = ν
∑

|α|=2

2!
α!

∫

Ω0

[∂α
ξ x] · [∂α

ξ x̄]dξ (7.29)

F11(x, x̄) =
∫

Ω0

[I0(ξ)− I1(x(ξ))]∇xI1(x(ξ))Tx̄(ξ)dξ. (7.30)

The form F11 contains a similar term over Ω1 when S1 contains the corre-
sponding term mentioned in relation to (7.5). The transformation x satisfying
(7.28) can be computed by the following quasi-Newton iteration [34]:

{
N11(dxk,xk, x̄) = − [B11(xk, x̄)−F11(xk, x̄)] , ∀x̄ ∈ H2(Ω0,R

N )
xk+1 = xk + θdxk

(7.31)
for k = 0, 1, 2, . . . , where:

N11(dxk,xk, x̄) = B11(dxk, x̄)

+
∫

Ω0

[∇xI1(xk(ξ)) · dxk(ξ)][∇xI1(xk(ξ)) · x̄(ξ)]dξ

(7.32)

and θ is chosen by a line search to minimize S1 [26]. Note that no addi-
tional boundary conditions are imposed by restricting the domain of the forms
defined above, and thus natural boundary conditions hold.

As an example of image registration and interpolation by optical flow,
consider the minimization of the following functional:

J26(u, I) = S2(u, I) + νR6(u). (7.33)

This functional is stationary in the optical flow u for fixed I when u satisfies:

0 =
1
2

δJ26

δu
(u, ū) = B26(u, ū)−F26(ū), ∀ū ∈ H1(Q,RN ), (7.34)
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where B26 and F26 are defined by [37]:

B26(u, ū) =
∫

Q

[(∇I · u)(∇I · ū) + γ (uz · ūz)] dxdz

+
∫

Q

1
2

(
∇uT +∇u

)
:
(
∇ūT +∇ū

)
dxdz (7.35)

F26(ū) = −
∫

Q

Iz∇I · ūdxdz. (7.36)

Note that no additional boundary conditions are imposed by restricting the
domain of these forms, and thus natural boundary conditions hold.

The optimality condition for J26 with respect to the intensity I involves
solving the equation d2I/dζ2 + (∇ · u)dI/dζ = 0 with boundary conditions
as seen in Figure 7.2. When this condition is formulated and solved in a
Eulerian fashion, the resulting interpolated images lose clarity between Ω0 and
Ω1 [37]. Thus, the optimality condition on the intensity should be formulated
in a Lagrangian fashion. Specifically, the functional J26 is stationary in the
intensity I for fixed u when I satisfies the following in terms of quantities
defined below [37]:

I(x(ξ, ζ), ζ) =
{

I0(ξ)[1− U(ξ, ζ, 1)] + I1(x(ξ, 1))U(ξ, ζ, 1), ξ ∈ Ωc
0

I0(ξ)[1− U(ξ, ζ, ζ́)], x(ξ, ζ́) ∈ Γ, ξ ∈ Ωi
0

(7.37)

I(y(η, ζ), ζ) =

{
I1(η)[1− V (η, 0, ζ)] + I0(y(η, 0))V (η, 0, ζ), η ∈ Ωc

1

I1(η)[1− V (η, ζ̀, ζ)], y(η, ζ̀) ∈ Γ,η ∈ Ωi
1.

(7.38)
As illustrated in Figure 7.2, the parameters ζ́ and ζ̀ denote the ζ coordinates
at which trajectories emanating respectively from Ωi

0 and Ωi
1 meet Γ. Then,

U and V are defined by:

U(ξ, ζ, ζ́) =
Ũ(ξ, ζ)− Ũ(ξ, 0)

Ũ(ξ, ζ́)− Ũ(ξ, 0)
,

Ũ(ξ, ζ) =
∫ ζ

ζ0

exp
[
−
∫ 

ζ0

∇ · u(x(ξ, ρ), ρ)dρ

]
d�,

(7.39)

for ξ ∈ Ω0, ζ ∈ [0, ζ́], and arbitrary ζ0 ∈ [0, ζ́], and:

V (η, ζ̀, ζ) =
Ṽ (η, 1)− Ṽ (η, ζ)

Ṽ (η, 1)− Ṽ (η, ζ̀)
,

Ṽ (η, ζ) =
∫ ζ

ζ0

exp
[
−
∫ 

ζ0

∇ · u(y(η, ρ), ρ)dρ

]
d�,

(7.40)

for η ∈ Ω1, ζ ∈ [ζ̀ , 1], and arbitrary ζ0 ∈ [ζ̀, 1]. These formulas can be easily
interpreted by considering the case that the transformation is rigid and thus
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∇ · u = 0 holds. In this case, I must satisfy d2I/dζ2 = 0 and U(ξ, ζ, 1) = ζ
and V (η, 0, ζ) = (1− ζ) hold.

If the similarity measure S2 of J26 is modified to incorporate intensity
scaling as seen in (7.10), then under the simplifying assumption that the given
images are piecewise constant the functional J26 is stationary in the scaling
function σ0 for fixed optical flow u and intensity I when σ0 satisfies [33]:

σ0(ι) =
∫

I0(ξ)=ι

I1(ξ)U(ξ)dξ

/∫

I0(ξ)=ι

U(ξ)dξ (7.41)

where the morphing of I1 into Ω0 is given by:

I1(ξ) =
{

I1(x(ξ, 1)), ξ ∈ Ωc
0

0, ξ ∈ Ωi
0

(7.42)

and U is defined by:

U(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ 1

0

U2
ζ (ξ, ζ, 1) det (∇ξx) dζ, ξ ∈ Ωc

0

∫ ζ́(ξ)

0

U2
ζ (ξ, ζ, ζ́(ξ)) det (∇ξx) dζ, ξ ∈ Ωi

0.

(7.43)

These formulas can be easily interpreted by considering the case that the
transformation is rigid. It follows from ∇ · u = 0 that U(ξ, ζ, 1) = ζ,
Uζ(ξ, ζ, 1) = 1 and det(∇ξx) = 1 hold. Thus, U(ξ) = 1 holds. The formula
(7.41) determines the value of σ0(ι) as the average value of morphed image
over the level set I0(ξ) = ι. When the transformation is not rigid, the value
of σ0(ι) is a weighted average of the morphed image over the level set.

To incorporate the landmark constraints (7.15) into the determination of
finite displacements, J11 for instance may be augmented to form the following
Lagrangian functional [53, 20]:

L11(x,λ) = 1
2J11(x) +

L∑

�=1

λT
� E�(x). (7.44)

This Lagrangian functional is stationary in (x,λ1, . . . ,λL) when the following
hold:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B11(x, x̄)−F11(x, x̄) +
L∑

�=1

λTx̄(ξ�) = 0, ∀x̄ ∈ H2(Ω,RN ),

x(ξ�)− x� = 0, � = 1, . . . , L.

(7.45)

For this, let U�(ξ) = U(ξ − ξ�) be the solution to B11(U�, Ū) + Ū(ξ�) =
0, ∀Ū ∈ H2(Ω,R); cf. (7.17). Also, let x̃ be the solution to B11(x̃, x̄) −
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F11(x, x̄) = 0, ∀x̄ ∈ H2(Ω,RN ). Then determine the Lagrange multipliers
{λ�} algebraically from the condition that x = x̃ +

∑L
�=1 λ�U�(ξ) satisfy the

landmark constraints (7.15). Thus, (x,λ1, . . . ,λL) satisfy (7.45). Of course,
x̃ and x depend upon each other, and these may be computed iteratively.
Note that the formulation of landmark constraints for optical flow is more
complicated [36].

7.1.5 Processing image sequences

An image sequence may be registered or interpolated of course by processing
the images only pairwise and concatenating the results. On the other hand, a
coupling among images may be introduced as follows; see also [47].

The images of a sequence {Ik}K
k=0 can be registered simultaneously using

finite displacements {xk}K
k=1 by minimizing:

J (K)
11 (x1, . . . ,xK) =

K∑

k=1

S(k)
1 (x1, . . . ,xK) +R1(xk) (7.46)

where:

S(k)
1 (x1, . . . ,xK) =

∑

|k−j|=1

∫

Ωk

[Ij(xj(ξ))− Ik(xk(ξ))]2 dξ (7.47)

where all images are extended by their background intensities (here as before
assumed to be zero) outside their domains, Ωl, which are additional counter-
parts to Ω0 and Ω1 depicted in Figure 7.1. The end indices k = 0 and k = K
in (7.46) correspond with pairwise registration with the single near neighbor.
When (7.46) has been minimized, the point xi(ξ) ∈ Ωi has been matched
to the point xj(ξ) ∈ Ωj . To minimize J11

(K) with respect to xk while all
other transformations are held fixed, replace F11 in (7.28) and (7.31) with
F11

(k) = − 1
2δS1

(k)/δx:

F (k)
11 (xk, x̄) =

∫

Ωk

∑

|k−j|=1

[Ij(xj(ξ))− Ik(xk(ξ))]∇xIk(xk(ξ))Tx̄(ξ)dξ.

(7.48)
The functional of (7.46) can be minimized by freezing all current trans-
formations except for one, minimizing the functional with respect to the
selected transformation, updating that transformation immediately (Gauss–
Seidel strategy) or else updating all transformations simultaneously (Jacobi
strategy), and then repeating the process until the updates have converged.
Known transformations can remain frozen as fixed boundary conditions, e.g.,
at one or both of the end indices k = 0 and k = K in (7.46) when the position
of one or both of the end images I0 and IK is known.

The calculation (7.48) shows that J (L)
11 is just as well minimized with

respect to xk by registering the image Ik with the image
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Ikn(ξ) =
∑

|j−k|=1

Ij(xj(ξ))/
∑

|j−k|=1

1.

Analogously, the images {Ik}K
k=0 can be registered simultaneously by com-

puting autonomous optical flows {uk}K
k=0 for the image pairs {[Ik, Ikn ]}K

k=0

according to pairwise procedures, where the transformations {xk}K
k=0 are com-

puted by using their respective flows in (7.4). Then the flows and their corre-
sponding transformations can be updated repeatedly until convergence, where
known transformations can remain frozen as fixed boundary conditions as dis-
cussed above.

The images {Ik}K
k=0 can be interpolated from autonomous optical flows

{uk}K−1+M
k=0 using the semi-discretization defined on Q(K) = Ω× (0,K):

u(x, z) =
K−1+M∑

k=0

uk(x)χM
k (z) (7.49)

where {χM
k }K−1+M

k=0 is a basis for the canonical B-splines of degree M defined
on the grid {[k, k + 1]}K−1

k=0 of [0,K] [30]. Then the transformations are given
by natural modifications of (7.4) replacing Ω0, Ω1 and ζ ∈ [0, 1] with Ωk,
Ωk+1 and ζ ∈ [k, k + 1]. Also, the intensity I is given by natural modi-
fications of (7.37) and (7.38) replacing Ω0, Ω1 and Γ with Ωk, Ωk+1 and
Γ(K) = ∂Q(K)\{Ω0 ∪ ΩK}. For instance, for M = 0, χ0

k is the characteristic
function for the interval [k, k + 1], and the above procedure corresponds with
pairwise interpolation of the given images. When smoother trajectories and
greater coupling among images are desired, higher order splines can be used
in (7.49), and (7.34) can be solved for {uk}K−1+M

k=0 with γ = 0 and Q replaced
by Q(K).

7.1.6 Numerical methods

The most costly computations required to solve the optimality systems of
the previous subsection are those involved in solving (7.28) and (7.34). It is
shown in [37] that the trajectory integrations must be performed from every
point in Q where the intensity I is needed, and trajectories must be extended
in both directions toward Ω0 and Ω1 in order to connect values of I0 and
I1; nevertheless, such integrations can be vectorized and obtained remarkably
quickly. All other computations are even less expensive than those required
for (7.28) and (7.34).

For the numerical solution of the finite displacement problem (7.28) or of
the (autonomous) optical flow problem (7.34), it is useful to consider the com-
mon structure among such problems, which is found often in image processing.
Specifically, the boundary value problems have the form:

Find ϕ ∈ Hκ(Ω,RN ) such that:
ν(D(κ)ϕ,D(κ)ψ)L2(Ω,RN ) + (g ·ϕ, g ·ψ)L2(Ω,RN ) = (f ,ψ)L2(Ω,RN ),

for all ψ ∈ Hκ(Ω,RN )
(7.50)
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where g ∈ L∞(Ω,RN ) and f ∈ L2(Ω,RN ) have the same compact support in
Ω, and D(κ) is a differential operator of order κ. The D(κ)-regularization term
as well as the g-data term are both indefinite on Hκ(Ω,RN ), but the sum
is bounded and coercive. With additional homogeneous boundary conditions,
the D(κ)-regularization term can be made definite and therefore numerically
better conditioned, but such artificial boundary conditions would corrupt a
generalized rigid or generalized affine approach. Whereas Fourier methods
have been used for similar systems [19, 47], multigrid methods [25, 26, 34]
can be used with comparable speed and greater generality, for instance, to
accommodate the natural boundary conditions associated with (7.50).

A geometric multigrid formulation is developed in [34] for (7.28) and (7.34)
and is based upon [23]. The usual multigrid strategy is generally to enhance a
convergent relaxation scheme by using its initial and rapid smoothing of small
scales on finer grids and then to transfer the problem progressively to coarser
grids before relaxation is decelerated. The principal ingredients of the strategy
include the definition of a smoothing relaxation scheme and the definition of
a coarse grid representation of the problem, which can be used to provide an
improvement or correction on a finer grid.

For the representation of the boundary value problem on progressively
coarser grids, (7.50) can be formulated on a nested sequence of finite element
subspaces Sκ

2h(Ω,RN ) ⊂ Sκ
h(Ω,RN ) such as tensor products of the B-splines

illustrated in Figure 7.3. Then the finite element approximation to the solution
ϕ of (7.50) is ϕh ∈ Sκ

h(Ω,RN ) defined by replacing Hκ(Ω,RN ) in (7.50) with
Sκ

h(Ω,RN ). This finite-dimensional formulation is expressed as AhΦh = Fh

where Ah is the matrix representation of the differential operator in the finite
element basis, and Φh and Fh are vectors of finite element basis coefficients
for ϕh and f , respectively. Let Kh denote the mapping from coefficients to
functions so that Φh = Khϕh holds. Also, let I2h denote the injection operator

Fig. 7.3. Examples of nested finite elements spaces Sκ
2h(Ω, R1) ⊂ Sκ

h(Ω, R1) of
degree 1 (left column) and 2 (right column).
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from Sκ
2h(Ω,RN ) into Sκ

h(Ω,RN ). Then the coarse grid matrix A2h is com-
puted from the fine grid matrix Ah according to the Galerkin approximation
A2h = R2h

h AhEh
2h where Eh

2h and R2h
h are the canonical expansion and restric-

tion operators satisfying I2hK2h = KhEh
2h and (Eh

2h)∗ = R2h
h . In words, Eh

2h

produces coefficients Φh = Eh
2hΦ2h from coefficients Φ2h so that the func-

tion KhΦh is identical to the function K2hΦ2h. With the coarse grid problem
and the intergrid transfer operators defined, it remains to identify a suitable
relaxation scheme and to define the multigrid iteration.

Because the bilinear form in (7.50) is symmetric and coercive, the matrices,
Ah = Dh +Lh +LT

h , are symmetric and positive definite, where Dh is strictly
diagonal and Lh is strictly lower triangular. Thus, it is natural to use a sym-
metric relaxation scheme such as the symmetric successive over-relaxation,

Φk+1
h = ShΦk

h + ωW−1
h Fh, Sh = I − ωW−1

h Ah,

Wh = (Dh + Lh)D−1
h (Dh + LT

h ), ω ∈ (0, 2).
(7.51)

As discussed in detail in [35], this relaxation scheme can be vectorized for
implementation in systems such as IDL or MATLAB by using a multicolored
ordering of cells as illustrated in Figure 7.4 for a stencil diameter of 3 cells. In
general, for a stencil diameter of (2κ + 1), define a set of same-color cells as
those that are separated from one another in any of N coordinate directions
by exactly κ cells. These cells have stencils that do not weight any other cells
in the set; thus, the strategy is to update such sets of cells simultaneously in
the relaxation. Such same-color cells are ordered along coordinate directions
within that color, and then ordered sequentially among the colors. With such
a multicolored ordering, the relaxation scheme can be implemented by per-
forming a Jacobi iteration on same-colored cells while looping in one direction
and then the other over the colors.

for c = 1, . . . , (κ + 1)N and then c = (κ + 1)N , . . . , 1 do:

Φc
h ← Φc

h − [D−1
h (AhΦh − Fh)]c.

(7.52)

Fig. 7.4. A multicolor ordering of cells for a stencil diameter of 2κ + 1(=3) in
which same-color cells are separated from one another in any of N(=2) coordinate
directions by exactly κ(=1) cells.
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In this way, same-colored cells are updated simultaneously. Similarly, the
known stencil diameter can also be used to advantage to vectorize the com-
putation of elements of the coarse grid matrix [35].

With the above ingredients, a symmetric two-grid cycle TGC(h, σ) is
obtained by:

(1) performing σ relaxation steps to update Φh,
(2) computing the coarse-grid residual D2h = Rh

2h(F −AhΦh),
(3) solving on the coarse grid A2hΨ2h = D2h,
(4) correcting on the fine grid Φh ← Φh + Eh

2hΨ2h, and finally
(5) performing another σ relaxation steps to update Φh.

Then a symmetric multigrid cycle MGC(h, σ, τ) is defined as with the two-grid
cycle except that step 3 in TGC(h, σ) is recursively replaced with τ iterations
of MGC(2h, σ, τ) unless 2h is large enough that the the coarse grid problem
may easily be solved exactly.

7.1.7 Computational examples

Here examples of generalized affine and generalized rigid image registra-
tion and interpolation are shown together with examples of intensity scaling.
Shown in Figure 7.5 are two given images on the far left and on the far right,
which may be related by either an affine or by a rigid transformation. The
results of minimizing S2 + νR5 and S2 + νR6 to register and to interpolate
between the given images are shown respectively in the top and bottom rows.
The figure shows that R5 and R6 produce affine and rigid transformations
respectively when such transformations fit the data.

In the case when the given data are not related by such a simple transfor-
mation, e.g., by a rigid transformation, Figure 7.6 shows that the departure
from rigidity may be controlled by the regularization parameter ν. Specifi-
cally, the result for larger ν is strongly rigid while the result for smaller ν
is called weakly rigid [37]. Also, strong or weak rigidity may be controlled
locally by incorporating ν into the regularization penalty R6 as a distributed
parameter; see [48].

a

b

Fig. 7.5. Images on the far left and right, which may be related by either an affine or
by a rigid transformation, are registered and interpolated by minimizing (a) S2+νR5

and (b) S2 + νR6.
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Fig. 7.6. The given images are shown in the far left column. These images are
registered by minimizing S2 + νR6, and the results for large ν are shown in the
second and third columns, and the results for smaller ν are shown in the fourth
and fifth columns. In each case, registration results are illustrated by applying the
transformation, as well as its inverse, first to a uniform grid and then to the given
image situated on the front or on the back face of Q in Figure 7.1.

I(0)(0) I(0)(1)

I(1)(0) I(1)(1)

I(0)(0) I(1)(1)

Fig. 7.7. The image sequences, I(0)(t) and I(1)(t), t = 0, .2, .4, .6, .8, 1, are shown
in the top two rows. The given raw images are at the upper left I(0)(0) and at
the middle right I(1)(1). The intensity scaling of (7.10) and (7.41) transforms the
upper left I(0)(0) into the middle left image I(1)(0) and the middle right I(1)(1) into
the upper right image I(0)(1). Registration and interpolation are then performed
independently in the top two rows by minimizing S2 + νR6. The convex convex
combination (t−1)I(0)(t)+ tI(1)(t) of these sequences gives the interpolation shown
in the third row.

Finally, the intensity scaling approach of (7.10) and (7.41) is illustrated
in Figure 7.7. Let the upper image sequence here be denoted by I(0)(t), 0 ≤
t ≤ 1, and the middle image sequence by I(1)(t), 0 ≤ t ≤ 1, where the
given raw images are at the upper left I(0)(0) and at the middle right I(1)(1).
These two images have different histograms and different noise levels, but
the intensity scaling of (7.10) and (7.41) transforms the upper left I(0)(0)
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Fig. 7.8. Shown on the left and on the right are two given raw magnetic resonance
images measured in the course of respiration and the introduction of contrast agent.
The images in-between have been interpolated by minimizing S2 + νR6 using the
scaling approach of (7.10) and (7.41).

into the middle left image I(1)(0) and the middle right I(1)(1) into the upper
right image I(0)(1). Once the images are rescaled in this way, registration
and interpolation may be performed independently in the top two rows by
minimizing S2 + νR6. The interpolation between the given images is then
given by the convex combination (t−1)I(0)(t)+ tI(1)(t) as shown in the third
row of Figure 7.7. This is precisely the procedure used to interpolate between
the raw magnetic resonance images shown on the left and on the right in
Figure 7.8. These raw images have been measured in the course of respiration
and they have different histograms because of the appearance of contrast agent
[33, 34]. The two raw images shown in Figure 7.8 are part of the larger sequence
http://math.uni-graz.at/keeling/respfilm1.mpg which is interpolated
as seen in http://math.uni-graz.at/keeling/respfilm2.mpg.

7.2 Edge Detection and Image Segmentation

Variational methods in image segmentation have a natural relation to energy
minimization and partial differential equations. Some of the advantages of
using variational methods are that

• they allow common formulations by assembling “energy” and/or data
fidelity terms in a real-valued objective (or energy) functional J over the
set of edges (or segmentations);

• on the other hand, many PDE-based segmentation and edge-detection
techniques can be interpreted as (approximate) minimization of certain
energy functionals;

• having an energy functional to be minimized is related to the fact that,
at the same time, it can serve as a measure for comparing different
segmentations (we would say that segmentation Γ1 is better than Γ2 if
J(Γ1) < J(Γ2));

• they allow one to introduce a scale α, which typically determines the
amount of image detail that is kept during the segmentation (multiscale
analysis, scale space).
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The multiscale principle works as follows: Assume that I0(x) is some given
gray-scale image defined on a square or rectangle Ω ⊂ R

2. Let {Iα} denote a
sequence of images approximating the original I0. An element Iα will contain
edges with scale exceeding α. By Sα : I0 �→ Iα we denote the solution operator
of some variational method and by Γα the pertinent edge set. The multiscale
principle is based on

• Consistency (or fidelity), i.e., Iα → I0 as α→ 0.
• Strong monotonicity (or strong causality), i.e., Γα ⊂ Γα if α > α.
• Euclidean invariance, i.e., isometric mappings do not influence the result.

In general, one may also consider a weaker monotonicity principle involving
the solution operator Sα; see [49].

7.2.1 Region and edge growing

Region growing methods create a partitioning of the image in homogeneous
regions by starting with small “seed regions” that are then grown by some
homogeneity criterion. Edge growing methods start with an initial fine scale
edge set that is then connected iteratively depending on orientation and prox-
imity criteria. Hybrid growing methods combine these two aspects.

One of the simplest energy functionals in the region growing context cap-
turing the amount of information contained in a segmentation Γ measures the
amount of boundaries in Γ and their smoothness as well as the smoothness of
Iα on each region:

JMS(I,Γ) =
1
2

∫

Ω\Γ
(I − I0)2dx +

α

2

∫

Ω\Γ
|∇I|2dx + γ

∫

Γ

1 dH1, (7.53)

where H1 denotes the one-dimensional Hausdorff measure restricted to Γ.
The scales α and γ are both assumed to be positive. The term attached to α
penalizes variations of ∇I from zero, i.e., violation of homogeneity, and the
γ-term weighs the length of the edge set Γ. In that sense these two energies
regularize non-smooth images. The first term reflects data fidelity and repre-
sents a distance measure to the given (possibly smoothed) image data I0. If
I is imposed to be constant on each region, then the α-term vanishes and the
energy reduces to the energy in the piecewise constant case:

JpcMS(I,Γ) =
1
2

∫

Ω\Γ
(I − I0)2dx + γ

∫

Γ

1 dH1. (7.54)

The functional in (7.53) is known as the Mumford–Shah functional. The dif-
ficulty when minimizing JMS is due to the different nature of the unknowns.
In fact, I is a function defined on Ω whereas Γ is a one-dimensional set. As
a result, both variables have to be treated differently in theory as well as in
numerical approaches.
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Appropriate energies in the context of edge growing appear to be
one-dimensional equivalents of the Mumford–Shah energy. Hence, in the
smoothing part, these energies contain an integral depending on the length
and the curvature as well as the length of the boundary. The one-dimensional
analogue of the latter energy is the cardinality of the tips of curves:

Js
EG(Γα) =

∫

Γα

(1 + κ(s)2)ds + γ card(∂Γα), (7.55)

where ∂Γα represents the tips of curves and κ denotes the curvature. Notice
that Js

EG models the smoothing part of the energy. The fidelity term captures
the quality of the approximation of Γ0 by Γα. The possibly simplest way to
measure this proximity is given by length(Γα \Γ0). However, as I0 might have
been pre-smoothed by some filtering method, this term should be augmented
by the fidelity of Γα to edges. This can be done by

−
∫

Γα

|∇I(s)|2ds.

In addition, one can measure the strength of an edge by considering the deriva-
tive across the edge, i.e.,

−
∫

Γα

∣
∣
∣
∣
∂I

∂n
(s)

∣
∣
∣
∣ ds,

where n denotes the normal to Γα. The overall energy now reads

JEG(Γα) = αJs
EG(Γα)−

∫

Γα

|∇I(s)|2ds−
∫

Γα

∣
∣
∣
∣
∂I

∂n
(s)

∣
∣
∣
∣ ds + length(Γα \ Γ0).

(7.56)
The functional may be simplified, but one needs to keep at least one term of
each of the constituents of JEG. For instance, minimizing

J0
EG(Γα) = α card(∂Γα) + length(Γα \ Γ0) (7.57)

is related to a continuous version of the traveling salesman problem. The
classic snake model by Kass, Witkin and Terzopolous [32] is given by

J̃EG(Γα) = α

∫

Γα

(1 + κ(s)2)ds−
∫

Γα

|∇I(s)|2ds. (7.58)

7.2.2 Snakes, geodesic active contours, and level set methods

In the previous section, we introduced the classic snake or deformable active
contour model in (7.58). Assume that Γ is the union of a finite or countable
number of closed piecewise C1-curves Cj in R

2.
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Snakes

The snake model uses parameterized curves in Pc = {c : [t0, T ] → Ω :
c piecewise C

1, c(t0) = c(T )} and considers the energy minimization

minimize J̃(c) = αJ̃int(c) + J̃ext(c) over c ∈ Pc, (7.59)

where J̃int models the internal or smoothing energy whereas J̃ext represents
the external energy or fidelity. In fact,

J̃int(c) = α

(∫ T

t0

|c′(t)|2dt + β

∫ T

t0

|c′′(t)|2dt

)

, (7.60)

J̃ext(c) =
∫ T

t0

g2(|∇I(c(t))|)dt. (7.61)

Here, g is a mapping from [0,+∞) to [0,+∞) that is monotonically decreasing
and satisfies g(0) = 1 and limz→∞ g(z) = 0. Typical choices are

g(z) =
1

1 + zk
k = 1, 2.

Hence, g(|∇I|) will be zero at ideal edges (infinite gradient of the intensity
map I) and positive elsewhere. The mapping

x �→ g(|∇|)(x)

is called an edge detector. The fidelity term therefore attracts the curve c to
the edge set.

Because Ω is bounded, it can be shown that there exists a minimizer c∗ =
(c∗1, c

∗
2) ∈ Pc of (7.59). It can be characterized by the corresponding necessary

first order optimality condition (also called the Euler–Lagrange equations):

α(−c′′ + βc(iv)) + g(|∇I(c)|)g′(|∇I(c)|)p(c)
d

dc
(∇I(c)) = 0,

p(c) ∈ ∂|∇I(c)|,
c(t0) = c(T ).

Above ∂ denotes the subdifferential from convex analysis, i.e.,

∂|∇I(c)| ∈
{
{∇I(c)/|∇I(c)|} if |∇I(c)| > 0,
B̄(0; 1) if |∇I(c)| = 0,

where B̄(0; 1) denotes the closed unit ball in R
2. In general, one cannot expect

a unique minimizer due to the non-convexity of J̃ . Hence, by solving the Euler–
Lagrange equations, one will typically find a local minimizer only.

Drawbacks of the snake model are due to the fact that it is a non-intrinsic
model, i.e., the solution depends on the chosen parametrization and that it
cannot handle topological changes, i.e., only one object can be detected.
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Geodesic active contours

In (7.60), the term involving c′′ aims at minimizing the squared curvature.
It turns out that the model with β = 0 also aims at reducing the curvature.
But this simpler model still remains non-intrinsic as it depends on the chosen
parametrization. In order to overcome this drawback, at about the same time,
in [12, 13] and [38, 39] the following functional was introduced:

JgAC(c(t)) =
∫ T

t0

g(|∇I(c(t))|) |c′(t)| dt. (7.62)

It can readily be seen that JgAC is intrinsic, i.e., the energy does not change
under parameter changes. This is due to the fact that the Euclidean length is
weighted by the term g(|∇I(c(t))|), which induces a Riemannian metric. In
[5], it was shown that minimizing J̃ with β = 0 is equivalent to minimizing
JgAC.

Embedding C = c(t) ∈ Pc into the family of curves defined by c(ω, t) with
ω ≥ 0 and c(0, t) = c(t) as well as c(ω, t0) = c(ω, T ) and ∂c(ω,t0)

∂t = ∂c(ω,T )
∂t ,

using calculus of variations one finds that JgAC(c(ω, t)) decreases most in the
direction

∂c(ω, t)
∂t

= (κ g −∇g ·N)N , (7.63)

where N denotes the unit normal to the curve, κ is the curvature, and ∇g
represents the gradient of the mapping x �→ g(|∇I(x)|). Note that if c matches
with the edges in I (where g = 0), then ∂c(ω,t)

∂t = 0, i.e., a stationary point
for JgAC is found.

A modified version of (7.63) that aims at an increase of the convergence
speed as well as improved detection of non-convex objects is given by

∂c(ω, t)
∂t

= ((κ + μ) g −∇g ·N) N , (7.64)

with a constant μ such that κ + μ has a constant sign; see [12, 13]. The term
μ g represents a “driving force” that, depending on the sign, either helps to
expand or deflate the propagating curve (or contour). To some extent this
may be considered to act as a regularization to overcome noise in the image.

Level-set method

Compared with parametrization-based approaches, in numerical practice it
turned out that a realization of (7.63) or (7.64) within a level set framework
has several advantages: It allows flexibility in representing the curve (or iter-
ative approximations thereof) numerically, and it is numerically robust as it
operates on a fixed (Eulerian) grid. In fact, techniques based on parameter-
izations of c may suffer from the need of (expensive) re-parametrizations in
case of topological changes and from numerical instabilities as discretization
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Fig. 7.9. The closed curve in the left plot is represented as the zero-level set of a
level set function–here a signed distance function–in the right plot.

points on approximations of c may cluster or have gaps during an iterative
procedure.

In their seminal work [52], Osher and Sethian propose the following
approach; see also [51, 58]. A closed curve c in R

2 can be represented as
the zero-level set of a level set function (or, according to [51], a geometrical
implicit function) φ : R

2 × R
+ → R in the following way:

φ(x(t), t) = 0 for all x(t) and t ≥ 0, (7.65)

where x(t) represents a point on c(t) ⊂ R
2. Further it is assumed that the

sign convention shown in Figure 7.9 holds true. Assuming that φ is sufficiently
regular, one differentiates (7.65) with respect to t. This yields

φt(x(t), t) +∇φ(x(t), t) · x′(t) = 0 for all t ≥ 0. (7.66)

Next it is supposed that c (or, equivalently, x) travels with velocity F in the
unit outward normal direction to c, i.e.,

x′(t) =
∂c(t)
∂t

= F (t,x(t),x′(t), . . .)N(x(t), t).

Inserting this form of x′ into (7.66) gives

φt(x(t), t) +∇φ(x(t), t) · (F (t,x(t),x′(t), . . .)N(x(t), t)) = 0 for all t ≥ 0.
(7.67)

In view of the sign convention according to Figure 7.9, the unit outward
normal is given by

N(x(t), t) = − ∇φ(x(t), t)
|∇φ(x(t), t)| .

This yields the equation

φt(x(t), t)− F (t,x(t),x′(t), . . .)|∇φ(x(t), t)| = 0 for all t ≥ 0 (7.68)
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which can readily be extended to a domain Ω ⊂ R
2 containing c:

φt(x, t)− F |∇φ(x, t)| = 0 for all t ≥ 0 and x ∈ Ω. (7.69)

This partial differential equation (PDE) is typically combined with a homo-
geneous Neumann boundary condition for φ on ]0,+∞[×∂Ω and the initial
condition φ(x, 0) = φ0(x). A popular choice of φ0 is the signed distance
function

φ0(x) :=
{

d(x, c0) if x is outside c0,
−d(x, c0) if x is inside c0,

where c0 denotes the initial curve and d(x, c0) is the Euclidean distance of x
to c0. The PDE (7.69) together with its boundary and initial condition is of
Hamilton–Jacobi type.

In the context of image segmentation the velocity F is given by

F (t,x(t),x′(t),x′′(t)) := κ g −∇g · ∇φ

|∇φ| , (7.70)

in case of minimizing JgAC, or, if F is based on (7.64), by

F (t,x(t),x′(t),x′′(t)) := (κ + μ) g −∇g · ∇φ

|∇φ| , (7.71)

The equation (7.69) is then solved until steady state. Note that this procedure
corresponds to a steepest descent method for minimizing JgAC or a modifica-
tion of thereof in case of (7.71), as we shall see later.

The curvature κ can be written as

κ = div
(
∇φ

|∇φ|

)
;

see, e.g., [41]. Hence, (7.69) with the velocity in (7.71) becomes

φt = g(|∇I|)
(

div
(
∇φ

|∇φ|

)
+ μ

)
|∇u|+∇g · ∇φ. (7.72)

Note that the natural extension of F (t, ·) to Ω is used above. Clearly, in (7.72)
the first term of the sum in the right-hand side above is zero, when the zero-
level of φ is equal to an (ideal) object boundary or contour due to g = 0. The
second term attracts the contour toward object boundaries; see [6] for more
details also on a solution theory of the Hamilton–Jacobi equation based on
viscosity solutions.

Shape optimization and edge detector–based segmentation

The first papers that utilized the level-set concept along the lines indicated
in the previous section are [10, 13, 39, 44, 45].
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The velocity function F proposed in [10] is given by

F = g
(
div

(
∇φ

|∇φ|

)
+ μ

)
, (7.73)

In contrast with (7.73), as we have shown previously the velocity function

F = div
(

g
∇φ

|∇φ|

)
= g div

(
∇φ

|∇φ|

)
+

1
|∇φ| 〈∇g,∇φ〉, (7.74)

can be interpreted as the gradient direction for the cost functional

JgAC(c(t)) =
∫ T

t0

g(|∇I(c(t))|) |c′(t)| dt. (7.75)

In [28] it is argued that JgAC is equivalent to

JgAC(Γ) =
∫

Γ

g dS, (7.76)

where S denotes the arc-length measure on Γ. In (7.76) c is replaced by
Γ ⊂ Ω, which represents now a genuine geometrical variable. It is assumed
that Γ = ∂Ω is the boundary of an open set Ω ⊂ R

2. We call Γ a contour in
R

2. The “driving force” μ can be modeled by adding the term

μ

∫

Ω

g dx

to JgAC(Γ). This gives

Jμ
gAC(Γ) =

∫

Γ

g dS + μ

∫

Ω

g dx, (7.77)

where Ω denotes the subset of R
2 with boundary ∂Ω = Γ.

This view opens a new perspective on energy-minimization–based image
segmentation. The functional Jμ

gAC represents a so-called shape functional as
the unknown quantity is a geometric object (shape). The sensitivity analysis of
Jμ

gAC (such as computing first and second order derivatives) can be performed
by means of shape sensitivity techniques; see [16, 59] and the many references
therein.

Next we summarize some of the basic principles of shape sensitivity anal-
ysis that will then be applied to Jμ

gAC. Suppose that V : R
2 → R

2 is a given
smooth vector field with compact support in R

2. We study perturbations of
Γ by means of an initial value problem with right-hand side given by the
perturbation vector field V . In fact, we consider

{
x′(t) = V

(
x(t)

)

x(0) = x,
(7.78)
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with x ∈ R
2 given. The flow (or time-t map) with respect to V is defined as

the mapping T t : R
2 → R

2, with

T t(x) = x(t), (7.79)

where x(t) is the solution to (7.78) at time t. For a contour Γ, we define

Γt = {T t(x) : x ∈ Γ} = T t(Γ) (7.80)

and similarly Ωt = T t(Ω) for an arbitrary open set Ω. If V ∈ Ck
0 (R2, R2),

then T t ∈ Ck(R2, R2). Thus, smoothness properties of Γ are inherited by Γt

provided that the vector field V is smooth enough.
Suppose we are given a functional J : C → R, where C is an appropriate

set of contours. We define the Eulerian (semi)derivative of J at a contour Γ
in direction of a perturbation vector field V by

dJ (Γ;V ) = lim
t↓0

1
t

(
J (Γt)− J (Γ)

)
. (7.81)

Let B be a Banach space of perturbation vector fields. The functional J is
shape differentiable at Γ in B if dJ (Γ;V ) exists for all V ∈ B and the mapping
V �→ dJ (Γ;V ) is linear and continuous on B. We use the analogous definition
for functionals J (Ω), which depend on an open set Ω as independent variable
instead of a contour Γ.

Next we present some results from shape calculus that will become useful
later on. For a domain integral with a domain-independent integrand ϕ ∈
W 1,1

loc (R2), with Ω ⊂ R
2 open and bounded, one has that

J (Ω) =
∫

Ω

ϕdx

is shape differentiable for perturbation vector fields V ∈ C1
0(R2; R2). The

Eulerian semiderivative of J is given by

dJ (Ω;V ) =
∫

Ω

div (ϕV ) dx. (7.82a)

If Γ = ∂Ω is of class C1, then

dJ (Ω;V ) =
∫

Γ

ϕV ·N dS, (7.82b)

where N denotes the exterior unit normal vector to Ω; see Propositions 2.45
and 2.46 in [59].

For a vector field V ∈ C1
0(R2; R2) and an open set of class C2 with boundary

Γ, the tangential divergence of V is defined by

div ΓV = (div V − 〈DV ·N ,N〉)
∣
∣
∣
Γ
, (7.83)



240 M. Hintermüller and S.L. Keeling

where DV denotes the Jacobian matrix of V . With this definition we are able
to study the Eulerian semiderivative of the boundary functional

J (Γ) =
∫

Γ

ϕdS (7.84)

where ϕ ∈ W 2,1
loc (R2) and Γ is a contour of class C1. In fact this functional is

shape differentiable for perturbation vector fields V ∈ C1
0(R2; R2) with

dJ (Γ;V ) =
∫

Γ

(
∇ϕ · V + ϕ div ΓV

)
dS; (7.85)

see Sections 2.18 and 2.19 in [59].
Using tangential calculus (see Sections 2.19 and 2.20 in [16, 59] or Section

2 in [28]), one can show that the Eulerian derivative of the cost functional
(7.84) is equivalent to

dJ (Γ;V ) =
∫

Γ

(∂ϕ

∂n
+ ϕκ

)
V ·N dS. (7.86)

It is also useful to be able to calculate sensitivities for more general func-
tionals of the form

J (Ω) =
∫

Ω

ϕ(Ω,x) dx (7.87)

or
J (Γ) =

∫

Γ

ψ(Γ,x) dS(x), (7.88)

where the functions ϕ(Ω) : Ω → R and ψ(Γ) : Γ → R themselves depend on
the geometric variables Ω and Γ, respectively. In this case, formulas (7.82)
and (7.86) have to be corrected by terms that take care of the derivatives of
ϕ and ψ with respect to Ω or Γ. For this purpose, the following two variants
of derivatives of a geometry dependent function with respect to the geometry
are considered: Suppose ψ(Γ) ∈ B(Γ) for all Γ ∈ C, where B(Γ) is some
appropriate Banach space of functions on Γ and let V ∈ C1

0(R2, R2). We set
ψt := ψ(Γt) ◦ T t(V ) and ψ0 := ψ(Γ), and we assume that ψt ∈ B(Γt) for all
0 < t < T with some T > 0. If the limit

ψ̇(Γ;V ) = lim
t↓0

1
t

(
ψt − ψ0

)
(7.89)

exists in the strong (weak) topology on B(Γ), then ψ̇(Γ;V ) is called the strong
(weak) material derivative of ψ at Γ in direction V .

The analogous definition holds for functions ϕ(Ω) that are defined on open
sets and not on contours.

The material derivative is the derivative of ϕ (or ψ) with respect to the
geometry for a moving (Lagrangian) coordinate system. Let us first consider
the case of a domain function ϕ : Ω→ R. It is easily seen that, for the special
case where ϕ is independent of Ω, we find
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ϕ̇(Ω;V ) = ϕ̇(V ) = ∇ϕ · V .

For a function, that does not depend on Ω, any reasonable derivative with
respect to Ω in a fixed (Eulerian) coordinate system must be 0. It is therefore
natural to subtract the term ∇ϕ · V from ϕ̇ to define a derivative of ϕ with
respect to Ω in a stationary coordinate system. This is the idea of the following
definition: Suppose, the weak material derivative ϕ̇(Ω;V ) and the expression
∇ϕ(Ω) · V exist in B(Ω). Then, we set

ϕ′(Ω;V ) = ϕ̇(Ω;V )−∇ϕ · V (7.90)

and we call ϕ′(Ω;V ) the shape derivative of ϕ at Ω in direction V .
Note that

ϕ′(Ω;V ) = ϕ′(V ) = 0

for any function ϕ which does not depend on Ω.
For boundary functions ψ(Γ) : Γ → R, the expression ∇ψ · V does not

make sense. In this case, we define the shape derivative as

ψ′(Γ;V ) = ψ̇(Γ;V )−∇Γψ · V
∣
∣
Γ
, (7.91)

where the tangential gradient ∇Γψ is defined by

∇Γψ = ∇ψ̃
∣
∣
Γ
− ∂ψ̃

∂n
N (7.92)

on Γ, where ψ̃ denotes an arbitrary smooth extension of ψ. It can be shown
that the definition (7.92) does not depend on the specific choice of the exten-
sion.

With these definitions, the Eulerian derivatives for the shape functionals
(7.87) and (7.88) are computed as follows:

• Suppose ϕ = ϕ(Ω) is given such that the weak L1-material derivative
ϕ̇(Ω;V ) and the shape derivative ϕ′(Ω;V ) ∈ L1(Ω) exist. Then, the cost
functional (7.87) is shape differentiable and

dJ (Ω;V ) =
∫

Ω

ϕ′(Ω;V ) dx +
∫

Γ

ϕV ·N dS. (7.93)

• For boundary functions ψ(Γ) we get under the same technical assumptions
for the cost functional (7.88):

dJ (Γ;V ) =
∫

Γ

ψ′(Γ;V ) dS +
∫

Γ

κψ V ·N dS. (7.94)

If ψ(Γ) = ϕ(Ω)
∣
∣
Γ
, then we have

dJ (Γ;V ) =
∫

Γ

ϕ′(Ω;V )
∣
∣
Γ

dS +
∫

Γ

(∂ϕ

∂n
+ κϕ

)
V ·N dS. (7.95)
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Finally, the Hadamard–Zolesio structure theorem [16, Theorem 3.6 and
Corollary 1, p. 348f] states that the Eulerian semiderivative of a domain or
boundary functional has always a representation of the form

dJ (Ω;V ) =
〈
G,V ·N

〉
C−k(Γ),Ck(Γ)

=
〈
GN ,V

〉
C−k
2 (Γ),Ck

2 (Γ)
, (7.96)

that is, the Eulerian derivative is concentrated on Γ and can be identified with
the normal vector field GN on Γ. The expression

DΓJ (Ω) = GN (7.97)

is called the shape gradient of J at Ω.
Using shape sensitivity one finds that the Eulerian semiderivative of

Jμ
gAC(Γ) =

∫

Γ

g dS + μ

∫

Ω

g dx, (7.98)

is given by

dJμ
gAC(Γ;V ) = 〈DΓJ,V 〉 =

∫

Γ

〈( ∂g

∂n
+ g (κ + μ)

)
N ,V

〉
dS. (7.99)

Observe that (7.99) coincides with (7.72).
In order to establish a Newton-type method, the second Eulerian semi-

derivative needs to be studied. For this purpose, let

d2J (Γ;V ;W ) = d
(
dJ (Ω;V )

)
(Ω;W ),

be the second Eulerian semiderivative of the cost functional J : C → R.
In general, the second Eulerian semiderivative is not symmetric in the two
arguments V and W and it depends not only on V |Γ and W |Γ. From the
subsequent computation we shall see, however, that for perturbation vector
fields (V F ,V G) of the form (7.109), the second Eulerian semiderivative is
symmetric in (V F ,V G) and depends only on F and G.

In fact, let F : Γ → R and G : Γ → R be given functions. A one-to-
one correspondence between scalar velocity functions and a certain class of
perturbation vector fields is as follows. Let F̃ and G̃ denote extensions of
F and G, respectively, which are constructed as solutions to the transport
equations

〈∇F̃ ,∇bΓ〉 = 0 on R
2; F̃

∣
∣
Γ

= F (7.100)

and
〈∇G̃,∇bΓ〉 = 0 on R

2; G̃
∣
∣
Γ

= G. (7.101)

Here the signed distance function bΩ of a bounded open set Ω ⊂ R
2 is

defined as
bΩ(x) = dΩ(x)− dR2\Ω(x) (7.102)

with the distance function dA of a subset A ⊂ R
2 defined as

dA(x) = inf
y∈A

|y − x|. (7.103)
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Whenever Γ = ∂Ω, dΩ can be expressed in terms of Γ:

bΩ(x) =

⎧
⎪⎨

⎪⎩

dΓ(x) for x ∈ int(R2 \ Ω).
0 for x ∈ Γ,

−dΓ(x) for x ∈ Ω.

(7.104)

We shall use the notation bΓ = bΩ. Note in particular that

bΓ

∣
∣
Γ

= 0. (7.105)

By Rademacher’s theorem, bΓ is differentiable almost everywhere on R
2 with

|∇bΓ| = 1 a.e. on R
2 \ Γ. If meas(Γ) = 0, then

|∇bΓ|2 = 1 a.e. on R
2. (7.106)

Further, ∇bΓ can be considered as an extension of the unit normal vector field
N to a neighborhood of Γ. One has

∇bΓ

∣
∣
Γ

= N . (7.107)

Moreover, the second fundamental form of Γ can be expressed in terms of bΓ.
For a C2-submanifold Γ ⊂ R

2, there holds

ΔbΓ

∣
∣
Γ

= κ. (7.108)

Summarizing, important geometrical information such as normals and curva-
ture of Γ can be expressed by means of bΓ.

Coming back to (7.100) and (7.101), note that Γ is non-characteristic with
respect to the transport equation. Thus, (7.100) and (7.101) have unique solu-
tions, at least locally in some neighborhood of Γ that is small enough such
that the characteristics of (7.100) (which are straight lines) do not intersect.
Based on these (unique) solutions, the perturbation vector fields

V F = F̃ ∇bΓ, and V G = G̃∇bΓ (7.109)

are defined on some neighborhood of Γ on which F̃ , G̃, and ∇bΓ are smooth.
Outside this neighborhood we assume that V F and V G are extended in some
smooth way. Note that the construction of V F and V G is such that

V F ·N = F and V G ·N = G on Γ. (7.110)

With these considerations, the second Eulerian semiderivative of Jμ
gAC is

given by

d2Jμ
gAC(Γ;F,G) =

∫

Γ

[( ∂2g

∂n2
+(2κ+μ)

∂g

∂n
+μκ g

)
F G +g∇ΓF ·∇ΓG

]
dS.

(7.111)



244 M. Hintermüller and S.L. Keeling

Level-set–based descent framework in shape optimization

Based on the results collected in the previous section, a level-set–based descent
method for minimizing Jμ

gAC is as follows.

Level-set–based descent method.

1. Initialization. Choose an initial (closed) contour Γ0. Initialize the level
set function φ0 such that Γ0 is the zero level set of φ0; set k = 0. Choose
a bandwidth w ∈ N.

2. Descent direction. Find the zero level set Γk of the actual level set
function φk. Solve

B(Γk;F k, G) = −dJμ
gAC(Γk;VG) for all G

to obtain the descent direction F k.
3. Extension. Extend F k to a band around the actual zero level set Γk with

bandwidth w yielding F k
ext.

4. Update. Perform a time step in the level set equation with speed function
F k

ext to update φk on the band. Let φ̂k+1 denote this update.
5. Reinitialization. Reinitialize φ̂k+1 in order to obtain a signed distance

function φk+1 with zero level set given by the zero level set of φ̂k+1. Set
k = k + 1 and go to (2).

Subsequently the steps of the above algorithm are explained in some detail.

(i) In order to reduce the computational burden, usually φk is not defined on
all of Ω. Rather it is defined only in a band around Γk; see Figure 7.10.
Given Γ0, the initialization is done by utilizing the fast marching technique
[56, 57] on the band around Γ0 for solving the Eikonal equation

|∇φ0| = 1 with φ0 = 0 on Γ0.

Hence, the level set function is given by the signed distance function, i.e.,
φ0 = bΓ0 . The same procedure is used for reinitialization. The latter step
is necessary due to the fact that after several time steps in the level set
equation and in particular after large time steps, the signed distance nature
of the level set function is lost.
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Fig. 7.10. A signed distance function defined only on a band around the zero-level
set (red).
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(ii) In step 2, a positive definite bilinear form B(Γ; ·, ·) is used. If B = id, then
B(Γk;F k, G) = 〈F k, G〉 and F k corresponds with the direction of steepest
descent (negative shape gradient direction). If

B(Γk;F k, G) = d2Jμ
gAC(Γk;F k, G)

is chosen (this is only possible if d2Jμ
gAC(Γk; ·, ·) is positive definite), then

F k corresponds with a shape Newton direction. Shape Newton–like direc-
tions are obtained by modifying d2Jμ

gAC such that the resulting bilinear
form B is positive definite. In [28], it is demonstrated that at the expense
of solving a (one-dimensional) elliptic partial differential equation on the
manifold Γk, Newton-type methods usually require a significantly smaller
number of iterations until successful termination and they are less param-
eter dependent. The latter aspect is related to the “variable-metric”-like
aspect by choosing B in dependence on Γk.

(iii) By the Hadamard–Zolesio structure theorem, the shape gradient and the
shape Hessian are concentrated on Γk. Hence F k is also concentrated on
Γk. The level set equation at t, however, is defined in Ω (or at least on a
band around Γk). Hence, F k has to be extended onto Ω or the given band.
Let F k

ext denote the corresponding extension velocity. This extension is
computed by solving the transport equation

∇F k
ext · ∇φk = 0, F k

ext|Γk
= F k. (7.112)

(iv) Finally, the algorithm is stopped as soon as ‖F k‖Γk
is smaller than some

user-specified stopping tolerance.
(v) Details on a possible discretization as well as on an Armijo-type line search

procedure for performing the time step in the level set equation can be
found in [27, 28].

7.2.3 Approaches based on the Mumford–Shah functional

A widely used model in image segmentation and simultaneous denoising was
introduced by Mumford and Shah in [50]:

JMS(I,Γ) =
1
2

∫

Ω\Γ
(I − I0)2dx +

α

2

∫

Ω\Γ
|∇I|2dx + γ

∫

Γ

1 dH1, (7.113)

where I denotes a reconstruction of the image, and Γ represents the edge or
discontinuity set in I. The minimization of the Mumford–Shah functional is
delicate as it involves the two unknowns I and Γ, which are of entirely different
nature. Whereas I is a function defined on a subset of R

n, Γ is a geometrical
variable, a one-dimensional set.

Compared with the edge detector–based approach highlighted in
Section 7.2.2, the Mumford–Shah approach has the ability to successfully
segment images even without clear edges; see Figure 7.11, which shows the
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Fig. 7.11. Left: Original image. Right: Edge detector–based segmentation; see
Section 7.2.2.

Fig. 7.12. Left: Noisy image. Middle: Mumford–Shah based segmentation. Right:
Denoising result, i.e., concatenation of the reconstructions Ik, k = 1, 2.

result (right plot) for the edge detector–based approach. The Mumford–Shah
result will be discussed later; see Figure 7.12.

With respect to existence of a minimizing pair (I,Γ) in (7.113) the appli-
cation of classic arguments in the calculus of variations utilizing minimizing
sequences, compactness and lower semicontinuity properties of the objective
functional fail because the map Ω �→

∫
Γ

1 dH1 is not lower semicontinuous with
respect to any compact topology. Combining the results in [2, 3], existence
of a solution of (7.113) is shown with I ∈ W 1,2(Ω \ Γ) ∩ L∞(Ω) and Γ ⊂ Ω,
Γ closed, and

∫
Γ

1 dH1 < +∞. Here W 1,2(Ω \ Γ) denotes the usual Sobolev
space of square integrable functions over Ω \ Γ, which admit a square inte-
grable first derivative in the generalized sense; see [1]. For further regularity
considerations concerning Γ, see [50] and, e.g., [7].

Several approaches for the numerical solution of (7.113) are available. In
this context, the discretization of the edge set Γ represents a significant chal-
lenge. Many approaches, therefore, try to avoid this difficulty by approxi-
mating the minimization of the Mumford–Shah functional by problems with
functions as the only unknowns. However, there are very recent techniques
which keep Γ as a geometric variable, which utilize techniques from shape
sensitivity analysis for computing sensitivities of JMS with respect to Γ and
which use the level-set method as a numerical tool; see Section 7.2.2.
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An approach avoiding the explicit use of Γ is due to Ambrosio and Tor-
torelli [4]. Their technique replaces Γ by an auxiliary function ω approximating
the characteristic function (1−χΓ), where χΓ(x) = 1 if x ∈ Γ and χΓ(x) = 0
else. The corresponding functional is

Jε
MS(I, ω) =

1
2

∫

Ω

(I−I0)2dx+
∫

Ω

ω2|∇I|2dx+
∫

Ω

(
ε|∇ω|2 +

1
4ε

(v − 1)2
)

dx.

(7.114)
Note the dependence on ε. In [46], formal arguments for Jε

MS(I, ω) approaching
JMS(I,Γ) as ε→ 0 are provided. A rigorous treatment can be found in [8].

Further approaches avoiding the explicit use of Γ are based on second-
order singular perturbations [8], the introduction of nonlocal terms [9], or use
approximations by finite differences [14]. See [6] for an excellent overview,
further details and references on these approximation techniques for the
Mumford–Shah functional.

In [29], the edge set Γ is kept as an explicit variable, and a shape
sensitivity–based minimization of (7.113) is proposed. It is assumed that Γ is
the boundary of an open set Ω1 ⊂ Ω and that the minimization problem for
JMS(I,Γ) can be written as

inf
(I,Γ)∈W 1,2(Ω\Γ)×E

JMS(I,Γ) = inf
Γ∈E

min
I∈W 1,2(Ω\Γ)

JMS(I,Γ), (7.115)

where E represents the set of admissible edges. Let Ω2 denote the complement
of Ω1 in Ω. The splitting of the minimization process in (7.115) allows one to
consider, for fixed Γ, the minimization problem

min
I∈W 1,2(Ω\Γ)

JMS(I,Γ). (7.116)

Its Euler–Lagrange equations are
{

−αΔIk(Γ) + Ik(Γ) = I0 on Ωk,
∂Ik(Γ)
∂nk

= 0 on ∂Ωk

(7.117)

for k = 1, 2. Here ∂
∂nk

denotes the derivative with respect to the exterior
normal direction Nk to ∂Ωk. On Γ we have N1 = −N2. With this, (7.115) can
be formulated as the shape optimization problem of minimizing the functional

ĴMS(Γ) =
2∑

k=1

∫

Ωk

(
1
2
|Ik(Γ)− I0|2 +

α

2
|∇Ik(Γ)|2

)
dx + γ

∫

Γ

1 dH1 (7.118)

over Γ ∈ E .
The Eulerian semiderivative of ĴMS is given by

dĴMS(Γ;V F ) =
∫

Γ

(
1
2
[[
|I − I0|2

]]
+

α

2
[[
|∇ΓI(Γ)|2

]]
+ γκ

)
F dH1 (7.119)
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with V F according to (7.109) and
[[
|I − I0|2

]]
= |I1 − I0|2 − |I2 − I0|2 and[[

|∇ΓI(Γ)|2
]]

= |∇ΓI1(Γ)|2 − |∇ΓI2(Γ)|2 the jumps of |I − I0|2 and |∇ΓI|2,
respectively, across Γ.

With this information and the choice B = id, a level-set–based shape
gradient method for the minimization of JMS utilizing the descent algorithm
in Section 7.2.2 can be employed. As before, the level set method is used to
represent and update the geometry within an iterative scheme.

In [29], a shape Hessian–based choice for B is proposed and numeri-
cally realized. In contrast with Newton-type methods in the context of edge
detectors (see Section 7.2.2), the Hessian in the case of the Mumford–Shah
functional admits no explicit discrete representation. Rather its application
to a perturbation velocity (this corresponds with a “matrix-times-vector”-
product in the discrete setting) is available at reasonable computational cost.
In Figure 7.12 the result obtained by the level-set–based descent algorithm in
Section 7.2.2 using a shape Newton–based minimization of the JMS is shown.
From this figure, the simultaneous segmentation and denoising ability of the
Mumford–Shah approach becomes apparent; see [29] for details.
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Abstract. We present two methods for data representations based on matrix fac-
torization: Independent Component Analysis (ICA) and Sparse Component Analysis
(SCA). Our presentation focuses on the mathematical foundation of ICA and SCA
based on optimization theory, which appears to be enough for rigorous justification
of the methods, although the ICA methods usually are justified by principles from
physics, such as entropy maximization, minimization of mutual information, and so
forth. We illustrate the methods with examples from biomedicine, especially from
functional Magneto Resonance Imaging.

8.1 Introduction

A fundamental question in data analysis, signal processing, data mining, neu-
roscience, biomedicine, and so forth, is how to represent a large data set X
(given in form of a (m×N)-matrix) in appropriate ways suitable for efficient
processing and analysis. A useful approach is a linear matrix factorization:

X = AS, A ∈ R
m×n,S ∈ R

n×N , (8.1)

where the unknown matrices A (dictionary) and S (source signals) have some
specific properties, for instance:

1. the rows of S are (discrete) random variables, which are statistically inde-
pendent as much as possible – this is the Independent Component Analysis
(ICA) problem;

2. S contains as many zeros as possible – this is the sparse representation or
Sparse Component Analysis (SCA) problem.

There is a large amount of papers devoted to ICA problems (see for instance
[13, 29] and references therein) but mostly for the case m ≥ n. We refer to
[5, 34, 45, 48, 52] and references therein for some recent papers on SCA and
underdetermined ICA (m < n).
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A related problem is the so-called Blind Source Separation (BSS) prob-
lem, in which we know a priori that a representation such as in equation
(8.1) exists and the task is to recover the sources (and the mixing matrix) as
accurately as possible. A fundamental property of the complete BSS problem
is that such a recovery (under assumptions 1 above and non-Gaussianity of
the sources) is possible up to permutation and scaling of the sources, which
makes the BSS problem so attractive. A similar property holds under some
sparsity assumptions, which we will describe later.

8.2 Independent Component Analysis

The ICA problem and the induced BSS problem has received wide attention
because of their potential applications in various fields such as biomedical
signal analysis and processing (EEG, MEG, fMRI), speech enhancement, geo-
physical data processing, data mining, wireless communications, image pro-
cessing, and so forth.

Since the introduction of ICA by Hérault and Jutten [27], various methods
have been proposed to solve the BSS problem (see [2, 3, 10, 9, 15, 16, 30, 43] for
an (incomplete) list of some of the most popular methods). Good textbook-
level introductions to ICA are given in [29, 13]. A comprehensive description
of the mathematics in ICA can be found in [42].

An alternative formulation of the problem is as follows: we can observe
sensor signals (random variables) x (k) = [x1 (k) , . . . , xm (k)]T , which are
described as

x (k) = As (k) k = 1, 2, . . . (8.2)

where s (k) = [s1 (k) , . . . , sn (k)]T is a vector of unknown source signals and
A is n× n non-singular unknown mixing matrix.

Our objective is to estimate the source signals sequentially one-by-one or
simultaneously assuming that they are statistically independent.

The uniqueness of such estimation (up to permutation and scaling), or
identifiability of the linear ICA model, is justified in the literature by the
Skitovitch–Darmois theorem [41, 17]. Whereas this theorem is probabilistic
in nature, an elementary lemma from optimization theory (although with a
non-elementary proof) can serve the same purpose — rigorous justification of
the identifiability of ICA model, when maximization of the cumulants is used.
We will present an elementary proof of identifiability of the linear ICA model,
based on the properties of the cumulants.

8.2.1 Extraction via maximization of the absolute value
of the cumulants

Maximization of non-Gaussianity is one of the basic ICA estimation principles
(see [13, 29]). This principle is explained by the central limit theorem, accord-
ing to which, sums of non-Gaussian random variables are closer to Gaussian



8 Optimization Techniques for Data Representations 255

than the original ones. Therefore, a linear combination y = w�x =
∑n

i=1 wixi

of the observed mixture variables (which is a linear combination of the inde-
pendent components as well, because of the linear mixing model) will be max-
imally non-Gaussian if it equals one of the independent components. Below we
give rigorous mathematical proof of this statement. The task how to find such
a vector w, which gives one independent component, and therefore should be
one (scaled) row of the inverse of the mixing matrix A, is the main task of
(sequential) ICA. We will describe an optimization problem for this task.

Recall the following formula for the cross-cumulants of the random vari-
ables x1, . . . , xn in terms of moments (see for instance [40, p. 292]):

cum(x1, . . . , xn)

=
∑

(p1,...,pm)

(−1)m−1(m− 1)!E
[ ∏

i∈p1

xi

]
· · ·E

[ ∏

i∈pm

xi

]
, (8.3)

where the summation is taken over all possible partitions {p1, . . . , pm}, m =
1, . . . , n of the set of the natural numbers {1, . . . , n}; {pi}m

i=1 are disjoint
subsets, which union is {1, . . . , n}, E is the expectation operator (see [40] for
properties of the cumulants). For n = 4, the above formula gives

cum{xi, xj , xk, xl} = E(xixjxkxl)− E(xixj)E(xkxl)
− E(xixk)E(xjxl)− E(xixl)E(xkxj).

The following property of the cumulants is used essentially in derivation
of fixed point algorithm [30] and its generalization below: if si, i = 1, . . . , n
are statistically independent and ci, i = 1, . . . , n are arbitrary real numbers,
then

cump

(
n∑

i=1

cisi

)

=
n∑

i=1

cp
i cump(si). (8.4)

Define the function ϕ : R
n → R by

ϕp(w) = cump(w�x)

where cump means the self-cumulant of order p:

cump(s) = cum(s, . . . , s
︸ ︷︷ ︸

p

).

Then consider the maximization problems OP(p)

maximize |ϕp(w)| subject to ‖w‖ = 1

and DP(p)
maximize |ψp(c)| subject to ‖c‖ = 1,

where ψp(c) = cump

(∑n
i=1 cisi

)
and ci, i = 1, . . . , n are the components of

the vector c. Denoting y = w�x and c = A�w, we have
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y = c�s =
n∑

i=1

cisi

and
ϕp(w) = ψp(A�w). (8.5)

Without loss of generality, we may assume that the matrix A is orthogonal
(assuming that we have performed the well-known preprocessing procedure
called “prewhitening,” see [13, 29]).

It is easy to see (using (8.5) and the orthogonality of A) that the problems
DP(p) and OP(p) are equivalent in the sense that w0 is a solution of OP(p)if
and only if c0 = A�w0 is a solution of DP(p).

A very useful observation is the following: if a vector c contains only one
nonzero component, say ci0 = ±1, then the vector w = Ac gives an extraction
(say y(k)) of the source with index i0, as

y(k) := w�x(k) (8.6)
= c�A�x(k)
= c�s(k) = si0(k) ∀k = 1, 2, . . . .

The following lemma shows that the solutions c of DP(p) have exactly one
nonzero element. Thus, we can obtain the vectors w = Ac as solutions of the
original problem OP(p), and by (8.6) we achieve extraction of one source.

One interesting property of the optimization problem OP(p) is that it
has exactly n solutions (up to sign) that are orthonormal and any of them
gives extraction of one source signal. The fixed point algorithm [30] finds its
solutions one by one.

We note that the idea of maximizing of cum4(w�x) in order to extract
one source from a linear mixture is already considered in [18], but the proof
presented there is quite complicated, whereas our proof here (see Lemma 1)
is transparent and contains the case of cumulants of an arbitrary even order.
For more general result we refer to [21].

Lemma 1. Consider the optimization problem

minimize (maximize)
n∑

i=1

kiv
p
i subject to |v| = c > 0,

where p > 2 is even and v = (v1, . . . , vn). Denote

I+ = {i ∈ {1, . . . , n} : ki > 0}
I− = {i ∈ {1, . . . , n} : ki < 0}

and ei = (0, . . . 0, 1, 0, . . . , 0), (1 is the ith place). Assume that I+ �= ∅ and
I− �= ∅.

Then the points of local minimum are exactly the vectors m±
i = ±cei,

i ∈ I− and the points of local maximum are exactly the vectors M±
j = ±cej,

j ∈ I+.
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Proof. Applying the Lagrange multipliers theorem for a point of a local
optimum v = (v1, . . . , vm), we write:

kipvp−1
i − 2λvi = 0, i = 1, . . . ,m, (8.7)

where λ is a Lagrange multiplier.
Multiplying (8.7) by vi and summing, we obtain:

pfopt. = 2λc2,

where fopt. means the value of f at the local optimum. Hence

λ =
p

2c2
fopt.. (8.8)

From (8.7) we obtain

vi(kipvp−2
i − p

c2
fopt.) = 0

whence

vi is either 0, or ±
(fopt.

kic2

) 1
p−2

. (8.9)

Case 1.
Assume that ki0 < 0 for some index i0 and v is a local minimum. Then
obviously floc.min. < 0. According to the second-order optimality condition
[1], a point x0 is a local minimum if

h�L′′(x0)h > 0 ∀h ∈ K(x0) = {h : h�x0 = 0},h �= 0,

where

L(x) =
n∑

i=1

kix
p
i − λ(|x|2 − c2)

is the Lagrange function.
In our case, by (8.8) and (8.9) we obtain

h�L′′(v)h =
n∑

i=1

(p(p− 1)kiv
p−2
i − 2λ)h2

i (8.10)

=
p

c2
floc.min.

[
(p− 2)

∑

i∈I

h2
i −

∑

i�∈I

h2
i

]
,

where I is the set of those indexes i, for which vi is different from 0.
We shall check the second order sufficient condition for a local minimum

for the points m±
i0

. We have

K(m±
i0

) = {h : hi0 = 0}.
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Therefore, for h ∈ K(m±
i0

), h �= 0 we have

h�L′′(m±
i0

)h > 0,

as hi0 = 0 and floc.min. < 0, i.e., the second-order sufficient condition is
satisfied and m±

i0
is a local minimum.

By (8.10), it follows that for any vector v with at least two nonzero ele-
ments, the quadratic form (8.10) can take positive and negative values for
different values of h, i.e., the necessary condition for a local minimum is not
satisfied for such a vector.

Case 2.
Assume that kj > 0 and v is a local maximum. We apply Case 1 to the
function −f and finish the proof. �

8.2.2 A generalization of the fixed point algorithm

Consider the following algorithm:

w(l) =
ϕ′

p(w(l − 1))
‖ϕ′

p(w(l − 1))‖ , l = 1, 2, . . . , (8.11)

which is a generalization of the fixed point algorithm of Hyvärinen and Oja.
The name is derived by the Lagrange equation for the optimization problem
OP(p), as (8.11) tries to find a solution of it iteratively, and this solution is a
fixed point of the operator defined by the right-hand side of (8.11).

The next theorem gives precise conditions for convergence of the fixed
point algorithm of Hyvärinen and Oja and its generalization (8.11) (for a
proof, see [21]).

Theorem 1. Assume that si are statistically independent, zero mean signals
and the mixing matrix A is orthogonal. Let p ≥ 3 be a given even integer
number, cump(si) �= 0, i = 1, . . . , n and let

I(c) = arg max
1≤i≤n

ci

∣
∣
∣cump(si)

∣
∣
∣

1
p−2

.

Denote by W0 the set of all elements w ∈ R
n such that ‖w‖ = 1. The set

I(A�w) contains only one element, say i(w), and ci(w) �= 0. Then

(a)The complement of W0 has measure zero.
(b) If w(0) ∈W0 then

lim
l→∞

yl(k) = ±si0(k) ∀k = 1, 2, . . . ,

where yl(k) = w(l)�x(k) and i0 = i(w(0)).
(c) The rate of convergence in (b) is of order p− 1.



8 Optimization Techniques for Data Representations 259

When p = 4, we obtain:

ϕ4(w) = cum4(w�x) = E{(w�x)4} − 3(E{(w�x)2})2

and

ϕ′
4(w) = 4E{(w�x)3x} − 12E{(w�x)2}E{(xx�)}w.

We note that if the standard prewhitening procedure is performed (i.e.,
E{xx�} = In, A is orthogonal), the algorithm (8.11) recovers the fixed-point
algorithm of Hyvarinen and Oja, i.e.,

w(l + 1) =
E{(w(l)�x)3x} − 3w(l)
‖E{(w(l)�x)3x} − 3w(l)‖ .

Different schemes for deflation are considered, for instance, in [29]. Different
fixed point algorithms are described in [28, 31] based on nonlinearity which
gives maximization of a nonlinear function different from kurtosis. The max-
imization problem is

maximize [E{G(w�x)} − E{G(ν)}]2 subject to E{(w�x)2} = 1,

where ν is a standard Gaussian variable.
A local solution w0 of this problem (under some assumptions on the non-

linearity of G) is such that w�
0 x = ±si, i.e., when the linear combination

gives one of the independent components. The convergence, however, of any
algorithm with G(u) different from u3 (which gives kurtosis maximization) is
not so fast as in that case (in which case it is cubic). From other point of view,
using nonlinearity gives robustness to outliers in some cases.

8.2.3 Separability of linear BSS

Consider the noiseless linear instantaneous BSS model with as many sources
as sensors:

X = AS (8.12)

with an independent n-dimensional random vector S and A ∈ Gl(n). Here
Gl(n) denotes the general linear group of R

n, i.e., the group of all invertible
(n× n)-matrices.

The task of linear BSS is to find A and S given only X. An obvious
indeterminacy of this problem is that A can be found only up to scaling and
permutation because for scaling L and permutation matrix P

X = ALPP−1L−1S

and P−1L−1S is also independent. Here, an invertible matrix L ∈ Gl(n) is
said to be a scaling matrix if it is diagonal. We say two matrices B,C are
equivalent, B ∼ C, if C can be written as C = BPL with a scaling matrix
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L ∈ Gl(n) and an invertible matrix with unit vectors in each row (permutation
matrix ) P ∈ Gl(n). Note that PL = L′P for some scaling matrix L′ ∈ Gl(n),
so the order of the permutation and the scaling matrix does not play a role for
equivalence. Furthermore, if B ∈ Gl(n) with B ∼ I, then also B−1 ∼ I, and
more general if BC ∼ A, then C ∼ B−1A. According to the above, solutions
of linear BSS are equivalent. We will show that under mild assumptions on S,
there are no further indeterminacies of linear BSS.

S is said to have a Gaussian component if one of the Si is a one-dimensional
Gaussian, that is, pSi

(x) = d exp(−ax2 + bx + c) with a, b, c, d ∈ R, a > 0.

Theorem 2 (Separability of linear BSS). Let A ∈ Gl(n) and S be an
independent random vector. Assume one of the following:

(i) S has at most one Gaussian or deterministic component and the covariance
of S exists.

(ii) S has no Gaussian component and its density pS exists and is twice con-
tinuously differentiable.

Then if X = AS is again independent, A is equivalent to the identity.

Thus A is the product of a scaling and a permutation matrix. The impor-
tant part of this theorem is assumption (i), which has been used to show sep-
arability by Comon [16] and extended by Erikkson and Koivunen [19] based
on the Darmois–Skitovitch theorem [17, 41]. Using this theorem, the second
part can be easily shown without C2-densities.

Theorem 2 indeed proves separability of the linear BSS model, because if
X = AS and W is a demixing matrix such that WX is independent, then
WA ∼ I, so W−1 ∼ A as desired.

For a proof of the above theorem without having to use the Darmois–
Skitovitch theorem we refer to [44].

Now we will give a simple proof of Theorem 2 in the case when E|si|m <∞
for any i = 1, . . . , n and any natural m. By these assumptions, it follows that
the cumulants of si of any order exist (see [41, p. 289]). Suppose that S has
at most one Gaussian or deterministic component.

We will first show using whitening that A can be assumed to be orthogonal.
For this we can assume S and X to have no deterministic component at
all (because arbitrary choice of the matrix coefficients of the deterministic
components does not change the covariance). Hence by assumption Cov(X) is
diagonal and positive definite, so let D1 be diagonal invertible with Cov(X) =
D2

1. Similarly let D2 be diagonal invertible with Cov(S) = D2
2. Set Y :=

D−1
1 X and T := D−1

2 S, i.e., normalize X and S to covariance I. Then

Y = D−1
1 X = D−1

1 AS = D−1
1 AD2T

and T, D−1
1 AD2 and Y satisfy the assumption and D−1

1 AD2 is orthogonal
because
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I = Cov(Y)
= E(YY)
= E(D−1

1 AD2TTD2AD−1
1 )

= (D−1
1 AD2)(D−1

1 AD2).

Thus, without loss of generality let A be orthogonal.
Let xi and si be the components of X and S respectively. Because {si}

are independent, using property (8.4) we have:

cump(xi) = cump

⎛

⎝
n∑

j=1

aijsi

⎞

⎠ (8.13)

=
n∑

j=1

ap
ijcump(si).

Because {xi} are independent and S = AX, using again property (8.4) we
obtain:

cump(si) = cump

⎛

⎝
n∑

j=1

ajixj

⎞

⎠ (8.14)

=
n∑

j=1

ap
jicump(xi).

If we denote by A(p) the matrix with elements ap
ij and put cp(x) =

(
cump(x1),

. . . , cump(xn)
)

and cp(s) =
(
cump(s1), . . . , cump(sn)

)
, we have

cp(x) = A(p)cp(s)

and
cp(s) =

(
A(p)

)
cp(x).

Hence, ∥
∥cp(s)

∥
∥ ≤

∥
∥A(p)

∥
∥
∥
∥cp(x)

∥
∥ ≤

∥
∥A(p)

∥
∥2∥∥cp(s)

∥
∥. (8.15)

Here we have to note that, by Marcinkiewics’s theorem (see [41, p. 288]), the
Gaussian distribution is the only distribution with the property that all its
cumulants are zero from a certain index onward. Because, by assumption, only
one variable from {si} is Gaussian, by the above remark it follows that there
exists a sequence of natural numbers pm such that cpm

(s) �= 0 for every natural
number m. From (8.15) it follows that ‖A(pm)‖ ≥ 1 for every natural m, and
as every element of A is in the interval [−1, 1] (A is orthogonal), it follows that
at least one element of A, say ai1j1 should be 1 or −1 (otherwise ‖A(pm)‖ → 0
when m→∞). The elements ai1,j and ai,j1 for all i �= i1 and all j �= j2 should
be zero (as A is orthogonal). Removing row i and column j, and repeating the
same reasonings for the remaining system (with dimension n− 1), we obtain
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that another element of A, say ai2,j2 should be 1 or −1 and ai2,j and ai,j2 for
all i �= i2 and all j �= j2 should be zero. Repeating this reasoning n− 1 times,
we obtain that A have to be a sign permutation matrix, i.e., in each row and
each column only one element is 1 or −1 and the rest are zero, as desired.

We next briefly present the concept of separated functions from [44], which
can be seen as a general framework for the algorithms proposed in [44, 35, 51].

Definition 1. A function f : R
n → C is said to be separated respectively

linearly separated if there exist one-dimensional functions g1, . . . , gn : R→ C

such that f(x) = g1(x1) . . . gn(xn) respectively f(x) = g1(x1) + . . . + gn(xn)
for all x ∈ R

n.

Note that the functions gi are uniquely determined by f up to a scalar factor
respectively an additive constant. If f is linearly separated, then exp f is
separated. The density function of an independent random vector is separated
– this fact provides motivation for the presented method.

Let Cm(U, V ) be the ring of all m-times continuously differentiable
functions from U ⊂ R

n to V ⊂ C, U open. For a Cm-function f , we
write ∂i1 . . . ∂im

f := ∂mf/∂xi1 . . . ∂xim
for the m-fold partial deriva-

tives. If f ∈ C2(Rn, C), denote with the symmetric (n × n)-matrix
Hf (x) := (∂i∂jf(x))n

i,j=1 the Hessian of f at x ∈ R
n.

It is an easy fact that linearly separated functions can be classified using
their Hessian (if it exists):

Lemma 2. A function f ∈ C2(Rn, C) is linearly separated if and only if
Hf (x) is diagonal for all x ∈ R

n.

A similar result for “block diagonal” Hessians has been shown by [35].
Note that Lemma 2 obviously also holds for functions defined on any open

parallelepiped (a1, b1) × · · · × (an, bn) ⊂ R
n. Hence an arbitrary real-valued

C2-function f is locally separated at x with f(x) �= 0 if and only if the Hessian
of ln |f | is locally diagonal.

Thus for a positive function f the Hessian of its logarithm is diagonal
everywhere if it is separated, and it is easy to see that for positive f also the
converse holds globally (Theorem 3(ii)). In this case we have for i �= j

0 ≡ ∂i∂j ln f ≡ f∂i∂jf − (∂if)(∂jf)
f2

,

so f is separated if and only if

f∂i∂jf ≡ (∂if)(∂jf)

for i �= j or even i < j. This motivates the following definition:

Definition 2. For i �= j, the operator

Rij : C2(Rn, C) → C0(Rn, C)
f �→ Rij [f ] := f∂i∂jf − (∂if)(∂jf)

is called the ij-separator.
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Theorem 3. Let f ∈ C2(Rn, C).

(i) If f is separated then Rij [f ] ≡ 0 for i �= j or equivalently

f∂i∂jf ≡ (∂if)(∂jf). (8.16)

holds for i �= j.
(ii)If f is positive and Rij [f ] ≡ 0 holds for all i �= j then f is separated.

If f is assumed to be only nonnegative, then f is locally separated but
not necessarily globally separated (if the support of f has more than one
component). Some trivial properties of the separator Rij are listed in the
next lemma:

Lemma 3. Let f, g ∈ C2(Rn, C), i �= j and α ∈ C. Then

Rij [αf ] = α2Rij [f ]

and

Rij [f + g] = Rij [f ] + Rij [g] + f∂i∂jg + g∂i∂jf − (∂if)(∂jg)− (∂ig)(∂jf).

8.2.4 Global Hessian diagonalization using kernel-based density
approximation

We suggest using kernel-based density estimation to get an energy function
with minima at the BSS solutions together with a global Hessian diagonaliza-
tion in the following (see [44]).

The idea is to construct a measure for separatedness of the densities (hence
independence) based on Theorem 3. A possible measure could be the norm of
the summed up separators

∑
i<j Rij [f ]. In order for this to be calculable, we

only choose a set of points p(i) where we evaluate the difference, and minimize∑
k(
∑

i<j Rij [f ](p(k))2 at those points. Although in the linear noiseless case
calculation of the Hessian at only one point would be enough, using an energy
function of this type ensures using global information of the densities while
averaging over possible local errors.

First, we need to approximate the density function. For this, let X ∈ R
n

be an n-dimensional random vector with ν i.i.d.-samples x(1), . . . ,x(ν) ∈ R
n.

Let

φ : R
n → R

x �→ 1
σn

√
(2π)n

exp
(
− 1

2σ2
‖x‖2

)

be the n-dimensional centered independent Gaussian with fixed variance
σ2 > 0. For ease of notation denote κ := 1

2σ2 .
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Define the approximated density p̂X of X by

p̂X(x) :=
1
ν

ν∑

i=1

φ(x− x(i)). (8.17)

If ν → ∞, p̂X converges to pX in the space of all integrable functions if σ is
chosen appropriately. This can be shown using the central limit theorem.

The partial derivatives of φ can be calculated as

∂iφ(x) = −2κxiφ(x)
∂i∂jφ(x) = 4κ2xixjφ(x) (8.18)

for i �= j. φ is separated, so R[φ] ≡ 0. Note that p̂X ∈ C∞(Rn, R) is positive.
Thus according to Theorem 3, p̂X is separated if and only if Rij [p̂X] ≡ 0 for
i < j. And, as p̂X is an approximation of pX, separatedness of p̂X also induces
approximate independence of X.

Rij [p̂X] can be calculated using Lemma 3 — here Rij [φ(x − x(k))] ≡
0 — and equation (8.18):

Rij [p̂X](x) =
1
ν2

Rij

[
ν∑

k=1

φ(x− x(k))

]

=
1
ν2

∑

k �=l

φ(x− x(k))∂i∂jφ(x− x(l))

−(∂iφ)(x− x(k))(∂jφ)(x− x(l))

=
4κ2

ν2

∑

k �=l

φ(x− x(k))φ(x− x(l))(x(k)
i − x

(l)
i )(xj − x

(l)
j )

=
4κ2

ν2

∑

k<l

φ(x− x(k))φ(x− x(l))(x(k)
i − x

(l)
i )(x(k)

j − x
(l)
j ).

This function is zero for i < j if and only if p̂X is separated. For linear
BSS, it would be enough to check this at one point “in general position” (see
[44, Theorem 3]), but for robustness reason we want to require Rij [p̂X] to be
zero (or as close to zero as possible) at all sample points. Thus the desired
independence estimator can be calculated as

E(x1, . . . ,x(n)) := E :=
ν∑

m=1

∑

i<j

(Rij [p̂X](x(m)))2

hence

E = (σ2ν)−4
∑

m

∑

i<j

(
∑

k<l

φ(x− x(k))φ(x− x(l))(x(k)
i − x

(l)
i )(x(k)

j − x
(l)
j )

)2

.
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Fig. 8.1. Energy function W 	→ E(WX) of a mixture X of two Laplacians using
as mixing matrix A a rotation by 45 degrees. One hundred samples were used, and
E is plotted in steps of 0.1. The minima of E clearly lie at 1

4
π and 3

4
π as desired.

Minimizing the function

ε : Gl(n) → R

W �→ E(Wx1, . . . ,Wx(n))

then yields the desired demixing matrix with W−1 ∼ A according to
Theorem 2, ε can be minimized using the usual techniques such as for exam-
ple global search, gradient descent, or fixed-point search. Figure 8.1 shows the
energy function of an example mixture of two Laplacians. E is minimal at the
points where WX is independent.

Note that E represents a new approximate measure of independence.
Therefore, the linear BSS algorithm can now be readily generalized to non-
linear situations by finding an appropriate parameterization of the possibly
nonlinear separating model.

The proposed algorithm in [44] basically performs a global diagonalization
of the logarithmic Hessian after prewhitening. Interestingly, this is similar
to traditional BSS algorithms based on joint diagonalization such as JADE
[10] using cumulant matrices or AMUSE [46] and SOBI [4] employing time-
decorrelation. Instead of using a global energy function as proposed above, we
could therefore also jointly diagonalize a given set of Hessians (respectively
separator matrices as above), see also [51]. Another relation to previously
proposed ICA algorithms lies in the kernel approximation technique. Gaussian
or generalized Gaussian kernels have already been used in the field of ICA to
model the source densities [33, 26] thus giving an estimate of the score function
used in Bell–Sejnowski type semiparametric algorithms [3] or enabling direct
separation using maximum likelihood parameter estimation. The algorithm in
[44] also uses density approximation but employs this for the mixture density,
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which can be problematic in higher dimensions. A different approach not
involving density approximation is direct sample-based Hessian estimation
similar to [35].

8.3 Other Methods for ICA

In this section, we consider briefly other well-known methods for ICA. We refer
to [13] for a comprehensive citation of ICA methods. The choice of a specific
method is up to the reader preference. However, for validation purposes it is
recommended to use at least two methods.

For fMRI analysis, the following algorithms are tested to give satisfactory
results in different applications: the fact ICA algorithm, the natural gradient
method, the infomax algorithm, and the JADE algorithm.

8.3.1 Likelihood

Denoting the matrix A−1 by W = (w1, . . . ,wm)�, the log-likelihood takes
the form [38]:

L =
T∑

t=1

m∑

i=1

log fi(w�
i x(t)) + T ln |detW|

where the fi are the density functions of the si (here assumed to be known),
and the x(t), t = 1, . . . , T are the realizations of x. Maximizing L gives an
estimation of the demixing matrix W.

8.3.2 Network entropy

Another related contrast function was derived from a neural network view-
point. This was based on maximizing the output entropy (or information flow)
of a neural network with non-linear outputs. Assume that x is the input to
the neural network whose outputs are of the form gi(w�

i x), where the gi are
some non-linear scalar functions, and the wi are the weight vectors of the
neurons. One then wants to maximize the entropy of the outputs:

L2 = H(g1(w�
1 x), . . . , gm(w�

mx)),

where
H(y) = −

∫
fy(x) log fy(x)dx

is the differential entropy, fy is the pdf of y.
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8.3.3 Mutual information

Theoretically the most satisfying contrast function in the multi-unit case is,
in our view, mutual information. Mutual information I between m (scalar)
random variables yi, i = 1 . . . , m, is

I(y1, y2, . . . , ym) =
∑

i

H(yi)−H(y)

where H denotes differential entropy. The mutual information is a natural
measure of the dependence between random variables. It is always non-
negative, and zero if and only if the variables are statistically indepen-
dent. Thus the mutual information takes into account the whole dependence
structure of the variables.

Important property: for an invertible linear transformation y = Wx:

I(y1, y2, . . . , ym) =
∑

i

H(yi)−H(x)− log |detW|.

8.3.4 Infomax algorithm [3]

Wl+1 = Wl + η
[
I− E(g(yl)y�

l

)
]
(
W−1

l

)�
,

where g is a vector function acting componentwise, i.e., g(y) = [g1(y1, . . .,
gn(yn)]�, gi are chosen nonlinear functions, E is the expectation operator,
and yl = Wlx. The principle of network entropy maximization, or “infomax,”
is equivalent to maximum likelihood estimation. This equivalence requires
gi = (log fi)′ = f ′

i

fi
, where fi are the probability density functions (pdfs) of

the sources.

8.3.5 Kullback–Leibler divergence

Defined for two probability densities p and q as

δ(p, q) =
∫

p(y) log
p(y)
q(y)

dy.

Property: δ(p, q) ≥ 0, with equality if and only if p = q. We can measure
the independence of the yi as the Kullback–Leibler divergence between the
real density f(y) and the factorized density f̃(y) = f1(y1)f2(y2) . . . , fm(ym),
where the fi(.) are the marginal densities of the yi.

8.3.6 Natural gradient algorithm [2]

Wl+1 = Wl + η
[
I− E(g(yl)y�

l

]
Wl,

where yl = Wlx. Interpretation:



268 P.G. Georgiev and F.J. Theis

• minimization of the Kullback–Leibler divergence between the real density
f(y) and the factorized density using Rimanian (natural) gradient on the
manifold of all orthogonal matrices;

• nonlinear decorrelation.

A wide class of algorithms for ICA can be expressed in general form as [13]

dW(t)
d t

= μ(t)F(y(t))W(t), (8.19)

where y(t) = W(t)x(t) and the matrix F(y) can take different forms, for
example F(y) = In − f(y)g�(y) with suitably chosen nonlinearities f(y) =
[f(y1, . . . , f(yn)] and g(y) = [g(y1, . . . , g(yn)] [13].

For some F, the dynamical system (8.19) does not correspond with mini-
mization of any cost function, for example, this is the case of nonholonomic
orthogonal learning algorithm [13], where, for specific F(y) = diag{f(y)y�}−
f(y)y�, the diagonal elements of F(y) are zero. The main observation for
proving this fact is that for a given diagonal matrix D (different from the
identity matrix), there is no cost function J(W) such that

∂J(W)
∂W

= D
(
W−1

)�
.

This fact follows from the criterion for the existence of potential functions
(see [32, Theorem 3.4]).

For such a general case, the algorithm may diverge to infinity, or may
converge to zero. The following modification, which stabilizes the Frobenius
norm of W, is proposed in [14].

Theorem 4. The learning rule

dW(t)
d t

= μ(t) [F(y(t))− βγ(t)In] W(t), (8.20)

where β > 0 is a scaling factor and γ(t) = trace
(
W�(t)F(y(t))W(t)

)
> 0 stabi-

lizestheFrobeniusnormofW(t)suchthat ||W(t)||2F = trace(W�(t)W(t))≈β−1.

Joint approximate diagonalization of eigen-matrices

Define a fourth-order cumulant matrix C2,2
x,xp

(B) of the sensor signals as fol-
lows [9] (for p = 0) [20]:

C2,2
x,xp

(B) = E{xx�x�
p Bxp} − E{xx�}tr(BE{xpx�

p })
−E{xx�

p }BE{xpx�} − E{xx�
p }B�E{xpx�}.

Assume that the additive noise n has independent Gaussian components (with
zero means), which are independent also with si, i = 1, . . . , n. The (i, j)th

element of C2,2
x,xp

(B) is



8 Optimization Techniques for Data Representations 269

C2,2
x,xp

(B)i,j =
n∑

k,l=1

cum{xi(t), xj(t), xk(t− p), xl(t− p)}Bk,l,

where cum{xi(t), xj(t), xk(t−p), xl(t−p)} denotes the fourth-order cumulant.
Main property: if x = Hs and s has independent components, then

C2,2
x,xp

(B) = HΔ(B)H�,

where Δ(B) = diag{cums1(p)H�
∗1BH∗1, . . . , cumsn

(p)H�
∗nBH∗n}, cumsi

(p)
= cum{si(k), si(k), si(k − p), si(k − p)} and H∗i denotes the ith column of
H. Therefore, if the mixing matrix H is orthogonal, we can separate the
sources by:

• eigenvalue decomposition of C2,2
x,xp

(B) (if its eigenvalues are distinct),
which estimates H up to multiplication with permutation and diagonal
matrices – this method works if the initial sources are independent enough,

• joint diagonalization of several cumulant matrices: find orthogonal matrix
H such that the matrices

H�CH : C ∈ C

are diagonal as much as possible.

We will consider two classes of C, which give two types of algorithms.

(1) JADE algorithm [10, 11]: C = {C2,2
x,x(B),B ∈ B} when B consists of eigen-

matrices B of the cumulant tensor defined by the linear operator F on all
matrices by F(M)ij :=

∑
kl cum(xi, xj , xk, xl)Mkl, i.e., F(B) = λB.

(2) JADETD algorithm [20]: when B = I (identity matrix) and we jointly
duagonalize the class of matrices C = {C2,2

x,xp
(I), p = 1, . . . , L}. It can

separate colored sources of order 4, which are white of order 2.

8.4 Sparse Component Analysis and Blind Source
Separation Using Sparseness

In this section, we present SCA and the BSS problem, initiated in [23, 22, 24].
We show that it can be solved if the sources are sufficiently sparse, even if
the mixing matrix is singular. More generally, we consider the problem of
identifying the source matrix S ∈ R

n×N if a linear mixture X = AS is known
only, where A ∈ R

m×n,m ≤ n and the rank of A is less than m. A sufficient
condition for solving this problem is that the level of sparsity of S is bigger
than m− rank(A), in the sense that the number of zeros in each column of S
is bigger than m− rank(A).

Definition 3. A vector v ∈ R
m is said to be k-sparse if v has at least k zero

entries. A matrix S ∈ R
m×n is said to be k-sparse if each column of it is

k-sparse.
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The goal of BSS of level k (k-BSS) is to decompose a given m-dimensional
random vector X into

X = AS (8.21)

with a real m × n-matrix A and an n × N -dimensional k-sparse matrix S.
S is called the source matrix, X the mixtures, and A the mixing matrix. We
speak of complete, overcomplete, or undercomplete k-BSS if m = n, m < n,
or m > n respectively.

Note that in contrast with the ICA model, the above problem is not trans-
lation invariant. However it is easy to see that if instead of A we choose an
affine linear transformation, the translation constant can be determined from
X only, as long as the sources are non-determined. Termed differently, this
means that instead of assuming k-sparseness of the sources, we could also
assume that in any column of S only n − k components are allowed to vary
from a previously fixed constant (which can be different for each source).

In the following, we will assume without loss of generality that m ≤ n: the
undercomplete case can be reduced to the complete case by projection of X.

The following theorem is a generalization of a similar one from [23]. Here,
for illustrative purposes, we formulate the theorem for the case when the rank
of A is m− 1, but its formulation in full generality is straightforward.

Theorem 5 (Matrix identifiability 1). Assume that X satisfies (8.1) and

1. every m− 1 columns of the matrix A are linearly independent;

the indexes {1, . . . , N} are divided in two groups N1 and N2 such that

2. vectors from the group {S1 = {S(:, j)} : j ∈ N1} are sufficiently rich
represented in the sense that for any index set of n−m + 2 elements I ⊂
{1, . . . , n} there exist at least m−1 vectors s1, . . . , sm−1 from S1 (depending
on I) such that each of them has zero elements in places with indexes in I
and there exists at least one subgroup of {s1, . . . , sm−1} consisting of m−2
linearly independent elements;

3. the vectors from the group {X(:, j), j ∈ N2} have the property that no
subset of m− 1 elements from them lie on a 2-codimensional subspace.

Then A is uniquely determined by X except for right-multiplication with per-
mutation and scaling matrices, i.e., if X = AS = ÂŜ, then A = ÂPL with
a permutation matrix P and a nonsingular diagonal scaling matrix L.

Proof. It is clear that any column aj of the mixing matrix lies in the inter-

section of all
(

n−1
m−3

)
2-codimensional subspaces generated by those groups of

columns of A, in which aj participates.
We will show that these 2-codimensional subspaces can be obtained by

the columns {X(:, j), j ∈ N1} under the condition of the theorem. Let J be the
set of all subsets of {1, . . . , n} containing m− 2 elements and let J ∈ J . Note
that J consists of

(
n

m−2

)
elements. We will show that the 2-codimensional
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subspace (denoted by HJ) spanned by the columns of A with indexes from J
can be obtained by some elements from {X(:, j), j ∈ N1}. By (2), there exist
m−1 indexes {tk}m−1

k=1 ⊂ N1 and m−2 vectors from the group {S(:, tk)}m−1
k=1 ,

which form a basis of the (m−2)-dimensional coordinate subspace of R
n with

zero coordinates given by the indexes {1, . . . , n} \ J . Because of the mixing
model, vectors of the form

vk =
∑

j∈J

S(j, tk)aj , k = 1, . . . , m− 1,

belong to the group {X(:, j) : j ∈ N1}. Now, applying condition (1) we obtain
that there exists a subgroup of m − 2 vectors from {vk}m−1

k=1 that are lin-
early independent. This implies that the vectors {vk}m−1

k=1 will span the same
2-codimensional subspace HJ . By (1) it follows that the 2-codimensional sub-
spaces HJ1 and HJ2 are different, if the indexes J1 ∈ J and J2 ∈ J are
different. By the above reasonings and by (3) it follows that if we cluster the
columns of X in 2-codimensional subspaces containing more than m− 2 ele-
ments from the columns of X, we will obtain

(
n

m−2

)
unique 2-codimensional

subspaces, containing all elements of {X(:, j), j ∈ N1} and no elements from
{X(:, j), j ∈ N2}. Now we cluster the 2-codimensional subspaces obtained in
such a way in the smallest number of groups such that the intersection of all
2-codimensional subspaces in one group gives a single one-dimensional sub-
space. It is clear that such one-dimensional subspace will contain one column
of the mixing matrix, the number of these groups is n, and each group consists
of

(
n−1
m−3

)
2-codimensional subspaces.

In such a way, we can identify the columns of the mixing matrix up to
scaling and permutation. In other words, if X = AS = ÂŜ, then A = ÂPL
with a permutation matrix P and a nonsingular diagonal scaling matrix L. �

In a similar way, we can prove the following generalization of the above
theorem.

Theorem 6 (Matrix identifiability 2). Assume that X satisfies (8.1) and

1. every m− 1 columns of the matrix A are linearly independent;

and the indexes {1, . . . , N} are divided in two groups N1 and N2 such that

2. vectors from the group S1 = {S(:, j)}, j ∈ N1 are sufficiently rich rep-
resented in the sense that, for any index set of n − m + 2 elements
I ⊂ {1, . . . , n}, there exist NI ≥ m vectors s1, . . . , sNI

from S1 (depend-
ing on I) such that each of them has zero elements in places with indexes
in I and there exists a subset of {s1, . . . , sNI

} containing m − 2 linearly
independent elements;

3. the vectors from the group {X(:, j), j ∈ N2} have the property that at most
min{NI1 , . . . , NIp

}−1 of them lie on a common 2-codimensional subspace,
where {I1, . . . , Ip} is the set of all subsets of {1, . . . , n} with n − m + 2

elements and p =
(

n
m−2

)
.
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Then A is uniquely determined by X except for right-multiplication with per-
mutation and scaling matrices, i.e., if X = AS = ÂŜ, then A = ÂPL with
a permutation matrix P and a nonsingular diagonal scaling matrix L.

The proof of Theorem 1 gives the idea for the matrix identification algo-
rithm.

Algorithm for identification of the mixing matrix (under the
assumptions of Theorems 1 or 2)

1. Cluster the columns {X(:, j) : j ∈ N1} in
(

n
m−2

)
groups Hk, k =

1, . . . ,
(

n
m−2

)
such that the span of the elements of each group Hk pro-

duces one 2-codimensional subspace and these 2-codimensional subspaces
are different.

2. Calculate any basis of the orthogonal complement of each of these 2-
codimensional subspaces.

3. Find all possible groups such that each of them is composed of the elements
of

(
n−1
m−3

)
bases in (2), and the vectors in each group span a hyperplane.

The number of these hyperplanes gives the number of sources n. The nor-
mal vectors to these hyperplanes are estimations of the columns of the
mixing matrix A (up to permutation and scaling).

In practical realization, all operations in the above algorithm are performed
up to some precision ε > 0.

Remark 1. The above algorithm is quite general and allows different realiza-
tions. Below we propose another method for matrix identification, based on
PCA.

The above theorems shows that we can recover the mixing matrix from
the mixtures uniquely, up to permutation and scaling of the columns. The
next theorem shows that in this case also the sources {S(:, j) : j ∈ N1} can
be recovered uniquely (up to a set of “bad” data points that has measure zero
with respect to the “good” data points).

8.4.1 Identification of sources

The following theorem is generalization of those in [23] and the proof is the
same.

Theorem 7 (Uniqueness). Let H be the set of all x ∈ R
m such that the

linear system As = x has a solution with at least n−m + k zero components
(k ≥ 1). If any m−k columns of A are linearly independent, then there exists
a subset H0 ⊂ H with measure zero with respect to H, such that for every
x ∈ H \ H0, this system has no other solution with this property.
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From Theorem 7, it follows that the sources are uniquely identifiable gener-
ically, i.e., up to a set with a measure zero, if they compose a matrix that is
(n − m + k)-sparse, and the mixing matrix is known. Below we present an
algorithm based on the observation in Theorem 7.

Source recovery algorithm:

1. Identify the the set of k-codimensional subspaces H produced by taking
the linear hull of every subsets of the columns of A with m− k elements;

2. Repeat for i = 1 to N :
(a) Identify the space H ∈ H containing xi := X(:, i), or, in practical

situation with presence of noise, identify the one to which the distance
from xi is minimal and project xi onto H to x̃i;

(b) if H is produced by the linear hull of column vectors ai1 , . . . ,aim−k
,

then find coefficients Li,j such that

x̃i =
m−k∑

j=1

Li,jaij
.

These coefficients are uniquely determined if x̃i doesn’t belong to the
set H0 with measure zero with respect to to H (see Theorem 7);

(c) Construct the solution si = S(:, i): it contains Li,j in the place ij for
j = 1, . . . , m− k, the other its components are zero.

8.4.2 A new algorithms for sparse representation based
on subspace clustering

Our new sparse representation algorithm makes use of the concept of skeleton
of a finite set of points defined below.

The solution {(n0
i , b

0
i )}k

i=1 of the minimization problem:

minimize
N∑

j=1

min
1≤i≤k

|n�
i xj − bi|l (8.22)

subject to ‖ni‖ = 1, bi ∈ R, i = 1, . . . , k, (8.23)

defines the k(l)-skeleton of X, introduced for l = 1 in [39] and for l = 2 in [6]. It
consists of a union of k hyperplanes Hi = {x ∈ R

m : n�
i x = bi}, i = 1, . . . , k,

such that the sum of minimum distances raised to power l from every point
xj to them is minimal. We introduce the “affine r-subspace skeleton” as the
solution of the following minimization problem:
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minimize
N∑

j=1

min
1≤i≤k

r∑

s=1

|u�
i,sxj − bi|l (8.24)

subject to ‖ni,s‖ = 1, bi ∈ R, i = 1, . . . , k, (8.25)
s = 1, . . . , r,n�

i,pni,q = 0, p �= q. (8.26)

Assuming that the conditions of Theorem 5 are satisfied, it is clear that
the representation X = AS is n−m+ r-sparse (each column of S contains at
most m− r non-zero elements), the above two skeletons coincide, bi = 0, and
the data points (columns of X) lie on them.

The Subspace Clustering Algorithm (see below) finds these skeletons. It
can be considered as a generalization of the Bradley–Mangasarian [6] k-plane
clustering algorithm.

Subspace clustering algorithm

Data: samples x(1), . . . ,x(T ) (column vectors) of X
Result: estimated k groups of orthonormal vectors: Gi = {ui,s (s = 1, . . . , r},

i = 1, . . . , k), as u�
i,s1

ui,s2 = 0 (s1 �= s2)
Initialize randomly k groups of orthonormal vectors Gi = {ui,s, (s = 1, . . . , r},
i = 1, . . . , k), as u�

i,s1
ui,s2 = 0 (s1 �= s2).

for j ← 1, . . . , j0 do
Cluster assignment
for t← 1, . . . , T do

Add x(t) to cluster Y(i), where i is chosen to minimize
∑r

s=1 |u�
i,sx(t)|2

(distance to the orthogonal complement of span{ui,s}r
s=1)

end
Exit if the mean distance to the subspaces is smaller than some preset
value.

end

Cluster update
for i← 1, . . . , k do

for s← 1, . . . , r do
Define projection matrix P with rows consisting of an orthonormal
basis of the orthogonal complement of ui,1, . . . ,ui,s−1 (if s = 1, then
P = Im, the identity matrix)
Calculate projected cluster covariance C← PY(i)(Y(i))�P�

Choose eigenvector vs of C corresponding with a minimal eigenvalue.
Set ui,s ← P�vs.

end
end

The constant j0 is in practice chosen to be sufficiently large. The finite termi-
nation of the algorithm is proved in [6, Theorem 3.7].
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8.4.3 Orthogonal m-planes clustering algorithm

In this section, we propose a modification of the k-plane clustering algorithm
of Bradley and Mangasarian [6]. The idea is to reduce the problem of finding
the m-skeleton of X to an orthogonal problem: requiring that the hyperplanes
of it are orthogonal, i.e., defined by an orthonormal matrix W ∈ R

m×m. This
can be done in the following way, if we we assume that the source matrix S
after normalization is semi-orthogonal, i.e., S̃S̃� = I.

Let XX� = ULU� be the eigenvalue decomposition of the matrix XX�.
Assume that the diagonal elements of L are positive. Then, denoting W =
L−1/2U�A and Y = L−1/2U�X, we have

Y = WS̃, WW� = I, YY� = I. (8.27)

Then the cluster update steps in Bradley–Mangasarian algorithm [6] can
be unified in the following optimization problem with orthogonality con-
straints:

minimize
m∑

i=1

w�
i Y(i)(Y(i))�wi (8.28)

under constraints wiw�
j = δij , (8.29)

where Y(i) is the matrix with vector columns, which are elements of the ith

cluster.

Orthogonal m-planes clustering algorithm

Data: samples x(1), . . . ,x(T ) of X
Result: estimated orthonormal mixing matrix W in (8.27)
Initialize randomly W = (w1, . . . ,wn) – orthonormal matrix.
for j ← 1, . . . , j0 do

Cluster assignment
for t← 1, . . . , T do

Add x(t) to cluster Y(i), where i is chosen to minimize |w�
i x(t)| (dis-

tance to hyperplane given by the ith column of W).
end
Exit if the mean distance to the hyperplanes is smaller than some preset
value.

end

Matrix update
for k ← 1, . . . , n do

for s← 1, . . . , r do
Define projection matrix P with rows consisting of an orthonormal
basis of the orthogonal complement of w1, . . . ,wk−1

Calculate projected cluster covariance C← PY(i)(Y(i))�P�
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Choose eigenvector vk of C corresponding with a minimal eigenvalue.
Set wk ← P�vk.

end
end
The constant j0 is in practice chosen to be sufficiently large. The finite termi-
nation of the algorithm is proved in [6, Theorem 3.7].

8.5 Applications

8.5.1 Computer simulation example: underdetermined case

We consider a mixture of 7 artificially created sources (see Figure 8.2 left) –
sparsified randomly generated signals with at least 5 zeros in each column –
with a randomly generated mixing matrix with dimension 3× 7.

Figure 8.3 gives the mixed signals together with a normalized scatterplot
of the mixtures – the data lies in 21 =

(
7
2

)
hyperplanes.

Applying the underdetermined matrix recovery algorithm [23] to the mix-
tures gives the recovered mixing matrix perfectly well, up to permutation
and scaling. Applying the source recovery algorithm, we recover the source
signals up to permutation and scaling (see Figure 8.3, middle). This figure
(right) shows also that the recovery by l1-norm minimization (known as the
Basis Pursuit method [12]) does not perform well, even if the mixing matrix
is perfectly known.

8.5.2 Computer simulation example: subspace clustering algorithm

We created four artificial source signals (nearly Gaussian), sparse of
level 2, i.e., each column of the source matrix contains at least 2 zeros
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Fig. 8.2. Mixed signals (left) and normalized scatter plot (density) of the mixtures
(right) together with the 21 data set hyperplanes, visualized by their intersection
with the unit sphere in R

3.
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Fig. 8.3. The original source signals are shown in the left column. The middle
column gives the recovered source signals — the signal-to-noise ratio between the
original sources and the recoveries is very high (above 278 dB after permutation
and normalization). Note that only 200 samples are enough for excellent separation.
The right column shows the recovered source signals using l1-norm minimization
and known mixing matrix. Simple comparison confirms that the recovered signals
are far from the original ones — the signal-to-noise ratio is only around 4 dB.

(shown in Figure 8.4). They are mixed with a square normalized matrix H4
(each column of it has norm one):

H =

⎛

⎜
⎜
⎝

−0.0506 −0.2818 0.5457 0.3111
0.1974 0.8497 −0.4128 −0.5214
0.9707 0.4291 0.6958 0.7645
0.1271 0.1200 0.2182 0.2163

⎞

⎟
⎟
⎠ .

The mixed signals are shown in Figure 8.5.
We apply our subspace clustering algorithm in order to identify the skele-

ton of the data points and after that apply our matrix identification algorithm.
We obtain an estimation W of the mixing matrix (after normalization of each
column):

W =

⎛

⎜
⎜
⎝

0.5457 0.3113 0.2819 0.0504
−0.4128 −0.5212 −0.8498 −0.1972

0.6958 0.7646 −0.4289 −0.9708
0.2182 0.2165 −0.1199 −0.1273

⎞

⎟
⎟
⎠ .

which is very near to H (up to permutation and sign).
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Fig. 8.4. Original source signals.
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Fig. 8.5. Mixed signals.
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8.5.3 Applications of SCA to fMRI data

SCA applied to fMRI toy data

We simulate a low-dimensional example of fMRI data analysis. The typical
setup of fMRI experiments is the following: NMR brain imaging techniques
are used to record brain activity data over a certain span of time, during which
the subject is asked to perform some kind of task (e.g., 5 seconds of activity
in the motor cortex followed by 5 seconds of activity in the visual cortex; this
iterative procedure is often called block diagram). The brain recordings show
areas of high and of low brain activity (using the BOLD effect). Analysis is
performed on the 2D-image slices recorded at the discrete time steps. General
linear model (GLM) approaches or ICA-based fMRI analysis then decompose
this data set into a certain set of component maps (see Figure 8.11), i.e.,
sets of (hopefully independent) images that are active at certain time steps
corresponding to the block diagram.

In the following, we simulate a low-dimensional example of such brain
activity recordings. For this we mix three “source component maps”
(Figure 8.6) linearly to three mixture images and add some noise.

These mixtures represent our recordings at three different time steps. Only
from the recordings, we want to recover the original components or component
maps. We want to use an unsupervised approach (not GLM, which requires
additional knowledge of the mixing system) but with a different contrast than
ICA. We believe that the assumption of independence of the component maps
does not hold in a lot of situations, so we replace this assumption by sparseness
of the maps, meaning that at a certain voxel, not all maps are allowed to be
active (in the case of as many mixtures as sources).

We consider a mixture of 3 artificially created non-independent source
images of size 30 × 30 — see Figure 8.6 — with the (normalized) mixing
matrix

A =

⎛

⎝
−0.9069 0.1577 0.4726
−0.2737 −0.9564 0.0225
−0.3204 −0.2458 −0.8810

⎞

⎠

and 4% of additive white noise. The mixtures are shown in Figure 8.7 together
with their scatterplot after normalization to unit length.

Fig. 8.6. Example: artificial non-independent and non-sparse source signals.
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Fig. 8.7. Example: mixed signals with 4% additive noise (a), and scatterplot after
normalization to unit length (b).

Note that due to the circular “brain region,” we have to preprocess the
data (“sparsification”) by removing the non-brain voxels from the boundary.
Then, we apply the matrix identification algorithm. This gives the recovered
matrix (after normalization)

Â =

⎛

⎝
0.9110 0.1660 0.4693
0.2823 −0.9541 0.0135
0.3007 −0.2494 −0.8829

⎞

⎠

with low cross-talking error 0.12 and the recovered sources Ŝ shown in
Figure 8.8, with high signal-to-noise ratio of 28, 27, and 27 dB with respect
to the original sources (after permutation and normalization).

This can be enhanced by applying a denoising algorithm to each image.
Figure 8.9 shows the application of local PCA denoising with an MDL-
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Fig. 8.8. Example: recovered source signals. The signal-to-noise ratio between the
original sources (Figure 8.6) and the recoveries is high with 28, 27, and 27 dB after
permutation and normalization.

Fig. 8.9. Example: recovered denoised source signals. Now the SNR is even higher
than that in Figure 8.8 (32, 31, and 29 dB after permutation and normalization).

parameter estimation criterion, which gives SNRs of 32, 31, and 29 dB now,
so a mean enhancement of around 4 dB has been achieved.

Note that if we apply ICA to the previous example (after sparsification
as above — without sparsification ICA performs even worse), the algorithm
cannot recover the mixing matrix:

Ā =

⎛

⎝
0.6319 −0.3212 0.8094
−0.0080 −0.8108 −0.3138
−0.7750 −0.4893 0.4964

⎞

⎠

has very high cross-talking error of 4.7 with respect to A. Figure 8.10 shows
the poorly recovered sources; the SNRs with respect to the sources are only
3.3, 13, and 12 dB respectively. The reason for ICA not being able to recover
the sources simply lies in the fact that they were not chosen to be independent.

SCA applied to real fMRI data

We now analyze the performance of SCA when applied to real fMRI mea-
surements. fMRI data were recorded from six subjects (3 female, 3 male, age
20–37) performing a visual task. In five subjects, five slices with 100 images
(TR/TE = 3000/60 ms) were acquired with five periods of rest and five photic
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Fig. 8.10. Example: poorly recovered source signals using ICA. The signal-to-noise
ratio between the original sources (Figure 8.6) and the recoveries is very low with
3.3, 13 and 12 dB after permutation and normalization.
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Fig. 8.11. fMRI analysis – setting.

simulation periods with rest. Simulation and rest periods comprised 10 repe-
titions each, i.e., 30 s. Resolution was 3× 3× 4 mm. The slices were oriented
parallel to the calcarine fissure. Photic stimulation was performed using an 8
Hz alternating checkerboard stimulus with a central fixation point and a dark
background with a central fixation point during the control periods [49]. The
first scans were discarded for remaining saturation effects. Motion artifacts
were compensated by automatic image alignment (AIR, [50]).

Blind Signal Separation, mainly based on ICA, nowadays is a quite com-
mon tool in fMRI analysis (see, for example, [37, 36, 8, 47, 7] and references
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(a) component maps

1 cc: −0.16 2 cc: −0.28 3 cc: 0.13

4 cc: −0.04 5 cc: −0.88 

(b) time courses

Fig. 8.12. SCA fMRI analysis. The data was reduced to the first 5 principal com-
ponents: (a) shows the recovered component maps (white points indicate values
stronger than 3 standard deviations) and (b) their time courses. The stimulus com-
ponent is given in component 5 (indicated by the high cross-correlation cc = −0.86
with the stimulus time course, delayed by roughly 2 seconds due to the BOLD effect),
which is strongly active in the visual cortex as expected.
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4 5

(a) component maps

1 cc: 0.90 2 cc: −0.11 3 cc: 0.08

4 cc: 0.20 5 cc: 0.10

(b) time courses

Fig. 8.13. FastICA result during fMRI analysis of the same data set as in Figure
8.12. The stimulus component is given in component 1 with high stimulus cross-
correlation cc = 0.90.
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(a) component maps

1 cc: 0.09 2 cc: 0.04 3 cc: 0.02

4 cc: 0.06 5 cc: 0.15 6 cc: 0.89

7 cc: −0.05 8 cc: −0.08 9 cc: −0.13 

(b) time courses

Fig. 8.14. fMRI analysis by our orthogonal m-planes clustering algorithm. The data
was reduced to the first 9 principal components. (a) shows the recovered component
maps (white points indicate values stronger than 3 standard deviations) and (b) their
time courses. The stimulus component is given in component 6 (indicated by the
high cross-correlation cc = 0.89 with the stimulus time course, delayed by roughly
2 seconds due to the BOLD effect), which is strongly active in the visual cortex as
expected.
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(a) component maps

1 cc: 0.09 2 cc: 0.04 3 cc: 0.02

4 cc: 0.06 5 cc: 0.15 6 cc: 0.89

7 cc: −0.05 8 cc: −0.08 9 cc: −0.13 

(b) time courses

Fig. 8.15. FastICA result during fMRI analysis of the same data set as in Figure
8.12. The stimulus component is given in component 4 with high stimulus cross-
correlation cc = 0.87.
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therein). We analyze the fMRI data set using as a separation criterion a spatial
decomposition of fMRI data images to sparse component maps [25]. Such an
approach we consider as very reasonable and advantageous when the stimuli
are sparse and dependent, and therefore the ICA methods could not give good
results. Due to the availability of fMRI data, it appears that the results of our
SCA method and ICA method give similar results, which itself we consider as
a surprising fact. Here we again use the matrix identification algorithm and
apply the matrix inversion algorithm the estimated matrix for estimation of
the sources.

Figure 8.12 shows the performance of SCA method; see the figure legend for
interpretation. Using only the first 5 principal components, SCA could recover
the stimulus component as well as detect additional components. Figure 8.14
shows the performance of our orthogonal m-planes clustering algorithm (see
the figure legend for interpretation). Now we use the first 9 principal compo-
nents and recover the stimulus component and additional components. The
performance of SCA algorithms is equally well as fastICA [29] (see Figures
8.13 and 8.15), which is interesting in itself: apparently the two different cri-
teria, sparseness and independence, lead to similar results in this setting. This
can be partially explained by noting that all components, mainly the stimulus
component, have high kurtoses, i.e., strongly peaked densities.

8.6 Conclusion

We presented rigorous mathematical justification based on optimization the-
ory of two basic methods for data representation: Independent Component
Analysis and Sparse Component Analysis. Several algorithms and experiments
are presented including application to toy and real fMRI data.
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Abstract. The genome of an organism not only serves as its blueprint that holds
the key for diagnosing and curing diseases but also plays a pivotal role in obtaining
a holistic view of its ancestry. Recent years have witnessed a large number of inno-
vations in this field, as exemplified by the Human Genome Project. This chapter
provides an overview of popular algorithms used in genome analysis and in particular
explores two important and deeply interconnected problems: Phylogenetic Analy-
sis and Multiple Sequence Alignment. We also describe our novel graph-theoretical
approach that encompasses a wide variety of genome sequence analysis problems
within a single model.

9.1 Introduction

Genomics encompasses the study of genome in human and other organisms.
The rate of innovation in this field has been breathtaking over the past decade,
especially with the completion of the Human Genome Project. The purpose
of this chapter is to review some well-known algorithms that facilitate genome
analysis. The material is presented in a way that is interesting to both the
specialists working in this area and others. Thus, this review includes a brief
sketch of the algorithms to facilitate a deeper understanding of the concepts
involved. The list of problems related to genomics is very extensive; hence
the scope of this chapter is restricted to the following two related important
problems: (1) Phylogenetic Analysis, and (2) Multiple Sequence Alignment.
Readers interested in algorithms used in other fields of computational biology
are recommended to refer to reviews by Abbas and Holmes [1] and Blazewicz
et al. [7].

Genome refers to the complete DNA sequence contained in the cell. DNA
sequence consists of the four nucleotides adenine (A), thymine (T), cytosine
(C), and guanine (G). Associated with each DNA strand (sequence) is a com-
plementary DNA strand of the same length. The strands are complementary
in that each nucleotide in one strand uniquely defines an associated nucleotide

P.M. Pardalos, H.E. Romeijn (eds.), Handbook of Optimization in Medicine, 291
Springer Optimization and Its Applications 26, DOI: 10.1007/978-0-387-09770-1 9,
c© Springer Science+Business Media LLC 2009
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in the other: A and T are always paired, and C and G are always paired. Each
pairing is referred to as a base pair; and bound complementary strands make
up a DNA molecule. Typically, the number of base pairs in a DNA molecule is
between thousands and billions, depending on the complexity of a given organ-
ism. For example, a bacterium contains about 600,000 base pairs, whereas
humans and mice have some 3 billion base pairs. Among humans, 99.9% of
base pairs are the same between any two unrelated persons. But that leaves
millions of single-letter differences, which provide genetic variation between
people.

Understanding the DNA sequence is extremely important. It is considered
as the blueprint for an organism’s structure and function. The sequence order
underlies all of life’s diversity, even dictating whether an organism is human or
another species such as yeast or a fruit fly. It helps in understanding the evo-
lution of mankind, identifying genetic diseases, and creating new approaches
for treating and controlling those diseases. In order to achieve these goals, the
research in genome analysis has rapidly progressed over the past decade.

The rest of this chapter is organized as follows. Section 9.2 discusses
techniques used to infer the evolutionary history of species, and Section
9.3 presents Multiple Sequence Alignment problem and recent advances. In
Section 9.4, we describe our research effort for advancing genomics analysis
through the design of a novel graph-theoretical approach for representing a
wide variety of genomic sequence analysis problems within a single model. We
summarize our theoretical findings and present computational models based
on two integer programming formulations. Finally, Section 9.5 summarizes
the interdependence and the pivotal role played by the above-mentioned two
problems in computational biology.

9.2 Phylogenetic Analysis

Phylogenetic Analysis is a major aspect of genome research. It refers to the
study of evolutionary relationships of a group of organisms. These hierar-
chical relationships among organisms arising through evolution are usually
represented by a phylogenetic tree (Figure 9.1). The idea of using trees to

Fig. 9.1. An example of evolutionary tree.
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Fig. 9.2. Tree terminology.

represent evolution dates back to Darwin. Both rooted and unrooted tree rep-
resentation have been used in practice [17]. The branches of tree represents the
time of divergence and the root represents the ancestral sequence (Figure 9.2).

The study of phylogenies and processes of evolution by the analysis of DNA
or amino acid sequence data is called Molecular Phylogenetics. In this study,
we will focus on methods that use DNA sequence data. There are two processes
involved in inferring both rooted and unrooted trees. First is estimating the
branching structure or topology of the tree. Second is estimating the branch
lengths for a given tree. Currently, there are wide varieties of methods available
to conduct this analysis ([55, 79, 16, 19]). These available approaches can
be classified into three broad groups: (i) Distance Methods; (ii) Parsimony
Methods; and (iii) Maximum Likelihood Methods. Below, we will discuss each
of them in detail.

9.2.1 Methods based on pairwise distance

In distance methods, an evolutionary distance dij is computed between each
pair i, j of sequences, and a phylogenetic tree is constructed from these pair-
wise distances. There are many different ways of defining pairwise evolutionary
distance used for this purpose. Most of the approaches estimate the number
of nucleotides substitutions per site, but other measures have also been used
[71, 70]. The most popular one is Jukes–Cantor distance [37], which defines
dij as − 3

4 log(1− 4f
3 ), where f is the fraction of sites where nucleotides differ

in the pairwise alignment.
There are a large number of distance methods for constructing evolution-

ary trees [77]. In this chapter, we discuss methods based on cluster analysis
and neighbor joining.

Cluster analysis: UPGMA

The conceptually simplest and most known distance method is UPGMA
(Unweighted Pair Group Method using Arithmetic averages) developed by



294 E.K. Lee and K. Gupta

Sokal and Michener [66]. Given a matrix of pairwise distances between each
pair of sequences, it starts with assigning each sequence to its own cluster. The
distances between the clusters are defined as dij = 1

|Ci||Cj |
∑

p∈Ci, q∈Cj
d(p, q)

where Ci and Cj denote sequences in clusters i and j, respectively. At each
stage in the process, the least distant pair of clusters are merged to create
a new cluster. This process continues until only one cluster is left. Given n
sequences, the general schema of UPGMA is shown in Algorithm 1.

Algorithm 1 UPGMA
1: INPUT: Distance matrix dij , 1 ≤ i, j ≤ n
2: for i = 1 to n do
3: Define singleton cluster Ci comprising of sequence i
4: Place cluster Ci as a tree leaf at height zero
5: end for
6: repeat
7: Determine two clusters i, j such that dij is minimal.
8: Merge these two clusters to form a new cluster k having distance from other

clusters defined as the weighted average of the comprised two clusters. If Ck

is the union of two clusters Ci and Cj , and if Cl is any other cluster, then dkl

=
dil|Ci|+djl|Cj |

|Ci|+|Cj |

9: Define a node k at height
dij

2
with daughter nodes i and j

10: until just a single cluster remains

The time and space complexity of UPGMA is O(n2), as there are n − 1
iterations of complexity O(n). A number of approaches have been developed
that are motivated by UPGMA. Li [52] developed a similar approach, which
also makes corrections for unequal rates of evolution among lineages. Klotz
and Blanken [43] presented a method where a present-day sequence serves as
an ancestor in order to determine the tree regardless of the rates of evolution
of the sequences involved.

Neighbor joining

Neighbor Joining (NJ) is another very popular algorithm based on pairwise
distances [63]. This approach yields an unrooted tree and overcomes the
assumption of UPGMA method that the same rate of evolution applies to
each branch.

Given a matrix of pairwise distances between each pair of sequences dij ,
it first defines modified distance matrix d̄ij . This matrix is calculated by sub-
tracting average distances to all other sequences from the dij and thus com-
pensating for long edges. In each stage, the two nearest nodes (minimal d̄ij)
of the tree are chosen and defined as neighbors in the tree. This is done recur-
sively until all of the nodes are paired together.
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Given n sequences, the general schema of Neighbor Joining is shown in
Algorithm 2.

Algorithm 2 Neighbor Joining
1: INPUT: Distance matrix dij , 1 ≤ i, j ≤ n
2: for i = 1 to n do
3: Assign sequence i to the set of leaf nodes of the tree (T )
4: end for
5: Set list of active nodes(L) = T
6: repeat
7: Calculate modified distance matrix d̄ij = dij − (ri + rj), where ri =

1
|L|−2

∑
k∈L dik

8: Find the pair i, j in L having minimal value of d̄ij

9: Define a new node u and set duk = 1
2
(dik + djk − dij), for all k in L

10: Add u to T joining nodes i, j with edges of length given by: diu = 1
2
(dij +

ri − rj),
dju = dij − diu

11: Remove i and j from L and add u
12: until Only two nodes remain in L
13: Connect remaining two nodes i and j by a branch of length dij

NJ has an execution time of O(n2), like UPGMA. It has given extremely
good results in practice and is computationally efficient [63, 72]. Many prac-
titioners have developed algorithms based on this approach. Gascuel [24]
improved the NJ approach by using a simple first-order model of the vari-
ances and covariances of evolutionary distance estimates. Bruno et al. [10]
developed a weighted NJ using a likelihood-based approach. Goeffon et al.
[25] investigated a local search algorithm under the Maximum Parsimony cri-
terion by introducing a new subtree swapping neighborhood with an effective
array-based tree representation.

9.2.2 Parsimony methods

In science, the notion of parsimony refers to the preference of simpler hypothe-
ses over complicated ones. In the parsimony approach for tree building, the
goal is to identify the phylogeny that requires the fewest necessary changes
to explain the differences among the observed sequences. Of the existing
numerical approaches for reconstructing ancestral relationships directly from
sequence data, this approach is the most popular one. Unlike distance-based
methods, which builds a tree, it evaluates all possible trees and gives each a
score based on the number of evolutionary changes that are needed to explain
the observed sequences. The most parsimonious tree is the one that requires
the fewest evolutionary changes for all sequences to derive from a common
ancestor [69]. As an example, consider the trees in Figure 9.3 and Figure
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Fig. 9.3. Parsimony tree 1.

Fig. 9.4. Parsimony tree 2.

9.4. The tree in Figure 9.3 requires only one evolutionary change (marked
by the ∗) compared with the tree in Figure 9.4, which requires two changes.
Thus, Figure 9.3 is the more parsimonious tree.

There are two distinct components in parsimony methods: given a labeled
tree, determine the score; determine global minimum score by evaluating all
possible trees, as discussed below.

Score computation

Given a set of nucleotide sequences, parsimony methods treat each site (posi-
tion) independently. The algorithm evaluates the score at each position and
then sums them up over all the positions. As an example, suppose we have
the following three aligned nucleotide sequences.

CCC
GGC
CGC

Then, for a given tree topology, we would calculate the minimal number of
changes required at each of the three sites and then sum them up. Here, we
investigate a traditional parsimony algorithm developed by Fitch [21], where
number of substitutions required is taken as score. For a particular topology,
this approach starts by placing nucleotides at the leaves and traverse toward
the root of the tree. At each node, the nucleotides common to all of the
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descendant nodes are placed. If this set is empty, then the union set is placed
at this node. This continues until root of the tree is reached. The number of
union sets equals the number of substitutions required. The general schema
for every position is shown in Algorithm 3.

Algorithm 3 Parsimony: Score Computation
1: Each leaf l is labeled with set Rl having observed nucleotide at that position.
2: Score S = 0
3: for all Internal node k with children i and j having labels Ri and Rj do
4: Rk = Ri

⋂
Rj

5: if Rk = ∅ then
6: Rk = Ri

⋃
Rj

7: S = S + 1
8: end if
9: end for

10: Minimal score = S

Figure 9.5 shows the set Rk obtained by the above algorithm. The com-
putation is done for the first site of the three sequences shown above. The
minimal score given by the algorithm is 1.

There are a wide variety of approaches developed by modifying Fitch’s
algorithm [68]. Sankoff and Cedergren [64] presented a generalized parsimony
method that does not just count the number of substitutions but assigns a
weighted cost for each substitution.

Ronquist [62] improved the computational time by including strategies for
rapid evaluation of tree lengths and increase the exhaustiveness of branch
swapping while searching topologies.

Search of possible tree topologies

The number of possible tree topologies dramatically increases with the num-
ber of sequences. Consequently, in practice usually only a subset of them
are examined using efficient search strategies. The most commonly used is

Fig. 9.5. The sets Rk for the first site of given three sequences.
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branch and bound methods to select branching patterns [60]. For large-scale
problems, heuristic methods are typically used [69]. These exact and heuris-
tic tree search strategies are implemented in various software like PHYLIP
(Phylogeny Inference Package) and MEGA (Molecular Evolutionary Genetic
Analysis) [20, 47].

9.2.3 Maximum likelihood methods

The method of maximum likelihood (ML) is one of the most popular statis-
tical tools used in practice. In molecular phylogenetics, maximum likelihood
methods find the tree that has the highest probability of generating observed
sequences, given an explicit model of evolution. The method was first intro-
duced by Felenstein [18]. We discuss herein both the evolution models and the
calculation of tree likelihood.

Model of evolution

A model of evolution refers to various events like as mutation that change
one sequence to another over a period of time. It is required to determine
the probability of a sequence S2 arising from an ancestral sequence S1 over a
period time t. Various sophisticated models of evolution have been suggested,
but simple models like Jukes–Cantor are preferred in ML methods.

Jukes and Cantor (1969) [37] model assumes that all nucleotides (A,C, T ,
G) undergo mutation with equal probability and change to all of the other
three possible nucleotides with same probability. If the mutation rate is 3α
per unit time per site, the mutation matrix Pij (probability that nucleotide i
changes to j in unit time) takes the form

⎛

⎜
⎜
⎝

1− 3α α α α
α 1− 3α α α
α α 1− 3α α
α α α 1− 3α

⎞

⎟
⎟
⎠ .

The above matrix is integrated to evaluate mutation rates over time t and
then used to calculate P (nt2|nt1, t), defined as the probability of nucleotide
nt1 being substituted by nt2 over time t.

Various other evolution models like the Kimura model have also been
mentioned in the literature [42, 9].

Likelihood of a tree

The likelihood of tree is calculated as the probability of observing a set of
sequences given the tree.

L(tree) = P (sequences|tree).
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Fig. 9.6. A simple tree.

We begin with the simple case of two sequences S1 and S2 of length n having
a common ancestor “a” as shown in Figure 9.6. It is assumed that all different
sites (positions) evolve independently and thus the total likelihood is calcu-
lated as the product of likelihood of all sites [15]. Here, the likelihood of each
site is obtained using substitution probabilities based on evolution model.

Given qa = equilibrium distribution of nucleotide a, the likelihood for sim-
ple tree in Figure 9.6 is calculated as L(tree) = P (S1, S2) =

∏n
i=1 P (S1

i , S2
i )

where P (S1
i , S2

i ) =
∑

a qaP (S1
i |a)P (S2

i |a). To generalize this approach for m
sequences, it is assumed that diverged sequences evolve independently after
diverging. Hence, likelihood for every node in the tree depends only on its
immediate ancestral node and a recursive procedure is used to evaluate like-
lihood of the tree. The conditional likelihood Lk,a is defined as the likelihood
of the subtree rooted at node k, given that nucleotide at node k is a. The
general schema for every site is shown in Algorithm 4. The likelihood is then
maximized over all possible tree topologies and branch lengths.

Algorithm 4 Likelihood: Computation at Given Site
1: for all leaf l do
2: if leaf has nucleotide a at that site then
3: Ll,a = 1
4: else
5: Ll,a = 0
6: end if
7: end for
8: for all Internal node k with children i and j do
9: Define the conditional likelihood Lk,a =

∑
b,c[P (b|a)Li,b][P (c|a)Lj,c]

10: end for
11: Likelihood at given site =

∑
a qaLroot,a

Recent improvements

ML approach has received great attention due to the existence of powerful sta-
tistical tools. It has been made more sophisticated using advance tree search
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algorithms, sequence evolution models, and statistical approaches. Yang [80]
has extended it to the case where the rate of nucleotide substitutions differs
over sites. Huelsenbeck [34] incorporated the improvements in substitution
models. Piontkivska [59] evaluated the use of various substitution models in
ML approach and inferred that simple models are comparable in both effi-
ciency and reliability with complex models.

The enormously large number of possible tree topologies, especially while
working with large number of sequences, makes this approach computationally
intensive [72]. It has been proved that reconstructing the ML tree is NP-hard
even for certain approximations [14]. In order to reduce computational time,
Guindon and Gascuel [31] developed a simple hill-climbing algorithm based
on the maximum-likelihood principle that adjusts tree topology and branch
lengths simultaneously. Recently, parallel computation is being used to address
huge computational requirement. Stamatakis et al. [67] have used OpenMP-
parallelization for Symmetric Multi-Processing machines, and Keane et al.
[39] developed distributed platform for phylogeny reconstruction by maximum
likelihood.

9.3 Multiple Sequence Alignment

Multiple sequence alignment (MSA) is arguably among the most studied and
difficult problems in computational biology. It has been a vital tool as it com-
pactly represents conserved or variable features among the family members.
Alignment also allows character-based analysis compared with distance-based
analysis and thus helps to elucidate evolutionary relationships better. Conse-
quently, it plays a pivotal role in a wide range of sequence analysis problems
like identifying conserved motifs among given sequences; predicting secondary
and tertiary structure of protein sequences; and molecular phylogenetic analy-
sis. It is also used for sequence comparison to find similarity of a new sequence
with pre-existing ones. This helps in gathering information about function and
structure of newfound sequences from the existing ones in databases like Gen-
Bank in the United States and EMBL in Europe.

The MSA problem can be stated formally as follows. Let
∑

be the alphabet
and let

∑̂
=
∑
∪{−}, where “−” is a symbol to represent “gaps” in sequences.

For DNA sequences, alphabet
∑̂

= {A, T,C,G,−}.
An alignment for N sequences S1, ..., SN is given by a set Ŝ = {S1, . . . , SN}

over the alphabet
∑̂

, which satisfies the following two properties: (1) the
strings in Ŝ are of the same length, (2) Si can be obtained from Ŝi by removing
the gaps. Thus, an alignment in which each string Ŝi has length K can be
interpreted as an alignment matrix of N rows and K columns where row i
corresponds with sequence Si. Alphabets that are placed into the same column
of alignment matrix are said to be aligned with each other.

Figure 9.7 shows two possible alignments for given three sequences: S1 =
CCC, S2 = CGGC, and S3 = CGC.
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Fig. 9.7. Two possible alignments for given three sequences.

For two sequences, optimal MSA is easily obtained using dynamic
programming (Needleman–Wunsch algorithm). Unfortunately, the problem
becomes much harder for more than two sequences, and optimal solution can
be found only for a limited number of sequences of moderate length (approx-
imately 100) [8]. Researchers have tried to solve it by generalizing dynamic
programming approach to a multidimensional space. However, this approach
has huge time and memory requirements and thus cannot be used in practice
even for small problems of 5 sequences of length 100 each. This algorithm
has been improved by identifying the portion of hyperspace that does not
contribute to the solution and exclude it from the computation [11]. But,
even this approach of Carrillo and Lipman implemented in MSA program can
only align up to ten sequences [53]. Although, Gupta and Kececioglu (1995)
improved the space and time usage of this approach, it cannot align large
data sets [32]. To reduce the huge time and memory expenses, a wide variety
of heuristic approaches for MSA have been developed [57].

There are two components of finding MSA: (i) searching over all the pos-
sible multiple alignments, (ii) scoring each of them to find the best one.

The problem becomes more complex for remotely related homologous
sequences, i.e., sequences that are not derived from a common ancestor [28].
Numerous approaches have been proposed, but the quest for an approach that
is accurate and fast continues. It must be remembered that even the choice
of sequences and calculating the score of alignment is a nontrivial task and is
an active research field in itself.

9.3.1 Scoring alignment

There is no unanimous way of characterizing an alignment as the correct
one and the strategy depends on biological context. Different alignments are
possible and we never know for sure which alignment is correct. Thus, one
scores every alignment according to an appropriate objective function, and
alignments with the higher scores are deemed to be better. A typical alignment
scoring scheme consists of the following steps:

Independent columns

The score of alignment is calculated in terms of columns of alignments. The
individual columns are assumed to be independent, and thus the total score
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of an alignment is a simple summation over column scores. Thus, score for
an alignment Score(A) =

∑
j Score(Aj), where Aj is column j of the mul-

tiple alignment A. Now, score for every column j is calculated as “sum of
pairs” (SP) function using the scoring matrices described below. The SP
score for column Aj is obtained as Score(Aj) =

∑
k<l Score(Ak

j , Al
j) where

Ak
j and Al

j are nucleotides in column j of alignment corresponding with
sequences k and l, respectively. If gap costs are linear, Score(nucleotide,−)
and Score(−,nucleotide) will be the insertion cost. But, this approach would
not differentiate between opening a gap and extending it. Thus, affine gap
penalties are often used where gap opening and extension penalty are treated
as two different parameters. The correct value of both of these parameters is
a major concern as their values can be set only empirically [75]. Also, most
schemes used in practice score columns as weighted sum of pair-wise substitu-
tions instead of just addition as described before. The weights are decided in
accordance with the amount of independent information each sequence pos-
sesses [3].

Both the assumption of treating every column independent and using
SP score for column has limitations. The problem increases as number of
sequences increases.

Scoring matrices

Any alignment can be obtained by performing three evolution operations:
insertion, deletion, and substitution. It is assumed that all the different oper-
ations occur independently, and thus the complete score is evaluated as the
sum of scores from every operation. Insertion and deletion scores are calcu-
lated as either linear or affine gap penalty. Substitutions scores are stored as
substitution score matrix, which contains score for every pair of nucleotides.
Thus, these scores S(A,B) can be treated as the score of aligning nucleotide
A with B.

These substitution score matrices can be obtained in various ways. One
could adopt an ad hoc approach of setting up a score matrix that pro-
duces good alignments for a given set of sequences. The second approach
would be more fundamental and look into physical and chemical properties of
nucleotides. If two nucleotides are similar in their properties, they would be
more likely to be substituted by one another. The third and the most promi-
nent one is a statistical approach where maximum likelihood principle is used
in conjunction with probabilistic models of evolution [4].

9.3.2 Alignment approaches

The number of different approaches for MSA problem has steadily increased
over the past decade and thus being exhaustive will not be possible. In this
chapter, we will emphasize the most widely used class of algorithms and the
new emerging and most promising approaches.
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1. Progressive alignment algorithms: The most widely used type of algo-
rithm based on using pairwise alignment information of input sequences.
It assumes that input sequences are phylogenetically related and uses these
relationships to guide the alignment [13].

2. Graph-based algorithms: A new trend where graph-based models are used
to approach this problem.

3. Iterative alignment algorithms: Typically, an alignment is produced and
is then refined through series of iterations until no more improvement can
be made.

9.3.3 Progressive algorithms

Progressive Alignment constitutes one of the most simplest and effective waysf
for multiple alignment. This strategy was introduced by various researchers
like Waterman and Perlwitz [78]. Among all the progressive algorithms,
ClustalW is the most famous one. It is a non-iterative, deterministic algo-
rithm that attempts to optimize the weighted sums-of-pairs with affine gap
penalties [73].

The typical progressive algorithm schema is as follows:

• Compute distance between all pairs of given sequences by aligning them.
The distances represent divergence of each pair of sequences. These dis-
tances could be calculated by fast approximation methods or the slower
but more precise methods like complete dynamic programming. Because
for given N sequences N(N−1)

2 pairwise scores have to be calculated and the
scores are used just for construction of a guide tree and not the alignment
itself, it is desirable to use approximation methods like k tuple matches.

• Find a guide tree from the distance matrix. This is typically achieved
using clustering algorithms discussed in construction of an evolutionary
tree. Once again, because the aim is to get the alignment and not the tree
itself, approximation methods are used to construct the evolution trees.

• Align sequences progressively according to the branching order in the guide
tree. The basic idea is to start from the leaves of the guide tree toward
its root and to use series of pairwise alignments to align larger and larger
groups of sequences. Some algorithms have only single growing alignment
to which every remaining sequence is aligned, whereas other approaches
align subgroup of sequences and then merge the alignments.

There are three main shortcomings of the progressive algorithms.

• There does not exist an undisputable “best” way of ordering the given
sequences.

• Once a sequence has been aligned, that alignment will not be modified
even if it conflicts with sequences added later in the process. Hence, the
order in which sequences are added becomes very crucial, and as there is
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no undisputable best way to order the sequences, this approach returns
sub-optimal solutions.

• For a given set of n sequences,
(
n
2

)
pairwise alignments are generated; but

while computing the final multiple alignment, most of these algorithms use
fewer than n pairwise alignments. Thus, the resulting multiple alignment
agrees with only a small amount of information available in the data.

Therefore, there is a growing need for an algorithm to align extremely
divergent sequences whose pairwise alignments are likely to be incorrect.
In order to address all these issues, some techniques have been developed;
although they are innovative, it is understandable that they have their own
assumptions and drawbacks.

9.3.4 Graph-based algorithms

Over the past few years, the field of genomics has undergone evolutionary
changes with a rapid increase in new solution strategies. The use of graph-
based models is easily seen as one of the emerging and most far-reaching
trends. Just and Vedova [38] use relation between facility location problem
and sequence alignment to prove the NP-hardness of MSA. In this section, we
review the most prominent integer programming (IP) approaches for finding
multiple sequence alignment.

Maximum-weight trace

Kececioglu et al. [40] use a solution of the maximum trace problem to construct
alignment. The algorithm starts with calculating all pairwise alignments and
uses them to find a trace. To achieve this, given n sequences, an input align-
ment graph G = (V,E) is constructed. It is a n-partite graph whose vertex
set V represents the characters of given sequences and edge set E represents
the pairs of characters matched in the pairwise alignments. The subset of
matching in E realized by an alignment is called a trace.

Alignment graph G = (V,E) is extended to a mixed graph G′ = (V,E,A)
by adding arc set A, which connects character of every sequence to the next
character in the same sequence. The objective of the algorithm is to find
maximum weight trace by finding cycles termed as “critical mixed cycles” in
graph G′ such that they satisfy sequence alignment properties [61].

The IP model for this problem is formulated as:

maximize
∑

e∈E wexe

subject to
∑

e∈P∩E xe = |E ∩ P | − 1 ∀ critical mixed cycles P in G′

xe ∈ {0, 1} for all e ∈ E.

An implementation of a branch-and-cut algorithm is used to solve the
above problem. Various valid inequalities for the polytope are added as cuts,
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some of which are facet-defining. The algorithm is capable of giving an exact
solution under the sum-of-pairs objective function with linear gap costs.
Kececioglu et al. have made a significant contribution by introducing a poly-
hedral approach capable of obtaining exact solutions for a subclass of MSA.
However, this methodology has its own drawbacks like not being able to cap-
ture the order of insertions and deletions between two matchings and affine
gap costs. Recently, Althaus et al. [2] has proposed a general model using this
approach in which arbitrary gap costs are allowed.

Minimum spanning tree and traveling salesman problem

Shyu et al. [65] explore the use of minimum spanning trees to determine
the order of sequences. The idea of the approach is to preserve the most
informative distances among the set of given sequences. The criterion used
is meaningful and capable of working better than the traditional criteria like
those in sum-of-pairs. The algorithm itself is very efficient for practical usage
and can be easily implemented. However, it fails to address the issue of using
all the information in pairwise alignments, as it only uses the score and not the
pairwise alignments themselves. Moreover, this approach has all the drawbacks
of the progressive strategy.

A similar approach has also been developed by Korostensky and Gonnet
[44] using Traveling Salesman Problem (TSP). In this technique, a circular
sum measure is used instead of sum of pairs score. The cities in TSP corre-
spond with the sequences, and the scores of pairwise alignment are taken as
the distances. The problem is to find the longest tour where each sequence is
visited exactly once [45].

Eulerian path approach

Zhang and Waterman [81] proposed a new approach motivated by the Eulerian
method for fragment assembly in DNA sequencing. In their work, a consensus
sequence is found and later pairwise alignments are obtained between each
input sequence and consensus sequence. Finally, MSA is obtained according
to these pairwise alignments. The most significant advantage of this method
is linear time and memory cost for finding the consensus sequence. And, if
the consensus sequence is the closest one to all given sequences, good-quality
alignment can be obtained in a reasonable amount of time. Once again, this
approach suffers from the prominent drawback of the progressive strategy and
issues in graph formation while finding the consensus sequence.

9.3.5 Iterative algorithms

The main shortcoming of the progressive strategy is the failure to remove
errors in the alignment, which are introduced early. The iterative algorithms
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are developed precisely to overcome this flaw. They are based on the idea
of reconsidering and realigning previously aligned sequences with the goal of
improving the overall alignment score. Each modification step is an iteration
to improve the quality of the alignment.

These available approaches can be classified into two broad categories:
probabilistic iterative algorithms and deterministic iterative algorithms. We
will briefly discuss them below.

Probabilistic algorithms

We will discuss both the traditional probabilistic optimization approaches like
genetic algorithm and relatively recent approaches based on Bayesian ideas.

• Simulated Annealing and Genetic Algorithm
Simulated Annealing (SA) and Genetic Algorithms (GA) are very popular
stochastic methods for solving complex optimization problems. Whereas
they are often viewed as separate and competing paradigms, both of them
are iterative algorithms that search for new solutions “near” to already
known good solutions. The fundamental difference between SA and GA is
that SA performs a local move only on one solution to create a new solution
whereas GA also creates solutions by combining information from two
different solutions. Performance comparison between SA and GA varies
with the problem and representation used.

The algorithms starts with an initial alignment, and alignment score is
taken to be the objective function [56]. Various operations like mutation,
insertion and substitution constitute the local moves that are used to get
new solution from existing ones. Flexibility in scoring systems and ability
to correct for errors introduced during early phase makes these approaches
desirable [41].

• Hidden Markov model and Gibbs sampler
Hidden Markov model (HMM) and Gibbs sampler are relatively recent
approaches that view MSA in a statistical context. Both of them use
the central Bayesian idea of simultaneously maximizing the data and the
model. Gibbs sampler find motifs using local alignment techniques [49]. It
is essentially similar to HMM with no insert and delete states.

HMM is a statistical model based on Markov processes, which has gained
importance in various fields related to pattern recognition. It determines
the hidden parameters of the system based on the observable parameters of
the model. For MSA, HMM model consists of three types of states: match
states, insert states, and delete states [46]. Each state has its own emission
probability of nucleotides and transition probability to other states. The
standard expectation-maximization (EM) algorithm or gradient descent
algorithms are used to train the model and evaluate the parameters.

Although HMM has been successfully used in other areas, it faces a
lot of challenges. There need to be some minimum number of sequences
(approx. 50) required to train the model, and HMM can be easily trapped
in local optima like other hill-climbing approaches [35].



9 Algorithms for Genomics Analysis 307

Deterministic algorithms

A deterministic iterative algorithm starts with an initial alignment and then
attempts to improve it. This helps in overcoming the drawback of progressive
alignment strategy where partial alignments are “frozen” [6]. A typical scheme
is as follows:

• Given N sequences S1, . . . , SN , find alignment A;
• Remove sequence S1 from alignment A and realign it to the profile of other

aligned sequences S2, . . . , SN to get new alignment A′;
• Calculate the score of the new alignment A′ and if better replace A by A′;
• Remove sequence S2 from A′ and realign it. Continue this procedure for

S3, . . . , SN ;
• Repeat the realignment steps until alignment score converges or number

of iterations reaches the user-specified limit.

Many iteration strategies that enable very accurate alignments have been
developed [76]. The aim is to reduce the greedy nature of the algorithm and
avoid getting trapped in a local optima. One approach is to remove and realign
every sequence to the rest in each iteration. Then, the alignment with the
best score is taken to be the input for the next iteration. The other famous
approach is to randomly split set of sequences into two sets, which are then
realigned.

Some researchers have incorporated the iterative strategy in progressive
alignment procedure itself. For instance, a double iteration loop has been used
to make the alignment, guide tree, and sequence weights mutually consistent
[27]. Recently, Chakrabarti et al. [12] have developed an approach that pro-
vides a fast and accurate method for refining existing block-based alignments.

9.4 Novel Graph-Theoretical–Based Genomic Models

In this section, we present our research effort of a novel graph-theoretical
approach for representing a wide variety of genomic sequence analysis prob-
lems within a single model [50]. The model allows incorporation of the oper-
ations “insertion,” “deletion,” and “substitution,” and various parameters
such as relative distances and weights. Conceptually, we refer the problem
as the minimum weight common mutated sequence (MWCMS) problem. The
MWCMS model has many applications including multiple sequence align-
ment problem, the phylogenetic analysis, the DNA sequencing problem, and
sequence comparison problem, which encompass a core set of very difficult
problems in computational biology. Thus the model presented in this section
lays out a mathematical modeling framework that allows one to investigate
theoretical and computational issues and to forge new advances for these dis-
tinct but related problems.
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DNA sequencing refers to determining the exact order of nucleotide
sequences in a segment of DNA. This was the greatest technical challenge
in the Human Genome Project. Achieving this goal has helped reveal the esti-
mated 30,000 human genes that are the basic physical and functional units
of heredity. The resulting DNA sequence maps are being used by scientists to
explore human biology and other complex phenomena.

The structure of a DNA strand (sequence) is determined by experi-
mentation. Typically, short sequences are determined to be in the strand,
and the identified short sequences are then “connected” to form a long
sequence. Recent advances attempting to identify DNA strand structure
involve sequencing by hybridization [5] and [36]. Sequencing by hybridiza-
tion is the process where every possible sequence of length n (4n possibilities)
is compared with a full DNA strand. Practical values for n are 8–12. Each
short string either binds or does not bind to the full strand. Biologists can
thus determine exactly which short strings are contained in the DNA strand
and which are not.

However, the experiment does not identify the exact location of each short
string in the full strand. Hence, an important issue involves how these short
strings are connected together to form the complete strand. This problem can
be viewed as a shortest common superstring problem and has been studied
extensively [54, 22, 23]. Unfortunately, errors may arise during sequencing
experiments. Three types of errors are deletions (a letter appears in an input
string that should not be in the final sequence), insertions (a letter is missing
from an input string), and substitutions (a letter in an input string should
be substituted with another letter). The MWCMS problem can be used to
model and solve this shortest common superstring problem while addressing
the issue of possible errors.

Sequence comparison is one of the most crucial problems faced by
researchers in the area of bioinformatics. The sequence patterns are conserved
during evolution. Given a new sequence, it will be of interest to understand
how much similarity it has with pre-existing sequences. Significant similarity
between two sequences implies similarities in their structure and/or function.
There are lots of DNA databases containing DNA sequences and their func-
tion. The major ones are GenBank in the United States and the EMBL data
library in Europe. If one finds a new sequence similar to existing ones in these
databases, one can transfer information about the function and structure
[77]. Hence, an algorithm for sequence comparison that is efficient for large
number of sequences will play a pivotal role in rapid sequence analysis. The
MWCMS problem can be used to address this issue.

9.4.1 Definitions

Our motivation for first defining the problem arose from the desire to help
quantify the concept of “best” representative sequence in the evolution-
ary distance problem. The evolutionary distance problem involves finding
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the DNA sequence of the most likely ancestor associated with a given set
of DNA sequences from distinct but similar organisms. In other words, find
the DNA strand that best represents a possible ancestor, if each of the organ-
isms evolved from the same ancestor. Changes that contribute to differences
between the given sequences and the ancestor are referred to as insertions,
deletions, and substitutions. These operations account for both evolutionary
mutations and experimental errors in sequencing. Mathematically, given two
sequences S and B, let ord(S,B) be an ordered collection of insertions, dele-
tions, and substitutions to convert sequence S to B. (For any two sequences S
and B, there are an infinite number of collections ord(S,B).) Let w(ord(S,B))
be the weight of the conversion from S to B, where the weight is the sum of
an expression involving values η, δ, and ψ ∈ R

+, which represent the weights
associated with a single insertion, deletion, and substitution, respectively.
Let ord∗(S,B) be such that w(ord∗(S,B)) ≤ w(ord(S,B)) for all ord(S,B).
Define d(S,B) = w(ord∗(S,B)). Formally, MWCMS can be stated as:

Problem MWCMS: Given positive weights η, δ, and ψ corresponding with
a single insertion, deletion, and substitution respectively, a positive thresh-
old κ, and finite sequences S1, . . . , Sm from a finite alphabet, does there exist
a sequence B such that

∑m
i=1 d(Si, B) ≤ κ?

We have defined the MWCMS problem — which incorporates the notions
of insertion, deletion and substitution — to help quantify the concept of
“best” representative sequence in the evolutionary distance problem. We
now make precise the operations of insertion, deletion, and substitution. Let
S = {s1, . . . , sn} be a finite sequence of letters from a finite alphabet.

(i) An insertion of an element x in position i of the sequence S is charac-
terized by the addition of x between elements si and si+1. An insertion
carries an associated penalty cost of η.

(ii) A deletion of an element in position i of S amounts to deleting si from
the sequence S. The penalty for deletion is represented by δ.

(iii) A substitution of an element in position i of S amounts to replacing si

with another letter from the alphabet. The penalty for substitution is
represented by ψ.

We remark that a penalty cost for an operation could, more generally,
depend on the position where the operation is performed and/or the element
to be inserted/deleted/substituted.

Let S1 = {s11, . . . , s1m} and S2 = {s21, . . . , s2n} be two finite sequences
of letters from a finite alphabet Σ. We say that the relative distance between
elements s1i and s2j is k if |i−j| = k. We define a k-restrictive bipartite graph
as a graph Gk = (V1, V2, Ek) such that the nodes in V1 and V2 correspond
respectively with each of the elements from the first and the second sequences.
We assume the nodes in Vi are ordered in the same order as they appear in
the sequence Si. There is an edge between nodes u ∈ V1 and v ∈ V2 if u



310 E.K. Lee and K. Gupta

and v are identical (i.e., same letter of the alphabet Σ) and if the relative
distance between these two elements is less than or equal to k. The problem
of identifying the “greatest similarity” between these two sequences can then
be approached as the problem of finding a maximum cardinality matching
between the associated node sets, subject to restrictions on which matchings
are allowed. In particular, one must take into consideration the ordering of
nodes so as to preserve the relative occurrence of the elements in the matching.
In addition, matchings that have edge crossings must be prevented. When
k = max{|S1|, |S2|} − 1, we denote the graph by G = (V1, V2, E), and the
problem is equivalent to the well-studied longest common subsequence (LCS)
problem for two sequences, which is polynomial-time solvable [23].

9.4.2 Construction of a conflict graph from paths
of multiple sequences

Let Si, i = 1, . . . ,m, be a collection of finite sequences, each of length n,
over a common alphabet Σ. Let Gk = (V1, . . . Vm, E1, E2, . . . , Em−1) be the
k-restrictive multilayer graph in which each element in Si forms a distinct
node in Vi. Assume the nodes in Vi are ordered in the same order as they
appear in the sequence Si. Ei denotes the set of edges between nodes in Vi

and Vi+1. There is an edge between nodes u ∈ Vi and v ∈ Vi+1 if and only
if u and v are the same letter in the alphabet Σ, and the relative distance
between them is less than or equal to k. The multiple sequence comparison
problem involves finding the longest common subsequence (LCS) within the
sequences Si, i = 1, . . . ,m. We call a path P = p1, p2, . . . , pm a complete path
in Gk if pi ∈ Vi and pipi+1 ∈ Ei. Two complete paths are said to be parallel
if their node sets are disjoint and the edges do not cross. Hence, a set of
parallel complete paths in Gk corresponds with a feasible solution to LCS on
the collection of sequences Si, i = 1, . . . , m. We say that two complete paths
P1, P2 cross if they are not parallel. We remark that the LCS problem with
the number of sequences bounded is polynomial time solvable using dynamic
programming [23]. In general, the problem remains NP-complete.

We can incorporate insertions by generating new paths that include
inserted nodes on various layers. The weight for such a new path will be
affected by the total number of insertions in the path. In particular, if L is
a common subsequence for Si and |Si| = n for all i = 1, . . . ,m, then the
total number of unmatched elements remaining will be m(n − |L|). These
elements can be deleted completely, or for a given unmatched element, one
can increase the size of L by 1 by appropriately inserting this element into
various sequences. By doing so, the number of unmatched elements decreases.
Let l be the number of insertions needed to generate a new complete path.
Then the number of unmatched elements will decrease by m− l. If we assume
that at the end of the sequencing process all unmatched elements will be
deleted, then the penalty for generating this new complete path will be given
by lη − (m− l)δ.
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We next define the concept of conflict graph relative to complete paths
in Gk.

Definition 1. Let P = {P1, . . . , Ps} be a finite collection of complete paths
in Gk. The conflict graph CP = (VP , EP) associated with P is constructed as
follows:

• VP = {P1, . . . , Ps};
• there is an edge between two nodes Pi and Pj in VP if and only if Pi and

Pj cross each other.

This definition applies to any multilayer graph in general. Note that any stable
set of nodes in CP corresponds with a set of parallel complete paths for Gk

and thereby to a feasible solution to LCS on the collection of sequences Si,
i = 1, . . . , m.

We remark that when m = 2, the resulting conflict graph is weakly tri-
angulated and thus is perfect. For m > 2, the conflict graph can contain an
antihole of size 6. However, these complete paths can be viewed as continuous
functions on the interval 0 to 1, thus by construction, CP is perfect [26].

9.4.3 Complexity theory

Recall that the notation ord(S,B), w(ord(S,B)), ord∗(S,B), and the formal
definition of problem MWCMS were given in Section 9.4.1. As an optimization
problem, MWCMS can be stated as follows. Given a set of input sequences,
problem MWCMS seeks to mutate every input sequence to the same a priori
unknown sequence using the operations of insertion, deletion, and substitu-
tion; weights are assigned for each operation, and the total weight associated
with all mutations is to be minimized. Levenshtein first considered a special
case of this problem by changing a single input sequence to another sequence
using insertions, deletions, and substitutions [51]. Our study involves changing
multiple input sequences to arrive at an a priori unknown common sequence.

Given positive weights η, δ, and ψ corresponding respectively with inser-
tions, deletions, and substitutions and any two sequences S and B, clearly
any ord∗(S,B) will never contain more than |B| insertions or substitutions.
Proving that MWCMS is in NP is not obvious. Although one can transform
MWCMS to special applications (as described in beginning of Section 9.4) to
conclude that it is in NP, here we prove it directly for the general case. One
needs to be able to evaluate d(S,B) in polynomial time for any two sequences
S and B. We next construct a graph that can be used to establish the exis-
tence of a polynomial time algorithm for obtaining d(S,B). The constructs
and arguments used here typify those used to establish many of the results
presented in this chapter. It is noteworthy that the notions of both conflict
graph and perfect graph come into play.

Let Σ be a finite alphabet, and define Σ-cross to be a directed bipartite
graph consisting of |Σ| vertices in each bipartition such that each vertex in
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Fig. 9.8. An example of
∑

-cross when
∑

= {A, C, G, T}.

the bipartition represents a distinct element in Σ. There is an arc between
two vertices if the vertices correspond with the same element in Σ, and the
geometric layout is rigidly constructed so that every arc crosses every other
arc. This graph will be used as a “supernode” for insertion and substitution
operations in our model. Figure 9.8 shows an example for Σ-cross when Σ =
{A,C,G, T}.

We now construct a 3-layer supergraph GL using the sequences S and B
along with the Σ-cross graphs. Layers 1 and 2 consist of exactly |B|(|S| +
1)+ |S| Σ-crosses. The first |B| Σ-crosses represent potential insertions before
the first letter in S. The next Σ-cross represents either the first letter of S
or a substitution of this letter. The next |B| Σ-crosses represent potential
insertions between the first and second letters of S. And this is followed by
a Σ-cross representing either the second letter of S or a substitution of this
letter. This continues for each letter in S with the final |B| Σ-crosses repre-
senting up to |B| insertions after the last letter in S. Each Σ-cross is called
either an insertion supernode or a substitution supernode, according to what
it represents. The weight of all of the arcs in an insertion supernode is η.
An arc in a substitution supernode has weight −δ if the arc represents the
original letter in the sequences or ψ − δ if the arc represents a substitution
of the original letter. Layer 3 consists of the vertices represented by B. A
vertex in layer 2 is connected to a vertex in layer 3 if they have the same
letter. The weight of every arc between layers 2 and 3 is M ≤ −(η + δ + ψ).
A sample of a 3-layer supergraph is given in Figure 9.9. The bold arcs are
used to denote the original letters in S (the weight of these arcs is −δ). For
simplicity, we omit the first two insertion supernodes before the first letter G.
The first supernode thus represents the letter G from the original sequence
and allows for substitution. The second and third supernodes correspond with
insertion supernodes, and the fourth supernode corresponds with the letter
C and allows substitution as well. There are two more insertion supernodes,
which are omitted from the graph.
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Fig. 9.9. An example of the 3-layer supergraph for converting the sequence S = GC
to B = TC. Bold arcs are used to denote the original letters in S (the weight of
these arcs is −δ). For simplicity, we omit the first two insertion supernodes before the
first letter G. The first supernode in this figure thus represents the letter G from the
original sequence, which allows for substitution. The second and third supernodes
correspond with insertions, and the fourth supernode corresponds with the letter C
and allows substitution as well. There are two more insertion supernodes, which are
omitted from the graph.

The main step in proving d(S,B) to be polynomial-time solvable for
any sequences S and B involves the use of the conflict graph as defined in
Definition 1. We state some preliminary theoretical results below. Detailed
proofs can be found in Lee et al. [50].

Lemma 1. The following statements are equivalent:

(i) There exists a conversion from S to B using no more than a total of |B|
insertions or substitutions.
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(ii)There exists a set of noncrossing complete paths in the associated 3-layer
supergraph GL of size |B|.

(iii)There exists a node packing of size |B| in the associated conflict graph C.

Lemma 2. Calculating d(S,B) for any sequences S and B can be accom-
plished in polynomial time.

The 3-layer supergraph can be generalized to multilayer when multiple
sequences are considered. Clearly, such multilayer supergraphs are much too
large for practical purposes, yet polynomiality is preserved in the construction,
and it is therefore sufficient. We can now arrive at the result that MWCMS
is in NP.

Theorem 1. MWCMS is in NP.

To prove that MWCMS is polynomial-time solvable when the number of
input sequences is bounded by a positive constant, the following lemma is
crucial, though trivial.

Lemma 3. Given η, δ, ψ ∈ R
+, an optimal solution B to any MWCMS prob-

lem has the following properties. B has no substitutions from letters other
than the original letters in an Si, and B will never have an element that is
inserted in every sequence (in the same location). Therefore, there are at most∑m

i=1 |Si| insertions in any sequence.

In addition, we also require the construction of a (directed) 2m-layer super-
graph, Gm

L , similar to the 3-layer supergraph, GL.
Given sequences S1, . . . , Sm, generate a 2m-layer (directed) graph Gm

L =
(V,E) as follows. Layers 2i − 1 and 2i consist of (

∑m
j=1 |Sj |)(|Si| + 1) + |Si|

copies of Σ-crosses for i = 1, . . . , m, constructed in exactly the same manner as
layers 1 and 2 of the 3-layer supergraph using the input sequence Si. The first∑m

j=1 |Sj | Σ-crosses represent the possibility that
∑m

j=1 |Sj | different letters
can be inserted before the first element in Si. The next Σ-cross corresponds
with either the first letter in Si or a substitution of this letter. This is repeated
|Si| times (for each letter in Si), and the final

∑m
j=1 |Sj | Σ-crosses represent

insertions after the final letter in Si. Thus, the first
∑m

j=1 |Sj | Σ-crosses rep-
resent the insertion supernodes, followed by one Σ-cross representing a letter
in Si or a substitution supernode, and so forth. An arc exists from a vertex
in layer 2i to a vertex in layer 2i + 1 if the vertices correspond with the same
letter. Observe that Gm

L is an acyclic directed graph that is polynomial in the
size of the input sequences. Assign every arc between layers 2i and 2i + 1 a
weight of 0. There are three different weights for arcs between layers 2i − 1
and 2i each corresponding with an insertion, deletion, or substitution. The
assignment of weights on such arcs is analogous to the assignment in GL: a
weight of η is assigned to every arc contained in an insertion supernode; and
an arc in a substitution supernode is assigned a weight of −δ if it corresponds
with the original letter, or ψ − δ, otherwise.
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S1 = GC S2 = TG

Fig. 9.10. A sample graph Gm
L of MWCMS with S1 = GC to S2 = TG where∑

= {A, C, G, T}

Figure 9.10 shows a sample graph for two sequences: S1 = GC and S2 =
TG. Observe that at most two insertions are needed in an optimal solution;
thus we can reduce the number of Σ-crosses as insertion supernodes from∑2

i=1 |Si| = 4 to 2. For simplicity, in the graph shown in Figure 9.10, we have
not included the two insertion supernodes before the first letter nor those
after the last letter of each sequence. Thus, in the figure, the first Σ-cross
represents the substitution supernode associated with the first letter in S1.
The second and third Σ-crosses represent two insertion supernodes. And the
last Σ-cross represents the substitution supernode associated with the second
letter in S1. For simplicity, we include only arcs connecting vertices associated
to the element G between layers 2 and 3. The arcs for other vertices follow
similarly.
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A conflict graph C associated with Gm
L can be generated by finding all

complete paths (paths from layer 1 to layer 2m) in Gm
L . These complete paths

correspond to the set of vertices in C, as in Definition 1. If we assign a weight
to each vertex equal to the weight of the associated complete path, then the
following result can be established.

Theorem 2. Every node packing in C represents a candidate solution to
MWCMS if and only if at most

∑m
i=1 |Si| letters can be inserted between any

two original letters. Furthermore, the weight of the node packing is equal to
the weight of the MWCMS−

∑m
i=1 |Si|δ.

The supergraph Gm
L and its associated conflict graph are fundamental

to our proof of the following theorem on polynomial-time solvability of a
restricted version of problem MWCMS.

Theorem 3. Problem MWCMS restricted to instances for which the number
of sequences is bounded by a positive constant is polynomial-time solvable.

9.4.4 Special cases of MWCMS

MWCMS encompasses a very broad class of problems. In computational biol-
ogy as discussed in this chapter, first and foremost, it represents a model
for phylogenetic analysis. MWCMS is defined as the “most likely ancestor
problem,” and the concept of 3-layer supergraph as described in Section 9.4.3
describes the evolutionary distance problem. An optimal solution to a multiple
sequence alignment instance can be found using the solution of the MWCMS
problem obtained on the 2m-layer supergraph, Gm

L . The alignment is the char-
acter matrix obtained by placing together the given sequences incorporating
the insertions into the solution of the MWCMS problem. Furthermore, DNA
sequencing can be viewed as the shortest common superstring problem, and
sequence comparison of a given sequence B to a collection of N sequences
S1, . . . , SN is the MWCMS problem itself.

Broader than the computational biology applications, special cases of
MWCMS include shortest common supersequences (SCSQ), longest common
subsequences (LCS), and shortest common superstring (SCST); these prob-
lems are of interest in their own right as combinatorial optimization problems
and for their role in complexity theory.

9.4.5 Computational models: integer programming formulation

The construction of the multilayer supergraphs described in our theoretical
study lays the foundation and provides direction for computational models
and solution strategies that we will explore in future research. Although the
theoretical results obtained are polynomial-time in nature, they present com-
putational challenges. In many cases, calculating the worst-case scenario is
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not trivial. Furthermore, the polynomial-time result of a node-packing prob-
lem for a perfect graph by Grötschel et al. [30, 29] is existential in nature, and
relies on the polynomial-time nature of the ellipsoid algorithm. The process
itself involves solving an IP relaxation multiple times. In our case, the vari-
ables of the IP generated are the complete paths in the multilayer supergraph,
Gm

L . Formally, the integer program corresponding with our conflict graph can
be stated as follows:

Let xp be the binary variable denoting the use or non-use of the com-
plete path p with weight wp. Then the corresponding node-packing problem
(MIP1) is

minimize
∑

wpxp

subject to xp + xq ≤ 1 if complete paths p and q cross
xp ∈ {0, 1} for all complete paths p in Gm

L .

We call the inequality xp+xq ≤ 1 an adjacency constraint. A natural approach
to improve the solution time to (MIP1) is to decrease the size of the graph
Gm

L and thus the number of variables. Reductions in the size of Gm
L can

be accomplished for SCST, LCS, and SCSQ. Among these three problems,
the graph Gm

L is smallest for LCS. In LCS, all insertion and substitution
supernodes can be eliminated.

Our theoretical results thus far rely on the creation of all complete paths.
Clearly, the typical number of complete paths will be on the order of nm,
where n = max |Si|. In this case, an instance with 3 sequences and 300 letters
in each sequence generates more than 1 million variables. Hence, an exact
formulation with all complete paths is impractical in general. A simultaneous
column and row generation approach within a parallel implementation may
lead to computational advances related to this formulation.

An alternative formulation can be obtained by examining Gm
L from a net-

work perspective using arcs (instead of complete paths) in Gm
L as variables.

Namely, let xi,j denote the use or non-use of arc (i, j) in the final sequence
with ci,j the cost of the arc in Gm

L . The network formulation (MIP2) can be
stated as

minimize
∑

(i,j)∈E ci,jxi,j

subject to
∑

i:(i,j)∈E xi,j =
∑

k:(j,k)∈E

xj,k ∀ j ∈ V in layers 2, . . . , 2m− 1

xi,j + xk,l ≤ 1 for all crossing arcs (i, j) and (k, l) ∈ E

xi,j ∈ {0, 1} for all (i, j) ∈ E.

The first set of constraints ensures that inflow equals outflow in all vertices
contained in sequences 2, . . . , m − 1 (complete paths). The second set of
constraints ensures that no two arcs cross. This model grows linearly in the
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number of sequences. This alternative integer programming formulation is
still large but is manageable for even fairly large instances.

Utilizing a collection of DNA sequences (each with 40,000 base pairs in
length) from a bacteria and a collection of short sequences associated with
genes found in breast cancer patients, computational tests of our graph-
theoretical models are under way. We seek to develop computational strate-
gies to provide reasonable running times for evolutionary distance problem
instances derived from these data. In an initial test, when three sequences
each with 100 letters are used, the initial linear program requires more than
10,000 seconds to solve when tight constraints are employed (in this case, each
adjacency constraint is replaced by a maximal clique constraint). Our ongo-
ing computational effort will focus on developing and investigating solution
techniques for practical problem instances, including those based on the above
two IP formulations, as well as development of fast heuristic procedures.

In Lee, Easton, and Gupta [50], we outline a simple yet practical heuris-
tic based on (MIP2) that we developed for solving the multiple sequence
alignment problem; and we report on preliminary tests of the algorithm using
different sets of sequence data. Motivation for the heuristic is derived from the
desire to reduce computational time through various strategies for reducing
the number of variables in (MIP2).

9.5 Summary

Multiple Sequence Alignment and Phylogenetic Analysis are deeply intercon-
nected problems in computational biology. A good multiple alignment is cru-
cial for reliable reconstruction of the phylogenetic tree [58]. On the other
hand, most of the multiple alignment methods require a phylogenetic tree as
the guide tree for progressive iteration.

Thus, the evolutionary tree construction might be biased by the guide
tree used for obtaining the alignment. In order to avoid this pitfall, vari-
ous algorithms have been developed that simultaneously find alignment and
phylogenetic relationship among given sequences. Sankoff and Cedergren [64]
developed a parsimony-based algorithm using a character-substitution model
of gaps. The algorithm is guaranteed to find evolutionary tree and align-
ment that minimizes tree-based parsimony cost. Hein [33] also developed a
parsimony-type algorithm but uses an affine gap cost, which is more realis-
tic than the character-substitution gap model. This algorithm is also faster
than Sankoff and Cedergreen’s approach but makes simplifying assumptions
in choosing ancestral sequences.

Like parsimony methods for finding a phylogenetic tree, both of the above
approaches require search over all possible trees to find the global optimum.
This makes these algorithms computationally very intensive. Hence, there has
been a strong focus on developing an efficient algorithm that considers both
alignment and tree. Vingron and Haeseler [74] have developed an approach
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based on three-way alignment of pre-aligned groups of sequences. It also allows
change in the alignment made early in the course of computation. Various
software, such as MEGA, are trying to develop an efficient integrated com-
puting environment that allows both sequence alignment and evolutionary
analysis [48].

We address this issue of simultaneously finding alignment and phylogenetic
relationships by presenting a novel graph-theoretical approach. Indeed, our
model can be easily tailored to find theoretically provable optimum solutions
to a wide range of crucial sequence analysis problems. These sequence analysis
problems are proven to be NP-hard and thus understandably present compu-
tational challenges. In order to strike a balance between time and quality-
of-solution, a variety of parameters are provided. Ongoing research efforts
explore development of efficient computational models and solution strategies
in a massive parallel environment.
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Abstract. During the past century, most neuroscientists believed that epileptic
seizures began abruptly in a matter of a few seconds before clinical onset. Since the
late 1980s, there has been an explosion of interest in neuroscience research to predict
epileptic seizures based on quantitative analyses of brain electrical activity captured
by electroencephalogram (EEG). Many research groups have demonstrated growing
evidence that seizures develop minutes to hours before clinical onset. The methods
in those studies include signal processing techniques, statistical analyses, nonlin-
ear dynamics (chaos theory), data mining, and advanced optimization techniques.
Although the past few decades have seen revolutionary of quantitative studies to
capture seizure precursors, seizure prediction research is still far from complete. Cur-
rent techniques still need to be advanced, and novel approaches need to be explored
and investigated. In this chapter, we will give an extensive review and prospective
of seizure prediction research including various methods in data mining and opti-
mization techniques that have been applied to seizure prediction research. Future
directions of data mining and optimization in seizure prediction research will also
be discussed in this chapter. Successful seizure prediction research will give us the
opportunity to develop implantable devices, which are able to warn of impending
seizures and to trigger therapy to prevent clinical epileptic seizures.

Key words: seizure prediction, optimization, data mining, chaos theory,
EEG, brain dynamics, implantable devices

10.1 Introduction

The human brain is among the most complex systems known to mankind. Over
the past century, neuroscientists have sought to understand brain functions
through detailed analysis of neuronal excitability and synaptic transmission.
However, the dynamic transitions to neurologic dysfunctions of brain disor-
ders are not well understood in current neuroscience research [42]. Epilepsy is
the second most common brain disorder after stroke, yet the most devastat-
ing one. The most disabling aspect of epilepsy is the uncertainty of recurrent
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seizures, which can be characterized by a chronic medical condition produced
by temporary changes in the electrical function of the brain. These electrical
changes can be captured by electroencephalograms (EEGs), which is a tool
for evaluating the physiologic state of the brain. Whereas EEGs offer excel-
lent spatial and temporal resolution to characterize rapidly changing electri-
cal activity of brain activation, neuroscientists understand very little about
seizure development process from EEG data. The unpredictable occurrence of
seizures has presented special difficulties regarding the ability to investigate
the factors by which the initiation of seizures occurs in humans. If seizures
could be predicted, it will revolutionize neuroscience research and provide a
greater understanding of abnormal intermittent changes of neuronal cell net-
works driven by the seizure development.

Recent advances in optimization and data mining (DM) research for exca-
vating hidden patterns or relationships in massive data (like EEGs) offer a
possibility to better understand brain functions (as well as other complex sys-
tems) from a system perspective. If successful, the outcome of this research will
be very useful in medical diagnosis. There has been a growing research interest
in developing quantitative methods using advances in optimization and data
mining to rapidly recognize and capture epileptic activity in EEGs before a
seizure occurs. This research attempt is a vital step to advance seizure predic-
tion research. In this chapter, we will give a review and prospective of seizure
prediction technology and what role optimization and data mining has played
in this seizure prediction research. The potential outcome of this research
direction may enable effective and safe treatment for epileptic patients. This
chapter is organized as follows. In the next section, we will give a brief back-
ground of epilepsy and seizure prediction research including motivation and
history of seizure prediction. The previous studies in mining EEG data based
on chaos theory will be discussed in Section 10.3. The current research in opti-
mization and data mining techniques for seizure prediction will be addressed
in Section 10.4. In the last section, we will give some concluding remarks and
prospective issues in epilepsy research.

10.2 Background: Epilepsy and Seizure Prediction

At least 40 million people worldwide (or 1% of the population) currently
suffer from epilepsy, which is among the most common disorders of the ner-
vous system and consists of more than 40 clinical syndromes. Epilepsy, the
second most common serious brain disorder after stroke, is a chronic condi-
tion of diverse etiologies with the common symptom of spontaneous recur-
rent seizures. Seizures can be characterized by intermittent paroxysmal and
highly organized rhythmic neuronal discharges in the cerebral cortex. In
some types of epilepsy (e.g., focal or partial epilepsy), there is a localized
structural change in neuronal circuitry within the cerebrum that produces
organized quasi-rhythmic discharges, which spread from the region of origin
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(epileptogenic zone) to activate other areas of the cerebral hemisphere [83].
Though epilepsy occurs in all age groups, the highest incidences occur in
infants and in the elderly. The most common type of epilepsy in adults is
temporal lobe epilepsy. In this type of epilepsy, the temporal cortex, limbic
structures, and orbitofrontal cortex appear to play a critical role in the onset
and spread of seizures. Temporal lobe seizures usually begin as paroxysmal
electrical discharges in the hippocampus and often spread first to ipsilateral,
then to contralateral cerebral cortex. These abnormal discharges result in a
variety of intermittent clinical phenomena, including motor, sensory, affective,
cognitive, autonomic, and psychic symptomatology. There is no single cause
of epilepsy. In approximately 65% of cases, the causes to injure the nerve
cells in the brain are unknown. Most frequently identified causes are genetic
abnormalities, developmental anomalies, febrile convulsions, as well as brain
insults such as craniofacial trauma, central nervous system infections, hypoxia,
ischemia, and tumors. The diagnosis and treatment of epilepsy is complicated
by the disabling aspect that seizures occur spontaneously and unpredictably
due to the nature of the chaotic disorder. Although the macroscopic and
microscopic features of the epileptogenic processes have been comprehended,
the seizure mechanism by which these fixed disturbances in local circuitry
produce intermittent disturbances of brain function cannot be explained and
understood. The transitional development of the epileptic state can be consid-
ered as a sudden development of synchronous neuronal firing potentials in the
cerebral cortex that may begin locally in a portion of one cerebral hemisphere
or begin simultaneously in both cerebral hemispheres.

10.2.1 Classification of seizures

There are many varieties of epileptic seizures, and seizure frequency and the
form of attacks vary greatly from person to person. The most common classi-
fication scheme describes two major types of seizures: (1) “partial” seizure: a
seizure that causes excessive electrical discharges in the brain limited to one
area; (2) “generalized” seizure: a seizure that changes the whole brain to be
involved with excessive electrical discharges. Each of these categories can be
divided into subcategories: simple partial, complex partial, tonic–clonic, and
other types. With the most common types of seizures there is some loss of
consciousness, but some seizures may only involve some movements of the
body or strange feelings. The sensation of seizures in different patients can be
very different. Common feelings include uncertainty, fear, physical and mental
exhaustion, confusion, and memory loss. Sometimes if a person is unconscious,
there may be no feeling at all. Seizures can last anywhere from a few seconds
to several minutes, depending on the type of seizure. In particular, a tonic–
clonic seizure typically lasts 1–7 minutes. Absence seizures may only last a
few seconds. Complex partial seizures range from 30 seconds to 2–3 minutes.
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10.2.2 Mechanisms of epileptogenesis

Epileptogenesis is considered to be a cascade of dynamic biological events
altering the balance between excitation and inhibition in neural networks. It
can apply to any of the progressive biochemical, anatomic, and physiologic
changes leading up to recurrent seizures. Progressive changes are suggested
by the existence of a so-called silent interval (years in duration) between CNS
infection, head trauma, or febrile seizures and the later appearance of epilepsy.
Understanding these changes is key to preventing the onset of epilepsy [54].
Mechanisms of epileptogenesis are believed to incorporate information from
levels of organization that range from molecular (e.g., altered gene expression)
to macrostructural (e.g., altered neural networks). Because the possibilities
are so diverse, a primary research is directed to sort out which mechanisms
are causal, correlative, or consequential. The complexity can be intractable
when, for example, a single seizure activates changes in expression of many
genes ranging from transcription factors to structural proteins. Moreover,
mechanisms of plasticity may mask the initiating event. No animal model
completely mimics the features of human epilepsy. Hypotheses for epilepsy
prevention must incorporate observations about the intermittent nature of
epilepsy, its age-specific features, variability in expression, delayed temporal
onset ranging up to 15 years after an insult, and selective vulnerability of brain
regions. The potential role of protective factors is worth exploring because
about 50% of patients fail to develop epilepsy even after severe penetrating
brain injuries [54].

10.2.3 Motivation of seizure prediction research

Based on 1995 estimates, epilepsy imposes an annual economic burden of
$12.5 billion in the United States in associated health care costs and losses
in employment, wages, and productivity [13]. Cost per patient ranged from
$4,272 for persons with remission after initial diagnosis and treatment to
$138,602 for persons with intractable and frequent seizures [12]. Approxi-
mately 25% to 30% of patients receiving medication with antiepileptic drugs
(AEDs), which is the mainstay of epilepsy treatment, remain unresponsive
to the treatment and still have inadequate seizure control. Epilepsy surgery
is another alternative treatment for medically refractory patients with the
aim of excising the portion of brain tissue supposed to be responsible for
seizure initiation. Nevertheless, surgery is not always feasible and involves the
risk of a craniotomy. At least 50% of pre-surgical candidates eventually will
not undergo respective surgery because a single epileptogenic zone could not
be identified or was located in functional brain tissue through MRI scan or
long-term EEG monitoring. The mean length of hospital stay for epilepsy
pre-surgical candidates admitted for invasive EEG monitoring ranged from
4.7 to 5.8 days and the total aggregate costs exceeded $200 million each
year [13]. Besides, only 60% to 85% of epilepsy surgery cases result in patients
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being seizure free. In the recent years, the vagus nerve stimulator Neurocyber-
netic Prosthesis has been available as an alternative epilepsy treatment that
reduces seizure frequency; however, the parameters of this device (amplitude
and duration of stimulation) continue to be arbitrarily adjusted by physi-
cians. Moreover, the effectiveness of this treatment plays the same role as an
additional dose of AEDs to epileptic patients and less than 0.1% of patients
can benefit from this treatment. Because of the shortcomings and side effects
of current epilepsy treatment, there has been an urgency for new develop-
ment of novel therapeutic treatments for epilepsy. During the past few years,
there has been a great deal of research interest in shifting epilepsy research
from the efforts to cure epilepsy to the ability to anticipate/predict the onset
of seizures. Although spontaneous epileptic seizures seem to occur randomly
and unpredictably and begin intermittently as a result of complex dynamic
interactions among many regions of the brain, neurologists still believe that
seizures occur in a predictable fashion. Seizure prediction is a very promising
option for the effective and safe treatment of people with epilepsy by avoiding
both the side effects of drugs and cutting out pieces of brain. Research interest
in seizure prediction has been amplified by the following new technology in
the past decade: the wide acceptance of digital EEG technology; maturation
of methods for recording from intracranial electrodes to localize seizures; and
the tremendous efficacy, acceptability, and commercial success of implantable
medical devices, such as pacemakers, implantable cardiac defibrillators, and
brain stimulators for Parkinson’s disease, tremor, and pain [61]. The most
realizable application of seizure prediction development is its potential for
use in therapeutic epilepsy devices to either warn of an impending seizure or
trigger intervention to prevent seizures before they begin.

10.2.4 History of seizure prediction research

Work on seizure prediction started in the 1970s [94, 95] and early 1980s [85]
to show the seizure’s predictability. Most of the work focused on visible fea-
tures in the EEG (e.g., epileptic spiking) to extract seizure precursors. More
advanced quantitative analyses (e.g., spectral analysis) in the EEG are applied
to discover the abnormal activity and demonstrate the predictability in seizure
patterns. There have been a lot of studies in time–domain analysis including
statistical analysis of particular EEG events and characterization of the EEG
data. For example, the relationship between the number of normal epilepti-
form discharges on EEG and oncoming seizures was investigated [35, 55, 97].
Frequency domain analysis is a seizure prediction technique used to decom-
pose the EEG signal into components of different frequencies. Nevertheless,
the complexity and variability of the seizure development cannot be captured
by traditional methods used to process physiologic signals. In the late 1980s,
Iasemidis and coworkers made the first attempt to apply chaos theory and
nonlinear dynamics to the EEG for predicting seizures [52, 53]. The technique
was inspired by Takens’ theorem, which proves that the complete dynamics
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of a system can be reconstructed from a single measurement sequence (such
as its trajectory over time) along with certain invariant properties [93]. These
techniques show changes in characteristics (dynamics) of the EEG waveform
in the minutes leading up to seizures [53]. This scheme embeds EEG signals
into a phase space and observes some of the hidden characteristics of the
signals.

Nonlinear techniques showed that the trajectory of the EEG signals
appeared to be more regular and organized before the clinical onset of the
seizure than were the ones in the normal state. The results of this work indi-
cate that the EEG becomes progressively less chaotic as seizures advance,
with respect to the estimation of short-term maximum Lyapunov exponents
(STLmax), which is a measure of the order or disorder (chaos) of signals [49].
Subsequently, Iasemidis and coworkers have also demonstrated dynamic prop-
erties and the large-scale patterns of EEG that emerge when neurons interact
all together, which demonstrate that the convulsive firing of neurons in epilep-
tic seizures offers such a clear case of collective dynamics. For example, evi-
dence for nonlinear time dependencies in the normal EEG intervals observed
from patients with frequent partial seizures is reported in [46]. This obser-
vation suggests that the occurrence of seizures, though displaying a complex
time structure, is not a random process and may be driven by deterministic
mechanisms. Later attempts to apply measures in nonlinear dynamics were
followed by other investigations [57, 58, 59, 66, 73, 88]. The application of
the correlation dimension is employed to measure the neuron complexity of
the EEG, and correlation density and dynamic similarity are employed to
show evidence of seizure anticipation in pre-seizure segments [29, 58, 59]. In
these studies, reductions in the effective correlation dimension (Deff

2 , a mea-
sure of the complexity of the EEG signals) are shown to be more prominent
in pre-seizure EEG samples than at times more distant from a seizure. The
results of these studies indicate that a detectable change in dynamics can be
observed at least 2 minutes before a seizure in most cases [29]. These studies
were followed by the measure of phase synchronization in the pre-seizure EEG
signals [66, 88].

Martinerie and coworkers also report significant differences between dimen-
sion measures obtained in pre-seizure versus normal EEG samples [66]. They
find an abrupt decrease in dimension during the transition to the seizure onset
in relatively brief (40 minutes) samples of pre-seizure and normal EEG data.
More recently, this analysis has been extended to the study of brain dynamics
obtained from scalp EEG recordings. By comparing pre-seizure EEG samples
to a reference sample selected from normal EEG data, they demonstrate that
temporal lobe seizures are preceded by dynamic changes by periods of up to 15
minutes [88]. The method employed in that study is derived from the method
proposed by Manuca and Savit [65], which measures the degree of stationarity
of EEG signals. Subsequently in the later long-term (several days) energy anal-
ysis, the changes or sustained bursts in long-term energy profiles of the EEG
are reported to be increasing in volume that leads to seizure onset [62]. It was
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also demonstrated that bursts of activity in the range 15–25 Hz appeared to
build from about 2 hours before seizure onset in some patients with temporal
lobe epilepsy [62]. These burst activities seemed to change their frequency
steadily (faster and slower) over time. In the most recent study, the applica-
tion of the correlation dimension, correlation integral, and autocorrelation is
studied to demonstrate the fluctuations of seizure dynamics [57, 73].

Although the aforementioned studies have successfully demonstrated that
there exist temporal changes in the brain dynamics reflected from seizure
development, it is still a very difficult task to evaluate and assess these seizure
prediction techniques because of the lack of substantive studies including:
the need for long-duration, high-quality data sets from a large number of
patients implanted with intracranial electrodes; adequate storage and pow-
erful computers for processing of digital EEG data sets many gigabytes in
length; and environments facilitating a smooth flow of clinical EEG data
to powerful experimental computing facilities [61]. In addition, the collec-
tive physiologic dynamics of billions of interconnected neurons in the human
brain are not well studied or understood in those studied. Because temporal
properties of the brain dynamics can only capture the interaction of some
groups of locally connected neurons, they are not sufficient enough to demon-
strate the mechanism or propagation of seizure development, which involves
billions of interconnected neurons throughout the brain. For example, exten-
sive investigations indicate that the quantification of only temporal proper-
ties of the brain dynamics (e.g., STLmax) fail to demonstrate the capability
and sufficiency to predict seizures [23]. For this reason, a study that consid-
ers both temporal and spatial properties of the brain dynamics is proposed
in [50, 75, 78]. These studies use optimization and data mining to demonstrate
that the spatio-temporal dynamic properties of EEGs can reveal patterns that
correspond with specific clinical states. The results of these studies led to the
development of an Automated Seizure Warning System (ASWS) [22, 89, 90],
which not surprisingly demonstrates that the normal, seizure, and immedi-
ate post-seizure states are distinguishable with respect to the spatio-temporal
dynamic patterns/properties of intracranial EEG recordings. These patterns
are considered to be seizure precursors detectable through the convergence of
STLmax profiles from critical electrodes selected by optimization techniques
during the hour preceding seizures. The transition from a seizure precursor to
a seizure onset has been defined as a “pre-ictal transition” [23, 50, 75].

10.3 Mining EEG Time Series: Chaos in Brain

Epilepsy is a “dynamic disease” that appears to be due to a malfunction
in certain neurologic timing mechanisms rather than to a specific anatomic
abnormality or chemical deficiency. These mechanisms are governed by a non-
stationary system in the brain (the brain dynamics). To seek repetitive and
predictive pre-seizure patterns, methods used to quantify the brain dynamics



332 W.A. Chaovalitwongse

should be capable of automatically identifying and appropriately weighing
existing transients in the brain electrical activity like EEGs. Most methods
used to capture these patterns in the brain dynamics of the EEG waveform are
derived from chaos theory. These methods divide EEG signals into sequential
epochs (non-overlapping windows) to properly account for possible nonsta-
tionarities in the epileptic EEG recordings. For each epoch of each channel of
EEG signals, the brain dynamics is quantified by applying measures of chaos
(e.g., an estimation of STLmax). STLmax quantifies the chaoticity of the EEG
attractor by measuring the average uncertainty along the local eigenvectors
of an attractor in the phase space. The rate of divergence is a very important
aspect of the system dynamics reflected in the value of Lyapunov exponents.

The initial step in estimating STLmax profiles from EEG signals is to
embed it in a higher dimensional space of dimension p, which enables us to
capture the behavior in time of the p variables that are primarily respon-
sible for the dynamics of the EEG. We can now construct p-dimensional
vectors X(t), whose components consist of values of the recorded EEG sig-
nal x(t) at p points in time separated by a time delay. Construction of the
embedding phase space from a data segment x(t) of duration T is made with
the method of delays. The vectors Xi in the phase space are constructed as
Xi = (x(ti), x(ti + τ) . . . x(ti + (p − 1) ∗ τ)), where τ is the selected time lag
between the components of each vector in the phase space, p is the selected
dimension of the embedding phase space, and ti ∈ [1, T − (p − 1)τ ]. The
method for estimation of STLmax for nonstationary data (e.g., EEG time
series) is previously explained in [44, 48, 98]. In this chapter, only a short
description and basic notation of the mathematical models used to estimate
STLmax will be discussed. Let L be an estimate of the short-term maximum
Lyapunov exponent, defined as the average of local Lyapunov exponents in
the state space. L can be calculated as L = 1

NaΔt

∑Na

i=1 log2
|δXi,j(Δt)|
|δXi,j(0)| , where

δXi,j(0) = X(ti)−X(tj), δXi,j(Δt) = X(ti + Δt)−X(tj + Δt).
As the brain dynamics is quantified, T-statistical distance (T-index) is

proposed as a similarity measure to estimate the difference of the dynam-
ics of EEG time series from different brain areas [76]. In other words, the
T-index is employed to seek repetitive and predictive patterns of synchro-
nization of the brain dynamics. It measures the statistical distance between
two epochs of STLmax profiles. In the previous study, STLmax profiles
are divided into overlapping 10-minute epochs (N = 60 points). The T-
index at time t between electrode sites i and j is defined as Ti,j(t) =√

N × |E{STLmax,i − STLmax,j}|/σi,j(t), where E{·} is the sample aver-
age difference for the STLmax,i−STLmax,j estimated over a moving window
wt(λ) defined as

wt(λ) =
{

1 if λ ∈ [t−N − 1, t]
0 if λ �∈ [t−N − 1, t],

where N is the length of the moving window. Then, σi,j(t) is the sample
standard deviation of the STLmax differences between electrode sites i and
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j within the moving window wt(λ). The thus defined T-index follows a t-
distribution with N − 1 degrees of freedom.

10.4 Optimization and Data Mining in Epilepsy
Research

The previous section describes tools to quantify the brain dynamics for min-
ing hidden patterns in EEGs. To excavate repetitive and predictive patterns
in the brain dynamics associated with epileptogenesis processes, optimization
and data mining (DM) have also played a very important role. To seek such
patterns, these DM problems fundamentally involve discrete decisions based
on numerical analyses of the brain dynamics (e.g., the number of clusters,
the number of classes, the class assignment, the most informative features,
the outlier samples, the samples capturing the essential information). These
techniques are combinatorial in nature and can naturally be formulated as
discrete optimization problems [14, 17, 32, 36, 37, 43, 63]. Nevertheless, solv-
ing these optimization-based DM problems is not an easy task because these
problems naturally lend themselves to a discrete NP -hard optimization prob-
lem. Aside from complexity issue, the massive scale of EEG data is another
difficulty arising in this research. The framework of optimization and data
mining research to solve the challenging seizure prediction problem is proposed
in [19, 20, 21, 22, 23, 24, 26, 76, 86]. There are 3 main aspects of the proposed
framework including (1) Classification of Normal and Epileptic EEGs, (2)
Electrode Selection for Seizure Pre-Cursor Detection, (3) Clustering Epileptic
Brain Areas. This framework has provided insights into the epileptogenesis
processes, which will revolutionize the current study in epilepsy.

10.4.1 Classification of normal and epileptic EEGs

Research in classification focuses on the prediction of categorical variables
(data entries) based on the characteristics of their attributes (feature vec-
tors). There has been an enormous number of optimization techniques for
classification problems developed during the past few decades including clas-
sification tree, support vector machines (SVMs), linear discriminant analysis,
logic regression, least squares, nearest neighbors, and so forth. A number of
linear programming formulations for SVMs have been used to explore the
properties of the structure of the optimization problem and solve large-scale
problems [16, 64]. The SVM technique proposed in [64] was also demonstrated
to be applicable to the generation of complex space partitions similar to those
obtained by C4.5 [87] and CART [18]. Current SVM research mainly focuses
on extending SVMs to multiclass problems [41, 56, 91].

The fundamental question of whether normal and abnormal EEGs are clas-
sifiable remains unanswered [45, 60]. Chaovalitwongse and coworkers present a
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Fig. 10.1. Example of three-dimensional plots of entropy, angular frequency, and
STLmax in different physiologic states (normal, pre-seizure, seizure, and post-
seizure) for an epileptic patient.

study undertaken to determine whether or not normal and pre-seizure (epilep-
tic) EEGs are distinguishable [26]. The objective of that study is to demon-
strate the classifiability of the two different states through the quantitative
analysis of the brain dynamics (STLmax, phase, and entropy). In that study,
they first calculate measures of chaos from EEG signals using the methods
described in the previous section. Each measure was calculated continuously
for each non-overlapping 10.24 second segment of EEG data. Figure 10.1 shows
an example of a three-dimensional plot of three measures in the brain’s dif-
ferent physiologic states. There is a gradual transition from one physiologic
state to another. This observation suggests that measures of chaos can be used
as features to discriminate different physiologic states of the brain dynamics.
They may give the possibility to automatically classify the brain’s physiologic
states. The results of that study demonstrate that the brain dynamics from
the same brain’s physiologic state is more similar than the one from differ-
ent brain’s physiologic states. In other words, the brain dynamics of normal
EEGs should be more similar to each other than to that of pre-seizure EEG,
and vice versa. To test the difference between different states of EEGs, novel
data mining techniques employed in that study include: (1) a novel statisti-
cal nearest neighbor for EGG classification, and (2) SVMs approach for EEG
classification. To validate their hypothesis, a leave-one-out cross-validation is
applied.

Time series statistical nearest neighbors (TSSNNs)

Chaovalitwongse and coworkers propose TSSNNs, which is a novel statistical
classification technique for classifying time series data based on the nearest
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neighbor of T-statistical distance [26]. The main idea of TSSNNs is to use the
nearest neighbors from EEG baselines as a decision rule of the classification
of normal and abnormal EEGs. In other words, after comparing an unknown
EEG epoch with baseline data from normal and abnormal EEGs, TSSNNs
classifies the EEG epoch into the physiologic state (normal or abnormal) that
yields the minimum average T-statistical distance (nearest neighbor). In that
study, they apply cross-validation techniques to the estimation of the gen-
eralization error of TSSNNs. In general, cross-validation is considered to be
a way of applying partial information about the applicability of alternative
classification strategies. In other words, cross-validation is a method for esti-
mating generalization error based on “resampling.” The resulting estimates of
generalization error are often used for choosing among various decision mod-
els (rules). Generally, cross-validation is referred to k-fold cross-validation. In
k-fold cross-validation, the data are divided into k subsets of (approximately)
equal size. The decision models are trained k times, in which one of the sub-
sets from training is left out each time, by using only the omitted subset to
compute whatever error criterion interests you. If k is equal to the sample
size, this is called “leave-one-out” cross-validation. The results of that study
validate the classifiability of the brain physiologic states from EEG recordings.

TSSNNs procedure can be described as follows. Given an unknown-state
epoch of EEG signals “A,” average t-statistical distances between “A” and
the groups of normal, pre-seizure, and post-seizure EEG baselines are cal-
culated. Per electrode, three T-index values of the average mean statistical
distances are obtained (see Figure 10.2). The EEG epoch “A” will be clas-
sified into the physiologic state of the nearest neighbor (normal, pre-seizure,
and post-seizure). The nearest neighbor is defined as the physiologic state
that yields the minimum average T-index value based on 28–32 electrodes.
Because the proposed classifier has 28–32 decision inputs, two classification

Normal

Pre-Seizure Post-Seizure

A

Fig. 10.2. Statistical comparison for classification of an unknown-state EEG epoch
“A” by calculating the T-statistical distances between “A” and normal, “A” and
pre-seizure, and “A” and post-seizure.
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Table 10.1. Performance characteristics of the optimal classification scheme for
individual patient.

Patient Sensitivity Specificity Optimal Scheme

1 90.06% 95.03% Average Lmax & Entropy
2 77.27% 88.64% Average Lmax & Phase
3 76.21% 88.10% Average Lmax & Phase

Performance Characteristics of Optimal Classification Scheme in Patient 1
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Fig. 10.3. Classification results of TSSNNs in patient 1.

schemes (averaging and voting) based on different electrodes and combina-
tion of dynamical measures are proposed. In the study in [26], the perfor-
mance characteristics of TSSNNs tested on 3 epileptic patients are listed in
Table 10.1.

Figure 10.3 illustrates the classification results of the optimal scheme in
patient 1 (Average Lmax & Entropy). The probabilities of correctly predicting
pre-seizure, post-seizure, and normal EEGs are about 90%, 81%, and 94%,
respectively. Figure 10.4 illustrates the classification results of the optimal
scheme in patient 2 (Average Lmax & Phase). The probabilities of correctly
predicting pre-seizure, post-seizure, and normal EEGs are about 86%, 62%,
and 78%, respectively. Figure 10.5 illustrates the classification results of the
optimal scheme in patient 3 (Average Lmax & Phase). The probabilities of cor-
rectly predicting pre-seizure, post-seizure, and normal EEGs are about 85%,
74%, and 75%, respectively. Note that in practice, classifying pre-seizure and
normal EEGs is more meaningful than classifying post-seizure EEGs as the
post-seizure EEGs can be easily observed (visualized) after the seizureonset.
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Sensitivity of Optimal Classification Scheme in Patient 2
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Fig. 10.4. Classification results of TSSNNs in patient 2.

Sensitivity of Optimal Classification Scheme in Patient 3
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Fig. 10.5. Classification results of TSSNNs in patient 3.

The results of that study indicate that we can correctly classify the
pre-seizure EEGs close to 90% and close to 83% in classifying the normal
EEGs [26]. These results confirm that the pre-seizure and normal EEGs are
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differentiable. The techniques proposed in that study can be extended to
development of an online brain activity monitoring, which is used to detect
the brain’s abnormal activity and seizure pre-cursors. From the optimal clas-
sification schemes in 3 patients, we note that STLmax tends to be the most
classifiable attribute.

Support Vector Machines (SVMs)

SVMs is one of the most widely used classification techniques. The essence of
SVMs is to construct separating surfaces that will minimize the upper bound
on the out-of-sample error. In the case of one linear surface (plane) separating
the elements from two classes, this approach will choose the plane that max-
imizes the sum of the distances between the plane and the closest elements
from each class, which is often referred to as a gap between the elements from
different classes. The procedure of SVMs can be described as follows: Let
all the data points be represented as n-dimensional vectors (or points in the
n-dimensional space), then these elements can be separated geometrically by
constructing the surfaces that serve as the “borders” between different groups
of points. One of the common approaches is to use linear surfaces/planes for
this purpose, however, different types of nonlinear (e.g., quadratic) separating
surfaces can be considered in certain applications. In reality, it is not pos-
sible to find a surface that would “perfectly” separate the points according
to the value of some attribute, i.e., points with different values of the given
attribute may not necessarily lie at the different sides of the surface; however,
in general, the number these errors should be small enough. The classification
problem of SVMs can be represented as the problem of finding geometrical
parameters of the separating surfaces. These parameters can be found by solv-
ing the optimization problem of minimizing the misclassification error for the
elements in the training data set (in-sample error). After determining these
parameters, every new data element will be automatically assigned to a cer-
tain class, according to its geometrical location in the elements space. The
procedure of using the existing data set for classifying new elements is often
called “training the classifier.” The corresponding data set is referred to as
the “training data set.” It means that the parameters of separating surfaces
are tuned/trained to fit the attributes of the existing elements to minimize
the number of errors in their classification. However, a crucial issue in this
procedure is to “not overtrain” the model, so that it would have enough flex-
ibility to classify new elements, which is the primal purpose of constructing
the classifier. An example of hyperplanes separating the brain’s pre-seizure,
normal, and post-seizure states is illustrated in Figure 10.6.

In the study in [26], one of the first practical applications of mathematical
programming in the brain’s state classification is proposed. The procedure
of the SVMs framework for EEG classification can be stated as follows. The
data set consisting of nm-dimensional feature vectors, where n is the number
of electrodes for individual patient, and m = 30 is the length of data sample
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Fig. 10.6. Example of hyperplanes separating different brains’ states.

(approximately 5 min in duration). In each patient, only samples of normal
and pre-seizure EEG data are studied because SVMs is a binary (2-class)
classifier in nature and, in practice, they are only interested in differentiating
normal and pre-seizure data. In that study, they also apply “leave-one-out
cross-validation” described in the previous section. The classifier was devel-
oped based on linear programming (LP) techniques derived from [16]. The
vectors corresponding with normal and pre-seizure states are stored in two
matrices, A and B, respectively. The goal of the constructed model is to find
a plane that would separate all the vectors (points in the nm-dimensional
space) in A from the vectors in B. A plane is defined by xT ω = γ, where
ω = (ω1, . . . , ωn)T is an n-dimensional vector of real numbers, and γ is a
scalar. It is usually not the case where two sets of elements are perfectly sepa-
rated by a plane. For this reason, the goal of SVMs is to minimize the average
measure of misclassifications, i.e., in the misclassification constraints violated,
the average sum of violations should be as small as possible. An optimiza-
tion model to minimize the total average measure of misclassification errors
is formulated as follows:

min
ω,γ,u,v

1
m

m∑

i=1

ui+
1
k

k∑

j=1

vj , s.t. Aω+u ≥ eγ+e, Bω−v ≤ eγ−e, u ≥ 0, v ≥ 0.

The violations of these constraints are modeled by introducing nonnegative
variables u and v. The decision variables in this optimization problem are the
geometric parameters of the separating plane ω and γ, as well as the variables
representing misclassification error u and v. Although in many cases this type
of problem may involve high dimensionality of data, they can be efficiently
solved by available LP solvers, for instance MATLAB, Xpress-MP, or CPLEX.
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Table 10.2. Performance characteristics of SVMs for EEG classification.

Sensitivity
Patient Pre-seizure State Normal State Overall

1 81.21% 87.46% 86.43%
2 71.18% 76.85% 76.76%
3 74.13% 70.60% 71.00%

Average 75.51% 78.30% 78.06%

The SVMs developed in [26] for EEG classification are employed to classify
pre-seizure and normal EEGs. To train SVNs, it is important to note that,
in general, the training of SVMs is optimized when the number of pre-seizure
and normal samples are comparable. Otherwise, the classifier will be biased
to the physiologic state with larger size samples. In this case, there are a lot
more normal EEGs than pre-seizure EEGs. To adequately evaluate SVMs,
the classifier was trained with the same number of pre-seizure and normal
samples. Monte Carlo sampling simulation was used to shuffle (random order)
the pre-seizure and normal EEGs individually. Because the size of pre-seizure
samples is much larger than the size of normal samples, the number of pre-
seizure samples will be used to determine the size of the training and testing
sets. Then, the first half of pre-seizure samples was used for the training and
the other half for the testing. After that, training data (with the same size)
from normal samples were randomly selected. For individual patients, 100
replications of the simulation were performed [26].

Table 10.2 illustrates the classification results of the SVMs in 3 epileptic
patients. In patient 1, the sensitivity of predicting pre-seizure and normal
EEGs are about 81% and 88%, respectively. In patient 2, the sensitivity of
predicting pre-seizure and normal EEGs are about 71% and 77%, respectively.
In patient 3, the sensitivity of predicting pre-seizure and normal EEGs are
about 74% and 71%, respectively. Note that this result is consistent with the
prediction results from TSSNNs. The classification results in patient 1 tend to
be better than those of patients 2 and 3. These results confirm that the brain’s
physiologic states are classifiable based on quantitative analyses of EEG. The
framework of classifiers proposed in [26] can be extended to development of
an automated brain’s state classifier or an online brain activity monitoring.

10.4.2 Feature selection for seizure precursor detection

Although the brain is considered to be the largest interconnected network,
neurologists still believe that seizures represent a spontaneous formation of
self-organizing spatio-temporal patterns that involve only some parts (elec-
trodes) of the brain network. The localization of epileptogenic zones is one
of the proofs of this concept. Therefore, feature selection techniques have
become a very essential tool for selecting the critical brain areas participating
in the epileptogenesis process during seizure development. In addition, graph
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theoretical approaches appear to fit very well as a model of a brain struc-
ture [27, 39]. Feature selection based on optimization and graph theoretical
approaches will be very useful in selecting/identifying the brain areas corre-
lated with the pathway to seizure onset. Feature/sample selection can natu-
rally be defined as a binary optimization problem as the notion of selection a
sub-set of variables, out of a set of possible alternatives. Integer optimization
techniques have been used in feature selection in diverse disciplines including
spin glass models [7, 9, 10, 11, 40, 68], portfolio selection [14, 31, 92], vari-
able selection in linear regression [71, 92], media selection [99], and multiclass
discrimination analysis [43]. Many integer programming theories and implicit
enumeration techniques have been developed to address the problem of feature
selection [15, 25, 67, 70, 74, 75, 77, 81, 82].

The concept of optimization models for feature selection used to
select/identify the brain areas correlated with the pathway to seizure onset
came from the Ising model [19, 23], which is a powerful tool in study-
ing phase transitions in statistical physics. Such an Ising model can be
described by a graph G(V, E) having n vertices {v1, . . . , vn} and each edge
(i, j) ∈ E having a weight (interaction energy) Jij . Each vertex vi has a
magnetic spin variable σi ∈ {−1,+1} associated with it. An optimal spin
configuration of minimum energy is obtained by minimizing the Hamilto-
nian H(σ) = −

∑
1≤i≤j≤n Jijσiσj over ∀σ ∈ {−1,+1}n. This problem is

equivalent to the combinatorial problem of quadratic 0-1 programming [40].
This idea has been used to develop quadratic 0-1 (integer) programming for
feature/electrode selection problem, where each electrode has only two states,
and to determine the minimal-average T-index state [76]. In later attempts,
Chaovalitwongse and coworkers introduce an extension of quadratic inte-
ger programming for electrode selection by modeling this problem as a
Multi-Quadratic Integer Programming (MQIP) problem [19, 24, 25, 75].
The MQIP formulation of the electrode selection problem is extremely diffi-
cult to solve. Although many efficient reformulation-linearization techniques
(RTLs) have been used to linearize QP and nonlinear integer programming
problems [2, 3, 4, 5, 8, 30, 33, 34, 72, 96], additional quadratic constraints
make MQIP problems much more difficult to solve, and current RTLs fail to
solve MQIP problems effectively. A fast and scalable RTL used to solve the
MQIP feature selection problem is proposed in preliminary studies in [25, 75].
The proposed technique has been shown to outperform other RTLs [38]. In
addition, a novel framework applying graph theory to feature selection has
been recently proposed in the preliminary study by Prokopyev and coworkers
in [86].

Feature selection via quadratic integer programming (FSQIP)

FSQIP is a novel mathematical model for selecting critical features (elec-
trodes) of the brain network, which can be modeled as a quadratic 0-1 knap-
sack problem with objective function to minimize the average T-index (a
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measure of statistical distance between the mean values of STLmax) among
electrode sites and the knapsack constraint to identify the number of criti-
cal cortical sites. It is known that a quadratic 01 program with a knapsack
constraint can be reduced to an unconstrained quadratic 0-1 programming
problem [76], which can be solved by a powerful branch-and-bound method
developed by Pardalos and Rodgers [79, 80].

Consider the following three problems:

P1 : min f(x) = xT Ax, x ∈ {0, 1}n, A ∈ Rn×n.
P̄1 : min f(x) = xT Ax + cT x, x ∈ {0, 1}n, A ∈ Rn×n, c ∈ Rn.
P̂1 : min f(x) = xT Ax, x ∈ {0, 1}n, A ∈ Rn×n,

∑n
i=1 xi = k, where 0 ≤

k ≤ n is a constant .

Define A as an n × n T-index pair-wise distance matrix, and k is the num-
ber of selected electrode sites. Problems P1, P̄1, and P̂1 can be shown to be
all “equivalent” by proving that P1 is “polynomially reducible” to P̄1, P̄1 is
“polynomially reducible” to P1, P̂1 is “polynomially reducible” to P1, and P1

is “polynomially reducible” to P̂1.
The results from the application of the previously described scheme to

decide the predictability of epileptic seizures are presented in [76]. The method
is applied to 58 epileptic seizures in five patients. Patient 1 had 24 seizures in
83.3 hours; patient 2 had 19 seizures in 145.5 hours; patient 3 had 8 seizures in
22.6 hours; patient 4 had 4 seizures in 6.5 hours; and patient 5 had 3 seizures
in 8.3 hours. The method described in the previous section was applied with
two different critical values (α = 0.1, 0.2). Figures 10.7 and 10.8 illustrate
examples of a predictable seizure and an unpredictable seizure, respectively.
In both figures, curves B and C are smoothed curves of A (by averaging
the original T-index values within a moving window of length equal to PTP,

0 20 40 60 80 100 120
0

5

10

15

TIME (MINUTES)

T
 −
 I
N
D
E
X

Curve A 
Curve B 
Curve C 

α = 0.2 
α = 0.1 

SZ#2 

* * 
PTPB

PTPC 

Fig. 10.7. An example of a predictable seizure by the average T-index curves of the
pre-ictally selected sites (patient 1). Curve A: original T-index curve of the selected
sites. Curves B and C: smoothed curves of A over windows of entrainment with
length defined from critical values Tα at significance levels 0.2 and 0.1, respectively.
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Fig. 10.8. An example of a unpredictable seizure by the T-index curves of the
selected sites (patient 1).

Table 10.3. Predictability analysis for 58 epileptic seizures.

Patient Total No. Average Average Predictable Predictability
of Seizures PTPB PTPC Seizures

(minutes) (minutes)

1 24 42.9 66.9 21 87.5%
2 19 19.8 29.8 17 89.5%
3 8 23.5 49.5 8 100%
4 4 36.1 44.1 4 100%
5 3 31.1 34.4 3 100%

Total 58 31.6 49.1 53 91.4%

which is different per curve). In Figure 10.7, the pre-ictal transition period
PTPB identified by curve B is about 20 minutes, and PTPC (identified by
curve C) is about 43 minutes. It is clear that there are no false positives
observed in both curves over the 2-hour period prior to this seizure, thus this
seizure is considered to be predictable. In Figure 10.8, the PTPs identified
by the smoothed curves are 5 and 7 minutes, respectively. But false positives
are observed at 85 and 75 minutes prior to this seizure’s onset for curves B
and C, respectively. Therefore, this seizure is concluded to be non-predictable.
Table 10.3 summarizes the results of this analysis for all 58 seizures [76].

Feature selection via multi-quadratic integer programming
(FSMQIP)

FSMQIP is a novel mathematical model for selecting critical features (elec-
trodes) of the brain network proposed in [24, 75]. The MQIP electrode selec-
tion problem is given by minxT Ax, s.t.,

∑n
i=1 xi = k; xT Cx ≥ Tαk(k−1); x ∈

{0, 1}n, where A is an n × n matrix of pairwise similarity of chaos mea-
sures before a seizure, C is an n × n matrix of pairwise similarity of chaos
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measures after a seizure, and k is the predetermined number of selected elec-
trodes. This problem has been proved to be NP -hard in [75]. The objective
function is to minimize the average T-index distance (similarity) of chaos mea-
sures among the critical electrode sites. The knapsack constraint is to identify
the number of critical cortical sites. The quadratic constraint is to ensure the
divergence of chaos measures among the critical electrode sites after a seizure.
This MQIP can be reduced to linear mixed 01 programming, which can be
solved using modern solvers like CPLEX and XPRESS-MP. For more details,
we refer to [25].

FSMQIP has been developed to extend the previous findings of the seizure
predictability described in the previous section. The FSMQIP problem is for-
mulated as a MQIP problem with objective function to minimize the aver-
age T-index (a measure of statistical distance between the mean values of
STLmax) among electrode sites, the knapsack constraint to identify the num-
ber of critical cortical sites [53, 51], and an additional quadratic constraint to
ensure that the optimal group of critical sites shows the divergence in STLmax

profiles after a seizure. The experiment in the study proposed by Chaovalit-
wongse and coworkers is to test the hypothesis that FSMQIP can be used
to select critical features (electrodes) that are mostly likely to manifest pre-
cursor patterns prior to a seizure [24]. The results of that study demonstrate
that if one can select critical electrodes that will manifest seizure precur-
sors, it may be possible to predict a seizure in time to warn of an impending
seizure. To test this hypothesis, an experiment used to compare the proba-
bility of detecting seizure precursor patterns from critical electrodes selected
by FSMQIP with that from randomly selected electrodes was proposed [24].
Tested on 3 patients with 20 seizures, the prediction performance of randomly
selected 5,000 groups of electrodes was compared with that of critical elec-
trodes selected by FSMQIP. The results show that the probability of detecting
seizure precursor patterns from the critical electrodes selected by FSMQIP is
approximately 83%, which is significantly better than that from randomly
selected electrodes with (p-value < 0.07). The histogram of probability of
detecting seizure precursor patterns from randomly selected electrodes and
that from the critical electrodes is illustrated in Figure 10.9. The results of
that study can be used as a criterion to pre-select the critical electrode sites
that can be used to predict epileptic seizures.

Feature selection via maximum clique (FSMC)

FSMC is a novel mathematical model based on graph theory for selecting crit-
ical features (electrodes) of the brain network [20]. The brain connectivity can
be rigorously modeled as a brain graph as follows: considering a brain network
of electrodes as a weighted graph, where each node represents an electrode,
and weights of edges between nodes represent T-statistical distances of chaos
measures between electrodes. Three possible weighted graphs are proposed:
GRAPH-I is denoted as a complete graph (the graph with all possible edges);
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Fig. 10.9. Histogram of the prediction performance of randomly selected electrodes
compared with that of critical electrodes selected by FSMQIP.

GRAPH-II is denoted as a graph induced from the complete one by deleting
edges whose T-index before a seizure is greater than the T-test confident level;
GRAPH-III is denoted as a graph induced from the complete one by deleting
edges whose T-index before a seizure is larger than the T-test confident level
or T-index after a seizure point is smaller than the T-test confidence level.
Maximum cliques of these graphs will be investigated as the hypothesis is
a group of physiologically connected electrodes is considered to be a critical
largest connected network of seizure evolution and pathway. The Maximum
Clique Problem (MCP) is NP -hard [1, 84]; therefore, solving MCPs is not an
easy task.

Consider a maximum clique problem defined as follows. Let G = G(V, E)
be an undirected graph where V = {1, . . . , n} is the set of vertices (nodes),
and E denotes the set of edges. Assume that there is no parallel edges (and
no self-loops joining the same vertex) in G. Denote an edge joining vertex i
and j by (i, j).

Definition 1. A clique of G is a subset C of vertices with the property that
every pair of vertices in C is connected by an edge; that is, C is a clique if
the subgraph G(C) induced by C is complete.

Definition 2. The maximum clique problem is the problem of finding a clique
set C of maximal cardinality (size) |C|.

The maximum clique problem can be represented in many equivalent formula-
tions (e.g., an integer programming problem, a continuous global optimization
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problem, and an indefinite quadratic programming) [69]. Consider the follow-
ing indefinite quadratic programming formulation of MCP. Let AG = (aij)n×n

be the adjacency matrix of G defined by

aij =
{

1 if (i, j) ∈ E
0 if (i, j) /∈ E.

The matrix AG is symmetric, and all eigenvalues are real numbers. Generally,
AG has positive and negative (and possibly zero) eigenvalues, and the sum
of eigenvalues is zero as the main diagonal entries are zero [40]. Consider the
following indefinite QIP problem and MIP problem for MCP:

P3 : max
∑

(i,j)∈E
1
2xT Ax, s.t. x ∈ {0, 1}n, where A = AḠ − I and AG is an

adjacency matrix of the graph G.
P̄3 : min

∑n
i=1 si, s.t.

∑n
j=1 aijxj − si − yi = 0, yi −M(1 − xi) ≤ 0, where

xi ∈ {0, 1}, si, yi ≥ 0, and M = maxi

∑n
j=1 |aij | = ‖A‖∞.

Proposition 1. P3 is equivalent to P̄3. If x∗ solves the problems P3 and P̄3,
then the set C defined by C = t(x∗) is a maximum clique of graph G with
|C| = −fG(x).

It has been shown in [20, 25] that P3 has an optimal solution x0 iff there
exist y0, s0, such that (x0, y0, s0) is an optimal solution to P̄3. Applying a
linearization technique described in [20, 25] to solve P̄3, we can select relevant
features (group of electrodes) that may be critical to epileptogenic processes.
These features can represent the brain connectivity through cliques of the
brain graph.

10.4.3 Clustering epileptic brain areas

Clustering is an unsupervised learning, in which the property or the expected
number of groups (clusters) are not known ahead of time [6]. Most clustering
methods (e.g., k-mean) attempt to identify the best k clusters that minimize
the distance of the points assigned in the cluster from the center of the clus-
ter. Another well-known clustering technique is k-median clustering, which
can be modeled as a concave minimization problem and reformulated as a
minimization problem of a bilinear function over a polyhedral set by introduc-
ing decision variables to assign a data point into a cluster [17, 28]. Although
these clustering techniques are well studied and robust, they still require a
priori knowledge of the data (e.g., the number of clusters, the most informa-
tive features). The elements and dynamic connections of the brain dynamics
can portray the characteristics of a group of neurons and synapses or neu-
ronal populations driven by the epileptogenic process. Therefore, clustering
the brain areas portraying similar structural and functional relationships will
give us an insight in the mechanisms of epileptogenesis and an answer to a
question of how seizures are generated, developed, and propagated, and how
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they can be disrupted and treated. The goal of clustering is to find the best
segmentation of raw data into the most common/similar groups. In clustering,
similarity measure is, therefore, the most important property. The difficulty
in clustering arises from the fact that clustering is an unsupervised learning,
in which the property or the expected number of groups (clusters) are not
known ahead of time [6]. The search for the optimal number of clusters is
parametric in nature and the optimal point in an “error” versus “number of
clusters” curve is usually identified by a combined objective that appropri-
ately weighs accuracy and number of clusters [6]. The neurons in the cerebral
cortex maintain thousands of input and output connections with other groups
of neurons, which form a dense network of connectivity spanning the entire
thalamocortical system. Despite this massive connectivity, cortical networks
are exceedingly sparse, with respect to the number of connections present out
of all possible connections. This indicates that brain networks are not random,
but form highly specific patterns. Networks in the brain can be analyzed at
multiple levels of scale. Novel clustering techniques used to construct the tem-
poral and spatial mechanistic basis of the epileptogenic models based on the
brain dynamics of EEGs and capture the patterns or hierarchical structure
of the brain connectivity from statistical dependence among brain areas are
proposed in [20]. These do not require a priori knowledge of the data (num-
ber of clusters). In this section, we will discuss the following clustering tech-
niques proposed in [20]: (1) Clustering via Concave Quadratic Programming
(CCQP); and (2) Clustering via MIP with Quadratic Constraint (CMIPQC).

Clustering via concave quadratic programming (CCQP)

CCQP is a novel clustering mathematical model used to formulate a clustering
problem as a QIP problem [20]. Given n points of data to be clustered, a
clustering problem is formulated as follows: minx f(x) = xT Ax − λI, s.t.
x ∈ {0, 1}n, where A is an n × n Euclidean matrix of pairwise distance,
I is an identity matrix, λ is a parameter adjusting the degree of similarity
within a cluster, xi is a 0-1 decision variable indicating whether or not point
i is selected to be in the cluster. Note that λI is an offset parameter added
to the objective function to avoid the optimal solution of all xi being zero.
This will happen when every entry aij of Euclidean matrix A is positive
and the diagonal is zero. Although this clustering problem is formulated as
a large QIP problem, in some instances when λ is large enough to make the
quadratic function become concave function, this problem can be converted
to a continuous problem (minimizing a concave quadratic function over a
sphere) [20]. The reduction to a continuous problem is the main advantage
of CCQP. This property holds because of the fact that a concave function
f : S → R over a compact convex set S ⊂ R

n attains its global minimum at
one of the extreme points of S [40].

One of the advantages of CCQP is the ability to systematically determine
the optimal number of clusters. Although CCQP has to solve m clustering
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problems iteratively (where m is the final number of clusters at the termina-
tion of CCQP algorithm), it is efficient enough to solve large-scale clustering
problems because only one continuous problem is solved in each iteration.
After each iteration, the problem size will become significantly smaller [20].

Clustering via MIP with quadratic constraint (CMIPQC)

CMIPQC is a novel clustering mathematical model in which a clustering
problem can be formulated as a mixed-integer programming problem with
quadratic constraint [20]. The goal of CMIPQC is to maximize number of
data points to be in a cluster such that the similarity degrees among data
points in a cluster are less than a predetermined parameter, α. This tech-
nique can be incorporated with hierarchical clustering methods as follows:
(a) Initialization: assign all data points into one cluster; (b) Partition: use
CMIPQC to divide the big cluster into smaller clusters; (3) Repetition: repeat
the partition process until the stopping criterion are reached or a cluster con-
tains a single point. Novel mathematical formulation for CMIPQC is given
by maxx

∑n
i=1 xi, s.t. xT Cx ≤ α, x ∈ {0, 1}, where n is the number of data

points to be clustered, C is an n × n Euclidean matrix of pairwise distance,
α is a predetermined parameter of the similarity degree within each cluster,
xi is a 0-1 decision variable indicating whether or not point i is selected to
be in the cluster. The objective of this model is to maximize number of data
points to be in a cluster such that the average pairwise distances among those
points are less than α. The difficulty of this problem comes from the quadratic
constraint; however, this quadratic constraint can be efficiently linearized by
the approach described in [25]. The CMIPQC problem is much easier to solve
as it can be reduced to an equivalent MIP problem. Similar to CCQP, the
CMIPQC algorithm has the ability to systematically determine the optimal
number of clusters and only needs to solve m MIP problems.

10.5 Concluding Remarks and Prospective Issues

This chapter gives an extensive review of optimization and data mining
research in seizure prediction. A theoretical foundation of optimization tech-
niques for classification, feature selection, and clustering is discussed in this
chapter. Advances in classification, feature selection, and clustering techniques
have shown very promising results for the future development of a novel DM
paradigm to predict impending seizures from multichannel EEG recordings.
The results in previous studies indicate that it is possible to design algorithms
used to detect dynamic patterns of critical electrode sites. Such algorithms can
be derived from novel techniques in optimization and data mining [21, 24, 47].
Prediction is possible because, for the vast majority of seizures, the spatio-
temporal dynamic features of seizure precursors are sufficiently similar to that
of the preceding seizure. The seizure precursors detected by the algorithm
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seem to be sufficiently early enough to allow a wide range of therapeutic inter-
ventions. The temporal and spatial properties of the brain dynamics captured
by the methods described in this chapter have been proven capable of reflect-
ing the real physiologic changes in the brain as they correspond specifically
to the real seizure precursors.

This preclinical research forms a bridge between seizure prediction research
and the implementation of seizure prediction/warning devices, which is a
revolutionary approach for handling epileptic seizures, very similar to the
brain-pacemaker. It may also lead to clinical investigations of the effects
of medical diagnosis, drug effects, or therapeutic intervention during inva-
sive EEG monitoring of epileptic patients. Potential diagnostic applications
include a seizure warning system used during long-term EEG recordings per-
formed in a diagnostic epilepsy-monitoring unit. This type of system could
potentially be used to warn professional staff of an impending seizure or to
trigger functional imaging devices in order to measure regional cerebral blood
flow during seizure onset. Future research toward the treatment of human
epilepsy and therapeutic intervention of epileptic activities, as well as the
development of seizure feedback control devices, may be feasible. This type
of seizure warning algorithm could also be incorporated into digital signal
processing chips for use in implantable devices. Such devices could be utilized
to activate pharmacologic or physiologic interventions designed to abort an
impending seizure. Thus, it represents a necessary first step in the develop-
ment of implantable biofeedback devices to directly regulate therapeutic inter-
vention to prevent impending seizures or other brain disorders. For example,
such an intervention might be achieved by electrical or magnetic stimulation
(e.g., vagal nerve stimulation) or by a timely release of an anticonvulsant
drug. Future studies employing novel experimental designs are required to
investigate the therapeutic potential for implantable seizure warning devices.
Another practical application of the proposed approach would be to help neu-
rosurgeons quickly identify the epileptogenic zone without having patients
stay in the hospital for the invasive long-time (10–14 days in duration) EEG
monitoring. This research has the potential to revolutionize the protocol to
identify the epileptogenic zone, which could drastically reduce the healthcare
cost during the hospital stay for these patients. In addition, this protocol
will help physicians identify epileptogenic zones without the necessity to risk
patient safety by implanting depth electrodes in the brain. In addition, the
results from this study could also contribute to the understanding of the
intermittency of other dynamic neurophysiologic disorders of the brain (e.g.,
migraines, panic attacks, sleep disorders, and Parkinsonian tremors). This
research could also contribute to the localization of defects (flaws) classifica-
tion and prediction of spatio-temporal transitions in other high-dimensional
biological systems such as heart fibrillation and heart attacks.

In spite of capability of predicting seizures, these algorithms can be
improved in terms of parameter settings in the procedures for every patient
to quantify the brain dynamics, optimize electrode selection, and detection of
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pre-ictal transition. Those parameters remain to be further investigated. In
addition, the implementation is complicated by the fact that the parameter
settings (embedding dimension and time delay) in the estimation of STLmax

is optimized based on the seizure EEG depth recordings in human subject with
respect to minimization of the transient and reduction of the nonstationarity
of EEG. Therefore these algorithms cannot gain the maximum prediction
power with non-optimal parameter setting, which remains to be further inves-
tigated. The clinical utility of a seizure warning system depends upon the
false-positive rate as well as the sensitivity of the system. It is also possible
that the false warnings correctly detect a pre-seizure or seizure susceptibility
state, but normal physiologic resetting mechanisms intervene returning the
brain to a more normal dynamic state. It may be possible that the dynamics
of the pre-ictal transition are not unique and may be found in other physio-
logic states. In addition, the novel clustering techniques proposed should be
further investigated in the future research as they might be able to provide
more insights into the epileptogenesis processes.
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Abstract. One of the major challenges facing the analysis of high-throughput
microarray measurements is how to extract in a systematic and rigorous way the bio-
logically relevant components from the experiments in order to establish meaningful
connections linking genetic information to cellular function. Because of the signifi-
cant amount of experimental information that is generated (expression levels of thou-
sands of genes), computer-assisted knowledge extraction is the only realistic alter-
native for managing such an information deluge. Mathematical programming offers
an interesting alternative for the development of systematic methodologies aiming
toward such an analysis. We summarize recent developments related to critical prob-
lems in the analysis of microarray data; namely, tissue clustering and classification,
informative gene selection, and reverse engineering of gene regulatory networks. We
demonstrate how advances in nonlinear and mixed-integer optimization provide the
foundations for the rational identification of critical features unraveling fundamen-
tal elements of the underlying biology thus enabling the interpretation of volumes
of biological data. We conclude the discussion by identifying a number of related
research challenges and opportunities for further research.

11.1 Microarrays and the New Biology

The genetic information is stored in the DNA, the double-stranded polymer
composed of four basic molecular units (nucleotides) adenine (A), guanine (G),
cytosine (C), and thymine (T). In order for the genome to direct, or affect,
changes in the cell, a transcriptional program must be activated eventually
dictating all biological transformations. This program is regulated temporarily
according to an intrinsic program or in response to changes in the environ-
ment. The expression of the genetic information, which is stored in DNA,
takes places in two stages: transcription, during which DNA is transcribed
into mRNA, a single-stranded complimentary copy of the base sequence of
the DNA; and translation, during which mRNA provides the blueprint for the
production of specific proteins. Measuring the level of production of mRNA,
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thus measuring the expression levels of the associated genes, provides a quan-
titative assessment of the levels of production of the corresponding proteins,
the ultimate expression of the genetic information.

Innovative approaches such as cDNA and oligonucleotide microarrays
were recently developed to extract genome-wide information related to gene
expression (see Schena et al. [50], Bowtell [3], Brown and Botstein [7],
Cheung et al. [9], and Lipshutz et al. [41]). During an expression experiment,
extracted mRNA is reverse-transcribed into more stable complementary DNA
(cDNA), which is labeled using fluorescent dyes. Different-colored dyes are
used for different samples (probes). The probes are then tested by hybridizing
to a DNA array holding thousands of spots, each containing a different DNA
sequence. Once the probes have hybridized, they are washed off, and the array
is scanned to determine the relative amount of each cDNA probe bound to
any given spot. Quantitative imaging coupled with clone database informa-
tion allows measurement of the labeled cDNA that hybridized to each target
sequence. Image processing and data normalization are among the first, and
very critical, computational filters required before the actual quantification
of the expression experiment is defined (Dudoit et al. [17]). Gene expression
changes are usually measured relative to another sample. Comparative differ-
ences are used to assess the impact of gene expression to various regulatory
pathways.

Gene expression microarray experiments have been celebrated as a revolu-
tion in biology, attracting significant interest, because they are slowly changing
the working paradigm of biological research by allowing the analysis of the
combined effects of numerous genetic and environmental components. The
profound impact is that such a global approach will allow a fundamental shift
from “. . . piece-by-piece to global analysis and from hypothesis driven research
to discovery-based formulation and subsequent testing of hypotheses. . . ” (see
Kafatos [39]). One of the major challenges is to extract in a systematic and
rigorous way the biologically relevant components from the array experiments
in order to establish meaningful connections linking genetic information to cel-
lular function. Because of the significant amount of experimental information
that is generated (expression levels of thousands of genes), computer-assisted
knowledge extraction is the only realistic alternative for managing such an
information deluge.

11.2 Issues in Microarray Data Analysis

Among the numerous tasks that can be assisted by the data generated from
microarray experiments, we will focus mainly on three: tissue classification,
gene selection, and construction of regulatory networks from temporal gene
expression data. We do so because

(a) these tasks are critical and define the basis for a number of more
complicated problems,
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(b) they have clearly defined approaches based on mathematical programming
techniques and can be used as excellent motivating examples.

In tissue classification, samples from multiple cell types (for example, dif-
ferent cancer types, cancerous and normal cells, etc.) are comparatively ana-
lyzed using microarray gene expression measurements. The question therefore
becomes how to identify which genes provide consistent signatures that dis-
tinctly characterize the different classes. The problem can be viewed as either
a supervised classification problem in which the classes are already known or
as an unsupervised clustering problem in which we attempt to identify the
classes contained within the data. In gene selection, the computational prob-
lem is equivalent to that of feature selection in multidimensional data sets.
Identifying the minimum number of gene markers is however critical because
this reduced set can provide information about the biology behind the exper-
iment as well as define the basis for future therapeutic agents.

In time-ordered gene expression measurements, the temporal pattern of
gene expression is investigated by measuring the gene expression levels at a
small number of points in time. The continuous monitoring of the level of
mRNA abundance has the ultimate goal of deriving the temporal evolution
of the synergistic effects of multiple genes. By doing so, a regulatory network
is constructed, that is, a biologically plausible superstructure of gene inter-
actions that interprets the data. Transcriptional regulatory networks are the
key to understanding the sequence of events leading to an observed biological
response. The tasks that we are about to discuss in this chapter have already
been addressed by a number of approaches under the general umbrella defined
as data mining. What we plan to present however is a definition of these tasks
as mathematical programming problems exploring principles and advances
of optimization. We will demonstrate the flexibility that mathematical pro-
gramming and deterministic optimization provide, discuss some characteris-
tic applications, and finally conclude with a number of suggestions for future
research.

11.3 Analysis of Gene Expression Data: Tissue
Clustering and Classification

11.3.1 Clustering and classification preliminaries

Let us assume the data describing a particular process are expressed in the
form of n-dimensional feature vectors x ∈ R

n. An important goal of the
analysis of such data is to determine an explicit or implicit function that
maps the points of the feature vector from the input space to an output space
(for example, in regression). This mapping has to be derived based on a finite
number of data, thus assuming that a proper sampling of the space has been
performed. If the predicted quantity is categorical and if we know the value



360 I.P. Androulakis

that corresponds with each element of the training set, then the question
becomes how to identify the mapping that connects the feature vector and
the corresponding categorical value (class). This problem is known as the
classification problem (supervised learning). If the class assignment is not
known and we seek to (a) identify whether small, yet unknown, number of
classes exist, (b) define the mapping assigning the features to classes, then we
have a clustering problem (unsupervised learning).

Although numerous methods exist for addressing these problems they will
not be reviewed here. Nice reviews of classification that were recently pre-
sented include the papers by (Grossman et al. [33]; Hand et al. [35]). In
this short introduction, we will concentrate on solution methodologies based
on reformulating the clustering and classification questions as optimization
problems.

Tissue classification

Developing specific therapies to pathogenetically distinct tumor types is
important for cancer treatment, because they maximize efficacy and mini-
mize toxicity. Thus, precisely classifying tumors is of critical importance to
cancer diagnosis and treatment. Diagnostic pathology has traditionally relied
on macro- and microscopic histology and tumor morphology as the basis for
tumor classification. Current classification frameworks, however, are unable to
discriminate among tumors with similar histopathologic features, which vary
in clinical course and in response to treatment. Recently, there is increas-
ing interest in changing the basis of tumor classification from morphologic
to molecular. In the past decade, microarray technologies have been devel-
oped that can simultaneously assess the level of expression of thousands of
genes. Several studies have used microarrays to analyze gene expression in
colon, breast, and other tumors and have demonstrated the potential power
of expression profiling for classifying tumors. Gene expression profiles may
offer more information than classic morphology and provide an alternative to
morphology-based tumor classification systems (Zhang et al. [60]).

Mathematical programming formulations

Classification and clustering, and for that matter most of the data min-
ing tasks, are fundamentally optimization problems. Mathematical pro-
gramming methodologies formalize the problem definition and make use of
recent advances in optimization theory and applications for the efficient solu-
tion of the corresponding formulations. In fact, mathematical programming
approaches, particularly linear programming, have long been used in data
mining tasks. The pioneering work of Mangasarian [43, 44] demonstrated how
to formulate the problem of constructing planes to separate linearly separa-
ble sets of points. In addition, early work by Freed and Glover [20, 21, 22],
Gehrlein [26], Glover et al. [31], and Glover [30] skillfully discussed various
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aspects of discriminant analysis from the point of view optimization. A more
recent excellent review was presented in Stam [53], highlighting numerous
developments that defined the field of applications of mathematical program-
ming to statistical classification. It should be pointed out that one of the major
advantages of a formulation based on mathematical programming is the ease
in incorporating explicit problem-specific constraints whose incorporation in
classic statistical approaches in not evident in general.

Let us consider a two-class problem in which the sample points belong
to either one of two sets with their point coordinates denoted by A and B
respectively1. As discussed earlier, a discriminant function can be derived
based on a hyperplane of the form

P = {x ∈ R
n|x�ω = γ}.

The normal to this plane is
|γ|
‖ω‖2

.

The classification problem thus becomes how to determine g and w such that
the separating hyperplane P defines two open half spaces

{x ∈ R
n|x�ω < γ} and {x ∈ R

n|x�ω > γ}

containing mostly points in A and B, respectively. Unless the problem is
linearly separable, the hyperplane can only be derived within a certain error.
Minimization of the average violations provides a possible approximation of
the separating hyperplane

min
ω,γ

1
m
‖−Aω + eγ + e‖+

1
k
‖−Bω + eγ + e‖

where m and k denote the number of samples belonging to classes A and
B, respectively. Bradley et al. [5] discusses various implementations including
a particularly effective robust linear programming reformulation suitable for
large-scale problems:

min
ω,γ,y,z

1
m

e�y +
1
k

e�z

subject to

−Aω + eγ + e ≤ y

Bω − eγ + e ≤ z

y, z ≥ 0.

Fung et al. [23] demonstrated how to extend the aforementioned formalism to
account for nonlinear kernel functions that generate nonlinear optimal sepa-
rating surfaces.

1For simplicity, we use the symbols A and B to denote both the classes and the
matrices containing the coordinates.
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While the approaches just described aim at minimizing an error in separat-
ing the given data, support vector machines (SVMs, Vapnik [57]) incorporate
also the structured risk minimization, which minimizes an upper bound of the
generalization error. In fact a very interesting analysis on the learning stabil-
ity characteristics of SVMs, in dealing with uncertainty, is demonstrated by
Bousquet and Elisseeff [1]. The general idea behind SVM is illustrated by con-
sidering the case where a linear separating surface is to be generated. In that
case, SVMs determine, among the infinite number of possible planes separat-
ing the two classes, the one that also maximizes the margin separating the
two classes.

SVMs are based on an analysis of the general problem of learning the
classification boundary between positive and negative samples. This is a par-
ticular case of the problem of approximating a multivariate function from
sparse data. Regularization theory is a classic approach to solving it by for-
mulating the approximation problem as a variational optimization problem of
finding the function f that minimizes the functional

1
�

�∑

i=1

V (yi, f(xi)) + λ‖f‖2

where � is the number of training samples, V (·) is the loss function, and ‖ · ‖2
a suitable norm. In order to derive a linear separating surface between the
two classes, the above-mentioned problem is equivalent to the solution of the
following optimization problem (Cortes and Vapnik [11]):

min
w,b

1
2
w�w + C

�∑

i=1

ξi

subject to

yi(wxi + b) ≥ 1− ξi i = 1, . . . , �

ξi ≥ 0 i = 1, . . . , �.

In this formulation, yi denotes the class of sample i, and it is either +1 or
−1. The solution to this problem not only minimizes the misclassifications
(second part of the objective) but also identifies the hyperplane, with normal
vector w, that provides the maximum margin between the two classes.

In general however, the separating surface will be nonlinear. In this case,
we have to think of a nonlinear projection of the original data for which we
seek a linear separating surface. In that case, the linear separating surface in
the projected feature space will correspond with a nonlinear separating surface
in the original space. In that case, we can write the following optimization:

min
w,b

1
2
w�w + C

�∑

i=1

ξi
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subject to

yi (wφ(xi) + b) ≥ 1− ξi i = 1, . . . , �

ξi ≥ 0 i = 1, . . . , �.

The functional φ(·) defines the nature of the nonlinear kernel.
SVMs have been applied with great success in clustering and classification

problems in microarray experiments (see Brown et al. [6], Furey et al. [24],
Guyon et al. [34], Rifkin et al. [48]). It will be shown later that analysis of the
coefficients of the separating hyperplanes, of non-linear kernels, can provide
some indications as to which features are more significant. Therefore, a by-
product of clustering and classification analysis within such an optimization
framework will also be feature (gene) selection.

Multiclass support vector machines

The solution to binary classification problems using SVM has been well devel-
oped, tested, and documented. However, extending the method to multiclass
problems remains an open research issue. The standard approach, within an
SVM framework, is to treat the multiclass problem as a collection of two-
class (binary) classification problems. Recently, however, multiclass methods
considering a much larger problem encompassing all classes at once have been
proposed. The drawback of course is the requirement for the solution of a much
larger problem. Recently (Hsu and Lin [37] and Nguyen and Rajapakse [47])
discuss a number of alternatives for the development of SVM-based multiclass
classifiers.

One-against-all (OAA) classifier

This method constructs k SVM models where k is the number of classes.
The jth SVM is trained to classify the members of the jth class, assumed to
have positive labels, against the samples of all the other classes, which are
assumed to have negative labels. Therefore, given � training data in the form
(x1, y1), . . . , (x�, y�) where xi ∈ R

n and yi ∈ {1, . . . , k} (i = 1, . . . , �), the jth

SVM solves the following problem:

min
wj ,bj ,ξj

1
2
(wj)�wj + C

�∑

i=1

ξj
i

subject to

(wj)�φ(xi) + bj ≥ 1− ξj
i i = 1, . . . , � : yi = j

(wj)�φ(xi) + bj ≥ −1 + ξj
i i = 1, . . . , � : yi �= j

ξj
i ≥ 0 i = 1, . . . , �.
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Minimizing the first term in the objective function, 1
2 (wj)�wj , means that

large values of the margin between the two groups of data, 2/‖wj |‖, are
favored. The second term in the objective function,

∑�
i=1 ξj

i , favors a reduc-
tion in the number of training errors for the case where the problem is not
linearly separable. Solving this problem for j = 1, . . . , k generates k decision
functions:

(wj)�φ(x) + bj (j = 1, . . . , k).

Sample x belongs to the class that has the largest value of the decision
function:

class of x = arg max
j=1,...,k

[
(wj)�φ(x) + bj

]
.

One-against-one (OAO) classifier

This method constructs k(k− 1)/2 classifiers each of which is trained on data
from two classes, j and j′ (j, j′ = 1, . . . , k, j′ > j):

min
wjj′ ,bjj′ ,ξjj′

1
2
(wjj′

)�wjj′
+ C

�∑

i=1

ξjj′

i

subject to

(wjj′
)�φ(xi) + bj ≥ 1− ξjj′

i i = 1, . . . , � : yi = j

(wjj′
)�φ(xi) + bj ≥ −1 + ξjj′

i i = 1, . . . , � : yi �= j

ξjj′

i ≥ 0 i = 1, . . . , �.

Feature testing based on binary classifiers is not trivial. However, a standard
technique is based on majority voting: weighted sum of the outputs of all
pairwise classifiers defines the predicted class. A particular implementation of
the OAO classifier prediction uses the concept of directed acyclic graphs. Each
node is a classifier between two classes. Given a test sample x and starting
at the root node, the binary decision function is evaluated. Then it moves to
either the left or the right of the tree depending on the output value.

Weston and Watkins [58] proposed the construction of a likewise linear
separation of the k classes in a single optimization formulation. The original
formulation is generalized as follows:

min
w,b,ξ

1
2

k∑

j=1

(wj)�wj + C
�∑

i=1

k∑

j=1, j �=yi

ξk
i

subject to

wyixi + byi ≥ wjxi + bj + 2− ξj
i i = 1, . . . , �; j = 1, . . . , k; yi �= j

ξj
i ≥ 0 i = 1, . . . , �; j = 1, . . . , k; yi �= k.
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Once again we assume the existence of k classes and � objects, and yi is an
integer indicating the class of object i. Effectively, the method is a generaliza-
tion of the OAA approach where the classifiers are estimated simultaneously
through the solution of a larger optimization problem. In this case, the dis-
criminating function becomes arg maxj=1,...,k(wjx + bj). Similar in spirit is
the formulation proposed by Crammer and Singer [12]. The formulation is
similar to the one proposed by Weston and Watkins [58] with the only dif-
ference being that the constraints are defined such that a smaller number of
slack variables is required.

Classification of microarray data using support vector machines

SVMs are becoming one of the favorite classification methods for the classifi-
cation of microarray data primarily due to their sound mathematical founda-
tion. In this section, we will outline just a few illustrative examples. The first
application aims at classifying cancerous cells based on the measurement of
expression values, whereas the second application aims at functionally classi-
fying genes.

Molecular cancer classification

Modern cancer treatments rely upon macroscopic examination to classify
tumors according to anatomic site of origin. DNA microarrays gener-
ate information potentially able to formulate molecular-based predictors
circumventing the subjectivity associated with the examination of macro-
scopic characteristics. Rifkin et al. [48] present a computational method,
based on SVM, aiming at classifying tumor data in an attempt to derive
a general, multi-class molecular-based cancer classification based solely on
gene expression data. The case study concerned the analysis of 198 samples
from 14 different cancer types, using microarray data recording the activity
(expression) levels of 16,063 probes. Both the OAA and OAO approaches
were computationally evaluated in terms of their ability to correctly predict
unknown samples. This work demonstrated the ability of SVM to effectively
and efficiently classify large microarray data sets in computationally reason-
able times. In a somewhat similar study, Williams et al. [59] evaluate the
ability of SVM to develop prognostic classification tools for relapsing tumor.

Gene functionality classification

Brown et al. [6] introduced a method of functionally classifying genes by using
gene expression data from DNA microarray experiments based on SVM. The
approach is motivated by the realization that genes of similar functionality
yield similar expression patterns in microarray experiments. As data from
such experiments begin to accumulate in increasing rates, it will become
essential to have means for extracting biological significance and using data
to assign functions to genes. The authors experimented with a number of
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nonlinear kernels, including a dot product based measuring the similarity
between two gene expression vectors K(X,Y ) = X · Y as well as various
d-fold generalizations of the form K(X,Y ) = (X · Y + 1)d, and a Gaussian
kernel K(X,Y ) = exp

(
−‖X − Y ‖2/(2α2)

)
. The study considered 2,467 yeast

genes for which functional annotation was available. SVM were trained to
recognize six functional families: tricarboxylic acid (TCA) cycle, respiration,
cytoplasmic ribosomes, proteasome, histones, and helix-turn-helix proteins.
The computational evaluation of the SVM was based on a three-way cross-
validation, repeated a number of times. SVMs were compared with other
standard supervised learning techniques, including Parzen windows, Fisher’s
linear discriminant analysis, and decision trees (MOC1 and C4.5), and were
found to outperform all of them providing superior performance.

11.3.2 Feature selection preliminaries

Machine learning algorithms are known to be prone to deteriorating perfor-
mance when faced with many irrelevant or correlated features (see Kohavi
and John [40]). A universal, therefore, problem is to decide on which aspects,
i.e., features, of a problem are relevant. Narendra and Fukunaga [46] were
among the first to present a formal approach based on a branch and bound
scheme for addressing the very same problem. A recent review by Kohavi and
John [40] examines a number of issues associated with the problem of feature
selection. More recently, Liu and Motoda [42] also present ideas related to the
coupling of information theory and feature selection.

Feature selection is a very healthy and vibrant area of research in the
machine learning community and has gained increased significance with the
recent advances in functional genomics that resulted in the creation of very
high-dimensional feature sets. A number of recent publications (Golub et al.
[32], Chilingaryan et al. [10], Szabo et al. [55], Dettling and Buhlmann [14])
have devised various approaches for extracting critical, differentially expressed
genes in a systematic manner. The advantages of multivariate methods are
that (a) they attempt to take into account collaborative effects of gene expres-
sion activities; (b) they do not simply characterize genes based on arbitrary
n-fold increased/decreased activities.

Feature selection in almost empty spaces

A fundamental problem in machine learning is the development of accurate
classifiers in sparsely populated data sets, i.e., almost empty spaces (see Duin
[18]). As noted earlier, the key complexity of microarray experiments is the
essential lack of observables (cell lines or tissue samples) to support the large
number of probes monitored. The consequences of the small ratio of features
to samples were extensively discussed in Jain and Zongker [38]. The inability
of sparse data to properly capture the complexity of a classification problem
was also analyzed by Ho [36]. A nice discussion of the impact of the small
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sample size problem in array expression data is presented in Dougherty [15].
The implications of the ratio of features to samples is critical as sparsely
populated data sets can very easily lead to random features appearing to be
informative (i.e., able to classify data) when in reality no structure exists in
the data whatsoever. It should be expected that simple minimization of the
number of features (genes) in a model need not necessarily provide the best
possible answer. Additional complexity restrictions will have to be proposed to
balance the lack of available data although no definite answer can be provided
as no analysis can replace accurate and adequate data.

Gene selection using support vector machines

Reducing the number of noisy measured variables reduces potential noise,
hence avoids pointless overfitting. Selecting the optimal number of features
is a complicated task: too few genes will not discriminate or predict; too
many genes might be introducing noise to the model rather than information.
Therefore, the identification of informative genes is a significant component
of an integrated computer-assisted analysis of array experiments. However,
in current practice, the identification of such a critical subset of genes whose
expression is informative is accomplished as a by-product of some other activ-
ity, for instance, by analyzing patterns in “heat maps” in hierarchical clus-
tering, the loadings of singular vectors, or by assessing the ability of certain
genes to maximize the separability between classes. In most cases the question
of identifying differentially expressed genes is restated as a hypothesis-testing
problem in which the null hypothesis of no association between expression
levels and responses of interest is tested (see Dudoit et al. [17]).

SVMs are powerful classifiers based on regularization techniques for regres-
sion (see Vapnik [57]). Guyon et al. [34] discuss a recursive forward selection
procedure for ranking features in gene expression experiments. Because the
method, in general, attempts to identify a surface separating different classes,
the assumption is that the weights of the feature in the decision function
should also serve to quantify the importance of each feature. Specifically,
Guyon et al. [34] follow the formalism of Cortes and Vapnik [11] in which
the following problem is considered. Given a set of training examples {xk},
xk ∈ R

n and class labels for each example {yk}, defined as either +1 or −1,
a separating surface is defined as the solution of an optimization problem as
defined earlier. The hyperplane D = w · x + b = 0 is the one that separates
the training examples belonging to the two classes with a maximal margin.
A metric for the ranking of the features is based on the quantity w2

i . Guyon
et al. [34] developed a recursive feature elimination procedure, which succes-
sively ranked and eliminated features and demonstrated the ability of the
SVM-based procedure to extract reduced sets of biologically relevant genes.
The general observation was that the quality of the SVM classifier improves
once irrelevant features are removed. Alternatively, Bradley and Mangasarian
[4] presented a variant of the basic SVM that augments the objective by
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the addition of the term λw�w/2, which appropriately weights the scarcity
of the vector defining the separating hyperplane. They also discuss possible
reformulations of this formulation that render the problem one of minimiz-
ing a concave objective subject to linear constraints. Despite the fact that the
problem is non-convex, it can be efficiently solved. The issues of non-convexity
and global optimality will be revisited later.

11.3.3 Simultaneous gene selection and tissue classification

A mixed-integer linear formulation was recently proposed by Sun and Xiong
[54] and will be used for the purposes of our discussion. Feature selection is
always considered within the framework of a given analysis. This could be
model development/fitting, classification, clustering, and so forth. In other
words we want to extract the minimum number of required independent vari-
ables necessary to perform a particular task. Therefore, an objective measur-
ing the “goodness of fit” will be required. The parameters associated with
the model naturally define a continuous optimization problem. The notion of
selection a subset of variables, out of superset of possible alternatives, natu-
rally lends itself to a combinatorial (integer) optimization problem. Therefore,
depending on the model used to describe the data, the problem of feature
selection will end up being a mixed integer (non) linear optimization prob-
lem. Furthermore, this problem is a multicriteria optimization as one wishes
to simultaneously minimize the model error and the number of features used.
Sun and Xiong [54] propose the use of a linear discriminator, similar to a SVM
to be discussed later. Let m denote the number of observations for a two-class
problem such that k and � denote the number of samples in each class (for
example, number of benign and cancerous cells, respectively). We also denote
as I1 and I2 the indices of the corresponding samples, and I = I1∪ I2 denotes
the entire set of samples. Finally, the set J denotes the set of all genes recorded
in the observations, and J ′ ⊂ J denotes the set of genes (features) that are
required to develop an accurate model. The expression data are presented in
the form xij , i = 1, . . . , I, j = 1, . . . , J . A linear classifier is constructed as:

β0 +
∑

j∈J

βjxij < 0 i ∈ I1

β0 +
∑

j∈J

βjxij > 0 i ∈ I2.

However, because the observations are not, in general, perfectly separable by
a linear model, a goal programming formulation can be proposed whose goal
is to estimate the coefficients that minimize the deviations from the classifier
model. That is

min
∑

i∈I1

d1
i +

∑

i∈I2

d2
i
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subject to

β0 +
∑

j∈J ′

βjxij − d1
i + d2

i = −δ i ∈ I1

β0 +
∑

j∈J ′

βjxij − d1
i + d2

i = δ i ∈ I2

βj ∈ R j ∈ J ∪ {0}
d1

i , d
2
i ∈ R

+ i ∈ I1 ∪ I2

where δ is a small constant. It can either be fixed based on user preferences or
be added to the objective to be minimized. In order to minimize the number
of variables used in the classifier, hence extract the most relevant features
for the specific linear model, binary variables need to be introduced to define
whether a particular variable is used in the model or not. Therefore:

yj =
{

1 j ∈ J ′

0 j �∈ J ′

The number of “active” genes can therefore be constrained (that is, intro-
duced parametrically in the formulation in order to avoid the solution of a
multicriteria optimization problem. According to the e-constraint method, one
additional constraint of the form

∑

j∈J ′

yj ≤ ε

is introduced. The complete MIP formulation thus becomes:

min
∑

i∈I1

d1
i +

∑

i∈I2

d2
i

subject to

β0 +
∑

j∈J ′

βjxij − d1
i + d2

i = −δ i ∈ I1

β0 +
∑

j∈J ′

βjxij − d1
i + d2

i = δ i ∈ I2

∑

j∈J ′

yj ≤ ε

βj ≤ Myj

−βj ≤ Myj

βj ∈ R j ∈ J ∪ {0}
d1

i , d
2
i ∈ R

+ i ∈ I1 ∪ I2

yj ∈ {0, 1}.
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11.4 Inferring Regulatory Networks

11.4.1 Mixed-integer formulations

It would have been misleading to assume that gene expression experiments
define static and time-independent observations. Temporal, i.e., dynamic,
measurements of gene expression activities exhibit the wealth of complexity
characterizing the genomic response to external stimuli. A complete under-
standing of the organization and dynamics of gene regulatory networks is an
essential first step toward realizing the goal of deciphering the complex reg-
ulation underlying gene expression (see Bower and Bolouri [2], Dasika et al.
[13]).

Unlike the preceding discussion, the expression level of a gene is now con-
sidered to be a function of time, Zi(t). The expression of any given gene
i is however regulated by the expression of some other gene j with an effec-
tive delay τ . From a biological point of view, the time delay in gene regulation
characterizes the various underlying processes such as transcription and trans-
lation introduced earlier in this chapter. The strength of the time regulation
is denoted by wijτ . The sign denotes either activation or inhibition of expres-
sion. In order to derive biologically relevant activation/inhibition relations,
logical constraints are imposed to denote the existence of these restrictions.
Specifically:

Yijτ =
{

1 if gene j regulates gene i with time delay τ
0 otherwise.

Dasika et al. [13] derived the following optimization problem to estimate the
potential connectivity and interaction matrix for a given set of temporal gene
expression experiments (expression on N genes measured at T time points):

min
1

NT

N∑

i=1

T∑

j=1

[
e+

i (t)− e−i (t)
]

subject to

Żi(t)−
τmax∑

τ=0

N∑

j=1

ωijτZj(t− τ) =
[
e+

i (t)− e−i (t)
]

i = 1, . . . , N ; t = 1, . . . , T

ωijτ ≥ Ωmin
ji Yjiτ i, j = 1, . . . , N ; t = 1, . . . , τmax

ωijτ ≤ Ωmax
ji i, j = 1, . . . , N ; τ = 1, . . . , τmax

τmax∑

τ=0

Yjiτ ≤ 1 i, j = 1, . . . , N

τmax∑

τ=0

N∑

j=1

Yjiτ ≤ Ni i = 1, . . . , N
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Yjiτ ∈ {0, 1} i, j = 1, . . . , N ; τ = 1, . . . , τmax

e+
i (t), e−i (t) ∈ R

+ i = 1, . . . , N ; t = 1, . . . , T.

Ni denotes the maximum number of regulatory inputs for gene i, e±i denotes
positive and negative error variables respectively expressing the deviation from
the experimentally measured gene expression values, τmax denotes the maxi-
mum allowed time delay in the model, and Ωmax

ji denote maximum values for
the regulatory coefficients. Dasika et al. [13] demonstrate an effective solution
of the proposed formulation based on a sequential bound relaxation scheme.
This work demonstrates nicely how a mathematical programming formalism
can assist in the analysis of temporal data that present a significant increase
in problem complexity compared with the time-independent data discussed
earlier.

11.4.2 Multicriteria optimization for generic network modeling

Approaches like the one described in the previous section attempt to reverse
engineer genetic networks from microarray data. A major problem, however,
is how to reliably find interactions when faced with a relatively small number
of arrays compared with data (small sample size problem discussed earlier).
To address this dimensionality problem, prior biological knowledge needs to
be incorporated, in the form of constraints, about the genetic networks. This
can be modeled in terms of limited connectivity, redundancy, stability, and
robustness. Recently, van Someren et al. [56] presented a multiobjective formu-
lation to address these issues. The problem addressed concerns the definition
of appropriate genetic interactions from a set of temporal gene expression
data. Specifically, we are given a set gi(t) representing the expression level of
gene i at time point t and let N genes be measured at each time point. The
expression state of the organism is thus defined as g(t) = [g1(t), . . . , gN (t)]�.
The concatenated expression levels at each time t are defined as xq = g(t).
Van Someren et al. [56] assumed the simplest dynamic relation for their model,
i.e., linear. That is, the state of the system at t + 1 is a linear function of the
state of the system at time t: xq+1 = W · xq. The matrix of interactions W
is termed the gene regulation matrix (GRM). As previously stated, a nonzero
entry wij denotes the existence of a regulatory connection between genes i and
j, the sign defines an activating action (> 0) or an inhibiting action (< 0).
In order to learn the gene regulation matrix, we simply require that the pre-
dicted states of gene i are close as possible to the target (measured) states.
The corresponding error is represented by the mean square error criterion
defined as:

fMSE(wi) =
1

Q− 1

Q−1∑

q=1

(
wi · xq − xq+1

)2
.

The authors model two biologically relevant constrains. The first one deals
with the knowledge that a particular node is influenced only by a limited
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number of other genes. The connectivity is defined as the number of non-zero
weights in the W matrix

fc(wi) =
N∑

j=1

cij

where

cij =
{

1 if wij �= 0
0 if wij = 0.

The second constraint deals with the realization that gene networks are robust
in the respect to noise. The robustness is here defined as the inherent ability
not to propagate forward in time small perturbations in the current expression
state. A metric for the robustness is the first derivative of models’ output
and it is minimized by minimizing the sum of the squared (or absolute) first
derivatives fS(wi) =

∑N
j=1 w2

ij . Van Someren et al. [56] demonstrate how the
Pareto-front can be generated efficiently in order to balance the requirement
for accuracy in the model and robustness and stability in the predictions.

11.5 A Final Comment

It is clear from the preceding discussion that feature selection, clustering,
and classification are tasks intimately connected. Numerous techniques have
been developed that addressed each problem independently. One of the major
advantages of mathematical programming (MP) formulations is that they
can bring these tasks explicitly together within a similar framework. The
goal of this short exposition was not only to show, by example, how some
key questions in biology can be advanced by formulating them as MP prob-
lems, but also to demonstrate that one of the major advantages of MP-based
approaches is the integrated and highly flexible formulations that capitalize
on our advanced understanding of large-scale mixed-integer (non)linear opti-
mization theory. It should be pointed out that a number of other optimiza-
tion (continuous and mixed-integer) reformulations of data mining have been
proposed recently by Glen [27, 28, 29]. We have chosen, however, to focus on
methods that have found direct application to microarray expression data and
hence left their presentation out of this short review. We do however encour-
age the interested reader to follow up with such methods because we believe
that they will become critical enablers for addressing some of the important
open issues such as the ones discussed in the following section.

11.6 Research Challenges

Numerous issues can be raised for future research. In fact, the advantage of a
MP-based formalism is the tremendous flexibility it provides.
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11.6.1 Multiobjective optimization

Interpretation of biological information needs to tackle multiple simultaneous
objectives. In this short review, we discussed simultaneous optimization of
accuracy and size of classifier (number of features). In clustering applications,
the number of clusters is yet another level of complexity, hence an additional
decision variable. Therefore, multicriteria trade-off curves (Pareto solutions)
have to be developed for these high-dimensional mixed-integer (non)linear
optimization problems.

11.6.2 Incorporation of biological constraints

One of the advantages of using mathematical programming techniques is
that constraints can be readily accounted for. Thus far, microarray anal-
yses approaches treat the array data as raw unconstrained measurements.
One of the targets of microarray analysis is to identify potential correlations
among the data. However, prior biological knowledge is not taken into account
mainly because most data mining methods cannot handle implicit or explicit
constraints. Recently Sese et al. [51] demonstrated the need to account for
biological driven constraints when clustering expression profiles.

11.6.3 Large-scale combinatorial optimization

The development of scalable algorithms is a daunting task in optimization
theory. With the recent developments in genomics, we should be expecting
routinely the analysis of gene arrays composed of tens of thousands of probes
(hence tens of thousands of binary variables in the MIP gene selection formula-
tion). Duarte Silva and Stam [16], Gallagher et al. [25], and Rubin [49] discuss
various mixed-integer reformulations to the classification problem. Undoubt-
edly, the biological sciences will greatly benefit by the anticipated advances
in optimization theory and practice when used to target problems such as the
ones just described. The recent work of Shioda [52] identified opportunities
for successful reformulations of various data mining tasks in the context of
linear integer optimization. Busygin et al. [8] present some more recent ideas
for addressing the bi-clustering problem as a fractional 0-1 optimization prob-
lem. Undoubtedly, integer optimization will play a prominent role in feature
algorithmic developments as recent results demonstrate the complementarity
of the different methodologies, suggesting that a unified approach may help
to uncover complex genetic risk factors not currently discovered with a single
method (see Moscato et al. [45]).

11.6.4 Global optimization

The development of general nonlinear, non-convex separating boundaries nat-
urally leads to requirements of solving large-scale combinatorial nonlinear
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problems to global optimality. Recent advances in the theory and practice
of deterministic global optimization are also expected to be critical enablers
(see Floudas [19]).

11.6.5 Multiclass problems

Most of the recent developments on mathematical programming-driven
approaches are based on two-class problems. The simplest multiclass exten-
sion is the one-against-all by constructing k SVM models, where k is the
number of classes. The ith SVM classifies the examples of class i against all
the other samples in all other classes. Another alternative builds one-against-
one classifiers by building k(k − 1)/2 models where each is trained on data
from two classes. Hsu and Lin [37] discuss a computational comparison of the
models. The emphasis of current research is on novel methods for generating
all the decision functions through the solution of a single, but much larger,
optimization problem.

11.6.6 Analyzing almost empty spaces

The sparseness of the data set is a critical roadblock. Accurate models can be
developed using convoluted optimization approaches. However, we would con-
stantly lack appropriately populated data sets in order to achieve a reasonable
balance between the thousands of independent variables (genes measured) and
necessary measurements (tissue samples) for a robust identification. Informa-
tion theoretic approaches accounting for complexity (Akaike and Bayesian
Information Criteria) should be developed to strike a balance between the
complexity and the accuracy of the model so as to avoid pointless overfitting
of the sparsely populated data sets.

11.6.7 Uncertainty considerations

Noise and uncertainty in the data is a given. Therefore, data mining algorithms
in general and mathematical programming formulations in particular have to
account for the presence of noise. Issues from robustness and uncertainty
propagation have to be incorporated. However, an interesting issue emerges:
how do we distinguish between noise and an infrequent, albeit interesting
observation? This in fact may be a question with no answer especially if we
consider the implications of sparsely populated data sets.

11.6.8 Mixed-integer dynamic optimization

We demonstrated how researchers begin to explore the dynamic component
of the gene expression data. This type of analysis however is expected to
be enabled tremendously by upcoming advances in efficient algorithms for
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addressing large-scale mixed-integer dynamic optimization problems. Once
the models become nonlinear and non-convex, the issue of global optimality
will once again become pertinent.

11.6.9 Reformulations

Undoubtedly some of the most critical advances in the practice of math-
ematical programming–based methods for the analysis of microarray data
in general and data mining in particular have been the result of fundamen-
tal advances in terms of reformulating large-scale optimization problems and
devising ingenious solutions methodologies. To that effect, the pioneering work
of Mangasarian [43, 44] deserves particular mention. Stating the data mining
tasks as optimization problems is but the beginning. The most appealing
characteristic of gene expression analysis is the enormous dimensionality of
the resulting optimization problem. High-performance computing will with-
out a doubt have a profound effect, however, true advances will be the result
of ingenious algorithmic developments. This is a critical step so that rigor-
ous optimization methods become true competitors for the simpler, yet very
efficient, statistics-based analysis methods.

11.6.10 Interpretation and visualization

The ultimate goal of data mining is the understanding of the data and the
development of actionable strategies based on the conclusions. We need to
improve not only the interpretation of the derived models but also the knowl-
edge delivery methods based on the derived models. Optimization and math-
ematical programming need to provide not just the optimal solution but also
some way of interpreting the implications of a particular solution including
the quantification of potential crucial sensitivities.
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Abstract. In this chapter, we present classification models based on mathematical
programming approaches. We first provide an overview on various mathematical pro-
gramming approaches, including linear programming, mixed-integer programming,
nonlinear programming, and support vector machines. Next, we present our effort of
novel optimization-based classification models that are general purpose and suitable
for developing predictive rules for large heterogeneous biological and medical data
sets. Our predictive model simultaneously incorporates (1) the ability to classify
any number of distinct groups; (2) the ability to incorporate heterogeneous types
of attributes as input; (3) a high-dimensional data transformation that eliminates
noise and errors in biological data; (4) the ability to incorporate constraints to limit
the rate of misclassification, and a reserved-judgment region that provides a safe-
guard against over-training (which tends to lead to high misclassification rates from
the resulting predictive rule); and (5) successive multistage classification capabil-
ity to handle data points placed in the reserved judgment region. To illustrate the
power and flexibility of the classification model and solution engine, and its multi-
group prediction capability, application of the predictive model to a broad class of
biological and medical problems is described. Applications include: the differential
diagnosis of the type of erythemato-squamous diseases; predicting presence/absence
of heart disease; genomic analysis and prediction of aberrant CpG island meythlation
in human cancer; discriminant analysis of motility and morphology data in human
lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identifica-
tion of tumor shape and volume in treatment of sarcoma; multistage discriminant
analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native
and angiogenic microvascular networks for early diagnosis of diabetes, aging, mac-
ular degeneracy, and tumor metastasis; prediction of protein localization sites; and
pattern recognition of satellite images in classification of soil types. In all these
applications, the predictive model yields correct classification rates ranging from
80% to 100%. This provides motivation for pursuing its use as a medical diagnostic,
monitoring, and decision-making tool.
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12.1 Introduction

Classification is a fundamental machine learning task whereby rules are devel-
oped for the allocation of independent observations to groups. Classic exam-
ples of applications include medical diagnosis (the allocation of patients to
disease classes based on symptoms and lab tests), and credit screening (the
acceptance or rejection of credit applications based on applicant data). Data
are collected concerning observations with known group membership. This
training data is used to develop rules for the classification of future observa-
tions with unknown group membership.

In the introduction section, we briefly describe some terminologies related
to classification and provide a brief organization of the materials written in
this chapter.

12.1.1 Pattern recognition, discriminant analysis, and statistical
pattern classification

Cognitive science is the science of learning, knowing, and reasoning. Pattern
recognition is a broad field within cognitive science that is concerned with the
process of recognizing, identifying, and categorizing input information. These
areas intersect with computer science, particularly in the closely related areas
of artificial intelligence, machine learning, and statistical pattern recognition.
Artificial intelligence is associated with constructing machines and systems
that reflect human abilities in cognition. Machine learning refers to how these
machines and systems replicate the learning process, which is often achieved
by seeking and discovering patterns in data, or statistical pattern recognition.

Discriminant analysis is the process of discriminating between categories
or populations. Associated with discriminant analysis as a statistical tool are
the tasks of determining the features that best discriminate between popu-
lations, and the process of classifying new objects based on these features.
The former is often called feature selection and the latter is referred to as
statistical pattern classification. This work will be largely concerned with the
development of a viable statistical pattern classifier.

As with many computationally intensive tasks, recent advances in com-
puting power have led to a sharp increase in the interest and application of
discriminant analysis techniques. The reader is referred to Duda et al. [25]
for an introduction to various techniques for pattern classification and to
Zopounidis et al. [121] for examples of applications of pattern classification.

12.1.2 Supervised learning, training, and cross-validation

An entity or observation is essentially a data point as commonly understood
in statistics. In the framework of statistical pattern classification, an entity
is a set of quantitative measurements (or qualitative measurements expressed
quantitatively) of attributes for a particular object. As an example, in medical
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diagnosis an entity could be the various blood chemistry levels of a patient.
With each entity is associated one or more groups (or populations, classes, cat-
egories) to which it belongs. Continuing with the medical diagnosis example,
the groups could be the various classes of heart disease. Statistical classifica-
tion seeks to determine rules for associating entities with the groups to which
they belong. Ideally, these associations align with the associations that human
reasoning would produce based on information gathered on objects and their
apparent categories.

Supervised learning is the process of developing classification rules based
on entities for which the classification is already known. Note that the process
implies that the populations are already well-defined. Unsupervised learning
is the process of discovering patterns from unlabeled entities and thereby
discovering and describing the underlying populations. Models derived using
supervised learning can be used for both functions of discriminant analysis –
feature selection and classification. The model that we consider is a method
for supervised learning, so we assume that populations are previously defined.

The set of entities with known classification that is used to develop classi-
fication rules is the training set. The training set may be partitioned so that
some entities are withheld during the model-development process, also known
as the training of the model. The withheld entities form a test set that is used
to determine the validity of the model, a process known as cross-validation.
Entities from the test set are subjected to the rules of classification to measure
the performance of the rules on entities with unknown group membership.

Validation of classification models is often performed using m-fold cross-
validation where the data with known classification is partitioned into m folds
(subsets) of approximately equal size. The classification model is trained m
times, with the mth fold withheld during each run for testing. The performance
of the model is evaluated by the classification accuracy on the m test folds
and can be represented using a classification matrix or confusion matrix.

The classification matrix is a square matrix with the number of rows and
columns equal to the number of groups. The ijth entry of the classification
matrix contains the number or proportion of test entities from group i that
were classified by the model as belonging to group j. Therefore, the num-
ber or proportion of correctly classified entities are contained in the diagonal
elements of the classification matrix, and the number or proportion of mis-
classified entities are in the off-diagonal entries.

12.1.3 Bayesian inference and classification

The popularity of Bayesian inference has risen drastically over the past sev-
eral decades, perhaps in part due to its suitability for statistical learning.
The reader is referred to O’Hagan’s volume [92] for a thorough treatment of
Bayesian inference. Bayesian inference is usually contrasted against classic
inference, though in practice they often imply the same methodology.
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The Bayesian method relies on a subjective view of probability, as opposed
to the frequentist view upon which classic inference is based [92]. A subjective
probability describes a degree of belief in a proposition held by the investigator
based on some information. A frequency probability describes the likelihood
of an event given an infinite number of trials.

In Bayesian statistics, inferences are based on the posterior distribution.
The posterior distribution is the product of the prior probability and the
likelihood function. The prior probability distribution represents the initial
degree of belief in a proposition, often before empirical data is considered.
The likelihood function describes the likelihood that the behavior is exhibited,
given that the proposition is true. The posterior distribution describes the
likelihood that the proposition is true, given the observed behavior.

Suppose we have a proposition or random variable θ about which we would
like to make inferences, and data x. Application of Bayes’ theorem gives

dF (θ|x) =
dF (θ)dF (x|θ)

dF (x)
.

Here, F denotes the (cumulative) distribution function. For ease of conceptu-
alization, assume that F is differentiable, then dF = f , and the above equality
can be rewritten as

f(θ|x) =
f(θ)f(x|θ)

f(x)
.

For classification, a prior probability function π(g) describes the likelihood
that an entity is allocated to group g regardless of its exhibited feature val-
ues x. A group density function f(x|g) describes the likelihood that an entity
exhibits certain measurable attribute values, given that it belongs to popula-
tion g. The posterior distribution for a group P (g|x) is given by the product of
the prior probability and group density function, normalized over the groups
to obtain a unit probability over all groups. The observation x is allocated to
group h if

h = arg max
g∈G

P (g|x) = arg max
g∈G

π(g)f(x|g)
∑

j∈G
π(j)f(x|j)

where G denotes the set of groups.

12.1.4 Discriminant functions

Most classification methods can be described in terms of discriminant func-
tions. A discriminant function takes as input an observation and returns infor-
mation about the classification of the observation. For data from a set of
groups G, an observation x is assigned to group h if h = arg max

g∈G
lg(x) where

the functions lg are the discriminant functions. Classification methods restrict
the form of the discriminant functions, and training data is used to determine
the values of parameters that define the functions.
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The optimal classifier in the Bayesian framework can be described in terms
of discriminant functions. Let πg = π(g) be the prior probability that an
observation is allocated to group g and let fg(x) = f(x|g) be the likelihood
that data x is drawn from population g. If we wish to minimize the probability
of misclassification given x, then the optimal allocation for an entity is to the
group

h = arg max
g∈G

P (g|x) = arg max
g∈G

πgfg(x)
∑

j∈G
πjfj(x)

.

Under the Bayesian framework,

P (g|x) =
πgf(x|g)

f(x)
=

πgf(x|g)
∑

j∈G
πjf(x|j) .

The discriminant functions can be lg(x) = P (g|x) for g ∈ G. The same
classification rule is given by lg(x) = πgf(x|g) and lg(x) = log f(x|g)+ log πg.
The problem then becomes finding the form of the prior functions and likeli-
hood functions that match the data.

If the data are multivariate normal with equal covariance matrices
(f(x|g) ∼ N(μg,Σ)), then a linear discriminant function is optimal:

lg(x) = log f(x|g) + log πg

= −1/2(x− μg)T Σ−1(x− μg)− 1/2 log |Σg| − d/2 log 2π + log πg

= wT
g x + wg0

where d is the number of attributes, wg = Σ−1μg, and wg0 = −1/2μT
g Σ−1μg +

log πg +xT Σ−1x−d/2 log 2π. Note that the last two terms of wg0 are constant
for all g and need not be calculated. When there are 2 groups (G = {1, 2}) and
the priors are equal (π1 = π2), the discriminant rule is equivalent to Fisher’s
linear discriminant rule [30]. Fisher’s rule can also be derived, as it was by
Fisher, by choosing w so that (wT μ1−wT μ2)

2

wT Σw
is maximized.

These linear and quadratic discriminant functions are often applied to
data sets that are not multivariate normal or continuous (see [98, pages 234–
235]) by using approximations for the means and covariances. Regardless,
these models are parametric in that they incorporate assumptions about the
distribution of the data. Fisher’s linear discriminant is non-parametric because
no assumptions are made about the underlying distribution of the data. Thus,
for a special case, a parametric and non-parametric model coincide to produce
the same discriminant rule. The linear discriminant function derived above is
also called the homoscedastic model, and the quadratic discriminant function
is called the heteroscedastic model. The exact form of discriminant functions
in the Bayesian framework can be derived for other distributions [25].

Some classification methods are essentially methods for finding coefficients
for linear discriminant functions. In other words, they seek coefficients wg and
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constants wg0 such that lg(x) = wgx+wg0, g ∈ G, is an optimal set of discrim-
inant functions. The criteria for optimality is different for different methods.
Linear discriminant functions project the data onto a linear subspace and then
discriminate between entities in that subspace. For example, Fisher’s linear
discriminant projects two-group data on an optimal line and discriminates
on that line. A good linear subspace may not exist for data with overlap-
ping distributions between groups and therefore the data will not be classified
accurately using these methods. The hyperplanes defined by the discrimi-
nant functions form boundaries between the group regions. A large portion
of the literature concerning the use of mathematical programming models for
classification describe methods for finding coefficients of linear discriminant
functions [121].

Other classification methods seek to determine parameters to establish
quadratic discriminant functions. The general form of a quadratic discriminant
function is lg(x) = xT Wgx + wT

g x + wg0. The boundaries defining the group
regions can assume any hyperquadric form, as can the Bayes decision rules
for arbitrary multivariate normal distributions [25].

In this paper, we survey the development and advances of classification
models via the mathematical programming techniques, and summarize our
experience in classification models applied to prediction in biological and
medical applications. The rest of this chapter is organized as follows. Section
12.2 first provides a detailed overview of the development and advances of
mathematical programming-based classification models, including linear pro-
gramming, mixed-integer programming, nonlinear programming, and support
vector machine approaches. In Section 12.3, we describe our effort in develop-
ing optimization-based multigroup multistage discriminant analysis predictive
models for classification. The use of the predictive models on various biolog-
ical and medical problems are presented. Section 12.4 provides several tables
to summarize the progress of mathematical programming–based classification
models and their characteristics. This is followed by a brief description of other
classification methods in Section 12.5, and summary and concluding remarks
in Section 12.6.

12.2 Mathematical Programming Approaches

Mathematical programming methods for statistical pattern classification
emerged in the 1960s, gained popularity in the 1980s, and have grown
drastically since. Most of the mathematical programming approaches are
nonparametric, which has been cited as an advantage when analyzing contam-
inated data sets over methods that require assumptions about the distribution
of the data [107]. Most of the literature about mathematical programming
methods is concerned with either using mathematical programming to deter-
mine the coefficients of linear discriminant functions or with support vector
machines.
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The following notation will be used. The subscripts i, j, and k are used
for the observation, attribute, and group, respectively. Let xij be the value
of attribute j of observation i. Let m be the number of attributes, K be the
number of groups, Gk represent the set of data from group k, M be a big
positive number, and ε be a small positive number. The abbreviation “urs” is
used in reference to a variable to denote “unrestricted in sign.”

12.2.1 Linear programming classification models

The use of linear programs to determine the coefficients of linear discriminant
functions has been widely studied [31, 46, 50, 74]. The methods determine
the coefficients for different objectives, including minimizing the sum of the
distances to the separating hyperplane, minimizing the maximum distance of
an observation to the hyperplane, and minimizing other measures of badness
of fit or maximizing measures of goodness of fit.

Two-group classification

One of the earliest linear programming (LP) classification models was pro-
posed by Mangasarian [74] to construct a hyperplane to separate two groups
of data. Separation by a nonlinear surface using LP was also proposed when
the surface parameters appear linearly. Two sets of points may be insepa-
rable by one hyperplane or surface through a single-step LP approach, but
they can be strictly separated by more planes or surfaces via a multistep LP
approach (Mangasarian [75]). In [75] real problems with up to 117 data points,
10 attributes, and 3 groups were solved. The 3-group separation was achieved
by separating group 1 from groups 2 and 3, and then group 2 from group 3.

Studies of LP models for the discriminant problem in the early 1980s
was carried out by Hand [47], Freed and Glover [31, 32], and Bajgier and
Hill [5]. Three LP models for the two-group classification problem, including
minimizing the sum of deviations (MSD), minimizing the maximum deviation
(MMD), and minimizing the sum of interior distances (MSID) were proposed.
Freed and Glover [33] provided computational studies of these models where
the test conditions involved normal and nonnormal populations.

• MSD (Minimize the sum of deviations)

Min
∑

i di

s.t. w0 +
∑

j xijwj − di ≤ 0 ∀i ∈ G1

w0 +
∑

j xijwj + di ≥ 0 ∀i ∈ G2

wj urs ∀j
di ≥ 0 ∀i

• MMD (Minimize the maximum deviation)

Min d
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s.t. w0 +
∑

j xijwj − d ≤ 0 ∀i ∈ G1

w0 +
∑

j xijwj + d ≥ 0 ∀i ∈ G2

wj urs ∀j
d ≥ 0

• MSID (Minimize the sum of interior distances)

Min pd−
∑

i ei

s.t. w0 +
∑

j xijwj − d + ei ≤ 0 ∀i ∈ G1

w0 +
∑

j xijwj + d− ei ≥ 0 ∀i ∈ G2

wj urs ∀j
d ≥ 0
ei ≥ 0 ∀i

where p is a weight constant.

The objective function of the MSD model is the L1-norm distance whereas
the objective function of MMD is the L∞-norm distance. They are special
cases of Lp-norm classification [50, 108].

In some models, the constant term of the hyperplane is a fixed number
instead of a decision variable. The model MSD0 shown below is an example
where the cutoff score b replaces w0 in the formulation. The same replacement
could be used in other formulations.

• MSD0 (Minimize the sum of deviations with constant cutoff score)

Min
∑

i di

s.t.
∑

j xijwj − di ≤ b ∀i ∈ G1∑
j xijwj + di ≥ b ∀i ∈ G2

wj urs ∀j
di ≥ 0 ∀i

A gap can be introduced between the two regions determined by the sepa-
rating hyperplane to prevent degenerate solutions. Take MSD as an example,
the separation constraints become

w0 +
∑

j

xijwj − di ≤ −ε ∀i ∈ G1

w0 +
∑

j

xijwj + di ≥ ε ∀i ∈ G2.

The small number ε can be normalized to 1.
Besides introducing a gap, another normalization approach is to include

constraints such as
∑m

j=0 wj = 1 or
∑m

j=1 wj = 1 in the LP models to avoid
unbounded or trivial solutions.

Specifically, Glover et al. [45] gave the hybrid model, as follows.

• Hybrid model

Min pd +
∑

i pidi − qe−
∑

i qiei
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s.t. w0 +
∑

j xijwj − d− di + e + ei = 0 ∀i ∈ G1

w0 +
∑

j xijwj + d + di − e− ei = 0 ∀i ∈ G2

wj urs ∀j
d, e ≥ 0
di, ei ≥ 0 ∀i

where p, pi, q, qi are the cost for different deviations. Including different
combinations of deviation terms in the objective function then leads to
variant models.

Joachimsthaler and Stam [50] review and summarize LP formulations
applied to two-group classification problems in discriminant analysis, includ-
ing MSD, MMD, MSID, mixed-integer programming (MIP) models, and the
hybrid model. They summarize the performance of the LP methods together
with the traditional classification methods such as Fisher’s linear discrim-
inant function (LDF) [30], Smith’s quadratic discriminant function (QDF)
[106], and a logistic discriminant method. In their review, MSD sometimes
but not uniformly improves classification accuracy compared with traditional
methods. On the other hand, MMD is found to be inferior to MSD. Erenguc
and Koehler [27] present a unified survey of LP models and their experimen-
tal results, in which the LP models include several versions of MSD, MMD,
MSID, and hybrid models. Rubin [99] provides experimental results of com-
paring these LP models with Fisher’s LDF and Smith’s QDF. He concludes
that QDF performs best when the data follow normal distributions and that
QDF could be the benchmark when seeking situations for advantageous LP
methods. In summary, the above review papers [27, 50, 99] describe previous
work on LP classification models and their comparison with traditional meth-
ods. However, it is difficult to make definitive statements about conditions
under which one LP model is superior to others, as stated in [107].

Stam and Ungar [110] introduce a software package RAGNU, a utility
program in conjunction with the LINDO optimization software, for solving
two-group classification problems using LP-based methods. LP formulations
such as MSD, MMD, MSID, hybrid models, and their variants are contained
in the package.

There are some difficulties in LP-based formulations, in that some mod-
els could result in unbounded, trivial, or unacceptable solutions [87, 34], but
possible remedies are proposed. Koehler [51, 52, 53] and Xiao [114, 115] char-
acterize the conditions of unacceptable solutions in two-group LP discriminant
models, including MSD, MMD, MISD, the hybrid model, and their variants.
Glover [44] proposes the normalization constraint,

∑m
j=1(−|G2|

∑
i∈G1

xij +
|G1|

∑
i∈G2

xij)wj = 1, which is more effective and reliable. Rubin [100] exam-
ines the separation failure for two-group models and suggests to apply the
models twice, reversing the group designations the second time. Xiao and
Feng [116] propose a regularization method to avoid multiple solutions in LP
discriminant analysis by adding the term ε

∑m
j=1 w2

j in the objective functions.
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Bennett and Mangasarian [9] propose the following model, which mini-
mizes the average of the deviations, which is called robust linear program-
ming.

• RLP (Robust linear programming)

Min 1
|G1|

∑
i∈G1

di + 1
|G2|

∑
i∈G2

di

s.t. w0 +
∑

j xijwj − di ≤ −1 ∀i ∈ G1

w0 +
∑

j xijwj + di ≥ 1 ∀i ∈ G2

wj urs ∀j
di ≥ 0 ∀i

It is shown that this model gives the null solution w1 = · · · = wm = 0 if
and only if 1

|G1|
∑

i∈G1
xij = 1

|G2|
∑

i∈G2
xij for all j, in which case the solution

w1 = · · · = wm = 0 is guaranteed to be not unique. Data of different diseases
are tested by the proposed classification methods, as in most of Mangasarian’s
papers.

Mangasarian et al. [86] describe two applications of LP models in the field
of breast cancer research, one in diagnosis and the other in prognosis. The
first application is to discriminate benign from malignant breast lumps, and
the second one is to predict when breast cancer is likely to recur. Both of
them work successfully in clinical practice. The RLP model [9] together with
the multisurface method tree algorithm (MSMT) [8] is used in the diagnostic
system.

Duarte Silva and Stam [104] include the second-order (i.e., quadratic and
cross-product) terms of the attribute values in the LP-based models such as
MSD and hybrid models and compare them with linear models, Fisher’s LDF,
and Smith’s QDF. The results of the simulation experiments show that the
methods that include second-order terms perform much better than first-order
methods, given that the data substantially violate the multivariate normality
assumption. Wanarat and Pavur [113] investigate the effect of the inclusion
of the second-order terms in the MSD, MIP, and hybrid models when sample
size is small to moderate. However, the simulation study shows that second-
order terms may not always improve the performance of a first-order LP
model even with data configurations that are more appropriately classified
by Smith’s QDF. Another result of the simulation study is that inclusion of
the cross-product terms may hurt the model’s accuracy, and omission of these
terms causes the model to be not invariant with respect to a nonsingular
transformation of the data.

Pavur [94] studies the effect of the position of the contaminated normal
data in the two-group classification problem. The methods for comparison in
their study include MSD, MM (described in the mixed integer programming
part), Fisher’s LDF, Smith’s QDF, and nearest neighbor models. The non-
traditional methods such as LP models have potential for outperforming the
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standard parametric procedures when nonnormality is present, but this study
shows that no one model is consistently superior in all cases.

Asparoukhov and Stam [3] propose LP and MIP models to solve the two-
group classification problem where the attributes are binary. In this case, the
training data can be partitioned into multinomial cells, allowing for a sub-
stantial reduction in the number of variables and constraints. The proposed
models not only have the usual geometric interpretation but also possess a
strong probabilistic foundation. Let s be the index of the cells, n1s, n2s be
the number of data points in cell s from groups 1 and 2, respectively, and
(bs1, . . . , bsm) be the binary digits representing cell s. The model shown below
is the LP model of minimizing the sum of deviations for two-group classifica-
tion with binary attributes.

• Cell conventional MSD

Min
∑

s: n1s+n2s>0(n1sd1s + n2sd2s)
s.t. w0 +

∑
j bsjwj − d1s ≤ 0 ∀s : n1s > 0

w0 +
∑

j bsjwj + d2s > 0 ∀s : n2s > 0
wj urs ∀j
d1s, d2s ≥ 0 ∀s

Binary attributes are usually found in medical diagnoses data. In this
study, three real data sets about disease discrimination are tested: develop-
ing postoperative pulmonary embolism or not, having dissecting aneurysm or
other diseases, and suffering from posttraumatic epilepsy or not. In these data
sets, the MIP model for binary attributes (BMIP), which will be described
later, performs better than other LP models or traditional methods.

Multigroup classification

Freed and Glover [32] extend the LP classification models from two-group
to multigroup problems. One formulation that uses a single discriminant
function is given below

Min
∑K−1

k=1 ckαk

s.t.
∑

j xijwj ≤ Uk ∀i ∈ Gk ∀k∑
j xijwj ≥ Lk ∀i ∈ Gk ∀k

Uk + ε ≤ Lk+1 + αk ∀k = 1, . . . ,K − 1
wj urs ∀j
Uk, Lk urs ∀k
αk urs ∀k = 1, . . . ,K − 1

where the number ε could be normalized to be 1, and ck is the misclassification
cost. However, single function classification is not as flexible and general as
multiple function classification. Another extension from the two-group case to
multigroup in [32] is to solve two-group LP models for all pairs of groups and
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determine classification rules based on these solutions. However, in some cases
the group assignment is not clear, and the resulting classification scheme may
be sub-optimal [107].

For the multigroup discrimination problem, Bennett and Mangasarian
[10] define the piecewise-linear separability of data from K groups as the
following: The data from K groups are piecewise-linear separable if and
only if there exist (wk

0 , wk
1 , . . . , wk

m) ∈ Rm+1, k = 1, . . . ,K, such that
wh

0 +
∑

j xijw
h
j ≥ wk

0 +
∑

j xijw
k
j + 1, ∀i ∈ Gh ∀h, k �= h. The following

LP will generate a piecewise-linear separation for the K groups if one exists,
otherwise it will generate an error-minimizing separation:

Min
∑

h

∑
k �=h

1
|Gh|

∑
i∈Gh

dhk
i

s.t. dhk
i ≥ −(wh

0 +
∑

j xijw
h
j ) + (wk

0 +
∑

j xijw
k
j ) + 1 ∀i ∈ Gh ∀h, k �= h

wk
j urs ∀j, k

dhk
i ≥ 0 ∀i ∈ Gh ∀h, k �= h.

The method is tested in three data sets. It performs pretty well in two of
the data sets that are totally (or almost totally) piecewise-linear separable.
The classification result is not good in the third data set, which is inherently
more difficult. However, by combining the multisurface method tree algorithm
(MSMT) [8], the performance improves.

Gochet et al. [46] introduce an LP model for the general multigroup classi-
fication problem. The method separates the data with several hyperplanes by
sequentially solving LPs. The vectors wk, k = 1, . . . ,K, are estimated for the
classification decision rule. The rule is to classify an observation i into group
s where s = arg maxk{wk

0 +
∑

j xijw
k
j }.

Suppose observation i is from group h. Denote the goodness of fit for
observation i with respect to group k as

Gi
hk(wh, wk) = [(wh

0 +
∑

j

xijw
h
j )− (wk

0 +
∑

j

xijw
k
j )]+

where [a]+ = max{0, a}.
Likewise, denote the badness of fit for observation i with respect to group

k as
Bi

hk(wh, wk) = [(wh
0 +

∑

j

xijw
h
h)− (wk

0 +
∑

j

xijw
k
j )]−

where [a]− = −min{0, a}.
The total goodness of fit and total badness of fit are then defined as

G(w) = G(w1, . . . , wK) =
∑

h

∑

k �=h

∑

i∈Gh

Gi
hk(wh, wk)

B(w) = B(w1, . . . , wK) =
∑

h

∑

k �=h

∑

i∈Gh

Bi
hk(wh, wk)
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The LP is to minimize the total badness of fit, subject to a normalization
equation, in which q > 0.

Min B(w)
s.t. G(w)−B(w) = q

w urs

Expanding G(w) and B(w) and substituting Gi
hk(wh, wk) and Bi

hk(wh, wk)
by γi

hk and βi
hk respectively, the LP becomes

Min
∑

h

∑
k �=h

∑
i∈Gh

βi
hk

s.t. (wh
0 +

∑
j xijw

h
j )− (wk

0 +
∑

j xijw
k
j ) = γi

hk − βi
hk ∀i ∈ Gh ∀h, k �= h∑

h

∑
k �=h

∑
i∈Gh

(γi
hk − βi

hk) = q

wk
j urs ∀j, k

γi
hk, βi

hk ≥ 0 ∀i ∈ Gh ∀h, k �= h

The classification results for two real data sets show that this model
can compete with Fisher’s LDF and the nonparametric k-nearest neighbor
method.

The LP-based models for classification problems highlighted above are
all nonparametric models. In Section 12.3, we describe LP-based and MIP-
based classification models that utilize a parametric multigroup discriminant
analysis approach [39, 40, 63, 60]. These latter models have been employed
successfully in various multigroup disease diagnosis and biological/medical
prediction problems [16, 28, 29, 56, 57, 59, 60, 65, 64].

12.2.2 Mixed-integer programming classification models

Whereas LP offers a polynomial-time computational guarantee, MIP allows
more flexibility in (among other things) modeling misclassified observations
and/or misclassification costs.

Two-group classification

In the two-group classification problem, binary variables can be used in the
formulation to track and minimize the exact number of misclassifications.
Such an objective function is also considered as the L0-norm criterion [107].

• MM (Minimizing the number of misclassifications)

Min
∑

i zi

s.t. w0 +
∑

j xijwj ≤Mzi ∀i ∈ G1

w0 +
∑

j xijwj ≥ −Mzi ∀i ∈ G2

wj urs ∀j
zi ∈ {0, 1} ∀i
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The vector w is required to be a nonzero vector to prevent the trivial
solution.

In the MIP formulation, the objective function could include the devi-
ation terms, such as those in the hybrid models, as well as the number of
misclassifications [5]; or it could represent expected cost of misclassification
[6, 1, 105, 101]. In particular, there are some variant versions of the basic
model.

Stam and Joachimsthaler [109] study the classification performance of MM
and compare it with MSD, Fisher’s LDF, and Smith’s QDF. In some cases, the
MM model performs better, but in some cases it does not. MIP formulations
are in the review studies of Joachimsthaler and Stam [50] and Erenguc and
Koehler [27] and contained in the software developed by Stam and Ungar
[110]. Computational experiments show that the MIP model performs better
when the group overlap is higher [50, 109], although it is still not easy to reach
general conclusions [107].

Because the MIP model is NP-hard, exact algorithms and heuristics are
proposed to solve it efficiently. Koehler and Erenguc [54] develop a proce-
dure to solve MM in which the condition of nonzero w is replaced by the
requirement of at least one violation of the constraints w0 +

∑
j xijwj ≤ 0

for i ∈ G1 or w0 +
∑

j xijwj ≥ 0 for i ∈ G2. Banks and Abad [6] solve the
MIP of minimizing the expected cost of misclassification by an LP-based algo-
rithm. Abad and Banks [1] develop three heuristic procedures to the problem
of minimizing the expected cost of misclassification. They also include the
interaction terms of the attributes in the data and apply the heuristics [7].
Duarte Silva and Stam [105] introduce the Divide and Conquer algorithm for
the classification problem of minimizing the misclassification cost by solving
MIP and LP subproblems. Rubin [101] solves the same problem by using a
decomposition approach and tests this procedure on some data sets, including
two breast cancer data sets. Yanev and Balev [119] propose exact and heuris-
tic algorithms for solving MM, which are based on some specific properties of
the vertices of a polyhedral set neatly connected with the model.

For the two-group classification problem where the attributes are binary,
Asparoukhov and Stam [3] propose LP and MIP models that partition the
data into multinomial cells and result in fewer number of variables and con-
straints. Let s be the index of the cells, n1s, n2s be the number of data points
in cell s from groups 1 and 2, respectively, and (bs1, . . . , bsm) be the binary dig-
its representing cell s. Below is the MIP model for binary attributes (BMIP),
which performs best in three real data sets in [3].

• BMIP

Min
∑

s: n1s+n2s>0{|n1s − n2s|zs + min(n1s, n2s)}
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s.t. w0 +
∑

j bsjwj ≤Mzs ∀s : n1s ≥ n2s; n1s > 0
w0 +

∑
j bsjwj > −Mzs ∀s : n1s < n2s

wj urs ∀j
zs ∈ {0, 1} ∀s : n1s + n2s > 0

Pavur et al. [96] include different secondary goals in the model MM and
compare their misclassification rates. A new secondary goal is proposed, which
maximizes the difference between the means of the discriminant scores of the
two groups. In this model the term −δ is added to the minimization objective
function as a secondary goal with a constant multiplier while the constraint∑

j x̄
(2)
j wj −

∑
j x̄

(1)
j wj ≥ δ is included, where x̄

(k)
j = 1

|Gk|
∑

i∈Gk
xij ∀j, for

k = 1, 2. The results of simulation study show that an MIP model with the
proposed secondary goal has better performance than other studied models.

Glen [42] proposes integer progreamming (IP) techniques for normalization
in the two-group discriminant analysis models. One technique is to add the
constraint

∑m
j=1 |wj | = 1. In the proposed model, wj for j = 1, . . . ,m is

represented by wj = w+
j − w−

j , where w+
j , w−

j ≥ 0, and binary variables δj

and γj are defined such that δj = 1⇔ w+
j ≥ ε and γj = 1⇔ w−

j ≥ ε. The IP
normalization technique is applied to MSD and MMD, and the MSD version
is presented below.

• MSD – with IP normalization

Min
∑

i di

s.t. w0 +
∑m

j=1 xij(w+
j − w−

j )− di ≤ 0 ∀i ∈ G1

w0 +
∑m

j=1 xij(w+
j − w−

j ) + di ≥ 0 ∀i ∈ G2∑m
j=1(w

+
j + w−

j ) = 1
w+

j − εδj ≥ 0 ∀j = 1, . . . ,m

w+
j − δj ≤ 0 ∀j = 1, . . . ,m

w−
j − εγj ≥ 0 ∀j = 1, . . . , m

w−
j − γj ≤ 0 ∀j = 1, . . . ,m

δj + γj ≤ 1 ∀j = 1, . . . ,m
w0 urs
w+

j , w−
j ≥ 0 ∀j = 1, . . . ,m

di ≥ 0 ∀i
δj , γj ∈ {0, 1} ∀j = 1, . . . , m

The variable coefficients of the discriminant function generated by the
models are invariant under origin shifts. The proposed models are validated
using two data sets from [45, 87]. The models are also extended for attribute
selection by adding the constraint

∑m
j=1(δj + γj) = p, which allows only a

constant number, p, of attributes to be used for classification.
Glen [43] develops MIP models that determine the thresholds for forming

dichotomous variables as well as the discriminant function coefficients, wj . For
each continuous attribute to be formed as a dichotomous attribute, the model
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finds the threshold among possible thresholds while determining the sepa-
rating hyperplane and optimizing the objective function such as minimizing
the sum of deviations or minimizing the number of misclassifications. Com-
putational results of a real data set and some simulated data sets show that
the MSD model with dichotomous categorical variable formation can improve
classification performance. The reason for the potential of this technique is
that the generated linear discriminant function is a nonlinear function of the
original variables.

Multigroup classification

Gehrlein [41] proposes MIP formulations of minimizing the total number of
misclassifications in the multigroup classification problem. He gives both a sin-
gle function classification scheme and a multiple function classification scheme,
as follows.

• GSFC (General single function classification – minimizing the number of
misclassifications)

Min
∑

i zi

s.t. w0 +
∑

j xijwj −Mzi ≤ Uk ∀i ∈ Gk

w0 +
∑

j xijwj + Mzi ≥ Lk ∀i ∈ Gk

Uk − Lk ≥ δ′ ∀k
Lg − Uk + Mygk ≥ δ
Lk − Ug + Mykg ≥ δ
ygk + ykg = 1

⎫
⎬

⎭
∀g, k, g �= k

wj urs ∀j
Uk, Lk urs ∀k
zi ∈ {0, 1} ∀i
ygk ∈ {0, 1} ∀g, k, g �= k

where Uk, Lk denote the upper and lower endpoints of the interval assigned
to group k, and ygk = 1 if the interval associated with group g precedes
that with group k and ygk = 0 otherwise. The constant δ′ is the minimum
width of an interval of a group and the constant δ is the minimum gap
between adjacent intervals.

• GMFC (General multiple function classification – minimizing the number
of misclassifications)

Min
∑

i zi

s.t. wh
0 +

∑
j xijw

h
j − wk

0 −
∑

j xijw
k
j + Mzi ≥ ε ∀i ∈ Gh, ∀h, k �= h

wk
j urs ∀j, k

zi ∈ {0, 1} ∀i

Both models work successfully on the iris data set provided by Fisher [30].
Pavur [93] solves the multigroup classification problem by sequentially

solving GSFC in one dimension each time. Linear discriminant functions are
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generated by successively solving GSFC with the added constraints that all
linear discriminants are uncorrelated to each other for the total data set. This
procedure could be repeated for the number of dimensions that is believed
to be enough. According to simulation results, this procedure substantially
improves the GSFC model and sometimes outperforms GMFC, Fisher’s LDF,
or Smith’s QDF.

To solve the three-group classification problem more efficiently, Loucopou-
los and Pavur [71] make a slight modification on GSFC and propose the
model MIP3G, which also minimizes the number of misclassifications. Com-
pared with GSFC, MIP3G is also a single function classification model, but it
reduces the possible group orderings from six to three in the formulation and
thus becomes more efficient. Loucopoulos and Pavur [72] report the results of
a simulation experiment on the performance of GMFC, MIG3G, Fisher’s LDF,
and Smith’s QDF for three-group classification problem with small training
samples. Second-order terms are also considered in the experiment. Simulation
results show that GMFC and MIP3G can outperform the parametric proce-
dures in some nonnormal data sets and that the inclusion of second-order
terms can improve the performance of MIP3G in some data sets. Pavur and
Loucopoulos [95] investigate the effect of the gap size in the MIP3G model for
the three-group classification problem. A simulation study illustrates that for
fairly separable data, or data with small sample sizes, a nonzero-gap model
can improve the performance. A possible reason for this result is that the
zero-gap model may be overfitting the data.

Gallagher et al. [39, 40], Lee et al. [63], and Lee [59, 60] propose MIP
models, both heuristic and exact, as a computational approach to solving the
constrained discriminant method described by Anderson [2]. These models are
described in detail in Section 12.3.

12.2.3 Nonlinear programming classification models

Nonlinear programming approaches are natural extensions for some of the
LP-based models. Thus far, nonlinear programming approaches have been
developed for 2-group classification.

Stam and Joachimsthaler [108] propose a class of nonlinear programming
methods to solve the two-group classification problem under the Lp-norm
objective criterion. This is an extension of MSD and MMD, for which the
objectives are the L1-norm and L∞-norm, respectively.

• Minimize the general Lp-norm distance

Min (
∑

i dp
i )

1/p

s.t.
∑

j xijwj − di ≤ b ∀i ∈ G1∑
j xijwj + di ≥ b ∀i ∈ G2

wj urs ∀j
di ≥ 0 ∀i
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The simulation results show that, in addition to the L1-norm and L∞-
norm, it is worth the effort to compute other Lp-norm objectives. Restricting
the analysis to 1 ≤ p ≤ 3, plus p = ∞, is recommended. This method is
reviewed by Joachimsthaler and Stam [50] and Erenguc and Koehler [27].

Mangasarian et al. [85] propose a nonconvex model for the two-group
classification problem:

Min d1 + d2

s.t.
∑

j xijwj − d1 ≤ 0 ∀i ∈ G1∑
j xijwj + d2 ≥ 0 ∀i ∈ G2

maxj=1,...,m |wj | = 1
wj urs ∀j
d1, d2 urs

This model can be solved in polynomial-time by solving 2m linear pro-
grams, which generate a sequence of parallel planes, resulting in a piecewise-
linear nonconvex discriminant function. The model works successfully in clin-
ical practice for the diagnosis of breast cancer.

Further, Mangasarian [76] also formulates the problem of minimizing the
number of misclassifications as a linear program with equilibrium constraints
(LPEC) instead of the MIP model MM described previously.

• MM-LPEC (Minimizing the number of misclassifications – Linear program
with equilibrium constraints)

Min
∑

i∈G1∪G2
zi

s.t. w0 +
∑

j xijwj − di ≤ −1 ∀i ∈ G1

zi(w0 +
∑

j xijwj − di + 1) = 0 ∀i ∈ G1

w0 +
∑

j xijwj + di ≥ 1 ∀i ∈ G2

zi(w0 +
∑

j xijwj + di − 1) = 0 ∀i ∈ G2

di(1− zi) = 0 ∀i ∈ G1 ∪G2

0 ≤ zi ≤ 1 ∀i ∈ G1 ∪G2

di ≥ 0 ∀i ∈ G1 ∪G2

wj urs ∀j

The general LPEC can be converted to an exact penalty problem with a
quadratic objective and linear constraints. A stepless Frank–Wolfe type algo-
rithm is proposed for the penalty problem, terminating at a stationary point
or a global solution. This method is called the parametric misclassification
minimization (PMM) procedure, and numerical testing is included in [77].

To illustrate the next model, we first define the step function s : R →
{0, 1} as

s(u) =
{

1 if u > 0
0 if u ≤ 0

The problem of minimizing the number of misclassifications is equivalent to
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Min
∑

i∈G1∪G2
s(di)

s.t. w0 +
∑

j xijwj − di ≤ −1 ∀i ∈ G1

w0 +
∑

j xijwj + di ≥ 1 ∀i ∈ G2

di ≥ 0 ∀i ∈ G1 ∪G2

wj urs ∀j
Mangasarian [77] proposes a simple concave approximation of the step

function for nonnegative variables: t(u, α) = 1−e−αu, where α > 0, u ≥ 0. Let
α > 0 and approximate s(di) by t(di, α). The problem then reduces to mini-
mizing a smooth concave function bounded below on a nonempty polyhedron,
which has a minimum at a vertex of the feasible region. A finite successive
linearization algorithm (SLA) is proposed, terminating at a stationary point
or a global solution. Numerical tests of SLA are done and compared with the
PMM procedure described above. The results show that the much simpler
SLA obtains a separation that is almost as good as PMM in considerably less
computing time.

Chen and Mangasarian [21] propose an algorithm on a defined hybrid mis-
classification minimization problem, which is more computationally tractable
than the NP-hard misclassification minimization problem. The basic idea
of the hybrid approach is to obtain iteratively w0 and (w1, . . . , wm) of the
separating hyperplane: (1) For a fixed w0, solve RLP (Bennett and Man-
gasarian [9]) to determine (w1, . . . , wm), and (2) for this (w1, . . . , wm), solve
the one-dimensional misclassification minimization problem to determine w0.
Comparison of the hybrid method is made with the RLP method and the
PMM procedure. The hybrid method performs better in the testing sets of
the tenfold cross-validation and is much faster than PMM.

Mangasarian [78] proposes the model of minimizing the sum of arbitrary-
norm distances of misclassified points to the separating hyperplane. For
a general norm || · || on Rm, the dual norm || · ||′ on Rm is defined as
||x||′ = max||y||=1 xT y. Define [a]+ = max{0, a} and let w = (w1, . . . , wm).
The formulation can then be written as:

Min
∑

i∈G1
[w0 +

∑
j xijwj ]+ +

∑
i∈G2

[−w0 −
∑

j xijwj ]+

s.t. ||w||′ = 1
w0, w urs

The problem is to minimize a convex function on a unit sphere. A related
decision problem to this minimization problem is shown to be NP-complete,
except for p = 1. For a general p-norm, the minimization problem can be
transformed via an exact penalty formulation to minimizing the sum of a
convex function and a bilinear function on a convex set.

12.2.4 Support vector machine

A support vector machine is a type of mathematical programming approach
(Vapnik [57]). It has been widely studied and has become popular in many
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application fields in recent years. The introductory description of support vec-
tor machines (SVMs) given here is summarized from the tutorial by Burges
[20]. In order to maintain consistency with SVM studies in published litera-
ture, the notation used below is slightly different than the notation used to
describe the mathematical programming methods in earlier sections.

In the two-group separable case, the objective function is to maximize the
margin of a separating hyperplane, 2/||w||, which is equivalent to minimizing
||w||2.

Min wT w

s.t. xT
i w + b ≥ +1 for yi = +1

xT
i w + b ≤ −1 for yi = −1

w, b urs

where xi ∈ Rm represents the values of attributes of observation i, and yi ∈
{−1, 1} represents the group of observation i.

This problem can be solved by solving its Wolfe dual problem.

Max
∑

i αi − 1
2

∑
i,j αiαjyiyjx

T
i xj

s.t.
∑

i αiyi = 0
αi ≥ 0 ∀i.

Here, αi is the Lagrange multiplier for the training point i, and the points
with αi > 0 are called the support vectors (analogous to the support of a
hyperplane, and thus the introduction of the name “support vector”). The
primal solution w is given by w =

∑
i αiyixi. b can be computed by solving

yi(wT xi + b)− 1 = 0 for any i with αi > 0.
For the non-separable case, slack variables ξi are introduced to handle the

errors. Let C be the penalty for the errors. The problem becomes

Min 1
2wT w + C(

∑
i ξi)k

s.t. xT
i w + b ≥ +1− ξi for yi = +1

xT
i w + b ≤ −1 + ξi for yi = −1

w, b urs
ξi ≥ 0 ∀i.

When k is chosen to be 1, neither the ξi’s nor their Lagrange multipliers
appear in the Wolfe dual problem:

Max
∑

i αi − 1
2

∑
i,j αiαjyiyjx

T
i xj

s.t.
∑

i αiyi = 0
0 ≤ αi ≤ C ∀i.

The data points can be separated nonlinearly by mapping the data into
some higher dimensional space and applying linear SVM to the mapped data.
Instead of knowing explicitly the mapping Φ, SVM needs only the dot prod-
ucts of two transformed data points Φ(xi) · Φ(xj). The kernel function K is
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introduced such that K(xi, xj) = Φ(xi) · Φ(xj). Replacing xT
i xj by K(xi, xj)

in the above problem, the separation becomes nonlinear whereas the problem
to be solved remains a quadratic program. In testing a new data point x after
training, the sign of the function f(x) is computed to determine the group
of x:

f(x) =
Ns∑

i=1

αiyiΦ(si) · Φ(x) + b =
Ns∑

i=1

αiyiK(si, x) + b.

where si’s are the support vectors and Ns is the number of support vectors.
Again the explicit form of Φ(x) is avoided.

Mangasarian provides a general mathematical programming framework for
SVM, called generalized support vector machine or GSVM [79, 83]. Special
cases can be derived from GSVM, including the standard SVM.

Many SVM-type methods have been developed by Mangasarian and other
authors to solve huge-sized classification problems more efficiently. These
methods include: successive overrelaxation for SVM [82], proximal SVM
[36, 38], smooth SVM [68], reduced SVM [67], Lagrangian SVM [84], incre-
mental SVMs [37], and other methods [13, 81]. Mangasarian summarizes some
of the developments in [80]. Examples of applications of SVM include breast
cancer studies [69, 70] and genome research [73].

Hsu and Lin [49] compare different methods for multigroup classification
using support vector machines. Three methods studied are based on several
binary classifiers: one-against-one, one-against-all, and directed acyclic graph
(DAG) SVM. The other two methods studied are altogether methods with
decomposition implementation. The experiment results show that the one-
against-one and DAG methods are more suitable for practical use than the
other methods. Lee et al. [66] propose a generic approach to multigroup prob-
lems with some theoretical properties, and the proposed method is well applied
to microarray data for cancer classification and satellite radiance profiles for
cloud classification.

Gallagher et al 1996, 1997 and Lee et al 2003 [39, 40, 63] offer the first
discrete support vector machine for multigroup classification with reserved
judgment. The approach has been successfully applied to a diverse variety of
biological and medical applications (see Section 12.3).

12.3 MIP-Based Multigroup Classification Models
and Applications to Medicine and Biology

Commonly-used methods for classification, such as linear discriminant func-
tions, decision trees, mathematical programming approaches, support vector
machines, and artificial neural networks (ANN), can be viewed as attempts
at approximating a Bayes optimal rule for classification; that is, a rule that
maximizes (minimizes) the total probability of correct classification (misclas-
sification). Even if a Bayes optimal rule is known, intergroup misclassification
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rates may be higher than desired. For example, in a population that is mostly
healthy, a Bayes optimal rule for medical diagnosis might misdiagnose sick
patients as healthy in order to maximize total probability of correct diagnosis.
As a remedy, a constrained discriminant rule that limits the misclassification
rate is appealing.

Assuming that the group density functions and prior probabilities are
known, Anderson [2] showed that an optimal rule for the problem of max-
imizing the probability of correct classification subject to constraints on the
misclassification probabilities must be of a specific form when discriminating
among multiple groups with a simplified model. The formulae in Anderson’s
result depend on a set of parameters satisfying a complex relationship between
the density functions, the prior probabilities, and the bounds on the misclas-
sification probabilities. Establishing a viable mathematical model to describe
Anderson’s result and finding values for these parameters that yield an optimal
rule are challenging tasks. The first computational models utilizing Anderson’s
formulae were proposed in [39, 40].

12.3.1 Discrete support vector machine predictive models

As part of the work carried out at Georgia Institute of Technology’s Center
for Operations Research in Medicine, we have developed a general-purpose
discriminant analysis modeling framework and computational engine that are
applicable to a wide variety of applications, including biological, biomed-
ical, and logistics problems. Utilizing the technology of large-scale discrete
optimization and SVMs, we have developed novel classification models that
simultaneously include the following features: (1) the ability to classify any
number of distinct groups; (2) the ability to incorporate heterogeneous types
of attributes as input; (3) a high-dimensional data transformation that elim-
inates noise and errors in biological data; (4) constraints to limit the rate of
misclassification, and a reserved-judgment region that provides a safeguard
against over-training (which tends to lead to high misclassification rates from
the resulting predictive rule); and (5) successive multistage classification capa-
bility to handle data points placed in the reserved judgment region. Studies
involving tumor volume identification, ultrasonic cell disruption in drug deliv-
ery, lung tumor cell motility analysis, CpG island aberrant methylation in
human cancer, predicting early atherosclerosis using biomarkers, and finger-
printing native and angiogenic microvascular networks using functional per-
fusion data indicate that our approach is adaptable and can produce effective
and reliable predictive rules for various biomedical and bio-behavior phenom-
ena [16, 28, 29, 56, 57, 65, 64, 59, 60].

Based on the description in [39, 40, 63, 59, 60], we summarize below some
of the classification models we have developed.
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Modeling of reserved judgment region for general groups

When the population densities and prior probabilities are known, the con-
strained rules with a reject option (reserved judgment), based on Anderson’s
results, calls for finding a partition {R0, . . . , RG} of R

k that maximizes the
probability of correct allocation subject to constraints on the misclassification
probabilities; i.e.,

Max
G∑

g=1

πg

∫

Rg

fg(w) dw (12.1)

s.t.
∫

Rg

fh(w)dw ≤ αhg, h, g = 1, . . . , G, h �= g, (12.2)

where fh (h = 1, . . . , G) are the group conditional density functions, πg

denotes the prior probability that a randomly selected entity is from group g
(g = 1, . . . , G) and αhg (h �= g) are constants between zero and one. Under
quite general assumptions, it was shown that there exist unique (up to a set
of measure zero) nonnegative constants λih, i, h ∈ {1, . . . , G}, i �= h, such
that the optimal rule is given by

Rg = {x ∈ R
k : Lg(x) = maxh∈{0,1,...,G}Lh(x)}, g = 0, . . . , G (12.3)

where

L0(x) = 0 (12.4)

Lh(x) = πhfh(x)−
G∑

i=1,i �=h

λihfi(x), h = 1, . . . , G. (12.5)

For G = 2, the optimal solution can be modeled rather straightforward.
However, finding optimal λih’s for the general case, G ≥ 3, is a difficult prob-
lem, with the difficulty increasing as G increases. Our model offers an avenue
for modeling and finding the optimal solution in the general case. It is the
first such model to be computationally viable [39, 40].

Before proceeding, we note that Rg can be written as Rg = {x ∈ R
k :

Lg(x) ≥ Lh(x) for all h = 0, . . . , G. Thus, because Lg(x) ≥ Lh(x) if, and only
if, (1�

∑G
t=1 ft(x))Lg(x) ≥ (1�

∑G
t=1 ft(x))Lh(x), the functions Lh, h =

1, . . . , G, can be redefined as

Lh(x) = πhph(x)−
G∑

i=1,i �=h

λihpi(x), h = 1, . . . , G (12.6)

where pi(x) = fi(x)�
∑G

t=1 ft(x). We assume that Lh is defined as in equation
(12.6) in our model.
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Mixed-integer programming formulations

Assume that we are given a training sample of N entities whose group clas-
sifications are known; say ng entities are in group g, where

∑G
g=1 ng = N .

Let the k-dimensional vectors xgj , g = 1, . . . , G, j = 1, . . . , ng, contain the
measurements on k available characteristics of the entities. Our procedure for
deriving a discriminant rule proceeds in two stages. The first stage is to use
the training sample to compute estimates, f̂h, either parametrically or non-
parametrically, of the density functions fh (e.g., see [89]) and estimates, π̂h, of
the prior probabilities πh, h = 1, . . . , G. The second stage is to determine the
optimal λih’s given these estimates. This stage requires being able to estimate
the probabilities of correct classification and misclassification for any candi-
date set of λih’s. One could, in theory, substitute the estimated densities and
prior probabilities into equations (12.5), and directly use the resulting regions
Rg in the integral expressions given in (12.1) and (12.2). This would involve,
even in simple cases such as normally distributed groups, the numerical evalu-
ation of k-dimensional integrals at each step of a search for the optimal λih’s.
Therefore, we have designed an alternative approach. After substituting the
f̂h’s and π̂h’s into equation (12.5), we simply calculate the proportion of train-
ing sample points that fall in each of the regions R1, . . . , RG. The MIP models
discussed below attempt to maximize the proportion of training sample points
correctly classified while satisfying constraints on the proportions of training
sample points misclassified. This approach has two advantages. First, it avoids
having to evaluate the potentially difficult integrals in Equations (12.1) and
(12.2). Second, it is nonparametric in controlling the training sample misclas-
sification probabilities. That is, even if the densities are poorly estimated (by
assuming, for example, normal densities for non-normal data), the constraints
are still satisfied for the training sample. Better estimates of the densities may
allow a higher correct classification rate to be achieved, but the constraints
will be satisfied even if poor estimates are used. Unlike most support vector
machine models that minimize the sum of errors, our objective is driven by
the number of correct classifications and will not be biased by the distance of
the entities from the supporting hyperplane.

A word of caution is in order. In traditional unconstrained discriminant
analysis, the true probability of correct classification of a given discriminant
rule tends to be smaller than the rate of correct classification for the training
sample from which it was derived. One would expect to observe such an effect
for the method described herein as well. In addition, one would expect to
observe an analogous effect with regard to constraints on misclassification
probabilities – the true probabilities are likely to be greater than any limits
imposed on the proportions of training sample misclassifications. Hence, the
αhg parameters should be carefully chosen for the application in hand.

Our first model is a nonlinear 0/1 MIP model with the nonlinearity appear-
ing in the constraints. Model 1 maximizes the number of correct classifi-
cations of the given N training entities. Similarly, the constraints on the
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misclassification probabilities are modeled by ensuring that the number of
group g training entities in region Rh is less than or equal to a pre-specified
percentage, αhg(0 < αhg < 1), of the total number, ng, of group g entities,
h, g ∈ {1, . . . , G}, h �= g.

For notational convenience, let G = {1, . . . , G} and Ng = {1, . . . , ng},
for g ∈ G. Also, analogous to the definition of pi, define p̂i by p̂i =
f̂i(x)�

∑G
t=1 f̂t(x). In our model, we use binary indicator variables to denote

the group classification of entities. Mathematically, let uhgj be a binary vari-
able indicating whether or not xgj lies in region Rh; i.e., whether or not the
jth entity from group g is allocated to group h. Then Model 1 can be written
as follows:

• DAMIP

Max
∑

g∈G

∑

j∈Ng

uggj

s.t.
Lhgj = π̂hp̂h(xgj)−

∑

i∈G\h

λihp̂i(xgj), h, g ∈ G, j ∈ Ng (12.7)

ygj = max{0, Lhgj : h = 1, . . . , G}, g ∈ G, j ∈ Ng (12.8)
ygj − Lggj ≤ M(1− uggj), g ∈ G, j ∈ Ng (12.9)
ygj − Lhgj ≥ ε(1− uhgj), h, g ∈ G, j ∈ Ng, h �= g (12.10)
∑

j∈Ng

uhgj ≤ "αhgng#, h, g ∈ G, h �= g (12.11)

−∞ < Lhgj <∞, ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}.

Constraint (12.7) defines the variable Lhgj as the value of the function Lh

evaluated at xgj . Therefore, the continuous variable ygj , defined in constraint
(12.8), represents max{Lh(xgj) : h = 0, . . . , G}; and consequently, xgj lies
in region Rh if, and only if, ygj = Lhgj . The binary variable uhgj is used to
indicate whether or not xgj lies in region Rh; i.e., whether or not the jth
entity from group g is allocated to group h. In particular, constraint (12.9),
together with the objective, force uggj to be 1 if, and only if, the jth entity
from group g is correctly allocated to group g; and constraints (12.10) and
(12.11) ensure that at most "αhgng# (i.e., the greatest integer less than or
equal to αhgng) group g entities are allocated to group h, h �= g. One caveat
regarding the indicator variables uhgj is that although the condition uhgj = 0,
h �= g, implies (by constraint (12.10)) that xgj /∈ Rh, the converse need not
hold. As a consequence, the number of misclassifications may be overcounted.
However, in our preliminary numerical study, we found that the actual amount
of overcounting is minimal. One could force the converse (thus, uhgj = 1 if
and only if xgj ∈ Rh) by adding constraints ygj − Lhgj ≤ M(1 − uhgj), for
example. Finally, we note that the parameters M and ε are extraneous to the
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discriminant analysis problem itself, but are needed in the model to control
the indicator variables uhgj . The intention is for M and ε to be, respectively,
large and small positive constants.

Model variations

We explore different variations in the model to grasp the quality of the solution
and the associated computational effort.

A first variation involves transforming Model 1 to an equivalent linear
mixed integer model. In particular, Model 2 replaces the N constraints defined
in (12.8) with the following system of 3GN + 2N constraints:

ygj ≥ Lhgj , h, g ∈ G, j ∈ Ng (12.12)
ỹhgj − Lhgj ≤ M(1− vhgj), h, g ∈ G, j ∈ Ng (12.13)

ỹhgj ≤ π̂hp̂h(xgj)vhgj , h, g ∈ G, j ∈ Ng (12.14)
∑

h∈G

vhgj ≤ 1, g ∈ G, j ∈ Ng (12.15)

∑

h∈G

ỹhgj = ygj , g ∈ G, j ∈ Ng (12.16)

where ỹhgj ≥ 0 and vhgj ∈ {0, 1}, h, g ∈ G, j ∈ Ng. These constraints,
together with the non-negativity of ygj force ygj = max{0, Lhgj : h =
1, . . . , G}.

The second variation involves transforming Model 1 to a heuristic linear
MIP model. This is done by replacing the nonlinear constraint (12.8) with
ygj ≥ Lhgj , h, g ∈ G, j ∈ Ng, and including penalty terms in the objective
function. In particular, Model 3 has the objective

Maximize
∑

g∈G

∑

j∈Ng

βuggj −
∑

g∈G

∑

j∈Ng

γygj ,

where β and γ are positive constants. This model is heuristic in that there
is nothing to force ygj = max{0, Lhgj : h = 1, . . . , G}. However, because in
addition to trying to force as many uggj ’s to one as possible, the objective in
Model 3 also tries to make the ygj ’s as small as possible, and the optimizer
tends to drive ygj toward max{0, Lhgj : h = 1, . . . , G}. We remark that β and
γ could be stratified by group (i.e., introduce possibly distinct βg, γg, g ∈ G)
to model the relative importance of certain groups to be correctly classified.

A reasonable modification to Models 1, 2, and 3 involves relaxing the con-
straints specified by (12.11). Rather than placing restrictions on the number
of type g training entities classified into group h, for all h, g ∈ G, h �= g,
one could simply place an upper bound on the total number of misclassified
training entities. In this case, the G(G − 1) constraints specified by (12.11)
would be replaced by the single constraint
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∑

g∈G

∑

h∈G\{g}

∑

j∈Ng

uhgj ≤ "αN# (12.17)

where α is a constant between 0 and 1. We will refer to Models 1, 2, and
3, modified in this way, as Models 1T, 2T, and 3T, respectively. Of course,
other modifications are also possible. For instance, one could place restrictions
on the total number of type g points misclassified for each g ∈ G. Thus, in
place of the constraints specified in (12.17), one would include the constraints∑

h∈G\{g}
∑

j∈Ng
uhgj ≤ "αgN#, g ∈ G, where 0 < αg < 1.

We also explore a heuristic linear model of Model 1. In particular, consider
the linear program (DALP):

Max
∑

g∈G

∑

j∈Ng

(c1wgj + c2ygj) (12.18)

s.t.
Lhgj = πhp̂h(xgj)−

∑

i∈G\h

λihp̂i(xgj), h, g ∈ G, j ∈ Ng (12.19)

Lggj − Lhgj + wgj ≥ 0, h, g ∈ G, h �= g, j ∈ Ng (12.20)
Lggj + wgj ≥ 0, g ∈ G, j ∈ Ng, (12.21)

−Lhgj + ygj ≥ 0, h, g ∈ G, j ∈ Ng (12.22)
−∞ < Lhgj <∞, wgj , ygj , λih ≥ 0.

Constraint (12.19) defines the variable Lhgj as the value of the function
Lh evaluated at xgj . As the optimization solver searches through the set
of feasible solutions, the λih variables will vary, causing the Lhgj variables
to assume different values. Constraints (12.20), (12.21), and (12.22) link the
objective-function variables with the Lhgj variables in such a way that correct
classification of training entities, and allocation of training entities into the
reserved-judgment region, are captured by the objective-function variables.
In particular, if the optimization solver drives wgj to zero for some g, j pair,
then constraints (12.20) and (12.21) imply that Lggj = max{0, Lhgj : h ∈ G}.
Hence, the jth entity from group g is correctly classified. If, on the other hand,
the optimal solution yields ygj = 0 for some g, j pair, then constraint (12.22)
implies that max{0, Lhgj : h ∈ G} = 0. Thus, the jth entity from group g is
placed in the reserved-judgment region. (Of course, it is possible for both wgj

and ygj to be zero. One should decide prior to solving the linear program how
to interpret the classification in such cases.) If both wgj and ygj are positive,
the jth entity from group g is misclassified.

The optimal solution yields a set of λih’s that best allocates the training
entities (i.e., “best” in terms of minimizing the penalty objective function).
The optimal λih’s can then be used to define the functions Lh, h ∈ G, which in
turn can be used to classify a new entity with feature vector x ∈ R

k by simply
computing the index at which max {Lh(x) : h ∈ {0, 1, . . . , G}} is achieved.

Note that Model DALP places no a priori bound on the number of mis-
classified training entities. However, because the objective is to minimize a
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Table 12.1. Model size.

Model Type Constraints Total Variables 0/1 Variables

1 nonlinear MIP 2GN + N + G(G − 1) 2GN + N + G(G − 1) GN
2 linear MIP 5GN + 2N + G(G − 1) 4GN + N + G(G − 1) 2GN
3 linear MIP 3GN + G(G − 1) 2GN + N + G(G − 1) GN
1T nonlinear MIP 2GN + N + 1 2GN + N + G(G − 1) GN
2T linear MIP 5GN + 2N + 1 4GN + N + G(G − 1) 2GN
3T linear MIP 3GN + 1 2GN + N + G(G − 1) GN
DALP linear program 3GN NG + N + G(G − 1) 0

weighted combination of the variables wgj and ygj , the optimizer will attempt
to drive these variables to zero. Thus, the optimizer is, in essence, attempting
either to correctly classify training entities (wgj = 0), or to place them in
the reserved-judgment region (ygj = 0). By varying the weights c1 and c2,
one has a means of controlling the optimizer’s emphasis for correctly classi-
fying training entities versus placing them in the reserved-judgment region.
If c2/c1 < 1, the optimizer will tend to place a greater emphasis on driving
the wgj variables to zero than driving the ygj variables to zero (conversely, if
c2/c1 > 1). Hence, when c2/c1 < 1, one should expect to get relatively more
entities correctly classified, fewer placed in the reserved-judgment region, and
more misclassified, than when c2/c1 > 1. An extreme case is when c2 = 0. In
this case, there is no emphasis on driving ygj to zero (the reserved-judgment
region is thus ignored), and the full emphasis of the optimizer is to drive wgj

to zero.
Table 12.1 summarizes the number of constraints, the total number of vari-

ables, and the number of 0/1 variables in each of the discrete SVMs, and in
the heuristic LP model (DALP). Clearly, even for moderately sized discrimi-
nant analysis problems, the MIP instances are relatively large. Also, note that
Model 2 is larger than Model 3, both in terms of the number of constraints
and the number of variables. However, it is important to keep in mind that the
difficulty of solving an MIP problem cannot, in general, be predicted solely by
its size; problem structure has a direct and substantial bearing on the effort
required to find optimal solutions. The LP relaxation of these MIP models
pose computational challenges as commercial LP solvers return (optimal) LP
solutions that are infeasible, due to the equality constraints and the use of big
M and small ε in the formulation.

It is interesting to note that the set of feasible solutions for Model 2 is
“tighter” than that for Model 3. In particular, if Fi denotes the set of feasible
solutions of Model i, then

F1 = {(L, λ, u, y) : there exists ỹ, v such that (L, λ, u, y, ỹ, v) ∈ F2} � F3.

The novelties of the classification models developed herein include: (1) they
are suitable for discriminant analysis given any number of groups, (2) they
accept heterogeneous types of attributes as input, (3) they use a parametric
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approach to reduce high-dimensional attribute spaces, and (4) they allow con-
straints on the number of misclassifications, and utilize a reserved judgment
to facilitate the reduction of misclassifications. The latter point opens the
possibility of performing multistage analysis.

Clearly, the advantage of an LP model over an MIP model is that the asso-
ciated problem instances are computationally much easier to solve. However,
the most important criterion in judging a method for obtaining discriminant
rules is how the rules perform in correctly classifying new unseen entities.
Once the rule is developed, applying it to a new entity to determine its group
is trivial. Extensive computational experiments have been performed to gauge
the qualities of solutions of different models [40, 63, 59, 60, 18, 17].

Validation of model and computational effort

We performed ten-fold cross validation, and designed simulation and com-
parison studies on our models. Results reported in [40, 63] demonstrate that
our approach works well when applied to both simulated data and data sets
from the machine learning database repository [91]. In particular, our methods
compare favorably, and at times superior, to other mathematical programming
methods, including the general single function classification model (GSFC) by
Gehrlein [41], and the LP model by Gochet et al. [46], as well as Fisher’s LDF,
artificial neural networks, quadratic discriminant analysis, tree classification,
and other support vector machines, on real biological and medical data.

12.3.2 Classification results on real-world biological and medical
applications

The main objective in discriminant analysis is to derive rules that can be used
to classify entities into groups. Computationally, the challenge lies in the effort
expended to develop such a rule. Once the rule is developed, applying it to a
new entity to determine its group is trivial. Feasible solutions obtained from
our classification models correspond with predictive rules. Empirical results
[40, 63] indicate that the resulting classification model instances are computa-
tionally very challenging and even intractable by competitive commercial MIP
solvers. However, the resulting predictive rules prove to be very promising,
offering correct classification rates on new unknown data ranging from 80%
to 100% on various types of biological/medical problems. Our results indicate
that the general-purpose classification framework that we have designed has
the potential to be a very powerful predictive method for clinical settings.

The choice of mixed integer programming (MIP) as the underlying model-
ing and optimization technology for our support vector machine classification
model is guided by the desire to simultaneously incorporate a variety of impor-
tant and desirable properties of predictive models within a general framework.
MIP itself allows for incorporation of continuous and discrete variables, and
linear and nonlinear constraints, providing a flexible and powerful modeling
environment.
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Our mathematical modeling and computational algorithm design shows
great promise as the resulting predictive rules are able to produce higher
rates of correct classification on new biological data (with unknown group sta-
tus) compared with existing classification methods. This is partly due to the
transformation of raw data via the set of constraints in (12.7). Whereas most
mathematical programming approaches directly determine the hyperplanes
of separation using raw data, our approach transforms the raw data via a
probabilistic model, before the determination of the supporting hyperplanes.
Further, the separation is driven by maximizing the sum of binary variables
(representing correct classification or not of entities), instead of maximizing
the margins between groups or minimizing a sum of errors (representing dis-
tances of entities from hyperplanes) as in other support vector machines. The
combination of these two strategies offers better classification capability. Noise
in the transformed data is not as profound as in raw data. And the magnitudes
of the errors do not skew the determination of the separating hyperplanes, as
all entities have equal importance when correct classification is being counted.

To highlight the broad applicability of our approach, below, we briefly
summarize the application of our predictive models and solution algorithms
to ten different biological problems. Each of the projects was carried out in
close partnership with experimental biologists and/or clinicians. Applications
to finance and other industry applications are described elsewhere [40, 63, 18].

Determining the type of erythemato-squamous disease [60]

The differential diagnosis of erythemato-squamous diseases is an important
problem in dermatology. They all share the clinical features of erythema and
scaling, with very little differences. The 6 groups are psoriasis, seboreic der-
matitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra
pilaris. Usually a biopsy is necessary for the diagnosis but unfortunately these
diseases share many histopathologic features as well. Another difficulty for
the differential diagnosis is that a disease may show the features of another
disease at the beginning stage and may have the characteristic features at the
following stages [91].

The 6 groups consist of 366 subjects (112, 61, 72, 49, 52, 20, respectively)
with 34 clinical attributes. Patients were first evaluated clinically with 12 fea-
tures. Afterwards, skin samples were taken for the evaluation of 22 histopatho-
logic features. The values of the histopathologic features are determined by
an analysis of the samples under a microscope. The 34 attributes include
(1) clinical attributes: erythema, scaling, definite borders, itching, koebner
phenomenon, polygonal papules, follicular papules, oral mucosal involvement,
knee and elbow involvement, scalp involvement, family history, age; and (2)
histopathologic attributes: melanin incontinence, eosinophils in the infiltrate,
PNL infiltrate, fibrosis of the papillary dermis, exocytosis, acanthosis, hyper-
keratosis, parakeratosis, clubbing of the rete ridges, elongation of the rete
ridges, thinning of the suprapapillary epidermis, spongiform pustule, munro
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microabcess, focal hypergranulosis, disappearance of the granular layer, vac-
uolization and damage of basal layer, spongiosis, sawtooth appearance of retes,
follicular horn plug, perifollicular parakeratosis, inflammatory monoluclear
infiltrate, band-like infiltrate.

Our multigroup classification model selected 27 discriminatory attributes
and successfully classified the patients into 6 groups, each with an unbiased
correct classification of greater than 93% (with 100% correct rate for groups
1, 3, 5, 6) with an average overall accuracy of 98%. Using 250 subjects to
develop the rule, and testing the remaining 116 patients, we obtain a predic-
tion accuracy of 91%.

Predicting presence/absence of heart disease [60]

The four databases concerning heart disease diagnosis were collected by
Dr. Janosi of Hungarian Institute of Cardiology, Budapest; Dr. Steinbrunn
of University Hospital, Zurich; Dr. Pfisterer of University Hospital, Basel,
Switzerland; and Dr. Detrano of V.A. Medical Center, Long Beach and
Cleveland Clinic Foundation. Each database contains the same 76 attributes.
The “goal” field refers to the presence of heart disease in the patient. The
classification attempts to distinguish presence (values 1, 2, 3, 4, involving a
total of 509 subjects) from absence (value 0, involving 411 subjects) [91]. The
attributes include demographics, physio-cardiovascular conditions, traditional
risk factors, family history, personal lifestyle, and cardiovascular exercise mea-
surements. This data set has posed some challenges to past analysis via vari-
ous classification approaches, resulting in less than 80% correct classification.
Applying our classification model without reserved judgment, we obtain 79%
and 85% correct classification for each group respectively. To gauge the useful-
ness of multistage analysis, we apply 2-stage classification. In the first stage,
14 attributes were selected as discriminatory. 135 Group absence subjects were
placed into the reserved judgment region, with 85% of the remaining classified
as Group absence correctly; and 286 Group presence subjects were placed into
the reserved judgment region, and 91% of the remaining classified correctly
into the Group presence. In the second stage, 11 attributes were selected with
100 and 229 classified into Group absence and presence, respectively. Com-
bining the two stages, we obtained a correct classification of 82% and 85%
respectively for diagnosis of absence or presence of heart disease. Figure 12.1
illustrates the 2-stage classification.

Predicting aberrant CpG island methylation in human cancer
[28, 29]

Epigenetic silencing associated with aberrant methylation of promoter region
CpG islands is one mechanism leading to loss of tumor suppressor function
in human cancer. Profiling of CpG island methylation indicates that some
genes are more frequently methylated than others and that each tumor type



412 E.K. Lee and T.-L. Wu

Fig. 12.1. A tree diagram for 2-stage classification and prediction of heart disease.

is associated with a unique set of methylated genes. However, little is known
about why certain genes succumb to this aberrant event. To address this ques-
tion, we used restriction landmark genome scanning (RLGS) to analyze the
susceptibility of 1749 unselected CpG islands to de novo methylation driven
by overexpression of DNMT1. We found that, whereas the overall incidence
of CpG island methylation was increased in cells overexpressing DNMT1,
not all loci were equally affected. The majority of CpG islands (69.9%) were
resistant to de novo methylation, regardless of DNMT1 overexpression. In
contrast, we identified a subset of methylation-prone CpG islands (3.8%)
that were consistently hypermethylated in multiple DNMT1 overexpressing
clones. Methylation-prone and methylation-resistant CpG islands were not
significantly different with respect to size, C+G content, CpG frequency,
chromosomal location, or gene- or promoter-association. To discriminate
methylation-prone from methylation-resistant CpG islands, we developed a
novel DNA pattern recognition model and algorithm [61] and coupled our pre-
dictive model described herein with the patterns found. We were able to derive
a classification function based on the frequency of seven novel sequence pat-
terns that was capable of discriminating methylation-prone from methylation-
resistant CpG islands with 90% correctness upon cross-validation, and 85%
accuracy when tested against blind CpG islands unknown to us on the methy-
lation status. The data indicate that CpG islands differ in their intrinsic sus-
ceptibility to de novo methylation, and suggest that the propensity for a CpG
island to become aberrantly methylated can be predicted based on its sequence
context.

The significance of this research is two-fold. First, the identification of
sequence patterns/attributes that distinguish methylation-prone CpG islands
will lead to a better understanding of the basic mechanisms underlying aber-
rant CpG island methylation. Because genes that are silenced by methylation
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are otherwise structurally sound, the potential for reactivating these genes
by blocking or reversing the methylation process represents an exciting new
molecular target for chemotherapeutic intervention. A better understanding
of the factors that contribute to aberrant methylation, including the identifi-
cation of sequence elements that may act to target aberrant methylation, will
be an important step in achieving this long-term goal. Secondly, the classifi-
cation of the more than 29,000 known (but as yet unclassified) CpG islands
in human chromosomes will provide an important resource for the identifi-
cation of novel gene targets for further study as potential molecular markers
that could impact on both cancer prevention and treatment. Extensive RLGS
fingerprint information (and thus potential training sets of methylated CpG
islands) already exists for a number of human tumor types, including breast,
brain, lung, leukemias, hepatocellular carcinomas, and PNET [23, 24, 35, 102].
Thus, the methods and tools developed are directly applicable to CpG island
methylation data derived from human tumors. Moreover, new microarray-
based techniques capable of “profiling” more than 7,000 CpG islands have
been developed and applied to human breast cancers [15, 117, 118]. We are
uniquely poised to take advantage of the tumor CpG island methylation pro-
file information that will likely be generated using these techniques over the
next several years. Thus, our general-predictive modeling framework has the
potential to lead to improved diagnosis and prognosis and treatment planning
for cancer patients.

Discriminant analysis of cell motility and morphology data
in human lung carcinoma [16]

This study focuses on the differential effects of extracellular matrix proteins
on the motility and morphology of human lung epidermoid carcinoma cells.
The behavior of carcinoma cells is contrasted with that of normal L-132 cells,
resulting in a method for the prediction of metastatic potential. Data collected
from time-lapsed videomicroscopy were used to simultaneously produce quan-
titative measures of motility and morphology. The data were subsequently
analyzed using our discriminant analysis model and algorithm to discover
relationships between motility, morphology, and substratum. Our discrimi-
nant analysis tools enabled the consideration of many more cell attributes
than is customary in cell motility studies. The observations correlate with
behaviors seen in vivo and suggest specific roles for the extracellular matrix
proteins and their integrin receptors in metastasis. Cell translocation in vitro
has been associated with malignancy, as has an elongated phenotype [120]
and a rounded phenotype [97]. Our study suggests that extracellular matrix
proteins contribute in different ways to the malignancy of cancer cells and
that multiple malignant phenotypes exist.
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Ultrasonic-assisted cell disruption for drug delivery [57]

Although biological effects of ultrasound must be avoided for safe diagnos-
tic applications, ultrasound’s ability to disrupt cell membranes has attracted
interest as a method to facilitate drug and gene delivery. This preliminary
study seeks to develop rules for predicting the degree of cell membrane disrup-
tion based on specified ultrasound parameters and measured acoustic signals.
Too much ultrasound destroys cells, whereas cell membranes will not open up
for absorption of macromolecules when too little ultrasound is applied. The
key is to increase cell permeability to allow absorption of macromolecules,
and to apply ultrasound transiently to disrupt viable cells so as to enable
exogenous material to enter without cell damage. Thus our task is to uncover
a “predictive rule” of ultrasound-mediated disruption of red blood cells using
acoustic spectrums and measurements of cell permeability recorded in exper-
iments.

Our predictive model and solver for generating prediction rules are applied
to data obtained from a sequence of experiments on bovine red blood cells. For
each experiment, the attributes consist of 4 ultrasound parameters, acoustic
measurements at 400 frequencies, and a measure of cell membrane disruption.
To avoid over-training, various feature combinations of the 404 predictor vari-
ables are selected when developing the classification rule. The results indicate
that the variable combination consisting of ultrasound exposure time and
acoustic signals measured at the driving frequency and its higher harmonics
yields the best rule, and our method compares favorably with classification
tree and other ad hoc approaches, with correct classification rate of 80% upon
cross-validation and 85% when classifying new unknown entities. Our meth-
ods used for deriving the prediction rules are broadly applicable and could
be used to develop prediction rules in other scenarios involving different cell
types or tissues. These rules and the methods used to derive them could be
used for real-time feedback about ultrasound’s biological effects. For example,
it could assist clinicians during a drug delivery process or could be imported
into an implantable device inside the body for automatic drug delivery and
monitoring.

Identification of tumor shape and volume in treatment
of sarcoma [56]

This project involves the determination of tumor shape for adjuvant brachy-
therapy treatment of sarcoma, based on catheter images taken after surgery.
In this application, the entities are overlapping consecutive triplets of catheter
markings, each of which is used for determining the shape of the tumor con-
tour. The triplets are to be classified into one of two groups: Group 1 = [triplets
for which the middle catheter marking should be bypassed], and Group 2 =
[triplets for which the middle marking should not be bypassed]. To develop
and validate a classification rule, we used clinical data collected from fifteen
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soft tissue sarcoma (STS) patients. Cumulatively, this comprised 620 triplets
of catheter markings. By careful (and tedious) clinical analysis of the geome-
try of these triplets, 65 were determined to belong to Group 1, the “bypass”
group, and 555 were determined to belong to Group 2, the “do-not-bypass”
group.

A set of measurements associated with each triplet is then determined. The
choice of what attributes to measure to best distinguish triplets as belonging
to Group 1 or Group 2 is nontrivial. The attributes involved distance between
each pair of markings, angles, curvature formed by the three triplet markings.
Based on the selected attributes, our predictive model was used to develop
a classification rule. The resulting rule provides 98% correct classification on
cross-validation and was capable of correctly determining/predicting 95% of
the shape of the tumor on new patients’ data. We remark that the current
clinical procedure requires manual outline based on markers in films of the
tumor volume. This study was the first to use automatic construction of tumor
shape for sarcoma adjuvant brachytherapy [56, 62].

Discriminant analysis of biomarkers for prediction of early
atherosclerosis [65]

Oxidative stress is an important etiologic factor in the pathogenesis of vas-
cular disease. Oxidative stress results from an imbalance between injurious
oxidant and protective antioxidant events in which the former predominate
[103, 88]. This results in the modification of proteins and DNA, alteration
in gene expression, promotion of inflammation, and deterioration in endothe-
lial function in the vessel wall, all processes that ultimately trigger or exac-
erbate the atherosclerotic process [22, 111]. It was hypothesized that novel
biomarkers of oxidative stress would predict early atherosclerosis in a rela-
tively healthy non-smoking population who are free from cardiovascular dis-
ease. One hundred and twenty seven healthy non-smokers, without known
clinical atherosclerosis had carotid intima media thickness (IMT) measured
using ultrasound. Plasma oxidative stress was estimated by measuring plasma
lipid hydroperoxides using the determination of reactive oxygen metabolites
(d-ROMs) test. Clinical measurements include traditional risk factors includ-
ing age, sex, low-density lipoprotein (LDL), high-density lipoprotein (HDL),
triglycerides, cholesterol, body mass index (BMI), hypertension, diabetes mel-
litus, smoking history, family history of CAD, Framingham risk score, and
Hs-CRP.

For this prediction, the patients are first clustered into two groups: (Group
1: IMT ≥ 0.68, Group 2: IMT < 0.68). Based on this separator, 30 patients
belong to Group 1 and 97 belong to Group 2. Through each iteration, the clas-
sification method trains and learns from the input training set and returns
the most discriminatory patterns among the 14 clinical measurements; ulti-
mately resulting in the development of a prediction rule based on observed
values of these discriminatory patterns among the patient data. Using all
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127 patients as a training set, the predictive model identified age, sex, BMI,
HDLc, Fhx CAD < 60, hs-CRP, and d-ROM as discriminatory attributes
that together provide unbiased correct classification of 90% and 93%, respec-
tively, for Group 1 (IMT ≥ 0.68) and Group 2 patients (IMT < 0.68). To
further test the power of the classification method for correctly predicting the
IMT status on new/unseen patients, we randomly selected a smaller patient
training set of size 90. The predictive rule from this training set yields 80%
and 89% correct rates for predicting the remaining 37 patients into Group
1 and Group 2, respectively. The importance of d-ROM as a discriminatory
predictor for IMT status was confirmed during the machine learning process,
this biomarker was selected in every iteration as the “machine” learned and
trained to develop a predictive rule to correctly classify patients in the train-
ing set. We also performed predictive analysis using Framingham Risk Score
and d-ROM; in this case, the unbiased correct classification rates (for the 127
individuals) for Groups 1 and 2 are 77% and 84%, respectively. This is the
first study to illustrate that this measure of oxidative stress can be effectively
used along with traditional risk factors to generate a predictive rule that can
potentially serve as an inexpensive clinical diagnostic tool for prediction of
early atherosclerosis.

Fingerprinting native and angiogenic microvascular networks
through pattern recognition and discriminant analysis
of functional perfusion data [64]

The cardiovascular system provides oxygen and nutrients to the entire body.
Pathologic conditions that impair normal microvascular perfusion can result
in tissue ischemia, with potentially serious clinical effects. Conversely, devel-
opment of new vascular structures fuels the progression of cancer, macu-
lar degeneration, and atherosclerosis. Fluorescence-microangiography offers
superb imaging of the functional perfusion of new and existent microvascula-
ture, but quantitative analysis of the complex capillary patterns is challeng-
ing. We developed an automated pattern-recognition algorithm to systemat-
ically analyze the microvascular networks, and then apply our classification
model herein to generate a predictive rule. The pattern-recognition algorithm
identifies the complex vascular branching patterns, and the predictive rule
demonstrates 100% and respectively 91% correct classification on perturbed
(diseased) and normal tissue perfusion. We confirmed that transplantation of
normal bone marrow to mice in which genetic deficiency resulted in impaired
angiogenesis eliminated predicted differences and restored normal-tissue per-
fusion patterns (with 100% correctness). The pattern recognition and clas-
sification method offers an elegant solution for the automated fingerprinting
of microvascular networks that could contribute to better understanding of
angiogenic mechanisms and be utilized to diagnose and monitor microvas-
cular deficiencies. Such information would be valuable for early detection
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and monitoring of functional abnormalities before they produce obvious and
lasting effects, which may include improper perfusion of tissue, or support of
tumor development.

The algorithm can be used to discriminate between the angiogenic response
in a native healthy specimen compared with groups with impairment due to
age or chemical or other genetic deficiency. Similarly, it can be applied to ana-
lyze angiogenic responses as a result of various treatments. This will serve two
important goals. First, the identification of discriminatory patterns/attributes
that distinguish angiogenesis status will lead to a better understanding of
the basic mechanisms underlying this process. Because therapeutic control
of angiogenesis could influence physiological and pathologic processes such
as wound and tissue repairing, cancer progression and metastasis, or macu-
lar degeneration, the ability to understand it under different conditions will
offer new insight in developing novel therapeutic interventions, monitoring,
and treatment, especially in aging and heart disease. Thus, our study and
the results form the foundation of a valuable diagnostic tool for changes in
the functionality of the microvasculature and for discovery of drugs that alter
the angiogenic response. The methods can be applied to tumor diagnosis,
monitoring, and prognosis. In particular, it will be possible to derive microan-
giographic fingerprints to acquire specific microvascular patterns associated
with early stages of tumor development. Such “angioprinting” could become
an extremely helpful early diagnostic modality, especially for easily accessible
tumors such as skin cancer.

Prediction of protein localization sites

The protein localization database consists of 8 groups with a total of 336
instances (143, 77, 52, 35, 20, 5, 2, 2, respectively) with 7 attributes [91].
The 8 groups are 8 localization sites of protein, including cp (cytoplasm),
im (inner membrane without signal sequence), pp (perisplasm), imU (inner
membrane, uncleavable signal sequence), om (outer membrane), omL (outer
membrane lipoprotein), imL (inner membrane lipoprotein), imS (inner mem-
brane, cleavable signal sequence). However, the last 4 groups are taken out
from our classification experiment as the population sizes are too small to
ensure significance.

The 7 attributes include mcg (McGeoch’s method for signal sequence
recognition), gvh (von Heijne’s method for signal sequence recognition), lip
(von Heijne’s Signal Peptidase II consensus sequence score), chg (presence of
charge on N-terminus of predicted lipoproteins), aac (score of discriminant
analysis of the amino acid content of outer membrane and periplasmic pro-
teins), alm1 (score of the ALOM membrane spanning region prediction pro-
gram), and alm2 (score of ALOM program after excluding putative cleavable
signal regions from the sequence).

In the classification, we use 4 groups, 307 instances, with 7 attributes. Our
classification model selected the discriminatory patterns mcg, gvh, alm1, and
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alm2 to form the predictive rule with unbiased correct classification rates of
89%, compared with the results of 81% by other classification models [48].

Pattern recognition in satellite images for determining types of soil

The Satellite database consists of the multispectral values of pixels in 3 × 3
neighborhoods in a satellite image, and the classification associated with the
central pixel in each neighborhood. The aim is to predict this classification,
given the multispectral values. In the sample database, the class of a pixel
is coded as a number. There are 6 groups with 4435 samples in the training
data set and 2,000 samples in testing data set; and each sample entity has 36
attributes describing the spectral bands of the image [91].

The original Landsat Multi-Spectral Scanner image data for this database
was generated from data purchased from NASA by the Australian Centre for
Remote Sensing. The Landsat satellite data is one of the many sources of
information available for a scene. The interpretation of a scene by integrat-
ing spatial data of diverse types and resolutions including multispectral and
radar data, maps indicating topography, land use, and so forth. is expected to
assume significant importance with the onset of an era characterized by inte-
grative approaches to remote sensing (for example, NASA’s Earth Observing
System commencing this decade).

One frame of Landsat MSS imagery consists of four digital images of the
same scene in different spectral bands. Two of these are in the visible region
(corresponding approximately to green and red regions of the visible spec-
trum) and two are in the (near) infra-red. Each pixel is an 8-bit binary word,
with 0 corresponding to black and 255 to white. The spatial resolution of a
pixel is about 80 m × 80 m. Each image contains 2340× 3380 such pixels.

The database is a (tiny) sub-area of a scene, consisting of 82× 100 pixels.
Each line of data corresponds with a 3 × 3 square neighborhood of pixels
completely contained within the 82 × 100 sub-area. Each line contains the
pixel values in the four spectral bands (converted to ASCII) of each of the 9
pixels in the 3 × 3 neighborhood and a number indicating the classification
label of the central pixel. The number is a code for the following 6 groups: red
soil, cotton crop, gray soil, damp gray soil, soil with vegetation stubble, very
damp gray soil. Running our classification model, 17 discriminatory attributes
were selected to form the classification rule, producing an unbiased prediction
with 85% accuracy.

12.3.3 Further advances

Brooks and Lee 2007 [18, 19] devised other variations of the basic DAMIP
model. They also showed that DAMIP is strongly universally consistent
(in some sense) with very good rates of convergence from Vapnik and
Chervonenkis theory. A polynomial-time algorithm for discriminating between
two populations with the DAMIP model was developed, and DAMIP was



12 Classification and Disease Prediction via Mathematical Programming 419

shown to be NP-complete for a general number of groups. The proof demon-
strating NP-completeness employs results used in generating edges of the
conflict graph [11, 55, 12, 4]. Exploiting the necessary and sufficient condi-
tions that identify edges in the conflict graph is the central contribution to
the improvement in solution performance over industry-standard software.
The conflict graph is the basis for various valid inequalities, a branching
scheme, and for conditions under which integer variables are fixed for all
solutions. Additional solution methods are identified that include a heuristic
for finding solutions at nodes in the branch-and-bound tree, upper bounds for
model parameters, and necessary conditions for edges in the conflict hyper-
graph [26, 58]. Further, we have concluded that DAMIP is a computationally
feasible, consistent, stable, robust, and accurate classifier.

12.4 Progress and Challenges

In Tables 12.2–12.4 we summarize the mathematical programming techniques
used in classification problems as reviewed in this chapter.

As noted by current research effort, multigroup classification remains NP-
completeness and much work is needed to design effective models as well as to
derive novel and efficient computational algorithms to solve these multigroup
instances.

12.5 Other Methods

Whereas most classification methods can be described in terms of discrimi-
nant functions, some methods are not trained in the paradigm of determining
coefficients or parameters for functions of a predefined form. These methods
include classification and regression trees (CART), nearest-neighbor methods,
and neural networks.

Classification and regression trees [14] are nonparametric approaches to
prediction. Classification trees seek to develop classification rules based on
successive binary partitions of observations based on attribute values. Regres-
sion trees also employ rules consisting of binary partitions but are used to
predict continuous responses.

The rules generated by classification trees are easily viewable by plotting
them in a tree-like structure from which the name arises. A test entity may be
classified using rules in a tree plot by first comparing the entity’s data with
the root node of the tree. If the root node condition is satisfied by the data
for a particular entity, the left branch is followed to another node; otherwise,
the right branch is followed to another node. The data from the observation
is compared with conditions at subsequent nodes until a leaf node is reached.

Nearest-neighbor methods begin by establishing a set of labeled prototype
observations. The nearest-neighbor classification rule assigns test entities to
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Table 12.2. Progress in mathematical programming–based classification models:
LP methods.

Authors, Years, and Citations

Two-group classification:

Separate data by hyperplanes Mangasarian 1965 [74], 1968 [75]

Minimizing the sum of deviations
(MSD), minimizing the maximum devia-
tion (MMD), and minimizing the sum of
interior distances (MSID)

Hand 1981 [47], Freed and Glover 1981
[31, 32], Bajgier and Hill 1982 [5], Freed
and Glover 1986 [33], Rubin 1990 [99]

Hybrid model Glover et al. 1988 [45], Rubin 1990 [99]

Review Joachimsthaler and Stam 1990 [50],
Erenguc and Koehler 1990 [27], Stam
1997 [107]

Software Stam and Ungar 1995 [110]

Issues about normalization Markowski and Markowski 1985 [87],
Freed and Glover 1986 [34], Koehler 1989
[51, 52] 1994 [53], Glover 1990 [44], Rubin
1991 [100], Xiao 1993 [114] 1994 [115],
Xiao and Feng 1997 [116]

Robust linear programming (RLP) Bennett and Mangasarian 1992 [9],
Mangasarian et al. 1995 [86]

Inclusion of second-order terms Duarte Silva and Stam 1994 [104],
Wanarat and Pavur 1996 [113]

Effect of the position of outliers Pavur 2002 [94]

Binary attributes Asparoukhov and Stam 1997 [3]

Multigroup classification:

Single function classification Freed and Glover 1981 [32]

Multiple function classification Bennett and Mangasarian 1994 [10],
Gochet et al. 1997 [46]

Multigroup classification with reserved-
judgment region and misclassification
constraints

Lee et al. 2003 [63, 39, 40, 60]

groups according to the group membership of the nearest prototype. Different
measures of distance may be used. The k-nearest-neighbor rule assigns entities
to groups according to the group membership of the k nearest prototypes.

Neural networks are classification models that can also be interpreted in
terms of discriminant functions, though they are used in a way that does not
require finding an analytic form for the functions [25]. Neural networks are
trained by considering one observation at a time, modifying the classification
procedure slightly with each iteration.
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Table 12.3. Progress in mathematical programming–based classification models:
MIP methods.

Authors, Years, and Citations

Two-group classification:

Minimizing the number of misclassifica-
tions

Bajgier and Hill 1982 [5], Stam and
Joachimsthaler 1990 [109], Koehler and
Erenguc 1990 [54], Banks and Abad 1991
[6] 1994 [7], Abad and Banks 1993 [1],
Duarte Silva and Stam 1997 [105], Rubin
1997 [101], Yanev and Balev 1999 [119]

Review Joachimsthaler and Stam 1990 [50],
Erenguc and Koehler 1990 [27], Stam
1997 [107]

Software Stam and Ungar 1995 [110]

Secondary goals Pavur et al. 1997 [96]

Binary attributes Asparoukhov and Stam 1997 [3]

Normalization and attribute selection Glen 1999 [42]

Dichotomous categorical variable forma-
tion

Glen 2004 [43]

Multigroup classification:

Multigroup classification Gehrlein 1986 [41], Pavur 1997 [93]

Three-group classification Loucopoulos and Pavur 1997 [71, 72],
Pavur and Loucopoulos 2001 [95]

Classification with reserved-judgment
region using MIP

Gallagher et al. 1996, 1997 [39, 40],
Brooks and Lee 2006 [18], Lee 2006 [59,
60]

12.6 Summary and Conclusion

In this chapter, we presented an overview of mathematical programming-
based classification models, and analyzed their development and advances in
recent years. Many mathematical programming methods are geared toward
two-group analysis only, and performance is often compared to Fisher’s lin-
ear discriminant, or Smith’s quadratic discriminant. It has been noted that
these methods can be used for multiple group analysis by finding G(G− 1)/2
discriminants for each pair of groups (“one-against-one”) or by finding G dis-
criminants for each group versus the remaining data (“one-against-all”), but
these approaches can lead to ambiguous classification rules [25].

Mathematical programming methods developed for multiple group anal-
ysis are described [10, 32, 39, 40, 41, 46, 58, 59, 63, 93]. Multiple group
formulations for support vector machines have been proposed and tested
[40, 36, 49, 66, 59, 60, 18], but are still considered computationally inten-
sive [49]. The “one-against-one” and “one-against-all” methods with support
vector machines have been successfully applied [49, 90].

We also discussed a class of multigroup general-purpose predictive models
that we have developed based on the technology of large-scale optimization
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Table 12.4. Progress in mathematical programming–based classification models:
nonlinear programming methods.

Authors, Years, and Citations

Two-group classification:

Lp-norm criterion Stam and Joachimsthaler 1989 [108]

Review Joachimsthaler and Stam 1990 [50],
Erenguc and Koehler 1990 [27], Stam
1997 [107]

Piecewise-linear nonconvex discriminant
function

Mangasarian et al. 1990 [85]

Minimizing the number of misclassifica-
tions

Mangasarian 1994 [76] 1996 [77], Chen
and Mangasarian 1996 [21]

Minimizing the sum of arbitrary-norm
distances

Mangasarian 1999 [78]

Support vector machine:

Introduction and tutorial Vapnik 1995 [57], Burges 1998 [20]

Generalized SVM Mangasarian 2000 [79], Mangasarian and
Musicant 2001 [83]

Methods for huge-size problems Mangasarian and Musicant 1999 [82]
2001 [84], Bradley and Mangasarian 2000
[13], Lee and Mangasarian 2001 [68, 67],
Fung and Mangasarian 2001 [36] 2002
[37] 2005 [38], Mangasarian 2003 [80]
2005 [81]

Multigroup SVM Gallagher et al 1996, 1997 [39, 40], Hsu
and Lin 2002 [49], Lee et al [63], Lee et
al. 2004 [66], Fung and Mangasarian 2005
[38], Brooks and Lee 2006 [18], Lee 2006
[59, 60]

and support-vector machines [39, 40, 63, 59, 60, 18, 17]. Our models seek to
maximize the correct classification rate while constraining the number of mis-
classifications in each group. The models incorporate the following features:
(1) the ability to classify any number of distinct groups; (2) allow incorpora-
tion of heterogeneous types of attributes as input; (3) a high-dimensional data
transformation that eliminates noise and errors in biological data; (4) con-
straining the misclassification in each group and a reserved-judgment region
that provides a safeguard against over-training (which tends to lead to high
misclassification rates from the resulting predictive rule); and (5) successive
multistage classification capability to handle data points placed in the reserved
judgment region. The performance and predictive power of the classification
models is validated through a broad class of biological and medical applica-
tions.

Classification models are critical to medical advances as they can be used in
genomic, cell, molecular, and system level analyses to assist in early prediction,
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diagnosis, and detection of disease, as well as for intervention and moni-
toring. As shown in the CpG island study for human cancer, such predic-
tion and diagnosis opens up novel therapeutic sites for early intervention.
The ultrasound application illustrates its application to a novel drug delivery
mechanism, assisting clinicians during a drug delivery process, or in devising
implantable devices into the body for automated drug delivery and monitor-
ing. The lung cancer cell motility offers an understanding of how cancer cells
behave under different protein media, thus assisting in the identification of
potential gene therapy and target treatment. Prediction of the shape of a
cancer tumor bed provides a personalized treatment design, replacing manual
estimates by sophisticated computer predictive models. Prediction of early
atherosclerosis through inexpensive biomarker measurements and traditional
risk factors can serve as a potential clinical diagnostic tool for routine physical
and health maintenance, alerting doctors and patients to the need for early
intervention to prevent serious vascular disease. Fingerprinting of microvascu-
lar networks opens up the possibility for early diagnosis of perturbed systems
in the body that may trigger disease (e.g., genetic deficiency, diabetes, aging,
obesity, macular degeneracy, tumor formation), identify target sites for treat-
ment, and monitoring prognosis and success of treatment. Determining the
type of erythemato-squamous disease and the presence/absence of heart dis-
ease helps clinicians to correctly diagnose and effectively treat patients. Thus
classification models serve as a basis for predictive medicine where the desire
is to diagnose early and provide personalized target intervention. This has
the potential to reduce healthcare costs, improve success of treatment, and
improve quality-of-life of patients.

Acknowledgment

This research was partially supported by the National Science Foundation.

References

[1] P.L. Abad and W.J. Banks. New LP based heuristics for the classification
problem. European Journal of Operational Research, 67:88–100, 1993.

[2] J.A. Anderson. Constrained discrimination between k populations. Journal of
the Royal Statistical Society. Series B (Methodological), 31(1):123–139, 1969.

[3] O.K. Asparoukhov and A. Stam. Mathematical programming formulations for
two-group classification with binary variables. Annals of Operations Research,
74:89–112, 1997.

[4] A. Atamturk. Conflict graphs and flow models for mixed-integer linear opti-
mization problems. PhD thesis, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia, 1998.

[5] S.M. Bajgier and A.V. Hill. An experimental comparison of statistical and lin-
ear programming approaches to the discriminant problem. Decision Sciences,
13:604–618, 1982.



424 E.K. Lee and T.-L. Wu

[6] W.J. Banks and P.L. Abad. An efficient optimal solution algorithm for the
classification problem. Decision Sciences, 22:1008–1023, 1991.

[7] W.J. Banks and P.L. Abad. On the performance of linear programming heuris-
tics applied on a quadratic transformation in the classification problem. Euro-
pean Journal of Operational Research, 74:23–28, 1994.

[8] K.P. Bennett. Decision tree construction via linear programming. In M. Evans,
editor, Proceedings of the 4th Midwest Artificial Intelligence and Cognitive
Science Society Conference, pages 97–101, 1992.

[9] K.P. Bennett and O.L. Mangasarian. Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Software,
1:23–34, 1992.

[10] K.P. Bennett and O.L. Mangasarian. Multicategory discrimination via linear
programming. Optimization Methods and Software, 3:27–39, 1994.

[11] Robert E. Bixby and Eva K. Lee. Solving a truck dispatching scheduling
problem using branch-and-cut. Operations Research, Operations Research,
46:355–367, 1998.

[12] R. Borndörfer. Aspects of set packing, partitioning and covering. PhD thesis,
Technischen Universität Berlin, Berlin, Germany, 1997.

[13] P.S. Bradley and O.L. Mangasarian. Massive data discrimination via linear
support vector machines. Optimization Methods and Software, 13(1):1–10,
2000.

[14] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and
Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software,
Pacific Grove, California, 1984.

[15] G.J. Brock, T.H. Huang, C.M. Chen, and K.J. Johnson. A novel technique
for the identification of CpG islands exhibiting altered methylation patterns
(ICEAMP). Nucleic Acids Research, 29:e123, 2001.

[16] J. P. Brooks, A. Wright, C. Zhu, and E.K. Lee. Discriminant analysis of motil-
ity and morphology data from human lung carcinoma cells placed on purified
extracellular matrix proteins. Annals of Biomedical Engineering, Submitted
2007.

[17] J.P. Brooks and E.K. Lee. Mixed integer programming constrained discrimi-
nation model for credit screening. Proceedings of the 2007 Spring Simulation
Multiconference, Business and Industry Symposium, Norfolk, Virginia, March
2007. ACM Digital Library, pages 1–6.

[18] J.P. Brooks and E.K. Lee. Solving a mixed-integer programming formulation
of a multi-category constrained discrimination model. Proceedings of the 2006
INFORMS Workshop on Artificial Intelligence and Data Mining, Pittsburgh,
Pennsylviania, November 2006.

[19] J.P. Brooks and E.K. Lee. Analysis of the consistency of a mixed integer
programming-based multi-category constrained discriminant model. Submit-
ted, 2007.

[20] C.J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121–167, 1998.

[21] C. Chen and O.L. Mangasarian. Hybrid misclassification minimization.
Advances in Computational Mathematics, 5:127–136, 1996.

[22] M. Chevion, E. Berenshtein, and E.R. Stadtman. Human studies related to
protein oxidation: protein carbonyl content as a marker of damage. Free Rad-
ical Research, 33(Suppl):S99–S108, 2000.



12 Classification and Disease Prediction via Mathematical Programming 425

[23] J.F. Costello, M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, G.P. Robertson,
X. Gao, F.A. Wright, J.D. Feramisco, P. Peltomaki, J.C. Lang, D.E. Schuller,
L. Yu, C.D. Bloomfield, M.A. Caligiuri, A. Yates, R. Nishikawa, H.H. Su, N.J.
Petrelli, X. Zhang, M.S. O’Dorisio, W.A. Held, W.K. Cavenee, and C. Plass.
Aberrant CpG-island methylation has non-random and tumour-type-specific
patterns. Nature Genetics, 24:132–138, 2000.

[24] J.F. Costello, C. Plass, and W.K. Cavenee. Aberrant methylation of genes in
low-grade astrocytomas. Brain Tumor Pathology, 17:49–56, 2000.

[25] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, New
York, 2001.

[26] T. Easton, K. Hooker, and E.K. Lee. Facets of the independent set plytope.
Mathematical Programming, Series B, 98:177–199, 2003.

[27] S.S. Erenguc and G.J. Koehler. Survey of mathematical programming models
and experimental results for linear discriminant analysis. Managerial and
Decision Economics, 11:215–225, 1990.

[28] F.A. Feltus, E.K. Lee, J.F. Costello, C. Plass, and P.M. Vertino. Predicting
aberrant CpG island methylation. Proceedings of the National Academy of
Sciences, 100:12253–12258, 2003.

[29] F.A. Feltus, E.K. Lee, J.F. Costello, C. Plass, and P.M. Vertino. DNA signa-
tures associated with CpG island methylation states. Genomics, 87:572–579,
2006.

[30] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7:179–188, 1936.

[31] N. Freed and F. Glover. A linear programming approach to the discriminant
problem. Decision Sciences, 12:68–74, 1981.

[32] N. Freed and F. Glover. Simple but powerful goal programming models for
discriminant problems. European Journal of Operational Research, 7:44–60,
1981.

[33] N. Freed and F. Glover. Evaluating alternative linear programming models
to solve the two-group discriminant problem. Decision Sciences, 17:151–162,
1986.

[34] N. Freed and F. Glover. Resolving certain difficulties and improving the clas-
sification power of LP discriminant analysis formulations. Decision Sciences,
17:589–595, 1986.

[35] M.C. Fruhwald, M.S. O’Dorisio, L.J. Rush, J.L. Reiter, D.J. Smiraglia,
G. Wenger, J.F. Costello, P.S. White, R. Krahe, G.M. Brodeur, and C. Plass.
Gene amplification in NETs/medulloblastomas: mapping of a novel amplified
gene within the MYCN amplicon. Journal of Medical Genetics, 37:501–509,
2000.

[36] G.M. Fung and O.L. Mangasarian. Proximal support vector machine classi-
fiers. In Proceedings KDD-2001, San Francisco, August 26-29 2001.

[37] G.M. Fung and O.L. Mangasarian. Incremental support vector machine clas-
sification. In R. Grossman, H. Mannila, and R. Motwani, editors, Proceedings
of the Second SIAM International Conference on Data Mining, pages 247–260,
Philadelphia, 2002. SIAM.

[38] G.M. Fung and O.L. Mangasarian. Multicategory proximal support vector
machine classifiers. Machine Learning, 59:77–97, 2005.

[39] R.J. Gallagher, E.K. Lee, and D.A. Patterson. An optimization model for con-
strained discriminant analysis and numerical experiments with iris, thyroid,



426 E.K. Lee and T.-L. Wu

and heart disease datasets. In Proceedings of the 1996 American Medical
Informatics Association, October 1996.

[40] R.J. Gallagher, E.K. Lee, and D.A. Patterson. Constrained discriminant anal-
ysis via 0/1 mixed integer programming. Annals of Operations Research,
74:65–88, 1997.

[41] W.V. Gehrlein. General mathematical programming formulations for the
statistical classification problem. Operations Research Letters, 5(6):299–304,
1986.

[42] J.J. Glen. Integer programming methods for normalisation and variable selec-
tion in mathematical programming discriminant analysis models. Journal of
the Operational Research Society, 50:1043–1053, 1999.

[43] J.J. Glen. Dichotomous categorical variable formation in mathematical pro-
gramming discriminant analysis models. Naval Research Logistics, 51:575–596,
2004.

[44] F. Glover. Improved linear programming models for discriminant analysis.
Decision Sciences, 21:771–785, 1990.

[45] F. Glover, S. Keene, and B. Duea. A new class of models for the discriminant
problem. Decision Sciences, 19:269–280, 1988.

[46] W. Gochet, A. Stam, V. Srinivasan, and S. Chen. Multigroup discriminant
analysis using linear programming. Operations Research, 45(2):213–225, 1997.

[47] D.J. Hand. Discrimination and Classification. John Wiley, New York, 1981.
[48] P. Horton and K. Nakai. A probablistic classification system for predicting the

cellular localization sites of proteins. In Proceedings of the Fourth International
Conference on Intelligent Systems for Molecular Biology, pages 109–115, St.
Louis, USA, 1996.

[49] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

[50] E.A. Joachimsthaler and A. Stam. Mathematical programming approaches
for the classification problem in two-group discriminant analysis. Multivariate
Behavioral Research, 25(4):427–454, 1990.

[51] G.J. Koehler. Characterization of unacceptable solutions in LP discriminant
analysis. Decision Sciences, 20:239–257, 1989.

[52] G.J. Koehler. Unacceptable solutions and the hybrid discriminant model.
Decision Sciences, 20:844–848, 1989.

[53] G.J. Koehler. A response to Xiao’s “necessary and sufficient conditions of
unacceptable solutions in LP discriminant analysls”: Something is amiss. Deci-
sion Sciences, 25:331–333, 1994.

[54] G.J. Koehler and S.S. Erenguc. Minimizing misclassifications in linear dis-
criminant analysis. Decision Sciences, 21:63–85, 1990.

[55] E.K. Lee. Solving a truck dispatching scheduling problem using branch-and-
cut. PhD thesis, Computational and Applied Mathematics, Rice University,
Houston, Texas, 1993.

[56] E.K. Lee, A.Y.C. Fung, J.P. Brooks, and M. Zaider. Automated planning
volume definition in soft-tissue sarcoma adjuvant brachytherapy. Biology in
Physics and Medicine, 47:1891–1910, 2002.

[57] E.K. Lee, R.J. Gallagher, A.M. Campbell, and M.R. Prausnitz. Prediction
of ultrasound-mediated disruption of cell membranes using machine learning
techniques and statistial analysis of acoustic spectra. IEEE Transactions on
Biomedical Engineering, 51:1–9, 2004.



12 Classification and Disease Prediction via Mathematical Programming 427

[58] E.K. Lee and S. Maheshwary. Conflict hypergraphs in integer programming.
Technical report, Georgia Institute of Technology, 2006. submitted.

[59] E.K. Lee. Discriminant analysis and predictive models in medicine. In S.J.
Deng, editor, Interdisciplinary Research in Management Science, Finance, and
HealthCare. Peking University Press, 2006. To appear.

[60] E.K. Lee. Large-scale optimization-based classification models in medicine
and biology. Annals of Biomedical Engineering, Systems Biology and Bioin-
formatics, 35(6):1095–1109, 2007.

[61] E.K. Lee, T. Easton, and K. Gupta. Novel evolutionary models and applica-
tions to sequence alignment problems. Annals of Operations Research, Oper-
ations Research in Medicine – Computing and Optimization in Medicine and
Life Sciences, 148:167–187, 2006.

[62] E.K. Lee, A.Y.C. Fung, and M. Zaider. Automated planning volume contour-
ing in soft-tissue sarcoma adjuvant brachytherapy treatment. International
Journal of Radiation, Oncology, Biology and Physics, 51:391, 2001.

[63] E.K. Lee, R.J. Gallagher, and D.A. Patterson. A linear programming approach
to discriminant analysis with a reserved-judgment region. INFORMS Journal
on Computing, 15(1):23–41, 2003.

[64] E.K. Lee, S. Jagannathan, C. Johnson, and Z.S. Galis. Fingerprinting native
and angiogenic microvascular networks through pattern recognition and dis-
criminant analysis of functional perfusion data. Submitted, 2006.

[65] E.K. Lee, T.L. Wu, S. Ashfaq, D.P. Jones, S.D. Rhodes, W.S. Weintrau, C.H.
Hopper, V. Vaccarino, D.G. Harrison, and A.A. Quyyumi. Prediction of early
atherosclerosis in healthy adults via novel markers of oxidative stress and
d-ROMs. Working paper, 2007.

[66] Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory
and application to the classification of microarray data and satellite radiance
data. Journal of the American Statistical Association, 99:67–81, 2004.

[67] Y.-J. Lee and O.L. Mangasarian. RSVM: Reduced support vector machines. In
Proceedings of the SIAM International Conference on Data Mining, Chicago,
April 5-7 2001.

[68] Y.-J. Lee and O.L. Mangasarian. SSVM: A smooth support vector machine
for classification. Computational Optimization and Applications, 20(1):5–22,
2001.

[69] Y.-J. Lee, O.L. Mangasarian, and W.H. Wolberg. Breast cancer survival and
chemotherapy: A support vector machine analysis. In DIMACS Series in Dis-
crete Mathematical and Theoretical Computer Science, volume 55, pages 1–10.
American Mathematical Society, 2000.

[70] Y.-J. Lee, O.L. Mangasarian, and W.H. Wolberg. Survival-time classifica-
tion of breast cancer patients. Computational Optimization and Applications,
25:151–166, 2003.

[71] C. Loucopoulos and R. Pavur. Computational characteristics of a new mathe-
matical programming model for the three-group discriminant problem. Com-
puters and Operations Research, 24(2):179–191, 1997.

[72] C. Loucopoulos and R. Pavur. Experimental evaluation of the classificatory
performance of mathematical programming approaches to the three-group dis-
criminant problem: The case of small samples. Annals of Operations Research,
74:191–209, 1997.

[73] P.P. Luedi, A.J. Hartemink, and R.L. Jirtle. Genome-wide prediction of
imprinted murine genes. Genome Research, 15:875–884, 2005.



428 E.K. Lee and T.-L. Wu

[74] O.L. Mangasarian. Linear and nonlinear separation of patterns by linear pro-
gramming. Operations Research, 13:444–452, 1965.

[75] O.L. Mangasarian. Multi-surface method of pattern separation. IEEE Trans-
actions on Information Theory, 14(6):801–807, 1968.

[76] O.L. Mangasarian. Misclassification minimization. Journal of Global Opti-
mization, 5:309–323, 1994.

[77] O.L. Mangasarian. Machine learning via polyhedral concave minimization. In
H. Fischer, B. Riedmueller, and S. Schaeffler, editors, Applied Mathematics and
Parallel computing – Festschrift for Klaus Ritter, pages 175–188, Germany,
1996. Physica-Verlag.

[78] O.L. Mangasarian. Arbitrary-norm separating plane. Operations Research
Letters, 24:15–23, 1999.

[79] O.L. Mangasarian. Generalized support vector machines. In A.J. Smola,
P. Bartlett, B. Schökopf, and D. Schuurmans, editors, Advances in Large Mar-
gin Classifiers, pages 135–146. MIT Press, Cambridge, Massachusetts, 2000.

[80] O.L. Mangasarian. Data mining via support vector machines. In E.W. Sachs
and R. Tichatschke, editors, System Modeling and Optimization XX, pages
91–112, Boston, 2003. Kluwer Academic Publishers.

[81] O.L. Mangasarian. Support vector machine classification via parameterless
robust linear programming. Optimization Methods and Software, 20:115–125,
2005.

[82] O.L. Mangasarian and D.R. Musicant. Successive overrelaxation for support
vector machines. IEEE Transactions on Neural Networks, 10:1032–1037, 1999.

[83] O.L. Mangasarian and D.R. Musicant. Data discrimination via nonlinear gen-
eralized support vector machines. In M.C. Ferris, O.L. Mangasarian, and J.-
S. Pang, editors, Complementarity: Applications, Algorithms and Extensions,
pages 233–251. Kluwer Academic Publishers, Boston, Massachusetts, 2001.

[84] O.L. Mangasarian and D.R. Musicant. Lagrangian support vector machines.
Journal of Machine Learning Research, 1:161–177, 2001.

[85] O.L. Mangasarian, R. Setiono, and W.H. Wolberg. Pattern recognition via
linear programming: Theory and application to medical diagnosis. In T.F.
Coleman and Y. Li, editors, Large-Scale Numerical Optimization, pages 22–
31, Philadelphia, Pennsylvania, 1990. SIAM.

[86] O.L. Mangasarian, W.N. Street, and W.H. Wolberg. Breast cancer diagnosis
and prognosis via linear programming. Operations Research, 43(4):570–577,
1995.

[87] E.P. Markowski and C.A. Markowski. Some difficulties and improvements
in applying linear programming formulations to the discriminant problem.
Decision Sciences, 16:237–247, 1985.

[88] J.M. McCord. The evolution of free radicals and oxidative stress. The Amer-
ican Journal of Medicine, 108:652–659, 2000.

[89] G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition.
Wiley, New York, 1992.
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A
Adapted clusterings, transversal voxel

layer, 147
Adaptive clustering method, IMRT

plan optimization, 133
American Cancer Society (ACS), 25,

27
Antiepileptic drugs (AEDs), 328, 329
Artificial neural networks (ANN), 401
Automated Seizure Warning System

(ASWS), 331

B
Beam’s-eye view (BEV) approach, 57
Blind Source Separation (BSS), 254
Brain chaos, EEG time series

electrode sites, 332–333
pre-seizure patterns, 331
sequential epochs, 332

Breast cancer screening, optimization
models

ACS policy recommendations, 49
clinical symptoms and treatments,

26
cost-effectiveness of, 27
decision process, 46–47
disease development and progression

Markov assumptions, 44
non-invasive vs. invasive, 45
state transition diagram for, 44–45

lumpectomy and mastectomy, 46
mammogram recommendations

potential benefits and risks, 30
for women, increased risk, 29

mammography techniques
efficacy and mathematical, 28–29
malignant cancer cells, 27
in situ and invasive, 28

patient condition monitoring
Bernoulli distributions

parameters, 46
and decision making, 45

policy and quality of, 48
and treatments, 47

C
Cardiovascular diseases, 26
Chebyshev approximation problem, 94
Classification and regression trees

(CART), 419
nearest-neighbor methods, 419

Clinical breast exam (CBE), 45, 46
Clustering via concave quadratic

programming (CCQP)
advantages of, 347–348
QIP problem, 347

Clustering via MIP with quadratic
constraint (CMIPQC), 348

Cold ischemia time (CIT), 2, 15, 16
Complexity theory

insertion supernode/substitution
supernode, 312

3-layer supergraph, 313
Σ−cross, 312

Conformal radio therapy, 169
Convex hull of individual minima

(CHIM), 143

431
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D
DAMIP model, Mixed-integer

programming (MIP), 405,
418–419

Data mining (DM), 326, 333
microarray data analysis, 359, 360,

372–375
Data representations, optimization

techniques
applications

mixed signals and normalized
scatterplot, 276–277

original source and mixed signals,
278

SCA to fMRI data, 279–287
subspace clustering algorithm,

276–278
independent component analysis

(ICA)
BSS linear, separability, 259–263
fixed point algorithm, 258–259
global Hessian diagonalization,

kernel-based density, 263–266
infomax algorithm and Kullback

–Leibler divergence, 267
log-likelihood, 266
natural gradient algorithm,

267–269
network entropy, 266–267
non-Gaussianity maximization,

254–258
sparse component analysis and

blind source separation, 269–272
mixing matrix identification,

algorithm, 272
orthogonal m-planes clustering

algorithm, 275–276
sources identification, 272–273
subspace clustering algorithm,

273–274
Directed acyclic graph (DAG), 401
Direct kidney exchange, 20
Divide and Conquer algorithm, 394
Dose-volume (DV)

conditions, 104
constraints, 102

Dose-volume histograms (DVHs), 53,
71

control techniques

3DCRT and, 67
norms, choice of, 67
NP-hard problem, 66
OAR and, 69
parameters, 68, 70
PTV and, 67–68
wedges, 69, 71

curve, 135
dose distribution, 135–136
requirements and techniques, 103
treatment plan, 66

Ductal carcinoma in situ (DCIS),
44–45

Dynamic index policy, 18–19
Dynamic multileaf collimator

(DMLC), 171

E
Electroencephalograms (EEGs)

events and signals, 329, 332
pre-seizure and normal, 340
recordings and samples, 330, 332
seizure development process, 326
seizures prediction, 329–330

Epilepsy, optimization and data
mining

brain functions, 326
electrode selection and detection,

349–350
epileptic brain clustering

CCQP, 347–348
CMIPQC, 348

false-positive rate, 350
neurologic dysfunctions, 325
normal and epileptic EEGs

entropy three-dimensional plots,
334

multiclass problems, 333
novel techniques, 348
real seizure precursors, 349
repetitive and predictive patterns,

33
seizure precursor detection

epileptogenesis process, 340
FSMC, 344–346
FSMQIP, 343–344
FSQIP, 341–343
Ising model, 341
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support vector machines (SVM),
338–340

TSSNNs, 334–338
Equivalent uniform dose (EUD),

134–135, 157–158, 160
functions and constraints, 106
models and concepts, 105
Niemierko’s concept, 136
predicted and resulting changes of,

113–114
Euler–Lagrange equations, 247
Evolutionary trees

cluster analysis, 293–294
neighbor joining

Expectation-maximization (EM)
algorithm, 306

Extreme compromises, scalar
problems, 139–140

F
Feature selection via maximum clique

(FSMC)
brain connectivity and graphs,

344–345
clique problem, 345–346
eigenvalues, 346
electron, prediction performance,

345
Feature selection via multi-quadratic

integer programming (FSMQIP)
mathematical model for, 343
seizure precursor patterns, 344

Feature selection via quadratic integer
programming (FSQIP)

brain network, 341
branch-and-bound method, 342
epileptic seizures predictability

analysis, 343
T-index curve, 342–343

fMRI analysis, 266
fastICA result, 284, 286
non-independent and non-sparse

source signals, 279
orthogonal m-planes clustering

algorithm, 285
setting, 282
Sparse Component Analysis (SCA)

application in

real data, 281–287

toy data, 279–281

G

General linear model (GLM), 279

General multiple function classification
(GMFC), 396

General single function classification
(GSFC), 396, 409

Gene regulation matrix (GRM), 371

Genetic Algorithms (GA), 306

Genomics analysis algorithms

DNA sequence

base pairs, 292

nucleotides, 291

Multiple sequence alignment (MSA)
and, 300–307

novel graph-theoretical–based,
307–308

complexity theory, 311–316

conflict graph, construction,
310–311

errors, 308

evolutionary distance problem,
308–309

integer programming formulation,
computational model, 316–318

MWCMS model, 307, 316

sequencing by hybridization, 308

phylogenetic analysis

evolutionary tree, 292

maximum likelihood methods,
298–300

pairwise distance based methods,
293–295

parsimony methods, 295–296

tree terminology, 293

Gibbs sampler approach, MSA, 306

Gross tumor volume (GTV), 113

H

Helical tomotherapy, 170–171

Hidden Markov model (HMM), 306

Human Iteration Loop

scalarization, 129–130



434 Index

I
Image registration, energy

minimization
Gauss maps, 214–215
image sequences process

fixed boundary conditions,
225–226

pairwise procedures, 226
transformations in, 225

intensity scaling, 229–230
magnetic resonance and computed

tomography, 213–214
numerical methods

boundary value problems, 226
geometric multigrid formulation,

227
nested finite elements spaces,

227–228
optimality conditions

Eulerian and Lagrangian fashion,
223

finite displacements, 224
landmark constraints, 224–225
Lebesgue square integrable

derivatives, 222
raw magnetic resonance, 231
registering and interpolating

methods, 214
regularity measures

non-linearized elastic potential,
221

plate spline functions, 220
scaling functions, 215
similarity measures

finite displacements, 217–218
joint entropy, 219
optical flow equations, 218
parametric registration, 220
squared differences, 217

transformation, 230
variational framework

curvilinear coordinate system, 216
optical flow field, 217
rectangular spatial coordinates,

215–216
Image segmentation, energy

minimization
edge detection and

multiscale principle, 232

variational methods, advantages
of, 231

geodesic active contours, 235

level-set method

advantages, 235

Hamilton–Jacobi equation, 237

topological changes, 235–236

zero-level set of, 236

region and edge growing

hybrid growing methods, 232

traveling salesman problem, 233

snake model

drawbacks of, 234

edge detector, 234

Incentive-compatibility (IC), 20

Increasing failure rate (IFR), 8, 9, 11

Independent Component Analysis
(ICA), 253

Indirect kidney exchange, 21

Integer programming (IP), 304, 317,
318, 395

Intensity modulated proton therapy
(IMPT)

approaches and algorithms, 110–112

passive scattering techniques, 109

spot scanning (SC) technique,
109–110

treatment planning tools, 110

Intensity modulated radiation therapy
(IMRT), 54–56

asymmetry property, 123

beam setup and intensity maps,
160–161

compensator-based, 170

database, navigation, 148

decision-making, 156–157

ideal point, minimum values,
150–151

nadir point, maximum values,
151–152

possible extensions, 154

restriction mechanism, 149

selection mechanism, 152–154

user interface, 154–156

head-and-neck cancer

locking an organ, 160

navigation screens, 159

salivary glands and, 158
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multicriteria optimization
inverse treatment planning

problem, 134–136
multiobjective linear

programming, 134
Niemierko’s EUD concept, 136
Pareto boundary, approximation,

140–144
Pareto solutions and planning

domain, 136–137
prostate case, 133
solution strategies, 138–140
weighted sum method, 134

numerical realization, 144
adaptive clustering method,

145–147
beamlets, 145
cluster hierarchy, 146
intensity map, 145
inverse treatment planning

problem, asymmetry, 147–148
transversal voxel layer, hierarchical

clustering, 146
prostate cancer, 157

EUD target, standard deviation,
158

research topics, 161–162
tomotherapy based, 170–171
treatment planning problem

beam arrangement and
orientation, 124, 126

forward treatment planning, 127
gantry movement, 124
intensity maps, 126
radiotherapy, 123
setup geometry optimization, 125

treatment planning process, 171
virtual engineering process,

optimization
boundary shape, convey methods,

131
concept, 128
design problem, spaces, 128
linear programming, asymmetry,

132–133
multicriteria optimization

problem, 129–130
parameters, 132
Pareto optimal, 129

Intensity modulated radiotherapy
(IMRT) treatment planning

applications and algorithms of, 112
concepts and algorithms, 90–91
convex problems, 91
3D spot scanning technique, 87
EUD predicted changes, 113
inverse approaches for, 84, 89
optimization models

barrier-penalty multiplier method,
106

beamlet weights, 84
BFGS method, 99
dose bound constraints, 91–93
dose-volume histogram function,

99
DV constraints and conditions,

103–105
elastic constraints, 93–94
HYPERION software, 107
linear approximation, 94–95
MILP programs, 103
multicriteria, 86, 98–100
nonlinear conditions, 100–107
Pareto minimal point, 98
partial volume conditions, 102–105
piecewise models and extensions,

95–98
probability functions and, 101–102
solution and goals, 100
uniform dose conditions, 105–106

pencil beam kernels, 88
radiation field and body, 87
sensitivity analysis

lagrange multipliers, 108
multicriteria approaches, 108–109
optimization tool, 107

techniques of, 90
tools for, 86

Invasive ductal carcinoma (IDC), 45

J
JADE algorithm, 266
Jukes–Cantor distance, 293

K
Kidney

allocation system
cadaveric classes, 3
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Kidney (Continued)
optimization, 16–22
zero-antigen mismatch, 3–4

transplantation and optimization
increasing failure rate (IFR), 8
Markov decision process (MDP)

model, 8–9
optimal stopping problem, 7–8

Kuhn–Tucker theorem, 36
Kullback–Leibler divergence, 267

L
Lagrange equation, 258
Lexicographic max-ordering problem,

140
LINDO optimization software, 389
Linear discriminant function (LDF),

389
Linear programming (LP), 75

techniques, 339
Linear programming (LP) models

dose bound constraints
inverse approaches, 91
normal-tissue volumes, 92
problems and treatments, 93

elastic constraints
Chebyshev approximation

problem, 93–94
treatment goals, 93

partial-volume constraints, 94
Linear programming (LP) models

classification models
multigroup

disease diagnosis and, 393
error-minimizing separation, 392
single discriminant function, 391

two-group
applications of, 390
binary digits cell representing, 391
computational studies, 387
multiple solutions, 389
normalization approach, 388

Linear program with equilibrium
constraints (LPEC), 398

Liver
allocation system

factors for, 4–5
MELD system, 5–6
schematic representation, 6–7

transplantation and optimization

living-donor, 10

Markov decision process (MDP)
model, 11–12

optimal stopping problem, 9–10

Longest common subsequences (LCS),
316–317

complete paths, 310–311

Lymphoepithelioma, 158

M

Magnetic resonance imaging (MRI),
29

Mammography screening optimization
models

applications of, 48–49

breast cancer treatments, 48

cost-effectiveness of, 30, 49

limitations of, 32

machine-learning techniques, 33

Markovian stochastic process, 31–32

and treatment policies, 30

tumor growth rates, 31

Marcinkiewics’s theorem, 261

Markov decision process (MDP)
model, 8, 11

Mathematical programming
approaches

Bayesian inference and classification

prior probability distribution, 384

treatments, 383

classification models, 386

linear programming, 387–393

mixed-integer programming,
393–397

nonlinear programming, 397–399

progress, 420–422

support vector machine (SVMs),
399–401

discriminant functions

Bayes decision rules, 386

homoscedastic model, 385

parameter values, 384

learning, training, and cross-
validation

attributes for, 382–383

classification matrix and rules, 383

quantitative measurements, 382
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pattern recognition, discriminant
analysis, and statistical, 382

support vector machines, 386
Mathematical programming (MP),

372
Maximum Clique Problem (MCP),

345
Maximum likelihood (ML)

evolution model, 298
hill-climbing algorithm, 300
tree likelihood, 298

conditional likelihood, 299
simple tree, 299

Microarray data analysis,
mathematical programming
approaches

biology and
cDNA and oligonucleotide

microarrays, 358
genetic information, expression

stages, 357
empty spaces, feature selection,

366–367
gene expression data

clustering and classification,
359–360

mathematical programming
formulations, 360–363

multiclass support vector
machines, 363–365

tissue classification, 360
gene selection and tissue

classification, 368–369
e-constraint method, 368
mixed integer (non) linear

optimization, 368
large-scale mixed-integer (non)linear

optimization theory, 372
regulatory networks

generic network modeling,
multicriteria optimization,
371–372

mixed-integer formulations,
370–371

research
biological constraints

incorporation, 373
empty spaces analyzation and

uncertainty considerations, 374

global optimization, 373–374
interpretation and visualization,

375
large-scale combinatorial and

multiobjective optimization, 373
mixed-integer dynamic

optimization, 374–375
multiclass problems, 374
reformulations, 375

support vector machines (SVMs)
and, 362–363, 365–367

tissue classification, 359
Minimizing the maximum deviation

(MMD), 387–389
Minimizing the sum of deviations

(MSD), 387–390
Minimizing the sum of interior

distances (MSID), 289, 387
MINSEPARATION algorithm,

178–181
MIN-TNMU algorithm, 209–210
Mixed-integer linear programming

(MILP)
binary variables, 85
leaf sequencing, 86

Mixed-integer programming (MIP),
63, 71–73, 78

algorithm, upper and lower bounds,
75

Mixed-integer programming (MIP)
classification models

Bayes optimal rule, 401–402
DAMIP model, 405, 418–419
discrete support vector machine

predictive models
model variations, 406–409
novel classification model,

features, 402
reserved judgment region

modeling, 403
validation and computational

effort, 409
medical and biological applications

biomarker analysis,
atherosclerosis, 415–416

cell motility and morphology data,
human lung carcinoma, 413

drug delivery, ultrasonic-assisted
cell disruption, 414
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Mixed-integer programming (MIP)
classification models (Continued)

erythemato-squamous disease,
determination, 410–411

fingerprinting native and
angiogenic microvascular net-
works, 416–417

heart disease, prediction, 411–412

human cancer, CpG island
methylation, 411–413

protein localization sites,
prediction, 417–418

sarcoma, tumor shape and volume,
414–415

soil types determination, 418

misclassified observations, 393

multigroup

misclassifications, 396

parametric procedures, 397

SVM predictive models, 402–409

two-group

binary variables, 393

discriminant function, 395–396

procedures and algorithms, 394

Mnimum weight common mutated
sequence (MWCMS), 309, 310,
315

Model for End Stage Liver Disease
(MELD), 5, 6

Molecular Phylogenetics, 293

Monitor units (MUs)

left and right leaves, 174–175

Multileaf collimators (MLCs), 83,
124–125, 144, 161

beam angles and parameters, 85

field shapes, 89

limitaitons, 106

tungsten leaves, 88

uses of, 84

Multileaf collimators sequencing,
algorithm

dynamic multileaf collimator
(DMLC)

multiple leaf pairs, 191–195

single leaf pair, 188–191

field splitting with feathering

field matching problem, 202

hot and cold spot, 203

profile splitting, 204–206
split point, 203

field splitting without feathering
multiple leaf pairs, optimal,

199–201
one leaf pair, optimal, 196–199

models and constraints
dynamic multileaf collimator

(DMLC), 172
leaves cross section, 172–173
segmental multileaf collimator

(SMLC), 171–172
problem description, 169–171
segmental multileaf collimator

(SMLC)
multiple leaf pairs, 177–188
single leaf pair, 173–177

segments minimization, 206
Engel algorithm, 209–210
Langer algorithm, 207–209

MULTIPAIR algorithm, 177–178, 184
Multiple sequence alignment (MSA)

alignment approaches, 301–303
dynamic programming, 301
graph-based algorithms

Eulerian path approach, 305
maximum-weight trace, 304–305
minimum spanning tree and

traveling salesman problem, 305
iterative algorithms, 305

deterministic, 307
probabilistic, 306

progressive algorithms
schema, 303
shortcomings of, 303–304

scoring alignment
independent columns, 301–302
scoring matrices, 302

sequence analysis problems, 300
Multi-Quadratic Integer Programming

(MQIP) problem, 341
CPLEX and XPRESS-MP solvers,

344
Multisurface method tree algorithm

(MSMT), 390, 392
Mumford–Shah functional approaches

approximation techniques, 247
Edge detector–based segmentation,

246
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image segmentation model, 245

level-set method, 246–247

Newton-type methods, 248

N

Nadir point

convex maximization problem,
151–152

Neighbor Joining (NJ)

general schema of, 295

modified distance matrix, 294

NMR brain imaging techniques, 279

Nonlinear programming classification
models, 398–399

Nonlinear programming (NLP)
method, 95

Normal tissue complication probability
(NTCP), 54, 65, 136

Normal tissue control probability
(NTCP), 101

O

One-against-all (OAA) classifier, 363,
365

One-against-one (OAO) classifier,
364–365

Organ allocation and acceptance,
optimization

kidney

classes of, 3

zero-antigen mismatch, patient
and, 3–4

liver, 4

adult and pediatric patients, 4

schematic representation of, 6–7

UNOS Status 1 and Model for End
Stage Liver Disease (MELD)
scores, 5

patients

kidney transplantation, 7–9

liver transplantation, 9–12

societal

kidney, 16–22

Markov chain, 13

Poisson process, 12–13

Organ Procurement Organizations
(OPOs), 2–4, 15–17, 19

Organs-at-risk (OARs), 53, 55, 66, 83,
84, 87, 88, 92, 99, 102, 104–107,
110, 112, 113

DVH control, 69
Ovarian cancers, 26

P
Panel-reactive antibody (PRA), 3, 4
Panning target volume (PTV), 83, 84,

87, 88, 91, 92, 96, 99, 101, 102,
104, 105, 107, 111–114

Pap smears prostate tests, 26
Parametric misclassification

minimization (PMM) pro-
cedure, 398

Pareto set, Intensity modulated
radiation therapy (IMRT), 129

Parkinson’s disease, 329
Parmigiani

disease-associated factors, 42
transition probabilities, 41

Parsimony methods, tree building
score computation, 296–297
tree topologies, 297–298

Partial differential equation (PDE),
237

Partially observable Markov decision
process (POMDP), 34

Partial volume (PV) constraint, 85,
104, 106, 108, 112

Paul Scherrer Institute (PSI), 110
Payback debt, 3–4
Person years of life lost (PYLL), 33
4D-Planning, organ geometry, 161
Planning target volume(s) (PTVs),

83, 84, 87, 88, 92, 99, 104, 105
Poisson process, 8, 12
Prostate cancer

and Intensity modulated radiation
therapy (IMRT), 157–158

PTV (Planning Target Volume),
59–61, 64–65, 69–74

DVH control, 67–68
isodose lines and, 76–77

Q
Quadratic discriminant function

(QDF), 389
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Quadratic programming (QP)
problems, 95–98, 101

Quality-adjusted life expectancy
(QALE), 8–9

Quality-adjusted life years (QALYs),
16, 17

Quality of life (QOL), 17

R

Radiation therapy treatments

computed tomography and medical
tools, 83

forward and inverse approach, 84

linear accelerator, 84

RAGNU software package, 389

Randomized control trials (RCTs), 27,
30

Reformulation-linearization techniques
(RTLs), 341

Robust linear programming (RLP),
390

S

Scientific Registry of Transplant
Recipients, 2

Screening examination models

Kirch and Klein

age-specific incidence rates, 37

disease detection point, 35

Ozekici and Pliska

age of detection, 41

dynamic programming, 39

Markov decision chain, 40

Shwartz

lymph-node involvement levels, 37

policy evaluation, 39

risks in, 38

tumor growth rate, 38–39

Zelen

possible states, 42

screening programs, 43

stable disease, 44

Segmental multileaf collimator
(SMLC), 171

algorithms for, 173–188

leaf trajectory, 174

multiple leaf pairs

optimal algorithm with inter-pair
minimum separation constraint,
178–181

optimal schedule, without
minimum separation constraint,
177–178

tongue-and-groove effect,
elimination, 181–188

single leaf pair
leaves movement, 174–175
optimal unidirectional algorithm,

175–177
Seizure prediction

clinical syndromes, 326
epileptogenesis mechanisms, 328
onset and spread of, 327
research motivations

diagnosis and treatment, 328–329
intracranial electrodes, 329
phase synchronization measure,

330
respective surgery, 328
temporal changes and properties,

331
types of, 327

Sequential Quadratic Programming
(SQP) method, 101

Shape optimization
edge detector–based segmentation

Eulerian semiderivative, 240
Hadamard–Zolesio structure

theorem, 242
perturbation vector fields, 243
sensitivity analysis, 238
technical assumptions, 241

level-set–based descent framework
Armijo-type line search procedure,

245
zero-level set band, 244

Mumford–Shah functional
approaches, 245–248

Shortest common supersequences
(SCSQ), 316, 317

Shortest common superstring (SCST),
316, 317

Simulated Annealing (SA), 306
SINGLEPAIR algorithm, for SMLC,

175–177
Skitovitch–Darmois theorem, 254
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Sparse Component Analysis (SCA),
253

in fMRI toy data, 279
analysis, 282
denoised source signals, 281
NMR brain imaging techniques,

279
non-independent and non-sparse

source signals, 279–280
recovered source signals, 280–281

in real fMRI data
Blind Signal Separation, 282–283
recovered source signals, ICA, 282

Spot scanning (SC), 86, 87, 109, 110
Spread-out Bragg peak (SOBP), 109
Successive linearization algorithm

(SLA), 399
Support vector machines (SVMs)

data points, 400–401
EEG classification framework,

338–340
gene selection

heat maps, 367
recursive feature elimination

procedure, 367–368
Lagrange multiplier, 400
microarray data, classification

gene functionality, 365–366
molecular cancer, 365

misclassification errors, 339
multiclass classifiers

OAA and OAO, 363–365
procedure of, 338
regularization theory and, 362

T
Tchebycheff problem, 139, 144, 148
Three-dimensional Conformal

Radiation Treatment (3DCRT),
optimization, 55

beam
angles, 61–62
shape generation and collimator,

57
weights, 59–61

external-beam radiation treatments
dose-based and biological models,

54
machine, 54

hot and cold spots, 55
IMRT plan optimization and, 56
multiple beams, effect of

dosage distribution, 56
radiation therapy, 53
radiation treatment procedure, 58
solution quality

Dose-volume histogram (DVH),
65–66

solution time reduction techniques
isodose plots, 77
normal tissue voxel reduction,

72–73
three-phase approach, 73–77

treatment planning process, 58
input data, 59

upper bounds on beam weights,
computation, 65

stringent bound, calculation, 64
wedge filters

heel and toe, 57
universal wedge, 58

wedge orientations, 62
algorithm, 62
postprocessing technique, 63

Time series statistical nearest
neighbors (TSSNNs)

abnormal activity and seizure
pre-cursors, 338

classification results of, 336–338
EEG epoch, seizure classifications,

335–336
TONGUEANDGROOVE algorithm,

184–187, 201, 209
Top Trading Cycles and Chains

(TTCC) mechanism, 21
Total number of monitor units

(TNMU), 210
admissible segmentation pair, 210
I complexity C(I), 209

Traveling Salesman Problem (TSP),
305

Treated cancer-free (TrNC), 47
Tumor control probability (TCP), 54,

65, 101, 136

U
United Network for Organ Sharing

(UNOS), 1–6, 9, 17, 19
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Unweighted Pair Group Method using
Arithmetic averages (UPGMA),
294

V
Virtual engineering, 123, 127–129,

132, 133

Volumes of interest (VOIs), 133, 142,
144, 155, 158, 160

biological impact, 136
Voxels, 135

W
Wedge filters, 57–58




