
LINEAR PROGRAMMING

Foundations and Extensions

Third Edition

Recent titles in the INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
 Frederick S. Hillier, Series Editor, Stanford University

Sethi, Yan & Zhang/ INVENTORY AND SUPPLY CHAIN MANAGEMENT WITH FORECAST

UPDATES

Cox/ QUANTITATIVE HEALTH RISK ANALYSIS METHODS: Modeling the Human Health Impacts of

Antibiotics Used in Food Animals

Ching & Ng/ MARKOV CHAINS: Models, Algorithms and Applications

Li & Sun/ NONLINEAR INTEGER PROGRAMMING

Kaliszewski/ SOFT COMPUTING FOR COMPLEX MULTIPLE CRITERIA DECISION MAKING

Bouyssou et al/ EVALUATION AND DECISION MODELS WITH MULTIPLE CRITERIA: Stepping

stones for the analyst

Blecker & Friedrich/ MASS CUSTOMIZATION: Challenges and Solutions

Appa, Pitsoulis & Williams/ HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

Herrmann/ HANDBOOK OF PRODUCTION SCHEDULING

Axsäter/ INVENTORY CONTROL, 2nd Ed.

Hall/ PATIENT FLOW: Reducing Delay in Healthcare Delivery

Józefowska & WĊglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING

Tian & Zhang/ VACATION QUEUEING MODELS: Theory and Applications

Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY

APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS, AND

MANUFACTURING SYSTEMS

Saaty & Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS: Economic,

Political, Social & Technological Applications w. Benefits, Opportunities, Costs & Risks

Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT: Practical Concepts and Tools

Kandiller/ PRINCIPLES OF MATHEMATICS IN OPERATIONS RESEARCH

Lee & Lee/ BUILDING SUPPLY CHAIN EXCELLENCE IN EMERGING ECONOMIES

Weintraub/ MANAGEMENT OF NATURAL RESOURCES: A Handbook of Operations Research Models,

Algorithms, and Implementations

Hooker/ INTEGRATED METHODS FOR OPTIMIZATION

Dawande et al/ THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

Friesz/ NETWORK SCIENCE, NONLINEAR SCIENCE and INFRASTRUCTURE SYSTEMS

Cai, Sha & Wong/ TIME-VARYING NETWORK OPTIMIZATION

Mamon & Elliott/ HIDDEN MARKOV MODELS IN FINANCE

del Castillo/ PROCESS OPTIMIZATION: A Statistical Approach

Józefowska/JUST-IN-TIME SCHEDULING: Models & Algorithms for Computer & Manufacturing

Systems

Yu, Wang & Lai/ FOREIGN-EXCHANGE-RATE FORECASTING WITH ARTIFICIAL NEURAL

NETWORKS

Beyer et al/ MARKOVIAN DEMAND INVENTORY MODELS
Shi & Olafsson/ NESTED PARTITIONS OPTIMIZATION: Methodology And Applications
Samaniego/ SYSTEM SIGNATURES AND THEIR APPLICATIONS IN ENGINEERING RELIABILITY

Kleijnen/ DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS

Førsund/ HYDROPOWER ECONOMICS

Kogan & Tapiero/ SUPPLY CHAIN GAMES: Operations Management and Risk Valuation

* A list of the early publications in the series is at the end of the book *

LINEAR PROGRAMMING

Foundations and Extensions

Third Edition

Robert J. Vanderbei
Dept. of Operations Research and Financial Engineering

Princeton University, USA

Robert J. Vanderbei

Princeton University

New Jersey, USA

Series Editor:

Fred Hillier

Stanford University

Stanford, CA, USA

ISBN-13: 978-0-387-74387-5 (HB) ISBN-13: 978-0-387-74388-2 (e-book)

Library of Congress Control Number: 2007932884

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

The text for this book was formatted in Times-Roman using AMS-LATEX(which is a macro package for Leslie Lamport’s

LATEX, which itself is a macro package for Donald Knuth’s TEXtext formatting system) and converted to pdf format using

PDFLATEX. The figures were produced using MicroSoft’s POWERPOINT and were incorporated into the text as pdf files
with the macro package GRAPHICX.TEX.

© 2008 by Robert J. Vanderbei

All rights reserved. This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in

connection with any form of information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not

identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to

proprietary rights.

To Krisadee,

Marisa and Diana

Contents

Preface xiii

Preface to 2nd Edition xvii

Preface to 3rd Edition xix

Part 1. Basic Theory—The Simplex Method and Duality 1

Chapter 1. Introduction 3

1. Managing a Production Facility 3

2. The Linear Programming Problem 6

Exercises 8

Notes 10

Chapter 2. The Simplex Method 13

1. An Example 13

2. The Simplex Method 16

3. Initialization 19

4. Unboundedness 22

5. Geometry 22

Exercises 24

Notes 27

Chapter 3. Degeneracy 29

1. Definition of Degeneracy 29

2. Two Examples of Degenerate Problems 29

3. The Perturbation/Lexicographic Method 32

4. Bland’s Rule 36

5. Fundamental Theorem of Linear Programming 38

6. Geometry 39

Exercises 42

Notes 43

Chapter 4. Efficiency of the Simplex Method 45

vii

viii CONTENTS

1. Performance Measures 45

2. Measuring the Size of a Problem 45

3. Measuring the Effort to Solve a Problem 46

4. Worst-Case Analysis of the Simplex Method 47

Exercises 52

Notes 53

Chapter 5. Duality Theory 55

1. Motivation—Finding Upper Bounds 55

2. The Dual Problem 57

3. The Weak Duality Theorem 58

4. The Strong Duality Theorem 60

5. Complementary Slackness 66

6. The Dual Simplex Method 68

7. A Dual-Based Phase I Algorithm 71

8. The Dual of a Problem in General Form 73

9. Resource Allocation Problems 74

10. Lagrangian Duality 78

Exercises 79

Notes 87

Chapter 6. The Simplex Method in Matrix Notation 89

1. Matrix Notation 89

2. The Primal Simplex Method 91

3. An Example 96

4. The Dual Simplex Method 101

5. Two-Phase Methods 104

6. Negative Transpose Property 105

Exercises 108

Notes 109

Chapter 7. Sensitivity and Parametric Analyses 111

1. Sensitivity Analysis 111

2. Parametric Analysis and the Homotopy Method 115

3. The Parametric Self-Dual Simplex Method 119

Exercises 120

Notes 124

Chapter 8. Implementation Issues 125

1. Solving Systems of Equations: LU -Factorization 126

2. Exploiting Sparsity 130

3. Reusing a Factorization 136

4. Performance Tradeoffs 140

CONTENTS ix

5. Updating a Factorization 141

6. Shrinking the Bump 145

7. Partial Pricing 146

8. Steepest Edge 147

Exercises 149

Notes 150

Chapter 9. Problems in General Form 151

1. The Primal Simplex Method 151

2. The Dual Simplex Method 153

Exercises 159

Notes 160

Chapter 10. Convex Analysis 161

1. Convex Sets 161

2. Carathéodory’s Theorem 163

3. The Separation Theorem 165

4. Farkas’ Lemma 167

5. Strict Complementarity 168

Exercises 170

Notes 171

Chapter 11. Game Theory 173

1. Matrix Games 173

2. Optimal Strategies 175

3. The Minimax Theorem 177

4. Poker 181

Exercises 184

Notes 187

Chapter 12. Regression 189

1. Measures of Mediocrity 189

2. Multidimensional Measures: Regression Analysis 191

3. L2-Regression 193

4. L1-Regression 195

5. Iteratively Reweighted Least Squares 196

6. An Example: How Fast is the Simplex Method? 198

7. Which Variant of the Simplex Method is Best? 202

Exercises 203

Notes 208

Chapter 13. Financial Applications 211

1. Portfolio Selection 211

x CONTENTS

2. Option Pricing 216

Exercises 221

Notes 222

Part 2. Network-Type Problems 223

Chapter 14. Network Flow Problems 225

1. Networks 225

2. Spanning Trees and Bases 228

3. The Primal Network Simplex Method 233

4. The Dual Network Simplex Method 237

5. Putting It All Together 240

6. The Integrality Theorem 243

Exercises 244

Notes 252

Chapter 15. Applications 253

1. The Transportation Problem 253

2. The Assignment Problem 255

3. The Shortest-Path Problem 256

4. Upper-Bounded Network Flow Problems 259

5. The Maximum-Flow Problem 262

Exercises 264

Notes 269

Chapter 16. Structural Optimization 271

1. An Example 271

2. Incidence Matrices 273

3. Stability 274

4. Conservation Laws 276

5. Minimum-Weight Structural Design 279

6. Anchors Away 281

Exercises 284

Notes 284

Part 3. Interior-Point Methods 287

Chapter 17. The Central Path 289

Warning: Nonstandard Notation Ahead 289

1. The Barrier Problem 289

2. Lagrange Multipliers 292

3. Lagrange Multipliers Applied to the Barrier Problem 295

4. Second-Order Information 297

CONTENTS xi

5. Existence 297

Exercises 299

Notes 301

Chapter 18. A Path-Following Method 303

1. Computing Step Directions 303

2. Newton’s Method 305

3. Estimating an Appropriate Value for the Barrier Parameter 306

4. Choosing the Step Length Parameter 307

5. Convergence Analysis 308

Exercises 314

Notes 318

Chapter 19. The KKT System 319

1. The Reduced KKT System 319

2. The Normal Equations 320

3. Step Direction Decomposition 322

Exercises 325

Notes 325

Chapter 20. Implementation Issues 327

1. Factoring Positive Definite Matrices 327

2. Quasidefinite Matrices 331

3. Problems in General Form 337

Exercises 342

Notes 342

Chapter 21. The Affine-Scaling Method 345

1. The Steepest Ascent Direction 345

2. The Projected Gradient Direction 347

3. The Projected Gradient Direction with Scaling 349

4. Convergence 353

5. Feasibility Direction 355

6. Problems in Standard Form 356

Exercises 357

Notes 358

Chapter 22. The Homogeneous Self-Dual Method 361

1. From Standard Form to Self-Dual Form 361

2. Homogeneous Self-Dual Problems 362

3. Back to Standard Form 372

4. Simplex Method vs Interior-Point Methods 375

Exercises 379

xii CONTENTS

Notes 380

Part 4. Extensions 383

Chapter 23. Integer Programming 385

1. Scheduling Problems 385

2. The Traveling Salesman Problem 387

3. Fixed Costs 390

4. Nonlinear Objective Functions 390

5. Branch-and-Bound 392

Exercises 404

Notes 405

Chapter 24. Quadratic Programming 407

1. The Markowitz Model 407

2. The Dual 412

3. Convexity and Complexity 414

4. Solution Via Interior-Point Methods 418

5. Practical Considerations 419

Exercises 422

Notes 423

Chapter 25. Convex Programming 425

1. Differentiable Functions and Taylor Approximations 425

2. Convex and Concave Functions 426

3. Problem Formulation 426

4. Solution Via Interior-Point Methods 427

5. Successive Quadratic Approximations 429

6. Merit Functions 429

7. Parting Words 433

Exercises 433

Notes 435

Appendix A. Source Listings 437

1. The Self-Dual Simplex Method 438

2. The Homogeneous Self-Dual Method 441

Answers to Selected Exercises 445

Bibliography 449

Index 457

Preface

This book is about constrained optimization. It begins with a thorough treatment

of linear programming and proceeds to convex analysis, network flows, integer pro-

gramming, quadratic programming, and convex optimization. Along the way, dynamic

programming and the linear complementarity problem are touched on as well.

The book aims to be a first introduction to the subject. Specific examples and

concrete algorithms precede more abstract topics. Nevertheless, topics covered are

developed in some depth, a large number of numerical examples are worked out in

detail, and many recent topics are included, most notably interior-point methods. The

exercises at the end of each chapter both illustrate the theory and, in some cases, extend

it.

Prerequisites. The book is divided into four parts. The first two parts assume a

background only in linear algebra. For the last two parts, some knowledge of multi-

variate calculus is necessary. In particular, the student should know how to use La-

grange multipliers to solve simple calculus problems in 2 and 3 dimensions.

Associated software. It is good to be able to solve small problems by hand, but the

problems one encounters in practice are large, requiring a computer for their solution.

Therefore, to fully appreciate the subject, one needs to solve large (practical) prob-

lems on a computer. An important feature of this book is that it comes with software

implementing the major algorithms described herein. At the time of writing, software

for the following five algorithms is available:

• The two-phase simplex method as shown in Figure 6.1.

• The self-dual simplex method as shown in Figure 7.1.

• The path-following method as shown in Figure 18.1.

• The homogeneous self-dual method as shown in Figure 22.1.

• The long-step homogeneous self-dual method as described in Exercise 22.4.

The programs that implement these algorithms are written in C and can be easily

compiled on most hardware platforms. Students/instructors are encouraged to install

and compile these programs on their local hardware. Great pains have been taken to

make the source code for these programs readable (see Appendix A). In particular, the

names of the variables in the programs are consistent with the notation of this book.

There are two ways to run these programs. The first is to prepare the input in a

standard computer-file format, called MPS format, and to run the program using such

xiii

xiv PREFACE

a file as input. The advantage of this input format is that there is an archive of problems

stored in this format, called the NETLIB suite, that one can download and use imme-

diately (a link to the NETLIB suite can be found at the web site mentioned below).

But, this format is somewhat archaic and, in particular, it is not easy to create these

files by hand. Therefore, the programs can also be run from within a problem model-

ing system called AMPL. AMPL allows one to describe mathematical programming

problems using an easy to read, yet concise, algebraic notation. To run the programs

within AMPL, one simply tells AMPL the name of the solver-program before asking

that a problem be solved. The text that describes AMPL, (Fourer et al. 1993), makes

an excellent companion to this book. It includes a discussion of many practical linear

programming problems. It also has lots of exercises to hone the modeling skills of the

student.

Several interesting computer projects can be suggested. Here are a few sugges-

tions regarding the simplex codes:

• Incorporate the partial pricing strategy (see Section 8.7) into the two-phase

simplex method and compare it with full pricing.

• Incorporate the steepest-edge pivot rule (see Section 8.8) into the two-phase

simplex method and compare it with the largest-coefficient rule.

• Modify the code for either variant of the simplex method so that it can treat

bounds and ranges implicitly (see Chapter 9), and compare the performance

with the explicit treatment of the supplied codes.

• Implement a “warm-start” capability so that the sensitivity analyses dis-

cussed in Chapter 7 can be done.

• Extend the simplex codes to be able to handle integer programming prob-

lems using the branch-and-bound method described in Chapter 23.

As for the interior-point codes, one could try some of the following projects:

• Modify the code for the path-following algorithm so that it implements the

affine-scaling method (see Chapter 21), and then compare the two methods.

• Modify the code for the path-following method so that it can treat bounds

and ranges implicitly (see Section 20.3), and compare the performance against

the explicit treatment in the given code.

• Modify the code for the path-following method to implement the higher-

order method described in Exercise 18.5. Compare.

• Extend the path-following code to solve quadratic programming problems

using the algorithm shown in Figure 24.3.

• Further extend the code so that it can solve convex optimization problems

using the algorithm shown in Figure 25.2.

And, perhaps the most interesting project of all:

• Compare the simplex codes against the interior-point code and decide for

yourself which algorithm is better on specific families of problems.

PREFACE xv

The software implementing the various algorithms was developed using consistent

data structures and so making fair comparisons should be straightforward. The soft-

ware can be downloaded from the following web site:

http://www.princeton.edu/∼rvdb/LPbook/

If, in the future, further codes relating to this text are developed (for example, a self-

dual network simplex code), they will be made available through this web site.

Features. Here are some other features that distinguish this book from others:

• The development of the simplex method leads to Dantzig’s parametric self-

dual method. A randomized variant of this method is shown to be immune

to the travails of degeneracy.

• The book gives a balanced treatment to both the traditional simplex method

and the newer interior-point methods. The notation and analysis is devel-

oped to be consistent across the methods. As a result, the self-dual simplex

method emerges as the variant of the simplex method with most connections

to interior-point methods.

• From the beginning and consistently throughout the book, linear program-

ming problems are formulated in symmetric form. By highlighting symme-

try throughout, it is hoped that the reader will more fully understand and

appreciate duality theory.

• By slightly changing the right-hand side in the Klee–Minty problem, we are

able to write down an explicit dictionary for each vertex of the Klee–Minty

problem and thereby uncover (as a homework problem) a simple, elegant

argument why the Klee-Minty problem requires 2n − 1 pivots to solve.

• The chapter on regression includes an analysis of the expected number of

pivots required by the self-dual variant of the simplex method. This analysis

is supported by an empirical study.

• There is an extensive treatment of modern interior-point methods, including

the primal–dual method, the affine-scaling method, and the self-dual path-

following method.

• In addition to the traditional applications, which come mostly from business

and economics, the book features other important applications such as the

optimal design of truss-like structures and L1-regression.

Exercises on the Web. There is always a need for fresh exercises. Hence, I have

created and plan to maintain a growing archive of exercises specifically created for use

in conjunction with this book. This archive is accessible from the book’s web site:

http://www.princeton.edu/∼rvdb/LPbook/

The problems in the archive are arranged according to the chapters of this book and

use notation consistent with that developed herein.

Advice on solving the exercises. Some problems are routine while others are fairly

challenging. Answers to some of the problems are given at the back of the book. In

xvi PREFACE

general, the advice given to me by Leonard Gross (when I was a student) should help

even on the hard problems: follow your nose.

Audience. This book evolved from lecture notes developed for my introduc-

tory graduate course in linear programming as well as my upper-level undergradu-

ate course. A reasonable undergraduate syllabus would cover essentially all of Part 1

(Simplex Method and Duality), the first two chapters of Part 2 (Network Flows and

Applications), and the first chapter of Part 4 (Integer Programming). At the gradu-

ate level, the syllabus should depend on the preparation of the students. For a well-

prepared class, one could cover the material in Parts 1 and 2 fairly quickly and then

spend more time on Parts 3 (Interior-Point Methods) and 4 (Extensions).

Dependencies. In general, Parts 2 and 3 are completely independent of each other.

Both depend, however, on the material in Part 1. The first Chapter in Part 4 (Integer

Programming) depends only on material from Part 1, whereas the remaining chapters

build on Part 3 material.

Acknowledgments. My interest in linear programming was sparked by Robert

Garfinkel when we shared an office at Bell Labs. I would like to thank him for

his constant encouragement, advice, and support. This book benefited greatly from

the thoughtful comments and suggestions of David Bernstein and Michael Todd. I

would also like to thank the following colleagues for their help: Ronny Ben-Tal, Leslie

Hall, Yoshi Ikura, Victor Klee, Irvin Lustig, Avi Mandelbaum, Marc Meketon, Narcis

Nabona, James Orlin, Andrzej Ruszczynski, and Henry Wolkowicz. I would like to

thank Gary Folven at Kluwer and Fred Hillier, the series editor, for encouraging me to

undertake this project. I would like to thank my students for finding many typos and

occasionally more serious errors: John Gilmartin, Jacinta Warnie, Stephen Woolbert,

Lucia Wu, and Bing Yang My thanks to Erhan Çınlar for the many times he offered

advice on questions of style. I hope this book reflects positively on his advice. Finally,

I would like to acknowledge the support of the National Science Foundation and the

Air Force Office of Scientific Research for supporting me while writing this book. In

a time of declining resources, I am especially grateful for their support.

Robert J. Vanderbei

September, 1996

Preface to 2nd Edition

For the 2nd edition, many new exercises have been added. Also I have worked

hard to develop online tools to aid in learning the simplex method and duality theory.

These online tools can be found on the book’s web page:

http://www.princeton.edu/∼rvdb/LPbook/

and are mentioned at appropriate places in the text. Besides the learning tools, I have

created several online exercises. These exercises use randomly generated problems

and therefore represent a virtually unlimited collection of “routine” exercises that can

be used to test basic understanding. Pointers to these online exercises are included in

the exercises sections at appropriate points.

Some other notable changes include:

• The chapter on network flows has been completely rewritten. Hopefully, the

new version is an improvement on the original.

• Two different fonts are now used to distinguish between the set of basic

indices and the basis matrix.

• The first edition placed great emphasis on the symmetry between the primal

and the dual (the negative transpose property). The second edition carries

this further with a discussion of the relationship between the basic and non-

basic matrices B and N as they appear in the primal and in the dual. We

show that, even though these matrices differ (they even have different di-

mensions), B−1N in the dual is the negative transpose of the corresponding

matrix in the primal.

• In the chapters devoted to the simplex method in matrix notation, the collec-

tion of variables z1, z2, . . . , zn, y1, y2, . . . , ym was replaced, in the first edi-

tion, with the single array of variables y1, y2, . . . , yn+m. This caused great

confusion as the variable yi in the original notation was changed to yn+i in

the new notation. For the second edition, I have changed the notation for the

single array to z1, z2, . . . , zn+m.

• A number of figures have been added to the chapters on convex analysis and

on network flow problems.

xvii

xviii PREFACE TO 2ND EDITION

• The algorithm refered to as the primal–dual simplex method in the first edi-

tion has been renamed the parametric self-dual simplex method in accor-

dance with prior standard usage.

• The last chapter, on convex optimization, has been extended with a discus-

sion of merit functions and their use in shortenning steps to make some

otherwise nonconvergent problems converge.

Acknowledgments. Many readers have sent corrections and suggestions for im-

provement. Many of the corrections were incorporated into earlier reprintings. Only

those that affected pagination were accrued to this new edition. Even though I cannot

now remember everyone who wrote, I am grateful to them all. Some sent comments

that had significant impact. They were Hande Benson, Eric Denardo, Sudhakar Man-

dapati, Michael Overton, and Jos Sturm.

Robert J. Vanderbei

December, 2000

Preface to 3rd Edition

It has been almost seven years since the 2nd edition appeared and the publisher is

itching for me to finish a new edition. The previous edition had very few typos. I have

fixed them all! Of course, I’ve also added some new material and who knows how

many new typos I’ve introduced. The most significant new material is contained in a

new chapter on financial applications, which discusses a linear programming variant of

the portfolio selection problem and option pricing. I am grateful to Alex d’Aspremont

for pointing out that the option pricing problem provides a nice application of duality

theory. Finally, I’d like to acknowledge the fact that half (four out of eight) of the

typos were reported to me by Trond Steihaug. Thanks Trond!

Robert J. Vanderbei

June, 2007

xix

CHAPTER 1

Introduction

This book is mostly about a subject called Linear Programming. Before defining

what we mean, in general, by a linear programming problem, let us describe a few

practical real-world problems that serve to motivate and at least vaguely to define this

subject.

1. Managing a Production Facility

Consider a production facility for a manufacturing company. The facility is ca-

pable of producing a variety of products that, for simplicity, we shall enumerate as

1, 2, . . . , n. These products are constructed/manufactured/produced out of certain raw

materials. Let us assume that there are m different raw materials, which again we shall

simply enumerate as 1, 2, . . . , m. The decisions involved in managing/operating this

facility are complicated and arise dynamically as market conditions evolve around it.

However, to describe a simple, fairly realistic optimization problem, we shall consider

a particular snapshot of the dynamic evolution. At this specific point in time, the fa-

cility has, for each raw material i = 1, 2, . . . ,m, a known amount, say bi, on hand.

Furthermore, each raw material has at this moment in time a known unit market value.

We shall denote the unit value of the ith raw material by ρi.

In addition, each product is made from known amounts of the various raw materi-

als. That is, producing one unit of product j requires a certain known amount, say aij

units, of raw material i. Also, the jth final product can be sold at the known prevailing

market price of σj dollars per unit.

Throughout this section we make an important assumption:

The production facility is small relative to the market as a whole

and therefore cannot through its actions alter the prevailing market

value of its raw materials, nor can it affect the prevailing market

price for its products.

We shall consider two optimization problems related to the efficient operation of

this facility (later, in Chapter 5, we shall see that these two problems are in fact closely

related to each other).

1.1. Production Manager as Optimist. The first problem we wish to consider

is the one faced by the company’s production manager. It is the problem of how to use

3

4 1. INTRODUCTION

the raw materials on hand. Let us assume that she decides to produce xj units of the

jth product, j = 1, 2, . . . , n. The revenue associated with the production of one unit

of product j is σj . But there is also a cost of raw materials that must be considered.

The cost of producing one unit of product j is
∑m

i=1 ρiaij . Therefore, the net revenue

associated with the production of one unit is the difference between the revenue and

the cost. Since the net revenue plays an important role in our model, we introduce

notation for it by setting

cj = σj −
m
∑

i=1

ρiaij , j = 1, 2, . . . , n.

Now, the net revenue corresponding to the production of xj units of product j is simply

cjxj , and the total net revenue is

(1.1)

n
∑

j=1

cjxj .

The production planner’s goal is to maximize this quantity. However, there are con-

straints on the production levels that she can assign. For example, each production

quantity xj must be nonnegative, and so she has the constraint

(1.2) xj ≥ 0, j = 1, 2, . . . , n.

Secondly, she can’t produce more product than she has raw material for. The amount

of raw material i consumed by a given production schedule is
∑n

j=1 aijxj , and so she

must adhere to the following constraints:

(1.3)

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m.

To summarize, the production manager’s job is to determine production values xj ,

j = 1, 2, . . . , n, so as to maximize (1.1) subject to the constraints given by (1.2) and

(1.3). This optimization problem is an example of a linear programming problem.

This particular example is often called the resource allocation problem.

1.2. Comptroller as Pessimist. In another office at the production facility sits

an executive called the comptroller. The comptroller’s problem (among others) is to

assign a value to the raw materials on hand. These values are needed for accounting

and planning purposes to determine the cost of inventory. There are rules about how

these values can be set. The most important such rule (and the only one relevant to our

discussion) is the following:

1. MANAGING A PRODUCTION FACILITY 5

The company must be willing to sell the raw materials should an

outside firm offer to buy them at a price consistent with these

values.

Let wi denote the assigned unit value of the ith raw material, i = 1, 2, . . . ,m.

That is, these are the numbers that the comptroller must determine. The lost oppor-

tunity cost of having bi units of raw material i on hand is biwi, and so the total lost

opportunity cost is

(1.4)

m
∑

i=1

biwi.

The comptroller’s goal is to minimize this lost opportunity cost (to make the financial

statements look as good as possible). But again, there are constraints. First of all, each

assigned unit value wi must be no less than the prevailing unit market value ρi, since

if it were less an outsider would buy the company’s raw material at a price lower than

ρi, contradicting the assumption that ρi is the prevailing market price. That is,

(1.5) wi ≥ ρi, i = 1, 2, . . . ,m.

Similarly,

(1.6)

m
∑

i=1

wiaij ≥ σj , j = 1, 2, . . . , n.

To see why, suppose that the opposite inequality holds for some specific product j.

Then an outsider could buy raw materials from the company, produce product j, and

sell it at a lower price than the prevailing market price. This contradicts the assumption

that σj is the prevailing market price, which cannot be lowered by the actions of the

company we are studying. Minimizing (1.4) subject to the constraints given by (1.5)

and (1.6) is a linear programming problem. It takes on a slightly simpler form if we

make a change of variables by letting

yi = wi − ρi, i = 1, 2, . . . ,m.

In words, yi is the increase in the unit value of raw material i representing the “mark-

up” the company would charge should it wish simply to act as a reseller and sell raw

materials back to the market. In terms of these variables, the comptroller’s problem is

to minimize
m
∑

i=1

biyi

6 1. INTRODUCTION

subject to
m
∑

i=1

yiaij ≥ cj , j = 1, 2, . . . , n

and

yi ≥ 0, i = 1, 2, . . . ,m.

Note that we’ve dropped a term,
∑m

i=1 biρi, from the objective. It is a constant (the

market value of the raw materials), and so, while it affects the value of the function

being minimized, it does not have any impact on the actual optimal values of the

variables (whose determination is the comptroller’s main interest).

2. The Linear Programming Problem

In the two examples given above, there have been variables whose values are to be

decided in some optimal fashion. These variables are referred to as decision variables.

They are usually written as

xj , j = 1, 2, . . . , n.

In linear programming, the objective is always to maximize or to minimize some linear

function of these decision variables

ζ = c1x1 + c2x2 + · · · + cnxn.

This function is called the objective function. It often seems that real-world prob-

lems are most naturally formulated as minimizations (since real-world planners al-

ways seem to be pessimists), but when discussing mathematics it is usually nicer to

work with maximization problems. Of course, converting from one to the other is triv-

ial both from the modeler’s viewpoint (either minimize cost or maximize profit) and

from the analyst’s viewpoint (either maximize ζ or minimize −ζ). Since this book is

primarily about the mathematics of linear programming, we shall usually consider our

aim one of maximizing the objective function.

In addition to the objective function, the examples also had constraints. Some

of these constraints were really simple, such as the requirement that some decision

variable be nonnegative. Others were more involved. But in all cases the constraints

consisted of either an equality or an inequality associated with some linear combina-

tion of the decision variables:

a1x1 + a2x2 + · · · + anxn

⎧

⎪

⎪

⎨

⎪

⎪

⎩

≤
=

≥

⎫

⎪

⎪

⎬

⎪

⎪

⎭

b.

2. THE LINEAR PROGRAMMING PROBLEM 7

It is easy to convert constraints from one form to another. For example, an in-

equality constraint

a1x1 + a2x2 + · · · + anxn ≤ b

can be converted to an equality constraint by adding a nonnegative variable, w, which

we call a slack variable:

a1x1 + a2x2 + · · · + anxn + w = b, w ≥ 0.

On the other hand, an equality constraint

a1x1 + a2x2 + · · · + anxn = b

can be converted to inequality form by introducing two inequality constraints:

a1x1 + a2x2 + · · · + anxn ≤ b

a1x1 + a2x2 + · · · + anxn ≥ b.

Hence, in some sense, there is no a priori preference for how one poses the constraints

(as long as they are linear, of course). However, we shall also see that, from a math-

ematical point of view, there is a preferred presentation. It is to pose the inequalities

as less-thans and to stipulate that all the decision variables be nonnegative. Hence, the

linear programming problem as we shall study it can be formulated as follows:

maximize c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . xn ≥ 0.

We shall refer to linear programs formulated this way as linear programs in standard

form. We shall always use m to denote the number of constraints, and n to denote the

number of decision variables.

A proposal of specific values for the decision variables is called a solution. A

solution (x1, x2, . . . , xn) is called feasible if it satisfies all of the constraints. It is

called optimal if in addition it attains the desired maximum. Some problems are just

8 1. INTRODUCTION

simply infeasible, as the following example illustrates:

maximize 5x1 + 4x2

subject to x1 + x2 ≤ 2

−2x1 − 2x2 ≤−9

x1, x2 ≥ 0.

Indeed, the second constraint implies that x1 + x2 ≥ 4.5, which contradicts the first

constraint. If a problem has no feasible solution, then the problem itself is called

infeasible.

At the other extreme from infeasible problems, one finds unbounded problems.

A problem is unbounded if it has feasible solutions with arbitrarily large objective

values. For example, consider

maximize x1 − 4x2

subject to −2x1 + x2 ≤−1

−x1 − 2x2 ≤−2

x1, x2 ≥ 0.

Here, we could set x2 to zero and let x1 be arbitrarily large. As long as x1 is greater

than 2 the solution will be feasible, and as it gets large the objective function does too.

Hence, the problem is unbounded. In addition to finding optimal solutions to linear

programming problems, we shall also be interested in detecting when a problem is

infeasible or unbounded.

Exercises

1.1 A steel company must decide how to allocate next week’s time on a rolling

mill, which is a machine that takes unfinished slabs of steel as input and can

produce either of two semi-finished products: bands and coils. The mill’s

two products come off the rolling line at different rates:

Bands 200 tons/hr

Coils 140 tons/hr .

They also produce different profits:

Bands $ 25/ton

Coils $ 30/ton .

Based on currently booked orders, the following upper bounds are placed on

the amount of each product to produce:

EXERCISES 9

Bands 6000 tons

Coils 4000 tons .

Given that there are 40 hours of production time available this week, the

problem is to decide how many tons of bands and how many tons of coils

should be produced to yield the greatest profit. Formulate this problem as a

linear programming problem. Can you solve this problem by inspection?

1.2 A small airline, Ivy Air, flies between three cities: Ithaca, Newark, and

Boston. They offer several flights but, for this problem, let us focus on

the Friday afternoon flight that departs from Ithaca, stops in Newark, and

continues to Boston. There are three types of passengers:

(a) Those traveling from Ithaca to Newark.

(b) Those traveling from Newark to Boston.

(c) Those traveling from Ithaca to Boston.

The aircraft is a small commuter plane that seats 30 passengers. The airline

offers three fare classes:

(a) Y class: full coach.

(b) B class: nonrefundable.

(c) M class: nonrefundable, 3-week advanced purchase.

Ticket prices, which are largely determined by external influences (i.e., com-

petitors), have been set and advertised as follows:

Ithaca–Newark Newark–Boston Ithaca–Boston

Y 300 160 360

B 220 130 280

M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determined

the following upper bounds on the number of potential customers in each of

the 9 possible origin-destination/fare-class combinations:

Ithaca–Newark Newark–Boston Ithaca–Boston

Y 4 8 3

B 8 13 10

M 22 20 18

The goal is to decide how many tickets from each of the 9 origin/destination/

fare-class combinations to sell. The constraints are that the plane cannot be

overbooked on either of the two legs of the flight and that the number of

tickets made available cannot exceed the forecasted maximum demand. The

objective is to maximize the revenue. Formulate this problem as a linear

programming problem.

10 1. INTRODUCTION

1.3 Suppose that Y is a random variable taking on one of n known values:

a1, a2, . . . , an.

Suppose we know that Y either has distribution p given by

P(Y = aj) = pj

or it has distribution q given by

P(Y = aj) = qj .

Of course, the numbers pj , j = 1, 2, . . . , n are nonnegative and sum to

one. The same is true for the qj’s. Based on a single observation of Y ,

we wish to guess whether it has distribution p or distribution q. That is,

for each possible outcome aj , we will assert with probability xj that the

distribution is p and with probability 1−xj that the distribution is q. We wish

to determine the probabilities xj , j = 1, 2, . . . , n, such that the probability

of saying the distribution is p when in fact it is q has probability no larger

than β, where β is some small positive value (such as 0.05). Furthermore,

given this constraint, we wish to maximize the probability that we say the

distribution is p when in fact it is p. Formulate this maximization problem

as a linear programming problem.

Notes

The subject of linear programming has its roots in the study of linear inequali-

ties, which can be traced as far back as 1826 to the work of Fourier. Since then, many

mathematicians have proved special cases of the most important result in the subject—

the duality theorem. The applied side of the subject got its start in 1939 when L.V.

Kantorovich noted the practical importance of a certain class of linear programming

problems and gave an algorithm for their solution—see Kantorovich (1960). Unfortu-

nately, for several years, Kantorovich’s work was unknown in the West and unnoticed

in the East. The subject really took off in 1947 when G.B. Dantzig invented the simplex

method for solving the linear programming problems that arose in U.S. Air Force plan-

ning problems. The earliest published accounts of Dantzig’s work appeared in 1951

(Dantzig 1951a,b). His monograph (Dantzig 1963) remains an important reference. In

the same year that Dantzig invented the simplex method, T.C. Koopmans showed that

linear programming provided the appropriate model for the analysis of classical eco-

nomic theories. In 1975, the Royal Swedish Academy of Sciences awarded the Nobel

Prize in economic science to L.V. Kantorovich and T.C. Koopmans “for their contri-

butions to the theory of optimum allocation of resources.” Apparently the academy

regarded Dantzig’s work as too mathematical for the prize in economics (and there is

no Nobel Prize in mathematics).

NOTES 11

The textbooks by Bradley et al. (1977), Bazaraa et al. (1977), and Hillier &

Lieberman (1977) are known for their extensive collections of interesting practical

applications.

CHAPTER 2

The Simplex Method

In this chapter we present the simplex method as it applies to linear programming

problems in standard form.

1. An Example

We first illustrate how the simplex method works on a specific example:

(2.1)

maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

We start by adding so-called slack variables. For each of the less-than inequalities in

(2.1) we introduce a new variable that represents the difference between the right-hand

side and the left-hand side. For example, for the first inequality,

2x1 + 3x2 + x3 ≤ 5,

we introduce the slack variable w1 defined by

w1 = 5 − 2x1 − 3x2 − x3.

It is clear then that this definition of w1, together with the stipulation that w1 be non-

negative, is equivalent to the original constraint. We carry out this procedure for each

of the less-than constraints to get an equivalent representation of the problem:

(2.2)

maximize ζ = 5x1 + 4x2 + 3x3

subject to w1 = 5− 2x1 − 3x2 − x3

w2 = 11− 4x1 − x2 − 2x3

w3 = 8− 3x1 − 4x2 − 2x3

x1, x2, x3, w1, w2, w3 ≥ 0.

13

14 2. THE SIMPLEX METHOD

Note that we have included a notation, ζ, for the value of the objective function, 5x1 +
4x2 + 3x3.

The simplex method is an iterative process in which we start with a solution

x1, x2, . . . , w3 that satisfies the equations and nonnegativities in (2.2) and then look

for a new solution x̄1, x̄2, . . . , w̄3, which is better in the sense that it has a larger ob-

jective function value:

5x̄1 + 4x̄2 + 3x̄3 > 5x1 + 4x2 + 3x3.

We continue this process until we arrive at a solution that can’t be improved. This final

solution is then an optimal solution.

To start the iterative process, we need an initial feasible solution x1, x2, . . . , w3.

For our example, this is easy. We simply set all the original variables to zero and use

the defining equations to determine the slack variables:

x1 = 0, x2 = 0, x3 = 0, w1 = 5, w2 = 11, w3 = 8.

The objective function value associated with this solution is ζ = 0.

We now ask whether this solution can be improved. Since the coefficient of x1

is positive, if we increase the value of x1 from zero to some positive value, we will

increase ζ. But as we change its value, the values of the slack variables will also

change. We must make sure that we don’t let any of them go negative. Since x2 =
x3 = 0, we see that w1 = 5 − 2x1, and so keeping w1 nonnegative imposes the

restriction that x1 must not exceed 5/2. Similarly, the nonnegativity of w2 imposes

the bound that x1 ≤ 11/4, and the nonnegativity of w3 introduces the bound that

x1 ≤ 8/3. Since all of these conditions must be met, we see that x1 cannot be made

larger than the smallest of these bounds: x1 ≤ 5/2. Our new, improved solution then

is

x1 =
5

2
, x2 = 0, x3 = 0, w1 = 0, w2 = 1, w3 =

1

2
.

This first step was straightforward. It is less obvious how to proceed. What made

the first step easy was the fact that we had one group of variables that were initially

zero and we had the rest explicitly expressed in terms of these. This property can be

arranged even for our new solution. Indeed, we simply must rewrite the equations in

(2.2) in such a way that x1, w2, w3, and ζ are expressed as functions of w1, x2, and

x3. That is, the roles of x1 and w1 must be swapped. To this end, we use the equation

for w1 in (2.2) to solve for x1:

x1 =
5

2
− 1

2
w1 −

3

2
x2 −

1

2
x3.

The equations for w2, w3, and ζ must also be doctored so that x1 does not appear on

the right. The easiest way to accomplish this is to do so-called row operations on the

1. AN EXAMPLE 15

equations in (2.2). For example, if we take the equation for w2 and subtract two times

the equation for w1 and then bring the w1 term to the right-hand side, we get

w2 = 1 + 2w1 + 5x2.

Performing analogous row operations for w3 and ζ, we can rewrite the equations in

(2.2) as

(2.3)

ζ = 12.5− 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5− 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3.

Note that we can recover our current solution by setting the “independent” variables

to zero and using the equations to read off the values for the “dependent” variables.

Now we see that increasing w1 or x2 will bring about a decrease in the objective

function value, and so x3, being the only variable with a positive coefficient, is the

only independent variable that we can increase to obtain a further increase in the ob-

jective function. Again, we need to determine how much this variable can be increased

without violating the requirement that all the dependent variables remain nonnegative.

This time we see that the equation for w2 is not affected by changes in x3, but the

equations for x1 and w3 do impose bounds, namely x3 ≤ 5 and x3 ≤ 1, respectively.

The latter is the tighter bound, and so the new solution is

x1 = 2, x2 = 0, x3 = 1, w1 = 0, w2 = 1, w3 = 0.

The corresponding objective function value is ζ = 13.

Once again, we must determine whether it is possible to increase the objective

function further and, if so, how. Therefore, we need to write our equations with

ζ, x1, w2, and x3 written as functions of w1, x2, and w3. Solving the last equation

in (2.3) for x3, we get

x3 = 1 + 3w1 + x2 − 2w3.

Also, performing the appropriate row operations, we can eliminate x3 from the other

equations. The result of these operations is

(2.4)

ζ = 13− w1 − 3x2 − w3

x1 = 2− 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3.

16 2. THE SIMPLEX METHOD

We are now ready to begin the third iteration. The first step is to identify an

independent variable for which an increase in its value would produce a corresponding

increase in ζ. But this time there is no such variable, since all the variables have

negative coefficients in the expression for ζ. This fact not only brings the simplex

method to a standstill but also proves that the current solution is optimal. The reason

is quite simple. Since the equations in (2.4) are completely equivalent to those in

(2.2) and, since all the variables must be nonnegative, it follows that ζ ≤ 13 for every

feasible solution. Since our current solution attains the value of 13, we see that it is

indeed optimal.

1.1. Dictionaries, Bases, Etc. The systems of equations (2.2), (2.3), and (2.4)

that we have encountered along the way are called dictionaries. With the exception of

ζ, the variables that appear on the left (i.e., the variables that we have been referring

to as the dependent variables) are called basic variables. Those on the right (i.e., the

independent variables) are called nonbasic variables. The solutions we have obtained

by setting the nonbasic variables to zero are called basic feasible solutions.

2. The Simplex Method

Consider the general linear programming problem presented in standard form:

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

Our first task is to introduce slack variables and a name for the objective function

value:

(2.5)

ζ =
n

∑

j=1

cjxj

wi = bi −
n

∑

j=1

aijxj i = 1, 2, . . . , m.

As we saw in our example, as the simplex method proceeds, the slack variables be-

come intertwined with the original variables, and the whole collection is treated the

same. Therefore, it is at times convenient to have a notation in which the slack vari-

ables are more or less indistinguishable from the original variables. So we simply add

them to the end of the list of x-variables:

(x1, . . . , xn, w1, . . . , wm) = (x1, . . . , xn, xn+1, . . . , xn+m).

2. THE SIMPLEX METHOD 17

That is, we let xn+i = wi. With this notation, we can rewrite (2.5) as

ζ =
n

∑

j=1

cjxj

xn+i = bi −
n

∑

j=1

aijxj i = 1, 2, . . . ,m.

This is the starting dictionary. As the simplex method progresses, it moves from one

dictionary to another in its search for an optimal solution. Each dictionary has m
basic variables and n nonbasic variables. Let B denote the collection of indices from

{1, 2, . . . , n + m} corresponding to the basic variables, and let N denote the indices

corresponding to the nonbasic variables. Initially, we have N = {1, 2, . . . , n} and

B = {n + 1, n + 2, . . . , n + m}, but this of course changes after the first iteration.

Down the road, the current dictionary will look like this:

(2.6)

ζ = ζ̄ +
∑

j∈N
c̄jxj

xi = b̄i −
∑

j∈N
āijxj i ∈ B.

Note that we have put bars over the coefficients to indicate that they change as the

algorithm progresses.

Within each iteration of the simplex method, exactly one variable goes from non-

basic to basic and exactly one variable goes from basic to nonbasic. We saw this

process in our example, but let us now describe it in general.

The variable that goes from nonbasic to basic is called the entering variable. It

is chosen with the aim of increasing ζ; that is, one whose coefficient is positive: pick

k from {j ∈ N : c̄j > 0}. Note that if this set is empty, then the current solution is

optimal. If the set consists of more than one element (as is normally the case), then we

have a choice of which element to pick. There are several possible selection criteria,

some of which will be discussed in the next chapter. For now, suffice it to say that we

usually pick an index k having the largest coefficient (which again could leave us with

a choice).

The variable that goes from basic to nonbasic is called the leaving variable. It is

chosen to preserve nonnegativity of the current basic variables. Once we have decided

that xk will be the entering variable, its value will be increased from zero to a positive

value. This increase will change the values of the basic variables:

xi = b̄i − āikxk, i ∈ B.

18 2. THE SIMPLEX METHOD

We must ensure that each of these variables remains nonnegative. Hence, we require

that

(2.7) b̄i − āikxk ≥ 0, i ∈ B.

Of these expressions, the only ones that can go negative as xk increases are those for

which āik is positive; the rest remain fixed or increase. Hence, we can restrict our

attention to those i’s for which āik is positive. And for such an i, the value of xk at

which the expression becomes zero is

xk = b̄i/āik.

Since we don’t want any of these to go negative, we must raise xk only to the smallest

of all of these values:

xk = min
i∈B:āik>0

b̄i/āik.

Therefore, with a certain amount of latitude remaining, the rule for selecting the leav-

ing variable is pick l from {i ∈ B : āik > 0 and b̄i/āik is minimal}.

The rule just given for selecting a leaving variable describes exactly the process

by which we use the rule in practice. That is, we look only at those variables for

which āik is positive and among those we select one with the smallest value of the

ratio b̄i/āik. There is, however, another, entirely equivalent, way to write this rule

which we will often use. To derive this alternate expression we use the convention

that 0/0 = 0 and rewrite inequalities (2.7) as

1

xk
≥ āik

b̄i
, i ∈ B

(we shall discuss shortly what happens when one of these ratios is an indeterminate

form 0/0 as well as what it means if none of the ratios are positive). Since we wish to

take the largest possible increase in xk, we see that

xk =

(

max
i∈B

āik

b̄i

)−1

.

Hence, the rule for selecting the leaving variable is as follows: pick l from {i ∈ B :
āik/b̄i is maximal}.

The main difference between these two ways of writing the rule is that in one we

minimize the ratio of āik to b̄i whereas in the other we maximize the reciprocal ratio.

Of course, in the minimize formulation one must take care about the sign of the āik’s.

In the remainder of this book we will encounter these types of ratios often. We will

always write them in the maximize form since that is shorter to write, acknowledging

full well the fact that it is often more convenient, in practice, to do it the other way.

3. INITIALIZATION 19

Once the leaving-basic and entering-nonbasic variables have been selected, the

move from the current dictionary to the new dictionary involves appropriate row oper-

ations to achieve the interchange. This step from one dictionary to the next is called a

pivot.

As mentioned above, there is often more than one choice for the entering and the

leaving variables. Particular rules that make the choice unambiguous are called pivot

rules.

3. Initialization

In the previous section, we presented the simplex method. However, we only

considered problems for which the right-hand sides were all nonnegative. This ensured

that the initial dictionary was feasible. In this section, we shall discuss what one needs

to do when this is not the case.

Given a linear programming problem

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n,

the initial dictionary that we introduced in the preceding section was

ζ =

n
∑

j=1

cjxj

wi = bi −
n

∑

j=1

aijxj i = 1, 2, . . . , m.

The solution associated with this dictionary is obtained by setting each xj to zero and

setting each wi equal to the corresponding bi. This solution is feasible if and only

if all the right-hand sides are nonnegative. But what if they are not? We handle this

difficulty by introducing an auxiliary problem for which

(1) a feasible dictionary is easy to find and

(2) the optimal dictionary provides a feasible dictionary for the original prob-

lem.

20 2. THE SIMPLEX METHOD

The auxiliary problem is

maximize −x0

subject to

n
∑

j=1

aijxj − x0 ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 0, 1, . . . , n.

It is easy to give a feasible solution to this auxiliary problem. Indeed, we simply set

xj = 0, for j = 1, . . . , n, and then pick x0 sufficiently large. It is also easy to see that

the original problem has a feasible solution if and only if the auxiliary problem has

a feasible solution with x0 = 0. In other words, the original problem has a feasible

solution if and only if the optimal solution to the auxiliary problem has objective value

zero.

Even though the auxiliary problem clearly has feasible solutions, we have not yet

shown that it has an easily obtained feasible dictionary. It is best to illustrate how to

obtain a feasible dictionary with an example:

maximize −2x1 − x2

subject to −x1 + x2 ≤−1

−x1 − 2x2 ≤−2

x2 ≤ 1

x1, x2 ≥ 0.

The auxiliary problem is

maximize −x0

subject to −x1 + x2 − x0 ≤−1

−x1 − 2x2 − x0 ≤−2

x2 − x0 ≤ 1

x0, x1, x2 ≥ 0.

Next we introduce slack variables and write down an initial infeasible dictionary:

ξ = − x0

w1 =−1 + x1 − x2 + x0

w2 =−2 + x1 + 2x2 + x0

w3 = 1 − x2 + x0.

3. INITIALIZATION 21

This dictionary is infeasible, but it is easy to convert it into a feasible dictionary. In

fact, all we need to do is one pivot with variable x0 entering and the “most infeasible

variable,” w2, leaving the basis:

ξ =−2 + x1 + 2x2 −w2

w1 = 1 − 3x2 + w2

x0 = 2− x1 − 2x2 + w2

w3 = 3− x1 − 3x2 + w2.

Note that we now have a feasible dictionary, so we can apply the simplex method as

defined earlier in this chapter. For the first step, we pick x2 to enter and w1 to leave

the basis:

ξ =−1.33 + x1 − 0.67w1 − 0.33w2

x2 = 0.33 − 0.33w1 + 0.33w2

x0 = 1.33− x1 + 0.67w1 + 0.33w2

w3 = 2− x1 + w1 .

Now, for the second step, we pick x1 to enter and x0 to leave the basis:

ξ = 0− x0

x2 = 0.33 − 0.33w1 + 0.33w2

x1 = 1.33− x0 + 0.67w1 + 0.33w2

w3 = 0.67 + x0 + 0.33w1 − 0.33w2.

This dictionary is optimal for the auxiliary problem. We now drop x0 from the equa-

tions and reintroduce the original objective function:

ζ = −2x1 − x2 = −3 − w1 − w2.

Hence, the starting feasible dictionary for the original problem is

ζ = −3− w1 − w2

x2 = 0.33− 0.33w1 + 0.33w2

x1 = 1.33 + 0.67w1 + 0.33w2

w3 = 0.67 + 0.33w1 − 0.33w2.

As it turns out, this dictionary is optimal for the original problem (since the coefficients

of all the variables in the equation for ζ are negative), but we can’t expect to be this

lucky in general. All we normally can expect is that the dictionary so obtained will

22 2. THE SIMPLEX METHOD

be feasible for the original problem, at which point we continue to apply the simplex

method until an optimal solution is reached.

The process of solving the auxiliary problem to find an initial feasible solution is

often referred to as Phase I, whereas the process of going from a feasible solution to

an optimal solution is called Phase II.

4. Unboundedness

In this section, we shall discuss how to detect when the objective function value

is unbounded.

Let us now take a closer look at the “leaving variable” computation: pick l from

{i ∈ B : āik/b̄i is maximal}. We avoided the issue before, but now we must face what

to do if a denominator in one of these ratios vanishes. If the numerator is nonzero, then

it is easy to see that the ratio should be interpreted as plus or minus infinity depending

on the sign of the numerator. For the case of 0/0, the correct convention (as we’ll see

momentarily) is to take this as a zero.

What if all of the ratios, āik/b̄i, are nonpositive? In that case, none of the basic

variables will become zero as the entering variable increases. Hence, the entering

variable can be increased indefinitely to produce an arbitrarily large objective value.

In such situations, we say that the problem is unbounded. For example, consider the

following dictionary:

ζ = 5 + x3 − x1

x2 = 5 + 2x3 − 3x1

x4 = 7 − 4x1

x5 = x1.

The entering variable is x3 and the ratios are

−2/5, −0/7, 0/0.

Since none of these ratios is positive, the problem is unbounded.

In the next chapter, we will investigate what happens when some of these ratios

take the value +∞.

5. Geometry

When the number of variables in a linear programming problem is three or less,

we can graph the set of feasible solutions together with the level sets of the objective

function. From this picture, it is usually a trivial matter to write down the optimal

5. GEOMETRY 23

1 2 3 4 5 60

0

1

2

3

4

5

6

x1

x2

−x1+3x2=12
x1+x2=8

2x1−x2=10

3x1+2x2=22

3x1+2x2=11

FIGURE 2.1. The set of feasible solutions together with level sets

of the objective function.

solution. To illustrate, consider the following problem:

maximize 3x1 + 2x2

subject to −x1 + 3x2 ≤ 12

x1 + x2 ≤ 8

2x1 − x2 ≤ 10

x1, x2 ≥ 0.

Each constraint (including the nonnegativity constraints on the variables) is a half-

plane. These half-planes can be determined by first graphing the equation one obtains

by replacing the inequality with an equality and then asking whether or not some

specific point that doesn’t satisfy the equality (often (0, 0) can be used) satisfies the

inequality constraint. The set of feasible solutions is just the intersection of these half-

planes. For the problem given above, this set is shown in Figure 2.1. Also shown

are two level sets of the objective function. One of them indicates points at which

the objective function value is 11. This level set passes through the middle of the

set of feasible solutions. As the objective function value increases, the corresponding

level set moves to the right. The level set corresponding to the case where the objec-

tive function equals 22 is the last level set that touches the set of feasible solutions.

24 2. THE SIMPLEX METHOD

Clearly, this is the maximum value of the objective function. The optimal solution is

the intersection of this level set with the set of feasible solutions. Hence, we see from

Figure 2.1 that the optimal solution is (x1, x2) = (6, 2).

Exercises

Solve the following linear programming problems. If you wish, you may check

your arithmetic by using the simple online pivot tool:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/simple.html

2.1 maximize 6x1 + 8x2 + 5x3 + 9x4

subject to 2x1 + x2 + x3 + 3x4 ≤ 5

x1 + 3x2 + x3 + 2x4 ≤ 3

x1, x2, x3, x4 ≥ 0.

2.2 maximize 2x1 + x2

subject to 2x1 + x2 ≤ 4

2x1 + 3x2 ≤ 3

4x1 + x2 ≤ 5

x1 + 5x2 ≤ 1

x1, x2 ≥ 0.

2.3 maximize 2x1 − 6x2

subject to −x1 − x2 − x3 ≤−2

2x1 − x2 + x3 ≤ 1

x1, x2, x3 ≥ 0.

2.4 maximize −x1 − 3x2 − x3

subject to 2x1 − 5x2 + x3 ≤−5

2x1 − x2 + 2x3 ≤ 4

x1, x2, x3 ≥ 0.

2.5 maximize x1 + 3x2

subject to −x1 − x2 ≤−3

−x1 + x2 ≤−1

x1 + 2x2 ≤ 4

x1, x2 ≥ 0.

EXERCISES 25

2.6 maximize x1 + 3x2

subject to −x1 − x2 ≤−3

−x1 + x2 ≤−1

x1 + 2x2 ≤ 2

x1, x2 ≥ 0.

2.7 maximize x1 + 3x2

subject to −x1 − x2 ≤−3

−x1 + x2 ≤−1

−x1 + 2x2 ≤ 2

x1, x2 ≥ 0.

2.8 maximize 3x1 + 2x2

subject to x1 − 2x2 ≤ 1

x1 − x2 ≤ 2

2x1 − x2 ≤ 6

x1 ≤ 5

2x1 + x2 ≤ 16

x1 + x2 ≤ 12

x1 + 2x2 ≤ 21

x2 ≤ 10

x1, x2 ≥ 0.

2.9 maximize 2x1 + 3x2 + 4x3

subject to − 2x2 − 3x3 ≥−5

x1 + x2 + 2x3 ≤ 4

x1 + 2x2 + 3x3 ≤ 7

x1, x2, x3 ≥ 0.

2.10 maximize 6x1 + 8x2 + 5x3 + 9x4

subject to x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

26 2. THE SIMPLEX METHOD

2.11 minimize x12 + 8x13 + 9x14 + 2x23 + 7x24 + 3x34

subject to x12 + x13 + x14 ≥ 1

−x12 + x23 + x24 = 0

−x13 − x23 + x34 = 0

x14 + x24 + x34 ≤ 1

x12, x13, . . . , x34 ≥ 0.

2.12 Using today’s date (MMYY) for the seed value, solve 10 initially feasible

problems using the online pivot tool:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/primal.html .

2.13 Using today’s date (MMYY) for the seed value, solve 10 not necessarily

feasible problems using the online pivot tool:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/primal x0.html .

2.14 Consider the following dictionary:

ζ = 3 + x1 + 6x2

w1 = 1 + x1 − x2

w2 = 5− 2x1 − 3x2.

Using the largest coefficient rule to pick the entering variable, compute the

dictionary that results after one pivot.

2.15 Show that the following dictionary cannot be the optimal dictionary for any

linear programming problem in which w1 and w2 are the initial slack vari-

ables:

ζ = 4−w1 − 2x2

x1 = 3 − 2x2

w2 = 1 + w1 − x2.

Hint: if it could, what was the original problem from whence it came?

2.16 Graph the feasible region for Exercise 2.8. Indicate on the graph the se-

quence of basic solutions produced by the simplex method.

2.17 Give an example showing that the variable that becomes basic in one itera-

tion of the simplex method can become nonbasic in the next iteration.

NOTES 27

2.18 Show that the variable that becomes nonbasic in one iteration of the simplex

method cannot become basic in the next iteration.

2.19 Solve the following linear programming problem:

maximize

n
∑

j=1

pjxj

subject to

n
∑

j=1

qjxj ≤ β

xj ≤ 1 j = 1, 2, . . . , n

xj ≥ 0 j = 1, 2, . . . , n.

Here, the numbers pj , j = 1, 2, . . . , n, are positive and sum to one. The

same is true of the qj’s:

n
∑

j=1

qj = 1

qj > 0.

Furthermore (with only minor loss of generality), you may assume that

p1

q1
<

p2

q2
< · · · <

pn

qn
.

Finally, the parameter β is a small positive number. See Exercise 1.3 for the

motivation for this problem.

Notes

The simplex method was invented by G.B. Dantzig in 1949. His monograph

(Dantzig 1963) is the classical reference. Most texts describe the simplex method as

a sequence of pivots on a table of numbers called the simplex tableau. Following

Chvátal (1983), we have developed the algorithm using the more memorable dictio-

nary notation.

CHAPTER 3

Degeneracy

In the previous chapter, we discussed what it means when the ratios computed to

calculate the leaving variable are all nonpositive (the problem is unbounded). In this

chapter, we take up the more delicate issue of what happens when some of the ratios

are infinite (i.e., their denominators vanish).

1. Definition of Degeneracy

We say that a dictionary is degenerate if b̄i vanishes for some i ∈ B. A degen-

erate dictionary could cause difficulties for the simplex method, but it might not. For

example, the dictionary we were discussing at the end of the last chapter,

ζ = 5 + x3 − x1

x2 = 5 + 2x3 − 3x1

x4 = 7 − 4x1

x5 = x1,

is degenerate, but it was clear that the problem was unbounded and therefore no more

pivots were required. Furthermore, had the coefficient of x3 in the equation for x2

been −2 instead of 2, then the simplex method would have picked x2 for the leaving

variable and no difficulties would have been encountered.

Problems arise, however, when a degenerate dictionary produces degenerate piv-

ots. We say that a pivot is a degenerate pivot if one of the ratios in the calculation

of the leaving variable is +∞; i.e., if the numerator is positive and the denominator

vanishes. To see what happens, let’s look at a few examples.

2. Two Examples of Degenerate Problems

Here is an example of a degenerate dictionary in which the pivot is also degener-

ate:

(3.1)

ζ = 3− 0.5x1 + 2x2 − 1.5w1

x3 = 1− 0.5x1 − 0.5w1

w2 = x1 − x2 + w1.

29

30 3. DEGENERACY

For this dictionary, the entering variable is x2 and the ratios computed to determine

the leaving variable are 0 and +∞. Hence, the leaving variable is w2, and the fact

that the ratio is infinite means that as soon as x2 is increased from zero to a positive

value, w2 will go negative. Therefore, x2 can’t really increase. Nonetheless, it can be

reclassified from nonbasic to basic (with w2 going the other way). Let’s look at the

result of this degenerate pivot:

(3.2)

ζ = 3 + 1.5x1 − 2w2 + 0.5w1

x3 = 1− 0.5x1 − 0.5w1

x2 = x1 − w2 + w1.

Note that ζ̄ remains unchanged at 3. Hence, this degenerate pivot has not produced

any increase in the objective function value. Furthermore, the values of the variables

haven’t even changed: both before and after this degenerate pivot, we had

(x1, x2, x3, w1, w2) = (0, 0, 1, 0, 0).

But we are now representing this solution in a new way, and perhaps the next pivot

will make an improvement, or if not the next pivot perhaps the one after that. Let’s see

what happens for the problem at hand. The entering variable for the next iteration is

x1 and the leaving variable is x3, producing a nondegenerate pivot that leads to

ζ = 6− 3x3 − 2w2 −w1

x1 = 2− 2x3 −w1

x2 = 2− 2x3 − w2 .

These two pivots illustrate what typically happens. When one reaches a degenerate

dictionary, it is usual that one or more of the subsequent pivots will be degenerate but

that eventually a nondegenerate pivot will lead us away from these degenerate dictio-

naries. While it is typical for some pivot to “break away” from the degeneracy, the

real danger is that the simplex method will make a sequence of degenerate pivots and

eventually return to a dictionary that has appeared before, in which case the simplex

method enters an infinite loop and never finds an optimal solution. This behavior is

called cycling.

Unfortunately, under certain pivoting rules, cycling is possible. In fact, it is pos-

sible even when using one of the most popular pivoting rules:

• Choose the entering variable as the one with the largest coefficient in the

ζ-row of the dictionary.

• When two or more variables compete for leaving the basis, use the one with

the smallest subscript.

2. TWO EXAMPLES OF DEGENERATE PROBLEMS 31

However, it is rare and exceedingly difficult to find examples of cycling. In fact, it

has been shown that if a problem has an optimal solution but cycles off-optimum, then

the problem must involve dictionaries with at least six variables and three constraints.

Here is an example that cycles:

ζ = 10x1 − 57x2 − 9x3 − 24x4

w1 = − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

w2 = − 0.5x1 + 1.5x2 + 0.5x3 − x4

w3 = 1− x1 .

And here is the sequence of dictionaries the above pivot rules produce. After the first

iteration:

ζ = − 20w1 + 53x2 + 41x3 − 204x4

x1 = − 2w1 + 11x2 + 5x3 − 18x4

w2 = w1 − 4x2 − 2x3 + 8x4

w3 = 1 + 2w1 − 11x2 − 5x3 + 18x4.

After the second iteration:

ζ = − 6.75w1 − 13.25w2 + 14.5x3 − 98x4

x1 = 0.75w1 − 2.75w2 − 0.5x3 + 4x4

x2 = 0.25w1 − 0.25w2 − 0.5x3 + 2x4

w3 = 1− 0.75w1 − 13.25w2 + 0.5x3 − 4x4.

After the third iteration:

ζ = 15w1 − 93w2 − 29x1 + 18x4

x3 = 1.5w1 − 5.5w2 − 2x1 + 8x4

x2 = − 0.5w1 + 2.5w2 + x1 − 2x4

w3 = 1 − x1 .

After the fourth iteration:

ζ = 10.5w1 − 70.5w2 − 20x1 − 9x2

x3 = − 0.5w1 + 4.5w2 + 2x1 − 4x2

x4 = − 0.25w1 + 1.25w2 + 0.5x1 − 0.5x2

w3 = 1 − x1 .

32 3. DEGENERACY

After the fifth iteration:

ζ = − 21x3 + 24w2 + 22x1 − 93x2

w1 = − 2x3 + 9w2 + 4x1 − 8x2

x4 = 0.5x3 − w2 − 0.5x1 + 1.5x2

w3 = 1 − x1 .

After the sixth iteration:

ζ = 10x1 − 57x2 − 9x3 − 24x4

w1 = − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

w2 = − 0.5x1 + 1.5x2 + 0.5x3 − x4

w3 = 1− x1 .

Note that we have come back to the original dictionary, and so from here on the

simplex method simply cycles through these six dictionaries and never makes any fur-

ther progress toward an optimal solution. As bad as cycling is, the following theorem

tells us that nothing worse can happen:

THEOREM 3.1. If the simplex method fails to terminate, then it must cycle.

PROOF. A dictionary is completely determined by specifying which variables are

basic and which are nonbasic. There are only

(

n + m

m

)

different possibilities. If the simplex method fails to terminate, it must visit some of

these dictionaries more than once. Hence, the algorithm cycles. �

Note that, if the simplex method cycles, then all the pivots within the cycle must

be degenerate. This is easy to see, since the objective function value never decreases.

Hence, it follows that all the pivots within the cycle must have the same objective

function value, i.e., all of the these pivots must be degenerate.

In practice, degeneracy is very common. But cycling is rare. In fact, it is so rare

that most efficient implementations do not take precautions against it. Nonetheless, it

is important to know that there are variants of the simplex method that do not cycle.

This is the subject of the next two sections.

3. The Perturbation/Lexicographic Method

As we have seen, there is not just one algorithm called the simplex method. In-

stead, the simplex method is a whole family of related algorithms from which we can

3. THE PERTURBATION/LEXICOGRAPHIC METHOD 33

pick a specific instance by specifying what we have been referring to as pivoting rules.

We have also seen that, using the most natural pivoting rules, the simplex method can

fail to converge to an optimal solution by occasionally cycling indefinitely through a

sequence of degenerate pivots associated with a nonoptimal solution.

So this raises a natural question: are there pivoting rules for which the simplex

method will definitely either reach an optimal solution or prove that no such solution

exists? The answer to this question is yes, and we shall present two choices of such

pivoting rules.

The first method is based on the observation that degeneracy is sort of an accident.

That is, a dictionary is degenerate if one or more of the b̄i’s vanish. Our examples have

generally used small integers for the data, and in this case it doesn’t seem too surpris-

ing that sometimes cancellations occur and we end up with a degenerate dictionary.

But each right-hand side could in fact be any real number, and in the world of real

numbers the occurrence of any specific number, such as zero, seems to be quite un-

likely. So how about perturbing a given problem by adding small random perturbations

independently to each of the right-hand sides? If these perturbations are small enough,

we can think of them as insignificant and hence not really changing the problem. If

they are chosen independently, then the probability of an exact cancellation is zero.

Such random perturbation schemes are used in some implementations, but what

we have in mind as we discuss perturbation methods is something a little bit different.

Instead of using independent identically distributed random perturbations, let us con-

sider using a fixed perturbation for each constraint, with the perturbation getting much

smaller on each succeeding constraint. Indeed, we introduce a small positive number

ǫ1 for the first constraint and then a much smaller positive number ǫ2 for the second

constraint, etc. We write this as

0 < ǫm ≪ · · · ≪ ǫ2 ≪ ǫ1 ≪ all other data.

The idea is that each ǫi acts on an entirely different scale from all the other ǫi’s and

the data for the problem. What we mean by this is that no linear combination of the

ǫi’s using coefficients that might arise in the course of the simplex method can ever

produce a number whose size is of the same order as the data in the problem. Sim-

ilarly, each of the “lower down” ǫi’s can never “escalate” to a higher level. Hence,

cancellations can only occur on a given scale. Of course, this complete isolation of

scales can never be truly achieved in the real numbers, so instead of actually introduc-

ing specific values for the ǫi’s, we simply treat them as abstract symbols having these

scale properties.

34 3. DEGENERACY

To illustrate what we mean, let’s look at a specific example. Consider the follow-

ing degenerate dictionary:

ζ = 4 + 2x1 − x2

w1 = 0.5 − x2

w2 = − 2x1 + 4x2

w3 = x1 − 3x2.

The first step is to introduce symbolic parameters

0 < ǫ3 ≪ ǫ2 ≪ ǫ1

to get a perturbed problem:

ζ = 4 + 2x1 − x2

w1 = 0.5 + ǫ1 − x2

w2 = ǫ2 − 2x1 + 4x2

w3 = ǫ3 + x1 − 3x2.

This dictionary is not degenerate. The entering variable is x1 and the leaving variable

is unambiguously w2. The next dictionary is

ζ = 4 + ǫ2 − w2 + 3x2

w1 = 0.5 + ǫ1 − x2

x1 = 0.5ǫ2 − 0.5w2 + 2x2

w3 = 0.5ǫ2 + ǫ3 − 0.5w2 − x2.

For the next pivot, the entering variable is x2 and the leaving variable is w3. The new

dictionary is

ζ = 4 + 2.5ǫ2 + 3ǫ3 − 2.5w2 − 3w3

w1 = 0.5 + ǫ1 − 0.5ǫ2 − ǫ3 + 0.5w2 + w3

x1 = 1.5ǫ2 + 2ǫ3 − 1.5w2 − 2w3

x2 = 0.5ǫ2 + ǫ3 − 0.5w2 − w3.

3. THE PERTURBATION/LEXICOGRAPHIC METHOD 35

This last dictionary is optimal. At this point, we simply drop the symbolic ǫi parame-

ters and get an optimal dictionary for the unperturbed problem:

ζ = 4− 2.5w2 − 3w3

w1 = 0.5 + 0.5w2 + w3

x1 = − 1.5w2 − 2w3

x2 = − 0.5w2 − w3.

When treating the ǫi’s as symbols, the method is called the lexicographic method.

Note that the lexicographic method does not affect the choice of entering variable but

does amount to a precise prescription for the choice of leaving variable.

It turns out that the lexicographic method produces a variant of the simplex method

that never cycles:

THEOREM 3.2. The simplex method always terminates provided that the leaving

variable is selected by the lexicographic rule.

PROOF. It suffices to show that no degenerate dictionary is ever produced. As

we’ve discussed before, the ǫi’s operate on different scales and hence can’t cancel

with each other. Therefore, we can think of the ǫi’s as a collection of independent

variables. Extracting the ǫ terms from the first dictionary, we see that we start with the

following pattern:

ǫ1

ǫ2
. . .

ǫm.

And, after several pivots, the ǫ terms will form a system of linear combinations, say,

r11ǫ1 + r12ǫ2 . . . + r1mǫm

r21ǫ1 + r22ǫ2 . . . + r2mǫm

...
...

. . .
...

rm1ǫ1 + rm2ǫ2 . . . + rmmǫm.

Since this system of linear combinations is obtained from the original system by pivot

operations and, since pivot operations are reversible, it follows that the rank of the

two systems must be the same. Since the original system had rank m, we see that

every subsequent system must have rank m. This means that there must be at least

one nonzero rij in every row i, which of course implies that none of the rows can be

degenerate. Hence, no dictionary can be degenerate. �

36 3. DEGENERACY

4. Bland’s Rule

The second pivoting rule we shall consider is called Bland’s rule. It stipulates

that both the entering and the leaving variable be selected from their respective sets of

choices by choosing the variable xk with the smallest index k.

THEOREM 3.3. The simplex method always terminates provided that both the

entering and the leaving variable are chosen according to Bland’s rule.

The proof may look rather involved, but the reader who spends the time to under-

stand it will find the underlying elegance most rewarding.

PROOF. It suffices to show that such a variant of the simplex method never cycles.

We prove this by assuming that cycling does occur and then showing that this assump-

tion leads to a contradiction. So let’s assume that cycling does occur. Without loss of

generality, we may assume that it happens from the beginning. Let D0, D1, . . . , Dk−1

denote the dictionaries through which the method cycles. That is, the simplex method

produces the following sequence of dictionaries:

D0, D1, . . . , Dk−1, D0, D1,

We say that a variable is fickle if it is in some basis and not in some other basis.

Let xt be the fickle variable having the largest index and let D denote a dictionary

in D0, D1, . . . , Dk−1 in which xt leaves the basis. Again, without loss of generality

we may assume that D = D0. Let xs denote the corresponding entering variable.

Suppose that D is recorded as follows:

ζ = v +
∑

j∈N
cjxj

xi = bi −
∑

j∈N
aijxj i ∈ B.

Since xs is the entering variable and xt is the leaving variable, we have that s ∈ N
and t ∈ B.

Now let D∗ be a dictionary in D1, D2, . . . , Dk−1 in which xt enters the basis.

Suppose that D∗ is recorded as follows:

(3.3)

ζ = v∗ +
∑

j∈N∗

c∗jxj

xi = b∗i −
∑

j∈N∗

a∗
ijxj i ∈ B∗.

4. BLAND’S RULE 37

Since all the dictionaries are degenerate, we have that v∗ = v, and therefore we can

write the objective function in (3.3) as

(3.4) ζ = v +

n+m
∑

j=1

c∗jxj ,

where we have extended the notation c∗j to all variables (both original and slack) by

setting c∗j = 0 for j ∈ B∗.

Ignoring for the moment the possibility that some variables could go negative,

consider the solutions obtained by letting xs increase while holding all other variables

in N at zero:

xs = y,

xj = 0, j ∈ N \ {s},

xi = bi − aisy, i ∈ B.

The objective function at this point is given by

ζ = v + csy.

However, using (3.4), we see that it is also given by

ζ = v + c∗sy +
∑

i∈B
c∗i (bi − aisy).

Equating these two expressions for ζ, we see that

(

cs − c∗s +
∑

i∈B
c∗i ais

)

y =
∑

i∈B
c∗i bi.

Since this equation must be an identity for every y, it follows that the coefficient

multiplying y must vanish (as must the right-hand side):

cs − c∗s +
∑

i∈B
c∗i ais = 0.

Now, the fact that xs is the entering variable in D implies that

cs > 0.

38 3. DEGENERACY

Recall that xt is the fickle variable with the largest index. Since xs is also fickle, we

see that s < t. Since xs is not the entering variable in D∗ (as xt is), we see that

c∗s ≤ 0.

From these last three displayed equations, we get

∑

i∈B
c∗i ais < 0.

Hence, there must exist an index r ∈ B for which

(3.5) c∗rars < 0.

Consequently, c∗r �= 0 and r ∈ N ∗. Hence, xr is fickle and therefore r ≤ t. In fact,

r < t, since c∗t ats > 0. To see that this product is positive, note that both its factors

are positive: c∗t is positive, since xt is the entering variable in D∗, and ats is positive,

since xt is the leaving variable in D.

The fact that r < t implies that c∗r ≤ 0 (otherwise, according to the smallest index

criteria, r would be the entering variable for D∗). Hence, (3.5) implies that

ars > 0.

Now, since each of the dictionaries in the cycle describe the same solution, it follows

that every fickle variable is zero in all these dictionaries (since it is clearly zero in a

dictionary in which it is nonbasic). In particular, xr = 0. But in D, xr is basic. Hence,

br = 0.

These last two displayed equations imply that xr was a candidate to be the leaving

variable in D, and since r < t, it should have been chosen over xt. This is the

contradiction we have been looking for. �

5. Fundamental Theorem of Linear Programming

Now that we have a Phase I algorithm and a variant of the simplex method that

is guaranteed to terminate, we can summarize the main gist of this chapter in the

following theorem:

THEOREM 3.4. For an arbitrary linear program in standard form, the following

statements are true:

(1) If there is no optimal solution, then the problem is either infeasible or un-

bounded.

(2) If a feasible solution exists, then a basic feasible solution exists.

(3) If an optimal solution exists, then a basic optimal solution exists.

6. GEOMETRY 39

1 2
x2

x3

x1

x1+2x3=3

x2+2x3=2x2=0

FIGURE 3.1. The set of feasible solutions for the problem given by (3.6).

PROOF. The Phase I algorithm either proves that the problem is infeasible or

produces a basic feasible solution. The Phase II algorithm either discovers that the

problem is unbounded or finds a basic optimal solution. These statements depend, of

course, on applying a variant of the simplex method that does not cycle, which we

now know to exist. �

6. Geometry

As we saw in the previous chapter, the set of feasible solutions for a problem in

two dimensions is the intersection of a number of halfplanes, i.e., a polygon. In three

dimensions, the situation is similar. Consider, for example, the following problem:

(3.6)

maximize x1 + 2x2 + 3x3

subject to x1 + 2x3 ≤ 3

x2 + 2x3 ≤ 2

x1, x2, x3 ≥ 0.

40 3. DEGENERACY

The set of points satisfying x1 + 2x3 = 3 is a plane. The inequality x1 + 2x3 ≤ 3
therefore consists of all points on one side of this plane; that is, it is a halfspace.

The same is true for each of the other four inequalities. The feasible set consists of

those points in space that satisfy all five inequalities, i.e., those points lying in the

intersection of these halfspaces. This set is the polyhedron shown in Figure 3.1. This

polyhedron is bordered by five facets, each facet being a portion of one of the planes

that was defined by replacing a constraint inequality with an equation. For example,

the “front” facet in the figure is a portion of the plane x1+2x3 = 3. The facets acquire

a particularly simple description if we introduce slack variables into the problem:

w1 = 3− x1 − 2x3

w2 = 2 − x2 − 2x3.

Indeed, each facet corresponds precisely to some variable (either original or slack)

vanishing. For instance, the front facet in the figure corresponds to w1 = 0 whereas

the “left” facet corresponds to x2 = 0.

The correspondences can be continued. Indeed, each edge of the polyhedron cor-

responds to a pair of variables vanishing. For example, the edge lying at the interface

of the left and the front facets in the figure corresponds to both w1 = 0 and x2 = 0.

Going further yet, each vertex of the polyhedron corresponds to three variables

vanishing. For instance, the vertex whose coordinates are (1, 0, 1) corresponds to

w1 = 0, x2 = 0, and w2 = 0.

Now, let’s think about applying the simplex method to this problem. Every basic

feasible solution involves two basic variables and three nonbasic variables. Further-

more, the three nonbasic variables are, by definition, zero in the basic feasible solution.

Therefore, for this example, the basic feasible solutions stand in one-to-one correspon-

dence with the vertices of the polyhedron. In fact, applying the simplex method to this

problem, one discovers that the sequence of vertices visited by the algorithm is

(0, 0, 0) −→ (0, 0, 1) −→ (1, 0, 1) −→ (3, 2, 0).

The example we’ve been considering has the nice property that every vertex is

formed by the intersection of exactly three of the facets. But consider now the follow-

ing problem:

(3.7)

maximize x1 + 2x2 + 3x3

subject to x1 + 2x3 ≤ 2

x2 + 2x3 ≤ 2

x1, x2, x3 ≥ 0.

Algebraically, the only difference between this problem and the previous one is that

the right-hand side of the first inequality is now a 2 instead of a 3. But look at the

6. GEOMETRY 41

1

x2

x3

x1

x1+2x3=2

x2=0

x2+2x3=2

FIGURE 3.2. The set of feasible solutions for the (degenerate) prob-

lem given by (3.7).

polyhedron of feasible solutions shown in Figure 3.2. The vertex (0, 0, 1) is at the

intersection of four of the facets, not three as one would “normally” expect. This vertex

does not correspond to one basic feasible solution; rather, there are four degenerate

basic feasible solutions, each representing it. We’ve seen two of them before. Indeed,

dictionaries (3.1) and (3.2) correspond to two of these degenerate dictionaries (in fact,

dictionary (3.1) is the dictionary one obtains after one pivot of the simplex method

applied to problem (3.7)).

We end by considering the geometric effect of the perturbation method for re-

solving degeneracy. By perturbing the right-hand sides, one moves the planes that

determine the facets. If the moves are random or chosen with vastly different mag-

nitudes (all small), then one would expect that each vertex in the perturbed problem

would be determined by exactly three planes. That is, degenerate vertices from the

original problem get split into multiple nearby vertices in the perturbed problem. For

example, problem (3.6) can be thought of as a perturbation of degenerate problem

(3.7) (the perturbation isn’t small, but it also isn’t so large as to obscure the effect).

Note how the degenerate vertex in Figure 3.2 appears as two vertices in Figure 3.1.

42 3. DEGENERACY

Exercises

3.1 Solve the following linear program using the perturbation method to resolve

degeneracy:

maximize 10x1 − 57x2 − 9x3 − 24x4

subject to 0.5x1 − 5.5x2 − 2.5x3 + 9x4 ≤ 0

0.5x1 − 1.5x2 − 0.5x3 + x4 ≤ 0

x1 ≤ 1

x1, x2, x3, x4 ≥ 0.

Note: The simple pivot tool with the Lexicographic labels can be used to

check your arithmetic:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/simple.html

3.2 Solve the following linear program using Bland’s rule to resolve degeneracy:

maximize 10x1 − 57x2 − 9x3 − 24x4

subject to 0.5x1 − 5.5x2 − 2.5x3 + 9x4 ≤ 0

0.5x1 − 1.5x2 − 0.5x3 + x4 ≤ 0

x1 ≤ 1

x1, x2, x3, x4 ≥ 0.

3.3 Using today’s date (MMYY) for the seed value, solve 10 possibly degener-

ate problems using the online pivot tool:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/lexico.html .

3.4 Consider the linear programming problems whose right-hand sides are iden-

tically zero:

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ 0 i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

Show that either xj = 0 for all j is optimal or else the problem is unbounded.

NOTES 43

3.5 Consider the following linear program:

maximize x1 + 3x2

subject to −2x1 ≤−5

x1 ≥ 0 .

Show that this problem has feasible solutions but no vertex solutions. How

does this reconcile with the fundamental theorem of linear programming

(Theorem 3.4)?

3.6 Suppose that a linear programming problem has the following property: its

initial dictionary is not degenerate and, when solved by the simplex method,

there is never a tie for the choice of leaving variable.

(a) Can such a problem have degenerate dictionaries? Explain.

(b) Can such a problem cycle? Explain.

3.7 Consider the following dictionary:

ζ = 5 + 2x2 − 2x3 + 3x5

x6 = 4− 2x2 − x3 + x5

x4 = 2− x2 + x3 − x5

x1 = 6− 2x2 − 2x3 − 3x5.

(a) List all pairs (xr, xs) such that xr could be the entering variable and xs

could be the leaving variable.

(b) List all such pairs if the largest-coefficient rule for choosing the entering

variable is used.

(c) List all such pairs if Bland’s rule for choosing the entering and leaving

variables is used.

Notes

The first example of cycling was given by Hoffman (1953). The fact that any

linear programming problem that cycles must have at least six variables and three

constraints was proved by Marshall & Suurballe (1969).

Early proofs of the fundamental theorem of linear programming (Theorem 3.4)

were constructive, relying, as in our development, on the existence of a variant of

the simplex method that works even in the presense of degeneracy. Hence, finding

such variants occupied the attention of early researchers in linear programming. The

perturbation method was first suggested by A. Orden and developed independently

44 3. DEGENERACY

by Charnes (1952). The essentially equivalent lexicographic method first appeared in

Dantzig et al. (1955). Theorem 3.3 was proved by Bland (1977).

For an extensive treatment of degeneracy issues see Gal (1993).

CHAPTER 4

Efficiency of the Simplex Method

In the previous chapter, we saw that the simplex method (with appropriate piv-

oting rules to guarantee no cycling) will solve any linear programming problem for

which an optimal solution exists. In this chapter, we investigate just how fast it will

solve a problem of a given size.

1. Performance Measures

Performance measures can be broadly divided into two types:

• worst case

• average case.

As its name implies, a worst-case analysis looks at all problems of a given “size” and

asks how much effort is needed to solve the hardest of these problems. Similarly,

an average-case analysis looks at the average amount of effort, averaging over all

problems of a given size. Worst-case analyses are generally easier than average-case

analyses. The reason is that, for worst-case analyses, one simply needs to give an

upper bound on how much effort is required and then exhibit a specific example that

attains this bound. However, for average-case analyses, one must have a stochastic

model of the space of “random linear programming problems” and then be able to

say something about the solution effort averaged over all the problems in the sample

space. There are two serious difficulties here. The first is that it is not clear at all how

one should model the space of random problems. Secondly, given such a model, one

must be able to evaluate the amount of effort required to solve every problem in the

sample space.

Therefore, worst-case analysis is more tractable than average-case analysis, but it

is also less relevant to a person who needs to solve real problems. In this chapter, we

shall give a worst-case analysis of the simplex method. Later, in Chapter 12, we shall

present results of empirical studies that indicate the average behavior over finite sets

of real problems. Such studies act as a surrogate for a true average-case analysis.

2. Measuring the Size of a Problem

Before looking at worst cases, we must discuss two issues. First, how do we

specify the size of a problem? Two parameters come naturally to mind: m and n.

45

46 4. EFFICIENCY OF THE SIMPLEX METHOD

Usually, we shall simply use these two numbers to characterize the size a problem.

However, we should mention some drawbacks associated with this choice. First of

all, it would be preferable to use only one number to indicate size. Since the data

for a problem consist of the constraint coefficients together with the right-hand side

and objective function coefficients, perhaps we should use the total number of data

elements, which is roughly mn.

The product mn isn’t bad, but what if many or even most of the data elements are

zero? Wouldn’t one expect such a problem to be easier to solve? Efficient implemen-

tations do indeed take advantage of the presence of lots of zeros, and so an analysis

should also account for this. Hence, a good measure might be simply the number

of nonzero data elements. This would definitely be an improvement, but one can go

further. On a computer, floating-point numbers are all the same size and can be mul-

tiplied in the same amount of time. But if a person is to solve a problem by hand (or

use unlimited precision computation on a computer), then certainly multiplying 23 by

7 is a lot easier than multiplying 23453.2352 by 86833.245643. So perhaps the best

measure of a problem’s size is not the number of data elements, but the actual number

of bits needed to store all the data on a computer. This measure is popular among most

computer scientists and is usually denoted by L.

However, with a little further abstraction, the size of the data, L, is seen to be

ambiguous. As we saw in Chapter 1, real-world problems, while generally large and

sparse, usually can be described quite simply and involve only a small amount of true

input data that gets greatly expanded when setting the problem up with a constraint

matrix, right-hand side, and objective function. So should L represent the number of

bits needed to specify the nonzero constraint coefficients, objective coefficients, and

right-hand sides, or should it be the number of bits in the original data set plus the

number of bits in the description of how this data represents a linear programming

problem? No one currently uses this last notion of problem size, but it seems fairly

reasonable that they should (or at least that they should seriously consider it). Anyway,

our purpose here is merely to mention that these important issues are lurking about,

but, as stated above, we shall simply focus on m and n to characterize the size of a

problem.

3. Measuring the Effort to Solve a Problem

The second issue to discuss is how one should measure the amount of work re-

quired to solve a problem. The best answer is the number of seconds of computer

time required to solve the problem, using the computer sitting on one’s desk. Un-

fortunately, there are (hopefully) many readers of this text, not all of whom use the

exact same computer. Even if they did, computer technology changes rapidly, and

a few years down the road everyone would be using something entirely different. It

would be nice if the National Institute of Standards and Technology (the government

organization in charge of setting standards, such as how many threads/inch a standard

4. WORST-CASE ANALYSIS OF THE SIMPLEX METHOD 47

light bulb should have) would identify a standard computer for the purpose of bench-

marking algorithms, but, needless to say, this is not very likely. So the time needed to

solve a problem, while the most desirable measure, is not the most practical one here.

Fortunately, there is a fairly reasonable substitute. Algorithms are generally iterative

processes, and the time to solve a problem can be factored into the number of iterations

required to solve the problem times the amount of time required to do each iteration.

The first factor, the number of iterations, does not depend on the computer and so

is a reasonable surrogate for the actual time. This surrogate is useful when compar-

ing various algorithms within the same general class of algorithms, in which the time

per iteration can be expected to be about the same among the algorithms; however, it

becomes meaningless when one wishes to compare two entirely different algorithms.

For now, we shall measure the amount of effort to solve a linear programming problem

by counting the number of iterations needed to solve it.

4. Worst-Case Analysis of the Simplex Method

How bad can the simplex method be in the worst case? Well, we have already

seen that for some pivoting rules it can cycle, and hence the worst-case solution time

for such variants is infinite. However, what about noncycling variants of the simplex

method? Since the simplex method operates by moving from one basic feasible solu-

tion to another without ever returning to a previously visited solution, an upper bound

on the number of iterations is simply the number of basic feasible solutions, of which

there can be at most

(

n + m

m

)

.

For a fixed value of the sum n + m, this expression is maximized when m = n. And

how big is it? It is not hard to show that

1

2n
22n ≤

(

2n

n

)

≤ 22n

(see Exercise 4.9). It should be noted that, even though typographically compact, the

expression 2n is huge even when n is not very big. For example, 250 = 1.1259×1015.

Our best chance for finding a bad example is to look at the case where m = n.

We shall now give an example, first discovered by V. Klee and G.J. Minty in 1972, in

which the simplex method using the largest coefficient rule requires 2n − 1 iterations

48 4. EFFICIENCY OF THE SIMPLEX METHOD

to solve. The example is quite simple to state:

(4.1)

maximize

n
∑

j=1

10n−jxj

subject to 2
i−1
∑

j=1

10i−jxj + xi ≤ 100i−1 i = 1, 2, . . . , n

xj ≥ 0 j = 1, 2, . . . , n.

It is instructive to look more closely at the constraints. The first three constraints are

x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000.

The first constraint simply says that x1 is no bigger than one. With this in mind, the

second constraint says that x2 has an upper bound of about 100, depending on how

big x1 is. Similarly, the third constraint says that x3 is roughly no bigger than 10,000

(again, this statement needs some adjustment depending on the sizes of x1 and x2).

Therefore, the constraints are approximately just a set of upper bounds, which means

that the feasible region is virtually an n-dimensional hypercube:

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 100

...

0 ≤ xn ≤ 100n−1.

For this reason, the feasible region for the Klee–Minty problem is often referred to

as the Klee–Minty cube. An n-dimensional hypercube has 2n vertices, and, as we

shall see, the simplex method with the largest-coefficient rule will start at one of these

vertices and visit every vertex before finally finding the optimal solution.

In order to understand the Klee–Minty problem, let us begin by replacing the

specific right-hand sides, 100i−1, with more generic values, bi, with the property that

1 = b1 ≪ b2 ≪ · · · ≪ bn.

As in the previous chapter, we use the expression a ≪ b to mean that a is so much

smaller than b that no factors multiplying a and dividing b that arise in the course of

applying the simplex method to the problem at hand can ever make the resulting a
as large as the resulting b. Hence, we can think of the bi’s as independent variables

4. WORST-CASE ANALYSIS OF THE SIMPLEX METHOD 49

for now (specific values can be chosen later). Next, it is convenient to change each

right-hand side replacing bi with

i−1
∑

j=1

10i−jbj + bi.

Since the numbers bj , j = 1, 2, . . . , i − 1 are “small potatoes” compared with bi,

this modification to the right-hand sides amounts to a very small perturbation. The

right-hand sides still grow by huge amounts as i increases. Finally, we wish to add

a constant to the objective function so that the Klee–Minty problem can finally be

written as

(4.2)

maximize

n
∑

j=1

10n−jxj −
1

2

n
∑

j=1

10n−jbj

subject to 2

i−1
∑

j=1

10i−jxj + xi ≤
i−1
∑

j=1

10i−jbj + bi i = 1, 2, . . . , n

xj ≥ 0 j = 1, 2, . . . , n.

In Exercise 4.7, you are asked to prove that this problem takes 2n − 1 iterations. To

start to get a handle on the proof, here are the seven iterations that one gets with n = 3.

The initial dictionary is

ζ =− 100
2 b1 − 10

2 b2 − 1
2b3 + 100x1 + 10x2 + x3

w1 = b1 − x1

w2 = 10b1 + b2 − 20x1 − x2

w3 = 100b1 + 10b2 + b3 − 200x1 − 20x2 − x3,

which is feasible. Using the largest coefficient rule, the entering variable is x1. From

the fact that each subsequent bi is huge compared with its predecessor it follows that

w1 is the leaving variable. After the first iteration, the dictionary reads

ζ = 100
2 b1 − 10

2 b2 − 1
2b3 − 100w1 + 10x2 + x3

x1 = b1 − w1

w2 = −10b1 + b2 + 20w1 − x2

w3 =−100b1 + 10b2 + b3 + 200w1 − 20x2 − x3.

50 4. EFFICIENCY OF THE SIMPLEX METHOD

Now, x2 enters and w2 leaves, so after the second iteration we get:

ζ =− 100
2 b1 + 10

2 b2 − 1
2b3 + 100w1 − 10w2 + x3

x1 = b1 − w1

x2 = −10b1 + b2 + 20w1 − w2

w3 = 100b1 − 10b2 + b3 − 200w1 + 20w2 − x3.

After the third iteration

ζ = 100
2 b1 + 10

2 b2 − 1
2b3 − 100x1 − 10w2 + x3

w1 = b1 − x1

x2 = 10b1 + b2 − 20x1 − w2

w3 =−100b1 − 10b2 + b3 + 200x1 + 20w2 − x3.

After the fourth iteration

ζ = − 100
2 b1 − 10

2 b2 + 1
2b3 + 100x1 + 10w2 −w3

w1 = b1 − x1

x2 = 10b1 + b2 − 20x1 − w2

x3 =−100b1 − 10b2 + b3 + 200x1 + 20w2 −w3.

After the fifth iteration

ζ = 100
2 b1 − 10

2 b2 + 1
2b3 − 100w1 + 10w2 −w3

x1 = b1 − w1

x2 =−10b1 + b2 + 20w1 − w2

x3 = 100b1 − 10b2 + b3 − 200w1 + 20w2 −w3.

After the sixth iteration

ζ = − 100
2 b1 + 10

2 b2 + 1
2b3 + 100w1 − 10x2 −w3

x1 = b1 − w1

w2 = −10b1 + b2 + 20w1 − x2

x3 =−100b1 + 10b2 + b3 + 200w1 − 20x2 −w3.

4. WORST-CASE ANALYSIS OF THE SIMPLEX METHOD 51

And, finally, after the seventh iteration, we get

ζ = 100
2 b1 + 10

2 b2 + 1
2b3 − 100x1 − 10x2 −w3

w1 = b1 − x1

w2 = 10b1 + b2 − 20x1 − x2

x3 = 100b1 + 10b2 + b3 − 200x1 − 20x2 −w3,

which is, of course, optimal.

A few observations should be made. First, every pivot is the swap of an xj with

the corresponding wj . Second, every dictionary looks just like the first one with the

exception that the wi’s and the xi’s have become intertwined and various signs have

changed (see Exercise 4.6).

Also note that the final dictionary could have been reached from the initial dictio-

nary in just one pivot if we had selected x3 to be the entering variable. But the largest-

coefficient rule dictated selecting x1. It is natural to wonder whether the largest-

coefficient rule could be replaced by some other pivot rule for which the worst-case

behavior would be much better than the 2n behavior of the largest-coefficient rule. So

far no one has found such a pivot rule. However, no one has proved that such a rule

does not exist either.

Finally, we mention that one desirable property of an algorithm is that it be scale

invariant. This means that should the units in which one measures the decision vari-

ables in a problem be changed, the algorithm would still behave in exactly the same

manner. The simplex method with the largest-coefficient rule is not scale invariant. To

see this, consider changing variables in the Klee–Minty problem by putting

x̄j = 100j−1xj .

In the new variables, the initial dictionary for the n = 3 Klee–Minty problem becomes

ζ =− 100
2 b1 − 10

2 b2 − 1
2b3 + 100x̄1 + 1000x̄2 + 10000x̄3

w1 = b1 − x̄1

w2 = 10b1 + b2 − 20x̄1 − x̄2

w3 = 100b1 + 1000b2 + b3 − 200x̄1 − 2000x̄2 − 10000x̄3.

Now, the largest-coefficient rule picks variable x3 to enter. Variable w3 leaves, and

the method steps to the optimal solution in just one iteration. There exist pivot rules

for the simplex method that are scale invariant. But Klee–Minty-like examples have

been found for most proposed alternative pivot rules (whether scale invariant or not).

In fact, it is an open question whether there exist pivot rules for which one can prove

that no problem instance requires an exponential number of iterations (as a function

of m or n).

52 4. EFFICIENCY OF THE SIMPLEX METHOD

Exercises

In solving the following problems, the simple pivot tool can be used to check your

arithmetic:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/simple.html

4.1 Compare the performance of the largest-coefficient and the smallest-index

pivoting rules on the following linear program:

maximize 4x1 + 5x2

subject to 2x1 + 2x2 ≤ 9

x1 ≤ 4

x2 ≤ 3

x1, x2 ≥ 0.

4.2 Compare the performance of the largest-coefficient and the smallest-index

pivoting rules on the following linear program:

maximize 2x1 + x2

subject to 3x1 + x2 ≤ 3

x1, x2 ≥ 0.

4.3 Compare the performance of the largest-coefficient and the smallest-index

pivoting rules on the following linear program:

maximize 3x1 + 5x2

subject to x1 + 2x2 ≤ 5

x1 ≤ 3

x2 ≤ 2

x1, x2 ≥ 0.

4.4 Solve the Klee–Minty problem (4.1) for n = 3.

4.5 Solve the 4 variable Klee-Minty problem using the online pivot tool:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/kleeminty.html

NOTES 53

4.6 Consider the dictionary

ζ =−
n

∑

j=1

ǫj10n−j

(

1

2
bj − xj

)

wi =

i−1
∑

j=1

ǫiǫj10i−j(bj − 2xj) + (bi − xi) i = 1, 2, . . . , n,

where the bi’s are as in the Klee–Minty problem (4.2) and where each ǫi is

±1. Fix k and consider the pivot in which xk enters the basis and wk leaves

the basis. Show that the resulting dictionary is of the same form as before.

How are the new ǫi’s related to the old ǫi’s?

4.7 Use the result of the previous problem to show that the Klee–Minty problem

(4.2) requires 2n − 1 iterations.

4.8 Consider the Klee–Minty problem (4.2). Suppose that bi = βi−1 for some

β > 1. Find the greatest lower bound on the set of β’s for which the this

problem requires 2n − 1 iterations.

4.9 Show that, for any integer n,

1

2n
22n ≤

(

2n

n

)

≤ 22n.

4.10 Consider a linear programming problem that has an optimal dictionary in

which exactly k of the original slack variables are nonbasic. Show that by

ignoring feasibility preservation of intermediate dictionaries this dictionary

can be arrived at in exactly k pivots. Don’t forget to allow for the fact that

some pivot elements might be zero. Hint: see Exercise 2.15.

Notes

The first example of a linear programming problem in n variables and n con-

straints taking 2n − 1 iterations to solve was published by Klee & Minty (1972).

Several researchers, including Smale (1983), Borgwardt (1982), Borgwardt (1987a),

Adler & Megiddo (1985), and Todd (1986), have studied the average number of it-

erations. For a survey of probabilistic methods, the reader should consult Borgwardt

(1987b).

Roughly speaking, a class of problems is said to have polynomial complexity

if there is a polynomial p for which every problem of “size” n in the class can be

solved by some algorithm in at most p(n) operations. For many years it was unknown

whether linear programming had polynomial complexity. The Klee–Minty examples

54 4. EFFICIENCY OF THE SIMPLEX METHOD

show that, if linear programming is polynomial, then the simplex method is not the

algorithm that gives the polynomial bound, since 2n is not dominated by any polyno-

mial. In 1979, Khachian (1979) gave a new algorithm for linear programming, called

the ellipsoid method, which is polynomial and therefore established once and for all

that linear programming has polynomial complexity. The collection of all problem

classes having polynomial complexity is usually denoted by P . A class of problems

is said to belong to the class NP if, given a (proposed) solution, one can verify its

optimality in a number of operations that is bounded by some polynomial in the “size”

of the problem. Clearly, P ⊂ NP (since, if we can solve from scratch in a polyno-

mial amount of time, surely we can verify optimality at least that fast). An important

problem in theoretical computer science is to determine whether or not P is a strict

subset of NP .

The study of how difficult it is to solve a class of problems is called complexity

theory. Readers interested in pursuing this subject further should consult Garey &

Johnson (1977).

CHAPTER 5

Duality Theory

Associated with every linear program is another called its dual. The dual of this

dual linear program is the original linear program (which is then referred to as the

primal linear program). Hence, linear programs come in primal/dual pairs. It turns out

that every feasible solution for one of these two linear programs gives a bound on the

optimal objective function value for the other. These ideas are important and form a

subject called duality theory, which is the topic we shall study in this chapter.

1. Motivation—Finding Upper Bounds

We begin with an example:

maximize 4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0.

Our first observation is that every feasible solution provides a lower bound on the

optimal objective function value, ζ∗. For example, the solution (x1, x2, x3) = (1, 0, 0)
tells us that ζ∗ ≥ 4. Using the feasible solution (x1, x2, x3) = (0, 0, 3), we see that

ζ∗ ≥ 9. But how good is this bound? Is it close to the optimal value? To answer,

we need to give upper bounds, which we can find as follows. Let’s multiply the first

constraint by 2 and add that to 3 times the second constraint:

2 (x1 + 4x2)≤ 2(1)

+3(3x1 − x2 + x3)≤ 3(3)

11x1 + 5x2 + 3x3 ≤ 11.

Now, since each variable is nonnegative, we can compare the sum against the objective

function and notice that

4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11.

55

56 5. DUALITY THEORY

Hence, ζ∗ ≤ 11. We have localized the search to somewhere between 9 and 11. These

bounds leave a gap (within which the optimal solution lies), but they are better than

nothing. Furthermore, they can be improved. To get a better upper bound, we again

apply the same upper bounding technique, but we replace the specific numbers we

used before with variables and then try to find the values of those variables that give

us the best upper bound. So we start by multiplying the two constraints by nonnegative

numbers, y1 and y2, respectively. The fact that these numbers are nonnegative implies

that they preserve the direction of the inequalities. Hence,

y1(x1 + 4x2)≤ y1

+y2(3x1 − x2 + x3)≤ 3y2

(y1 + 3y2)x1 + (4y1 − y2)x2 + (y2)x3 ≤ y1 + 3y2.

If we stipulate that each of the coefficients of the xi’s be at least as large as the corre-

sponding coefficient in the objective function,

y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3,

then we can compare the objective function against this sum (and its bound):

ζ = 4x1 + x2 + 3x3

≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + (y2)x3

≤ y1 + 3y2.

We now have an upper bound, y1 + 3y2, which we should minimize in our effort to

obtain the best possible upper bound. Therefore, we are naturally led to the following

optimization problem:

minimize y1 + 3y2

subject to y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

y1, y2 ≥ 0.

This problem is called the dual linear programming problem associated with the given

linear programming problem. In the next section, we will define the dual linear pro-

gramming problem in general.

2. THE DUAL PROBLEM 57

2. The Dual Problem

Given a linear programming problem in standard form,

(5.1)

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n,

the associated dual linear program is given by

minimize

m
∑

i=1

biyi

subject to

m
∑

i=1

yiaij ≥ cj j = 1, 2, . . . , n

yi ≥ 0 i = 1, 2, . . . ,m.

Since we started with (5.1), it is called the primal problem. Our first order of

business is to show that taking the dual of the dual returns us to the primal. To see

this, we first must write the dual problem in standard form. That is, we must change

the minimization into a maximization and we must change the first set of greater-than-

or-equal-to constraints into less-than-or-equal-to. Of course, we must effect these

changes without altering the problem. To change a minimization into a maximization,

we note that to minimize something it is equivalent to maximize its negative and then

negate the answer:

min

m
∑

i=1

biyi = −max

(

−
m
∑

i=1

biyi

)

.

To change the direction of the inequalities, we simply multiply through by minus one.

The resulting equivalent representation of the dual problem in standard form then is

−maximize

m
∑

i=1

(−bi)yi

subject to

m
∑

i=1

(−aij)yi ≤ (−cj) j = 1, 2, . . . , n

yi ≥ 0 i = 1, 2, . . . ,m.

58 5. DUALITY THEORY

Now we can take its dual:

−minimize

n
∑

j=1

(−cj)xj

subject to

n
∑

j=1

(−aij)xj ≥ (−bi) i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n,

which is clearly equivalent to the primal problem as formulated in (5.1).

3. The Weak Duality Theorem

As we saw in our example, the dual problem provides upper bounds for the primal

objective function value. This result is true in general and is referred to as the Weak

Duality Theorem:

THEOREM 5.1. If (x1, x2, . . . , xn) is feasible for the primal and (y1, y2, . . . , ym)
is feasible for the dual, then

∑

j

cjxj ≤
∑

i

biyi.

PROOF. The proof is a simple chain of obvious inequalities:

∑

j

cjxj ≤
∑

j

(

∑

i

yiaij

)

xj

=
∑

ij

yiaijxj

=
∑

i

⎛

⎝

∑

j

aijxj

⎞

⎠ yi

≤
∑

i

biyi,

where the first inequality follows from the fact that each xj is nonnegative and each

cj is no larger than
∑

i yiaij . The second inequality, of course, holds for similar

reasons. �

Consider the subset of the real line consisting of all possible values for the primal

objective function, and consider the analogous subset associated with the dual prob-

lem. The weak duality theorem tells us that the set of primal values lies entirely to

3. THE WEAK DUALITY THEOREM 59

] [

Primal Values Dual Values

Gap

]

Primal Values Dual Values

No Gap

[

FIGURE 5.1. The primal objective values are all less than the dual

objective values. An important question is whether or not there is a

gap between the largest primal value and the smallest dual value.

the left of the set of dual values. As we shall see shortly, these sets are both closed

intervals (perhaps of infinite extent), and the right endpoint of the primal set butts up

against the left endpoint of the dual set (see Figure 5.1). That is, there is no gap be-

tween the optimal objective function value for the primal and for the dual. The lack

of a gap between primal and dual objective values provides a convenient tool for veri-

fying optimality. Indeed, if we can exhibit a feasible primal solution (x∗
1, x

∗
2, . . . , x

∗
n)

and a feasible dual solution (y∗
1 , y∗

2 , . . . , y∗
m) for which

∑

j

cjx
∗
j =

∑

i

biy
∗
i ,

then we may conclude that each of these solutions is optimal for its respective prob-

lem. To see that the primal solution is optimal, consider any other feasible solution

(x1, x2, . . . , xn). By the weak duality theorem, we have that

∑

j

cjxj ≤
∑

i

biy
∗
i =

∑

j

cjx
∗
j .

Now, since (x∗
1, x

∗
2, . . . , x

∗
n) was assumed to be feasible, we see that it must be opti-

mal. An analogous argument shows that the dual solution is also optimal for the dual

problem. As an example, consider the solutions x = (0, 0.25, 3.25) and y = (1, 3) in

our example. Both these solutions are feasible, and both yield an objective value of

10. Hence, the weak duality theorem says that these solutions are optimal.

60 5. DUALITY THEORY

4. The Strong Duality Theorem

The fact that for linear programming there is never a gap between the primal and

the dual optimal objective values is usually referred to as the Strong Duality Theorem:

THEOREM 5.2. If the primal problem has an optimal solution,

x∗ = (x∗
1, x

∗
2, . . . , x

∗
n),

then the dual also has an optimal solution,

y∗ = (y∗
1 , y∗

2 , . . . , y∗
m),

such that

(5.2)
∑

j

cjx
∗
j =

∑

i

biy
∗
i .

Carefully written proofs, while attractive for their tightness, sometimes obfuscate

the main idea. In such cases, it is better to illustrate the idea with a simple example.

Anyone who has taken a course in linear algebra probably already appreciates such a

statement. In any case, it is true here as we explain the strong duality theorem.

The main idea that we wish to illustrate here is that, as the simplex method solves

the primal problem, it also implicitly solves the dual problem, and it does so in such a

way that (5.2) holds.

To see what we mean, let us return to the example discussed in Section 5.1. We

start by introducing variables wi, i = 1, 2, for the primal slacks and zj , j = 1, 2, 3,

for the dual slacks. Since the inequality constraints in the dual problem are greater-

than constraints, each dual slack is defined as a left-hand side minus the corresponding

right-hand side. For example,

z1 = y1 + 3y2 − 4.

Therefore, the primal and dual dictionaries are written as follows:

(P)

ζ = 4x1 + x2 + 3x3

w1 = 1− x1 − 4x2

w2 = 3− 3x1 + x2 − x3.

(D)

−ξ = − y1 − 3y2

z1 =−4 + y1 + 3y2

z2 =−1 + 4y1 − y2

z3 =−3 + y2.

4. THE STRONG DUALITY THEOREM 61

Note that we have recorded the negative of the dual objective function, since we pre-

fer to maximize the objective function appearing in a dictionary. Also note that the

numbers in the dual dictionary are simply the negative of the numbers in the primal

dictionary arranged with the rows and columns interchanged. Indeed, stripping away

everything but the numbers, we have

⎡

⎢

⎢

⎣

0 4 1 3

1 −1 −4 0

3 −3 1 −1

⎤

⎥

⎥

⎦

neg.–transp.←→

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 −3

−4 1 3

−1 4 −1

−3 0 1

⎤

⎥

⎥

⎥

⎥

⎦

.

That is, as a table of numbers, the dual dictionary is the negative transpose of the

primal dictionary.

Our goal now is to apply the simplex method to the primal problem and at the

same time perform the analogous pivots on the dual problem. We shall discover that

the negative-transpose property persists throughout the iterations.

Since the primal dictionary is feasible, no Phase I procedure is necessary. For

the first pivot, we pick x3 as the entering variable (x1 has the largest coefficient, but

x3 provides the greatest one-step increase in the objective). With this choice, the

leaving variable must be w2. Since the rows and columns are interchanged in the dual

dictionary, we see that “column” x3 in the primal dictionary corresponds to “row” z3

in the dual dictionary. Similarly, row w2 in the primal corresponds to column y2 in

the dual. Hence, to make an analogous pivot in the dual dictionary, we select y2 as

the entering variable and z3 as the leaving variable. While this choice of entering and

leaving variable may seem odd compared to how we have chosen entering and leaving

variables before, we should note that our earlier choice was guided by the desire to

increase the objective function while preserving feasibility. Here, the dual dictionary

is not even feasible, and so such considerations are meaningless. Once we give up

those rules for the choice of entering and leaving variables, it is easy to see that a pivot

can be performed with any choice of entering and leaving variables provided only that

the coefficient on the entering variable in the constraint of the leaving variables does

not vanish. Such is the case with the current choice. Hence, we do the pivot in both

62 5. DUALITY THEORY

the primal and the dual. The result is

(P)

ζ = 9− 5x1 + 4x2 − 3w2

w1 = 1− x1 − 4x2

x3 = 3− 3x1 + x2 − w2.

(D)

−ξ =−9− y1 − 3z3

z1 = 5 + y1 + 3z3

z2 =−4 + 4y1 − z3

y2 = 3 + z3.

Note that these two dictionaries still have the property of being negative-transposes

of each other. For the next pivot, the entering variable in the primal dictionary is x2

(this time there is no choice) and the leaving variable is w1. In the dual dictionary, the

corresponding entering variable is y1 and the leaving variable is z2. Doing the pivots,

we get

(P)

ζ = 10− 6x1 − w1 − 3w2

x2 = 0.25− 0.25x1 − 0.25w1

x3 = 3.25− 3.25x1 − 0.25w1 − w2.

(D)

−ξ =−10− 0.25z2 − 3.25z3

z1 = 6 + 0.25z2 + 3.25z3

y1 = 1 + 0.25z2 + 0.25z3

y2 = 3 + z3.

This primal dictionary is optimal, since the coefficients in the objective row are all

negative. Looking at the dual dictionary, we see that it is now feasible for the anal-

ogous reason. In fact, it is optimal too. Finally, both the primal and dual objective

function values are 10.

The situation should now be clear. Given a linear programming problem, which

is assumed to possess an optimal solution, first apply the Phase I procedure to get a

basic feasible starting dictionary for Phase II. Then apply the simplex method to find

an optimal solution. Each primal dictionary generated by the simplex method implic-

itly defines a corresponding dual dictionary as follows: first write down the negative

transpose and then replace each xj with a zj and each wi with a yi. As long as the pri-

mal dictionary is not optimal, the implicitly defined dual dictionary will be infeasible.

But once an optimal primal dictionary is found, the corresponding dual dictionary will

be feasible. Since its objective coefficients are always nonpositive, this feasible dual

4. THE STRONG DUALITY THEOREM 63

dictionary is also optimal. Furthermore, at each iteration, the current primal objective

function value coincides with the current dual objective function value.

To see why the negative transpose property is preserved from one dictionary to

the next, let’s observe the effect of one pivot. To keep notations uncluttered, we shall

consider only four generic entries in a table of coefficients: the pivot element, which

we shall denote by a, one other element on the pivot element’s row, call it b, one other

in its column, call it c, and a fourth element, denoted d, chosen to make these four

entries into a rectangle. A little thought (and perhaps some staring at the examples

above) reveals that a pivot produces the following changes:

• the pivot element gets replaced by its reciprocal;

• elements in the pivot row get negated and divided by the pivot element;

• elements in the pivot column get divided by the pivot element; and

• all other elements, such as d, get decreased by bc/a.

These effects can be summarized on our generic table as follows:

b a

d c

pivot−→

− b

a

1

a

d − bc

a

c

a

Now, if we start with a dual dictionary that is the negative transpose of the primal and

apply one pivot operation, we get

−b −d

−a −c

pivot−→

b

a
−d +

bc

a

−1

a
− c

a

.

64 5. DUALITY THEORY

Note that the resulting dual table is the negative transpose of the resulting primal table.

By induction we then conclude that, if we start with this property, it will be preserved

throughout the solution process.

Since the strong duality theorem is the most important theorem in this book, we

present here a careful proof. Those readers who are satisfied with the above discussion

may skip the proof.

PROOF OF THEOREM 5.2. It suffices to exhibit a dual feasible solution y∗ satis-

fying (5.2). Suppose we apply the simplex method. We know that the simplex method

produces an optimal solution whenever one exists, and we have assumed that one does

indeed exist. Hence, the final dictionary will be an optimal dictionary for the primal

problem. The objective function in this final dictionary is ordinarily written as

ζ = ζ̄ +
∑

j∈N
c̄jxj .

But, since this is the optimal dictionary and we prefer stars to bars for denoting optimal

“stuff,” let us write ζ∗ instead of ζ̄. Also, the collection of nonbasic variables will

generally consist of a combination of original variables as well as slack variables.

Instead of using c̄j for the coefficients of these variables, let us use c∗j for the objective

coefficients corresponding to original variables, and let us use d∗i for the objective

coefficients corresponding to slack variables. Also, for those original variables that

are basic we put c∗j = 0, and for those slack variables that are basic we put d∗i = 0.

With these new notations, we can rewrite the objective function as

ζ = ζ∗ +

n
∑

j=1

c∗jxj +

m
∑

i=1

d∗i wi.

As we know, ζ∗ is the objective function value corresponding to the optimal primal

solution:

(5.3) ζ∗ =
n

∑

j=1

cjx
∗
j .

Now, put

(5.4) y∗
i = −d∗i , i = 1, 2, . . . ,m.

4. THE STRONG DUALITY THEOREM 65

We shall show that y∗ = (y∗
1 , y∗

2 , . . . , y∗
m) is feasible for the dual problem and satisfies

(5.2). To this end, we write the objective function two ways:

n
∑

j=1

cjxj = ζ∗ +

n
∑

j=1

c∗jxj +

m
∑

i=1

d∗i wi

= ζ∗ +

n
∑

j=1

c∗jxj +

m
∑

i=1

(−y∗
i)

⎛

⎝bi −
n

∑

j=1

aijxj

⎞

⎠

= ζ∗ −
m
∑

i=1

biy
∗
i +

n
∑

j=1

(

c∗j +
m
∑

i=1

y∗
i aij

)

xj .

Since all these expressions are linear in the variables xj , we can equate the coefficients

of each variable appearing on the left-hand side with the corresponding coefficient

appearing in the last expression on the right-hand side. We can also equate the constant

terms on the two sides. Hence,

ζ∗ =
m
∑

i=1

biy
∗
i(5.5)

cj = c∗j +

m
∑

i=1

y∗
i aij , j = 1, 2, . . . , n.(5.6)

Combining (5.3) and (5.5), we get that (5.2) holds. Also, the optimality of the dic-

tionary for the primal problem implies that each c∗j is nonpositive, and hence we see

from (5.6) that
m
∑

i=1

y∗
i aij ≥ cj , j = 1, 2, . . . , n.

By the same reasoning, each d∗i is nonpositive, and so we see from (5.4) that

y∗
i ≥ 0, i = 1, 2, . . . ,m.

These last two sets of inequalities are precisely the conditions that guarantee dual

feasibility. This completes the proof. �

The strong duality theorem tells us that, whenever the primal problem has an

optimal solution, the dual problem has one also and there is no duality gap. But what

if the primal problem does not have an optimal solution? For example, suppose that

it is unbounded. The unboundedness of the primal together with the weak duality

theorem tells us immediately that the dual problem must be infeasible. Similarly, if

the dual problem is unbounded, then the primal problem must be infeasible. It is

66 5. DUALITY THEORY

natural to hope that these three cases are the only possibilities, because if they were

we could then think of the strong duality theorem holding globally. That is, even if,

say, the primal is unbounded, the fact that then the dual is infeasible is like saying that

the primal and dual have a zero duality gap sitting out at +∞. Similarly, an infeasible

primal together with an unbounded dual could be viewed as a pair in which the gap is

zero and sits at −∞.

But it turns out that there is a fourth possibility that sometimes occurs—it can hap-

pen that both the primal and the dual problems are infeasible. For example, consider

the following problem:

maximize 2x1 − x2

subject to x1 − x2 ≤ 1

−x1 + x2 ≤−2

x1, x2 ≥ 0.

It is easy to see that both this problem and its dual are infeasible. For these problems,

one can think of there being a huge duality gap extending from −∞ to +∞.

Duality theory is often useful in that it provides a certificate of optimality. For

example, suppose that you were asked to solve a really huge and difficult linear pro-

gram. After spending weeks or months at the computer, you are finally able to get the

simplex method to solve the problem, producing as it does an optimal dual solution

y∗ in addition to the optimal primal solution x∗. Now, how are you going to convince

your boss that your solution is correct? Do you really want to ask her to verify the

correctness of your computer programs? The answer is probably not. And in fact it

is not necessary. All you need to do is supply the primal and the dual solution, and

she only has to check that the primal solution is feasible for the primal problem (that’s

easy), the dual solution is feasible for the dual problem (that’s just as easy), and the

primal and dual objective values agree (and that’s even easier). Certificates of optimal-

ity have also been known to dramatically reduce the amount of time certain underpaid

professors have to devote to grading homework assignments!

As we’ve seen, the simplex method applied to a primal problem actually solves

both the primal and the dual. Since the dual of the dual is the primal, applying the

simplex method to the dual also solves both the primal and the dual problem. Some-

times it is easier to apply the simplex method to the dual, for example, if the dual has

an obvious basic feasible solution but the primal does not. We take up this topic in the

next chapter.

5. Complementary Slackness

Sometimes it is necessary to recover an optimal dual solution when only an opti-

mal primal solution is known. The following theorem, known as the Complementary

Slackness Theorem, can help in this regard.

5. COMPLEMENTARY SLACKNESS 67

THEOREM 5.3. Suppose that x = (x1, x2, . . . , xn) is primal feasible and that

y = (y1, y2, . . . , ym) is dual feasible. Let (w1, w2, . . . , wm) denote the corresponding

primal slack variables, and let (z1, z2, . . . , zn) denote the corresponding dual slack

variables. Then x and y are optimal for their respective problems if and only if

xjzj = 0, for j = 1, 2, . . . , n,

wiyi = 0, for i = 1, 2, . . . ,m.(5.7)

PROOF. We begin by revisiting the chain of inequalities used to prove the weak

duality theorem:

∑

j

cjxj ≤
∑

j

(

∑

i

yiaij

)

xj(5.8)

=
∑

i

⎛

⎝

∑

j

aijxj

⎞

⎠ yi

≤
∑

i

biyi.(5.9)

Recall that the first inequality arises from the fact that each term in the left-hand sum

is dominated by the corresponding term in the right-hand sum. Furthermore, this

domination is a consequence of the fact that each xj is nonnegative and

cj ≤
∑

i

yiaij .

Hence, inequality (5.8) will be an equality if and only if, for every j = 1, 2, . . . , n,

either xj = 0 or cj =
∑

i yiaij . But since

zj =
∑

i

yiaij − cj ,

we see that the alternative to xj = 0 is simply that zj = 0. Of course, the statement

that at least one of these two numbers vanishes can be succinctly expressed by saying

that the product vanishes.

An analogous analysis of inequality (5.9) shows that it is an equality if and only

if (5.7) holds. This then completes the proof. �

Suppose that we have a nondegenerate primal basic optimal solution

x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

68 5. DUALITY THEORY

and we wish to find a corresponding optimal solution for the dual. Let

w∗ = (w∗
1 , w∗

2 , . . . , w∗
m)

denote the corresponding slack variables, which were probably given along with the

xj’s but if not can be easily obtained from their definition as slack variables:

w∗
i = bi −

∑

j

aijx
∗
j .

The dual constraints are

(5.10)
∑

i

yiaij − zj = cj , j = 1, 2, . . . , n,

where we have written the inequalities in equality form by introducing slack variables

zj , j = 1, 2, . . . , n. These constraints form n equations in m + n unknowns. But the

basic optimal solution (x∗, w∗) is a collection of n + m variables, many of which are

positive. In fact, since the primal solution is assumed to be nondegenerate, it follows

that the m basic variables will be strictly positive. The complementary slackness

theorem then tells us that the corresponding dual variables must vanish. Hence, of the

m + n variables in (5.10), we can set m of them to zero. We are then left with just n
equations in n unknowns, which we would expect to have a unique solution that can

be solved for. If there is a unique solution, all the components should be nonnegative.

If any are negative, this would stand in contradiction to the assumed optimality of x∗.

6. The Dual Simplex Method

In this section, we study what happens if we apply the simplex method to the dual

problem. As we saw in our discussion of the strong duality theorem, one can actually

apply the simplex method to the dual problem without ever writing down the dual

problem or its dictionaries. Instead, the so-called dual simplex method is seen simply

as a new way of picking the entering and leaving variables in a sequence of primal

dictionaries.

We begin with an example:

maximize −x1 − x2

subject to −2x1 − x2 ≤ 4

−2x1 + 4x2 ≤−8

−x1 + 3x2 ≤−7

x1, x2 ≥ 0.

6. THE DUAL SIMPLEX METHOD 69

The dual of this problem is

minimize 4y1 − 8y2 − 7y3

subject to −2y1 − 2y2 − y3 ≥−1

−y1 + 4y2 + 3y3 ≥−1

y1, y2, y3 ≥ 0.

Introducing variables wi, i = 1, 2, 3, for the primal slacks and zj , j = 1, 2, for the

dual slacks, we can write down the initial primal and dual dictionaries:

(P) ζ = − x1 − x2

w1 = 4 + 2x1 + x2

w2 =−8 + 2x1 − 4x2

w3 =−7 + x1 − 3x2

(D) −ξ = − 4y1 + 8y2 + 7y3

z1 = 1− 2y1 − 2y2 − y3

z2 = 1− y1 + 4y2 + 3y3.

As before, we have recorded the negative of the dual objective function, since we

prefer to maximize the objective function appearing in a dictionary. More importantly,

note that the dual dictionary is feasible, whereas the primal one is not. This suggests

that it would be sensible to apply the simplex method to the dual. Let us do so, but

as we go we shall keep track of the analogous pivots applied to the primal dictionary.

For example, the entering variable in the initial dual dictionary is y2, and the leaving

variable then is z1. Since w2 is complementary to y2 and x1 is complementary to z1,

we will use w2 and x1 as the entering/leaving variables in the primal dictionary. Of

course, since w2 is basic and x1 is nonbasic, w2 must be the leaving variable and x1 the

entering variable—i.e., the reverse of what we have for the complementary variables

70 5. DUALITY THEORY

in the dual dictionary. The result of these pivots is

(P) ζ =−4− 0.5w2 − 3x2

w1 = 12 + w2 + 5x2

x1 = 4 + 0.5w2 + 2x2

w3 =−3 + 0.5w2 − x2

(D) −ξ = 4− 12y1 − 4z1 + 3y3

y2 = 0.5− y1 − 0.5z1 − 0.5y3

z2 = 3− 5y1 − 2z1 + y3.

Continuing to work on the dual, we now see that y3 is the entering variable and y2

leaves. Hence, for the primal we use w3 and w2 as the leaving and entering variable,

respectively. After pivoting, we have

(P) ζ =−7− w3 − 4x2

w1 = 18 + 2w3 + 7x2

x1 = 7 + w3 + 3x2

w2 = 6 + 2w3 + 2x2

(D) −ξ = 7− 18y1 − 7z1 − 6y2

y3 = 1− 2y1 − z1 − 2y2

z2 = 4− 7y1 − 3z1 − 2y2.

Now we notice that both dictionaries are optimal.

Of course, in each of the above dictionaries, the table of numbers in each dual

dictionary is the negative-transpose of the corresponding primal table. Therefore, we

never need to write the dual dictionary; the dual simplex method can be entirely de-

scribed in terms of the primal dictionaries. Indeed, first we note that the dictionary

must be dual feasible. This means that all the coefficients of the nonbasic variables in

the primal objective function must be nonpositive. Given this, we proceed as follows.

First we select the leaving variable by picking that basic variable whose constant term

in the dictionary is the most negative (if there are none, then the current dictionary

is optimal). Then we pick the entering variable by scanning across this row of the

dictionary and comparing ratios of the coefficients in this row to the corresponding

coefficients in the objective row, looking for the largest negated ratio just as we did in

the primal simplex method. Once the entering and leaving variable are identified, we

pivot to the next dictionary and continue from there. The reader is encouraged to trace

7. A DUAL-BASED PHASE I ALGORITHM 71

the pivots in the above example, paying particular attention to how one determines the

entering and leaving variables by looking only at the primal dictionary.

7. A Dual-Based Phase I Algorithm

The dual simplex method described in the previous section provides us with a new

Phase I algorithm, which if nothing else is at least more elegant than the one we gave

in Chapter 2. Let us illustrate it using an example:

maximize −x1 + 4x2

subject to −2x1 − x2 ≤ 4

−2x1 + 4x2 ≤−8

−x1 + 3x2 ≤−7

x1, x2 ≥ 0.

The primal dictionary for this problem is

(P) ζ = − x1 + 4x2

w1 = 4 + 2x1 + x2

w2 =−8 + 2x1 − 4x2

w3 =−7 + x1 − 3x2,

and even though at this point we realize that we don’t need to look at the dual dictio-

nary, let’s track it anyway:

(D) −ξ = − 4y1 + 8y2 + 7y3

z1 = 1− 2y1 − 2y2 − y3

z2 =−4− y1 + 4y2 + 3y3.

Clearly, neither the primal nor the dual dictionary is feasible. But by changing the pri-

mal objective function, we can easily produce a dual feasible dictionary. For example,

let us temporarily change the primal objective function to

η = −x1 − x2.

Then the corresponding initial dual dictionary is feasible. In fact, it coincides with the

dual dictionary we considered in the previous section, so we already know the optimal

72 5. DUALITY THEORY

solution for this modified problem. The optimal primal dictionary is

η =−7− w3 − 4x2

w1 = 18 + 2w3 + 7x2

x1 = 7 + w3 + 3x2

w2 = 6 + 2w3 + 2x2.

This primal dictionary is optimal for the modified problem but not for the original

problem. However, it is feasible for the original problem, and we can now simply

reinstate the intended objective function and continue with Phase II. Indeed,

ζ =−x1 + 4x2

=−(7 + w3 + 3x2) + 4x2

=−7 − w3 + x2.

Hence, the starting dictionary for Phase II is

ζ =−7− w3 + x2

w1 = 18 + 2w3 + 7x2

x1 = 7 + w3 + 3x2

w2 = 6 + 2w3 + 2x2.

The entering variable is x2. Looking for a leaving variable, we discover that this

problem is unbounded. Of course, more typically one would expect to have to do

several iterations of Phase II to find the optimal solution (or show unboundedness).

Here we just got lucky that the game ended so soon.

It is interesting to note how we detect infeasibility with this new Phase I algorithm.

The modified problem is guaranteed always to be dual feasible. It is easy to see that

the primal problem is infeasible if and only if the modified problem is dual unbounded

(which the dual simplex method will detect just as the primal simplex method detects

primal unboundedness).

The two-phase algorithm we have just presented can be thought of as a dual–

primal algorithm, since we first apply the dual simplex method to a modified dual

feasible problem and then finish off by applying the primal simplex method to the

original problem, starting from the feasible dictionary produced by Phase I. One could

consider turning this around and doing a primal–dual two-phase algorithm. Here, the

right-hand side of the primal problem would be modified to produce an obvious primal

feasible solution. The primal simplex method would then be applied. The optimal

solution to this primal problem will then be feasible for the original dual problem but

8. THE DUAL OF A PROBLEM IN GENERAL FORM 73

will not be optimal for it. But then the dual simplex method can be applied, starting

with this dual feasible basis until an optimal solution for the dual problem is obtained.

8. The Dual of a Problem in General Form

In Chapter 1, we saw that linear programming problems can be formulated in a

variety of ways. In this section, we shall derive the form of the dual when the primal

problem is not necessarily presented in standard form.

First, let us consider the case where the linear constraints are equalities (and the

variables are nonnegative):

(5.11)

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj = bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

As we mentioned in Chapter 1, this problem can be reformulated with inequality con-

straints by simply writing each equality as two inequalities: one greater-than-or-equal-

to and one less-than-or-equal-to:

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

n
∑

j=1

aijxj ≥ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

Then negating each greater-than-or-equal-to constraint, we can put the problem into

standard form:

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

n
∑

j=1

−aijxj ≤ −bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

74 5. DUALITY THEORY

Now that the problem is in standard form, we can write down its dual. Since there

are two sets of m inequality constraints, we need two sets of m dual variables. Let’s

denote the dual variables associated with the first set of m constraints by y+
i , i =

1, 2, . . . , m, and the remaining dual variables by y−
i , i = 1, 2, . . . ,m. With these

notations, the dual problem is

minimize

m
∑

i=1

biy
+
i −

m
∑

i=1

biy
−
i

subject to

m
∑

i=1

y+
i aij −

m
∑

i=1

y−
i aij ≥ cj j = 1, 2, . . . , n

y+
i , y−

i ≥ 0 i = 1, 2, . . . ,m.

A moment’s reflection reveals that we can simplify this problem. If we put

yi = y+
i − y−

i , i = 1, 2, . . . ,m,

the dual problem reduces to

minimize

m
∑

i=1

biyi

subject to

m
∑

i=1

yiaij ≥ cj j = 1, 2, . . . , n.

This problem is the dual associated with (5.11). Note what has changed from when we

were considering problems in standard form: now the dual variables are not restricted

to be nonnegative. And that is the message: equality constraints in the primal yield

unconstrained variables (also referred to as free variables) in the dual, whereas in-

equality constraints in the primal yield nonnegative variables in the dual. Employing

the symmetry between the primal and the dual, we can say more: free variables in the

primal yield equality constraints in the dual, whereas nonnegative variables in the pri-

mal yield inequality constraints in the dual. These rules are summarized in Table 5.1.

9. Resource Allocation Problems

Let us return to the production facility problem studied in Chapter 1. Recall that

this problem involves a production facility that can take a variety of raw materials

(enumerated i = 1, 2, . . . ,m) and turn them into a variety of final products (enumer-

ated j = 1, 2, . . . , n). We assume as before that the current market value of a unit of

the ith raw material is ρi, that the current market price for a unit of the jth product is

σj , that producing one unit of product j requires aij units of raw material i, and that

at the current moment in time the facility has on hand bi units of the ith raw material.

9. RESOURCE ALLOCATION PROBLEMS 75

Primal Dual

Equality Constraint Free Variable

Inequality Constraint Nonnegative Variable

Free Variable Equality Constraint

Nonnegative Variable Inequality Constraint

TABLE 5.1. Rules for forming the dual.

The current market values/prices are, by definition, related to each other by the

formulas

σj =
∑

i

ρiaij , j = 1, 2, . . . , n.

These equations hold whenever the market is in equilibrium. (Of course, it is crucial to

assume here that the collection of “raw materials” appearing on the right-hand side is

exhaustive, including such items as depreciation of fixed assets and physical labor.) In

the real world, the market is always essentially in equilibrium. Nonetheless, it contin-

ually experiences small perturbations that ripple through it and move the equilibrium

to new levels.

These perturbations can be from several causes, an important one being innova-

tion. One possible innovation is to improve the production process. This means that

the values of some of the aij’s are reduced. Now, suddenly there is a windfall profit

for each unit of product j produced. This windfall profit is given by

(5.12) cj = σj −
∑

i

ρiaij .

Of course, eventually most producers of these products will take advantage of the same

innovation, and once the suppliers get wind of the profits being made, they will get in

on the action by raising the price of the raw materials.1 Nonetheless, there is always a

time lag; it is during this time that fortunes are made.

To be concrete, let us assume that the time lag is about one month (depending

on the industry, this lag time could be considered too short or too long). Suppose

also that the production manager decides to produce xj units of product j and that

all units produced are sold immediately at their market value. Then the total revenue

1One could take the prices of raw materials as fixed and argue that the value of the final products will

fall. It doesn’t really matter which view one adopts, since prices are relative anyway. The point is simply

that the difference between the price of the raw materials and the price of the final products must narrow

due to this innovation.

76 5. DUALITY THEORY

during this month will be
∑

j σjxj . The value of the raw materials on hand at the

beginning of the month was
∑

i ρibi. Also, if we denote the new price levels for the

raw materials at the end of the month by wi, i = 1, 2, . . . ,m, then the value of any

remaining inventory at the end of the month is given by

∑

i

wi

⎛

⎝bi −
∑

j

aijxj

⎞

⎠

(if any term is negative, then it represents the cost of purchasing additional raw mate-

rials to meet the month’s production requirements—we assume that these additional

purchases are made at the new, higher, end-of-month price). The total windfall, call it

π, (over all products) for this month can now be written as

(5.13) π =
∑

j

σjxj +
∑

i

wi

⎛

⎝bi −
∑

j

aijxj

⎞

⎠−
∑

i

ρibi.

Our aim is to choose production levels xj , j = 1, 2, . . . , n, that maximize this

windfall. But our supplier’s aim is to choose prices wi, i = 1, 2, . . . , m, so as to

minimize our windfall. Before studying these optimizations, let us first rewrite the

windfall in a more convenient form. As in Chapter 1, let yi denote the increase in the

price of raw material i. That is,

(5.14) wi = ρi + yi.

Substituting (5.14) into (5.13) and then simplifying notations using (5.12), we see that

(5.15) π =
∑

j

cjxj +
∑

i

yi

⎛

⎝bi −
∑

j

aijxj

⎞

⎠ .

To emphasize that π depends on each of the xj’s and on the yi’s, we sometimes write

it as π(x1, . . . , xn, y1, . . . , ym).
Now let us return to the competing optimizations. Given xj for j = 1, 2, . . . , n,

the suppliers react to minimize π(x1, . . . , xn, y1, . . . , ym). Looking at (5.15), we see

that for any resource i in short supply, that is,

bi −
∑

j

aijxj < 0,

9. RESOURCE ALLOCATION PROBLEMS 77

the suppliers will jack up the price immensely (i.e., yi = ∞). To avoid this obviously

bad situation, the production manager will be sure to set the production levels so that

∑

j

aijxj ≤ bi, i = 1, 2, . . . , m.

On the other hand, for any resource i that is not exhausted during the windfall month,

that is,

bi −
∑

j

aijxj > 0,

the suppliers will have no incentive to change the prevailing market price (i.e., yi = 0).

Therefore, from the production manager’s point of view, the problem reduces to one

of maximizing
∑

j

cjxj

subject to the constraints that

∑

j

aijxj ≤ bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n.

This is just our usual primal linear programming problem. This is the problem that the

production manager needs to solve in anticipation of adversarial suppliers.

Now let us look at the problem from the suppliers’ point of view. Rearranging the

terms in (5.15) by writing

(5.16) π =
∑

j

(

cj −
∑

i

yiaij

)

xj +
∑

i

yibi,

we see that if the suppliers set prices in such a manner that a windfall remains on the

jth product even after the price adjustment, that is,

cj −
∑

i

yiaij > 0,

then the production manager would be able to generate for the facility an arbitrarily

large windfall by producing a huge amount of the jth product (i.e., xj = ∞). We

assume that this is unacceptable to the suppliers, and so they will determine their price

increases so that
∑

i

yiaij ≥ cj , j = 1, 2, . . . , n.

78 5. DUALITY THEORY

Also, if the suppliers set the price increases too high so that the production facility will

lose money by producing product j, that is,

cj −
∑

i

yiaij < 0,

then the production manager would simply decide not to engage in that activity. That

is, she would set xj = 0. Hence, the first term in (5.16) will always be zero, and so

the optimization problem faced by the suppliers is to minimize

∑

i

biyi

subject to the constraints that

∑

i

yiaij ≥ cj , j = 1, 2, . . . , n,

yi ≥ 0, i = 1, 2, . . . ,m.

This is precisely the dual of the production manager’s problem!

As we’ve seen earlier with the strong duality theorem, if the production manager’s

problem has an optimal solution, then so does the suppliers’ problem, and the two

objectives agree. This means than an equilibrium can be reestablished by setting the

production levels and the price hikes according to the optimal solutions to these two

linear programming problems.

10. Lagrangian Duality

The analysis of the preceding section is an example of a general technique that

forms the foundation of a subject called Lagrangian duality, which we shall briefly

describe.

Let us start by summarizing what we did. It was quite simple. The analysis

revolved around a function

π(x1, . . . , xn, y1, . . . , ym) =
∑

j

cjxj −
∑

i

∑

j

yiaijxj +
∑

i

yibi.

To streamline notations, let x stand for the entire collection of variables x1, x2, . . . , xn

and let y stand for the collection of yi’s so that we can write π(x, y) in place of

π(x1, . . . , xn, y1, . . . , ym). Written with these notations, we showed in the previous

section that

max
x≥0

min
y≥0

π(x, y) = min
y≥0

max
x≥0

π(x, y).

EXERCISES 79

We also showed that the inner optimization could in both cases be solved explicitly,

that the max–min problem reduced to a linear programming problem, and that the

min–max problem reduced to the dual linear programming problem.

One could imagine trying to carry out the same program for functions π that don’t

necessarily have the form shown above. In the general case, one needs to consider

each step carefully. The max–min problem is called the primal problem, and the min–

max problem is called the dual problem. However, it may or may not be true that

these two problems have the same optimal objective values. In fact, the subject is

interesting because one can indeed state specific, verifyable conditions for which the

two problems do agree. Also, one would like to be able to solve the inner optimizations

explicitly so that the primal problem can be stated as a pure maximization problem and

the dual can be stated as a pure minimization problem. This, too, is often doable. There

are various ways in which one can extend the notions of duality beyond the context of

linear programming. The one just described is referred to as Lagrangian duality. It is

perhaps the most important such extension.

Exercises

In solving the following problems, the advanced pivot tool can be used to check

your arithmetic:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/advanced.html

5.1 What is the dual of the following linear programming problem:

maximize x1 − 2x2

subject to x1 + 2x2 − x3 + x4 ≥ 0

4x1 + 3x2 + 4x3 − 2x4 ≤ 3

−x1 − x2 + 2x3 + x4 = 1

x2, x3 ≥ 0 .

5.2 Illustrate Theorem 5.2 on the problem in Exercise 2.9.

5.3 Illustrate Theorem 5.2 on the problem in Exercise 2.1.

5.4 Illustrate Theorem 5.2 on the problem in Exercise 2.2.

80 5. DUALITY THEORY

5.5 Consider the following linear programming problem:

maximize 2x1 + 8x2 − x3 − 2x4

subject to 2x1 + 3x2 + 6x4 ≤ 6

−2x1 + 4x2 + 3x3 ≤ 1.5

3x1 + 2x2 − 2x3 − 4x4 ≤ 4

x1, x2, x3, x4 ≥ 0.

Suppose that, in solving this problem, you have arrived at the following

dictionary:

ζ = 3.5− 0.25w1 + 6.25x2 − 0.5w3 − 1.5x4

x1 = 3.0− 0.5w1 − 1.5x2 − 3.0x4

w2 = 0.0 + 1.25w1 − 3.25x2 − 1.5w3 + 13.5x4

x3 = 2.5− 0.75w1 − 1.25x2 + 0.5w3 − 6.5x4.

(a) Write down the dual problem.

(b) In the dictionary shown above, which variables are basic? Which are

nonbasic?

(c) Write down the primal solution corresponding to the given dictionary.

Is it feasible? Is it degenerate?

(d) Write down the corresponding dual dictionary.

(e) Write down the dual solution. Is it feasible?

(f) Do the primal/dual solutions you wrote above satisfy the complemen-

tary slackness property?

(g) Is the current primal solution optimal?

(h) For the next (primal) pivot, which variable will enter if the largest co-

efficient rule is used? Which will leave? Will the pivot be degenerate?

EXERCISES 81

5.6 Solve the following linear program:

maximize −x1 − 2x2

subject to −2x1 + 7x2 ≤ 6

−3x1 + x2 ≤−1

9x1 − 4x2 ≤ 6

x1 − x2 ≤ 1

7x1 − 3x2 ≤ 6

−5x1 + 2x2 ≤−3

x1, x2 ≥ 0.

5.7 Solve the linear program given in Exercise 2.3 using the dual–primal two-

phase algorithm.

5.8 Solve the linear program given in Exercise 2.4 using the dual–primal two-

phase algorithm.

5.9 Solve the linear program given in Exercise 2.6 using the dual–primal two-

phase algorithm.

5.10 Using today’s date (MMYY) for the seed value, solve 10 problems using the

dual phase I primal phase II simplex method:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/dp2phase.html .

5.11 Using today’s date (MMYY) for the seed value, solve 10 problems using the

primal phase I dual phase II simplex method:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/pd2phase.html

5.12 For x and y in R, compute

max
x≥0

min
y≥0

(x − y) and min
y≥0

max
x≥0

(x − y)

and note whether or not they are equal.

82 5. DUALITY THEORY

5.13 Consider the following process. Starting with a linear programming problem

in standard form,

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n,

first form its dual:

minimize

m
∑

i=1

biyi

subject to

m
∑

i=1

yiaij ≥ cj j = 1, 2, . . . , n

yi ≥ 0 i = 1, 2, . . . ,m.

Then replace the minimization in the dual with a maximization to get a new

linear programming problem, which we can write in standard form as fol-

lows:

maximize

m
∑

i=1

biyi

subject to

m
∑

i=1

−yiaij ≤ −cj j = 1, 2, . . . , n

yi ≥ 0 i = 1, 2, . . . ,m.

If we identify a linear programming problem with its data, (aij , bi, cj), the

above process can be thought of as a transformation T on the space of data

defined by

(aij , bi, cj)
T−→ (−aji,−cj , bi).

Let ζ∗(aij , bi, cj) denote the optimal objective function value of the standard-

form linear programming problem having data (aij , bi, cj). By strong dual-

ity together with the fact that a maximization dominates a minimization, it

follows that

ζ∗(aij , bi, cj) ≤ ζ∗(−aji,−cj , bi).

EXERCISES 83

Now if we repeat this process, we get

(aij , bi, cj)
T→ (−aji,−cj , bi)

T→ (aij ,−bi,−cj)

T→ (−aji, cj ,−bi)

T→ (aij , bi, cj)

and hence that

ζ∗(aij , bi, cj)≤ ζ∗(−aji,−cj , bi)

≤ ζ∗(aij ,−bi,−cj)

≤ ζ∗(−aji, cj ,−bi)

≤ ζ∗(aij , bi, cj).

But the first and the last entry in this chain of inequalities are equal. There-

fore, all these inequalities would seem to be equalities. While this outcome

could happen sometimes, it certainly isn’t always true. What is the error in

this logic? Can you state a (correct) nontrivial theorem that follows from

this line of reasoning? Can you give an example where the four inequalities

are indeed all equalities?

5.14 Consider the following variant of the resource allocation problem:

(5.17)

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

0 ≤ xj ≤ uj j = 1, 2, . . . , n.

As usual, the cj’s denote the unit prices for the products and the bi’s denote

the number of units on hand for each raw material. In this variant, the uj’s

denote upper bounds on the number of units of each product that can be

sold at the set price. Now, let’s assume that the raw materials have not

been purchased yet and it is part of the problem to determine the bi’s. Let

pi, i = 1, 2, . . . ,m denote the price for raw material i. The problem then

84 5. DUALITY THEORY

becomes an optimization over both the xj’s and the bi’s:

maximize

n
∑

j=1

cjxj −
m
∑

i=1

pibi

subject to

n
∑

j=1

aijxj − bi ≤ 0 i = 1, 2, . . . ,m

0 ≤ xj ≤ uj j = 1, 2, . . . , n

bi ≥ 0 i = 1, 2, . . . ,m.

(a) Show that this problem always has an optimal solution.

(b) Let y∗
i (b), i = 1, 2, . . . , m, denote optimal dual variables for the origi-

nal resource allocation problem (5.17). Note that we’ve explicitly indi-

cated that these dual variables depend on the b’s. Also, we assume that

problem (5.17) is both primal and dual non-degenerate so the y∗
i (b) is

uniquely defined. Show that the optimal value of the bi’s, call them

b∗i ’s, satisfy

y∗
i (b∗) = pi.

Hint: You will need to use the fact that, for resource allocation prob-

lems, we have aij ≥ 0 for all i, and all j.

5.15 Consider the following linear program:

maximize

n
∑

j=1

pjxj

subject to

n
∑

j=1

qjxj ≤ β

xj ≤ 1 j = 1, 2, . . . , n

xj ≥ 0 j = 1, 2, . . . , n.

Here, the numbers pj , j = 1, 2, . . . , n are positive and sum to one. The same

is true of the qj’s:

n
∑

j=1

qj = 1

qj > 0.

EXERCISES 85

Furthermore, assume that

p1

q1
<

p2

q2
< · · · <

pn

qn

and that the parameter β is a small positive number. Let k = min{j :
qj+1 + · · · + qn ≤ β}. Let y0 denote the dual variable associated with the

constraint involving β, and let yj denote the dual variable associated with

the upper bound of 1 on variable xj . Using duality theory, show that the

optimal values of the primal and dual variables are given by

xj =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 j < k
β−qk+1−···−qn

qk
j = k

1 j > k

yj =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

pk

qk
j = 0

0 0 < j ≤ k

qj

(

pj

qj
− pk

qk

)

j > k

See Exercise 1.3 for the motivation for this problem.

5.16 Diet Problem. An MIT graduate student was trying to make ends meet on a

very small stipend. He went to the library and looked up the National Re-

search Council’s publication entitled “Recommended Dietary Allowances”

and was able to determine a minimum daily intake quantity of each essen-

tial nutrient for a male in his weight and age category. Let m denote the

number of nutrients that he identified as important to his diet, and let bi for

i = 1, 2, . . . , m denote his personal minimum daily requirements. Next, he

made a list of his favorite foods (which, except for pizza and due mostly

to laziness and ineptitude in the kitchen, consisted almost entirely of frozen

prepared meals). He then went to the local grocery store and made a list of

the unit price for each of his favorite foods. Let us denote these prices as cj

for j = 1, 2, . . . , n. In addition to prices, he also looked at the labels and

collected information about how much of the critical nutrients are contained

in one serving of each food. Let us denote by aij the amount of nutrient

i contained in food j. (Fortunately, he was able to call his favorite pizza

delivery service and get similar information from them.) In terms of this

86 5. DUALITY THEORY

information, he formulated the following linear programming problem:

minimize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≥ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

Formulate the dual to this linear program. Can you introduce another person

into the above story whose problem would naturally be to solve the dual?

5.17 Saddle points. A function h(y) defined for y ∈ R is called strongly convex

if

• h′′(y) > 0 for all y ∈ R,

• limy→−∞ h′(y) = −∞, and

• limy→∞ h′(y) = ∞.

A function h is called strongly concave if −h is strongly convex. Let π(x, y),
be a function defined for (x, y) ∈ R

2 and having the following form

π(x, y) = f(x) − xy + g(y),

where f is strongly concave and g is strongly convex. Using elementary

calculus

1. Show that there is one and only one point (x∗, y∗) ∈ R
2 at which the

gradient of π,

∇π =

[

∂π/∂x

∂π/∂y

]

,

vanishes. Hint: From the two equations obtained by setting the deriva-

tives to zero, derive two other relations having the form x = φ(x) and

y = ψ(y). Then study the functions φ and ψ to show that there is one

and only one solution.

2. Show that

max
x∈R

min
y∈R

π(x, y) = π(x∗, y∗) = min
y∈R

max
x∈R

π(x, y),

where (x∗, y∗) denotes the “critical point” identified in part 1 above.

(Note: Be sure to check the signs of the second derivatives for both the

inner and the outer optimizations.)

NOTES 87

Associated with each strongly convex function h is another function, called

the Legendre transform of h and denoted by Lh, defined by

Lh(x) = max
y∈R

(xy − h(y)), x ∈ R.

3. Using elementary calculus, show that Lh is strongly convex.

4. Show that

max
x∈R

min
y∈R

π(x, y) = max
x∈R

(f(x) − Lg(x))

and that

min
y∈R

max
x∈R

π(x, y) = min
y∈R

(g(y) + L−f (−y)).

5. Show that the Legendre transform of the Legendre transform of a func-

tion is the function itself. That is,

LLh
(z) = h(z) for all z ∈ R.

Hint: This can be proved from scratch but it is easier to use the result

of part 2 above.

Notes

The idea behind the strong duality theorem can be traced back to conversations

between G.B. Dantzig and J. von Neumann in the Fall of 1947, but an explicit state-

ment did not surface until the paper of Gale et al. (1951). The term primal problem

was coined by G.B. Dantzig’s father, T. Dantzig. The dual simplex method was first

proposed by Lemke (1954).

The solution to Exercise 5.13 (which is left to the reader to supply) suggests that

a random linear programming problem is infeasible with probability 1/4, unbounded

with probability 1/4, and has an optimal solution with probability 1/2.

CHAPTER 6

The Simplex Method in Matrix Notation

So far, we have avoided using matrix notation to present linear programming

problems and the simplex method. In this chapter, we shall recast everything into

matrix notation. At the same time, we will emphasize the close relations between the

primal and the dual problems.

1. Matrix Notation

As usual, we begin our discussion with the standard-form linear programming

problem:

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

In the past, we have generally denoted slack variables by wi’s but have noted that

sometimes it is convenient just to string them onto the end of the list of original vari-

ables. Such is the case now, and so we introduce slack variables as follows:

xn+i = bi −
n

∑

j=1

aijxj , i = 1, 2, . . . ,m.

With these slack variables, we now write our problem in matrix form:

maximize cT x

subject to Ax = b

x≥ 0,

89

90 6. THE SIMPLEX METHOD IN MATRIX NOTATION

where

(6.1) A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a11 a12 . . . a1n 1

a21 a22 . . . a2n 1
...

...
...

. . .

am1 am2 . . . amn 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(6.2) b =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b1

b2

...

bm

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, c =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c1

c2

...

cn

0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1

x2

...

xn

xn+1

...

xn+m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As we know, the simplex method is an iterative procedure in which each iteration

is characterized by specifying which m of the n + m variables are basic. As before,

we denote by B the set of indices corresponding to the basic variables, and we denote

by N the remaining nonbasic indices.

In component notation, the ith component of Ax can be broken up into a basic

part and a nonbasic part:

(6.3)

n+m
∑

j=1

aijxj =
∑

j∈B
aijxj +

∑

j∈N
aijxj .

We wish to introduce a notation for matrices that will allow us to break up the matrix

product Ax analogously. To this end, let B denote an m × m matrix whose columns

consist precisely of the m columns of A that are associated with the basic variables.

Similarly, let N denote an m × n matrix whose columns are the n nonbasic columns

of A. Then we write A in a partitioned-matrix form as follows:

A =
[

B N
]

Strictly speaking, the matrix on the right does not equal the A matrix. Instead, it is the

A matrix with its columns rearranged in such a manner that all the columns associated

with basic variables are listed first followed by the nonbasic columns. Nonetheless, as

2. THE PRIMAL SIMPLEX METHOD 91

long as we are consistent and rearrange the rows of x in the same way, then no harm

is done. Indeed, let us similarly rearrange the rows of x and write

x =

[

xB

xN

]

.

Then the following separation of Ax into a sum of two terms is true and captures the

same separation into basic and nonbasic parts as we had in (6.3):

Ax =
[

B N
]

[

xB

xN

]

= BxB + NxN .

By similarly partitioning c, we can write

cT x =

[

cB

cN

]T [

xB

xN

]

= cT
BxB + cT

NxN .

2. The Primal Simplex Method

A dictionary has the property that the basic variables are written as functions of

the nonbasic variables. In matrix notation, we see that the constraint equations

Ax = b

can be written as

BxB + NxN = b.

The fact that the basic variables xB can be written as a function of the nonbasic vari-

ables xN is equivalent to the fact that the matrix B is invertible, and hence,

(6.4) xB = B−1b − B−1NxN .

(The fact that B is invertible means that its m column vectors are linearly independent

and therefore form a basis for R
m — this is why the basic variables are called basic,

in case you were wondering.) Similarly, the objective function can be written as

ζ = cT
BxB + cT

NxN(6.5)

= cT
B
(

B−1b − B−1NxN
)

+ cT
NxN

= cT
BB−1b −

(

(B−1N)T cB − cN
)T

xN .

92 6. THE SIMPLEX METHOD IN MATRIX NOTATION

Combining (6.5) and (6.4), we see that we can write the dictionary associated with

basis B as

(6.6)
ζ = cT

BB−1b−
(

(B−1N)T cB − cN
)T

xN

xB = B−1b−B−1NxN .

Comparing against the component-form notation of Chapter 2 (see (2.6)), we make

the following identifications:

cT
BB−1b = ζ̄

cN − (B−1N)T cB = [c̄j]

B−1b =
[

b̄i

]

B−1N = [āij] ,

where the bracketed expressions on the right denote vectors and matrices with the

index i running over B and the index j running over N . The basic solution associated

with dictionary (6.6) is obtained by setting xN equal to zero:

x∗
N = 0,

x∗
B = B−1b.(6.7)

As we saw in the last chapter, associated with each primal dictionary there is a

dual dictionary that is simply the negative-transpose of the primal. However, to have

the negative-transpose property, it is important to correctly associate complementary

pairs of variables. So first we recall that, for the current discussion, we have appended

the primal slack variables to the end of the original variables:

(x1, . . . , xn, w1, . . . , wm) −→ (x1, . . . , xn, xn+1, . . . , xn+m).

Also recall that the dual slack variables are complementary to the original primal

variables and that the original dual variables are complementary to the primal slack

variables. Therefore, to maintain the desired complementarity condition between like

indices in the primal and the dual, we need to relabel the dual variables and append

them to the end of the dual slacks:

(z1, . . . , zn, y1, . . . , ym) −→ (z1, . . . , zn, zn+1, . . . , zn+m).

With this relabeling of the dual variables, the dual dictionary corresponding to (6.6) is

−ξ = −cT
BB−1b− (B−1b)T zB

zN = (B−1N)T cB − cN + (B−1N)T zB.

2. THE PRIMAL SIMPLEX METHOD 93

The dual solution associated with this dictionary is obtained by setting zB equal to

zero:

z∗B = 0,

z∗N = (B−1N)T cB − cN .(6.8)

Using (6.7) and (6.8) and introducing the shorthand

(6.9) ζ∗ = cT
BB−1b,

we see that we can write the primal dictionary succinctly as

(6.10)
ζ = ζ∗ − z∗N

T xN

xB = x∗
B −B−1NxN .

The associated dual dictionary then has a very symmetric appearance:

(6.11)
−ξ =−ζ∗ − (x∗

B)T zB

zN = z∗N + (B−1N)T zB.

The (primal) simplex method can be described briefly as follows. The starting

assumptions are that we are given

(1) a partition of the n + m indices into a collection B of m basic indices and a

collection N of n nonbasic ones with the property that the basis matrix B is

invertible,

(2) an associated current primal solution x∗
B ≥ 0 (and x∗

N = 0), and

(3) an associated current dual solution z∗N (with z∗B = 0)

such that the dictionary given by (6.10) represents the primal objective function and

the primal constraints. The simplex method then produces a sequence of steps to

“adjacent” bases such that the current value ζ∗ of the objective function ζ increases

at each step (or, at least, would increase if the step size were positive), updating x∗
B

and z∗N along the way. Two bases are said to be adjacent to each other if they differ in

only one index. That is, given a basis B, an adjacent basis is determined by removing

one basic index and replacing it with a nonbasic index. The index that gets removed

corresponds to the leaving variable, whereas the index that gets added corresponds to

the entering variable.

One step of the simplex method is called an iteration. We now elaborate further

on the details by describing one iteration as a sequence of specific steps.

Step 1. Check for Optimality. If z∗N ≥ 0, stop. The current solution is optimal.

To see this, first note that the simplex method always maintains primal feasibility and

complementarity. Indeed, the primal solution is feasible, since x∗
B ≥ 0 and xN = 0

and the dictionary embodies the primal constraints. Also, the fact that x∗
N = 0 and

94 6. THE SIMPLEX METHOD IN MATRIX NOTATION

z∗B = 0 implies that the primal and dual solutions are complementary. Hence, all that

is required for optimality is dual feasibility. But by looking at the associated dual

dictionary (6.11), we see that the dual solution is feasible if and only if z∗N ≥ 0.

Step 2. Select Entering Variable. Pick an index j ∈ N for which z∗j < 0. Variable

xj is the entering variable.

Step 3. Compute Primal Step Direction ∆xB. Having selected the entering vari-

able, it is our intention to let its value increase from zero. Hence, we let

xN =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
...

0

t

0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

տ
= tej ,

jth position

where we follow the common convention of letting ej denote the unit vector that is

zero in every component except for a one in the position associated with index j (note

that, because of our index rearrangement conventions, this is not generally the jth

element of the vector). Then from (6.10), we have that

xB = x∗
B − B−1Ntej .

Hence, we see that the step direction ∆xB for the primal basic variables is given by

∆xB = B−1Nej .

Step 4. Compute Primal Step Length. We wish to pick the largest t ≥ 0 for which

every component of xB remains nonnegative. That is, we wish to pick the largest t for

which

x∗
B ≥ t∆xB.

Since, for each i ∈ B∗, x∗
i ≥ 0 and t ≥ 0, we can divide both sides of the above

inequality by these numbers and preserve the sense of the inequality. Therefore, doing

this division, we get the requirement that

1

t
≥ ∆xi

x∗
i

, for all i ∈ B.

We want to let t be as large as possible, and so 1/t should be made as small as pos-

sible. The smallest possible value for 1/t that satisfies all the required inequalities is

2. THE PRIMAL SIMPLEX METHOD 95

obviously
1

t
= max

i∈B
∆xi

x∗
i

.

Hence, the largest t for which all of the inequalities hold is given by

t =

(

max
i∈B

∆xi

x∗
i

)−1

.

As always, the correct convention for 0/0 is to set such ratios to zero. Also, if the

maximum is less than or equal to zero, we can stop here—the primal is unbounded.

Step 5. Select Leaving Variable. The leaving variable is chosen as any variable

xi, i ∈ B, for which the maximum in the calculation of t is obtained.

Step 6. Compute Dual Step Direction ∆zN . Essentially all that remains is to

explain how z∗N changes. To see how, it is convenient to look at the dual dictionary.

Since in that dictionary zi is the entering variable, we see that

∆zN = −(B−1N)T ei.

Step 7. Compute Dual Step Length. Since we know that zj is the leaving variable

in the dual dictionary, we see immediately that the step length for the dual variables is

s =
z∗j

∆zj
.

Step 8. Update Current Primal and Dual Solutions. We now have everything we

need to update the data in the dictionary:

x∗
j ← t

x∗
B ← x∗

B − t∆xB

and

z∗i ← s

z∗N ← z∗N − s∆zN .

Step 9. Update Basis. Finally, we update the basis:

B ← B \ {i} ∪ {j}.

We close this section with the important remark that the simplex method as pre-

sented here, while it may look different from the component-form presentation given

in Chapter 2, is in fact mathematically identical to it. That is, given the same set of

96 6. THE SIMPLEX METHOD IN MATRIX NOTATION

pivoting rules and starting from the same primal dictionary, the two algorithms will

generate exactly the same sequence of dictionaries.

3. An Example

In case the reader is feeling at this point that there are too many letters and not

enough numbers, here is an example that illustrates the matrix approach to the simplex

method. The problem we wish to solve is

maximize 4x1 + 3x2

subject to x1 − x2 ≤ 1

2x1 − x2 ≤ 3

x2 ≤ 5

x1, x2 ≥ 0.

The matrix A is given by
⎡

⎢

⎢

⎣

1 −1 1

2 −1 1

0 1 1

⎤

⎥

⎥

⎦

.

(Note that some zeros have not been shown.) The initial sets of basic and nonbasic

indices are

B = {3, 4, 5} and N = {1, 2}.

Corresponding to these sets, we have the submatrices of A:

B =

⎡

⎢

⎢

⎣

1

1

1

⎤

⎥

⎥

⎦

N =

⎡

⎢

⎢

⎣

1 −1

2 −1

0 1

⎤

⎥

⎥

⎦

.

From (6.7) we see that the initial values of the basic variables are given by

x∗
B = b =

⎡

⎢

⎢

⎣

1

3

5

⎤

⎥

⎥

⎦

,

and from (6.8) the initial nonbasic dual variables are simply

z∗N = −cN =

[

−4

−3

]

.

3. AN EXAMPLE 97

Since x∗
B ≥ 0, the initial solution is primal feasible, and hence we can apply the

simplex method without needing any Phase I procedure.

3.1. First Iteration. Step 1. Since z∗N has some negative components, the cur-

rent solution is not optimal.

Step 2. Since z∗1 = −4 and this is the most negative of the two nonbasic dual

variables, we see that the entering index is

j = 1.

Step 3.

∆xB = B−1Nej =

⎡

⎢

⎢

⎣

1 −1

2 −1

0 1

⎤

⎥

⎥

⎦

[

1

0

]

=

⎡

⎢

⎢

⎣

1

2

0

⎤

⎥

⎥

⎦

.

Step 4.

t =

(

max

{

1

1
,
2

3
,
0

5

})−1

= 1.

Step 5. Since the ratio that achieved the maximum in Step 4 was the first ratio and

this ratio corresponds to basis index 3, we see that

i = 3.

Step 6.

∆zN = −(B−1N)T ei = −
[

1 2 0

−1 −1 1

]

⎡

⎢

⎢

⎣

1

0

0

⎤

⎥

⎥

⎦

=

[

−1

1

]

.

Step 7.

s =
z∗j

∆zj
=

−4

−1
= 4.

98 6. THE SIMPLEX METHOD IN MATRIX NOTATION

Step 8.

x∗
1 = 1, x∗

B =

⎡

⎢

⎢

⎣

1

3

5

⎤

⎥

⎥

⎦

− 1

⎡

⎢

⎢

⎣

1

2

0

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0

1

5

⎤

⎥

⎥

⎦

,

z∗3 = 4, z∗N =

[

−4

−3

]

− 4

[

−1

1

]

=

[

0

−7

]

.

Step 9. The new sets of basic and nonbasic indices are

B = {1, 4, 5} and N = {3, 2}.

Corresponding to these sets, we have the new basic and nonbasic submatrices of A,

B =

⎡

⎢

⎢

⎣

1

2 1

0 1

⎤

⎥

⎥

⎦

N =

⎡

⎢

⎢

⎣

1 −1

0 −1

0 1

⎤

⎥

⎥

⎦

,

and the new basic primal variables and nonbasic dual variables:

x∗
B =

⎡

⎢

⎢

⎣

x∗
1

x∗
4

x∗
5

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1

1

5

⎤

⎥

⎥

⎦

z∗N =

[

z∗3
z∗2

]

=

[

4

−7

]

.

3.2. Second Iteration. Step 1. Since z∗N has some negative components, the

current solution is not optimal.

Step 2. Since z∗2 = −7, we see that the entering index is

j = 2.

Step 3.

∆xB = B−1Nej =

⎡

⎢

⎢

⎣

1

2 1

0 1

⎤

⎥

⎥

⎦

−1 ⎡

⎢

⎢

⎣

1 −1

0 −1

0 1

⎤

⎥

⎥

⎦

[

0

1

]

=

⎡

⎢

⎢

⎣

−1

1

1

⎤

⎥

⎥

⎦

.

Step 4.

t =

(

max

{−1

1
,
1

1
,
1

5

})−1

= 1.

3. AN EXAMPLE 99

Step 5. Since the ratio that achieved the maximum in Step 4 was the second ratio

and this ratio corresponds to basis index 4, we see that

i = 4.

Step 6.

∆zN =−(B−1N)T ei

=−
[

1 0 0

−1 −1 1

]

⎡

⎢

⎢

⎣

1 2 0

1

1

⎤

⎥

⎥

⎦

−1 ⎡

⎢

⎢

⎣

0

1

0

⎤

⎥

⎥

⎦

=

[

2

−1

]

.

Step 7.

s =
z∗j

∆zj
=

−7

−1
= 7.

Step 8.

x∗
2 = 1, x∗

B =

⎡

⎢

⎢

⎣

1

1

5

⎤

⎥

⎥

⎦

− 1

⎡

⎢

⎢

⎣

−1

1

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

2

0

4

⎤

⎥

⎥

⎦

,

z∗4 = 7, z∗N =

[

4

−7

]

− 7

[

2

−1

]

=

[

−10

0

]

.

Step 9. The new sets of basic and nonbasic indices are

B = {1, 2, 5} and N = {3, 4}.

Corresponding to these sets, we have the new basic and nonbasic submatrices of A,

B =

⎡

⎢

⎢

⎣

1 −1 0

2 −1 0

0 1 1

⎤

⎥

⎥

⎦

N =

⎡

⎢

⎢

⎣

1 0

0 1

0 0

⎤

⎥

⎥

⎦

,

and the new basic primal variables and nonbasic dual variables:

x∗
B =

⎡

⎢

⎢

⎣

x∗
1

x∗
2

x∗
5

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

2

1

4

⎤

⎥

⎥

⎦

z∗N =

[

z∗3
z∗4

]

=

[

−10

7

]

.

100 6. THE SIMPLEX METHOD IN MATRIX NOTATION

3.3. Third Iteration. Step 1. Since z∗N has some negative components, the cur-

rent solution is not optimal.

Step 2. Since z∗3 = −10, we see that the entering index is

j = 3.

Step 3.

∆xB = B−1Nej =

⎡

⎢

⎢

⎣

1 −1 0

2 −1 0

0 1 1

⎤

⎥

⎥

⎦

−1 ⎡

⎢

⎢

⎣

1 0

0 1

0 0

⎤

⎥

⎥

⎦

[

1

0

]

=

⎡

⎢

⎢

⎣

−1

−2

2

⎤

⎥

⎥

⎦

.

Step 4.

t =

(

max

{−1

2
,
−2

1
,
2

4

})−1

= 2.

Step 5. Since the ratio that achieved the maximum in Step 4 was the third ratio

and this ratio corresponds to basis index 5, we see that

i = 5.

Step 6.

∆zN =−(B−1N)T ei

=−
[

1 0 0

0 1 0

]

⎡

⎢

⎢

⎣

1 2 0

−1 −1 1

0 0 1

⎤

⎥

⎥

⎦

−1 ⎡

⎢

⎢

⎣

0

0

1

⎤

⎥

⎥

⎦

=

[

−2

1

]

.

Step 7.

s =
z∗j

∆zj
=

−10

−2
= 5.

Step 8.

x∗
3 = 2, x∗

B =

⎡

⎢

⎢

⎣

2

1

4

⎤

⎥

⎥

⎦

− 2

⎡

⎢

⎢

⎣

−1

−2

2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

4

5

0

⎤

⎥

⎥

⎦

,

z∗5 = 5, z∗N =

[

−10

7

]

− 5

[

−2

1

]

=

[

0

2

]

.

4. THE DUAL SIMPLEX METHOD 101

Step 9. The new sets of basic and nonbasic indices are

B = {1, 2, 3} and N = {5, 4}.

Corresponding to these sets, we have the new basic and nonbasic submatrices of A,

B =

⎡

⎢

⎢

⎣

1 −1 1

2 −1 0

0 1 0

⎤

⎥

⎥

⎦

N =

⎡

⎢

⎢

⎣

0 0

0 1

1 0

⎤

⎥

⎥

⎦

,

and the new basic primal variables and nonbasic dual variables:

x∗
B =

⎡

⎢

⎢

⎣

x∗
1

x∗
2

x∗
3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

4

5

2

⎤

⎥

⎥

⎦

z∗N =

[

z∗5
z∗4

]

=

[

5

2

]

.

3.4. Fourth Iteration. Step 1. Since z∗N has all nonnegative components, the

current solution is optimal. The optimal objective function value is

ζ∗ = 4x∗
1 + 3x∗

2 = 31.

It is undoubtedly clear at this point that the matrix approach, as we have presented

it, is quite a bit more tedious than the dictionary manipulations with which we are

quite familiar. The reason is that, with the dictionary approach, dictionary entries

get updated from one iteration to the next and the updating process is fairly easy,

whereas with the matrix approach, we continually compute everything from scratch

and therefore end up solving many systems of equations. In the next chapter, we will

deal with this issue and show that these systems of equations don’t really have to be

solved from scratch each time; instead, there is a certain updating that can be done that

is quite analogous to the updating of a dictionary. However, before we take up such

practical considerations, let us finish our general discussion of the simplex method

by casting the dual simplex method into matrix notation and discussing some related

issues.

4. The Dual Simplex Method

In the presentation of the primal simplex method given in the previous section,

we tried to make the symmetry between the primal and the dual problems as evident

as possible. One advantage of this approach is that we can now easily write down

the dual simplex method. Instead of assuming that the primal dictionary is feasible

(x∗
B ≥ 0), we now assume that the dual dictionary is feasible (z∗N ≥ 0) and perform

the analogous steps:

102 6. THE SIMPLEX METHOD IN MATRIX NOTATION

Step 1. Check for Optimality. If x∗
B ≥ 0, stop. The current solution is opti-

mal. Note that for the dual simplex method, dual feasibility and complementarity are

maintained from the beginning, and the algorithm terminates once a primal feasible

solution is discovered.

Step 2. Select Entering Variable. Pick an index i ∈ B for which x∗
i < 0. Variable

zi is the entering variable.

Step 3. Compute Dual Step Direction ∆zN . From the dual dictionary, we see that

∆zN = −(B−1N)T ei.

Step 4. Compute Dual Step Length. We wish to pick the largest s ≥ 0 for which

every component of zN remains nonnegative. As in the primal simplex method, this

computation involves computing the maximum of some ratios:

s =

(

max
j∈N

∆zj

z∗j

)−1

.

If s is not positive, then stop here—the dual is unbounded (implying, of course, that

the primal is infeasible).

Step 5. Select Leaving Variable. The leaving variable is chosen as any variable

zj , j ∈ N , for which the maximum in the calculation of s is obtained.

Step 6. Compute Primal Step Direction ∆xB. To see how x∗
B changes in the dual

dictionary, it is convenient to look at the primal dictionary. Since in that dictionary xj

is the entering variable, we see that

∆xB = B−1Nej .

Step 7. Compute Primal Step Length. Since we know that xi is the leaving vari-

able in the primal dictionary, we see immediately that the step length for the primal

variables is

t =
x∗

i

∆xi
.

Step 8. Update Current Primal and Dual Solutions. We now have everything we

need to update the data in the dictionary:

x∗
j ← t

x∗
B ← x∗

B − t∆xB.

and

z∗i ← s

z∗N ← z∗N − s∆zN

4. THE DUAL SIMPLEX METHOD 103

Primal Simplex

Suppose x∗
B ≥ 0

while (z∗N �≥ 0) {
pick j ∈ {j ∈ N : z∗j < 0}
∆xB = B−1Nej

t =

⎛

⎜

⎝
maxi∈B

∆xi

x∗
i

⎞

⎟

⎠

−1

pick i ∈ argmaxi∈B
∆xi

x∗
i

∆zN = −(B−1N)T ei

s =
z∗j

∆zj

x∗
j ← t

x∗
B ← x∗

B − t∆xB

z∗i ← s

z∗N ← z∗N − s∆zN

B ← B \ {i} ∪ {j}
}

Dual Simplex

Suppose z∗N ≥ 0

while (x∗
B �≥ 0) {

pick i ∈ {i ∈ B : x∗
i < 0}

∆zN = −(B−1N)T ei

s =

⎛

⎜

⎝
maxj∈N

∆zj

z∗j

⎞

⎟

⎠

−1

pick j ∈ argmaxj∈N
∆zj

z∗j
∆xB = B−1Nej

t =
x∗

i

∆xi

x∗
j ← t

x∗
B ← x∗

B − t∆xB

z∗i ← s

z∗N ← z∗N − s∆zN

B ← B \ {i} ∪ {j}
}

FIGURE 6.1. The primal and the dual simplex methods.

Step 9. Update Basis. Finally, we update the basis:

B ← B \ {i} ∪ {j}.

To further emphasize the similarities between the primal and the dual simplex

methods, Figure 6.1 shows the two algorithms side by side.

104 6. THE SIMPLEX METHOD IN MATRIX NOTATION

5. Two-Phase Methods

Let us summarize the algorithm obtained by applying the dual simplex method as

a Phase I procedure followed by the primal simplex method as a Phase II. Initially, we

set

B = {n + 1, n + 2, . . . , n + m} and N = {1, 2, . . . , n}.

Then from (6.1) we see that A =
[

N B
]

, where

N =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

1

. . .

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

and from (6.2) we have

cN =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c1

c2

...

cn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and cB =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Substituting these expressions into the definitions of x∗
B, z∗N , and ζ∗, we find that

x∗
B = B−1b = b

z∗N = (B−1N)T cB − cN = −cN

ζ∗ = 0.

Hence, the initial dictionary reads:

ζ = cT
NxN

xB = b−NxN .

If b has all nonnegative components and cN has all nonpositive components, then

this dictionary is optimal—the problem was trivial. Suppose, however, that one of

these two vectors (but not both) has components of the wrong sign. For example,

suppose that b is okay (all nonnegative components) but cN has some positive compo-

nents. Then this dictionary is primal feasible, and we can start immediately with the

6. NEGATIVE TRANSPOSE PROPERTY 105

primal simplex method. On the other hand, suppose that cN has all nonpositive com-

ponents but b has some negative ones. Then the starting dictionary is dual feasible,

and we can commence immediately with the dual simplex algorithm.

The last, and most common, case is where both b and cN have components of

the wrong sign. In this case, we must employ a two-phase procedure. There are two

choices. We could temporarily replace cN with another vector that is nonpositive.

Then the modified problem is dual feasible, and so we can apply the dual simplex

method to find an optimal solution of this modified problem. After that, the original

objective function could be reinstated. With the original objective function, the opti-

mal solution from Phase I is most likely not optimal, but it is feasible, and therefore

the primal simplex method can be used to find the optimal solution to the original

problem.

The other choice would be to modify b instead of cN , thereby obtaining a pri-

mal feasible solution to a modified problem. Then we would use the primal simplex

method on the modified problem to obtain its optimal solution, which will then be dual

feasible for the original problem, and so the dual simplex method can be used to finish

the problem.

6. Negative Transpose Property

In our discussion of duality in Chapter 5, we emphasized the symmetry between

the primal problem and its dual. This symmetry can be easily summarized by saying

that the dual of a standard-form linear programming problem is the negative transpose

of the primal problem. Now, in this chapter, the symmetry appears to have been lost.

For example, the basis matrix is an m × m matrix. Why m × m and not n × n? It

seems strange. In fact, if we had started with the dual problem, added slack variables

to it, and introduced a basis matrix on that side it would be an n × n matrix. How are

these two basis matrices related? It turns out that they are not themselves related in

any simple way, but the important matrix B−1N is still the negative transpose of the

analogous dual construct. The purpose of this section is to make this connection clear.

Consider a standard-form linear programming problem

maximize cT x

subject to Ax≤ b

x≥ 0,

and its dual

minimize bT y

subject to AT y ≥ c

y ≥ 0.

106 6. THE SIMPLEX METHOD IN MATRIX NOTATION

Let w be a vector containing the slack variables for the primal problem, let z be a slack

vector for the dual problem, and write both problems in equality form:

maximize cT x

subject to Ax + w = b

x, w ≥ 0,

and

minimize bT y

subject to AT y − z = c

y, z ≥ 0.

Introducing three new notations,

Ā =
[

A I
]

, c̄ =

[

c

0

]

, and x̄ =

[

x

w

]

,

the primal problem can be rewritten succinctly as follows:

maximize c̄T x̄

subject to Āx̄ = b

x̄≥ 0.

Similarly, using “hats” for new notations on the dual side,

Â =
[

−I AT
]

, b̂ =

[

0

b

]

, and ŷ =

[

z

y

]

,

the dual problem can be rewritten in this way:

minimize b̂T ŷ

subject to Âŷ = c

ŷ ≥ 0.

Note that the matrix Ā = [A I] is an m×(n+m) matrix. The first n columns of

it are the initial nonbasic variables and the last m columns are the initial basic columns.

After doing some simplex pivots, the basic and nonbasic columns get jumbled up but

we can still write the equality

[

A I
]

=
[

N̄ B̄
]

6. NEGATIVE TRANSPOSE PROPERTY 107

with the understanding that the equality only holds after rearranging the columns ap-

propriately.

On the dual side, the matrix Â = [−I AT] is an n × (n + m) matrix. The first

n columns of it are the initial basic variables (for the dual problem) and the last m
columns are the initial nonbasic columns. If the same set of pivots that were applied

to the primal problem are also applied to the dual, then the columns get rearranged in

exactly the same way as they did for the primal and we can write

[

−I AT
]

=
[

B̂ N̂
]

again with the proviso that the columns of one matrix must be rearranged in a specific

manner to bring it into exact equality with the other matrix.

Now, the primal dictionary involves the matrix B̄−1N̄ whereas the dual dictionary

involves the matrix B̂−1N̂ . It probably doesn’t seem at all obvious that these two

matrices are negative transposes of each other. To see that it is so, consider what

happens when we multiply Ā by ÂT in both the permuted notation and the unpermuted

notation:

ĀÂT =
[

N̄ B̄
]

[

B̂T

N̂T

]

= N̄B̂T + B̄N̂T

and

ĀÂT =
[

A I
]

[

−I

A

]

= −A + A = 0.

These two expressions obviously must agree so we see that

N̄B̂T + B̄N̂T = 0.

Putting the two terms on the opposite sides of the equality sign and multiplying on the

right by the inverse of B̂T and on the left by the inverse of B̄, we get that

B̄−1N̄ = −
(

B̂−1N̂
)T

,

which is the property we wished to establish.

108 6. THE SIMPLEX METHOD IN MATRIX NOTATION

Exercises

6.1 Consider the following linear programming problem:

maximize −6x1 + 32x2 − 9x3

subject to −2x1 + 10x2 − 3x3 ≤−6

x1 − 7x2 + 2x3 ≤ 4

x1, x2, x3 ≥ 0.

Suppose that, in solving this problem, you have arrived at the following

dictionary:

ζ =−18− 3x4 + 2x2

x3 = 2− x4 + 4x2 − 2x5

x1 = 2x4 − x2 + 3x5.

(a) Which variables are basic? Which are nonbasic?

(b) Write down the vector, x∗
B, of current primal basic solution values.

(c) Write down the vector, z∗N , of current dual nonbasic solution values.

(d) Write down B−1N .

(e) Is the primal solution associated with this dictionary feasible?

(f) Is it optimal?

(g) Is it degenerate?

6.2 Consider the following linear programming problem:

maximize x1 + 2x2 + 4x3 + 8x4 + 16x5

subject to x1 + 2x2 + 3x3 + 4x4 + 5x5 ≤ 2

7x1 + 5x2 − 3x3 − 2x4 ≤ 0

x1, x2, x3, x4, x5 ≥ 0.

Consider the situation in which x3 and x5 are basic and all other variables

are nonbasic. Write down:

(a) B,

(b) N ,

(c) b,

(d) cB,

(e) cN ,

(f) B−1N ,

(g) x∗
B = B−1b,

(h) ζ∗ = cT
BB−1b,

(i) z∗N = (B−1N)T cB − cN ,

NOTES 109

(j) the dictionary corresponding to this basis.

6.3 Solve the problem in Exercise 2.1 using the matrix form of the primal sim-

plex method.

6.4 Solve the problem in Exercise 2.4 using the matrix form of the dual simplex

method.

6.5 Solve the problem in Exercise 2.3 using the two-phase approach in matrix

form.

6.6 Find the dual of the following linear program:

maximize cT x

subject to a ≤ Ax ≤ b

l ≤ x ≤ u.

6.7 (a) Let A be a given m × n matrix, c a given n-vector, and b a given m-

vector. Consider the following max-min problem:

max
x≥0

min
y≥0

(

cT x − yT Ax + bT y
)

.

By noting that the inner optimization can be carried out explicitly, show

that this problem can be reduced to a linear programming problem.

Write it explicitly.

(b) What linear programming problem do you get if the min and max are

interchanged?

Notes

In this chapter, we have accomplished two tasks: (1) we have expressed the sim-

plex method in matrix notation, and (2) we have reduced the information we carry

from iteration to iteration to simply the list of basic variables together with current

values of the primal basic variables and the dual nonbasic variables. In particular, it is

not necessary to calculate explicitly all the entries of the matrix B−1N .

What’s in a name? There are times when one thing has two names. So far in this

book, we have discussed essentially only one algorithm: the simplex method (assum-

ing, of course, that specific pivot rules have been settled on). But this one algorithm is

sometimes referred to as the simplex method and at other times it is referred to as the

revised simplex method. The distinction being made with this new name has nothing to

do with the algorithm. Rather it refers to the specifics of an implementation. Indeed,

an implementation of the simplex method that avoids explicit calculation of the matrix

B−1N is referred to as an implementation of the revised simplex method. We shall

see in Chapter 8 why it is beneficial to avoid computing B−1N .

CHAPTER 7

Sensitivity and Parametric Analyses

In this chapter, we consider two related subjects. The first, called sensitivity anal-

ysis (or postoptimality analysis) addresses the following question: having found an

optimal solution to a given linear programming problem, how much can we change

the data and have the current partition into basic and nonbasic variables remain opti-

mal? The second subject addresses situations in which one wishes to solve not just one

linear program, but a whole family of problems parametrized by a single real variable.

We shall study parametric analysis in a very specific context in which we wish

to find the optimal solution to a given linear programming problem by starting from a

problem whose solution is trivially known and then deforming this problem back to the

original problem, maintaining as we go optimality of the current solution. The result

of this deformation approach to solving a linear programming problem is a new variant

of the simplex method, which is called the parametric self-dual simplex method. We

will see in later chapters that this variant of the simplex method resembles, in certain

respects, the interior-point methods that we shall study.

1. Sensitivity Analysis

One often needs to solve not just one linear programming problem but several

closely related problems. There are many reasons that this need might arise. For

example, the data that define the problem may have been rather uncertain and one

may wish to consider various possible data scenarios. Or perhaps the data are known

accurately but change from day to day, and the problem must be resolved for each new

day. Whatever the reason, this situation is quite common. So one is led to ask whether

it is possible to exploit the knowledge of a previously obtained optimal solution to

obtain more quickly the optimal solution to the problem at hand. Of course, the answer

is often yes, and this is the subject of this section.

We shall treat a number of possible situations. All of them assume that a problem

has been solved to optimality. This means that we have at our disposal the final,

optimal dictionary:

ζ = ζ∗ − z∗T
N xN

xB = x∗
B −B−1NxN .

111

112 7. SENSITIVITY AND PARAMETRIC ANALYSES

Suppose we wish to change the objective coefficients from c to, say, c̃. It is natural to

ask how the dictionary at hand could be adjusted to become a valid dictionary for the

new problem. That is, we want to maintain the current classification of the variables

into basic and nonbasic variables and simply adjust ζ∗, z∗N , and x∗
B appropriately.

Recall from (6.7), (6.8), and (6.9) that

x∗
B = B−1b,

z∗N = (B−1N)T cB − cN ,

ζ∗ = cT
BB−1b.

Hence, the change from c to c̃ requires us to recompute z∗N and ζ∗, but x∗
B remains

unchanged. Therefore, after recomputing z∗N and ζ∗, the new dictionary is still primal

feasible, and so there is no need for a Phase I procedure: we can jump straight into the

primal simplex method, and if c̃ is not too different from c, we can expect to get to the

new optimal solution in a relatively small number of steps.

Now suppose that instead of changing c, we wish to change only the right-hand

side b. In this case, we see that we need to recompute x∗
B and ζ∗, but z∗N remains

unchanged. Hence, the new dictionary will be dual feasible, and so we can apply the

dual simplex method to arrive at the new optimal solution fairly directly.

Therefore, changing just the objective function or just the right-hand side results

in a new dictionary having nice feasibility properties. What if we need/want to change

some (or all) entries in both the objective function and the right-hand side and maybe

even the constraint matrix too? In this case, everything changes: ζ∗, z∗N , x∗
B. Even

the entries in B and N change. Nonetheless, as long as the new basis matrix B is

nonsingular, we can make a new dictionary that preserves the old classification into

basic and nonbasic variables. The new dictionary will most likely be neither primal

feasible nor dual feasible, but if the changes in the data are fairly small in magnitude,

one would still expect that this starting dictionary will get us to an optimal solution

in fewer iterations than simply starting from scratch. While there is no guarantee

that any of these so-called warm-starts will end up in fewer iterations to optimality,

extensive empirical evidence indicates that this procedure often makes a substantial

improvement: sometimes the warm-started problems solve in as little as one percent

of the time it takes to solve the original problem.

1.1. Ranging. Often one does not wish to solve a modification of the original

problem, but instead just wants to ask a hypothetical question:

If I were to change the objective function by increasing or decreas-

ing one of the objective coefficients a small amount, how much

could I increase/decrease it without changing the optimality of my

current basis?

1. SENSITIVITY ANALYSIS 113

To study this question, let us suppose that c gets changed to c + t∆c, where t is a real

number and ∆c is a given vector (which is often all zeros except for a one in a single

entry, but we don’t need to restrict the discussion to this case). It is easy to see that z∗N
gets incremented by

t∆zN ,

where

(7.1) ∆zN = (B−1N)T ∆cB − ∆cN .

Hence, the current basis will remain dual feasible as long as

(7.2) z∗N + t∆zN ≥ 0.

We’ve manipulated this type of inequality many times before, and so it should be clear

that, for t > 0, this inequality will remain valid as long as

t ≤
(

max
j∈N

−∆zj

z∗j

)−1

.

Similar manipulations show that, for t < 0, the lower bound is

t ≥
(

min
j∈N

−∆zj

z∗j

)−1

.

Combining these two inequalities, we see that t must lie in the interval

(

min
j∈N

−∆zj

z∗j

)−1

≤ t ≤
(

max
j∈N

−∆zj

z∗j

)−1

.

Let us illustrate these calculations with an example. Consider the following linear

programming problem:

maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0 .

114 7. SENSITIVITY AND PARAMETRIC ANALYSES

The optimal dictionary for this problem is given by

ξ = 13− 3x2 − x4 − x6

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2− 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4 .

The optimal basis is B = {3, 1, 5}. Suppose we want to know how much the coef-

ficient of 5 on x1 in the objective function can change without altering the optimality

of this basis. From the statement of the problem, we see that

c =
[

5 4 3 0 0 0
]T

.

Since we are interested in changes in the first coefficient, we put

∆c =
[

1 0 0 0 0 0
]T

.

We partition c according to the final (optimal) basis. Hence, we have

∆cB =

⎡

⎢

⎢

⎣

0

1

0

⎤

⎥

⎥

⎦

and ∆cN =

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

.

Next, we need to compute ∆zN using (7.1). We could compute B−1N from scratch,

but it is easier to extract it from the constraint coefficients in the final dictionary. In-

deed,

−B−1N =

⎡

⎢

⎢

⎣

1 3−2

−2−2 1

5 2 0

⎤

⎥

⎥

⎦

.

Hence, from (7.1) we see that

∆zN =

⎡

⎢

⎢

⎣

2

2

−1

⎤

⎥

⎥

⎦

.

Now, (7.2) gives the condition on t. Writing it out componentwise, we get

3 + 2t ≥ 0, 1 + 2t ≥ 0, and 1 − t ≥ 0.

2. PARAMETRIC ANALYSIS AND THE HOMOTOPY METHOD 115

These three inequalities, which must all hold, can be summarized by saying that

−1

2
≤ t ≤ 1

Hence, in terms of the coefficient on x1, we finally see that it can range from 4.5 to 6.

Now suppose we change b to b + t∆b and ask how much t can change before

the current basis becomes nonoptimal. In this case, z∗N does not change, but x∗
B gets

incremented by t∆xB, where

∆xB = B−1∆b.

Hence, the current basis will remain optimal as long as t lies in the interval

(

min
i∈B

−∆xi

x∗
i

)−1

≤ t ≤
(

max
i∈B

−∆xi

x∗
i

)−1

.

2. Parametric Analysis and the Homotopy Method

In this section, we illustrate the notion of parametric analysis by applying a tech-

nique called the homotopy method to get a new algorithm for solving linear program-

ming problems. The homotopy method is a general technique in which one creates a

continuous deformation that changes a given difficult problem into a related but triv-

ially solved problem and then attempts to work backwards from the trivial problem to

the difficult problem by solving (hopefully without too much effort) all the problems

in between. Of course, there is a continuum of problems between the hard one and the

trivial one, and so we shouldn’t expect that this technique will be effective in every

situation; but for linear programming and for many other problem domains, it turns

out to yield efficient algorithms.

We start with an example. Suppose we wish to solve the following linear pro-

gramming problem:

maximize −2x1 + 3x2

subject to −x1 + x2 ≤−1

−x1 − 2x2 ≤−2

x2 ≤ 1

x1, x2 ≥ 0.

116 7. SENSITIVITY AND PARAMETRIC ANALYSES

The starting dictionary is

ζ = − 2x1 − (−3)x2

x3 =−1 + x1 − x2

x4 =−2 + x1 + 2x2

x5 = 1 − x2 .

This dictionary is neither primal nor dual feasible. Let’s perturb it by adding a positive

real number μ to each right-hand side and subtracting it from each objective function

coefficient. We now arrive at a family of dictionaries, parametrized by μ:

(7.3)

ζ = − (2 + μ)x1 − (−3 + μ)x2

x3 =−1 + μ + x1 − x2

x4 =−2 + μ + x1 + 2x2

x5 = 1 + μ − x2 .

Clearly, for μ sufficiently large, specifically μ ≥ 3, this dictionary is both primal

and dual feasible. Hence, the associated solution x = [0, 0,−1 + μ,−2 + μ, 1 + μ]
is optimal. Starting with μ large, we reduce it as much as we can while keeping

dictionary (7.3) optimal. This dictionary will become nonoptimal as soon as μ < 3,

since the associated dual variable y∗
2 = −3 + μ will become negative. In other words,

the coefficient of x2, which is 3− μ, will become positive. This change of sign on the

coefficient of x2 suggests that we make a primal pivot in which x2 enters the basis.

The usual ratio test (using the specific value of μ = 3) indicates that x3 must be the

leaving variable. Making the pivot, we get

ζ =−3 + 4μ− μ2 − (−1 + 2μ)x1 − (3 − μ)x3

x2 =−1 + μ + x1 − x3

x4 =−4 + 3μ + 3x1 − 2x3

x5 = 2 + x1 + x3 .

This dictionary is optimal as long as

−1 + 2μ ≥ 0, 3 − μ ≥ 0,

−1 + μ ≥ 0, −4 + 3μ ≥ 0.

These inequalities reduce to
4

3
≤ μ ≤ 3.

2. PARAMETRIC ANALYSIS AND THE HOMOTOPY METHOD 117

So now we can reduce μ from its current value of 3 down to 4/3. If we reduce it

below 4/3, the primal feasibility inequality, −4 + 3μ ≥ 0, becomes violated. This

violation suggests that we perform a dual pivot with x4 serving as the leaving variable.

The usual (dual) ratio test (with μ = 4/3) then tells us that x1 must be the entering

variable. Doing the pivot, we get

ζ =− 5
3 + 1

3μ + μ2 − (− 1
3 + 2

3μ)x4 − (7
3 + 1

3μ)x3

x2 = 1
3 + 1

3x4 − 1
3x3

x1 = 4
3 − μ + 1

3x4 + 2
3x3

x5 = 2
3 + μ − 1

3x4 + 1
3x3 .

Now the conditions for optimality are

−1

3
+

2

3
μ ≥ 0,

7

3
+

1

3
μ ≥ 0,

4

3
− μ ≥ 0,

2

3
+ μ ≥ 0,

which reduce to
1

2
≤ μ ≤ 4

3
.

For the next iteration, we reduce μ to 1/2 and see that the inequality that becomes

binding is the dual feasibility inequality

−1

3
+

2

3
μ ≥ 0.

Hence, we do a primal pivot with x4 entering the basis. The leaving variable is x5,

and the new dictionary is

ζ =−1 − μ2 − (1 − 2μ)x5 − (2 + μ)x3

x2 = 1 + μ − x5

x1 = 2 − x5 + x3

x4 = 2 + 3μ − 3x5 + x3 .

For this dictionary, the range of optimality is given by

1 − 2μ ≥ 0, 2 + μ ≥ 0,

1 + μ ≥ 0, 2 + 3μ ≥ 0,

118 7. SENSITIVITY AND PARAMETRIC ANALYSES

which reduces to

−2

3
≤ μ ≤ 1

2
.

This range covers μ = 0, and so now we can set μ to 0 and get an optimal dictionary

for our original problem:

ζ =−1− x5 − 2x3

x2 = 1− x5

x1 = 2− x5 + x3

x4 = 2− 3x5 + x3 .

The algorithm we have just illustrated is called the parametric self-dual simplex

method.1 We shall often refer to it more simply as the self-dual simplex method. It

has some attractive features. First, in contrast to the methods presented earlier, this

algorithm does not require a separate Phase I procedure. It starts with any problem,

be it primal infeasible, dual infeasible, or both, and it systematically performs pivots

(whether primal or dual) until it finds an optimal solution.

A second feature is that a trivial modification of the algorithm can avoid en-

tirely ever encountering a degenerate dictionary. Indeed, suppose that, instead of

adding/subtracting μ from each of the right-hand sides and objective coefficients, we

add/subtract a positive constant times μ. Suppose further that the positive constant

is different in each addition/subtraction. In fact, suppose that they are chosen inde-

pendently from, say, a uniform distribution on [1/2, 3/2]. Then with probability one,

the algorithm will produce no primal degenerate or dual degenerate dictionary in any

iteration. In Chapter 3, we discussed perturbing the right-hand side of a linear pro-

gramming problem to avoid degeneracy in the primal simplex method, but back then

the perturbation changed the problem. The present perturbation does not in any way

affect the problem that is solved.

With the above randomization trick to resolve the degeneracy issue, the analysis of

the convergence of the algorithm is straightforward. Indeed, let us consider a problem

that is feasible and bounded (the questions regarding feasibility and boundedness are

addressed in Exercise 7.10). For each nondegenerate pivot, the next value of μ will

be strictly less than the current value. Since each of these μ values is determined by a

partition of the variables into basics and nonbasics and there are only a finite number

of such partitions, it follows that the method must reach a partition with a negative μ
value in a finite number of steps.

1In the first edition, this method was called the primal–dual simplex method.

3. THE PARAMETRIC SELF-DUAL SIMPLEX METHOD 119

3. The Parametric Self-Dual Simplex Method

In the previous section, we illustrated on an example a new algorithm for solving

linear programming problems, called the parametric self-dual simplex method. In this

section, we shall lay out the algorithm in matrix notation.

Our starting point is an initial dictionary as written in (6.10) and transcribed here

for convenience:

ζ = ζ∗ − z∗N
T xN

xB = x∗
B −B−1NxN ,

where

x∗
B = B−1b

z∗N = (B−1N)T cB − cN

ζ∗ = cT
Bx∗

B = cT
BB−1b.

Generally speaking, we don’t expect this dictionary to be either primal or dual feasible.

So we perturb it by adding essentially arbitrary perturbations x̄B and z̄N to x∗
B and z∗N ,

respectively:

ζ = ζ∗ − (z∗N + μz̄N)T xN

xB = (x∗
B + μx̄B)−B−1NxN .

We assume that the perturbations are all strictly positive,

x̄B > 0 and z̄N > 0,

so that by taking μ sufficiently large the perturbed dictionary will be optimal. (Actu-

ally, to guarantee optimality for large μ, we only need to perturb those primal and dual

variables that are negative in the initial dictionary.)

The parametric self-dual simplex method generates a sequence of dictionaries

having the same form as the initial one—except, of course, the basis B will change,

and hence all the data vectors (z∗N , z̄N , x∗
B, and x̄B) will change too. Additionally, the

current value of the objective function ζ∗ will, with the exception of the first dictionary,

depend on μ.

One step of the self-dual simplex method can be described as follows. First, we

compute the smallest value of μ for which the current dictionary is optimal. Letting

μ∗ denote this value, we see that

μ∗ = min{μ : z∗N + μz̄N ≥ 0 and x∗
B + μx̄B ≥ 0}.

There is either a j ∈ N for which z∗j +μ∗z̄j = 0 or an i ∈ B for which x∗
i +μ∗x̄i = 0

(if there are multiple choices, an arbitrary selection is made). If the blocking constraint

120 7. SENSITIVITY AND PARAMETRIC ANALYSES

corresponds to a nonbasic index j ∈ N , then we do one step of the primal simplex

method. If, on the other hand, it corresponds to a basic index i ∈ B, then we do one

step of the dual simplex method.

Suppose, for definiteness, that the blocking constraint corresponds to an index

j ∈ N . Then, to do a primal pivot, we declare xj to be the entering variable, and

we compute the step direction for the primal basic variables as the jth column of the

dictionary. That is,

∆xB = B−1Nej .

Using this step direction, we find an index i ∈ B that achieves the maximal value of

∆xi/(x∗
i + μ∗x̄i). Variable xi is the leaving variable. After figuring out the leaving

variable, the step direction vector for the dual nonbasic variables is just the negative

of the ith row of the dictionary

∆zN = −(B−1N)T ei.

After computing the primal and dual step directions, it is easy to see that the step

length adjustments are given by

t =
x∗

i

∆xi
, t̄ =

x̄i

∆xi
,

s =
z∗j

∆zj
, s̄ =

z̄j

∆zj
.

And from these, it is easy to write down the new solution vectors:

x∗
j ← t, x̄j ← t̄, z∗i ← s, z̄i ← s̄,

x∗
B ← x∗

B − t∆xB, x̄B ← x̄B − t̄∆xB,

z∗N ← z∗N − s∆zN , z̄N ← z̄N − s̄∆zN .

Finally, the basis is updated by adding the entering variable and removing the leaving

variable

B ← B \ {i} ∪ {j}.

The algorithm is summarized in Figure 7.1.

Exercises

In solving the following problems, the advanced pivot tool can be used to check

your arithmetic:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/advanced.html

EXERCISES 121

Compute μ∗ = max

⎛

⎝max
j∈N
z̄j>0

−
z∗j
z̄j

,max
i∈B
x̄i>0

−x∗
i

x̄i

⎞

⎠

While (μ∗ > 0) {

If max is achieved by

j ∈ N :

∆xB = B−1Nej

pick i ∈ argmaxi∈B
∆xi

x∗
i + μ∗x̄i

∆zN = −(B−1N)T ei

i ∈ B :

∆zN = −(B−1N)T ei

pick j ∈ argmaxj∈N
∆zj

z∗j + μ∗z̄j

∆xB = B−1Nej

t =
x∗

i

∆xi
t̄ =

x̄i

∆xi

s =
z∗j

∆zj
s̄ =

z̄j

∆zj

x∗
j ← t x̄j ← t̄

z∗i ← s z̄i ← s̄

x∗
B ← x∗

B − t∆xB x̄B ← x̄B − t̄∆xB

z∗N ← z∗N − s∆zN z̄N ← z̄N − s̄∆zN

B ← B \ {i} ∪ {j}
Recompute μ∗ as above

}

FIGURE 7.1. The parametric self-dual simplex method.

122 7. SENSITIVITY AND PARAMETRIC ANALYSES

7.1 The final dictionary for

maximize x1 + 2x2 + x3 + x4

subject to 2x1 + x2 + 5x3 + x4 ≤ 8

2x1 + 2x2 + 4x4 ≤ 12

3x1 + x2 + 2x3 ≤ 18

x1, x2, x3, x4 ≥ 0

is

ζ = 12.4− 1.2x1 − 0.2x5 − 0.9x6 − 2.8x4

x2 = 6− x1 − 0.5x6 − 2x4

x3 = 0.4− 0.2x1 − 0.2x5 + 0.1x6 + 0.2x4

x7 = 11.2− 1.6x1 + 0.4x5 + 0.3x6 + 1.6x4.

(the last three variables are the slack variables).

(a) What will be an optimal solution to the problem if the objective func-

tion is changed to

3x1 + 2x2 + x3 + x4?

(b) What will be an optimal solution to the problem if the objective func-

tion is changed to

x1 + 2x2 + 0.5x3 + x4?

(c) What will be an optimal solution to the problem if the second con-

straint’s right-hand side is changed to 26?

7.2 For each of the objective coefficients in the problem in Exercise 7.1, find the

range of values for which the final dictionary will remain optimal.

7.3 Consider the following dictionary which arises in solving a problem using

the self-dual simplex method:

ζ =−3 − (−1 + 2μ)x1 − (3 − μ)x3

x2 =−1 + μ + x1 − x3

x4 =−4 + 3μ + 3x1 − 2x3

x5 = 2 + x1 + x3 .

(a) For which values of μ is the current dictionary optimal?

EXERCISES 123

(b) For the next pivot in the self-dual simplex method, identify the entering

and the leaving variable.

7.4 Solve the linear program given in Exercise 2.3 using the self-dual simplex

method. Hint: It is easier to use dictionary notation than matrix notation.

7.5 Solve the linear program given in Exercise 2.4 using the self-dual simplex

method. Hint: It is easier to use dictionary notation than matrix notation.

7.6 Solve the linear program given in Exercise 2.6 using the self-dual simplex

method. Hint: It is easier to use dictionary notation than matrix notation.

7.7 Using today’s date (MMYY) for the seed value, solve 10 problems using the

self-dual simplex method:

campuscgi.princeton.edu/∼rvdb/JAVA/pivot/pd1phase.html .

7.8 Use the self-dual simplex method to solve the following problem:

maximize 3x1 − x2

subject to x1 − x2 ≤ 1

−x1 + x2 ≤−4

x1, x2 ≥ 0.

7.9 Let Pμ denote the perturbed primal problem (with perturbation μ). Show

that if Pμ is infeasible, then Pμ′ is infeasible for every μ′ ≤ μ. State and

prove an analogous result for the perturbed dual problem.

7.10 Using the notation of Figure 7.1 state precise conditions for detecting infea-

sibility and/or unboundedness in the self-dual simplex method.

7.11 Consider the following one parameter family of linear programming prob-

lems (parametrized by μ):

max (4 − 4μ)x0 − 2x1 − 2x2 − 2x3 − 2x4

s.t. x0 − x1 ≤ 1

x0 − x2 ≤ 2

x0 − x3 ≤ 4

x0 − x4 ≤ 8

x0, x1, x2, x3, x4 ≥ 0.

Starting from μ = ∞, use the parametric simplex method to decrease μ until

you get to μ = −∞. Hint: the pivots are straight forward and, after the

first couple, a clear pattern should emerge which will make the subsequent

124 7. SENSITIVITY AND PARAMETRIC ANALYSES

pivots easy. Clearly indicate the range of μ values for which each dictionary

is optimal.

Notes

Parametric analysis has its roots in Gass & Saaty (1955). G.B. Dantzig’s clas-

sic book (Dantzig 1963) describes the self-dual simplex method under the name of

the self-dual parametric simplex method. It is a special case of “Lemke’s algorithm”

for the linear complementarity problem (Lemke 1965) (see Exercise 18.7). Smale

(1983) and Borgwardt (1982) were first to realize that the parametric self-dual sim-

plex method is amenable to probabilistic analysis. For a more recent discussion of

homotopy methods and the parametric self-dual simplex method, see Nazareth (1986)

and Nazareth (1987).

CHAPTER 8

Implementation Issues

In the previous chapter, we rewrote the simplex method using matrix notation.

This is the first step toward our aim of describing the simplex method as one would

implement it as a computer program. In this chapter, we shall continue in this direction

by addressing some important implementation issues.

The most time-consuming steps in the simplex method are the computations

∆xB = B−1Nej and ∆zN = −(B−1N)T ei,

and the difficulty in these steps arises from the B−1. Of course, we don’t ever actually

compute the inverse of the basis matrix. Instead, we calculate, say, ∆xB by solving

the following system of equations:

(8.1) B∆xB = aj ,

where

aj = Nej

is the column of N associated with nonbasic variable xj .

Similarly, the calculation of ∆zN is also broken into two steps:

BT v = ei,(8.2)

∆zN =−NT v.

Here, the first step is the solution of a large system of equations, this time involving

BT instead of B, and the second step is the comparatively trivial task of multiplying

a vector on the left by the matrix −NT .

Solving the systems of equations (8.1) and (8.2) is where most of the complexity

of a simplex iteration lies. We discuss solving such systems in the first two sections.

In the second section, we look at the effect of sparsity on these systems. The next

few sections explain how to reuse and/or update the computations of one iteration in

subsequent iterations. In the final sections, we address a few other issues that affect

the efficiency of an implementation.

125

126 8. IMPLEMENTATION ISSUES

1. Solving Systems of Equations: LU -Factorization

In this section, we discuss solving systems of equations of the form

Bx = b,

where B is an invertible m × m matrix and b is an arbitrary m-vector. (Analysis of

the transpose BT x = b is left to Exercise 8.4.) Our first thought is to use Gaussian

elimination. This idea is correct, but to explain how Gaussian elimination is actually

implemented, we need to take a fresh look at how it works. To explain, let us consider

an example:

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

3 1 1

−1 −1 −2

−1 −6

1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(Note that, to emphasize the importance of sparsity, zero entries are simply left blank.)

In Gaussian elimination, one begins by subtracting appropriate multiples of the first

row from each subsequent row to get zeros in the first column below the diagonal. For

our specific example, we subtract 3/2 times the first row from the second row and we

subtract −1/2 times the first row from the third row. The result is

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

1 −6 1 3

1 −3

−1 −6

1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Shortly, we will want to remember the values of the nonzero elements in the first

column. Therefore, let us agree to do the row operations that are required to eliminate

nonzeros, but when we write down the result of the elimination, we will leave the

nonzeros there. With this convention, the result of the elimination of the first column

can be written as
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

3 1 −6 1 3

−1 1 −3

−1 −6

1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

1. SOLVING SYSTEMS OF EQUATIONS: LU -FACTORIZATION 127

Note that we have drawn a line to separate the eliminated top/left parts of the matrix

from the uneliminated lower-right part.

Next, we eliminate the nonzeros below the second diagonal (there’s only one)

by subtracting an appropriate multiple of the second row from each subsequent row.

Again, we write the answer without zeroing out the eliminated elements:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

3 1 −6 1 3

−1 1 −3

−1 −6 1 −3

1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

After eliminating the third column, we get

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

3 1 −6 1 3

−1 1 −3

−1 −6 1 −21

1 7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now, the remaining uneliminated part is already an upper triangular matrix, and hence

no more elimination is required.

At this point, you are probably wondering how this strangely produced matrix is

related to the original matrix B. The answer is both simple and elegant. First, take

the final matrix and split it into three matrices: the matrix consisting of all elements

on or below the diagonal, the matrix consisting of just the diagonal elements, and the

matrix consisting of all elements on or above the diagonal. It is amazing but true that

B is simply the product of the resulting lower triangular matrix times the inverse of

the diagonal matrix times the upper triangular matrix:

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

3 1

−1 1

−1 −6 1

1 7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

1

1

1

7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1 ⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

1 −6 1 3

1 −3

1 −21

7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

128 8. IMPLEMENTATION ISSUES

(If you don’t believe it, multiply them and see.) Normally, the product of the lower

triangular matrix and the diagonal matrix is denoted by L,

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

3 1

−1 1

−1 −6 1

1 7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

1

1

1

7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
3
2 1

− 1
2 1

−1 −6 1

1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the upper triangular matrix is denote by U :

U =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

1 −6 1 3

1 −3

1 −21

7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The resulting representation,

B = LU,

is called an LU -factorization of B. Finding an LU -factorization is equivalent to

Gaussian elimination in the sense that multiplying B on the left by L−1 has the effect

of applying row operations to B to put it into upper-triangular form U .

The value of an LU -factorization is that it can be used to solve systems of equa-

tions. For example, suppose that we wish to solve equation (8.1), where B is as above

and

(8.3) aj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

7

−2

0

3

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

First, we substitute LU for B so that the system becomes

LU∆xB = aj .

Now, if we let y = U∆xB, then we can solve

Ly = b

1. SOLVING SYSTEMS OF EQUATIONS: LU -FACTORIZATION 129

for y, and once y is known, we can solve

U∆xB = y

for ∆xB. Because L is lower triangular, solving Ly = b is easy. Indeed, writing the

system out,
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
3
2 1

− 1
2 1

−1 −6 1

1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1

y2

y3

y4

y5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

7

−2

0

3

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

we notice immediately that y1 = 7. Then, given y1, it becomes clear from the second

equation that y2 = −2 − (3/2)y1 = −25/2. Continuing in this way, we find that

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1

y2

y3

y4

y5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

7

− 25
2

7
2
23
2

− 7
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The process of successively solving for the elements of the vector y starting with the

first and proceeding to the last is called forward substitution.

Of course, solving U∆xB = y is easy too, since U is upper triangular. The system

to solve is given by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

1 −6 1 3

1 −3

1 −21

7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆x1

∆x2

∆x3

∆x4

∆x5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

7

− 25
2

7
2
23
2

− 7
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(note that, to keep notations simple, we are assuming that the basic indices are 1
through 5 so that ∆xB = (∆x1,∆x2,∆x3,∆x4,∆x5)). This time we start with the

last equation and see that ∆x5 = −1/2. Then the second to last equation tells us that

130 8. IMPLEMENTATION ISSUES

∆x4 = 23/2 + 21(∆x5) = 1. After working our way to the first equation, we have

∆xB =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆x1

∆x2

∆x3

∆x4

∆x5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1

0

2

1

− 1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This process of working from the last element of ∆xB back to the first is called back-

ward substitution.

2. Exploiting Sparsity

In the previous section, we took a specific matrix B and constructed an LU fac-

torization of it. However, with that example we were lucky in that every diagonal

element was nonzero at the moment it was used to eliminate the nonzeros below it.

Had we encountered a zero diagonal element, we would have been forced to rearrange

the columns and/or the rows of the matrix to put a nonzero element in this position.

For a random matrix (whatever that means), the odds of encountering a zero are nil,

but a basis matrix can be expected to have plenty of zeros in it, since, for example, it

is likely to contain columns associated with slack variables, which are all zero except

for one 1. A matrix that contains zeros is called a sparse matrix.

When a sparse matrix has lots of zeros, two things happen. First, the chances

of being required to make row and/or column permutations is high. Second, addi-

tional computational efficiency can be obtained by making further row and/or column

permutations with the aim of keeping L and/or U as sparse as possible.

The problem of finding the “best” permutation is, in itself, harder than the linear

programming problem that we ultimately wish to solve. But there are simple heuristics

that help to preserve sparsity in L and U . We shall focus on just one such heuristic,

called the minimum-degree ordering heuristic, which is describe as follows:

Before eliminating the nonzeros below a diagonal “pivot” ele-

ment, scan all uneliminated rows and select the sparsest row, i.e.,

that row having the fewest nonzeros in its uneliminated part (ties

can be broken arbitrarily). Swap this row with the pivot row. Then

scan the uneliminated nonzeros in this row and select that one

whose column has the fewest nonzeros in its uneliminated part.

Swap this column with the pivot column so that this nonzero be-

comes the pivot element. (Of course, provisions should be made

to reject such a pivot element if its value is close to zero.)

As a matter of terminology, the number of nonzeros in the uneliminated part of a

row/column is called the degree of the row/column. Hence, the name of the heuristic.

2. EXPLOITING SPARSITY 131

Let’s apply the minimum-degree heuristic to the LU -factorization of the matrix

B studied in the previous section. To keep track of the row and column permutations,

we will indicate original row indices on the left and original column indices across the

top. Hence, we start with:

B =

1 2 3 4 5

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4 −2

3 1 1

−1 −1 −2

−1 −6

1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

To begin, row 4 has the fewest nonzeros, and within row 4, the −1 in column 2 belongs

to the column with the fewest nonzeros. Hence, we swap rows 1 and 4 and we swap

columns 1 and 2 to rewrite B as

B =

2 1 3 4 5

4

2

3

1

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 3 1

−1 −1 −2

2 4 −2

1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now, we eliminate the nonzeros under the first diagonal element (and, as before, we

leave the eliminated nonzeros as they were). The result is

2 1 3 4 5

4

2

3

1

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 3 1 −6

−1 −1 −2

2 4 −2

1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Before doing the elimination associated with the second diagonal element, we

note that row 5 is the row with minimum degree, and within row 5, the element 1 in

column 3 has minimum column degree. Hence, we swap rows 2 and 5 and we swap

132 8. IMPLEMENTATION ISSUES

columns 1 and 3 to get

2 3 1 4 5

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 4

−1 −1 −2

4 2 −2

1 3 1 −6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now we eliminate the nonzeros under the second diagonal element to get

2 3 1 4 5

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 4

−1 −1 2

4 2 −18

1 3 1 −6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

For the third stage of elimination, note that row 3 is a minimum-degree row and

that, among the nonzero elements of that row, the −1 is in a minimum-degree column.

Hence, for this stage no permutations are needed. The result of the elimination is

2 3 1 4 5

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 4

−1 −1 2

4 2 −14

1 3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

For the next stage of the elimination, both of the remaining two rows have the

same degree, and hence we don’t need to swap rows. But we do need to swap columns

2. EXPLOITING SPARSITY 133

5 and 4 to put the −14 into the diagonal position. The result of the swap is

2 3 1 5 4

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 4

−1 −1 2

4 2 −14

1 3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

At this point, we notice that the remaining 2 × 2 uneliminated part of the matrix is

already upper triangular (in fact, diagonal), and hence no more elimination is needed.

With the elimination completed, we can extract the matrices L and U in the usual

way:

L =

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1

1

−1 −1

4 2 −14

1 3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1

1

−1

− 1
14

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

−1 1

4 −2 1

−1 −3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and

U =

2 3 1 5 4
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 4

−1 2

−14

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

134 8. IMPLEMENTATION ISSUES

(Note that the columns of L and the rows of U do not have any “original” indices

associated with them, and so no permutation is indicated across the top of L or down

the left side of U .)

This LU -factorization has five off-diagonal nonzeros in L and three off-diagonal

nonzeros in U for a total of eight off-diagonal nonzeros. In contrast, the LU factor-

ization from the previous section had a total of 12 off-diagonal nonzeros. Hence, the

minimum-degree ordering heuristic paid off for this example by reducing the number

of nonzeros by 33%. While such a reduction may not seem like a big deal for small

matrices such as our 5× 5 example, for large matrices the difference can be dramatic.

The fact that we have permuted the rows and columns to get this factorization has

only a small impact on how one uses the factorization to solve systems of equations.

To illustrate, let us solve the same system that we considered before: B∆xB = aj ,

where aj is given by (8.3). The first step in solving this system is to permute the rows

of aj so that they agree with the rows of L and then to use forward substitution to

solve the system Ly = aj . Writing it out, the system looks like this:

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

−1 1

4 −2 1

−1 −3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1

y2

y3

y4

y5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3

0

0

7

−2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The result of the forward substitution is that

(8.4)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1

y2

y3

y4

y5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3

0

0

7

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

2. EXPLOITING SPARSITY 135

The next step is to solve the system U∆xB = y. Writing this system out, we get

2 3 1 5 4
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6

1 4

−1 2

−14

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2

3

1

5

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆x2

∆x3

∆x1

∆x5

∆x4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3

0

0

7

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Using backward substitution, we see that

2

3

1

5

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆x2

∆x3

∆x1

∆x5

∆x4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

2

−1

− 1
2

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Finally, we rewrite the solution listing the elements of ∆xB in their original order:

∆xB =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆x1

∆x2

∆x3

∆x4

∆x5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1

0

2

1

− 1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Of course, the answer obtained here agrees with the one obtained at the end of the

previous section.
Even with good fill-in minimizing heuristics such as minimum-degree, the LU -

factorization remains a significant computational bottleneck. To see why, consider for
the moment dense matrices. If we were to write a subroutine to carry out an LU -
factorization, we would find that the main body of the routine would have a big triply
nested loop:

for each column index j {
for each remaining row index i {

for each remaining column index k {
update the (i,k) entry in accordance with
the aim to make the (i,j) entry be zero

}
}

}

136 8. IMPLEMENTATION ISSUES

Since each of these loops involves approximately m steps, the LU -factorization rou-

tine requires about m3 operations and hence is called an order m3 algorithm. Similar

considerations tell us that the forward and backward substitutions are both order m2

algorithms. This means that forward and backward substitution can be done much

faster than LU -factorization. Indeed, if m = 5000, then factorization takes a couple

of thousand times longer than a forward or backward substitution. Of course, this ar-

gument is for dense matrices. But for sparse matrices a similar, if less dramatic, effect

is seen. Typically, for sparse matrices, one expects that factorization will take from

10 to 100 times longer than substitution. Therefore, it is important to perform as few

LU -factorizations as possible. This is the subject of the next section.

3. Reusing a Factorization

In the previous two sections, we showed how to use an LU -factorization of B to

solve the system of equations

B∆xB = aj

for the primal step direction ∆xB. Since the basis matrix doesn’t change much from

one iteration of the simplex method to the next (columns get replaced by new ones

one at a time), we ask whether the LU -factorization of B from the current iteration

might somehow be used again to solve the systems of equations that arise in the next

iteration (or even the next several iterations).

Let B denote the current basis (for which a factorization has already been com-

puted) and let B̃ denote the basis of the next iteration. Then B̃ is simply B with

the column that holds the column vector ai associated with the leaving variable xi

replaced by a new column vector aj associated with the entering variable xj . This

verbal description can be converted into a formula:

(8.5) B̃ = B + (aj − ai)e
T
i .

Here, as before, ei denotes the vector that is all zeros except for a one in the position

associated with index i—to be definite, let us say that this position is the pth position

in the vector. To see why this formula is correct, it is helpful to realize that a column

vector, say a, times eT
i produces a matrix that is all zero except for the pth column,

which contains the column vector a.

Since the basis B is invertible, (8.5) can be rewritten as

B̃ = B
(

I + B−1(aj − ai)e
T
i

)

.

Denote the matrix in parentheses by E. Recall that aj = Nej , since it is the column

vector from A associated with the entering variable xj . Hence,

B−1aj = B−1Nej = ∆xB,

3. REUSING A FACTORIZATION 137

which is a vector we need to compute in the current iteration anyway. Also,

B−1ai = ei,

since ai is the column of B associated with the leaving variable xi. Therefore, we can

write E more simply as

E = I + (∆xB − ei)e
T
i .

Now, if E has a simple inverse, then we can use it together with the LU -factorization

of B to provide an efficient means of solving systems of equations involving B̃. The

following proposition shows that E does indeed have a simple inverse.

PROPOSITION 8.1. Given two column vectors u and v for which 1 + vT u �= 0,

(I + uvT)−1 = I − uvT

1 + vT u
.

PROOF. The proof is trivial. We simply multiply the matrix by its supposed in-

verse and check that we get the identity:

(

I + uvT
)

(

I − uvT

1 + vT u

)

= I + uvT − uvT

1 + vT u
− uvT uvT

1 + vT u

= I + uvT

(

1 − 1

1 + vT u
− vT u

1 + vT u

)

= I,

where the last equality follows from the observation that the parenthesized expression

vanishes. �

The identity in Proposition 8.1 may seem mysterious, but in fact it has a simple

derivation based on the explicit formula for the sum of a geometric series:

∞
∑

j=0

ξj =
1

1 − ξ
, for |ξ| < 1.

This is an identity for real numbers, but it also holds for matrices:

∞
∑

j=0

Xj = (I − X)
−1

,

provided that the absolute value of each of the eigenvalues of X is less than one (we

don’t prove this here, since it’s just for motivation). Assuming, for the moment, that

the absolute values of the eigenvalues of uvT are less than one (actually, all but one of

them are zero), we can expand (I+uvT)−1 in a geometric series, reassociate products,

138 8. IMPLEMENTATION ISSUES

and collapse the resulting geometric series to get
(

I + uvT
)−1

= I − uvT + (uvT)(uvT) − (uvT)(uvT)(uvT) + · · ·
= I − uvT + u(vT u)vT − u(vT u)(vT u)vT + · · ·
= I − u

(

1 − vT u + (vT u)2 − · · ·
)

vT

= I − u
1

1 + vT u
vT

= I − uvT

1 + vT u
,

where the last equality follows from the fact that 1/(1+ vT u) is a scalar and therefore

can be pulled out of the vector/matrix calculation.

Applying Proposition 8.1 to matrix E, we see that

E−1 = I − (∆xB − ei)e
T
i

1 + eT
i (∆xB − ei)

= I − (∆xB − ei)e
T
i

∆xi

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −∆xj1

∆xi

. . .

1 −∆xjp−1

∆xi

1
∆xi

−∆xjp+1

∆xi
1

. . .

−∆xjm

∆xi
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now, let’s look at the systems of equations that need to be solved in the next

iteration. Using tildes to denote items associated with the next iteration, we see that

we need to solve

B̃∆x̃B = ãj and B̃T ṽ = ẽi

(actually, we should probably put the tilde on the j instead of the aj and on the i
instead of the ei, but doing so seems less aesthetically appealing, even though it’s

more correct). Recalling that B̃ = BE, we see that the first system is equivalent to

BE∆x̃B = ãj ,

which can be solved in two stages:

Bu = ãj ,

E∆x̃B = u.

3. REUSING A FACTORIZATION 139

Of course, the second system (involving E) is trivial, since we have an explicit formula

for the inverse of E:

∆x̃B = E−1u

= u − ui

∆xi
(∆xB − ei)

(where, in keeping with our tradition, we have used ui to denote the element of u
associated with the basic variable xi—that is, ui is the pth entry of u).

The system involving B̃T is handled in the same manner. Indeed, first we rewrite

it as

ET BT ṽ = ẽi

and then observe that it too can be solved in two steps:

ET u = ẽi,

BT ṽ = u.

This time, the first step is the trivial one1:

u = E−T ẽi

= ẽi − ei
(∆xB − ei)

T ẽi

∆xi
.

Note that the fraction in the preceding equation is a scalar, and so this final expression

for u shows that it is a vector with at most two nonzeros—that is, the result is utterly

trivial even if the formula looks a little bit cumbersome.

We end this section by returning briefly to our example. Suppose that B̃ is B with

column 3 replaced by the vector aj given in (8.3). Suppose that

ãj =
[

5 0 0 0−1
]T

.

To solve B̃∆x̃B = ãj , we first solve Bu = ãj using our LU -factorization of B. The

result of the forward and backward substitutions is

u =
[

0 3 1−3− 1
2

]T

.

1Occasionally we use the superscript −T for the transpose of the inverse of a matrix. Hence, E−T =
(E−1)T .

140 8. IMPLEMENTATION ISSUES

Next, we solve for ∆x̃B = E−1u:

∆x̃B = u − u3

∆x3
(∆xB − e3) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

3

1

−3

− 1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1

0

2

1

− 1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

1

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

3
1
2

− 7
2

− 1
4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Of course, it is easy to check that we have gotten the correct answer: simply multiply

B̃ times ∆x̃B and check that it equals ãj . It does.

4. Performance Tradeoffs

The idea of writing the next basis as a product of the current basis times an easily

invertible matrix can be extended over several iterations. For example, if we look k
iterations out, we can write

Bk = B0E0E1 · · ·Ek−1.

If we have an LU -factorization of B0 and we have saved enough information to re-

construct each Ej , then we can use this product to solve systems of equations involv-

ing Bk.

Note that in order to reconstruct Ej , all we need to save is the primal step direction

vector ∆xj
B (and an integer telling which column it goes in). In actual implementa-

tions, these vectors are stored in lists. For historical reasons, this list is called an

eta-file (and the matrices Ej are called eta matrices). Given the LU -factorization of

B0 and the eta-file, it is an easy matter to solve systems of equations involving either

B or BT . However, as k gets large, the amount of work required to go through the

entire eta-file begins to dominate the amount of work that would be required to simply

form a new LU -factorization of the current basis. Hence, the best strategy is to use an

eta-file but with periodic refactorization of the basis (and accompanied purging of the

eta-file).

The question then becomes: how often should one recompute a factorization of

the current basis? To answer this question, suppose that we know that it takes F
arithmetic operations to form an LU -factorization (of a typical basis for the problem

at hand), S operations to do one forward/backward substitution, and E operations to

multiply by the inverse of one eta-matrix. Then the number of operations for the initial

iteration of the simplex method is F + 2S (since we need to do an LU -factorization

and two forward/backward substitutions—one for the system involving the basis and

the other for the system involving its transpose). Then, in the next iteration, we need

to do two forward/backward substitutions and two eta-inverse calculations. Each sub-

sequent iteration is the same as the previous, except that there are two extra eta-inverse

5. UPDATING A FACTORIZATION 141

calculations. Hence, the average number of arithmetic operations per iteration if we

refactorize after every K iterations is

T (K) =
1

K
((F + 2S) + 2(S + E) + 2(S + 2E)

+ · · · + 2(S + (K − 1)E))

=
1

K
F + 2S + (K − 1)E.

Treating K as a real variable for the moment, we can differentiate this expression with

respect to K, set the derivative equal to zero, and solve for K to get an estimate for

the optimal choice of K:

K =

√

F

E
.

As should be clear from our earlier discussions, E is of order m and, if the basis

matrix is dense, F is of order m3. Hence, for dense matrices, our estimates would

indicate that refactorizations should take place every m iterations or so. However,

for sparse matrices, F will be substantially less that m3—more like a constant times

m2—which would indicate that refactorizations should occur on the order of every√
m iterations. In practice, one typically allows the value of K to be a user-settable

parameter whose default value is set to something like 100.

5. Updating a Factorization

There is an important alternative to the eta-matrix method for reusing an LU -

factorization, which we shall describe in this section and the next. As always, it is

easiest to work with an example, so let’s continue with the same example we’ve been

using throughout this chapter.

Recall that the matrix B̃ is simply B with its third column replaced by the vector

aj given in (8.3):

B̃ =

1 2 3 4 5

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 7 −2

3 1 −2 1

−1 −2

−1 3 −6

4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

2 3 1 5 4

4

5

3

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 3 −6

4

−1 −2

7 2 −2

1 −2 3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(Note that we’ve highlighted the new column by putting a box around it.)

Since L−1B = U and B̃ differs from B in only one column, it follows that L−1B̃
coincides with U except for the column that got changed. And, since this column got

142 8. IMPLEMENTATION ISSUES

replaced by aj , it follows that this column of L−1B̃ contains L−1aj , which we’ve

already computed and found to be given by (8.4). Hence,

(8.6) L−1B̃ =

2 3 1 5 4

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 3 −6

4

−1 2

7 −14

1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As we saw before, the columns of L have no “original” indices to relate back to, and

so one can simply take them to be numbered in natural order. The same is then true

for the rows of L−1 and hence for the rows of L−1B̃. That is why the rows shown

above are numbered as they are. We’ve shown these numbers explicitly, since they are

about to get permuted.

The boxed column in (8.6) is called a spike, since it has nonzeros below the diag-

onal. The 4×4 submatrix constructed from rows 2 through 5 and columns 3, 1, 5, and

4 is called the bump. To get this matrix back into upper-triangular form, one could do

row operations to eliminate the nonzeros in the spike that lie below the diagonal. But

such row operations could create fill-in anywhere in the bump. Such fill-in would be

more than one would like to encounter. However, consider what happens if the spike

column is moved to the rightmost column of the bump, shifting the other columns left

one position in the process, and if the top row of the bump (i.e., row 2) is moved to

the bottom of the bump, shifting the other bump rows up by one. The result of these

permutations is

L−1B̃ =

2 1 5 4 3

1

3

4

5

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6 3

−1 2

−14 7

1 1

4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(For future reference, we’ve boxed the bump.) In general, the effect of this permutation

is that the column spike gets replaced by a row spike along the bottom row of the bump:

5. UPDATING A FACTORIZATION 143

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now any fill-in produced by row operations is confined to the spike row. In our exam-

ple, there is only one nonzero in the spike row, and to eliminate it we need to add 2/7
times row 4 to it. This row operation can be represented algebraically as multiplication

on the left by the matrix

Ẽ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

1

1
2
7 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

That is,

ẼL−1B̃ =

2 1 5 4 3

1

3

4

5

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6 3

−1 2

−14 7

1 1

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

If we denote the new upper triangular matrix by Ũ , then, solving for B̃, we get the

following factorization of B̃:

B̃ = LẼ−1Ũ .

We can use this new factorization to solve systems of equations. For example, to

solve

B̃∆x̃B = ãj ,

we first solve

(8.7) Ly = ãj

for y. Then, given y, we compute

z = Ẽy,

144 8. IMPLEMENTATION ISSUES

and finally we solve

Ũ∆x̃B = z

for ∆x̃B. It is clear from the following chain of equalities that these three steps com-

pute ∆x̃B:

∆x̃B = Ũ−1z = Ũ−1Ẽy = Ũ−1ẼL−1ãj = B̃−1ãj .

For our example, we use forward substitution to solve (8.7) for y. The result is

y =

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

−1

−1

7

−3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

1

3

4

5

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

−1

7

−3

−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Next, we apply the row operations (in our case, there is only one) to get z:

z = Ẽy =

1

3

4

5

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

−1

7

−3

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Finally, backward substitution using Ũ is performed to compute ∆x̃B:

2 1 5 4 3

1

3

4

5

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6 3

−1 2

−14 7

1 1

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2

1

5

4

3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

1

3

4

5

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

−1

7

−3

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The result of the backward substitution is

∆x̃B =

2

1

5

4

3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3
1
2

− 1
4

− 7
2
1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

3
1
2

− 7
2

− 1
4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

which agrees with the solution we got before using eta-matrices.

6. SHRINKING THE BUMP 145

6. Shrinking the Bump

There is an important enhancement to the factorization updating technique de-

scribed in the previous section. After permuting rows and columns converting the

spike column into a spike row, we can exploit the fact that the spike row is often very

sparse (coming as it does from what was originally the top row of the bump) and do

further row and column permutations to reduce the size of the bump. To see what

we mean, let’s look at our example. First, we note that the leftmost element of the

spike row is zero (and hence that the left column of the bump is a singleton column).

Therefore, we can simply declare that this column and the corresponding top row do

not belong to the bump. That is, we can immediately reduce the size of the bump by

one:

2 1 5 4 3

1

3

4

5

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6 3

−1 2

−14 7

1 1

4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This idea can be extended to any column that has a single nonzero in the bump. For

example, column 4 is a singleton column too. The trick now is to move this column to

the leftmost column of the bump, pushing the intermediate columns to the right, and

to apply the same permutation to the rows. After permuting the rows and columns like

this, the bump can be reduced in size again:

2 1 4 5 3

1

3

5

4

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −6 3

−1 2

1 1

−14 7

4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Furthermore, this reduction in the bump causes a new singleton column to appear

(since a singleton need only be a singleton within the bump), namely, column 3.

Hence, we permute once again. This time just the column gets permuted, since the

singleton is already in the correct row. The bump gets reduced in size once again, now

146 8. IMPLEMENTATION ISSUES

to a 1 × 1 bump, which is not really a bump at all:

2 1 4 3 5

1

3

5

4

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 3 −6

−1 2

1 1

7 −14

4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that we have restored upper triangularity using only permutations; no row oper-

ations were needed. While this doesn’t always happen, it is a common and certainly

welcome event.

Our example, being fairly small, doesn’t exhibit all the possible bump-reducing

permutations. In addition to looking for singleton columns, one can also look for

singleton rows. Each singleton row can be moved to the bottom of the bump. At the

same time, the associated column is moved to the right-hand column of the bump.

After this permutation, the right-hand column and the bottom row can be removed

from the bump.

Before closing this section, we reiterate a few important points. First, as the

bump gets smaller, the chances of finding further singletons increases. Also, with the

exception of the lower-right diagonal element of the bump, all other diagonal elements

are guaranteed to be nonzero, since the matrix U from which Ũ is derived has this

property. Therefore, most bump reductions apply the same permutation to the rows

as to the columns. Finally, we have illustrated how to update the factorization once,

but this technique can, of course, be applied over and over. Eventually, however, it

becomes more efficient to refactorize the basis from scratch.

7. Partial Pricing

In many real-world problems, the number of constraints m is small compared

with the number of variables n. Looking over the steps of the primal simplex method,

we see that the only steps involving n-vectors are Step 2, in which we pick a nonbasic

variable to be the entering variable,

pick j ∈ {j ∈ N : z∗j < 0};
Step 6, in which we compute the step direction for the dual variables,

∆zN = −(B−1N)T ei;

and Step 8, in which we update the dual variables,

z∗N ← z∗N − s∆zN .

Scanning all the nonbasic indices in Step 2 requires looking at n candidates. When n
is huge, this step is likely to be a bottleneck step for the algorithm. However, there is

8. STEEPEST EDGE 147

no requirement that all indices be scanned. We could simply scan from the beginning

and stop at the first index j for which z∗j is negative (as in Bland’s rule). However, in

practice, it is felt that picking an index j corresponding to a very negative z∗j produces

an algorithm that is likely to reach optimality faster. Therefore, the following scheme,

referred to as partial pricing is often employed. Initially, scan only a fraction of the

indices (say n/3), and set aside a handful of good ones (say, the 40 or so having the

most negative z∗j). Then use only these 40 in Steps 2, 6, and 8 for subsequent iterations

until less than a certain fraction (say, 1/2) of them remain eligible. At this point, use

(6.8) to compute the current values of a new batch of n/3 nonbasic dual variables, and

go back to the beginning of this partial pricing process by setting aside the best 40. In

this way, most of the iterations look like they only have 40 nonbasic variables. Only

occasionly does the grim reality of the full huge number of nonbasic variables surface.

Looking at the dual simplex method (Figure 6.1), we see that we aren’t so lucky.

In it, vectors of length n arise in the max-ratio test:

t =

(

max
j∈N

∆zj

z∗j

)−1

pick j ∈ argmaxj∈N
∆zj

z∗j
.

Here, the entire collection of nonbasic indices must be checked; otherwise, dual fea-

sibility will be lost and the algorithm will fail. Therefore, in cases where n is huge

relative to m and partial pricing is used, it is important not to use the dual simplex

method as a Phase I procedure. Instead, one should use the technique of adding artifi-

cial variables as we did in Chapter 2 to force an initial feasible solution.

8. Steepest Edge

In Chapter 4, we saw that one of the drawbacks of the largest-coefficient rule is

its sensitivity to the scale in which variables are quantified. In this section, we shall

discuss a pivot rule that partially remedies this problem. Recall that each step of the

simplex method is a step along an edge of the feasible region from one vertex to an

adjacent vertex. The largest coefficient rule picks the variable that gives the largest

rate of increase of the objective function. However, this rate of increase is measured

in the “space of nonbasic variables” (we view the basic variables simply as dependent

variables). Also, this space changes from one iteration to the next. Hence, in a certain

respect, it would seem wiser to measure the rate of increase in the larger space consist-

ing of all the variables, both basic and nonbasic. When the rate of increase is gauged

in this larger space, the pivot rule is called the steepest-edge rule. It is the subject of

this section.

148 8. IMPLEMENTATION ISSUES

Fix a nonbasic index j ∈ N . We wish to consider whether xj should be the

entering variable. If it were, the step direction vector would be

∆x =

[

∆xB

∆xN

]

=

[

−B−1Nej

ej

]

.

This vector points out along the edge corresponding to the pivot that would result by

letting xj enter the basis. As we know, the objective function is

f(x) = cT x = cT
BxB + cT

NxN .

The derivative of f(x) in the direction of ∆x is given by

∂f

∂∆x
= cT ∆x

‖∆x‖ =
cT
B∆xB + cT

N∆xN
‖∆x‖ .

The numerator is easy (and familiar):

cT
B∆xB + cT

N∆xN = cj − cT
BB−1Nej

=
(

cN − (B−1N)T cB
)

j

=−z∗j .

The denominator is more troublesome:

‖∆x‖2 = ‖∆xB‖2 + 1 = ‖B−1Nej‖2 + 1.

To calculate B−1Nej for every j ∈ N is exactly the same as computing the matrix

B−1N , which (as we’ve discussed before) is time consuming and therefore a com-

putation we wish to avoid. But it turns out that we can compute B−1Nej for every

j ∈ N once at the start (when B is essentially, if not identically, an identity matrix)

and then update the norms of these vectors using a simple formula, which we shall

now derive.

Let

νk = ‖B−1Nek‖2, k ∈ N .

Suppose that we know these numbers, we use them to perform one step of the simplex

method, and we are now at the beginning of the next iteration. As usual, let us denote

quantities in this next iteration by putting tildes on them. For example, B̃ denotes the

new basis matrix. As we’ve seen before, B̃ is related to B by the equation B̃ = BE,

where

E−1 = I − (∆xB − ei)e
T
i

∆xi
.

Now, let’s compute the new ν values:

ν̃k = aT
k B̃−T B̃−1ak

= aT
k B−T E−T E−1B−1ak

= aT
k B−T

(

I − ei(∆xB − ei)
T

∆xi

)(

I − (∆xB − ei)e
T
i

∆xi

)

B−1ak.(8.8)

EXERCISES 149

Recall from (8.2) that we must compute

v = B−T ei

in the course of the old iteration. If, in addition, we compute

w = B−T ∆xB

then, expanding out the product in (8.8) and expressing the resulting terms using v and

w, we get the following formula for quickly updating the old ν’s to the new ν’s:

ν̃k = νk − 2
aT

k v(w − v)T ak

∆xi
+ (aT

k v)2
‖∆xB − ei‖2

(∆xi)2
.

Recent computational studies using this update formula have shown that the steepest-

edge rule for choosing the entering variable is competitive against, if not superior to,

other pivot rules.

Exercises

8.1 (a) Without permuting rows or columns, compute the LU -factorization of

(8.9) B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 5 6

1 1 3 9 6

2 6 4

4 1

−1 −3 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(b) Solve the system B∆xB = aj where

aj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

2

1

3

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(c) Suppose that B̃ is B with its second column replaced by aj . Solve the

system B̃∆x̃B = ãj where

ãj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0

−1

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

using the eta-matrix method.

150 8. IMPLEMENTATION ISSUES

(d) Solve the system B̃∆x̃B = ãj again, this time using the factorization

updating method.

8.2 Use the minimum-degree ordering heuristic to find an LU -factorization of

the matrix B given by (8.9).

8.3 A permutation matrix is a matrix of zeros and ones for which each row has

one 1 and each column has one 1.

(a) Let B be an m × m matrix, and let P be a permutation matrix. Show

that PB is a matrix obtained by permuting the rows of B and that

BP is a matrix obtained by permuting the columns of B. Are the two

permutations the same?

(b) Show that every permutation of the rows of a matrix B corresponds to

multiplying B on the left by a permutation matrix.

(c) Show that for any permutation matrix P ,

P−1 = PT .

8.4 Explain how to use the factorization B = LU to solve

BT x = b.

Notes

Techniques for exploiting sparsity in matrix factorization have their roots in the

paper by Markowitz (1957). A few standard references on matrix factorization are the

books of Duff et al. (1986), Golub & VanLoan (1989), and Gill et al. (1991). The

eta-matrix technique given in Section 8.3 for using an old basis to solve systems of

equations involving the current basis was first described by Dantzig & Orchard-Hayes

(1954). The factorization updating technique described in Section 8.5 is the method

given by Forrest & Tomlin (1972). The bump reduction techniques of Section 8.6

were first introduced by Saunders (1973) and Reid (1982). The steepest-edge pivoting

rule is due to Goldfarb & Reid (1977). A similar rule, known as Devex, was given by

Harris (1973).

CHAPTER 9

Problems in General Form

Up until now, we have always considered our problems to be given in standard

form. However, for real-world problems it is often convenient to formulate problems

in the following form:

(9.1)

maximize cT x

subject to a ≤ Ax ≤ b

l ≤ x ≤ u.

Two-sided constraints such as those given here are called constraints with ranges. The

vector l is called the vector of lower bounds, and u is the vector of upper bounds. We

allow some of the data to take infinite values; that is, for each i = 1, 2, . . . ,m,

−∞ ≤ ai ≤ bi ≤ ∞,

and, for each j = 1, 2, . . . , n,

−∞ ≤ lj ≤ uj ≤ ∞.

In this chapter, we shall show how to modify the simplex method to handle problems

presented in this form.

1. The Primal Simplex Method

It is easiest to illustrate the ideas with an example:

maximize 3x1 − x2

subject to 1≤ −x1 + x2 ≤ 5

2≤−3x1 + 2x2 ≤ 10

2x1 − x2 ≤ 0

−2≤ x1

0≤ x2 ≤ 6.

With this formulation, zero no longer plays the special role it once did. Instead, that

role is replaced by the notion of a variable or a constraint being at its upper or lower

151

152 9. PROBLEMS IN GENERAL FORM

bound. Therefore, instead of defining slack variables for each constraint, we use wi

simply to denote the value of the ith constraint:

w1 = −x1 + x2

w2 =−3x1 + 2x2

w3 = 2x1 − x2.

The constraints can then be interpreted as upper and lower bounds on these variables.

Now when we record our problem in a dictionary, we will have to keep explicit track

of the upper and lower bound on the original xj variables and the new wi variables.

Also, the value of a nonbasic variable is no longer implicit; it could be at either its

upper or its lower bound. Hence, we shall indicate which is the case by putting a box

around the relevant bound. Finally, we need to keep track of the values of the basic

variables. Hence, we shall write our dictionary as follows:

l −2 0

u ∞ 6

ζ = 3x1 − x2 =−6

1 5 w1 = −x1 + x2 = 2

2 10 w2 =−3x1 + 2x2 = 6

−∞ 0 w3 = 2x1 − x2 =−4 .

Since all the wi’s are between their upper and lower bounds, this dictionary is feasi-

ble. But it is not optimal, since x1 could be increased from its present value at the

lower bound, thereby increasing the objective function’s value. Hence, x1 shall be the

entering variable for the first iteration. Looking at w1, we see that x1 can be raised

only 1 unit before w1 hits its lower bound. Similarly, x1 can be raised by 4/3 units,

at which point w2 hits its lower bound. Finally, if x1 were raised 2 units, then w3

would hit its upper bound. The tightest of these constraints is the one on w1, and so

w1 becomes the leaving variable—which, in the next iteration, will then be at its lower

bound. Performing the usual row operations, we get

l 1 0

u 5 6

ζ =−3w1 + 2x2 =−3

−2∞ x1 = −w1 + x2 =−1

2 10 w2 = 3w1 − x2 = 3

−∞ 0 w3 =−2w1 + x2 =−2 .

Note, of course, that the objective function value has increased (from −6 to −3). For

the second iteration, raising x2 from its lower bound will produce an increase in ζ.

2. THE DUAL SIMPLEX METHOD 153

Hence, x2 is the entering variable. Looking at the basic variables (x1, w2, and w3), we

see that w2 will be the first variable to hit a bound, namely, its lower bound. Hence,

w2 is the leaving variable, which will become nonbasic at its lower bound:

l 1 2

u 5 10

ζ = 3w1 − 2w2 =−1

−2∞ x1 = 2w1 − w2 = 0

0 6 x2 = 3w1 − w2 = 1

−∞ 0 w3 = w1 − w2 =−1 .

For the third iteration, w1 is the entering variable, and w3 is the leaving variable, since

it hits its upper bound before any other basic variables hit a bound. The result is

l −∞ 2

u 0 10

ζ = 3w3 + w2 = 2

−2∞ x1 = 2w3 + w2 = 2

0 6 x2 = 3w3 + 2w2 = 4

1 5 w1 = w3 + w2 = 2 .

Now for the next iteration, note that the coefficients on both w3 and w2 are positive.

But w3 is at its upper bound, and so if it were to change, it would have to decrease.

However, this would mean a decrease in the objective function. Hence, only w2 can

enter the basis, in which case x2 is the leaving variable getting set to its upper bound:

l −∞ 0

u 0 6

ζ = 1.5w3 + 0.5x2 = 3

−2∞ x1 = 0.5w3 + 0.5x2 = 3

2 10 w2 =−1.5w3 + 0.5x2 = 3

1 5 w1 =−0.5w3 + 0.5x2 = 3 .

For this dictionary, both w3 and x2 are at their upper bounds and have positive coeffi-

cients in the formula for ζ. Hence, neither can be moved off from its bound to increase

the objective function. Therefore, the current solution is optimal.

2. The Dual Simplex Method

The problem considered in the previous section had an initial dictionary that was

feasible. But as always, we must address the case where the initial dictionary is not

154 9. PROBLEMS IN GENERAL FORM

feasible. That is, we must define a Phase I algorithm. Following the ideas presented

in Chapter 5, we base our Phase I algorithm on a dual simplex method. To this end,

we need to introduce the dual of (9.1). So first we rewrite (9.1) as

maximize cT x

subject to Ax ≤ b

−Ax ≤ −a

x ≤ u

−x ≤ −l,

and adding slack variables, we have

maximize cT x

subject to Ax + f = b

−Ax + p = −a

x + t = u

−x + g = −l

f, p, t, g ≥ 0.

We see immediately from the inequality form of the primal that the dual can be written

as

(9.2)

minimize bT v − aT q + uT s − lT h

subject to AT (v − q) − (h − s) = c

v, q, s, h ≥ 0.

Furthermore, at optimality, the dual variables are complementary to the corresponding

primal slack variables:

(9.3)

fivi = 0 i = 1, 2, . . . ,m,

piqi = 0 i = 1, 2, . . . ,m,

tjsj = 0 j = 1, 2, . . . , n,

gjhj = 0 j = 1, 2, . . . , n.

Note that for each i, if bi > ai, then at optimality vi and qi must be complemen-

tary to each other. Indeed, if both were positive, then they could be reduced by an

equal amount without destroying feasibility, and the objective function value would

strictly decrease, thereby implying that the supposedly optimal solution is not opti-

mal. Similarly, if for some i, bi = ai, then it is no longer required that vi and qi be

complementary at optimality; but, given an optimal solution for which both vi and qi

are positive, we can decrease both these values at the same rate until the smaller of the

two reaches zero, all the while preserving feasibility of the solution and not changing

2. THE DUAL SIMPLEX METHOD 155

the objective function value. Hence, there always exists an optimal solution in which

every component of v is complementary to the corresponding component of q. The

same argument shows that if there exists an optimal solution, then there exists one in

which all the components of h and s are complementary to each other as well.

For a real variable ξ, its positive part ξ+ is defined as

ξ+ = max{ξ, 0}

and its negative part ξ− is defined similarly as

ξ− = max{−ξ, 0}.

Clearly, both ξ+ and ξ− are nonnegative. Furthermore, they are complementary,

ξ+ = 0 or ξ− = 0,

and their difference represents ξ:

ξ = ξ+ − ξ−.

From the complementarity of the components of v against the components of q,

we can think of them as the positive and negative parts of the components of just one

vector y. So let us write:

v = y+ and q = y−.

Similarly, let us write

h = z+ and s = z−.

If we impose these complementarity conditions not just at optimality but also from the

start, then we can eliminate v, q, s, and h from the dual and write it simply as

(9.4)
minimize bT y+ − aT y− + uT z+ − lT z−

subject to AT y − z = c,

where the notation y+ denotes the componentwise positive part of y, etc. This problem

is an example from the class of problems called piecewise linear programs. Usually,

piecewise linear programs are solved by converting them into linear programs. Here,

however, we wish to go in the other direction. We shall present an algorithm for (9.4)

that will serve as an algorithm for (9.2). We will call this algorithm the dual simplex

method for problems in general form.

To economize on the presentation, we shall present the dual simplex method in

the context of a Phase I algorithm for linear programs in general form. Also, to avoid

156 9. PROBLEMS IN GENERAL FORM

cumbersome notations, we shall present the algorithm with the following example:

(9.5)

maximize 2x1 − x2

subject to 0≤ x1 + x2 ≤ 6

2≤−x1 + 2x2 ≤ 10

x1 − x2 ≤ 0

−2≤ x1

1≤ x2 ≤ 5.

The piecewise linear formulation of the dual is

minimize 6y+
1 + 10y+

2 + 2z+
1 − z+

2

− 2y−
2 +∞y−

3 +∞z−1 + 5z−2
subject to y1 − y2 + y3 − z1 = 2

y1 + 2y2 − y3 − − z2 =−1.

Note that the objective function has coefficients that are infinite. The correct

convention is that infinity times a variable is plus infinity if the variable is positive,

zero if the variable is zero, and minus infinity if the variable is negative.

Since the objective function is nonlinear (taking positive and negative parts of

variables is certainly a nonlinear operation), we will not be able to do the usual row

operations on the objective function. Therefore, in each iteration, we simply study it

as is. But as usual, we prefer to think in terms of maximization, and so we record the

negative of the objective function:

(9.6)
−ξ =−6y+

1 − 10y+
2 − 2z+

1 + z+
2

+ 2y−
2 −∞y−

3 −∞z−1 − 5z−2 .

We can of course perform row operations on the two constraints, so we set up the

usual sort of dictionary for them:

(9.7)
z1 =−2 + y1 − y2 + y3

z2 = 1 + y1 + 2y2 − y3.

For the dual problem, all the action takes place at zero. That is, slopes in the objec-

tive function change when a variable goes from negative to positive. Since nonbasic

variable are supposed to be set where the action is, we associate a current solution

with each dictionary by setting the nonbasic variables to zero. Hence, the solution

associated with the initial dictionary is

(y1, y2, y3, z1, z2) = (0, 0, 0,−2, 1).

The fact that z1 is negative implies that z−1 is a positive number and hence that the

objective function value associated with this solution is minus infinity. Whenever the

2. THE DUAL SIMPLEX METHOD 157

objective function value is minus infinity, we say that the solution is infeasible. We

also refer to the associated dictionary as infeasible. Hence, the initial dictionary given

in (9.7) is infeasible.

The dual simplex method must start with a dual feasible solution. But since we

intend to use the dual simplex method simply to find a feasible solution for (9.5), we

are free to change the objective function in (9.5) any way we please. In particular, we

can change it from

ζ = 2x1 − x2

to

η = −2x1 − x2.

Making that change to the primal leaves the dual objective function unchanged, but

produces a feasible dual dictionary:

(9.8)
z1 = 2 + y1 − y2 + y3

z2 = 1 + y1 + 2y2 − y3.

For comparison purposes, let us also record the corresponding primal dictionary.

It is easy to write down the equations defining the wi’s, but how do we know whether

the xj’s are supposed to be at their upper or their lower bounds? The answer comes

from the requirement that the primal and dual satisfy the complementarity conditions

given in (9.3). Indeed, from the dual dictionary we see that z1 = 1. Hence, z+
1 = 1.

But since z+
1 is just a surrogate for h1, we see that h1 is positive and hence that g1

must be zero. This means that x1 must be at its lower bound. Similarly, for the sake

of complementarity, x2 must also be at its lower bound. Hence, the primal dictionary

is

l −2 1

u ∞ 5

η = −x1 − x2 = 1

0 6 w1 = x1 + x2 =−1

2 10 w2 = −x1 + 2x2 = 4

−∞ 0 w3 = x1 − x2 =−3 .

Note that it is infeasible, since w1 is not between its upper and lower bounds.

We are now ready to describe the first iteration of the dual simplex method. To

this end, we ask whether we can improve the dual objective function value by moving

one of the nonbasic variables (y1, y2, or y3) away from zero. Of course, each of these

three variables can be moved either to the positive or the negative side of zero; we

must analyze these six cases individually. First of all, note that since z1 is positive at

the current solution, it follows that z+
1 = z1 and z−1 = 0 in a neighborhood of the

current solution. A similar statement can be made for z2, and so we can rewrite (9.6)

158 9. PROBLEMS IN GENERAL FORM

locally around the current solution as

−ξ =−6y+
1 − 10y+

2 − 2z1 + z2

+ 2y−
2 −∞y−

3 .

Now, as y1 is increased from zero, the rate of increase of −ξ is simply the derivative of

the right-hand side with respect to y1, where we must keep in mind that z1 and z2 are

functions of y1 via the dictionary (9.8). Hence, the rate of increase is −6−2+1 = −7;

i.e., the objective function decreases at a rate of 7 units per unit increase of y1. If,

on the other hand, y2 is decreased from zero into negative territory, then the rate of

increase of −ξ is the negative of the derivative of the right-hand side. In this case

we get no contribution from y−
1 but we do get something from z1 and z2 for a total

of 2 − 1 = 1. Hence, the rate of increase as we move in this direction is one unit

increase per unit move. We can analyze changes to y2 and y3. The entire situation can

be summarized as follows:

y1 ր −6− 2 + 1 = −7

y1 ց 0 + 2− 1 = 1

y2 ր−10 + 2 + 2 = −6

y2 ց 2− 2− 2 = −2

y3 ր 0− 2− 1 = −3

y3 ց−∞+ 2 + 1 =−∞.

Of these six cases, the only one that brings about an increase in −ξ is the one in which

y1 is sent negative. Hence, y1 shall be our entering variable, and it will go negative.

To find the leaving variable, we must ask: as y1 goes negative, which of z1 and z2

will hit zero first? For the current dictionary, z2 gets to zero first and so becomes the

leaving variable. Performing the usual row operations, the new dictionary for the dual

problem is

z1 = 1 + z2 − 3y2 + 2y3

y1 =−1 + z2 − 2y2 − y3.

Let us have a look at the new primal dictionary. The fact that y1 was the entering

variable in the dual dictionary implies that w1 is the leaving variable in the primal.

Furthermore, the fact that y1 has gone negative implies that y−
1 is now positive, and so

complementarity then demands that q1 be zero; i.e., w1 should go to its lower bound.

The fact that z2 was the leaving variable in the dual dictionary implies that x2 is the

EXERCISES 159

entering variable in the primal. Hence, the new primal dictionary is

l −2 0

u ∞ 6

η = −x1 − w1 = 2

1 5 x2 = −x1 + w1 = 2

2 10 w2 =−3x1 + 2w1 = 6

−∞ 0 w3 = 2x1 − w1 =−4 .

We are now ready to begin the second iteration. Therefore, we ask which nonbasic

variable should be moved away from zero (and in which direction). As before, we first

note that z1 positive implies that z+
1 = z1 and z−1 = 0 and that y1 negative implies that

y+
1 = 0 and y−

1 = −y1. Hence, the objective function can be written locally around

the current solution as

−ξ = − 10y+
2 − 2z1 + z+

2

+ 2y−
2 −∞y−

3 − 5z−2 .

We now summarize the possibilities in a small table:

z2 ր 1− 2 = −1

z2 ց −5 + 2 = −3

y2 ր−10 + 6 = −4

y2 ց 2− 6 = −4

y3 ր 0− 4 = −4

y3 ց−∞+ 4 =−∞.

Note that all the changes are negative, meaning that there are no possibilities to in-

crease the objective function any further. That is, the current dual solution is optimal.

Of course, this also could have been deduced by observing that the primal dictionary

is feasible (which is what we are looking for, after all).

Even though this example of the dual simplex method has terminated after only

one iteration, it should be clear how to proceed had it not terminated.

Now that we have a feasible solution for the primal, we could solve the problem

to optimality by simply reinstating the original objective function and proceeding by

applying the primal simplex method in a Phase II procedure to find the optimal solu-

tion. Since the primal simplex method has already been discussed, we stop here on

this problem.

Exercises

Solve the following linear programming problems:

160 9. PROBLEMS IN GENERAL FORM

9.1 maximize −x1 + x2

subject to −x1 + x2 ≤ 5

x1 − 2x2 ≤ 9

0 ≤ x1 ≤ 6

0 ≤ x2 ≤ 8.

9.2 maximize −3x1 − x2 + x3 + 2x4 − x5 + x6 − x7 − 4x8

subject to x1 + 4x3 + x4 − 5x5 − 2x6 + 3x7 − 6x8 = 7

x2 − 3x3 − x4 + 4x5 + x6 − 2x7 + 5x8 =−3

0 ≤ x1 ≤ 8

0 ≤ x2 ≤ 6

0 ≤ x3 ≤ 10

0 ≤ x4 ≤ 15

0 ≤ x5 ≤ 2

0 ≤ x6 ≤ 10

0 ≤ x7 ≤ 4

0 ≤ x8 ≤ 3.

Notes

Dantzig (1955) was the first to consider variants of the simplex method that handle

bounds and ranges implicitly.

CHAPTER 10

Convex Analysis

This book is mostly about linear programming. However, this subject, important

as it is, is just a subset of a larger subject called convex analysis. In this chapter, we

shall give a brief introduction to this broader subject. In particular, we shall prove a

few of the fundamental results of convex analysis and see that their proofs depend on

some of the theory of linear programming that we have already developed.

1. Convex Sets

Given a finite set of points, z1, z2, . . . , zn, in R
m, a point z in R

m is called a

convex combination of these points if1

z =
n

∑

j=1

tjzj ,

where tj ≥ 0 for each j and
∑n

j=1 tj = 1. It is called a strict convex combination if

none of the tj’s vanish. For n = 2, the set of all convex combinations of two points is

simply the line segment connecting them.

A subset S of R
m is called convex if, for every x and y in S, S also contains all

points on the line segment connecting x and y. That is, tx + (1 − t)y ∈ S, for every

0 < t < 1. See Figure 10.1.

Certain elementary properties of convex sets are trivial to prove. For example,

the intersection of an arbitrary collection of convex sets is convex. Indeed, let Sα,

α ∈ I , denote a collection of convex sets indexed by some set I . Then the claim is

that ∩α∈ISα is convex. To see this, consider an arbitrary pair of points x and y in the

intersection. It follows that x and y are in each Sα. By the convexity of Sα it follows

that Sα contains the line segment connecting x and y. Since each of these sets contains

the line segment, so does their intersection. Hence, the intersection is convex.

Here is another easy one:

THEOREM 10.1. A set C is convex if and only if it contains all convex combina-

tions of points in C.

1Until now we’ve used subscripts for the components of a vector. In this chapter, subscripts will be

used to list sequences of vectors. Hopefully, this will cause no confusion.

161

162 10. CONVEX ANALYSIS

x
y

FIGURE 10.1. The set on the left is convex—for any pair of points

in the set, the line segment connecting the two points is also con-

tained in the set. The set on the right is not convex—there exists

pairs of points, such as the x and y shown, for which the connecting

line segment is not entirely in the set.

PROOF. Let C be a convex set. By definition, C contains all convex combinations

of pairs of points in C. The first nontrivial step is to show that C contains all convex

combinations of triples of points in C. To see this, fix z1, z2, and z3 in C and consider

z = t1z1 + t2z2 + t3z3,

where tj ≥ 0 for each j and
∑3

j=1 tj = 1. If any of the tj’s vanish, then z is really

just a convex combination of two points and so belongs to C. Hence, suppose that

each of the tj’s is strictly positive. Rewrite z as follows:

z = (1 − t3)

(

t1
1 − t3

z1 +
t2

1 − t3
z2

)

+ t3z3

= (1 − t3)

(

t1
t1 + t2

z1 +
t2

t1 + t2
z2

)

+ t3z3.

Since C contains all convex combinations of pairs of points, it follows that

t1
t1 + t2

z1 +
t2

t1 + t2
z2 ∈ C.

Now, since z is a convex combination of the two points t1
t1+t2

z1 + t2
t1+t2

z2 and z3,

both of which belong to C, it follows that z is in C. It is easy to see (pun intended)

that this argument can be extended to an inductive proof that C contains all convex

combinations of finite collections of points in C. Indeed, one must simply show that

the fact that C contains all convex combinations of n points from C implies that it

contains all convex combinations of n + 1 points from C. We leave the details to the

reader.

Of course, proving that a set is convex if it contains every convex combination of

its points is trivial: simply take convex combinations of pairs to get that it is convex.

�

2. CARATHÉODORY’S THEOREM 163

For each set S in R
m (not necessarily convex), there exists a smallest convex set,

which we shall denote by conv(S), containing S. It is defined, quite simply, as the

intersection of all convex sets containing S. From our discussion about intersections,

it follows that this set is convex. The set conv(S) is called the convex hull of S.

This definition can be thought of as a definition from the “outside,” since it involves

forming the intersection of a collection of sets that contain S. Our next theorem gives

a characterization of convex sets from the “inside”:

THEOREM 10.2. The convex hull conv(S) of a set S in R
m consists precisely of

the set of all convex combinations of finite collections of points from S.

PROOF. Let H denote the set of all convex combinations of finite sets of points

in S:

H =

⎧

⎨

⎩

z =

n
∑

j=1

tjzj : n ≥ 1, zj ∈ S and tj > 0 for all j, and

n
∑

j=1

tj = 1

⎫

⎬

⎭

.

It suffices to show that (1) H contains S, (2) H is convex, and (3) every convex set

containing S also contains H .

To see that H contains S, just take n = 1 in the definition of H .

To see that H is convex, fix two points x and y in H and a real number 0 < t < 1.

We must show that z = tx + (1 − t)y ∈ H . The fact that x ∈ H implies that

x =
∑r

j=1 pjxj , for some r ≥ 1, where pj > 0 for j = 1, 2, . . . , r,
∑r

j=1 pj = 1,

and xj ∈ S for j = 1, 2, . . . , r. Similarly, the fact that y is in H implies that y =
∑s

j=1 qjyj , for some s ≥ 1, where qj > 0 for j = 1, 2, . . . , s,
∑s

j=1 qj = 1, and

yj ∈ S for j = 1, 2, . . . , s. Hence,

z = tx + (1 − t)y =

r
∑

j=1

tpjxj +

s
∑

j=1

(1 − t)qjyj .

Since the coefficients (tp1, . . . , tpr, (1 − t)q1, . . . , (1 − t)qs) are all positive and sum

to one, it follows that this last expression for z is a convex combination of r + s points

from S. Hence, z is in H . Since x and y were arbitrary points in H and t was an

arbitrary real number between zero and one, the fact that z ∈ H implies that H is

convex.

It remains simply to show that H is contained in every convex set containing S.

Let C be such a set (i.e., convex and containing S). From Theorem 10.1 and the fact

that C contains S, it follows that C contains all convex combinations of points in S.

Hence, C contains H . �

2. Carathéodory’s Theorem

In the previous section, we showed that the convex hull of a set S can be con-

structed by forming all convex combinations of finite sets of points from S. In 1907,

164 10. CONVEX ANALYSIS

Carathéodory showed that it is not necessary to use all finite sets. Instead, m+1 points

suffice:

THEOREM 10.3. The convex hull conv(S) of a set S in R
m consists of all convex

combinations of m + 1 points from S:

conv(S) =

⎧

⎨

⎩

z =
m+1
∑

j=1

tjzj : zj ∈ S and tj ≥ 0 for all j, and
∑

j

tj = 1

⎫

⎬

⎭

.

PROOF. Let H denote the set on the right. From Theorem 10.2, we see that H
is contained in conv(S). Therefore, it suffices to show that every point in conv(S)
belongs to H . To this end, fix a point z in conv(S). By Theorem 10.2, there exists a

collection of, say, n points z1, z2, . . . , zn in S and associated nonnegative multipliers

t1, t2, . . . , tn summing to one such that

(10.1) z =

n
∑

j=1

tjzj .

Let A denote the matrix consisting of the points z1, z2, . . . , zn as the columns of A:

A =
[

z1 z2 · · · zn

]

.

Also, let x∗ denote the vector consisting of the multipliers t1, t2, . . . , tn:

x∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

t1

t2
...

tn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Finally, let b = z. Then from (10.1), we see that x∗ is feasible for the following linear

programming problem:

(10.2)

maximize cT x

subject to Ax = b

eT x = 1

x ≥ 0.

The fundamental theorem of linear programming (Theorem 3.4) tells us that every

feasible linear program has a basic feasible solution. For such a solution, only the

basic variables can be nonzero. The number of basic variables in (10.2) coincides

with the number of equality constraints; that is, there are at most m + 1 variables that

are nonzero. Hence, this basic feasible solution corresponds to a convex combination

of just m + 1 of the original n points. (See Exercise 10.5.) �

3. THE SEPARATION THEOREM 165

It is easy to see that the number m+1 is the best possible. For example, the point

(1/(m+1), 1/(m+1), . . . , 1/(m+1)) in R
m belongs to the convex hull of the m+1

points e1, e2, . . . , em, 0 but is not a convex combination of any subset of them.

3. The Separation Theorem

We shall define a halfspace of R
n to be any set given by a single (nontrivial) linear

inequality:

(10.3) {x ∈ R
n :

n
∑

j=1

ajxj ≤ b}, (a1, a2, . . . , an) �= 0.

Every halfspace is convex. To see this, suppose that x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) both satisfy the linear inequality in (10.3). Fix t between zero and

one. Then both t and 1 − t are nonnegative, and so multiplying by them preserves the

direction of inequality. Therefore, multiplying
∑

j ajxj ≤ b by t and
∑

j ajyj ≤ b
by 1 − t and then adding, we get

∑

j

aj (txj + (1 − t)yj) ≤ b.

That is, tx + (1 − t)y also satisfies the inequality defining the halfspace.

If we allow the vector of coefficients (a1, a2, . . . , an) in the definition of a half-

space to vanish, then we call the set so defined a generalized halfspace. It is easy to

see that every generalized halfspace is simply a halfspace, all of R
n, or the empty set.

Also, every generalized halfspace is clearly convex.

A polyhedron is defined as the intersection of a finite collection of generalized

halfspaces. That is, a polyhedron is any set of the form

{x ∈ R
n :

n
∑

j=1

aijxj ≤ bi, i = 1, 2, . . . , m}.

Every polyhedron, being the intersection of a collection of convex sets, is convex.

The following theorem is called the Separation Theorem for polyhedra.

THEOREM 10.4. Let P and P̃ be two disjoint nonempty polyhedra in R
n. Then

there exist disjoint halfspaces H and H̃ such that P ⊂ H and P̃ ⊂ H̃ .

PROOF. Suppose that P and P̃ are given by the following systems of inequalities:

P = {x : Ax ≤ b},
P̃ = {x : Ãx ≤ b̃}.

The disjointness of P and P̃ implies that there is no solution to the system

(10.4)

[

A

Ã

]

x ≤
[

b

b̃

]

.

166 10. CONVEX ANALYSIS

To continue the proof, we need a result known as Farkas’ Lemma, which says that

Ax ≤ b has no solutions if and only if there is an m-vector y such that

AT y = 0

y ≥ 0

bT y < 0.

We shall prove this result in the next section. For now, let us apply Farkas’ Lemma to

the situation at hand. Indeed, the fact that there are no solutions to (10.4) implies that

there exists a vector, which we shall write in block form as
[

y

ỹ

]

,

such that

[

AT ÃT
]

[

y

ỹ

]

= AT y + ÃT ỹ = 0(10.5)

[

y

ỹ

]

≥ 0(10.6)

[

bT b̃T
]

[

y

ỹ

]

= bT y + b̃T ỹ < 0.(10.7)

From the last condition, we see that either bT y < 0 or b̃T ỹ < 0 (or both). Without

loss of generality, we may assume that

bT y < 0.

Farkas’ Lemma (this time applied in the other direction) together with the nonempti-

ness of P now implies that

AT y �= 0.

Put

H =
{

x : (AT y)T x ≤ bT y
}

and H̃ =
{

x : (AT y)T x ≥ −b̃T ỹ
}

.

These sets are clearly halfspaces. To finish the proof, we must show that they are

disjoint and contain their corresponding polyhedra.

First of all, it follows from (10.7) that H and H̃ are disjoint. Indeed, suppose that

x ∈ H . Then (AT y)T x ≤ bT y < −b̃T ỹ, which implies that x is not in H̃ .

To show that P ⊂ H , fix x in P . Then Ax ≤ b. Since y ≥ 0 (as we know from

(10.6)), it follows then that yT Ax ≤ yT b. But this is exactly the condition that says

that x belongs to H . Since x was an arbitrary point in P , it follows that P ⊂ H .

Showing that P̃ is a subset of H̃ is similar. Indeed, suppose that x ∈ P̃ . Then

Ãx ≤ b̃. Multiplying on the left by −ỹT and noting that ỹ ≥ 0, we see that −ỹT Ãx ≥

4. FARKAS’ LEMMA 167

−ỹT b̃. But from (10.5) we see that −ỹT Ãx = yT Ax, and so this last inequality is

exactly the condition that x ∈ H̃ . Again, the arbitrariness of x ∈ P̃ implies that

P̃ ⊂ H̃ , and the proof is complete. �

4. Farkas’ Lemma

The following result, known as Farkas’ Lemma, played a fundamental role in

the proof of the separation theorem of the preceding section (Theorem 10.4). In this

section, we state it formally as a lemma and give its proof.

LEMMA 10.5. The system Ax ≤ b has no solutions if and only if there is a y such

that

AT y = 0

y ≥ 0(10.8)

bT y < 0.

PROOF. Consider the linear program

maximize 0

subject to Ax ≤ b

and its dual

minimize bT y

subject to AT y = 0

y ≥ 0.

Clearly, the dual is feasible (just take y = 0). So if the primal is feasible, then the

dual is bounded. Also, if the primal is infeasible, the dual must be unbounded. That

is, the primal is infeasible if and only if the dual is unbounded. To finish the proof, we

claim that the dual is unbounded if and only if there exists a solution to (10.8). Indeed,

suppose that the dual is unbounded. The dual simplex method is guaranteed to prove

that it is unbounded, and it does so as follows. At the last iteration, a step direction

∆y is computed that preserves feasibility, i.e.,

AT ∆y = 0,

is a descent direction for the objective function, i.e.,

bT ∆y < 0,

and is a direction for which the step length is unbounded, i.e.,

∆y ≥ 0.

But these three properties show that ∆y is the solution to (10.8) that we were looking

for. Conversely, suppose that there is a solution to (10.8). Call it ∆y. It is easy to see

that starting from y = 0, this step direction provides an unbounded decrease in the

objective function. This completes the proof. �

168 10. CONVEX ANALYSIS

5. Strict Complementarity

In this section, we consider the usual inequality-form linear programming prob-

lem, which we write with its slack variables shown explicitly:

(10.9)

maximize cT x

subject to Ax + w = b

x, w ≥ 0.

As we know, the dual can be written as follows:

(10.10)

minimize bT y

subject to AT y − z = c

y, z ≥ 0.

In our study of duality theory in Chapter 5, we saw that every pair of optimal solu-

tions to these two problems possesses a property called complementary slackness. If

(x∗, w∗) denotes an optimal solution to the primal and (y∗, z∗) denotes an optimal

solution to the dual, then the complementary slackness theorem says that, for each

j = 1, 2, . . . , n, either x∗
j = 0 or z∗j = 0 (or both) and, for each i = 1, 2, . . . ,m,

either y∗
i = 0 or w∗

i = 0 (or both). In this section, we shall prove that there are opti-

mal pairs of solutions for which the parenthetical “or both” statements don’t happen.

That is, there are optimal solutions for which exactly one member of each pair (x∗
j , z

∗
j)

vanishes and exactly one member from each pair (y∗
i , w∗

i) vanishes. In such cases, we

say that the optimal solutions are strictly complementary to each other. The strictness

of the complementary slackness is often expressed by saying that x∗ + z∗ > 0 and

y∗ + w∗ > 02.

As a warm-up, we prove the following theorem.

THEOREM 10.6. If both the primal and the dual have feasible solutions, then

there exists a primal feasible solution (x̄, w̄) and a dual feasible solution (ȳ, z̄) such

that x̄ + z̄ > 0 and ȳ + w̄ > 0.

PROOF. If there is a feasible primal solution x̄ for which x̄j > 0, then it doesn’t

matter whether there is a feasible dual solution whose jth slack variable is strictly

positive. But what about indices j for which xj = 0 for every feasible solution? Let j
be such an index. Consider the following linear programming problem:

(10.11)

maximize xj

subject to Ax≤ b

x≥ 0.

2Given any vector ξ, we use the notation ξ > 0 to indicate that every component of ξ is strictly

positive: ξj > 0 for all j

5. STRICT COMPLEMENTARITY 169

This problem is feasible, since its constraints are the same as for the original primal

problem (10.9). Furthermore, it has an optimal solution (the corresponding objective

function value is zero). The dual of (10.11) is:

minimize bT y

subject to AT y ≥ ej

y ≥ 0.

By the strong duality theorem, the dual has an optimal solution, say y′. Letting z′

denote the corresponding slack variable, we have that

AT y′ − z′ = ej

y′, z′ ≥ 0.

Now, let y be any feasible solution to (10.10) and let z be the corresponding slack

variable. Then the above properties of y′ and z′ imply that y + y′ is feasible for

(10.10) and its slack is z + z′ + ej . Clearly, for this dual feasible solution we have

that the jth component of its vector of slack variables is at least 1. To summarize, we

have shown that, for each j, there exists a primal feasible solution, call it (x(j), w(j)),

and a dual feasible solution, call it (y(j), z(j)), such that x
(j)
j + z

(j)
j > 0. In the same

way, one can exhibit primal and dual feasible solutions for which each individual dual

variable and its corresponding primal slack add to a positive number. To complete the

proof, we now form a strict convex combination of these n + m feasible solutions.

Since the feasible region for a linear programming problem is convex, these convex

combinations preserve primal and dual feasibility. Since the convex combination is

strict, it follows that every primal variable and its dual slack add to a strictly positive

number as does every dual variable and its primal slack. �

A variable xj that must vanish in order for a linear programming problem to be

feasible is called a null variable. The previous theorem says that if a variable is null,

then its dual slack is not null.

The following theorem is called the Strict Complementary Slackness Theorem

THEOREM 10.7. If a linear programming problem has an optimal solution, then

there is an optimal solution (x∗, w∗) and an optimal dual solution (y∗, z∗) such that

x∗ + z∗ > 0 and y∗ + w∗ > 0.

We already know from the complementary slackness theorem (Theorem 5.1) that

x∗ and z∗ are complementary to each other as are y∗ and w∗. This theorem then

asserts that the complementary slackness is strict.

PROOF. The proof is much the same as the proof of Theorem 10.6 except this

time we look at an index j for which xj vanishes in every optimal solution. We then

170 10. CONVEX ANALYSIS

consider the following problem:

(10.12)

maximize xj

subject to Ax≤ b

cT x≥ ζ∗

x≥ 0,

where ζ∗ denotes the objective value of the optimal solution to the original problem. In

addition to the dual variables y corresponding to the Ax ≤ b constraints, there is one

more dual variable, call it t, associated with the constraint cT x ≥ ζ∗. The analysis

of problem (10.12) is similar to the analysis given in Theorem 10.6 except that one

must now consider two cases: (a) the optimal value of t is strictly positive and (b) the

optimal value of t vanishes. The details are left as an exercise (see Exercise 10.6). �

Exercises

10.1 Is R
n a polyhedron?

10.2 For each b ∈ R
m, let ξ∗(b) denote the optimal objective function value for

the following linear program:

maximize cT x

subject to Ax≤ b

x≥ 0.

Suppose that ξ∗(b) < ∞ for all b. Show that the function ξ∗(b) is concave (a

function f on R
m is called concave if f(tx+(1−t)y) ≥ tf(x)+(1−t)f(y)

for all x and y in R
m and all 0 < t < 1). Hint: Consider the dual problem.

10.3 Describe how one needs to modify the proof of Theorem 10.4 to get a proof

of the following result:

Let P and P̃ be two disjoint polyhedra in R
n. Then there exist

disjoint generalized halfspaces H and H̃ such that P ⊂ H and

P̃ ⊂ H̃ .

10.4 Find a strictly complementary solution to the following linear programming

problem and its dual:

maximize 2x1 + x2

subject to 4x1 + 2x2 ≤ 6

x2 ≤ 1

2x1 + x2 ≤ 3

x1, x2 ≥ 0.

NOTES 171

10.5 There is a slight oversimplification in the proof of Theorem 10.3. Can you

spot it? Can you fix it?

10.6 Complete the proof of Theorem 10.7.

10.7 Interior solutions. Prove the following statement: If a linear programming

problem has feasible solutions and the set of feasible solutions is bounded,

then there is a strictly positive dual feasible solution: y > 0 and z > 0.

Hint. It is easier to prove the equivalent statement: if a linear programming

problem has feasible solutions and the dual has null variables, then the set

of primal feasible solutions is an unbounded set.

Notes

Carathéodory (1907) proved Theorem 10.3. Farkas (1902) proved Lemma 10.5.

Several similar results were discovered by many others, including Gordan (1873),

Stiemke (1915), Ville (1938), and Tucker (1956). The standard reference on convex

analysis is Rockafellar (1970).

CHAPTER 11

Game Theory

In this chapter, we shall study if not the most practical then certainly an elegant

application of linear programming. The subject is called game theory, and we shall

focus on the simplest type of game, called the finite two-person zero-sum game, or

just matrix game for short. Our primary goal shall be to prove the famous Minimax

Theorem, which was first discovered and proved by John von Neumann in 1928. His

original proof of this theorem was rather involved and depended on another beautiful

theorem from mathematics, the Brouwer Fixed-Point Theorem. However, it eventu-

ally became clear that the solution of matrix games could be found by solving a certain

linear programming problem and that the Minimax Theorem is just a fairly straight-

forward consequence of the Duality Theorem.

1. Matrix Games

A matrix game is a two-person game defined as follows. Each person first selects,

independently of the other, an action from a finite set of choices (the two players in

general will be confronted with different sets of actions from which to choose). Then

both reveal to each other their choice. If we let i denote the first player’s choice and

j denote the second player’s choice, then the rules of the game stipulate that the first

player will pay the second player aij dollars. The array of possible payments

A = [aij]

is presumed known to both players before the game begins. Of course, if aij is negative

for some pair (i, j), then the payment goes in the reverse direction — from the second

player to the first. For obvious reasons, we shall refer to the first player as the row

player and the second player as the column player. Since we have assumed that the

row player has only a finite number of actions from which to choose, we can enumerate

these actions and assume without loss of generality that i is simply an integer selected

from 1 to m. Similarly, we can assume that j is simply an index ranging from 1
to n (in its real-world interpretation, row action 3 will generally have nothing to do

with column action 3—the number 3 simply indicates that it is the third action in the

enumerated list of choices).

Let us look at a specific familiar example. Namely, consider the game every

child knows, called Paper–Scissors–Rock. To refresh the memory of older readers,

173

174 11. GAME THEORY

this is a two-person game in which at the count of three each player declares either

Paper, Scissors, or Rock. If both players declare the same object, then the round is a

draw. But Paper loses to Scissors (since scissors can cut a piece of paper), Scissors

loses to Rock (since a rock can dull scissors), and finally Rock loses to Paper (since a

piece of paper can cover up a rock—it’s a weak argument but that’s the way the game

is defined). Clearly, for this game, if we enumerate the actions of declaring Paper,

Scissors, or Rock as 1, 2, 3, respectively, then the payoff matrix is

⎡

⎢

⎢

⎣

0 1 −1

−1 0 1

1 −1 0

⎤

⎥

⎥

⎦

.

With this matrix, neither player has an obvious (i.e., deterministic) winning strategy.

If the column player were always to declare Paper (hoping that the row player will

declare Rock), then the row player could counter by always declaring Scissors and

guaranteeing herself a winning of one dollar in every round. In fact, if the column

player were to stick to any specific declaration, then the row player would eventually

get wise to it and respond appropriately to guarantee that she wins. Of course, the

same logic applies to the row player. Hence, neither player should employ the same

declaration over and over. Instead, they should randomize their declarations. In fact,

due to the symmetry of this particular game, both players should make each of the

three possible declarations with equal likelihood.

But what about less trivial games? For example, suppose that the payoffs in the

Paper–Scissors–Rock game are altered so that the payoff matrix becomes

A =

⎡

⎢

⎢

⎣

0 1 −2

−3 0 4

5 −6 0

⎤

⎥

⎥

⎦

.

This new game still has the property that every deterministic strategy can be foiled

by an intelligent opponent. Hence, randomized behavior remains appropriate. But the

best probabilities are no longer uniformly 1/3. Also, who has the edge in this game?

Since the total of the payoffs that go from the row player to the column player is 10
whereas the total of the payoffs that go to the row player is 11, we suspect that the row

player might have the edge. But this is just a guess. Is it correct? If it is correct, how

much can the row player expect to win on average in each round? If the row player

knows this number accurately and the column player does not, then the row player

could offer to pay the column player a small fee for playing each round. If the fee

is smaller than the expected winnings, then the row player can still be confident that

over time she will make a nice profit. The purpose of this chapter is to answer these

questions precisely.

2. OPTIMAL STRATEGIES 175

Let us return now to the general setup. Consider the row player. By a randomized

strategy, we mean that, at each play of the game, it appears (from the column player’s

viewpoint) that the row player is making her choices at random according to some

fixed probability distribution. Let yi denote the probability that the row player selects

action i. The vector y composed of these probabilities is called a stochastic vector.

Mathematically, a vector is a stochastic vector if it has nonnegative components that

sum up to one:

y ≥ 0 and eT y = 1,

where e denotes the vector consisting of all ones. Of course, the column player must

also adopt a randomized strategy. Let xj denote the probability that the column player

selects action j, and let x denote the stochastic vector composed of these probabilities.

The expected payoff to the column player is computed by summing over all pos-

sible outcomes the payoff associated with that outcome times the probability of the

outcome. The set of possible outcomes is simply the set of pairs (i, j) as i ranges

over the row indices (1, 2, . . . , m) and j ranges over the column indices (1, 2, . . . , n).

For outcome (i, j) the payoff is aij , and, assuming that the row and column play-

ers behave independently, the probability of this outcome is simply yixj . Hence, the

expected payoff to the column player is

∑

i,j

yiaijxj = yT Ax.

2. Optimal Strategies

Suppose that the column player adopts strategy x (i.e., decides to play in accor-

dance with the stochastic vector x). Then the row player’s best defense is to use the

strategy y∗ that achieves the following minimum:

(11.1)

minimize yT Ax

subject to eT y = 1

y ≥ 0.

From the fundamental theorem of linear programming, we know that this problem has

a basic optimal solution. For this problem, the basic solutions are simply y vectors that

are zero in every component except for one, which is one. That is, the basic optimal

solutions correspond to deterministic strategies. This is fairly obvious if we look again

at our example. Suppose that

x =

⎡

⎢

⎢

⎣

1/3

1/3

1/3

⎤

⎥

⎥

⎦

.

176 11. GAME THEORY

Then

Ax =

⎡

⎢

⎢

⎣

−1/3

1/3

−1/3

⎤

⎥

⎥

⎦

,

and so the row player’s best choice is to select either i = 1 (Paper) or i = 3 (Rock)

or any combination thereof. That is, an optimal solution is y∗ = (1, 0, 0) (it is not

unique).

Since for any given x the row player will adopt the strategy that achieves the

minimum in (11.1), it follows that the column player should employ a strategy x∗ that

attains the following maximum:

(11.2) max
x

min
y

yT Ax,

where the max and the min are over all stochastic vectors (of the appropriate dimen-

sion).

The question then becomes: how do we solve (11.2)? It turns out that this problem

can be reformulated as a linear programming problem. Indeed, we have already seen

that the inner optimization (the minimization) can be taken over just the deterministic

strategies:

min
y

yT Ax = min
i

eT
i Ax,

where we have used ei to denote the vector of all zeros except for a one in position i.
Hence, the max-min problem given in (11.2) can be rewritten as

maximize
(

mini eT
i Ax

)

subject to

n
∑

j=1

xj = 1

xj ≥ 0 j = 1, 2, . . . , n.

Now, if we introduce a new variable, v, representing a lower bound on the eT
i Ax’s,

then we see that the problem can be recast as a linear program:

maximize v

subject to v ≤ eT
i Ax i = 1, 2, . . . , m

n
∑

j=1

xj = 1

xj ≥ 0 j = 1, 2, . . . , n.

3. THE MINIMAX THEOREM 177

Switching back to vector notation, the problem can be written as

maximize v

subject to ve − Ax≤ 0

eT x = 1

x≥ 0.

Finally, writing in block-matrix form, we get

(11.3)

maximize
[

0 1
]

[

x

v

]

subject to

[

−A e

eT 0

][

x

v

]

≤
=

[

0

1

]

x≥ 0

v free.

Now let’s turn it around. By symmetry, the row player seeks a strategy y∗ that

attains optimality in the following min-max problem:

min
y

max
x

yT Ax,

which can be reformulated as the following linear program:

minimize u

subject to ue − AT y ≥ 0

eT y = 1

y ≥ 0.

Writing in block-matrix form, we get

(11.4)

minimize
[

0 1
]

[

y

u

]

subject to

[

−AT e

eT 0

][

y

u

]

≥
=

[

0

1

]

y ≥ 0

u free.

3. The Minimax Theorem

Having reduced the computation of the optimal strategies x∗ and y∗ to the solution

of linear programs, it is now a simple matter to show that they are consistent with each

178 11. GAME THEORY

other. The next theorem, which establishes this consistency, is called the Minimax

Theorem:

THEOREM 11.1. There exist stochastic vectors x∗ and y∗ for which

max
x

y∗T Ax = min
y

yT Ax∗.

PROOF. The proof follows trivially from the observation that (11.4) is the dual of

(11.3). Therefore, v∗ = u∗. Furthermore,

v∗ = min
i

eT
i Ax∗ = min

y
yT Ax∗,

and similarly,

u∗ = max
j

eT
j AT y∗ = max

x
xT AT y∗ = max

x
y∗T Ax.

�

The common optimal value v∗ = u∗ of the primal and dual linear programs is

called the value of the game. From the Minimax Theorem, we see that, by adopting

strategy y∗, the row player assures herself of losing no more than v units per round

on the average. Similarly, the column player can assure himself of winning at least v
units per round on the average by adopting strategy x∗. A game whose value is zero is

therefore a fair game. Games where the roles of the two players are interchangeable

are clearly fair. Such games are called symmetric. They are characterized by payoff

matrices having the property that aij = −aji for all i and j (in particular, m must

equal n and the diagonal must vanish).

For the Paper–Scissors–Rock game, the linear programming problem that the col-

umn player needs to solve is

maximize w

subject to

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 2 1

3 0 −4 1

−5 6 0 1

1 1 1 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

x1

x2

x3

w

⎤

⎥

⎥

⎥

⎥

⎦

≤
≤
≤
=

⎡

⎢

⎢

⎢

⎢

⎣

0

0

0

1

⎤

⎥

⎥

⎥

⎥

⎦

x1, x2, x3 ≥ 0

w free.

3. THE MINIMAX THEOREM 179

In nonmatrix notation, it looks like this:

maximize w

subject to −x2 + 2x3 + w ≤ 0

3x1 − 4x3 + w ≤ 0

−5x1 + 6x2 + w ≤ 0

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.

This linear programming problem deviates from our standard inequality form in two

respects: (1) it has an equality constraint and (2) it has a free variable. There are

several ways in which one can convert this problem into standard form. The most

compact conversion is as follows. First, use the equality constraint to solve explicitly

for one of the xj’s, say x3:

x3 = 1 − x1 − x2.

Then eliminate this variable from the remaining equations to get

maximize w

subject to −2x1 − 3x2 + w ≤−2

7x1 + 4x2 + w ≤ 4

−5x1 + 6x2 + w ≤ 0

x1 + x2 ≤ 1

x1, x2 ≥ 0.

The elimination of x3 has changed the last constraint from an equality into an inequal-

ity.

The next step is to write down a starting dictionary. To do this, we need to in-

troduce slack variables for each of these constraints. It is natural (and desirable) to

denote the slack variable for the last constraint by x3. In fact, doing this, we get the

following starting dictionary:

ξ = w

x4 =−2 + 2x1 + 3x2 −w

x5 = 4− 7x1 − 4x2 −w

x6 = 5x1 − 6x2 −w

x3 = 1− x1 − x2 .

The variable w is not constrained to be nonnegative. Therefore, there is no reason for

it to be nonbasic. Let us do an arbitrary pivot with w as the entering variable and any

basic variable as the leaving variable (well, not exactly any—we must make sure that

180 11. GAME THEORY

it causes no division by 0, so therefore x3 is not a candidate). Picking x4 to leave, we

get

ξ =−2 + 2x1 + 3x2 − x4

w =−2 + 2x1 + 3x2 − x4

x5 = 6− 9x1 − 7x2 + x4

x6 = 2 + 3x1 − 9x2 + x4

x3 = 1− x1 − x2 .

Since w is free of sign constraints, it will never leave the basis (since a leaving vari-

able is, by definition, a variable that hits its lower bound—w has no such bound).

Therefore, we may as well remove it from the dictionary altogether; it can always be

computed at the end. Hence, we note that

w = −2 + 2x1 + 3x2 − x4,

or better yet that

w = ξ,

and the dictionary now becomes

ξ =−2 + 2x1 + 3x2 − x4

x5 = 6− 9x1 − 7x2 + x4

x6 = 2 + 3x1 − 9x2 + x4

x3 = 1− x1 − x2 .

At last, we are in a position to apply the simplex method. Two (tedious) iterations bring

us to the optimal dictionary. Since it involves fractions, we multiply each equation by

an integer to make each number in the dictionary an integer. Indeed, after multiplying

by 102, the optimal dictionary is given by

102ξ =−16− 27x5 − 13x6 − 62x4

102x1 = 40− 9x5 + 7x6 + 2x4

102x2 = 36− 3x5 − 9x6 + 12x4

102x3 = 26 + 12x5 + 2x6 − 14x4.

From this dictionary, it is easy to read off the optimal primal solution:

x∗ =

⎡

⎢

⎢

⎣

40/102

36/102

26/102

⎤

⎥

⎥

⎦

.

4. POKER 181

Also, since x4, x5, and x6 are complementary to y1, y2, and y3 in the dual problem,

the optimal dual solution is

y∗ =

⎡

⎢

⎢

⎣

62/102

27/102

13/102

⎤

⎥

⎥

⎦

.

Finally, the value of the game is

w∗ = ξ∗ = −16/102 = −0.15686275,

which indicates that the row player does indeed have an advantage and can expect to

make on the average close to 16 cents per round.

4. Poker

Some card games such as poker involve a round of bidding in which the players at

times bluff by increasing their bid in an attempt to coerce their opponents into backing

down, even though if the challenge is accepted they will surely lose. Similarly, they

will sometimes underbid to give their opponents false hope. In this section, we shall

study a simplified version of poker (the real game is too hard to analyze) to see if

bluffing and underbidding are justified bidding strategies.

Simplified poker involves two players, A and B, and a deck having three cards, 1,

2, and 3. At the beginning of a round, each player “antes up” $1 and is dealt one card

from the deck. A bidding session follows in which each player in turn, starting with

A, either (a) bets and adds $1 to the “kitty” or (b) passes. Bidding terminates when

a bet is followed by a bet,

a pass is followed by a pass, or

a bet is followed by a pass.

In the first two cases, the winner of the round is decided by comparing cards, and the

kitty goes to the player with the higher card. In the third case, bet followed by pass,

the player who bet wins the round independently of who had the higher card (in real

poker, the player who passes is said to fold).

With these simplified betting rules, there are only five possible betting scenarios:

A passes, B passes: $1 to holder of higher card

A passes, B bets, A passes: $1 to B

A passes, B bets, A bets: $2 to holder of higher card

A bets, B passes: $1 to A

A bets, B bets: $2 to holder of higher card

182 11. GAME THEORY

After being dealt a card, player A will decide to bet along one of three lines:

1. Pass. If B bets, pass again.

2. Pass. If B bets, bet.

3. Bet.

Similarly, after being dealt a card, player B can bet along one of four lines:

1. Pass no matter what.

2. If A passes, pass, but if A bets, bet.

3. If A passes, bet, but if A bets, pass.

4. Bet no matter what.

To model the situation as a matrix game, we must identify each player’s pure strategies.

A pure strategy is a statement of what line of betting a player intends to follow for

each possible card that the player is dealt. Hence, the players’ pure strategies can be

denoted by triples (y1, y2, y3), where yi is the line of betting that the player will use

when holding card i. (For player A, the yi’s can take values 1, 2, and 3, whereas for

player B, they can take values 1, 2, 3, and 4.)

Given a pure strategy for both players, one can compute the average payment

from, say, A to B. For example, suppose that player A adopts strategy (3, 1, 2) and

player B adopts strategy (3, 2, 4). There are six ways in which the cards can be dealt,

and we can analyze each of them as follows:

card dealt betting session payment

A B A to B

1 2 A bets, B bets 2

1 3 A bets, B bets 2

2 1 A passes, B bets, A passes 1

2 3 A passes, B bets, A passes 1

3 1 A passes, B bets, A bets −2

3 2 A passes, B passes −1

Since each of the six deals are equally likely, the average payment from A to B is

(2 + 2 + 1 + 1 − 2 − 1)/6 = 0.5
The calculation of the average payment must be carried out for every combination

of pairs of strategies. How many are there? Player A has 3×3×3 = 27 pure strategies

and player B has 4×4×4 = 64 pure strategies. Hence, there are 27×64 = 1728 pairs.

4. POKER 183

Calculating the average payment for all these pairs is a daunting task. Fortunately, we

can reduce the number of pure strategies (and hence the number of pairs) that need to

be considered by making a few simple observations.

The first observation is that a player holding a 1 should never answer a bet with

a bet, since the player will lose regardless of the answering bet and will lose less by

passing. This logic implies that, when holding a 1,

player A should refrain from betting along line 2;

player B should refrain from betting along lines 2 and 4.

More clearly improvable strategies can be ruled out when holding the highest

card. For example, a player holding a 3 should never answer a bet with a pass, since

by passing the player will lose, but by betting the player will win. Furthermore, when

holding a 3, a player should always answer a pass with a bet, since in either case the

player is going to win, but answering with a bet opens the possibility of the opponent

betting again and thereby increasing the size of the win for the player holding the 3.

Hence, when holding a 3,

player A should refrain from betting along line 1;

player B should refrain from betting along lines 1, 2, and 3.

Eliminating from consideration the above lines of betting, we see that player A

now has 2×3×2 = 12 pure strategies and player B has 2×4×1 = 8 pure strategies.

The number of pairs has therefore dropped to 96—a significant reduction. Not only do

we eliminate these “bad” strategies from the mathematical model but also we assume

that both players know that these bad strategies will not be used. That is, player A

can assume that player B will play intelligently, and player B can assume the same of

A. This knowledge then leads to further reductions. For example, when holding a 2,

player A should refrain from betting along line 3. To reach this conclusion, we must

carefully enumerate possibilities. Since player A holds the 2, player B holds either the

1 or the 3. But we’ve already determined what player B will do in both of those cases.

Using this knowledge, it is not hard to see that player A would be unwise to bet along

line 3. A similar analysis reveals that, when holding a 2, player B should refrain from

lines 3 and 4. Therefore, player A now has only 2 × 2 × 2 = 8 pure strategies and

player B has only 2 × 2 × 1 = 4 pure strategies.

184 11. GAME THEORY

At this point, no further reductions are possible. Computing the payoff matrix,

we get

A =

(1, 1, 4) (1, 2, 4) (3, 1, 4) (3, 2, 4)

(1, 1, 2)

(1, 1, 3)

(1, 2, 2)

(1, 2, 3)

(3, 1, 2)

(3, 1, 3)

(3, 2, 2)

(3, 2, 3)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
6

1
6

− 1
6

1
3

1
6

1
6

1
6 − 1

6 − 1
6

1
6 − 1

6

− 1
6

1
3

1
2

− 1
6

1
6

1
6

1
2

1
2 − 1

3
1
6

1
3 − 1

6
1
6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Solving the matrix game, we find that

y∗ =
[

1
2 0 0 1

3 0 0 0 1
6

]T

and

x∗ =
[

2
3 0 0 1

3

]T

.

These stochastic vectors can be summarized as simple statements of the optimal ran-

domized strategies for the two players. Indeed, player A’s optimal strategy is as fol-

lows:

when holding 1, mix lines 1 and 3 in 5:1 proportion;

when holding 2, mix lines 1 and 2 in 1:1 proportion;

when holding 3, mix lines 2 and 3 in 1:1 proportion.

Similarly, player B’s optimal strategy can be described as

when holding 1, mix lines 1 and 3 in 2:1 proportion;

when holding 2, mix lines 1 and 2 in 2:1 proportion;

when holding 3, use line 4.

Note that it is optimal for player A to use line 3 when holding a 1 at least some of the

time. Since line 3 says to bet, this bet is a bluff. Player B also bluffs sometimes, since

betting line 3 is sometimes used when holding a 1. Clearly, the optimal strategies also

exhibit some underbidding.

Exercises

11.1 Players A and B each hide a nickel or a dime. If the hidden coins match,

player A gets both; if they don’t match, then B gets both. Find the optimal

EXERCISES 185

strategies. Which player has the advantage? Solve the problem for arbitrary

denominations a and b.

11.2 Players A and B each pick a number between 1 and 100. The game is a draw

if both players pick the same number. Otherwise, the player who picks the

smaller number wins unless that smaller number is one less than the oppo-

nent’s number, in which case the opponent wins. Find the optimal strategy

for this game.

11.3 We say that row r dominates row s if arj ≥ asj for all j = 1, 2, . . . , n.

Similarly, column r is said to dominate column s if air ≥ ais for all i =
1, 2, . . . ,m. Show that

(a) If a row (say, r) dominates another row, then the row player has an

optimal strategy y∗ in which y∗
r = 0.

(b) If a column (say, s) is dominated by another column, then the column

player has an optimal strategy x∗ in which x∗
s = 0.

Use these results to reduce the following payoff matrix to a 2 × 2 matrix:

⎡

⎢

⎢

⎢

⎢

⎣

−6 2 −4 −7 −5

0 4 −2 −9 −1

−7 3 −3 −8 −2

2 −3 6 0 3

⎤

⎥

⎥

⎥

⎥

⎦

.

11.4 Solve simplified poker assuming that antes are $2 and bets are $1.

11.5 Give necessary and sufficient conditions for the rth pure strategy of the row

and the sth pure strategy of the column player to be simultaneously optimal.

11.6 Use the Minimax Theorem to show that

max
x

min
y

yT Ax = min
y

max
x

yT Ax.

11.7 Bimatrix Games. Consider the following two-person game defined in terms

of a pair of m × n matrices A and B: if the row player selects row index i
and the column player selects column index j, then the row player pays aij

dollars and the column player pays bij dollars. Stochastic vectors x∗ and y∗

are said to form a Nash equilibrium if

y∗T Ax∗ ≤ yT Ax∗ for all y

y∗T Bx∗ ≤ y∗T Bx for all x.

The purpose of this exercise is to relate Nash equilibria to the problem of

finding vectors x and y that satisfy

186 11. GAME THEORY

(11.5)

[

0 −A

−BT 0

][

y

x

]

+

[

w

z

]

=

[

−e

−e

]

,

yiwi = 0, for all i,

xjzj = 0, for all j,

x, w, y, z ≥ 0
(vectors w and z can be thought of as being defined by the matrix equality).

Problem (11.5) is called a linear complementarity problem.

(a) Show that there is no loss in generality in assuming that A and B have

all positive entries.

(b) Assuming that A and B have all positive entries, show that, if (x∗, y∗)
is a Nash equilibrium, then

x′ =
x∗

y∗T Ax∗ , y′ =
y∗

y∗T Bx∗

solves the linear complementarity problem (11.5).

(c) Show that, if (x′, y′) solves the linear complementarity problem (11.5),

then

x∗ =
x′

eT x′ , y∗ =
y′

eT y′

is a Nash equilibrium.

(An algorithm for solving the linear complementarity problem is developed

in Exercise 18.7.)

11.8 The Game of Morra. Two players simultaneously throw out one or two

fingers and call out their guess as to what the total sum of the outstretched

fingers will be. If a player guesses right, but his opponent does not, he

receives payment equal to his guess. In all other cases, it is a draw.

(a) List the pure strategies for this game.

(b) Write down the payoff matrix for this game.

(c) Formulate the row player’s problem as a linear programming problem.

(Hint: Recall that the row player’s problem is to minimize the maximum

expected payout.)

(d) What is the value of this game?

(e) Find the optimal randomized strategy.

11.9 Heads I Win—Tails You Lose. In the classical coin-tossing game, player A

tosses a fair coin. If it comes up heads player B pays player A $2 but if it

comes up tails player A pays player B $2. As a two-person zero-sum game,

this game is rather trivial since neither player has anything to decide (after

agreeing to play the game). In fact, the matrix for this game is a 1×1 matrix

NOTES 187

with only a zero in it, which represents the expected payoff from player A

to B.

Now consider the same game with the following twist. Player A is

allowed to peek at the outcome and then decide either to stay in the game

or to bow out. If player A bows out, then he automatically loses but only

has to pay player B $1. Of course, player A must inform player B of his

decision. If his decision is to stay in the game, then player B has the option

either to stay in the game or not. If she decides to get out, then she loses

$1 to player A. If both players stay in the game, then the rules are as in the

classical game: heads means player A wins, tails means player B wins.

(a) List the strategies for each player in this game. (Hint: Don’t forget that

a strategy is something that a player has control over.)

(b) Write down the payoff matrix.

(c) A few of player A’s strategies are uniformly inferior to others. These

strategies can be ruled out. Which of player A’s strategies can be ruled

out?

(d) Formulate the row player’s problem as a linear programming problem.

(Hints: (1) Recall that the row player’s problem is to minimize the max-

imum expected payout. (2) Don’t include rows that you ruled out in the

previous part.)

(e) Find the optimal randomized strategy.

(f) Discuss whether this game is interesting or not.

Notes

The Minimax Theorem was proved by von Neumann (1928). Important refer-

ences include Gale et al. (1951), von Neumann & Morgenstern (1947), Karlin (1959),

and Dresher (1961). Simplified poker was invented and analyzed by Kuhn (1950).

Exercises 11.1 and 11.2 are borrowed from Chvátal (1983).

CHAPTER 12

Regression

In this chapter, we shall study an application of linear programming to an area

of statistics called regression. As a specific example, we shall use size and iteration-

count data collected from a standard suite of linear programming problems to derive

a regression estimate of the number of iterations needed to solve problems of a given

size.

1. Measures of Mediocrity

We begin our discussion with an example. Here are the midterm exam scores for

a linear programming course:

28, 62, 80, 84, 86, 86, 92, 95, 98.

Let m denote the number of exam scores (i.e., m = 9) and let bi, i = 1, 2, . . . ,m, de-

note the actual scores (arranged in increasing order as above). The most naive measure

of the “average” score is just the mean value, x̄, defined by

x̄ =
1

m

m
∑

i=1

bi = 79.0.

This is an example of a statistic, which, by definition, is a function of a set of data.

Statistics are computed so that one does not need to bother with reporting large tables

of raw numbers. (Admittedly, the task of reporting the above list of 9 exam scores is

not very onerous, but this is just an example.) Now, suppose the professor in question

did not report the scores but instead just gave summary statistics. Consider the student

who got an 80 on the exam. This student surely didn’t feel great about this score but

might have thought that at least it was better than average. However, as the raw data

makes clear, this student really did worse than average1 on the exam (the professor

confesses that the exam was rather easy). In fact, out of the nine students, the one

who got an 80 scored third from the bottom of the class. Furthermore, the student who

scored worst on the exam did so badly that one might expect this student to drop the

course, thereby making the 80 look even worse.

1“Average” is usually taken as synonymous with “mean” but in this section we shall use it in an

imprecise sense, employing other technically defined terms for specific meanings.

189

190 12. REGRESSION

FIGURE 12.1. The objective function whose minimum occurs at

the median.

Any statistician would, of course, immediately suggest that we report the median

score instead of the mean. The median score is, by definition, that score which is

worse than half of the other scores and better than the other half. In other words, the

median x̂ is defined as

x̂ = b(m+1)/2 = 86.

(Here and in various places in this chapter, we shall assume that m is odd so that

certain formulas such as this one remain fairly simple.) Clearly, the 86 gives a more

accurate indication of what the average score on the exam was.

There is a close connection between these statistical concepts and optimization.

For example, the mean x̄ minimizes, over all real numbers x, the sum of the squared

deviations between the data points and x itself. That is,

x̄ = argminx∈R

m
∑

i=1

(x − bi)
2.

To verify this claim, we let f(x) =
∑m

i=1(x−bi)
2, differentiate with respect to x, and

set the derivative to zero to get

f ′(x) =
m
∑

i=1

2(x − bi) = 0.

2. MULTIDIMENSIONAL MEASURES: REGRESSION ANALYSIS 191

Solving this equation for the critical point2 x, we see that

x =
1

m

m
∑

i=1

bi = x̄.

The fact that this critical point is a minimum rather than a maximum (or a saddle point)

follows from the fact that f ′′(x) > 0 for all x ∈ R.

The median x̂ also enjoys a close connection with optimization. Indeed, it is the

point that minimizes the sum of the absolute values of the difference between each

data point and itself. That is,

x̂ = argminx∈R

m
∑

i=1

|x − bi|.

To see that this is correct, we again use calculus. Let

f(x) =

m
∑

i=1

|x − bi|.

This function is continuous, piecewise linear, and convex (see Figure 12.1). How-

ever, it is not differentiable at the data points. Nonetheless, we can look at its de-

rivative at other points to see where it jumps across zero. The derivative, for x �∈
{b1, b2, . . . , bm}, is

f ′(x) =

m
∑

i=1

sgn(x − bi),

where

sgn(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if x > 0

0 if x = 0

−1 if x < 0.

Hence, we see that the derivative at x is just the number of data points to the left of x
minus the number of data points to the right. Clearly, this derivative jumps across zero

at the median, implying that the median is the minimum.

In this chapter, we shall discuss certain generalizations of means and medians

called regressions. At the end, we will consider a specific example that is of particular

interest to us: the empirical average performance of the simplex method.

2. Multidimensional Measures: Regression Analysis

The analysis of the previous section can be recast as follows. Given a “random”

observation b, we assume that it consists of two parts: a fixed, but unknown, part

2Recall from calculus that a critical point is any point at which the derivative vanishes or fails to exist.

192 12. REGRESSION

denoted by x and a random fluctuation about this fixed part, which we denote by ǫ.

Hence,

b = x + ǫ.

Now, if we take several observations and index them as i = 1, 2, . . . ,m, the b’s and

the ǫ’s will vary, but x is assumed to be the same for all observations. Therefore, we

can summarize the situation by writing

bi = x + ǫi, i = 1, 2, . . . , m.

We now see that the mean is simply the value of x that minimizes the sum of the

squares of the ǫi’is. Similarly, the median is the value of x that minimizes the sum of

the absolute values of the ǫi’s.

Sometimes one wishes to do more than merely identify some sort of “average.”

For example, a medical researcher might collect blood pressure data on thousands

of patients with the aim of identifying how blood pressure depends on age, obesity

(defined as weight over height), sex, etc. So associated with each observation b of

a blood pressure are values of these control variables. Let’s denote by a1 the age

of a person, a2 the obesity, a3 the sex, etc. Let n denote the number of different

control variables being considered by the researcher. In (linear) regression analysis,

we assume that the response b depends linearly on the control variables. Hence, we

assume that there are (unknown) numbers xj , j = 1, 2, . . . , n, such that

b =

n
∑

j=1

ajxj + ǫ.

This equation is referred to as the regression model. Of course, the researcher collects

data from thousands of patients, and so the data items, b and the aj’s, must be indexed

over these patients. That is,

bi =

n
∑

j=1

aijxj + ǫi, i = 1, 2, . . . ,m.

If we let b denote the vector of observations, ǫ the vector of random fluctuations, and

A the matrix whose ith row consists of the values of the control variables for the ith
patient, then the regression model can be expressed in matrix notation as

(12.1) b = Ax + ǫ.

In regression analysis, the goal is to find the vector x that best explains the obser-

vations b. Hence, we wish to pick values that minimize, in some sense, the vector ǫ’s.

Just as for the mean and median, we can consider minimizing either the sum of the

squares of the ǫi’s or the sum of the absolute values of the ǫi’s. There are even other

possibilities. In the next two sections, we will discuss the range of possibilities and

then give specifics for the two mentioned above.

3. L2-REGRESSION 193

3. L2-Regression

There are several notions of the size of a vector. The most familiar one is the

Euclidean length

‖y‖2 = (
∑

i

y2
i)1/2.

This notion of length corresponds to our physical notion (at least when the dimension

is low, such as 1, 2, or 3). However, one can use any power inside the sum as long as

the corresponding root accompanies it on the outside of the sum. For 1 ≤ p < ∞, we

get then the so-called Lp-norm of a vector y

‖y‖p = (
∑

i

yp
i)1/p.

Other than p = 2, the second most important case is p = 1 (and the third most

important case corresponds to the limit as p tends to infinity).

Measuring the size of ǫ in (12.1) using the L2-norm, we arrive at the L2-regression

problem, which is to find x̄ that attains the minimum L2-norm for the difference be-

tween b and Ax. Of course, it is entirely equivalent to minimize the square of the

L2-norm, and so we get

x̄ = argminx‖b − Ax‖2
2.

Just as for the mean, there is an explicit formula for x̄. To find it, we again rely on

elementary calculus. Indeed, let

f(x) = ‖b − Ax‖2
2 =

∑

i

⎛

⎝bi −
∑

j

aijxj

⎞

⎠

2

.

In this multidimensional setting, a critical point is defined as a point at which the

derivative with respect to every variable vanishes. So if we denote a critical point by

x̄, we see that it must satisfy the following equations:

∂f

∂xk
(x̄) =

∑

i

2

⎛

⎝bi −
∑

j

aij x̄j

⎞

⎠ (−aik) = 0, k = 1, 2, . . . , n.

Simplifying these equations, we get
∑

i

aikbi =
∑

i

∑

j

aikaij x̄j , k = 1, 2, . . . , n.

In matrix notation, these equations can be summarized as follows:

AT b = AT Ax̄.

In other words, assuming that AT A is invertible, we get

(12.2) x̄ = (AT A)−1AT b.

194 12. REGRESSION

a

b

0 1 2 3 4
0

1

2

3

4

FIGURE 12.2. Three data points for a linear regression.

This is the formula for L2-regression. It is also commonly called least squares regres-

sion. In Section 12.6, we will use this formula to solve a specific regression problem.

Example. The simplest and most common regression model arises when one

wishes to describe a response variable b as a linear function of a single input vari-

able a. In this case, the model is

b = ax1 + x2.

The unknowns here are the slope x1 and the intercept x2. Figure 12.2 shows a plot

of three pairs (a, b) through which we want to draw the “best” straight line. At first

glance, this model does not seem to fit the regression paradigm, since regression mod-

els (as we’ve defined them) do not involve a term for a nonzero intercept. But the

model here can be made to fit by introducing a new control variable, say, a2, which

is always set to 1. While we’re at it, let’s change our notation for a to a1 so that the

model can now be written as

b = a1x1 + a2x2.

4. L1-REGRESSION 195

The three data points can then be summarized in matrix notation as
⎡

⎢

⎢

⎣

1

2.5

3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1

2 1

4 1

⎤

⎥

⎥

⎦

[

x1

x2

]

+

⎡

⎢

⎢

⎣

ǫ1

ǫ2

ǫ3

⎤

⎥

⎥

⎦

.

For this problem,

AT A =

[

0 2 4

1 1 1

]

⎡

⎢

⎢

⎣

0 1

2 1

4 1

⎤

⎥

⎥

⎦

=

[

20 6

6 3

]

and

AT b =

[

0 2 4

1 1 1

]

⎡

⎢

⎢

⎣

1

2.5

3

⎤

⎥

⎥

⎦

=

[

17

6.5

]

.

Hence,

x̄ =

[

x̄1

x̄2

]

=
1

24

[

3 −6

−6 20

][

17

6.5

]

=

[

1/2

7/6

]

.

4. L1-Regression

Just as the median gives a more robust estimate of the “average value” of a col-

lection of numbers than the mean, L1-regression is less sensitive to outliers than least

squares regression is. It is defined by minimizing the L1-norm of the deviation vector

in (12.1). That is, the problem is to find x̂ as follows:

x̂ = argminx‖b − Ax‖1.

Unlike for least squares regression, there is no explicit formula for the solution to

the L1-regression problem. However, the problem can be reformulated as a linear

programming problem. Indeed, it is easy to see that the L1-regression problem,

minimize
∑

i

∣

∣

∣

∣

∣

∣

bi −
∑

j

aijxj

∣

∣

∣

∣

∣

∣

,

can be rewritten as

minimize
∑

i ti

subject to ti −
∣

∣

∣
bi −

∑

j aijxj

∣

∣

∣
= 0, i = 1, 2, . . . , m,

196 12. REGRESSION

which is equivalent to the following linear programming problem:

(12.3)
minimize

∑

i ti

subject to −ti ≤ bi −
∑

j aijxj ≤ ti, i = 1, 2, . . . ,m.

Hence, to solve the L1-regression problem, it suffices to solve this linear programming

problem. In the next section, we shall present an alternative algorithm for computing

the solution to an L1-regression problem.

Example. Returning to the example of the last section, the L1-regression problem

is solved by finding the optimal solution to the following linear programming problem:

minimize t1 + t2 + t3

subject to − x2 − t1 ≤ −1

−2x1 − x2 − t2 ≤−2.5

−4x1 − x2 − t3 ≤ −3

x2 − t1 ≤ 1

2x1 + x2 − t2 ≤ 2.5

4x1 + x2 − t3 ≤ 3

t1, t2, t3 ≥ 0.

The solution to this linear programming problem is

x̂ =

[

0.5

1

]

,

which clearly indicates that the point (2, 2.5) is viewed by the L1-regression as an

outlier, since the regression line passes exactly through the other two points.

5. Iteratively Reweighted Least Squares

Even though calculus cannot be used to obtain an explicit formula for the solution

to the L1-regression problem, it can be used to obtain an iterative procedure that,

when properly initialized, converges to the solution of the L1-regression problem.

The resulting iterative process is called iteratively reweighted least squares. In this

section, we briefly discuss this method. We start by considering the objective function

for L1-regression:

f(x) = ‖b − Ax‖1

=
∑

i

∣

∣

∣

∣

∣

∣

bi −
∑

j

aijxj

∣

∣

∣

∣

∣

∣

.

5. ITERATIVELY REWEIGHTED LEAST SQUARES 197

Differentiating this objective function is a problem, since it involves absolute values.

However, the absolute value function

g(z) = |z|
is differentiable everywhere except at one point: z = 0. Furthermore, we can use the

following simple formula for the derivative, where it exists:

g′(z) =
z

|z| .

Using this formula to differentiate f with respect to each variable, and setting the

derivatives to zero, we get the following equations for critical points:

(12.4)
∂f

∂xk
=

∑

i

bi −
∑

j aijxj

|bi −
∑

j aijxj |
(−aik) = 0, k = 1, 2, . . . , n.

If we introduce the following shorthand notation for the deviations,

ǫi(x) =

∣

∣

∣

∣

∣

∣

bi −
∑

j

aijxj

∣

∣

∣

∣

∣

∣

,

we see that we can rewrite (12.4) as

∑

i

aikbi

ǫi(x)
=

∑

i

∑

j

aikaijxj

ǫi(x)
, k = 1, 2, . . . , n.

Now, if we let Ex denote the diagonal matrix containing the vector ǫ(x) on the diago-

nal, we can write these equations in matrix notation as follows:

AT E−1
x b = AT E−1

x Ax.

This equation can’t be solved for x as we were able to do in L2-regression because

of the dependence of the diagonal matrix on x. But let us rearrange this system of

equations by multiplying both sides by the inverse of AT E−1
x A. The result is

x =
(

AT E−1
x A

)−1
AT E−1

x b.

This formula suggests an iterative scheme that hopefully converges to a solution. In-

deed, we start by initializing x0 arbitrarily and then use the above formula to succes-

sively compute new approximations. If we let xk denote the approximation at the kth

iteration, then the update formula can be expressed as

xk+1 =
(

AT E−1
xk A

)−1
AT E−1

xk b.

Assuming only that the matrix inverse exists at every iteration, one can show that this

iteration scheme converges to a solution to the L1-regression problem.

198 12. REGRESSION

6. An Example: How Fast is the Simplex Method?

In Chapter 4, we discussed the worst-case behavior of the simplex method and

studied the Klee–Minty problem that achieves the worst case. We also discussed the

importance of empirical studies of algorithm performance. In this section, we shall

introduce a model that allows us to summarize the results of these empirical studies.

We wish to relate the number of simplex iterations T required to solve a linear

programming problem to the number of constraints m and/or the number of variables

n in the problem (or some combination of the two). As any statistician will report, the

first step is to introduce an appropriate model.3 Hence, we begin by asking: how many

iterations, on average, do we expect the simplex method to take if the problem has

m constraints and n variables? To propose an answer to this question, consider the

initial dictionary associated with a given problem. This dictionary involves m values,

x∗
B, for the primal basic variables, and n values, y∗

N , for the dual nonbasic variables.

We would like each of these m + n variables to have nonnegative values, since that

would indicate optimality. If we assume that the initial dictionary is nondegenerate,

then one would expect on the average that (m + n)/2 of the values would be positive

and the remaining (m + n)/2 values would be negative.

Now let’s look at the dynamics of the simplex method. Each iteration focuses on

exactly one of the negative values. Suppose, for the sake of discussion, that the nega-

tive value corresponds to a dual nonbasic variable, that is, one of the coefficients in the

objective row of the dictionary. Then the simplex method selects the corresponding

primal nonbasic variable to enter the basis, and a leaving variable is chosen by a ratio

test. After the pivot, the variable that exited now appears as a nonbasic variable in

the same position that the entering variable held before. Furthermore, the coefficient

on this variable is guaranteed to be positive (since we’ve assumed nondegeneracy).

Hence, the effect of one pivot of the simplex method is to correct the sign of one of

the negative values from the list of m + n values of interest. Of course, the pivot also

affects all the other values, but there seems no reason to assume that the situation rel-

ative to them will have any tendency to get better or worse, on the average. Therefore,

we can think of the simplex method as statistically reducing the number of negative

values by one at each iteration.

Since we expect on the average that an initial dictionary will have (m+n)/2 neg-

ative values, it follows that the simplex method should take (m + n)/2 iterations, on

average. Of course, these expectations are predicated on the assumption that degener-

ate dictionaries don’t arise. As we saw in Section 7.2, the self-dual simplex method

initialized with random perturbations will, with probability one, never encounter a de-

generate dictionary. Hence, we hypothesize that this variant of the simplex method

will, on average, take (m + n)/2 iterations. It is important to note the main point of

3In the social sciences, a fundamental difficulty is the lack of specific arguments validating the appro-

priateness of the models commonly introduced.

6. AN EXAMPLE: HOW FAST IS THE SIMPLEX METHOD? 199

our hypothesis; namely, that the number of iterations is linear in m + n as opposed,

say, to quadratic or cubic.

We can test our hypothesis by first supposing that T can be approximated by a

function of the form

2α(m + n)β

for a pair of real numbers α and β. Our goal then is to find the value for these pa-

rameters that best fits the data obtained from a set of empirical observations. (We’ve

written the leading constant as 2α simply for symmetry with the other factor—there is

no fundamental need to do this.) This multiplicative representation of the number of

iterations can be converted into an additive (in α and β) representation by taking log-

arithms. Introducing an ǫ to represent the difference between the model’s prediction

and the true number of iterations, we see that the model can be written as

log T = α log 2 + β log(m + n) + ǫ.

Now, suppose that several observations are made. Using subscripts to distinguish the

various observations, we get the following equations:
⎡

⎢

⎢

⎢

⎢

⎢

⎣

log T1

log T2

...

log Tk

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

log 2 log(m1 + n1)

log 2 log(m2 + n2)
...

...

log 2 log(mk + nk)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

α

β

]

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ǫ1

ǫ2
...

ǫk

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

If we let b denote the vector on the left, A the matrix on the right, x the vector multi-

plied by A, and ǫ the vector of deviations, then the model can be expressed as

b = Ax + ǫ,

where A and b are given. As we’ve seen, this is just a regression model, which we can

solve as an L1-regression or as an L2-regression.

Given real data, we shall solve this model both ways. Table 12.1 shows specific

data obtained by running the self-dual simplex method described in Chapter 7 (with

randomized initial perturbations) against most of the problems in a standard suite of

test problems (called the NETLIB suite (Gay 1985)). Some problems were too big to

run on the workstation used for this experiment, and others were formulated with free

variables that the code was not equipped to handle.

Using (12.2) to solve the problem as an L2-regression, we get
[

ᾱ

β̄

]

=

[

−1.03561

1.05152

]

.

Or, in other words,

T ≈ 0.488(m + n)1.052.

200 12. REGRESSION

Name m n iters Name m n iters

25fv47 777 1545 5089 nesm 646 2740 5829

80bau3b 2021 9195 10514 recipe 74 136 80

adlittle 53 96 141 sc105 104 103 92

afiro 25 32 16 sc205 203 202 191

agg2 481 301 204 sc50a 49 48 46

agg3 481 301 193 sc50b 48 48 53

bandm 224 379 1139 scagr25 347 499 1336

beaconfd 111 172 113 scagr7 95 139 339

blend 72 83 117 scfxm1 282 439 531

bnl1 564 1113 2580 scfxm2 564 878 1197

bnl2 1874 3134 6381 scfxm3 846 1317 1886

boeing1 298 373 619 scorpion 292 331 411

boeing2 125 143 168 scrs8 447 1131 783

bore3d 138 188 227 scsd1 77 760 172

brandy 123 205 585 scsd6 147 1350 494

czprob 689 2770 2635 scsd8 397 2750 1548

d6cube 403 6183 5883 sctap1 284 480 643

degen2 444 534 1421 sctap2 1033 1880 1037

degen3 1503 1818 6398 sctap3 1408 2480 1339

e226 162 260 598 seba 449 896 766

etamacro 334 542 1580 share1b 107 217 404

fffff800 476 817 1029 share2b 93 79 189

finnis 398 541 680 shell 487 1476 1155

fit1d 24 1026 925 ship04l 317 1915 597

fit1p 627 1677 15284 ship04s 241 1291 560

forplan 133 415 576 ship08l 520 3149 1091

ganges 1121 1493 2716 ship08s 326 1632 897

greenbea 1948 4131 21476 ship12l 687 4224 1654

grow15 300 645 681 ship12s 417 1996 1360

grow22 440 946 999 sierra 1212 2016 793

grow7 140 301 322 standata 301 1038 74

israel 163 142 209 standmps 409 1038 295

kb2 43 41 63 stocfor1 98 100 81

lotfi 134 300 242 stocfor2 2129 2015 2127

maros 680 1062 2998

TABLE 12.1. Number of iterations for the self-dual simplex method.

This is amazingly close to our hypothesized formula, (m + n)/2. Figure 12.3 shows

a log–log plot of T vs. m + n with the L2-regression line drawn through it. It is clear

from this graph that a straight line (in the log–log plot) is a good model for fitting this

data.

6. AN EXAMPLE: HOW FAST IS THE SIMPLEX METHOD? 201

FIGURE 12.3. A log–log plot of T vs. m + n and the L1 and L2

regression lines.

Using (12.3) to solving the problem, we get

[

ᾱ

β̄

]

=

[

−0.9508

1.0491

]

.

In other words,

T ≈ 0.517(m + n)1.049.

The fact that this regression formula agrees closely with the L2-regression indicates

that the data set contains no outliers. In Section 12.7, we shall see an example in which

outliers do indeed cause the L1 and L2 regression lines to be significantly different

from each other.

202 12. REGRESSION

7. Which Variant of the Simplex Method is Best?

As we saw in the previous section, if the simplex method does not encounter

degenerate dictionaries along its path to optimality, then we can expect that on the

average it will converge in (m + n)/2 iterations. Also, we’ve verified this hypothesis

running the self-dual simplex method (with randomized initial perturbations) against

actual data. The other variants of the simplex method that we have studied do en-

counter degenerate dictionaries and hence we expect them to take more iterations.

To test this hypothesis, we looked at the two-phase simplex method using a dual

Phase I followed by a primal Phase II. The temporary objective function chosen for

Phase I was generated randomly, and hence the Phase I portion of the algorithm en-

countered no degeneracy. However, the Phase II dictionaries were often degenerate

using this method. Figure 12.4 shows a log–log plot of iterations vs. m + n.

The particular code that was used to produce these numbers has not been carefully

tuned, and hence, due to minor numerical problems, the code failed to find an optimal

solution for several of the test problems (even though all the problems in the test suite

are known to have optimal solutions). For these bad problems, one would expect that

the number of iterations to solve the problem is in fact larger (perhaps significantly)

than the number obtained. Nonetheless, Figure 12.4 shows all the results, even those

corresponding to bad problems. The bad data points are shown with open circles.

The figure shows two regression lines. The lower one is the L2-regression line.

Note that it is pulled down significantly by the single outlier at the bottom of the graph.

The upper line is the L1 regression line. Visually it appears to capture better the trend

exhibited by most points. The equation for the L1-regression is

T ≈ 0.877(m + n)0.994.

Again, the hypothesis that the number of iterations is linear in m + n is strongly

supported. But this time the coefficient is obviously not close to 1/2. Instead, it

is almost twice as large. Hence, this method seems to be worse than the self-dual

simplex method.

To reiterate, our conclusion is that degeneracy is bad for iteration counts and any

version of the simplex method that can avoid it will likely do well. To see this effect

in a dramatic setting, let us consider one instance of a large problem that is known to

be highly degenerate. The problem we shall consider is called an assignment problem.

This class of linear programming problem is discussed in detail in Chapter 15. For

now, it suffices to say simply that problems in this class are always degenerate. We

generated one large (m = 600, n = 90,000) random assignment problem and let

the two codes described above solve it. The two-phase code4 took 9951 iterations,

whereas the self-dual code took only 1655—a substantial improvement.

4Unlike the earlier experiments, here the Phase I objective was initialized, without the benefit of

randomization, by setting the jth coefficient to max(cj , 1) where cj is the Phase II objective coefficient.

EXERCISES 203

FIGURE 12.4. A log–log plot of T vs. m + n for the two-phase

simplex method. The upper line is the L1-regression line, and the

lower line is the L2-regression line. The open circles show data

points for which the code did not find an optimal solution (even

though one exists).

Exercises

12.1 Find the L2-regression line for the data shown in Figure 12.5.

12.2 Find the L1-regression line for the data shown in Figure 12.5.

12.3 Midrange. Given a sorted set of real numbers, {b1, b2, . . . , bm}, show that

the midrange, x̃ = (b1 + bm)/2, minimizes the maximum deviation from

the set of observations. That is,

1

2
(b1 + bm) = argminx∈R

max
i

|x − bi|.

204 12. REGRESSION

a

b

0 1 2 3 4
0

1

2

3

4

FIGURE 12.5. Four data points for a linear regression.

12.4 Centroid. Given a set of points {b1, b2, . . . , bm} on the plane R
2, show that

the centroid

x̄ =
1

m

m
∑

i=1

bi

minimizes the sum of the squares of the distance to each point in the set.

That is, x̄ solves the following optimization problem:

minimize

m
∑

i=1

‖x − bi‖2
2

Note: Each data point bi is a vector in R
2 whose components are denoted,

say, by bi1 and bi2, and, as usual, the subscript 2 on the norm denotes the

Euclidean norm. Hence,

‖x − bi‖2 =
√

(x1 − bi1)2 + (x2 − bi2)2.

12.5 Facility Location. A common problem is to determine where to locate a

facility so that the distance from its customers is minimized. That is, given

a set of points {b1, b2, . . . , bm} on the plane R
2, the problem is to find x̂ =

EXERCISES 205

Jan 390 May 310 Sep 550

Feb 420 Jun 590 Oct 360

Mar 340 Jul 340 Nov 420

Apr 320 Aug 580 Dec 600 .

TABLE 12.2. Projected labor hours by month.

(x̂1, x̂2) that solves the following optimization problem:

minimize

m
∑

i=1

‖x − bi‖2.

As for L1-regression, there is no explicit formula for x̂, but an iterative

scheme can be derived along the same lines as in Section 12.5. Derive an

explicit formula for this iteration scheme.

12.6 A Simple Steiner Tree. Suppose there are only three customers in the facility

location problem of the previous exercise. Suppose that the triangle formed

by b1, b2, and b3 has no angles greater than 120 degrees. Show that the

solution x̂ to the facility location problem is the unique point in the triangle

from whose perspective the three customers are 120 degrees apart from each

other. What is the solution if one of the angles, say, at vertex b1, is more than

120 degrees?

12.7 Sales Force Planning. A distributor of office equipment finds that the busi-

ness has seasonal peaks and valleys. The company uses two types of sales

persons: (a) regular employees who are employed year-round and cost the

company $17.50/hr (fully loaded for benefits and taxes) and (b) temporary

employees supplied by an outside agency at a cost of $25/hr. Projections for

the number of hours of labor by month for the following year are shown in

Table 12.2. Let ai denote the number of hours of labor needed for month i
and let x denote the number of hours per month of labor that will be handled

by regular employees. To minimize total labor costs, one needs to solve the

following optimization problem:

minimize
∑

i

(25max(ai − x, 0) + 17.50x).

(a) Show how to reformulate this problem as a linear programming prob-

lem.

(b) Solve the problem for the specific data given above.

(c) Use calculus to find a formula giving the optimal value for x.

206 12. REGRESSION

12.8 Acceleration Due to Gravity. The law of gravity from classical physics says

that an object dropped from a tall building will, in the absence of air resis-

tance, have a constant rate of acceleration g so that the height x, as a function

of time t, is given by

x(t) = −1

2
gt2.

Unfortunately, the effects of air resistance cannot be ignored. To include

them, we assume that the object experiences a retarding force that is directly

proportional to its speed. Letting v(t) denote the velocity of the object at

time t, the equations that describe the motion are then given by

x′(t) = v(t), t > 0, x(0) = 0,

v′(t) = −g − fv(t), t > 0, v(0) = 0

(f is the unknown constant of proportionality from the air resistance). These

equations can be solved explicitly for x as a function of t:

x(t) =− g

f2

(

e−ft − 1 + ft
)

v(t) =− g

f

(

1 − e−ft
)

.

It is clear from the equation for the velocity that the terminal velocity is g/f .

It would be nice to be able to compute g by measuring this velocity, but this

is not possible, since the terminal velocity involves both f and g. However,

we can use the formula for x(t) to get a two-parameter model from which

we can compute both f and g. Indeed, if we assume that all measurements

are taken after terminal velocity has been “reached” (i.e., when e−ft is much

smaller than 1), then we can write a simple linear expression relating posi-

tion to time:

x =
g

f2
− g

f
t.

Now, in our experiments we shall set values of x (corresponding to specific

positions below the drop point) and measure the time at which the object

passes these positions. Since we prefer to write regression models with the

observed variable expressed as a linear function of the control variables, let

us rearrange the above expression so that t appears as a function of x:

t =
1

f
− f

g
x.

Using this regression model and the data shown in Table 12.3, do an L2-

regression to compute estimates for 1/f and −f/g. From these estimates

derive an estimate for g. If you have access to linear programming software,

solve the problem using an L1-regression and compare your answers.

EXERCISES 207

Obs. Position Time

Number (meters) (secs)

1 -10 3.72

2 -20 7.06

3 -30 10.46

4 -10 3.71

5 -20 7.00

6 -30 10.48

7 -10 3.67

8 -20 7.08

9 -30 10.33

TABLE 12.3. Time at which a falling object passes certain points.

12.9 Iteratively Reweighted Least Squares. Show that the sequence of iterates in

the iteratively reweighted least squares algorithm produces a monotonically

decreasing sequence of objective function values by filling in the details

in the following outline. First, recall that the objective function for L1-

regression is given by

f(x) = ‖b − Ax‖1 =

m
∑

i=1

ǫi(x),

where

ǫi(x) =

∣

∣

∣

∣

∣

∣

bi −
n

∑

j=1

aijxj

∣

∣

∣

∣

∣

∣

.

Also, the function that defines the iterative scheme is given by

T (x) =
(

AT E−1
x A

)−1
AT E−1

x b,

where Ex denotes the diagonal matrix with the vector ǫ(x) on its diagonal.

Our aim is to show that

f(T (x)) < f(x).

In order to prove this inequality, let

gx(z) =
m
∑

i=1

ǫ2i (z)

ǫi(x)
= ‖E−1/2

x (b − Az)‖2
2.

208 12. REGRESSION

(a) Use calculus to show that, for each x, T (x) is a global minimum of gx.

(b) Show that gx(x) = f(x).
(c) By writing

ǫi(T (x)) = ǫi(x) + (ǫi(T (x)) − ǫi(x))

and then substituting the right-hand expression into the definition of

gx(T (x)), show that

gx(T (x)) ≥ 2f(T (x)) − f(x).

(d) Combine the three steps above to finish the proof.

12.10 In our study of means and medians, we showed that the median of a collec-

tion of numbers, b1, b2, . . . , bn, is the number x̂ that minimizes
∑

j |x− bj |.
Let μ be a real parameter.

(a) Give a statistical interpretation to the following optimization problem:

minimize
∑

j

(|x − bj | + μ(x − bj)) .

Hint: the special cases μ = 0,±1/2,±1 might help clarify the general

situation.

(b) Express the above problem as a linear programming problem.

(c) The parametric simplex method can be used to solve families of linear

programming problems indexed by a parameter μ (such as we have

here). Starting at μ = ∞ and proceeding to μ = −∞ one solves

all of the linear programs with just a finite number of pivots. Use the

parametric simplex method to solve the problems of the previous part

in the case where n = 4 and b1 = 1, b2 = 2, b3 = 4, and b4 = 8.

(d) Now consider the general case. Write down the dictionary that appears

in the k-th iteration and show by induction that it is correct.

12.11 Show that the L∞-norm is just the maximum of the absolute values. That

is,

lim
p→∞

‖x‖p = max
i

|xi|.

Notes

Gonin & Money (1989) and Dodge (1987) are two references on regression that

include discussion of both L2 and L1 regression. The standard reference on L1 re-

gression is Bloomfield & Steiger (1983).

Several researchers, including Smale (1983), Borgwardt (1982), Borgwardt (1987a),

Adler & Megiddo (1985), and Todd (1986), have studied the average number of

NOTES 209

iterations of the simplex method as a function of m and/or n. The model discussed

in this chapter is similar to the sign-invariant model introduced by Adler & Berenguer

(1981).

CHAPTER 13

Financial Applications

In this chapter, we shall study some applications of linear programming to prob-

lems in quantitative finance.

1. Portfolio Selection

Every investor, from the individual to the professional fund manager, must decide

on an appropriate mix of assets to include in his or her investment portfolio. Given a

collection of potential investments (indexed, say, from 1 to n), let Rj denote the return

in the next time period on investment j, j = 1, . . . , n. In general, Rj is a random

variable, although some investments may be essentially deterministic.

A portfolio is determined by specifying what fraction of one’s assets to put into

each investment. That is, a portfolio is a collection of nonnegative numbers xj , j =
1, . . . , n, that sum to one. The return (on each dollar) one would obtain using a given

portfolio is given by

R =
∑

j

xjRj .

The reward associated with such a portfolio is defined as the expected return1:

ER =
∑

j

xjERj .

If reward were the only issue, then the problem would be trivial: simply put everything

in the investment with the highest expected return. But unfortunately, investments

with high reward typically also carry a high level of risk. That is, even though they are

expected to do very well in the long run, they also tend to be erratic in the short term.

There are many ways to define risk, some better than others. We will define the risk

1 In this chapter, we assume a modest familiarity with the ideas and notations of probability:

the symbol E denotes expected value, which means that, if R is a random variable that takes values

R(1), R(2), . . . , R(T) with equal probability, then

ER =
1

T

T
∑

t=1

R(t).

211

212 13. FINANCIAL APPLICATIONS

associated with an investment (or, for that matter, a portfolio of investments) to be the

mean absolute deviation from the mean (MAD):

E|R − ER|= E

∣

∣

∣

∣

∣

∣

∑

j

xj(Rj − ERj)

∣

∣

∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

∣

∑

j

xjR̃j

∣

∣

∣

∣

∣

∣

,

where R̃j = Rj − ERj . One would like to maximize the reward while at the same

time not incur excessive risk. Whenever confronted with two (or more) competing

objectives, it is necessary to consider a spectrum of possible optimal solutions as one

moves from putting most weight on one objective to the other. In our portfolio selec-

tion problem, we form a linear combination of the reward and the risk (parametrized

here by μ) and maximize that:

(13.1)

maximize μ
∑

j

xjERj − E

∣

∣

∣

∣

∣

∣

∑

j

xjR̃j

∣

∣

∣

∣

∣

∣

subject to
∑

j

xj = 1

xj ≥ 0 j = 1, 2, . . . , n.

Here, μ is a positive parameter that represents the importance of risk relative to reward:

high values of μ tend to maximize reward regardless of risk, whereas low values at-

tempt to minimize risk.

It is important to note that by diversifying (that is, not putting everything into one

investment), it might be possible to reduce the risk without reducing the reward. To

see how this can happen, consider a hypothetical situation involving two investments

A and B. Each year, investment A either goes up 30% or goes down 10%, but unfor-

tunately, the ups and downs are unpredictable (that is, each year is independent of the

previous years and is an up year with probability 1/2). Investment B is also highly

volatile. In fact, in any year in which A goes up 30%, investment B goes down 10%,

and in the years in which A goes down 10%, B goes up 30%. Clearly, by putting

half of our portfolio into A and half into B, we can create a portfolio that goes up

10% every year without fail. The act of identifying investments that are negatively

correlated with each other (such as A and B) and dividing the portfolio among these

investments is called hedging. Unfortunately, it is fairly difficult to find pairs of in-

vestments with strong negative correlations. But such negative correlations do occur.

Generally speaking, they can be expected to occur when the fortunes of both A and B

depend on a common underlying factor. For example, a hot, rainless summer is good

for energy but bad for agriculture.

1. PORTFOLIO SELECTION 213

Year- SHY XLB XLE XLF XLI XLK XLP XLU XLV

Month Bonds Materials Energy Financial Indust. Tech. Staples Util. Health

2007-04 1.000 1.044 1.068 1.016 1.035 1.032 1.004 0.987 1.014

2007-03 1.003 1.015 1.051 1.039 1.046 1.047 1.028 1.049 1.073

2007-02 1.005 1.024 1.062 0.994 1.008 1.010 1.021 1.036 1.002

2007-01 1.007 1.027 0.980 0.971 0.989 0.973 0.985 1.053 0.977

2006-12 1.002 1.040 0.991 1.009 1.021 1.020 1.020 0.996 1.030

2006-11 1.001 0.995 0.969 1.030 0.997 0.989 1.020 0.999 1.007

2006-10 1.005 1.044 1.086 1.007 1.024 1.028 0.991 1.026 0.999

2006-09 1.004 1.060 1.043 1.023 1.028 1.040 1.018 1.053 1.003

2006-08 1.004 1.000 0.963 1.040 1.038 1.040 0.999 0.985 1.015

2006-07 1.008 1.030 0.949 1.012 1.011 1.070 1.039 1.028 1.029

2006-06 1.007 0.963 1.034 1.023 0.943 0.974 1.016 1.048 1.055

2006-05 1.002 1.005 1.022 0.995 0.999 0.995 1.018 1.023 1.000

2006-04 1.002 0.960 0.972 0.962 0.983 0.935 1.002 1.016 0.979

2006-03 1.002 1.035 1.050 1.043 1.021 0.987 1.010 1.016 0.969

2006-02 1.002 1.047 1.042 1.003 1.044 1.023 1.008 0.954 0.987

2006-01 1.000 0.978 0.908 1.021 1.031 1.002 1.008 1.013 1.012

2005-12 1.002 1.048 1.146 1.009 1.003 1.034 1.002 1.024 1.013

2005-11 1.004 1.029 1.018 1.000 1.005 0.969 1.001 1.009 1.035

2005-10 1.004 1.076 1.015 1.048 1.058 1.063 1.009 0.999 1.012

2005-09 0.999 1.002 0.909 1.030 0.986 0.977 0.996 0.936 0.969

2005-08 0.997 1.008 1.063 1.009 1.017 1.002 1.014 1.042 0.995

2005-07 1.007 0.958 1.064 0.983 0.976 0.991 0.983 1.006 0.996

2005-06 0.996 1.056 1.071 1.016 1.038 1.057 1.032 1.023 1.023

2005-05 1.002 0.980 1.070 1.012 0.974 0.987 0.981 1.059 0.994

TABLE 13.1. Monthly returns per dollar for each of nine invest-

ments over two years. That is, $1 invested in the energy sector fund

XLE on April 1, 2007, was worth $1.068 on April 30, 2007.

Solving problem (13.1) requires knowledge of the joint distribution of the Rj’s.

However, this distribution is not known theoretically but instead must be estimated

by looking at historical data. For example, Table 13.1 shows monthly returns over a

recent two-year period for one bond fund (3-year Treasury Bonds) and eight differ-

ent sector index funds: Materials (XLB), Energy (XLE), Financial (XLF), Industrial

(XLI), Technology (XLK), Staples (XLP), Utilities (XLU), and Healthcare (XLV).

Let Rj(t) denote the return on investment j over T monthly time periods as shown in

Table 13.1. One way to estimate the mean ERj is simply to take the average of the

historical returns:

ERj =
1

T

T
∑

t=1

Rj(t).

214 13. FINANCIAL APPLICATIONS

1.1. Reduction to a Linear Programming Problem. As formulated, the prob-

lem in (13.1) is not a linear programming problem. We use the same trick we used

in the previous chapter to replace each absolute value with a new variable and then

impose inequality constraints that ensure that the new variable will indeed be the ap-

propriate absolute value once an optimal value to the problem has been obtained. But

first, let us rewrite (13.1) with the expected value operation replaced by a simple aver-

aging over the given historical data:

(13.2)

maximize μ
∑

j

xjrj −
1

T

T
∑

t=1

∣

∣

∣

∣

∣

∣

∑

j

xj(Rj(t) − rj)

∣

∣

∣

∣

∣

∣

subject to
∑

j

xj = 1

xj ≥ 0 j = 1, 2, . . . , n,

where

rj =
1

T

T
∑

t=1

Rj(t)

denotes the expected reward for asset j. Now, replace
∣

∣

∣

∑

j xj(Rj(t) − rj)
∣

∣

∣
with a

new variable yt and rewrite the optimization problem as

(13.3)

maximize μ
∑

j

xjrj −
1

T

T
∑

t=1

yt

subject to −yt ≤
∑

j

xj(Rj(t) − rj)≤ yt t = 1, 2, . . . , T,

∑

j xj = 1

xj ≥ 0 j = 1, 2, . . . , n

yt ≥ 0 t = 1, 2, . . . , T.

As we’ve seen in other contexts before, at optimality one of the two inequalities in-

volving yt must actually be an equality because if both inequalities were strict then it

would be possible to further increase the objective function by reducing yt.

1.2. Solution via Parametric Simplex Method. The problem formulation given

by (13.3) is a linear program that can be solved for any particular value of μ using the

methods described in previous chapters. However, we can do much better than this.

The problem is a parametric linear programming problem, where the parameter is the

risk aversion parameter μ. If we can give a value of μ for which a basic optimal

solution is obvious, then we can start from this basic solution and use the parametric

simplex method to find the optimal solution associated with each and every value of

μ. It is easy to see that for μ larger than some threshold, the optimal solution is to put

1. PORTFOLIO SELECTION 215

all of our portfolio into a single asset, the one with the highest expected reward rj . Let

j∗ denote this highest reward asset:

rj∗ ≥ rj for all j.

We need to write (13.3) in dictionary form. To this end, let us introduce slack

variables w+
t and w−

t :

maximize μ
∑

j

xjrj −
1

T

T
∑

t=1

yt

subject to −yt −
∑

j

xj(Rj(t) − rj) + w−
t = 0 t = 1, 2, . . . , T,

−yt +
∑

j xj(Rj(t) − rj) + w+
t = 0 t = 1, 2, . . . , T,

∑

j xj = 1

xj ≥ 0 j = 1, 2, . . . , n,

yt, w
+
t , w−

t ≥ 0 t = 1, 2, . . . , T.

We have 3T + n nonnegative variables and 2T + 1 equality constraints. Hence, we

need to find 2T + 1 basic variables and T + n− 1 nonbasic variables. Since we know

the optimal values for each of the allocation variables, xj∗ = 1 and the rest of the xj’s

vanish, it is straightforward to figure out the values of the other variables as well. We

can then simply declare any variable that is positive to be basic and declare the rest

to be nonbasic. With this prescription, the variable xj∗ must be basic. The remaining

xj’s are nonbasic. Similarly, all of the yt’s are nonzero and hence basic. For each t,
either w−

t or w+
t is basic and the other is nonbasic. To say which is which, we need to

introduce some additional notation. Let

Dtj = Rj(t) − rj .

Then it is easy to check that w−
t is basic if Dtj∗ > 0 and w+

t is basic if Dtj∗ < 0 (the

unlikely case where Dtj∗ = 0 can be decided arbitrarily). Let

T+ = {t : Dtj∗ > 0} and T− = {t : Dtj∗ < 0}

and let

ǫt =

{

1, for t ∈ T+

−1, for t ∈ T−.

216 13. FINANCIAL APPLICATIONS

It’s tedious, but here’s the optimal dictionary:

ζ = 1
T

T
∑

t=1

ǫtDtj∗ − 1
T

∑

j 	=j∗

T
∑

t=1

ǫt(Dtj − Dtj∗)xj − 1
T

∑

t∈T−

w−
t − 1

T

∑

t∈T+

w+
t

+μrj∗ +μ
∑

j 	=j∗

(rj − rj∗)xj

yt = −Dtj∗ −
∑

j 	=j∗

(Dtj − Dtj∗)xj +w−
t t ∈ T−

w−
t = 2Dtj∗ +2

∑

j 	=j∗

(Dtj − Dtj∗)xj +w+
t t ∈ T+

yt = Dtj∗ +
∑

j 	=j∗

(Dtj − Dtj∗)xj +w+
t t ∈ T+

w+
t =−2Dtj∗ −2

∑

j 	=j∗

(Dtj − Dtj∗)xj +w−
t t ∈ T−

xj∗ = 1 −
∑

j 	=j∗

xj

We can now check that, for large μ, this dictionary is optimal. Indeed, the objective

coefficients on the w−
t and w+

t variables in the first row of the objective function are

negative. The coefficients on the xj’s in the first row can be positive or negative but for

μ sufficiently large, the negative coefficients on the xj’s in the second row dominate

and make all coefficients negative after considering both rows. Similarly, the fact that

all of the basic variables are positive follows immediately from the definitions of T+

and T−.

A few simple inequalities determine the μ-threshold above which the given dic-

tionary is optimal. The parametric simplex method can then be used to systematically

reduce μ to zero. Along the way, each dictionary encountered corresponds to an op-

timal solution for some range of μ values. Hence, in one pass we have solved the

portfolio selection problem for every investor from the bravest to the most cautious.

Figure 13.1 shows all of the optimal portfolios. The set of all risk–reward profiles that

are possible is shown in Figure 13.2. The lower-right boundary of this set is the so-

called efficient frontier. Any portfolio that produces a risk–reward combination that

does not lie on the efficient frontier can be improved either by increasing its mean

reward without changing the risk or by decreasing the risk without changing the mean

reward. Hence, one should only invest in portfolios that lie on the efficient frontier.

2. Option Pricing

Option pricing is one of the fundamental problems of quantitative finance. In

this section we will describe briefly what an option is and formulate upper and lower

bounds on the price as a linear programming problem.

2. OPTION PRICING 217

FIGURE 13.1. Optimal portfolios as a function of risk parameter μ.

An option is a derivative security, which means that it is derived from a simpler

security such as a stock. There are many types of options, some quite exotic. For

the purposes of this book, I will only describe the simplest type of option, the call

option. A call option is a contract between two parties in which one party, the buyer,

is given the option to buy from the other party a particular stock at a particular price at

a particular time some weeks or months in the future. For example, on June 1st, 2007,

Apple Computer stock was selling for $121 per share. On this date, it was possible

to buy an option allowing one to purchase Apple stock for $130 (the so-called strike

price) a share 10 weeks in the future (the expiration date). The seller was offering this

contract for a price of $3.20. Where does this price come from? The simple answer is

that it is determined solely by the marketplace, since option contract themselves can

be bought and sold up until their expiration date. But, as technical folks, we seek an

analytical formula that tells us what a fair price ought to be. This we can do.

To explain how to price the option, we need to think a little bit more about the

value of the option on the date of expiration. If Apple stock does well over the next

10 weeks and ends up at $140 per share, then on the day of expiration I can exercise

the contract and buy the stock for $130. I can then immediately sell the stock for $140

218 13. FINANCIAL APPLICATIONS

FIGURE 13.2. The efficient frontier.

and pocket the $10 difference. Of course, I paid $3.20 for the right to do this. Hence,

my net profit is $6.80. Now, suppose instead of rising to $140 per share, the stock only

climbs to $132 per share. In this case, I will still want to exercise the option because I

can pocket a $2 difference. But, after subtracting the cost of the option, I’ve actually

lost a modest $1.20 per share. Finally, suppose that the stock only goes up to $125 per

share. In this case, I will let the option expire without exercising it. I will have lost

only the $3.20 that I originally paid for the option. Finally, consider the case where in

the intervening 10 weeks some really bad news surfaces that drives Apple stock down

to $100 per share. Had I actually bought Apple stock, I would now be out $21 per

share, which could be a substantial amount of money if I had bought lots of shares.

But, by buying the option, I’m only out $3.20 per share. This is the attraction of call

options. They allow an investor who is optimistic about the economy (or a particular

company) to take a chance without risking much on the down side. Figure 13.3 shows

a plot of the net profit per share as a function of the share price at expiration.

Let s0 denote the (known) current stock price and let S1 denote the (not yet

known, i.e., random) stock price at expiration. A key feature of options is that their

value at the expiration date is given by a specific function h(S1) of the stock price

at expiration. For the specific call option discussed above, the function h(S1) is the

2. OPTION PRICING 219

100 110 120 130 140 150 160
-5

0

5

10

15

20

25

30

FIGURE 13.3. A graph of the value of the option at expiration as a

function of stock price. In this example, the strike price is $130.

“hockey-stick” shaped function shown in Figure 13.3. If we think we know the distri-

bution of the random variable S1, then we could compute its expected value and, if we

ignore the discounting for inflation, we could use this to price the option:

p = Eh(S1).

Unfortunately, we generally don’t know the distribution of S1.

We can, however, make some indirect inferences based on “market wisdom” that

constrain the possible values for p and thereby implicitly tell us something about the

distribution of S1. Specifically, let us imagine that there are already a number of

options being traded in the market that are based on the same underlying stock and

have the same expiration date. Let us suppose that there are already n options being

traded in the market with known prices. That is, there are specific functions hj(S1),
j = 1, 2, . . . , n, for which there are already known prices pj . One can think of the

underlying stock itself as the simplest possible option. Since the stock is traded, it

too provides some information about the future. We assume that this trivial asset is

the j = 1 option in the collection of known priced options. For this option, we have

h1(S1) = S1 and p1 = s0. To these n options, we add one more: cash. One dollar

220 13. FINANCIAL APPLICATIONS

today will be worth one dollar on the expiration date (again, we are ignoring here the

time value of money). In a sense, this is also and option.

The problem we wish to consider is how to price a new option whose payout

function we denote by g(S1). Consider building a portfolio of the available options

consisting of x0 “shares” of dollars, x1 shares of the underlying stock, and xj shares

of option j (j = 2, . . . , n). Today, this portfolio costs

x0 + x1s0 +

n
∑

j=2

xjpj .

At the expiration date, the portolio’s value will be

x0 + x1S1 +

n
∑

j=2

xjhj(S1).

Suppose that no matter how S1 turns out, the value of the new option dominates that

of the portfolio:

x0 + x1S1 +
n

∑

j=2

xjhj(S1) ≤ g(S1).

Then, it must be the case that the price p of the new option today must also dominate

the cost of this portfolio:

x0 + x1s0 +

n
∑

j=2

xjpj ≤ p.

This is called a no-arbitrage condition. This no-arbitrage condition implies a lower

bound p on the price of the new option, which we can maximize:

maximize x0 + x1s0 +

n
∑

j=2

xjpj

subject to x0 + x1S1 +
n

∑

j=2

xjhj(S1)≤ g(S1).

This problem actually has an infinite number of constraints because the inequality

must hold no matter what value S1 takes on. It can be made into a linear programming

problem by introducing a finite set of possible values, say s1(1), s1(2), . . . , s1(m).
The resulting linear programming problem can thus be written as

(13.4)

maximize p = x0 + x1s0 +

n
∑

j=2

xjpj

subject to x0 + x1s1(i) +

n
∑

j=2

xjhj(s1(i))≤ g(s1(i)), i = 1, . . . , m.

EXERCISES 221

In a completely analogous manner we can find a tight upper bound p̄ for p by solving

a minimization problem:

(13.5)

minimize p̄ = x0 + x1s0 +

n
∑

j=2

xjpj

subject to x0 + x1s1(i) +

n
∑

j=2

xjhj(s1(i))≥ g(s1(i)), i = 1, . . . , m.

The dual problem associated with (13.4) is

minimize
∑

i

g(s1(i))yi

subject to
∑

i

yi = 1,

∑

i

s1(i)yi = s0,

∑

i

hj(s1(i))yi = pj , j = 2, . . . , n

yi ≥ 0, i = 1, . . . , m.

Note that the first and last constraints tell us that the yi’s are a system of probabilities.

Given this interpretation of the yi’s as probabilities, the expression

∑

i

s1(i)yi

is just an expected value of the random variable S1 computed using these probabilities.

So, the constraint
∑

i s1(i)yi = s0 means that the expected stock price at the end

of the time period must match the current stock price, when computed with the yi

probabilities. For this reason, we call these probabilities risk neutral. Similarly, the

constraints
∑

i hj(s1(i))yi = pj , j = 2, . . . , n, tell us that each of the options must

also be priced in such a way that the expected future price matches the current market

price.

Exercises

13.1 Find every portfolio on the efficient frontier using the most recent 6 months

of data for the Bond (SHY), Materials (XLB), Energy (XLE), and Finacial

(XLF) sectors as shown in Table 13.1 (that is, using the upper left 6 × 4
subblock of data).

222 13. FINANCIAL APPLICATIONS

13.2 On Planet Claire, markets are highly volatile. Here’s some recent historical

data:

Year- Hair Cosmetics Cash

Month Products

2007-04 1.0 2.0 1.0

2007-03 2.0 2.0 1.0

2007-02 2.0 0.5 1.0

2007-01 0.5 2.0 1.0

Find every portfolio on Planet Claire’s efficient frontier.

13.3 What is the dual of (13.5)?

Notes

The portfolio selection problem originates with Markowitz (1959). He won the

1990 Nobel prize in Economics for this work. In its original formulation, risk is

modeled by the variance of the portfolio’s value rather than the absolute deviation

from the mean considered here. We will discuss the quadratic formulation later in

Chapter 24.

The MAD risk measure we have considered in this chapter has many nice proper-

ties the most important of which is that it produces portfolios that are guaranteed not

to be stochastically dominated (to second order) by other portfolios. Many risk mea-

sures fail to possess this important property. See Ruszczyński & Vanderbei (2003) for

details.

CHAPTER 14

Network Flow Problems

Many linear programming problems can be viewed as a problem of minimizing

the “transportation” cost of moving materials through a network to meet demands for

material at various locations given sources of material at other locations. Such prob-

lems are called network flow problems. They form the most important special class of

linear programming problems. Transportation, electric, and communication networks

provide obvious examples of application areas. Less obvious, but just as important,

are applications in facilities location, resource management, financial planning, and

others.

In this chapter we shall formulate a special type of linear programming problem

called the minimum-cost network flow problem. It turns out that the simplex method

when applied to this problem has a very simple description and some important special

properties. Implementations that exploit these properties benefit dramatically.

1. Networks

A network consists of two types of objects: nodes and arcs. We shall let N denote

the set of nodes. We let m denote the number of nodes (i.e., the cardinality of the set

N).

The nodes are connected by arcs. Arcs are assumed to be directed. This means

that an arc connecting node i to node j is not the same as an arc connecting node j to

node i. For this reason, we denote arcs using the standard mathematical notation for

ordered pairs. That is, the arc connecting node i to node j is denoted simply as (i, j).
We let A denote the set of all arcs in the network. This set is a subset of the set of all

possible arcs:

A ⊂ {(i, j) : i, j ∈ N , i �= j}.
In typical networks, the set A is much smaller than the set of all arcs. In fact, usually

each node is only connected to a handful of “nearby” nodes.

The pair (N ,A) is called a network. It is also sometimes called a graph or a

digraph (to emphasize the fact that the arcs are directed). Figure 14.1 shows a network

having 7 nodes and 14 arcs.

To specify a network flow problem, we need to indicate the supply of (or demand

for) material at each node. So, for each i ∈ N , let bi denote the amount of material

being supplied to the network at node i. We shall use the convention that negative

225

226 14. NETWORK FLOW PROBLEMS

a e

d

c b

f g
5

−2

−6

−6

9

FIGURE 14.1. A network having 7 nodes and 14 arcs. The numbers

written next to the nodes denote the supply at the node (negative

values indicate demands; missing values indicate no supply or de-

mand).

supplies are in fact demands. Hence, our problem will be to move the material that

sits at the supply nodes over to the demand nodes. The movements must be along the

arcs of the network (and adhering to the directions of the arcs). Since, except for the

supply and demand, there is no other way for material to enter or leave the system,

it follows that the total supply must equal the total demand for the problem to have a

feasible solution. Hence, we shall always assume that

∑

i∈N
bi = 0.

To help us decide the paths along which materials should move, we assume that

each arc, say, (i, j), has associated with it a cost cij that represents the cost of shipping

one unit from i to j directly along arc (i, j). The decision variables then are how

much material to ship along each arc. That is, for each (i, j) ∈ A, xij will denote the

quantity shipped directly from i to j along arc (i, j). The objective is to minimize the

total cost of moving the supply to meet the demand:

minimize
∑

(i,j)∈A
cijxij .

As we mentioned before, the constraints on the decision variables are that they

ensure flow balance at each node. Let us consider a fixed node, say, k ∈ N . The total

1. NETWORKS 227

a e

d

c b

f g

10

56

108 48

24

33

19

738748

15

65

28

FIGURE 14.2. The costs on the arcs for the network in Figure 14.1.

flow into node k is given by
∑

i:
(i,k)∈A

xik.

Similarly, the total flow out from node k is
∑

j:
(k,j)∈A

xkj .

The difference between these two quantities is the net inflow, which must be equal to

the demand at the node. Hence, the flow balance constraints can be written as
∑

i:
(i,k)∈A

xik −
∑

j:
(k,j)∈A

xkj = −bk, k ∈ N .

Finally, the flow on each arc must be nonnegative (otherwise it would be going in the

wrong direction):

xij ≥ 0, (i, j) ∈ A.

Figure 14.2 shows cost information for the network shown in Figure 14.1. In

matrix notation, the problem can be written as follows:

(14.1)

minimize cT x

subject to Ax = −b

x≥ 0,

228 14. NETWORK FLOW PROBLEMS

where

xT =
[

xac xad xae xba xbc xbe xdb xde xfa xfb xfc xfg xgb xge

]

,

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 −1 1 1

−1 −1 −1 1 1 1

1 1 1

1 −1 −1

1 1 1 1

−1 −1 −1 −1

1 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

−6

−6

−2

9

5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

cT =
[

48 28 10 7 65 7 38 15 56 48 108 24 33 19
]

.

In network flow problems, the constraint matrix A is called the node–arc incidence

matrix.

The network flow problem differs from our usual standard form linear program-

ming problem in two respects: (1) it is a minimization instead of a maximization and

(2) the constraints are equalities instead of inequalities. Nonetheless, we have studied

before how duality applies to problems in nonstandard form. The dual of (14.1) is

maximize −bT y

subject to AT y + z = c

z ≥ 0.

Written in network notation, the dual is

maximize −
∑

i∈N
biyi

subject to yj − yi + zij = cij , (i, j) ∈ A
zij ≥ 0, (i, j) ∈ A.

Finally, it is not hard to check that the complementarity conditions (to be satisfied by

an optimal primal–dual solution pair) are

xijzij = 0, (i, j) ∈ A.

We shall often refer to the primal variables as primal flows.

2. Spanning Trees and Bases

Network flow problems can be solved efficiently because the basis matrices have

a special structure that can be described nicely in terms of the network. In order to

explain this structure, we need to introduce a number of definitions.

First of all, an ordered list of nodes (n1, n2, . . . , nk) is called a path in the network

if each adjacent pair of nodes in the list is connected by an arc in the network. It is

2. SPANNING TREES AND BASES 229

FIGURE 14.3. The network on the left is connected whereas the

one on the right is not.

FIGURE 14.4. The network on the left contains a cycle whereas the

one on the right is acyclic.

important to note that we do not assume that the arcs point in any particular direction.

For example, for nodes ni and ni+1, there must be an arc in the network. It could

run either from ni to ni+1 or from ni+1 to ni. (One should think about one-way

roads—even though cars can only go one way, pedestrians are allowed to walk along

the path of the road in either direction.) A network is called connected if there is a path

connecting every pair of nodes (see Figure 14.3). For the remainder of this chapter,

we make the following assumption:

Assumption. The network is connected.

For any arc (i, j), we refer to i as its tail and j as its head.

A cycle is a path in which the last node coincides with the first node. A network

is called acyclic if it does not contain any cycles (see Figure 14.4).

A network is a tree if it is connected and acyclic (see Figure 14.5). A network

(Ñ , Ã) is called a subnetwork of (N ,A) if Ñ ⊂ N and Ã ⊂ A. A subnetwork

(Ñ , Ã) is a spanning tree if it is a tree and Ñ = N . Since a spanning tree’s node set

coincides with the node set of the underlying network, it suffices to refer to a spanning

tree by simply giving its arc set.

230 14. NETWORK FLOW PROBLEMS

FIGURE 14.5. The network on the left is a tree whereas the two on

the right not—they fail in the first case by being disconnected and

in the second by containing a cycle.

a e

d

c b

f g

32

6

−5 3

9

3

2

21
74−1−9

65

6

641

−15

98

19

0

33

69

FIGURE 14.6. The fat arcs show a spanning tree for the network in

Figure 14.1. The numbers shown on the arcs of the spanning tree

are the primal flows, the numbers shown next to the nodes are the

dual variables, and the numbers shown on the arcs not belonging to

the spanning tree are the dual slacks.

Given a network flow problem, any selection of primal flow values that satisfies

the balance equations at every node will be called a balanced flow. It is important to

note that we do not require the flows to be nonnegative to be a balanced flow. That

is, we allow flows to go in the wrong direction. If all the flows are nonnegative, then

a balanced flow is called a feasible flow. Given a spanning tree, a balanced flow that

assigns zero flow to every arc not on the spanning tree will be called a tree solution.

Consider, for example, the tree shown in Figure 14.6. The numbers shown on the

2. SPANNING TREES AND BASES 231

arcs of the spanning tree give the tree solution corresponding to the supplies/demands

shown in Figure 14.1. They were obtained by starting at the “leaves” of the tree and

working “inward.” For instance, the flows could be solved for successively as follows:

flow bal at d: xad = 6,

flow bal at a: xfa − xad = 0 =⇒ xfa = 6,

flow bal at f: −xfa − xfb = −9 =⇒ xfb = 3,

flow bal at c: xbc = 6,

flow bal at b: xfb + xgb − xbc = 0 =⇒ xgb = 3,

flow bal at e: xge = 2.

It is easy to see that this process always works. The reason is that every tree must have

at least one leaf node, and deleting a leaf node together with the edge leading into it

produces a subtree.

The above computation suggests that spanning trees are related to bases in the

simplex method. Let us pursue this idea. Normally, a basis is an invertible square

submatrix of the constraint matrix. But for incidence matrices, no such submatrix

exists. To see why, note that if we sum together all the rows of A, we get a row vector

of all zeros (since each column of A has exactly one +1 and one −1). Of course,

every square submatrix of A has this same property and so is singular. In fact, we

shall show in a moment that for a connected network, there is exactly one redundant

equation (i.e., the rank of A is exactly m − 1).

Let us select some node, say, the last one, and delete the flow-balance constraint

associated with this node from the constraints defining the problem (since it is redun-

dant anyway). Let’s call this node the root node. Let Ã denote the incidence matrix

A without the row corresponding to the root node (i.e., the last row), and let b̃ denote

the supply/demand vector with the last entry deleted. The most important property of

network flow problems is summarized in the following theorem:

THEOREM 14.1. A square submatrix of Ã is a basis if and only if the arcs to

which its columns correspond form a spanning tree.

Rather than presenting a formal proof of this theorem, it is more instructive to

explain the idea using the example we’ve been studying. Therefore, consider the

spanning tree shown in Figure 14.6, and let B denote the square submatrix of Ã cor-

responding to this tree. The matrix B is invertible if and only if every system of

equations of the form

Bu = β

has a unique solution. This is exactly the type of equation that we already solved to

find the tree solution associated with the spanning tree:

BxB = −b̃.

232 14. NETWORK FLOW PROBLEMS

We solved this system of equations by looking at the spanning tree and realizing that

we could work our way to a solution by starting with the leaves and working inward.

This process amounts to a permutation of the rows and columns of B to get a lower

triangular matrix. Indeed, for the calculations given above, we have permuted the rows

by P and the columns by Q to get

PBQT =

(a,d) (f,a) (f,b) (b,c) (g,b) (g,e)

d

a

f

c

b

e

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

−1 1

−1 −1

1

1 −1 1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The fact that B is invertible is now immediately apparent from the fact that the per-

muted matrix is lower triangular. In fact, it has only +1’s and −1’s on the diagonal.

Therefore, we can solve systems of equations involving B without ever having to do

any divisions. Also, since the off-diagonal entries are also ±1’s, it follows that we

don’t need to do any multiplications either. Every system of equations involving the

matrix B can be solved by a simple sequence of additions and subtractions.

We have shown that, given a spanning tree, the submatrix of Ã consisting of the

columns corresponding to the arcs in the spanning tree is a basis. The converse direc-

tion (which is less important to our analysis) is relegated to an exercise (see Exercise

14.12).

Not only is there a primal solution associated with any basis but also there is a

dual solution. Hence, corresponding to any spanning tree there is a dual solution. The

dual solution consists of two types of variables: the yi’s and the zij’s. These variables

must satisfy the dual feasibility conditions:

yj − yi + zij = cij , (i, j) ∈ A.

By complementarity, zij = 0 for each (i, j) in the spanning tree T . Hence,

yj − yi = cij , (i, j) ∈ T .

Since a spanning tree on m nodes has m − 1 arcs (why?), these equations define a

system of m−1 equations in m unknowns. But don’t forget that there was a redundant

equation in the primal problem, which we associated with a specific node called the

root node. Removing that equation and then looking at the dual, we see that there is

not really a dual variable associated with the root node. Or equivalently, we can just

say that the dual variable for the root node is zero. Making this assignment, we get m
equations in m unknowns. These equations can be solved by starting at the root node

and working down the tree.

3. THE PRIMAL NETWORK SIMPLEX METHOD 233

For example, let node “g” be the root node in the spanning tree in Figure 14.6.

Starting with it, we compute the dual variables as follows:

yg = 0,

across arc (g,e): ye − yg = 19 =⇒ ye = 19,

across arc (g,b): yb − yg = 33 =⇒ yb = 33,

across arc (b,c): yc − yb = 65 =⇒ yc = 98,

across arc (f,b): yb − yf = 48 =⇒ yf = −15,

across arc (f,a): ya − yf = 56 =⇒ ya = 41,

across arc (a,d): yd − ya = 28 =⇒ yd = 69.

Now that we know the dual variables, the dual slacks for the arcs not in the spanning

tree T can be computed using

zij = yi + cij − yj , (i, j) �∈ T
(which is just the dual feasibility condition solved for zij). These values are shown on

the nontree arcs in Figure 14.6.

From duality theory, we know that the current tree solution is optimal if all the

flows are nonnegative and if all the dual slacks are nonnegative. The tree solution

shown in Figure 14.6 satisfies the first condition but not the second. That is, it is

primal feasible but not dual feasible. Hence, we can apply the primal simplex method

to move from this solution to an optimal one. We take up this task in the next section.

3. The Primal Network Simplex Method

Each of the variants of the simplex method presented in earlier chapters of this

book can be applied to network flow problems. It would be overkill to describe them

all here in the context of networks. However, they are all built on two simple algo-

rithms: the primal simplex method (for problems that are primal feasible) and the dual

simplex method (for problems that are dual feasible). We discuss them both in detail.

We shall describe the primal network simplex method by continuing with our

example. As mentioned above, the tree shown in Figure 14.6 is primal feasible but

not dual feasible. The basic idea that defines the primal simplex method is to pick a

nontree arc that is dual infeasible and let it enter the tree (i.e., become basic) and then

readjust everything so that we still have a tree solution.

The First Iteration. For our first pivot, we let arc (a,c) enter the tree using a primal

pivot. In a primal pivot, we add flow to the entering variable, keeping all other nontree

flows set to zero and adjusting the tree flows appropriately to maintain flow balance.

Given any spanning tree, adding an extra arc must create a cycle (why?). Hence, the

current spanning tree together with the entering arc must contain a cycle. The flows

on the cycle must change to accommodate the increasing flow on the entering arc. The

flows on the other tree arcs remain unchanged. In our example, the cycle is: “a”, “c”,

234 14. NETWORK FLOW PROBLEMS

a

c b

f

6+t

3−t

t

6−t

a

c b

f

9

3

3

FIGURE 14.7. The cycle produced by including the entering arc

with the spanning tree. As the flow t on the entering arc increases,

eventually the flow on arc (f,b) becomes zero (when t = 3). Hence,

arc (f,b) is the leaving arc.

“b”, “f”. This cycle is shown in Figure 14.7 with flows adjusted to take into account a

flow of t on the entering arc. As t increases, eventually the flow on arc (f,b) decreases

to zero. Hence, arc (f,b) is the leaving arc. Updating the flows is easy; just take t = 3
and adjust the flows appropriately.

With a little thought, one realizes that the selection rule for the leaving arc in a

primal pivot is as follows:

Leaving arc selection rule:

• the leaving arc must be oriented along the cycle in the reverse

direction from the entering arc, and

• among all such arcs, it must have the smallest flow.

Also, the flows on the cycle get updated as follows:

Primal flows update:

• Flows oriented in the same direction as the leaving arc are

decreased by the amount of flow that was on the leaving arc

whereas flows in the opposite direction are increased by this

amount.

The next issue is how to update the dual variables. To this end, note that if we

delete the leaving arc from the spanning tree (without concurrently adding the entering

arc), we disconnect it into two disjoint trees. In our example, one tree contains nodes

“a”, “d” and “f” while the second tree contains the other nodes. Figure 14.8 shows the

two disjoint trees. Recalling that the dual variables are calculated starting with the root

3. THE PRIMAL NETWORK SIMPLEX METHOD 235

a e

d

c b

f g

?

?

? ?

?

3

2

21
???

?

?

6?

?

98

19

0

33

?

FIGURE 14.8. The two disjoint trees. Primal and dual values that

remained unchanged are shown, whereas those that need to be up-

dated are shown as question marks.

node and working up the spanning tree, it is clear that the dual variables on the subtree

containing the root node remain unchanged, whereas those on the other subtree must

change. For the current pivot, the other subtree consists of nodes “a”, “d”, and “f”.

They all get incremented by the same fixed amount, since the only change is that the

arc by which we bridged from the root-containing tree to this other tree has changed

from the leaving arc to the entering arc. Looking at node “a” and using tildes to denote

values after being changed, we see that

ỹa = ỹc − cac

= yc − cac,

whereas

zac = ya + cac − yc.

Combining these two equations, we get

ỹa = ya − zac.

That is, the dual variable at node “a” gets decremented by zac = −9. Of course, all

of the dual variables on this subtree get decremented by this same amount. In general,

the dual variable update rule can be stated as follows:

Dual variables update:

• If the entering arc crosses from the root-containing tree to the

non-root-containing tree, then increase all dual variables on

236 14. NETWORK FLOW PROBLEMS

a e

d

c b

f g

41

9

4 9

18

3

2

21
83−103

74

3

650

−6

98

19

0

33

78

FIGURE 14.9. The tree solution at the end of the first iteration.

the non-root-containing tree by the dual slack of the entering

arc.

• Otherwise, decrease these dual variables by this amount.

Finally, we must update the dual slacks. The only dual slacks that change are

those that span across the two trees since, for these nodes, either the head or the tail

dual variable changes, while the other does not. Those that span the two subtrees in

the same direction as the entering arc must be decreased by zac, whereas those that

bridge the two trees in the opposite direction must be increased by this amount. For

our example, six nontree arcs, (f,g), (f,b), (f,c), (d,b), (d,e), and (a,e), span in the same

direction as the entering arc. They all must be decreased by −9. That is, they must be

increased by 9. For example, the dual slack on arc (f,c) changes from −5 to 4. Only

one arc, (b,a), spans in the other direction. It must be decreased by 9. The updated

solution is shown in Figure 14.9. The general rule for updating the dual slacks is as

follows:

Dual slacks update:

• The dual slacks corresponding to those arcs that bridge in the

same direction as the entering arc get decremented by the old

dual slack on the entering arc, whereas those that correspond

to arcs bridging in the opposite direction get incremented by

this amount.

The Second Iteration. The tree solution shown in Figure 14.9 has only one re-

maining infeasibility: zba = −10. Arc (b,a) must therefore enter the spanning tree.

Adding it, we create a cycle consisting of nodes “a”, “b”, and “c”. The leaving arc

4. THE DUAL NETWORK SIMPLEX METHOD 237

83

a e

d

c b

f g

41

9

4 9

18

3

2

213

74

0

650

−6

98

19

0

33

78

FIGURE 14.10. The two disjoint subtrees arising in the second iteration.

must be pointing in the opposite direction from the entering arc. Here, there is only

one such arc, (b,c). It must be the leaving arc. The leaving arc’s flow decreases from 3
to 0. The flow on the other two cycle arcs must increase by 3 to preserve flow balance.

The two subtrees formed by removing the leaving arc are shown in Figure 14.10

The dual variables on the non-root-containing subtree get incremented by the dual

slack on the entering arc zba = −10. The dual slacks for the spanning arcs also change

by 10 either up or down depending on which way they bridge the two subtrees. The

resulting tree solution is shown in Figure 14.11.

The Third and Final Iteration. The tree solution shown in Figure 14.11 has one

infeasibility: zfb = −1. Hence, arc (f,c) must enter the spanning tree. The leaving arc

must be (f,a). Leaving the details of updating to the reader, the resulting tree solution

is shown in Figure 14.12. It is both primal and dual feasible—hence optimal.

4. The Dual Network Simplex Method

In the previous section, we developed simple rules for the primal network simplex

method, which is used in situations where the tree solution is primal feasible but not

dual feasible. When a tree solution is dual feasible but not primal feasible, then the

dual network simplex method can be used. We shall define this method now. Consider

the tree solution shown in Figure 14.13. It is dual feasible but not primal feasible

(since xdb < 0). The basic idea that defines the dual simplex method is to pick a tree

arc that is primal infeasible and let it leave the spanning tree (i.e., become nonbasic)

and then readjust everything to preserve dual feasibility.

238 14. NETWORK FLOW PROBLEMS

a e

d

c b

f g

31

9

4 −1

8

3

2

217336

64

10

640

−16

88

19

0

33

68

FIGURE 14.11. The tree solution at the end of the second iteration.

To get from the spanning tree in Figure 14.9 to here, we let arc (b,a)

enter and arc (b,c) leave.

a e

d

c b

f g

31

1

5 9

9

3

2

2173126

64

10

640

−15

88

19

0

33

68

FIGURE 14.12. The tree solution at the end of the third iteration.

To get from the spanning tree in Figure 14.11 to here, we let arc (f,b)

enter and arc (f,a) leave. This tree solution is the optimal solution to

the problem.

4. THE DUAL NETWORK SIMPLEX METHOD 239

a e

d

c b

f g

40

1

5 9

9

5

9

30
−866

2

10

7340

−15

88

10

0

33

−5

FIGURE 14.13. A tree solution that is dual feasible but not primal feasible.

The First Iteration. For the first iteration, we need to let arc (d,b) leave the span-

ning tree using a dual pivot, which is defined as follows. Removing arc (d,b) discon-

nects the spanning tree into two disjoint subtrees. The entering arc must be one of the

arcs that spans across the two subtrees so that it can reconnect them into a spanning

tree. That is, it must be one of

(a,e), (a,d), (b,e), or (g,e).

See Figure 14.14. To see how to decide which it must be, we need to consider care-

fully the impact of each possible choice.

To this end, let us consider the general situation. As mentioned above, the span-

ning tree with the leaving arc removed consists of two disjoint trees. The entering arc

must reconnect these two trees.

First, consider a reconnecting arc that connects in the same direction as the leaving

arc. When we add flow to this prospective entering arc, we will have to decrease flow

on the leaving arc to maintain flow balance. Therefore, the leaving arc’s flow, which

is currently negative, can’t be raised to zero. That is, the leaving arc can’t leave. This

is no good.

Now suppose that the reconnecting arc connects in the opposite direction. If it

were to be the entering arc, then its dual slack would drop to zero. All other re-

connecting arcs pointing in the same direction would drop by the same amount. To

maintain nonnegativity of all the others, we must pick the one that drops the least. We

can summarize the rule as follows:

Entering arc selection rule:

240 14. NETWORK FLOW PROBLEMS

a e

d

c b

f g

40

1

5 9

9

5

9

306
6

2

10

7340

−15

88

10

0

33

−5

FIGURE 14.14. The two subtrees for the first pivot of the dual sim-

plex method.

• the entering arc must bridge the two subtrees in the opposite

direction from the leaving arc, and

• among all such arcs, it must have the smallest dual slack.

In our example, all bridging arcs point in the opposite direction from the leaving arc.

The one with the smallest dual slack is (g,e) whose slack is zge = 9. This arc must be

the entering arc.

We have now determined both the entering and leaving arcs. Hence, the new

spanning tree is determined and therefore, in principle, all the variables associated

with this new spanning tree can be computed. Furthermore, the rules for determining

the new values by updating from the previous ones are the same as in the primal

network simplex method. The resulting tree solution is shown in Figure 14.15.

The Second Iteration. For the second pivot, there are two choices for the leaving

arc: (g,b) and (d,e). Using the most infeasible, we choose (d,e). We remove this arc

from the spanning tree to produce two subtrees. One of the subtrees consists of just

the node “d” all by itself while the other subtree consists of the rest of the nodes.

Remembering that the reconnecting arc must bridge the two subtrees in the opposite

direction, the only choice is (a,d). So this arc is the entering arc. Making the pivot, we

arrive at the optimal tree solution shown in Figure 14.12.

5. Putting It All Together

As we saw in Chapter 5, for linear programming the primal and the dual simplex

methods form the foundation on which one can build a few different variants of the

simplex method. The same is true here in the context of network flows.

5. PUTTING IT ALL TOGETHER 241

a e

d

c b

f g

31

1

5 9

9

−3

8

21966

−6

10

6440

−15

88

19

0

33

4

FIGURE 14.15. The tree solution after the first pivot.

For example, one can build a two-phased procedure in which one first uses the

dual network simplex method (with costs artificially and temporarily altered to ensure

dual feasibility of an initial tree solution) to find a primal feasible solution and then

uses the primal network simplex method to move from the feasible solution to an

optimal one.

Alternatively, one can use the primal network simplex method (with supplies tem-

porarily altered to ensure primal feasibility of an initial tree solution) to find a dual

feasible solution and then use the dual network simplex method (with the original

supplies) to move from the dual feasible solution to an optimal one.

Finally, as described for linear programming in Chapter 7, one can define a para-

metric self-dual method in which primal pivots and dual pivots are intermingled as

needed so as to reduce a perturbation parameter μ from ∞ to zero.

Since there is nothing new in how one builds the network versions of these algo-

rithms from the basic primal and dual simplex pivots, we don’t go through any exam-

ples here. Instead, we just mention one final observation about the dual variables, the

yi’s. Namely, they are not needed anywhere in the performance of a primal or a dual

pivot. Hence, their calculation is entirely optional and can be skipped altogether or

simply defered to the end.

For completeness, we end this section by giving a step-by-step description of the

self-dual network simplex method. The steps are as follows:

(1) Identify a spanning tree—any one will do (see Exercise 14.14). Also identify

a root node.

(2) Compute initial primal flows on the tree arcs by assuming that nontree arcs

have zero flow and the total flow at each node must be balanced. For this

242 14. NETWORK FLOW PROBLEMS

calculation, the computed primal flows may be negative. In this case, the

initial primal solution is not feasible. The calculation is performed working

from leaf nodes inward.

(3) Compute initial dual values by working out from the root node along tree

arcs using the formula

yj − yi = cij ,

which is valid on tree arcs, since the dual slacks vanish on these arcs.

(4) Compute initial dual slacks on each nontree arc using the formula

zij = yi + cij − yj .

Again, some of the zij’s might be nonnegative. This is okay (for now), but

it is important that they satisfy the above equality.

(5) Perturb each primal flow and each dual slack that has a negative initial value

by adding a positive scalar μ to each such value.

(6) Identify a range μMIN ≤ μ ≤ μMAX over which the current solution is optimal

(on the first iteration, μMAX will be infinite).

(7) Check the stopping rule: if μMIN ≤ 0, then set μ = 0 to recover an optimal

solution. While not optimal, perform each of the remaining steps and then

return to recheck this condition.

(8) Select an arc associated with the inequality μMIN ≤ μ (if there are several,

pick one arbitrarily). If this arc is a nontree arc, then the current pivot is a

primal pivot. If, on the other hand, it is a tree arc, then the pivot is a dual

pivot.

(a) If the pivot is a primal pivot, the arc identified above is the entering arc.

Identify the associated leaving arc as follows. First, add the entering arc

to the tree. With this arc added, there must be a cycle consisting of the

entering arc and other tree arcs. The leaving arc is chosen from those

arcs on the cycle that go in the opposite direction from the entering arc

and having the smallest flow among all such arcs (evaluated at μ =
μMIN).

(b) If the pivot is a dual pivot, the arc identified above is the leaving arc.

Identify the associated entering arc as follows. First, delete the leaving

arc from the tree. This deletion splits the tree into two subtrees. The

entering arc must bridge these two trees in the opposite direction to the

leaving arc, and, among such arcs, it must be the one with the smallest

dual slack (evaluated at μ = μMIN).

(9) Update primal flows as follows. Add the entering arc to the tree. This ad-

dition creates a cycle containing both the entering and leaving arcs. Adjust

the flow on the leaving arc to zero, and then adjust the flows on each of the

other cycle arcs as necessary to maintain flow balance.

6. THE INTEGRALITY THEOREM 243

(10) Update dual variables as follows. Delete the leaving arc from the old tree.

This deletion splits the old tree into two subtrees. Let Tu denote the subtree

containing the tail of the entering arc, and let Tv denote the subtree contain-

ing its head. The dual variables for nodes in Tu remain unchanged, but the

dual variables for nodes in Tv get incremented by the old dual slack on the

entering arc.

(11) Update dual slacks as follows. All dual slacks remain unchanged except for

those associated with nontree arcs that bridge the two subtrees Tu and Tv .

The dual slacks corresponding to those arcs that bridge in the same direction

as the entering arc get decremented by the old dual slack on the entering arc,

whereas those that correspond to arcs bridging in the opposite direction get

incremented by this amount.

As was said before and should now be clear, there is no need to update the dual vari-

ables from one iteration to the next; that is, step 10 can be skipped.

6. The Integrality Theorem

In this section, we consider network flow problems for which all the supplies and

demands are integers. Such problems are called network flow problems with integer

data. As we explained in Section 14.2, for network flow problems, basic primal so-

lutions are computed without any multiplication or division. The following important

theorem follows immediately from this property:

THEOREM 14.2. Integrality Theorem. For network flow problems with integer

data, every basic feasible solution and, in particular, every basic optimal solution

assigns integer flow to every arc.

This theorem is important because many real-world network flow problems have

integral supplies/demands and require their solutions to be integral too. This inte-

grality restriction typically occurs when one is shipping indivisible units through a

network. For example, it wouldn’t make sense to ship one third of a car from an au-

tomobile assembly plant to one dealership with the other two thirds going to another

dealership.

Problems that are linear programming problems with the additional stipulation

that the optimal solution values must be integers are called integer programming prob-

lems. Generally speaking, these problems are much harder to solve than linear pro-

gramming problems (see Chapter 23). However, if the problem is a network flow

problem with integer data, it can be solved efficiently using the simplex method to

compute a basic optimal solution, which the integrality theorem tells us will be integer

valued.

6.1. König’s Theorem. In addition to its importance in real-world optimization

problems, the integrality theorem also has many applications to the branch of mathe-

matics called combinatorics. We illustrate with just one example.

244 14. NETWORK FLOW PROBLEMS

THEOREM 14.3. König’s Theorem. Suppose that there are n girls and n boys,

that every girl knows exactly k boys, and that every boy knows exactly k girls. Then n
marriages can be arranged with everybody knowing his or her spouse.

Before proving this theorem it is important to clarify its statement by saying that

the property of “knowing” is symmetric (for example, knowing in the biblical sense).

That is, if a certain girl knows a certain boy, then this boy also knows this girl.

PROOF. Consider a network with nodes g1, g2, . . . , gn, b1, b2, . . . , bn and an arc

from gi to bj if girl i and boy j know each other. Assign one unit of supply to each girl

node and a unit of demand to each boy node. Assign arbitrary objective coefficients to

create a well-defined network flow problem. The problem is guaranteed to be feasible:

just put a flow of 1/k on each arc (the polygamists in the group might prefer this

nonintegral solution). By the integrality theorem, the problem has an integer-valued

solution. Clearly, the flow on each arc must be either zero or one. Also, each girl

node is the tail of exactly one arc having a flow of one. This arc points to her intended

mate. �

Exercises

In solving the following problems, the network pivot tool can be used to check

your arithmetic:

campuscgi.princeton.edu/∼rvdb/JAVA/network/nettool/netsimp.html

14.1 Consider the following network flow problem:

f
0

e

d

a

c

b

h

g

i
11

5

0

6

3

1

−3

12 10
3

5
1 5

3

1

7

6

−8

3

8

17

−3

−8

−9 0

Numbers shown above the nodes are supplies (negative values represent de-

mands) and numbers shown above the arcs are unit shipping costs. The

darkened arcs form a spanning tree.

(a) Compute primal flows for each tree arc.

(b) Compute dual variables for each node.

(c) Compute dual slacks for each nontree arc.

EXERCISES 245

14.2 Consider the tree solution for the following minimum cost network flow

problem:

f

e

d

a

c

b

h

g

i
18

14

−1

−4

12

2

8

−16 16
8

11
0 11

5

−3

4

6

The numbers on the tree arcs represent primal flows while numbers on the

nontree arcs are dual slacks.

(a) Using the largest–coefficient rule in the dual network simplex method,

what is the leaving arc?

(b) What is the entering arc?

(c) After one pivot, what is the new tree solution?

14.3 Consider the following network flow problem:

f

e

d

a

c

b

h

8

3

6

3

6

−4

0

7 7

0 14−1

−6

−8 0

1 7

0 6

The numbers above the nodes are supplies (negative values represent de-

mands) and numbers shown above the arcs are unit shipping costs. The

darkened arcs form a spanning tree.

(a) Compute primal flows for each tree arc.

(b) Compute dual variables for each node.

(c) Compute dual slacks for each nontree arc.

14.4 Consider the tree solution for the following minimum cost network flow

problem:

246 14. NETWORK FLOW PROBLEMS

c

d

b

a

f

g

e

18

−10

0

−13

6

14

1

14 6

10 1413

The numbers on the tree arcs represent primal flows while numbers on the

nontree arcs are dual slacks.

(a) Using the largest–coefficient rule in the primal network simplex method,

what is the entering arc?

(b) What is the leaving arc?

(c) After one pivot, what is the new tree solution?

14.5 Consider the tree solution for the following minimum cost network flow

problem:

c

d

b

a

f

g

e

15

0

10

6

3

0

−13

14 6

−8 103

The numbers on the tree arcs represent primal flows while numbers on the

nontree arcs are dual slacks.

(a) Using the largest–coefficient rule in the dual network simplex method,

what is the leaving arc?

(b) What is the entering arc?

(c) After one pivot, what is the new tree solution?

14.6 Solve the following network flow problem starting with the spanning tree

shown.

EXERCISES 247

c
2

b

e h

d

g

f

a

3

1

2

4

3

2

1

1

1

−2

−3−1

6

−3

1

The numbers displayed next to nodes are supplies(+)/demands(−). Num-

bers on arcs are costs. Missing data should be assumed to be zero. The bold

arcs represent an initial spanning tree.

14.7 Solve Exercise 2.11 using the self-dual network simplex method.

14.8 Using today’s date (MMYY) for the seed value, solve 10 problems using the

network simplex pivot tool:

campuscgi.princeton.edu/∼rvdb/JAVA/network/challenge/netsimp.html .

14.9 Consider the following tree solution for a minimum cost network flow prob-

lem:

a

e d

b

c

f

7−µ

6+µ

6

4 5

−4+µ 5−µ 3

2+µ

0 3 2−µ

5+µ 10−µ 6

As usual, bold arcs represent arcs on the spanning tree, numbers next to the

bold arcs are primal flows, numbers next to non-bold arcs are dual slacks,

and numbers next to nodes are dual variables.

(a) For what values of μ is this tree solution optimal?

(b) What are the entering and leaving arcs?

(c) After one pivot, what is the new tree solution?

(d) For what values of μ is the new tree solution optimal?

248 14. NETWORK FLOW PROBLEMS

14.10 Consider the following tree solution for a minimum cost network flow prob-

lem:

a

e d

b

c

f

7−µ

−4+µ

6

4 5

6+µ 5−µ 3

2+µ

0 3 2−µ

5+µ 10−µ 6

(a) For what values of μ is this tree solution optimal?

(b) What are the entering and leaving arcs?

(c) After one pivot, what is the new tree solution?

(d) For what values of μ is the new tree solution optimal?

14.11 Consider the following minimum cost network flow problem

a

d c

b

−2

3

−9

−7

1 −1

−1 1

As usual, the numbers on the arcs represent the flow costs and numbers at

the nodes represent supplies (demands are shown as negative supplies). The

arcs shown in bold represent a spanning tree. If the solution corresponding

to this spanning tree is optimal prove it, otherwise find an optimal solution

using this tree as the initial spanning tree.

14.12 Suppose that a square submatrix of Ã is invertible. Show that the arcs cor-

responding to the columns of this submatrix form a spanning tree.

14.13 Show that a spanning tree on m nodes must have exactly m − 1 arcs.

14.14 Define an algorithm that takes as input a network and either finds a spanning

tree or proves that the network is not connected.

14.15 Give an example of a minimum-cost network flow problem with all arc costs

positive and the following counterintuitive property: if the supply at a partic-

ular source node and the demand at a particular sink node are simultaneously

reduced by one unit, then the optimal cost increases.

EXERCISES 249

df

e

a

b

c

B

C

D

A

1

1
1

2

4

2

5
15

–3

–2

1

–1

FIGURE 14.16. The primal network has nodes “a” through “f”.

The corresponding dual network has nodes “A” through “D” (node

“A” is “at infinity”). A primal spanning tree is shown. It consists

of five arcs: (a,b), (f,b), (b,e), (e,d), and (c,d). The corresponding

dual spanning tree consists of three arcs: (B,A), (A,C), and (D,A).

Primal costs are shown along the primal arcs and supplies/demands

are shown at the primal nodes.

14.16 Consider a possibly disconnected network (N ,A). Two nodes i and j in

N are said to be connected if there is a path from i to j (recall that paths

can traverse arcs backwards or forwards). We write i ∼ j if i and j are

connected.

(a) Show that “∼” defines an equivalence relation. That is, it has the fol-

lowing three properties:

(i) (reflexivity) for all i ∈ N , i ∼ i;
(ii) (symmetry) for all i, j ∈ N , i ∼ j implies that j ∼ i;

(iii) (transitivity) for all i, j, k ∈ N , i ∼ j and j ∼ k implies that

i ∼ k.

Using the equivalence relation, we can partition N into a collection of sub-

sets of equivalence classes N1,N2, . . . ,Nk such that two nodes are con-

nected if and only if they belong to the same subset. The number k is called

the number of connected components.

(b) Show that the rank of the node–arc incidence matrix A is exactly m−k
(recall that m is the number of rows of A).

250 14. NETWORK FLOW PROBLEMS

14.17 One may assume without loss of generality that every node in a minimum

cost network flow problem has at least two arcs associated with it. Why?

14.18 The sum of the dual slacks around any cycle is a constant. What is that

constant?

14.19 Planar Networks. A network is called planar if the nodes and arcs can be

layed out on the two-dimensional plane in such a manner that no two arcs

cross each other (it is allowed to draw the arcs as curves if necessary). All

of the networks encountered so far in this chapter have been planar. Associ-

ated with each planar network is a geometrically defined dual network. The

purpose of this problem is to establish the following interesting fact:

A dual network simplex pivot is precisely a primal network simplex

method applied to the dual network.

Viewed geometrically, the nodes of a planar graph are called vertices

and the arcs are called edges. Consider a specific connected planar network.

If one were to delete the vertices and the edges from the plane, one would

be left with a disjoint collection of subsets of the plane. These subsets are

called faces. Note that there is one unbounded face. It is a face just like

the other bounded ones. An example of a connected planar network with its

faces labeled A through D is shown in Figure 14.16.

Dual nodes. Associated with each connected planar network is a dual

network defined by interchanging vertices and faces. That is, place a dual

vertex in the center of each primal face. Note: the dual vertex corresponding

to the unbounded primal face could be placed anywhere in the unbounded

face but we choose to put it at infinity. In this way, dual edges (defined next)

that have a head or a tail at this node can run off to infinity in any direction.

Dual arcs. Connect with a dual edge any pair of dual nodes whose

corresponding primal faces share an edge. Each dual edge crosses exactly

one primal edge. The directionality of the dual edge is determined as fol-

lows: first, place a vector along the corresponding primal edge pointing in

the direction of the primal arc, and then rotate it counterclockwise until it is

tangent to the dual edge. The vector now defines the direction for the dual

arc.

Dual spanning tree. Consider a spanning tree on the primal network

and suppose that a primal–dual tree solution is given. We define a spanning

tree on the dual network as follows. A dual edge is on the dual network’s

spanning tree if and only if the corresponding primal edge is not on the

primal network’s spanning tree.

Dual flows and dual dual-slacks. The numerical arc data for the dual

network is inherited directly from the primal. That is, flows on the dual tree

arcs are exactly equal to the dual slacks on the associated primal nontree

EXERCISES 251

arcs. And, the dual slacks on the the dual nontree arcs are exactly equal

to the primal flows on the associated primal tree arcs. Having specified

numerical data on the arcs of the dual network, it is fairly straightforward

to determine values for supplies/demands at the nodes and shipping costs

along the arcs that are consistent with these numerical values.

(a) Which of the following networks are planar:
a

be

d c

aa

bb

cc

d

d

(a) (b) (c)

(b) A network is called complete if there is an arc between every pair of

nodes. If a complete network with m nodes is planar, then every net-

work with m nodes is planar. Prove it.

(c) Show that a nonplanar network must have 5 or more nodes.

(d) As always, let m denote the number of nodes and let n denote the num-

ber of arcs in a network. Let f denote the number of faces in a planar

network. Show by induction on f that m = n − f + 2.

(e) Show that the dual spanning tree defined above is in fact a spanning

tree.

(f) Show that a dual pivot for a minimum cost network flow problem de-

fined on the primal network is precisely the same as a primal pivot for

the corresponding network flow problem on the dual network.

(g) Using the cost and supply/demand information given for the primal

problem in Figure 14.16, write down the primal problem as a linear

programming problem.

(h) Write down the dual linear programming problem that one derives al-

gebraically from the primal linear programming problem.

(i) Using the spanning tree shown in Figure 14.16, compute the primal

flows, dual variables, and dual slacks for the network flow problem

associated with the primal network.

(j) Write down the flow and slacks for the network flow problem associated

with the dual network.

252 14. NETWORK FLOW PROBLEMS

(k) Find arc costs and node supplies/demands for the dual network that are

consistent with the flows and slacks just computed.

(l) Write down the linear programming problem associated with the net-

work flow problem on the dual network.

Notes

The classical reference is Ford & Fulkerson (1962). More recent works include

the books by Christofides (1975), Lawler (1976), Bazaraa et al. (1977), Kennington &

Helgason (1980), Jensen & Barnes (1980), Bertsekas (1991), and Ahuja et al. (1993).

The two “original” algorithms for solving minimum-cost network flow problems

are the network simplex method developed by Dantzig (1951a) and the primal–dual

method developed by Ford & Fulkerson (1958). The self-dual algorithm described

in this chapter is neither of these. In fact, it resembles the “out-of-kilter” method

described by Ford & Fulkerson (1962).

CHAPTER 15

Applications

In this chapter, we discuss briefly the most important applications of network flow

problems.

1. The Transportation Problem

The network flow problem, when thought of as representing the shipment of goods

along a transportation network, is called the transshipment problem. An important

special case is when the set of nodes N can be partitioned into two sets S and D,

N = S ∪ D, S ∩ D = ∅,
such that every arc in A has its tail in S and its head in D. The nodes in S are called

source (or supply) nodes, while those in D are called destination (or demand) nodes.

Such graphs are called bipartite graphs (see Figure 15.1). A network flow problem on

such a bipartite graph is called a transportation problem. In order for a transportation

Supply
nodes

Demand
nodes

FIGURE 15.1. A bipartite graph—the network for a transportation problem.

253

254 15. APPLICATIONS

problem to be feasible, the supply must be nonnegative at every supply node, and the

demand must be nonnegative at every demand node. That is,

bi ≥ 0 for i ∈ S,

bi ≤ 0 for i ∈ D.

When put on paper, a bipartite graph has the annoying property that the arcs tend

to cross each other many times. This makes such a representation inconvenient for

carrying out the steps of the network simplex method. But there is a nice, uncluttered,

tabular representation of a bipartite graph that one can use when applying the simplex

method. To discover this tabular representation, first suppose that the graph is laid

out as shown in Figure 15.2. Now if we place the supplies and demands on the nodes

and the costs at the kinks in the arcs, then we get, for example, the following simple

tabular representation of a transportation problem:

(15.1)

−10−23−15

7 5 6 ∗
11 8 4 3

18 ∗ 9 ∗
12 ∗ 3 6

(the asterisks represent nonexistent arcs). The iterations of the simplex method can be

written in this tabular format by simply placing the dual variables where the supplies

and demands are and by placing the primal flows and dual slacks where the arc costs

are. Of course, some notation needs to be introduced to indicate which cells are part

of the current spanning tree. For example, the tree could be indicated by putting a box

around the primal flow values. Here is a (nonoptimal) tree solution for the data given

above:

(15.2)

5 1 4

0 7 5 ∗
−3 3 8 −4

−8 ∗ 18 ∗
−2 ∗ −3 15

(the solution to this problem is left as an exercise).

In the case where every supply node is connected to every demand node, the

problem is called the Hitchcock Transportation Problem. In this case, the equations

defining the problem are especially simple. Indeed, if we denote the supplies at the

supply nodes by ri, i ∈ S, and if we denote the demands at the demand nodes by sj ,

2. THE ASSIGNMENT PROBLEM 255

Supplies

Demands

7

11

18

12

−10 −23 −15

5 6

8 4 3

9

3 6

FIGURE 15.2. The bipartite graph from Figure 15.1 laid out in a

rectangular fashion, with supplies and demands given at the nodes,

and with costs given on the arcs.

j ∈ D, then we can write the problem as

minimize
∑

i∈S

∑

j∈D
cijxij

subject to
∑

j∈D
xij = ri i ∈ S

∑

i∈S
xij = sj j ∈ D

xij ≥ 0 i ∈ S, j ∈ D.

2. The Assignment Problem

Given a set S of m people, a set D of m tasks, and for each i ∈ S, j ∈ D a cost

cij associated with assigning person i to task j, the assignment problem is to assign

each person to one and only one task in such a manner that each task gets covered by

someone and the total cost of the assignments is minimized. If we let

xij =

{

1 if person i is assigned task j,

0 otherwise,

256 15. APPLICATIONS

then the objective function can be written as

minimize
∑

i∈S

∑

j∈D
cijxij .

The constraint that each person is assigned exactly one task can be expressed simply

as
∑

j∈D
xij = 1, for all i ∈ S.

Also, the constraint that every task gets covered by someone is just
∑

i∈S
xij = 1, for all j ∈ D.

Except for the assumed integrality of the decision variables, xij , the assignment

problem is just a Hitchcock transportation problem in which the supply at every sup-

ply node (person) is one and the demand at every demand node (task) is also one. This

Hitchcock transportation problem therefore is called the LP-relaxation of the assign-

ment problem. It is easy to see that every feasible solution to the assignment problem

is a feasible solution for its LP-relaxation. Furthermore, every integral feasible so-

lution to the LP-relaxation is a feasible solution to the assignment problem. Since

the network simplex method applied to the LP-relaxation produces an integral solu-

tion, it therefore follows that the method solves not only the LP-relaxation but also the

assignment problem itself. We should note that this is a very special and important

feature of the network simplex method. For example, had we used the primal–dual

interior-point method to solve the LP-relaxation, there would be no guarantee that the

solution obtained would be integral (unless the problem has a unique optimal solu-

tion, in which case any LP solver would find the same, integral answer—but typical

assignment problems have alternate optimal solutions, and an interior-point method

will report a convex combination of all of them).

3. The Shortest-Path Problem

Roughly speaking, the shortest-path problem is to find, well, the shortest path

from one specific node to another in a network (N ,A). In contrast to earlier usage,

the arcs connecting successive nodes on a path must point in the direction of travel.

Such paths are sometimes referred to as directed paths. To determine a shortest path,

we assume that we are given the length of each arc. To be consistent with earlier

notations, let us assume that the length of arc (i, j) is denoted by cij . Naturally, we

assume that these lengths are nonnegative.

To find the shortest path from one node (say, s) to another (say, r), we will see

that it is necessary to compute the shortest path from many, perhaps all, other nodes to

r. Hence, we define the shortest-path problem as the problem of finding the shortest

path from every node in N to a specific node r ∈ N . The destination node r is called

the root node.

3. THE SHORTEST-PATH PROBLEM 257

3.1. Network Flow Formulation. The shortest-path problem can be formulated

as a network flow problem. Indeed, put a supply of one unit at each nonroot node, and

put the appropriate amount of demand at the root (to meet the total supply). The cost

on each arc is just the length of the arc. Suppose that we’ve solved this network flow

problem. Then the shortest path from a node i to r can be found by simply following

the arcs from i to r on the optimal spanning tree. Also, the length of the shortest path

is y∗
r − y∗

i .

While the network simplex method can be used to solve the shortest-path problem,

there are faster algorithms designed especially for it. To describe these algorithms, let

us denote the distance from i to r by vi. These distances (or approximations thereof)

are called labels in the networks literature. Some algorithms compute these distances

systematically in a certain order. These algorithms are called label-setting algorithms.

Other algorithms start with an estimate for these labels and then iteratively correct

the estimates until the optimal values are found. Such algorithms are called label-

correcting algorithms.

Note that if we set y∗
r to zero in the network flow solution, then the labels are

simply the negative of the optimal dual variables. In the following subsections, we

shall describe simple examples of label-setting and label-correcting algorithms.

3.2. A Label-Correcting Algorithm. To describe a label-correcting algorithm,

we need to identify a system of equations that characterize the shortest-path distances.

First of all, clearly

vr = 0.

What can we say about the labels at other nodes, say, node i? Suppose that we select

an arc (i, j) that leaves node i. If we were to travel along this arc and then, from node

j, travel along the shortest path to r, then the distance to the root would be cij +vj . So,

from node i, we should select the arc that minimizes these distances. This selection

will then give the shortest distance from i to r. That is,

(15.3) vi = min{cij + vj : (i, j) ∈ A}, i �= r.

The argument we have just made is called the principle of dynamic programming,

and equation (15.3) is called Bellman’s equation. Dynamic programming is a whole

subject of its own—we shall only illustrate some of its basic ideas by our study of the

shortest-path problem. In the dynamic programming literature, the set of vi’s viewed

as a function defined on the nodes is called the value function (hence the notation).

From Bellman’s equation, it is easy to identify the arcs one would travel on in a

shortest-path route to the root. Indeed, these arcs are given by

T = {(i, j) ∈ A : vi = cij + vj}.
This set of arcs may contain alternate shortest paths to the root, and so the set is not

necessarily a tree. Nonetheless, any path that follows these arcs will get to the root on

a shortest-path route.

258 15. APPLICATIONS

3.2.1. Method of Successive Approximation. Bellman’s equation is an implicit

system of equations for the values vi, i ∈ N . Implicit equations such as this arise

frequently and beg to be solved by starting with a guess at the solution, using this

guess in the right-hand side, and computing a new guess by evaluating the right-hand

side. This approach is called the method of successive approximations. To apply it to

the shortest-path problem, we initialize the labels as follows:

v
(0)
i =

{

0 i = r

∞ i �= r.

Then the updates are computed using Bellman’s equation:

v
(k+1)
i =

{

0 i = r

min{cij + v
(k)
j : (i, j) ∈ A} i �= r.

3.2.2. Efficiency. The algorithm stops when an update leaves all the vi’s un-

changed. It turns out that the algorithm is guaranteed to stop in no more than m iter-

ations. To see why, it suffices to note that v
(k)
i has a very simple description: it is the

length of the shortest path from i to r that has k or fewer arcs in the path. (It is not hard

to convince yourself with an induction on k that this is correct, but a pedantic proof

requires introducing a significant amount of added notation that we wish to avoid.)

Hence, the label-correcting algorithm cannot take more than m iterations, since every

shortest path can visit each node at most once. Since each iteration involves looking at

every arc of the network, it follows that the number of additions/comparisons needed

to solve a shortest-path problem using the label-correcting algorithm is about nm.

3.3. A Label-Setting Algorithm. In this section, we describe Dijkstra’s algo-

rithm for solving shortest-path problems. The data structures that are carried from one

iteration to the next are a set F of finished nodes and two arrays indexed by the nodes

of the graph. The first array, vj , j ∈ N , is just the array of labels. The second array, hi,

i ∈ N , indicates the next node to visit from node i in a shortest path. As the algorithm

proceeds, the set F contains those nodes for which the shortest path has already been

found. This set starts out empty. Each iteration of the algorithm adds one node to it.

This is why the algorithm is called a label-setting algorithm, since each iteration sets

one label to its optimal value. For finished nodes, the labels are fixed at their optimal

values. For each unfinished node, the label has a temporary value, which represents

the length of the shortest path from that node to the root, subject to the condition that

all intermediate nodes on the path must be finished nodes. At those nodes for which no

such path exists, the temporary label is set to infinity (or, in practice, a large positive

number).

The algorithm is initialized by setting all the labels to infinity except for the root

node, whose label is set to 0. Also, the set of finished nodes is initialized to the empty

set. Then, as long as there remain unfinished nodes, the algorithm selects an unfinished

4. UPPER-BOUNDED NETWORK FLOW PROBLEMS 259

Initialize:

F = ∅

vj =

{

0 j = r,

∞ j �= r.

while (|Fc| > 0){
j = argmin{vk : k �∈ F}
F ← F ∪ {j}
for each i for which (i, j) ∈ A and i �∈ F {

if (cij + vj < vi) {
vi = cij + vj

hi = j

}
}

}

FIGURE 15.3. Dijkstra’s shortest-path algorithm.

node j having the smallest temporary label, adds it to the set of finished nodes, and

then updates each unfinished “upstream” neighbor i by setting its label to cij + vj if

this value is smaller than the current value vi. For each neighbor i whose label gets

changed, hi is set to j. The algorithm is summarized in Figure 15.3.

4. Upper-Bounded Network Flow Problems

Some real-world network flow problems involve upper bounds on the amount

of flow that an arc can handle. There are modified versions of the network simplex

method that allow one to handle such upper bounds implicitly, but we shall simply

show how to reduce an upper-bounded network flow problem to one without upper

bounds.

Let us consider just one arc, (i, j), in a network flow problem. Suppose that there

is an upper bound of uij on the amount of flow that this arc can handle. We can express

260 15. APPLICATIONS

this bound as an extra constraint:

0 ≤ xij ≤ uij .

Introducing a slack variable, tij , we can rewrite these bound constraints as

xij + tij = uij

xij , tij ≥ 0.

If we look at the flow balance constraints and focus our attention on the variables xij

and tij , we see that they appear in only three constraints: the flow balance constraints

for nodes i and j and the upper bound constraint,

· · · −xij · · · = −bi

· · · xij · · · =−bj

xij +tij = uij .

If we subtract the last constraint from the second one, we get

· · · −xij · · · = −bi

· · · · · · −tij =−bj − uij

xij +tij = uij .

Note that we have restored a network structure in the sense that each column again

has one +1 and one −1 coefficient. To make a network picture, we need to create

a new node (corresponding to the third row). Let us call this node k. The network

transformation is shown in Figure 15.4.

We can use the above transformation to derive optimality conditions for upper-

bounded network flow problems. Indeed, let us consider an optimal solution to the

transformed problem. Clearly, if xik is zero, then the corresponding dual slack zik =
yi + cij − yk is nonnegative:

(15.4) yi + cij − yk ≥ 0.

Furthermore, the back-flow xjk must be at the upper bound rate:

xjk = uij .

Hence, by complementarity, the corresponding dual slack must vanish:

(15.5) zjk = yj − yk = 0.

Combining (15.4) with (15.5), we see that

yi + cij ≥ yj .

4. UPPER-BOUNDED NETWORK FLOW PROBLEMS 261

i j

b
i

c
ij

b
j

u
ij

x
ij

ki j

b
i

−u
ij

c
ij 0

b
j
+u
ij

x
ij

t
ij

FIGURE 15.4. Adding a new node, k, to accommodate an arc (i, j)
having an upper bound uij on its flow capacity.

On the other hand, if the flow on arc (i, k) is at the capacity value, then the back-flow

on arc (j, k) must vanish. The complementarity conditions then say that

zik = yi + cij − yk = 0

zjk = yj − yk ≥ 0.

Combining these two statements, we get

yi + cij ≤ yj .

Finally, if 0 < xij < uij , then both slack variables vanish, and this implies that

yi + cij = yj .

These properties can then be summarized as follows:

xij = 0 =⇒ yi + cij ≥ yj

xij = uij =⇒ yi + cij ≤ yj(15.6)

0 < xij < uij =⇒ yi + cij = yj .

While upper-bounded network flow problems have important applications, we

admit that our main interest in them is more narrowly focused. It stems from their

relation to an important theorem called the Max-Flow Min-Cut Theorem. We shall

state and prove this theorem in the next section. The only tool we need to prove

262 15. APPLICATIONS

this theorem is the above result giving the complementarity conditions when there are

upper bounds on arcs. So on with the show.

5. The Maximum-Flow Problem

The subject of this section is the class of problems called maximum-flow problems.

These problems form an important topic in the theory of network flows. There are

very efficient algorithms for solving them, and they appear as subproblems in many

algorithms for the general network flow problem. However, our aim is rather modest.

We wish only to expose the reader to one important theorem in this subject, which is

called the Max-Flow Min-Cut Theorem.

Before we can state this theorem we need to set up the situation. Suppose that

we are given a network (N ,A), a distinguished node s ∈ N called the source node,

a distinguished node t ∈ N called the sink node, and upper bounds on the arcs of the

network uij , (i, j) ∈ A. For simplicity, we shall assume that the upper bounds are all

finite (although this is not really necessary). The objective is to “push” as much flow

from s to t as possible.

To solve this problem, we can convert it to an upper-bounded network flow prob-

lem as follows. First, let cij = 0 for all arcs (i, j) ∈ A, and let bi = 0 for every node

i ∈ N . Then add one extra arc (t, s) connecting the sink node t back to the source

node s, put a negative cost on this arc (say, cts = −1), and let it have infinite capacity

uts = ∞. Since the only nonzero cost is actually negative, it follows that we shall

actually make a profit by letting more and more flow circulate through the network.

But the upper bound on the arc capacities limits the amount of flow that it is possible

to push through.

In order to state the Max-Flow Min-Cut Theorem, we must define what we mean

by a cut. A cut, C, is a set of nodes that contains the source node but does not contain

the sink node (see Figure 15.5). The capacity of a cut is defined as

κ(C) =
∑

i∈C
j 	∈C

uij .

Note that here and elsewhere in this section, the summations are over “original” arcs

that satisfy the indicated set membership conditions. That is, they don’t include the

arc that we added connecting from t back to s. (If it did, the capacity of every cut

would be infinite—which is clearly not our intention.)

Flow balance tells us that the total flow along original arcs connecting the cut set

C to its complement minus the total flow along original arcs that span these two sets

in the opposite direction must equal the amount of flow on the artificial arc (t, s). That

is,

(15.7) xts =
∑

i∈C
j 	∈C

xij −
∑

i	∈C
j∈C

xij .

5. THE MAXIMUM-FLOW PROBLEM 263

s

t

C

c
ts

= −1

FIGURE 15.5. A cut set C for a maximum flow problem.

We are now ready to state the Max-Flow Min-Cut Theorem.

THEOREM 15.1. The maximum value of xts equals the minimum value of κ(C).

PROOF. The proof follows the usual sort of pattern common in subjects where

there is a sort of duality theory. First of all, we note that it follows from (15.7) that

(15.8) xts ≤ κ(C)

for every feasible flow and every cut set C. Then all that is required is to exhibit a

feasible flow and a cut set for which this inequality is an equality.

Let x∗
ij , (i, j) ∈ A, denote the optimal values of the primal variables, and let y∗

i ,

i ∈ N , denote the optimal values of the dual variables. Then the complementarity

conditions (15.6) imply that

x∗
ij = 0 whenever y∗

i + cij > y∗
j(15.9)

x∗
ij = uij whenever y∗

i + cij < y∗
j .(15.10)

In particular,

y∗
t − 1 ≥ y∗

s

(since uts = ∞). Put C∗ = {k : y∗
k ≤ y∗

s}. Clearly, C∗ is a cut.

Consider an arc having its tail in C∗ and its head in the complement of C∗. It

follows from the definition of C∗ that y∗
i ≤ y∗

s < y∗
j . Since cij is zero, we see from

(15.10) that x∗
ij = uij .

Now consider an original arc having its tail in the complement of C∗ and its

head in C∗ (i.e., bridging the two sets in the opposite direction). It follows then that

y∗
j ≤ y∗

s < y∗
i . Hence, we see from (15.9) that x∗

ij = 0.

264 15. APPLICATIONS

Combining the observations of the last two paragraphs with (15.7), we see that

x∗
ts =

∑

i∈C
j 	∈C

uij = κ(C∗).

In light of (15.8), the proof is complete. �

Exercises

15.1 Solve the transportation problem given in (15.1), using (15.2) for the starting

tree solution.

15.2 Solve the following linear programming problem:

maximize 7x1 − 3x2 + 9x3 + 2x4

subject to x1 + x2 ≤ 1

x3 + x4 ≤ 1

x1 + x3 ≥ 1

x2 + x4 ≥ 1

x1, x2, x3, x4 ≥ 0.

(Note: there are two greater-than-or-equal-to constraints.)

15.3 Bob, Carol, David, and Alice are stranded on a desert island. Bob and David

each would like to give their affection to Carol or to Alice. Food is the

currency of trade for this starving foursome. Bob is willing to pay Carol 7
clams if she will accept his affection. David is even more keen and is willing

to give Carol 9 clams if she will accept it. Both Bob and David prefer Carol

to Alice (sorry Alice). To quantify this preference, David is willing to pay

Alice only 2 clams for his affection. Bob is even more averse: he says that

Alice would have to pay him for it. In fact, she’d have to pay him 3 clams

for his affection. Carol and Alice, being proper young women, will accept

affection from one and only one of the two guys. Between the two of them

they have decided to share the clams equally between them and hence their

objective is simply to maximize the total number of clams they will receive.

Formulate this problem as a transportation problem. Solve it.

15.4 Project Scheduling. This problem deals with the creation of a project sched-

ule; specifically, the project of building a house. The project has been di-

vided into a set of jobs. The problem is to schedule the time at which each

of these jobs should start and also to predict how long the project will take.

Naturally, the objective is to complete the project as quickly as possible

(time is money!). Over the duration of the project, some of the jobs can be

EXERCISES 265

done concurrently. But, as the following table shows, certain jobs definitely

can’t start until others are completed.

Duration Must be

Job (weeks) Preceeded by

0. Sign Contract with Buyer 0 –

1. Framing 2 0

2. Roofing 1 1

3. Siding 3 1

4. Windows 2.5 3

5. Plumbing 1.5 3

6. Electical 2 2,4

7. Inside Finishing 4 5,6

8. Outside Painting 3 2,4

9. Complete the Sale to Buyer 0 7,8

One possible schedule is the following:

Job Start Time

0. Sign Contract with Buyer 0

1. Framing 1

2. Roofing 4

3. Siding 6

4. Windows 10

5. Plumbing 9

6. Electical 13

7. Inside Finishing 16

8. Outside Painting 14

9. Complete the Sale to Buyer 21

With this schedule, the project duration is 21 weeks (the difference be-

tween the start times of jobs 9 and 0).

To model the problem as a linear program, introduce the following de-

cision variables:

tj = the start time of job j.

266 15. APPLICATIONS

(a) Write an expression for the objective function, which is to minimize the

project duration.

(b) For each job j, write a constraint for each job i that must preceed j; the

constraint should ensure that job j doesn’t start until job i is finished.

These are called precedence constraints.

15.5 Continuation. This problem generalizes the specific example of the previous

problem. A project consists of a set of jobs J . For each job j ∈ J there

is a certain set Pj of other jobs that must be completed before job j can be

started. (This is called the set of predecessors of job j.) One of the jobs, say

s, is the starting job; it has no predecessors. Another job, say t, is the final

(or terminal) job; it is not the predecessor of any other job. The time it will

take to do job j is denoted dj (the duration of the job).

The problem is to decide what time each job should begin so that no

job begins before its predecessors are finished, and the duration of the entire

project is minimized. Using the notations introduced above, write out a

complete description of this linear programming problem.

15.6 Continuation. Let xij denote the dual variable corresponding to the prece-

dence constraint that ensures job j doesn’t start until job i finishes.

(a) Write out the dual to the specific linear program in Problem 15.4.

(b) Write out the dual to the general linear program in Problem 15.5.

(c) Describe how the optimal value of the dual variable xij can be inter-

preted.

15.7 Continuation. The project scheduling problem can be represented on a di-

rected graph with arc weights as follows. The nodes of the graph correspond

to the jobs. The arcs correspond to the precedence relations. That is, if job i
must be completed before job j, then there is an arc pointing from node i to

node j. The weight on this arc is di.

(a) Draw the directed graph associated with the example in Problem 15.4,

being sure to label the nodes and write the weights beside the arcs.

(b) Return to the formulation of the dual from Problem 15.6(a). Give an

interpretation of that dual problem in terms of the directed graph drawn

in Part (a).

(c) Explain why there is always an optimal solution to the dual problem in

which each variable xij is either 0 or 1.

(d) Write out the complementary slackness condition corresponding to dual

variable x26.

EXERCISES 267

(e) Describe the dual problem in the language of the original project sched-

uling model.

15.8 Continuation. Here is an algorithm for computing optimal start times tj :

1. List the jobs so that the predecessors of each job come be-

fore it in the list.

2. Put t0 = 0.

3. Go down the list of jobs and for job j put tj = max{ti+di :
i is a predecessor of j}.

(a) Apply this algorithm to the specific instance from Problem 15.4. What

are the start times of each of the jobs? What is the project duration?

(b) Prove that the solution found in Part (a) is optimal by exhibiting a corre-

sponding dual solution and checking the usual conditions for optimal-

ity (Hint: The complementary slackness conditions may help you find a

dual solution.).

15.9 Currency Arbitrage. Consider the world’s currency market. Given two cur-

rencies, say the Japanese Yen and the US Dollar, there is an exchange rate

between them (currently about 110 Yen to the Dollar). It is always true that,

if you convert money from one currency to another and then back, you will

end up with less than you started with. That is, the product of the exchange

rates between any pair of countries is always less than one. However, it

sometimes happens that a longer chain of conversions results in a gain. Such

a lucky situation is called an arbitrage. One can use a linear programming

model to find such situations when they exist.

Consider the following table of exchange rates (which is actual data

from the Wall Street Journal on Nov 10, 1996):

param rate:
USD Yen Mark Franc :=

USD . 111.52 1.4987 5.0852
Yen .008966 . .013493 .045593
Mark .6659 73.964 . 3.3823
Franc .1966 21.933 .29507 .
;

It is not obvious, but the USD→Yen→Mark→USD conversion actually makes

$0.002 on each initial dollar.

268 15. APPLICATIONS

To look for arbitrage possibilities, one can make a generalized network

model, which is a network flow model with the unusual twist that a unit

of flow that leaves one node arrives at the next node multiplied by a scale

factor—in our example, the currency conversion rate. For us, each currency

is represented by a node. There is an arc from each node to every other node.

A flow of one unit out of one node becomes a flow of a different magnitude

at the head node. For example, one dollar flowing out of the USD node

arrives at the Franc node as 5.0852 Francs.

Let xij denote the flow from node (i.e. currency) i to node j. This flow

is measured in the currency of node i.
One node is special; it is the home node, say the US Dollars (USD)

node. At all other nodes, there must be flow balance.

(a) Write down the flow balance constraints at the 3 non-home nodes (Franc,

Yen, and Mark).

At the home node, we assume that there is a supply of one unit (to get things

started). Furthermore, at this node, flow balance will not be satisfied. Instead

one expects a net inflow. If it is possible to make this inflow greater than

one, then an arbitrage has been found. Let f be a variable that represents

this inflow.

(b) Using variable f to represent net inflow to the home node, write a flow

balance equation for the home node.

Of course, the primal objective is to maximize f .

(c) Using yi to represent the dual variable associated with the primal con-

straint for currency i, write down the dual linear program. (Regard the

primal variable f as a free variable.)

Now consider the general case, which might involve hundreds of currencies

worldwide.

(d) Write down the model mathematically using xij for the flow leaving

node i heading for node j (measured in the currency of node i), rij for

the exchange rate when converting from currency i to currency j, and

f for the net inflow at the home node i∗.

(e) Write down the dual problem.

NOTES 269

(f) Can you give an interpretation for the dual variables? Hint: It might be

helpful to think about the case where rji = 1/rij for all i, j.

(g) Comment on the conditions under which your model will be unbounded

and/or infeasible.

Notes

The Hitchcock problem was introduced by Hitchcock (1941). Dijkstra’s algo-

rithm was discovered by Dijkstra (1959).

The Max-Flow Min-Cut Theorem was proved independently by Elias et al. (1956),

by Ford & Fulkerson (1956) and, in the restricted case where the upper bounds are all

integers, by Kotzig (1956). Fulkerson & Dantzig (1955) also proved the Max-Flow

Min-Cut Theorem. Their proof uses duality, which is particularly relevant to this

chapter.

The classic references for dynamic programming are the books by Bellman (1957)

and Howard (1960). Further discussion of label-setting and label-correcting algo-

rithms can be found in the book by Ahuja et al. (1993).

CHAPTER 16

Structural Optimization

This final chapter on network-type problems deals with finding the best design

of a structure to support a specified load at a fixed set of points. The topology of the

problem is described by a graph where each node represents a joint in the structure and

each arc represents a potential member.1 We shall formulate this problem as a linear

programming problem whose solution determines which of the potential members to

include in the structure and how thick each included member must be to handle the

load. The optimization criterion is to find a minimal weight structure. As we shall see,

the problem bears a striking resemblance to the minimum-cost network flow problem

that we studied in Chapter 14.

1. An Example

We begin with an example. Consider the graph shown in Figure 16.1. This graph

represents a structure consisting of five joints and eight possible members connecting

the joints. The five joints and their coordinates are given as follows:

Joint Coordinates

1 (0.0 , 0.0)

2 (6.0 , 0.0)

3 (0.0 , 8.0)

4 (6.0 , 8.0)

5 (3.0 , 12.0)

Since joints are analogous to nodes in a network, we shall denote the set of joints by

N and denote by m the number of joints. Also, since members are analogous to arcs

in network flows, we shall denote the set of them by A. For the structure shown in

Figure 16.1, the set of members is

A = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}} .

1Civil engineers refer to beams as members.

271

272 16. STRUCTURAL OPTIMIZATION

3

1 2

4

5

b
1

b
2

b
5

u
21

u
24

u
23

FIGURE 16.1. Sample topology for a two-dimensional structure.

Note that we enclosed the pairs of endjoints in braces to emphasize that their order

is irrelevant. For example, {2, 3} and {3, 2} refer to one and the same member span-

ning between joints 2 and 3. In network flows, the graphs we considered were di-

rected graphs. Here, they are undirected. Also, the graphs here are embedded in a

d-dimensional Euclidean space (meaning that every node comes with a set of coordi-

nates indicating its location in d-dimensional space). No such embedding was imposed

before in our study of network flows, even though real-world network flow problems

often possess such an embedding.

Following the standard convention of using braces to denote sets, we ought to let

x{i,j} denote the force exerted by member {i, j} on its endjoints. But the braces are

cumbersome. Hence, we shall write this force simply as xij , with the understanding

that xij and xji denote one and the same variable.

We shall assume that a positive force represents tension in the member (i.e., the

member is pulling “in” on its two endjoints) and that a negative value represents com-

pression (i.e., the member is pushing “out” on its two endjoints).

If the structure is to be in equilibrium (i.e., not accelerating in some direction),

then forces must be balanced at each joint. Of course, we assume that there may be a

nonzero external load at each joint (this is the analogue of the external supply/demand

in the minimum-cost network flow problem). Hence, for each node i, let bi denote

the externally applied load. Note that each bi is a vector whose dimension equals the

dimension of the space in which the structure lies. For our example, this dimension is

2. In general, we shall denote the spatial dimension by d.

2. INCIDENCE MATRICES 273

Force balance imposes a number of constraints on the member forces. For exam-

ple, the force balance equations for joint 2 can be written as follows:

x12

[

−1

0

]

+ x23

[

−0.6

0.8

]

+ x24

[

0

1

]

= −
[

b1
2

b2
2

]

,

where b1
2 and b2

2 denote the components of b2. Note that the three vectors appearing

on the left are unit vectors pointing out from joint 2 along each of the corresponding

members.

2. Incidence Matrices

If, for each joint i, we let pi denote its position vector, then the unit vectors point-

ing along the arcs can be written as follows:

uij =
pj − pi

‖pj − pi‖
, {i, j} ∈ A.

It is important to note that uji = −uij , since the first vector points from j towards

i, whereas the second points from i towards j. In terms of these notations, the force

balance equations can be expressed succinctly as

(16.1)
∑

j:
{i,j}∈A

uijxij = −bi i = 1, 2, . . . , m.

These equations can be written in matrix form as

(16.2) Ax = −b

where x denotes the vector consisting of the member forces, b denotes the vector

whose elements are the applied load vectors, and A is a matrix containing the unit

vectors pointing along the appropriate arcs. For our example, we have

xT =
[

x12 x13 x14 x23 x24 x34 x35 x45

]

A =

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

1

0

] [

0

1

] [

.6

.8

]

[

−1

0

] [

−.6

.8

] [

0

1

]

[

0

−1

] [

.6

−.8

] [

1

0

] [

.6

.8

]

[

−.6

−.8

] [

0

−1

] [

−1

0

] [

−.6

.8

]

[

−.6

−.8

] [

.6

−.8

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b1
1

b2
1

b1
2

b2
2

b1
3

b2
3

b1
4

b2
4

b1
5

b2
5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

274 16. STRUCTURAL OPTIMIZATION

Note that we have written A as a matrix of 2-vectors by putting “inner” brackets around

appropriate pairs of entries. These inner brackets could of course be dropped—they

are included simply to show how the constraints match up with (16.1).

In network flows, an incidence matrix is characterized by the property that every

column of the matrix has exactly two nonzero entries, one +1 and one −1. Here,

the matrix A is characterized by the property that, when viewed as a matrix of d-

vectors, every column has two nonzero entries that are unit vectors pointing in opposite

directions from each other. Generically, matrix A can be written as follows:

{i, j}
↓

A =

i →

j →

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

uij

uji

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where, for each {i, j} ∈ A,

uij , uji ∈ R
d,

uij = −uji,

and

‖uij‖ = ‖uji‖ = 1.

By analogy with network flows, the matrix A is called an incidence matrix. This

definition is a strict generalization of the definition we had before, since, for d = 1,

the current notion reduces to the network flows notion. Incidence matrices for network

flows enjoy many useful properties. In the following sections, we shall investigate the

extent to which these properties carry over to our generalized notion.

3. Stability

Recall that for network flows, the sum of the rows of the incidence matrix van-

ishes and that if the network is connected, this is the only redundancy. For d > 1, the

situation is similar. Clearly, the sum of the rows vanishes. But is this the only redun-

dancy? To answer this question, we need to look for nonzero row vectors yT for which

yT A = 0. The set of all such row vectors is a subspace of the set of all row vectors.

Our aim is to find a basis for this subspace and, in particular, to identify its dimension.

To this end, first write y in component form as yT = [yT
1 · · · yT

m] where each of the

entries yi, i = 1, 2, . . . ,m, are d-vectors (transposed to make them into row vectors).

3. STABILITY 275

Multiplying this row vector against each column of A, we see that yT A = 0 if and

only if

(16.3) yT
i uij + yT

j uji = 0, for all {i, j} ∈ A.

There are many choices of y that yield a zero row combination. For example, we can

take any vector v ∈ R
d and put

yi = v, for every i ∈ N .

Substituting this choice of yi’s into the left-hand side of (16.3), we get

yT
i uij + yT

j uji = vT uij + vT uji = vT uij − vT uij = 0.

This set of choices shows that the subspace is at least d-dimensional.

But there are more! They are defined in terms of skew symmetric matrices. A

matrix R is called skew symmetric if RT = −R. A simple but important property of

skew symmetric matrices is that, for every vector ξ,

(16.4) ξT Rξ = 0

(see Exercise 16.1). We shall make use of this property shortly. Now, to give more

choices of y, let R be a d × d skew symmetric matrix and put

yi = Rpi, for every i ∈ N

(recall that pi denotes the position vector for joint i). We need to check (16.3). Sub-

stituting this definition of the y’s into the left-hand side in (16.3), we see that

yT
i uij + yT

j uji = pT
i RT uij + pT

j RT uji

=−pT
i Ruij − pT

j Ruji

= (pj − pi)
T Ruij .

Now substituting in the definition of uij , we get

(pj − pi)
T Ruij =

(pj − pi)
T R(pj − pi)

‖pj − pi‖
.

Finally, by putting ξ = pj − pi and using property (16.4) of skew symmetric matrices,

we see that the numerator on the right vanishes. Hence, (16.3) holds.

How many redundancies have we found? For d = 2, there are two independent

v-type redundancies and one more R-type. The following two vectors and a matrix

can be taken as a basis for these redundancies
[

1

0

]

,

[

0

1

]

,

[

0 −1

1 0

]

.

276 16. STRUCTURAL OPTIMIZATION

For d = 3, there are three independent v-type redundancies and three R-type. Here

are three vectors and three matrices that can be taken as a basis for the space of redun-

dancies:
⎡

⎢

⎢

⎣

1

0

0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0

1

0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0

0

1

⎤

⎥

⎥

⎦

,

(16.5)

⎡

⎢

⎢

⎣

0 −1 0

1 0 0

0 0 0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0 0 −1

0 0 0

1 0 0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0 0 0

0 0 −1

0 1 0

⎤

⎥

⎥

⎦

.

In general, there are d + d(d − 1)/2 = d(d + 1)/2 independent redundancies.

There could be more. But just as for network flows, where we showed that there is one

redundancy if and only if the network is connected, further redundancies represent a

defect in the underlying graph structure. In fact, we say that the graph is stable if the

rank of the incidence matrix A is exactly md − d(d + 1)/2, that is, if and only if the

above redundancies account for the entire rank deficiency of A.

4. Conservation Laws

Recall that for network flows, not all choices of supplies/demands yield feasible

flows. For connected networks, it is necessary and sufficient that the total supply

equals the total demand. The situation is similar here. The analogous question is:

which external loads give rise to solutions to (16.2)? We have already identified several

row vectors yT for which yT A = 0. Clearly, in order to have a solution to (16.2), it is

necessary that yT b = 0 for all these row vectors. In particular for every v ∈ R
d, we

see that b must satisfy the following condition:
∑

i

vT bi = 0.

Bringing the sum inside of the product, we get

vT

(

∑

i

bi

)

= 0.

Since this must hold for every d-vector v, it follows that
∑

i

bi = 0.

This condition has a simple physical interpretation: the loads, taken in total, must

balance.

What about the choices of yT arising from skew symmetric matrices? We shall

show that these choices impose the conditions necessary to prevent the structure from

4. CONSERVATION LAWS 277

spinning around some axis of rotation. To show that this is so, let us first consider the

two-dimensional case. For every 2 × 2 skew symmetric matrix R, the load vectors bi,

i ∈ N , must satisfy

(16.6)
∑

i

(Rpi)
T bi = 0.

This expression is a sum of terms of the form (Rp)T b, where p is the position vector

of a point and b is a force applied at this point. We claim that (Rp)T b is precisely the

torque about the origin created by applying force b at location p. To see this connection

between the algebraic expression and its physical interpretation, first decompose p into

the product of its length r times a unit vector v pointing in the same direction and

rewrite the algebraic expression as

(Rp)T b = r(Rv)T b.

Now, without loss of generality, we may assume that R is the “basis” matrix for the

space of skew symmetric matrices,

R =

[

0 −1

1 0

]

.

This matrix has the additional property that its two columns are unit vectors that are

orthogonal to each other. That is, RT R = I . Hence,

‖Rv‖2 = ‖v‖2 = 1.

Furthermore, property (16.4) tells us that Rv is orthogonal to v. Therefore, the product

(Rv)T b is the length of the projection of b in the direction of Rv, and so r(Rv)T b
is the distance from the origin (of the coordinate system) to p, which is called the

moment arm, times the component of the force that is orthogonal to the moment arm

in the direction of Rv (see Figure 16.2). This interpretation for each summand in

(16.6) shows that it is exactly the torque around the rotation axis passing through the

origin of the coordinate system caused by the force bi applied to joint i. In d = 2,

there is only one rotation around the origin. This fact corresponds to the fact that the

dimension of the space of skew symmetric matrices in two dimensions is 1. Also,

stipulating that the total torque about the origin vanishes implies that the total torque

around any point other point also vanishes—see Exercise 16.4.

The situation for d > 2, in particular for d = 3, is slightly more complicated.

Algebraically, the complications arise because the basic skew symmetric matrices no

longer satisfy RT R = I . Physically, the complications stem from the fact that in

two dimensions rotation takes place around a point, whereas in three dimensions it

takes place around an axis. We shall explain how to resolve the complications for

d = 3. The extension to higher dimensions is straightforward (and perhaps not so

important). The basic conclusion that we wish to derive is the same, namely that for

basic skew symmetric matrices, the expression (Rp)T b represents the torque generated

278 16. STRUCTURAL OPTIMIZATION

b
i

p
i

Rv
i

v
i

0

i

FIGURE 16.2. The ith summand in (16.6) is the length of pi times

the length of the projection of bi onto the direction given by Rvi.

This is precisely the torque around an axis at 0 caused by the force

bi applied at joint i.

by applying a force b at point p. Recall that there are just three basic skew symmetric

matrices, and they are given by (16.5). To be specific, let us just study the first one:

R =

⎡

⎢

⎢

⎣

0 −1 0

1 0 0

0 0 0

⎤

⎥

⎥

⎦

.

This matrix can be decomposed into the product of two matrices:

R = UP

where

U =

⎡

⎢

⎢

⎣

0 −1 0

1 0 0

0 0 1

⎤

⎥

⎥

⎦

and P =

⎡

⎢

⎢

⎣

1 0 0

0 1 0

0 0 0

⎤

⎥

⎥

⎦

.

The matrix U has the property that R had before, namely,

UT U = I.

Such matrices are called unitary. The matrix P is a projection matrix. If we let

q = Pp,

v =
q

‖q‖ ,

and

r = ‖q‖,

5. MINIMUM-WEIGHT STRUCTURAL DESIGN 279

}v

q

p

b

}r

(vU
)
Tb

x
1

x
2

x
3

vU

FIGURE 16.3. The decomposition of (Rp)T b into the product of a

moment arm r times the component of b in the direction Uv shows

that it is precisely the torque around the third axis.

then we can rewrite (Rp)T b as

(Rp)T b = r(Uv)T b.

Since v is a unit vector and U is unitary, it follows that Uv is a unit vector. Hence,

(Uv)T b represents the scalar projection of b onto the direction determined by Uv.

Also, it is easy to check that Uv is orthogonal to v. At this point, we can consult

Figure 16.3 to see that r is the moment arm for the torque around the third coordinate

axis and (Uv)T b is the component of force in the direction of rotation around this axis.

Therefore, the product is precisely the torque around this axis. As we know, for d = 3,

there are three independent axes of rotation, namely, pitch, roll, and yaw. These axes

correspond to the three basis matrices for the space of 3× 3 skew symmetric matrices

(the one we have just studied corresponds to the yaw axis).

Finally, we note that (16.6) simply states that the total torque around each axis of

rotation must vanish. This means that the forces cannot be chosen to make the system

spin.

5. Minimum-Weight Structural Design

For a structure with m nodes, the system of force balance equations (16.2) has md
equations. But, as we now know, if the structure is stable, there are exactly d(d+1)/2

280 16. STRUCTURAL OPTIMIZATION

redundant equations. That is, the rank of A is md− d(d + 1)/2. Clearly, the structure

must contain at least this many members. We say that the structure is a truss if it is

stable and has exactly md − d(d + 1)/2 members. In this case, the force balance

equations have a unique solution (assuming, of course, that the total applied force and

the total applied torque around each axis vanish). From an optimization point of view,

trusses are not interesting because they leave nothing to optimize—one only needs to

calculate.

To obtain an interesting optimization problem, we assume that the proposed struc-

ture has more members than the minimum required to form a truss. In this setting, we

introduce an optimization criterion to pick that solution (whether a truss or otherwise)

that minimizes the criterion. For us, we shall attempt to minimize total weight. To

keep things simple, we assume that the weight of a member is directly proportional to

its volume and that the constant of proportionality (the density of the material) is the

same for each member. (These assumptions are purely for notational convenience—

a real engineer would certainly include these constants and let them vary from one

member to the next). Hence, it suffices to minimize the total volume. The volume of

one member, say, {i, j}, is its length lij = ‖pj − pi‖ times its cross-sectional area.

Again, to keep things as simple as possible, we assume that the cross-sectional area

must be proportional to the tension/compression carried by the member (members car-

rying big loads must be “fat”—otherwise they might break). Let’s set the constant of

proportionality arbitrarily to one. Then the function that we should minimize is just

the sum over all members of lij |xij |. Hence, our optimization problem can be written

as follows:

minimize
∑

{i,j}∈A
lij |xij |

subject to
∑

j:
{i,j}∈A

uijxij = −bi i = 1, 2, . . . ,m.

This problem is not a linear programming problem: the constraints are linear, but the

objective function involves the absolute value of each variable. We can, however,

convert this problem to a linear programming problem with the following trick. For

each {i, j} ∈ A, write xij as the difference between two nonnegative variables:

xij = x+
ij − x−

ij , x+
ij , x−

ij ≥ 0.

Think of x+
ij as the tension part of xij and x−

ij as the compression part. The absolute

value can then be modeled as the sum of these components

|xij | = x+
ij + x−

ij .

We allow both components to be positive at the same time, but no minimum-weight

solution will have any member with both components positive, since if there were

6. ANCHORS AWAY 281

such a member, the tension component and the compression component could be de-

creased simultaneously at the same rate without changing the force balance equations

but reducing the weight. This reduction contradicts the minimum-weight assumption.

We can now state the linear programming formulation of the minimum weight

structural design problem as follows:

minimize
∑

{i,j}∈A
(lijx

+
ij + lijx

−
ij)

subject to
∑

j:
{i,j}∈A

(uijx
+
ij − uijx

−
ij) = −bi i = 1, 2, . . . , m

x+
ij , x−

ij ≥ 0 {i, j} ∈ A.

In terms of the incidence matrix, each column must now be written down twice, once

as before and once as the negative of before.

6. Anchors Away

So far we have considered structures that are free floating in the sense that even

though loads are applied at various joints, we have not assumed that any of the joints

are anchored to a large object such as the Earth. This setup is fine for structures

intended for a rocket or a space station, but for Earth-bound applications it is generally

desired to anchor some joints. It is trivial to modify the formulation we have already

given to cover the situation where some of the joints are anchored. Indeed, the d force

balance equations associated with an anchored joint are simply dropped as constraints,

since the Earth supplies whatever counterbalancing force is needed. Of course, one

can consider dropping only some of the d force balance equations associated with a

particular joint. In this case, the physical interpretation is quite simple. For example,

in two dimensions it simply means that the joint is allowed to roll on a track that is

aligned with one of the coordinate directions but is not allowed to move off the track.

If enough “independent” constraints are dropped (at least three in two dimensions

and at least six in three dimensions), then there are no longer any limitations on the

applied loads—the structure will be sufficiently well anchored so that the Earth will

apply whatever forces are needed to prevent the structure from moving. This is the

most typical scenario under which these problems are solved. It makes setting up the

problem much easier, since one no longer needs to worry about supplying loads that

can’t be balanced.

We end this chapter with one realistic example. Suppose the need exists to design

a bracket to support a hanging load at a fixed distance from a wall. This bracket

will be molded out of plastic, which means that the problem of finding an optimal

design belongs to the realm of continuum mechanics. However, we can get an idea

of the optimal shape by modeling the problem discretely (don’t tell anyone). That is,

we define a lattice of joints as shown in Figure 16.4 and introduce a set of members

282 16. STRUCTURAL OPTIMIZATION

FIGURE 16.4. The set of joints used for the discrete approximation

to the bracket design problem. The highlighted joints on the left

are anchored to the wall, and the highlighted joint on the right must

support the hanging load.

from which the bracket can be constructed. Each joint has members connecting it

to several nearby joints. Figure 16.5 shows the members connected to one specific

joint. Each joint in the structure has this connection “topology” with, of course, the

understanding that joints close to the boundary do not have any member for which the

intended connecting joint does not exist. The highlighted joints on the left side in

Figure 16.4 are the anchored joints, and the highlighted joint on the right side is the

joint to which the hanging load is applied (by “hanging,” we mean that the applied

load points downward). The optimal solution is shown in Figure 16.6. The thickness

of each member is drawn in proportion to the square root of the tension/compression

in the member (since if the structure actually exists in three dimensions, the diameter

of a member would be proportional to the square root of the cross-sectional area).

Also, those members under compression are drawn in dark gray, whereas those under

tension are drawn in light gray. Note that the compression members appear to cross

the tension members at right angles. These curves are called principle stresses. It is

a fundamental result in continuum mechanics that the principle tension stresses cross

the principle compression stresses at right angles. We have discovered this result using

optimization.

6. ANCHORS AWAY 283

FIGURE 16.5. The members connected to a single interior joint.

FIGURE 16.6. The minimum weight bracket.

284 16. STRUCTURAL OPTIMIZATION

Most nonexperts find the solution to this problem to be quite surprising, since it

covers such a large area. Yet it is indeed optimal. Also, one can see that the continuum

solution should be roughly in the shape of a leaf.

Exercises

16.1 Show that a matrix R is skew symmetric if and only if

ξT Rξ = 0, for every vector ξ.

16.2 Which of the structures shown in Figure 16.7 is stable? (Note: each structure

is shown embedded in a convenient coordinate system.)

16.3 Which of the structures shown in Figure 16.7 is a truss?

16.4 Assuming that the total applied force vanishes, show that total torque is

translation invariant. That is, for any vector ξ ∈ R
d,

∑

i

(R(pi − ξ))T bi =
∑

i

(Rpi)
T bi.

16.5 In 3-dimensions there are 5 regular (Platonic) solids. They are shown in

Figure 16.8 and have the following number of vertices and edges:

vertices edges

tetrahedron 4 6

cube 8 12

octahedron 6 12

dodecahedron 20 30

icosahedron 12 30

If one were to construct pin-jointed wire-frame models of these solids, which

ones would be stable?

Notes

Structural optimization has its roots in Michell (1904). The first paper in which

truss design was formulated as a linear programming problem is Dorn et al. (1964). A

few general references on the subject include Hemp (1973), Rozvany (1989), Bendsøe

et al. (1994), and Recski (1989).

NOTES 285

(a) (b)

(c) (d)

(f)(e)

FIGURE 16.7. Structures for Exercises 16.2 and 16.3.

286 16. STRUCTURAL OPTIMIZATION

FIGURE 16.8. The five regular solids.

CHAPTER 17

The Central Path

In this chapter, we begin our study of an alternative to the simplex method for

solving linear programming problems. The algorithm we are going to introduce is

called a path-following method. It belongs to a class of methods called interior-point

methods. The path-following method seems to be the simplest and most natural of

all the methods in this class, so in this book we focus primarily on it. Before we

can introduce this method, we must define the path that appears in the name of the

method. This path is called the central path and is the subject of this chapter. Before

discussing the central path, we must lay some groundwork by analyzing a nonlinear

problem, called the barrier problem, associated with the linear programming problem

that we wish to solve.

Warning: Nonstandard Notation Ahead

Starting with this chapter, given a lower-case letter denoting a vector quantity, we

shall use the upper-case form of the same letter to denote the diagonal matrix whose

diagonal entries are those of the corresponding vector. For example,

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x1

x2

...

xn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=⇒ X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x1

x2

. . .

xn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

This notation is nonstandard in mathematics at large, but has achieved a certain amount

of acceptance in the interior-point-methods community.

1. The Barrier Problem

In this chapter, we consider the linear programming problem expressed, as usual,

with inequality constraints and nonnegative variables:

maximize cT x

subject to Ax≤ b

x≥ 0.

289

290 17. THE CENTRAL PATH

The corresponding dual problem is

minimize bT y

subject to AT y ≥ c

y ≥ 0.

As usual, we add slack variables to convert both problems to equality form:

(17.1)

maximize cT x

subject to Ax + w = b

x, w ≥ 0

and

minimize bT y

subject to AT y − z = c

y, z ≥ 0.

Given a constrained maximization problem where some of the constraints are

inequalities (such as our primal linear programming problem), one can consider re-

placing any inequality constraint with an extra term in the objective function. For

example, in (17.1) we could remove the constraint that a specific variable, say, xj , is

nonnegative by adding to the objective function a term that is negative infinity when xj

is negative and is zero otherwise. This reformulation doesn’t seem to be particularly

helpful, since this new objective function has an abrupt discontinuity that, for exam-

ple, prevents us from using calculus to study it. However, suppose we replace this

discontinuous function with another function that is negative infinity when xj is nega-

tive but is finite for xj positive and approaches negative infinity as xj approaches zero.

In some sense this smooths out the discontinuity and perhaps improves our ability to

apply calculus to its study. The simplest such function is the logarithm. Hence, for

each variable, we introduce a new term in the objective function that is just a constant

times the logarithm of the variable:

(17.2)
maximize cT x + μ

∑

j log xj + μ
∑

i log wi

subject to Ax + w = b.

This problem, while not equivalent to our original problem, seems not too different

either. In fact, as the parameter μ, which we assume to be positive, gets small, it

appears that (17.2) becomes a better and better stand-in for (17.1). Problem (17.2)

is called the barrier problem associated with (17.1). Note that it is not really one

problem, but rather a whole family of problems indexed by the parameter μ. Each of

these problems is a nonlinear programming problem because the objective function

is nonlinear. This nonlinear objective function is called a barrier function or, more

specifically, a logarithmic barrier function.

1. THE BARRIER PROBLEM 291

µ= 8

µ=1

µ=0.01

(a) µ= 8 (b) µ=1

(c) µ=0.01 (d) central path

FIGURE 17.1. Parts (a) through (c) show level sets of the barrier

function for three values of μ. For each value of μ, four level sets

are shown. The maximum value of the barrier function is attained

inside the innermost level set. The drawing in part (d) shows the

central path.

It is instructive to have in mind a geometric picture of the barrier function. Recall

that, for problems expressed in standard form, the set of feasible solutions is a poly-

hedron with each face being characterized by the property that one of the variables

is zero. Hence, the barrier function is minus infinity on each face of the polyhedron.

Furthermore, it is finite in the interior of the polyhedron, and it approaches minus in-

finity as the boundary is approached. Figure 17.1 shows some level sets for the barrier

function for a specific problem and a few different choices of μ. Notice that, for each

μ, the maximum is attained at an interior point, and as μ gets closer to zero this interior

point moves closer to the optimal solution of the original linear programming problem

(which is at the top vertex). Viewed as a function of μ, the set of optimal solutions

to the barrier problems forms a path through the interior of the polyhedron of feasible

292 17. THE CENTRAL PATH

g=0
x*

∆

f

FIGURE 17.2. The concentric rings illustrate a few level sets of f .

Clearly, at the optimal solution, x∗, the gradient must be perpendic-

ular to the feasible set.

solutions. This path is called the central path. Our aim is to study this central path. To

this end, we need to develop some machinery, referred to as Lagrange multipliers.

2. Lagrange Multipliers

We wish to discuss briefly the general problem of maximizing a function subject

to one or more equality constraints. Here, the functions are permitted to be nonlinear,

but are assumed to be smooth, say, twice differentiable.

For the moment, suppose that there is a single constraint equation so that the

problem can be formally stated as

maximize f(x)

subject to g(x) = 0.

In this case, the geometry behind the problem is compelling (see Figure 17.2). The

gradient of f , denoted ∇f , is a vector that points in the direction of most rapid increase

of f . For unconstrained optimization, we would simply set this vector equal to zero

to determine the so-called critical points of f , and the maximum, if it exists, would

have to be included in this set. However, given the constraint, g(x) = 0, it is no longer

correct to look at points where the gradient vanishes. Instead, the gradient must be

orthogonal to the set of feasible solutions {x : g(x) = 0}. Of course, at each point x
in the feasible set, ∇g(x), is a vector that is orthogonal to the feasible set at this point

x. Hence, our new requirement for a point x∗ to be a critical point is that it is feasible

2. LAGRANGE MULTIPLIERS 293

g
1
=0

x*

g
2
=0

∆

g
2

∆

g
1

∆

f

∆

f

FIGURE 17.3. The feasible set is the curve formed by the intersec-

tion of g1 = 0 and g2 = 0. The point x∗ is optimal, since the

gradient of f at that point is perpendicular to the feasible set.

and that ∇f(x∗) be proportional to ∇g(x∗). Writing this out as a system of equations,

we have

g(x∗) = 0

∇f(x∗) = y∇g(x∗).

Here, y is the proportionality constant. Note that it can be any real number, either pos-

itive, negative, or zero. This proportionality constant is called a Lagrange multiplier.

Now consider several constraints:

maximize f(x)

subject to g1(x) = 0

g2(x) = 0
...

gm(x) = 0.

In this case, the feasible region is the intersection of m hypersurfaces (see Figure 17.3).

The space orthogonal to the feasible set at a point x is no longer a one-dimensional set

determined by a single gradient, but is instead a higher-dimensional space (typically

m), given by the span of the gradients. Hence, we require that ∇f(x∗) lie in this span.

294 17. THE CENTRAL PATH

This yields the following set of equations for a critical point:

g(x∗) = 0

∇f(x∗) =
m
∑

i=1

yi∇g(x∗).(17.3)

The derivation of these equations has been entirely geometric, but there is also a

simple algebraic formalism that yields the same equations. The idea is to introduce

the so-called Lagrangian function

L(x, y) = f(x) −
∑

i

yigi(x)

and to look for its critical points over both x and y. Since this is now an unconstrained

optimization problem, the critical points are determined by simply setting all the first

derivatives to zero:

∂L

∂xj
=

∂f

∂xj
−

∑

i

yi
∂gi

∂xj
= 0, j = 1, 2, . . . , n,

∂L

∂yi
= −gi = 0, i = 1, 2, . . . ,m.

Writing these equations in vector notation, we see that they are exactly the same as

those derived using the geometric approach. These equations are usually referred to

as the first-order optimality conditions.

Determining whether a solution to the first-order optimality conditions is indeed a

global maximum as desired can be difficult. However, if the constraints are all linear,

the first step (which is often sufficient) is to look at the matrix of second derivatives:

Hf(x) =

[

∂2f

∂xi∂xj

]

.

This matrix is called the Hessian of f at x. We have

THEOREM 17.1. If the constraints are linear, a critical point x∗ is a local maxi-

mum if

(17.4) ξT Hf(x∗)ξ < 0

for each ξ �= 0 satisfying

(17.5) ξT∇gi(x
∗) = 0, i = 1, 2, . . . ,m.

PROOF. We start with the two-term Taylor series expansion of f about x∗:

f(x∗ + ξ) = f(x∗) + ∇f(x∗)T ξ +
1

2
ξT Hf(x∗)ξ + o(‖ξ‖2).

3. LAGRANGE MULTIPLIERS APPLIED TO THE BARRIER PROBLEM 295

The vector ξ represents a displacement from the current point x∗. The only displace-

ments that are relevant are those that lie in the feasible set. Hence, let ξ be a direction

vector satisfying (17.5). From (17.3) and (17.5), we see that ∇f(x∗)T ξ = 0, and so

f(x∗ + ξ) = f(x∗) +
1

2
ξT Hf(x∗)ξ + o(‖ξ‖2).

Employing (17.4) finishes the proof. �

It is worth remarking that if (17.4) is satisfied not just at x∗ but at all x, then x∗ is

a unique global maximum.

In the next section, we shall use Lagrange multipliers to study the central path

defined by the barrier problem.

3. Lagrange Multipliers Applied to the Barrier Problem

In this section, we shall use the machinery of Lagrange multipliers to study the

solution to the barrier problem. In particular, we will show that (subject to some mild

assumptions) for each value of the barrier parameter μ, there is a unique solution to

the barrier problem. We will also show that as μ tends to zero, the solution to the

barrier problem tends to the solution to the original linear programming problem. In

the course of our study, we will stumble naturally upon the central path for the dual

problem. Taken together, the equations defining the primal and the dual central paths

play an important role, and so we will introduce the notion of a primal–dual central

path.

We begin by recalling the barrier problem:

maximize cT x + μ
∑

j log xj + μ
∑

i log wi

subject to Ax + w = b.

This is an equality-constrained optimization problem, and so it is a problem to which

we can apply the Lagrange multiplier tools developed in the previous section. The

Lagrangian for this problem is

L(x,w, y) = cT x + μ
∑

j

log xj + μ
∑

i

log wi + yT (b − Ax − w).

Taking derivatives with respect to each variable and setting them to zero, we get the

first-order optimality conditions:

∂L

∂xj
= cj + μ

1

xj
−

∑

i

yiaij = 0, j = 1, 2, . . . , n,

∂L

∂wi
= μ

1

wi
− yi = 0, i = 1, 2, . . . ,m.

∂L

∂yi
= bi −

∑

j

aijxj − wi = 0, i = 1, 2, . . . ,m.

296 17. THE CENTRAL PATH

Writing these equations in matrix form, we get

AT y − μX−1e = c

y = μW−1e

Ax + w = b.

Here, as warned at the beginning of the chapter, X denotes the diagonal matrix whose

diagonal entries are the components of x, and similarly for W . Also, recall that we

use e to denote the vector of all ones.

Introducing an extra vector defined as z = μX−1e, we can rewrite the first-order

optimality conditions like this:

Ax + w = b.

AT y − z = c

z = μX−1e

y = μW−1e.

Finally, if we multiply the third equation through by X and the fourth equation by W ,

we arrive at a primal–dual symmetric form for writing these equations:

(17.6)

Ax + w = b

AT y − z = c

XZe = μe

Y We = μe.

Note that the first equation is the equality constraint that appears in the primal problem,

while the second equation is the equality constraint for the dual problem. Furthermore,

writing the third and fourth equations out componentwise,

xjzj = μ j = 1, 2, ..., n

yiwi = μ i = 1, 2, ...,m,

we see that they are closely related to our old friend: complementarity. In fact, if we

set μ to zero, then they are exactly the usual complementarity conditions that must

be satisfied at optimality. For this reason, we call these last two equations the μ-

complementarity conditions.

The first-order optimality conditions, as written in (17.6), give us 2n + 2m equa-

tions in 2n+2m unknowns. If these equations were linear, they could be solved using

Gaussian elimination, and the entire subject of linear programming would be no more

difficult than solving systems of linear equations. But alas, they are nonlinear—but

just barely. The only nonlinear expressions in these equations are simple multiplica-

tions such as xjzj . This is about the closest to being linear that one could imagine.

Yet, it is this nonlinearity that makes the subject of linear programming nontrivial.

5. EXISTENCE 297

We must ask both whether a solution to (17.6) exists and if so is it unique. We

address these questions in reverse order.

4. Second-Order Information

To show that the solution, if it is exists, must be unique, we use second-order

information on the barrier function:

(17.7) f(x,w) = cT x + μ
∑

j

log xj + μ
∑

i

log wi.

The first derivatives are

∂f

∂xj
= cj +

μ

xj
, j = 1, 2, . . . , n,

∂f

∂wi
=

μ

wi
, i = 1, 2, . . . ,m,

and the pure second derivatives are

∂2f

∂x2
j

= − μ

x2
j

, j = 1, 2, . . . , n,

∂2f

∂w2
i

= − μ

w2
i

, i = 1, 2, . . . ,m.

All the mixed second derivatives vanish. Therefore, the Hessian is a diagonal matrix

with strictly negative entries. Hence, by Theorem 17.1, there can be at most one

critical point and, if it exists, it is a global maximum.

5. Existence

So, does a solution to the barrier problem always exist? It might not. Consider,

for example, the following trivial optimization problem on the nonnegative half-line:

maximize 0

subject to x ≥ 0.

For this problem, the barrier function is

f(x) = μ log x,

which doesn’t have a maximum (or, less precisely, the maximum is infinity which

is attained at x = ∞). However, such examples are rare. For example, consider

modifying the objective function in this example to make x = 0 the unique optimal

solution:

maximize −x

subject to x ≥ 0.

298 17. THE CENTRAL PATH

In this case, the barrier function is

f(x) = −x + μ log x,

which is a function whose maximum is attained at x = μ.

In general, we have the following result:

THEOREM 17.2. There exists a solution to the barrier problem if and only if both

the primal and the dual feasible regions have nonempty interior.

PROOF. The “only if” part is trivial and less important to us. Therefore, we only

prove the “if” part. To this end, suppose that both the primal and the dual feasible

regions have nonempty interior. This means that there exists a primal feasible point

(x̄, w̄) with x̄ > 0 and w̄ > 0 and there exists a dual feasible point (ȳ, z̄) with ȳ > 0
and z̄ > 0.1 Now, given any primal feasible point (x,w), consider the expression

z̄T x + ȳT w. Replacing the primal and dual slack variables with their definitions, we

can rewrite this expression as follows:

z̄T x + ȳT w =
(

AT ȳ − c
)T

x + ȳT (b − Ax)

= bT ȳ − cT x.

Solving this equation for the primal objective function cT x, we get that

cT x = −z̄T x − ȳT w + bT ȳ.

Therefore, the barrier function f defined in equation (17.7) can be written as follows:

f(x,w) = cT x + μ
∑

j

log xj + μ
∑

i

log wi

=
∑

j

(−z̄jxj + μ log xj)

+
∑

i

(−ȳiwi + μ log wi)

+bT ȳ.

Note that the last term is just a constant. Also, each summand in the two sums is a

function of just one variable. These functions all have the following general form:

h(ξ) = −aξ + μ log ξ, 0 < ξ < ∞,

where a > 0. Such functions have a unique maximum (at μ/a) and tend to −∞ as ξ
tends to ∞. From these observations, it is easy to see that, for every constant c, the set

{

(x,w) ∈ R
n+m : f(x,w) ≥ c

}

is bounded.

1Recall that we write ξ > 0 to mean that ξj > 0 for all j.

EXERCISES 299

Put

f̄ = f(x̄, w̄)

and let

P̄ = {(x,w) : Ax + w = b, x ≥ 0, w ≥ 0, f(x,w) ≥ f̄}.
Clearly, P̄ is nonempty, since it contains (x̄, w̄). From the discussion above, we see

that P̄ is a bounded set.

This set is also closed. To see this, note that it is the intersection of three sets,

{(x,w) : Ax + w = b} ∩ {(x,w) : x ≥ 0, w ≥ 0} ∩ {(x,w) : f(x,w) ≥ f̄}.
The first two of these sets are obviously closed. The third set is closed because it is

the inverse image of a closed set, [f̄ ,∞], under a continuous mapping f . Finally, the

intersection of three closed sets is closed.

In Euclidean spaces, a closed bounded set is called compact. A well-known theo-

rem from real analysis about compact sets is that a continuous function on a nonempty

compact set attains its maximum. This means that there exists a point in the compact

set at which the function hits its maximum. Applying this theorem to f on P̄ , we see

that f does indeed attain its maximum on P̄ , and this implies it attains its maximum

on all of {(x,w) : x > 0, w > 0}, since P̄ was by definition that part of this domain

on which f takes large values (bigger than f̄ , anyway). This completes the proof. �

We summarize our main result in the following corollary:

COROLLARY 17.3. If a primal feasible set (or, for that matter, its dual) has a

nonempty interior and is bounded, then for each μ > 0 there exists a unique solution

(xμ, wμ, yμ, zμ)

to (17.6).

PROOF. Follows immediately from the previous theorem and Exercise 10.7. �

The path {(xμ, wμ, yμ, zμ) : μ > 0} is called the primal–dual central path. It

plays a fundamental role in interior-point methods for linear programming. In the next

chapter, we define the simplest interior-point method. It is an iterative procedure that

at each iteration attempts to move toward a point on the central path that is closer to

optimality than the current point.

Exercises

17.1 Compute and graph the central trajectory for the following problem:

maximize −x1 + x2

subject to x2 ≤ 1

−x1 ≤−1

x1, x2 ≥ 0.

300 17. THE CENTRAL PATH

Hint: The primal and dual problems are the same — exploit this symmetry.

17.2 Let θ be a fixed parameter, 0 ≤ θ ≤ π
2 , and consider the following problem:

maximize (cos θ)x1 + (sin θ)x2

subject to x1 ≤ 1

x2 ≤ 1

x1, x2 ≥ 0.

Compute an explicit formula for the central path (xμ, wμ, yμ, zμ), and eval-

uate limμ→∞ xμ and limμ→0 xμ.

17.3 Suppose that {x : Ax ≤ b, x ≥ 0} is bounded. Let r ∈ R
n and s ∈ R

m be

vectors with positive elements. By studying an appropriate barrier function,

show that there exists a unique solution to the following nonlinear system:

Ax + w = b

AT y − z = c

XZe = r

Y We = s

x, y, z, w > 0.

17.4 Consider the linear programming problem in equality form:

(17.8)

maximize
∑

j cjxj

subject to
∑

j

ajxj = b

xj ≥ 0, j = 1, 2, . . . , n,

where each aj is a vector in R
m, as is b. Consider the change of variables,

xj = ξ2
j ,

and the associated maximization problem:

(17.9)
maximize

∑

j cjξ
2
j

subject to
∑

j ajξ
2
j = b

(note that the nonnegativity constraints are no longer needed). Let V denote

the set of basic feasible solutions to (17.8), and let W denote the set of

points (ξ2
1 , ξ2

2 , . . . , ξ2
n) in R

n for which (ξ1, ξ2, . . . , ξn) is a solution to the

first-order optimality conditions for (17.9). Show that V ⊂ W . What does

this say about the possibility of using (17.9) as a vehicle to solve (17.8)?

NOTES 301

Notes

Research into interior-point methods has its roots in the work of Fiacco & Mc-

Cormick (1968). Interest in these methods exploded after the appearance of the sem-

inal paper Karmarkar (1984). Karmarkar’s paper uses clever ideas from projective

geometry. It doesn’t mention anything about central paths, which have become fun-

damental to the theory of interior-point methods. The discovery that Karmarkar’s

algorithm has connections with the primal–dual central path introduced in this chapter

can be traced to Megiddo (1989). The notion of central points can be traced to pre-

Karmarkar times with the work of Huard (1967). D.A. Bayer and J.C. Lagarias, in a

pair of papers (Bayer & Lagarias 1989a,b), give an in-depth study of the central path.

Deriving optimality conditions and giving conditions under which they are nec-

essary and sufficient to guarantee optimality is one of the main goals of nonlinear

programming. Standard texts on this subject include the books by Luenberger (1984),

Bertsekas (1995), and Nash & Sofer (1996).

CHAPTER 18

A Path-Following Method

In this chapter, we define an interior-point method for linear programming that

is called a path-following method. Recall that for the simplex method we required

a two-phase solution procedure. The path-following method is a one-phase method.

This means that the method can begin from a point that is neither primal nor dual

feasible and it will proceed from there directly to the optimal solution. Hence, we

start with an arbitrary choice of strictly positive values for all the primal and dual

variables, i.e., (x,w, y, z) > 0, and then iteratively update these values as follows:

(1) Estimate an appropriate value for μ (i.e., smaller than the “current” value

but not too small).

(2) Compute step directions (∆x,∆w,∆y,∆z) pointing approximately at the

point (xμ, wμ, yμ, zμ) on the central path.

(3) Compute a step length parameter θ such that the new point

x̃ = x + θ∆x, ỹ = y + θ∆y,

w̃ = w + θ∆w, z̃ = z + θ∆z

continues to have strictly positive components.

(4) Replace (x,w, y, z) with the new solution (x̃, w̃, ỹ, z̃).

To fully define the path-following method, it suffices to make each of these four steps

precise. Since the second step is in some sense the most fundamental, we start by

describing that one after which we turn our attention to the others.

1. Computing Step Directions

Our aim is to find (∆x,∆w,∆y,∆z) such that the new point (x + ∆x,w +
∆w, y + ∆y, z + ∆z) lies approximately on the primal–dual central path at the point

(xμ, wμ, yμ, zμ). Recalling the defining equations for this point on the central path,

Ax + w = b

AT y − z = c

XZe = μe

Y We = μe,

303

304 18. A PATH-FOLLOWING METHOD

we see that the new point (x+∆x,w +∆w, y +∆y, z +∆z), if it were to lie exactly

on the central path at μ, would be defined by

A(x + ∆x) + (w + ∆w) = b

AT (y + ∆y) − (z + ∆z) = c

(X + ∆X)(Z + ∆Z)e = μe

(Y + ∆Y)(W + ∆W)e = μe.

Thinking of (x,w, y, z) as data and (∆x,∆w,∆y,∆z) as unknowns, we rewrite these

equations with the unknowns on the left and the data on the right:

A∆x + ∆w = b − Ax − w =: ρ

AT ∆y − ∆z = c − AT y + z =: σ

Z∆x + X∆z + ∆X∆Ze = μe − XZe

W∆y + Y ∆w + ∆Y ∆We = μe − Y We.

Note that we have introduced abbreviated notations, ρ and σ, for the first two right-

hand sides. These two vectors represent the primal infeasibility and the dual infeasi-

bility, respectively.

Now, just as before, these equations form a system of nonlinear equations (this

time for the “delta” variables). We want to have a linear system, so at this point we

simply drop the nonlinear terms to arrive at the following linear system:

A∆x + ∆w = ρ(18.1)

AT ∆y − ∆z = σ(18.2)

Z∆x + X∆z = μe − XZe(18.3)

W∆y + Y ∆w = μe − Y We.(18.4)

This system of equations is a linear system of 2n+2m equations in 2n+2m unknowns.

We will show later that this system is nonsingular (under the mild assumption that A
has full rank) and therefore that it has a unique solution that defines the step directions

for the path-following method. Chapters 19 and 20 are devoted to studying methods

for efficiently solving systems of this type.

If the business of dropping the nonlinear “delta” terms strikes you as bold, let

us remark that this is the most common approach to solving nonlinear systems of

equations. The method is called Newton’s method. It is described briefly in the next

section.

2. NEWTON’S METHOD 305

2. Newton’s Method

Given a function

F (ξ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

F1(ξ)

F2(ξ)
...

FN (ξ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, ξ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ξ1

ξ2

...

ξN

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

from R
N into R

N , a common problem is to find a point ξ∗ ∈ R
N for which F (ξ∗) = 0.

Such a point is called a root of F . Newton’s method is an iterative method for solving

this problem. One step of the method is defined as follows. Given any point ξ ∈ R
N ,

the goal is to find a step direction ∆ξ for which F (ξ + ∆ξ) = 0. Of course, for a

nonlinear F it is not possible to find such a step direction. Hence, it is approximated

by the first two terms of its Taylor’s series expansion,

F (ξ + ∆ξ) ≈ F (ξ) + F ′(ξ)∆ξ,

where

F ′(ξ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂F1

∂ξ1

∂F1

∂ξ2
· · · ∂F1

∂ξN

∂F2

∂ξ1

∂F2

∂ξ2
· · · ∂F2

∂ξN

...
...

...

∂FN

∂ξ1

∂FN

∂ξ2
· · · ∂FN

∂ξN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The approximation is linear in ∆ξ. Hence, equating it to zero gives a linear system to

solve for the step direction:

F ′(ξ)∆ξ = −F (ξ).

Given ∆ξ, Newton’s method updates the current solution ξ by replacing it with ξ+∆ξ.

The process continues until the current solution is approximately a root (i.e., F (ξ) ≈
0). Simple one-dimensional examples given in every elementary calculus text illustrate

that this method works well, when it works, but it can fail if F is not well behaved and

the initial point is too far from a solution.

Let’s return now to the problem of finding a point on the central path. Letting

ξ =

⎡

⎢

⎢

⎢

⎢

⎣

x

w

y

z

⎤

⎥

⎥

⎥

⎥

⎦

306 18. A PATH-FOLLOWING METHOD

and

F (ξ) =

⎡

⎢

⎢

⎢

⎢

⎣

Ax + w − b

AT y − z − c

XZe − μe

Y We − μe

⎤

⎥

⎥

⎥

⎥

⎦

,

we see that the set of equations defining (xμ, wμ, yμ, zμ) is a root of F . The matrix of

derivatives of F is given by

F ′(ξ) =

⎡

⎢

⎢

⎢

⎢

⎣

A I 0 0

0 0 AT −I

Z 0 0 X

0 Y W 0

⎤

⎥

⎥

⎥

⎥

⎦

.

Noting that

∆ξ =

⎡

⎢

⎢

⎢

⎢

⎣

∆x

∆w

∆y

∆z

⎤

⎥

⎥

⎥

⎥

⎦

,

it is easy to see that the Newton direction coincides with the direction obtained by

solving equations (18.1)–(18.4).

3. Estimating an Appropriate Value for the Barrier Parameter

We need to say how to pick μ. If μ is chosen to be too large, then the sequence

could converge to the analytic center of the feasible set, which is not our intention. If,

on the other hand, μ is chosen to be too small, then the sequence could stray too far

from the central path and the algorithm could jam into the boundary of the feasible set

at a place that is suboptimal. The trick is to find a reasonable compromise between

these two extremes. To do this, we first figure out a value that represents, in some

sense, the current value of μ and we then choose something smaller than that, say a

fixed fraction of it.

We are given a point (x,w, y, z) that is almost certainly off the central path. If it

were on the central path, then there are several formulas by which we could recover

the corresponding value of μ. For example, we could just compute zjxj for any fixed

index j. Or we could compute yiwi for any fixed i. Or, perverse as it may seem, we

could average all these values:

(18.5) μ =
zT x + yT w

n + m
.

4. CHOOSING THE STEP LENGTH PARAMETER 307

This formula gives us exactly the value of μ whenever it is known that (x,w, y, z)
lies on the central path. The key point here then is that we will use this formula to

produce an estimate for μ even when the current solution (x,w, y, z) does not lie on

the central path. Of course, the algorithm needs a value of μ that represents a point

closer to optimality than the current solution. Hence, the algorithm takes this “par”

value and reduces it by a certain fraction:

μ = δ
zT x + yT w

n + m
,

where δ is a number between zero and one. In practice, one finds that setting δ to

approximately 1/10 works quite well, but for the sake of discussion we will always

leave it as a parameter.

4. Choosing the Step Length Parameter

The step directions, which were determined using Newton’s method, were deter-

mined under the assumption that the step length parameter θ would be equal to one

(i.e., x̃ = x+∆x, etc.). But taking such a step might cause the new solution to violate

the property that every component of all the primal and the dual variables must remain

positive. Hence, we may need to use a smaller value for θ. We need to guarantee, for

example, that

xj + θ∆xj > 0, j = 1, 2, . . . , n.

Moving the ∆xj term to the other side and then dividing through by θ and xj , both of

which are positive, we see that θ must satisfy

1

θ
> −∆xj

xj
, j = 1, 2, . . . , n.

Of course, a similar inequality must be satisfied for the w, y, and z variables too.

Putting it all together, the largest value of θ would be given by

1

θ
= max

ij

{

−∆xj

xj
,−∆wi

wi
,−∆yi

yi
,−∆zj

zj

}

,

where we have abused notation slightly by using the maxij to denote the maximum

of all the ratios in the indicated set. However, this choice of θ will not guarantee strict

inequality, so we introduce a parameter r, which is a number close to but strictly less

than one, and we set1

(18.6) θ = r

(

max
ij

{

−∆xj

xj
,−∆wi

wi
,−∆yi

yi
,−∆zj

zj

})−1

∧ 1.

This formula may look messy, and no one should actually do it by hand, but it is trivial

to program a computer to do it. Such a subroutine will be really fast (requiring only

on the order of 2n + 2m operations).

1For compactness, we use the notation a ∧ b to represent the minimum of the two numbers a and b.

308 18. A PATH-FOLLOWING METHOD

initialize (x,w, y, z) > 0

while (not optimal) {
ρ = b − Ax − w

σ = c − AT y + z

γ = zT x + yT w

μ = δ
γ

n + m
solve:

A∆x + ∆w = ρ

AT ∆y − ∆z = σ

Z∆x + X∆z = μe − XZe

W∆y + Y ∆w = μe − Y We

θ = r

(

maxij

{

−∆xj

xj
,−∆wi

wi
,−∆yi

yi
,−∆zj

zj

})−1

∧ 1

x ← x + θ∆x, w ← w + θ∆w

y ← y + θ∆y, z ← z + θ∆z

}

FIGURE 18.1. The path-following method.

A summary of the algorithm is shown in Figure 18.1. In the next section, we

investigate whether this algorithm actually converges to an optimal solution.

5. Convergence Analysis

In this section, we investigate the convergence properties of the path-following

algorithm. Recall that the simplex method is a finite algorithm (assuming that steps are

taken to guard against cycling). For interior-point methods, the situation is different.

Every solution produced has all variables strictly positive. Yet for a solution to be

optimal generally requires many variables to vanish. This vanishing can only happen

“in the limit.” This raises questions, the most fundamental of which are these: does

the sequence of solutions produced by the path-following method converge? If so, is

5. CONVERGENCE ANALYSIS 309

the limit optimal? How fast is the convergence? In particular, if we set “optimality

tolerances,” how many iterations will it take to achieve these tolerances? We will

address these questions in this section.

In this section, we will need to measure the size of various vectors. There are

many choices. For example, for each 1 ≤ p < ∞, we can define the so-called p-norm

of a vector x as

‖x‖p =

⎛

⎝

∑

j

|xj |p
⎞

⎠

1
p

.

The limit as p tends to infinity is also well defined, and it simplifies to the so-called

sup-norm:

‖x‖∞ = max
j

|xj |.

5.1. Measures of Progress. Recall from duality theory that there are three crite-

ria that must be met in order that a primal–dual solution be optimal:

(1) Primal feasibility,

(2) Dual feasibility, and

(3) Complementarity.

For each of these criteria, we introduce a measure of the extent to which they fail to

be met.

For the primal feasibility criterion, we use the 1-norm of the primal infeasibility

vector

ρ = b − Ax − w.

For the dual feasibility criterion, we use the 1-norm of the dual infeasibility vector

σ = c − AT y + z.

For complementarity, we use

γ = zT x + yT w.

5.2. Progress in One Iteration. For the analysis in the section, we prefer to

modify the algorithm slightly by having it take shorter steps than specified before.

Indeed, we let

θ = r

(

max
i,j

{∣

∣

∣

∣

∆xj

xj

∣

∣

∣

∣

,

∣

∣

∣

∣

∆wi

wi

∣

∣

∣

∣

,

∣

∣

∣

∣

∆yi

yi

∣

∣

∣

∣

,

∣

∣

∣

∣

∆zj

zj

∣

∣

∣

∣

})−1

∧ 1

=
r

max(‖X−1∆x‖∞, . . . , ‖Z−1∆z‖∞)
∧ 1.(18.7)

Note that the only change has been to replace the negative ratios with the absolute

value of the same ratios. Since the maximum of the absolute values can be larger than

the maximum of the ratios themselves, this formula produces a smaller value for θ. In

this section, let x, y, etc., denote quantities from one iteration of the algorithm, and

310 18. A PATH-FOLLOWING METHOD

put a tilde on the same letters to denote the same quantity at the next iteration of the

algorithm. Hence,

x̃ = x + θ∆x, ỹ = y + θ∆y,

w̃ = w + θ∆w, z̃ = z + θ∆z.

Now let’s compute some of the other quantities. We begin with the primal infea-

sibility:

ρ̃ = b − Ax̃ − w̃

= b − Ax − w − θ(A∆x + ∆w).

But b −Ax −w equals the primal infeasibility ρ (by definition) and A∆x + ∆w also

equals ρ, since this is precisely the first equation in the system that defines the “delta”

variables. Hence,

(18.8) ρ̃ = (1 − θ)ρ.

Similarly,

σ̃ = c − AT ỹ + z̃

= c − AT y + z − θ(A∆y − ∆z)

= (1 − θ)σ.(18.9)

Since θ is a number between zero and one, it follows that each iteration produces a

decrease in both the primal and the dual infeasibility and that this decrease is better

the closer θ is to one.

The analysis of the complementarity is a little more complicated (after all, this is

the part of the system where the linearization took place):

γ̃ = z̃T x̃ + ỹT w̃

= (z + θ∆z)T (x + θ∆x) + (y + θ∆y)T (w + θ∆w)

= zT x + yT w

+ θ(zT ∆x + ∆zT x + yT ∆w + ∆yT w)

+ θ2(∆zT ∆x + ∆yT ∆w).

We need to analyze each of the θ terms separately. From (18.3), we see that

zT ∆x + ∆zT x = eT (Z∆x + X∆z)

= eT (μe − ZXe)

= μn − zT x.

5. CONVERGENCE ANALYSIS 311

Similarly, from (18.4), we have

yT ∆w + ∆yT w = eT (Y ∆w + W∆y)

= eT (μe − Y We)

= μm − yT w.

Finally, (18.1) and (18.2) imply that

∆zT ∆x + ∆yT ∆w =
(

AT ∆y − σ
)T

∆x + ∆yT (ρ − A∆x)

= ∆yT ρ − σT ∆x.

Substituting these expressions into the last expression for γ̃, we get

γ̃ = zT x + yT w

+ θ
(

μ(n + m) − (zT x + yT w)
)

+ θ2
(

∆yT ρ − σT ∆x
)

.

At this point, we recognize that zT x + yT w = γ and that μ(n + m) = δγ. Hence,

γ̃ = (1 − (1 − δ)θ) γ + θ2
(

∆yT ρ − σT ∆x
)

.

We must now abandon equalities and work with estimates. Our favorite tool for esti-

mation is the following inequality:

|vT w| = |
∑

j

vjwj |

≤
∑

j

|vj ||wj |

≤ (max
j

|vj |)(
∑

j

|wj |)

= ‖v‖∞‖w‖1.

This inequality is the trivial case of Hölder’s inequality. From Hölder’s inequality, we

see that

|∆yT ρ| ≤ ‖ρ‖1‖∆y‖∞ and |σT ∆x| ≤ ‖σ‖1‖∆x‖∞.

Hence,

γ̃ ≤ (1 − (1 − δ)θ) γ + θ (‖ρ‖1‖θ∆y‖∞ + ‖σ‖1‖θ∆x‖∞) .

Next, we use the specific choice of step length θ to get a bound on ‖θ∆y‖∞ and

‖θ∆x‖∞. Indeed, (18.7) implies that

θ ≤ r

‖X−1∆x‖∞
≤ xj

|∆xj |
for all j.

Hence,

‖θ∆x‖∞ ≤ ‖x‖∞.

312 18. A PATH-FOLLOWING METHOD

Similarly,

‖θ∆y‖∞ ≤ ‖y‖∞.

If we now assume that, along the sequence of points x and y visited by the algorithm,

‖x‖∞ and ‖y‖∞ are bounded by a large real number M , then we can estimate the new

complementarity as

(18.10) γ̃ ≤ (1 − (1 − δ)θ) γ + M‖ρ‖1 + M‖σ‖1.

5.3. Stopping Rule. Let ǫ > 0 be a small positive tolerance, and let M < ∞
be a large finite tolerance. If ‖x‖∞ gets larger than M , then we stop and declare the

problem primal unbounded. If ‖y‖∞ gets larger than M , then we stop and declare the

problem dual unbounded. Finally, if ‖ρ‖1 < ǫ, ‖σ‖1 < ǫ, and γ < ǫ, then we stop and

declare the current solution to be optimal (at least within this small tolerance).

Since γ is a measure of complementarity and complementarity is related to the

duality gap, one would expect that a small value of γ should translate into a small

duality gap. This turns out to be true. Indeed, from the definitions of γ, σ, and ρ, we

can write

γ = zT x + yT w

= (σ + AT y − c)T x + yT (b − Ax − ρ)

= bT y − cT x + σT x − ρT y.

At this point, we use Hölder’s inequality to bound some of these terms to get an esti-

mate on the duality gap:

|bT y − cT x| ≤ γ + |σT x| + |yT ρ|
≤ γ + ‖σ‖1‖x‖∞ + ‖ρ‖1‖y‖∞.

Now, if γ, ‖σ‖1, and ‖ρ‖1 are all small (and ‖x‖∞ and ‖y‖∞ are not too big), then

the duality gap will be small. This estimate shows that one shouldn’t expect the du-

ality gap to get small until the primal and the dual are very nearly feasible. Actual

implementations confirm this expectation.

5.4. Progress Over Several Iterations. Now let ρ(k), σ(k), γ(k), θ(k), etc., de-

note the values of these quantities at the kth iteration. We have the following result

about the overall performance of the algorithm:

THEOREM 18.1. Suppose there is a real number t > 0, a real number M < ∞,

and an integer K such that for all k ≤ K,

θ(k) ≥ t,

‖x(k)‖∞ ≤ M,

‖y(k)‖∞ ≤ M.

5. CONVERGENCE ANALYSIS 313

Then there exists a constant M̄ < ∞ such that

‖ρ(k)‖1 ≤ (1 − t)k‖ρ(0)‖1,

‖σ(k)‖1 ≤ (1 − t)k‖σ(0)‖1,

γ(k) ≤ (1 − t̃)kM̄,

for all k ≤ K where

t̃ = t(1 − δ).

PROOF. From (18.8) and the bound on θ(k), it follows that

‖ρ(k)‖1 ≤ (1 − t)‖ρ(k−1)‖1 ≤ · · · ≤ (1 − t)k‖ρ(0)‖1.

Similarly, from (18.9), it follows that

‖σ(k)‖1 ≤ (1 − t)‖σ(k−1)‖1 ≤ · · · ≤ (1 − t)k‖σ(0)‖1.

As usual, γ(k) is harder to estimate. From (18.10) and the previous two estimates, we

see that

γ(k) ≤ (1 − t(1 − δ)) γ(k−1)

+M(1 − t)k−1
(

‖ρ(0)‖1 + ‖σ(0)‖1

)

= (1 − t̃)γ(k−1) + M̃(1 − t)k−1,(18.11)

where M̃ = M
(

‖ρ(0)‖1 + ‖σ(0)‖1

)

. Since an analogous inequality relates γ(k−1) to

γ(k−2), we can substitute this analogous inequality into (18.11) to get

γ(k) ≤ (1 − t̃)
[

(1 − t̃)γ(k−2) + M̃(1 − t)k−2
]

+ M̃(1 − t)k−1

= (1 − t̃)2γ(k−2) + M̃(1 − t)k−1

[

1 − t̃

1 − t
+ 1

]

.

Continuing in this manner, we see that

γ(k) ≤ (1 − t̃)2
[

(1 − t̃)γ(k−3) + M̃(1 − t)k−3
]

+ M̃(1 − t)k−1

[

1 − t̃

1 − t
+ 1

]

= (1 − t̃)3γ(k−3) + M̃(1 − t)k−1

[

(

1 − t̃

1 − t

)2

+
1 − t̃

1 − t
+ 1

]

≤ · · · ≤

≤ (1 − t̃)kγ(0) + M̃(1 − t)k−1

[

(

1 − t̃

1 − t

)k−1

+ · · · + 1 − t̃

1 − t
+ 1

]

.

314 18. A PATH-FOLLOWING METHOD

Now we sum the bracketed partial sum of a geometric series to get

(1 − t)k−1

[

(

1 − t̃

1 − t

)k−1

+ · · · + 1 − t̃

1 − t
+ 1

]

= (1 − t)k−1

1 −
(

1 − t̃

1 − t

)k

1 − 1 − t̃

1 − t

=
(1 − t̃)k − (1 − t)k

t − t̃
.

Recalling that t̃ = t(1 − δ) and dropping the second term in the numerator, we get

(1 − t̃)k − (1 − t)k

t − t̃
≤ (1 − t̃)k

δt
.

Putting this all together, we see that

γ(k) ≤ (1 − t̃)k

(

γ(0) +
M̃

δt

)

.

Denoting the parenthesized expression by M̄ completes the proof. �

Theorem 18.1 is only a partial convergence result because it depends on the as-

sumption that the step lengths remain bounded away from zero. To show that the

step lengths do indeed have this property requires that the algorithm be modified and

that the starting point be carefully selected. The details are rather technical and hence

omitted (see the Notes at the end of the chapter for references).

Also, before we leave this topic, note that the primal and dual infeasibilities go

down by a factor of 1 − t at each iteration, whereas the duality gap goes down by a

smaller amount 1 − t̃. The fact that the duality gap converges more slowly that the

infeasibilities is also readily observed in practice.

Exercises

18.1 Starting from (x,w, y, z) = (e, e, e, e), and using δ = 1/10, and r = 9/10,

compute (x,w, y, z) after one step of the path-following method for the

problem given in

(a) Exercise 2.3.

(b) Exercise 2.4.

(c) Exercise 2.5.

(d) Exercise 2.10.

18.2 Let {(xμ, wμ, yμ, zμ) : μ ≥ 0} denote the central trajectory. Show that

lim
μ→∞

bT yμ − cT xμ = ∞.

Hint: look at (18.5).

EXERCISES 315

18.3 Consider a linear programming problem whose feasible region is bounded

and has nonempty interior. Use the result of Exercise 18.2 to show that the

dual problem’s feasible set is unbounded.

18.4 Scale invariance. Consider a linear program and its dual:

(P)

max cT x

s.t. Ax + w = b

x, w ≥ 0

(D)

min bT y

s.t. AT y − z = c

y, z ≥ 0.

Let R and S be two given diagonal matrices having positive entries along

their diagonals. Consider the scaled reformulation of the original problem

and its dual:

(P̄)

max (Sc)T x̄

s.t. RASx̄ + w̄ = Rb

x̄, w̄ ≥ 0

(D̄)

min (Rb)T ȳ

s.t. SAT Rȳ − z̄ = Sc

ȳ, z̄ ≥ 0.

Let (xk, wk, yk, zk) denote the sequence of solutions generated by the

primal–dual interior-point method applied to (P)–(D). Similarly, let

(x̄k, w̄k, ȳk, z̄k) denote the sequence of solutions generated by the primal–

dual interior-point method applied to (P̄)–(D̄). Suppose that we have the

following relations among the starting points:

x̄0 = S−1x0, w̄0 = Rw0, ȳ0 = R−1y0, z̄0 = Sz0.

Show that these relations then persist. That is, for each k ≥ 1,

x̄k = S−1xk, w̄k = Rwk, ȳk = R−1yk, z̄k = Szk.

18.5 Homotopy method. Let x̄, ȳ, z̄, and w̄ be given componentwise positive

“initial” values for x, y, z, and w, respectively. Let t be a parameter between

0 and 1. Consider the following nonlinear system:

(18.12)

Ax + w = tb + (1 − t)(Ax̄ + w̄)

AT y − z = tc + (1 − t)(AT ȳ − z̄)

XZe = (1 − t)X̄Z̄e

Y We = (1 − t)Ȳ W̄ e

x, y, z, w > 0.

(a) Use Exercise 17.3 to show that this nonlinear system has a unique so-

lution for each 0 ≤ t < 1. Denote it by (x(t), y(t), z(t), w(t)).
(b) Show that (x(0), y(0), z(0), w(0)) = (x̄, ȳ, z̄, w̄).
(c) Assuming that the limit

(x(1), y(1), z(1), w(1)) = lim
t→1

(x(t), y(t), z(t), w(t))

316 18. A PATH-FOLLOWING METHOD

exists, show that it solves the standard-form linear programming prob-

lem.

(d) The family of solutions (x(t), y(t), z(t), w(t)), 0 ≤ t < 1, describes

a curve in “primal–dual” space. Show that the tangent to this curve at

t = 0 coincides with the path-following step direction at (x̄, ȳ, z̄, w̄)
computed with μ = 0; that is,
(

dx

dt
(0),

dy

dt
(0),

dz

dt
(0),

dw

dt
(0)

)

= (∆x,∆y,∆z,∆w),

where (∆x,∆y,∆z,∆w) is the solution to (18.1)–(18.4).

18.6 Higher-order methods. The previous exercise shows that the path-following

step direction can be thought of as the direction one gets by approximating

a homotopy path with its tangent line:

x(t) ≈ x(0) +
dx

dt
(0)t.

By using more terms of the Taylor’s series expansion, one can get a better

approximation:

x(t) ≈ x(0) +
dx

dt
(0)t +

1

2

d2x

dt2
(0)t2 + · · · + 1

k!

dkx

dtk
(0)tk.

(a) Differentiating the equations in (18.12) twice, derive a linear system for

(d2x/dt2(0), d2y/dt2(0), d2z/dt2(0), d2w/dt2(0)).
(b) Can the same technique be applied to derive linear systems for the

higher-order derivatives?

18.7 Linear Complementarity Problem. Given a k × k matrix M and a k-vector

q, a vector x is said to solve the linear complementarity problem if

−Mx + z = q

XZe = 0

x, z ≥ 0

(note that the first equation can be taken as the definition of z).

(a) Show that the optimality conditions for linear programming can be ex-

pressed as a linear complementarity problem with

M =

[

0 −A

AT 0

]

.

(b) The path-following method introduced in this chapter can be extended

to cover linear complementarity problems. The main step in the deriva-

tion is to replace the complementarity condition XZe = 0 with a

μ-complementarity condition XZe = μe and then to use Newton’s

EXERCISES 317

method to derive step directions ∆x and ∆z. Carry out this procedure

and indicate the system of equations that define ∆x and ∆z.

(c) Give conditions under which the system derived above is guaranteed to

have a unique solution.

(d) Write down the steps of the path-following method for the linear com-

plementarity problem.

(e) Study the convergence of this algorithm by adapting the analysis given

in Section 18.5.

18.8 Consider again the L1-regression problem:

minimize ‖b − Ax‖1.

Complete the following steps to derive the step direction vector ∆x associ-

ated with the primal-dual affine-scaling method for solving this problem.

(a) Show that the L1-regression problem is equivalent to the following lin-

ear programming problem:

(18.13)

minimize eT (t+ + t−)

subject to Ax + t+ − t− = b

t+, t− ≥ 0.

(b) Write down the dual of (18.13).

(c) Add slack and/or surplus variables as necessary to reformulate the dual

so that all inequalities are simple nonnegativities of variables.

(d) Identify all primal-dual pairs of complementary variables.

(e) Write down the nonlinear system of equations consisting of: (1) the

primal equality constraints, (2) the dual equality constraints, (3) all

complementarity conditions (using μ = 0 since we are looking for an

affine-scaling algorithm).

(f) Apply Newton’s method to the nonlinear system to obtain a linear sys-

tem for step directions for all of the primal and dual variables.

(g) We may assume without loss of generality that both the initial primal

solution and the initial dual solution are feasible. Explain why.

(h) The linear system derived above is a 6 × 6 block matrix system. But it

is easy to solve most of it by hand. First eliminate those step direction

associated with the nonnegative variables to arrive at a 2 × 2 block

matrix system.

(i) Next, solve the 2 × 2 system. Give an explicit formula for ∆x.

(j) How does this primal-dual affine-scaling algorithm compare with the

iteratively reweighted least squares algorithm defined in Section 12.5?

318 18. A PATH-FOLLOWING METHOD

18.9

(a) Let ξj , j = 1, 2, . . . , denote a sequence of real numbers between zero

and one. Show that
∏

j(1 − ξj) = 0 if
∑

j ξj = ∞.

(b) Use the result of part a to prove the following convergence result: if

the sequences ‖x(k)‖∞, k = 1, 2, . . . , and ‖y(k)‖∞, k = 1, 2, . . . , are

bounded and
∑

k θ(k) = ∞, then

lim
k→∞

‖ρ(k)‖1 = 0

lim
k→∞

‖σ(k)‖1 = 0

lim
k→∞

γ(k) = 0.

Notes

The path-following algorithm introduced in this chapter has its origins in a paper

by Kojima et al. (1989). Their paper assumed an initial feasible solution and therefore

was a true interior-point method. The method given in this chapter does not assume

the initial solution is feasible—it is a one-phase algorithm. The simple yet beautiful

idea of modifying the Kojima–Mizuno–Yoshise primal–dual algorithm to make it into

a one-phase algorithm is due to Lustig (1990).

Of the thousands of papers on interior-point methods that have appeared in the

last decade, the majority have included convergence proofs for some version of an

interior-point method. Here, we only mention a few of the important papers. The

first polynomial-time algorithm for linear programming was discovered by Khachian

(1979). Khachian’s algorithm is fundamentally different from any algorithm presented

in this book. Paradoxically, it proved in practice to be inferior to the simplex method.

N.K. Karmarkar’s pathbreaking paper (Karmarkar 1984) contained a detailed con-

vergence analysis. His claims, based on preliminary testing, that his algorithm is

uniformly substantially faster than the simplex method sparked a revolution in linear

programming. Unfortunately, his claims proved to be exaggerated, but nonetheless

interior-point methods have been shown to be competitive with the simplex method

and usually superior on very large problems. The convergence proof for a primal–dual

interior-point method was given by Kojima et al. (1989). Shortly thereafter, Monteiro

& Adler (1989) improved on the convergence analysis. Two recent survey papers,

Todd (1995) and Anstreicher (1996), give nice overviews of the current state of the

art. Also, a soon-to-be-published book by Wright (1996) should prove to be a valu-

able reference to the reader wishing more information on convergence properties of

these algorithms.

The homotopy method outlined in Exercise 18.5 is described in Nazareth (1986)

and Nazareth (1996). Higher-order path-following methods are described (differently)

in Carpenter et al. (1993).

CHAPTER 19

The KKT System

The most time-consuming aspect of each iteration of the path-following method

is solving the system of equations that defines the step direction vectors ∆x, ∆y, ∆w,

and ∆z:

A∆x + ∆w = ρ(19.1)

AT ∆y − ∆z = σ(19.2)

Z∆x + X∆z = μe − XZe(19.3)

W∆y + Y ∆w = μe − Y We.(19.4)

After minor manipulation, these equations can be written in block matrix form as

follows:

(19.5)

⎡

⎢

⎢

⎢

⎢

⎣

−XZ−1 −I

A I

−I AT

I Y W−1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

∆z

∆y

∆x

∆w

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−μZ−1e + x

ρ

σ

μW−1e − y

⎤

⎥

⎥

⎥

⎥

⎦

.

This system is called the Karush–Kuhn–Tucker system, or simply the KKT system. It

is a symmetric linear system of 2n+2m equations in 2n+2m unknowns. One could,

of course, perform a factorization of this large system and then follow that with a

forward and backward substitution to solve the system. However, it is better to do part

of this calculation “by hand” first and only use a factorization routine to help solve a

smaller system. There are two stages of reductions that one could apply. After the first

stage, the remaining system is called the reduced KKT system, and after the second

stage it is called the system of normal equations. We shall discuss these two systems

in the next two sections.

1. The Reduced KKT System

Equations (19.3) and (19.4) are trivial (in the sense that they only involve diag-

onal matrices), and so it seems sensible to eliminate them right from the start. To

preserve the symmetry that we saw in (19.5), we should solve them for ∆z and ∆w,

319

320 19. THE KKT SYSTEM

respectively:

∆z = X−1(μe − XZe − Z∆x)

∆w = Y −1(μe − Y We − W∆y).

Substituting these formulas into (19.1) and (19.2), we get the so-called reduced KKT

system:

A∆x − Y −1W∆y = ρ − μY −1e + w(19.6)

AT ∆y + X−1Z∆x = σ + μX−1e − z.(19.7)

Substituting in the definitions of ρ and σ and writing the system in matrix notation,

we get
[

−Y −1W A

AT X−1Z

][

∆y

∆x

]

=

[

b − Ax − μY −1e

c − AT y + μX−1e

]

.

Note that the reduced KKT matrix is again a symmetric matrix. Also, the right-hand

side displays symmetry between the primal and the dual. To reduce the system any

further, one needs to break the symmetry that we have carefully preserved up to this

point. Nonetheless, we forge ahead.

2. The Normal Equations

For the second stage of reduction, there are two choices: we could either (1) solve

(19.6) for ∆y and eliminate it from (19.7) or (2) solve (19.7) for ∆x and eliminate it

from (19.6). For the moment, let us assume that we follow the latter approach. In this

case, we get from (19.7) that

(19.8) ∆x = XZ−1(c − AT y + μX−1e − AT ∆y),

which we use to eliminate ∆x from (19.6) to get

− (Y −1W + AXZ−1AT)∆y = b − Ax − μY −1e(19.9)

−AXZ−1(c − AT y + μX−1e).

This last system is a system of m equations in m unknowns. It is called the system

of normal equations in primal form. It is a system of equations involving the matrix

Y −1W + AXZ−1AT . The Y −1W term is simply a diagonal matrix, and so the real

meat of this matrix is contained in the AXZ−1AT term.

Given that A is sparse (which is generally the case in real-world linear programs),

one would expect the matrix AXZ−1AT to be likewise sparse. However, we need to

investigate the sparsity of AXZ−1AT (or lack thereof) more closely. Note that the

(i, j)th element of this matrix is given by

(AXZ−1AT)ij =

n
∑

k=1

aik
xk

zk
ajk.

2. THE NORMAL EQUATIONS 321

That is, the (i, j)th element is simply a weighted inner product of rows i and j of

the A matrix. If these rows have disjoint nonzero patterns, then this inner product is

guaranteed to be zero, but otherwise it must be treated as a potential nonzero. This is

bad news if A is generally sparse but has, say, one dense column:

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

∗
∗
∗
∗
∗
∗
∗
∗

∗ ∗ ∗ ∗ ∗
∗ ∗

∗
∗
∗

∗ ∗
∗

∗

=

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

.

But don’t forget that we didn’t have to go the primal normal equations route.

Instead, we could have chosen the other alternative of solving (19.6) for ∆y,

∆y = −Y W−1(b − Ax − μY −1e − A∆x),

and eliminating it from (19.7):

(AT Y W−1A + X−1Z)∆x = c − AT y + μX−1e(19.10)

+AT Y W−1(b − Ax − μY −1e).

The system defined by (19.10) is a system of n equations in n unknowns. It is called

the system of normal equations in dual form. Note that dense columns do not pose a

problem for these equations. Indeed, for the example given above, we now get

∗ ∗ ∗ ∗ ∗
∗ ∗

∗
∗
∗

∗ ∗
∗

∗

∗
∗
∗
∗
∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

=

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

.

While this system is larger than the one before, it is also sparse, and sparsity almost

always is more important than matrix dimensions. In this example, the dense ma-

trix associated with the primal normal equations requires 65 arithmetic operations to

factor, whereas the larger, sparser matrix associated with the dual normal equations

requires just 60. This is a small difference, but these are small matrices. As the ma-

trices involved get large, factoring a dense matrix takes on the order of n3 operations,

whereas a very sparse matrix might take only on the order of n operations. Clearly, as

n gets large, the difference between these becomes quite significant.

It would be great if we could say that it is always best to solve the primal normal

equations or the dual normal equations. But as we’ve just seen, dense columns in A are

bad for the primal normal equations and, of course, it follows that dense rows are bad

for the dual normal equations. Even worse, some problems have constraint matrices

322 19. THE KKT SYSTEM

A that are overall very sparse but contain some dense rows and some dense columns.

Such problems are sure to run into trouble with either sets of normal equations. For

these reasons, it is best to factor the matrix in the reduced KKT system directly. Then

it is possible to find pivot orders that circumvent the difficulties posed by both dense

columns and dense rows.

3. Step Direction Decomposition

In the next chapter, we shall discuss factorization techniques for symmetric ma-

trices (along with other implementation issues). However, before we embark on that

discussion, we end this chapter by taking a closer look at the formulas for the step

direction vectors. To be specific, let us look at ∆x. From the primal normal equa-

tions (19.9), we can solve for ∆y and then substitute the solution into (19.8) to get an

explicit formula for ∆x:

∆x =
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

(c − AT y + μX−1e)(19.11)

+ D2AT (E−2 + AD2AT)−1(b − Ax − μY −1e),

where we have denoted by D the positive diagonal matrix defined by

D2 = XZ−1

and we have denoted by E the positive diagonal matrix defined by

E2 = Y W−1

(defining these matrices by their squares is possible, since the squares have positive

diagonal entries). However, using the dual normal equations, we get

∆x =
(

AT E2A + D−2
)−1

(c − AT y + μX−1e)(19.12)

+
(

AT E2A + D−2
)−1

AT E2(b − Ax − μY −1e).

These two expressions for ∆x look entirely different, but they must be the same, since

we know that ∆x is uniquely defined by the reduced KKT system. They are indeed

the same, as can be shown directly by establishing a certain matrix identity. This is

the subject of Exercise 19.1. There are a surprising number of published research

papers on interior-point methods that present supposedly new algorithms that are in

fact identical to existing methods. These papers get published because the equivalence

is not immediately obvious (such as the one we just established).

3. STEP DIRECTION DECOMPOSITION 323

We can gain further insight into the path-following method by looking more

closely at the primal step direction vector. Formula (19.11) can be rearranged as fol-

lows:

∆x =
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

c

+ μ
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

X−1e

− μD2AT (E−2 + AD2AT)−1Y −1e

+ D2AT (E−2 + AD2AT)−1(b − Ax)

− D2AT
(

I − (E−2 + AD2AT)−1AD2AT
)

y.

For comparison purposes down the road, we prefer to write the Y −1e that appears in

the second term containing μ as E−2W−1e. Also, using the result of Exercise 19.2,

we can rewrite the bulk of the last line as follows:
(

I − (E−2 + AD2AT)−1AD2AT
)

y = (E−2 + AD2AT)−1E−2y

= (E−2 + AD2AT)−1w.

Putting this all together, we get

∆x =
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

c

+ μ
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

X−1e

− μD2AT (E−2 + AD2AT)−1E−2W−1e

+ D2AT (E−2 + AD2AT)−1ρ

=∆xOPT + μ∆xCTR + ∆xFEAS,

where

∆xOPT =
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

c,

∆xCTR =
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

X−1e

− D2AT (E−2 + AD2AT)−1E−2W−1e,

and

∆xFEAS = D2AT (E−2 + AD2AT)−1ρ.

In Chapter 21, we shall show that these components of ∆x have important connections

to the step directions that arise in a related interior-point method called the affine-

scaling method. For now, we simply establish some of their properties as they relate

to the path-following method. Our first result is that ∆xOPT is an ascent direction.

THEOREM 19.1. cT ∆xOPT ≥ 0.

PROOF. We use the result of Exercise 19.1 (with the roles of E and D switched)

to see that

∆xOPT = (AT E2A + D−2)−1c.

324 19. THE KKT SYSTEM

Hence,

cT ∆xOPT = cT (AT E2A + D−2)−1c.

We claim that the right-hand side is obviously nonnegative, since the matrix sand-

wiched between c and its transpose is positive semidefinite.1 Indeed, the claim follows

from the definition of positive semidefiniteness: a matrix B is positive semidefinite if

ξT Bξ ≥ 0 for all vectors ξ. To see that the matrix in question is in fact positive

semidefinite, we first note that AT E2A and D−2 are positive semidefinite:

ξT AT E2Aξ = ‖EAξ‖2 ≥ 0 and ξT D−2ξ = ‖D−1ξ‖2 ≥ 0.

Then we show that the sum of two positive semidefinite matrices is positive semidefi-

nite and finally that the inverse of a symmetric positive semidefinite matrix is positive

semidefinite. To verify closure under summation, suppose that B(1) and B(2) are pos-

itive semidefinite, and then compute

ξT (B(1) + B(2))ξ = ξT B(1)ξ + ξT B(2)ξ ≥ 0.

To verify closure under forming inverses of symmetric positive semidefinite matrices,

suppose that B is symmetric and positive semidefinite. Then

ξT B−1ξ = ξT B−1BB−1ξ = (B−1ξ)T B(B−1ξ) ≥ 0,

where the inequality follows from the fact that B is positive semidefinite and B−1ξ is

simply any old vector. This completes the proof. �

The theorem just proved justifies our referring to ∆xOPT as a step-toward-optimality

direction. We next show that ∆xFEAS is in fact a step-toward-feasibility.

In Exercise 19.3, you are asked to find the formulas for the primal slack vector’s

step directions, ∆wOPT, ∆wCTR, and ∆wFEAS. It is easy to verify from these formu-

las that the pairs (∆xOPT,∆wOPT) and (∆xCTR,∆wCTR) preserve the current level of

infeasibility. That is,

A∆xOPT + ∆wOPT = 0

and

A∆xCTR + ∆wCTR = 0.

Hence, only the “feasibility” directions can improve the degree of feasibility. Indeed,

it is easy to check that

A∆xFEAS + ∆wFEAS = ρ.

Finally, we consider ∆xCTR. If the objective function were zero (i.e., c = 0) and

if the current point were feasible, then steps toward optimality and feasibility would

vanish and we would be left with just ∆xCTR. Since our step directions were derived

in an effort to move toward a point on the central path parametrized by μ, we now see

that ∆xCTR plays the role of a step-toward-centrality.

1In fact, it’s positive definite, but we don’t need this stronger property here.

NOTES 325

Exercises

19.1 Sherman–Morrison–Woodbury Formula. Assuming that all the inverses be-

low exist, show that the following identity is true:

(E−1 + ADAT)−1 = E − EA(AT EA + D−1)−1AT E.

Use this identity to verify directly the equivalence of the expressions given

for ∆x in (19.11) and (19.12).

19.2 Assuming that all the inverses exist, show that the following identity holds:

I − (E + ADAT)−1ADAT = (E + ADAT)−1E.

19.3 Show that

∆w = ∆wOPT + μ∆wCTR + ∆wFEAS,

where

∆wOPT = −A
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

c,

∆wCTR = −A
(

D2 − D2AT (E−2 + AD2AT)−1AD2
)

X−1e

+ AD2AT (E−2 + AD2AT)−1E−2W−1e,

and

∆wFEAS = ρ − AD2AT (E−2 + AD2AT)−1ρ.

Notes

The KKT system for general inequality constrained optimization problems was

derived by Kuhn & Tucker (1951). It was later discovered that W. Karush had proven

the same result in his 1939 master’s thesis at the University of Chicago (Karush

1939). John (1948) was also an early contributor to inequality-constrained optimiza-

tion. Kuhn’s survey paper (Kuhn 1976) gives a historical account of the development

of the subject.

CHAPTER 20

Implementation Issues

In this chapter, we discuss implementation issues that arise in connection with the

path-following method.

The most important issue is the efficient solution of the systems of equations dis-

cussed in the previous chapter. As we saw, there are basically three choices, involving

either the reduced KKT matrix,

(20.1) B =

[

−E−2 A

AT D−2

]

,

or one of the two matrices associated with the normal equations:

(20.2) AD2AT + E−2

or

(20.3) AT E2A + D−2.

(Here, E−2 = Y −1W and D−2 = X−1Z.)

In the previous chapter, we explained that dense columns/rows are bad for the

normal equations and that therefore one might be better off solving the system involv-

ing the reduced KKT matrix. But there is also a reason one might prefer to work with

one of the systems of normal equations. The reason is that these matrices are posi-

tive definite. We shall show in the first section that there are important advantages in

working with positive definite matrices. In the second section, we shall consider the

reduced KKT matrix and see to what extent the nice properties possessed by positive

definite matrices carry over to these matrices.

After finishing our investigations into numerical factorization, we shall take up

a few other relevant tasks, such as how one extends the path-following algorithm to

handle problems with bounds and ranges.

1. Factoring Positive Definite Matrices

As we saw in the proof of Theorem 19.1, the matrix (20.2) appearing in the primal

normal equations is positive semidefinite (and so is (20.3), of course). In fact, it is

even better—it’s positive definite. A matrix B is positive definite if ξT Bξ > 0 for

all vectors ξ �= 0. In this section, we will show that, if we restrict our row/column

327

328 20. IMPLEMENTATION ISSUES

reordering to symmetric reorderings, that is, reorderings where the rows and columns

undergo the same permutation, then there is no danger of encountering a pivot element

whose value is zero. Hence, the row/column permutation can be selected ahead of time

based only on the aim of maintaining sparsity.

If we restrict ourselves to symmetric permutations, each pivot element is a diago-

nal element of the matrix. The following result shows that we can start by picking an

arbitrary diagonal element as the first pivot element:

THEOREM 20.1. If B is positive definite, then bii > 0 for all i.

The proof follows trivially from the definition of positive definiteness:

bii = eT
i Bei > 0.

The next step is to show that after each stage of the elimination process, the remaining

uneliminated matrix is positive definite. Let us illustrate by breaking out the first

row/column of the matrix and looking at what the first step of the elimination process

does. Breaking out the first row/column, we write

B =

[

a bT

b C

]

.

Here, a is the first diagonal element (a scalar), b is the column below a, and C is the

matrix consisting of all of B except the first row/column. One step of elimination (as

described in Chapter 8) transforms B into
[

a bT

b C − bbT

a

]

.

The following theorem tells us that the uneliminated part is positive definite:

THEOREM 20.2. If B is positive definite, then so is C − bbT /a.

PROOF. The fact that B is positive definite implies that

(20.4)
[

x yT
]

[

a bT

b C

][

x

y

]

= ax2 + 2yT bx + yT Cy

is positive whenever the scalar x or the vector y is nonzero (or both). Fix a vector

y �= 0, and put x = − 1
abT y. Using these choices in (20.4), we get

0 <
1

a
yT bbT y − 2

1

a
yT bbT y + yT Cy = yT

(

C − bbT

a

)

y.

Since y was an arbitrary nonzero vector, it follows that C − bbT /a is positive definite.

�

1. FACTORING POSITIVE DEFINITE MATRICES 329

Hence, after one step of the elimination, the uneliminated part is positive definite.

It follows by induction then that the uneliminated part is positive definite at every step

of the elimination.

Here’s an example:

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 −1 −1

−1 3 −1 −1

−1 2 −1

−1 −1 3 −1

−1 −1 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

At the end of the four steps of the elimination (without permutations), we end up with
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 −1 −1

−1 5
2 −1 −1 − 1

2

−1 8
5 − 7

5 − 1
5

−1 − 7
5

11
8 − 11

8

−1 − 1
2 − 1

5 − 11
8 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

From this eliminated form, we extract the lower triangular matrix, the diagonal matrix,

and the upper triangular matrix to write B as

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

−1 5
2

−1 8
5

−1 − 7
5

11
8

−1 − 1
2 − 1

5 − 11
8 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
5
2

8
5

11
8

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1 ⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 −1 −1
5
2 −1 −1 − 1

2
8
5 − 7

5 − 1
5

11
8 − 11

8

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As we saw in Chapter 8, it is convenient to combine the lower triangular matrix with

the diagonal matrix to get a new lower triangular matrix with ones on the diagonal.

But the current lower triangular matrix is exactly the transpose of the upper triangular

matrix. Hence, to preserve symmetry, we should combine the diagonal matrix with

both the lower and the upper triangular matrices. Since it only appears once, we must

multiply and divide by it (in the middle of the product). Doing this, we get

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

− 1
2 1

− 2
5 1

− 2
5 − 7

8 1

− 1
2 − 1

5 − 1
8 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
5
2

8
5

11
8

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1
2 − 1

2

1 − 2
5 − 2

5 − 1
5

1 − 7
8 − 1

8

1 −1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

330 20. IMPLEMENTATION ISSUES

The lower triangular matrix in this representation is usually denoted by L and the

diagonal matrix by D (not to be confused with the D at the beginning of the chapter).

Hence, this factorization can be summarized as

B = LDLT

and is referred to as an LDLT -factorization. Of course, once a factorization is found,

it is easy to solve systems of equations using forward and backward substitution as

discussed in Chapter 8.

1.1. Stability. We began our discussion of factoring positive definite matrices

with the comment that a symmetric permutation can be chosen purely with the aim of

preserving sparsity, since it is guaranteed that no pivot element will ever vanish. How-

ever, the situation is even better than that—we can show that whenever a pivot element

is small, so is every other nonzero in the uneliminated part of the same row/column.

Before saying why, we need to set down a few technical results.

THEOREM 20.3. If b̄ii denotes a diagonal element in the uneliminated submatrix

at some stage of an elimination and bii denotes the original value of that diagonal

element, then 0 < b̄ii ≤ bii.

PROOF. The positivity of b̄ii follows from the fact the uneliminated submatrix is

positive definite. The fact that it is bounded above by bii follows from the fact that

each step of the elimination can only decrease diagonal elements, which can be seen

by looking at the first step of the elimination. Using the notation introduced just after

Theorem 20.1,

cii −
b2
i

a
≤ cii.

�

THEOREM 20.4. If B is symmetric and positive definite, then |bij | <
√

biibjj for

all i �= j.

PROOF. Fix i �= j and let ξ = rei + ej . That is, ξ is the vector that’s all zero

except for the ith and jth position, where it’s r and 1, respectively. Then,

0 < ξT Bξ = biir
2 + 2bijr + bjj ,

for all r ∈ R. This quadratic expression is positive for all values of r if and only if it

is positive at its minimum, and it’s easy to check that it is positive at that point if and

only if |bij | <
√

biibjj . �

These two theorems, together with the fact that the uneliminated submatrix is

symmetric and positive definite, give us bounds on the off-diagonal elements. Indeed,

consider the situation after a number of steps of the elimination. Using bars to denote

matrix elements in the uneliminated submatrix and letting M denote an upper bound

2. QUASIDEFINITE MATRICES 331

on the diagonal elements before the elimination process began (which, without loss of

generality, could be taken as 1), we see that, if b̄jj < ǫ, then

(20.5) b̄ij <
√

ǫM.

This bound is exceedingly important and is special to positive definite matrices.

2. Quasidefinite Matrices

In this section, we shall study factorization techniques for the reduced KKT ma-

trix (20.1). The reduced KKT matrix is an example of a quasidefinite matrix. A

symmetric matrix is called quasidefinite if it can be written (perhaps after a symmetric

permutation) as

B =

[

−E A

AT D

]

,

where E and D are positive definite matrices. Quasidefinite matrices inherit some

of the nice properties of positive definite matrices. In particular, one can perform

an arbitrary symmetric permutation of the rows/columns and still be able to form a

factorization of the permuted matrix.

The idea is that, after each step of the elimination, the remaining uneliminated

part of the matrix is still quasidefinite. To see why, let’s break out the first row/column

of the matrix and look at the first step of the elimination process. Breaking out the first

row/column of B, we write

B =

⎡

⎢

⎢

⎣

−a −bT fT

−b −C G

f GT D

⎤

⎥

⎥

⎦

,

where a is a scalar, b and f are vectors, and C, D, and G are matrices (of the appro-

priate dimensions). One step of the elimination process transforms B into
⎡

⎢

⎢

⎣

−a −bT fT

−b −
(

C − bbT

a

)

G + bfT

a

f GT + fbT

a D + ffT

a

⎤

⎥

⎥

⎦

.

The uneliminated part is
⎡

⎣

−
(

C − bbT

a

)

G + bfT

a

GT + fbT

a D + ffT

a

⎤

⎦ .

Clearly, the lower-left and upper-right blocks are transposes of each other. Also, the

upper-left and lower-right blocks are symmetric, since C and D are. Therefore, the

whole matrix is symmetric. Theorem 20.2 tells us that C − bbT /a is positive definite

and D + ffT /a is positive definite, since the sum of a positive definite matrix and

332 20. IMPLEMENTATION ISSUES

a positive semidefinite matrix is positive definite (see Exercise 20.2). Therefore, the

uneliminated part is indeed quasidefinite.

Of course, had the first pivot element been selected from the submatrix D instead

of E, perhaps the story would be different. But it is easy to check that it’s the same.

Hence, no matter which diagonal element is selected to be the first pivot element, the

resulting uneliminated part is quasidefinite. Now, by induction it follows that every

step of the elimination process involves choosing a pivot element from the diagonals

of a quasidefinite matrix. Since these diagonals come from either a positive definite

submatrix or the negative of such a matrix, it follows that they are always nonzero (but

many of them will be negative). Therefore, just as for positive definite matrices, an

arbitrary symmetric permutation of a quasidefinite matrix can be factored without any

risk of encountering a zero pivot element.

Here’s an example:

(20.6) B =

1 2 3 4 5

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −2 1

−2 2

−3 1

−2 1 2

1 2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(The blocks are easy to pick out, since the negative diagonals must be from −E,

whereas the positive ones are from D.) Let’s eliminate by picking the diagonals in the

order 1, 5, 2, 4, 3. No permutations are needed in preparation for the first step of the

elimination. After this step, we have

1 2 3 4 5

1

2

3

4

5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −2 1

−2 2

−3 1

−2 1 6 −2

1 2 −2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

2. QUASIDEFINITE MATRICES 333

Now, we move row/column 5 to the pivot position, slide the other rows/columns

down/over, and eliminate to get

1 5 2 3 4

1

5

2

3

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 −2

1 2 2 −2

2 −4 2

−3 1

−2 −2 2 1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Row/column 2 is in the correct position for the third step of the elimination, and there-

fore, without further ado, we do the next step in the elimination:

1 5 2 3 4

1

5

2

3

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 −2

1 2 2 −2

2 −4 2

−3 1

−2 −2 2 1 5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Finally, we interchange rows/columns 3 and 4 and do the last elimination step to get

1 5 2 4 3

1

5

2

4

3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 −2

1 2 2 −2

2 −4 2

−2 −2 2 5 1

1 − 16
5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

334 20. IMPLEMENTATION ISSUES

From this final matrix, it is easy to extract the LDLT -factorization of the permutation

of B:

B =

1 5 2 4 3

1

5

2

4

3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 −2

1 1 2

2 −2

−2 2 1

1 −3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

1

5

2

4

3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

−1 1

1 1

2 −1 − 1
2 1

1
5 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1

2

−4

5

− 16
5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1 5 2 4 3
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 2

1 1 −1

1 − 1
2

1 1
5

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As always, the factorization is computed so that one can solve systems of equations.

Given the factorization, all that is required is a forward substitution, a backward sub-

stitution, a scaling, and two permutations.

2.1. Instability. We have shown that an arbitrary symmetric permutation of the

rows/columns of a quasidefinite matrix can be factored into LDLT . That is, mathe-

matically none of the pivot elements will be zero. But they can be small, and their

smallness can cause troubles not encountered with positive definite matrices. To ex-

plain, let’s look at an example. Consider the linear programming problem

maximize x1 + x2

subject to x1 + 2x2 ≤ 1

2x1 + x2 ≤ 1

x1, x2 ≥ 0

and its dual

minimize y1 + y2

subject to y1 + 2y2 ≥ 1

2y1 + y2 ≥ 1

y1, y2 ≥ 0.

2. QUASIDEFINITE MATRICES 335

Drawing pictures, it is easy to see that the optimal solution is

x∗
1 = x∗

2 = y∗
1 = y∗

2 =
1

3
z∗1 = z∗2 = w∗

1 = w∗
2 = 0.

Therefore, as the optimal solution is approached, the diagonal elements in X−1Z and

Y −1W approach zero. Therefore, at late stages in the path-following method, one is

faced with the problem of factoring the following reduced KKT matrix:

B =

1 2 3 4

1

2

3

4

⎡

⎢

⎢

⎢

⎢

⎣

−ǫ1 1 2

−ǫ2 2 1

1 2 δ1

2 1 δ2

⎤

⎥

⎥

⎥

⎥

⎦

,

where ǫ1, ǫ2, δ1, and δ2 are small positive numbers. Consider what happens if we per-

mute the rows/columns so that the original diagonal elements appear in the following

order: 1, 3, 4, 2. The permuted matrix is seen to be

B =

1 3 4 2

1

3

4

2

⎡

⎢

⎢

⎢

⎢

⎣

−ǫ1 1 2

1 δ1 2

2 δ2 1

2 1 −ǫ2

⎤

⎥

⎥

⎥

⎥

⎦

.

After the first two steps of the elimination, we have

(20.7)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−ǫ1 1 2

1 δ1 + 1
ǫ1

2
ǫ1

2

2 2
ǫ1

(δ2 + 4
ǫ1

) − 4/ǫ21
(δ1+

1
ǫ1

)
1 − 4/ǫ1

(δ1+
1

ǫ1
)

2 1 − 4/ǫ1
(δ1+

1
ǫ1

)
−ǫ2 − 4

(δ1+
1

ǫ1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Using exact arithmetic, the uneliminated part simplifies to
[

δ2 + 4δ1

1+ǫ1δ1
1 − 4

1+ǫ1δ1

1 − 4
1+ǫ1δ1

−ǫ2 − 4ǫ1
1+ǫ1δ1

]

.

Here, the diagonal elements are small but not zero and the off-diagonal elements are

close to −3. But on a computer that stores numbers with finite precision, the com-

putation comes out quite differently when the ǫi’s and the δi’s are smaller than the

square root of the machine precision (i.e., about 10−8 for double-precision floating-

point numbers). In the elimination process, the parenthesized expressions in (20.7)

336 20. IMPLEMENTATION ISSUES

are evaluated before the other operations. Hence, in finite precision arithmetic, these

expressions produce

δ2 +
4

ǫ1
=

4

ǫ1
and δ1 +

1

ǫ1
=

1

ǫ1
,

and so (20.7) becomes

1 3 4 2

1

3

4

2

⎡

⎢

⎢

⎢

⎢

⎣

−ǫ1 1 2

1 1
ǫ1

2
ǫ1

2

2 2
ǫ1

0 −3

2 −3 −4ǫ1

⎤

⎥

⎥

⎥

⎥

⎦

,

which clearly presents a problem for the next step in the elimination process.

Now let’s consider what happens if the elimination process is applied directly to

B without permuting the rows/columns. Sparing the reader the tedious details, the end

result of the elimination is the following matrix:

(20.8)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−ǫ1 1 2

−ǫ2 2 1

1 2 δ1 + 1
ǫ1

+ 4
ǫ2

2
ǫ1

+ 2
ǫ2

2 1 2
ǫ1

+ 2
ǫ2

δ2 + 4
ǫ1

+ 1
ǫ2

− (2
ǫ1

+ 2
ǫ2

)2

(δ1+
1

ǫ1
+ 4

ǫ2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

As before, in finite precision arithmetic, certain small numbers get lost:

δ2 +
4

ǫ1
=

4

ǫ1
and δ1 +

1

ǫ1
=

1

ǫ1
.

Making these substitutions in (20.8), we see that the final matrix produced by the

elimination process using finite precision arithmetic is
⎡

⎢

⎢

⎢

⎢

⎣

−ǫ1 1 2

−ǫ2 2 1

1 2 1
ǫ1

+ 4
ǫ2

2
ǫ1

+ 2
ǫ2

2 1 2
ǫ1

+ 2
ǫ2

0

⎤

⎥

⎥

⎥

⎥

⎦

.

Just as before, the fact that small numbers got lost has resulted in a zero appearing

on the diagonal where a small but nonzero (in this case positive) number belongs.

However, the situation is fundamentally different this time. With the first ordering,

a −3 remained to be eliminated under the zero diagonal element, whereas with the

second ordering, this did not happen. Of course, it didn’t happen in this particular

example because the 0 appeared as the last pivot element, which has no elements below

it to be eliminated. But that is not the general reason why the second ordering does

3. PROBLEMS IN GENERAL FORM 337

not produce nonzeros under zero pivot elements. In general, a zero (which should be

a small positive) can appear anywhere in the lower-right block (relative to the original

quasidefinite partitioning). But once the elimination process gets to this block, the

remaining uneliminated part of the matrix is positive definite. Hence, the estimate in

(20.5) can be used to tell us that all the nonzeros below a zero diagonal are in fact

small themselves. A zero appearing on the diagonal only presents a problem if there

are nonzeros below it that need to be eliminated. If there are none, then the elimination

can simply proceed to the next pivot element (see Exercise 20.1).

Let’s summarize the situation. We showed in the last chapter that the possibility of

dense rows/columns makes it unattractive to work strictly with the normal equations.

Yet, although the quasidefinite reduced KKT system can be used, it is numerically

less stable. A compromise solution seems to be suggested. One could take a struc-

tured approach to the reordering heuristic. In the structured approach, one decides first

whether it seems better to begin pivoting with elements from the upper-left block or

from the lower-right block. Once this decision is made, one should pivot out all the

diagonal elements from this block before working on the other block, with the excep-

tion that pivots involving dense rows/columns be deferred to the end of the elimination

process. If no dense columns are identified, this strategy mimics the normal equations

approach. Indeed, after eliminating all the diagonal elements in the upper-left block,

the remaining uneliminated lower-right block contains exactly the matrix for the sys-

tem of dual normal equations. Similarly, had the initial choice been to pivot out all

the diagonal elements from the lower-right block, then the remaining uneliminated

upper-left block becomes the matrix for the system of primal normal equations.

With this structured approach, if no dense rows/columns are identified and de-

ferred, then the elimination process is numerically stable. If, on the other hand, some

dense rows/columns are deferred, then the factorization is less stable. But in practice,

this approach seems to work well. Of course, one could be more careful and monitor

the diagonal elements. If a diagonal element gets small (relative to the other unelim-

inated nonzeros in the same row/column), then one could flag it and then calculate a

new ordering in which such pivot elements are deferred to the end of the elimination

process.

3. Problems in General Form

In this section, we describe how to adapt the path-following algorithm to solving

problems presented in the following general form:

(20.9)

maximize cT x

subject to a ≤ Ax ≤ b

l ≤ x ≤ u.

338 20. IMPLEMENTATION ISSUES

As in Chapter 9, some of the data elements are allowed to take on infinite values.

However, let us consider first the case where all the components of a, b, l, and u are

finite. Infinities require special treatment, which shall be discussed shortly.

Following the derivation of the path-following method that we introduced in Chap-

ter 18, the first step is to introduce slack variables as appropriate to replace all inequal-

ity constraints with simple nonnegativity constraints. Hence, we rewrite the primal

problem (20.9) as follows:

maximize cT x

subject to Ax + f = b

−Ax + p = −a

x + t = u

−x + g = −l

f, p, t, g ≥ 0.

In Chapter 9, we showed that the dual problem is given by

minimize bT v − aT q + uT s − lT h

subject to AT (v − q) − (h − s) = c

v, q, s, h ≥ 0,

and the corresponding complementarity conditions are given by

fivi = 0 i = 1, 2, . . . ,m,

piqi = 0 i = 1, 2, . . . ,m,

tjsj = 0 j = 1, 2, . . . , n,

gjhj = 0 j = 1, 2, . . . , n.

The next step in the derivation is to introduce the primal–dual central path, which

we parametrize as usual by a positive real parameter μ. Indeed, for each μ > 0,

we define the associated central-path point in primal–dual space as the unique point

that simultaneously satisfies the conditions of primal feasibility, dual feasibility, and

3. PROBLEMS IN GENERAL FORM 339

μ-complementarity. Ignoring nonnegativity (which is enforced separately), these con-

ditions are

Ax + f = b

f + p = b − a

x + t = u

−x + g =−l

AT y + s − h = c

y + q − v = 0

FV e = μe

PQe = μe

TSe = μe

GHe = μe.

Note that we have replaced the primal feasibility condition, −Ax + p = −a, with the

equivalent condition that f +p = b−a, and we have introduced into the dual problem

new variables y defined by y = v − q. The reason for these changes is to put the

system of equations into a form in which A and AT appear as little as possible (so that

solving the system of equations for the step direction will be as efficient as possible).

The last four equations are the μ-complementarity conditions. As usual, each

upper case letter that appears on the left in these equations denotes the diagonal matrix

having the components of the corresponding lower-case vector on its diagonal. The

system is a nonlinear system of 5n + 5m equations in 5n + 5m unknowns. It has a

unique solution in the strict interior of the following subset of primal–dual space:

(20.10) {(x, f, p, t, g, y, v, q, s, h) : f, p, t, g, v, q, s, h ≥ 0}.
This fact can be seen by noting that these equations are the first-order optimality con-

ditions for an associated strictly convex barrier problem.

As μ tends to zero, the central path converges to the optimal solution to both the

primal and dual problems. The path-following algorithm is defined as an iterative pro-

cess that starts from a point in the strict interior of (20.10), estimates at each iteration

a value of μ representing a point on the central path that is in some sense closer to the

optimal solution than the current point, and then attempts to step toward this central-

path point, making sure that the new point remains in the strict interior of the the set

given in (20.10).

Suppose for the moment that we have already decided on the target value for

μ. Let (x, . . . , h) denote the current point in the strict interior of (20.10), and let

(x+∆x, . . . , h+∆h) denote the point on the central path corresponding to the target

340 20. IMPLEMENTATION ISSUES

value of μ. The defining equations for the point on the central path can be written as

A∆x + ∆f = b − Ax − f =: ρ

∆f + ∆p = b − a − f − p =: α

∆x + ∆t = u − x − t =: τ

−∆x + ∆g = −l + x − g =: ν

AT ∆y + ∆s − ∆h = c − AT y − s + h =: σ

∆y + ∆q − ∆v = −y − q + v =: β

FV −1∆v + ∆f = μV −1e − f − V −1∆V ∆f =: γf

QP−1∆p + ∆q = μP−1e − q − P−1∆P∆q =: γq

ST−1∆t + ∆s = μT−1e − s − T−1∆T∆s =: γs

HG−1∆g + ∆h = μG−1e − h − G−1∆G∆h =: γh,

where we have introduced notations ρ, . . . , γh as shorthands for the right-hand side ex-

pressions. This is almost a linear system for the direction vectors (∆x, . . . ,∆h). The

only nonlinearities appear on the right-hand sides of the complementarity equations

(i.e., in γf , . . . , γh). As we saw before, Newton’s method suggests that we simply

drop these nonlinear terms to obtain a linear system for the “delta” variables.

Clearly, the main computational burden is to solve the system shown above. It

is important to note that this is a large, sparse, indefinite, linear system. It is also

symmetric if one negates certain rows and rearranges rows and columns appropriately:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−FV −1 −I

I I

−I I

I I

A I

I −I AT

−I I I

I QP−1

I HG−1

I ST−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆v

∆s

∆h

∆q

∆y

∆x

∆f

∆p

∆g

∆t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−γf

τ

ν

α

ρ

σ

β

γq

γh

γs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Because this system is symmetric, we look for symmetric pivots to solve it. That

is, we choose our pivots only from the diagonal elements. It turns out that we can

eliminate ∆v, ∆p, ∆g, and ∆t using the nonzero diagonals −FV −1, QP−1, HG−1,

and ST−1, respectively, in any order without causing any nondiagonal fill-in. Indeed,

3. PROBLEMS IN GENERAL FORM 341

the equations for ∆v, ∆p, ∆g, and ∆t are

∆v = V F−1(γf − ∆f)

∆p = PQ−1(γq − ∆q)(20.11)

∆g = GH−1(γh − ∆h)

∆t = TS−1(γs − ∆s),

and after elimination from the system, we get
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−TS−1 I

−GH−1 −I

−PQ−1 I

A I

I −I AT

I I V F−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆s

∆h

∆q

∆y

∆x

∆f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

τ̂

ν̂

α̂

ρ

σ

β̂

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where again we have introduced abbreviated notations for the components of the right-

hand side:

τ̂ = τ − TS−1γs

ν̂ = ν − GH−1γh

α̂ = α − PQ−1γq

β̂ = β + V F−1γf .

Next we use the pivot elements −TS−1, −GH−1, and −PQ−1 to solve for ∆s,

∆h, and ∆q, respectively:

∆s = −ST−1(τ̂ − ∆x)

∆h = −HG−1(ν̂ + ∆x)(20.12)

∆q = −QP−1(α̂ − ∆f).

After eliminating these variables, the system simplifies to
⎡

⎢

⎢

⎣

A I

AT D

I E

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∆y

∆x

∆f

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

ρ

σ + ST−1τ̂ − HG−1ν̂

β̂ + QP−1α̂.

⎤

⎥

⎥

⎦

,

where

D = ST−1 + HG−1

and

E = V F−1 + QP−1.

342 20. IMPLEMENTATION ISSUES

Finally, we use the pivot element E to solve for ∆f ,

(20.13) ∆f = E−1(β̂ + QP−1α̂ − ∆y),

which brings us to the reduced KKT equations:

(20.14)

[

−E−1 A

AT D

][

∆y

∆x

]

=

[

ρ − E−1(β̂ + QP−1α̂)

σ + ST−1τ̂ − HG−1ν̂

]

.

Up to this point, none of the eliminations have produced any off-diagonal fill-

in. Also, the matrix for system given in (20.14) is a symmetric quasidefinite matrix.

Hence, the techniques given in Section 19.2 for solving such systems can be used. The

algorithm is summarized in 20.1.

Exercises

20.1 The matrix

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 −2

1 −1

−2 2

−1 2 −1

−1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is not positive definite but is positive semidefinite. Find a factorization B =
LDLT , where L is lower triangular with ones on the diagonal and D is a

diagonal matrix with nonnegative diagonal elements. If such a factorization

exists for every symmetric positive semidefinite matrix, explain why. If not,

give a counterexample.

20.2 Show that the sum of a positive definite matrix and a positive semidefinite

matrix is positive definite.

20.3 Permute the rows/columns of the matrix B given in (20.6) so that the diag-

onal elements from B appear in the order 2, 3, 4, 5, 1. Compute an LDLT -

factorization of this matrix.

20.4 Show that, if B is symmetric and positive semidefinite, then |bij | ≤
√

biibjj

for all i, j.

Notes

Most implementations of interior-point methods assume the problem to be formu-

lated with equality constraints. In this formulation, Lustig et al. (1994) give a good

overview of the performance of interior-point algorithms compared with the simplex

method.

NOTES 343

initialize (x, f, p, t, g, y, v, q, s, h) such that f, p, t, g, v, q, s, h > 0

while (not optimal) {

ρ = b − Ax − w

σ = c − AT y + z

γ = fT v + pT q + tT s + gT h

µ = δ
γ

n + m
γf = µV −1e − f

γq = µP−1e − q

γs = µT−1e − s

γh = µG−1e − h

τ̂ = u − x − t − TS−1γs

ν̂ = −l + x − g − GH−1γh

α̂ = b − a − f − p − PQ−1γq

β̂ = −y − q + v + V F−1γf

D = ST−1 + HG−1

E = V F−1 + QP−1

solve:

[

−E−1 A

AT D

] [

∆y

∆x

]

=

[

ρ − E−1(β̂ + QP−1α̂)

σ + ST−1τ̂ − HG−1ν̂

]

compute: ∆f using (20.13), ∆s, ∆h, ∆q using (20.12),

and ∆v, ∆p, ∆g, ∆t using (20.11)

θ = r

(

maxij

{

−
∆fj

fj

,−
∆pi

pi

,−
∆ti

ti

,−
∆gj

gj

,

−
∆vj

vj

,−
∆qi

qi

,−
∆si

si

,−
∆hj

hj

})

−1

∧ 1

x ← x + θ∆x, y ← y + θ∆y, f ← f + θ∆f, v ← v + θ∆v

p ← p + θ∆p, q ← q + θ∆q, t ← t + θ∆t, s ← s + θ∆s

g ← g + θ∆g, h ← h + θ∆h

}

FIGURE 20.1. The path-following method—general form.

344 20. IMPLEMENTATION ISSUES

The suggestion that it is better to solve equations in the KKT form instead of

normal form was offered independently by a number of researchers (Gill et al. 1992,

Turner 1991, Fourer & Mehrotra 1991, Vanderbei & Carpenter 1993).

The advantages of the primal–dual symmetric formulation were first reported in

Vanderbei (1994). The basic properties of quasidefinite matrices were first given in

Vanderbei (1995).

CHAPTER 21

The Affine-Scaling Method

In the previous chapter, we showed that the step direction for the path-following

method can be decomposed into a linear combination of three directions: a direction

toward optimality, a direction toward feasibility, and a direction toward centrality. It

turns out that these directions, or minor variants of them, arise in all interior-point

methods.

Historically, one of the first interior-point methods to be invented, analyzed, and

implemented was a two-phase method in which Phase I uses only the feasibility di-

rection and Phase II uses only the optimality direction. This method is called affine

scaling. While it is no longer considered the method of choice for practical implemen-

tations, it remains important because its derivation provides valuable insight into the

nature of the three basic directions mentioned above.

In this chapter, we shall explain the affine-scaling principle and use it to derive

the step toward optimality and step toward feasibility directions. As always, our main

interest lies in problems presented in standard form. But for affine scaling, it is easier

to start by considering problems in equality form. Hence, we begin by assuming that

the linear programming problem is given as

(21.1)

maximize cT x

subject to Ax = b

x≥ 0.

We shall begin with the Phase II algorithm. Hence, we assume that we have a feasible

initial starting point, x0. For the affine-scaling method, it is important that this starting

point lie in the strict interior of the feasible set. That is, we assume that

Ax0 = b and x0 > 0.

1. The Steepest Ascent Direction

Since the affine-scaling principle is fundamentally geometric, it is useful to keep

a picture in mind. A typical picture for m = 1 and n = 3 is shown in Figure 21.1. The

ultimate goal is, of course, to move from x0 to the optimal solution x∗. However, the

short-term goal is to move from x0 in some direction ∆x that improves the objective

function. Such a direction is called an ascent direction. You probably recall from

345

346 21. THE AFFINE-SCALING METHOD

x
1

x
2

x
3

x0

level sets of cTx

Feasible region

x*

c

Pc

FIGURE 21.1. A typical feasible region when the problem is in

equality form, m = 1, and n = 3. The lines drawn on the feasible

set represent level sets of the objective function, and x0 represents

the starting point for the affine-scaling method.

elementary calculus that the best, i.e., steepest, ascent direction is given by the gradient

of the objective function. However, as we see in Figure 21.1, there is no reason a priori

for the gradient to “lie in” the feasible region. Hence, the steepest ascent direction

will almost surely cause a move to infeasible points. This is also clear algebraically.

Indeed,

A(x0 + ∆x) = Ax0 + A∆x = b + Ac �= b

(unless Ac = 0 which is not likely).

To see how to find a better direction, let us first review in what sense the gradient

is the steepest ascent direction. The steepest ascent direction is defined to be the direc-

tion that gives the greatest increase in the objective function subject to the constraint

that the displacement vector has unit length. That is, the steepest ascent direction is

the solution to the following optimization problem:

(21.2)
maximize cT (x0 + ∆x)

subject to ‖∆x‖2 = 1.

2. THE PROJECTED GRADIENT DIRECTION 347

We can solve this problem using Lagrange multipliers. Indeed, if we let λ denote the

Lagrange multiplier for the constraint, the problem becomes

max
∆x,λ

cT (x0 + ∆x) − λ(∆xT ∆x − 1).

Differentiating with respect to ∆x and setting the derivative to zero, we get

c − 2λ∆x = 0,

which implies that

∆x =
1

2λ
c ∝ c.

Then differentiating the Lagrangian with respect to λ and setting that derivative to

zero, we see that

‖∆x‖2 − 1 = 0,

which implies that

‖∆x‖ = ±1.

Hence, the steepest ascent direction points in the direction of either c or its negative.

Since the negative is easily seen not to be an ascent direction at all, it follows that the

steepest ascent direction points in the direction of c.

2. The Projected Gradient Direction

The problem with the steepest ascent direction is that it fails to preserve feasibility.

That is, it fails to preserve the equality constraints Ax = b. To remedy this problem,

let’s add these constraints to (21.2) so that we get the following optimization problem:

maximize cT (x0 + ∆x)

subject to ‖∆x‖2 = 1

A(x0 + ∆x) = b.

Again, the method of Lagrange multipliers is the appropriate tool. As before, let λ
denote the Lagrange multiplier for the norm constraint, and now introduce a vector y
containing the Lagrange multipliers for the equality constraints. The resulting uncon-

strained optimization problem is

max
∆x,λ,y

cT (x0 + ∆x) − λ(∆xT ∆x − 1) − yT (A(x0 + ∆x) − b).

Differentiating this Lagrangian with respect to ∆x, λ, and y and setting these deriva-

tives to zero, we get

c − 2λ∆x − AT y = 0

‖∆x‖2 − 1 = 0

A(x0 + ∆x) − b = 0.

The second equation tells us that the length of ∆x is one. Since we are interested

in the direction of ∆x and are not concerned about its length, we ignore this second

348 21. THE AFFINE-SCALING METHOD

equation. The first equation tells us that ∆x is proportional to c − AT y, and again,

since we aren’t concerned about lengths, we put λ = 1/2 so that the first equation

reduces to

(21.3) ∆x = c − AT y.

Since Ax0 = b, the third equation says that

A∆x = 0.

Substituting (21.3) into this equation, we get

Ac − AAT y = 0,

which, assuming that AAT has full rank (as it should), can be solved for y to get

y = (AAT)−1Ac.

Now, substituting this expression into (21.3), we see that

∆x = c − AT (AAT)−1Ac.

It is convenient to let P be the matrix defined by

P = I − AT (AAT)−1A.

With this definition, ∆x can be expressed succinctly as

∆x = Pc.

We claim that P is the matrix that maps any vector, such as c, to its orthogonal

projection onto the null space of A. To justify this claim, we first need to define some

of the terms we’ve used. The null space of A is defined as {d ∈ R
n : Ad = 0}. We

shall denote the null space of A by N(A). A vector c̃ is the orthogonal projection of

c onto N(A) if it lies in the null space,

c̃ ∈ N(A),

and if the difference between it and c is orthogonal to every other vector in N(A).
That is,

dT (c − c̃) = 0, for all d ∈ N(A).

Hence, to show that Pc is the orthogonal projection of c onto the null space of A, we

simply check these two conditions. Checking the first, we see that

APc = Ac − AAT (AAT)−1Ac,

which clearly vanishes. To check the second condition, let d be an arbitrary vector in

the null space, and compute

dT (c − Pc) = dT AT (AAT)−1Ac,

which also vanishes, since dT AT = (Ad)T = 0. The orthogonal projection Pc is

shown in Figure 21.1.

3. THE PROJECTED GRADIENT DIRECTION WITH SCALING 349

3. The Projected Gradient Direction with Scaling

The orthogonal projection of the gradient gives a good step direction in the sense

that among all feasibility-preserving directions, it gives the largest rate of increase

of cT x per unit step length. This property is nice as long as the current point x0 is

well inside the feasible set. But if it is close to a “wall,” the overall increase in one

step will be small, since even though the rate is large the actual step length will be

small, yielding a small overall increase. In fact, the increase will become arbitrarily

small as the point x0 is taken closer and closer to a “wall.” Hence, to get a reasonable

algorithm, we need to find a formula for computing step directions that steers away

from walls as they get close.

The affine-scaling algorithm achieves this affect as follows: scale the variables

in the problem so that the current feasible solution is far from the walls, compute the

step direction as the projected gradient in the scaled problem, and then translate this

direction back into the original system. The idea of scaling seems too simple to do

any good, and this is true if one tries the most naive scaling—just multiplying every

variable by one large number (such as the reciprocal of the smallest component of x0).

Such a uniform scaling does not change the picture in any way. For example, Figure

21.1, which doesn’t show specific scales on the coordinate axes, would not change at

all. Hence, whether distance is measured in miles or in feet, the property of being

close to a wall remains unchanged.

Fortunately, the scaling we have in mind for the affine-scaling algorithm is just

slightly fancier. Indeed, the idea is to scale each variable in such a manner that its

initial value gets mapped to 1. That is, for each j = 1, 2, . . . , n, we introduce new

variables given by

ξj =
xj

x0
j

.

Of course, this change of variable is trivial to undo:

xj = x0
jξj .

In matrix notation, the change of variables can be written as

(21.4) x = X0ξ.

Note that we are employing our usual convention of letting an upper-case letter stand

for a diagonal matrix whose diagonal elements come from the components of the

vector denoted by the corresponding lower-case letter. Clearly, under this change of

variables, the initial solution x0 gets mapped to the vector e of all ones, which is at

least one unit away from each wall. Figure 21.2 shows an example of this scaling

transformation. Note that, unlike the trivial scaling mentioned above, this scaling

changes the way the level sets of the objective cut across the feasible region.

350 21. THE AFFINE-SCALING METHOD

∆x

x*

Pc

x
1

x
3

ξ
1

x
2

ξ
2

ξ
3

x0

e

∆ξ

ξ=(X0)−1x

FIGURE 21.2. The effect of affine scaling on projected gradients.

Making the change of variables given by (21.4) in (21.1), we find that the problem

in the scaled space is

maximize cT X0ξ

subject to AX0ξ = b

ξ ≥ 0.

Clearly, it is a linear programming problem in standard form with constraint matrix

AX0 and vector of objective function coefficients (cT X0)T = X0c. Letting ∆ξ
denote the projected gradient of the objective function in this scaled problem, we see

that

∆ξ =
(

I − X0AT (AX02
AT)−1AX0

)

X0c.

Ignore step length worries for the moment, and consider moving from the current

solution ξ0 = e to the following new point in the scaled problem:

ξ1 = ξ0 + ∆ξ.

3. THE PROJECTED GRADIENT DIRECTION WITH SCALING 351

Then transforming this new point back into the original unscaled variables, we get a

new point x1 given by

x1 = X0ξ1 = X0(e + ∆ξ) = x0 + X0∆ξ.

Of course, the difference between x1 and x0 is the step direction in the original vari-

ables. Denoting this difference by ∆x, we see that

∆x = X0
(

I − X0AT (AX02
AT)−1AX0

)

X0c

=
(

D − DAT (ADAT)−1AD
)

c,(21.5)

where

D = X02
.

The expression for ∆x given by (21.5) is called the affine-scaling step direction. Of

course, to construct the affine-scaling algorithm out of this formula for a step direc-

tion, one simply needs to choose step lengths in such a manner as to ensure “strict”

feasibility of each iterate.

We end this section by illustrating some of the calculations on the following trivial

example:

maximize 2x1 + 3x2 + 2x3

subject to x1 + x2 + 2x3 = 3

x1, x2, x3 ≥ 0.

This is precisely the problem shown in Figure 21.2. As in the figure, let us assume that

x0 =

⎡

⎢

⎢

⎣

1
3
2
1
4

⎤

⎥

⎥

⎦

.

352 21. THE AFFINE-SCALING METHOD

For later comparison, we compute the projected gradient (without scaling):

Pc = c − AT (AAT)−1Ac

=

⎡

⎢

⎢

⎣

2

3

2

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎣

1

1

2

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

[

1 1 2
]

⎡

⎢

⎢

⎣

1

1

2

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

−1

[

1 1 2
]

⎡

⎢

⎢

⎣

2

3

2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

2

3

2

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎣

1

1

2

⎤

⎥

⎥

⎦

9

6

=

⎡

⎢

⎢

⎣

1
2
3
2

−1

⎤

⎥

⎥

⎦

.

Now, in the scaled coordinate system, the gradient of the objective function is

X0c =

⎡

⎢

⎢

⎣

1
3
2

1
4

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

2

3

2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

2
9
2
1
2

⎤

⎥

⎥

⎦

and the constraint matrix is given by

AX0 =
[

1 1 2
]

⎡

⎢

⎢

⎣

1
3
2

1
4

⎤

⎥

⎥

⎦

=
[

1 3
2

1
2

]

.

Using these, we compute ∆ξ as follows:

∆ξ =

⎡

⎢

⎢

⎣

2
9
2
1
2

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎣

1
3
2
1
2

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

[

1 3
2

1
2

]

⎡

⎢

⎢

⎣

1
3
2
1
2

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

−1

[

1 3
2

1
2

]

⎡

⎢

⎢

⎣

2
9
2
1
2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

2
9
2
1
2

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎣

1
3
2
1
2

⎤

⎥

⎥

⎦

2

7
9

=

⎡

⎢

⎢

⎣

− 4
7
9
14

− 11
14

⎤

⎥

⎥

⎦

.

4. CONVERGENCE 353

Finally, ∆x is obtained by the inverse scaling:

∆x = X0∆ξ

=

⎡

⎢

⎢

⎣

1
3
2

1
4

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

− 4
7
9
14

− 11
14

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

− 4
7
27
28

− 11
56

⎤

⎥

⎥

⎦

.

In the next section, we discuss the convergence properties of the affine-scaling algo-

rithm.

4. Convergence

In the previous section, we derived the affine-scaling step direction ∆x. To make

an algorithm, we need to introduce an associated step length. If the step were chosen

so that the new point were to lie exactly on the boundary of the feasible region, then

the multiplier for ∆x, which as usual we denote by θ, would be given by

θ =

(

max
j

{

−∆xj

xj

})−1

.

But as always, we need to shorten the step by introducing a parameter 0 < r < 1 and

setting

θ = r

(

max
j

{

−∆xj

xj

})−1

.

With this choice of θ, the iterations of the affine-scaling algorithm are defined by

x ← x + θ∆x.

It turns out that the analysis of the affine-scaling algorithm is more delicate than

the analysis of the path-following algorithm that we discussed in Chapter 18. Hence,

we simply state without proof the main results.

THEOREM 21.1.

(a) If the problem and its dual are nondegenerate, then for every r < 1, the

sequence generated by the algorithm converges to the optimal solution.

(b) For r ≤ 2/3, the sequence generated by the algorithm converges to an

optimal solution (regardless of degeneracy).

(c) There exists an example and an associated r < 1 for which the algorithm

converges to a nonoptimal solution.

354 21. THE AFFINE-SCALING METHOD

Pc

min

max

∆x

FIGURE 21.3. A few continuous paths of the affine-scaling algo-

rithm. At every point, the continuous path is tangent to the step

direction ∆x.

There is only one example currently known for which the affine-scaling algorithm

fails by converging to a nonoptimal solution. For this example, the failure occurs only

for all r > 0.995. It is not known whether there are examples of the algorithm failing

for all r > 2/3, although such a worst-case example seems likely to exist.

Convergence is only the first question. Once convergence is established, the

follow-up question is: how fast? For example, given a fixed tolerance, does the affine-

scaling algorithm produce a solution within this tolerance of optimality in a number of

iterations that is bounded by a polynomial in n? Some variants of the path-following

method have this desirable property, so one would hope that the affine-scaling method

would share it. Unfortunately, while no one has written down a detailed example yet,

there is strong evidence that the affine-scaling method does not have this property.

To explain the evidence, consider letting the step lengths in the affine-scaling al-

gorithm be extremely short, even infinitesimally short. In this case, the algorithm no

longer generates a sequence of points moving toward the optimal solution but rather

makes a smooth curve connecting the starting point to the optimal solution. If we

let the starting point vary, then we get a family of curves filling out the entire inte-

rior of the feasible region and connecting each interior point to the optimal solution.

Figure 21.3 shows an example of a feasible region and some of the continuous paths.

Studying the continuous paths gives information about the discrete step algorithm,

since, for each point x, the step direction ∆x at x is tangent to the continuous path

through x. The important property that the continuous paths illustrate is that as one

gets close to a face of the feasible polytope, the continuous path becomes tangent to

the face (see Exercise 21.1 for an algebraic verification of this statement). This tan-

gency holds for faces of all dimensions. In particular, it is true for edges. Hence,

if one starts close to an edge, then one gets a step that looks a lot like a step of the

5. FEASIBILITY DIRECTION 355

simplex method. Therefore, it is felt that if one were to take a problem that is bad

for the simplex method, such as the Klee–Minty problem, and start the affine-scaling

algorithm in just the right place, then it would mimic the steps of the simplex method

and therefore take 2n iterations to get close to the optimal solution. This is the idea,

but as noted above, no one has carried out the calculations.

5. Feasibility Direction

To derive a Phase I procedure for the affine-scaling algorithm, we consider a start-

ing point x0 that has strictly positive components but does not necessarily satisfy the

equality constraints Ax = b. We then let

ρ = b − Ax0

denote the vector of infeasibilities. With these definitions under our belt, we introduce

the following auxiliary problem involving one extra variable, which we shall denote

by x0 (not to be confused with the initial solution vector x0):

maximize −x0

subject to Ax + x0ρ = b

x ≥ 0, x0 ≥ 0.

Clearly, the vector
[

x0

1

]

is a strictly positive feasible solution to the auxiliary problem. Hence, we can apply the

affine-scaling algorithm to the auxiliary problem. If the optimal solution has x∗
0 > 0,

then the original problem is infeasible. If, on the other hand, the optimal solution has

x∗
0 = 0, then the optimal solution to the auxiliary problem provides a feasible starting

solution to the original problem (it may not be a strictly interior feasible solution, but

we shall ignore such technicalities in the present discussion).

Let us now derive a specific formula for the step direction vector in the auxiliary

problem. The vector of objective coefficients is
[

0

−1

]

,

the constraint matrix is
[

A ρ
]

,

and the “current” solution can be denoted as
[

x

x0

]

.

356 21. THE AFFINE-SCALING METHOD

Substituting these three objects appropriately into (21.5), we get
[

∆x

∆x0

]

=

([

X2

x2
0

]

−
[

X2

x2
0

][

AT

ρT

]

(

[

A ρ
]

[

X2

x2
0

][

AT

ρT

])−1

[

A ρ
]

[

X2

x2
0

])[

0

−1

]

.

Exploiting heavily the fact that all the coefficients in the objective vector are zero

except for the last, we can write a fairly simple expression for ∆x:

∆x = X2AT
(

AX2AT + x2
0ρρT

)−1
ρx0.

The final simplification comes from applying the Sherman–Morrison–Woodbury for-

mula (see Exercise 19.1) to the inverted expression above to discover that the vector

(AX2AT + x2
0ρρT)−1ρ points in the same direction as (AX2AT)−1ρ. That is, there

is a positive scalar α such that

(AX2AT + x2
0ρρT)−1ρ = α(AX2AT)−1ρ

(see Exercise 21.3). Since vector lengths are irrelevant, we can define the affine-

scaling feasibility step direction as

(21.6) ∆x = X2AT
(

AX2AT
)−1

ρ.

6. Problems in Standard Form

We return now to problems in standard form:

maximize cT x

subject to Ax≤ b

x≥ 0.

Introducing slack variables w, we can write the problem equivalently as

(21.7)

maximize

[

c

0

]T [

x

w

]

subject to
[

A I
]

[

x

w

]

= b

[

x

w

]

≥ 0.

EXERCISES 357

Writing down the affine-scaling step direction for this problem, we get
[

∆x

∆w

]

=

([

X2

W 2

]

−
[

X2

W 2

][

AT

I

]

(

[

A I
]

[

X2

W 2

][

AT

I

])−1

[

A I
]

[

X2

W 2

])[

c

0

]

,

which simplifies to
[

∆x

∆w

]

=

[

X2c

0

]

−
[

X2AT

W 2

]

(

AX2AT + W 2
)−1

AX2c.

Therefore, in particular

∆x = X2c − X2AT (AX2AT + W 2)−1AX2c.

Note that this formula for ∆x matches the formula for ∆xOPT given in Section 19.3,

except that the diagonal matrix X2 replaces XZ−1 and W 2 replaces WY −1. These

diagonal matrices are referred to as scaling matrices. Hence, the formula for ∆x given

above is often called the affine-scaling step direction with primal scaling, whereas

∆xOPT is referred to as the affine-scaling step direction with primal–dual scaling.

Similar connections can be established between the Phase I step direction derived

in this section and ∆xFEAS from Section 19.3. Indeed, from (21.6), we see that the

feasibility step direction for (21.7) is
[

∆x

∆w

]

=

[

X2

W 2

][

AT

I

](

[

A I
]

[

X2

W 2

][

AT

I

])−1

(

b −
[

A I
]

[

x

w

])

.

Again, looking just at the formula for ∆x, we see that

∆x = X2AT (AX2AT + W 2)−1(b − Ax − w),

which coincides with ∆xFEAS except that X2 replaces XZ−1 and W 2 replaces WY −1.

Exercises

21.1 Step direction becomes tangent to each facet. Let ∆x denote the affine-

scaling step direction given by

∆x =
(

X2 − X2AT (AX2AT)−1AX2
)

c.

358 21. THE AFFINE-SCALING METHOD

This step direction is clearly a function of x. Fix j. Show that the limit as

xj tends to zero of ∆x is a vector whose jth component vanishes. That is,

lim
xj→0

∆xj = 0.

21.2 Dual Estimates. Consider the following function, defined in the interior of

the polytope of feasible solutions {x : Ax = b, x > 0} by

y(x) = (AX2AT)−1AX2c.

Consider a partition of the columns of A =
[

B N
]

into a basic part B and a

nonbasic part N , and, as we did in our study of the simplex method, partition

the n-vectors analogously. Show that

lim
xN→0

y(x) = (BT)−1cB.

21.3 Let A be an m×n matrix having rank m, and let ρ be an arbitrary m-vector.

Use the identity proved in Exercise 19.1 to show that there exists a scalar α
such that

(AAT + ρρT)−1ρ = α(AAT)−1ρ.

Hint: Be mindful of which matrices are invertible.

21.4 (So-called) Dual Affine-Scaling Method. Compute the affine-scaling step-

direction vector ∆x for problems in the following form:

maximize cT x

subject to Ax ≤ b.

Notes

The affine-scaling algorithm was first suggested by Dikin (1967). He subse-

quently published a convergence analysis in Dikin (1974). Dikin’s work went largely

unnoticed for many years until several researchers independently rediscovered the

affine-scaling algorithm as a simple variant of Karmarkar’s algorithm (Karmarkar

1984). Of these independent rediscoveries, only two papers offered a convergence

analysis: one by Barnes (1986) and the other by Vanderbei et al. (1986). It is inter-

esting to note that Karmarkar himself was one of the independent rediscoverers, but

he mistakenly believed that the algorithm enjoyed the same convergence properties as

his algorithm (i.e., that it would get within any fixed tolerance of optimality within a

specific number of iterations bounded by a polynomial in n).

Theorem 21.1(a) was proved by Vanderbei et al. (1986). Part (b) of the theorem

was proved by Tsuchiya & Muramatsu (1992) who also show that the result is sharp.

A sharper sharpness result can be found in Hall & Vanderbei (1993). Part (c) of the

Theorem was established by Mascarenhas (1997).

NOTES 359

The first derivation of the affine-scaling feasibility step direction was given by

Vanderbei (1989). The simple derivation given in Section 21.5 is due to M. Meketon.

A recent book by Saigal (1995) contains an extensive treatment of affine-scaling

methods.

CHAPTER 22

The Homogeneous Self-Dual Method

In Chapter 18, we described and analyzed an interior-point method called the

path-following algorithm. This algorithm is essentially what one implements in prac-

tice but as we saw in the section on convergence analysis, it is not easy (and perhaps

not possible) to give a complete proof that the method converges to an optimal solu-

tion. If convergence were completely established, the question would still remain as

to how fast is the convergence. In this chapter, we shall present a similar algorithm for

which a complete convergence analysis can be given.

1. From Standard Form to Self-Dual Form

As always, we are interested in a linear programming problem given in standard

form

(22.1)

maximize cT x

subject to Ax≤ b

x≥ 0

and its dual

(22.2)

minimize bT y

subject to AT y ≥ c

y ≥ 0.

As we shall show, these two problems can be solved by solving the following problem,

which essentially combines the primal and dual problems into one problem:

(22.3)

maximize 0

subject to − AT y + cφ ≤ 0,

Ax − bφ ≤ 0,

−cT x + bT y ≤ 0,

x, y, φ ≥ 0.

Note that, beyond combining the primal and dual into one big problem, one new vari-

able (φ) and one new constraint have been added. Hence, the total number of variables

361

362 22. THE HOMOGENEOUS SELF-DUAL METHOD

in (22.3) is n + m + 1 and the total number of constraints is n + m + 1. Furthermore,

the objective function and the right-hand sides all vanish. Problems with such right-

hand sides are called homogeneous. Also, the constraint matrix for problem (22.3) is

skew symmetric. That is, it is equal to the negative of its transpose. Homogeneous

linear programming problems having a skew symmetric constraint matrix are called

self-dual.

In the next section, we shall give an algorithm for the solution of homogeneous

self-dual linear programming problems. But first, let’s note that a solution to (22.3) in

which φ > 0 can be converted into solutions for (22.1) and (22.2). Indeed, let (x̄, ȳ, φ̄)
be an optimal solution to problem (22.3). Suppose that φ̄ > 0. (The algorithm given

in the next section will guarantee that this property is satisfied whenever (22.1) and

(22.2) have optimal solutions1). Put

x∗ = x̄/φ̄ and y∗ = ȳ/φ̄.

Then the constraints in (22.3) say that

− AT y∗ + c ≤ 0,

Ax∗ − b ≤ 0,

−cT x∗ + bT y∗ ≤ 0.

Also, x∗ and y∗ are both nonnegative. Therefore, x∗ is feasible for (22.1) and y∗ is

feasible for (22.2). From the weak duality theorem together with the third inequality

above, we get

cT x∗ = bT y∗.

Therefore, x∗ is optimal for the primal problem (22.1) and y∗ is optimal for the dual

problem (22.2). As we will see later, the case where φ̄ = 0 corresponds to infeasibility

of either the primal or the dual problem (or both).

2. Homogeneous Self-Dual Problems

Consider a linear programming problem in standard form

maximize cT x

subject to Ax≤ b

x≥ 0

and its dual

minimize bT y

subject to AT y ≥ c

y ≥ 0.

1The astute reader might notice that setting all variables to 0 produces an optimal solution.

2. HOMOGENEOUS SELF-DUAL PROBLEMS 363

Such a linear programming problem is called self-dual if m = n, A = −AT , and

b = −c. The reason for the name is that the dual of such a problem is the same as

the primal. To see this, rewrite the constraints as less-thans and then use the defining

properties for self-duality to get

AT y ≥ c ⇔ −AT y ≤ −c ⇔ Ay ≤ b.

Similarly, writing the objective function as a maximization, we get

min bT y = −max−bT y = −max cT y.

Hence, ignoring the (irrelevant) fact that the dual records the negative of the objective

function, the primal and the dual are seen to be the same. A linear programming

problem in which the right-hand side vanishes is called a homogeneous problem. It

follows that if a problem is homogeneous and self-dual, then its objective function

must vanish too.

For the remainder of this section, we assume that the problem under consideration

is homogeneous and self-dual. Since the case m = n = 1 is trivial (A = 0 in this

case), we assume throughout this section that n ≥ 2. Also, since the dual is the same

problem as the primal, we prefer to use the letter z for the primal slacks (instead of the

usual w). Hence, the primal can be written as

(22.4)

maximize 0

subject to Ax + z = 0

x, z ≥ 0.

The following theorem establishes some of the important properties of homoge-

neous self-dual problems.

THEOREM 22.1. For homogeneous self-dual problem (22.4), the following state-

ments hold:

(1) It has feasible solutions and every feasible solution is optimal.

(2) The set of feasible solutions has empty interior. In fact, if (x, z) is feasible,

then zT x = 0.

PROOF. (1) The trivial solution, (x, z) = (0, 0), is feasible. Since the objective

function is zero, every feasible solution is optimal.

(2) Suppose that (x, z) is feasible for (22.4). The fact that A is skew symmetric

implies that ξT Aξ = 0 for every vector ξ (see Exercise 16.1). In particular, xT Ax = 0.

Therefore, multiplying Ax+z = 0 on the left by xT , we get 0 = xT Ax+xT z = xT z.

This completes the proof. �

Part (2) of the previous theorem tells us that homogeneous self-dual problems do

not have central paths.

364 22. THE HOMOGENEOUS SELF-DUAL METHOD

2.1. Step Directions. As usual, the interior-point method we shall derive will

have the property that the intermediate solutions it produces will be infeasible. Hence,

let

ρ(x, z) = Ax + z

denote the infeasibility of a solution (x, z). Also, let

μ(x, z) =
1

n
xT z.

The number μ(x, z) measures the degree of noncomplementarity between x and z.

When x and z are clear from context, we shall simply write ρ for ρ(x, z) and μ for

μ(x, z).
Step directions (∆x,∆z) are chosen to reduce the infeasibility and noncomple-

mentarity of the current solution by a given factor δ, 0 ≤ δ ≤ 1. Hence, we consider

the nonlinear system that would make the infeasibility and noncomplementarity of

(x + ∆x, z + ∆z) be δ times that of (x, z):

A(x + ∆x) + (z + ∆z) = δ(Ax + z),

(X + ∆X)(Z + ∆Z)e = δμ(x, z)e.

As usual, this system is nonlinear in the “delta” variables. Dropping the nonlinear

term (appearing only in the second equation), we get the following linear system of

equations for the step directions:

A∆x + ∆z =−(1 − δ)ρ(x, z),(22.5)

Z∆x + X∆z = δμ(x, z)e − XZe.(22.6)

With these step directions, we pick a step length θ and step to a new point:

x̄ = x + θ∆x, z̄ = z + θ∆z.

We denote the new ρ-vector by ρ̄ and the new μ-value by μ̄:

ρ̄ = ρ(x̄, z̄) and μ̄ = μ(x̄, z̄).

The following theorem establishes some of the properties of these step directions.

THEOREM 22.2. The following relations hold:

(1) ∆zT ∆x = 0.

(2) ρ̄ = (1 − θ + θδ)ρ.

(3) μ̄ = (1 − θ + θδ)μ.

(4) X̄Z̄e − μ̄e = (1 − θ)(XZe − μe) + θ2∆X∆Ze.

PROOF. (1) We start by multiplying both sides of (22.5) on the left by ∆xT :

(22.7) ∆xT A∆x + ∆xT ∆z = −(1 − δ)∆xT ρ.

The skew symmetry of A (i.e., A = −AT) implies that ∆xT A∆x = 0 (see Exercise

16.1). Hence, the left-hand side of (22.7) simplifies nicely:

∆xT A∆x + ∆xT ∆z = ∆xT ∆z.

2. HOMOGENEOUS SELF-DUAL PROBLEMS 365

Substituting the definition of ρ into the right-hand side of (22.7), we get

−(1 − δ)∆xT ρ = −(1 − δ)∆xT (Ax + z).

Next, we use the skew symmetry of A to rewrite ∆xT Ax as follows:

∆xT Ax = (Ax)T ∆x = xT AT ∆x = −xT A∆x.

Assembling what we have so far, we see that

(22.8) ∆xT ∆z = −(1 − δ)(−xT A∆x + zT ∆x).

To proceed, we use (22.5) to replace A∆x with −(1 − δ)ρ − ∆z. Therefore,

− xT A∆x + zT ∆x = xT ((1 − δ)ρ + ∆z) + zT ∆x

= (1 − δ)xT ρ + xT ∆z + zT ∆x.(22.9)

Again using the definition of ρ and the skew symmetry of A, we see that

xT ρ = xT (Ax + z) = xT z.

The last two terms in (22.9) can be simplified by multiplying both sides of (22.6) on

the left by eT and then using the definition of μ to see that

zT ∆x + xT ∆z = δμn − xT z = (δ − 1)xT z..

Making these substitutions in (22.9), we get

−xT A∆x + zT ∆x = (1 − δ)xT z + (δ − 1)xT z = 0.

Hence, from (22.8), we see that ∆xT ∆z vanishes as claimed.

(2) From the definitions of x̄ and z̄, we see that

ρ̄ = A(x + θ∆x) + (z + θ∆z)

= Ax + z + θ(A∆x + ∆z)

= (1 − θ + θδ)ρ.

(3) From the definitions of x̄ and z̄, we see that

x̄T z̄ = (x + θ∆x)T (z + θ∆z)

= xT z + θ(zT ∆x + xT ∆z) + θ2∆zT ∆x.

From part (1) and (22.6), we then get

x̄T z̄ = xT z + θ(δμn − xT z).

Therefore,

μ̄ =
1

n
x̄T z̄ = (1 − θ)μ + θδμ.

(4) From the definitions of x̄ and z̄ together with part (3), we see that

X̄Z̄e − μ̄e = (X + θ∆X)(Z + θ∆Z)e − (1 − θ + θδ)μe

= XZe + θ(Z∆x + X∆z) + θ2∆X∆Ze − (1 − θ + θδ)μe.

366 22. THE HOMOGENEOUS SELF-DUAL METHOD

Substituting (22.6) into the second term on the right and recollecting terms, we get the

desired expression. �

2.2. Predictor-Corrector Algorithm. With the preliminaries behind us, we are

now ready to describe an algorithm. We shall be more conservative than we were in

Chapter 18 and define the algorithm in such a way that it keeps the components of

XZe close to each other. Indeed, for each 0 ≤ β ≤ 1, let

N (β) = {(x, z) > 0 : ‖XZe − μ(x, z)e‖ ≤ βμ(x, z)} .

Shortly, we will only deal with N (1/4) and N (1/2) but first let us note generally that

β < β′ implies that N (β) ⊂ N (β′). Hence, as a function of β, the N (β)’s form an

increasing family of sets. Also, N (0) is precisely the set of points (x, z) for which

XZe has all equal components.

The algorithm alternates between two types of steps. On the first iteration and

subsequently on every other iteration, the algorithm performs a predictor step. Before

a predictor step, one assumes that

(x, z) ∈ N (1/4).

Then step directions are computed using δ = 0 (i.e., with no centering) and the step

length is calculated so as not to go outside of N (1/2):

(22.10) θ = max{t : (x + t∆x, z + t∆z) ∈ N (1/2)}.

On the even iterations, the algorithm performs a corrector step. Before a corrector

step, one assumes that

(x, z) ∈ N (1/2)

(as is guaranteed by the predictor step’s step length). Then step directions are com-

puted using δ = 1 (i.e., pure centering) and the step length parameter θ is set to 1.

The following theorem shows that the result of each step satisfies the precondition

for the next step of the algorithm and that μ decreases on predictor steps while it stays

the same on corrector steps.

THEOREM 22.3. The following statements are true:

(1) After a predictor step, (x̄, z̄) ∈ N (1/2) and μ̄ = (1 − θ)μ.

(2) After a corrector step, (x̄, z̄) ∈ N (1/4) and μ̄ = μ.

PROOF OF PART (1). The formula for μ̄ follows from part (3) of Theorem 22.2

by putting δ = 0. The fact that (x̄, z̄) ∈ N (1/2) is an immediate consequence of the

choice of θ. �

2. HOMOGENEOUS SELF-DUAL PROBLEMS 367

Before proving part (2) of the theorem, we need to introduce some notation and

prove a few technical results. Let

p = X−1/2Z1/2∆x,

q = X1/2Z−1/2∆z,

r = p + q

= X−1/2Z−1/2(Z∆x + X∆z)

= X−1/2Z−1/2(δμe − XZe).(22.11)

The technical results are summarized in the following lemma.

LEMMA 22.4. The following statements are true:

(1) ‖PQe‖ ≤ 1
2‖r‖2.

(2) If δ = 0, then ‖r‖2 = nμ.

(3) If δ = 1 and (x, z) ∈ N (β), then ‖r‖2 ≤ β2μ/(1 − β).

PROOF. (1) First note that pT q = ∆xT ∆z = 0 by Theorem 22.2(1). Hence,

‖r‖2 = ‖p + q‖2 = pT p + 2pT q + qT q =
∑

j

(p2
j + q2

j).

Therefore,

‖r‖4 =

⎛

⎝

∑

j

(p2
j + q2

j)

⎞

⎠

2

≥
∑

j

(p2
j + q2

j)2

=
∑

j

(

(p2
j − q2

j)2 + 4p2
jq

2
j

)

≥ 4
∑

j

p2
jq

2
j

= 4‖PQe‖2.

Taking square roots yields the desired inequality.

(2) Putting δ = 0 in (22.11), we see that r = −X1/2Z1/2e. Therefore, ‖r‖2 =
zT x = nμ.

(3) Suppose that (x, z) ∈ N (β). Whenever the norm of a vector is smaller than

some number, the magnitude of each component of the vector must also be smaller

than this number. Hence, |xjzj − μ| ≤ βμ. It is easy to see that this inequality is

equivalent to

(22.12) (1 − β)μ ≤ xjzj ≤ (1 + β)μ.

368 22. THE HOMOGENEOUS SELF-DUAL METHOD

Now putting δ = 1 in (22.11), we get

‖r‖2 =
∑

j

(xjzj − μ)2

xjzj
.

Therefore, using the lower bound given in (22.12), we get the following upper bound:

‖r‖2 ≤ 1

(1 − β)μ

∑

j

(xjzj − μ)2.

Finally, since (x, z) ∈ N (β), we see that the above sum is bounded by β2μ2. This

gives the claimed inequality. �

PROOF OF THEOREM 22.3(2). Since θ = 1 in a corrector step, it follows from

Theorem 22.2(4) that X̄Z̄e − μ̄e = ∆X∆Ze = PQe. Therefore, parts (1) and (3) of

Lemma 22.4 imply that

‖X̄Z̄e − μ̄e‖= ‖PQe‖

≤ 1

2
‖r‖2

≤ 1

2

(1/2)2

1 − 1/2
μ

=
1

4
μ.(22.13)

We also need to show that (x̄, z̄) > 0. For 0 ≤ t ≤ 1, let

x(t) = x + t∆x, z(t) = z + t∆z, and μ(t) = μ(x(t), z(t)).

Then from part (4) of Theorem 22.2, we have

X(t)Z(t)e − μ(t)e = (1 − t)(XZe − μe) + t2∆X∆Ze.

The right-hand side is the sum of two vectors. Since the length of the sum of two

vectors is less than the sum of the lengths (i.e., by the triangle inequality), it follows

that

(22.14) ‖X(t)Z(t)e − μ(t)e‖ ≤ (1 − t)‖XZe − μe‖ + t2‖∆X∆Ze‖
(note that we’ve pulled the scalars out of the norms). Now, since (x, z) ∈ N (1/2),
we have ‖XZe−μe‖ ≤ μ/2. Furthermore, from (22.13) we have that ‖∆X∆Ze‖ =
‖PQe‖ ≤ μ/4. Replacing the norms in (22.14) with these upper bounds, we get the

following bound:

(22.15) ‖X(t)Z(t)e − μ(t)e‖ ≤ (1 − t)
μ

2
+ t2

μ

4
≤ μ

2

(the second inequality follows from the obvious facts that t2 ≤ t and μ/4 ≤ μ/2).

Now, consider a specific component j. It follows from (22.15) that

xj(t)zj(t) − μ(t) ≥ −μ

2
.

2. HOMOGENEOUS SELF-DUAL PROBLEMS 369

Since δ = 1, part (3) of Theorem 22.2 tells us that μ(t) = μ for all t. Therefore the

previous inequality can be written as

(22.16) xj(t)zj(t) ≥
μ

2
> 0.

This inequality then implies that xj(t) > 0 and zj(t) > 0 for all 0 ≤ t ≤ 1 (since

they could only become negative by passing through 0, which is ruled out by (22.16)).

Putting t = 1, we get that x̄j > 0 and z̄j > 0. Since the component j was arbitrary, it

follows that (x̄, z̄) > 0. Therefore (x̄, z̄) ∈ N (1/4). �

2.3. Convergence Analysis. The previous theorem showed that the predictor-

corrector algorithm is well defined. The next theorem gives us a lower bound on the

progress made by each predictor step.

THEOREM 22.5. In each predictor step, θ ≥ 1
2
√

n
.

PROOF. Using the same notation as in the proof of Theorem 22.3, we have the

inequality:

‖X(t)Z(t)e − μ(t)e‖ ≤ (1 − t)‖XZe − μe‖(22.17)

+t2‖∆X∆Ze‖.
This time, however, (x, z) ∈ N (1/4) and δ = 0. Hence,

‖XZe − μe‖ ≤ μ

4

and, from parts (1) and (2) of Lemma 22.4,

‖∆X∆Ze‖ = ‖PQe‖ ≤ 1

2
‖r‖2 =

1

2
nμ.

Using these two bounds in (22.17), we get the following bound:

‖X(t)Z(t)e − μ(t)e‖ ≤ (1 − t)
μ

4
+ t2

nμ

2
.

Now, fix a t ≤ (2
√

n)−1. For such a t, we have t2n/2 ≤ 1/8. Therefore, using the

fact that t ≤ 1/2 for n ≥ 2, we get

‖X(t)Z(t)e − μ(t)e‖ ≤ (1 − t)
μ

4
+

μ

8

≤ (1 − t)
μ

4
+ (1 − t)

μ

4

= (1 − t)
μ

2

=
μ(t)

2
.

Hence, as in the previous theorem, (x(t), z(t)) ∈ N (1/2). Since t was an arbitrary

number less than (2
√

n)−1, it follows that θ ≥ (2
√

n)−1. �

370 22. THE HOMOGENEOUS SELF-DUAL METHOD

Let (x(k), z(k)) denote the solution after the kth iteration and let

ρ(k) = ρ(x(k), z(k)) and μ(k) = μ(x(k), z(k)).

The algorithm starts with x(0) = z(0) = e. Therefore, μ(0) = 1. Our aim is to

show that μ(k) and ρ(k) tend to zero as k tends to infinity. The previous theorem

together with Theorem 22.3 implies that, after an even number of iterations, say 2k,

the following inequality holds:

μ(2k) ≤
(

1 − 1

2
√

n

)k

.

Also, since the corrector steps don’t change the value of μ, it follows that

μ(2k−1) = μ(2k).

From these two statements, we see that

lim
k→∞

μ(k) = 0.

Now, consider ρ(k). It follows from parts (2) and (3) of Theorem 22.2 that the

reduction in infeasibility tracks the reduction in noncomplementarity. Hence,

ρ(k) = μ(k)ρ(0).

Therefore, the fact that μ(k) tends to zero implies the same for ρ(k).

In fact, more can be said:

THEOREM 22.6. The limits x∗ = limk→∞ x(k) and z∗ = limk→∞ z(k) exist and

(x∗, z∗) is optimal. Furthermore, the vectors x∗ and z∗ are strictly complementary to

each other. That is, for each j, x∗
jz

∗
j = 0 but either x∗

j > 0 or z∗j > 0.

The proof is fairly technical, and so instead of proving it, we prove the following

theorem, which captures the main idea.

THEOREM 22.7. There exist positive constants c1, c2, . . . , cn such that (x, z) ∈
N (β) implies that xj + zj ≥ cj > 0 for each j = 1, 2, . . . , n.

PROOF. Put μ = μ(x, z) and ρ = ρ(x, z) = μρ(0). Let (x∗, z∗) be a strictly

complementary feasible solution (the existence of which is guaranteed by Theorem

10.6). We begin by studying the expression zT x∗ + xT z∗. Since Ax∗ + z∗ = 0, we

have that

zT x∗ + xT z∗ = zT x∗ − xT Ax∗

= (−AT x + z)T x∗.

By the skew-symmetry of A, we see that −AT x + z = Ax + z = ρ. And, since

ρ = μρ(0), we get

(22.18) zT x∗ + xT z∗ = μρ(0)T
x∗.

2. HOMOGENEOUS SELF-DUAL PROBLEMS 371

The factor ρ(0)T
x∗ is a constant (i.e., it does not depend on x or z). Let us denote it

by M . Since all the terms in the two products on the left in (22.18) are nonnegative, it

follows that each one is bounded by the right-hand side. So if we focus on a particular

index j, we get the following bounds:

(22.19) zjx
∗
j ≤ μM and xjz

∗
j ≤ μM.

Now, we use the assumption that (x, z) ∈ N (β) to see that

xjzj ≥ (1 − β)μ.

In other words, μ ≤ xjzj/(1 − β), and so the inequalities in (22.19) become

zjx
∗
j ≤ M

1 − β
zjxj and xjz

∗
j ≤ M

1 − β
xjzj .

Since xj and zj are strictly positive, we can divide by them (and the constants) to get

1 − β

M
x∗

j ≤ xj and
1 − β

M
z∗j ≤ zj .

Putting

cj =
1 − β

M
(x∗

j + z∗j),

we get the desired lower bound on xj + zj . �

2.4. Complexity of the Predictor-Corrector Algorithm. Of course, in practice

we don’t run an infinite number of iterations. Instead, we set a priori a threshold and

stop when μ(k) falls below it. The threshold is usually denoted by 2−L where L is

some number. Typically, we want the threshold to be about 10−8, which corresponds

to L ≈ 26.

As we saw before, after an even number of iterations, say 2k, the μ-value is

bounded by the following inequality:

μ(2k) ≤
(

1 − 1

2
√

n

)k

.

Hence, it suffices to pick a k big enough to have
(

1 − 1

2
√

n

)k

≤ 2−L.

Taking logarithms of both sides and solving for k, we see that any

k ≥ L

− log(1 − 1
2
√

n
)

will do. Since − log(1 − x) ≥ x, we get

2L
√

n ≥ L

− log(1 − 1
2
√

n
)
.

372 22. THE HOMOGENEOUS SELF-DUAL METHOD

Therefore, any k ≥ 2L
√

n will do. In particular, k = 2L
√

n rounded up to the nearest

integer will suffice. Since k represents half the number of iterations, it follows that it

will take at most 4L
√

n iterations for the μ-value to fall below the threshold of 2−L.

This bound implies that the method is a polynomial algorithm, since it says that any

desired precision can be obtained in a number of iterations that is bounded above by a

polynomial in n (here, 4L
√

n is not itself a polynomial but is bounded above by say a

linear function in n for n ≥ 2).

2.5. The KKT System. We end this section on homogeneous self-dual problems

by briefly discussing the KKT system (22.5)–(22.6). Solving this system of equations

is the most time consuming step within each iteration of the predictor-corrector al-

gorithm. There are several ways in which one can organize the computation. The

approach that most parallels what we have done before is first to solve (22.6) for ∆z,

∆z = X−1(−Z∆x + δμe − XZe)(22.20)

=−X−1Z∆x + δμX−1e − z,

and then to eliminate it from (22.5) to get the following reduced KKT system:

(A − X−1Z)∆x = −(1 − δ)ρ + z − δμX−1e.

In the next section, we apply the algorithm developed in this section to the homoge-

neous self-dual problem given by (22.3).

3. Back to Standard Form

We return now to the setup in Section 1. Let z, w, and ψ denote the slack variables

for the constraints in problem (22.3):

(22.21)

maximize 0

subject to − AT y + cφ + z = 0,

Ax − bφ + w = 0,

−cT x + bT y + ψ = 0,

x, y, φ, z, w, ψ ≥ 0.

We say that a feasible solution (x̄, ȳ, φ̄, z̄, w̄, ψ̄) is strictly complementary if x̄j + z̄j >
0 for all j, ȳi + w̄i > 0 for all i, and φ̄ + ψ̄ > 0. Theorem 10.6 ensures the existence

of such a solution (why?).

The following theorem summarizes and extends the motivating discussion given

in Section 1.

THEOREM 22.8. Suppose that (x̄, ȳ, φ̄, z̄, w̄, ψ̄) is a strictly complementary fea-

sible (hence, optimal) solution to (22.21).

(1) If φ̄ > 0, then x∗ = x̄/φ̄ is optimal for the primal problem (22.1) and

y∗ = ȳ/φ̄ is optimal for its dual (22.2).

3. BACK TO STANDARD FORM 373

(2) If φ̄ = 0, then either cT x̄ > 0 or bT ȳ < 0.

(a) If cT x̄ > 0, then the dual problem is infeasible.

(b) If bT ȳ < 0, then the primal problem is infeasible.

PROOF. Part (1) was proved in Section 1. For part (2), suppose that φ̄ = 0. By

strict complementarity, ψ̄ > 0. Hence, x̄ and ȳ satisfy

AT ȳ ≥ 0,

Ax̄≤ 0,(22.22)

bT ȳ < cT x̄.

From the last inequality, we see that it is impossible to have bT ȳ ≥ 0 and cT x̄ ≤ 0.

That is, either cT x̄ > 0 or bT ȳ < 0 (or both). Suppose, without loss of generality, that

cT x̄ > 0. We will prove by contradiction that the dual problem is infeasible. To this

end, suppose that there exists a vector y0 ≥ 0 such that

(22.23) AT y0 ≥ c.

Since x̄ ≥ 0, we can multiply by it without changing the direction of an inequality. So

multiplying (22.23) on the left by x̄T , we get

x̄T AT y0 ≥ x̄T c.

Now, the right-hand side is strictly positive. But inequality (22.22) together with the

nonnegativity of y0 implies that the left-hand side is nonpositive:

x̄T AT y0 = (Ax̄)T y0 ≤ 0.

This is a contradiction and therefore the dual must be infeasible. �

3.1. The Reduced KKT System. The right-hand side in the reduced KKT sys-

tem involves the vector of infeasibilities. We partition this vector into three parts as

follows:
⎡

⎢

⎢

⎣

σ

ρ

γ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−AT c

A −b

−cT bT

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x

y

φ

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

z

w

ψ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−AT y + cφ + z

Ax − bφ + w

−cT x + bT y + φ

⎤

⎥

⎥

⎦

.

The reduced KKT system for (22.3) is given by

(22.24)

⎡

⎢

⎢

⎣

−X−1Z −AT c

A −Y −1W −b

−cT bT −ψ/φ

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∆x

∆y

∆φ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

σ̂

ρ̂

γ̂

⎤

⎥

⎥

⎦

,

where
⎡

⎢

⎢

⎣

σ̂

ρ̂

γ̂

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−(1 − δ)σ + z − δμX−1e

−(1 − δ)ρ + w − δμY −1e

−(1 − δ)γ + ψ − δμ/φ

⎤

⎥

⎥

⎦

.

374 22. THE HOMOGENEOUS SELF-DUAL METHOD

This system is not symmetric. One could use a general purpose equation solver to

solve it, but its special structure would be mostly ignored by such a solver. To exploit

the structure, we solve this system in two stages. We start by using the first two

equations to solve simultaneously for ∆x and ∆y in terms of ∆φ:
[

∆x

∆y

]

=

[

−X−1Z −AT

A −Y −1W

]−1 ([

σ̂

ρ̂

]

−
[

c

−b

]

∆φ

)

.

Introducing abbreviating notations, we can write

(22.25)

[

∆x

∆y

]

=

[

fx

fy

]

−
[

gx

gy

]

∆φ,

where the vectors

f =

[

fx

fy

]

and g =

[

gx

gy

]

are found by solving the following two systems of equations:
[

−X−1Z −AT

A −Y −1W

][

fx

fy

]

=

[

σ̂

ρ̂

]

and
[

−X−1Z −AT

A −Y −1W

][

gx

gy

]

=

[

c

−b

]

.

Then we use (22.25) to eliminate ∆x and ∆y from the last equation in (22.24):

[

−cT bT
]

([

fx

fy

]

−
[

gx

gy

]

∆φ

)

− ψ

φ
∆φ = γ̂.

We then solve for ∆φ:

∆φ =
cT fx − bT fy + γ̂

cT gx − bT gy − ψ/φ
.

Given ∆φ, (22.25) determines ∆x and ∆y. Once these vectors are known, (22.20) is

used to compute the step directions for the slack variables:

∆z =−X−1Z∆x + δμX−1e − z

∆w =−Y −1W∆y + δμY −1e − w

∆ψ =−ψ

φ
∆φ + δμ/φ − ψ.

We now see that the reduced KKT system can be solved by solving two systems of

equations for f and g. These two systems both involve the same matrix. Furthermore,

these systems can be formulated as quasidefinite systems by negating the first equation

4. SIMPLEX METHOD VS INTERIOR-POINT METHODS 375

and then reordering the equations appropriately. For example, the quasidefinite system

for g is
[

−Y −1W A

AT X−1Z

][

gy

gx

]

=

[

−b

−c

]

.

Therefore, the techniques developed in Chapter 20 can be used to solve these systems

of equations. In particular, to solve the two systems, the quasidefinite matrix only

needs to be factored once. Then the two systems can be solved by doing two forward

and two backward substitutions. Since factorization requires more computation than

forward and backward substitutions, one would expect to be able to solve these two

systems in much less time than if they were each being solved from scratch. In fact,

it is often the case that one can solve two systems involving the same quasidefinite

matrix in little more time than is required to solve just one such system.

The full homogeneous self-dual method is summarized in Figure 22.1.

4. Simplex Method vs Interior-Point Methods

Finally, we compare the performance of interior-point methods with the simplex

method. For this comparison, we have chosen the homogeneous self-dual method

described in this chapter and the self-dual simplex method (see Figure 7.1). In the

interest of efficiency certain liberties have been taken with the implementations. For

example, in the homogeneous self-dual method, (18.6) is used to compute “long” step

lengths instead of the more conservative “short” step lengths in (22.10). The code

fragments implementing each of these two algorithms are shown in Appendix A.

A standard collection of test problems, the so-called NETLIB suite, were used in

the comparison. Problems in this collection are formulated with bounds and ranges:

minimize cT x

subject to b ≤ Ax ≤ b + r

l ≤ x ≤ u.

However, to keep the algorithms as simple as possible, they were implemented only for

problems in our standard inequality form. Therefore, the problems from the NETLIB

suite were converted to standard form as follows:

− maximize −cT x − cT l

subject to −Ax ≤ −b + Al

Ax ≤ b + r − Al

x ≤ u − l

x ≥ 0.

376 22. THE HOMOGENEOUS SELF-DUAL METHOD

initialize

(x, y, φ, z, w, ψ) = (e, e, 1, e, e, 1)

while (not optimal) {

µ = (zT x + wT y + ψφ)/(n + m + 1)

δ =

{

0, on odd iterations

1, on even iterations

ρ̂ = −(1 − δ)(Ax − bφ + w) + w − δµY −1e

σ̂ = −(1 − δ)(−AT y + cφ + z) + z − δµX−1e

γ̂ = −(1 − δ)(bT y − cT x + ψ) + ψ − δµ/φ

solve the two (n + m) × (n + m) quasidefinite systems:
[

−Y −1W A

AT X−1Z

] [

fy

fx

]

=

[

ρ̂

−σ̂

]

and
[

−Y −1W A

AT X−1Z

] [

gy

gx

]

=

[

−b

−c

]

∆φ =
cT fx − bT fy + γ̂

cT gx − bT gy − ψ/φ

[

∆x

∆y

]

=

[

fx

fy

]

−

[

gx

gy

]

∆φ

∆z = −X−1Z∆x + δµX−1e − z

∆w = −Y −1W∆y + δµY −1e − w

∆ψ = −ψ

φ
∆φ + δµ/φ − ψ

θ =

{

max{t : (x(t), . . . , ψ(t)) ∈ N (1/2)}, on odd iterations

1, on even iterations
x ← x + θ∆x, z ← z + θ∆z

y ← y + θ∆y, w ← w + θ∆w

φ ← φ + θ∆φ, ψ ← ψ + θ∆ψ

}

FIGURE 22.1. The Homogeneous Self-Dual Method.

Of course, this transformation is invalid when any of the lower bounds are infinite.

Therefore, such problems have been dropped in our experiment. Also, this trans-

formation introduces significant computational inefficiency but, since it was applied

equally to the problems presented to both methods, the comparison remains valid.

4. SIMPLEX METHOD VS INTERIOR-POINT METHODS 377

The results of our experiment are shown in Table 22.1. The most obvious obser-

vation is that the simplex method is generally faster and that, for many problems, the

slower method is not more than 3 or 4 times slower. For problems in this suite, these

results are consistent with results reported in the literature. However, it must be noted

that the problems in this suite range only from small to medium in size. The largest

problem, fit2p, has about 3000 constraints and about 14000 variables. By today’s

standards, this problem is considered of medium size. For larger problems, reports

in the literature indicate that interior point methods tend to be superior although the

results are very much dependent on the specific class of problems. In the remaining

chapters of this book we shall consider various extensions of the linear programming

model. We shall see that the simplex method is particularly well suited for solving

integer programming problems studied in Chapter 23 whereas interior point methods

are more appropriate for extensions into the quadratic and convex programming prob-

lems studied in Chapters 24 and 25. These considerations are often more important

than speed. There are, of course, exceptions. For example, the interior-point method

is about 900 times faster than the simplex method on problem fit2p. Such a difference

cannot be ignored.

When comparing algorithms it is always tempting to look for ways to improve

the slower method. There are obvious enhancements to the interior-point method used

in this implementation. For example, one could use the same LDLT factorization to

compute both the predictor and the corrector directions. When implemented properly,

this enhancement alone can almost halve the times for this method.

Of course, the winning algorithm can also be improved (but, significant overall

improvements such as the one just mentioned for the interior-point method are not at

all obvious). Looking at the table, we note that the interior-point method solved both

fit2p and fit2d in roughly the same amount of time. These two problems are duals of

each other and hence any algorithm that treats the primal and the dual symmetrically

should take about the same time to solve them. Now, look at the simplex method’s

performance on these two problems. There is a factor of 36 difference between them.

The reason is that, even though we have religiously adhered to primal-dual symmetry

in our development of the simplex method, an asymmetry did creep in. To see it, note

that the basic matrix is always a square submatrix of
[

A I
]

. That is, it is an m × m

matrix. If we apply the algorithm to the dual problem, then the basis matrix is n × n.

Hence, even though the sequence of iterates generated should be identical with the two

problems, the computations involved in each iteration can be very different if m and

n are not about the same. This is the case for the fit2p/fit2d pair. Of course, one can

easily think up schemes to overcome this difficulty. But even if the performance of the

simplex method on fit2p can be brought in line with its performance on fit2d, it will

still be about 25 times slower than the interior-point on this problem – a difference

that remains significant.

378 22. THE HOMOGENEOUS SELF-DUAL METHOD

Name Time Name Time

Simplex Interior Simplex Interior

Method Point Method Point

25fv47 2m55.70s 3m14.82s maros 1m0.87s 3m19.43s

80bau3b 7m59.57s 2m34.84s nesm 1m40.78s 6m21.28s

adlittle 0m0.26s 0m0.47s pilot87 * *

afiro 0m0.03s 0m0.11s pilotnov * 4m15.31s

agg 0m1.09s 0m4.59s pilots * 32m48.15s

agg2 0m1.64s 0m21.42s recipe 0m0.21s 0m1.04s

agg3 0m1.72s 0m26.52s sc105 0m0.28s 0m0.37s

bandm 0m15.87s 0m9.01s sc205 0m1.30s 0m0.84s

beaconfd 0m0.67s 0m6.42s sc50a 0m0.09s 0m0.17s

blend 0m0.40s 0m0.56s sc50b 0m0.12s 0m0.15s

bnl1 0m38.38s 0m46.09s scagr25 0m12.93s 0m4.44s

bnl2 3m54.52s 10m19.04s scagr7 0m1.16s 0m1.05s

boeing1 0m5.56s 0m9.14s scfxm1 0m4.44s 0m7.80s

boeing2 0m0.80s 0m1.72s scfxm2 0m14.33s 0m18.84s

bore3d 0m1.17s 0m3.97s scfxm3 0m28.92s 0m28.92s

brandy 0m5.33s 0m8.44s scorpion 0m3.38s 0m2.64s

czprob 0m50.14s 0m41.77s scrs8 0m7.15s 0m9.53s

d2q06c * 1h11m1.93s scsd1 0m0.86s 0m3.88s

d6cube 2m46.71s 13m44.52s scsd6 0m2.89s 0m9.31s

degen2 0m17.28s 0m17.02s scsd8 0m28.87s 0m16.82s

degen3 5m55.52s 3m36.73s sctap1 0m2.98s 0m3.08s

dfl001 8h55m33.05s ** sctap2 0m7.41s 0m12.03s

e226 0m4.76s 0m6.65s sctap3 0m11.70s 0m17.18s

etamacro 0m17.94s 0m43.40s seba 0m27.25s 0m11.90s

fffff800 0m10.07s 1m9.15s share1b 0m2.07s 0m10.90s

finnis 0m4.76s 0m6.17s share2b 0m0.47s 0m0.71s

fit1d 0m18.15s 0m11.63s shell 0m16.12s 0m29.45s

fit1p 7m10.86s 0m16.47s ship04l 0m3.82s 0m13.60s

fit2d 1h3m14.37s 4m27.66s ship04s 0m3.48s 0m10.81s

fit2p 36h31m31.80s 2m35.67s ship08l 0m17.83s 0m39.06s

forplan 0m3.99s * ship08s 0m8.85s 0m19.64s

ganges 0m44.27s 0m34.89s ship12l 0m26.55s 1m8.62s

gfrdpnc 0m11.51s 0m8.46s ship12s 0m16.75s 0m30.33s

greenbea 22m45.49s 43m4.32s sierra 0m10.88s 0m42.89s

grow15 0m8.55s 0m58.26s standata 0m0.57s 0m6.60s

grow22 0m11.79s 2m0.53s standmps 0m2.41s 0m13.44s

grow7 0m3.61s 0m13.57s stocfor1 0m0.22s 0m0.92s

israel 0m1.83s 0m2.66s stocfor2 0m45.15s 0m40.43s

kb2 0m0.15s 0m0.34s wood1p 0m14.15s 7m18.47s

lotfi 0m0.81s 0m3.36s woodw 1m48.14s 8m53.92s

maros-r7 * 1h31m12.06s

TABLE 22.1. Comparison between the self-dual simplex method

and the homogeneous self-dual interior-point method. (*) denotes

numerical difficulties. (**) denotes insufficient memory.

EXERCISES 379

Exercises

22.1 When n = 1, the set N (β) is a subset of R
2. Graph it.

22.2 Suppose there is an algorithm for which one can prove that

μ(k) ≤
(

1 − a

f(n)

)k

,

for every k ≥ 1, where f(n) denotes a specific function of n, such as f(n) =
n2, and a is a constant. In terms of a and f and the “precision” L, give a

(tight) upper bound on the number of iterations that would be sufficient to

guarantee that

μ(k) ≤ 2−L.

22.3 In Section 3 of Chapter 20, we extended the primal-dual path-following

method to treat problems in general form. Extend the homogeneous self-

dual method in the same way.

22.4 Long-step variant. Let

M(β) = {(x, z) : min XZe ≥ (1 − β)μ(x, z)}.
(The notation min XZe denotes the scalar that is the minimum of all the

components of the vector XZe. Throughout this problem, given any vector

v, the notation min v (max v) will denote the minimum (maximum) of the

components of v.) Fix 1
2 < β < 1 (say β = 0.95). A long-step variant of

the homogeneous self-dual method starts with an initial (x, z) ∈ M(β) and

in every iteration uses

δ = 2(1 − β)

and

θ = max{t : (x + t∆x, z + t∆z) ∈ M(β)}.
The goal of this exercise is to analyze the complexity of this algorithm by

completing the following steps.

(a) Show that N (β) ⊂ M(β) ⊂ M(1) = {(x, z) > 0}.

(b) Show that max(−PQe) ≤ ‖r‖2/4. Hint: Start by writing

pjqj ≥
∑

i:piqi<0

piqi

and then use the facts that pT q = 0, pi + qi = ri, and that for any two

real numbers a and b, (a + b)2 ≥ 4ab (prove this).

(c) Show that if (x, z) ∈ M(β), then ‖r‖2 ≤ nμ. Hint: Use (22.11)

to write ‖r‖2 =
∑

j(xjzj − δμ)2/xjzj . Expand the numerator, use

the definitions of μ and δ to simplify, and then use the assumption that

(x, z) ∈ M(β) to take care of the remaining denominator.

380 22. THE HOMOGENEOUS SELF-DUAL METHOD

(d) Show that if (x, z) ∈ M(β), then

θ ≥ min{1,− βδμ

min PQe
} ≥ 4βδ

n
.

Hint: Using the same notation as in the proof of Theorem 22.3, fix

t ≤ min{1,−βδμ/min PQe}, write

xj(t)zj(t) − μ(t) = (1 − t)(xjzj − μ) + t2∆xj∆zj ,

and then replace the right-hand side by a lower bound that is indepen-

dent of j. From there, follow your nose until you get the first inequality.

The second inequality follows from parts (b) and (c).

(e) As usual letting μ(k) denote the μ value associated with the solution on

the kth iteration of the algorithm, show that

μ(k) ≤
(

1 − 4βδ

n
(1 − δ)

)k

.

(f) Give an upper bound on the number of iterations required to get μ(k) ≤
2−L.

(g) Show that θ can be computed by solving n (univariate) quadratic equa-

tions.

(h) A robust implementation of a quadratic equation solver uses the for-

mula

x =

⎧

⎨

⎩

−b−
√

b2−4ac
2a , b ≥ 0,

2c
−b+

√
b2−4ac

, b < 0,

for one of the two roots to ax2 + bx + c = 0 (a similar formula is

used for the other one). Show that the two expressions on the right are

mathematically equal and suggest a reason to prefer one over the other

in the particular cases indicated.

Notes

The first study of homogeneous self-dual problems appeared in Tucker (1956).

This chapter is based on the papers Mizuno et al. (1993), Ye et al. (1994), and Xu

et al. (1993). The step length formula (22.10) forces the algorithm studied in this

chapter to take much shorter steps than those in Chapter 18. In general, algorithms

that are based on steps that confine the iterates to N (β) are called short-step methods.

A long-step variant of the algorithm can be obtained by enlarging the set N (β). Such

a variant is the subject of Exercise 22.4. For this method, a worst case analysis shows

that it takes on the order of n steps to achieve a given level of precision. Xu et al.

(1993) describes an efficient implementation of the long-step variant.

The predictor–corrector method is a standard technique used in the numerical so-

lution of ordinary differential equations. Mehrotra (1992) (see also Mehrotra (1989))

NOTES 381

was the first to apply this technique in the context of interior-point methods, although

the related notion of forming power series approximations was suggested earlier by

N.K. Karmarkar and is described in Adler et al. (1989).

CHAPTER 23

Integer Programming

Many real-world problems could be modeled as linear programs except that some

or all of the variables are constrained to be integers. Such problems are called inte-

ger programming problems. One might think that these problems wouldn’t be much

harder than linear programming problems. For example, we saw in Chapter 14 that for

network flow problems with integer data, the simplex method automatically produces

integer solutions. But that was just luck. In general, one can’t expect to get integer

solutions; in fact, as we shall see in this chapter, integer programming problems turn

out to be generally much harder to crack than linear ones.

There are many important real-world problems that can be formulated as integer

programming problems. The subject is so important that several monographs are de-

voted entirely to it. In this chapter, we shall just present a few favorite applications

that can be modeled as integer programming problems and then we will discuss one

technique for solving problems in this class, called branch-and-bound.

1. Scheduling Problems

There are many problems that can be classified as scheduling problems. We shall

consider just two related problems of this type: the equipment scheduling and crew

scheduling problems faced by large airlines. Airlines determine how to route their

planes as follows. First, a number of specific flight legs are defined based on market

demand. A leg is by definition one flight taking off from somewhere at some time

and landing somewhere else (hopefully). For example, a leg could be a flight from

New York directly to Chicago departing at 7:30 A.M. Another might be a flight from

Chicago to San Francisco departing at 1:00 P.M. The important point is that these legs

are defined by market demand, and it is therefore not clear a priori how to put these

legs together in such a way that the available aircraft can cover all of them. That is,

for each airplane, the airline must put together a route that it will fly. A route, by

definition, consists of a sequence of flight legs for which the destination of one leg is

the origin of the next (and, of course, the final destination must be the origin of the

first leg, forming a closed loop).

The airline scheduling problems are generally tackled in two stages. First, reason-

able routes are identified that meet various regulatory and temporal constraints (you

can’t leave somewhere before you’ve arrived there—time also must be reserved for

385

386 23. INTEGER PROGRAMMING

dropping off and taking on passengers). This route-identification problem is by no

means trivial, but it isn’t our main interest here, so we shall simply assume that a col-

lection of reasonable routes has already been identified. Given the potential routes,

the second stage is to select a subset of them with the property that each leg is covered

by exactly one route. If the collection of potential routes is sufficiently rich, we would

expect there to be several feasible solutions. Therefore, as always, our goal is to pick

an optimal one, which in this case we define as one that minimizes the total cost. To

formulate this problem as an integer program, let

xj =

{

1 if route j is selected,

0 otherwise,

aij =

{

1 if leg i is part of route j,

0 otherwise,

and

cj = cost of using route j.

With these notations, the equipment scheduling problem is to

minimize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj = 1 i = 1, 2, . . . ,m,

xj ∈ {0, 1} j = 1, 2, . . . , n.

This model is often called a set-partitioning problem, since the set of legs gets divided,

or partitioned, among the various routes.

The flight crews do not necessarily follow the same aircraft around a route. The

main reason is that the constraints that apply to flight crews differ from those for the

aircraft (for example, flight crews need to sleep occasionally). Hence, the problem has

a different set of potential routes. Also, it is sometimes reasonable to allow crews to

ride as passengers on some legs with the aim of getting in position for a subsequent

flight. With these changes, the crew scheduling problem is

minimize

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≥ 1 i = 1, 2, . . . ,m,

xj ∈ {0, 1} j = 1, 2, . . . , n.

This model is often referred to as a set-covering problem, since the crews are assigned

so as to cover each leg.

2. THE TRAVELING SALESMAN PROBLEM 387

0

1

2

3

4

5

6

FIGURE 23.1. A feasible tour in a seven-city traveling salesman problem.

2. The Traveling Salesman Problem

Consider a salesman who needs to visit each of n cities, which we shall enumerate

as 0, 1, . . . , n − 1. His goal is to start from his home city, 0, and make a tour visiting

each of the remaining cities once and only once and then returning to his home. We

assume that the “distance” between each pair of cities, cij , is known (distance does

not necessarily have to be distance—it could be travel time or, even better, the cost of

travel) and that the salesman wants to make the tour that minimizes the total distance.

This problem is called the traveling salesman problem. Figure 23.1 shows an example

with seven cities. Clearly, a tour is determined by listing the cities in the order in

which they will be visited. If we let si denote the ith city visited, then the tour can be

described simply as

s0 = 0, s1, s2, . . . , sn−1.

The total number of possible tours is equal to the number of ways one can permute

the n − 1 cities, i.e., (n − 1)!. Factorials are huge even for small n (for example,

50! = 3.041 × 1064). Hence, enumeration is out of the question. Our aim is to

formulate this problem as an integer program that can be solved more quickly than by

using enumeration.

It seems reasonable to introduce for each (i, j) a decision variable xij that will be

equal to one if the tour visits city j immediately after visiting city i; otherwise, it will

be equal to zero. In terms of these variables, the objective function is easy to write:

minimize
∑

i

∑

j

cijxij .

388 23. INTEGER PROGRAMMING

0

1

2

3

4

5

6

FIGURE 23.2. Two disjoint subtours in a seven-city traveling sales-

man problem.

The tricky part is to formulate constraints to guarantee that the set of nonzero xij’s

corresponds exactly to a bonafide tour. Some of the constraints are fairly obvious. For

example, after the salesman visits city i, he must go to one and only one city next. We

can write these constraints as

(23.1)
∑

j

xij = 1, i = 0, 1, . . . , n − 1

(we call them the go-to constraints). Similarly, when the salesman visits a city, he

must have come from one and only one prior city. That is,

(23.2)
∑

i

xij = 1, j = 0, 1, . . . , n − 1

(by analogy we call these the come-from constraints). If the go-to and the come-

from constraints are sufficient to ensure that the decision variables represent a tour,

the traveling salesman problem would be quite easy to solve because it would just

be an assignment problem, which can be solved efficiently by the simplex method.

But unfortunately, these constraints are not sufficient, since they do not rule out the

possibility of forming disjoint subtours. An example is shown in Figure 23.2.

We need to introduce more constraints to guarantee connectivity of the graph that

the tour represents. To see how to do this, consider a specific tour

s0 = 0, s1, s2, . . . , sn−1.

Let ti for i = 0, 1, . . . , n be defined as the number of the stop along the tour at which

city i is visited; i.e., “when” city i is visited along the tour. From this definition, we

2. THE TRAVELING SALESMAN PROBLEM 389

see that t0 = 0, ts1
= 1, ts2

= 2, etc. In general,

tsi
= i, i = 0, 1, . . . , n − 1,

so that we can think of the tj’s as being the inverse of the si’s. For a bonafide tour,

tj = ti + 1, if xij = 1.

Also, each ti is an integer between 0 and n − 1, inclusive. Hence, tj satisfies the

following constraints:

tj ≥
{

ti + 1 − n if xij = 0,

ti + 1 if xij = 1.

(Note that by subtracting n in the xij = 0 case, we have effectively made the condition

always hold.) These constraints can be written succinctly as

(23.3) tj ≥ ti + 1 − n(1 − xij), i ≥ 0, j ≥ 1, i �= j.

Now, these constraints were derived based on conditions that a bonafide tour satisfies.

It turns out that they also force a solution to be a bonafide tour. That is, they rule out

subtours. To see this, suppose to the contrary that there exists a solution to (23.1),

(23.2), and (23.3) that consists of at least two subtours. Consider a subtour that does

not include city 0. Let r denote the number of legs on this subtour. Clearly, r ≥ 2.

Now, sum (23.3) over all arcs on this subtour. On the left, we get the sum of the

tj’s over each city visited by the subtour. On the right, we get the same sum plus r.

Cancelling the sums from the two sides, we get that

0 ≥ r,

which is a contradiction. Hence, the traveling salesman problem can be formulated as

the following integer programming problem:

minimize
∑

i,j

cijxij

subject to

n
∑

j=1

xij = 1, i = 0, 1, . . . , n − 1,

n
∑

i=1

xij = 1, j = 0, 1, . . . , n − 1,

tj ≥ ti + 1 − n(1 − xij), i ≥ 0, j ≥ 1, i �= j,

t0 = 0,

xij ∈ {0, 1},
ti ∈ {0, 1, 2, . . .}.

Note that, for the n-city problem, there are n2 + n variables in this formulation.

390 23. INTEGER PROGRAMMING

3. Fixed Costs

The terms in an objective function often represent costs associated with engaging

in an activity. Until now, we’ve always assumed that each of these terms is a linear

function such as cx. However, it is sometimes more realistic to assume that there is

a fixed cost for engaging in the activity plus a linear variable cost. That is, one such

term might have the form

c(x) =

{

0 if x = 0

K + cx if x > 0.

If we assume that there is an upper bound on the size of x, then it turns out that such a

function can be equivalently modeled using strictly linear functions at the expense of

introducing one integer-valued variable. Indeed, suppose that u is an upper bound on

the x variable. Let y denote a {0, 1}-valued variable that is one when and only when

x > 0. Then

c(x) = Ky + cx.

Also, the condition that y is one exactly when x > 0 can be guaranteed by introducing

the following constraints:

x≤ uy

x≥ 0

y ∈ {0, 1}.
Of course, if the objective function has several terms with associated fixed costs, then

this trick must be used on each of these terms.

4. Nonlinear Objective Functions

Sometimes the terms in the objective function are not linear at all. For example,

one such term could look like the function shown in Figure 23.3. In Chapter 25, we

will discuss efficient algorithms that can be used in the presence of nonlinear objective

functions—at least when they have appropriate convexity/concavity properties. In this

section, we will show how to formulate an integer programming approximation to a

general nonlinear term in the objective function. The first step is to approximate the

nonlinear function by a continuous piecewise linear function.

The second step is to introduce integer variables that allow us to represent the

piecewise linear function using linear relations. To see how to do this, first we decom-

pose the variable x into a sum,

x = x1 + x2 + · · · + xk,

where xi denotes how much of the interval [0, x] is contained in the ith linear segment

of the piecewise linear function (see Figure 23.4). Of course, some of the initial seg-

ments will lie entirely within the interval [0, x], one segment will lie partially in and

partially out, and then the subsequent segments will lie entirely outside of the interval.

4. NONLINEAR OBJECTIVE FUNCTIONS 391

FIGURE 23.3. A nonlinear function and a piecewise linear approx-

imation to it.

{ {{{

K

L
1

L
2

L
3

c
1

c
2

c
3

c
4

FIGURE 23.4. A piecewise linear function.

Hence, we need to introduce constraints to guarantee that the initial xi’s are equal to

the length of their respective segments and that after the straddling segment the sub-

sequent xi’s are all zero. A little thought reveals that the following constraints do the

392 23. INTEGER PROGRAMMING

trick:

Ljwj ≤ xj ≤ Ljwj−1 j = 1, 2, . . . , k

w0 = 1

wj ∈ {0, 1} j = 1, 2, . . . , k

xj ≥ 0 j = 1, 2, . . . , k.

Indeed, it follows from these constraints that wj ≤ wj−1 for j = 1, 2, . . . , k. This

inequality implies that once one of the wj’s is zero, then all the subsequent ones must

be zero. If wj = wj−1 = 1, the two-sided inequality on xj reduces to Lj ≤ xj ≤ Lj .

That is, xj = Lj . Similarly, if wj = wj−1 = 0, then the two-sided inequality reduces

to xj = 0. The only other case is when wj = 0 but wj−1 = 1. In this case, the

two-sided inequality becomes 0 ≤ xj ≤ Lj . Therefore, in all cases, we get what we

want. Now with this decomposition we can write the piecewise linear function as

K + c1x1 + c2x2 + · · · + ckxk.

5. Branch-and-Bound

In the previous sections, we presented a variety of problems that can be formulated

as integer programming problems. As it happens, all of them had the property that the

integer variables took just one of two values, namely, zero or one. However, there

are other integer programming problems in which the integer variables can be any

nonnegative integer. Hence, we define the standard integer programming problem as

follows:

maximize cT x

subject to Ax≤ b

x≥ 0

x has integer components.

In this section, we shall present an algorithm for solving these problems. The algo-

rithm is called branch-and-bound. It involves solving a (potentially) large number of

(related) linear programming problems in its search for an optimal integer solution.

The algorithm starts out with the following wishful approach: first ignore the con-

straint that the components of x be integers, solve the resulting linear programming

problem, and hope that the solution vector has all integer components. Of course,

hopes are almost always unfulfilled, and so a backup strategy is needed. The simplest

strategy would be to round each resulting solution value to its nearest integer value.

Unfortunately, this naive strategy can be quite bad. In fact, the integer solution so ob-

tained might not even be feasible, which shouldn’t be surprising, since we know that

the solution to a linear programming problem is at a vertex of the feasible set and so it

is quite expected that naive movement will go outside of the feasible set.

5. BRANCH-AND-BOUND 393

1 2 3 4 5 60

0

1

2

3

4

5

6

x1

x2

10x1+7x2=40

Optimal Solution

to LP−relaxation

x1+x2=5

17x1+12x2=68.33

 =z0

FIGURE 23.5. An integer programming problem. The dots repre-

sent the feasible integer points, and the shaded region shows the

feasible region for the LP-relaxation.

To be concrete, consider the following example:

maximize 17x1 + 12x2

subject to 10x1 + 7x2 ≤ 40

x1 + x2 ≤ 5

x1, x2 ≥ 0

x1, x2 integers.

The linear programming problem obtained by dropping the integrality constraint is

called the LP-relaxation. Since it has fewer constraints, its optimal solution provides

an upper bound ζ0 on the the optimal solution ζ∗ to the integer programming prob-

lem. Figure 23.5 shows the feasible points for the integer programming problem as

well as the feasible polytope for its LP-relaxation. The solution to the LP-relaxation is

at (x1, x2) = (5/3, 10/3), and the optimal objective value is 205/3 = 68.33. Round-

ing each component of this solution to the nearest integer, we get (2, 3), which is not

even feasible. The feasible integer solution that is closest to the LP-optimal solution

is (1, 3), but we can see from Figure 23.5 that this solution is not the optimal solution

to the integer programming problem. In fact, it is easy to see from the figure that

394 23. INTEGER PROGRAMMING

1 2 3 4 5 60

0

1

2

3

4

5

6

x1

x2

P
1

P
2

FIGURE 23.6. The feasible subregions formed by the first branch.

the optimal integer solution is either (1, 4) or (4, 0). To make the problem interest-

ing, we’ve chosen the objective function to make the more distant point (4, 0) be the

optimal solution.

Of course, we can solve only very small problems by the graphical method: to

solve larger problems, an algorithm is required, which we now describe. Consider

variable x1 in the optimal solution to the LP-relaxation. Its value is 5/3. In the optimal

solution to the integer programming problem, it will be an integer. Hence, it will

satisfy either x1 ≤ 1 or x1 ≥ 2. We consider these two cases separately. Let P1 denote

the linear programming problem obtained by adding the constraint x1 ≤ 1 to the LP-

relaxation, and let P2 denote the problem obtained by including the other possibility,

x1 ≥ 2. The feasible regions for P1 and P2 are shown in Figure 23.6. Let us study

P1 first. It is clear from Figure 23.6 that the optimal solution is at (x1, x2) = (1, 4)
with an objective value of 65. Our algorithm has found its first feasible solution to the

integer programming problem. We record this solution as the best-so-far. Of course,

better ones may (in this case, will) come along later.

Now let’s consider P2. Looking at Figure 23.6 and doing a small amount of

calculation, we see that the optimal solution is at (x1, x2) = (2, 20/7). In this case,

the objective function value is 478/7 = 68.29. Now if this value had turned out to be

less than the best-so-far value, then we’d be done, since any integer solution that lies

within the feasible region for P2 would have a smaller value yet. But this is not the

5. BRANCH-AND-BOUND 395

P
0
: x

1
=1.67, x

2
=3.33

ζ=68.33

x
1
<1 x

1
>2

x
2
>3x

2
<2

P
1
: x

1
=1, x

2
=4

ζ=65

P
2
: x

1
=2, x

2
=2.86

ζ=68.29

FIGURE 23.7. The beginnings of the enumeration tree.

case, and so we must continue our systematic search. Since x2 = 20/7 = 2.86, we

divide P2 into two subproblems, one in which the constraint x2 ≤ 2 is added and one

with x2 ≥ 3 added.

Before considering these two new cases, note that we are starting to develop a

tree of linear programming subproblems. This tree is called the enumeration tree. The

tree as far as we have investigated is shown in Figure 23.7. The double box around P1

indicates that that part of the tree is done: i.e., there are no branches emanating from

P1—it is a leaf node. The two empty boxes below P2 indicate two subproblems that

have yet to be studied. Let’s proceed by looking at the left branch, which corresponds

to adding the constraint x2 ≤ 2 to what we had before. We denote this subproblem

by P3. Its feasible region is shown in Figure 23.8, from which we see that the optimal

solution is at (2.6, 2). The associated optimal objective value is 68.2. Again, the

solution is fractional. Hence, the process of subdividing must continue. This time we

subdivide based on the values of x1. Indeed, we consider two cases: either x1 ≤ 2 or

x1 ≥ 3.

Figure 23.9 shows the enumeration tree as it now stands. At this juncture, there

are three directions in which we could proceed. We could either study the other branch

under P2 or work on one of the two branches sitting under P3. If we were to system-

atically solve all the problems on a given level of the tree before going deeper, we

would be performing what is referred to as a breadth-first search. On the other hand,

going deep before going wide is called a depth-first search. For reasons that we shall

396 23. INTEGER PROGRAMMING

1 2 3 4 5 60

0

1

2

3

4

5

6

x1

x2

P
1

P
3

FIGURE 23.8. The refinement of P2 to P3.

explain later, it turns out to be better to do a depth-first search. And, to be specific, let

us always choose the left branch before the right branch (in practice, there are much

better rules that one can employ here). So our next linear programming problem is the

one that we get by adding the constraint that x1 ≤ 2 to the constraints that defined P3.

Let us call this new problem P4. Its feasible region is shown in Figure 23.10. It is easy

to see that the optimal solution to this problem is (2, 2), with an objective value of 58.

This solution is an integer solution, so it is feasible for the integer programming prob-

lem. But it is not better than our best-so-far. Nonetheless, we do not need to consider

any further subproblems below this one in the enumeration tree.

Since problem P4 is a leaf in the enumeration tree, we need to work back up the

tree looking for the first node that has an unsolved problem sitting under it. For the case

at hand, the unsolved problem is on the right branch underneath P3. Let us call this

problem P5. It too is depicted in Figure 23.10. The optimal solution is (3, 1.43), with

an optimal objective function value of 68.14. Since this objective function value is

larger than the value of the best-so-far integer solution, we must further investigate by

dividing into two possibilities, either x2 ≤ 1 or x2 ≥ 2. At this point, the enumeration

tree looks like that shown in Figure 23.11.

Let P6 denote the linear programming problem that we get on the left branch un-

der P5. Its feasible region is shown in Figure 23.12. The optimal solution is (3.3, 1),
and the associated objective value is 68.1. Again, the solution is fractional and has a

5. BRANCH-AND-BOUND 397

P
0
: x

1
=1.67, x

2
=3.33

ζ=68.33

P
3
: x

1
=2.6, x

2
=2

ζ=68.2

x
1
<1 x

1
>2

x
2
>3x

2
<2

x
1
<2 x

1
>3

P
1
: x

1
=1, x

2
=4

ζ=65

P
2
: x

1
=2, x

2
=2.86

ζ=68.29

FIGURE 23.9. The enumeration tree after solving P3.

higher objective value than the best-so-far integer solution. Hence, it must be subdi-

vided based on x1 ≤ 3 as opposed to x1 ≥ 4. Denoting these two problems by P7

and P8, their feasible regions are as depicted in Figure 23.13. The solution to P7 is

(3, 1), and the objective value is 63. This is an integer solution, but it is not better than

the best-so-far. Nonetheless, the node becomes a leaf, since the solution is integral.

Hence, we move on to P8. The solution to this problem is also integral, (4, 0). Also,

the objective value associated with this solution is 68, which is a new record for feasi-

ble integer solutions. Hence, this solution becomes our best-so-far. The enumeration

tree at this point is shown in Figure 23.14.

Now we need to go back and solve the problems under P5 and P2 (and any

subproblems thereof). It turns out that both these subproblems are infeasible, and

so no more subdivisions are needed. The enumeration tree is now completely fath-

omed and is shown in Figure 23.15. We can now assert that the optimal solution to

the original integer programming problem was found in problem P8. The solution is

(x1, x2) = (4, 0), and the associated objective function value is 68.

398 23. INTEGER PROGRAMMING

1 2 3 4 5 60

0

1

2

3

4

5

6

x1

x2

P
1

P
5

P
4

FIGURE 23.10. The refinement of P3 to P4.

5. BRANCH-AND-BOUND 399

P
0
: x

1
=1.67, x

2
=3.33

ζ=68.33

P
3
: x

1
=2.6, x

2
=2

ζ=68.2

x
1
<1 x

1
>2

x
2
>3x

2
<2

x
1
<2 x

1
>3

x
2
<1 x2

>2

P
1
: x

1
=1, x

2
=4

ζ=65

P
4
: x

1
=2, x

2
=2

ζ=58

P
5
: x

1
=3, x

2
=1.43

ζ=68.14

P
2
: x

1
=2, x

2
=2.86

ζ=68.29

FIGURE 23.11. The enumeration tree after solving P5. The double

box around P4 indicates that it is a leaf in the tree.

400 23. INTEGER PROGRAMMING

1 2 3 4 5 60

0

1

2

3

4

5

6

x1

x2

P
1

P
6

P
4

FIGURE 23.12. The refinement of P5 to P6.

1 2 3 4 5 60

0

1

2

3

4

5

6

x1

x2

P
1

P
7

P
5 P

8

FIGURE 23.13. The refinement of P6 to P7 and P8.

5. BRANCH-AND-BOUND 401

P
0
: x

1
=1.67, x

2
=3.33

ζ=68.33

P
8
: x

1
=4, x

2
=0

ζ=68

P
6
: x

1
=3.3, x

2
=1

ζ=68.1

P
3
: x

1
=2.6, x

2
=2

ζ=68.2

x
1
<1 x

1
>2

x
2
>3x

2
<2

x
1
<2 x

1
>3

x
2
<1 x2

>2

x
1
<3 x

1
>4

P
1
: x

1
=1, x

2
=4

ζ=65

P
4
: x

1
=2, x

2
=2

ζ=58

P
7
: x

1
=3, x

2
=1

ζ=63

P
5
: x

1
=3, x

2
=1.43

ζ=68.14

P
2
: x

1
=2, x

2
=2.86

ζ=68.29

FIGURE 23.14. The enumeration tree after solving P6, P7, and P8.

402 23. INTEGER PROGRAMMING

P
0
: x

1
=1.67, x

2
=3.33

ζ=68.33

P
8
: x

1
=4, x

2
=0

ζ=68

P
6
: x

1
=3.3, x

2
=1

ζ=68.1

P
3
: x

1
=2.6, x

2
=2

ζ=68.2

x
1
<1 x

1
>2

x
2
>3x

2
<2

x
1
<2 x

1
>3

x
2
<1 x2

>2

x
1
<3 x

1
>4

P
1
: x

1
=1, x

2
=4

ζ=65

P
4
: x

1
=2, x

2
=2

ζ=58

P
7
: x

1
=3, x

2
=1

ζ=63

P
5
: x

1
=3, x

2
=1.43

ζ=68.14

P
2
: x

1
=2, x

2
=2.86

ζ=68.29

P
9
: Infeasible

P
10

: Infeasible

FIGURE 23.15. The complete enumeration tree.

5. BRANCH-AND-BOUND 403

There are three reasons why depth-first search is generally the preferred order

in which to fathom the enumeration tree. The first is based on the observation that

most integer solutions lie deep in the tree. There are two advantages to finding integer

feasible solutions early. The first is simply the fact that it is better to have a feasible

solution than nothing in case one wishes to abort the solution process early. But more

importantly, identifying an feasible integer solution can result in subsequent nodes

of the enumeration tree being made into leaves simply because the optimal objective

function associated with that node is lower than the best-so-far integer solution. Mak-

ing such nodes into leaves is called pruning the tree and can account for tremendous

gains in efficiency.

A second reason to favor depth-first search is the simple fact that it is very easy

to code the algorithm as a recursively defined function. This may seem trite, but one

shouldn’t underestimate the value of code simplicity when implementing algorithms

that are otherwise quite sophisticated, such as the one we are currently describing.

The third reason to favor depth-first search is perhaps the most important. It

is based on the observation that as one moves deeper in the enumeration tree, each

subsequent linear programming problem is obtained from the preceding one by simply

adding (or refining) an upper/lower bound on one specific variable. To see why this

is an advantage, consider for example problem P2, which is a refinement of P0. The

optimal dictionary for problem P0 is recorded as

ζ = 205
3 − 5

3w1 − 1
3w2

x1 = 5
3 − 1

3w1 + 7
3w2

x2 = 10
3 + 1

3w1 − 10
3 w2.

Problem P2 is obtained from P0 by adding the constraint that x1 ≥ 2. Introducing a

variable, g1, to stand for the difference between x1 and this lower bound and using the

dictionary above to write x1 in terms of the nonbasic variables, we get

g1 = x1 − 2 = −1

3
− 1

3
w1 +

7

3
w2.

Therefore, we can use the following dictionary as a starting point for the solution of

P2:

ζ = 205
3 − 5

3w1 − 1
3w2

x1 = 5
3 − 1

3w1 + 7
3w2

x2 = 10
3 + 1

3w1 − 10
3 w2

g1 = − 1
3 − 1

3w1 + 7
3w2.

This dictionary is dual feasible but primal infeasible. Therefore, the dual simplex

method is likely to find a new optimal solution in very few iterations. According to the

dual simplex method, variable g1 is the leaving variable and w2 is the corresponding

404 23. INTEGER PROGRAMMING

entering variable. Making the pivot, we get the following dictionary:

ζ = 478
7 − 12

7 w1 − 1
7g1

x1 = 2 + g1

x2 = 20
7 − 1

7w1 − 10
7 g1

w2 = 1
7 + 1

7w1 + 3
7g1.

This dictionary is optimal for P2. In general, the dual simplex method will take more

than one iteration to reoptimize, but nonetheless, one does expect it to get to a new

optimal solution quickly.

We end this chapter by remarking that many real problems have the property that

some variables must be integers but others can be real valued. Such problems are

called mixed integer programming problems. It should be easy to see how to modify

the branch-and-bound technique to handle such problems as well.

Exercises

23.1 Knapsack Problem. Consider a picnicker who will be carrying a knapsack

that holds a maximum amount b of “stuff.” Suppose that our picnicker must

decide what to take and what to leave behind. The jth thing that might be

taken occupies aj units of space in the knapsack and will bring cj amount of

“enjoyment.” The knapsack problem then is to maximize enjoyment subject

to the constraint that the stuff brought must fit into the knapsack:

maximize

n
∑

j=1

cjxj

subject to

n
∑

j=1

ajxj ≤ b

xj ∈ {0, 1} j = 1, 2, . . . , n.

This apparently simple problem has proved difficult for general-purpose

branch-and-bound algorithms. To see why, analyze the special case in which

each thing contributes the same amount of enjoyment, i.e., cj = c for all j,

and takes up exactly two units of space, i.e., aj = 2 for all j. Suppose also

that the knapsack holds n units of stuff.

(a) What is the optimal solution when n is even? when n is odd?

(b) How many subproblems must the branch-and-bound algorithm con-

sider when n is odd?

23.2 Vehicle Routing. Consider the dispatching of delivery vehicles (for example,

mail trucks, fuel-oil trucks, newspaper delivery trucks, etc.). Typically, there

is a fleet of vehicles that must be routed to deliver goods from a depot to

a given set of n drop-points. Given a set of feasible delivery routes and

NOTES 405

the cost associated with each one, explain how to formulate the problem of

minimizing the total delivery cost as a set-partitioning problem.

23.3 Explain how to modify the integer programming reformulation of continu-

ous piecewise linear functions so that it covers piecewise linear functions

having discontinuities at the junctions of the linear segments. Can fixed

costs be handled with this approach?

Notes

Standard references for integer programming include the classic text by Garfinkel

& Nemhauser (1972) and the more recent text by Nemhauser & Wolsey (1988).

CHAPTER 24

Quadratic Programming

In Chapter 23, we studied a generalization of the linear programming problem in

which variables were constrained to take on integer values. In this chapter, we consider

a generalization of a different kind. Namely, we shall study the class of problems that

would be linear programs except that the objective function is permitted to include

terms involving products of pairs of variables. Such terms are called quadratic terms,

and the problems we shall study are called quadratic programming problems.

We have two reasons for being interested in quadratic programming problems.

First, on the practical side, there are many real-world optimization problems that fall

into this category. This is so because most real-world applications have an element

of uncertainty to them and that uncertainty is modeled by including a sum of squares

deviation, i.e. variance, as a measure of the robustness of the solution. It is often pos-

sible to arrange it so that these quadratic robustness terms appear only in the objective

function. The quadratic version of the portfolio selection problem studied in Chapter

13 is one such example—there are many others. The second reason for our interest

in quadratic programming problems is that they form a bridge to the much broader

subject of convex programming that we shall take up in Chapter 25.

We begin this chapter with a quadratic variant of the portfolio selection problem.

1. The Markowitz Model

Harry Markowitz received the 1990 Nobel Prize in Economics for his portfolio

optimization model in which the tradeoff between risk and reward is explicitly treated.

We shall briefly describe this model in its simplest form. We start by reintroducing the

basic framework of the problem. Those who have read Chapter 13 will note that the

first few paragraphs here are a repeat of what was written there.

Given a collection of potential investments (indexed, say, from 1 to n), let Rj

denote the return in the next time period on investment j, j = 1, . . . , n. In general, Rj

is a random variable, although some investments may be essentially deterministic.

A portfolio is determined by specifying what fraction of one’s assets to put into

each investment. That is, a portfolio is a collection of nonnegative numbers xj , j =
1, . . . , n, that sum to one. The return (on each dollar) one would obtain using a given

407

408 24. QUADRATIC PROGRAMMING

portfolio is given by

R =
∑

j

xjRj .

The reward associated with such a portfolio is defined as the expected return:

ER =
∑

j

xjERj .

If reward alone were the issue, the problem would be trivial: simply put everything in

the investment with the highest expected return. But unfortunately, investments with

high reward typically also carry a high level of risk. That is, even though they are

expected to do very well in the long run, they also tend to be erratic in the short term.

Markowitz defined the risk associated with an investment to be the variance of the

return:

Var(R) = E(R − ER)2

= E

⎛

⎝

∑

j

xj(Rj − ERj)

⎞

⎠

2

= E

⎛

⎝

∑

j

xjR̃j

⎞

⎠

2

,

where R̃j = Rj − ERj . One would like to maximize the reward while at the same

time not incur excessive risk. In the Markowitz model, one forms a linear combination

of the mean and the variance (parametrized here by μ) and minimizes that:

(24.1)

minimize −
∑

j

xjERj + μE

⎛

⎝

∑

j

xjR̃j

⎞

⎠

2

subject to
∑

j

xj = 1

xj ≥ 0 j = 1, 2, . . . , n.

Here, as in Chapter 13, μ is a positive parameter that represents the importance of risk

relative to reward: high values of μ tend to minimize risk at the expense of reward,

whereas low values put more weight on reward.

Again, as in Chapter 13, whenever there are individual investments that are neg-

atively correlated, i.e. one is likely to go up exactly on those days where the other is

likely to go down, it is wise to buy some of each. This is called hedging. In statistics,

the so-called covariance matrix is the key to identifying negative correlations. And,

the covariance matrix is what appears in the Markowitz model. To see it, let us expand

1. THE MARKOWITZ MODEL 409

the square in our expression for the variance of the portfolio:

E

⎛

⎝

∑

j

xjR̃j

⎞

⎠

2

= E

(

∑

i

xiR̃i

)

⎛

⎝

∑

j

xjR̃j

⎞

⎠

= E

⎛

⎝

∑

i

∑

j

xixjR̃iR̃j

⎞

⎠

=
∑

i

∑

j

xixjE(R̃iR̃j)

=
∑

i

∑

j

xixjCi,j ,

where

Ci,j = E(R̃iR̃j)

is the covariance matrix. Hence, problem (24.1) can be rewritten as

(24.2)

minimize −
∑

j

rjxj + μ
∑

i

∑

j

xixjCi,j

subject to
∑

j

xj = 1

xj ≥ 0 j = 1, 2, . . . , n,

where we have introduced rj = ERj for the mean return on investment j.

Solving problem (24.2) requires an estimate of the mean return for each of the

investments as well as an estimate of the covariance matrix. However, these quantities

are not known theoretically but instead must be estimated by looking at historical data.

For example, Table 24.1 shows annual returns from 1973 to 1994 for eight different

possible investments: U.S. Three-Month T-Bills, U.S. Government Long Bonds, S&P

500, Wilshire 5000 (a collection of small company stocks), NASDAQ Composite,

Lehman Brothers Corporate Bonds Index, EAFE (a securities index for Europe, Asia,

and the Far East), and Gold. Let Rj(t) denote the return on investment j in year

1972 + t. One way to estimate the mean ERj is simply to take the average of the

historical returns:

rj = ERj =
1

T

T
∑

t=1

Rj(t).

There are two drawbacks to this simple formula. First, whatever happened in 1973

certainly has less bearing on the future than what happened in 1994. Hence, giving all

the past returns equal weight puts too much emphasis on the distant past at the expense

410 24. QUADRATIC PROGRAMMING

Year US US S&P Wilshire NASDAQ Lehman EAFE Gold

3-Month Gov. 500 5000 Composite Bros.

T-Bills Long Corp.

Bonds Bonds

1973 1.075 0.942 0.852 0.815 0.698 1.023 0.851 1.677

1974 1.084 1.020 0.735 0.716 0.662 1.002 0.768 1.722

1975 1.061 1.056 1.371 1.385 1.318 1.123 1.354 0.760

1976 1.052 1.175 1.236 1.266 1.280 1.156 1.025 0.960

1977 1.055 1.002 0.926 0.974 1.093 1.030 1.181 1.200

1978 1.077 0.982 1.064 1.093 1.146 1.012 1.326 1.295

1979 1.109 0.978 1.184 1.256 1.307 1.023 1.048 2.212

1980 1.127 0.947 1.323 1.337 1.367 1.031 1.226 1.296

1981 1.156 1.003 0.949 0.963 0.990 1.073 0.977 0.688

1982 1.117 1.465 1.215 1.187 1.213 1.311 0.981 1.084

1983 1.092 0.985 1.224 1.235 1.217 1.080 1.237 0.872

1984 1.103 1.159 1.061 1.030 0.903 1.150 1.074 0.825

1985 1.080 1.366 1.316 1.326 1.333 1.213 1.562 1.006

1986 1.063 1.309 1.186 1.161 1.086 1.156 1.694 1.216

1987 1.061 0.925 1.052 1.023 0.959 1.023 1.246 1.244

1988 1.071 1.086 1.165 1.179 1.165 1.076 1.283 0.861

1989 1.087 1.212 1.316 1.292 1.204 1.142 1.105 0.977

1990 1.080 1.054 0.968 0.938 0.830 1.083 0.766 0.922

1991 1.057 1.193 1.304 1.342 1.594 1.161 1.121 0.958

1992 1.036 1.079 1.076 1.090 1.174 1.076 0.878 0.926

1993 1.031 1.217 1.100 1.113 1.162 1.110 1.326 1.146

1994 1.045 0.889 1.012 0.999 0.968 0.965 1.078 0.990

TABLE 24.1. Returns per dollar for each of eight investments over

several years. That is, $1 invested in US 3-Month T-Bills on January

1, 1973, was worth $1.075 on December 31, 1973.

of the recent past. A better estimate is obtained by using a discounted sum:

ERj =

∑T
t=1 pT−tRj(t)
∑T

t=1 pT−t
.

Here, p is a discount factor. Putting p = 0.9 gives a weighted average that puts more

weight on the most recent years. To see the effect of discounting the past, consider

the Gold investment. The unweighted average return is 1.129, whereas the weighted

average is 1.053. Most experts in 1995 felt that a 5.3% return represented a more

realistic expectation than a 12.9% return. In the results that follow, all expectations

are estimated by computing weighted averages using p = 0.9.

The second issue concerns the estimation of means (not variances). An investment

that returns 1.1 one year and 0.9 the next has an (unweighted) average return of 1, that

is, no gain or loss. However, one dollar invested will actually be worth (1.1)(0.9) =

1. THE MARKOWITZ MODEL 411

μ Gold US Lehman NASDAQ S&P EAFE Mean Std.

3-Month Bros. Composite 500 Dev.

T-Bills Corp.

Bonds

0.0 1.000 1.122 0.227

0.1 0.603 0.397 1.121 0.147

1.0 0.876 0.124 1.120 0.133

2.0 0.036 0.322 0.549 0.092 1.108 0.102

4.0 0.487 0.189 0.261 0.062 1.089 0.057

8.0 0.713 0.123 0.117 0.047 1.079 0.037

1024.0 0.008 0.933 0.022 0.016 0.022 1.070 0.028

TABLE 24.2. Optimal portfolios for several choices of μ.

0.99 at the end of the second year. While a 1% error is fairly small, consider what

happens if the return is 2.0 one year and then 0.5 the next. Clearly, the value of one

dollar at the end of the two years is (2.0)(0.5) = 1, but the average of the two returns

is (2.0 + 0.5)/2 = 1.25. There is a very significant difference between an investment

that is flat and one that yields a 25% return in two years. This is obviously an effect

for which a correction is required. We need to average 2.0 and 0.5 in such a way that

they cancel out—and this cancellation must work not only for 2.0 and 0.5 but for every

positive number and its reciprocal. The trick is to average the logarithm of the returns

(and then exponentiate the average). The logarithm has the correct effect of cancelling

a return r and its reciprocal:

log r + log
1

r
= 0.

Hence, we estimate means from Table 24.1 using

ERj = exp

(

∑T
t=1 pT−t log Rj(t)

∑T
t=1 pT−t

)

.

This estimate for Gold gives an estimate of its return at 2.9%, which is much more in

line with the beliefs of experts (at least in 1995).

Table 24.2 shows the optimal portfolios for several choices of μ. The correspond-

ing optimal values for the mean and standard deviation (which is defined as the square

root of the variance) are plotted in Figure 24.1. Letting μ vary continuously generates

a curve of optimal solutions. This curve is called the efficient frontier. Any portfolio

that produces a mean–variance combination that does not lie on the efficient frontier

can be improved either by increasing its mean without changing the variance or by

decreasing the variance without changing the mean. Hence, one should only invest in

portfolios that lie on the efficient frontier.

412 24. QUADRATIC PROGRAMMING

Wilshire
 5000 µ=0.1

µ=1

1.08 1.09 1.10 1.11 1.12 1.131.07

 2

 6

 8

10

12

14

16

18

20

22

24

 4 T−Bills

Corp.
Bonds

Long
Bonds

S&P
 500

NASDAQ
Composite

Gold

EAFE

µ=8

µ=4

µ=2

µ=0

µ=1024

FIGURE 24.1. The efficient frontier.

Of course, the optimal portfolios shown in Table 24.2 were obtained by solving

(24.1). The rest of this chapter is devoted to describing an algorithm for solving qua-

dratic programs such as this one.

2. The Dual

We have seen that duality plays a fundamental role in our understanding and

derivation of algorithms for linear programming problems. The same is true for qua-

dratic programming. Hence, our first goal is to figure out what the dual of a quadratic

programming problem should be.

Quadratic programming problems are usually formulated as minimizations. There-

fore, we shall consider problems given in the following form:

(24.3)

minimize cT x + 1
2xT Qx

subject to Ax≥ b

x≥ 0.

Of course, we may (and do) assume that the matrix Q is symmetric (see Exercise

24.2). Note that we have also changed the sense of the inequality constraints from

our usual less-than to greater-than. This change is not particularly important—its only

purpose is to maintain a certain level of parallelism with past formulations (that is,

minimizations have always gone hand-in-hand with greater-than constraints, while

maximizations have been associated with less-than constraints).

2. THE DUAL 413

In Chapter 5, we derived the dual problem by looking for tight bounds on the

optimal solution to the primal problem. This approach could be followed here, but

it seems less compelling in the context of quadratic programming. A more direct

approach stems from the connection between duality and the first-order optimality

conditions for the barrier problem that we examined in Chapter 17. Indeed, let us start

by writing down the barrier problem associated with (24.3). To this end, we introduce

a nonnegative vector w of surplus variables and then subtract a barrier term for each

nonnegative variable to get the following barrier problem:

minimize cT x + 1
2xT Qx − μ

∑

j log xj − μ
∑

i log wi

subject to Ax − w = b.

Next, we introduce the Lagrangian:

f(x,w, y) = cT x +
1

2
xT Qx − μ

∑

j

log xj − μ
∑

i

log wi

+yT (b − Ax + w).

The first-order optimality conditions for the barrier problem are obtained by differen-

tiating the Lagrangian with respect to each of its variables and setting these derivatives

to zero. In vector notation, setting to zero the derivative with respect to the x variables

gives

c + Qx − μX−1e − AT y = 0.

Similarly, setting to zero the derivatives with respect to the w and y variables gives

−μW−1e + y = 0

b − Ax + w = 0,

respectively. As we did in our study of linear programming problems, we now intro-

duce a new vector z given by

z = μX−1e.

With this definition, the first-order optimality conditions can be summarized as

AT y + z − Qx = c

Ax − w = b

XZe = μe

Y We = μe.

From the last two conditions, we see that the dual problem involves an n-vector of

variables z that are complementary to the primal variables x and an m-vector of vari-

ables y that are complementary to the primal slack variables w. Because of these

complementarity conditions, we expect that the variables y and z are constrained to

be nonnegative in the dual problem. Also, to establish the proper connection between

414 24. QUADRATIC PROGRAMMING

the first-order optimality conditions and the dual problem, we must recognize the first

condition as a dual constraint. Hence, the constraints for the dual problem are

AT y + z − Qx = c

y, z ≥ 0.

It is interesting to note that the dual constraints involve an n-vector x that seems as

if it should belong to the primal problem. This may seem odd, but when understood

properly it turns out to be entirely harmless. The correct interpretation is that the

variable x appearing in the dual has, in principle, no connection to the variable x
appearing in the primal (except that, as we shall soon see, at optimality they will be

equal).

The barrier problem has helped us write down the dual constraints, but it does not

shed any light on the dual objective function. To see what the dual objective function

should be, we look at what it needs to be for the weak duality theorem to hold true. In

the weak duality theorem, we assume that we have a primal feasible solution (x,w)
and a dual feasible solution (x, y, z). We then follow the obvious chains of equalities:

yT (Ax) = yT (b + w) = bT y + yT w

and

(AT y)T x = (c − z + Qx)T x = cT x − zT x + xT Qx.

Now, since yT (Ax) = (AT y)T x, we see that

0 ≤ yT w + zT x = cT x + xT Qx − bT y

= (cT x +
1

2
xT Qx) − (bT y − 1

2
xT Qx).

From this inequality, we see that the dual objective function is bT y − 1
2xT Qx. Hence,

the dual problem can be stated now as

maximize bT y − 1
2xT Qx

subject to AT y + z − Qx = c

y, z ≥ 0.

For linear programming, the fundamental connection between the primal and dual

problems is summarized in the Complementary Slackness Theorem. In the next sec-

tion, we shall derive a version of this theorem for quadratic programming.

3. Convexity and Complexity

In linear programming, the dual problem is important because it provides a cer-

tificate of optimality as manifest in the Complementary Slackness Theorem. Under

certain conditions, the same is true here. Let us start by deriving the analogue of the

Complementary Slackness Theorem. The derivation begins with a reiteration of the

derivation of the Weak Duality Theorem. Indeed, let (x,w) denote a feasible solution

3. CONVEXITY AND COMPLEXITY 415

to the primal problem and let (x̄, y, z) denote a feasible solution to the dual problem

(we have put a bar on the dual x to distinguish it from the one appearing in the pri-

mal). The chain of equalities that form the backbone of the proof of the Weak Duality

Theorem are, as always, obtained by writing yT Ax two ways, namely,

yT (Ax) = (AT y)T x,

and then producing the obvious substitutions

yT (Ax) = yT (b + w) = bT y + yT w

and

(AT y)T x = (c − z + Qx̄)T x = cT x − zT x + x̄T Qx.

Comparing the ends of these two chains and using the fact that both yT w and zT x are

nonnegative, we see that

(24.4) 0 ≤ yT w + zT x = cT x + x̄T Qx − bT y.

So far, so good.

Now, what about the Complementary Slackness Theorem? In the present context,

we expect this theorem to say roughly the following: given a solution (x∗, w∗) that is

feasible for the primal and a solution (x∗, y∗, z∗) that is feasible for the dual, if these

solutions make inequality (24.4) into an equality, then the primal solution is optimal

for the primal problem and the dual solution is optimal for the dual problem.

Let’s try to prove this. Let (x,w) be an arbitrary primal feasible solution. Weak

duality applied to (x,w) on the primal side and (x∗, y∗, z∗) on the dual side says that

cT x + x∗T Qx − bT y∗ ≥ 0.

But for the specific primal feasible solution (x∗, w∗), this inequality is an equality:

cT x∗ + x∗T Qx∗ − bT y∗ = 0.

Combining these, we get

cT x∗ + x∗T Qx∗ ≤ cT x + x∗T Qx.

This is close to what we want, but not quite it. Recall that our aim is to show that the

primal objective function evaluated at x∗ is no larger than its value at x. That is,

cT x∗ +
1

2
x∗T Qx∗ ≤ cT x +

1

2
xT Qx.

416 24. QUADRATIC PROGRAMMING

It is easy to get from the one to the other. Starting from the desired left-hand side, we

compute as follows:

cT x∗ +
1

2
x∗T Qx∗ = cT x∗ + x∗T Qx∗ − 1

2
x∗T Qx∗

≤ cT x + x∗T Qx − 1

2
x∗T Qx∗

= cT x +
1

2
xT Qx − 1

2
xT Qx + x∗T Qx − 1

2
x∗T Qx∗

= cT x +
1

2
xT Qx − 1

2
(x − x∗)T Q(x − x∗).

The last step in the derivation is to drop the subtracted term on the right-hand side of

the last expression. We can do this if the quantity being subtracted is nonnegative.

But is it? In general, the answer is no. For example, if Q were the negative of the

identity matrix, then the expression (x − x∗)T Q(x − x∗) would be negative rather

than nonnegative.

So it is here that we must impose a restriction on the class of quadratic program-

ming problems that we study. The correct assumption is that Q is positive semidefinite.

Recall from Chapter 19 that a matrix Q is positive semidefinite if

ξT Qξ ≥ 0 for all ξ ∈ R
n.

With this assumption, we can finish the chain of inequalities and conclude that

cT x∗ +
1

2
x∗T Qx∗ ≤ cT x +

1

2
xT Qx.

Since x was an arbitrary primal feasible point, it follows that x∗ (together with w∗)

is optimal for the primal problem. A similar analysis shows that y∗ (together with x∗

and z∗) is optimal for the dual problem (see Exercise 24.4).

A quadratic programming problem of the form (24.3) in which the matrix Q is

positive semidefinite is called a convex quadratic programming problem. The discus-

sion given above can be summarized in the following theorem:

THEOREM 24.1. For convex quadratic programming problems, given a solution

(x∗, w∗) that is feasible for the primal and a solution (x∗, y∗, z∗) that is feasible for

the dual, if these solutions make inequality (24.4) into an equality, then the primal

solution is optimal for the primal problem and the dual solution is optimal for the

dual problem.

To see how bad things are when Q is not positive semidefinite, consider the fol-

lowing example:

(24.5)
minimize

∑

j xj(1 − xj) +
∑

j cjxj

subject to 0 ≤ xj ≤ 1, j = 1, 2, . . . , n.

3. CONVEXITY AND COMPLEXITY 417

x
1

x
2

FIGURE 24.2. The objective function for (24.5) in the case where

n = 2.

We assume that the coefficients, cj , j = 1, 2, . . . , n, are small. To be precise, we

assume that

|cj | < 1, j = 1, 2, . . . , n.

Let f(x) denote the value of the objective function at point x. Setting the gradient to

zero,

∇f(x) = e − 2x + c = 0,

we see that there is one interior critical point. It is given by

x = (e + c)/2

(the assumption that c is small guarantees that this x lies in the interior of the feasible

set: 0 < x < 1). However, this critical point is a local maximum, since the matrix of

second derivatives is −2I . The algebraic details are tedious, but if we look at Figure

24.2, it is easy to be convinced that every vertex of the feasible set is a local minimum.

While this particular problem is easy to solve explicitly, it does indicate the essential

difficulty associated with nonconvex quadratic programming problems—namely, for

such problems one may need to check every vertex individually, and there may be an

exponential number of such vertices.

The situation for convex quadratic programming problems is much better, since

they inherit most of the properties that made linear programs efficiently solvable. In-

deed, in the next section, we derive an interior-point method for quadratic program-

ming problems.

418 24. QUADRATIC PROGRAMMING

4. Solution Via Interior-Point Methods

In this section, we derive an interior-point method for quadratic programming

problems. We start from the first-order optimality conditions, which we saw in the last

section are given by

AT y + z − Qx = c

Ax − w = b

XZe = μe

Y We = μe.

Following the derivation given in Chapter 18, we replace (x,w, y, z) with (x+∆x,w+
∆w, y + ∆y, z + ∆z) to get the following nonlinear system in (∆x,∆w,∆y,∆z):

AT ∆y + ∆z − Q∆x = c − AT y − z + Qx =: σ

A∆x − ∆w = b − Ax + w =: ρ

Z∆x + X∆z + ∆X∆Ze = μe − XZe

W∆y + Y ∆w + ∆Y ∆We = μe − Y We.

Next, we drop the nonlinear terms to get the following linear system for the step di-

rections (∆x,∆w,∆y,∆z):

AT ∆y + ∆z − Q∆x = σ

A∆x − ∆w = ρ

Z∆x + X∆z = μe − XZe

W∆y + Y ∆w = μe − Y We.

Following the reductions of Chapter 19, we use the last two equations to solve for ∆z
and ∆w to get

∆z = X−1(μe − XZe − Z∆x)

∆w = Y −1(μe − Y We − W∆y).

We then use these expressions to eliminate ∆z and ∆w from the remaining two equa-

tions in the system. After elimination, we arrive at the following reduced KKT system:

AT ∆y − (X−1Z + Q)∆x = σ − μX−1e + z(24.6)

A∆x + Y −1W∆y = ρ + μY −1e − w.(24.7)

Substituting in the definitions of ρ and σ and writing the system in matrix notation,

we get
[

−(X−1Z + Q) AT

A Y −1W

][

∆x

∆y

]

=

[

c − AT y − μX−1e + Qx

b − Ax + μY −1e

]

.

A summary of the algorithm is shown in Figure 24.3. It should be clear that

5. PRACTICAL CONSIDERATIONS 419

initialize (x,w, y, z) > 0

while (not optimal) {
ρ = b − Ax + w

σ = c − AT y − z + Qx

γ = zT x + yT w

μ = δ
γ

n + m
solve:

[

−(X−1Z + Q) AT

A Y −1W

][

∆x

∆y

]

=

[

c − AT y − μX−1e + Qx

b − Ax + μY −1e

]

.

∆z = X−1(μe − XZe − Z∆x)

∆w = Y −1(μe − Y We − W∆y)

θ = r

(

maxij

{

−∆xj

xj
,−∆wi

wi
,−∆yi

yi
,−∆zj

zj

})−1

∧ 1

x ← x + θ∆x, w ← w + θ∆w

y ← y + θ∆y, z ← z + θ∆z

}

FIGURE 24.3. The path-following method for quadratic program-

ming problems.

the quadratic term in the objective function plays a fairly small role. In fact, the

convergence analysis given in Chapter 18 can be easily adapted to yield analogous

results for quadratic programming problems (see Exercise 24.6).

5. Practical Considerations

For practical implementations of interior-point algorithms, we saw in Chapter 19

that the difficulties created by dense rows/columns suggest that we solve the reduced

KKT system using an equation solver that can handle symmetric indefinite systems

(such as those described in Chapter 20). Quadratic programming problems give us

420 24. QUADRATIC PROGRAMMING

even more reason to prefer the reduced KKT system. To see why, let us reduce the

system further to get a feel for the normal equations for quadratic programming.

If we use (24.6) to solve for ∆x and then eliminate it from (24.7), we get

∆x = −(X−1Z + Q)−1
(

c − AT y + Qx − μX−1e − AT ∆y
)

and the associated system of normal equations (in primal form):

(

A(X−1Z + Q)−1AT + Y −1W
)

∆y = b − Ax + μY −1e

+A(X−1Z + Q)−1
(

c − AT y + Qx − μX−1e
)

.

As we saw in Chapter 19, the most significant disadvantage of the normal equations

is that they could involve a dense matrix even when the original constraint matrix is

sparse. For quadratic programming, this disadvantage is even more pronounced. Now

the matrix of normal equations has the nonzero pattern of A(D + Q)−1AT , where D
is a diagonal matrix. If Q is a diagonal matrix, then this matrix appearing between

A and AT is diagonal, and the system has the same structure as we saw for linear

programming. But if Q is not a diagonal matrix, then all hope for any sparsity in

A(D + Q)−1AT is lost.

Fortunately, however, the dual form of the normal equations is likely to retain

some sparsity. Indeed, to derive the dual form, we use (24.7) to solve for ∆y and then

eliminate it from (24.6). The result is

∆y = Y W−1
(

b − Ax + μY −1e − A∆x
)

and

−
(

X−1Z + Q + AT Y W−1A
)

∆x = c − AT y + Qx − μX−1e

−AT Y W−1
(

b − Ax + μY −1e
)

.

Now the matrix has a nonzero pattern of AT A + Q. This pattern is much more likely

to be sparse than the pattern we had above.

As mentioned earlier, there is significantly less risk of fill-in if Q is diagonal. A

quadratic programming problem for which Q is diagonal is called a separable qua-

dratic programming problem. It turns out that every nonseparable quadratic program-

ming problem can be replaced by an equivalent separable version, and sometimes this

replacement results in a problem that can be solved dramatically faster than the origi-

nal nonseparable problem. The trick reveals itself when we remind ourselves that the

problems we are studying are convex quadratic programs, and so we ask the question:

how do we know that the matrix Q is positive semidefinite? Or, more to the point, how

does the creator of the model know that Q is positive semidefinite? There are many

equivalent characterizations of positive semidefiniteness, but the one that is easiest to

check is the one that says that Q is positive semidefinite if and only if it can be factored

as follows:

Q = FT DF.

5. PRACTICAL CONSIDERATIONS 421

Here F is a k × n matrix and D is a k × k diagonal matrix having all nonnegative

diagonal entries. In fact, the model creator often started with F and D and then formed

Q by multiplying. In these cases, the matrix F will generally be less dense than

Q. And if k is substantially less than n, then the following substitution is almost

guaranteed to dramatically improve the solution time. Introduce new variables y by

setting

y = Fx.

With this definition, the nonseparable quadratic programming problem (24.3) can be

replaced by the following equivalent separable one:

minimize cT x + 1
2yT Dy

subject to Ax≥ b

Fx − y = 0

x≥ 0.

The cost of separation is the addition of k new constraints. As we said before, if k
is small and/or F is sparse, then we can expect this formulation to be solved more

efficiently.

To illustrate this trick, let us return to the Markowitz model. Recall that the qua-

dratic terms in this model come from the variance of the portfolio’s return, which is

given by

Var(R) = E(
∑

j

xjR̃j)
2

=
T
∑

t=1

p(t)

⎛

⎝

∑

j

xjR̃j(t)

⎞

⎠

2

.

Here,

p(t) =
pT−t

∑T
s=1 pT−s

for t = 1, 2, . . . , T , and

R̃j(t) = Rj(t) −
T
∑

t=1

p(t)Rj(t).

If we introduce the variables,

y(t) =
∑

j

xjR̃j(t), t = 1, 2, . . . , T,

422 24. QUADRATIC PROGRAMMING

then we get the following separable version of the Markowitz model:

maximize
∑

j

xjERj − μ

T
∑

t=1

p(t)y(t)2

subject to
∑

j

xj = 1

y(t) =
∑

j xjR̃j(t), t = 1, 2, . . . , T,

xj ≥ 0 j = 1, 2, . . . , n.

Using specific data involving 500 possible investments and 20 historical time periods,

the separable version solves 60 times faster than the nonseparable version using a

QP-solver called LOQO.

Exercises

24.1 Show that the gradient of the function

f(x) =
1

2
xT Qx

is given by

∇f(x) = Qx.

24.2 Suppose that Q is an n × n matrix that is not necessarily symmetric. Let

Q̃ = 1
2 (Q + QT). Show that

(a) xT Qx = xT Q̃x, for every x ∈ R
n, and

(b) Q̃ is symmetric.

24.3 Penalty Methods.

(a) Consider the following problem:

minimize 1
2xT Qx

subject to Ax = b,

where Q is symmetric, positive semidefinite, and invertible (these last

two conditions are equivalent to saying that Q is positive definite). By

solving the first-order optimality conditions, give an explicit formula

for the solution to this problem.

(b) Each equality constraint in the above problem can be replaced by a

penalty term added to the objective function. Penalty terms should be

small when the associated constraint is satisfied and become rapidly

larger as it becomes more and more violated. One choice of penalty

function is the quadratic function. The quadratic penalty problem is

defined as follows:

minimize
1

2
xT Qx +

λ

2
(b − Ax)T (b − Ax),

NOTES 423

where λ is a large real-valued parameter. Derive an explicit formula for

the solution to this problem.

(c) Show that, in the limit as λ tends to infinity, the solution to the quadratic

penalty problem converges to the solution to the original problem.

24.4 Consider a convex quadratic programming problem. Suppose that (x∗, w∗)
is a feasible solution for the primal and that (x∗, y∗, z∗) is a feasible solution

for the dual. Suppose further that these solutions make inequality (24.4) into

an equality. Show that the dual solution is optimal for the dual problem.

24.5 A real-valued function f defined on R
n is called convex if, for every x, y ∈

R
n, and for every 0 < t < 1,

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

Show that the function

f(x) = cT x +
1

2
xT Qx, x ∈ R

n,

is convex if Q is positive semidefinite.

24.6 Extend the convergence analysis given in Chapter 18 so that it applies to con-

vex quadratic programming problems, and identify in particular any steps

that depend on Q being positive semidefinite.

24.7 Consider the quadratic programming problem given in the following form:

minimize cT x + 1
2xT Qx

subject to Ax ≥ b,

(i.e., without assuming nonnegativity of the x vector). Show that the formu-

las for the step directions ∆x and ∆y are given by the following reduced

KKT system:

(24.8)

[

−Q AT

A WY −1

][

∆x

∆y

]

=

[

c − AT y + Qx

b − Ax + μY −1e

]

.

Notes

The portfolio optimization model presented in Section 24.1 was first introduced

by Markowitz (1959). He received the 1990 Nobel Prize in Economics for this work.

Quadratic programming is the simplest class of problems from the subject called

nonlinear programming. Two excellent recent texts that cover nonlinear programming

are those by Bertsekas (1995) and Nash & Sofer (1996). The first paper that extended

the path-following method to quadratic programming was Monteiro & Adler (1989).

The presentation given here follows Vanderbei (1999).

CHAPTER 25

Convex Programming

In the last chapter, we saw that small modifications to the primal–dual interior-

point algorithm allow it to be applied to quadratic programming problems as long as

the quadratic objective function is convex. In this chapter, we shall go further and

allow the objective function to be a general (smooth) convex function. In addition,

we shall allow the feasible region to be any convex set given by a finite collection of

convex inequalities.

1. Differentiable Functions and Taylor Approximations

In this chapter, all nonlinear functions will be assumed to be twice differentiable,

and the second derivatives will be assumed continuous. We begin by reiterating a few

definitions and results that were briefly touched on in Chapter 17. First of all, given a

real-valued function f defined on a domain in R
n, the vector

∇f(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is called the gradient of f at x. The matrix

Hf(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂2f
∂x2

1

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xn

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x2
2

(x) · · · ∂2f
∂x2∂xn

(x)

...
...

...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) · · · ∂2f

∂x2
n
(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is called the Hessian of f at x. In dimensions greater than one, the gradient and

the Hessian are the analogues of the first and second derivatives of a function in one

dimension. In particular, they appear in the three-term Taylor series expansion of f
about the point x:

f(x + ∆x) = f(x) + ∇f(x)T ∆x +
1

2
∆xT Hf(x)∆x + rx(∆x).

425

426 25. CONVEX PROGRAMMING

The last term is called the remainder term. The value of this expansion lies in the fact

that this remainder is small when ∆x is small. To be precise, the remainder has the

following property:

lim
∆x→0

rx(∆x)

‖∆x‖2
= 0.

This result follows immediately from the one-dimensional three-term Taylor series

expansion applied to g(t) = f(x + t∆x) and the chain rule (see Exercise 25.8).

2. Convex and Concave Functions

There are several equivalent definitions of convexity of a function. The definition

that is most expedient for our purposes is the multidimensional generalization of the

statement that a function is convex if its second derivative is nonnegative. Hence, we

say that a real-valued function defined on a domain in R
n is convex if its Hessian is

positive semidefinite everywhere in its domain. A function is called concave if its

negation is convex.

3. Problem Formulation

We shall study convex optimization problems posed in the following form:

minimize c(x)

subject to ai(x) ≥ bi, i = 1, 2, . . . , m.

Here, the real-valued function c(·) is assumed to be convex, and the m real-valued

functions ai(·) are assumed to be concave. This formulation is the natural extension

of the convex quadratic programming problem studied in the previous chapter, except

that we have omitted the nonnegativity constraints on the variables. This omission is

only a matter of convenience since, if a given problem involves nonnegative variables,

the assertion of their nonnegativity can be incorporated as part of the m nonlinear

inequality constraints. Also note that once we allow for general concave inequality

constraints, we can take the right-hand sides to be zero by simply incorporating ap-

propriate shifts into the nonlinear constraint functions. Hence, many texts on convex

optimization prefer to formulate the constraints in the form ai(x) ≥ 0. We have

left the constants bi on the right-hand side for later comparisons with the quadratic

programming problem of the previous chapter. Finally, note that many convex and

concave functions become infinite in places and therefore have a natural domain that

is a strict subset of R
n. This issue is important to address when solving practical prob-

lems, but since this chapter is just an introduction to convex optimization, we shall

assume that all functions are finite on all of R
n.

4. SOLUTION VIA INTERIOR-POINT METHODS 427

At times it will be convenient to use vector notation to consolidate the m con-

straints into a single inequality. Hence, we sometimes express the problem as

minimize c(x)

subject to A(x) ≥ b,

where A(·) is a function from R
n into R

m and b is a vector in R
m. As usual, we let w

denote the slack variables that convert the inequality constraints to equalities:

minimize c(x)

subject to A(x) − w = b

w ≥ 0.

4. Solution Via Interior-Point Methods

In this section, we derive an interior-point method for convex programming prob-

lems. We start by introducing the associated barrier problem:

minimize c(x) − μ
∑

i log wi

subject to ai(x) − wi = bi, i = 1, 2, . . . , m.

The Lagrangian for this problem is given by

L(x,w, y) = c(x) − μ
∑

i

log wi +
∑

i

yi(bi − ai(x) + wi).

Equating to zero the derivative of L with respect to each of its variables, we get the

following set of first-order optimality conditions:

∂L

∂xj
=

∂c

∂xj
(x) −

∑

i

yi
∂ai

∂xj
(x) = 0, j = 1, 2, . . . , n,

∂L

∂wi
= − μ

wi
+ yi = 0, i = 1, 2, . . . ,m,

∂L

∂yi
= bi − ai(x) + wi = 0, i = 1, 2, . . . ,m.

The next step is to multiply the ith equation in the middle set by wi and then replace

x with x + ∆x, y by y + ∆y, and w by w + ∆w to get the following system:

∂c

∂xj
(x + ∆x) −

∑

i

(yi + ∆yi)
∂ai

∂xj
(x + ∆x) = 0, j = 1, 2, . . . , n,

−μ + (wi + ∆wi)(yi + ∆yi) = 0, i = 1, 2, . . . , m,

bi − ai(x + ∆x) + wi + ∆wi = 0, i = 1, 2, . . . , m.

428 25. CONVEX PROGRAMMING

Now we view this set of equations as a nonlinear system in the “delta” variables and

linearize it by replacing each nonlinear function with its two-term Taylor series ap-

proximation. For example, ∂c/∂xj(x + ∆x) gets replaced with

∂c

∂xj
(x + ∆x) ≈ ∂c

∂xj
(x) +

∑

k

∂2c

∂xj∂xk
(x)∆xk.

Similarly, ∂ai/∂xj(x + ∆x) gets replaced with

∂ai

∂xj
(x + ∆x) ≈ ∂ai

∂xj
(x) +

∑

k

∂2ai

∂xj∂xk
(x)∆xk.

Writing the resulting linear system with the delta-variable terms on the left and every-

thing else on the right, we get

∑

k

(

− ∂2c

∂xj∂xk
+

∑

i

yi
∂2ai

∂xj∂xk

)

∆xk +
∑

i

∂ai

∂xj
∆yi =

∂c

∂xj
−

∑

i

yi
∂ai

∂xj

yi∆wi + wi∆yi = μ − wiyi
∑

k

∂ai

∂xk
∆xk − ∆wi = bi − ai + wi.

(Note that we have omitted the indication that the functions c, ai, and their derivatives

are to be evaluated at x.)

As usual, the next step is to solve the middle set of equations for the ∆wi’s and

then to eliminate them from the system. The reduced system then becomes

∑

k

(

− ∂2c

∂xj∂xk
+

∑

i

yi
∂2ai

∂xj∂xk

)

∆xk +
∑

i

∂ai

∂xj
∆yi =

∂c

∂xj
−

∑

i

yi
∂ai

∂xj

∑

k

∂ai

∂xk
∆xk +

wi

yi
∆yi = bi − ai +

μ

yi
,

and the equations for the ∆wi’s are

∆wi = −wi

yi
∆yi +

μ

yi
− wi, i = 1, 2, . . . ,m.

At this point it is convenient to put the equations into matrix form. If we generalize our

familiar gradient notation by letting ∇A(x) denote the m × n matrix whose (i, j)th
entry is ∂ai/∂xj(x), then we can write the above system succinctly as follows:

(25.1)
[

−Hc(x) +
∑

i yiHai(x) ∇A(x)T

∇A(x) WY −1

][

∆x

∆y

]

=

[

∇c(x) −∇A(x)T y

b − A(x) + μY −1e

]

.

Now that we have step directions, the algorithm is easy to describe—just compute

step lengths that preserve strict positivity of the wi’s and the yi’s, step to a new point,

and iterate.

6. MERIT FUNCTIONS 429

5. Successive Quadratic Approximations

It is instructive to notice the similarity between the system given above and the

analogous system for the quadratic programming problem posed in the analogous form

(see Exercise 24.7). Indeed, a careful matching of terms reveals that the step direc-

tions derived here are exactly those that would be obtained if one were to form a certain

quadratic approximation at the beginning of each iteration of the interior-point algo-

rithm. Hence, the interior-point method can be thought of as a successive quadratic

programming algorithm. In order to write this quadratic approximation neatly, let x̄
and ȳ denote the current primal and dual variables, respectively. Then the quadratic

approximation can be written as

minimize c(x̄) + ∇c(x̄)T (x − x̄)+ 1
2 (x − x̄)T Hc(x̄)(x − x̄)

− 1
2 (x − x̄)T (

∑

i yiHai(x̄)) (x − x̄)

subject to A(x̄) + ∇A(x̄)(x − x̄) ≥ b.

To verify the equivalence, we first observe that this problem is a quadratic program

whose linear objective coefficients are given by

∇c(x̄) − Hc(x̄)x̄ +

(

∑

i

yiHai(x̄)

)

x̄,

whose quadratic objective coefficients are given by

Hc(x̄) −
∑

i

yiHai(x̄),

and whose right-hand side vector is given by

b − A(x̄) + ∇A(x̄)x̄.

Substituting these expressions into the appropriate places in (24.8), we get (25.1).

Looking at the quadratic terms in the objective of the quadratic programming

approximation, we see that the objective is convex, since we assumed at that start that

c is convex, each ai is concave, and the dual variables multiplying the Hessians of the

constraint functions are all strictly positive.

6. Merit Functions

It is perhaps a little late to bring this up, but here’s a small piece of advice: always

test your knowledge on the simplest possible example. With that in mind, consider the

following trivial convex optimization problem:

minimize
√

1 + x2.

This problem has no constraints. Looking at the graph of the objective function, which

looks like a smoothed out version of |x|, we see that the optimal solution is x∗ = 0.

430 25. CONVEX PROGRAMMING

What could be easier! There are no yi’s nor any wi’s and equation (25.1) becomes just

−Hc(x)∆x = ∇c(x),

where c(x) =
√

1 + x2. Taking the first and second derivatives, we get

∇c(x) =
x√

1 + x2
and Hc(x) =

1

(1 + x2)3/2
.

Substituting these expressions into the equation for ∆x and simplifying, we get that

∆x = −x(1 + x2).

Since there are no nonnegative variables that need to be kept positive, we can take

unshortened steps. Hence, letting x(k) denote our current point and x(k+1) denote the

next point, we have that

x(k+1) = x(k) + ∆x = −(x(k))3.

That is, the algorithm says to start at any point x(0) and then replace this point with

the negative of its cube, replace that with the negative of its cube, and so on.

The question is: does this sequence converge to zero? It is easy to see that the

answer is yes if |x(0)| < 1 but no otherwise. For example, if we start with x(0) = 1/2,

then the sequence of iterates is

k x(k)

0 0.50000000

1 -0.12500000

2 0.00195313

3 -0.00000001

If, on the other hand, we start at x(0) = 2, then we get the following wildly divergent

sequence:

k x(k)

0 2

1 -8

2 512

3 -134,217,728

Here is what goes wrong in this example. For problems without constraints, our algo-

rithm has an especially simple description:

From the current point, use the first three terms of a Taylor se-

ries expansion to make a quadratic approximation to the objective

function. The next point is the minimum of this quadratic approx-

imation function.

6. MERIT FUNCTIONS 431

-4

-2

0

2

4

6

8

10

12

14

-10 -5 0 5 10

sqrt(x**2 + 1)
sqrt(5)+2*(x-2)/sqrt(5)+(x-2)**2/(2*sqrt(5)**3)

FIGURE 25.1. The function c(x) =
√

1 + x2 and its quadratic ap-

proximation at x = 2.

Figure 25.1 shows a graph of the objective function together with the quadratic ap-

proximation at x(0) = 2. It is easy to see that the next iterate is at −8. Also, the

further from zero that one starts, the more the function looks like a straight line and

hence the further the minimum will be to the other side.

How do we remedy this nonconvergence? The key insight is the observation

that the steps are always in the correct direction (i.e, a descent direction) but they

are too long—we need to shorten them. A standard technique for shortening steps in

situations like this is to introduce a function called a merit function and to shorten steps

as needed to ensure that this merit function is always monotonically decreasing. For

the example above, and in fact for any unconstrained optimization problem, we can use

the objective function itself as the merit function. But, for problems with constraints,

one needs to use something a little different from just the objective function. For

example, one can use the logarithmic barrier function plus a constant times the square

of the Euclidean norm of the infeasibility vector:

Ψ(x,w) := c(x) −
∑

i

log(wi) + β‖b − A(x) + w‖2.

Here, β is a positive real number. One can show that for β sufficiently large the step

directions are always descent directions for this merit function.

A summary of the algorithm is shown in Figure 25.2.

432 25. CONVEX PROGRAMMING

initialize (x,w, y) so that (w, y) > 0

while (not optimal) {
set up QP subproblem:

A = ∇A(x)

b = b − A(x) + ∇A(x)x

c = ∇c(x) − Hc(x)x + (
∑

i yiHai(x)) x

Q = Hc(x) −∑

i yiHai(x)

ρ = b − Ax + w

σ = c − AT y + Qx

γ = yT w

μ = δ
γ

n + m
solve:

[

−Q AT

A Y −1W

][

∆x

∆y

]

=

[

c − AT y + Qx

b − Ax − μY −1e

]

∆w = Y −1(μe − Y We − W∆y)

θ = r

(

maxij

{

−∆xj

xj
,−∆wi

wi
,−∆yi

yi

})−1

∧ 1

do {
xnew = x + θ∆x,

wnew = w + θ∆w

ynew = y + θ∆y

θ ← θ/2

}while (Ψ(xnew, wnew) ≥ Ψ(x,w))

}

FIGURE 25.2. The path-following method for convex program-

ming problems.

EXERCISES 433

7. Parting Words

A story is never over, but every book must have an end. So, we stop here mindful

of the fact that there are many interesting things left unsaid and topics unexplored. We

hope we have motivated the reader to pursue the story further without our assistance—

by reading other books and/or research papers and even perhaps making his or her own

contributions. Cheers.

Exercises

25.1 Piecewise Linear Approximation. Given real numbers b1 < b2 < · · · < bk,

let f be a continuous function on R that is linear on each interval [bi, bi+1],
i = 0, 1, . . . , k (for convenience we let b0 = −∞ and bk+1 = ∞). Such a

function is called piecewise linear and the numbers bi are called breakpoints.

Piecewise linear functions are often used to approximate (continuous) non-

linear functions. The purpose of this exercise is to show how and why.

(a) Every piecewise linear function can be written as a sum of a constant

plus a linear term plus a sum of absolute value terms:

f(x) = d + a0x +

k
∑

i=1

ai|x − bi|.

Let ci denote the slope of f on the interval [bi, bi+1]. Derive an explicit

expression for each of the aj’s (including a0) in terms of the ci’s.

(b) In terms of the ci’s, give necessary and sufficient conditions for f to be

convex.

(c) In terms of the aj’s, give necessary and sufficient conditions for f to be

convex.

(d) Assuming that f is convex and is a term in the objective function for

a linearly constrained optimization problem, derive an equivalent lin-

ear programming formulation involving at most k extra variables and

constraints.

(e) Repeat the first four parts of this problem using max(x− bi, 0) in place

of |x − bi|.
25.2 Let f be the function of 2 real variables defined by

f(x, y) = x2 − 2xy + y2.

Show that f is convex.

25.3 A function f of 2 real variables is called a monomial if it has the form

f(x, y) = xmyn

for some nonnegative integers m and n. Which monomials are convex?

434 25. CONVEX PROGRAMMING

25.4 Let φ be a convex function of a single real variable. Let f be a function

defined on R
n by the formula

f(x) = φ(aT x + b),

where a is an n-vector and b is a scalar. Show that f is convex.

25.5 Which of the following functions are convex (assume that the domain of the

function is all of R
n unless specified otherwise)?

(a) 4x2 − 12xy + 9y2

(b) x2 + 2xy + y2

(c) x2y2

(d) x2 − y2

(e) ex−y

(f) ex2−y2

(g) x2

y on {(x, y) : y > 0}

25.6 Given a symmetric square matrix A, the quadratic form xT Ax =
∑

i,j aijxixj

generalizes the notion of the square of a variable. The generalization of the

notion of the fourth power of a variable is an expression of the form

f(x) =
∑

i,j,k,l

aijklxixjxkxl.

The four-dimensional array of numbers A = {aijkl : 1 ≤ i ≤ n, 1 ≤
j ≤ n, 1 ≤ k ≤ n, 1 ≤ l ≤ n} is called a 4-tensor. As with quadratic

expressions, we may assume that A is symmetric:

aijkl = ajkli = · · · = alkij

(i.e., given i, j, k, l, all 4! = 24 premutations must give the same value for

the tensor).

(a) Give conditions on the 4-tensor A to guarantee that f is convex.

(b) Suppose that some variables, say yi’s, are related to some other vari-

ables, say xj’s, in a linear fashion:

yi =
∑

j

fijxj .

Express
∑

i y4
i in terms of the xj’s. In particular, give an explicit ex-

pression for the 4-tensor and show that it satisfies the conditions derived

in part (a).

25.7 Consider the problem

minimize ax1 + x2

subject to
√

ǫ2 + x2
1 ≤ x2.

NOTES 435

where −1 < a < 1.

(a) Graph the feasible set:
{

(x1, x2) :
√

ǫ2 + x2
1 ≤ x2

}

. Is the problem

convex?

(b) Following the steps in the middle of p. 391 of the text, write down the

first-order optimality conditions for the barrier problem associated with

barrier parameter μ > 0.

(c) Solve explicitly the first-order optimality conditions. Let (x1(μ), x2(μ))
denote the solution.

(d) Graph the central path, (x1(μ), x2(μ)), as μ varies from 0 to ∞.

25.8 Multidimensional Taylor’s series expansion. Given a function g(t) defined

for real values of t, the three-term Taylor’s series expansion with remainder

is

g(t + ∆t) = g(t) + g′(t)∆t +
1

2
g′′(t)∆t2 + rt(∆t).

The remainder term satisfies

lim
∆t→0

rt(∆t)

∆t2
= 0.

Let f be a smooth function defined on R
n. Apply the three-term Taylor’s

series expansion to g(t) = f(x + t∆x) to show that

f(x + ∆x) = f(x) + ∇f(x)T ∆x +
1

2
∆xT Hf(x)∆x + rx(∆x).

25.9 Consider the following convex programming problem:

minimize x2

subject to x2
1 + x2

2 ≤ 1.

(a) Find the quadratic subproblem if the current primal solution is (x̄1, x̄2) =
(1/2,−2/3) and the current dual solution is ȳ = 2.

(b) Show that for arbitrary current primal and dual solutions, the feasible

set for the convex programming problem is contained within the feasi-

ble set for the quadratic approximation.

Notes

Interior-point methods for nonlinear programming can be traced back to the pio-

neering work of Fiacco & McCormick (1968). For more on interior-point methods for

convex programming, see Nesterov & Nemirovsky (1993) or den Hertog (1994).

The fact that the step directions are descent directions for the merit function Ψ is

proved in Vanderbei & Shanno (1999).

APPENDIX A

Source Listings

The algorithms presented in this book have all been implemented and are publicly

available from the author’s web site:

http://www.princeton.edu/˜rvdb/LPbook/

There are two variants of the simplex method: the two-phase method as shown

in Figure 6.1 and the self-dual method as shown in Figure 7.1. The simplex codes

require software for efficiently solving basis systems. There are two options: the eta-

matrix approach described in Section 8.3 and the refactorization approach described in

Section 8.5. Each of these “engines” can be used with either simplex method. Hence,

there are in total four possible simplex codes that one can experiment with.

There are three variants of interior-point methods: the path-following method as

shown in Figure 18.1, the homogeneous self-dual method shown in Figure 22.1 (mod-

ified to take long steps), and the long-step homogeneous self-dual method described

in Exercise 22.4 of Chapter 22.

The source code that implements the algorithms mentioned above share as much

common code as possible. For example, they all share the same input and output

routines (the input routine, by itself, is a substantial piece of code). They also share

code for the common linear algebra functions. Therefore, the difference between two

methods is limited primarily to the specific function that implements the method itself.

The total number of lines of code used to implement all of the algorithms is about

9000. That is too many lines to reproduce all of the code here. But the routines that

actually lay out the particular algorithms are fairly short, only about 300 lines each.

The relevant part of the self-dual simplex method is shown starting on the next page.

It is followed by a listing of the relevant part of the homogeneous self-dual method.

437

438 A. SOURCE LISTINGS

1. The Self-Dual Simplex Method

/**
* Main loop *
**/

for (iter=0; iter<MAX_ITER; iter++) {

/***
* STEP 1: Find mu *
***/

mu = -HUGE_VAL;
col_in = -1;
for (j=0; j<n; j++) {

if (zbar_N[j] > EPS2) {
if (mu < -z_N[j]/zbar_N[j]) {

mu = -z_N[j]/zbar_N[j];
col_in = j;

}
}

}
col_out = -1;
for (i=0; i<m; i++) {

if (xbar_B[i] > EPS2) {
if (mu < -x_B[i]/xbar_B[i]) {

mu = -x_B[i]/xbar_B[i];
col_out = i;
col_in = -1;

}
}

}
if (mu <= EPS3) { /* OPTIMAL */

status = 0;
break;

}

if (col_out >= 0) {

/***
* -1 T *
* STEP 2: Compute dz = -(B N) e *
* N i *
* where i = col_out *
***/

vec[0] = -1.0;
ivec[0] = col_out;
nvec = 1;

btsolve(m, vec, ivec, &nvec);

Nt_times_z(N, at, iat, kat, basicflag, vec, ivec, nvec,
dz_N, idz_N, &ndz_N);

/***
* STEP 3: Ratio test to find entering column *
***/

col_in = ratio_test(dz_N, idz_N, ndz_N, z_N, zbar_N, mu);

if (col_in == -1) { /* INFEASIBLE */
status = 2;
break;

}

/***
* -1 *
* STEP 4: Compute dx = B N e *

1. THE SELF-DUAL SIMPLEX METHOD 439

* B j *
* *
***/

j = nonbasics[col_in];
for (i=0, k=ka[j]; k<ka[j+1]; i++, k++) {

dx_B[i] = a[k];
idx_B[i] = ia[k];

}
ndx_B = i;

bsolve(m, dx_B, idx_B, &ndx_B);

} else {

/***
* -1 *
* STEP 2: Compute dx = B N e *
* B j *
***/

j = nonbasics[col_in];
for (i=0, k=ka[j]; k<ka[j+1]; i++, k++) {

dx_B[i] = a[k];
idx_B[i] = ia[k];

}
ndx_B = i;

bsolve(m, dx_B, idx_B, &ndx_B);

/***
* STEP 3: Ratio test to find leaving column *
***/

col_out = ratio_test(dx_B, idx_B, ndx_B, x_B, xbar_B, mu);

if (col_out == -1) { /* UNBOUNDED */
status = 1;
break;

}

/***
* -1 T *
* STEP 4: Compute dz = -(B N) e *
* N i *
* *
***/

vec[0] = -1.0;
ivec[0] = col_out;
nvec = 1;

btsolve(m, vec, ivec, &nvec);

Nt_times_z(N, at, iat, kat, basicflag, vec, ivec, nvec,
dz_N, idz_N, &ndz_N);

}

/***
* *
* STEP 5: Put t = x /dx *
* i i *
* _ _ *
* t = x /dx *
* i i *
* s = z /dz *
* j j *
* _ _ *
* s = z /dz *
* j j *

440 A. SOURCE LISTINGS

***/

for (k=0; k<ndx_B; k++) if (idx_B[k] == col_out) break;

t = x_B[col_out]/dx_B[k];
tbar = xbar_B[col_out]/dx_B[k];

for (k=0; k<ndz_N; k++) if (idz_N[k] == col_in) break;

s = z_N[col_in]/dz_N[k];
sbar = zbar_N[col_in]/dz_N[k];

/***
* _ _ _ *
* STEP 7: Set z = z - s dz z = z - s dz *
* N N N N N N *
* _ _ *
* z = s z = s *
* i i *
* _ _ _ *
* x = x - t dx x = x - t dx *
* B B B B B B *
* _ _ *
* x = t x = t *
* j j *
***/

for (k=0; k<ndz_N; k++) {
j = idz_N[k];
z_N[j] -= s *dz_N[k];
zbar_N[j] -= sbar*dz_N[k];

}

z_N[col_in] = s;
zbar_N[col_in] = sbar;

for (k=0; k<ndx_B; k++) {
i = idx_B[k];
x_B[i] -= t *dx_B[k];
xbar_B[i] -= tbar*dx_B[k];

}

x_B[col_out] = t;
xbar_B[col_out] = tbar;

/***
* STEP 8: Update basis *
***/

i = basics[col_out];
j = nonbasics[col_in];
basics[col_out] = j;
nonbasics[col_in] = i;
basicflag[i] = -col_in-1;
basicflag[j] = col_out;

/***
* STEP 9: Refactor basis and print statistics *
***/

from_scratch = refactor(m, ka, ia, a, basics, col_out, v);

if (from_scratch) {
primal_obj = sdotprod(c,x_B,basics,m) + f;
printf("%8d %14.7e %9.2e \n", iter, primal_obj, mu);
fflush(stdout);

}
}

2. THE HOMOGENEOUS SELF-DUAL METHOD 441

2. The Homogeneous Self-Dual Method

/**
* Main loop *
**/

for (iter=0; iter<MAX_ITER; iter++) {

/***
* STEP 1: Compute mu and centering parameter delta.

***/

mu = (dotprod(z,x,n)+dotprod(w,y,m)+phi*psi) / (n+m+1);

if (iter%2 == 0) {
delta = 0.0;

} else {
delta = 1.0;

}

/***
* STEP 1: Compute primal and dual objective function values.

***/

primal_obj = dotprod(c,x,n);
dual_obj = dotprod(b,y,m);

/***
* STEP 2: Check stopping rule.

***/

if (mu < EPS) {
if (phi > EPS) {

status = 0;
break; /* OPTIMAL */

}
else
if (dual_obj < 0.0) {

status = 2;
break; /* PRIMAL INFEASIBLE */

}
else
if (primal_obj > 0.0) {

status = 4;
break; /* DUAL INFEASIBLE */

}
else
{

status = 7; /* NUMERICAL TROUBLE */
break;

}
}

/***
* STEP 3: Compute infeasibilities.

***/

smx(m,n,A,kA,iA,x,rho);
for (i=0; i<m; i++) {

rho[i] = rho[i] - b[i]*phi + w[i];
}
normr = sqrt(dotprod(rho,rho,m))/phi;
for (i=0; i<m; i++) {

rho[i] = -(1-delta)*rho[i] + w[i] - delta*mu/y[i];
}

smx(n,m,At,kAt,iAt,y,sigma);
for (j=0; j<n; j++) {

sigma[j] = -sigma[j] + c[j]*phi + z[j];
}

442 A. SOURCE LISTINGS

norms = sqrt(dotprod(sigma,sigma,n))/phi;
for (j=0; j<n; j++) {

sigma[j] = -(1-delta)*sigma[j] + z[j] - delta*mu/x[j];
}

gamma = -(1-delta)*(dual_obj - primal_obj + psi) + psi - delta*mu/phi;

/***
* Print statistics.

***/

printf("%8d %14.7e %8.1e %14.7e %8.1e %8.1e \n",
iter, primal_obj/phi+f, normr,

dual_obj/phi+f, norms, mu);
fflush(stdout);

/***
* STEP 4: Compute step directions.

***/

for (j=0; j<n; j++) { D[j] = z[j]/x[j]; }
for (i=0; i<m; i++) { E[i] = w[i]/y[i]; }

ldltfac(n, m, kAt, iAt, At, E, D, kA, iA, A, v);

for (j=0; j<n; j++) { fx[j] = -sigma[j]; }
for (i=0; i<m; i++) { fy[i] = rho[i]; }

forwardbackward(E, D, fy, fx);

for (j=0; j<n; j++) { gx[j] = -c[j]; }
for (i=0; i<m; i++) { gy[i] = -b[i]; }

forwardbackward(E, D, gy, gx);

dphi = (dotprod(c,fx,n)-dotprod(b,fy,m)+gamma)/
(dotprod(c,gx,n)-dotprod(b,gy,m)-psi/phi);

for (j=0; j<n; j++) { dx[j] = fx[j] - gx[j]*dphi; }
for (i=0; i<m; i++) { dy[i] = fy[i] - gy[i]*dphi; }

for (j=0; j<n; j++) { dz[j] = delta*mu/x[j] - z[j] - D[j]*dx[j]; }
for (i=0; i<m; i++) { dw[i] = delta*mu/y[i] - w[i] - E[i]*dy[i]; }
dpsi = delta*mu/phi - psi - (psi/phi)*dphi;

/***
* STEP 5: Compute step length (long steps).

***/

theta = 0.0;
for (j=0; j<n; j++) {

if (theta < -dx[j]/x[j]) { theta = -dx[j]/x[j]; }
if (theta < -dz[j]/z[j]) { theta = -dz[j]/z[j]; }

}
for (i=0; i<m; i++) {

if (theta < -dy[i]/y[i]) { theta = -dy[i]/y[i]; }
if (theta < -dw[i]/w[i]) { theta = -dw[i]/w[i]; }

}
theta = MIN(0.95/theta, 1.0);

/***
* STEP 6: Step to new point

***/

for (j=0; j<n; j++) {
x[j] = x[j] + theta*dx[j];
z[j] = z[j] + theta*dz[j];

}
for (i=0; i<m; i++) {

y[i] = y[i] + theta*dy[i];
w[i] = w[i] + theta*dw[i];

2. THE HOMOGENEOUS SELF-DUAL METHOD 443

}
phi = phi + theta*dphi;
psi = psi + theta*dpsi;

}

Answers to Selected Exercises

1.3: See Exercise 2.19.

2.1: (x1, x2, x3, x4) = (2, 0, 1, 0), ζ = 17.

2.2: (x1, x2) = (1, 0), ζ = 2.

2.3: (x1, x2, x3) = (0, 0.5, 1.5), ζ = −3.

2.4: (x1, x2, x3) = (0, 1, 0), ζ = −3.

2.5: (x1, x2) = (2, 1), ζ = 5.

2.6: Infeasible.

2.7: Unbounded.

2.8: (x1, x2) = (4, 8), ζ = 28.

2.9: (x1, x2, x3) = (1.5, 2.5, 0), ζ = 10.5.

2.10: (x1, x2, x3, x4) = (0, 0, 0, 1), ζ = 9.

2.11: (x12, x13, x14, x23, x24, x34) = (1, 0, 0, 1, 0, 1), ζ = 6.

7.1: (1) x∗ = (2, 4, 0, 0, 0, 0, 8), ξ∗ = 14. (2) x∗ unchanged, ξ∗ = 12.2. (3)

x∗ = (0, 8, 0, 0, 0, 10, 10), ξ∗ = 16.

7.2: ∆c1 ∈ (−∞, 1.2], ∆c2 ∈ [−1.2,∞), ∆c3 ∈ [−1, 9], ∆c4 ∈ (−∞, 2.8].
9.1: (x1, x2) = (0, 5).
9.2: (x1, x2, x3, x4, x5, x6, x7, x8) = (0, 6, 1, 15, 2, 1, 0, 0).
10.5: The fundamental theorem was proved only for problems in standard

form. The LP here can be reduced to standard form.

11.1: A should hide a or b with probabilities b/(a + b) and a/(a + b), respec-

tively. B should hide a or b with equal probability.

11.3:
[

2 −4

−3 6

]

12.1: Slope = 2/7, intercept = 1.

12.2: Slope = 1/2, intercept = 0.

12.7: (2) 340. (3) x∗ is chosen so that the number of months in which extra

workers will be used is equal to the number of months in the cycle (12) times

the inhouse employee cost ($17.50) divided by the outhouse employee cost

($25) rounded down to the nearest integer.

12.8: Using L1, g = 8.976. With L2, g = 8.924.

445

446 ANSWERS TO SELECTED EXERCISES

13.1:

μ Bonds Materials Energy Financial

5.0000- 0.0000 1.0000 0.0000 0.0000

1.9919-5.0000 0.0000 0.9964 0.0036 0.0000

1.3826-1.9919 0.0000 0.9335 0.0207 0.0458

0.7744-1.3826 0.0000 0.9310 0.0213 0.0477

0.5962-0.7744 0.0000 0.7643 0.0666 0.1691

0.4993-0.5962 0.6371 0.2764 0.0023 0.0842

0.4659-0.4933 0.6411 0.2733 0.0019 0.0836

0.4548-0.4659 0.7065 0.2060 0.0000 0.0875

0.4395-0.4548 0.7148 0.1966 0.0000 0.0886

0.2606-0.4395 0.8136 0.0952 0.0000 0.0912

0.0810-0.2606 0.8148 0.0939 0.0000 0.0913

0.0000-0.0810 0.8489 0.0590 0.0000 0.0922

13.1:

μ Hair Cosmetics Cash

3.5- 1.0 0.0 0.0

1.0-3.5 0.7 0.3 0.0

0.5-1.0 0.5 0.5 0.0

0.0-0.5 0.0 0.0 1.0

14.6: The optimal spanning tree consists of the following arcs:

{(a, b), (b, c), (c, f), (f, g), (d, g), (d, e), (g, h)}.

The solution is not unique.

17.1: x1 =
(

1 + 2μ +
√

1 + 4μ2
)

/2,

x2 =
(

1 − 2μ +
√

1 + 4μ2
)

/2

= 2μ/
(

−(1 − 2μ) +
√

1 + 4μ2
)

.

17.2: Let c = cos θ. If c �= 0, then x1 =
(

c − 2μ +
√

c2 + 4μ2
)

/2c, else

x1 = 1/2. Formula for x2 is the same except that cos θ is replaced by sin θ.

17.3: max{cT x +
∑

j rj log xj +
∑

i si log wi : Ax ≤ b, x ≥ 0}.

18.1: Using δ = 1/10 and r = 9/10:

(1) x = (545, 302, 644)/680, y = (986, 1049)/680,

w = (131, 68)/680, z = (572, 815, 473)/680.

(2) x = (3107, 5114, 4763)/4250, y = (4016, 425)/4250,

w = (2783, 6374)/4250, z = (3692, 1685, 2036)/4250.

(3) x = (443, 296)/290, y = (263, 275, 347)/290,

w = (209, 197, 125)/290, z = (29, 176)/290.

ANSWERS TO SELECTED EXERCISES 447

(4) x = (9, 12, 8, 14)/10, y = (18)/10,

w = (1)/10, z = (9, 6, 11, 5)/10.

20.1:

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

−1 1

−1 1

−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

1

0

1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

20.3:

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

− 1
3 1

−1 1

− 6
7

1
3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2

−3
7
3

3

− 64
21

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Bibliography

Adler, I. & Berenguer, S. (1981), Random linear programs, Technical Report 81-4,

Operations Research Center Report, U.C. Berkeley.

Adler, I., Karmarkar, N., Resende, M. & Veiga, G. (1989), ‘An implementation of Kar-

markar’s algorithm for linear programming’, Mathematical Programming 44, 297–

335.

Adler, I. & Megiddo, N. (1985), ‘A simplex algorithm whose average number of steps

is bounded between two quadratic functions of the smaller dimension’, Journal of

the ACM 32, 871–895.

Ahuja, R., Magnanti, T. & Orlin, J. (1993), Network Flows: Theory, Algorithms, and

Applications, Prentice Hall, Englewood Cliffs, NJ.

Anstreicher, K. (1996), Potential Reduction Algorithms, Technical report, Department

of Management Sciences, University of Iowa.

Barnes, E. (1986), ‘A variation on Karmarkar’s algorithm for solving linear program-

ming problems’, Mathematical Programming 36, 174–182.

Bayer, D. & Lagarias, J. (1989a), ‘The nonlinear geometry of linear programming. I.

affine and projective scaling trajectories’, Transactions of the AMS 314, 499–525.

Bayer, D. & Lagarias, J. (1989b), ‘The nonlinear geometry of linear programming. II.

Legendre transform coordinates and central trajectories’, Transactions of the AMS

314, 527–581.

Bazaraa, M., Jarvis, J. & Sherali, H. (1977), Linear Programming and Network Flows,

2 edn, Wiley, New York.

Bellman, R. (1957), Dynamic Programming, Princeton University Press, Princeton,

NJ.

Bendsøe, M., Ben-Tal, A. & Zowe, J. (1994), ‘Optimization methods for truss geom-

etry and topology design’, Structural Optimization 7, 141–159.

Bertsekas, D. (1991), Linear Network Optimization, The MIT Press, Cambridge, MA.

Bertsekas, D. (1995), Nonlinear Programming, Athena Scientific, Belmont MA.

Bland, R. (1977), ‘New finite pivoting rules for the simplex method’, Mathematics of

Operations Research 2, 103–107.

Bloomfield, P. & Steiger, W. (1983), Least Absolute Deviations: Theory, Applications,

and Algorithms, Birkhäuser, Boston.

449

450 Bibliography

Borgwardt, K.-H. (1982), ‘The average number of pivot steps required by the simplex-

method is polynomial’, Zeitschrift für Operations Research 26, 157–177.

Borgwardt, K.-H. (1987a), Probabilistic analysis of the simplex method, in ‘Opera-

tions Research Proceedings, 16th DGOR Meeting’, pp. 564–576.

Borgwardt, K.-H. (1987b), The Simplex Method—A Probabilistic Approach, Springer-

Verlag, Berlin-Heidelberg-New York.

Bradley, S., Hax, A. & Magnanti, T. (1977), Applied Mathematical Programming,

Addison Wesley, Reading, MA.

Carathéodory, C. (1907), ‘Über den Variabilitätsbereich der Koeffizienten von Poten-

zreihen, die gegebene Werte nicht annehmen’, Mathematische Annalen 64, 95–115.

Carpenter, T., Lustig, I., Mulvey, J. & Shanno, D. (1993), ‘Higher order predictor-

corrector interior point methods with application to quadratic objectives’, SIAM

Journal on Optimization 3, 696–725.

Charnes, A. (1952), ‘Optimality and degeneracy in linear programming’, Economet-

rica 20, 160–170.

Christofides, N. (1975), Graph Theory: An Algorithmic Approach, Academic Press,

New York.

Chvátal, V. (1983), Linear Programming, Freeman, New York.

Dantzig, G. (1951a), Application of the simplex method to a transportation problem,

in T. Koopmans, ed., ‘Activity Analysis of Production and Allocation’, John Wiley

and Sons, New York, pp. 359–373.

Dantzig, G. (1951b), A proof of the equivalence of the programming problem and the

game problem, in T. Koopmans, ed., ‘Activity Analysis of Production and Alloca-

tion’, John Wiley and Sons, New York, pp. 330–335.

Dantzig, G. (1955), ‘Upper bounds, secondary constraints, and block triangularity in

linear programming’, Econometrica 23, 174–183.

Dantzig, G. (1963), Linear Programming and Extensions, Princeton University Press,

Princeton, NJ.

Dantzig, G. & Orchard-Hayes, W. (1954), ‘The product form for the inverse in the

simplex method’, Mathematical Tables and Other Aids to Computation 8, 64–67.

Dantzig, G., Orden, A. & Wolfe, P. (1955), ‘The generalized simplex method for

minimizing a linear form under linear inequality constraints’, Pacific Journal of

Mathematics 5, 183–195.

den Hertog, D. (1994), Interior Point Approach to Linear, Quadratic, and Convex

Programming, Kluwer Academic Publishers, Dordrecht.

Dijkstra, E. (1959), ‘A note on two problems in connexion with graphs’, Numerische

Mathematik 1, 269–271.

Dikin, I. (1967), ‘Iterative solution of problems of linear and quadratic programming’,

Soviet Mathematics Doklady 8, 674–675.

Dikin, I. (1974), ‘On the speed of an iterative process’, Upravlyaemye Sistemi 12, 54–

60.

Bibliography 451

Dodge, Y., ed. (1987), Statistical Data Analysis Based on The L1-Norm and Related

Methods, North-Holland, Amsterdam.

Dorn, W., Gomory, R. & Greenberg, H. (1964), ‘Automatic design of optimal struc-

tures’, J. de Mécanique 3, 25–52.

Dresher, M. (1961), Games of Strategy: Theory and Application, Prentice-Hall, En-

glewood Cliffs, NJ.

Duff, I., Erisman, A. & Reid, J. (1986), Direct Methods for Sparse Matrices, Oxford

University Press, Oxford.

Elias, P., Feinstein, A. & Shannon, C. (1956), ‘Note on maximum flow through a

network’, IRE Transactions on Information Theory IT-2, 117–119.

Farkas, J. (1902), ‘Theorie der einfachen Ungleichungen’, Journal für die reine und

angewandte Mathematik 124, 1–27.

Fiacco, A. & McCormick, G. (1968), Nonlinear Programming: Sequential Uncon-

strainted Minimization Techniques, Research Analysis Corporation, McLean Vir-

ginia. Republished in 1990 by SIAM, Philadelphia.

Ford, L. & Fulkerson, D. (1956), ‘Maximal flow through a network’, Canadian Jour-

nal of Mathematics 8, 399–404.

Ford, L. & Fulkerson, D. (1958), ‘Constructing maximal dynamic flows from static

flows’, Operations Research 6, 419–433.

Ford, L. & Fulkerson, D. (1962), Flows in Networks, Princeton University Press,

Princeton, NJ.

Forrest, J. & Tomlin, J. (1972), ‘Updating triangular factors of the basis to maintain

sparsity in the product form simplex method’, Mathematical Programming 2, 263–

278.

Fourer, R., Gay, D. & Kernighan, B. (1993), AMPL: A Modeling Language for Math-

ematical Programming, Scientific Press.

Fourer, R. & Mehrotra, S. (1991), ‘Solving symmetric indefinite systems in an interior

point method for linear programming’, Mathematical Programming 62, 15–40.

Fulkerson, D. & Dantzig, G. (1955), ‘Computation of maximum flow in networks’,

Naval Research Logistics Quarterly 2, 277–283.

Gal, T., ed. (1993), Degeneracy in Optimization Problems, Vol. 46/47 of Annals of

Operations Research, J.C. Baltzer AG.

Gale, D., Kuhn, H. & Tucker, A. (1951), Linear programming and the theory of games,

in T. Koopmans, ed., ‘Activity Analysis of Production and Allocation’, John Wiley

and Sons, New York, pp. 317–329.

Garey, M. & Johnson, D. (1977), Computers and Intractability, W.H. Freeman and

Company, San Francisco.

Garfinkel, R. & Nemhauser, G. (1972), Integer Programming, John Wiley and Sons,

New York.

Gass, S. & Saaty, T. (1955), ‘The computational algorithm for the parametric objective

function’, Naval Research Logistics Quarterly 2, 39–45.

452 Bibliography

Gay, D. (1985), ‘Electronic mail distribution of linear programming test problems’,

Mathematical Programming Society COAL Newslettter 13, 10–12.

Gill, P., Murray, W., Ponceleón, D. & Saunders, M. (1992), ‘Preconditioners for in-

definite systems arising in optimization’, SIAM Journal on Matrix Analysis and

Applications 13(1), 292–311.

Gill, P., Murray, W. & Wright, M. (1991), Numerical Linear Algebra and Optimiza-

tion, Vol. 1, Addison-Wesley, Redwood City, CA.

Goldfarb, D. & Reid, J. (1977), ‘A practicable steepest-edge simplex algorithm’,

Mathematical Programming 12, 361–371.

Golub, G. & VanLoan, C. (1989), Matrix Computations, 2 edn, The Johns Hopkins

University Press, Baltimore, MD.

Gonin, R. & Money, A. (1989), Nonlinear Lp-Norm Estimation, Marcel Dekker, New

York-Basel.

Gordan, P. (1873), ‘Über die Auflösung linearer Gleichungen mit reelen Coefficien-

ten’, Mathematische Annalen 6, 23–28.

Hall, L. & Vanderbei, R. (1993), ‘Two-thirds is sharp for affine scaling’, OR Letters

13, 197–201.

Harris, P. (1973), ‘Pivot selection methods of the Devex LP code’, Mathematical Pro-

gramming 5, 1–28.

Hemp, W. (1973), Optimum Structures, Clarendon Press, Oxford.

Hillier, F. & Lieberman, G. (1977), Introduction to Mathematical Programming, 2

edn, McGraw-Hill, New York.

Hitchcock, F. (1941), ‘The distribution of a produce from several sources to numerous

localities’, Journal of Mathematical Physics 20, 224–230.

Hoffman, A. (1953), Cycling in the simplex algorithm, Technical Report 2974,

National Bureau of Standards.

Howard, R. (1960), Dynamic Programming and Markov Processes, John Wiley and

Sons, New York.

Huard, P. (1967), Resolution of mathematical programming with nonlinear constraints

by the method of centers, in J. Abadie, ed., ‘Nonlinear Programming’, North-

Holland, Amsterdam, pp. 209–219.

Jensen, P. & Barnes, J. (1980), Network Flow Programming, John Wiley and Sons,

New York.

John, F. (1948), Extremum problems with inequalities as subsidiary conditions, in

K. Fredrichs, O. Neugebauer & J. Stoker, eds, ‘Studies and Essays: Courant An-

niversary Volume’, Wiley Interscience, New York, pp. 187–204.

Kantorovich, L. (1960), ‘Mathematical methods in the organization and planning of

production’, Management Science 6, 550–559. Original Russian version appeared

in 1939.

Karlin, S. (1959), Mathematical Methods and Theory in Games, Programming, and

Economics, Vol. 1 and 2, Addison-Wesley, Reading, MA.

Bibliography 453

Karmarkar, N. (1984), ‘A new polynomial time algorithm for linear programming’,

Combinatorica 4, 373–395.

Karush, W. (1939), Minima of functions of several variables with inequalities as side

conditions, Technical report, M.S. Thesis, Department of Mathematics, University

of Chicago.

Kennington, J. & Helgason, R. (1980), Algorithms for Network Programming, John

Wiley and Sons, New York.

Khachian, L. (1979), ‘A polynomial algorithm in linear programming’, Doklady

Academiia Nauk SSSR 244, 191–194. In Russian. English Translation: Soviet Math-

ematics Doklady 20: 191-194.

Klee, V. & Minty, G. (1972), How good is the simplex algorithm?, in O. Shisha, ed.,

‘Inequalities–III’, Academic Press, New York, pp. 159–175.

Kojima, M., Mizuno, S. & Yoshise, A. (1989), A primal-dual interior point algorithm

for linear programming, in N. Megiddo, ed., ‘Progress in Mathematical Program-

ming’, Springer-Verlag, New York, pp. 29–47.

Kotzig, A. (1956), Súvislost’ a Pravideliná Súvislots’ Konečných Grafov, Technical

report, Bratislava: Vysoká Škola Ekonomická.

Kuhn, H. (1950), ‘A simplified two-person poker’, Annals of Mathematics Studies

24, 97–103.

Kuhn, H. (1976), Nonlinear prgramming: A historical view, in R. Cottle & C. Lemke,

eds, ‘Nonlinear Programming, SIAM-AMS Proceedings’, Vol. 9, American Math-

etical Society, Providence, RI, pp. 1–26.

Kuhn, H. & Tucker, A. (1951), Nonlinear prgramming, in J. Neyman, ed., ‘Proceed-

ings of the Second Berkeley Symposium on Mathematical Statistics and Probabil-

ity’, University of California Press, Berkeley, CA, pp. 481–492.

Lawler, E. (1976), Combinatorial Optimization: Networks and Matroids, Holt, Rine-

hart and Winston, New York.

Lemke, C. (1954), ‘The dual method of solving the linear programming problem’,

Naval Research Logistics Quarterly 1, 36–47.

Lemke, C. (1965), ‘Bimatrix equilibrium points and mathematical programming’,

Management Science 11, 681–689.

Luenberger, D. (1984), Introduction to Linear and Nonlinear Programming, Addison-

Wesley, Reading MA.

Lustig, I. (1990), ‘Feasibility issues in a primal-dual interior-point method for linear

programming’, Mathematical Programming 49(2), 145–162.

Lustig, I., Marsten, R. & Shanno, D. (1994), ‘Interior point methods for linear pro-

gramming: computational state of the art’, ORSA J. on Computing 6, 1–14.

Markowitz, H. (1957), ‘The elimination form of the inverse and its application to linear

programming’, Management Science 3, 255–269.

Markowitz, H. (1959), Portfolio Selection: Efficient Diversification of Investments,

Wiley, New York.

454 Bibliography

Marshall, K. & Suurballe, J. (1969), ‘A note on cycling in the simplex method’, Naval

Research Logistics Quarterly 16, 121–137.

Mascarenhas, W. (1997), ‘The affine scaling algorithm fails for λ = 0.999’, SIAM J.

Optimization 7, 34–46.

Megiddo, N. (1989), Pathways to the optimal set in linear programming, in

N. Megiddo, ed., ‘Progress in Mathematical Programming’, Springer-Verlag, New

York, pp. 131–158.

Mehrotra, S. (1989), Higher order methods and their performance, Technical Report

TR 90-16R1, Department of Ind. Eng. and Mgmt. Sci., Northwestern University,

Evanston, IL. Revised July, 1991.

Mehrotra, S. (1992), ‘On the implementation of a (primal-dual) interior point method’,

SIAM Journal on Optimization 2, 575–601.

Michell, A. (1904), ‘The limits of economy of material in frame structures’, Phil. Mag.

8, 589–597.

Mizuno, S., Todd, M. & Ye, Y. (1993), ‘On adaptive-step primal-dual interior-point

algorithms for linear programming’, Mathematics of Operations Research 18, 964–

981.

Monteiro, R. & Adler, I. (1989), ‘Interior path following primal-dual algorithms: Part

i: Linear programming’, Mathematical Programming 44, 27–41.

Nash, S. & Sofer, A. (1996), Linear and Nonlinear Programming, McGraw-Hill, New

York.

Nazareth, J. (1986), ‘Homotopy techniques in linear programming’, Algorithmica

1, 529–535.

Nazareth, J. (1987), Computer Solutions of Linear Programs, Oxford University Press,

Oxford.

Nazareth, J. (1996), ‘The implementation of linear programming algorithms based on

homotopies’, Algorithmica 15, 332–350.

Nemhauser, G. & Wolsey, L. (1988), Integer and Combinatorial Optimization, Wiley,

New York.

Nesterov, Y. & Nemirovsky, A. (1993), Interior Point Polynomial Methods in Convex

Programming : Theory and Algorithms, SIAM Publications, Philadelphia.

Recski, A. (1989), Matroid Theory and its Applications in Electric Network Theory

and in Statics, Springer-Verlag, Berlin-Heidelberg-New York.

Reid, J. (1982), ‘A sparsity-exploiting variant of the Bartels-Golub decomposition for

linear programming bases’, Mathematical Programming 24, 55–69.

Rockafellar, R. (1970), Convex Analysis, Princeton University Press, Princeton, NJ.

Rozvany, G. (1989), Structural Design via Optimality Criteria, Kluwer, Dordrecht.

Ruszczyński, A. & Vanderbei, R. (2003), Frontiers of Stochastically Nondominated

Portfolios’, Econometrica 71(4), 1287–1297.

Saigal, R. (1995), Linear Programming, Kluwer Academic Publishers, Boston.

Bibliography 455

Saunders, M. (1973), The complexity of LU updating in the simplex method, in R. An-

dersen & R. Brent, eds, ‘The complexity of computational problem solving’, Uni-

versity Press, Queensland, pp. 214–230.

Smale, S. (1983), ‘On the average number of steps of the simplex method of linear

programming’, Mathematical Programming 27, 241–262.

Stiemke, E. (1915), ‘Über positive Lösungen homogener linearer Gleichungen’, Math-

ematische Annalen 76, 340–342.

Todd, M. (1986), ‘Polynomial expected behavior of a pivoting algorithm for linear

complementarity and linear programming’, Mathematical Programming 35, 173–

192.

Todd, M. (1995), Potential-reduction methods in mathematical programming, Techni-

cal Report 1112, SORIE, Cornell University, Ithaca, NY.

Tsuchiya, T. & Muramatsu, M. (1992), ‘Global convergence of a long-step affine scal-

ing algorithm for degenerate linear programming problems’, SIAM J. Optimization

5(3), 525–551.

Tucker, A. (1956), ‘Dual systems of homogeneous linear equations’, Annals of Math-

ematics Studies 38, 3–18.

Turner, K. (1991), ‘Computing projections for the Karmarkar algorithm’, Linear Al-

gebra and Its Applications 152, 141–154.

Vanderbei, R. (1989), ‘Affine scaling for linear programs with free variables’, Mathe-

matical Programming 43, 31–44.

Vanderbei, R. (1994), ‘Interior-point methods: algorithms and formulations’, ORSA J.

on Computing 6, 32–34.

Vanderbei, R. (1995), ‘Symmetric quasi-definite matrices’, SIAM Journal on Opti-

mization 5(1), 100–113.

Vanderbei, R. (1999), ‘LOQO: An interior point code for quadratic programming’,

Optimization Methods and Software 12, 451–484.

Vanderbei, R. & Carpenter, T. (1993), ‘Symmetric indefinite systems for interior-point

methods’, Mathematical Programming 58, 1–32.

Vanderbei, R., Meketon, M. & Freedman, B. (1986), ‘A modification of Karmarkar’s

linear programming algorithm’, Algorithmica 1, 395–407.

Vanderbei, R. & Shanno, D. (1999), An Interior-Point Algorithm for Nonconvex

Nonlinear Programming’, Computational Optimization and Applications 13, 231–

252.

Ville, J. (1938), Sur la théorie général des jeux ou intervient l’habileté des jouers,

in E. Borel, ed., ‘Traité du Calcul des Probabilités et des ses Applications’, Paris,

Gauthiers-Villars.

von Neumann, J. (1928), ‘Zur Theorie der Gesselschaftschpiele’, Mathematische An-

nalen 100, 295–320.

von Neumann, J. & Morgenstern, O. (1947), Theory of Games and Economic Behav-

ior, 2nd edn, Princeton University Press, Princeton, NJ.

Wright, S. (1996), Primal-Dual Interior-Point Methods, SIAM, Philadelphia, USA.

456 Bibliography

Xu, X., Hung, P. & Ye, Y. (1993), A simplified homogeneous and self-dual linear pro-

gramming algorithm and its implementation, Technical report, College of Business

Administration, University of Iowa. To appear in Annals of Operations Research.

Ye, Y., Todd, M. & Mizuno, S. (1994), ‘An o(
√

nl)-iteration homogeneous and self-

dual linear programming algorithm’, Mathematics of Operations Research 19, 53–

67.

Index

LDLT -factorization, 330

LU -factorization, 128

L2-regression, 193

Lp-norm, 193

Acyclic network, 229

Adler & Berenguer (1981), 209, 449

Adler & Megiddo (1985), 53, 208, 449

Adler et al. (1989), 381, 449

Affine-scaling algorithm, 345

Ahuja et al. (1993), 252, 269, 449

Algorithm

affine-scaling, 345

Dijkstra’s, 258

dual simplex, 103

homogeneous, self-dual interior-point, 376

parametric self-dual simplex, 121

path-following, 308

convex programming, 432

general form, 343

quadratic programming, 419

primal simplex, 103

self-dual network simplex, 241

self-dual parametric simplex, 124

successive quadratic programming, 429

Anstreicher (1996), 318, 449

arbitrage, 220

Arc, 225

head of, 229

Ascent direction, 345

Assignment problem, 255

Auxiliary problem, 19

Axes, pitch, roll, and yaw, 279

Backward substitution, 130

Balanced flow, 230

Barnes (1986), 358, 449

Barrier function, 290

Barrier problem, 289, 290

Basic feasible solution, 16

Basic variables, 16

Bayer & Lagarias (1989a), 301, 449

Bayer & Lagarias (1989b), 301, 449

Bazaraa et al. (1977), 11, 252, 449

Bellman (1957), 269, 449

Bellman’s equation, 257

Ben-Tal, A., xvi

Bendsøe et al. (1994), 284, 449

Bernstein, D.H., xvi

Bertsekas (1991), 252, 449

Bertsekas (1995), 301, 423, 449

Bimatrix games, 185

Bipartite graph, 253

Bland (1977), 44, 449

Bland’s rule, 36

Bloomfield & Steiger (1983), 208, 449

Bluffing, 181

Borgwardt (1982), 53, 124, 208, 449

Borgwardt (1987a), 53, 208, 450

Borgwardt (1987b), 53, 450

Bradley et al. (1977), 11, 450

Branch-and-bound, 385, 392

Breadth-first search, 395

Bump, 142

Capacity

cut, 262

Carathéodory (1907), 171, 450

Carpenter et al. (1993), 318, 450

Central path, 289, 292, 299

Centroid, 204

Certificate of optimality, 66

457

458 INDEX

Charnes (1952), 44, 450

Christofides (1975), 252, 450

Chvátal (1983), 27, 187, 450

Çınlar, E., xvi

Column dominance, 185

Come-from, 388

Complementarity, 296

strict, 168

Complementary slackness theorem, 66

Complexity

predictor-corrector algorithm, 371

Complexity theory, 54

Concave function, 170, 426

Connected, 229, 249

Connected components, 249

Conservation laws, 276

Continuous paths, 354

Convergence, 308, 353, 369

Convex analysis, 161

Convex combination, 161

Convex function, 423, 426

Convex hull, 163

Convex programming, 425

interior-point method for, 427

Convex quadratic programming problem, 416

Convex set, 161

Corrector step, 366

Cost

lost opportunity, 5

Crew scheduling problem, 386

Critical point, 191

Critical points, 292

Cut set, 262

Cycle, 229

Cycling, 30

Dantzig (1951a), 10, 252, 450

Dantzig (1951b), 10, 450

Dantzig (1955), 160, 450

Dantzig (1963), 10, 27, 124, 450

Dantzig & Orchard-Hayes (1954), 150, 450

Dantzig et al. (1955), 44, 450

Dantzig, G.B., 10, 27, 87

Dantzig, T., 87

Decision variables, 6

Degeneracy, 29

geometry, 39

Degenerate dictionary, 29

Degenerate pivot, 29

Demand node, 253

den Hertog (1994), 435, 450

Depth-first search, 395

Destination node, 253

Devex, 150

Dictionary, 16

Diet problem, 85

Digraph, 225

Dijkstra (1959), 269, 450

Dijkstra’s algorithm, 258

Dikin (1967), 358, 450

Dikin (1974), 358, 450

Directed paths, 256

Dodge (1987), 208, 450

Dorn et al. (1964), 284, 451

Dresher (1961), 187, 451

Dual estimates, 358

Dual network simplex method, 237

Dual pivot, 239, 242

Dual problem, 57

general form, 73

Dual simplex method, 68, 101, 153, 155

Duality Theory, 55

Duff et al. (1986), 150, 451

Dynamic programming, 257

Edge, 40

Efficiency

simplex method, 45, 198

Efficient frontier, 216, 411

Elias et al. (1956), 269, 451

Ellipsoid method, 54

Entering arc, 242

Entering variable, 17, 94, 102

Enumeration tree, 395

Equilibrium

Nash, 185

Equivalence classes, 249

Equivalence relation, 249

Eta matrix, 140

Eta-file, 140

Facet, 40

Facility location, 204

Factorization

LDLT , 330

LU , 128

instability and quasidefinite matrices, 334

stability and positive definite matrices, 330

Fair game, 178

Farkas’ lemma, 167

INDEX 459

Farkas (1902), 171, 451

Feasible flow, 230

Feasible solution, 7

Fiacco & McCormick (1968), 301, 435, 451

Fixed costs, 390

Flow balance constraints, 227

Folven, G., xvi

Ford & Fulkerson (1956), 269, 451

Ford & Fulkerson (1958), 252, 451

Ford & Fulkerson (1962), 252, 451

Forrest & Tomlin (1972), 150, 451

Forward substitution, 129

Fourer & Mehrotra (1991), 344, 451

Fourer et al. (1993), xiv, 451

Fourer, R., xiv

Fourier, 10

Fulkerson & Dantzig (1955), 269, 451

Function

barrier, 290

concave, 170, 426

strongly, 86

convex, 423, 426

strongly, 86

objective, 6

Gal (1993), 44, 451

Gale et al. (1951), 87, 187, 451

Game Theory, 173

Games

bimatrix, 185

zero-sum, 173

Garey & Johnson (1977), 54, 451

Garfinkel & Nemhauser (1972), 405, 451

Garfinkel, R.S., xvi

Gass & Saaty (1955), 124, 451

Gay (1985), 199, 451

Gay, D.M., xiv

Gill et al. (1991), 150, 452

Gill et al. (1992), 344, 452

Gilmartin, J., xvi

Go-to, 388

Goldfarb & Reid (1977), 150, 452

Golub & VanLoan (1989), 150, 452

Gonin & Money (1989), 208, 452

Gordan (1873), 171, 452

Gradient, 425

Graph, 225

Gravity, acceleration due to, 206

Gross, L., xvi

Hölder’s inequality, 311

Halfspace, 40, 165

generalized, 165

Hall & Vanderbei (1993), 358, 452

Hall, L.A., xvi

Harris (1973), 150, 452

Hedging, 212

Hemp (1973), 284, 452

Hessian, 294, 425

Higher-order methods, 316

Hillier & Lieberman (1977), 11, 452

Hitchcock (1941), 269, 452

Hitchcock transportation problem, 254

Hoffman (1953), 43, 452

Homogeneous problem, 362, 363

Homogeneous self-dual method, 361

Homotopy method, 115, 315

Howard (1960), 269, 452

Huard (1967), 301, 452

Ikura, Y., xvi

Incidence matrix, 274

Infeasibility, 8, 157, 304

Infeasible dictionary, 20

Initialization

dual-based, 71

Integer programming, 243

Integer programming problem, 385, 392

Integrality theorem, 243

Interior-point methods, 289

affine-scaling, 345

homogeneous, self-dual, 376

path-following, 308

convex programming, 432

general form, 343

quadratic programming, 419

Inventory, cost of, 4

Iterative reweighted least squares, 207

Iteratively reweighted least squares, 196

Jensen & Barnes (1980), 252, 452

John (1948), 325, 452

Joint, 271

König’s Theorem, 244

Kantorovich (1960), 10, 452

Karlin (1959), 187, 452

Karmarkar, N.K., 318

Karmarkar (1984), 301, 318, 358, 453

Karush, W., 319, 325, 342, 418

Karush–Kuhn–Tucker (KKT) system, 319

460 INDEX

Karush-Kuhn-Tucker (KKT) system, 372

Karush (1939), 325, 453

Kennington & Helgason (1980), 252, 453

Kernighan, B., xiv

Khachian (1979), 54, 318, 453

Klee & Minty (1972), 53, 453

Klee, V., xvi

Knapsack problem, 404

Kojima et al. (1989), 318, 453

Koopmans, T.C., 10

Kotzig (1956), 269, 453

Kuhn (1950), 187, 453

Kuhn (1976), 325, 453

Kuhn & Tucker (1951), 325, 453

Kuhn, H.W., 319, 342, 418

Label-correcting algorithm, 257

Label-setting algorithm, 257

Labels, 257

Lagrange multipliers, 292, 293

Lagrangian, 294

Lagrangian duality, 78

Lawler (1976), 252, 453

Least squares, 194

Leaving arc, 242

Leaving variable, 17, 95, 102

Legendre transform, 87

Legs, 385

Lemke (1954), 87, 453

Lemke (1965), 124, 453

Lemma

Farkas’, 167

Lexicographic method, 32, 35, 44

Linear complementarity problem, 186, 316

Linear program

standard form, 7

Logarithmic barrier function, 290

Long-step method, 379, 380

Lower bounds, 151

LP-relaxation, 256, 393

Luenberger (1984), 301, 453

Lustig (1990), 318, 453

Lustig et al. (1994), 342, 453

Lustig, I.J., xvi

Mandelbaum, A., xvi

Markowitz (1957), 150, 453

Markowitz (1959), 222, 423, 453

Markowitz model, 407

Marshall & Suurballe (1969), 43, 453

Mascarenhas (1997), 358, 454

Matrix

notation, 89

positive definite, 327

quasidefinite, 331

sparse, 130

Matrix game, 173

Maximum-flow problem, 262

Mean, 189

Median, 190

Mediocrity, measures thereof, 189

Megiddo (1989), 301, 454

Mehrotra (1989), 380, 454

Mehrotra (1992), 380, 454

Meketon, M.S., xvi

Member, 271

Method

affine-scaling, 345

dual network simplex, 237

dual simplex, 68, 101, 103, 153

higher-order, 316

homogeneous self-dual, 361

homogeneous, self-dual interior-point, 376

homotopy, 315

lexicographic, 32

long-step, 379, 380

Newton’s, 305

out-of-kilter, 252

parametric self-dual simplex, xviii

parametric self-dual simplex, 118, 119, 121

path-following, 289, 303, 308

convex programming, 432

general form, 343

quadratic programming, 419

perturbation, 32

predictor-corrector, 366

primal network simplex, 233

primal simplex, 91, 103, 151

primal–dual simplex, xviii, 118

self-dual network simplex, 241

self-dual parametric simplex, 124

short-step, 380

simplex, 13

two phase, 104

Michell (1904), 284, 454

Midrange, 203

Minimum Operator ∧, 307

Minimum-cost network flow problem, 225

Minimum-degree ordering, 130

INDEX 461

Minimum-weight structural design problem,

279

Mixed integer programming problem, 404

Mizuno et al. (1993), 380, 454

Moment arm, 277

Monteiro & Adler (1989), 318, 423, 454

Nabona, N., xvi

Nash & Sofer (1996), 301, 423, 454

Nash equilibrium, 185

Nazareth (1986), 124, 318, 454

Nazareth (1987), 124, 454

Nazareth (1996), 318, 454

Negative transpose, 61

Nemhauser & Wolsey (1988), 405, 454

Nesterov & Nemirovsky (1993), 435, 454

Network, 225

acyclic, 229

complete, 251

connected, 229

Network flow problems, 225

Network simplex method, 252

Newton’s method, 305

Node, 225

Node-arc incidence matrix, 228

Nonbasic variables, 16

Nonlinear objective function, 390

Nonlinear programming, 301

Normal equations, 320, 321

Null space, 348

Null variable, 169

Objective function, 6

Onion skin, 354

Optimal solution, 7

Optimality

check for, 93, 102

Optimality conditions

first-order, 294–296, 339, 413, 414, 418, 427

Option Pricing, 216

Orden, A., 43

Orlin, J.B., xvi

Orthogonal projection, 348

Out-of-Kilter method, 252

Parametric analysis, 115

Parametric self-dual simplex method, 118, 119

Partial pricing, 147

Path, 228

Path-following method, 289, 303

Penalty function, 422

Perturbation method, 32, 43

Phase I, 22

dual-based, 71

Phase II, 22

piecewise linear function, 433

Pivot, 19

Pivot rule, 19

Planar network, 250

Poker, 181

Polyhedron, 40, 165

Polynomial complexity, 53

Portfolio optimization, 211, 407

Portfolio selection, 211

Positive definite matrix, 327

Positive semidefinite matrix, 324, 416

closure under summation, 324

closure under inversion, 324

Predictor step, 366

Predictor-Corrector Algorithm, 366

Predictor-corrector algorithm

complexity, 371

Primal flow, 228

Primal network simplex method, 233

Primal pivot, 233, 242

Primal problem, 57

Primal scaling, 357

Primal simplex method, 91, 151

Primal–dual network simplex method, 252

Primal–dual scaling, 357

Primal–dual simplex method, 118

Principle stresses, 282

Probability

of infeasibility, 87

of unboundedness, 87

Problem

assignment, 202, 255

auxiliary, 19

barrier, 289, 290

convex quadratic programming, 416

crew scheduling, 386

diet, 85

dual, 57

equipment scheduling, 386

Hitchcock transportation, 254

homogeneous linear programming, 363

homogeneous self-dual, 362

integer programming, 385, 392

knapsack, 404

linear complementarity, 186, 316

462 INDEX

linear programming

general form, 151, 337

maximum-flow, 262

minimum-cost network, 225

minimum-weight structural design, 279

mixed integer programming, 404

network flow, 225

network flows, 225

primal, 57

quadratic penalty, 422

quadratic programming, 407

scheduling, 385

self-dual linear programming, 363

separable quadratic programming, 420

set-covering, 386

set-partitioning, 386

shortest path, 256

transportation, 253

transshipment, 253

traveling salesman, 387

upper-bounded network flow, 259

Programming

nonlinear, 301

Projected gradient direction, 347

scaled, 349

Projection, 348

Projective geometry, 301

Pruning, 403

quadratic form, 434

Quadratic penalty problem, 422

Quadratic programming problem, 407

convex, 414

dual, 412

interior-point method for, 418

Quasidefinite matrix, 331

Ranges, 151

Recski (1989), 284, 454

Reduced KKT system, 320, 372, 418

Regression, 189

Regression model, 192

Reid (1982), 150, 454

Resource allocation, 4, 74

Revised simplex method, 109

Reward, 211, 408

Risk, 211, 408

Rockafellar (1970), 171, 454

Root

of a function, 305

Root node, 231, 256

Roses, 109

Route, 385

Row dominance, 185

Row operations, 14

Rozvany (1989), 284, 454

Ruszczyński & Vanderbei (2003), 222, 454

Ruszczynski, A., xvi

Saddle points, 86

Saigal (1995), 359, 454

Sailing, 281

Sales force planning, 205

Saunders (1973), 150, 454

Scale invariance, 315

Scaling matrices, 357

Scheduling problem, 385

Second-order conditions, 297

Self-dual linear program, 363

Self-dual parametric simplex method, 124

Self-dual problem, 362

Self-dual simplex method, 118

Sensitivity analysis, 111

Separable quadratic programming problem, 420

Separation theorem, 165

Set-covering problem, 386

Set-partitioning problem, 386

Sherman–Morrison–Woodbury formula, 325

Short-step method, 380

Shortest-path problem, 256

Simplex method

primal–dual, xviii

Simplex method, 13

dual, 103

geometry, 22

initialization, 19

dual-based, 71

parametric self-dual, xviii, 121

primal, 103

revised, 109

self-dual network, 241

unboundedness, 22

worst-case analysis, 47

Sink node, 262

Skew symmetric matrix, 275

Slack variable, 7, 13

Smale (1983), 53, 124, 208, 455

Solution, 7

basic feasible, 16

feasible, 7

INDEX 463

optimal, 7

tree, 230

Source node, 253, 262

Spanning tree, 229

Sparse matrix, 130

Sparsity, 130

Spike column, 142

Stability, 274

Stable structure, 276

Steepest ascent, 346

Steepest edge, 147

Steiner tree, 205

Step direction, 94, 305

affine-scaling, 351

dual, 95, 102

primal, 102

Step direction decomposition, 324

Step length, 94, 95, 102

Stiemke (1915), 171, 455

Stochastic vector, 175

Strategy

randomized, 175

Strict complementarity, 168

Strictly positive vector, 298

Strictly positive vector (>), 168

Strong duality theorem, 60

Strongly convex function, 86

Strongly concave function, 86

Structural optimization, 271

Subnetwork, 229

Substitution

backward, 130

forward, 129

Successive approximations, 258

Successive quadratic programming algorithm,

429

Supply node, 253

Supremum norm, 309

Symmetric games, 178

Tableau

simplex, 27

Tail of an arc, 229

Taylor’s series, 435

tensor, 434

Theorem

ascent direction, 323

Bland’s rule, 36

Carathéodory, 164

central path, 298

complementary slackness, 67

convergence of affine-scaling, 353

convergence of simplex method, 32

convex hull, 163

efficiency of interior-point method, 312

integrality, 243

König, 244

lexicographic rule, 35

linear programming, fundamental, 38

local maximum, 294

max-flow min-cut, 263

minimax, 178

optimality for convex quadratic programs,

416

separating hyperplane, 165

spanning tree, 231

strict complementary slackness, 169

strong duality, 60

weak duality, 58

Todd (1986), 53, 208, 455

Todd (1995), 318, 455

Todd, M.J., xvi

Topology, 271

Transportation problem, 253

Transshipment problem, 253

Traveling salesman problem, 387

Tree, 229

solution, 230

spanning, 229

Triangle inequality, 368

Truss, 280

Tsuchiya & Muramatsu (1992), 358, 455

Tucker (1956), 171, 380, 455

Tucker, A.W., 319, 342, 418

Turner (1991), 344, 455

Two-phase methods, 104

Unboundedness, 8, 22

Underbidding, 181

Unitary matrix, 278

Upper bounds, 151

Upper-bounded network flow problem, 259

Value, 178

Value function, 257

Vanderbei (1989), 359, 455

Vanderbei (1994), 344, 455

Vanderbei (1995), 344, 455

Vanderbei (1999), 423, 455

464 INDEX

Vanderbei & Carpenter (1993), 344, 455

Vanderbei & Shanno (1999), 435, 455

Vanderbei et al. (1986), 358, 455

Variable

basic, 16

decision, 6

entering, 17, 94, 102

leaving, 17, 95, 102

nonbasic, 16

null, 169

slack, 7, 13

Vector norms, 309

Vehicle routing, 404

Vertex, 40

Ville (1938), 171, 455

von Neumann (1928), 187, 455

von Neumann & Morgenstern (1947), 187,

455

von Neumann, J., 87

Warnie, J., xvi

Weak duality theorem, 58

Wolkowicz, H., xvi

Woolbert, S., xvi

Worst-case analysis, 47

Wright (1996), 318, 455

Wu, L., xvi

Xu et al. (1993), 380, 455

Yang, B., xvi

Ye et al. (1994), 380, 456

Early Titles in the

INTERNATIONAL SERIES IN

OPERATIONS RESEARCH & MANAGEMENT SCIENCE
 Frederick S. Hillier, Series Editor, Stanford University

Saigal/ A MODERN APPROACH TO LINEAR PROGRAMMING
Nagurney/ PROJECTED DYNAMICAL SYSTEMS & VARIATIONAL INEQUALITIES WITH

APPLICATIONS

Padberg & Rijal/ LOCATION, SCHEDULING, DESIGN AND INTEGER PROGRAMMING

Vanderbei/ LINEAR PROGRAMMING
Jaiswal/ MILITARY OPERATIONS RESEARCH
Gal & Greenberg/ ADVANCES IN SENSITIVITY ANALYSIS & PARAMETRIC PROGRAMMING
Prabhu/ FOUNDATIONS OF QUEUEING THEORY
Fang, Rajasekera & Tsao/ ENTROPY OPTIMIZATION & MATHEMATICAL PROGRAMMING
Yu/ OR IN THE AIRLINE INDUSTRY
Ho & Tang/ PRODUCT VARIETY MANAGEMENT
El-Taha & Stidham/ SAMPLE-PATH ANALYSIS OF QUEUEING SYSTEMS
Miettinen/ NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao & Huntington/ DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz/ PROJECT SCHEDULING: RECENT TRENDS & RESULTS
Sahin & Polatoglu/ QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE

Tavares/ ADVANCES MODELS FOR PROJECT MANAGEMENT
Tayur, Ganeshan & Magazine/ QUANTITATIVE MODELS FOR SUPPLY CHAIN MANAGEMENT
Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING

Shanthikumar, J.G. & Sumita, U./ APPLIED PROBABILITY AND STOCHASTIC PROCESSES

Liu, B. & Esogbue, A.O./ DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES

Gal, T., Stewart, T.J., Hanne, T. / MULTICRITERIA DECISION MAKING: Advances in
 MCDM Models, Algorithms, Theory, and Applications

Fox, B.L. / STRATEGIES FOR QUASI-MONTE CARLO

Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE

Grassman, W.K. / COMPUTATIONAL PROBABILITY

Pomerol, J-C. & Barba-Romero, S. / MULTICRITERION DECISION IN MANAGEMENT

Axsäter, S. / INVENTORY CONTROL

Wolkowicz, H., Saigal, R., & Vandenberghe, L. / HANDBOOK OF SEMI-DEFINITE
 PROGRAMMING: Theory, Algorithms, and Applications
Hobbs, B.F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide

to the Use of Multicriteria Methods
Dar-El, E. / HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J.S. / PRINCIPLES OF FORECASTING: A Handbook for Researchers and

Practitioners
Balsamo, S., Personé, V., & Onvural, R./ ANALYSIS OF QUEUEING NETWORKS WITH
 BLOCKING
Bouyssou, D. et al. / EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T. / INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. & Vargas, L. / MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE
 ANALYTIC HIERARCHY PROCESS
Chatterjee, K. & Samuelson, W. / GAME THEORY AND BUSINESS APPLICATIONS

Hobbs, B. et al. / THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT
 MODELS
Vanderbei, R.J. / LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A. / MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR
 SCHEDULING PROJECTS

Baptiste, P., Le Pape, C. & Nuijten, W. / CONSTRAINT-BASED SCHEDULING

Early Titles in the

INTERNATIONAL SERIES IN

OPERATIONS RESEARCH & MANAGEMENT SCIENCE

(Continued)

Feinberg, E. & Shwartz, A. / HANDBOOK OF MARKOV DECISION PROCESSES: Methods

and Applications

Ramík, J. & Vlach, M. / GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION

AND DECISION ANALYSIS

Song, J. & Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and

Optimization

Kozan, E. & Ohuchi, A. / OPERATIONS RESEARCH/ MANAGEMENT SCIENCE AT WORK

Bouyssou et al. / AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in

 Honor of Bernard Roy

Cox, Louis Anthony, Jr. / RISK ANALYSIS: Foundations, Models and Methods

Dror, M., L’Ecuyer, P. & Szidarovszky, F. / MODELING UNCERTAINTY: An Examination

of Stochastic Theory, Methods, and Applications

Dokuchaev, N. / DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules

for Incomplete Information

Sarker, R., Mohammadian, M. & Yao, X. / EVOLUTIONARY OPTIMIZATION

Demeulemeester, R. & Herroelen, W. / PROJECT SCHEDULING: A Research Handbook

Gazis, D.C. / TRAFFIC THEORY

Zhu/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING

Ehrgott & Gandibleux/ MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated Bibliographical

Surveys

Bienstock/ Potential Function Methods for Approx. Solving Linear Programming Problems

Matsatsinis & Siskos/ INTELLIGENT SUPPORT SYSTEMS FOR MARKETING

 DECISIONS

Alpern & Gal/ THE THEORY OF SEARCH GAMES AND RENDEZVOUS

Hall/HANDBOOK OF TRANSPORTATION SCIENCE - 2nd Ed.

Glover & Kochenberger/ HANDBOOK OF METAHEURISTICS

Graves & Ringuest/ MODELS AND METHODS FOR PROJECT SELECTION:

 Concepts from Management Science, Finance and Information Technology

Hassin & Haviv/ TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems

Gershwin et al/ ANALYSIS & MODELING OF MANUFACTURING SYSTEMS

Maros/ COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD

Harrison, Lee & Neale/ THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and

Application Converge

Shanthikumar, Yao & Zijm/ STOCHASTIC MODELING AND OPTIMIZATION OF

MANUFACTURING SYSTEMS AND SUPPLY CHAINS

Nabrzyski, Schopf & WĊglarz/ GRID RESOURCE MANAGEMENT: State of the Art and Future Trends

Thissen & Herder/ CRITICAL INFRASTRUCTURES: State of the Art in Research and Application

Carlsson, Fedrizzi, & Fullér/ FUZZY LOGIC IN MANAGEMENT

Soyer, Mazzuchi & Singpurwalla/ MATHEMATICAL RELIABILITY: An Expository Perspective

Chakravarty & Eliashberg/ MANAGING BUSINESS INTERFACES: Marketing, Engineering, and

Manufacturing Perspectives

Talluri & van Ryzin/ THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

Kavadias & Loch/PROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating Resources to

Maximize Value

Early Titles in the

INTERNATIONAL SERIES IN

OPERATIONS RESEARCH & MANAGEMENT SCIENCE
(Continued)

Brandeau, Sainfort & Pierskalla/ OPERATIONS RESEARCH AND HEALTH CARE: A Handbook of

Methods and Applications

Cooper, Seiford & Zhu/ HANDBOOK OF DATA ENVELOPMENT ANALYSIS: Models and Methods

Luenberger/ LINEAR AND NONLINEAR PROGRAMMING, 2nd Ed.

Sherbrooke/ OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques,

 Second Edition

Chu, Leung, Hui & Cheung/ 4th PARTY CYBER LOGISTICS FOR AIR CARGO

Simchi-Levi, Wu & Shen/ HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: Modeling

in the E-Business Era

Gass & Assad/ AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH: An Informal History

Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN OPERATIONS

RESEARCH

Weber/ UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision

Support

Figueira, Greco & Ehrgott/ MULTIPLE CRITERIA DECISION ANALYSIS: State of the Art Surveys

Reveliotis/ REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS: A Discrete Event

Systems Approach

Kall & Mayer/ STOCHASTIC LINEAR PROGRAMMING: Models, Theory, and Computation

* A list of the more recent publications in the series is at the front of the book *

	Preface
	Preface to 2nd Edition
	Preface to 3rd Edition
	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 1. Introduction
	1. Managing a Production Facility
	2. The Linear Programming Problem
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 2. The Simplex Method
	1. An Example
	2. The Simplex Method
	3. Initialization
	4. Unboundedness
	5. Geometry
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 3. Degeneracy
	1. Definition of Degeneracy
	2. Two Examples of Degenerate Problems
	3. The Perturbation/Lexicographic Method
	4. Bland's Rule
	5. Fundamental Theorem of Linear Programming
	6. Geometry
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 4. Efficiency of the Simplex Method
	1. Performance Measures
	2. Measuring the Size of a Problem
	3. Measuring the Effort to Solve a Problem
	4. Worst-Case Analysis of the Simplex Method
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 5. Duality Theory
	1. Motivation---Finding Upper Bounds
	2. The Dual Problem
	3. The Weak Duality Theorem
	4. The Strong Duality Theorem
	5. Complementary Slackness
	6. The Dual Simplex Method
	7. A Dual-Based Phase I Algorithm
	8. The Dual of a Problem in General Form
	9. Resource Allocation Problems
	10. Lagrangian Duality
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 6. The Simplex Method in Matrix Notation
	1. Matrix Notation
	2. The Primal Simplex Method
	3. An Example
	4. The Dual Simplex Method
	5. Two-Phase Methods
	6. Negative Transpose Property
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 7. Sensitivity and Parametric Analyses
	1. Sensitivity Analysis
	2. Parametric Analysis and the Homotopy Method
	3. The Parametric Self-Dual Simplex Method
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 8. Implementation Issues
	1. Solving Systems of Equations: LU-Factorization
	2. Exploiting Sparsity
	3. Reusing a Factorization
	4. Performance Tradeoffs
	5. Updating a Factorization
	6. Shrinking the Bump
	7. Partial Pricing
	8. Steepest Edge
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 9. Problems in General Form
	1. The Primal Simplex Method
	2. The Dual Simplex Method
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 10. Convex Analysis
	1. Convex Sets
	2. Carathéodory's Theorem
	3. The Separation Theorem
	4. Farkas' Lemma
	5. Strict Complementarity
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 11. Game Theory
	1. Matrix Games
	2. Optimal Strategies
	3. The Minimax Theorem
	4. Poker
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 12. Regression
	1. Measures of Mediocrity
	2. Multidimensional Measures: Regression Analysis
	3. L2-Regression
	4. L1-Regression
	5. Iteratively Reweighted Least Squares
	6. An Example: How Fast is the Simplex Method?
	7. Which Variant of the Simplex Method is Best?
	Exercises
	Notes

	Part 1. Basic Theory---The Simplex Method and Duality
	Chapter 13. Financial Applications
	1. Portfolio Selection
	2. Option Pricing
	Exercises
	Notes

	Part 2. Network-Type Problems
	Chapter 14. Network Flow Problems
	1. Networks
	2. Spanning Trees and Bases
	3. The Primal Network Simplex Method
	4. The Dual Network Simplex Method
	5. Putting It All Together
	6. The Integrality Theorem
	Exercises
	Notes

	Part 2. Network-Type Problems
	Chapter 15. Applications
	1. The Transportation Problem
	2. The Assignment Problem
	3. The Shortest-Path Problem
	4. Upper-Bounded Network Flow Problems
	5. The Maximum-Flow Problem
	Exercises
	Notes

	Part 2. Network-Type Problems
	Chapter 16. Structural Optimization
	1. An Example
	2. Incidence Matrices
	3. Stability
	4. Conservation Laws
	5. Minimum-Weight Structural Design
	6. Anchors Away
	Exercises
	Notes

	Part 3. Interior-Point Methods
	Chapter 17. The Central Path
	Warning: Nonstandard Notation Ahead
	1. The Barrier Problem
	2. Lagrange Multipliers
	3. Lagrange Multipliers Applied to the Barrier Problem
	4. Second-Order Information
	5. Existence
	Exercises
	Notes

	Part 3. Interior-Point Methods
	Chapter 18. A Path-Following Method
	1. Computing Step Directions
	2. Newton's Method
	3. Estimating an Appropriate Value for the Barrier Parameter
	4. Choosing the Step Length Parameter
	5. Convergence Analysis
	Exercises
	Notes

	Part 3. Interior-Point Methods
	Chapter 19. The KKT System
	1. The Reduced KKT System
	2. The Normal Equations
	3. Step Direction Decomposition
	Exercises
	Notes

	Part 3. Interior-Point Methods
	Chapter 20. Implementation Issues
	1. Factoring Positive Definite Matrices
	2. Quasidefinite Matrices
	3. Problems in General Form
	Exercises
	Notes

	Part 3. Interior-Point Methods
	Part 3. Interior-Point Methods
	Chapter 22. The Homogeneous Self-Dual Method
	1. From Standard Form to Self-Dual Form
	2. Homogeneous Self-Dual Problems
	3. Back to Standard Form
	4. Simplex Method vs Interior-Point Methods
	Exercises
	Notes

	Part 4. Extensions
	Chapter 23. Integer Programming
	1. Scheduling Problems
	2. The Traveling Salesman Problem
	3. Fixed Costs
	4. Nonlinear Objective Functions
	5. Branch-and-Bound
	Exercises
	Notes

	Part 4. Extensions
	Chapter 24. Quadratic Programming
	1. The Markowitz Model
	2. The Dual
	3. Convexity and Complexity
	4. Solution Via Interior-Point Methods
	5. Practical Considerations
	Exercises
	Notes

	Part 4. Extensions
	Chapter 25. Convex Programming
	1. Differentiable Functions and Taylor Approximations
	2. Convex and Concave Functions
	3. Problem Formulation
	4. Solution Via Interior-Point Methods
	5. Successive Quadratic Approximations
	6. Merit Functions
	7. Parting Words
	Exercises
	Notes

	Part 4. Extensions
	Appendix A. Source Listings
	1. The Self-Dual Simplex Method
	2. The Homogeneous Self-Dual Method

	Answers to Selected Exercises
	Bibliography
	Index

