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Endorsements

Diagnostic Molecular Pathology is destined to become an important cornerstone and go-to volume for pathologists, researchers, and
clinicians—indeed anyone who wants to understand the approach and application of modern molecular techniques in disease detection
and diagnosis. Drs. Coleman and Tsongalis—and their impressive stable of contributors—are to be congratulated for making the excit-
ing and rapidly expanding science of molecular diagnosis accessible to the novice, while also providing the expert with important
details on the nuances. Beyond just a compendium of useful information, it is a well-curated journey through basic concepts, infectious
diseases, malignancy, hematopathology, and genetic diseases—and even includes access to a website with lab test videos and decision-
making exercises.

Richard N. Mitchell, MD, PhD (Brigham and Women’s Hospital and Harvard Medical School)

With much fanfare, molecular techniques have revolutionized clinical medicine, from diagnosis to personalized medical therapeu-
tics. It is with this background that Diagnostic Molecular Pathology approaches the daunting task of summarizing the advances in the
field from infectious diseases, heritable and acquired genetic diseases, hematological malignancies, to pharmacogenomics. In a compre-
hensive publication, the editors perform a yeoman’s effort in covering this dynamic and exciting field.

Lawrence M. Silverman, PhD (University of Virginia School of Medicine)

Diagnostic Molecular Pathology provides a panoramic view of diagnostic molecular pathology testing, written by leaders in the field. It
is a great reference and learning tool.

Dani S. Zander, MD (University of Cincinnati
Medical Center)



Dedication

This textbook describes the emerging field of diag-
nostic molecular pathology and its application to various
forms of human disease. Despite the relative youthful-
ness of this field, diagnostic molecular pathology has
become critically important in the contemporary prac-
tice of personalized medicine and is built upon the col-
lective knowledgebase that reflects our understanding
of the pathology, pathogenesis, and pathophysiology
of human disease. As such, the information contained
in this textbook represents the culmination of innumer-
able small successes that emerged from the ceaseless
pursuit of new knowledge by countless clinical and
experimental pathologists working around the world
on all aspects of human disease. Their ingenuity and
hard work have dramatically advanced the field of
molecular pathology over time, and particularly dur-
ing the last 25 years. This book is a tribute to the dedi-
cation, diligence, and perseverance of individual
scientists who contributed to the advancement of our
understanding of the molecular basis of human dis-
ease, especially graduate students, laboratory techni-
cians, and postdoctoral fellows, whose efforts are so
frequently taken for granted, whose accomplishments
are so often unrecognized, and whose contributions
are so quickly forgotten.

Diagnostic Molecular Pathology: A Guide to Applied
Molecular Testing is dedicated to the memory of Dr.
Kathleen Rao who passed away on March 24, 2016, fol-
lowing a brief battle with cancer. Dr. Rao earned a
PhD in genetics from the University of North Carolina
at Chapel Hill and was a member of the faculty in the
UNC School of Medicine from 1984 until the time of
her death. Dr. Rao was a Professor of Pediatrics,
Genetics, and Pathology and Laboratory Medicine, and
served as the Director of the Cytogenetics Laboratory
for UNC Hospitals. Dr. Rao made numerous contribu-
tions to the field of cytogenetics, was a Founding
Fellow of the American College of Medical Genetics
and Genomics, and was the recipient of the 2016
Distinguished Cytogeneticist Award. She served on
the International Standing Committee on Cytogenetic
Nomenclature, the Children’s Oncology Group

Cytogenetics Committee, and the Cancer and
Leukemia Group B Cytogenetics Review Committee.
Dr. Rao was also well-recognized as an extraordinary
medical educator at the University of North Carolina
where she was a Founding member of the UNC School
of Medicine’s Academy of Educators. As Director of
the Cytogenetics Laboratory Fellowship Training
Program at UNC, Dr. Rao taught and mentored
numerous students who now work in the field of cyto-
genetics throughout the United States. Dr. Rao was a
dear friend and cherished colleague to many people at
the University of North Carolina and across the coun-
try. We are proud to have known her and worked
with her through the years. We are also extremely
honored to have her as a contributor to this textbook
(see chapter: Molecular Testing in Pediatric Cancers)
and regret that we will not have another chance to
work with her on a project like this one. This book is
dictated to the example Dr. Rao provides all of us—as
a distinguished educator, an accomplished molecular
pathologist, and a genuinely good person.

We also dedicate Diagnostic Molecular Pathology: A
Guide to Applied Molecular Testing to the many people
that have played crucial roles in our successes. We
thank our many scientific colleagues, past and present,
for their camaraderie, collegiality, and support. We
especially thank our scientific mentors for their exam-
ple of dedication to research excellence. We are truly
thankful for the positive working relationships and
friendships that we have with our faculty colleagues,
for the mentoring we received from our elders, and for
the opportunity to mentor those that follow us. We
also thank our undergraduate students, graduate stu-
dents, and postdoctoral fellows for teaching us more
than we might have taught them. We thank our par-
ents for believing in higher education, for encourage-
ment through the years, and for helping make dreams
into reality. We thank our brothers and sisters, and
extended families, for the many years of love, friend-
ship, and tolerance. We thank our wives, Monty and
Nancy, for their unqualified love, unselfish support of
our endeavors, understanding of our work ethic, and



appreciation for what we do. Lastly, we give special
thanks to our children, Tess, Sophie, Pete, and Zoe.
Their achievements and successes as young adults are
a greater source of pride for us than our own accom-
plishments. As when they were children, we thank
them for providing an unwavering bright spot in our

lives, for their unbridled enthusiasm and boundless
energy, and for giving us a million reasons to take an
occasional day off from work just to have fun.

William B. Coleman
Gregory J. Tsongalis

viii DEDICATION



List of Contributors

Kimberly H. Allison, MD Department of Pathology,
Stanford University School of Medicine, Stanford, CA,
United States

Megan A. Allyse, PhD Department of Health Sciences
Research, Mayo Clinic School of Medicine, Rochester,
MN, United States

Rodney C. Arcenas, PhD, D(ABMM) Molecular
Microbiology and Immunology, Memorial Healthcare
System, Pathology Consultants of South Broward,
Hollywood, FL, United States

Michael J. Bartel, MD Division of Gastroenterology &
Hepatology, Mayo Clinic, Jacksonville, FL, United States

Amir Behdad, MD Division of Hematopathology,
Northwestern University, Feinberg School of Medicine,
Northwestern Memorial Hospital, Chicago, IL, United States

Katie M. Bennett, PhD, MB (ASCP)CM, NRCC-CC Texas
Tech University Health Sciences Center, School of Health
Professions, Molecular Pathology Program, Lubbock, TX,
United States

Jonathan S. Berg, MD, PhD Department of Genetics,
University of North Carolina School of Medicine, Chapel
Hill, NC, United States

D. Hunter Best, PhD Department of Pathology, University
of Utah School of Medicine, Salt Lake City, UT, United
States; Molecular Genetics and Genomics, ARUP
Laboratories, University of Utah School of Medicine, Salt
Lake City, UT, United States

Bryan L. Betz, PhD Department of Pathology, University of
Michigan, Ann Arbor, MI, United States

Jessica K. Booker, PhD Department of Pathology and
Laboratory Medicine; Department of Genetics, University of
North Carolina at Chapel Hill, Chapel Hill, NC, United States

Kristi S. Borowski, MD Departments of Medical Genetics
and Obstetrics and Gynecology, Mayo Clinic School of
Medicine, Rochester, MN, United States

Thomas Bourlet, PharmD, PhD GIMAP EA3064,
University of Lyon, Saint-Etienne, France; Laboratory of
Infectious Agents and Hygiene, University Hospital of
Saint-Etienne, Saint-Etienne, France

Pierre Brissot, MD, PhD National Center of Reference for
Rare Genetic Iron Overload Diseases, Pontchaillou
University Hospital, Rennes, France; Inserm-UMR 991,
University of Rennes 1, Rennes, France

Noah A. Brown, MD Department of Pathology, University
of Michigan, Ann Arbor, MI, United States

Marcin Bula, PhD The Wolfson Centre for Personalised
Medicine, Institute of Translational Medicine, University
of Liverpool, Liverpool, United Kingdom

Richard M. Caprioli, PhD Mass Spectrometry Research
Center, and Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN, United
States

Subhankar Chakraborty, MD Division of Gastroenterology
& Hepatology, Mayo Clinic, Rochester, MN, United States

William B. Coleman, PhD Department of Pathology and
Laboratory Medicine, Program in Translational Medicine,
UNC Lineberger Comprehensive Cancer Center,
University of North Carolina School of Medicine, Chapel
Hill, NC, United States

Kristy R. Crooks, PhD Department of Pathology,
University of Colorado, Anschutz Medical Campus,
Aurora, CO, United States

Jianli Dong, MD Department of Pathology, University of
Texas Medical Branch, Galveston, TX, United States

Harry A. Drabkin, MD Department of Medicine, Division
of Hematology/Oncology, Medical University of South
Carolina, Charleston, SC, United States

Daniel L. Duncan, MD Department of Pathology and
Laboratory Medicine, University of North Carolina School
of Medicine, Chapel Hill, NC, United States

Jawed Fareed, PhD Department of Pathology, Loyola
University Health System, Maywood, IL, United States

Andrea Ferreira-Gonzalez, PhD Division of Molecular
Diagnostics, Department of Pathology, Virginia
Commonwealth University, Richmond, VA, United States

Birgit H. Funke, PhD, FACMG Laboratory for Molecular
Medicine, Partners Personalized Medicine, Boston, MA,
United States; Department of Pathology, Harvard Medical
School, Boston, MA, United States; Department of
Pathology, Massachusetts General Hospital, Boston, MA,
United States

Larissa V. Furtado, MD Department of Pathology,
University of Chicago, Chicago, IL, United States

Giorgio Gallinella, MD, PhD Department of Pharmacy
and Biotechnology, S. Orsola-Malpighi Hospital �
Microbiology, University of Bologna, Bologna, Italy

Sonzalo Gonzalo, PharmD GIMAP EA3064, University of
Lyon, Saint-Etienne, France; Laboratory of Infectious
Agents and Hygiene, University Hospital of Saint-Etienne,
Saint-Etienne, France

xv



Florence Grattard, MD, PhD GIMAP EA3064, University
of Lyon, Saint-Etienne, France; Laboratory of Infectious
Agents and Hygiene, University Hospital of Saint-Etienne,
Saint-Etienne, France

Danielle B. Gutierrez, PhD Mass Spectrometry Research
Center, and Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN, United States

Gloria T. Haskell, PhD Department of Genetics, Duke
University, Durham, NC, United States

Amin A. Hedayat, MD Department of Pathology,
Dartmouth-Hitchcock Medical Center, Lebanon, NH,
United States

W. Edward Highsmith, Jr, PhD Departments of
Laboratory Medicine and Pathology, and Medical
Genetics, Mayo Clinic School of Medicine, Rochester,
MN, United States

Susan J. Hsiao, MD, PhD Department of Pathology & Cell
Biology, Columbia University Medical Center, New York,
NY, United States

Omer Iqbal, MD Department of Pathology, Loyola
University Health System, Maywood, IL, United States

Nahed Ismail, MD, PhD, D(ABMM), D(ABMLI) Department
of Pathology, University of Pittsburgh, Pittsburgh, PA,
United States

Anne-Marie Jouanolle, PharmD National Center of
Reference for Rare Genetic Iron Overload Diseases,
Laboratory of Molecular Genetics and Genomics,
Pontchaillou University Hospital, Rennes, France

Sarah E. Kerr, MD Department of Laboratory Medicine
and Pathology, College of Medicine, Mayo Clinic,
Rochester, MN, United States
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Preface

Pathology is the scientific study of the nature of dis-
ease and its causes, processes, development, and con-
sequences. The field of pathology emerged from the
application of the scientific method to the study of
human disease. Thus, pathology as a discipline repre-
sents the complimentary intersection of medicine and
basic science. Early pathologists were typically practic-
ing physicians who described the various diseases that
they treated and made observations related to factors
that contributed to the development of these diseases.
The description of disease evolved over time from
gross observation to structural and ultrastructural
inspection of diseased tissues based upon light and
electron microscopy. As hospital-based and
community-based registries of disease were developed,
the ability of investigators to identify factors that cause
disease and assign risk to specific types of exposures
expanded to increase our knowledge of the epidemiol-
ogy of disease. While descriptive pathology can be
dated to the earliest written histories of medicine and
the modern practice of diagnostic pathology dates
back perhaps 200 years, the elucidation of mechanisms
of disease and linkage of disease pathogenesis to spe-
cific causative factors occurred more recently from
studies in experimental pathology. The field of experi-
mental pathology embodies the conceptual foundation
of early pathology—the application of the scientific
method to the study of disease—and applies modern
investigational tools of cell and molecular biology to
advanced animal model systems and studies of human
subjects. Whereas the molecular era of biological sci-
ence began over 50 years ago, recent advances in our
knowledge of molecular mechanisms of disease have
propelled the field of molecular pathology. These
advances were facilitated by significant improvements
and new developments associated with the techniques
and methodologies available to pose questions related
to the molecular biology of normal and diseased states
affecting cells, tissues, and organisms. Today, molecu-
lar pathology encompasses the investigation of the
molecular mechanisms of disease and interfaces with
translational medicine where new basic science discov-
eries form the basis for the development of new thera-
peutic approaches and targeted therapies for the new

strategies for prevention, and treatment of disease.
Diagnostic molecular pathology is a new field that is
focused on exploitation of molecular features and
mechanisms of disease for the development of practi-
cal molecular diagnostic tools for disease detection,
diagnosis, and prognostication. Diagnostic molecular
pathology is essential for the realization of true person-
alized medicine. As this field continues to expand and
mature, new molecular tests will emerge that will have
utility in the sensitive and specific detection, diagnosis,
and prognostication of human disease. Over time, the
molecular technologies required will become increas-
ingly economically practical and accessible to all
patients whether treated in academic medical centers
or community hospitals.

With the remarkable pace of scientific discovery in
the field of diagnostic molecular pathology, basic scien-
tists, clinical scientists, and physicians have a need for
a source of information on the current state-of-the-art
of our understanding of the molecular basis of human
disease and how we harness the molecular features of
disease for practical molecular testing. More impor-
tantly, the complete and effective training of today’s
graduate students, medical students, postdoctoral fel-
lows, and others, for careers related to the investiga-
tion and treatment of human disease requires
textbooks that have been designed to reflect our cur-
rent knowledge of the molecular mechanisms of dis-
ease pathogenesis, as well as emerging concepts
related to translational medicine. In this volume on
Diagnostic Molecular Pathology: A Guide to Applied
Molecular Testing we have assembled a group of
experts to discuss the molecular basis and mechanisms
of major human diseases and disease processes, pre-
sented in the context of traditional pathology, and how
these molecular features of disease can be effectively
harnessed to develop practical molecular tests for dis-
ease detection, diagnosis, and prognostication. This
volume is intended to serve as a multiuse textbook
that would be appropriate as a classroom teaching tool
for medical students, biomedical graduate students,
allied health students, and others (such as advanced
undergraduates). Further, this textbook will be valu-
able for pathology residents and other postdoctoral
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fellows who desire to advance their understanding of
molecular mechanisms of disease and practical applica-
tions related to these mechanisms, beyond what they
learned in medical/graduate school. In addition, this
textbook is useful as a reference book for practicing
basic scientists and physician scientists who perform
disease-related basic science and translational research,
who require a ready information resource on the molec-
ular basis of various human diseases and disease states
and the molecular tests that are used during patient
workup in a modern hospital laboratory. To be sure,
our understanding of the many causes and molecular
mechanisms that govern the development of human
diseases is far from complete, and molecular testing has
not yet become available for all human diseases.
Nevertheless, the amount of information related to the

practical exploitation of molecular mechanisms of
human disease has increased tremendously in recent
years and areas of thematic and conceptual consensus
have emerged. We hope that Diagnostic Molecular
Pathology: A Guide to Applied Molecular Testing will
accomplish its purpose of providing students, research-
ers, and practitioners with in-depth coverage of the
molecular basis of major human diseases and associ-
ated molecular testing so as to stimulate new research
aimed at furthering our understanding of these molecu-
lar mechanisms of human disease and practice of
molecular medicine through the development of new
and novel molecular technologies and tests.

William B. Coleman
Gregory J. Tsongalis
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C H A P T E R

1

Basic Concepts in Molecular Pathology—
Introduction to Molecular Testing

in Human Disease
W.B. Coleman1 and G.J. Tsongalis2

1Department of Pathology and Laboratory Medicine, Program in Translational Medicine, UNC Lineberger
Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
2Laboratory for Clinical Genomics and Advanced Technology (CGAT), Department of Pathology and Laboratory
Medicine, Dartmouth-Hitchcock Medical Center and Norris Cotton Cancer Center, Geisel School of Medicine at

Dartmouth, Hanover, NH, United States

INTRODUCTION

Human diseases reflect a spectrum of pathologies and
mechanisms of disease pathogenesis. The general catego-
ries of disease affecting humans include (1) hereditary
diseases, (2) infectious diseases, (3) inflammatory dis-
eases, and (4) neoplastic diseases. Pathologic conditions
representing each of these general categories have been
described for every tissue in the body. Despite the group-
ing of diseases by the common features of the general dis-
ease type, the pathogenesis of all of the various diseases is
unique, and in some cases multiple distinct mechanisms
can give rise to a similar pathology (disease manifesta-
tion). Disease causation may be related to intrinsic factors
or extrinsic factors, but many/most diseases are multifac-
torial, involving a combination of intrinsic (genetic) and
extrinsic factors (exposures). It is now well recognized
that most major diseases are ultimately the result of aber-
rant gene expression, and that susceptibility to disease is
significantly influenced by patterns of gene expression in
target cells or tissues for a particular type of pathology. It
follows that gene mutations and other genetic alterations
are important in the pathogenesis of many human dis-
eases. Hence, molecular diagnostic testing for genetic
alterations may (1) facilitate disease detection, (2) aid in
disease classification (diagnosis), (3) predict disease out-
comes (prognostication), and/or (4) guide therapy

(Fig. 1.1). Likewise, nongenetic alterations affecting the
expression of key genes (termed epimutations) may also
contribute to the genesis of disease at many tissue sites.
Molecular testing focused on epigenetic alterations in
human disease is emerging and in development. Like
genetic alterations, epigenetic changes may signifi-
cantly impact on certain disease characteristics that
confer diagnostic value. Epigenetic alterations can
lead to gene silencing events (which are mechanisti-
cally equivalent to inactivating mutations or gene
deletions) and may contribute to gene expression
signatures that have predictive value with respect to
clinical features of disease.

In this chapter we describe basic concepts in molec-
ular pathology and molecular diagnostic testing for
human disease. This is intended to be an introductory
review of the field, rather than a comprehensive
review of the field. Hence, when needed, examples are
drawn preferentially from the cancer literature.
Interested readers will find comparable literature in
numerous other biomedical fields.

MUTATIONS AND EPIMUTATIONS

Mutation refers to changes in the genome that are
characterized by alteration in the nucleotide sequence

3
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of a specific gene and/or other alterations at the level
of the primary structure of DNA. Point mutations,
insertions, deletions, and chromosomal abnormalities
are all classified as mutations. In contrast, epimutation
refers to alterations in the genome that do not involve
changes in the primary sequence of the DNA.
Aberrant DNA hypermethylation or hypomethylation
and/or abnormal histone modifications resulting in
alterations in chromatin structure are considered epi-
mutations. Despite the differences between mutation
and epimutation, the consequences of these molecular
processes on the normal expression/function of critical
genes/proteins may be the same—alteration of normal
gene expression and/or normal protein function.
These alterations may reflect (1) loss or reduction of
normal levels of gene expression with consequent loss
of protein function, (2) loss of function due to loss of
protein or synthesis of defective protein, (3) increased
levels of gene expression with consequent overexpres-
sion of protein, or (4) gain-of-function mutation with
consequent altered protein function. Whereas many
human diseases can be attributed to genetic alteration
or epimutation affecting a single gene (or a few genes),
the actual molecular consequence of these changes can
be very dramatic, resulting in major alterations in gene
expression patterns secondary to the primary genetic
or epigenetic gene defect.

Genetic Alterations

Disease-related genetic alterations can be categorized
into two major groups: nucleotide sequence abnormali-
ties and chromosomal abnormalities. Examples of both
of these forms of molecular lesion have been character-
ized in familial and acquired diseases affecting various
human tissues.

Nucleotide sequence alterations include changes in
individual genes involving single nucleotide changes
(missense and nonsense), and small insertions or

deletions (some of which result in frameshift muta-
tions). Single nucleotide alterations that involve a
change in the normal coding sequence of the gene
(point mutations) can give rise to an alteration in the
amino acid sequence of the encoded protein. Missense
mutations alter the translation of the affected codon,
while nonsense mutations alter codons that encode
amino acids to produce stop codons. This results in
premature termination of translation and the synthesis
of a truncated protein product. Small deletions and
insertions are typically classified as frameshift muta-
tions because deletion or insertion of a single nucleo-
tide (for instance) will alter the reading frame of the
gene on the 30-side of the affected site. This alteration
can result in the synthesis of a protein that bears very
little resemblance to the normal gene product or pro-
duction of an abnormal/truncated protein due to the
presence of a stop codon in the altered reading frame.
In addition, deletion or insertion of one or more
groups of three nucleotides will not alter the reading
frame of the gene, but will alter the resulting polypep-
tide product, which will exhibit either loss of specific
amino acids or the presence of additional amino acids
within its primary structure.

Chromosomal alterations include the gain or loss of
one or more chromosomes (aneuploidy), chromosomal
rearrangements resulting from DNA strand breakage
(translocations, inversions, and other rearrangements),
and gain or loss of portions of chromosomes (amplifi-
cation, large-scale deletion). The direct result of
chromosomal translocation is the movement of a
segment of DNA from its natural location into a new
location within the genome, which can result in altered
expression of the genes that are contained within the
translocated region. If the chromosomal breakpoints
utilized in a translocation are located within structural
genes, then hybrid (chimeric) genes can be generated.
The major consequence of a chromosomal deletion
(involving a whole chromosome or a large chromo-
somal region) is the loss of specific genes that are

Urine sample
Detection of bladder cancer

Colon cancer biopsy
Characterization of mismatch repair defects

EGFR mutations in lung cancer
Presence of EGFR mutation indicates TKI resistance

Gene expression analysis in breast cancer
Identification of molecular subtypes

FIGURE 1.1 Utilization of DNA

biomarkers in disease detection,

diagnosis, classification, and guided

treatment. This schematic provides
examples from human cancer where
DNA biomarkers obtained from non-
invasive or invasive sources are used
in the clinical workup of patients.
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localized to the deleted chromosomal segment, result-
ing in changes in the copy number of the affected
genes. Likewise, gain of chromosome number or
amplification of chromosomal regions results in an
increase in the copy numbers of genes found in these
chromosomal locations.

Epigenetic Alterations

In contemporary terms, epigenetics refers to
modifications of the genome that are heritable during
cell division, but do not involve a change in the
DNA sequence. Therefore epigenetics describes
heritable changes in gene expression that are not
simply attributable to nucleotide sequence variation. It
is now recognized that epigenetic regulation of gene
expression reflects contributions from both DNA meth-
ylation as well as complex modifications of histone
proteins and chromatin structure. Nonetheless, DNA
methylation plays a central role in nongenomic inheri-
tance and in the preservation of epigenetic states, and
remains the most accessible epigenomic feature due to
its inherent stability. Thus DNA methylation repre-
sents a target of fundamental importance in the charac-
terization of the epigenome and for defining the role of
epigenetics in disease pathogenesis.

SOURCES OF NUCLEIC ACIDS FOR
MOLECULAR TESTING

Molecular diagnostic testing is now firmly engrained
in the clinical testing menu of most/all hospital clinical
laboratories. To conduct molecular testing in the workup
of patients with known or suspected disease, sources of
nucleic acids (primarily DNA) for use as biomarkers in
molecular diagnostic assays are required. There are a

large number of potential sources for patient-derived
DNA (Fig. 1.2). These sources can be divided based upon
the difficulty in sampling and/or the discomfort to the
patient during sampling as (1) invasive sources of DNA
biomarkers or (2) noninvasive sources of DNA
biomarkers (Fig. 1.2). Tremendous research effort is
now focused on utilization of noninvasive sources of
biomarkers in the detection, diagnosis, prognostication,
and classification of human disease. Noninvasive
sources of DNA cause minimal to no discomfort to the
patient. Collection of a urine sample represents a
procedure with no discomfort, while collection of
peripheral blood is a procedure with minimal discomfort
to the patient. In contrast, invasive sources of DNA,
while valuable for molecular testing, can require surgical
procedures to obtain (such as in the case of a tissue
biopsy) and may involve considerable discomfort to the
patient (which is the case for Pap smears and spinal
taps). In all cases DNA from diseased tissue or cells is
the desired product. This DNA may be derived from
cells collected in one of these procedures or through
isolation of cell-free DNA (in some cases). No matter the
source of biomarkers or the procedures used to collect
the sample, it is critical that the intended use of the
sample is kept in mind to ensure that samples are
collected, stored, and processed in a manner that will
not compromise the DNA. Numerous commercial
sources provide kits for preparation of nucleic acids
from various bodily fluids and tissue samples.
Furthermore, this process has been automated in many
cases through the use of commercial instrumentation.

CLASSIFICATION OF DISEASE

The classification of disease has historically been
based upon (1) site of the pathological lesion (organ or

Noninvasive 

sources 

of DNA

Peripheral blood
Serum
Plasma

White blood cells
Circulating cancer cells

Urine
Cellular sediment

Sputum
Cellular material

Free DNA

Oral swabs
Cheek cells

Saliva

Invasive

sources 

of DNA

Tissue biopsy
Pathologic cells

Spinal tap
Spinal fluid

Amniocentesis
Amniotic fluid

Cellular material

Pap smear
Cervical brushings

FIGURE 1.2 Sources of DNA bio-

markers for molecular testing. Sources
of DNA biomarkers for molecular
testing can be grouped according to the
relative difficulty in sampling and/or the
relative discomfort to the patient during
sample collection as (1) invasive sources,
and (2) noninvasive sources. Among the
invasive sources of DNA biomarkers,
tissue biopsy may be used throughout the
body to collect tissue for molecular testing
(or routine pathologic examination). Some
tissue biopsies can be obtained through
simple surgical procedures (such as
a skin biopsy), while others require a
more extensive surgical procedure
(bronchoscopy-based lung biopsy). In
some cases the source of molecular bio-
markers reflects an infectious agent
(bacterium or virus) rather than host cells
or cellular material.
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tissue) and (2) nature of the pathological lesion
(neoplasia, inflammation, etc.) [1]. Hence we are
accustomed to diseases being classified into broad cat-
egories: for example, (1) organ-specific cancers, (2) car-
diomyopathies, or (3) coagulopathies, among others.
These broad disease classifications are typically associ-
ated with heterogeneity of disease presentation or
response to therapy, suggesting multiple disease sub-
types within these categories [1]. It is now well recog-
nized that molecular subtypes exist within many of
these broad disease classifications. For example,
approximately 80% of all breast cancers are classified
as invasive ductal carcinoma based upon routine path-
ologic evaluation (Fig. 1.3). However, breast cancer
tends to be a heterogeneous disease based upon pre-
sentation, natural history, and responses to therapy,
suggesting that breast cancer is not a single disease
entity. In fact, examination of gene expression patterns
among invasive ductal carcinomas identified five
molecular subtypes that predict the aggressiveness of
the disease in the individual patient and can be used
to predict clinical course [2]. While the molecular sub-
types of breast cancer were identified based upon com-
plex gene expression patterns, comprehensive
molecular analyses have revealed that breast cancers
contain any number of molecular alterations, including
chromosomal aberrations (structural and number),
gene mutations, distinct gene expression patterns, and

changes in noncoding RNA expression (microRNAs
and others) (Fig. 1.4) [3,4]. Epigenetic changes associ-
ated with histone modifications and DNA methylation
directly affect gene expression patterns [5�8].
Likewise, changes in expression of noncoding RNAs
may alter posttranscriptional regulation of gene
expression patterns [6].

MOLECULAR CLASSIFICATION
OF DISEASE

Evidence for the existence of molecular subtypes of
disease includes the observation by clinicians that
patients with the same disease diagnosis and diseases
that apparently share many phenotypic characteristics
will display widely varying clinical courses and
responses to therapy. Hence, when a cohort of patients
with a given disease are treated with a common stan-
dard therapy, only a subset of patients are expected to
respond favorably (Fig. 1.5A). Upon the discovery of
molecular subtypes of disease, the mechanistic basis
for favorable outcomes of subsets of patients with a
given disease becomes more apparent (Fig. 1.5B).

The molecular classification of breast cancer is an
excellent example. Early microarray-based gene
expression analyses of invasive breast cancers identi-
fied five molecular subtypes: luminal A, luminal B,

FIGURE 1.3 Invasive ductal carcinoma of the breast. Examples of invasive ductal carcinoma of the breast from four different patients are
shown with hematoxylin and eosin staining. While some subtle histologic differences can be observed among these breast cancers, all of them
are given the same clinical diagnosis—invasive ductal carcinoma.
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HER2-enriched, basal-like, and normal-like [2]. An
example of an unsupervised cluster analysis of
microarray-based gene expression data from 294 breast
cancers is shown in Fig. 1.6. Since the early studies of
gene expression patterns to determine molecular sub-
types among breast cancers, new molecular assays
based upon polymerase chain reaction (PCR) (PAM50)
and RNA sequencing have emerged that faithfully
classify breast cancers in a similar manner [3,9,10]. Of
significance was the observation that the natural
history of breast cancers differs with molecular
subtype—luminal A breast cancers demonstrate excel-
lent long-term survival, while basal-like breast cancers
exhibit rapid progression of disease and poor long-
term patient outcomes [11,12]. Hence, knowledge of
the molecular subtype of breast cancer informs the
clinician of the likely aggressiveness of the disease.
However, these basic molecular subtypes of breast
cancer are not homogeneous groupings. Rather, con-
siderable heterogeneity has been observed [13,14]. In
recent studies triple-negative breast cancers have been
subclassified into groupings that predict response to
specific chemotherapeutic agents [15�17]. These new
data provide hope that advances in the molecular clas-
sification of various diseases will translate into practi-
cal molecular tests with utility in the clinical setting as

an aid to clinicians in the management of individual
patients. With the generation of large datasets related
to gene expression, gene copy number variations,
mutations, and molecular pathways in human disease,
new challenges have emerged with respect to disease
classification [1]. Certainly, achieving molecular classi-
fication of disease does not automatically equate to
better patient management.

MOLECULAR TESTING AND
COMPANION DIAGNOSTICS

Companion diagnostics are generally defined as a
molecular test that produces a result that predicts the
likely success of using a specific therapeutic agent
in an individual patient with a given disease [18,19]. In
many/most cases the molecular test is not based upon
the mutation or expression status of a single gene.
Rather, these tests tend to utilize multiple genes to
improve sensitivity, specificity, and predictive value.
The objective of the companion diagnostic is to iden-
tify patients that will benefit from a given therapeutic
drug or drug combination, ideally with minimal toxic-
ity. These two consequences (toxicity and benefit) of
drug treatment are not mutually exclusive. When a

Alteration of 
gene expression

patterns

Chromosomal 
alterations

Structural changes
Copy number variations

Noncoding RNAs
MicroRNAs

lncRNAs

Gene mutations
PIKC3A

p53
BRCA1/BRCA2

Many others

Genetic mechanisms
Epigenetic mechanisms

Invasive ductal carcinoma of the breast

FIGURE 1.4 Molecular alterations in breast cancer. While the majority of breast cancers are of the same histologic type (invasive ductal
carcinoma), each individual cancer contains numerous genetic and epigenetic alterations. The unique pattern of alterations found in indi-
vidual cancers will influence its intrinsic characteristics, drive clinical behavior, and affect responses to therapeutic interventions. All of the
genetic and epigenetic alterations found in an individual breast cancer represent potentially useful biomarkers for exploitation in molecular
testing.
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drug is administered to a given patient, there are four
possible outcomes: (1) the drug is toxic and not benefi-
cial, (2) the drug is toxic, but beneficial, (3) the drug is
not toxic, but not beneficial, and (4) the drug is not
toxic, but is beneficial (Fig. 1.7). However, toxicity to
the patient (reflecting effects on the patient’s normal
physiology) is most often an intrinsic property of the
drug itself. Thus in the clinical setting, numerous
drugs and drug regimens are employed on a routine
basis that not only are toxic to patients but also pro-
vide benefit in the treatment of their disease.

Molecular testing includes companion diagnostics
as well as other diagnostic assays that provide insights
into the nature and characteristics of a disease in a
given individual patient. There is little question that
as we gain additional insights into molecular subtypes
of specific diseases and how they impact on disease
progression, outcomes, and responses to therapy,
molecular testing to achieve subclassification of dis-
ease (and groupings of patients) will become very
important (Fig. 1.8). In some cases subclasses of
disease will be associated with patient outcomes

Patients with a “type” of disease

Few patients respond 

to therapy

Most patients fail therapy

Inadequate response
No response

Develop resistance

Standard 

therapy

(A)

(B)

Patients with a “type” of disease
(recognizing the molecular subtypes)

Few patients respond 

to therapy

Most patients fail therapy

Inadequate response
No response

Develop resistance

Standard 

therapy

FIGURE 1.5 Molecular subtypes

identify patient groupings with similar

disease outcomes. (A) When a cohort of
patients with the same disease diagnosis
are treated with similar forms of stan-
dard therapy, only a subset of patients
will respond favorably. This observation
indicates that therapy cannot be
effectively prescribed based upon a
simple diagnosis. (B) Upon recognition
of molecular subtypes of disease, it
becomes apparent while certain subsets
of patients with the same disease diag-
nosis respond differentially (favorably)
to a given therapy. This observation sug-
gests that therapeutic approaches should
be governed by molecular profiling of
patients.
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(short-term disease-free survival or long-term overall
survival). Knowledge of the likelihood of aggressive
disease versus more benign disease (Fig. 1.9) will be
useful in decisions related to patient management,
even if a specific treatment course is not prescribed in
response to testing. By the same token, development

of new biomarkers of disease will enable generation of
practical molecular tests for selection of appropriate
therapies (especially as new drugs and drug regimens
emerge), expanding our menu of companion diagnos-
tics for use in designing therapeutic strategies for indi-
vidual patients (Fig. 1.9).

FIGURE 1.6 Microarray analysis of breast cancer

gene expression patterns. Unsupervised cluster analysis
of 294 primary breast cancers identifies five major
molecular subtypes: (1) luminal A, (2) luminal B,
(3) HER2-enriched, (4) basal-like, and (5) normal-like.

Treatment toxic

but beneficial

Treatment toxic

but not beneficial

Treatment not toxic

but not beneficial

Treatment not toxic

but beneficial

Patient group
Same diagnosis
Same treatment

FIGURE 1.7 Possible treatment outcomes for

any given therapy. For any cohort of patients that
are treated with a given drug, there are four possi-
ble treatment outcomes. The ideal outcome corre-
sponds to the treatment where there is no toxicity of
the drug, but the drug is beneficial to the patient. In
cancer chemotherapy the typical outcome corre-
sponds to where the drug is toxic to the patient
(and so administered in a dose-limiting fashion),
but provides benefit (kills the cancer cells).
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MOLECULAR DETECTION OF DISEASE

For many years, investigators have explored the use
of molecular biomarkers for prediction of disease sus-
ceptibility and for the detection of occult (subclinical)
disease. Molecular testing is typically based upon PCR
or molecular methods of equal sensitivity. Early exper-
imental studies demonstrated the power of molecular
testing for detection of lung cancer in high-risk indivi-
duals (cigarette smokers) [20]. Sputum samples were
collected from high-risk individuals prior to their diag-
nosis with lung cancer and tested for the presence of
mutations in ��K-ras and p53 [20]. These mutations
occur frequently in lung cancer [21]. The investigators
found that 10/15 lung cancers were positive for K-ras
and/or p53 mutations [20]. Remarkably, 8 of 10 spu-
tum samples (which were cytologically negative for a
cancer diagnosis) corresponding to patients with a
lung cancer diagnosis were positive for K-ras or p53
mutations [20]. In one case the gene mutation was
detectable in the sputum .1 year prior to clinical diag-
nosis of lung cancer [20]. Hence, molecular testing has
the power to detect driver mutations in rare neoplastic
cells in patients that will eventually progress to form a
clinical cancer, potentially enabling the employment of
cancer preventative strategies or very early therapeutic
intervention in patients following a positive test.
However, caution must be used because there is the
possibility that a positive molecular test will be
obtained in an individual that does not progress to a

clinical cancer (Fig. 1.10). That is, a true positive molec-
ular test result (K-ras or p53 mutation detected in
sputum) can be associated with a false-positive predic-
tion of the development of lung cancer (when K-ras or
p53 mutant cells do not progress to a clinical cancer).
This sort of prospective molecular testing is only
practical when there is a high-risk population to
screen. Population-based screening using molecular
testing has only proved to be effective for certain
forms of cancer that are relatively slow growing and
homogeneous in presentation (like colon cancer), while
screening for cancers that exhibit greater heterogeneity
(like breast cancer) are not yet practical and effective
[22]. Further, in the example of molecular testing for
early lung cancer detection, former smokers will
remain at high risk for many years after cessation of
smoking. Hence, a true negative result early in testing
may become a true positive result over time and/or
an individual with a true negative result may develop
lung cancer over time in the absence of conversion to
a positive molecular test. Additional limitations to
this approach for the early detection of cancer relates
to the design of the molecular test. It is clear from
studies performed to date that testing of one or two
gene mutations will not be sufficient to capture all
developing cancers and that multigene panels will
be required to achieve the necessary sensitivity
and specificity for a routine screening application.
Early detection of cancer through molecular testing is
likely to improve long-term outcomes for patients,
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FIGURE 1.8 Companion molecular

diagnostics. Molecular testing through a
companion molecular diagnostic enables
classification of patients and their dis-
ease by identifying those with certain
intrinsic characteristics. Hence, these
molecular tests may be employed to
(1) identify subsets of disease, (2) identify
cohorts of patients that have better or
worse prognosis, or (3) identify patients
that according to likelihood of response to
therapy.
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FIGURE 1.9 Utilization of molecular biomarkers for prediction of disease outcomes and drug selection. (A) Molecular testing can be
used to identify individual patients or patient subsets that have a better or worse prognosis based upon results with a group of informative
biomarkers. Measures of prognosis may be short-term or long-term survival, relapse-free interval, or likelihood of disease progression.
(B) Molecular testing can be utilized for drug selection (or therapeutic strategy) based upon results with a group of biomarkers.
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especially for difficult-to-treat cancers like those
affecting the pancreas [23] and the liver [24].

Given the advantages to the patient for using nonin-
vasive sources of biomarkers for molecular testing, so-
called liquid biopsies are under development for many
forms of human cancer (and other diseases) [25�27].
The concept of liquid biopsy reflects the noninvasive
source for disease biomarkers—most often blood or a
blood-derived (serum or plasma) patient sample—and
the exploitation of information from the primary dis-
ease (cancer in this case)—which likens to a tissue
biopsy (taken from the diseased tissue and providing
information regarding the disease). In some cases liq-
uid biopsy targets diseased cells (such as cancer cells)
in the blood, while in other cases the biomarkers reflect
cell-free DNA, microRNAs, or other derivative cell
products [28,29]. Liquid biopsies have been proposed as
a tool for (1) detection of human cancers [26], (2) charac-
terization of human cancers [30], and (3) monitoring
cancer status (recurrence/relapse) [31�33].

In cancer molecular testing, detection of recurrent
disease through screening of patients with a prior
diagnosis and successful treatment of cancer repre-
sents another important application. For many major

forms of cancer, conventional treatment involves sur-
gery followed by adjuvant chemotherapy, radiation, or
use of targeted drugs. Monitoring for cancer relapse or
progression to metastatic disease involves imaging
studies over time (based upon PET scanning or simi-
lar). Investigators are now examining the possibility
that molecular testing can be used as a less expensive
alternative to radiographic scanning to detect recurrent
disease. When molecular testing is combined with a
noninvasive source of DNA biomarkers, it becomes
practical to screen individual patients more frequently,
possibly increasing the chances of detecting recurrent
disease early after its emergence.

MOLECULAR DIAGNOSIS OF DISEASE

Molecular testing has a great value when combined
with traditional means of disease diagnosis. In some
cases the results of a molecular test confirms the diag-
nosis based upon clinical symptoms and evaluation of
other information and samples (such as a biopsy of tis-
sue). In other cases the results of the molecular test
provides information related to the intrinsic properties

At-risk
individuals

Individuals with a 
history of cigarette smoking

K-ras
or p53

mutation
detected

Molecular testing
(sputum samples)

Molecular testing
(sputum samples)

No K-ras
or p53

mutation
detected No cancer

(true positive*)

Lung cancer
(false negative)

Lung cancer
(true positive)

No cancer
(false positive*)

FIGURE 1.10 Molecular testing for detection of lung cancer. This schematic represents exploitation of gene mutations affecting p53 or
K-ras in the detection of lung cancer in high-risk patients using cytologically negative sputum samples. A true-positive molecular test (�) is
achieved when no mutation is detected and the patient does not develop cancer (over time). However a false-positive molecular test (�) results
when a mutation is detected, but the patient does not develop cancer.
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of the disease enabling the physician to make good
treatment decisions. In addition, molecular profiling of
gene mutations in individual patients with a given dis-
ease may identify a genetic cause of that disease and
enable targeted screening for at-risk relatives of the
affected individual.

The use of Tamoxifen in the treatment of estrogen
receptor-positive (ER1) breast cancers is an example of
a targeted therapy. In the clinical workup of breast
cancer patients, cancer tissues (from biopsy or surgery)
are evaluated by immunohistochemistry for expression
of ER. In patients with ER1 disease, Tamoxifen (or
other antiestrogenic agents) is typically prescribed,
whereas ER-negative patients do not receive this
treatment because lack of ER renders the cancer
Tamoxifen-resistant. Likewise, breast cancers that over-
express human epidermal growth factor 2 (HER2) are
treated with Herceptin (or similar drugs that target
HER2). Immunostaining for HER2 identifies some
patients who will benefit from Herceptin treatment,
while others are confirmed with molecular testing
based upon HER2 fluorescence in situ hybridization to
detect Her2 gene amplification [34,35].

Triple-negative breast cancer represents a difficult-
to-treat subtype of invasive ductal carcinoma that is
classified based upon results of immunostaining for
ER, progesterone receptor (PR), and HER2. Triple-
negative breast cancers are negative for ER and PR, and
do not exhibit overexpression of HER2. This subset of
invasive breast cancers is very heterogenous [14]. In
recent studies molecular profiling of triple-negative
breast cancers based upon gene expression profiles has
identified a number of distinct subsets [15,36,37].
Refinement of the subtyping of triple-negative breast
cancers [38] produced four molecular subtypes: Basal-
like 1 (BL1), Basal-like 2 (BL2), mesenchymal-type (M),
and luminal androgen receptor-type (LAR) [15]. Each
of these molecular subtypes emerges from the clinical
designation of triple-negative breast cancer based upon
immunohistochemistry, so the identification of these
subtypes does not modify the diagnosis of disease.
However, the molecular subtypes identified in triple-
negative breast cancer differentially respond to specific
chemotherapeutic drug combinations [15,36,39].

MOLECULAR PROGNOSTICATION
OF DISEASE

Molecular testing of tissue samples from patients
undergoing surgery (or biopsy) in treatment (or diag-
nosis) of disease can be used to predict (or prognosti-
cate) patient outcomes. Typical readouts for prediction
of patient outcomes include (1) relapse-free survival,

(2) probability of recurrence, (3) probability of progres-
sion to metastatic disease (in the example of cancer),
and (4) overall survival.

An excellent example of a molecular test that pro-
vides information related to various measures of prog-
nosis is the Oncotype DX assay [40]. Oncotype DX
utilizes a 21-gene signature to predict the likelihood of
disease recurrence among patients with node-negative
ER1 breast cancer [40�42]. The recurrence score (RS)
provided by Oncotype DX provides a measure of risk
for recurrence during a 10-year follow-up period: low
risk, intermediate risk, or high risk. When Oncotype
DX results were evaluated with respect to benefit
from adjuvant chemotherapy, it was found that the
low-risk group does not benefit from chemotherapy
[40]. Hence, a low RS is now used as a basis to spare
patients with early stage ER1 breast cancers chemo-
therapy after surgical intervention. In these cases
surgery alone probably eliminates all the cancer and
so the use of adjuvant chemotherapy is unnecessary.
In contrast, patients with a high-risk RS benefit from
adjuvant chemotherapy. Oncotype DX has also been
evaluated as a predictor of local regional failure (local
recurrence). Patients with a high-risk RS have a
greater chance of local recurrence versus those with
a low-risk RS [40].

PERSPECTIVES

The technologies associated with molecular testing
have advanced significantly in the last 25 years, and
continue to improve with respect to sensitivity
and accuracy, as well as flexibility of testing plat-
forms and methodologies. Advances are also being
made in our understanding of normal human biol-
ogy, and the pathology, pathogenesis, and patho-
physiology of disease. Emerging from the confluence
of these scientific disciplines are molecular testing
platforms and assays that are and will contribute to
improved disease detection, diagnosis, and predic-
tion of outcomes for individual patients. Likewise, as
new molecular diagnostics are developed, applica-
tion of molecular assays to biomarker detection will
begin to guide therapeutic strategies for individual
patients. With continued advancement in these areas,
true personalized medicine for a variety of human
diseases will become a reality. With true personal-
ized medicine, individual patients will be evaluated
and the results from molecular testing will determine
the best therapeutic approaches and treatment regi-
mens for that person’s disease (with its unique intrin-
sic properties), and long-term patient outcomes will
improve.
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INTRODUCTION

The polymerase chain reaction (PCR) represents a
rapid, sensitive, and specific method for in vitro amplifi-
cation of nucleic acid sequences. Through utilization of
specific oligodeoxynucleotide primers, the PCR is capa-
ble of identifying a target sequence and then using a
DNA polymerase able to amplify millions of copies
(amplicons) of the target. The concept of the PCR was
first described in the mid-1980s [1�3]. This technology
made its initial impact on the research laboratory, but
once the power of this technique was realized it quickly
became the basis for numerous applications in clinical
testing. Since that time, developments related to method-
ological modifications and new forms of instrumentation
have combined to enhance the technology, which has
evolved into a reliable, affordable, user-friendly method
that is performed in laboratories world-wide. There is
little question that the PCR has had an extraordinary
impact as a modern technology on the field of molecular
diagnostics. PCR methodology has now become routine
and the instrumentation required is common/available
to most/all laboratories. Thus it is easy to under-
estimate the significant impact of the PCR on day-to-day
operation of both clinical molecular diagnostics labora-
tories and basic science research laboratories.

As a molecular technology, the PCR facilitates the
amplification of specific nucleic acid sequences to pro-
duce a quantity of amplified product that can be ana-
lyzed by other methods. Hence, the PCR offers a very
sensitive and specific method to perform quantitative

and qualitative analyses of target sequences. The devel-
opment of various chemistries for primer and probe
labeling has produced an extraordinary technology with
respect to performance characteristics. Early PCR meth-
ods utilized the Klenow fragment of Escherichia coli
DNA polymerase I for DNA synthesis during each
amplification cycle [1]. However, Klenow fragment is
not thermally stabile. Therefore, this method required
the addition of fresh enzyme after each denaturation
step as samples were quickly cooled to avoid heat dena-
turation of the enzyme. In addition, the primer anneal-
ing and DNA synthesis steps were carried out at 30�C
to preserve the activity of the polymerase enzyme. This
low-temperature annealing enabled hybridization of pri-
mers to nontarget sequences, contributing to nonspecific
amplification [4]. The first major technological break-
through in the development of the PCR was the intro-
duction of a thermostable DNA polymerase [3]. Thermus
aquaticus is a bacterium that is found in hot springs and
is adapted to the variations in ambient temperature that
accompany its environment. The DNA polymerase
enzyme expressed in T. aquaticus (known as Taq poly-
merase) exhibits robust polymerase activity that is rela-
tively unaffected by rapid fluctuations in temperature
over a wide range [5]. Introduction of Taq polymerase
to the PCR improved the practicality of this methodol-
ogy because this polymerase enzyme can survive
extended incubation at the elevated temperatures
required for DNA denaturation (93�95�C) [5], eliminat-
ing the need for addition of fresh enzyme after each
cycle. The second major technological breakthrough in
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the development of the PCR was the introduction of the
programmable heat block that automatically changes
the reaction temperature during each amplification
cycle—the thermocycler. The thermocycler instrument
enabled automation of the PCR and the basic methodol-
ogy has not changed significantly since the late 1980s [6].

THE POLYMERASE CHAIN REACTION

In a typical PCR, successive cycles are performed in
which a DNA polymerase copies target DNA sequences
from a template molecule in vitro. The amplification
products produced during each cycle provide new tem-
plates for the successive rounds of amplification
(Fig. 2.1). Hence, the concentration of the target DNA
sequence increases exponentially over the course of the
PCR. The typical PCR reaction mixture contains (1) a
thermostable DNA polymerase (Taq polymerase), (2) tar-
get-specific forward and reverse oligodeoxynucleotide
primers, (3) each of the four deoxynucleotide tripho-
sphates (dNTPs), (4) reaction buffer, and (5) a source of
template (genomic DNA, cDNA, or cell lysates). The tar-
get sequence is defined by the specificity of the oligo-
deoxynucleotide primers that anneal to complementary
sequences on opposite template strands flanking the
region of interest. During the PCR, thee primers are
extended in the 50-30 direction by the DNA polymerase
enzyme to yield overlapping copies of the original

template. Each cycle of the PCR proceeds through three
distinct phases: (1) denaturation, (2) primer annealing,
and (3) primer extension (Fig. 2.2). The denaturation step
is typically accomplished by incubation of samples for
up to 1 minute at 94�C to render the DNA containing the
sequence of interest into a single-stranded template. The
primer annealing step is accomplished at a temperature
that is specific for the PCR primers and conditions used.
During the annealing step oligodeoxynucleotide primers
recognize and hybridize (hydrogen bond) to the target
sequence contained in the single-stranded template. The
primer extension step is accomplished at 72�C. During
this step the polymerase enzyme catalyzes the polymeri-
zation of dNTPs in a 50-30 DNA-directed DNA synthe-
sis reaction. The actual times used for each cycle (and
each step in the cycle) will vary from 15 seconds to
1�2 minutes depending upon the type of thermocycler
used and its temperature ramping speed. Amplification
of a target sequence is accomplished through repetition
of these incubations for 25�30 (or more) cycles. The exact
number of cycles necessary to produce sufficient ampli-
cons for detection will depend upon the starting concen-
tration of the target sequence. By the end of the third
cycle of amplification (in a typical 25�30 cycle PCR), a
new double-stranded template molecular is formed in
which the 50 and 30 ends coincide exactly with the oligo-
deoxynucleotide primers used. Because the copy number
theoretically doubles after each successive cycle of ampli-
fication, an exponential increase of 2n (where n is the total

Target Sequence

(A) (B)

PCR Cycling
Taq Polymerase

PCR Cycling
Taq Polymerase

Additional Cycles of Amplification

Primer 1

Primer 2

Cycle 1

Cycle 2

Cycle 3

FIGURE 2.1 Schematic representation of the polymerase chain reaction (PCR). (A) This simplified schematic depicts two cycles of PCR
amplification from a single target sequence (blue bars) found in a complex DNA template (green bar). Primers are depicted as arrows.
(B) This schematic shows additional detail for the initial rounds of PCR amplification from a single target sequence. Forward primers are
shown as red lines and reverse primers are depicted as yellow lines. Newly synthesized DNA in each cycle is depicted as a dashed line, while
the original template DNA (and new templates in each cycle) are depicted as solid lines.
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number of cycles of PCR performed) is accomplished
during the complete reaction. Accumulation of amplicons
corresponding to the target sequence eventually reaches
a plateau. The initial number of target sequences con-
tained within the template sample, the efficiency of
primer extension, and the number of PCR cycles per-
formed determine the upper limits of amplification.

COMPONENTS OF THE PCR

The PCR is dependent on successful synthesis of tar-
get sequences through a series of amplification cycles,
beginning with the first cycle and continuing through
the final elongation step. Similarly, each PCR is per-
formed in the presence of reagents that are critical to the
performance of the reaction.

DNATemplate

The PCR amplifies specific sequences from DNA tem-
plates (genomic DNA or cDNA derived from RNA) that
can be prepared from various sample sources. Clinical
specimens may be derived from various bodily fluids
(for instance blood, urine, or amniotic fluid) or surgical
samples (for instance frozen cancer specimens) [7,8].
Forensic specimens may be derived from blood, semen,
hair, or tissue (for instance skin cells). In addition to

fresh specimens, DNA derived from fixed tissues (for-
malin-fixed paraffin-embedded specimens) can be used
routinely in PCR applications [9]. Most PCR reactions
amplify small targets from the template sample
(100�500 bp in size). Hence, high molecular weight
DNA is not necessary, and highly fragmented DNA (like
that obtained from formalin-fixed paraffin-embedded
tissues) can be effectively utilized. However, certain
tissue fixatives (such as Bouin solution which contains
picric acid) and tissue treatments (such as tissue decalci-
fication) damage DNA and can render tissue samples
useless as a source of DNA for molecular analysis.
Preparation of RNA can be accomplished from fresh tis-
sues or from formalin-fixed paraffin-embedded samples.

DNA Polymerase Enzyme

The active component of the PCR is a DNA polymer-
ase enzyme that is required for DNA synthesis during
the primer extension step of the PCR. Contemporary
PCR uses Taq polymerase (isolated from T. aquaticus) or
similar [5,9]. Taq polymerase exhibits 50-30 polymerase
activity, 50-30 exonuclease activity, thermostability,
and optimum performance at 70�80�C. Temperature,
pH, and ion concentrations (Mg21) can influence the
activity of Taq polymerase. The half-life of Taq poly-
merase activity at 95�C is approximately 40�60 minutes.
Extremely high denaturation temperatures (.97 �C)
will significantly reduce the activity of Taq polymerase.
Because time and temperature represent the critical
variables for maintenance of Taq polymerase activity,
lowering of the denaturation temperature or reduction
of the denaturation time can prolong the activity of the
enzyme during a PCR reaction. The optimum pH for a
given PCR reaction is between 8.0 and 10.0, but must be
determined empirically. The typical PCR reaction is car-
ried out in a buffer (usually Tris-Cl) that is pH 8.3. Taq
polymerase activity requires divalent cations in the
form of Mg21. Lower divalent cation (Mg21) concentra-
tions decrease the rate of dissociation of enzyme from
template by stabilizing the enzyme-nucleic acid interac-
tion. Most PCR mixtures contain at least 1.5 mM MgCl2.
However, MgCl2 titration is recommended for any new
template-primer combination. Although Taq polymer-
ase is ideal for routine PCR applications, several other
thermostable DNA polymerases with unique qualities
[10] are available. The properties of these alternative
thermostable polymerase enzymes make them useful for
specialized applications such as amplification of long
stretches of DNA sequence or high-fidelity amplification.

Oligodeoxynucleotide Primers

The oligodeoxynucleotide primers utilized in a PCR
determine target specificity of the amplification

Double-stranded
DNA template

Single-stranded
DNA template

Primer hybridization

DNA synthesis

(1) Denaturation

(2) Annealing

(3) Extension

94ºC

50–60ºC

72ºC

15–30 s
(for each segment)

FIGURE 2.2 Steps and temperatures for a single PCR cycle. One
cycle of PCR amplification is depicted. Each cycle consists of three
segments: (1) template denaturation, (2) primer annealing, and (3)
primer extension. Typical temperatures are indicated for each seg-
ment. Each segment will typically occur over 15�30 seconds (using
state-of-the-art PCR instruments), but some instruments and applica-
tions call for longer segment times (up to 1�2 minutes each).
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reaction. Effective oligodeoxynucleotide primers for
PCR are highly sequence-specific, free of secondary
structure, and form stable duplexes with target
sequences. Four variables need to be considered when
designing oligodeoxynucleotide primers: (1) size of the
target sequence to be amplified, (2) the location of the
target sequence within the overall genomic DNA (or
cDNA) sequence, (3) secondary structure within the
target sequence and flanking regions, and (4) specific-
ity of amplification. The size of the target sequence
should be selected such that the PCR products pro-
duced range from 100 to 500 bp in length. Primer
length can influence target specificity and efficiency of
hybridization. A long oligodeoxynucleotide primer
may be more specific for the target sequence, but is
less efficient at hybridization. A short oligodeoxynu-
cleotide primer is efficient at hybridization, but is less
specific for the target sequence. As a general guideline,
oligodeoxynucleotide primers should be 17�30 nucleo-
tides in length. Whenever possible, both primers
should be of the same length because primer length
influences the calculated optimal annealing tempera-
ture for a specific primer. The base composition of the
oligodeoxynucleotide primers is also important
because annealing temperature is governed in part by
the G1C content of the primers. Ideally, G1C con-
tent should be 50�60%, and the percent G1C should
be the same or very similar for both oligodeoxynucleo-
tide primers in any given primer pair. The 30 terminus
of an oligodeoxynucleotide primer should always con-
tain a G, C, GC, or CG. Repetitive or palindromic
sequences should be avoided and primer pairs should
not contain sequences that are complimentary to one
another. Likewise, oligodeoxynucleotide primers
should not anneal elsewhere in the gene of interest or
in other sequences contained in the genome.

The optimal annealing temperature for a given oli-
godeoxynucleotide primer set is critical for designing
an effective PCR reaction with respect to amplification
specificity. The melting temperature Tm of an oligo-
deoxynucleotide primer can be calculated using a sim-
plified formula that is generally valid for primers that
are 18�24 nucleotides in length [11]: Tm5 69.3 1 0.41
(%G1C) � (650/L). In this formula, L is the primer
length in bases and the result is the theoretical annealing
temperature in degree Celsius. Online tools are now
available to assist with prediction of properties of oligo-
deoxynucleotides, including annealing temperatures (see
http://biotools.nubic.northwestern.edu/OligoCalc.html).

PCR Reaction Buffer

All of the components of a PCR reaction can be and
often are combined into a single reaction mixture, most

of which are commercially available. A typical PCR
mixture will include a reaction buffer, oligodeoxynu-
cleotide primers, Taq polymerase, and an appropriate
DNA template. The PCR buffer consists of 50 mM KCl,
1.5 mM MgCl2, 10�50 mM Tris-Cl (pH 8.3), and
50�200 µM dNTPs. Concentrations of KCl that are
.50 mM can inhibit the enzymatic activity of Taq
polymerase and should be avoided. However, the pres-
ence of KCl is necessary to encourage oligodeoxynu-
cleotide primer annealing to target sequences in the
template DNA. Likewise, excessive NaCl concentra-
tions in the PCR mixture can adversely affect the enzy-
matic activity of Taq polymerase. The amount of MgCl2
that is optimal for a given PCR reaction must be empir-
ically determined. However, most standard PCR ampli-
fication reactions can be accomplished using 1.5�2 mM
MgCl2. The final concentration of dNTPs is 200 µM for
a typical PCR, but some applications can be accom-
plished using much lower concentrations. Higher con-
centrations of dNTPs (or MgCl2) can encourage errors
related to dNTP misincorporation by Taq polymerase
and should be avoided. The concentration of oligo-
deoxynucleotide primers should not exceed 1 µM
unless the primers used contain a high degree of
degeneracy. Taq polymerase enzyme is provided by
commercial suppliers at 5 U/µL. One unit (U) of enzy-
matic activity is defined as the amount of enzyme
required to catalyze the incorporation of 10 nmol of
dNTP into acid-insoluble material in 30 minutes under
standard reaction conditions. A 50 µL reaction will typ-
ically require 2.5 U of enzyme activity, while a 10 µL
reaction will only require 0.5 U of enzyme activity. The
amount of DNA template included in a PCR reaction
will vary with the nature of the template source and
the target sequence. Amplification from genomic DNA
may require as much as 100 ng of DNA for a 50 µL
reaction, whereas amplification from a plasmid tem-
plate (for example) may only require 5 ng of DNA.
Likewise, amplification of a target sequence that corre-
sponds to a single allele may require more template,
while amplification of a repetitive sequence (Alu for
example) will require substantially less template.

The inclusion of gelatin or bovine serum albumin
(BSA) can enhance the efficiency of the PCR amplifica-
tion reaction. Gelatin or BSA can be included in the
PCR mixture at concentrations up to 100 µg/mL.
These agents act to stabilize the polymerase enzyme.
The addition of helix destabilizing chemicals may be
necessary if the PCR target sequence is located in a
DNA region that is known to be of high G1C
content. For example, dimethylsulfoxide (DMSO),
dimethyl formamide (DMF), formamide, or urea may
be included for this purpose. In most cases, these
additives are included in the reaction mixture at 10%
(w/v or v/v). These additives are thought to lower
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the Tm of the target sequence. However, care must
be exercised when additives of this type are included
in PCR reaction mixtures as high concentrations
of these chemicals can adversely affect polymerase
activity.

OPTIMIZATION OF PCR AMPLIFICATION
REACTIONS

Several difference factors can significantly affect PCR
sensitivity and specificity, including (1) oligodeoxynu-
cleotide primer design, (2) PCR cycling variables (num-
ber of cycles, cycle times, and temperatures), and
(3) composition of the PCR reaction mixture (divalent
cation concentration). For most PCR applications, the
most critical variable is the annealing temperature for
the oligodeoxynucleotide primers employed. The maxi-
mum annealing temperature is determined by the
primer with the lowest Tm. Exceeding this Tm by more
than a few degrees will diminish the ability of the oligo-
deoxynucleotide primers to anneal to the target
sequence and may lead to failure to produce the amplifi-
cation product of interest. If utilization of an annealing
temperature that is equal to the Tm of the oligodeoxynu-
cleotide primers fails to produce the desired amplifica-
tion product, then it may be necessary to further lower
the annealing temperature. If the desired amplicon is
produced at a lower Tm, but the amount of background
products is high, then the annealing temperature should
be increased. Salt concentrations also affect several
aspects of the PCR reaction. Mg21 concentration can
affect oligodeoxynucleotide primer annealing to the tar-
get sequence, the Tm of the oligodeoxynucleotide-
template complexes, as well as enzyme activity and
fidelity. Taq polymerase requires free Mg21 for activity.
Thus, sufficient MgCl2 must be included in the PCR mix-
ture to provide adequate Mg21 for the enzyme after
some of the cation is lost to chelation by the oligodeoxy-
nucleotide primers and the template DNA. The concen-
tration of other salts can also affect the PCR reaction
(including KCl). However, optimization of most PCR
applications can be achieved through modification of
Mg21 concentration. Complete optimization of the reac-
tion conditions may require several adjustments to the
annealing temperature, PCR cycle variables, and salt
concentrations. Several commercial sources offer kits
which provide a range of PCR reaction mixtures for sim-
ple and rapid optimization of specific PCR conditions
for a specific target sequence and its primers. Likewise,
several manufacturers offer gradient thermocyclers
which feature heating blocks where temperatures can be
varied across the samples, enabling optimization of tem-
peratures in a single PCR run.

INCREASING PCR SPECIFICITY AND
SENSITIVITY

Taq polymerase has substantial enzymatic activity at
37�C, although its optimal activity is expressed at a
much higher temperature (approximately 72�C). This
low-temperature polymerase activity is the basis for
nonspecific amplification associated with mispriming
events that occur during the initial phase of the PCR
reaction. Extension can occur from oligodeoxynucleo-
tide primers that anneal nonspecifically to template
DNA before the first denaturation step at 93�95�C.
Because of this, several modified polymerase enzymes
have been created to avoid this nonspecific primer
extension activity. One example of this is Platinum Taq
Polymerase (from Invitrogen Life Technologies, http://
www.thermofisher.com). By including a thermolabile
inhibitor of Taq polymerase in the form of a monoclo-
nal antibody, the enzyme does not become active until
the inhibitor is heat inactivated. Hence, the Taq poly-
merase becomes active after the elevated temperature
destroys the monoclonal antibody during the initial
denaturation phase of the PCR reaction which results
in release of the functional enzyme. The antibody-
mediated inhibition of Taq polymerase allows for room
temperature assembly of the PCR reaction mixture.
Nonspecific amplification associated primer extension
from mispriming events is eliminated or reduced by
holding the Taq polymerase functionally inactive until
the critical temperature is reached.

PCR CONTAMINANTS

When performing PCR amplification it is critical to be
aware of potential sources of DNA contamination and to
employ procedures to ensure contamination-free work-
ing conditions. The power of PCR to amplify very small
quantities of DNA producing detectable amplification
products demands that special care be taken to prevent
cross-contamination between different samples. This is
especially true for PCR targets expected to be present in
low amounts because greater efforts are usually required
to amplify those sequences. Sources of contamination
include (1) genomic DNA contaminating RNA samples,
(2) cross-contamination among different nucleic acid
samples processed simultaneously, (3) laboratory con-
tamination of cloned target sequences (genomic DNA or
cDNA), and (4) carryover of PCR products. In general,
working in a clean laboratory and using good laboratory
practices (such as wearing clean gloves at all times)
substantially reduces the likelihood of contamination.
Carryover products from other PCR reactions can be
effectively controlled by the use of aerosol-free pipette
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tips, by using dedicated pipetters and solutions, and by
maintaining separate areas to handle pre-PCR and post-
PCR solutions and samples. In all PCR applications, it is
essential to include proper positive-control and negative-
control reactions to guard against systemic contamina-
tion of PCR reagents and to ensure that the desired
amplicon is produced in positive reactions.

INHIBITORS OF PCR

Organic and inorganic compounds that inhibit PCR
amplification of nucleic acids are common contami-
nants in DNA samples from various origins. These
contaminating substances can interfere with the PCR
reaction at several levels, leading to different degrees
of attenuation and to complete inhibition. Many PCR
inhibitors have been reported, and they appear to be
particularly abundant in complex samples such as
bodily fluids and samples containing high numbers of
bacteria. Most of these contaminants (polysaccharides,
urea, humic acids, hemoglobin) exhibit similar
solubility in aqueous solution as DNA. As a conse-
quence, they are not completely removed when typical
extraction procedures are used in the preparation
of the template DNA (detergent, protease, and
phenol�chloroform treatments). Several methods have
been developed to avoid these contaminating sub-
stances. Some of these methods are simple but lead to
loss of significant amounts of the original sample,
whereas others are very specific methods directed
against specific forms of contaminations and may
require expensive reagents.

ANALYSIS OF PCR PRODUCTS

There are numerous methods for analysis of PCR
products (Fig. 2.3). The method of choice for analysis
of PCR products will depend on the type of informa-
tion that is desired. Typical analysis of PCR products
involves electrophoretic separation of amplicons and
visualization with ethidium bromide staining (or simi-
lar DNA dye). In most cases, amplification products
can be analyzed by standard agarose gel electrophore-
sis. Agarose gel electrophoresis effectively separates
DNA products over a wide range of sizes (100 bp to
.25 kbp). PCR products from 200 to 2000 bp can be
separated quickly on a 1.6% agarose gel. When greater
resolution or separation power is required, such as in
the analysis of very small PCR products (,100 bp),
polyacrylamide gel electrophoresis is the method of
choice. DNA products are easily visualized by ultravi-
olet illumination after ethidium bromide staining.
Another method often utilized to quantify products is

the incorporation of radioactive, fluorescent, or bioti-
nylated markers. PCR products may be labeled by
incorporating labeled nucleotides or through the use of
labeled oligodeoxynucleotide primers. Labeled PCR
products are separated by electrophoresis on agarose
or polyacrylamide gels and visualized using appropri-
ate techniques (for instance autoradiography for radi-
olabeled products). In the event that multiplex PCR
analysis is being performed or for the most accurate
sizing of amplicons within banding patterns, laborato-
ries now employ capillary electrophoresis systems. In
some cases, the desired information resulting from a
PCR reaction can be obtained through a simple analyti-
cal gel separation (for instance in assays where the
presence or absence of a PCR product answers the
question), whereas in other instances additional infor-
mation is required (like DNA sequencing to detect a
gene mutation). Hence, PCR products can be cloned
and used for sequence analysis, constriction of molecu-
lar probes, mutation analysis, in vitro mutagenesis,
and studies of gene expression (Fig. 2.3).

VARIATIONS OF THE TYPICAL PCR
AMPLIFICATION REACTION

Over the years, many modifications have been
made to the standard PCR reaction. Some of the
more significant modifications include: (1) hot-start
PCR, (2) nested PCR, (3) reverse transcriptase PCR
(RT-PCR), and (4) real-time PCR.

Analysis of PCR amplicons

DNA
sequence
analysis

Restriction
digestion

Electrophoresis

Amplicon
size

Electrophoresis

Fragment
size

Electrophoresis

Southern
transfer

Hybridize
with

probe

Detection

Cloning

Microarray
analysis

FIGURE 2.3 Methodologies for analysis of PCR products. PCR
products (amplicons) generated through traditional PCR reactions
can be analyzed in various ways using several methodologies. For
some questions, the presence or absence of a PCR product answers
the question, and a simple electrophoretic analysis with visualization
of the product will suffice. For other questions the amplicon may
require cloning or direct sequencing, restriction analysis, or blotting
to obtain the desired information. PCR products can also be analyzed
using various array-based techniques.
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Hot-start and Nested PCR

Hot-start PCR was developed to reduce background
from nonspecific amplification. Initial hot-start PCR
was performed by limiting the Mg21, dNTP, or enzyme
concentration. Alternatively, hot-start can be achieved
by separating the reaction components with a wax
bead barrier that melted as the mixture is heated dur-
ing the initial denaturation step of the PCR. In either
case, hot-start prevents polymerization of new DNA
during the initial phase of the reaction when nonspe-
cific binding may occur between primers and nonspe-
cific DNA targets [12,13]. More recently chemical or
antibody engineered polymerases have become com-
mercially available that are activated once a specific
temperature is reached. Nested PCR can increase both
the sensitivity and specificity of amplification [14]. The
amplification product(s) generated in the first PCR
reaction are used as the template for a second PCR
reaction, in which primers are used that are internal, or
nested, within the first primer pair.

PCR Analysis of RNA

RT-PCR is an excellent method for analysis of RNA
transcripts, especially for measuring low-abundance
species or working with limited amounts of starting
material. RT-PCR couples the tremendous DNA amplifi-
cation powers of the PCR with the ability of reverse
transcriptase (RT) to reverse transcribe small quantities
of total RNA. RT-PCR is basically a four-step process:
(1) RNA isolation, (2) reverse transcription, (3) PCR
amplification, and (4) PCR product analysis. RNA is iso-
lated from cells or tissue using various chemical-based
extraction techniques or affinity-based (column) meth-
ods to eliminate contaminating DNA. This RNA is then
used as a template in a reverse transcription reaction
that produces cDNA, which serves as a template for the
PCR reaction. RT (retroviral RNA-directed DNA poly-
merase) is the enzyme used to catalyze cDNA synthesis.
The RT reaction consists of (1) cDNA synthesis primer,
(2) an appropriate RT reaction buffer, (3) dNTPs,
(4) RNA template (total RNA or mRNA), and (5) RT
enzyme. There are several commercially available
RT enzyme preparations that an be used in standard
RT-PCR reactions. These include the Moloney murine
leukemia virus (MMLV) RT and the avian myeloblasto-
sis virus (AMV) RT. More recently, recombinant deriva-
tives of these RT enzymes have become available that
offer advantages over the native enzymes. One example of
these recombinant enzymes is SuperScript III Reverse
Transcriptase from Invitrogen (http://www.thermofisher.
com). Advanced enzyme preparations such as these pro-
duce the highest yields and confer high specificity when
gene-specific primers are employed.

RT-PCR is an excellent method for analysis of RNA
transcripts, especially for measuring low-abundance
species or working with limited amounts of starting
material (such as those obtained from formalin-fixed
paraffin-embedded samples). Traditional blotting and
solution hybridization assays require much more RNA
for analysis, and lack the speed and ease of technique
afforded by PCR-based applications. Some of these tra-
ditional methods (such as northern blotting) require
high-quality intact RNA species, whereas RT-PCR
approaches can tolerate some RNA degradation.
RT-PCR combines the tremendous DNA amplification
power of PCR with the ability of RT to reverse tran-
scribe very small quantities of total RNA (,1 ng) into
cDNA. The use of total RNA preparations rather than
poly(A)-purified RNA reduces the possibility of losing
specific rare or low-abundance mRNAs during the
purification process and allows for the use of very
small quantities of starting material (cells or tissues).
Additional advantages of RT-PCR include versatility,
sensitivity, rapid turnaround time, and the ability to
simultaneously compare multiple samples.

Real-Time PCR

Real-time PCR combines the amplification steps of
traditional PCR with simultaneous detection steps that
do not require post-PCR manipulation or interrogation
of amplified products (Fig. 2.4). The PCR product is
directly examined within the reaction tube. During
real-time PCR, the exponential phase of PCR is moni-
tored as it occurs using fluorescently-labeled probes
[15]. During the exponential phase the amount of PCR
product present in the reaction tube is directly propor-
tional to the amount of emitted fluorescence and the
amount of the initial target sequence [16,17]. Thus,
these reactions can also be quantitative. There are two
types of detection chemistries for real-time PCR:
(1) those which use intercalating DNA binding dyes
such as ethidium bromide or SYBR green, and (2) those
that use various types of fluorescently-labeled probes.

Intercalating DNA binding dyes allow for the sim-
ple determination of the presence or absence of an
amplicon. SYBR green, like ethidium bromide, is a dye
that emits fluorescence when it is bound to double-
stranded DNA. During the PCR reaction, there is an
increase in the copy number of the amplicon and a
simultaneous increase in the amount of intercalated
SYBR green dye. This will then increase the amount of
emitted fluorescent signal in direct proportion to the
copy number [18]. One disadvantage associated with
DNA binding dyes of this type is that they are nonspe-
cific and will bind to any double-stranded DNA.
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Detection of real-time PCR products can also be
accomplished using fluorescently-labeled probes of var-
ious types. There are three main detection chemistries
for these probes: (1) cleavage-based (50 exonuclease)
probes, (2) molecular beacons, and (3) fluorescence res-
onance energy transfer (FRET) probes. Cleavage-based
probes depend upon the 50-30 exonuclease activity of
the Taq polymerase. These assays are commercially
available as Taqman assays (Fig. 2.4). Molecular bea-
cons are self-complimentary single-stranded oligonu-
cleotides that form a hairpin loop structure and consist
of a probe homologous to the target sequence flanked
by sequences that are homologous to each other.
Attached to one end is a reporter dye (such as FAM or
TAMRA) and to the other end a quencher (such as
DABCYL). When the beacon binds to the target
sequence, the quencher and reporter are separated and
fluorescence is emitted. FRET probes are composed of
two separate fluorescently-labeled oligonucleotides, one
with a 50 donor molecule and the other with a 30 accep-
tor molecule attached. When these probes hybridize
with close proximity, energy can be transferred from
the donor to the acceptor, resulting in fluorescence
emission.

Real-time PCR is rapidly becoming the method of
choice for most molecular diagnostics laboratories
because of its increased sensitivity/specificity and turn-
around times. This technology can be used for quantita-
tive and qualitative assessment of target sequences and
for distinguishing mutant from wild-type sequences.
For single-nucleotide polymorphism (SNP) genotyping

and small mutation testing, two different labeled probes
are designed—one for the wild-type allele and one for
the mutant allele. The mismatch between the wild-type
allele and the mutant probe facilitates competitive
hybridization. Therefore, fluorescence will only be
detected when the correct probe binds the correct target
sequence. If binding-dye chemistries are used, another
powerful feature of most real-time PCR instruments is
the ability to perform melting curve analyses [18]. The
Tm of a specific amplicon can be identified by an
additional thermal step on the PCR product in the same
reaction tube. Real-time PCR can also be used to deter-
mine the copy number of specific target sequences for
infectious disease and oncology applications [19].
By multiplexing the primers and probes for the target
sequence with primers and probes for a control
sequence, accurate assessment of target copy number
can be made in a relative quantification reaction. In con-
trast, using external standards of known concentration
to create a standard curve and enables determination of
absolute quantities of target copy number.

The main advantages of real-time PCR are the speed
with which samples can be analyzed (because no post-
PCR processing steps are required), and the closed
single-tube nature of the technology. The analysis of
results via amplification curve and melting curve analy-
sis is very simple and contributes to overall increases in
the speed of PCR analysis. With respect to potential
contamination issues, another major advantage of
have no post-PCR steps is that real-time PCR is a closed
tube method of analysis which greatly reduces (1) the

Target amplification is measured
indirectly by displacementof probe

Exonuclease activity of polymerase enzyme
displaces probe and separates probe

detection dye from quencher dye

(A) (B)

Higher concentration of
target sequence

Lower concentration of
target sequence

FIGURE 2.4 Real-time PCR amplification of target sequences. (A) The target sequence is shown as a blue bar within the genomic DNA
(green bar). The real-time primer is depicted as a black arrow, and the real-time probe is depicted as a black line with a fluorescent tag (green
ball) and quencher (red ball). With primer extension and exonuclease activity, the fluorescent tag is released from the quencher. Accumulation
of the fluorescent signal provides a measure of abundance of the target sequence. (B) Results from a real-time amplification run with multiple
samples analyzed in triplicate. The red arrow indicates an amplification curve corresponding to a target sequence of high abundance. The
blue arrow indicates amplification of a target sequence with lower (but detectable) abundance.
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chance that a sample will be contaminated, (2) errors
from mistakes in tube transfers, or (3) the possibility of
amplicons aerosolizing into the laboratory environment.

Some investigators argue that a limitation of real-time
PCR is the initial capital investment for instrumentation.
However, since the first real-time PCR instruments were
introduced on the market, a number of new real-time
platforms have become available that are very cost effec-
tive. In fact, pricing of some instruments may be less than
a traditional thermocycler and separate detection system.
One technical limitation that should be noted is when
using DNA binding dyes for the detection of real-time
PCR products, nonspecific amplicons may also be
detected. Such nonspecific amplicons would be observed
through traditional post-PCR product analysis using elec-
trophoresis. Hence, optimization of reaction conditions
and melting curve analysis should be performed to distin-
guish between the desired (correct) amplicon and those
corresponding to nonspecific amplification products.
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INTRODUCTION

Sequencing is the general term for any technique
designed to determine the order of nucleotides in a
nucleic acid molecule. Because nucleotide sequences
are ultimately translated into cellular processes,
sequencing technology has played a central role in bio-
logical research for decades. Similarly, nucleotide
sequences and sequence variants contribute greatly to
medical practice, making sequencing a mainstay
technology in the clinical realm. Clinical genetics relies
on identifying germline DNA variants to diagnose
heritable disease and explain phenotypes of likely
genetic origin. Increasingly, medical oncology utilizes
sequencing to identify somatic variants or sequence
variants specific to tumors. Presence or absence of
somatic variants can offer prognostic information to
clinicians, and even assist in diagnosis. Furthermore,
identifying somatic variants impacts treatment options
as many drugs are targeted to specific variants, genes
or metabolic pathways.

Until recently, most routine sequencing was per-
formed using the Sanger method (first-generation
sequencing; Fig. 3.1). Sanger sequencing utilizes the
natural properties of DNA polymerase as well as
modified di-deoxynucleotides to generate sequence
data [1]. Sanger sequencing and derivative tech-
niques can generate sequencing data from DNA and
RNA, as well as provide epigenetic information
about virtually any genomic target. However, Sanger
sequencing has fundamental limitations that
hinder its application in modern clinical practice.
Sanger sequencing can only be performed on one

target per reaction, and that target has a maximum
size of a few hundred nucleotides. Generating large
amounts of sequence information over a broad range
of targets is extremely time-consuming. Furthermore,
the sensitivity of Sanger sequencing is often
insufficient to identify somatic variants in tumor
samples as these variants often exist at a low level in
only a subpopulation of tumor cells [2]. These
obstacles led to the development of new technologies
to address the need for faster, more sensitive, and
more comprehensive sequencing. These so-called
“next-generation” sequencing methodologies rely on
the combination of innovative laboratory techniques
and massive computational power.

Why Perform Clinical Next-Generation
Sequencing?

Clinical laboratories have rapidly adopted next-
generation sequencing (which will be referred to as
“massively parallel sequencing” because of its ability
to sequence multiple nucleic acid molecules at the
same time) as their technique of choice for performing
sequence analysis [3]. Next-generation sequencing
offers numerous technical advantages (improved
cost-effectiveness, scalability, resolution) over Sanger
sequencing. However, the true driving pressure
behind the move toward next-generation sequencing is
the clinical demand for more sequencing data.

As our understanding of both heritable and cancer
genetics grows, more genes and individual muta-
tions become relevant to everyday clinical practice.

25
Diagnostic Molecular Pathology

DOI: http://dx.doi.org/10.1016/B978-0-12-800886-7.00003-0 © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-800886-7.00003-0


Particularly, some drugs have gene or pathway spe-
cific activity making them efficacious in patients who
harbor certain mutations, such as the usage of vemura-
fenib in patients whose tumors harbor the BRAF
V600E mutation. Therefore, sequencing is absolutely
necessary for making appropriate treatment decisions
in these patients. Professional guidelines and recom-
mendations have been published to establish sequenc-
ing as standard of care in many cancer types including
lung adenocarcinoma and melanoma [4,5]. Similarly,
there are characteristic, prognostic, and even diagnos-
tic genetic variants that warrant sequence analysis as
part of standard of care treatment [6]. So, a large num-
ber of cancer patients require sequencing analysis as
routine care, and that number will increase as new
drugs are developed and new informative mutations
are discovered. In order to sequence all of the impor-
tant genomic regions in all of these patients efficiently,
the throughput offered by next-generation sequencing
makes this technique almost essential to modern
molecular laboratories.

How Are Assays Performed?

The power of massively parallel sequencing lies in
the confluence of three disciplines: chemistry, com-
puter science, and clinical knowledge. These compo-
nents may seem discrete from one another, but
generating useful clinical information from such
sequencing is possible only through the interdepen-
dency of these fields. Unique laboratory methodologies
are required to generate the quantity of sequencing
data on the scale that is desired for clinical use. Such a
massive amount of data requires sophisticated compu-
tational processing before it can be interpreted by a
human. Finally, there must be application of broad
clinical knowledge to analyze the sequencing data and
generate a report that is relevant to patient care. In the
following sections, we will discuss these three compo-
nents (chemistry, computer science, and clinical
knowledge) separately, while acknowledging their
reliance upon each other.

DNA SEQUENCING CHEMISTRY

The first step toward generating a massively parallel
sequencing report is generating sequence data. This
can be done using a variety of laboratory techniques,
though all of them share certain qualities that allow for
the large-scale and high accuracy required of clinical
testing. First, sample DNA must go through a selection
and modification process known as library prepara-
tion. Library preparation fragments DNA molecules
and isolates regions of DNA that are to be sequenced.
The area of the region to be sequenced can range from
a single gene to the entire human genome. Then, target
DNA is modified with adapters making it compatible
with the sequencing platform, as well as with indexes
or barcodes that are specific to the sample. This pool
of modified target DNA is known as the library. Once
generated, the library is loaded into the sequencing
instrument. Libraries from multiple samples may be
loaded and sequenced simultaneously. To enable this
simultaneous, parallel sequencing, the instrument
must separate and immobilize individual target DNA
molecules. Physically separating molecules allows
them to be sequenced individually, and the indexes
added to the molecules during the library preparation
step can be used to tie these individual sequences to
the original sample. In this way, sequence information
can be generated about all of the genomic targets
within multiple samples in a single reaction [7].

Research groups and biotechnology companies alike
have taken differing approaches to this general princi-
ple of massively parallel sequencing, and new labora-
tory methodologies are constantly being developed.

FIGURE 3.1 Sanger sequencing. Each Sanger-based sequencing
reaction takes place within a microliter-scale volume, generating a
ladder of ddNTP-terminated, dye-labeled products, which are sub-
jected to high-resolution electrophoretic separation within capillaries
of a sequencing instrument. As fluorescently labeled fragments of
discrete sizes pass a detector, the four-channel emission spectrum is
used to generate a sequencing trace. Source: This image is reproduced
with permission from: Shendure J, Ji H. Next-generation DNA sequencing.
Nat Biotechnol 2008;26:1135�45.
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However, at this time there are three major platforms
for performing massively parallel sequencing that
have proven to be reliable for clinical use: (1) the
MiSeq platform from Illumina, (2) Ion Torrent from
Life Technologies, and (3) Single Molecule Real Time
(SMRT) sequencing from Pacific Biosciences. Each of
these platforms leverages basic principles of DNA rep-
lication in a unique way to generate sequence data.

Illumina Sequencing

Illumina manufactures a number of sequencing
instruments including the MiSeq, HiSeq, and
NextSeq. The MiSeq is designed specifically for tar-
geted sequencing and is therefore the most popular
Illumina instrument in clinical use. Despite individual
differences, all of the Illumina instruments utilize the
same proprietary technique of sequencing by synthesis.

Sequencing by synthesis takes place on a solid state
flow cell [8]. The flow cell is coated with a lawn of oli-
gonucleotides that have a generic sequence. During the
library preparation step, sample DNA is modified to
add adapter sequences to sequencing targets. These
adapter sequences are designed to bind complimenta-
rily to the oligonucleotides on the flow cell. The flow
cell is flooded with library material, and target mole-
cules are physically separated and immobilized by
binding to the oligonucleotide lawn.

After the target material is immobilized on the flow
cell, there is a short amplification step that generates
up to 1000 copies of each target molecule. These identi-
cal molecules are also bound to the flow cell in close
proximity to the original and are cumulatively known
as a cluster (Fig. 3.2). Millions of clusters are generated
on the flow cell, each representing one target molecule
from one sample [9].

After cluster generation, sequencing proceeds by a
series of repeated cycles. During a cycle, fluorescently
labeled nucleotides flood the flow cell. These nucleo-
tides compete for incorporation into growing comple-
mentary nucleic acids associated with each target
molecule. The fluorescent label on each nucleotide
serves as a polymerization terminator, so that only one
nucleotide may be added to the growing nucleic acid

during each cycle [10]. After the nucleotides bind, a
camera images the fluorescence on the flow cell to
identify the base that was incorporated at each cluster.
The dye is then enzymatically cleaved so that a new
labeled nucleotide can be added during the next cycle.

Because the camera can image the entire flow cell,
each cycle generates information about every cluster at
once. And, because bases are added sequentially, the
position of each base is known by the cycle number. In
this manner, all of the clusters on the flow cell (corre-
sponding to the original parent target molecules) are
interrogated in parallel. The sequencing process con-
tinues for a number of cycles corresponding to the size
of the target molecules so that the entire target is
sequenced. So, by the end of the sequencing process,
the raw fluorescence intensity data is recorded for
every cluster position on the cell across every cycle.
Additionally, the index (or bar code) that was added
to each sample during library preparation is
sequenced. By sequencing these indexes, the target
molecule is linked to its originating sample. The raw
data for each sequence is stored and is now ready for
bioinformatic processing [7].

Ion Torrent Sequencing

The Life Technologies Ion Torrent platform uses the
same principles of complementary base pairing and
physically separated target molecules as the MiSeq
with a few technical differences.

Rather than sequencing taking place on a flow cell,
the Ion Torrent utilizes a semiconductor chip with
microwells. Individual micro-beads are each covered
with a clonally amplified target molecule (Fig. 3.3) and
then separated and identified by their microwell loca-
tion with one target molecule per well, instead of by
their position on a flow cell. To perform sequencing,
the microwell chip is successively flooded with
unmodified single nucleotides. Only one species of
nucleotide floods the chip at a time. When the avail-
able nucleotide species in the well is complementary to
the target template molecule at the leading position, it
will be incorporated into a growing nucleic acid [11].

FIGURE 3.2 Illumina sequencing. The Illumina platform immobilizes individual product molecules on a flow cell and then uses bridge
PCR to form clonally amplified colonies. Source: This image is reproduced with permission from: Shendure J, Ji H. Next-generation DNA sequencing.
Nat Biotechnol 2008;26:1135�45.
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The incorporation of a nucleotide into a nucleic
acid causes the release of a hydrogen ion. Below each
microwell, embedded in the semiconductor chip is an
ion sensor. These sensors are sensitive enough to
detect the hydrogen ion release each time a comple-
mentary nucleotide is added to the target molecule
template. The sequence for a given target molecule,
then, is determined by evaluating the electrical signal
intensity during each sequential exposure to different
nucleotide species. If there is a repeated sequence of
the same nucleotide in the target molecule, then the
signal intensity will be high when the complementary
nucleotide floods the chip. Conversely, there will be
no signal at time points when the target molecule is
exposed to noncomplementary nucleotides. The size
of the semiconductor chip and the sensitivity of the
ion sensors allow for raw electrical data to be
recorded simultaneously for thousands of target
molecules as the chip is sequentially flooded with
nucleotides [12]. The raw ion sensor data from each
microwell over the time course of the run is stored
for bioinformatic processing. So, similar to the MiSeq
platform, sequencing occurs in parallel across multi-
ple targets and samples.

SMRT Sequencing

SMRT sequencing, developed by Pacific Biosciences,
separates target molecules by location in microwells
similar to the Ion Torrent. However, raw data collec-
tion utilizes a distinctive technique. There is a single
DNA polymerase enzyme locked in the bottom of each
microwell [13]. Also, rather than amplified target
DNA, each microwell holds a single copy of target
molecule. The microwells are flooded with nucleotides.
Each nucleotide species is labeled with a unique fluo-
rescent dye. The nucleotides are incorporated in a
complementary manner to the template target mole-
cule by the polymerase. A light detector at the base of
the microwell detects signal from the polymerase. As a
nucleotide is incorporated into the growing nucleic
acid, the fluorescence is measured by the detector. The
dye is cleaved during the incorporation, and the active

site of the polymerase is free for the next nucleotide to
be added [14].

Measuring raw data as fluorescence with an optical
detector is similar to the MiSeq platform. However,
unlike the MiSeq instrument sequencing does not pro-
ceed in cycles. The SMRT sequencer adds an excess of
nucleotides that are allowed to be incorporated by the
polymerase in real time. The sequencing reaction pro-
ceeds quickly as fluorescence signal is recorded from
all microwells simultaneously and for each nucleotide
of the single template molecule in each microwell.

Advantages and Disadvantages of
Sequencing Technologies

There are myriad technical differences in this brief
cross section of three popular massively parallel
sequencing platforms. With these differences come
advantages and disadvantages for each technique.
Generating amplified clusters on the MiSeq flow cell
yields high sequencing accuracy on a base-by-base
basis. However, the cyclical nature of the sequencing
process leads to longer sequencing times on the MiSeq
instrument. Conversely, the Ion Torrent can complete a
sequencing run in a fraction of the time that the MiSeq
requires. But, this speed comes at the cost of accuracy.
Specifically, the Ion Torrent has difficulties quantifying
single nucleotide repeats with its reliance on quantifying
an electrical impulse for each unique nucleotide that is
incorporated, and this contributes to the higher raw
error rate of the Ion Torrent over the Illumina instru-
ment [15]. The SMRT sequencer is an even more
extreme example. Sequencing is extremely rapid, but
observing fluorescence at the single molecule level pre-
disposes to errors in signal detection. Furthermore, indi-
vidual polymerase molecules have an inherent error
rate when incorporating nucleotides into nucleic acids
[16]. By anchoring a single polymerase and template
molecule, the SMRT sequencer can sequence much lon-
ger target molecules (roughly 1500 bases per read) than
the MiSeq or Ion Torrent which have average read
lengths of 150�200 bases [17]. This increased read
length is advantageous in the bioinformatic processing

FIGURE 3.3 Ion Torrent sequencing. The Ion Torrent platform physically separates individual product molecules and micro-beads using
emulsion PCR. Primers on the micro-beads allow for tethering and clonal amplification of the molecules prior to sequencing. Source: This image
is reproduced with permission from: Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008;26:1135�45.
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stages of analysis. So, no sequencing technique is per-
fect, but each has enough advantages to warrant use in
clinical sequence data generation.

Perhaps as striking as the specific unique features of
these sequencing platforms are the similarities. The cen-
tral axiom of separating target molecules and sequenc-
ing in a massively parallel manner is preserved in all
methodologies. Separating targets allows for molecule
specific sequencing which is essential for multiplexing.
A massively parallel sequencing reaction generates raw
data for all copies of all target molecules simulta-
neously. These two capabilities enable the massively
parallel sequencers to keep up with the clinical demand
for higher sample throughput and more sequencing tar-
gets. But, generating the raw data alone is only the first
step toward creating a clinical sequencing report. A
multistep bioinformatic process is necessary before the
sequencing data is ready for interpretation.

COMPUTER SCIENCE

Following the sequencing reaction and the generation
of raw data, the next integral step in creating a mas-
sively parallel sequencing report is bioinformatic proces-
sing. A single massively parallel sequencing reaction
will generate millions of individual molecules, each
with a specific sequence and unique identifier. This is
far too much information for a person or group of peo-
ple to analyze and interpret by hand. Fortunately, there
are powerful computational tools that are designed to
compile the most salient sequencing data into a format
that is understandable to a molecular pathologist.
Briefly, raw data from the instrument must be trans-
lated into individual sequences known as “reads.”
Then, each read must be “mapped” by identifying its
targeted region in the genome. Finally, the aligned reads
are used to determine differences in nucleotide
sequence between the sample DNA and a standardized
reference sequence. These basic steps—base calling,
sequence alignment, and variant calling—are explained
in further detail below.

Base Calling

Base calling is the process by which raw data from
the sequencing instrument is converted to nucleotide
sequences. This is performed by base calling software
that is usually run from the instrument itself. As we
have seen, sequencing instruments generate raw data
in different forms (fluorescence intensity, electrical
impulse, etc.), and therefore base calling is specific
to the particular platform being used. However, the

general concepts and goals of base calling are similar
across all platforms.

The primary goal of the base calling software is to
assign a nucleotide species to each position in the tar-
get DNA sequence. One target molecule’s base
sequence is called a read. The nature of massively par-
allel sequencing leads to the generation of data at the
level of individual target molecules, so the base caller
transforms raw data at the scale of one read per origi-
nating molecule. Thus, millions of reads are generated
from a single sequencing reaction.

To assign a nucleotide to a position in a read, the base
caller must evaluate the raw signal generated for that
position. The intensity of signal relative to the back-
ground noise or artifact will allow the base caller to gen-
erate a confidence score associated with each nucleotide.
The confidence score is the likelihood that the chosen
nucleotide is the correct call for that position [18].

For example, using the MiSeq there will be a target
molecule at a given position on the flow cell. The fluo-
rescent intensity generated at that position during each
cycle is recorded as raw data. Stronger fluorescence
gives greater confidence in the nucleotide species that
was incorporated during that cycle. However, if other
target clusters are in close physical proximity there can
be overlapping fluorescent signal resulting in back-
ground noise. The presence of this noise reduces the
confidence of the nucleotide call [19].

Ultimately, the base caller uses proprietary algo-
rithms that are specific to the sequencing platform to
separate signal from noise for each nucleotide. This
generates a specific nucleotide along with a confidence
score at every position in every read. The read data is
recorded and saved in an electronic format, the most
popular of these being FASTQ.

The FASTQ format is a standardized text based for-
mat for storing specific sequencing read data. The for-
mat has three components: (1) a read identifier, (2)
nucleotide sequence, and (3) confidence scores. The
read identifier links the sequence data to the original
individual target molecule from which the raw data
was generated. The nucleotide sequence is simply the
order of nucleotides in that read identified by the base
caller. Finally, the confidence score is a representation
of the confidence in the nucleotide choice generated by
the base caller for each nucleotide in the sequence [20].
The data is ready for the alignment step once the base
caller generates FASTQ formatted read for each target
molecule in the sequencing reaction.

Sequence Alignment

The FASTQ output from the base caller contains all
of the DNA sequences from all of the target molecules
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in the reaction. However, the read data alone is not
useful because it gives no indication of what genomic
regions have been sequenced. So, a step is needed to
map all of the individual reads to their locations in the
genome. This mapping process is known as sequence
alignment.

Sequence alignment is performed by software that
utilizes one or more alignment algorithms to map the
read data from the base caller. Unlike base calling,
alignment is not platform specific and can be per-
formed using any available aligning software given the
appropriate sequence read input. However, most clini-
cal sequencing platforms are sold with proprietary soft-
ware that performs alignment. Regardless of software
choice, the basic principles of alignment are the same.

To perform read mapping, the aligning software
requires the read data and a reference sequence. The
reference sequence is necessary to serve as a standard
against which individual reads can be compared.
Generally the reference sequence is a standardized
whole human genome, though it can be customized or
changed to serve different purposes. For example,
known viral or bacterial genomic data can be added to
the reference sequence if infectious agents are included
in the targets for sequencing [21].

The aligning software will take each read that was
generated by the base caller and compare it individu-
ally to the reference sequence with the goal of placing
each read at the most appropriate location in the refer-
ence. To perform this goal, the aligner takes many fac-
tors into account. The fidelity of the read sequence to
the reference is the most obvious and significant factor
in alignment. If a read is identical to a portion of the ref-
erence sequence, then it most likely corresponds to that
genomic position. However, not all reads will perfectly
match the reference. Many biologic factors such as
benign variants and deleterious mutations result in
deviations from reference. Additionally, technical fac-
tors such as errors during sequencing or inaccurate
base calling contribute to imperfect read alignment [22].

The alignment software allows for these occurrences
by generating penalties for inexact alignment. This is
similar to the confidence score made by the base caller
and creates room for reads to be aligned despite some
differences from the reference. Different factors can
result in different penalties. For instance, a read with
low base confidence that otherwise matches the refer-
ence will not be penalized as heavily as a read with
numerous bases that differ from the reference entirely.
At a certain penalty threshold, a read is considered
unalignable and cannot be mapped to any region in
the reference sequence. These unaligned reads are dis-
carded and not analyzed. The penalty scheme can be
customized to allow for more stringent or more lenient
alignments. The stricter the penalties, the fewer reads

can be aligned and included in analysis. The more
lenient the penalties, the more incorrectly mapped
reads will be incorporated into the final data. This pen-
alty scheme is absolutely crucial to alignment. If only
perfectly aligned reads were kept for analysis, then no
mutations could ever be identified as a mutation is by
definition a variant from the expected sequence [23].

The process of performing sequence alignment on
the read data generates large matrices of alignment
data that can be stored in multiple file formats. The
most popular of these alignment formats is the
Sequence Alignment/Map (SAM) format. The SAM
format, and its binary counterpart known as BAM,
stores alignment data indexed by reference sequence
location. These SAM and BAM files can be opened
using a number of alignment viewing programs to
generate a graphical display of the aligned reads. The
graphical interface typically shows the reference
sequence with parallel rows of reads corresponding to
where each read has been mapped against the refer-
ence. The total number of reference sequence bases for
which reads from a sample have been aligned is
known as the “coverage” of that sample. Most refer-
ence sequence bases in the target regions will be cov-
ered multiple times, as multiple reads are typically
generated for the same genomic target. The number of
reads that align over a single base in the reference
sequence is known as the “depth of coverage” at that
base. Depth of coverage is important as it leads to cer-
tainty about the true biological sequence in a sample.
Each read that is aligned over a given position acts to
independently verify the base call at that position with
the other aligned reads. So, greater depth of coverage
leads to greater confidence in the sequencing data.
Typically, 20-fold coverage (a depth of coverage of 20
reads over the target region) is required to be confi-
dent of the base called in a pure or germline specimen,
whereas 1000-fold coverage is needed to identify var-
iants in mixed samples such as tumor specimens [24].

Manually viewing the alignment data is interesting
and can be helpful in verifying sequence variants and
interpreting complicated variants. However, the large
number of aligned reads would be impossible to
review by hand in order to identify mutations in the
sequenced samples. Therefore, once the alignment
data is generated it enters a final bioinformatic proces-
sing step—variant calling.

Variant Calling

The sequence alignment process yields useful cover-
age and depth of coverage data about the sequencing
run. But the true value of sequencing is the ability to
identify sequence differences between the sample
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nucleic acid and the expected, typical sequence. The
alignment alone does not identify these differences or
variants. So, a final bioinformatic step is required to
decide what positions in the alignment represent true
variants in the sequenced sample.

This variant calling step, similar to alignment, is
performed by software that is independent of the
sequencing platform used to generate the raw data.
There are multiple free and third-party variant callers
in addition to the proprietary variant calling software
usually included with the sequencing instrument.
Different variant callers utilize unique algorithms or
combinations of algorithms to tackle the same
question—given the alignment data, what is the true
biological nucleotide sequence [25]?

To identify sequence variants the variant caller must
consider a number of factors provided by the align-
ment. Depth of coverage and the variant frequency
affect the confidence in a variant’s validity. In heteroge-
neous samples, such as tumor specimens, variants are
only expected to occur in a subset of reads, so a mini-
mum variant frequency must be established as a “true
variant” threshold. Additionally, the alignment score
generated by the penalty scheme impacts the variant
caller. Generally, variants in reads with stronger align-
ment are favored. However, this strategy is problematic
as complicated insertions, deletions, and duplications
will necessarily be poorly aligned. Thus, single nucleo-
tide variants are rather simple for variant calling algo-
rithms to identify whereas more complicated variants
can be misidentified or missed entirely [26].

The data generated by the variant calling process
can be stored in multiple file formats, though the most
commonly used is the Variant Call Format (VCF). The
VCF stores only the location and type of variants iden-
tified in each sample, making it much smaller than the
aggregate read data or sequence alignment data [27].
VCF formatted data can be accessed using a variety of
software packages that will display identified variants
by sample and genomic location. This information can
be manually reviewed and interpreted to create a clini-
cal report.

SEQUENCE INTERPRETATION AND
CLINICAL REPORTING

After sequencing is complete and bioinformatic pro-
cessing has been performed, the resultant data is ready
for analysis. The ultimate goal of clinical sequencing is
generating a report that is useful to clinicians and
patients in helping to guide therapy, making diagno-
ses, or providing prognostic information. Furthermore,
the report must be constructed in a manner that
provides relevant information in a way that is easy for

clinicians and patients to understand. So, the sequenc-
ing analyst—generally a molecular genetic pathologist
or clinical molecular geneticist—must be versed in
both clinical medicine and genetic interpretation
and reporting.

Of primary importance to generating a clinically
useful report is an understanding of current clinico-
genetic principles and practice. In general, the
sequencing report will address variants that are estab-
lished in clinical practice as significant to the patient’s
clinical care. A good report will explain the relevance
of each variant (diagnostic, prognostic, or therapy
related) in terms of the specific patient’s current
condition. Even targeted sequencing panels will often
times identify multiple variants in a single patient,
presenting an interpretive challenge to the analyst [28].
Thus, sequencing offers a great opportunity for indi-
vidualizing patient care based on a host of information
that would not otherwise be attainable.

Beyond clinical variant interpretation, the analyst’s
job is to organize the reportable data into a concise but
comprehensive report. Professional guidelines have
been published to detail best practices for variant
reporting. Generally, variants are reported in tiers that
suggest their level of clinical actionability. Variants
known to have prognostic or therapeutic implications
are reported first, and variants of unknown clinical sig-
nificance are reported last [29]. There can be other
intermediate reporting categories for likely benign or
likely pathogenic variants, and some institutions create
a category for variants that are likely to impact clinical
trial eligibility. The category system serves to highlight
the most relevant variants foremost, while also docu-
menting all findings. While variants of unknown sig-
nificance offer little immediate clinical assistance, they
may become informative at a later time, so thorough
recordkeeping is paramount. To that end, variants
must be reported in a way that can be easily searched
in the future. Therefore, there are additional reporting
guidelines for variant nomenclature and even gene
name and coordinate recording [30]. The location of all
variants is established during sequence alignment
based on a standard reference sequence. So if a differ-
ent reference is used for sequence alignment of the
same sequencing data, the variants will all be different.
The recommended standard reference sequence is the
Genome Reference Consortium standard human
genome. However, this reference sequence is periodi-
cally updated and changed. Therefore, careful docu-
mentation of the reference sequence used during
alignment is necessary in every sequencing report [31].

A combination of broad medical and genomic knowl-
edge allows the sequence analyst to interpret each
patient’s variants in terms of the patient’s clinical presen-
tation. Then, an understanding of reporting guidelines
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and best practices is necessary to generate a report that
provides immediately actionable information as well as
serves as a useful record. The final clinical sequencing
report represents the laborious convergence of multiple
scientific disciplines and technologies.

CONCLUSION

Generating a massively parallel sequencing report
from an initial DNA sample is an extremely compli-
cated process. We have presented a brief overview of
the technology in its present state, but these techniques
are constantly changing and improving. However, the
fundamental, multidisciplinary approach of the
sequencing process is unlikely to become obsolete. The
sequencing chemistry is dependent upon bioinformatic
processing which, in turn, relies upon an analyst’s
interpretive capabilities. The interdependence of these
elements provides opportunities for broadening the
clinical utility of sequencing in multiple areas. New
sequencing technologies promise higher throughput
and more accurate sequencing. Novel alignment and
variant calling approaches will inevitably overcome
current challenges to mapping. In the clinical realm,
drug trials and improved variant databases will offer
new actionable targets for analysis. So, while massively
parallel sequencing has already established its utility
in the clinical lab, the reliance on this technology will
only grow with the growing ability to offer patient and
disease-specific, personalized therapy.
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INTRODUCTION

The increasing demand for highly reliable, accurate,
cost-effective, and expedited diagnostics in today’s
health care system has resulted in the evolution of the
modern clinical laboratory. This evolution has resulted
in the adoption of molecular diagnostics into many clini-
cal settings. Molecular diagnostics is a term used to
describe a family of techniques used to analyze biolog-
ical markers in an individual’s genetic code (genome)
and to analyze how their cells express their genes as
proteins (proteome). This form of diagnostics applies
molecular biology techniques to clinical testing in
order to diagnose and monitor disease, detect risk, and
personalize therapies by determining which treatments
will work best for an individual patient.

Research into the molecular basis of disease is driving
the growing demand for molecular diagnostics across
many different clinical indications, including infectious
disease, medical genetics, and molecular oncology, by
demonstrating the usefulness or utility that these tests
have in diagnosing and treating the patient. In fact,
molecular diagnostics is one of the fastest growing seg-
ments of laboratory medicine (Fig. 4.1). In turn, the
expanding molecular testing catalog and increased test-
ing volumes are often constrained by available
resources, including cost and the availability of highly
trained personnel. In many cases, these constraints have
resulted in the centralization of diagnostic testing, caus-
ing a reduction in point-of-care testing and an increase
in samples being sent out to larger reference laboratories
for analysis. The need to overcome these constraints for

molecular diagnostics laboratories of all sizes has driven
the advancement of technologies to decrease demands
of personnel by increasing automation.

Automation or automatic control is defined as the use
of various control systems for operating equipment such
as machinery in a factory, or processes such as network
switching requiring no, minimal, or reduced human
intervention. In the molecular diagnostic laboratory what
was once a labor-intensive process requiring substantial
time investment by a highly trained clinical laboratory
scientist can now be automated, resulting in reduced
technician time and cost, faster testing turnaround times,
and in many cases improved accuracy and reliability of
highly complex molecular diagnostic testing.

One of the earliest and most profound examples of
automation in the molecular diagnosis of disease is the
invention of the thermal cycler (or thermocycler), a device
responsible for controlling temperature during polymer-
ase chain reaction (PCR) amplification of gene targets.
PCR requires template DNA, dideoxynucleotides
(ddNTPs), oligonucleotide primers, and a polymerase
enzyme to synthesize copies of the target region. The
reaction mixture undergoes successive rounds of heating
and cooling to denature the double-stranded DNA and
produces an exact copy of the targeted sequence. After
30�40 successive temperature cycles, the gene target is
amplified hundreds of millions of times. Upon invention
of PCR in 1983, this technique was largely manual,
requiring a scientist to place each reaction into a heated
or cooled water bath to complete each cycle. This led to
the invention of the first automated thermal cycler known
as “Mr. Cycle” by a PerkinElmer Cetus Instruments
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(PECI) collaboration. This early automation device
consisted of a four-unit prototype containing an auto-
matic pipettor, a simple robot, and temperature-
controlled water baths. This thermal cycler would control
cycling temperature by placing each sample in the appro-
priate water bath and replenish the nonstable polymerase
after each successive temperature cycle, allowing for
dramatically less human intervention. The first published

application using this type of process was a test for
diagnosis of sickle cell disease [1]. The subsequent use of
a thermostable polymerase, Taq polymerase [2,3],
allowed for further advancements in automation and the
creation of the first fully automated commercially avail-
able PECI, called the DNA Thermal Cycler 480 system,
allowing for the wide adoption of PCR as the basis of
many molecular techniques today (Fig. 4.2).
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FIGURE 4.1 Representative growth in test volumes and testing menu of an average academic medical center molecular diagnostics labora-
tory over the past 20 years. Continued expansion of testing in infectious disease, molecular oncology, and hereditary disease screening, includ-
ing cystic fibrosis screening, will drive this expansion in the years to come.
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FIGURE 4.2 The evolution of the thermal cycler. The first thermal cycler prototype named (A) “Mr. Cycle” was introduced in 1985 by
PerkinElmer Cetus Instruments (PECI). Only three were ever built and currently reside in the National Museum of Natural History
(Smithsonian), the Science Museum of London, and University of Southern California. The first commercially available thermal cycler was the
(B) Thermal Cycler 480 by PECI released in 1987. Over the years, additional advancements have led to the mass adoption of the instruments
like the (C) GeneAmp 9700 (Applied Biosystems) introduced in 2007, and popular touch-screen models like the (D) C1000 (Bio-Rad) intro-
duced in 2011.
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In this chapter, we will describe how automation has
helped meet the high demands facing today’s molecular
diagnostic laboratory. Automation has impacted every
aspect of the diagnostic laboratory from extraction of
nucleic acids to the massively parallel sequencing of
tumors. While many of the technologies presented
herein can be applied to many applications, this chapter
will describe the role of automation in terms of diagno-
sis of infection disease, genetic disorders, and molecular
characterization of neoplasms routinely performed in
today’s molecular diagnostics laboratory.

AUTOMATION OF NUCLEIC
ACID EXTRACTION

Almost all molecular diagnostic applications start
with the efficient extraction of high-quality nucleic
acids, DNA and RNA (including mRNA, miRNA),
from biological samples. Manual extraction methods
have benefited from advancements in nucleic acid
chemistry over the years. Such methods typically
employed by a molecular diagnostic laboratory range
from chemical-based extractions relying on manual
phenol�chloroform purification, to the use of manu-
factured extraction kits, which utilize silica-based col-
umn or magnetic bead nucleic acid purifications.
While these methods vary in their chemical makeup,
extraction efficiency, and nucleic acid purification tech-
niques, most are capable of providing high-purity
nucleic acids required for quality molecular diagnostic
results [4]. However, the ability to recover nucleic
acids and remove inhibitors and contaminants is not
the only important aspect of an extraction method.

Manual extraction methods of all kinds are prone to
highly variable results [5,6]. While variation in extrac-
tion efficiencies and nucleic acid quality exists between
methodologies, significant variation is also observed
with the same methodologies within a single labora-
tory. This variation often warrants the need for a
highly trained technologist with significant hands-on
expertise with a specific extraction method. Since no
single extraction method or kit is adequate for extrac-
tion of all nucleic acids from a growing variety of bio-
logical samples found in the molecular diagnostics
laboratory including whole blood, urine [7], feces [8],
saliva [9], buccal [10] and nasopharyngeal swabs [11],
bone marrow biopsies [12], fresh and frozen tissues,
and formalin-fixed paraffin-embedded tissues [13], this
amount of hands-on expertise is challenging for most
diagnostics laboratories. To ensure consistent, high-
quality, manual nucleic acids extraction, today’s
molecular technologist must possess expertise in an
expanding number of extraction methods for a large

number of sample types, using a variety of kits and
methodologies.

The expanding test menu, diversity of sample types,
and increased demand for molecular diagnostics result
in a significant increase in the volume of samples
requiring nucleic acid extraction. While these manual
extraction methods may be adequate for lower volume
sample types, most moderately sized molecular diag-
nostics laboratories can no longer solely rely on such
methods for nucleic acid extraction. By automating
nucleic acid extraction, the molecular diagnostics labo-
ratory can (1) increase throughput by reducing manual
manipulation, (2) reduce turnaround times by increas-
ing capacity, and (3) improve and standardize extrac-
tion efficiency and quality from a growing number of
biological samples.

A wide variety of automated extraction systems are
used in today’s molecular diagnostics laboratory. They
range from small stand-alone extraction instruments
designed for low to moderate volumes [14] to large
robotic liquid handlers often incorporated into highly
automated workflows capable of high-volume molecu-
lar testing [15].

The stand-alone extraction instrument is by far the
most popular choice of many small- to medium-sized
molecular diagnostics laboratories found in academic
centers and hospitals. Instruments like the EZ1
Advanced XL (Qiagen) are capable of extracting
between 1 and 16 samples in a single 20- to 40-min run.
While these instruments are considerably cheaper than
larger automated extraction systems, they do not offer
the same extraction capacity. However, one of the pri-
mary benefits that these smaller stand-alone systems
offer is the flexibility they provide to a diagnostics labo-
ratory with moderate volumes of diverse sample types.
These instruments are designed as “closed” systems,
meaning they require manufacturer-provided reagents
to perform preprogramed extraction protocols.
Switching between sample types and extraction methods
typically requires the insertion of a new reagent kit and
the running of a new, preprogrammed protocol. This
means that by training a technologist to perform extrac-
tions on this instrument for one sample type allows for
minimal additional training in order to produce high-
quality and consistent results for a variety of additional
sample types for both DNA and RNA extractions.

The high-capacity automated extraction instruments
come in both “closed” and “open” formats. As with
smaller instrumentation, the closed format systems,
such as the COBAS AmpliPrep (Roche), use dedicated
reagent kits and protocols to perform extraction for
specific sample types [16,17]. Rather than 16 samples
per run, these instruments are capable of extracting up
to 96 samples in a single run and typically can process
over 384 samples in a working day. While these
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systems are technologically more advanced, they
remain user-friendly with simplified user interfaces
allowing for easier technologist training and regulatory
compliance. These types of closed systems are com-
mon in laboratories with only a few higher volume
tests, which require dedicated equipment to meet daily
testing requirements. Many of these closed systems are
used to extract nucleic acids as part of a testing plat-
form for screening and diagnosis of infectious disease.

The high-capacity “open” format instruments pro-
vide the greatest flexibility in high-volume testing.
Systems like the BioMek FXP (Beckman Coulter) are
designed as a completely customizable automated
workstation. These systems at minimum consist of an
advanced robotic liquid handler, but also typically con-
tain heating elements, magnets, shakers, etc., to extract
from 8 to 384 samples in a single run. The customizable
nature of these instruments results in the capability to
adapt a wide variety of extraction methods and kits to
suit the laboratory’s needs. However, one significant
drawback to open extraction systems is the requirement
for a high level of instrument and workflow expertise.
Such expertise is required to develop protocols in order
for the utility of these systems to be harnessed. These
limitations result in open systems being better suited
for automating either complex molecular workflows,
such as next-generation sequencing (NGS) nucleic acid
extraction and library preparation, or novel techniques
or methods where no commercially available high-
throughput technology is available.

AUTOMATION IN INFECTIOUS DISEASE
MOLECULAR DIAGNOSTICS

Automation of the molecular diagnostics laboratory
has had a profound effect on the diagnosis of infec-
tious disease. Infectious disease diagnostics once solely
relied upon the use of highly manual multiday micro-
bial culture [18] and viral plaque assays [19] to diag-
nose and monitor infectious disease. While these
methods are still considered gold standard for many
indications [20], there is a growing number of PCR-
based applications being employed in molecular diag-
nostics laboratories for the rapid detection of infectious
agents [17,21�23].

The specific molecular techniques applied largely
depend on the question being asked. For example, real-
time PCR-based approaches may be adequate in diagno-
sis of species-specific infections, while postamplification
sequencing may be required to identify and distinguish
among a variety of coinfections in a sample. While many
of these methods have benefited from various advance-
ments in automation, those most commonly implemen-
ted into the molecular diagnostic laboratory are
integrated sample-to-result diagnostic platforms that
allow for the input of raw biological material and result
in a final diagnostic report (Table 4.1). While these sys-
tems range in footprint and sample capacity, all of these
automated systems allow for nucleic acid extraction and
PCR detection of viral or bacterial genomic targets with
minimal to no technologist intervention.

TABLE 4.1 List of Common Fully Automated Devices and FDA-Approved Assay for Infectious Disease Molecular Testing

Platform Manufacturer FDA-approved assays Sample throughput

Cobas Liat Roche Flu, Strep A Only one sample/instrument

FilmArray BioFire Respiratory Panel, GI Panel, Meningitis
Panel, Blood Culture ID Panel

Only one sample/instrument

Verigene SP NanoSphere Respiratory Panel, SA/SE, Enteric
Pathogen Panel, GC-GN, GC-GP

Only one sample/instrument (expandable)

ESensor XT-8 GenMarkDx Respiratory Panel Up to eight samples/instrument (expandable)

Aries Luminex HSV 1 & 2 Up to 12 samples/run

BDMax Becton Dickson GBS, MRSA, C. diff, Enteric Bacterial
Panel, Enteric Parasite Panel

Up to 24 samples/run

GeneXpert/
GeneXpert Infinity

Cepheid Flu/RSV/EV, GBS, MRSA, MTB/RIF,
C. diff, Norovirus, CT/NG, TV, GBS

Up to 80 samples/run

m2000 RealTime Abbott Molecular HBV, HCV, HIV, HSV 1 & 2, Flu, C. diff 96 samples/run (128 in 8 h)

COBAS Ampliprep Roche HBV, HCV, CMV, HIV-1 48 samples/run (168 in 8 h)

Panther Hologic/Gen-Probe CT/NG, TV, HPV 120 samples/run (275 in 8 h)

Cobas 4800 Roche CT/NG, HPV 96 samples/run (288 in 8 h)

Cobas 6800/8800 Roche HBV, HCV, HIV 96 samples/run (384/960 in 8 h)

Tigris DTS Hologic Gen-Probe CT/NG, TV, HPV 182 samples/run (450 in 8 h)
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The system adopted by a laboratory largely depends
on the volumes of samples being tested and the time
required to obtain a result. For low to moderate vol-
ume testing, there are single sample cartridge or
reagent strip based automated systems, such as the
GeneXpert (Cepheid), BDMax (BD Molecular
Diagnostics), ESensor XT8 (GenmarkDx), and the Aries
(Luminex) systems that allow for rapid detection of a
variety of different infectious agents. These automated
instruments can accommodate from 1 to 80 samples to
be tested simultaneously. Each biological sample is
dispensed directly into a single assay cartridge or
reagent strip, which contains all the necessary reagents
to extract nucleic acids and amplify the chosen geno-
mic target(s). Currently, these platforms have over a
dozen FDA-approved in vitro diagnostics (IVD) assays
for the diagnosis of infectious disease including: multi-
drug resistant TB [24�26], influenza (types A and B)
[27]; health care related infections including:
methicillin-resistant Staphylococcus aureus [28,29],
Clostridium difficile [30,31]; and sexually transmitted
infections including Chlamydia trachomatis, Neisseria
gonorrhoeae, and Trichomonas vaginalis [32,33]. These
automated cartridge and strip-based systems can typi-
cally be completed with as little as a few minutes of
technical hands-on time per sample allowing for diag-
nosis within 60�90 min for low-volume testing.

While these smaller automated systems are excellent
for low-volume testing, many molecular diagnostic lab-
oratories are becoming inundated with samples requir-
ing screening and/or monitoring of viral loads in
patients with human immunodeficiency virus (HIV),
hepatitis B virus (HBV), hepatitis C virus (HCV), cyto-
megalovirus (CMV), human papilloma virus (HPV),
and others. This has resulted in the need for adequate
high-volume testing capabilities that will accommodate
this increasing demand with little to no change in the
molecular technologist workload. A prime example of
this increasing demand is found in recent reports iden-
tifying the clinical utility of high-risk HPV testing as the
primary screening method for cervical cancer. Current
screening recommendations suggest the use of cotest-
ing (cytology and HPV screening) in women between
the ages of 30 and 65 [34]. However, in the spring of
2014, the FDA approved the Cobas HPV test for pri-
mary screening of cervical cancer [35], allowing for
HPV-positive samples to be followed up with cytology
screening [36]. While this information has yet to be
included in screening recommendation, there is sup-
port for expanding HPV molecular testing potentially
resulting in increased HPV testing volumes [36]. Often
the only way to achieve the turnaround times required
for this testing is to incorporate fully automated high-
volume molecular testing platforms into the diagnostic
workflow.

There are a number of commercially available plat-
forms for high-volume infectious disease diagnostics
including the Panther and Tigris DTS systems
(Hologic), the Cobas 4800/6800/8800 systems (Roche),
the COBAS AmpliPrep/TaqMan instrument (Roche),
and the m2000 RealTime System (Abbott). The manu-
facturers of these platforms have developed assay kits
for virus detection and quantification of viral loads for
a number of different infectious diseases. Many of these
kits have achieved FDA-approved IVD status, which
only requires a verification for adopting a highly auto-
mated system into the molecular laboratory.

While each of these platforms varies in component
technology, assay chemistry, and sample capacity, all
are designed to allow for barcoded and/or radio fre-
quency sample and reagent tracking, nucleic acid
extraction, PCR assay setup, and amplicon detection on
a massive scale. Some fully integrated platforms allow
for complete process automation, including direct sam-
ple tube input, eliminating the laborious process of
transferring samples into platform-specific disposables.
This level of automation affords the molecular diagnos-
tics laboratory the ability to process up to 960 tests in
an 8-h shift, and over 3000 tests in a 24-h period, with-
out having to drastically increase the amount of tech-
nologist time required to achieve testing requirements.

Early versions of many of these platforms limited
versatility by requiring all samples be run for a single
test, and assays had to be completed before subsequent
samples could be loaded. More recent versions of these
platforms can now accommodate running up to three
assays on the platform at one time, as well as allow for
loading of additional samples while other samples are
being processed. These further advancements allow for
an even greater flexibility in high-volume infectious
disease testing.

Testing that once took multiple days and required
significant technical expertise can now be accom-
plished quickly with minimal technical training. The
described automation has resulted in rapid diagnosis
of infectious disease, allowing for the potential reduc-
tion of disease transmission and outbreak prevention
[37] and better critical care patient management
[38,39]. As the clinical utility of rapid molecular infec-
tious disease testing grows, increased automation will
allow the molecular diagnostics laboratories to con-
tinue to meet the growing demand.

AUTOMATION IN GENETICS AND
MOLECULAR ONCOLOGY DIAGNOSTICS

In the fields of genetics and molecular oncology,
there is an expanding need for automated diagnostics.
The increased utility of noninvasive prenatal testing
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from circulating fetal DNA [40,41], expanded carrier
screening for conditions such as cystic fibrosis [42], the
characterization of how a patient’s genotype affects
drug response (pharmocogenetics) [43], and the use of
large multigene panels for genetic diagnosis [44] are
largely driving this expansion. In addition, the routine
care of today’s cancer patient has been transformed by
molecular diagnostics. It is now commonplace for
the molecular diagnostics laboratory to provide
detailed molecular characterization of a patient’s
cancer. Successful identification of these molecular
alterations has changed the treatment paradigm for a
number of different cancer types. To determine the
most appropriate treatment for lung adenocarcinomas,
today’s oncologist requires detailed information on the
presence or absence of variants in the epidermal
growth factor receptor (EGFR), for example [45]. These
variants are known to either sensitize (EGFR exon 19
deletions) or make a tumor cell resistant (EGFR p.
T790M) to treatment with common first-line EGFR
tyrosine kinase inhibitors [46]. With the FDA approval
of additional targeted therapeutics for personalized
cancer treatment and expanded use of genetic testing,
the diagnostic laboratory must be prepared to meet
this increasing demand.

Advancements in postamplification detection of
inherited single nucleotide polymorphisms (SNPs),
acquired single nucleotide variants (SNVs), small
insertion/deletions (INDELS), large copy number var-
iants (CNVs), and other chromosomal aberrations have
allowed the molecular diagnostics laboratory to vastly
expand the testing menu while still being able to offer
high-quality, timely results.

One of the first PCR-based molecular diagnostic
technologies used restriction enzymes to digest a PCR-
amplified product in order to determine the presence
of a pathogenic variant [1]. This early version of the
restriction fragment length polymorphism (RFLP)
assay required the use of gel electrophoresis, in which
the digested amplicon was electrophoresed through an
agarose gel using an electric current to separate frag-
ments by size. The size of these restriction fragments
could then be compared to samples known to be posi-
tive for the pathogenic variant and the appropriate
diagnosis could be made. This groundbreaking tech-
nique proved successful and has been repeated for
genotyping of variants for numerous diagnostic appli-
cations. However, the use of RFLP for detection of var-
iants has a number of limitations, including (1) limited
sequence recognition by restriction enzymes, (2) the
ability to detect only one variant per reaction, and (3)
the inability to quantitatively determine the amount of
variation in a sample. In part, these limitations have
led to the advancement of numerous additional molec-
ular techniques including refractory mutation system

PCR (ARMS-PCR) [47], 50-nuclease “TaqMan” PCR
[48], primer extension assays [49], oligonucleotide liga-
tion assays [50], chromosomal microarrays [51], and
various sequencing techniques [52].

Real-Time Quantitative PCR

At their core, all of these techniques continue to uti-
lize PCR amplification. However, advancements in
automated amplification detection has allowed for
expanded applications of this methodology. The
advent of real-time quantitative PCR (qPCR) has pro-
vided the ability to detect the relative quantity of spe-
cific PCR products during the PCR reaction through
the use of fluorometry [53]. Molecular methods
employing qPCR vary in design, but by detecting vari-
ous flourophore-labeled PCR products or probes, these
techniques are capable of simultaneous detection of up
to seven targets in a single reaction. In reality, it can be
a challenge to achieve this level of multiplexing due to
oligonucleotide primer competition and cross-
reactivity [54], but it is not uncommon to routinely
detect two to three targets per reaction. This reduces
the variation introduced by manually pipetting one
sample into numerous separate reactions, allowing for
more precise target quantification and normalization
across the assay. In addition, the qPCR instruments
found in today’s molecular diagnostics laboratories,
including the 7500 Fast (Thermo Fisher) or CFX384
(Bio-Rad), are capable of simultaneously testing from
96 to 384 samples in a single run.

qPCR methods employing the use of fluorophore-
labeled oligonucleotide probes designed to pair only
with a single variant, allow for the rapid detection of
multiple variants in a single PCR run. This increases
the molecular diagnostics laboratory’s ability to detect
all kinds of SNVs, including those used to determine
which drug treatments are best suited for a particular
patient (pharmacogenetics).

Digital Droplet PCR

qPCR instruments have been commercially available
since 1996, and although they have become more refined
over time, they still rely on the basic principles of tradi-
tional PCR. In 2006, a new form of PCR, termed digital
droplet PCR (ddPCR) [55,56], was made commercially
available. In brief, ddPCR uses the same chemical com-
ponents to amplify nucleic acid targets, however, instead
of relying on exponential amplification to calculate the
amount of product at the end of each PCR cycle, ddPCR
uses various technologies to isolate each individual tar-
get reaction, resulting in thousands of discrete measure-
ments, allowing for more accurate and quantitative
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analysis of initial target amounts [57]. A ddPCR instru-
ment, such as the QX200 (Bio-Rad), uses microfluidics to
create over 20,000 droplets each containing the compo-
nents for a single PCR reaction. These droplet PCR reac-
tions are run on a traditional thermal cycler, and
postamplification fluorescence detection is performed on
individual droplets to determine the number of droplets
positive for the target being amplified. In the molecular
diagnostics laboratory, automated ddPCR allows for the
accurate detection of CNVs for diagnosis of genetic dis-
ease, identification of low frequencies variants in hetero-
geneous tumor samples, as well as allows for a higher
level of multiplexing due to the elimination of compet-
ing primers within a reaction. By automating the PCR
amplification and target detection through qPCR and
ddPCR, there is a reduction in technologist workload
per sample and an increase in sensitivity and accuracy
of PCR-based diagnostics.

Capillary Electrophoresis

Many clinical PCR-based applications still require
postamplification detection of end point PCR products.
With the introduction of the capillary array electro-
phoresis instrument into the molecular diagnostics
laboratory, the days of having to rely on gels for
determining fragment size have quickly come to an
end. Capillary electrophoresis instruments, like the
AppliedBiosystems 3500 series (Thermo Fisher), use
the same principles as traditionally gel electrophoresis.
An electrical current is applied to a matrix containing
the amplified PCR fragments. The fragments are sepa-
rated by size as the larger fragments move more
slowly through the matrix. In capillary electrophoresis,
each sample is injected into a single reusable capillary
containing a replenishable gel-like matrix eliminating
the need to use disposable gel cassettes. These instru-
ments commonly consist of arrays containing between
8 and 16 capillaries, allowing for up to 128 samples to
be loaded on a run, resulting in the capability of ana-
lyzing a large number of samples with no additional
hands-on time. However, the most valuable addition
to capillary electrophoresis is the automated detection
and analysis of PCR fragments as they flow through
the capillary. These instruments are equipped with a
fluorescence detector capable of identifying fluores-
cently labeled fragments and converting that signal
into a read out of relative fluorescence resulting in a
fragment peak. When run alongside a fragment ladder,
the fragment length of the product can be calculated.
This allows for the accurate determination of frag-
ments differing by as little as a single base pair. With
the addition of multiple fluorophores, similarly sized
fragments can be multiplexed into one reaction.

In the molecular diagnostics laboratory, capillary
electrophoresis is commonly used for a variety of diag-
nostic assays, including the detection of microsatellites
to monitor bone marrow engraftment after transplanta-
tion [12] and the diagnosis of expansion repeat dis-
eases such as Fragile X syndrome [58] and
Huntington’s disease [59]. However, the capillary elec-
trophoresis instrument is also responsible for automat-
ing what is still considered the gold standard in
molecular diagnostics, the sequencing of genetic mate-
rial [60]. Prior to the adoption of these instruments in
the laboratory, Sanger sequencing required the run-
ning of large format gels to identify radioactively
labeled ddNTPs present at each nucleotide position
[61]. By modifying these ddNTPs to include various
fluorescent labels, the detector on a capillary electro-
phoresis instrument can distinguish between each
ddNTPs and produce an easy-to-read sequencing trace
[62]. It once took technologists hours to painstakingly
read and reread a single sequencing reaction but now
this process is automated, allowing for numerous
sequencing reactions to be performed concurrently. It
is this level of automation that made the sequencing of
the human genome possible [63,64].

These sequencing methods are now used in the
molecular diagnostics laboratory to identify pathogenic
variants in genetic disease. Many genetic diseases are
the result of variants found throughout the coding
region of a gene. To make these diagnoses, every base
pair within an exon must be examined, which makes
the use of a qPCR genotyping assay unfeasible. This
same technology has been adopted to perform primer
extension assays, commonly referred to as SNaPshot
(Thermo Fisher), to identify variants present one base
pair upstream of a designed primer. This technique is
used to identify actionable hotspot mutations, defined
as common cancer mutations which have identified
therapeutics for a given tumor type. Primer extension
assays are considered more sensitive than qPCR meth-
ods for the detection of low-level variation often pres-
ent in a heterogeneous population of tumor cells.

Chromosomal Microarray Analysis

The analysis of chromosomes is used to identify
large chromosomal deletion and amplifications across
a patient’s entire genome. These chromosomal aberra-
tions alter the normal copy number of genes within
the affected regions. In the molecular diagnostics labo-
ratory, detection of these CNVs can result in diagnosis
of various genetic disorders [65] or alter the treatment
selection for certain tumor types [66]. This cytogenetic
testing once solely relied on the use of karyotyping, a
process requiring the multiday culture of live cells and
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microscopic analysis of chromosomal banding pat-
terns, and fluorescence in situ hybridization (FISH), a
technique by which cells are treated with very large
fluorescently labeled probes, which pair with target
chromosomes and allow for microscopic detection of
fluorescent spots. These highly manual techniques are
often very challenging and limited by the ability of
cells to grow in culture and the availability of FISH
probes for a given chromosome target. The introduc-
tion of the chromosomal microarray analysis allowed
for automated molecular analysis of chromosomes
resulting in a virtual karyotype with higher sensitivity
and increased diagnostic yield [67].

The most common chromosomal microarrays used
in molecular diagnostics laboratories include the com-
parative genomic hybridization (CGH) array, the SNP
array, or a combination of the two (CGH1 SNP).
These arrays consist of hundreds of thousands to
upward of a few million oligonucleotide probes bound
to the surface of a solid array chip. While these array
technologies vary, when a patient’s DNA binds to a
probe with matching sequence, a fluorescent signal
can be detected. Optical array scanners detect signals
from millions of individual probes on a single chip for
each patient. Algorithms within propriety software
packages then automatically interpret that information
to determine regions of the chromosome where higher
(amplification) or lower (deletion) signal is observed
when compared to a normal reference. The more
probes present on the chip the higher the resolution, as
there is less genomic space between each probe. When
these arrays contain probes that cover common SNPs,
additional chromosomal information can be gained,
including copy-neutral loss of heterozygosity resulting
in the diagnosis of uniparental disomy disorders such
as Prader-Willi and Angelman syndromes [68].

The automation of molecular chromosome analysis
has resulted in higher resolution detection of CNVs.
Manual cytogenetic methods are capable of detecting
CNVs down to 5�10 million base pairs while commer-
cially available microarrays can accurately detect var-
iants as small as 10,000�20,000 base pairs. This
increased resolution has resulted in finer mapping of
CNV breakpoints, resulting in the discovery and char-
acterization of a number of new microdeletion disor-
ders [69].

Next-Generation Sequencing

The most recent technological advancement to reach
the molecular diagnostics laboratory is the use of NGS
technologies to diagnose genetic disease and identify
large numbers of actionable variants in human cancer.
The term next-generation sequencing applies to all

sequencing technologies that allow for massively par-
allel or deep sequencing of oligonucleotide strands.
This means that instead of being able to sequence one
fragment of DNA per reaction, as is the case with
Sanger sequencing, the laboratory can now sequence
tens of thousands of fragments thousands of times
during a single sequencing run. With this new technol-
ogy, the entire human genome can be sequenced and
analyzed within a matter of days for as little as $1000
(Veritas Genetics, Press Release—September 29, 2015).

Historically, it takes approximately 10 years of clini-
cal research before new technologies are adopted for
use in clinical diagnosis. However, due to its disrup-
tive nature, the adoption of NGS into the molecular
diagnostics laboratory has been expedited. The poten-
tial exists for NGS to allow for test consolidation, per-
mitting one assay to be run for a large number of
patients for a variety of different indications. For
example, instead of running dozens of Sanger sequenc-
ing assays to identify breast cancer associated variants
in BRCA1, we can now examine all variations across a
number of different genes with known breast cancer
associations. With that same assay, we can also exam-
ine variants in CFTR and determine the risk a child
has of inheriting cystic fibrosis. In yet another patient,
a pediatric geneticist is looking to identify the cause of
intellectual disability by determining the presence of
pathogenic CNVs. While currently there remains a
number of technical, financial, and ethical hurdles to
be cleared the diagnostic potential of NGS is clear.

Currently, the clinical implication for much of the
variation observed across the genome remains
unknown [70]. Therefore, the majority of molecular
diagnostics laboratories employing NGS methods are
using either targeted sequencing panels or whole
exome sequencing. These directed methods of analysis
help narrow the scope of the diagnostic assay allowing
for easier adoption into a clinical setting. Targeted
sequencing panels contain anywhere from a few genes
to hundreds of gene targets. Predesigned gene panels
for a variety of indications are commercially available
from companies such as Qiagen, Illumina, and Thermo
Fisher. If predesigned panels are not available, custom
panels can be created either in-house or through com-
mercial services. While custom panels typically offer
the most flexibility, commercially available panels
have typically undergone rigorous performance verifi-
cation prior to release, potentially allowing for less in-
house development.

There are a number of sequencing platforms cur-
rently being used in the research setting. However, the
most common NGS platforms found in the molecular
diagnostics laboratory are the IonTorrent PGM
(Thermo Fisher), the Illumina MiSeq, the Illumina
NextSeq 500, and the Illumina HiSeq sequencers. The
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platform selected largely depends on the volume of
testing, the size of the gene panel, and the suspected
frequency of variation being identified. These plat-
forms also vary in their sequencing chemistries and
sequencing capacity.

The smaller desktop sequencers (Fig. 4.3), including
the IonTorrent PGM and MiSeq, have the lowest
sequencing capacity of the platforms in the clinical lab-
oratory. These platforms are therefore best suited for
smaller targeted sequencing panels. This reduced
sequencing capacity makes appropriate target selection
imperative. Cancers are known to consist of a hetero-
geneous population of normal and neoplastic cells.
Therefore, the cancer-causing variants may be under-
represented, resulting in only a small number of gene
targets containing the variant. In order to ensure that
these low-level variants are detected, each gene region
targeted must be sequenced 500�1000 times. This
depth consistently allows variants with allelic frequen-
cies as low as 5% to be identified [71]. The only way to
get this kind of coverage on a desktop sequencer is to
limit the number of targets to be sequenced. Cancer
panels are typically designed to cover only hotspot
regions of genes known to be mutated in various
cancers.

These desktop sequencers are also capable of
sequencing full genes for the diagnosis of genetic dis-
ease. Unlike somatic variants, inherited variation is
typically present at allelic frequency of at least 50%.
This means that each targeted base only needs to be
sequenced 20 times, allowing for much higher gene
content per panel. These hereditary panels can range
in size depending on indication, but larger panels typi-
cally range from dozens to hundreds of genes.

Currently, the desktop sequencers on the market are
not capable of sequencing the entire human exome, the

protein-coding region of the genome, at a minimum
depth of 203 . The exome contains upward of 20,000
genes, so in order to sequence that many targets
sequencing capacity must be increased. The Illumina
HiSeq and the newly introduced Illumina NextSeq
provide enough capacity to sequence the entire exome
of a number of patients in a single run. However,
some companies are offering panels for what has been
termed the clinical exome. These targeted panels contain
6000�7000 genes identified to have high clinical signif-
icance. Desktop sequencers like the Illumina MiSeq
has the capacity to run one of these modified exome
panels on a single patient per run, limiting the
throughput of such testing.

The NGS wet-bench and analytical pipeline varies
depending on sequencing application. Preparing libraries
for sequencing typically takes multiple days and requires
highly trained and skilled technologists to ensure high-
quality sequencing data. Recent efforts have been made
to automate these largely manual processes through the
use of both platform-specific or open automation sys-
tems. The IonTorrent Chef system (Thermo Fisher) and
the NeoPrep system (Illumina) are designed to automate
platform-specific libraries. While the larger, open systems
as previously described for infection disease automation,
such as the BioMek FXP (Beckman Coulter), contain robot
liquid handlers that can be adapted to a variety of differ-
ent library preparation protocols.

The analytical pipelines used to align sequencing
reads, identify variants present, and determine the
clinical significance are still largely laboratory specific.
While portions of these pipelines can be performed
directly on the sequencing platform, quite often the
need for additional bioinformatics analysis exists.
Similarly, variant interpretation largely remains a man-
ual process, requiring the need to follow issued

(A) (B) (C)

FIGURE 4.3 The desktop DNA sequencer. Desktop sequencers are a favorite of many molecular diagnostic laboratories due to the small
footprint, assay adaptability, and sequencing capacity. These sequencers have the capacity to screen and diagnosis genetic disease through
gene specific or gene panel tests, identify low-level variation in solid tumors through “hotspot” gene panel testing, and sequence the clinical
exome. The most common instruments found in today’s molecular diagnostics laboratory’s are (A) the IonTorrent PGM (Thermo Fisher), (B)
the MiSeqDx (Illumina) which is currently the only FDA-approved sequencer, and (C) the GeneReader NGS system (Qiagen) which is the
only fully automated desktop sequencer released in late 2015.
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guidelines to categorize each variant identified into
benign, variant of unknown significance, or pathogenic
classifications. In cancer, the growing number of tar-
geted therapies in clinical trials adds an additional
wrinkle to this interpretation. This is an area ripe for
innovation in automation. Recently, the Qiagen
Clinical Insight and CLC Clinical Workbench software
applications were released, that combine variant analy-
sis and clinical interpretation pipelines, some of which
reside within the cloud (Press Release, November 2,
2015). The standardization and implementation of inte-
grated NGS analytical workflows remains the biggest
hurdle for introducing clinical NGS into today’s molec-
ular diagnostics laboratory.

Clinical Laboratory Improvement Amendments
(CLIA) and Centers for Medicare and Medicaid
Services (CMS) regulation and guidelines require thor-
ough and rigorous validation processes prior to offer-
ing any laboratory-developed procedure including all
NGS diagnostic services. These large-scale validations
are costly and therefore limit the flexibility of a molecu-
lar diagnostics laboratory to make improvements to
validated sequencing assays. On the other hand, the
MiSeqDX and Cystic Fibrosis 139-Variant and
Diagnostic Sequencing assays are currently the only
FDA-approved IVDs for clinical sequencing. However,
it is likely that more will be approved in the coming
years as technologies and analytical pipelines improve.
With these improvements, clinical NGS is sure to revo-
lutionize tomorrow’s molecular diagnostics laboratory.

CONCLUSIONS

As technological developments continue to improve
on existing instrumentation, there is a growing need to
decentralize molecular diagnostic testing to near-patient
or at-home testing. To this end, we anticipate many
molecular diagnostics platforms to continue to become
smaller with single-use cartridge type assays that can
be run by anyone, including the patient. The improve-
ment in throughput and cost of NGS will be a major
driver for the routine assessment of the clinical exome,
whole exome, and even whole genome by many molec-
ular diagnostics laboratories. Improvement of analytical
pipelines, through the cloud or by other mechanisms,
will expedite the interpretation of data and make the
new age of molecular diagnostic testing seamless.
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INTRODUCTION

The emergence of human immunodeficiency virus
(HIV) infection in the 1980s [1] was contemporary of
the discovery of polymerase chain reaction (PCR) [2],
the most popular method used for the molecular diag-
nosis of viral diseases. Consequently, molecular testing
occupies a large place in the screening and follow-up
of HIV-infected subjects. The HIV species, a member
of the Retroviridae family and of the Lentivirus genus,
includes two serotypes named HIV-1 and HIV-2—both
of them are responsible for severe immunodeficiency
in humans (AIDS) but the first one is distributed
worldwide whereas the other is rather limited to West
Africa. Given this major difference in terms of Public
Health, most of the attention will be dedicated to HIV-
1 in this review.

BACKGROUND ON HIV INFECTION
AND AIDS

Overall Epidemiology

Since the beginning of the HIV pandemic, almost 78
million people have been infected with the HIV-1 virus
and about half of them died. At the end of 2013,
according to the World Health Organization (WHO),
35 million (33.1�37.2 million) people were living with
HIV [3]. That same year, some 2.1 million people
became newly infected, and 1.5 million died of AIDS-
related causes. Approximately 0.8% of individuals
aged 15�49 years worldwide are living with HIV. The
burden of the pandemic varies dramatically between

countries and regions, Sub-Saharan Africa remaining
the most severely affected, with nearly 1 in every 20
adults living with HIV and accounting for nearly 71%
of the people living with HIV worldwide (women
comprised 59% of infected people in this area).

Life Cycle of HIV

HIV is a single-stranded, positive-sense RNA envel-
oped virus of about 120 nm in diameter. Due to the
glycolipids constituting its envelope, the virion is rela-
tively fragile in the environment. The entry of the virus
through the envelope glycoproteins into the competent
cells (mainly immune cells and notably T cells, mono-
cytes�macrophages, and dendritic cells) requires the
presence of receptors (mainly CD4 molecule) and che-
mokine co-receptors (CCR5 or CXCR4) at the surface
of the cell. Once the viral RNA is delivered into the
cell, it is reverse transcribed into DNA by an RNA-
dependent DNA polymerase encoded by the viral
genome. The newly generated double-stranded DNA
is exported to the nucleus where it is integrated within
the cellular DNA by a viral integrase. This phase,
which is mandatory for the continuation of the viral
cycle, is also crucial for the constitution of viral reser-
voirs that will persist definitively, despite the further
use of antiviral or immunomodulating treatments (at
least at this stage of our knowledge). The viral DNA is
then transcribed into different RNAs that are used for
generating both genomic RNA and messengers coding
for viral proteins that are further processed by viral
proteases. The virion is then released from the cell by
budding through the cytoplasmic membrane.
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Transmission of HIV

The virus is mostly transmitted via sexual route,
mainly by vaginal and anal intercourse, although oral
sex can also be incriminated. The transmission via con-
taminated products of human origin is another com-
mon way of infection, notably in intravenous drug
users sharing syringes and in patients receiving unsafe
blood products. The latter mode of transmission
explains the need for screening donors of human pro-
ducts (blood, semen, other tissues, organs) with sensi-
tive techniques. The third way of HIV transmission is
from mother to child (MTC) during pregnancy, deliv-
ery, and breastfeeding. The detection of infected babies
is also a major goal of HIV diagnosis.

Natural History of HIV Infection

After a stage of primary infection that can be clini-
cally symptomatic or asymptomatic, the infected sub-
ject experiences a long phase of clinical latency during
which the viral replication is ongoing in most cases,
but at variable levels. A minority of individuals, called
long-term nonprogressors, remain asymptomatic for
years without developing immunodeficiency. By con-
trast, most of the infected subjects, if not diagnosed
and treated, develop in less than 10 years a progressive
loss of their immune functions, affecting principally
the T-cell repertoire. AIDS is characterized by an
acquired immunodeficiency that results in the occur-
rence of opportunistic infections and/or cancers that
are responsible for the death of patients.

HIV Evolution During Treatment

There is presently no preventive vaccine against
HIV infection and also no definite cure. However, life-
long effective treatment with antiretroviral (ARV)
drugs can control the virus so that HIV infection can
now be considered a chronic disease. Current typical
treatments include a combination of three drugs in
order to avoid the emergence of resistant strains. More
than 25 approved molecules belonging to different
classes of ARV are available, some of them being com-
bined in the same pill for facilitating the daily obser-
vance of treatment. In most cases, this regimen is able
to maintain the plasmatic viral load at an
undetectable level and to preserve the immune
defenses. In 2013, 12.9 million people living with HIV
were receiving ART, of which 11.7 million from low-
income or middle-income countries [4]. In the latter
areas and during the same year, one-third of the total
number of infected adults had access to ART whereas
this proportion was only of one in four for children.

MOLECULAR TOOLS IN THE DIAGNOSIS
AND FOLLOW-UP OF HIV INFECTION

The first role of the clinical laboratory in the man-
agement of HIV infection is to identify the subjects who
are not already recognized as infected by HIV, what-
ever the stage of HIV infection is (from primary infec-
tion to AIDS) at the time of the first diagnosis. In other
words, the laboratory result constitutes the concrete
event that classifies the subject in the category of HIV-
infected people. The further mission of the clinical labo-
ratory toward HIV-infected individuals consists in the
lifelong surveillance of the direct and indirect biologi-
cal parameters that reflect the control of viral replica-
tion, whatever the patient is treated or not by ARV.
A third goal of the laboratory would be, as for hepatitis
C virus (HCV) infection, to predict the treated indivi-
duals who are definitively cured from infection.
However, this objective remains purely elusive before
solutions for curing HIV from the reservoirs are found.
For accomplishing the first two missions of the clinical
laboratory, different strategies and methods have been
proposed. This chapter aims to identify the place of
molecular tools among other laboratory tests used in
the management of HIV infection.

Diagnosis of HIV Infection

Historically, the detection of antibodies specific for
HIV in serum was the first test used for determining
the status of HIV-seropositive patient. Up to now, the
serological tools remain at the basis of the identification
of HIV-infected people. Fig. 5.1 summarizes the
sequence of appearance of laboratory markers in the
course of HIV-1 infection [5]. The eclipse period corre-
sponds to the short phase following HIV infection
without any detectable circulating marker. The sero-
conversion window period is the interval between HIV
infection and the appearance of HIV antibodies using
the most sensitive immunoassays—it corresponds to
phases I (positivity of HIV RNA only) and II (positivity
of both HIV RNA and p24 capsid antigen) in the Fiebig
staging system [6]. Acute HIV infection is the period
separating the detection of HIV RNA from that of the
first detection of HIV antibodies—it corresponds to
phases III (positive immunoassay but negative western
blot profile), IV (positive immunoassay and indetermi-
nate western blot profile), and V (positive immunoas-
say and incomplete western blot profile) in the Fiebig
staging system [6]. Finally, the established HIV infec-
tion corresponds to a fully developed antibody
response, classically assessed by positive reactivity to
all the major bands of HIV proteins by using western
blotting (phase VI in the Fiebig staging system).

50 5. MOLECULAR TESTING FOR HUMAN IMUNODEFICIENCY VIRUS

II. MOLECULAR TESTING IN INFECTIOUS DISEASE



The screening of HIV-infected individuals must be
performed with sensitive fourth-generation reagents
able to detect antibodies against HIV-1 (including
strains of group O that circulate in Central Africa),
antibodies against HIV-2, and p24 capsid antigen from
HIV-1. According to the recent algorithm recom-
mended by the CDCs [5] illustrated in Fig. 5.2, a nega-
tive result does not require further testing (except if
the subject is suspected to be in the Fiebig I stage).

When the first test is not negative, it is recommended
to test a new serum specimen in order to exclude any
error of identity between the subject and the blood
sample or a contamination from a tube to another. For
confirming a nonnegative screening test, the CDCs
algorithm requires a second serological test allowing
differentiating HIV-1 from HIV-2 infection (Fig. 5.2). In
case of discrepant results between the initial and the
differentiation tests, an HIV-1 molecular test is
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FIGURE 5.2 Algorithm proposed in 2014 by the
CDCs for the diagnosis of HIV-1 infection [5]. The
red circle illustrates the introduction for the first
time of a molecular test for resolving some indeter-
minate serological results.
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required for segregating acute HIV-1 infection from a
false-positive result of the first test (Fig. 5.2). This new
strategy, which involves for the first time molecular
tests in HIV screening, combines several advantages:
(1) it is cost-effective, (2) it is very sensitive, even at
the early phase of HIV-1 infection, (3) it allows a clear
differentiation of HIV-1 and HIV-2 infections (which
was not the case with previous strategies using west-
ern blot testing because of cross-reactivity between the
antibodies directed against the two serotypes), and (4)
it permits to exclude false-positive results of HIV-1
serological tests. The nucleic acid tests (NATs) used at
this stage requires a qualitative detection of HIV-1
RNA, although a sensitive quantitative HIV test may
also be used for this purpose.

Follow-Up of HIV-Infected Subjects

Once a subject is detected seropositive for HIV,
whatever the stage of HIV infection, it is crucial to ini-
tiate a strict follow-up aimed at preserving or restoring
the immune system of the infected individual. This
close surveillance relies on two kinds of biological
markers: (1) the determination of CD41 T lymphocyte
cell count (typically through flow cytometry analysis)
and (2) the measure of the viral load (through quanti-
tative NAT based either on qPCR or alternative meth-
ods of quantification of HIV nucleic acids) [7�9]. The
tests that are used on a routine basis for determining
the viral load target circulating HIV RNA [10�12].
More recently, it has been proposed to explore in par-
allel the DNA viral load with the aim of quantifying
the HIV reservoirs, both in blood and in different tis-
sues, including the intestinal and the semen reservoirs
[13,14]. The aim of the follow-up of these different
markers is to determine the optimal time for starting
an HIV ART triple therapy.

In the course of HIV primary infection, the current
recommendations are to start a potent anti-HIV as
soon as possible according to the test-and-treat concept
in order to reduce the size of the viral reservoir, to
decrease the rate of viral mutation by suppressing viral
replication, and to preserve immune function [15�19].
According to this objective, it is important to differenti-
ate accurately HIV-1 from HIV-2 infection since some
ARV drugs active against HIV-1 are not effective
against HIV-2 [20,21].

For HIV infection discovered at a later stage, the
markers described help to distinguish long-term non-
progressors who only need a surveillance of immune
and viral markers from the majority of other HIV-
infected subjects who require an ART triple (or more)
therapy for preserving or restoring immune function,
according to the stage of infection. Indeed, it is impor-
tant to note that the initiation of a potent ART

treatment is able to stop viral replication, even at the
stage of AIDS, and to improve the immune deficiency.
The WHO guidelines issued in 2013 recommend ART
initiation when the CD41 T lymphocyte cell count
drops below 500 cells/µL [22]. Through the combina-
tion of biological surveillance and lifelong effective
drug regimens, most HIV infections whose natural
evolution would lead to death in a few years have
become a chronic disease compatible with a life expec-
tancy close to that of noninfected people, at least in the
world areas where there is no economic limitation to
surveillance and treatment access. In treated patients,
the molecular tests are also very useful to monitor the
development of HIV resistance to viral drugs.

Summary of HIV Molecular Testing in the
Course of HIV Infection

Table 5.1 lists a number of molecular tests that are
currently available or in development for the screening
and follow-up of HIV-infected people. This list sum-
marizes the panel of the different HIV tests that can be
proposed for the diagnosis and surveillance of HIV
infection according to their indications. Some of these
tests are qualified of point-of-care (POC) NAT, which
means that they can be used as near-patient testing in
different clinical settings when a rapid answer is
required or when high-tech laboratory facilities are
unavailable [23,24]. According to UNITAID, a POC
test must be ASSURED, which means affordable, sensi-
tive, specific, user-friendly, rapid and robust, equip-
ment-free, and deliverable to end users [25].

Table 5.2 recapitulates the different indications of
HIV molecular testing for the screening and follow-up
of HIV-infected subjects.

SPECIAL EMPHASIS ON THE USE OF HIV
MOLECULAR TOOLS IN SPECIFIC

CLINICAL SITUATIONS

Screening of Blood Products

In addition to serological testing, NAT is presently
indicated for HIV-1 screening in blood donors, either
by minipools (MP-NAT) or by individual donation
(ID-NAT) in most developed countries. HIV-1 NAT
was implemented in 1999 in the United States and in
2001 in France. This strategy is usually associated to
the detection of other viral genomes, including hepati-
tis B virus (HBV) and HCV. It resulted in a significant
reduction of the HIV-1 window period, from 22 days
without NAT to 9�12 days with NAT [26�28].

Two systems are mainly used around the world for
HIV NAT of blood products—the Procleix Tigris
system (Grifols Engineering) based on transcription-
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mediated amplification (TMA) technology and the
Cobas s 201 system (Roche Diagnostics) based on real-
time PCR (rtPCR) technology. The first system is a
fully-automated, closed machine allowing the simulta-
neous detection of HIV, HBV, and HCV genomes on
individual specimens. The second system combines
several modules adapted to the distribution of speci-
mens, extraction of nucleic acids, and amplification of
HIV, HBV, and HCV genomes. It can be used on

individual sera but is optimized for six-donor mini-
pools. Additional targets can be tested if needed, such
as West Nile virus or dengue virus genomes. The sen-
sitivity of the two systems is very similar [29,30].

In the era of NAT screening, the residual risk for
HIV transmission by labile blood products was esti-
mated to be 1:1,800,000 (MP-NAT) and 1:2,800,000 (SD-
NAT) in the United States [31], 1:4,300,000 in Germany
[32], and 1:2,400,000 in France [33].

TABLE 5.1 Examples of Molecular Tests for Qualitative or Quantitative Detection of HIV-1 Genome That Are Either Commercially-
Available in 2015 or in Development

Marker category Molecular technology Commercial kit or platform (company)

HIV qualitative nucleic acid assays used
for HIV screening in patients

rtPCR Cobas Taqman (Roche Diagnostics)

rtPCR HIV-1 qualitative assay (Abbott Molecular)

rtPCR Generic HIV DNA cell (Biocentric)

TMA Aptima HIV-1 RNA qualitative assay (Hologic)

HIV qualitative nucleic acid assays
used for HIV screening of donors
of blood products (in combination
with HBV and HCV)

rtPCR Cobas s 201 system (Roche Diagnostics)

TMA Procleix Tigris system (Grifols Engineering)

HIV RNA viral load rtPCR Cobas TaqMan HIV-1 (Roche Diagnostics)

rtPCR RealTime HIV-1 m2000rt (Abbott Molecular)

rtPCR VERSANT HIV-1 RNA (kPCR) (Siemens)

rtPCR Generic HIV RNA viral load (Biocentric)

rtPCR artus HI Virus-1 QS-RGQ (Qiagen)

rtPCR ExaVir Load3 (Cavidi)

TMA Aptima HIV-1 Quant Dx (Hologic)

rtNASBA NucliSens EasyQ HIV-1 (bioMérieux)

Kinetic PCR VERSANT kPCR Molecular System (Siemens Healthcare)

bDNA VERSANT 440 Molecular System (Siemens Healthcare)

POC testing for HIV rtPCR Liat HIV Quant Assay (IQuum Inc)

rtPCR Xpert HIV-1 Viral Load (Cepheid)

rtPCR
rtPCR

Truelab Real Time micro PCR system
(Molbio Diagnostics Pvt Ltd)

Isothermal amplification Savanna HIV viral load test (NWGHF)

Isothermal amplification SAMBA platform (Diagnostics for the Real World Ltd)

EOSCAPE-HIV (Wave 80 Biosciences)

Isothermal amplification Alere Q (Alere)

Isothermal amplification RT CPA HIV-1 Viral Load test (Ustar Biotechnologies)

Isothermal amplification Bioluminescent Assay in Real-Time or BART
(Lumora Ltd)

Chip-based system Gene-RADAR platform (Nanobiosym Diagnostics)

RT activity measurement ZIVA Automated RT Viral Load (Cavidi)

HBV, hepatitis B virus; HCV, hepatitis C virus; rtPCR, real-time PCR; TMA, transcription-mediated amplification; rtNASBA, real-time nucleic acid sequence

based amplification; bDNA, branched DNA; RT, reverse transcriptase.
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Screening of Organs and Tissues from Human
Donors

By contrast to blood donors who represent a well-
defined population that can be secured by regular
screening, organ and tissue donors are occasional
donors for whom blood safety is much more difficult to
assess. Schematically, the situations encountered in clin-
ical practice involve three categories of donors: (1) beat-
ing heart cadavers from whom solid organs (heart,
liver, lungs, kidneys, and pancreas) and different tis-
sues (bones, tendons, vessels, skin, cornea, and others)
can be sampled, (2) non-beating heart cadavers from
whom tissues can be sampled, and (3) living donors
from whom some organs (mainly kidney and bone mar-
row) and tissues can be sampled. HIV transmission to
recipients was occasionally observed in all these situa-
tions [34�40]. The more at-risk situation for the trans-
mission of blood-borne viruses is that involving beating
heart cadavers: (1) the decision of organ sampling must
be taken within a few hours due to the short cold-
ischemic time of the grafts, (2) the demographics of this
population exposed to sudden death and the frequent
absence of medical and behavioral risk assessment his-
tory increase the probability of encountering subjects

with primary viral infection, and (3) the organ penury
with regard to medical needs may represent an addi-
tional risk of being less vigilant in terms of viral safety.

In addition to serological and antigen testing that is
currently performed for the most at-risk pathogens,
including HIV, HBV, and HCV, the use of NAT testing
is possible and recommended for not-beating heart cada-
vers and living donors because there is enough time for
implementing sensitive genome detection of blood-
borne viruses (Table 5.1 for HIV-1). For beating heart
cadaver, the situation is much more difficult since no
molecular test can be currently performed on-demand,
within 3�5 h. This subject was extensively debated
through a conference held in 2010 under the auspices of
North-American Societies of transplantation [41]. In
2015, new commercially-available tests (including the
Hologic and geneXpert tests listed in Table 5.1) could
permit detecting HIV-1 genome in emergency condi-
tions, even if studies are required for evaluating their
performances in this context. Additional tests detecting
simultaneously HBV and HCV genomes would be
needed to offer full viral safety in graft donors, even if
the small size of the market from an economic point of
view does not incite companies trained in molecular
technologies to invest in this domain.

TABLE 5.2 Panel of Molecular Tools Currently Available for the Diagnosis and Follow-Up of HIV-1 Infection According to the Clinical
Context and the Level of Resource

Clinical context Level of resource Matrix Technology used for HIV testing
Major quality/ies
required

Screening

• Acute HIV infection High-income areas Blood RNA viral load High sensitivity

• Mother-to-child
transmission

High-income areas Infant blood DNA or RNA viral load Sensitivity

Low-income areas Infant blood Quantitative molecular POC testing ASSUREDa

• Blood products and
other products of
human origin

High-income areas Blood DNA or RNA qualitative NAT
(ideally multiplexed with other agents
as hepatitis B and C viruses)

Rapid and easy testing

• Medical assisted
procreation

High-income areas Semen Quantitative RNA viral load Robust testing for
avoiding PCR
inhibitors

Follow-up

• ART monitoring High-income areas Blood RNA viral load High sensitivity

Low-income areas Blood Quantitative molecular POC testing ASSURED

• Drug-resistance
testing

High-income areas Blood Genotype or phenotype molecular testing Good predictive value
for ART efficiency

• Exploration of
reservoirs

High-income areas Blood/tissues Single-cell qualitative assays For research only

aASSURED, affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users; POC, point of care; NAT, nucleic acid testing; ART,
antiretroviral treatment.
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Screening HIV-1 Genome in Semen in
Medically-Assisted Procreation

In addition to solving problems of female infertil-
ity, medically-assisted procreation (MAP) techniques
are recommended in fertile women who want to be
pregnant and whose male partner is infected by
HIV-1 [42,43]. In this context, it is useful to control
that the semen fraction used for MAP procedures is
free of HIV RNA. Unfortunately, PCR-based techni-
ques may be inhibited by the presence of compounds
(notably zinc ions) naturally present in some semen
specimens. To our knowledge, none of the commer-
cial tests that are licensed for blood specimens are
validated for the use of semen samples. Laboratories
involved in MAP viral safety must develop adap-
ted protocols of commercial tests for checking that
the amplification step was not inhibited [44�46].
Due to these precautions, no case of HIV infection
has been reported in babies born after using MAP
procedures [47,48].

Screening of Neonates Born to HIV-Infected
Mothers

In the absence of any intervention, the combined risk
of MTC transmission of HIV-1 in utero and intra-
partum is 15�30%, and breast-feeding increases the risk
to 20�45%. Factors of risk are age, maternal viral load,
clinical stage of HIV-1 infection, and presence or absence
of therapeutic and/or prophylactic ART in mother and
infant. Since infected children have a high morbidity
and mortality in the first 2 years of life, an early diagno-
sis is essential for establishing the infectious status of the
neonate, and in case of infection, for initiating appropri-
ate ART [49,50]. This objective implies the need of sensi-
tive tests for the diagnosis of HIV infection in newborns.
Serological tests are useless because of the detection of
maternal HIV antibodies in the blood of newborns up to
18 months of age. Therefore, early qualitative or quanti-
tative detection of HIV-1 DNA in peripheral blood
mononuclear cells (PBMCs) and RNA in plasma have
become the methods of choice for evaluating HIV infec-
tion in neonates whose mother is positive for HIV-1
[51�56]. The WHO recommends a systematic HIV-1
screening in all exposed newborns at 4�6 weeks of age
by using DNA or RNA molecular test [57], both
approaches having equal sensitivity rates [58]. If nega-
tive, an additional testing must be performed 2 months
after breast-feeding cessation. This strategy is aimed to
contribute to the rise of an HIV-free generation, notably
in those areas where the rate of HIV-infected pregnant
women is very high.

Use of HIV-1 Molecular Tools in Low-Income
and Middle-Income Countries

Most HIV-infected people worldwide reside in
low-income and middle-income countries. During the
last 10 years, the availability of generic drugs and
price reductions of patented medications have
allowed a significant scale-up of ART in subjects
living with HIV-1 in developing countries. It is esti-
mated that approximately one-third of HIV-infected
subjects had received ART by the end of 2013 in
those areas [59]. Therefore, laboratory HIV-1 testing
has become a major challenge both for identifying
newly-infected individuals and monitoring the effi-
cacy of treatments in those who benefit of them. In
this context, HIV-1 molecular tools can schematically
be indicated in three main situations [60]: (1) a quali-
tative approach is needed for identifying infected
infants exposed to HIV-1 during pregnancy or breast-
feeding according to the strategies summarized
above; (2) a semiquantitative approach is recom-
mended, in combination with a simplified determina-
tion of CD4 cell count [61], on the basis of at least
one measure per year for monitoring HIV-infected
subjects on a routine basis either for deciding of the
opportunity to start ART or for evaluating the effi-
cacy of HIV treatments in those subjects who are
already treated; and (3) a quantitative approach is
indicated in clinical trials conducted in ART-treated
patients on the basis of at least four measures per
year for research purpose. From a practical point of
view, two strategies can be proposed according to the
laboratory facilities available in each country from
low-income areas. The first one consists in imple-
menting simple POC tests in remote rural areas in
order to circumvent the absence of well-equipped
laboratories and trained operators. The alternative
approach consists in centralizing the tests in laborato-
ries located in cities and benefiting of molecular
facilities close to those available in developed coun-
tries. In order to facilitate the transport of specimens
from remote areas to reference laboratories, it is
possible to use dried blood or dried plasma spots
(DBS/DPS). The blood or plasma, from venous punc-
ture or finger-prick or heel-prick, is dried onto a filter
paper, placed in gas-impermeable zipper storage
bag with desiccant, and sent to the central laboratory
at ambient temperature. Previous studies have
demonstrated the benefit of the use of DBS/DPS for
detecting and quantifying HIV-1 nucleic acids with
sensitivity performances close to those using fresh
blood [62�76]. However, a strict standardization of
the procedures is needed prior recommending large-
scale use of DBS/DPS in clinical settings [77,78].
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NEW INSIGHTS IN MOLECULAR HIV
TESTING

New molecular tools that could be used for the diag-
nosis and follow-up of HIV infection are discussed in the
context of the following topics: (1) improvement of the
sensitivity of quantitative HIV-1 viral load tests, (2) devel-
opment of new POC molecular tests for HIV testing, and
(3) present and future of ART resistance determination.

Improvement of the Sensitivity of Quantitative
HIV-1 Viral Load Tests

At the era of potent ART, there is a need for devel-
oping highly sensitive tests able to measure the HIV-1
viral load at the cellular level. In effect, if the first
objective of ART is to make the RNA viral load
undetectable by using current quantitative tests, the
final aim of these treatments would be to eradicate the
integrated DNA provirus from the circulating and tis-
sue reservoirs.

The decay dynamics of plasma HIV-1 RNA under
potent ART can be summarized in four successive
phases (Fig. 5.3) [14]. The first phase with a half-life of
approximately 1.5 days corresponds to the elimination
of free virus and productively infected T cells. The sec-
ond phase with a half-life of approximately 28 days
corresponds to the destruction of more resistant
cells represented by activated T cells and
monocytes�macrophages. These two phases can be
investigated by sensitive RNA quantitative
commercially-available tests exhibiting a threshold of
20�50 copies/mL, as depicted in Table 5.3. The third
phase corresponds to a slow decrease (half-life of
about 1 year) of the viral load under the threshold of

50 copies/mL. Beyond this phase that may last for 5�7
years, there is a stabilization of the viral load at very
low level (fourth phase with a half-life of infinity) that
reflects the persistence of viral replication in long-lived
cellular reservoirs. The exploration of these two last
phases needs new ultrasensitive molecular tools able
to detect residual integrated DNA [79].

Sensitive in-house rtPCR tests targeting various
HIV-1 genes [14,79�81] were developed for exploring
low-level HIV viremia observed in HIV-1-infected sub-
jects successfully treated with potent ART. However,
these tests are technologically limited by the high
signal-to-noise ratio that is observed near the limit of
detection. To circumvent this problem, a new molecu-
lar approach called droplet digital PCR (ddPCR) was
recently proposed. ddPCR uses a PCR mixture includ-
ing the template and fluorescent hydrolysis probes
that is emulsified into droplet generation oil containing
stabilizing surfactants. Each droplet is then transferred
to a 96-well plate and submitted to PCR amplification.
The number of fluorescent droplets is counted in a
droplet fluorescence reader using Poisson modeling
[82]. This test was shown to be well correlated to DNA
rtPCR assays for the measure of viral DNA in treated
patients with undetectable plasmatic viral load [83].
This technique can be coupled to single-cell analysis
by microengraving. The latter technique consists in the
simultaneous culture of single lymphocytes in an array
of subnanoliter wells for exploring cytokine produc-
tion kinetics. The corresponding RNA can be amplified
by using single-cell digital PCR within the culture
array. The combination of these techniques offers an
opportunity for exploring the latent cellular reservoirs
in blood and tissues (intestine, genital tract, central
nervous system) with the objective of curing them
through HIV eradication.
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matic HIV-1 RNA load in patients receiving a potent
ARV treatment. The half-life of each phase was
recorded from the model of Hilldorfer et al. [14].
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Development of New POC Molecular Assays for
HIV Testing

At the same time that ultrasensitive molecular tools
are developed for anticipating the control of the hypo-
thetical HIV cure in patients from high-income coun-
tries, there is an urgent need for implementing simple
platforms able to either detect the presence of HIV,
notably in children born to infected mothers, or monitor
the viral load of treated patients from low-resource
areas where high-technology laboratories are scarce.
A number of recent review articles offer an overview of
the techniques that are presently available or in devel-
opment to reach these goals [24,61,77]. Fig. 5.4 illustrates
the POC molecular tests that are readily commercialized
or that will soon be available for determination of HIV
vial load in infected subjects or for qualitative NAT in
early infant diagnosis [25]. These tests offer the advan-
tage of combining extraction of nucleic acids, amplifica-
tion of specific targets, and detection of amplicons
through a single platform. As an alternative to classical
technologies that require a sophisticated laboratory
environment, most of these POC tests can be performed
by operators not trained to NAT and some of them can
be implemented in low-resource facilities that have no
access to electricity (replaced by batteries), plasma sam-
ples (replaced by capillary blood collected by heel-prick
or finger-prick), or air-conditioning (tests can be
performed without constraints of controlled ambient
temperature or humidity). The cost of these tests is

another limitation. It must be as low as possible in order
to avoid facing the paradox of having a system to moni-
tor ART treatment that is more expensive than the treat-
ment itself [60].

Present and Future of ART Resistance
Determination

ART resistance determination has become a key ele-
ment for monitoring treatment efficacy and transmis-
sion of drug-resistant mutants, despite the fact that the
benefit of resistance testing is not easy to assess [84,85].
Conceptually, three categories of tests can be used [86].
The first one, designed as actual phenotype resistance
assay, evaluates directly the susceptibility of the virus
strain contained in the PBMCs of the subject, to differ-
ent antiviral drugs. It is fastidious, time-consuming,
and subject to the ability to cultivate the patient’s viral
strain. An alternative strategy, also based on cell cul-
ture and designed as virtual phenotype resistance
assay (VirtualPhenotype, Tibotec-Virco), consists of
using an easy-cultivatable HIV reference strain in
which the genes that constitute the targets of ARV
drugs have been replaced by those of the patient’s
strain. This technique is easier and more rapid to per-
form than the former one and well-standardized. In
practice, because of its cost, this method is limited to
clinical trials. The most popular assays that are used
for ART resistance determination are the genotypic
tests based on sequencing the target genes of ARV

TABLE 5.3 Examples of SBS (Sequencing by Synthesis) Platforms Used for HIV-1 Resistance Testing

Synthesis strategy

Generation

sequencing Platform Enzyme

Amplification

step Principle

Stepwise (base-by-
base)

First Sanger sequencing Polymerase Yes (clones
or PCR)

Polymerization of fluorescent ddNTPs
generating chain termination and
fragment analysis by gel

NGS/Second Illumina Polymerase Yes (bridge
amplification)

Polymerization of fluorescent ddNTPs
generating reversible chain termination
and fragment analysis by capillary
electrophoresis

Sequential NGS/Second Life technologies;
SOLiD

Ligase Yes (PCR) Ligation of labeled oligonucleotides

NGS/Second Life technologies;
Ion Torrent

Polymerase Yes (PCR) Polymerization of natural dNTPs and
measure of H1 release using a
semiconductor chip

NGS/Second Roche; 454 Life
Sciences

Polymerase Yes (PCR) Polymerization of natural dNTPs and
luminescence detection
of pyrophosphate (“pyrosequencing”)

Single molecule real
time (SMRT)

NGS/Third Pacific Biosciences;
PACBIO RS II

Polymerase No Continuous polymerization of labeled
dNTPs and real-time recording of light
pulses emitted as a by-product of
nucleotide incorporation by DNA single
molecules

NGS, next-generation sequencing; dNTP, deoxribonucleotide triphosphate; ddNTP, di deoxribonucleotide triphosphate.
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drugs, namely protease, reverse transcriptase, inte-
grase, and envelope glycoproteins. The presence of spe-
cific mutations in these genes has been shown to
predict resistance to the corresponding drugs. In addi-
tion, they are able to determine the tropism of HIV
strains, which is useful when entry inhibitors such as
maraviroc targeting the CCR5 co-receptor are used.

As given in Table 5.3, different generations of
sequencing techniques are available. Those based on
the Sanger method are currently used on a routine
basis, at least in high-resource areas. These include in-
house techniques and commercially-available tests
(such as the ViroSeq HIV-1 Genotyping System from
Celera Diagnostics). The main limitation is their lack of
sensitivity for resistant minority variants representing
less than 20% of the whole quasi-species, thus risking
selection through use of drugs active in the major pop-
ulation. Next-generation sequencing tests (Table 5.3)
can overcome this problem by allowing the individual
analysis of all the components of the quasi-species,
even those representing as little as 1% of the total.
However, the use of PCR for amplifying these variants
may lead to unequal amplification of some of them or
nucleotide mis-incorporation due to polymerase infi-
delity, leading to the over- or under-estimation of
some mutants. In addition, the high quantity of
sequences generated by these approaches makes
difficult the interpretation of the data on a routine
basis. Third-generation sequencing techniques able to
amplify single DNA molecules (SMRT in Table 5.3),

which are still at an experimental stage, do not require
an amplification step. Although lacking sensitivity in
samples with low viral loads, this method could pro-
vide the true picture of the breadth and depth of indi-
vidual circulating viruses [87]. Detailed recent reviews
on NGS techniques are available in Refs. [88�90].

In practice, sequencing techniques are recommended
in treatment-naı̈ve patients for whom ART is indicated,
especially when low genetic barrier drugs such as non-
nucleoside reverse transcriptase inhibitors (Nevirapine,
Effavirenz) are intended to be used. Sequencing can
also be used to monitor drug changes in patients
experiencing treatment failure [91], notably for predict-
ing HIV-1 tropism when changing to maraviroc is
required [92,93]. However, due to their high cost and to
the need of high-technology platforms, sequencing
approaches are reserved to high-income countries, at
least on a routine basis. To overcome this disadvantage
in low-resource areas, the WHO encourages alternative
strategies based on the setting of early warning indica-
tors of treatment failure [94,95].

CONCLUSIONS

This overview of molecular HIV testing highlights
the central part that NAT occupies in the diagnosis
and monitoring of all the stages of HIV infection, from
primary infection to treatment management. Sensitive
tests are readily available in high- and middle-resource

FIGURE 5.4 POC systems (enzyme immunoassays and molecular tests) that are either already commercially-available or in development
for measuring the HIV-1 load according to UNITAID [25]. The molecular tools depicted in this figure are briefly described in the bottom of
Table 5.1.
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countries and tests based on new technologies are in
continuous development for improving the life expec-
tancy and quality of life of HIV-infected people. In low-
income areas, the major focus is enhancement of the
recognition of HIV-infected subjects and provision of
access to effective ART. Molecular tools are of great
help for reaching these objectives as illustrated by
molecular POC-available tests for HIV-1 that combine
high technology, excellent sensitivity, and simple/
rapid use on the field. The development of molecular
tests combining the detection of different pathogens
associated with HIV infection, including hepatitis
viruses or tuberculosis agents, is another technological
challenge that will be faced in the coming years. Thus,
the worldwide fight against HIV infection appears to
be, at least in part, driven by the performance of molec-
ular testing, with the final hope that solidarity will help
to make these tools available to people that are the
most in need of them.
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INTRODUCTION

It should be noted that all information regarding the
sensitivity or lowest limit of detection (LLD) of viral
genomes by the assays discussed in this chapter was
based on the data reported for analysis of individual
serum or plasma samples, but not their pools or
nucleic acid preparations from infected cells or tissues.
In this context, it should be indicated that the blood
bank screening schemes globally utilize plasma or
serum minipools (MP) and this tends to decrease the
overall sensitivity of virus detection in individual sam-
ples. It also should be noticed that in cases where
nucleic acids are subjected to multistep preparation
and amplification processes, thoughtful standardiza-
tion of the assay protocols, especially with regard to
collection and storage of samples, nucleic acid isolation
procedures, and reliability of the specificity and quan-
titative controls used are of paramount importance.
Minor deviations in this regard may result in inconsis-
tent or uninterpretable results, particularly when sam-
ples with low levels of viral genomes are examined. In
addition, the results of many tests for quantitative
detection of hepatitis viruses are currently presented
in international units (IU) per mL of serum or plasma
but not in actual virus genome copy numbers (also
called virus genome equivalents, vge) per mL. This
can be of concern and a confusing factor when com-
paring loads for some hepatitis viruses, as it is in the
case of hepatitis C virus (HCV), where for some assays
arbitrary designated IU by individual producers are
used. For these reasons, interpretation of the data from
molecular assays applied for quantitative detection of

viral pathogens causing hepatitis requires basic under-
standing of the principles of the assays utilized by the
local clinical laboratory and their relevance to the
results from other laboratories or those reported in lit-
erature. This is particularly important when diagnosis
of virus clearance, based solely on testing of the circu-
lating virus, and termination of antiviral therapy are
considered.

HAVAND HAV RNA DETECTION TESTS

Hepatitis A virus (HAV) is a nonenveloped virus that
belongs to the Hepatovirus genus of the Picornaviridae
family. Its genome is comprised of a linear, single-
stranded RNA approximately 7.5 kb in length. There is
some genetic variability across HAV isolates, mainly in
the junction between virus proteins 1 and 2A, resulting
in the recognition of six genotypes (I�VI). HAV causes
acute hepatitis that does not result in chronic illness or
apparent long-term persistence of the virus. However,
fulminant hepatitis is observed in about 1% of those
infected. The World Health Organization (WHO) esti-
mates that there are about 1.4 million cases globally,
despite the availability of very effective prophylactic
vaccines [1,2]. The infection is predominately transmitted
by fecal�oral route, but it can also be passed by trans-
fusion of contaminated blood.

Serological diagnosis of hepatitis A is based on the
detection of anti-HAV antibodies of the IgM class,
indicating acute infection. Detection of anti-HAV IgG
antibodies is indicative of the past exposure to HAV or
clinical convalescence from the recent acute infection.

63
Diagnostic Molecular Pathology

DOI: http://dx.doi.org/10.1016/B978-0-12-800886-7.00006-6 © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-800886-7.00006-6


Molecular tests designed to identify HAV RNA are
rarely applied for clinical diagnostic purposes. However,
polymerase chain reaction (PCR) with reverse transcrip-
tion (RT) step (RT-PCR) has demonstrated that viremia
can be detected prior to antibody development (window
period infection) and that virus can persist into the clini-
cally defined convalescence for months after onset of
icterus [3�5]. Nested RT-PCR is rarely utilized for HAV
RNA identification, mainly to increase sensitivity of
virus detection in research setting or in cases where there
are no anti-HAV antibodies detected but exposure to
HAV is suspected [3]. HAV RNA testing is not incorpo-
rated in blood bank screening.

Real-time RT-PCR with SYBR-green, Taqman
probes, and molecular beacons, mainly targeting the
50-noncoding region (50-NCR), have been used for
detection of HAV genome in research laboratory set-
tings and in outbreak situations [6�8]. These tests uti-
lize RNA extracted from serum, saliva, fecal, and/or
environmental samples.

There are no tests for HAV RNA detection approved
for clinical use by the FDA. However, there are a num-
ber of commercial assays and those most frequently
used are listed in Table 6.1. There is a WHO inter-
national standard for HAV RNA (identification code:
00/560) and a CE (Conformité Européene)-certified
HAV RNA working reagent (identification code: 01/
488) from the National Institute for Standards and
Controls (NIBSC; Hertfordshire, UK) that can be used to
validate and determine sensitivity of in-house devel-
oped nucleic acid tests (NATs). The availability of these
reference standards significantly improves consistency
of the data reporting and interpretation from HAV
RNA detection tests generated in various laboratories.

HBV INFECTION

Infection with hepatitis B virus (HBV), despite the
availability during the last three decades of effective
prophylactic vaccines, remains the major cause of life-
threatening liver diseases, such as chronic or fulminant
hepatitis culminating in liver failure, cirrhosis, and pri-
mary hepatocellular carcinoma (HCC) [9]. HBV is one
of the smallest enveloped DNA viruses known and its
highly compact genome is composed of four overlap-
ping open reading frames. HBV has a very unique
replication strategy, whereby the virus partially
double-stranded DNA is fully repaired in the nucleus
of infected cells to form a mini-chromosome, referred
to as circular covalently closed DNA (cccDNA), which
serves as the template for the virus mRNA transcripts.
Detection of HBV cccDNA and mRNA are considered
to be reliable indicators of active virus replication [10].
HBV is classified into at least eight distinctive geno-
types (A�H), with inter-genotypic divergence of 8% or
more within the complete genome sequence [11]. HBV
infection occurs as serologically apparent, that is, HBV
surface antigen (HBsAg)-positive, chronic infection in
at least 370 million people worldwide (Fig. 6.1) [12].
Recent WHO estimates imply that up to 2 billion peo-
ple have been exposed to HBV, which further empha-
sizes a global epidemiological and potential
pathogenic significance of this virus [12,13]. Serological
assays for the identification of HBV antigens and
respective antibodies have been widely used for dec-
ades. However, with the relatively recent advent of
commercial assays for detection of HBV DNA and
highly sensitive research assays [12,14,15], it became
apparent that the virus replicates from the earliest

TABLE 6.1 Assays for HAV RNA Detection and Quantification

Assay Manufacturer Method used

Sensitivity Dynamic range

IU/mL copies/mL IU/mL copies/mL

RealStar HAV RT-PCR Kit 1.0 Altona Diagnostics RT-PCR B12 n.p. n.a. n.a.

hepatitis A@ceeramTools.health CEERAM S.A.S. qRT-PCR n.p. 5�50/reactionb n.p. n.p

HAV Real time RT-PCR Kit Liferiver, Gentaur RT-PCR n.p. n.p. n.a. n.a.

UltraQual-100, 2X HAV RT-PCR National Genetics Institute RT-PCR 2.08 n.p. n.a. n.a.

artus HAV LightCycler RT-PCR Kit QiAgen qRT-PCR 50 n.p. 13 104�13 108 n.p.

COBAS TaqScreen DPX Testa Roche Diagnostics RT-PCR 1.1 n.p. n.a. n.a.

LightCycler HAV Quantification Kit Roche Diagnostics qRT-PCR n.p. 500 n.p. 23 104�23 108

aCan also quantify parvovirus B1.9.
bAmount of input RNA not given.

IU, international units; qRT-PCR, quantitative RT-PCR; n.p., not provided; n.a., not applicable.
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stages after exposure and persists at low levels as
occult HBV infection for decades, if not for lifetime,
after clinical resolution of either self-limited acute hep-
atitis or therapy-induced recovery from chronic hepati-
tis B (Fig. 6.1A) [14,16]. In addition to serum HBsAg, it
is now evident that detection of antibodies to HBV
core (nucleocapsid) antigen (anti-HBc) and/or HBV
DNA alone, that is, in the absence of detectable serum
HBsAg, is indicative of prior exposure and persistence
of biologically competent virus at low levels [16�20].
The availability of molecular tests for detection of HBV
DNA in clinic has drastically improved identification
of HBV infection, evaluation of its responsiveness to
antiviral therapy, and enhanced safety of blood and
organ donations [21]. However, the persistence of HBV
at low levels, frequently not detectable by the current
clinical laboratory tests, in a significant portion of indi-
viduals with asymptomatic infection and the findings
of occult HBV infection relevance to the pathogenesis
of HCC [15,22,23] highlights the need for continual
improvements to the sensitivity of molecular assays
detecting HBV nucleic acids and to their employment
in clinic, and for population, blood, and organ dona-
tion screenings.

HBV DNA Detection Assays

Molecular assays for HBV DNA identification are of
increasing importance in the diagnosis and therapeutic
management of chronic hepatitis B, as well as in the
identification of window period infections and occult
HBV persistence occurring in the absence of clinical
symptoms and serological markers of infection [24].

Many commercial assays are now available for HBV
DNA qualitative and quantitative identification, but
they are limited to detection of virus genome in serum
or plasma only. There are no currently commercial
assays capable of identifying active HBV replication by
analyzing virus genome replication intermediates in
infected tissues or cells. There are also limitations in
regard to the sensitivity of HBV DNA detection, the
amount of sample material required for testing, and if
testing is of an individual sample or MP [25]. In regard
to testing of sample MP, it has recently been acknowl-
edged that the sensitivity of the currently available
NAT is related to the number of individual donations
within the MP tested [26,27]. Also, HBV DNA reactive
MP, where individual samples were found to be HBV
DNA nonreactive, is currently identified as one of the
most puzzling findings which impedes full identifica-
tion of potentially infected donor units [28,29].

A WHO international standard, which is available
from the NIBSC (identification code: NIBSC-10/264)
and a CE-certified HBV DNA working reagent (identifi-
cation code: 11/182-001) are available as references for
determination of LLD and the linear ranges of HBV
DNA detection assays. It is accepted that approximately
five copies of HBV DNA are equivalent to 1 IU [30].

Qualitative detection of HBV DNA in blood donors
is considered as sufficient [31], but for the evaluation of
viral load in plasma for monitoring of the effectiveness
of anti-HBV therapy quantitative assessment is
required [32]. Table 6.2 presents some of the commonly
used HBV DNA tests currently available. It is important
to note that the sensitivities of these assays and their
linear detection ranges differ, and that not all of them

FIGURE 6.1 Serological (immunovirological) and molecular markers detectable during the course of HBV infection. (A) Self-limited
acute HBV infection with serologically evident recovery followed by a low-level HBV DNA persistence reflecting existence of
asymptomatic (occult) HBV infection (OBI). (B) Serum HBsAg-positive chronic HBV infection typically accompanied by chronic
hepatitis B. Colored lines and areas under the lines indicate relative levels of HBsAg (blue), HBeAg (orange), anti-HBc (green), anti-HBs
(yellow), anti-HBe (purple), and HBV DNA (red) detected in serum or plasma. The lowest sensitivity limits of HBV DNA detection
by standard clinical or research assays are indicated by dashed black lines. HBeAg may or may not be detectable during the
course of chronic HBV infection, as indicated by the dashed orange line, as well as anti-HBe may develop or not, as marked by dashed
purple line.
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are approved for clinical purposes. Therefore, when-
ever possible, it is important to use one of the approved
tests to determine HBV loads in a patient prior to and
on antiviral therapy, especially if the available assay
does not include quantitative standards.

Since most of the current HBV DNA tests are based
on targeted PCR amplification, they are highly specific
with less than 3% of seronegative subjects showing
false-positive results [33]. As mentioned, there have
been problems with reproducibility at the LLD that
may occur in samples obtained during window period
infections and those during occult HBV infection con-
tinuing after clinically resolved or primary silent infec-
tion [33,34]. Real-time PCR-based assays have
somewhat circumvented this problem, such as COBAS
(Roche Molecular Diagnostics, Pleasanton, CA) and
Artus HBV DNA real-time PCR assay (Qiagen,
Valencia, CA). However, the underlying problems
with interpretation of results from real-time PCR are
the variety of methods applied for serum or plasma
acquisition, preparation and storage, and methods of
DNA extraction. A more standardized approach has
come with the fully automated extractions and amplifi-
cations offered by Roche Molecular Diagnostics,
known as the COBAS-Ampliprep technology. The
automated nucleic acid extractions enable “samples
in/results out” and it eliminates any manual interven-
tion by laboratory staff. Recently, there also became
available multiplex assays capable of simultaneously
testing for HIV type 1, HBV, and HCV in serum or
plasma, for example, Procleix Ultrio Plus test (Grifols,
Barcelona, Spain). Some of these tests are FDA
approved and they are becoming applied for blood
safety testing and in screening of donors of tissues and
organs for transplantation. Some of the multiplex

systems are fully automated, for example, the Procleix
Tigris instrument (Grifols via Novarits Diagnostics)
and the COBAS TaqScreen MPX Test (Roche
Molecular Diagnostics), decreasing likelihood for user-
based errors.

HBV Genotyping

It has become evident that HBV genotype is an
important factor in determining the outcomes of thera-
peutic strategies against HBV, especially in endemic
areas where infections with genotypes B and C are
most prevalent [35]. For example, interferon alpha
(IFN-α) therapy induces HBV seroconversion more
often in patients with genotype A or B than in those
with genotype C or D [36�38]. On the other hand, gen-
otypes C, D, and F have been associated with faster
progressing and more severe liver disease and HCC
development than other HBV genotypes [39,40].
Although HBV genotyping is not yet commonly per-
formed, it progressively becomes an important clinical
tool since, as mentioned, different HBV genotypes
respond to therapy differently. Certain laboratories
now offer HBV genotyping of clinical samples by
employing such techniques as direct sequencing, for
example, Mayo Medical Laboratories (Andover, MA)
and ARUP laboratories (Salt Lake City, UT). Further,
sequencing of the whole HBV genome or the S gene
and genotype-specific PCR have also been shown to
give reliable results. However, these approaches are
time-consuming and costly. At the present time, only
one assay, INNO-LiPA (line probe assay), developed
by Innogenetics (now Fujirebio Europe N.V., Ghent,
Belgium) is commercially available [41]. This assay

TABLE 6.2 Assays for HBV DNA Detection and Quantification

Assay Manufacturer Method used

Sensitivity Dynamic range

IU/mL copies/mL IU/mL copies/mL

HBV SuperQuant PCR Assay National Genetics Institute qPCR n.p. 100 n.p. 13 102�53 109

artus HBV LC PCR Kit QiAgen qPCR B6 n.p. 31.6�13 1010 n.p.

artus HBV TM PCR Kit QiAgen qPCR B4 n.p. 8.8�5.63 109 n.p.

COBAS Ampliprep/COBAS
TaqMan HBV Test v2.0

Roche Diagnostics Automated qPCR 20 n.p. 20�1.73 108 n.p.

COBAS TaqMan HBV Test Roche Diagnostics qPCR 6 n.p. 29�1.13 108 n.p.

COBAS TaqMan MPXa Roche Diagnostics PCR 3 n.p. n.a. n.a.

HBV Ampliscreen Roche Diagnostics PCR 5 B50 n.a. n.a.

Versant HBV bDNA 3.0 Seimens Branched DNA n.p. 23 103 n.p. 23 103�13 108

aMultiplex, can also detect HCV, HIV-1, and HIV-2.
IU, international units; qPCR, quantitative PCR; n.p., not provided; n.a., not applicable.
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employs a line-probe hybridization to the pre-S1
sequence of the S gene to determine HBV genotype.
The accuracy of this assay to identify a singular geno-
type is as high as 99% and it offers an alternative for
samples which are difficult to sequence. For direct
sequencing, a kit TRUGENE from Seimens Medical
Solutions (Cary, NC) is available. It can be used in
samples with relatively low HBV loads (near as 1000
genome copies per mL) [42]. However, plasma HBV
load levels in patients with occult HBV infection are
normally lower than 100�200 genome copies per mL
and are below this detection level. HBV Sequencing
Assay from Abbott Molecular Inc. is a CE-certified test
that requires 500 μL of patient serum or plasma and
uses a sequencer from Applied Biosystems Inc. (Grand
Island, NY) to identify all known HBV genotypes.
However, this system is not FDA approved as screen-
ing or diagnostic tool.

Molecular Testing for HBVAntiviral Resistance

Monitoring for development or breakthrough of
antiviral drug resistant mutants is of central impor-
tance in the management of patients on nucleotide/
nucleoside-analogue antiviral therapy. These classes of
drugs lead to virus-adaptive mutations, mainly in
HBV reverse transcriptase region of the DNA polymer-
ase gene, which culminates in virus breakthrough, ren-
dering therapy essentially useless. In general, when
patients who are on anti-HBV therapy are found to
have rising serum HBV loads, the emergence of
antiviral resistant mutants should be assumed. HBV
rebound is defined as a recovery of virus replication
due to compensatory mutations that help restore viral
fitness and, thereby, increase virus plasma loads by
more than 1-log [43]. There are very few commercial
assays capable of identifying such escape mutants. For
example, the reverse hybridization test INNO-LiPA
DR (Fujirebio Europe N.V.) has an expanded lamivu-
dine (LMV, also known as 3TC) resistance panel and
also can detect HBV adefovir resistant mutations [44].
This assay offers an advantage over direct sequencing
in that mixed viral populations are not often detected
by the previously mentioned TRUGENE test. Another
commercial assay is the Affigene HBV DE/3TC test
from Sangtec Molecular Diagnostics AB (Bromma,
Sweden). This test combines hybridization and direct
sequencing to detect LMV resistant mutants. It works
comparably well but has higher undeterminate rates
than the INNO-LiPA DR assay [45]. These two com-
mercial kits however identify only mutant sequences if
they comprise 5% (detectable by hybridization) or 20%
(detectable by direct sequencing) of the total virus
population.

More recent approaches to HBV genotyping, identi-
fication of variants, and drug escape mutants in mixed
viral populations are those utilizing ultra-deep pyrose-
quencing [46]. They have a significant advantage over
the current assays because they also identify novel
mutations and mixed genotypes at once [47]. The cur-
rent hybridization-based assays are capable of highly
specific discrimination, but only of known nucleotide
mutations. Therefore, if new mutations arise, the line
probe assays must be updated [48]. Recently published
studies identifying hepatotropic viruses from plasma
using deep sequencing have provided much new
information [47]. At this stage, however, this likely
next-generation diagnostic tool is too complex and
expensive to be employed for routine clinical testing.

Other complex yet highly sensitive techniques, such
as restriction fragment mass polymorphism and oligo-
nucleotide microarray chips, can detect mutations of
less than 1% of the total virus population [40]. The
associated costs make these techniques unfeasible for
diagnostic use at the present time [46]. It is also becom-
ing increasingly evident that very minor variant popu-
lations, called quasi-species, with antiviral resistance
may exist prior to the initiation of therapy [49,50].
Currently, antiviral resistance testing is not performed
prior to treatment, except in some research trial
settings. These naturally occurring drug resistant var-
iants constitute well below 5% of the wild-type virus
pool, which is the current limit of mutant genotypic
identification in patients with overt HBV infection.

HCVAND HCV RNA
DETECTION ASSAYS

HCV is a positive-strand RNA virus that belongs to
the Hepacivirus genus of the family Flaviviridae. Its 9.6-
kb-long genome encodes a polyprotein of almost 3000
amino acids flanked by two untranslated regions, that
is, 30- and 50-UTR. HCV isolates are categorized into six
genotypes with 30�35% sequence variability with fur-
ther variation within subtypes. HCV genotypes are
essentially geographically distributed. Approximately
150 million people worldwide suffer from chronic HCV
infection, and about 30% of those will develop cirrhosis
and potentially HCC [51]. There is no prophylaxic vac-
cine yet available, which is one of main reasons why
HCV infection remains of a global concern.

Testing of serum or plasma for HCV RNA by NAT is
now accepted as the standard for diagnosis of ongoing
hepatitis C and its resolution (Fig. 6.2) [52�55], and for
the screening of blood, blood products, and organ and
tissue donations [53]. Different molecular approaches,
such as RT-PCR, branched DNA (bDNA) amplification,
and transcription-mediated amplification, were and are
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utilized to develop HCV RNA detection assays. Several
of the commercially available tests are listed in
Table 6.3. It should be noted that not all of them have
FDA approval for diagnosis and clinical monitoring
purposes. However, most of them are quantitative and
demonstrate acceptable specificity and sensitivity.
Many of the NAT currently available utilize as a quanti-
tative reference the WHO HCV 4th International

Standard for HCV RNA amplification techniques (iden-
tification code: 06/102). Also CE-certified HCV RNA
working reagent (identification code: 02/264-003) is
available from the NIBSC. Although there is now
somewhat less discrepancy in reporting on the
detectable viral amounts by individual assays, there are
still issues with conversion of the LLD values to virus
genome copy equivalents for some assays and this

0

FIGURE 6.2 Typical serological and molecular profiles of HCV infection. (A) Acute HCV infection with recovery. After resolution of clini-
cal evident acute hepatitis C, HCV RNA can remain detectable at very low levels for the prolonged period of time. (B) Chronic HCV infection.
Colored lines indicate relative levels of anti-HCV antibodies (green) and HCV RNA (red) detected in serum or plasma. The lowest sensitivity
limits of HCV RNA detection based on standard clinical or research assays are indicated by dashed black lines.

TABLE 6.3 Assays for HCV RNA Detection and Quantification

Assay Manufacturer Method used

Sensitivity Dynamic range

IU/mL copies/mL IU/mL copies/mL

RealTime HCV/m2000sp/m2000rt Abbott Molecular Automated
qRT-PCR

12 n.p. 12�13 108 n.p.

Hepatitis C Virus RT-PCR Assay Biolife Plasma Services RT-PCR n.p. n.p. n.a. n.a.

HCV SuperQuant National Genetics Institute qRT-PCR n.p. 100 n.p. 13 102�53 106

artus HCV RG RT-PCR QiAgen qRT-PCR 33.6 n.p. 65�13 106 n.p.

COBAS Amplicor HCV v2.0 Roche Diagnostics Automated RT-PCR 50�60 n.p. n.a. n.a.

COBAS Ampliprep/TaqMan
HCV v2.0

Roche Diagnostics Automated
qRT-PCR

15 n.p. 15�13 108 n.p.

COBAS Ampliscreen HCV v2.0 Roche Diagnostics Automated RT-PCR 21 57 n.a. n.a.

COBAS TaqMan HCV v2.0 Roche Diagnostics qRT-PCR 9.3 n.p. 25�3.93 108 n.p.

COBAS TaqMan MPXa Roche Diagnostics RT-PCR 11 n.p. n.a. n.a.

Versant HCV RNA
Test 1.0 (kPCR)

Siemens qRT-PCR 37 n.p. 37�1.13 107 n.p.

Versant HCV RNA Test 3.0 Siemens Branched DNA 615 n.p. 6.23 102�7.73 106 n.p.

aMultiplex, can also detect HBV, HIV-1, and HIV-2.
IU, international units; qRT-PCR, quantitative RT-PCR; n.p., not provided; n.a., not applicable.
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information is not always easily available from the sup-
plier. Also, in many of the assays that are not fully auto-
mated, it is up to the end user which methodology for
recovery of template HCV RNA from patients’ samples
is applied. In general, as in the case of HBV DNA detec-
tion, preferably the same assay should be used when
determining viral loads in patients before, during, and
after therapy to avoid potential discrepancies. It should
also be noted that many in-house assays, which use
more efficient methods of RNA extraction, testing of
different amounts of RNA template, and applying cus-
tomized PCR amplification conditions and amplicon
detection methods, have better LLD than clinical
assays. However, they are time-consuming and require
expertise that is not often available in the clinical labo-
ratory setting. Nonetheless, these in-house assays sig-
nificantly contributed to our better understanding of
the natural history and initially unapparent conse-
quences of HCV infection. For example, they played a
central role in the identification of long-term occult per-
sistence of small amounts of infectious HCV after either
spontaneous or therapy-induced resolution of hepatitis
C [56�59], and the discovery that immune cells are
commonly, if not invariably, infected by HCV regard-
less of whether the infection is symptomatic or clini-
cally unapparent [56,59�62].

HCV Genotyping

HCV genotyping is considered essential for deter-
mining the type and duration of anti-HCV therapy,
since different genotypes and even subtypes respond
differently to both IFN-α/ribavirin and directly acting
antivirals (DAAs) [63,64]. In addition to standards for
HCV quantitation, there is now a HCV RNA genotype
performance panel (Sera Care Life Sciences, Milford,
MA) that can be used to validate assays designed to
delineate genotypic and major subtypes of HCV
sequences. Some commercially available assays use
direct cDNA sequencing (eg, TRUGENE HCV
Genotyping Assay, Siemens Medical Solutions) and a
line probe hybridization for 50-UTR and core gene (eg,
INNO-LiPA HCV II Genotype Test, Fujirebio Europe
N.V.) for differentiation of HCV genotypes in serum
from patients with chronic hepatitis C [63]. The only
FDA-approved assay is Abbott RealTime HCV
Genotype II which can differentiate genotypes 1, 1a,
1b, 2, 3, 4, and 5 and has been found to be applicable
in the clinical setting [65]. This is a significant break-
through. In the era of DAAs against HCV, access to
highly sensitive and specific assays which are reliable
in identifying HCV genotypes while monitoring
patients’ viral load in responses to treatment will
remain of a very high priority.

HDVAND HDV RNA DETECTION

Hepatitis D virus (HDV) is considered a subviral
agent that requires the lipoprotein envelope of HBV to
enable a 1.7 kb RNA genome entry to hepatocyte. The
HDV genome encodes a single protein (HDAg) that
can exist in two isoforms with corresponding molecu-
lar weights of 24 and 27 kDa. Because of the need of
the HBV envelope protein to permit HDV infection,
the existence of serum HBsAg-positive HBV infection
in concert with antibodies to HDV (anti-HDV) is usu-
ally required for the diagnosis of hepatitis D. HDV
infection is considered to be increasing globally, and
some countries, like France and Italy, have noted
greater numbers of HDV cases during the past two
decades [66]. Current estimates suggest that 15�20
million people are infected globally, despite the avail-
ability of the HBV prophylactic vaccine which protects
against HDV infection [67]. Hepatitis D is a clinically
significant illness that leads to fulminant hepatitis 10
times more often and with 2�20% greater mortality
rates than other types of viral hepatitis. HDV coinfec-
tion or superinfection tends to exacerbate chronic hep-
atitis B leading to higher rate of liver cirrhosis and
HCC than in those infected with HBV alone [67].

Molecular testing for HDV RNA in serum has been
attempted using full-length cDNA probes, RNA
hybridization, and RT-PCR. In-house qualitative and/
or semiquantitative RT-PCR tests have been widely
used for the study of HDV, but considering that there
are eight genotypes that can be up to 40% divergent,
designing of primers to detect different genotypes is
highly challenging. Most consistent results were
obtained using primers corresponding to the genome
fragment covering the ribozyme, due to the conserved
sequence of this region. It has been reported, using an
in-house test with primers enabling detection of all gen-
otypes, that the sensitivity of 100 genome copies per
mL was achieved for detection of all HDV genotypes
[68]. Such assays are not yet commercially available,
despite having proved useful for monitoring serum
HDV loads over the course of IFN-α therapy. Two
assays are commercially available for research purposes
only: LightMix Kit HDV from TIB MOLBIOL GmbH
(Berlin, Germany) for use on the Roche LightCycler,
which detects genotype 1 (linear range 10�106 copies/
reaction) and HDV RNA Quantitation DRNA from Dia.
Pro Ltd. (Milan, Italy), which has LLD of 300 copies of
HDV RNA per mL with a linear range of 103�1012 cop-
ies per reaction. This assay has CE mark designation,
but is not used for diagnostic purposes. It has been
noted that the commercial assay may give underestima-
tion of true HDV RNA loads [69], when compared to
in-house assays. It is also notable that there is no inter-
national quantitative standard for HDV.

69HDV AND HDV RNA DETECTION

II. MOLECULAR TESTING IN INFECTIOUS DISEASE



HEVAND DETECTION OF HEV RNA

Hepatitis E virus (HEV) is a nonenveloped, RNA-
positive strand virus of the family Hepeviridae that
infects estimated 20 million people globally, mainly in
Eastern and Southern Asia. Hepatitis E is considered
to be a self-limiting disease, but HEV infection can
cause fulminant hepatitis, particularly in pregnant
woman [70]. The virus is usually spread by fecal�oral
route, but also can be transmitted through blood pro-
ducts and vertically from mother to fetus. HEV causes
a high risk infection in pregnant women and fulminant
hepatitis much more frequently than infections with
other hepatitis viruses leading to 20�25% mortality
rate among third-trimester women. There are four gen-
otypes of HEV with up to 27.7% sequence divergence
among them and several minor subtypes [71,72].
Genotypes 1 and 2 are pathogenic to humans, while
genotypes 3 and 4 are considered to be animal strains
that are rarely transmitted to people. A prophylactic
vaccine against HEV was developed in China and was
registered in 2011 [73], but it is not globally available.

In practice, the specific diagnosis of HEV is based
on the detection of virus-specific IgM and/or IgG anti-
bodies, and molecular NATs are not routinely used.
However, strides in the standardization of HEV RNA
detection and monitoring HEV infection by RT-PCR
have exceeded that for HDV [74]. As of October 2011,
there has been a WHO international standard for HEV
RNA genotype 3A diluted in plasma and lyophylized
to yield a standard of 2.53 105 IU/mL. There are sev-
eral RT-PCR tests available for detection of HEV RNA,
many with CE mark designation, but none have FDA
approval (Table 6.4). Some of these tests are able to
detect all four genotypes at levels as low as 50 genome
copies per mL.

GB VIRUS C AND MOLECULAR
DETECTION OF GB VIRUS C GENOME

GB virus C (GBV-C), also known as hepatitis G
virus (HGV), is a member of the Flaviviridae family. Its
genome consists of a positive-sense-stranded RNA
encoding a single polyprotein of approximately 3000
amino acids. Currently, GBV-C is assumed to be a
lymphotropic virus that does not cause hepatitis
[75�77]. However, since historically HGV was consid-
ered to be hepatitis virus, we briefly discussed molecu-
lar detection of its genome.

Progressing GBV-C infection can only be diagnosed
by identifying genomic RNA. The exact sensitivity and
specificity of testing for HGV RNA using in-house
assays are not well established. Antibodies to GBV-C
appear to be only detectable when GBV-C RNA is no
longer detected, and the true seroconversion rates are
not known. It has been postulated that GBV-C is
highly prevalent in the general global population
(1.7�2.0%) [78], as determined by limited screening of
blood donations. Most recently, it has been suggested
that GBV-C infection may actually be beneficial in
slowing the progression of disease in HIV/HCV coin-
fected patients [79,80]. HIV-infected patients who are
reactive for GBV-C RNA may also have more positive
outcomes than those who are not due to the mainte-
nance of an intact Th1 cytokine profile [81], or modula-
tion of entry receptors [82]. In addition, there have
been reports of GBV-C presence in the lymphoid cells
of patients with hematological malignancies [83,84]. In
this regard, cells of the bone marrow were found to be
infected with GBV-C in almost 20% of patients with
hematological malignancies tested [83]. Patients with
cirrhosis and HCC have occasionally tested positive
for GBV-C RNA [85�87]. However, the causal role for

TABLE 6.4 Assays for HEV RNA Detection and Quantification

Assay Manufacturer Method used

Sensitivity Dynamic range

IU/mL copies/mL IU/mL copies/mL

RealStar HEV RT-PCR Kit 1.0 Altona Diagnostics RT-PCR 20�100 n.p. n.a. n.a.

hepatitis E@ceeramTool.health CEERAM S.A.S. qRT-PCR n.p. 5�50/reactiona n.p. n.p.

Geno-Sen’s HEV Real Time PCR Kit Genome Diagnostics qRT-PCR n.p. 80 n.p. 13 102�13 106

HEV Real Time RT-PCR Kit Liferiver, Gentaur RT-PCR n.p. n.p. n.p. n.p

ampliCUBE HEV MIKROGEN RT-PCR n.p. ,104 n.a. n.a.

Path-HEV PrimerDesign qRT-PCR n.p. 100 n.p. 13 102�13 107

COBAS HEV Test Roche Diagnostics Automated RT-PCR 18.6 n.p. n.a. n.a.

aAmount of input RNA not given.

IU, international units; qRT-PCR, quantitative RT-PCR; n.p., not provided; n.a., not applicable.
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GBV-C infection in these pathologies has never been
shown. The current opinion assumes that the virus is
not directly linked to any disease and has no apparent
effect on patients after liver transplantation regardless
of the cause of the end-stage liver disease.

There are no longer any commercial assays available
for detection of GBV-C RNA. However, since the virus
appears to be highly prevalent, several research labora-
tories have established testing of clinical samples using
highly sensitive RT-PCR assays [83,88]. It is likely, as
potentially stronger linkages to human pathology are
uncovered, that providers of diagnostic tools may once
again show interest in developing molecular tests for
GBV-C detection.
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INTRODUCTION

Human papillomavirus (HPV) is the most common
sexually-transmitted infection in the United States. The
overall prevalence of HPV infection is estimated at
about 27�43% in US females between the ages of 14
and 59 [1,2]. HPV is also very common in men, with
an estimated prevalence of 52�65% [3,4]. The Centers
for Disease Control and Prevention (CDC) estimates
that there are over 79 million new and existing HPV
infections in the United States, which makes up over
70% of all sexually-transmitted infections [5]. HPV
infection is typically transient, with over 90% of new
infections naturally cleared within 6 months to 2 years
after infection [6].

HPV infection is often asymptomatic, but has two
major clinical impacts: genital warts and cancer.
Genital warts (condyloma acuminatum) are growths on
the cervical or vulval mucosa in females, or on the
glans or prepuce in males. HPV-associated cancers
include cancer of the oropharynx, cervix, vulva, vagina,
anus, and penis [7,8]. Approximately 70% of oropha-
ryngeal cancer is associated with HPV infection [9], but
the most notable clinical manifestation of HPV infec-
tion is cervical cancer. In 2011, there were an estimated
249,632 women living with cervical cancer in the
United States, with 7.8 new cases per 100,000 women
per year between 2007 and 2011 [10].

There are currently 170 different types of HPV rec-
ognized [11], with over 40 of those types considered
sexually transmitted [6]. HPV types are classified as
low risk or high risk, depending on the potential for
causing cervical dysplasia and cancer [12�14]. The
low-risk strains tend to be associated with genital
warts, with types 6 and 11 causing about 90% of all
genital warts cases, while the high-risk strains are

associated with cervical cancer development [13,15].
The low- and high-risk HPV types are summarized in
Table 7.1.

Molecular testing for HPV is thus focused on the
detection of high-risk HPV types, with the purpose of
identifying cervical cancer or its precursors. This chap-
ter will highlight the characteristics of the HPV and
the mechanisms of cervical lesion development caused
by HPV infection. The diagnostic strategies for HPV
and cervical cancer detection will be outlined, with a
discussion of the common molecular diagnostic meth-
odologies used in the clinical laboratory.

MOLECULAR TARGET

Pathophysiology of HPVs

HPVs are nonenveloped viruses belonging to the
Papillomaviridae family. The virus has a double-
stranded, circular DNA genome that is approximately
7900 base pairs in size. The HPV genome is divided
into three sections: (1) early expressed genes, (2) late
expressed genes, and (3) the long control region (LCR).
The expressed sections of the genome include eight
overlapping open reading frames. The early genes
include six open reading frames that are translated
into proteins that play a role in genome replication
and transcription. The E6 and E7 oncogenes can form
complexes with tumor suppressors, induce mitotic
spindle malformations and abnormal centrosome num-
bers during mitosis [16,17]. The late genes, down-
stream of the early region, include the L1 and L2 genes
which are translated into the major and minor capsid
proteins, respectively. The last 10% of the HPV
genome is the LCR, which holds no protein-coding
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function. The LCR includes the origin of replication
and a number of regulatory sites that are recognized
by transcription factors [18]. The HPV genome is dia-
grammed in Fig. 7.1.

HPVs have a progressive life cycle that is dependent
on the differentiation of epithelial cells. HPVs are
transmitted by contact with the skin or mucosa of an
infected individual. The target cell is the basal epithe-
lium of the skin or mucosa, likely accessed through
small tears that expose the basal layer. The cutaneous
varieties of HPV are considered epidermitrophic, thus
typically infecting the hands and feet. Mucosal types
of HPV target the mouth, throat, or anogenital region
[19]. The productive stage of the HPV life cycle follows
the differentiation of the basal cells into mature kerati-
nocytes, where the viral DNA is replicated, capsid pro-
teins are synthesized, and viral release occurs. The
oncogenic E6 gene product interacts with the tumor
suppressor p53, resulting in degradation. The HPV E7
protein disrupts the cellular retinoblastoma protein,
pRB, causing the stimulation of cellular DNA synthesis
and cell division. This manipulation by HPV results in

the transformation of cells from a terminal differenti-
ated state to an active state that allows for viral replica-
tion. Depending on the type of HPV infection, this
aberrant cell division can result in warts or mucosal
lesions, such as cervical dysplasia. While in the benign
lesion state, HPV is found in the nucleus, but outside
of the cellular chromosomes. This is called the
episomal state of infection. In advanced stages, the
infection progresses to cancer, and HPV becomes inte-
grated into the host genome. Once the HPV genome is
integrated into the host cell, the E6 and E7 gene
expression is upregulated and further binding of p53
and pRB occurs [19]. This results in a cascade of cellu-
lar disruptions such as an uncoupling of centrosome
duplication from the cell cycle, which contributes to
genomic instability and increases the production of
abnormal cells [17]. HPVs play a role in the etiology of
a variety of benign conditions, including common
warts, plantar warts, anogenital warts (condylomata
acuminata), respiratory papillomatosis, and others.
Molecular HPV testing is rarely utilized for these con-
ditions, as they can be usually diagnosed by visual
examination, biopsy, and histology. However, infection
with high-risk types of HPV can result in cell dyspla-
sia, premalignancies, and eventually cancer. Cancer
can occur in any of the anogenital regions of women
or men, including the vulva, vagina, cervix, anus, or
penis [20]. The most clinically relevant application of
molecular detection of HPV infection is to diagnose
cervical cancer or its precursors.

HPVs and Cervical Cancer

HPV infection has been established as a necessary,
but not sufficient, cause of cervical cancer. HPV is
found in over 99% of cervical carcinomas worldwide,
indicating that HPV infection serves as a trigger for
development of cervical cancer [21]. However, it is
important to recognize that HPV infection alone is not
sufficient to cause cancer, as infection can be transient
and cleared naturally. Persistent infection of the cervi-
cal epithelium increases the risk of malignancy due
to additional genomic deletions and chromosomal
aberrations that lead to inactivation of tumor sup-
pressor genes [22]. The HPV types 16 and 18 have
been determined to be the most prevalent strains
found in cervical malignancies and so top the list of
the 14 high-risk HPV types [23]. Due to the strong

TABLE 7.1 HPV Types

High-risk HPV types 16 18 31 33 35 39 45 51 52 56 58 59 66a 68 73 82 83

Low-risk HPV types 6 11 26 40 42 43 44 53 54 55 66a 84

aType 66 has been categorized as both low- and high risk.

FIGURE 7.1 The HPV genome. The diagram shows a general
HPV genome of 7.9 kb of circular DNA. The overlapping open read-
ing frames are shown in blue. The E6 and E7 genes are oncogenic.
The E1�E5 gene products participate in viral replication, while the
L1 and L2 are capsid proteins. The L1 gene is a common target of
HPV molecular assays.
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association of high-risk HPV infection with the devel-
opment of cervical cancer, HPV testing has been
integrated into the traditional cervical screening
algorithms.

The current gold standard for detection of abnormal
cervical epithelial cells is the Papanicolaou (Pap) stain.
This entails collection of cervical epithelial cells and
spreading them onto a slide for microscopic analysis of
cell morphology. Pap smears may be done convention-
ally by smearing cells directly onto the slide, or cells can
be collected into liquid cytology medium, which is cen-
trifuged and filtered prior to monolayer preparation.
Liquid cytology methods, such as ThinPrep (Hologic,
Inc.), tend to show better sensitivity and specificity for
the detection of cervical dysplasia, due to standardized
preparation and decreased presence of obscuring mate-
rial such as blood and mucus [24]. Morphological find-
ings from a cytology examination define the level of risk
for developing cervical malignancy.

Classification of cervical abnormalities is established
by several nomenclature standards. The spectrum for
all nomenclatures begins with normal or negative
cells, spanning through increasing levels of cervical
dysplasia, and ending with cervical adenocarcinoma.
The cervical intraepithelial neoplasia (CIN) nomencla-
ture is widely used, although the most recent classifica-
tion is the Bethesda 2001 system. A comparison of
the four cytological classifications is reviewed in detail
by Sherman [25]. The general progression of cervical
dysplasia to carcinoma is illustrated in Fig. 7.2. Cervical
epithelial cells determined to show a low level of
atypical or abnormal morphology are termed “atypical
squamous cells of undetermined significance” (ASCUS)
or “cannot exclude high-grade lesions” (ASC-H).
ASCUS is the equivocal gate-keeper diagnosis, meaning
that its presence is often the stage at which further
examination may be warranted. ASCUS may indicate
low-grade squamous intraepithelial lesions (LSIL) or

CIN1, which is indicative of HPV infection. HPV infec-
tion in this state may be transient or self-resolving, and
cervical dysplasia can resolve back to normal. Dysplasia
classifications include CIN2 and progress to CIN3
or high-grade squamous intraepithelial lesions (HSIL). If
HPV infection does not resolve or if there is recurrent
infection, then a woman is at higher risk of HSIL/CIN3,
followed by cervical carcinoma, particularly after age 30
[26]. The widespread use of cervical cytology exams has
led to a significant decline in cervical cancer, although
the mortality rate has essentially leveled off in the last
20 years. It is estimated that in 2014, 4020 deaths will be
attributed to cervical cancer in the United States [10].

Primary prevention of HPV infection is a promising
measure in reducing the incidence of cervical cancer. In
2006, the Gardasil (Merck) prophylactic HPV vaccine
was approved by the Food and Drug Administration
(FDA). The vaccine is a series of three shots given over
a 6-month interval in males and females aged 9�26
years. The quadrivalent vaccine is indicated to prevent
infections from HPV types 6, 11, 16, and 18, to prevent
anogenital warts, cervical cancer, and other neoplasias
[27,28]. The vaccine can be given before or after the
patient becomes sexually active and is recommended as
part of routine vaccination for boys and girls at the age
of 11 or 12 [29]. A 53% decline in the prevalence of
vaccine-covered HPV types was observed within 4
years of vaccine introduction [30]. Recent evaluations of
the prevalence of other high-risk HPV types in cervical
cancer provide evidence that a nine-valent HPV vaccine
(HPV 6, 11, 16, 18, 31, 33, 45, 52, 58) could prevent the
majority of cases of CIN2 and higher [31]. Despite wide-
spread recommendation by several medical organiza-
tions, the HPV vaccine is underutilized, with only
37.6% of adolescent girls and 13.9% of adolescent boys
completing the total vaccine series [32]. There is data
showing that combined vaccination and cervical cancer
screening could prevent almost 93% of new cancer

FIGURE 7.2 Progression of cervical dysplasia. The figure illustrates the progression from normal cervical epithelium to invasive carcinoma
after infection with HPV. Infection with HPV triggers cellular transformation, which may be transient and regress or may progress into more
severe stages. The goal of HPV testing is to detect CIN3 or more severe cervical disease.
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cases [33]. Continued education of both the public and
medical providers on the benefits of HPV vaccination
and HPV testing is pivotal in reaching this goal.
Despite well-established screening algorithms for detec-
tion of cervical cancer, approximately 8.2 million
women in the United States have not been screened for
cervical cancer in the past 5 years [34]. Molecular HPV
testing is a critical component of cervical cancer screen-
ing that can significantly improve the early detection of
cancer and its precursors.

MOLECULAR TECHNOLOGIES

Clinical testing for HPVs is exclusively molecular in
methodology, as culture of the virus is extremely diffi-
cult. Methods have been established to culture HPV by
recreating the three-dimensional epithelium that the
virus requires for its life cycle [35]. However, this is not
a practical approach in the diagnostic environment.
Thus, molecular detection of HPV nucleic acid is the
gold standard for clinical testing. It is important to note
that the purpose of HPV testing is not to detect HPV
itself, but to identify patients at risk for developing
severe cervical dysplasia or cervical cancer. Today,
there are a number of options that the medical provider
has to choose from when deciding the best diagnostic
method for HPV testing. This section will focus on the
FDA-approved methods for HPV testing [36], although
a multitude of research-use only methodologies also
exist that have been reviewed in the literature [37�39].

The principles for detection of the HPV genome vary
greatly between methods. The initial assays were signal
amplification methods, which increase DNA-
proportional signals to detectable levels. These signals
can be detected by color change, fluorescence, or chemi-
luminescence. Target amplification, which includes
polymerase chain reaction (PCR), amplifies fragments
of DNA from targeted sequences using the DNA poly-
merase enzyme. PCR products can be detected either
using end point analysis, such as gel electrophoresis, or
in real time by using fluorescence-detection chemistries.
Another approach is transcription-mediated amplifica-
tion (TMA), which is an isothermal reaction that uses
RNA polymerase to amplify a nucleic acid target.
Summaries of the FDA-approved HPV assays are pro-
vided in Tables 7.2 and 7.3.

Digene Hybrid Capture 2

The Digene Hybrid Capture 2 (HC2), now manufac-
tured by Qiagen, Inc., was the first FDA-approved
method for detection of HPV DNA. The first-generation
assay was approved in 1995, followed by the second
version (HC2) in 1999, which has since been refined to
detect high-risk genotypes only [40]. The Digene HC2
assay is a signal amplification technique, so the chemilu-
minescent signal is amplified rather than the target HPV
DNA, in contrast to PCR. The HC2 assay remains the
most widely used HPV detection method, still being
utilized by most of the high-volume clinical reference
laboratories in the United States. The HC2 assay can

TABLE 7.2 FDA-Approved HPV Assays

Assay name Manufacturer

HPV types detected (Yes/No)
Specimen type/minimum

volume Automation16 18 31 33 35 39 45 51 52 56 58 59 66 68

Aptima HPV
Assay

Hologic, Inc. Y Y Y Y Y Y Y Y Y Y Y Y Y Y ThinPrep/PreservCyt/
1 mL

Panther/Tigris Systems

Aptima HPV 16
18/45 Genotype
Assay

Hologic, Inc. Y Y N N N N Y N N N N N N N ThinPrep/PreservCyt/
1 mL

Panther/Tigris Systems

Cervista HPV HR Hologic, Inc. Y Y Y Y Y Y Y Y Y Y Y Y Y Y ThinPrep/PreservCyt/
2 mL

Cervista HTA System

Cervista HPV
16/18

Hologic, Inc. Y Y N N N N N N N N N N N N ThinPrep/PreservCyt/
2 mL

Cervista HTA System

Digene Hybrid
Capture 2 (HC2)
High-Risk HPV
DNA

Qiagen, Inc. Y Y Y Y Y Y Y Y Y Y Y Y N Y PreservCyt/4 mL Rapid Capture System

cobas HPV Test Roche
Molecular
Systems, Inc.

Y Y Y Y Y Y Y Y Y Y Y Y Y Y ThinPrep T2000 & 3000/
PreservCyt/cobas PCR
Cell Collection Media/
1 mL

cobas 4800 System
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qualitatively detect 13 high-risk HPV genotypes. It is
currently indicated as a follow-up after ASCUS diagno-
sis, to determine need for colposcopy, and for women
greater than 30 years of age to be used adjunctively with
the Pap screen.

Cervical specimens are collected using one of three
methods: (1) the HC2 DNA Collection device, (2) biop-
sies collected in Specimen Transport Medium (STM),
or (3) using a broom-type collection device placed in
Cytyc ThinPrep PreservCyt solution. The assay is
approved for use after preparation of ThinPrep slides,
but requires at least 4 mL of the PreservCyt Solution
remaining for the HPV test. Denatured specimens are
mixed with a HPV RNA probe cocktail. If HPV DNA
is present, the DNA will anneal to the RNA probe(s),
creating a DNA:RNA hybrid. The hybrids are then
captured to the surface of a microplate well that is
coated with antibodies that bind DNA:RNA hybrids.
The now immobilized hybrids are detected by binding
with a second antibody that is conjugated with alkaline
phosphatase. Substrate is added to the well, which is
then cleaved by bound alkaline phosphatase, creating
a chemiluminescent light signal. The hybrids can bind
multiple conjugated antibodies and each antibody has
multiple conjugated alkaline phosphatase molecules.
This results in amplification of the signal, increasing
the signal-to-target ratio. The microplate is then placed
into a luminometer, which measures the light intensity
of each well. If the intensity crosses a defined thresh-
old, the result is recorded as “detected” for high-risk
HPV genotypes [41]. The Qiagen Rapid Capture auto-
mated platform can be used in high-throughput labo-
ratories. This instrument is a pipetting and dilution
system that can process up to 352 samples in about
8 h. This automated option reduces the laborious sam-
ple transfer and washing steps.

The HC2 assay is qualitative only and cannot distin-
guish between genotypes. Thus, a positive result
means that at least one of the 13 detectable genotypes

is present. However, because the risk level of each of
the HPV genotypes is not equal, this is a
notable limitation of the HC2 assay. Other limitations
include documented cross-reactivity of the assay to
low-risk genotypes 6, 42, and 70, and to possible high-
risk types 53 and 66 [41,42], causing false-positive
results. The consequence of false-positive results in
HPV detection is unnecessary colposcopy, which may
have uncommon but significant effects on fertility,
obstetric outcomes, and psychological anxiety [43]. The
HC2 assay is further lacking an internal control, which
means the specimen is not monitored for cellularity.
Newer assays have implemented various internal con-
trols to monitor various stages of the processing and
analysis (Table 7.3). While the hybrid capture assay is
the most widely used methodology, it may eventually
be replaced by more sensitive, specific, and better
refined clinical assays. Nonetheless, it remains the
gold standard against which every new assay is com-
pared, because of its well-characterized status.

Cervista HPV HR and Cervista HPV 16/18

The Digene HC2 assay remained the only FDA-
approved test for approximately 10 years, until
approval in 2009 of the Cervista HPV HR qualitative
screening test and the Cervista HPV 16/18 genotyping
test. The original Cervista high-risk assay was devel-
oped by Third Wave Technologies, and the Cervista
line is now marketed by Hologic, Inc. The Cervista
HPV HR test screens for 14 high-risk HPV types. This
includes HPV type 66, which is not a direct target of
the HC2 test. The Cervista HPV 16/18 assay is a geno-
typing test that can determine the presence of types 16
and 18, which indicate the highest risk of developing
cervical cancer [44]. The genotyping assay is intended
for use as a reflex test after a positive result on the
Cervista HPV HR test and should not be used as a
stand-alone test. The capability to genotype HPV types

TABLE 7.3 Characteristics of HPV Assays

Assay HPV target Principle Internal control

Indications for use

ASCUS Co-testing Primary screening

Aptima HPV Assay E6/E7 mRNA TMA Exogenousa ü ü

Aptima HPV 16 18/45 E6/E7 mRNA TMA Exogenousa üb ü

Cervista HPV HR Mixed genomic Invader probe Histone 2 ü ü

Cervista HPV 16/18 Mixed genomic Invader probe Histone 2 üb ü

Digene HC2 Mixed genomic Hybrid capture None ü ü

cobas HPV Test L1 DNA Real-time PCR β-globin ü ü ü

aProprietary exogenous internal control is spiked into the assay to monitor nucleic acid capture, amplification, and detection. This does not monitor cellularity of the specimen.
bGenotyping assay is indicated as a reflex test after positive result on the corresponding high-risk screening test.
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16 and 18 resulted in amended recommendations
by American Society for Colposcopy and Cervical
Pathology (ASCCP) to triage women who are positive
for one or both types to immediate colposcopy.
Women with high-risk HPV, but not types 16/18, are
to be monitored more frequently, but less aggressively
in the absence of cytological abnormalities.

Both Cervista assays are unique signal amplification
methods using the proprietary Invader cleavage-based
technology. Fig. 7.3 is a summary of the assay steps
[38]. The Invader chemistry includes two isothermal
reactions. In the first reaction, a sequence-specific
probe oligonucleotide binds to the HPV DNA target.
At the same time, an Invader probe also binds. The
Invader probe inserts itself between the target and the

sequence-specific probe, causing a brief secondary
structure to form. This is recognized by a proprietary
enzyme that cleaves the sequence-specific probe at the
overlapping site, releasing a 5’ section of the probe
called a flap. The 50 flap then participates in the sec-
ondary reaction, in which the flap now behaves as an
Invader oligo by binding to a hairpin oligonucleotide.
The hairpin probe utilizes fluorescence resonance
energy transfer (FRET) between attached fluorophore
and quencher molecules. When the 5’ flap binds to the
FRET hairpin probe, the structure is cleaved at a site
between the fluorophore and the quencher, producing
a fluorescent signal. The signal amplification occurs
because there is a large molar excess of the sequence-
specific probes so that many 5’ flaps are produced per
target HPV DNA sequence. The 5’ flaps cycle on and
off of the hairpin FRET probes, serving to produce fur-
ther signal amplification from the original target (up to
107-fold signal amplification per hour) [45].

One of the key benefits of the Cervista assays over
HC2 is the use of an internal control. The human his-
tone 2 gene (H2be) is used to monitor appropriate test
processing, inhibition, and to detect insufficient sample
(cellularity). This is important to rule out false-
negative results. The internal control signal is differen-
tiated by a red fluorophore, which is spectrally distinct
from the green signal produced by the target reaction.
Other controls include a positive control for each of
the three probe mixtures (assorted by gene homology
of the HPV types) and a negative control (Yeast
tRNA). Results are reported as positive or negative for
high-risk HPV, with further testing required to deter-
mine if the signal was caused by types 16 or 18 [45].

The Cervista 16/18 genotyping assay is based on
the same assay principle as the high-risk screening
test. It utilizes two probe mixtures, one for HPV 16
and one for HPV 18, in separate reactions. The H2be
internal control is integrated with each probe mixture.
Results are reported as HPV 16 positive/negative,
HPV 18 positive/negative, or HPV 16 and 18 positive/
negative. The genotyping test is only run if the screen-
ing test showed a positive result and is not indicated
as a stand-alone assay [46].

Both Cervista assays are approved for use with the
ThinPrep Pap Test PreservCyt solution (Hologic, Inc.)
and a number of broom-type collection devices. The
assays have been evaluated for post-cytology analysis
from the automated ThinPrep 2000 system only, but
have not yet been established for use with other cytol-
ogy processors. Of note, the minimum sample volume
required for the Cervista assays is half that of the HC2
assay (Table 7.2). The high-risk screen does not exhibit
as much cross-reactivity with nontarget HPV types
as does the HC2 assay, but the Cervista HPV HR
test does warn of cross-reactivity to HPV types 67

FIGURE 7.3 Invader assay. The schematic shows the major steps
of a signal amplification assay using Invader technology. The target
DNA is denatured, and a sequence-specific probe binds in conjunc-
tion with an Invader oligo. (A) The formation of this complex results
in cleavage at the indicated site. (B) Cleavage releases a free flap of
the probe molecule. Multiple flaps are generated from each target
DNA molecule. (C) The flap then associates with a FRET probe,
resulting in cleavage at the indicated site. (D) The fluorophore, F, is
released from the quencher, Q, causing a fluorescent signal propor-
tionate to the amount of target DNA. Source: This figure was repro-
duced with permission from Arney A, Bennett KM. Molecular diagnostics
of human papillomavirus. Lab Medicine 2010;41:523�30.
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and 70. The Cervista HPV 16/18 assay further shows
cross-reactivity to high levels of high-risk type 31,
which can mimic an HPV 16 positive result [45,46].

In comparison to the ALTS clinical trial, the
Cervista assay showed substantially similar perfor-
mance characteristics to the established Digene HC2
assay, per FDA approval. Some studies indicate that
specificity is equivalent or even increased in the
Cervista assay [47�49]. Another study suggests that
clinical specificity can be further increased for the
Cervista assay by changing the cutoff value for
positivity. This was shown to reduce the number of
false-positive results that are due to interfering factors
unrelated to HPV [50].

Aptima HPV and Aptima HPV 16 18/45

In October 2011, Gen-Probe, Inc. received FDA
approval for a new assay called the Aptima HPV
assay. Now marketed by Hologic, Inc., the Aptima
HPV assay uses a very different principle of HPV
detection as compared to its predecessors. The Aptima
assay detects 14 high-risk HPV types using a messen-
ger RNA (mRNA)-based detection system called TMA.
It targets the two major oncogenes, E6 and E7
(Fig. 7.1). A year later, the Aptima HPV 16 18/45 geno-
typing assay was approved by the FDA. This genotyp-
ing assay can distinguish HPV types 16, 18, and/or 45.
HPV type 45, although relatively uncommon overall,
has been implicated as the third most common geno-
type in invasive cervical cancer [51]. The Aptima geno-
typing assay, like the Cervista HPV 16/18 assay, is
designed to serve as a reflex test after a positive result
in the screening test.

The principle of the Aptima test includes the cap-
ture of mRNA target, amplification using MMLV
reverse transcriptase and T7 RNA polymerase, and
detection of amplicon by a hybridization protection
assay (HPA) (Fig. 7.4). Like the other FDA-approved
assays, the Aptima assays are approved for use with
ThinPrep liquid cytology specimens, including post-
cytology analysis on the ThinPrep 2000 system.

The mRNA target capture step is accomplished
using capture oligonucleotides that have two sections:
one section is complementary to the target HPV
mRNA and another section is a string of deoxyadeno-
sine residues (polyA). The capture oligomers and the
target mRNA is mixed with magnetic microparticles
that have poly-deoxythymidine (polyT) molecules
covalently attached. The sequence-specific section of
the capture oligo binds to the target HPV mRNA, and
then after a cooling step, the polyA section of the cap-
ture oligo binds to the polyT section of the magnetic
bead. The magnetic microparticles, now with target
mRNA attached, are pulled to the side of the tube

using magnets. This allows for nonbound nucleic acid
and other cellular components to be aspirated, fol-
lowed by washing to remove residual specimen
matrix. Amplification by TMA follows target capture.
TMA begins with production of a DNA copy of the
target HPV mRNA sequences, using MMLV reverse
transcriptase. Then T7 RNA polymerase produces mul-
tiple copies of RNA amplicon from the DNA copy
template. In the third step, detection is achieved using
a HPA. The HPA uses single-stranded labeled probes
that are complementary to the target RNA amplicon.
A selection reagent is added that inactivates the labels
on probes that are not hybridized to amplicon. Thus,
the probes that are hybridized to the target are pro-
tected from label inactivation. The protected hybrids
can then be detected using a luminometer. Relative
light units that exceed the cutoff are considered posi-
tive reactions. Both the Aptima HPV and the Aptima
HPV 16 18/45 assays use the same principle [52,53].

The Aptima assays do include an internal control,
although it is an exogenous control that is spiked into
samples during the assay. This internal control will
monitor target capture, amplification, and detection,
but cannot provide any information about specimen
cellularity (specimen adequacy). The internal control
nucleic acid participates in the TMA reaction in a simi-
lar manner as the HPV target RNA. During the HPA
detection, the internal control can be differentiated
from the HPV target by use of a probe with varying
light emission kinetics, known as a Dual Kinetic Assay
(DKA). In the genotyping assay, the HPV 16 signal can
be further distinguished from HPV 18/45 using the
DKA principle. The assay does not differentiate
between signal from HPV 18 and 45. Thus a genotyp-
ing result will be reported as positive/negative for
HPV 16 and then positive/negative for HPV 18 and/
or 45 together [52].

An advantage of the Aptima test is that the detec-
tion of the E6/E7 mRNA may increase clinical specific-
ity for cervical cancer, due to the overexpression of
E6/E7 from genome integration during persistent HPV
infection. A meta-analysis showed comparable clinical
sensitivities between Aptima HPV and HC2, but a
superior clinical specificity for the Aptima assay [54].
The increased clinical specificity may also be a factor
of the lack of cross-reactivity of the Aptima assay to
low-risk HPV types.

Since the Aptima and Cervista assays are both mar-
keted by Hologic, Inc., practitioners are likely to ques-
tion which assay is better. The answer is not simple, as
both laboratory testing volume and desired assay char-
acteristics play a role in the decision. The Aptima tests
are generally marketed to the higher volume laborato-
ries because of the automated testing options on the
Tigris and Panther systems. Cervista can also be
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automated on the Cervista HTA system, but is more
flexible for a smaller volume laboratory. The true inter-
nal control in the Cervista assay is important if speci-
men adequacy is a concern in causing false-negative
results. A study by Nolte and Ribeiro-Nesbitt in 2014
compared both of the Hologic tests using 208 patients
and found only 88% agreement between the two

assays [55]. Analysis showed that 18 specimens were
determined to be false positives by the Cervista test.
This was highly correlated with a triple-positive occur-
rence in which all three Cervista probe sets were above
the cutoff value, similar to a previous study that sug-
gested the cutoff should be increased for the Cervista
assay to prevent such false positives [50]. The Nolte

FIGURE 7.4 Aptima TMA assay. The figure shows the major steps of the Aptima TMA assay. (A) First, target mRNA sequences are cap-
tured using magnetic microparticles. A capture sequence containing a poly-adenosine sequence hybridizes to a poly-thymidine oligo that is
bound to the microparticle. The sequence-specific portion of the capture oligo then binds to the target mRNA. (B) After mRNA sequences are
captured, they are amplified using TMA. Reverse transcriptase synthesizes a complementary DNA sequence from the mRNA target. T7 RNA
polymerase creates many RNA copies of the DNA template. (C) A hybridization protection assay is used for amplicon detection. The RNA
amplicon binds to a probe containing several chemiluminescent molecules. The hybridization of the probe to target protects the probe from
degradation during a chemical selection step. Intact probes are then subjected to a detection reaction that releases a light signal.
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study suggested that the Aptima assay has a signifi-
cantly higher specificity than the Cervista assay and
recommended that triple-positive Cervista results
should be confirmed by another test or reported as
indeterminate [55].

Roche cobas HPV Test

In April 2011, the Roche cobas HPV test was
approved by the FDA for HPV screening in patients 21
years and older with abnormal cytology (ASCUS) and
for co-testing with cervical cytology in women 30 and
older. The Roche cobas HPV assay was the first HPV
test to include screening for 12 high-risk HPV types
(Table 7.2) while simultaneously genotyping for types
16 and 18, all in the same reaction. The clinical perfor-
mance of the cobas HPV assay was well established by
the ATHENA study, which validated the assay for risk
stratification of patients with cervical disease [56].
Unlike its counterparts, the cobas HPV assay is based
on target amplification-real-time PCR. The assay is per-
formed using the cobas 4800 system, which is a highly
automated platform that includes DNA isolation, PCR
reaction setup, amplification, and detection with mini-
mal hands-on time. The Roche cobas HPV test is a mul-
tiplex real-time PCR assay using uniquely labeled 5’
nuclease probes. The assay begins with specimen prep-
aration on the cobas x480 instrument. Approved speci-
men types are specimens collected in the ThinPrep
medium, including post-cytology processing using
either the ThinPrep 2000 system or the ThinPrep 3000
system [57,58]. Specimens are lysed, and DNA is puri-
fied by adsorption to magnetic glass particles. The
HPV DNA is selected by primers and probes specific
for the HPV L1 gene. The human β-globin gene serves
as an internal control to control for processing, detec-
tion, and specimen cellularity (specimen adequacy).
During real-time PCR, the target sequences are ampli-
fied by DNA polymerase, creating an exponential
increase in the amount of amplicon. The sequence-
specific probes include a 5’ reporter dye and a 3’
quencher dye. When the probe binds to the amplicon,
DNA polymerase cleaves the probe by 5’ to 3’ nuclease
activity, releasing the reporter dye from the quencher.
This produces a fluorescent signal unique to the probe.
The fluorescence is detected by the instrument during
each PCR cycle, creating an accumulating signal pat-
tern by the end of the reaction. The characteristic wave-
length of each probe allows the differentiation of signal
from HPV-16, HPV-18, other high-risk HPV (pooled),
and the internal control. Results are reported as HPV
16 positive/negative, HPV 18 positive/negative, and
other high-risk HPV positive/negative [59].

The Roche cobas HPV test offers some advantages
over some of the other offerings on the market. The

cobas assay does not require a reflex test for genotyp-
ing as does the Aptima and Cervista assays. Instead
the cobas HPV assay includes high-risk screening and
genotyping together in a multiplexed reaction. Since
PCR-based assays have a high level of analytical sensi-
tivity, the cobas assay includes a chemical reaction to
prevent contamination from previous amplification
reactions, called AmpErase uracil-N-glycosylase. The
integration of an endogenous internal control (β-glo-
bin) increases confidence in the quality of the speci-
men and reduces false negatives. The Roche cobas
assay does not show cross-reactivity with low-risk
HPV types [59]. Comparisons between the cobas assay
and other assays have indicated a high sensitivity and
specificity in detection and genotyping of HPV. As
compared to HC2 and the Aptima assay, one study
determined that clinical sensitivity was equivalent in
the Roche cobas assay, but the clinical specificity of the
Aptima assay for detecting CIN2 or greater remained
higher than the other tests [60]. In another comparison,
the Roche cobas HPV assay out-performed the
Cervista assay, revealing a concerning number of false
positives using the Invader technology [61].

Three years after initial FDA approval (April 2014),
the FDA announced that the Roche cobas HPV assay
could be used as a primary test for cervical cancer
screening in women 25 years and older [62]. This was
the first time an HPV test had been approved as a
replacement to the Pap test for primary screening. The
intended use of the Roche cobas HPV test now
includes options for primary HPV screening, along
with the currently recommended uses for screening
women with ASCUS cytology results or co-testing
with cytology [63]. The approval of HPV testing as a
front-line screen for cervical cancer will likely cause a
paradigm shift in routine patient management in
women’s health.

CLINICAL UTILITY

The clearly established link of HPV infection to the
progression of cervical dysplasia to carcinoma has
prompted numerous studies into the management of
women with abnormal cytology screening tests. A
large study was conducted by the National Cancer
Institute named the ASCUS-LSIL Triage Study (ALTS)
in order to compare different methods of patient man-
agement after an ASCUS (equivocal) diagnosis, includ-
ing triage by HPV DNA testing [64]. The findings led
to the 2006 American Society for Colposcopy and
Cervical Pathology (ASCCP) consensus guidelines for
the management of women with cervical neoplasia or
abnormal cervical screening tests. The 2006 ASCCP
guidelines recommended that a woman over age 30
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with a negative cytology report should be screened for
high-risk HPV infection. When genotyping assays
became available to distinguish HPV 16 and 18 from
other high-risk types, the guidelines were amended in
2009 to state that colposcopy should be done immedi-
ately if HPV types 16 or 18 were present in women
over 30. Soon, the co-testing with cytology and HPV
testing became a widely accepted strategy for cervical
cancer screening for women aged 30�64 years [26,65].

The 2012 ASCCP recommendations are quite com-
plex and a practitioner can benefit from published
algorithms in flow-chart format [66] or even from
smart phone apps. In sum, women who are 21�65
years in age may be screened with cytology every 3
years, or for women ages 30�65, a combination of
cytology and HPV testing (co-testing) may be per-
formed every 5 years. In the case of ASCUS cytology
results, HPV testing is recommended to determine tri-
age to colposcopy in women 25 and older [65]. The
prevailing guidelines for management of abnormal cer-
vical screens are currently changing due to emerging
data that proposes the HPV test can even replace
front-line Pap stain screening.

Large-scale clinical studies have shown the benefits
of using the more sensitive HPV test first to determine
potential risk for development of high-grade cervical
dysplasia or cancer. The largest such study was at
Kaiser-Permanente Northern California, in which more
than 1 million women 30�64 years old were tested for
both HPV (by HC2 assay) and by cervical cytology
(Pap) [67]. This study expanded beyond the data from
the ALTS study and allowed for a more detailed strati-
fication of recommendations based on age, cytology
classification, and HPV status. The most recent update
from the study found that the risk of developing CIN3
or greater was significantly lower after an HPV-
negative result than after a Pap-negative result [68].
Other studies have shown similar results when com-
paring HPV testing to cervical cytology alone. An anal-
ysis of four European clinical trials showed that HPV
screening provided a 60�70% greater protection
against invasive cervical cancer as compared to cytol-
ogy [69]. The approval of the Roche cobas HPV assay
was largely based on the results of the ATHENA
study, which examined women with ASCUS, with nor-
mal cervical cytology, and a broad population of
women 25 years and older [56,70,71]. The 2012 ASCCP
guidelines did not recommend HPV co-testing until
age 30, and only recommend HPV testing in women
25�29 if first given an ASCUS diagnosis by cytology
[66]. However, cervical cancer incidence begins to
increase significantly between ages 25 and 35 [10], and
although HPV infection can be transient, this age
group still has a significant risk of developing cervical
dysplasia that can lead to cancer. There is also

evidence that HPV screening is still necessary through
age 65 [72]. A new testing algorithm proposed by the
ATHENA study, approved by the FDA, and now
recommended by the ASCCP is significantly different
from the current guidelines.

The newest clinical guidance was released in
January 2015 by the Society of Gynecologic Oncology
and the ASCCP [73]. The guidance states that primary
HPV screening can be used as an alternative to the cur-
rent cytology-based cancer screening approaches.
Primary HPV screening may begin for women 25 years
and older, by an FDA-approved HPV assay that
includes an approved indication for primary screening.
If positive for high-risk HPV types other than 16 and
18, the patient should be triaged to cytology testing,
followed by colposcopy in the case of ASCUS result or
worse. If positive for HPV types 16 or 18, the patient
should be referred immediately to colposcopy. Patients
with negative HPV results should remain under rou-
tine screening schedules, in which rescreening for
HPV should occur no sooner than every 3 years
[62,73]. A negative high-risk HPV test has been shown
to provide greater reassurance of low risk to develop
CIN3 or greater, as compared to a negative cytology
result [73]. It is important to note that in the case of
HPV primary screening, the Pap test is not necessarily
eliminated, but instead shifted to serve as the second-
line test. The exception would be in the case of HPV
16- or 18-positive patients, where the Pap test would
be skipped for triage to immediate colposcopy. This
interim guidance did not eliminate the option for co-
testing or primary cytology screening, but does offer
the practitioner additional screening options in light of
recent research.

LIMITATIONS

As expected for any laboratory test, molecular HPV
testing has limitations, both from clinical and technical
perspectives. One clinical limitation is the age restric-
tion for the use of HPV testing. HPV screening is not
recommended below the age of 25, since infection is
common in the younger age group and is often cleared
naturally without causing cervical dysplasia. HPV test-
ing cannot distinguish between transient and persis-
tent infection. A positive result must be considered
carefully in the clinical context of the patient. A posi-
tive result for HPV is not a guaranteed indicator of
cancer or even cervical abnormality. Instead it should
be viewed as a heightened risk factor that warrants
further investigation, either by cervical cytology or
colposcopy, depending on the screening algorithm
used. Practitioners and patients can be more reassured
from a negative HPV result, as a negative result
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indicates a 3-year cumulative incidence rate of CIN31
of only 0.3�0.5% [73]. Still, even with such a high neg-
ative predictive value, there is always the possibility of
a false negative, either due to extremely rare cases of
HPV-negative cervical cancer or because of technical
limitations of the assay. During the visual inspection
of a cervical cytology specimen, occasional incidental
findings can be discovered, such as other metastatic
tumors or non-HPV infections. Such discoveries would
not occur in the case of primary HPV screening, if the
patient is HPV negative. There is little data on this par-
ticular aspect of reduction or elimination of front-line
cervical cytology, so further research may be needed.

Technical limitations of HPV testing vary depending
on the assay utilized. One universal limitation appears
to be the variability of assay performance using the
SurePath (Becton Dickinson) liquid cytology medium.
While widely used for cervical cytology, the SurePath
medium is not cleared for use in any of the current
FDA-approved HPV assays. Many laboratories have
performed independent validations of the SurePath
medium for HPV testing, essentially operating off-
label. However, there are concerns that the stability of
the HPV DNA is compromised in the medium, caus-
ing an elevated false-negative rate [74]. If a practitioner
chooses to order an HPV test using SurePath sample
medium, it is important to inquire with the laboratory
regarding the validations performed and the limita-
tions of the test.

Other technical limitations of some HPV assays
include lack of internal controls or use of controls that
cannot challenge the cellularity of the specimen
(Table 7.3). Preanalytical error, such as inadequate
sampling, can cause a false-negative result. Cross-
reactivity between HPV types is another concern in
some assays. Cross-reactivity of an assay to a low-risk
strain may falsely indicate the presence of a high-risk
strain, potentially causing patient harm in the form of
unnecessary invasive follow-up testing. Even if cross-
reactivity is not published for a particular assay, it is
important to note that new HPV strains are still being
classified with the help of metagenomics [11], with
unknown clinical correlations.

Despite the limitations, testing for HPV in the preven-
tion of cervical cancer is firmly established in medical
practice and will continue to expand. As molecular tech-
nology evolves, more HPV assays will likely be offered
on the market, giving the medical provider an array of
choices for cervical cancer screening. HPV testing will
continue to be critical in monitoring the effectiveness of
HPV vaccination [75]. Further clinical studies in other
HPV-triggered cancers, such as head, neck, anal, and
penile cancers, will determine whether HPV molecular
testing may eventually play a clinically significant role
in the management of those patients as well.
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INTRODUCTION

The family Herpesviridae comprises over a hundred
viruses which include eight human herpes viruses: (1)
herpes simplex-1 (HSV-1), (2) herpes simplex-2 (HSV-2),
(3) varicella-zoster virus (VZV), (4) Epstein�Barr
virus (EBV), (5) cytomegalovirus (CMV), (6) human
herpesvirus-6 (HHV-6), (7) human herpesvirus-7 (HHV-
7), and (8) human herpesvirus-8 (HHV-8). Herpes
viruses possess a double-stranded DNA genome sur-
rounded by an icosahedral nucleocapsid encased by an
envelope with viral glycoproteins. All herpes viruses
encode a core set of proteins involved in nucleic acid
synthesis, nucleic acid metabolism, protein modification,
and virion structure [1]. The viral life cycle consists of a
lytic phase with active viral replication and resultant
cell destruction and a latent phase with dormant virus
within neurons or lymphocytes that can later reactivate
and produce infectious virus. Reactivation is more likely
to occur under stress and in immunocompromised hosts
with decreased T-cell immunity [2].

Based on serological surveillance, nearly all adults
have been infected with one or more human herpes-
viruses. Primary infection usually occurs through
direct contact with infected oral or genital secretions,
although VZV is an exception and can be spread by
airborne transmission. Intrauterine infection and trans-
mission via organ transplantation can also occur.
Several human herpes viruses cause similar clinical
syndromes including vesicular skin lesions, mononu-
cleosis, hepatitis, encephalitis, retinitis, and mononu-
cleosis (Tables 8.1�8.4). Importantly, human herpes
viruses cause more severe disease in persons with
impaired cellular immunity, such as solid organ trans-
plant (SOT) recipients receiving immunosuppression

therapy, hematopoietic cell transplant (HCT) recipi-
ents, and patients with acquired immunodeficiency
syndrome (AIDS).

The diagnosis and monitoring of human herpes virus
infections increasingly relies upon the detection and
quantitation of human herpes virus DNA in clinical spe-
cimens [3,4]. These nucleic acid amplification techniques
have in many laboratories replaced conventional viral
diagnostic methods, such as viral culture and antigen
detection, and have redefined the manner in which
human herpes virus infections are diagnosed and man-
aged. This chapter describes each human herpesvirus in
turn and highlights the application and utility of molec-
ular diagnostics for specific clinical syndromes.

HERPES SIMPLEX VIRUS

HSV-1 and HSV-2 are a common cause of dermal,
oral, and genital infections worldwide (Table 8.1).
HSV-1 has a seroprevalence of 60% and is acquired at
a younger age, while the seroprevalence of HSV-2 is
20% and correlates with the onset of sexual activity
[5,6]. Both viruses are transmitted through direct con-
tact. After primary infection, HSV establishes latency
in neurons and can later reactivate and produce recur-
rent symptoms. Primary infections are more severe
than recurrent ones, but reactivation of latent virus can
result in frequent clinical manifestations. HSV infection
most commonly results in painful vesicles on an ery-
thematous base that subsequently ulcerate. Oral
lesions are most often due to HSV-1 and genital lesions
due to HSV-2, although genital lesions can be caused
by either HSV-1 or HSV-2. HSV infection can also lead
to serious disease such as aseptic meningitis,
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encephalitis, and ocular involvement with keratitis,
blepharitis, conjunctivitis, and retinitis [7]. In immuno-
compromised patients, HSV may disseminate to vis-
ceral organs involving the gastrointestinal (GI) tract,

liver, lungs, adrenal glands, and bone marrow with
resultant high morbidity and mortality [8,9].

The preferred method for the diagnosis of HSV
infection is the detection of HSV DNA by nucleic acid

TABLE 8.1 Clinical Syndromes and Application of Molecular Diagnostics for HSV-1, HSV-2, and VZV

Clinical syndrome Method Specimen type(s)

HSV-1 AND HSV-2
Immunocompetent persons Gingivostomatitis NAAT Lesion swab in VTM

Genital herpes NAAT Lesion swab in VTM

Cutaneous herpes NAAT Lesion swab in VTM

Keratoconjunctivitis NAAT Conjunctival swab in VTM

Meningitis, Encephalitis NAAT CSF

Immunocompromised personsa Dissemination, visceral involvement NAAT Plasma, tissue, CSF

Drug resistance Sequencing Plasma, tissue, CSF, swab in VTM

VZV
Immunocompetent persons Chickenpox Not performed Not applicable

Herpes zoster NAAT Lesion swab in VTM

Immunocompromised persons Dissemination, visceral involvement NAAT Plasma, tissue, CSF

aIncludes clinical syndromes seen in immunocompetent persons.
HSV, herpes simplex virus; VZV, varicella-zoster virus; NAAT, nucleic acid amplification test; VTM, viral transport media; CSF, cerebrospinal fluid.

TABLE 8.2 Clinical Syndromes and Application of Molecular Diagnostics for EBV

Clinical syndrome Method Specimen type(s)

EBV
Immunocompetent persons Mononucleosis Not performed Not applicable

Nasopharyngeal carcinoma NAAT Plasma, nasopharyngeal swab in VTM

Immunocompromised persons PTLD NAAT Plasma, whole blood, PBMC

EBV, Epstein�Barr virus; NAAT, nucleic acid amplification testing; VTM, viral transport media; PTLD, posttransplant lymphoproliferative disorder; PBMC,

peripheral blood mononuclear cells.

TABLE 8.3 Clinical Syndromes and Application of Molecular Diagnostics for CMV

Clinical syndrome Method Specimen type(s)

CMV
Immunocompetent persons Mononucleosis Not performed Not applicable

Congenital infection NAAT Urine, saliva in the neonate

Amniotic fluid in pregnancy

Immunocompromised persons GI disease NAAT Tissue

Pneumonitis NAAT BAL fluid

Hepatitis NAAT Tissue

Retinitis NAAT Ocular fluid

Encephalitis NAAT CSF

Drug resistance Sequencing Plasma, tissue, BAL fluid, ocular fluid

Special consideration in the immunocompromised Disease prevention NAAT Plasma

CMV, cytomegalovirus; NAAT, nucleic acid amplification testing; GI, gastrointestinal disease; BAL, bronchoalveolar lavage; CSF, cerebrospinal fluid.
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amplification testing (NAAT), most commonly poly-
merase chain reaction (PCR), of lesion scrapings,
fluids, or tissue [10]. Isolation of virus and identifica-
tion of cytopathic effect on tissue culture is three to
four times less sensitive than PCR and has a longer
turnaround time of 2�4 days compared to hours
[8,11]. Wright or Tzanck straining of scrapings from
the base of HSV lesions may demonstrate characteris-
tic giant cells or intranuclear inclusions, but similarly
has low sensitivity and cannot differentiate between
HSV and VZV infections [7,10]. Compared to patients
with biopsy proven and clinically correlated HSV
encephalitis, detection of HSV DNA by PCR in cere-
brospinal fluid (CSF) is highly sensitive and is the
method of choice for the diagnosis of HSV encephali-
tis and meningitis [12,13]. One study evaluating the
role of quantitative HSV PCR in CSF found that high-
er viral load, defined as more than 104 copies/mL,
was associated with the presence of brain lesions on
computed tomography (CT) and magnetic resonance
imaging (MRI) and that these patients had poorer
clinical outcomes than patients with lower HSV viral
loads in the CSF [14]. Additional studies are needed
to further understand the utility of quantitative HSV
PCR in CSF as such testing is not currently routinely
performed.

Acyclovir is the first-line treatment for HSV infec-
tions. Patients who receive long-term acyclovir and
have profound immunosuppression are at increased
risk for the development of acyclovir-resistant HSV
[15,16]. Among immunocompromised patients, the
prevalence of drug resistance reaches 3.5�10%, with

rates highest in HCT recipients [16]. Without acyclovir
prophylaxis, 80% of HSV seropositive patients reacti-
vate infection after receiving HCT [17]. As a result,
prophylaxis is recommended in these recipients for at
least the first several weeks to months after transplan-
tation. Prophylaxis against HSV has prevented and
shortened the course of mucocutaneous infection and
reduced bacteremia with oral pathogens [18�20]. In
immunocompetent hosts, HSV resistance to acyclovir
is less than 1% [21]. Cases of resistance in immuno-
competent patients are most often associated with
recurrent genital herpes [16], but have also been
reported in patients with HSV infection involving
immune-privileged sites such as the eye and central
nervous system (CNS) [21,22]. Drug resistance testing
should be considered in patients who develop or do
not resolve HSV lesions while on prolonged acyclovir
therapy.

In clinical laboratories, HSV drug resistance testing
is currently performed using phenotypic methods.
However, genotypic drug resistance testing is an
important application of molecular diagnostics that
predicts drug resistance based on the identification of
specific mutations. In particular, mutations in HSV
thymidine kinase encoded by the UL23 gene and DNA
polymerase encoded by the UL30 gene result in resis-
tance to acyclovir [23]. As new mutations associated
with drug resistance continue to be described and
sequencing technologies become even more accessible,
it is anticipated that HSV genotypic drug resistance
testing will be more commonly used outside of the
research setting [24�27].

TABLE 8.4 Clinical Syndromes and Application of Molecular Diagnostics for HHV-6, HHV-7, and HHV-8

Clinical syndrome Method Specimen type(s)

HHV-6
Immunocompetent persons Roseola infantum Not performed Not applicable

Immunocompromised persons Encephalitis NAAT CSF

Dissemination, visceral involvement NAAT Plasma, tissue

HHV-7
Immunocompetent persons Roseola infantum Not performed Not applicable

Immunocompromised personsa Encephalitis NAAT CSF

Dissemination, visceral involvement NAAT Plasma, tissue

HHV-8
Immunocompetent persons Febrile exanthum Not performed Not applicable

Immunocompromised personsb Kaposi sarcoma NAAT Plasma, PBMC, tissue

Multicentric Castleman disease NAAT Plasma, PBMC, tissue

Primary effusion lymphoma NAAT Plasma, PBMC, effusion fluid

aRoutine testing for HHV-7 DNA in plasma is not recommended, as detection often does not correlate with disease.
bThe diagnosis of HHV-8-associated malignancies requires histopathological evaluation.
HHV-6, human herpes virus-6; HHV-7, human herpes virus-7; HHV-8, human herpes virus-8; NAAT, nucleic acid amplification testing; CSF, cerebrospinal fluid;

PBMC, peripheral blood mononuclear cell.
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VARICELLA-ZOSTERVIRUS

VZV infection results in two major clinical syn-
dromes: chickenpox and herpes zoster (Table 8.1).
Primary infection through respiratory or direct contact
results in chickenpox, an infection presenting as dif-
fuse, pruritic vesicles with eventual crusting of lesions
[28]. Chickenpox most commonly manifests during
childhood and is self-resolving, but can cause more
serious manifestations in adults and life-threatening
disease in immunocompromised hosts. In such
patients, the duration of healing of cutaneous lesions
can be prolonged and there is risk for VZV dissemina-
tion to visceral organs such as the lungs, liver, and
CNS [29,30]. Furthermore, presentation of VZV can be
atypical [29]. After primary infection, the virus estab-
lishes latency in the dorsal root ganglia, but can later
reactivate and lead to herpes zoster. Zoster is charac-
terized by painful, unilateral vesicular lesions in a der-
matomal distribution. Herpes zoster occurs at all ages,
but is more frequent in the elderly or the immunocom-
promised [31,32].

Detection of VZV DNA by PCR in vesicle fluid,
blood, spinal fluid, and other tissues is the most sensi-
tive test for diagnosing varicella disease [33�37]. In
patients with zoster, the most specific and sensitive
samples for the detection of VZV DNA by PCR are
from crusts and vesicle fluid swabs. In one study, 97%
of crusts, 94% of vesicle swabs, 90% of crust swabs, and
84% of papule swabs were VZV DNA positive ($10
DNA copies/sample). The probability of a false-
negative result was 5% for crusts, 6% for vesicle swabs,
14% for papule swabs, and 24% for crust swabs [36].
Other methods for detecting VZV from lesions, such as
direct fluorescent antibody (DFA) testing and viral cul-
ture, have lower sensitivity [33,38]. In plasma, detection
of VZV DNA has been correlated with symptomatic
VZV disease. One study demonstrated that 10/10
immunocompetent patients with zoster and 4/4 immu-
nocompromised patients with visceral VZV disease had
detectable VZV DNA in plasma, while none of the 108
asymptomatic SOT recipients who were greater than 1
year posttransplantation and off antiviral therapy had
positive plasma VZV DNA [34]. Higher viral loads in
immunocompromised patients with visceral VZV may
also predict prolonged clinical courses [39].

EPSTEIN�BARRVIRUS

EBV is ubiquitous with a seroprevalence of 90�95%
in adults (Table 8.2). Primary infection with EBV
results from exposure to the oral secretions of seropos-
itive individuals. The virus has a tropism for epithelial

cells and establishes lifelong latency in B cells with
periodic reactivation and viral shedding in saliva.
Illness from EBV can include infectious mononucleosis,
characterized by fever, sore throat, and lymphadenop-
athy, as well as hepatitis, pneumonitis, and leukope-
nia. In immunocompromised hosts, uncontrolled
proliferation of EBV-infected B cells may occur result-
ing in lymphoproliferative diseases. Posttransplant
lymphoproliferative disorder (PTLD) is seen in SOT
and HCT recipients, but can occur in any patient who
is on high-dose immunosuppression or with underly-
ing dysfunction in T-cell immunity. EBV has also been
implicated in the pathogenesis of several malignancies
including nasopharyngeal carcinoma, Burkitt lym-
phoma, and Hodgkin lymphoma.

PTLD is a serious complication affecting transplant
recipients. PTLD presents as a wide spectrum of dis-
ease ranging from indolent lymphoproliferation to
malignant aggressive lymphoma with high mortality
despite aggressive chemotherapy [40]. Overall mortal-
ity of PTLD is difficult to establish, but has been
reported to be 40�70% after SOT and 90% after HCT
[41]. The prevalence of PTLD ranges from 1% to 20%,
but varies by presence of risk factors. Development of
PTLD is greatest within the first few months of trans-
plantation, although the risk is prolonged in SOT reci-
pients given the ongoing need for immunosuppressive
therapy to minimize graft rejection. PTLD has been
reported to occur as far out as a decade from SOT [42].
In SOT, prevalence varies with type of organ trans-
planted and pretransplant EBV serostatus. Lung and
intestinal transplants, which are lymphoid-rich organs,
have the highest rates of PTLD. Similarly, seronegativ-
ity prior to transplant and primary EBV infection after
transplant are significant risk factors for PTLD
[40,42,43]. In HCT, risk factors include HLA-
mismatching, T-cell depletion, use of anti-lymphocyte
antibodies, and graft versus host disease [41].

Given the significance of PTLD, early recognition
and initiation of therapy is important. EBV quantita-
tion has been increasingly incorporated into manage-
ment algorithms for PTLD, although the optimal
way to perform, interpret, and utilize EBV PCR assays
for surveillance, diagnostic, and disease monitoring
requires ongoing evaluation [44]. The optimal blood
compartment (whole blood vs plasma) to test for EBV
testing remains controversial. Both whole blood and
plasma have been found to be useful for EBV DNA
measurements, although plasma is more specific for
the diagnosis of PTLD in immunosuppressed patients
[45]. Prior attempts at defining viral load thresholds
to initiate action have been hampered by significant
interlaboratory variability in qualitative and quantita-
tive EBV results. To address this, the World Health
Organization (WHO) approved the 1st International
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Standard for EBV for Nucleic Acid Amplification
Techniques in 2012. This reference standard defines an
EBV international unit (IU) in order to facilitate the
comparison of EBV measurements worldwide. The
commutability, the ability of a reference material to
have interassay properties comparable to that of
authentic specimens, of the EBV WHO standard has
also been evaluated for two commonly used assays
with favorable results [46]. Efforts toward harmonizing
viral load results across laboratories will allow for
increased generalizability of findings from studies
evaluating the role of EBV quantitation in the manage-
ment of patients with PTLD.

Surveillance monitoring of EBV DNA levels has
been useful in predicting risk for PTLD. Additionally,
initiation of preemptive treatment with reduction of
immunosuppression or use of the anti-CD20 antibody
rituximab has resulted in decreased incidence of PTLD
in transplant recipients [47�50]. High viral loads often
antedate the clinical presentation of EBV-associated
PTLD, although a strong correlation does not always
exist [51,52]. The viral load can remain low if the site
of PTLD is protected such as early in the graft itself or
within GI tissues. Furthermore, patients with viremia
do not always have or develop PTLD. In high-risk
asymptomatic SOT recipients being serially monitored,
EBV DNA testing had good sensitivity for detecting
EBV-positive PTLD. However, it had poor specificity,
resulting in good negative (.90%) but poor positive
predictive value (as low as 28% and not .65%) in
these populations [44,52,53]. Optimal monitoring fre-
quency remains uncertain. Since EBV doubling times
are as short as 49�56 h, weekly monitoring over the
high-risk period has been recommended [44]. The suit-
ability of EBV level as a predictive marker for PTLD
relapse remains unclear. Discordance in viral load in
whole blood and clinical course has been observed,
with some EBV-associated PTLD patients in clinical
remission having EBV levels as high as those recorded
at the onset of PTLD and some patients with progres-
sive disease having a decline in EBV [54].

EBV quantitation is also increasingly used in the
diagnosis and management of nasopharyngeal carci-
noma. Plasma EBV levels can identify high-risk
patients at risk for relapse. Compared to patients who
sustained clinical remission, patients with relapsed dis-
ease had significantly higher pretreatment EBV DNA
and persistently detectable posttreatment EBV DNA
levels in plasma. Additionally, decreased survival was
associated with higher pretreatment and persistently
positive posttreatment plasma EBV DNA [46,55,56].
EBV DNA has also been evaluated in salivary and
nasopharyngeal biopsy specimens. EBV DNA levels in
salivary specimens were higher posttreatment than
pretreatment with a trend toward higher levels in

patients with advanced stage compared to early-stage
nasopharyngeal carcinoma [57]. Nasopharyngeal brush
sampling was found to correlate with nasopharyngeal
carcinoma and may be a less invasive adjunct in diag-
nosis and posttreatment monitoring [58]. The role of
EBV DNA in the management of patients with PTLD
and nasopharyngeal carcinoma is significant and
would benefit from continued study.

CYTOMEGALOVIRUS

CMV seroprevalence ranges from 45% to 100%
depending on the population, with infection most often
occurring within the first two decades of life [59,60].
Most CMV infections are mild or asymptomatic.
Primary infection with CMV can produce an infectious
mononucleosis-like syndrome with fever, lymphade-
nopathy, and relative lymphocytosis (Table 8.3). After
initial infection, the virus establishes life-long latency in
peripheral blood mononuclear cells (PBMCs) [60,61].
While individuals with intact immune responses are
able to suppress viral replication, immunocompromised
and immunologically immature hosts are most at risk
for the development of severe disease after primary
infection or reactivation. Symptomatic CMV disease can
affect any organ in the body, resulting in interstitial
pneumonitis, hepatitis, esophagitis, colitis, retinitis, and
myocarditis [62].

In transplantation, CMV is a major cause of morbid-
ity and preventable cause of mortality. Without a pre-
vention strategy, CMV disease typically occurs within
the first 3 months after SOT and first 120 days in HCT
recipients [63,64]. Donor and recipient CMV serostatus
is perhaps the most important predictor of CMV infec-
tion and disease, with serostatus mismatch conferring
the highest risk [65�68]. The risk for CMV disease is
also increased in transplant recipients requiring high
levels of immunosuppression such as lung transplants
[69,70]. The strategies aimed at CMV disease preven-
tion involve the use of universal prophylactic and pre-
emptive therapies. Universal prophylaxis entails the
administration of antivirals directed to all predisposed
transplant recipients for a defined high-risk period.
Preemptive therapy involves the use of antivirals
guided by the early detection of CMV viremia prior to
end-organ involvement, as high CMV levels and rate
of rise of viremia are risk factors for the development
of CMV disease [71�74]. A prophylaxis strategy is eas-
ier to coordinate but has higher drug costs and
increased monitoring for drug toxicity. A preemptive
strategy requires weekly CMV surveillance, with the
benefit of potentially shorter courses of antivirals and
less drug toxicity. In HCT recipients, a preemptive
approach is most often recommended. The
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prophylactic use of ganciclovir has raised concern for
prolonged neutropenia and bacterial infection
[69,75,76]. In SOT recipients, the superiority of pre-
emptive versus prophylactic therapy for CMV disease
prevention remains unclear due to few randomized
trials and significant heterogeneity between studies
[77�81]. However, prophylactic antiviral therapy is
generally recommended as the preferred prevention
strategy in CMV donor positive/recipient negative
(D1/R2) and recipient positive (R1) individuals.

The widespread implementation of quantitative
CMV testing has significantly contributed to the suc-
cess of preemptive strategies. Initially, determination
of CMV levels in the blood was made via microscopy,
utilizing indirect immunofluorescence to detect the
CMV pp65 structural phosphoprotein antigen in
peripheral blood leukocytes. However, antigenemia
testing is laborious, requires rapid specimen proces-
sing, and is insensitive during neutropenic episodes.
As such, nucleic acid amplification techniques, particu-
larly real-time PCR methods, have become the pre-
ferred approach for CMV detection and quantitation.
Significantly, studies in immunocompromised patients
have shown that real-time PCR assays are more sensi-
tive than pp65 antigenemia without loss of specificity
[82,83]. In addition, real-time PCR is less affected by
specimen transport conditions and can be automated
to efficiently process large numbers of specimens
[82,84]. Despite the advances in quantitative CMV test-
ing, optimal viral thresholds at which to initiate pre-
emptive treatment have yet to be identified. Previous
attempts at establishing broadly applicable quantita-
tive cutoff values have been hampered by significant
interassay variability. While many factors play a role
in the variability of quantitative results, selection of the
quantitative calibrator, commercially prepared primers
and probes, and amplification target gene were most
prominently associated with variability in a multivari-
ate analysis [85]. In an attempt to address this issue,
the WHO created the 1st International Standard for
Human CMV for Nucleic Acid Amplification
Techniques in 2010. While the commutability of the
WHO International Standard and secondary standards
calibrated to the IU need further evaluation, standardi-
zation that delivers comparable quantitative data
across different laboratories provides the opportunity
to identify clinical viral load thresholds in future pro-
spective trials.

In addition to the evaluation of blood samples, pri-
marily plasma, PCR testing for CMV DNA in tissues
and fluids is increasingly being used to aid in the diag-
nosis of CMV end-organ disease, such as CMV colitis
and pneumonitis. Definitive diagnosis of CMV disease
has required histologic demonstration of characteristic
viral inclusions or detection of viral proteins by

immunohistochemical (IHC) staining in tissue samples.
However, a number of studies have shown that detec-
tion of CMV DNA by PCR in GI specimens, both fresh
and formalin-fixed, paraffin-embedded tissues, may be
a useful adjunct to histologic evaluation for the diag-
nosis of CMV GI disease [86,87]. Future studies will be
required to evaluate the utility of nucleic acid amplifi-
cation techniques for detection of CMV end-organ dis-
ease in other tissue types.

The utility of CMV DNA testing in bronchoalveolar
lavage (BAL) fluid has also been evaluated in retrospec-
tive studies. Testing of CMV by PCR in BAL is believed
to be most useful in patients with underlying immuno-
suppression, and in particular, the absence of CMV
DNA has good negative predictive value [88,89].
However, the clinical significance of qualitative and
quantitative detection of CMV in BAL fluid on disease
detection and outcomes remains unclear. Though detec-
tion of CMV in BAL fluid is common 6 months post-
lung transplant, correlation with the development of
bronchiolitis obliterans syndrome is inconsistent
[90�92]. Similarly, though one study of 27 lung trans-
plant recipients noted that a BAL viral load of more
than 500,000 copies/mL by quantitative hybrid capture
assay correlated with CMV pneumonitis, other studies
have found no such correlation of disease with BAL
viral load [93]. More data is needed to better under-
stand the application of CMV DNA positive BAL fluid
in immunocompromised patients.

CMV genotypic drug resistance testing is another
application of molecular diagnostics that has a critical
role in the management of transplant recipients. In
SOT recipients, the rate of CMV drug resistance varies
from 2% to 17.6% [94�97]. CMV drug resistance in
HCT recipients is infrequent. However, significant
resistance (14.5%) has been noted in patients receiving
haploidentical transplants, likely due to high viral
levels, and prolonged duration of viremia and expo-
sure to antivirals [98]. Clinical outcome in patients
with resistance-associated disease is poor with higher
rates of progressive viremia and CMV-associated mor-
tality [97,99]. Guidelines suggest that CMV drug resis-
tance testing should be considered in patients who
have persistent or increasing viral loads despite 223
weeks of antiviral therapy [100].

CMV drug resistance mutations are located in the
UL97 phosphotransferase and UL54 DNA polymerase
genes. All current antivirals recommended for CMV
treatment (ganciclovir, valganciclovir, cidofovir, and
foscarnet) ultimately target viral DNA polymerase,
although ganciclovir and its prodrug, valganciclovir,
require phosphorylation by the viral UL97 kinase for
antiviral activity. The most common antiviral resis-
tance strains contain mutations in the UL97 gene,
which confer resistance to ganciclovir and
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valganciclovir [101]. Mutations in the UL54 gene can
confer cross-resistance to more than one antiviral, par-
ticularly with ganciclovir and cidofovir, and less com-
monly with foscarnet [102]. Alternative mutations may
become clinically relevant as new antivirals with dif-
ferent mechanisms of actions are approved.

Molecular diagnostics have also significantly contrib-
uted to the early diagnosis of CMV in nontransplant
recipients. CMV is a leading cause of congenital infec-
tion worldwide, occurring in 0.22 2.2% of live births
[62]. While the majority (852 90%) of infants with con-
genital CMV are asymptomatic, symptomatic infants
can develop jaundice, hepatosplenomegaly, microceph-
aly, intrauterine growth retardation, and chorioretinitis
[103]. Beyond acute manifestations, symptomatic
infants are at increased risk for permanent disabilities
such as sensorineural hearing loss and mental disabil-
ities. Ten to fifteen percentage of asymptomatic infants
can also develop these permanent disabilities [103]. The
standard method for the diagnosis of congenital CMV
infection in neonates has been viral culture of urine or
saliva specimens obtained by the end of the third week
of life. As an alternative to culture, PCR has been eval-
uated for the diagnosis of congenital CMV for its
enhanced sensitivity and rapid turnaround. Several
studies have shown that PCR performs as well as rapid
shell vial culture of urine or saliva specimens for the
diagnosis of congenital CMV infection [104�106].
Evaluation of amniotic fluid at 21 weeks gestation for
CMV DNA by PCR has been found to have high speci-
ficity for congenital CMV, but false positives have been
noted [107,108]. The utility of quantitative CMV testing
in amniotic fluid is unclear, though there have been
case reports suggesting a possible correlation of high
CMV levels with disease [107,109].

HUMAN HERPESVIRUS-6

Like other herpes viruses, HHV-6 is ubiquitous with
a seroprevalence of more than 90% in adults [110].
Two variants of HHV-6 have been identified, HHV-6a
and HHV-6b, and are now considered separate spe-
cies. The majority of primary infections and reactiva-
tion events are due to HHV-6b. Primary infection with
HHV-6b occurs early in life and can present asymp-
tomatically or with classic roseola infantum with fever
and rash (Table 8.4). After primary infection, HHV-6
establishes latency in salivary glands and monocytes
with potential for reactivation and subsequent trans-
mission via saliva exposure. Uniquely, 1% of the popu-
lation possesses a chromosomally-integrated version of
HHV-6 (ciHHV-6) [111]. Both HHV-6a and HHV-6b
can integrate into the genome of a germ cell and be
inherited in a Mendelian manner by resultant

offspring. In these offspring, at least one integrated
copy of the HHV-6 genome is present in every nucle-
ated cell. Consequently, these individuals have very
high levels of HHV-6 DNA in blood and tissue
samples.

In transplant recipients, HHV-6 DNA is detected in
the blood in 302 50% of patients and has been associ-
ated with disease [112]. HHV-6 encephalitis is the most
serious complication portending a poor prognosis
[113]. HHV-6 mRNA and antigen have been found in
brain lesions on autopsy of patients with HHV-6
encephalitis, with the hippocampus most commonly
affected [114]. In HCT recipients, HHV-6 has also been
associated with CMV reactivation, acute graft versus
host disease (GVHD), bone marrow suppression, pneu-
monitis, and mortality [115�119]. Risk factors for the
development of HHV-6 encephalitis in HCT recipients
include myeloablative conditioning and umbilical cord
blood transplantation [120]. In SOT recipients, encepha-
litis has been reported, and CMV reactivation, organ
dysfunction, and rejection remain as concerns [121].
ciHHV-6 has been described in both HCT and SOT
recipients. Identification of these individuals from those
with actively replicating virus is important to minimize
unnecessary antiviral treatment. Beyond this, the signif-
icance ciHHV-6 in transplant recipients remains uncer-
tain. Some small studies have suggested an association
with higher frequency of bacterial infection and indirect
effects such as allograft rejection, while others have
found no disease associations [122,123].

HHV-6 reactivation is diagnosed via detection of
HHV-6 DNA in plasma by PCR. Quantitative real-time
PCR methods are often performed, but clinically sig-
nificant thresholds have yet to be determined. Patients
with ciHHV-6 can be identified using fluorescent in
situ hybridization (FISH) with a specific HHV-6 probe
performed on metaphase chromosome preparations
from peripheral blood. While FISH is considered the
reference standard technique, alternative methods
include detection of HHV-6 DNA by PCR of hair folli-
cles and determining the ratio of HHV-6 to cellular
DNA by droplet digital PCR in cellular and plasma
samples [124,125].

The clinical significance of the presence of HHV-6
DNA in plasma has been evaluated in several studies.
Higher levels of plasma HHV-6 DNA is associated with
increased risk of HHV-6 encephalitis, although not all
patients with high levels will develop encephalitis. In
one study, HCT recipients were prospectively followed
for CNS dysfunction and monitored with biweekly
plasma HHV-6 PCR. None of the HCT patients with
low level HHV-6 reactivation, defined as plasma HHV-
6 DNA less than or equal to 104 copies/mL, developed
encephalitis, while 8% of patients with high plasma
HHV-6 levels developed HHV-6 encephalitis [126].
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Although indirect effects of HHV-6 such as CMV reacti-
vation and acute GVHD have been described, viremia
more commonly presents asymptomatically in both
HCT and SOT recipients [127�129]. In one study evalu-
ating double-umbilical cord blood transplant recipients,
HHV-6 DNA detection in plasma was frequent,
although resolution was observed in untreated patients
and correlated with absolute lymphocyte count recov-
ery [130]. The clinical significance of HHV-6 DNA
levels and the role of molecular testing for detection of
HHV-6 in plasma remain to be determined.

Diagnosis of HHV-6 encephalitis requires the detec-
tion of HHV-6 DNA in CSF. However, the presence of
detectable HHV-6 in CSF does not necessarily confirm
the diagnosis of HHV-6 encephalitis. In one study,
HHV-6 DNA in CSF was detected in both patients
with HHV-6 encephalitis and those who had an alter-
nate explanation for their neurologic symptoms.
However, patients with HHV-6 related CNS dysfunc-
tion had significantly higher HHV-6 levels in CSF
(median peak copies/mL, 9050; range, 54�450,000)
compared to all patients without HHV-6 CNS dysfunc-
tion (median peak copies/mL, 655; range, 25�260,000;
p5 0.05). Regardless, all patients had poor survival
[131]. Resolution of HHV-6 DNA in CSF does not nec-
essarily predict resolution of active HHV-6 infection,
as noted in three patients who died of HHV-6 enceph-
alitis and were found to have active infection in brain
tissue even after HHV-6 DNA in CSF and serum had
become undetectable [114]. Furthermore, detection of
HHV-6 DNA in CSF in the absence of CNS dysfunc-
tion is believed to occur in 0�0.9% of immunocompro-
mised patients [132].

Given the limited but growing understanding of
HHV-6 in transplant recipients, there is no current role
for preemptive HHV-6 monitoring and no specific treat-
ment recommendations. A study comparing a preemp-
tively monitored group for HHV-6 in liver transplant
recipients found no symptomatic HHV-6 disease and no
differences in adverse events indirectly attributable to
viral reactivation such as opportunistic infection, graft
rejection, and hepatitis C recurrence [133]. In vitro stud-
ies suggest that ganciclovir, foscarnet, and cidofovir
have activity against HHV-6, although the clinical man-
agement of HHV-6 in practice is variable [134].
Additional studies on HHV-6 treatment in transplant
recipients and other patients are warranted.

HUMAN HERPESVIRUS-7

Like HHV-6, HHV-7 is also highly seroprevalent
and acquired at a young age from exposure to infected
saliva. Primary infection of HHV-7 may be asymptom-
atic or associated with fever and rash (Table 8.4).

Detection of HHV-7 DNA in plasma is much less com-
mon than for HHV-6. While HHV-7 DNA can be
detected in about 50% of HCT and 20% of SOT recipi-
ents, reactivation of HHV-7 is less common than HHV-
6 in these immunocompromised patients [135,136].
Healthy control subjects have also been found to have
similar median HHV-7 viral loads compared to HCT
recipients [137]. Accordingly, the correlation of HHV-7
with disease in immunocompromised patients remains
unclear. Levels of HHV-7 DNA in blood have not cor-
related with disease in immunocompromised patients
[137]. However, there are case reports that suggest a
role for HHV-7 in hepatitis, encephalitis, and graft dys-
function [138�140]. Other studies have evaluated the
role of routine surveillance of HHV-7 DNA in blood
samples in HCT and SOT recipients and have not
found benefit in graft or patient outcome [133,136].
Thus, monitoring of HHV-7 by molecular methods is
not currently recommended in transplant recipients.

HUMAN HERPESVIRUS-8

HHV-8 is transmitted through saliva, but infection
may also be acquired through sexual intercourse,
blood transfusion, and organ transplantation [141].
HHV-8 causes Kaposi sarcoma (KS) and is linked with
primary effusion lymphoma and multicentric
Castleman disease (Table 8.4) [142]. HHV-8 has also
been reported to cause fever and other constitutional
symptoms, bone marrow suppression, hemophagocytic
syndrome, and clonal gammopathy after transplanta-
tion [143�145]. Diagnosis of KS and other
HHV-8-associated malignancies requires histopatho-
logic evaluation of biopsied tissue. HHV-8 testing with
IHC or PCR of biopsied tissue is not essential, but can
be helpful if the diagnosis is unclear.

Detection and quantitation of HHV-8 DNA in
PBMCs and plasma can aid in predicting the develop-
ment of KS and treatment outcomes. In one study, KS
incidence was 10-fold higher in HIV-positive patients
with detectable PBMC-associated HHV-8 DNA (30.3
per 100 person years vs 3.4 per 100 person years) com-
pared to those without detectable HHV-8 DNA [146].
Pretreatment HHV-8 DNA levels in plasma in patients
with KS have also been associated with decreased sur-
vival and poor clinical response to treatment, and thus
may be useful in risk stratification, selection of treat-
ment strategy, and monitoring treatment response
[147�149]. A study comparing simultaneously col-
lected plasma and PBMCs from patients with different
HHV-8-related lymphoproliferative diseases found
comparable plasma and PBMC HHV-8 levels, suggest-
ing that either specimen type may be suitable for
HHV-8 testing [150]. Regardless of which blood
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compartment is evaluated, more studies are needed to
further determine the clinical utility of HHV-8 quanti-
tation in patients at risk for KS, as well as those
patients that have already developed disease.

CONCLUSIONS

This chapter highlights the diverse and expanding
clinical applications of molecular techniques in the diag-
nosis and management of herpes viruses, with an
emphasis on the immunocompromised host. Advances
in molecular diagnostics have been critical to the deter-
mination and risk stratification of active disease, assess-
ment of therapeutic response, preemptive treatment
strategies, and genotypic antiviral resistance testing. In
many instances, the utility of molecular diagnostics in
the diagnosis and management of herpes virus infections
deserves further exploration and study. Novel applica-
tions of molecular methods for the clinical evaluation
and monitoring of herpes viruses can be anticipated in
the future.
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THE FAMILY PARVOVIRIDAE

The family Parvoviridae includes viruses with a
single-stranded DNA genome, encapsidated in an ico-
sahedral protein capsid, about 22�26 nm in diameter.
Replication occurs in the nucleus of infected cells and
is highly dependent on cellular environment, so that a
productive cycle is usually achieved only in actively
replicating cells, or in some cases when supported by
complementation from helper viruses. The subfamily
Parvovirinae includes viruses able to infect vertebrate
hosts, within it the most recent taxonomical revision
distinguishes eight viral genera, and within each
genus individual virus species that collect the viral
isolates normally recognized in laboratory or clinical
settings [1].

The present formal classification is the result of an
approach mainly relying on genome sequence infor-
mation, rather than on phenotypic classification.
Application of molecular biology techniques, in
particular of the more advanced high-throughput
sequencing techniques and related bioinformatics
analysis, led to a classification scheme better suited to
describe the biological diversity of viruses within the
family, and in turn useful as a framework for defin-
ing molecular diagnostic approaches.

Viruses adapted to the human host are found in the
genera Dependoparvovirus (adeno-associated viruses,
AAV), Erythroparvovirus (B19V), Bocaparvovirus (HBoV1-
4), Tetraparvovirus (PARV4). While AAV viruses are
considered nonpathogenic and have been exploited as
transduction vectors, the others possess a pathogenic
potential that prompts for the development of diagnos-
tic molecular testing in a clinical setting. Parvovirus B19
(B19V) can be considered the most relevant human
pathogenic virus [2], while human bocaviruses have

gained more recent interest as respiratory or enteric
pathogenic viruses [3].

PARVOVIRUS B19

The Virus

B19V genome is a linear ssDNA molecule of 5.6 kb
in length. Strands of either polarity are separately
encapsidated at the same frequency and are function-
ally equivalent. The genome organization (Fig. 9.1) is
composed of a unique internal region, containing all
the coding sequences, flanked by repeated, inverted
terminal regions that serve as origins of replication.
The genome encodes for three major proteins, the non-
structural (NS) protein in the left side and the two
colinear capsid proteins, VP1 and VP2, in the right
side, and for additional minor NS proteins. The capsid,
composed of 5�10% VP1 and 90�95% VP2 proteins,
forms an icosahedral structure in T5 1 arrangement,
about 25 nm in diameter.

B19V shows a selective tropism for erythroid pro-
genitor cells in the bone marrow, linked to the pres-
ence of specific receptors, such as globoside and
integrins [4,5], and functional internalization processes
[6,7]. In a permissive cellular environment, a coordi-
nated series of macromolecular syntheses occurs [8,9].
DNA repair synthesis generates a double-stranded
DNA template, then first-phase transcription mainly
produces mRNAs coding for the NS protein, followed
by rolling hairpin replication of the genome and
extended transcription, including mRNAs coding for
structural proteins. Accumulation of VP proteins even-
tually leads to the assembly of capsids, encapsidation
of single-stranded genomes, and release of virions
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from infected cells. The permissive environment is
restricted to cells in the erythroid lineage at differentia-
tion stages ranging from CFU-E to erythroblasts
[10,11]. In these cells, the virus exerts a complex series
of effects, including arrest of the cell cycle [12�14] and
induction of apoptosis [15], causing a temporary block
in erythropoiesis that can manifest as a transient or
persistent erythroid aplasia. The virus can infect other
different cellular types in diverse tissues, including
endothelial, stromal, or synovial cells [16�18]. Cellular
environments other than erythroid progenitor cells are
normally nonpermissive—infection is usually abortive
and the presence of the viral genome is not associated
with replication, transcription, or protein synthesis
[19], although a productive replication can be spo-
radically documented and contribute to pathological
processes.

Transmission

B19V is widely and worldwide diffuse. In most
epidemiological settings, considering the presence of
specific IgG as the marker of past infection, the highest
rate of infection occurs before age of 20, reaching a
prevalence of about 60% of population, but infection
can occur until elder ages, reaching maximal preva-
lence values higher than 80% [20].

The main route of transmission of the virus is
through the respiratory system, and close contacts in
the household, school, or hospital settings are associ-
ated with rates of transmission up to 50%. In temper-
ate climate countries, circulation of the virus is higher

in the Spring/early Summer months, and epidemic
cycles are reported to occur every 4�5 years. The virus
can be transmitted from mother to fetus with possible
fetal damage, and B19V should be included in the
antenatal assessment of risk of fetal infections [21�23].
Finally, due to a viremic phase with high viral loads,
there is a risk of iatrogenic transmission of the virus
via blood and blood-derived products, producing
blood and blood product safety issues [24].

Infection—Early Events

Following contact and the primary viremic phase of
infection (normally undetected), the virus gains access
to the bone marrow and infects erythroid progenitor
cells, achieving a productive infection and exerting
cytotoxic effects. In this phase, the bone marrow shows
erythroid aplasia and the presence of characteristic
giant erythroblasts. The pathogenic effects on bone
marrow are derived from the ability of the virus to
induce cell-cycle arrest, block of erythroid differentia-
tion, and eventually apoptosis of susceptible and
infected cells [25]. The clinical impact on the host
reflects the depression of bone marrow activity, linked
to the volume and turnover rate of the erythroid com-
partment, and the ability of immune system to mount
an effective specific response [26,27].

In individuals with physiological erythropoiesis and
normal immune system, infection is limited in extent
and temporal frame and is controlled by the develop-
ment of a specific neutralizing immune response.
Levels of hemoglobin decrease only marginally and

FIGURE 9.1 Schematic representation of B19V genome organization and functional mapping. (Top) Open reading frames (ORFs) identified
in the positive strand of genome, arrows indicate the coding regions for viral proteins positioned on the ORF map. (Bottom) Genome organiza-
tion, with distinct representation of the terminal and internal regions, and indication of the positions of promoter (P6), splice donor (D1, D2),
splice acceptor (A1-1/2, A2-2/2), and cleavage-polyadenylation (pAp1, pAp2, pAd) sites. The internal coding region is flanked by two
inverted terminal repeat regions that are extensively palindromic and can fold in hairpin, double-stranded structures that serve as priming
sites for the second-strand synthesis and function as origins of replications via a rolling hairpin replication mechanism. The internal region
encompasses all reading frames, divided in two main blocks. In the left side of the genome, a single ORF codes for the viral NS protein that
operates many functions in viral replication and interaction with the cellular environment (cell cycle arrest, induction of apoptosis, induction
of proinflammatory cytokines). In the right side of the genome, a single ORF encodes for the viral capsid proteins and depending on the
mRNA processing two colinear proteins can be produced: (1) the longer VP1, whose N-terminus (VP1u) is unique with respect to VP2 and
has a PLA2 phospholipase activity that is essential for viral infectivity and (2) the shorter VP2, colinear with the C terminus of VP1, that con-
stitutes the core structure of capsid. Additional minor ORFs encode for small NS proteins (11, 9, and 7.5 kDa).
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infection is usually asymptomatic from the hematologi-
cal perspective. Production of antibodies with neutral-
izing activity (IgM followed by IgG) contributes to the
progressive clearance of infection over 3�4 months
with constantly decreasing viral load levels, even if
very low levels can be detected for several months fol-
lowing primary infection [28�30]. When preexisting
alterations in the erythropoiesis process, or defects in
the immune response, alter the balance between viral
replication and cellular turnover, infection can
manifest as pure red cell aplasia (PRCA) and anemia
[31]. In situations where the number of erythroid pro-
genitors and their replication rate are expanded
because of a reduced lifespan of erythrocytes, or
increased need, infection can lead to an acute episode
of profound anemia, presenting as classical aplastic cri-
sis. In situations where the immune system lacks the
capacity to control, neutralize, and clear viral infection,
the infection may become persistent. This can occur in
cases of congenital or acquired immunodeficiency,
such as HIV infection [32], in cancer during the course
of chemotherapy [33], or during immunosuppressive
treatments in bone marrow or solid organ transplant
recipients [34�36]. In all these subjects, depression of
erythropoiesis can be persistent and manifest with
anemia of different grades, but also anemia that is
compensated and unapparent.

Infection—Late Events

Bone marrow supports a productive infection and
release of progeny virus into the blood, leading to a
secondary viremia characterized by high viral load
levels (.1012 virus/mL) in the acute phase, systemic
distribution of the virus and possible late clinical mani-
festations of infection. In this phase, other cell types,
including endothelial, stromal, or synovial cells, can be
infected. In particular, endothelial cells constitute a dif-
fuse target that can account for the wide distribution
of virus and its detection in disparate tissues.
Endothelial cells are normally nonpermissive and a
possible site of persistence of the virus, but in some
cases markers of viral activity have been precisely
localized to endothelial cells and causally linked to
pathological processes [18].

In this phase, the pathogenic mechanisms usually
involve the induction of inflammatory responses
[37�39], more rarely the induction of necrotic pro-
cesses [40] or the development of autoimmune disor-
ders [41]. The two classical late manifestations of B19V
infection are erythema infectiosum (typical of children)
and arthropathies (typical of adult patients), and with
a tendency to chronicity. The virus has been recog-
nized as cause of acute myocarditis [42,43], and

possibly chronic inflammatory cardiomyopathies [44],
and has been involved in the development of rheu-
matic [45,46] or autoimmune diseases [41]. The
spectrum of clinical manifestations associated to B19V
infection has been constantly increasing to involve
almost all organs and tissues, and descriptions of clini-
cal presentations have progressively stressed atypical
aspects. Strict diagnostic criteria and sound methodol-
ogies should always be adopted to link B19V infection
to atypical pathological processes.

Virus Persistence

Following primary infection, B19V can normally be
detected in a wide range of tissues, probably lifelong
[47]. The virus can be detected in bone marrow not
only in cases of persistent infections with constant
low-level viremia, but also in normal subjects without
any evidence of active viral replication [48,49]. The
presence of viral DNA has been reported in lymphoid
tissue, including spleen, lymph nodes, and tonsils [49].
Viral DNA can be detected in liver [50], and in the
heart the common presence of B19V DNA has been the
focus of a debate on its potential role in the develop-
ment of cardiomyopathies [51,52]. Viral DNA is com-
monly found in synovial tissues [53] and skin [54]. The
initial picture of a virus capable of acute infections and
rapidly cleared by the organism as a consequence of
the immune response has given place to the picture of
a virus able to establish long-term relationship with
human hosts, and the current assumption is that per-
sistence of viral DNA in tissues can be the normal out-
come of infections, making B19V a relevant part of the
human virome [47]. Whether this persistence might
imply integration of viral DNA in the host genome, or
be related to reactivation and productive infections, is
still a matter of investigation.

Fetal Infection

A relevant property of B19V is its ability to cross the
placental barrier and infect the fetus. The viral recep-
tor, globoside, is present on the villous trophoblast
layer of the placenta and its expression may facilitate
transcytosis of virus to the fetal circulation [55].
Endothelial placental cells can be productively
infected, facilitating the establishment of fetal infection
and contributing to placental damage [56]. When in
the fetal circulation, the virus can infect erythroid pro-
genitor cells, in liver and/or bone marrow depending
on the gestational age, and can be detected in cells cir-
culating in the vessels of several tissues as well as in
the amniotic fluid [57]. The virus can induce a block in
fetal erythropoiesis whose effect will depend on fetal
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developmental stage, the rate of expansion of fetal ery-
throid compartment, and the maturity of the immune
response [58]. Infections occurring at earlier stages of
pregnancy carry a higher risk of fetal death, up to
about 10%, while infections occurring in the central
part of pregnancy more frequently lead to fetal
hydrops. Hydrops may eventually cause fetal death,
but frequently the fetus can recover without persistent
developmental damage. In the third trimester the over-
all risk of fetal damage decreases to background
values, although late intrauterine fetal death can occur
[21,59]. Newborns may show transient presence of
virus at birth [23,60], only sporadically associated with
neonatal anemia or anomalies [61], while consequences
of fetal anemia on the long-term neurological develop-
ment are still under investigation [62].

MOLECULAR TARGET

Target and Samples

The low structural complexity of B19V restricts the
range of molecular targets relevant for diagnostics
mainly to viral DNA. Detection of viral DNA in
serum/plasma from peripheral blood, other body
fluids, fetal cord blood, or amniotic fluid is indicative
of productive viral replication and active infection.
Due to the characteristics of the viral replication and
the dynamics of the infectious process, it is critical for
molecular amplification methods to produce reliable
quantitative assessment of the viral load in order to
obtain useful diagnostic information. Viral DNA can
also be sought in cellular samples, such as bone mar-
row aspirates, solid tissue biopsies, fetal biopsies, or
placental biopsies. In these cases, to differentiate
active infections from silent persistence of virus, both
quantitative evaluation of the genome copy number
and detection of viral mRNAs can be considered
appropriate. In these instances, besides quantitative
molecular amplification methods, viral nucleic acids
may be efficiently detected by in situ hybridization,
or viral NS or VP proteins can be detected by immu-
nological methods.

B19V Genotypes

B19V as a species is subdivided into three geno-
types: the prototype genotype 1 and two variant geno-
types 2 and 3 [63,64]. At the nucleotide level, the
diversity between genotype clusters is about 10% for
genotype 1 and 5�6% for genotypes 2 and 3, while the
diversity within each genotype cluster is normally
lower than 2% for genotype 1 and in the range 3�10%
for genotypes 2 and 3. All genotypes cocirculate, but

with different frequencies and geographical distribu-
tions. The prototype genotype 1 is ubiquitous world-
wide and includes the greatest part of circulating
virus [65,66]. The majority of isolates are referred to
as subtype 1a, while subtype 1b and other variants
are rarer and confined to limited geographical areas.
Genotype 2 appears to be an older variant with
respect to genotypes 1 and 3, is commonly harbored
in tissues of elderly populations [47], and only spo-
radically detected as circulating virus [67]. Genotype
3, divided in the two distinct subtypes 3a and 3b, cir-
culates at relatively higher frequencies in western
Africa [68] and at lower frequencies in other geo-
graphic areas. The three B19V genotypes are assumed
to have similar biological properties, pathogenic
capacity, transmission routes and pose a similar diag-
nostic challenge in the clinical setting [69]. Hence,
nucleic acid amplification procedures should enable
the detection and standardized quantification of all
genotypes. The pursuit of these main requirements
can take advantage of an ample amount of sequence
information from nucleotide databases and can rely
on the availability of international standards as refer-
ence materials for all genotypes [70,71].

For genotype 1, available sequence information indi-
cates a continuous evolutionary process [72�74], but
still yields a consistent consensus sequence coupled
with a limited genetic diversity of the different isolates.
The low genetic diversity of genotype 1 suggests that
primers and probes used in molecular detection assays
will recognize most targets with high expectation
values. Genotypes 2 and 3 pose different problems. In
both cases, fewer genomic sequences are presently
available, inter- and intragenotypic diversity is higher,
the consistency of consensus sequences is lower than
for genotype 1, and it may be expected that addition of
new sequences may demonstrate additional genetic
diversity. This higher sequence divergence may pose
diagnostic challenges, and primers and probes may
recognize targets with lower expectation values.

MOLECULAR TECHNOLOGIES

Technical Developments

The fact that B19V is not readily adapted to grow in
cell cultures prompted the development of direct
molecular methods for its detection in clinical speci-
mens. Over the years, the advancements in molecular
analytic techniques have always found a complete
paradigm in the applications to the detection of B19V,
with a particular focus on the viral genome as diagnos-
tic target. In the progress toward a rapid and accurate
molecular diagnosis, a wide array of molecular
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hybridization and nucleic acid amplification techni-
ques have been developed [75�80]. Standardization
and inclusion of competitor or internal controls have
been developed for PCR protocols to ensure accuracy
and robustness [81�83]. Currently, quantitative and
internally controlled real-time PCR techniques (qPCR)
represent the standard analytical method for the
molecular detection of B19V DNA [84�87]. There are
two main requirements that should be met: (1) the
capability of detection of all genotypes of B19V and (2)
a calibrated and standardized quantification of target.
Both of these requirements take advantage of interna-
tional standards [70] and can be challenged by interna-
tional proficiency panels [88,89].

qPCR Assay Design

Considerations on genotype distribution and
sequence heterogeneity among isolates guide the
design of primers and probes for a molecular amplifica-
tion assay [90]. Sequence alignment permits the defini-
tion of consensus sequences for each genotype, and of a
whole-species consensus that can be used to define
positions of amplification primers and probes. As a
strategy for the design of a molecular assay (Fig. 9.2), a
target sequence within the internal region of B19V
genome, conserved enough to be amplified by consen-
sus primers with equal efficiency for all genotypes, but

encompassing specific signature sequences allowing
distinction among genotypes by means of specific
probes, can be chosen to ensure both the detection of all
genotypes with similar analytical performances, and
further genotyping. However, any choice of primers
and probes does not exclude the possibility of mis-
matches to individual clinical isolates, causing impaired
annealing and leading to underestimation or misdetec-
tion of targets. In well-designed assays, single-base mis-
matches can be present either on one of the primer
binding sites, or on the probe binding site, at an
expected frequency lower than 1%. Sequencing of
amplification products might be finally carried mainly
for epidemiological studies, especially to confirm the
presence and identity of variant genotypes.

qPCR Assay Validation

Alternative qPCR protocols can be developed to
allow choice with respect to operational systems and
diagnostic requirements. Consensus genotype-
independent detection of B19V DNA by means of
intercalating dyes may be an alternative to genotype-
specific detection by means of fluorescence probes, or
the two detection formats may be successfully
combined maintaining equal sensitivity and specificity
of the assay. This latter scheme guarantees a specific
identification of prototype or variant genotypes

FIGURE 9.2 qPCR assay design. (Top) Sequence similarity among B19V genotypes. Consensus sequences for each genotype, each derived
from the alignment of a dataset of complete sequences from NCBI, are aligned to show areas of significant (. 90%) sequence similarity
between genotypes. (Center) Schematic representation of B19V genome organization and functional mapping (as shown in Fig. 9.1). The posi-
tion of two suitable, genotype consensus qPCR primer is indicated. (Bottom) qPCR target sequence, sequence alignment for the three
genotypes. Sequences recognized by amplification primers and genotype-specific probes are highlighted in yellow, nucleotide differences
are highlighted in green. Two alternative hydrolysis probes, recognizing genotype 1 or genotypes 2/3, are shown, with alternative reporter
dyes [90].
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coupled to a high flexibility in the detection of newly-
emerging variants with possible additional sequence
heterogeneity. An internal reaction control is essential
for routine clinical applications. In the case of serum/
plasma samples, an exogenous control target can be
added to the sample during the nucleic acid purifica-
tion steps and used as an in-process control. Analytical
performance of the designed molecular assay in differ-
ent detection formats need to be evaluated according
to guidelines for harmonization in analytical assays.
The availability of an international panel of standard
reference material allows the setup of the assay and
the construction of quantitative calibration curves for
assay validation and operation. Analytical require-
ments need to be met in terms of limit of detection and
quantification, and linear range of the assay. Results
should be given in International Units (IU) rather than
genome copies. A lower limit of detection or quantifi-
cation can be set in the range 102�103 IU/mL, while
the range of linearity of the assay should extend to at
least up to 109 IU/mL. Diagnostic laboratories can rely
on commercially-available validated diagnostic assays.
However, diagnostic kits encounter problems due to
target heterogeneity, and for B19V some reports and
proficiency panel evaluations suggest that these qPCR
assays may not always conform to analytical perfor-
mance standards [91�93]. Conversely, the in-house
development of molecular assays may allow a wider
operational choice but requires a high degree of con-
formity to analytical guidelines and validation proce-
dures to ensure reliable results [94].

In Situ Hybridization Techniques

A useful complement to qPCR is offered by in situ
hybridization for the detection of viral nucleic acids
within cells or tissues with preservation of cellular
morphology. In the case of biopsies, the quantitative
information offered by qPCR on purified nucleic acids
should not be considered of primary relevance, even if
standardized by a reference endogenous target,
because of the variability inherent in the sampling of a
nonuniform cell population with different degrees of
permissiveness to viral replication or different spread
of virus. By in situ hybridization techniques, infected
cells can be easily identified in the sampled material
and give indication on the distribution of infection
within tissues, and to what cellular types are involved.
Several methodologies have been developed [95�100],
differing in the choice of probe (DNA, oligo-DNA, or
oligo-PNA probes), labeling method and moiety, and
detection method. Immunofluorescence or immunoen-
zymatic detection methods can be used. In the latter
case, chromogenic substrates offer the advantage of an

easy microscopic inspection of the analyzed tissue,
while the use of chemiluminescent substrates may
offer the advantage of a quantitative assessment of the
abundance of targets within infected cells [101].

Immunological Techniques

Immunological detection of viral proteins is not
advisable for detection of virus in blood [102], but can
be considered as an useful tool for identification of
productively infected cells in tissue samples.
Commercially available monoclonal or polyclonal
antibodies are directed against the viral capsid pro-
teins, mostly toward the VP1/VP2 common epitopes
[103]. In selected applications, such as in situ hybrid-
ization techniques, immunologic detection of viral pro-
teins, and/or of cellular markers, might be combined
to better characterize a productive viral infection and
identify the phenotype of target cells [56,101].

CLINICAL UTILITY

Diagnostic Approach

A laboratory diagnosis is necessary to confirm or
exclude B19V infection and to differentiate acute from
persistent infections. Moreover, B19V detection can be
part of screening procedures, especially considering
antenatal screening, or part of prophylactic measures
to prevent iatrogenic transmission of virus through
blood or blood derivatives.

B19V is a virus capable of infections presenting with
different courses depending on the interplay with host
factors and the efficacy of the immune system
response. An accurate laboratory diagnosis of B19V
infection relies on a multiparametric approach, com-
bining as much as possible the molecular detection of
viral components, mainly viral DNA, to the immuno-
logical detection of virus-specific antibodies (Fig. 9.3)
[104]. The acute phase of infection characterized by
high viremic load and the emergence of specific IgM/
IgG antibodies is normally followed by a progressive
clearance of viremia still in the presence of specific
IgM and IgG, or may lead to persistent infections, usu-
ally in the presence of IgG only, and finally may result
in the silent persistence of virus in tissues.

The indirect, immunological approach to the diag-
nosis of B19V infection is commonly followed as a
first-level investigation. In this case, coupled determi-
nation of IgG/IgM antibodies against VP proteins is
required. The presence of IgM reactivity normally indi-
cates an active or a recent infection, so that a repeated
determination can be used as a confirmatory assay. In
addition, assays able to discriminate a differential
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reactivity against conformational or linear epitopes can
be used to confirm or better characterize the immuno-
logical response [104�106]. However, the immunologi-
cal approach presents several limitations that prompt
molecular diagnostic testing.

The highest viremic levels are reached in the initial
phase of infection, before or coupled to the develop-
ment of a detectable immune response. In this case, a
single immunological determination may yield unre-
liable results, while repeated testing will lead to a
delay in diagnosis. In a later phase of infection, pro-
gressively lowering viral loads can be detected in the
presence of both IgG and IgM. Clearance of viremia
might be delayed and parallel the waning of IgM, but
in persistent infections even sustained levels of vire-
mia can be present when IgM antibodies are no lon-
ger detected.

Indications for molecular testing include the confir-
mation of suspected active infections, the follow-up of
the course of documented infections, and the charac-
terization of persistent infections. In particular, in
immunodeficient, immunosuppressed, or in trans-
fused patients, antibody detection is unreliable for
diagnostic purposes and detection of viral DNA
should be considered the only relevant diagnostic
parameter. In antenatal screening or prenatal diagno-
sis, relying on maternal immune status only will lead
to underestimation of active infections in the mother
and correlated risk to fetus, so detection of viral DNA
in maternal blood should be part of the diagnostic
workup [23,107].

Molecular analysis is normally carried out from
peripheral blood since productive infections are char-
acterized by viremia, and viremic levels are correlated

with the clinical course. Both serum and plasma are
suitable samples, so that detection of both viral
genomes and specific antibodies can be obtained from
the same sample. In case of predominant hematologi-
cal involvement, the virus can also be detected from
bone marrow aspirates. Biopsy samples can be
obtained from other tissues where an active B19V
infection is suspected, for example, in the case of acute
myocarditis, and in these cases the critical issue will be
to differentiate an active infection from the persistence
of viral genomes. Molecular analysis may be necessary
to confirm infection of the fetus, and for this purpose
it is not necessary to analyze cord blood, since the
virus can also be detected in amniotic fluid, or in pla-
centa at term, or in biopsies in the case of postmortem
analysis (Fig. 9.4).

qPCR Result Interpretation and Relevance

As a main issue, molecular amplification methods
leading to a reliable quantitative assessment of viral
load in an ample range are critically required to obtain
useful diagnostic information. In fact, considering
peripheral blood as the sample of choice and the char-
acteristics of a typical time course of infection, a high
viral load in the acute phase will progressively decline
to lower levels in the following months. Hence, quali-
tative assessment of the presence/absence of viral
DNA within a sample would be of very little informa-
tive content, while a quantitative evaluation of the
viral load is to be considered necessary for an accurate
molecular diagnosis of B19V infection. Even in normal
subjects a complete clearance of B19V DNA from

FIGURE 9.3 Combined qPCR and
immunological detection of anti-B19V
IgG and IgM. Multiparametric analysis
on 354 consecutive serum samples, for
combined detection of B19V-specific
IgG and IgM antibodies (EIA,
DiaSorin) and B19V DNA (qPCR) [90].
Of these, 61 were PCR positive, with
viral load ranging from 102 to more
than 1010 IU/mL, and 293 were PCR
negative. Samples are plotted accord-
ing to the respective index values for
both IgG and IgM, in case of positive
qPCR the diameter of the bubble is
proportional to the log of viral load
(IU/mL) according to scale.
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peripheral blood may not be achieved in a short time
[30,108]. Therefore, the diagnostic question will be to
discriminate this situation from an active, persistent
infection and determination of the viral load is the
only relevant parameter for this purpose. In pregnant
women, either in case of antenatal screening or in
response to a specific diagnostic question, determina-
tion of B19V DNA is a more reliable marker of infec-
tion than determination of the immunological status
[23], while confirmation of intrauterine or congenital
infection needs to rely on the detection of B19V DNA
in fetal or neonatal samples [60].

Genotyping is a secondary issue with respect to diag-
nosis, as all genotypes of B19V share the same pathoge-
netic characteristics [69], but genotype determination is
relevant for epidemiological investigations. However, it
is important that all viral genotypes are detected by a
molecular assay with the same analytical sensitivity.
Thus, the relevance to detect B19V with a qPCR method
that is able to quantitate and possibly discriminate all
different genotypes derives from two considerations.
First, variant genotypes are known to circulate at higher
frequencies in areas other than Europe or the United
States, and in addition the changing demographic and
epidemiological scenario will probably lead to a more
global circulation of genotype 3 [65]. Second, a reliable

viral diagnosis should be able to detect variant geno-
types even in particular sporadic clinical situations
when assays focused on genotype 1 only may fail in
B19V detection [93,109,110].

Limitations of Testing

B19V is underestimated from a clinical perspective.
Its wide circulation and prevalent benign and self-
limiting clinical course generally lead to a diminished
appreciation of its pathogenic potential. However,
B19V is a possible etiological agent in a large ensemble
of diseases, encompassing practically all tissues and
organs. An extended awareness and definition of the
actual pathogenic role of B19V among human diseases
will be fostered by the development of better diagnos-
tic methods and algorithms. In this respect, integration
of the common immunological diagnostic scheme with
the application of molecular detection methods will be
crucial. Molecular detection of B19V is easy and reli-
able. qPCR techniques for the detection of B19V can be
carried out from biological specimens with standard
preanalytical processing procedures. The choice of
qPCR techniques ranges from commercially-available,
to integrated in common-flow analytical platforms,

FIGURE 9.4 In situ hybridization detection of B19V DNA infected cells in fetal tissues. Biopsies were obtained postmortem from a miscar-
riage (19th week of gestation) with moderate fetal hydrops. Formalin-fixed, paraffin-embedded tissue sections have been processed for detec-
tion of B19V nucleic acids by means of a digoxigenin-labeled DNA probe and immunological detection of hybridized probes by anti-Dig
alkaline phosphatase antibodies followed by BCIP-NBT substrate development [57]. Positive cells appear dark blue within tissues. Sections:
(A) liver; (B) heart; (C) lung; (D) kidney; (E), mesentery; and (F) placenta. Positive cells have been identified as hemopoietic (liver) or circulat-
ing erythroid progenitor cells. Original magnification: 4003 .
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to the tailored or lab-developed assays, requiring
standard laboratory equipment. Development of even
more versatile analytical platforms, and of alternative
molecular assays with point-of-care characteristics
[111], will widen in the future the opportunities for
molecular testing for B19V, aimed at improving perfor-
mance and informative content, and reducing time
and costs. The pattern of B19V genetic evolution and
diversity, its biological characteristics and complex
relationship with the host, and its diverse clinical man-
ifestations of infection are all topics that are far from
completely understood and will benefit from informa-
tion emerging from the wider use of molecular diag-
nostic approaches.
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INTRODUCTION

Polyomaviruses are small (45 nm), nonenveloped
viruses with icosahedral nucleocapsids. The genetic
material is double-stranded DNA, with genomes
that range 4.5�5.5 kb. The Polyomaviridae contains
two groups: the Orthopolyomaviruses and the
Wukipolyomaviruses [1,2]. The Orthopolyomavirus genus
contains the three most important human pathogens:
the BK virus, the JC virus, and the Merkel cell
polyomavirus (MCPV) [2]. It also contains the tricho-
dysplasia spinulosa-associated polyomavirus. The BK
and JC viruses received their curious nomenclature
from the initials of the patients from which they were
originally isolated [3,4]. The Wukipolyomavirus genus
contains the WU and KI viruses for which it was
named, as well as the Human polyomaviruses 6, 7, 8,
9, and 10. Although the WU and KI polyomaviruses
have been recovered from the respiratory, plasma,
and/or urine specimens of transplant recipients, these
have not been associated with disease [5]. The breadth
of the Polyomaviridae is undetermined and the discov-
ery of new polyomaviruses is expected. The most
important etiologic agents of disease in this group, the
BK and JC viruses, will command the attention of the
majority of this chapter.

Human polyomaviruses viruses cause minimal to
no disease in the immunocompetent host. Serologic
studies suggest that the majority of humans are
infected early in life. Infections are either asymptom-
atic or produce subclinical disease, possibly involving
the respiratory tract. The precise mode of transmission
is a matter of debate. Some have advocated a respira-
tory route of infection for the BK virus, since BK viral
DNA has been detected in tonsillar tissues [6].
However, others have studied body fluids, such as
saliva, and the respiratory secretions of children with

upper respiratory tract infections for the presence of
the BK and JC viruses, and these fluids did not harbor
the viruses [7]. Uro�oral, fecal�oral, and transplacen-
tal transmission have also been postulated as modes of
transmission, with the former seemingly very feasible
given the permissive nature of urothelial cells for the
replication of these viruses [8].

Regardless of the mode of transmission, these
viruses are commonly found in the general population.
The majority of children (ie, between 65% and 90%) are
seropositive for the BK virus by the age of 10 [9].
Seropositivity rates for BK rise until around 40 years of
age and then decrease slightly. The JC virus is also
highly prevalent with 50�80% of the human population
demonstrating serologic evidence of prior infection
[10]. The seroprevalance of the other polyomaviruses
has not been extensively studied. However, it has been
demonstrated that up to 77% of the general population
have been exposed to the MCPV [11].

After initial infection, a transient viremia likely
ensues whereby the virus reaches the destination tis-
sues for latency. It has been hypothesized that this dis-
semination could occur through the infection of
mononuclear leukocytes in which BK virus DNA has
been detected [12]. It is not known for certain whether
these viruses become truly latent in the host cells or
maintain subclinical (ie, minimal maintenance) replica-
tion once the viruses reach their destination tissues. It
is known, however, that asymptomatic replication of
both the BK and JC viruses occurs in the urothelium
(ie, the lining epithelium of the bladder, ureters, and
renal pelvis), with subsequent shedding of the virus
into the urine [13]. Asymptomatic shedding of the BK
virus has been documented in up to 10% of healthy
adults [8]. Similarly, 25% of pregnant women have
been shown to asymptomatically shed the BK virus in
the urine [14]. Age-related shedding of the BK virus
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has been reported, with shedding occurring less fre-
quently in individuals less than 30 years old and grad-
ually increasing in individuals greater than or equal to
30 years old [15]. This asymptomatic shedding of virus
may contribute to the transmission of the virus to
those who were previously unexposed and is support-
ive of a uro�oral route of infection.

MOLECULAR TARGETS

The molecular targets used for the detection of the
BK and JC viruses include the VP1 gene, the VP2 gene,
and the T antigen gene. Variations in the VP1 sequence
are associated with different subtypes [16]. Primer sets
for the quantitative assessment of BK virus are
commercially available (Table 10.1), as are numerous
laboratory-developed tests. Similarly, laboratory-
developed tests have been used for the detection of the
JC virus and MCPV. The RealStar JC virus (Altona,
Hamburg, Germany), which targets the large T antigen
gene, is available. The linear range claimed is
1000�1012 copies/mL. Similarly, the GeneProof JC
Virus assay (GeneProof, Brno, Czech Republic) that
targets the junction of the VP1 and VP2 genes is also
available. They claim a linear range from 528 to
1010 copies/mL. GeneProof also offers a combined
BK/JC assay.

MOLECULAR TECHNOLOGIES

Quantitative PCR is the most commonly used
method in the assessment of clinical specimens for the
detection and quantitation of BK and JC polyoma-
viruses. This has been done in conjunction with a vari-
ety of probe types. Less commonly, qualitative PCR is
used to determine the presence of these viruses. In situ
hybridization and immunohistochemistry are used in
the assessment of biopsy specimens for these viruses
[17,18]. Electron microscopy was used in the distant
past, but it has largely been replaced by these

technologies [19]. However, electron microscopy
remains an important tool for discovery and in
instances wherein these other technologies fail or incon-
sistent results are produced.

Quantitative PCR is used predominantly for the
detection and quantitative monitoring of the BK virus
in plasma. A wide variety of PCR assays have been
described for the detection and/or quantitation of the
BK virus. Many of these are laboratory-developed
tests, but some are commercially available [20�25].
These assays usually employ some type of nucleic acid
extraction method prior to PCR amplification.
Although all aspects of tests need to undergo a thor-
ough assessment during assay validation, most
commercially-available extraction methods are robust
in the removal of inhibitors and are largely comparable
with respect to DNA yield [26]. The quantity of virus
present in the plasma is important, since higher values
are more predictive of BK nephropathy.

Qualitative PCR for the BK virus in urine may be
used to identify (or screen out) patients for BK
nephropathy, but this method is not commonly used
in this manner. However, the qualitative detection of
the JC virus in the cerebrospinal fluid (CSF) of patients
with progressive multifocal leukoencephalopathy
(PML) is sufficient to support this diagnosis in the
appropriate clinical setting, which includes supportive
radiological findings. Given the relative simplicity of
converting a qualitative rapid cycle PCR assay into a
quantitative assay, quantitative values are often
reported when the JC virus is detected in CSF or other
body fluids.

Beyond quantitative PCR assays, loop-mediated iso-
thermal amplification (LAMP) techniques have been
developed for the detection of the BK virus [27].
Although commercially-available LAMP methods for
BK viruses are not available, this type of technology is
attractive because it uses standard laboratory equip-
ment, has an acceptable level of sensitivity, and may
be used without DNA extraction and a thermocycler.
Such a technology could conceivably be used to inex-
pensively screen for the presence of the BK virus in

TABLE 10.1 Commercially-Available BK Virus Assays

Vendor/Assay Assay specifics Target region Dynamic range (copies/mL)

ELiTechMGB Alert BK Virus Primers MGB probes Large T antigen 12.53 101 to 12.53 106

Focus DiagnosticsSimplexa BKV Kit Scorpion VP2 5.13 102 to 1.03 108

Luminex (Eragen)MultiCode BK Virus Primers MultiCode Large T antigen 5.03 102 to 5.03 106

QiagenArtus BK Virus RG Kit Real-time PCR Large T antigen 5.03 102 to 5.03 106

GeneProof BK Virus Kit Real-time PCR VP1/VP2 junction 5.963 102 to 1.03 1010

RealStar BK virus (Altona) Real-time PCR Unknown 1.03 103 to 1.03 1012
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at-risk populations. In addition to monoplex assays,
multiplex assays have been developed. Some target
only the most common polyomaviruses (ie, BK and
JC), whereas others target additional viruses that may
cause disease in the immunocompromised host, such
as adenovirus [21,25]. Fluorescence resonance energy
transfer probe sets that utilize broad-range polyomavi-
rus primers have also been used to detect and differen-
tiate the BK and JC viruses in a single reaction
(Fig. 10.1) [22]. Such an assay may be useful in institu-
tions that screen urine specimens, since either virus
may be present. In addition to these, qualitative semi-
nested PCR assays have also been described [28].

In situ hybridization and immunohistochemistry are
technologies largely used by anatomic pathologists for
the detection of these and other viruses in histologic
preparations. The availability of these stains is impor-
tant to confirm the nature of intranuclear inclusions
thought to likely represent polyomaviral inclusions.
Other viruses, such as adenovirus and cytomegalovi-
rus, can cause intranuclear inclusions in the same
at-risk patient population and are represented in the
differential diagnosis. These tools are particularly use-
ful when the intranuclear inclusions are not typical.
Although biopsy suffers from sampling error, the dem-
onstration of BK viral inclusions associated with inter-
stitial nephritis is the gold standard for the diagnosis
of BK nephropathy. Fortunately, tissue is regularly
available for assessment, since renal biopsy is neces-
sary to monitor and/or assess for transplant rejection.
However, the same is not always true regarding brain
biopsy and the diagnosis of PML. Tissue is not readily
available in these instances and most would like to
avoid a brain biopsy if at all possible. Although the

demonstration of the JC virus in infected oligoden-
droglial cells in immunocompromised patients with a
demyelinating disease may be the gold standard for
the diagnosis of PML, most are satisfied with the dem-
onstration of the JC virus in the CSF to support the
diagnosis of PML in a patient with the appropriate
clinical and radiological findings.

CLINICAL UTILITY

Although most individuals become infected with a
polyomavirus sometime during life, serious symptom-
atic diseases caused by polyomaviruses occur in
immunocompromised patients. The type of immuno-
logic compromise and the degree to which the immune
system is suppressed are directly related to the type of
polyomavirus infection that is most likely to occur,
and in some instances with the severity of infection.
The main types of diseases caused by polyomaviruses,
as well as associated risk factors and the clinical utility
of testing, will be discussed here.

The BK Virus

The BK virus is responsible for two main types of dis-
ease. It causes nephropathy that can result in graft failure
in renal transplant recipients and hemorrhagic cystitis in
patients undergoing stem cell transplantation.

Early studies described the severe tubulointerstitial
nephritis caused by the BK virus in renal allografts
[29]. Serologic studies are supportive of the hypothesis
that symptomatic disease is most commonly the result
of reactivation of latent, endogenous virus rather than
primary infection [30,31]. BK nephropathy most com-
monly occurs in the transplanted kidney, but infection
of the native kidney has also been described [10,32].
Disease usually presents 10�13 months after trans-
plantation [10]. Risk factors include a seropositive
donor status and/or a seronegative recipient status,
older patient age, male gender, ischemic or immuno-
logic injury, and the degree of HLA mismatch. This
latter factor is likely more an indicator of the degree of
immunosuppression that will be necessary to avoid
transplant rejection. Otherwise stated, the greater the
HLA mismatch, the higher the number of rejection epi-
sodes that are likely to occur, which will necessitate
antilymphocyte therapy to control rejection, which
facilitates the emergence of the BK virus [33].
However, there is debate regarding the contribution of
either cold ischemia or rejection episodes to BK virus
reactivation [34].

The diagnosis and monitoring of patients at risk for
BK nephropathy is multifactorial and has evolved with

FIGURE 10.1 This post-amplification melt curve was produced
following real-time PCR amplification using broad-range polyomavi-
rus primers. Fluorescence resonance energy transfer probes that
hybridized with complete complementarity with the BK virus ampli-
con had two mismatches with the JC virus amplicon and several mis-
matches with the SV40 virus amplicon. This demonstrates the
qualitative detection and differentiation of the medically-important
BK and JC polyomaviruses in a single assay.
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the introduction of molecular methods. The BK virus
can be grown in cell culture or shell vial assay, or
directly detected in the urine by immunofluroescent
methods. These methods, which were used in the past,
have been replaced by quantitative PCR, which is fas-
ter, more specific, and less labor intense [35,36].
Quantitative PCR for the BK polyomavirus is predomi-
nantly performed on extracts from plasma specimens
from renal transplant recipients. This is usually per-
formed periodically throughout the lives of these
patients and the presence and quantity of BK virus are
measured and trends are established. A baseline
should be established relatively soon after transplanta-
tion. Testing should be done with the greatest fre-
quency through the 10- to 13-month window after
transplantation when the incidence of disease is great-
est, then at a regular interval. A recommended proto-
col for the screening of renal transplant recipients is to
screen the urine every 3 months and the plasma every
1�3 months for the first 2 years after transplantation
or when graft dysfunction occurs [37]. An increasing
viral load in the presence of decreasing renal function
correlates with BK nephropathy [38]. The same correla-
tion is not as clear for high BK viral loads in the urine,
since the BK virus replicates in the urothelium and
relatively high viral loads may be present in the
absence of renal involvement. However, Pang et al.
undertook a 1-year prospective study evaluating urine
and plasma specimens from renal transplant recipients
[39]. They found that as the viral load in the urine
increased from 7.0 to 10.0 log(10) copies/mL the per-
centage of patients with viremia increased from 22% to
100%, respectively. These authors suggested that
plasma viral load testing could be reserved for those
patients who have greater than or equal to 7.0 log(10)
copies/mL of virus in the urine. The absence of BK
virus in the urine has a high negative predictive value
for BK nephropathy.

The routine use of BK viral load testing represents
an important advancement in the diagnosis and moni-
toring of patients for BK nephropathy. It is particularly
important since it has direct implications on the immu-
nosuppressive regimen given to the patient. Decreased
kidney function may occur for a variety of reasons in
the renal transplant recipient. In addition to BK
nephropathy, decreased renal function may occur sec-
ondary to transplant allograft rejection. The differentia-
tion of these conditions is critical, since transplant
rejection is addressed by increasing the immunosup-
pression, whereas BK nephropathy is addressed by
decreasing the immunosuppression.

The BK virus is the most common cause of hemor-
rhagic cystitis in hematopoietic stem cell transplant
recipients [40,41]. Hemorrhagic cystitis usually occurs

2 weeks after transplant and may affect up to 25% of
these patients [42]. Hemorrhagic cystitis ranges in
severity from mild (only microscopic hematuria) to
severe (clots of blood become obstructive to the flow
of urine). There is a great deal of morbidity associated
with moderate to severe disease. When the BK virus is
the cause of hemorrhagic cystitis the BK viral loads in
the urine are extremely high and may be as great as
104 copies/mL. The absence of significant quantities of
the BK virus in the urine of a patient with hemorrhagic
cystitis is suggestive of another etiology. Other etiolo-
gies include infections by adenovirus or cytomegalovi-
rus, as well as the chemotherapeutic treatment, albeit
this latter cause has become less common as an etiol-
ogy due to preventive measures taken to prepare the
patient for therapy [1].

The BK virus has been associated with ureteral
stenosis, which is not surprising given the locus of
viral replication. Additionally, it has only rarely been
associated with other diseases, such as native kidney
infection in recipients of other types of transplants (eg,
heart and stem cell), pneumonia, and encephalitis
[43�45]. Individuals have sought associations of these
viruses with other diseases, but these searches have
largely been unfruitful. For example, an examination
of lung tissue extracts from 33 patients with documen-
ted idiopathic pulmonary fibrosis found no evidence
for the presence of either the BK or JC virus by PCR
[46].

The JC Virus

The JC virus causes PML [47]. This disease was
associated with a variety of malignancies or sarcoidosis
prior to the HIV epidemic [48,49]. Patients with pro-
gressive HIV infection (ie, AIDS) are at high risk of
PML. The CD41 T-cell reduction caused by HIV infec-
tion produces the perfect milieu for the emergence of
the JC virus in the central nervous system. The lytic
infection of myelin-producing oligodendroglial cells is
the cause of this demyelinating disease. As with BK
nephropathy, serologic studies are supportive of reacti-
vation of endogenous virus rather than a primary infec-
tion [50,51]. This disease has become significantly less
common in resource-rich countries wherein patients
have access to highly active antiretroviral therapy.

A new group of patients are now recognized as at-
risk for PML. This group consists of patients who
undergo immunotherapy with biologics for a variety
of autoimmune conditions. PML has been reported in
patients receiving natalizumab, for multiple sclerosis,
efalizumab for psoriasis, and infliximab for Crohn’s
disease and other autoimmune diseases [52�57]. In
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rare instances, PML may present in patients with mini-
mal to occult immunosuppression, the possibility of
this disease should remain in the differential diagnosis
of patients with the appropriate clinical and radiologi-
cal findings [58].

Quantitative or qualitative PCR for the JC virus on
extracts from CSF provides the necessary supportive
data to confirm the diagnosis of PML in the appropri-
ate clinical setting [59]. PCR for the JC virus in this set-
ting has largely replaced brain biopsy for the diagnosis
of PML, just as temporal lobe biopsy for the diagnosis
of herpes simplex virus (HSV) meningoencephalitis
has been replaced by HSV PCR performed on CSF
specimens.

The JC virus, like the BK virus, has also been noted
to be a cause of urethral stenosis. There have been rare
instances of JC nephropathy in renal transplant recipi-
ents [60]. Therefore, some have suggested that this
condition should be termed polyomavirus nephropa-
thy. JC nephropathy should be suspected in patients
with decreasing renal function, but with undetectable
to very low BK viral loads in the plasma. An infection
with a BK variant that is not detected or not quanti-
tated well by the BK virus PCR should also be sus-
pected in this scenario. The histopathologic assessment
of the kidney biopsy for evidence is critically impor-
tant in this type of situation. If JC nephropathy is sus-
pected, then quantitative PCR for the JC virus should
be performed on plasma specimens. Similarly, the
detection and/or quantitation of the JC virus in the
urine may be used to disclose the presence and quan-
tity of this virus in patients with ureteral stenosis.

Other Polyomaviruses

The Merkel cell carcinoma (MCC) polyomavirus has
received a great deal of study recently, given the etio-
logic association of this virus with MCC. MCC is a
neuroendocrine carcinoma that arises from the cell that
bears the same name. These carcinomas occur most
commonly in transplant recipients. However, even in
this patient population the incidence of disease is low.
The lesion is characterized by neoplastic cells with
neuroendocrine features that in many ways resemble
small cell carcinoma. The presence of immunoreactiv-
ity to cytokeratin 20 is useful in differentiating MCC
from small cell carcinoma.

Although the MCPV has been strongly associated
with MCC, there are MCCs that lack the presence of
the MCPV and likely have arisen through other
mechanisms [61]. Therefore, the absence of the MCPV
does not exclude the diagnosis of MCC. Currently
there is no role for testing for this virus in routine
medical practice laboratory.

There is currently no documented clinical utility in
testing the numerous other polyomaviruses that have
been described.

LIMITATIONS OF TESTING

The presence of PCR inhibitors may occur in any
clinical specimen, but these are minimal in specimens
that are extracted using modern techniques for the
recovery of DNA. The possibility of specimen-
to-specimen contamination or extract-to-extract
contamination predominantly concerns predominantly
the processing and testing of urine specimen extracts
where the viral load may be very high. These should
not be processed in the same run as plasma specimens.

Hayden et al. used results from a national profi-
ciency testing provider to study factors that contrib-
uted to variability in quantitative PCR results for viral
assays [62]. They reiterate the importance of standard-
ized quantitative control material, but explore other
potential factors. They found that the selection of the
quantitative calibrator, the use of commercially-
prepared primers and probes, and the target gene
selected for amplification all were associated with vari-
ability. The differences in these variables between dif-
ferent laboratories are in part responsible for
interlaboratory variability of BK testing, which has
been described [62]. Genomic sequence variability
occurs in the BK virus and has an impact on the detec-
tion and reliable quantitation of this virus. Randhawa
et al. studied the variability of the VP1 gene sequence,
which was their target for a hydrolysis probe PCR. Of
184 publically-available sequences for review, only
44% (n5 81) demonstrated a perfect match for either
primers or probes [63]. Not surprisingly, they deter-
mined that BK genotypes with mismatches at the pri-
mers and probe sites would not be detected unless
they were present in high concentrations (ie, the sensi-
tivity of the assay was decreased for these subtypes).
Furthermore, they reported that the calculated viral
loads would be between 0.57% and 3.26% of the
expected values for BK strains with greater than or
equal to two mismatches [63]. Similarly, Hoffman et al.
compared seven different BK virus quantitative PCR
assays and reported substantial disagreement [64].
Like others, this was due to primer and probe
mismatches. However, they noted that this primarily
occurred with subtypes III and IV. The seven assays
were described as typically uniform for the more com-
mon subtypes (ie, Ia, V, and VI). Others, similarly,
have reported the failure to detect BK virus strains
secondary to mismatches, which has necessitated assay
redesign [23,24]. It has been a goal of many to design
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an assay that will detect all BK subtypes equally well
[24,64]. Therefore, it is recommended that target
sequences are annually reviewed against newly avail-
able sequences [24].

New subtypes of the BK virus are still being
described [65]. Therefore, it remains important to con-
tinually assess the ability of the assays in routine use
to detect and adequately quantitate these subtypes. It
is important to consider the genomic variability that is
known to occur among BK subtypes for particular
genes and to consider this factor, if the BK virus is not
detected or the viral load is inconsistent with the clini-
cal findings [63].

The quantities of polyomavirus shed into the urine
are often logarithmically greater than the quantities
detected in the plasma. Therefore, an important practi-
cal consideration is to not mix specimen types in quan-
titative PCR runs. A contamination event from a
specimen or a urine extract with a very high BK viral
load could produce misleading, false-positive BK viral
load results in nearby extracts from plasma. It is our
recommendation that if both plasma and urine speci-
mens are to be assessed for the presence and quantity
of the BK virus, then these should be processed sepa-
rately and the PCR assays run at different times.

The cross-reactivity of in situ hybridization probes
and immunohistochemistry reagents has been
described. This is expected for the immunohistochem-
istry product, since the commercially-available anti-
body is directed against antigens on the SV40
polyomavirus. Therefore, these reagents should be
considered sensitive for the visual detection of poly-
omavirus in tissue preparations that have been appro-
priately processed, but nonspecific with respect to
which type of polyomavirus is present. This is usually
not an issue since the polyomavirus associated with a
demyelinating disease in the brain would be the JC
virus and the polyomavirus associated with renal his-
topathology is most likely, but not exclusively, the BK
virus. Therefore, we recommend correlating the results
of in situ hybridization or immunohistochemistry stud-
ies with the results of PCR assay that target the respec-
tive polyomaviruses.
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INTRODUCTION

Respiratory tract infections (RTIs) are common and
are associated with significant health burden. For
example, pneumonia is the fourth leading cause of
death globally and the leading infectious cause [1].
Despite being generally mild and self-limiting, the
common cold is associated with an enormous eco-
nomic burden, both in lost productivity and in expen-
ditures for treatment [2]. The major viral agents of
RTIs include influenza viruses A and B, respiratory
syncytial virus (RSV), human metapneumovirus
(HMPV), parainfluenza virus (PIV), adenovirus (AdV),
rhinoviruses (RVs), enteroviruses (EVs), and human
coronavirus (HCoV). Common to these viruses are
their ability to infect airway epithelial cells, co-opt host
cell proteins to facilitate infection, modulate both
innate and adaptive immune responses, and to medi-
ate proinflammatory responses which contribute to
disease pathogenesis (Table 11.1). Yet, some of the
unique features of these viruses can lead to diagnostic
limitations.

MOLECULAR TARGETS

Influenza

Influenza viruses are some of the most important
human pathogens, infecting hundreds of millions of
people annually with 250,000�500,000 deaths world-
wide [3]. As members of the Orthomyxoviridae family,
these viruses are classified into three distinct types, A,
B, and C viruses based on major antigenic differences,
subdivisions based on antigenic characterization of
the surface glycoproteins hemagglutinin (HA) and

neuraminidase (NA). Currently, among the type A
viruses, there are 16 HA subtypes and 9 NA subtypes.

Influenza infections are usually acute, self-limited,
febrile illness which manifest clinically as fever, mal-
aise, and cough with attack rates as high as 10�40%
[4]. Their occurrence is generally seasonal with out-
breaks of varying severity observed almost every win-
ter. Pandemics have occurred in 1918, 1957, 1968, and
2009 and were caused by different antigenic subtypes
of influenza A: H1N1, H2N2, H3N2, and again H1N1
(Fig. 11.1).

Historically, H3N2 is associated with higher mortal-
ity [4]. Alternately, other stains are associated with
more severe infection among individuals with certain
high-risk factors such as obesity, pregnancy, and other
comorbidities [5,6]. Furthermore, specific viral muta-
tions are associated with higher virulence and cell
receptor binding, which affects their predilection for
the upper (URTI) or lower respiratory tract infection
(LRTI). The Glu222Gly substitution in the HA gene can
be found in strains of avian influenza, and to a lesser
extent, in some strains of 2009 H1N1 [7,8]. Whereas
most strains of influenza replicate in the URT where
α-2,6-linked sialic acid receptors predominate on cell
surfaces, this amino acid substitution is associated
with a greater affinity for α-2,3-linked receptors which
are more abundant in the LRT, resulting in a greater
risk for viral pneumonia [9�12]. Despite the greater
number of influenza A hospitalizations, there appears
to be no significant difference between influenza A
and B in rates of high-risk conditions, median length
of stay, intensive care unit (ICU) admissions, or deaths
[13].

Human infection with zoonotic strains is more con-
cerning as these strains have the potential to be more
pathogenic, as seen with the avian H5N1 strains, and
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TABLE 11.1 Natural History, Pathogenesis, and Clinical Presentation of Common Respiratory Viruses

Seasonality

in temperate

climates

Incubation

period

Duration

of illness

Period of

sheddinga
Replication

site Cell receptor

Mechanism of

pathogenesis Presentation

Respiratory disease

syndrome(s)

Extrapulmonary

manifestation

Optimal

specimen

Flu Sharp annual

peak lasting

B6 to 8

weeks

1�4 days

(average5 2

days)

3�7

days

Cough,

malaise

more than
2 weeks

Day 21

to day 10

1� ciliated

columnar,

also alveolar

and dendritic

Predominately

α-2,6-linked
sialic acids

H5N1 and to a lesser

extent 2009 H1N1,

predominately LRT

where α-2,3-linked
sialic acids predominate
on cuboidal

bronchiolar cells

Abrupt onset of flu

symptoms (fever, myalgia,

headache, malaise, dry

cough, pharyngitis, and

rhinitis). Otitis media,
nausea, and vomiting

may also be observed

Flu
Pneumonia

Cytokine related

encephalitis

Usually NP

aspirate,

washes, and

swabs

Influenza
pneumonia:

include BAL,

sputum, or

throat

RSV RSV broad

peak 15�20

weeks

(Oct�May)

3�8 days

(average5 5

days)

7�14

days

Day 23

to day 14

1� ciliated

columnar,

also alveolar

and dendritic

Heparan sulfate

and nucleolin

Accessory proteins

interfere with IFN

pathways. Rapid

inhibition of Na1
transport, resulting in

apical fluid

accumulation

Begins with rhinorrhea,

pharyngitis, cough,

headache, fatigue, and

fever. Bronchiolitis6

URI with or
without LRI
Bronchiolitis
Pneumonia
Tracheobronchitis
Croup

Rare

encephalitis,

myocarditis

NP aspirate,

washes, swabs

HMPV Late winter

and early

spring

biennial

pattern

4�6 days 5�10

days

1�2

weeks

1� ciliated

columnar,

also alveolar

Heparan sulfate Accessory proteins

interfere with IFN

pathways. Rapid

inhibition of Na1

transport, resulting in
apical fluid accumulation

Begins with rhinorrhea,

pharyngitis, cough,

headache, fatigue, and

fever. Bronchiolitis

URI with or
without LRI
Bronchiolitis
Pneumonia
Tracheobronchitis
Croup

Rare encephalitis NP aspirate,

washes, swabs

PIV PIV1:

biennial
autumn;

PIV2: also

autumn;

PIV3:

endemic with

spring time

2�7 days 7�10

days

Day 23

to day 20

Ciliated

columnar

PIV1: sialic

acids with
terminal

NeuAcα2-3Gal

PIV3: sialic

acids with

terminal

NeuAcα2-6Gal

or NeuGcα2-
3Gal

Accessory proteins

interfere with IFN
pathways. Rapid

inhibition of Na1

transport, resulting in

apical fluid accumulation

Begins with rhinitis,

pharyngitis, cough
(croupy), and hoarseness,

usually with fever

PIV1 and PIV2: Croup

PIV3: Bronchiolitis

PIV1 and PIV2:
URI with or
without LRI
Croup
Pneumonia
Bronchiolitis

PIV3:
URI with or
without LRI
Bronchiolitis
Pneumonia
Croup

Rare meningitis,

hepatic infection

NP aspirate,

washes, swabs



AdV Endemic

with winter

or early

spring

epidemics

2�14 days 3�14 days 3�6

weeks,

some

months to

years

Nonciliated

epithelial

persistence

within

lymphocytes

A, C, E, and F:

CAR

B and D: CD46

Destruction of

respiratory

epithelial cells

Disruption of the

integrity of cell�cell

contact

Fever, pharyngitis,

exudative tonsillitis, and

cough with or without

diarrhea, vomiting and

abdominal pain and/or

with or without

conjunctivitis

URI with or
without GI
Conjunctivitis
Pneumonia
Croup
Bronchiolitis

Conjunctivitis,

GI, cystitis, rare

meningitis,

myocarditis,

myositis

Affected sites:

NP aspirate,

washes,

swabs, throat,

BAL, urine

stool, blood

RV Endemic

with peaks in

fall

(Aug�Sep)

and spring

(Apr�May)

1�7 days

(average5 2

days)

10�14

days

(average

5 10

days)

Day 21 to

day 14

some 3

weeks

1� ciliated

epithelial,

also

nonciliated

RV A and B:

ICAM-1

and LDLR

RV C: other but

unknown

Nonspecific host

inflammatory responses

Rhinorrhea, pharyngitis,

cough, headache, malaise,

mild fever

URI
Asthma
exacerbation
Bronchiolitis
Pneumonia

Rare meningitis,

myocarditis

NP aspirate,

washes,

swabs,

tracheal or

bronchial

aspirate, BAL

RV C: other but

unknown

HCoV Typical

HCoV:

endemic with

peaks in

winter to

early spring.

Peaks in 2�4

years

SARS &

MERS:

zoonotic

Typical

HCoV: 2�5

days

(average5 3

days)

SARS: 4�7

days

Typical

HCoV:

3�18 days

(average

5 7 days)

SARS:

7�21 days

Typical

HCoV:

day 1 to

day 21

MERS:

Day 1 to

day 33

Typical

HCoV:

ciliated

epithelial

MERS:

alveolar and

blood vessel

endothelium

229E: human

aminopeptidase

N (hAPN);

OC43: carcino-

embryonic

antigen (CEA)

NL63:

ACE2HKU1:

HLA-CSARS:

ACE2MERS:

dipeptidyl

Peptidase IV

(DPP4)

Typical HCoV:

destruction of

upper respiratory

epithelial cells

SARS: diffuse alveolar

damage

Typical HCoV: rhinorrhea,

pharyngitis, cough,

headache, malaise, mild

fever

SARS and MERS: fever,

cough, dyspnea, malaise,

headache. Diarrhea in

some

Typical HCoV:

URI
Pneumonia
Bronchiolitis

SARS and MERS:

Pneumonia
GI
Renal failure
(MERS)

Typical HCoV:

None

SARS: GI,

kidney, liver

Typical

HCoV:

SARS and

MERS: NP

and throat,

BAL, sputum

serum, stool

aShedding in children is generally longer than adults. Immunocompromised can shed virus for weeks to months.



they have the potential to be the source of the next
pandemic due to low levels of immunity in the popu-
lation. Human infection with many of these strains is
associated with unique presentations, such as conjunc-
tivitis with H7 stains, and atypical symptoms like nau-
sea, vomiting, encephalopathy, and bleeding gums
and nose with H5 strains [4], which may delay clinical
diagnosis and recognition of zoonotic transmission.
Interesting, single amino acid changes appear to be
responsible for changes in host range [14].

Typically, influenza infections present with systemic
symptoms, fever and myalgia, along with upper air-
way symptoms, such as pharyngitis and dry cough.
They usually begin with an abrupt onset of symptoms
after an incubation period of 1�2 days and last 4�5
days. However, prolonged infection with or without
disease has been reported to last weeks to months in
immunocompromised individuals. Less commonly, the
virus infects the lung, either via contiguous spread
from the URT or via inhalation, causing primary viral
pneumonia. Influenza pneumonia frequently requires
ICU admission and mortality is high [4]. Secondary
bacterial pneumonia is a well-recognized complication
of viral pneumonia and accounts for a large proportion
of the morbidity and mortality of viral LRT disease,
especially in adults. Bronchiolitis and croup may also
occur with influenza infection, albeit much less fre-
quently than RSV and PIV. Influenza can be associated
with exacerbation of chronic pulmonary diseases such
as chronic bronchitis, asthma and worsening pulmo-
nary function in children with cystic fibrosis.

Nonpulmonary complications include myocarditis
and pericarditis, as well as exacerbations of other
underlying disease such as chronic heart failure and
chronic renal disease [15]. Myocarditis is not highly
uncommon during influenza infection and may pres-
ent as asymptomatic myocardial involvement to fulmi-
nant myocarditis resulting in cardiogenic shock and
death [16]. Central nervous system involvements

include the rare occurrence of transverse myelitis and
encephalitis which appear to be immune rather than
viral mediated [17]. Guillain-Barré syndrome is also
associated with immune mechanisms following influ-
enza infection [18].

Paramyxoviruses

RSV and HMPV are from the Pneumovirinae subfam-
ily of the Paramyxoviridae family. RSV is the major
cause of LRT illness in young children and is associ-
ated with an estimated 132,000�172,000 pediatric hos-
pitalizations in the United States annually [19] and
globally it is an important cause of death [20]. Most
infants (50�69%) are infected during the first year of
life and virtually all are infected by age 2 [21]. HMPV
also causes a broad range of URTI/LRTI, which are
clinically indistinguishable from RSV. It accounts for
about 1�5% of childhood URTI and 10�15% of hospi-
talizations for LRTI, depending on age group and year
of study [22�24]. Primary infection with HMPV tends
to occur at a slightly older age than RSV and by age 5
most children have been infected [25,26].

PIVs also belong to the Paramyxoviridae family and
are classified as four types and two subtypes (PIV1, 2,
3, 4a, and 4b). PIV1 and to a lesser extent PIV2 are the
most significant cause of croup while PIV3 is a signifi-
cant cause of bronchiolitis, bronchitis, and pneumonia.
Indeed these viruses accounted for 6�8% of all hospi-
talizations for fever or acute respiratory illnesses in
children less than 5 years of age [27]. By 5 years of age
most children have antibodies against PIV3 and
approximately 75% have antibodies against PIV1 and
PIV2.

Primary infections with paramyxoviruses are usu-
ally symptomatic and present as URTI beginning 2�8
days after infection through the nose or eyes.
Although all these viruses replicate in the ciliated
columnar cells of the nasopharyngeal (NP) tract
[28�30], it is believed that varying cell receptor usage,

FIGURE 11.1 Timeline of human flu pandemics. Major pandemic; The appearance of influenza strain in the human population.
Source: Adapted from http://www.niaid.nih.gov/topics/Flu/Research/Pandemic/Pages/TimelineHumanPandemics.aspx.

126 11. MOLECULAR TESTING FOR RESPIRATORY VIRUSES

II. MOLECULAR TESTING IN INFECTIOUS DISEASE

http://www.niaid.nih.gov/topics/Flu/Research/Pandemic/Pages/TimelineHumanPandemics.aspx


including sialic acid containing molecules usage by
different PIV strains, likely contributes to the differ-
ences in pathogenesis [31,32]. The viruses may then
spread to the LRT within 1�3 days as the result of
viral impairment of the ciliary epithelium [33].
Paramyxovirus pathogenesis is then associated with
necrosis and sloughing of the ciliated epithelial cells
which along with edema and increased mucus secre-
tion, obstructs airway, and leads to airway hyperre-
sponsiveness [34,35].

LRTI with RSV and HMPV occurs in 25�40% of
cases and manifests most commonly as bronchiolitis,
followed by pneumonia and tracheobronchitis, and
lastly croup [21,26,36]. Risk factors for bronchiolitis
requiring hospitalization include young age, prematu-
rity, male sex for RSV and female sex for HMPV,
chronic illness, lower socioeconomic status, smoke
exposure, and asthma [21,37�39]. PIV develops into
LRTI in 15�25% of cases [40]. There is a tendency for
PIV1 and PIV2 to involve the larynx and upper tra-
chea, resulting in the croup syndrome, while PIV3
spreads to the small air passages with the develop-
ment of bronchopneumonia, bronchiolitis, and/or
bronchitis when it is associated with severe disease
[27]. There is compelling evidence that the level of
virus replication correlates to the disease severity, but
innate immune responses also appear to be important
[41�43]. HMPV infection appears somewhat milder
than that of RSV, but dual HMPV and RSV infections
have been reported as more severe than with either
virus alone [44,45]. Among the two antigenic sub-
groups, RSV A is associated with more severe disease
than subgroup B [46,47], while the severity of illness
associated with HMPV A is similar to HMPV B infec-
tion [48].

Reinfection with paramyxoviruses occurs through-
out life and is usually present as mild URTI in children
and adults with RSV, HMPV, and PIV causing about
7%, 2%, and 5% of acute respiratory illnesses in adults,
respectively [49,50]. Reinfection in immunocompro-
mised individuals has a higher risk of more serious
disease. Extrapulmonary manifestations from para-
myxoviruses are rare and controversial. However,
there have been a few reports of paramyxoviruses in
CSF in cases of encephalitis or meningitis, as well as in
myocardium and liver [43,51�53].

Adenovirus

Human AdVs, belonging to the generaMastadenovirus,
are further divided into seven species (A through G) and
57 types [54]. These viruses cause a broad range of clini-
cal syndromes, with groups A, B, C, and E causing
5�10% of pediatric and 1�7% of adult URTI and LRTI
[55]. Several group B AdVs, including serotypes 3, 7, 14,
and 21, have caused outbreaks of acute respiratory

disease (ARD). Although fatal AdV infections in immu-
nocompetent adults are rare, ARD outbreaks due to a vir-
ulent strain of serotype 14 in 2006 and 2007 was
associated with a significant number of ICU admissions
and deaths in previously healthy young adults [56].

Approximately 50% of all AdV infections result in
subclinical disease, and most symptomatic infections
are mild and self-resolving within 2 weeks [57]. AdV
infection begins with replication in nonciliated respira-
tory epithelium of the tonsils and adenoids [54]. A brief
period of viremia ensues. URTI symptoms in children
and young adults include fever, pharyngitis, tonsillitis,
and cough, with or without GI symptoms or conjuncti-
vitis [55]. Disruption of the integrity of cell�cell contact
enables infection of other cells of the respiratory tract
[54]. Worldwide, pneumonia occurs in up to 20% of
young children with fatality rates for severe AdV pneu-
monia exceeding 50% [55]. AdVs utilize cell receptors
that are abundantly expressed in epithelial cells in mul-
tiple organs or tissues (CAR for groups A, C, E, and F,
and CD46 for groups B and D) [58,59]. Hence, extrapul-
monary manifestations are common in normal host and
include conjunctivitis, GI illness, and cystitis, as well as
the more rare occurrences of meningitis, myocarditis,
and myositis. AdV can persist as a latent infection for
years after an acute initial infection and may reside in
lymphoid tissue, renal parenchyma, or other tissues
[55]. Reactivation may occur in severely immunosup-
pressed patients.

AdV causes considerable destruction of respiratory
epithelial cells due to inhibition of cellular DNA,
mRNA, and protein synthesis resulting in the forma-
tion of characteristic smudge cells with enlarged nuclei
containing basophilic inclusion bodies surrounded by
thin rims of cytoplasm [54]. The penton base structural
protein, which causes cells to detachment in vitro, may
be involved in pathogenesis in vivo.

EVs—Including RVs and Human Parechoviruses

EVs and human parechoviruses (HPeVs) of the
Picornaviridae family are associated with RTI in addi-
tion to a wide array of other disease. In fact, EVs are
responsible for up to approximately 19% of LRTI
in hospitalized children [60]. Human infections are
associated with four species of EV (EV A�D), three
species of RVs (RV A�C) from the EV genus and
one species from the HPeV genus (HPeV A).
Although strains from all species may infect the respi-
ratory tract, EV C (C104, C109, C117), EV D (D68), RV
A, and RV C are associated with more serious respira-
tory disease.

RV is undoubtedly the most commonly detected
respiratory virus in all age groups, accounting for 25%
of all respiratory infections, with asymptomatic infec-
tion occurring in at least 20% of healthy individuals
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[61]. RV preferentially infects the URT, primarily the
paranasal sinuses and nasopharynx. One to three days
after infection, URTI frequently begins as a sore or
scratchy throat followed by nasal obstruction and rhi-
norrhea with cough, headache, malaise, and some-
times fever. Large- and medium-sized airways also
maintain high-level RV replication [62]. As a result,
RV is associated with bronchiolitis in infants and
exacerbations in patients with chronic asthma. LRTI
such as pneumonia, croup, and bronchitis also occur
and result in a significant number of hospitalizations
[63]. Cytopathogenicity of this virus is low and pathol-
ogy is primarily due to nonspecific host inflammatory
responses.

Coronaviruses

Most members of Coronaviridae family infecting
humans (229E and OC43 from the alpha-CoV genus,
NL63 and HKU1 from the beta-CoV genus) cause mild
URT diseases. In fact, these typical HCoV cause up to
30% of all URTIs [64]. However, two novel beta-CoV,
severe acute respiratory syndrome associated CoV
(SARS-CoV), and Middle East respiratory syndrome
CoV (MERS-CoV) cause serious viral pneumonitis,
leading to hospitalization and death with overall mor-
tality rates of 10% and 30%, respectively [65].

Infection with the typical HCoV, of which 30% are
asymptomatic, begins with replication in the ciliated
epithelial cells of the nasopharynx. Direct destruction
of ciliated epithelial cells in conjunction with innate
immune responses produces rhinorrhea, pharyngitis,
cough, headache, malaise, and mild fever 2�5 days

after infection. These viruses have also been associated
with severe pneumonia and bronchiolitis in neonates
and the elderly, especially those with underlying ill-
nesses. In addition, HCoV-NL63 is also an important
cause of croup [66]. Infection frequently occurs in
young children with seropositivity in 50% of school-
age children [64]. Reinfection as well as coinfection is
common.

SARS begins with fever, headache, malaise, or myal-
gia, followed by nonproductive cough and dyspnea in
a few days to a week after onset of symptoms.
Although the upper airway is also infected, there is lit-
tle epithelial cell damage and URT disease is lacking.
Virus rapidly spreads to the alveoli, causing diffuse
alveolar damage leading to pneumonia and ARDS in
25% of cases [67]. Diarrhea is common. MERS is also
associated with a biphasic illness strikingly similar to
SARS except for more frequent renal failure [68]. Most
patients who are hospitalized with SARS and MERS
have chronic comorbidities. Interestingly, asymptom-
atic infections with both viruses have been reported
[69,70].

CLINICAL UTILITY OF MOLECULAR
DIAGNOSTICS FOR RESPIRATORY

VIRUS INFECTION

Respiratory viruses can infect both the URT and the
LRT (Fig. 11.2) and tend to cause distinct clinical syn-
dromes based on their tropism for different sites of the
respiratory tract. Most commonly these viruses only

FIGURE 11.2 Schematic representation of the
human respiratory tract. The upper (shaded
pink) and lower respiratory tract (URT/LRT) and
the components of the ear are indicated. The
approximate locations of URT and LRT diseases
associated with respiratory virus infection are
indicated. Source: Reprinted with permission from
Caister Academic Press (from Mackay IM, Arden KE,
Nissen MD, Sloots TP. Challenges facing real-time
PCR characterization of acute respiratory tract infec-
tions. In: Mackay IM, editor. Real-time PCR in
microbiology: from diagnosis to characterization.
Caister Academic Press; 2007. pp. 269�318).
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infect the URT, and when LRT infection does occur, it
is most often due to contiguous spread.

Upper Respiratory Tract Infections

The Common Cold

The common cold refers to a syndrome of upper
respiratory symptoms that may be caused by a variety
of viral pathogens. These symptoms include nasal
blockage, runny nose, sneezing, cough, and sore
throat, sometimes with headache or other body aches,
and typically begin 1�3 days after infection. Fever and
other constitutional symptoms are more often seen in
URTIs associated with influenza, RSV, HMPV, and
AdV. Colds usually last about 1 week, but virus shed-
ding can persist for 2�3 weeks. Otitis media can
develop from URTI with any of these viruses and can
due to secondary bacterial infection or direct viral
infection. Indeed, virus can be detected in middle ear
fluids with RSV, influenza, HCoV, and RV being the
most common [71].

The pathogens most frequently associated with
common cold symptoms are the EV/RV, which cause
approximately half of all colds in children and almost
three-quarters of colds in adults, and HCoV
(Table 11.2). It is often forgotten that influenza viruses
can present with only mild URTI symptoms and is in
fact a common cause of the cold. Other important
pathogens that are also associated with cold symptoms
include AdV, RSV, HMPV, and PIV. Coinfections are
common.

Although generally mild and self-limited, these ill-
nesses are associated with an enormous economic bur-
den both in lost productivity and in expenditures for
treatment. Hence, attempts have been made to create
and market antiviral agents targeting causes of the

common cold, particularly EV/RV [72]. Due to the
lack of success in therapeutic interventions, diagnostic
testing outside of epidemiological investigations is not
warranted.

Influenza-Like Illness

Influenza-like illness (ILI) is on the other end of the
spectrum of URTIs and is defined as the presence of
fever of greater than or equal to 100�F, in addition to
cough or sore throat, in the absence of an alternative
cause. After an incubation period of 1�4 days, there is
an abrupt onset of constitutional and respiratory signs
and symptoms which generally lasts 5�7 days. The
constitutional symptoms can include malaise, body
aches, headache, loss of appetite, and nausea and are
generally due to cytokines released by immune system
activation. Interestingly, influenza only causes 35�45%
of ILI cases during peak seasons. But many other viral
infections can present as flu-like, particularly RV/EV
and RSV (Table 11.2).

Appropriate treatment of patients with respiratory
illness depends on accurate and timely diagnosis.
Early diagnosis of influenza can reduce the inappropri-
ate use of antibiotics, provide the option of using anti-
viral therapy and is an important infection prevention
measure. The causative agent of ILI is difficult to
determine on the basis of signs and symptoms alone.
Sensitivity and predictive value of clinical definitions
vary, depending on the prevalence of other respiratory
pathogens and the level of influenza activity. Among
generally healthy adults living in areas during the
peak of influenza activity, the positive predictive value
(PPV) of a simple clinical definition of influenza (acute
onset of cough and fever) can be over 80%. However,
the presentation in children, the elderly, and indivi-
duals with comorbidities is less likely to be typical, in

TABLE 11.2 Relative Rates of Respiratory Viruses Among Respiratory Tract Syndromes

Virus

Common cold

(pediatric/adult)

ILIa

(all ages)

Croup

(pediatric)

Bronchiolitis

(pediatric)

Pneumonia

(pediatric/adult)

AdV 5�10/1 0.4�9 1 1�8 1�10/3�13

HCoV 10�15/11 0.2�10 2b 1�8 3�7/6�13

Influenza 25�30/8 8�52 9 1�10 4�22/21�31

HMPV 1�5/1 0.2�10 ,1 3�12 1�13/3�22

PIV 1�5/5 0.4�11 42c 1�3 8�28/6�14

RSV 1�5/3 0.4�19 15 70�80 3�45/13�24

RV/EV 40�50/71 4�29 21 15�35 3�45/13�24

References [74,124] [79,138,139] [140] [141�143] [77,144]

aInfluenza-like Illness5 fever, myalgia, pharyngitis, and dry cough.
bFrequencies not yet well established.
cPIV15 31%, PIV25 5%, PIV35 6%.
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which case the PPV of clinical impression can be as
low as 17�30% in these populations [73].

Dagnostic testing is not needed for all patients with
ILI to make antiviral treatment decisions once high
levels of influenza activity have been identified in the
region. For most outpatient and emergency room set-
tings, results for molecular assays are generally not
available to assist in clinical decision making.
Fortunately, that paradigm is changing with advent of
rapid tests which provide a wide panel of results in
approximately 1 h, or 20-min point-of-care devices for
influenza. But generally, molecular testing has been con-
sidered to be most appropriate for hospitalized patients
if a positive test would result in a change in clinical
management, including infection control practices.

Lower Respiratory Tract Infections

Croup

Croup is a common childhood disease characterized
by sudden onset of a distinctive barky cough that is
usually accompanied by inhalation stridor, hoarse
voice, and respiratory distress resulting from upper
airway obstruction that worsens at night. Although the
illness is generally mild and short-lived, the presenta-
tion in a child is alarming. In fact 85% of cases typi-
cally present mild croup and fewer than 5% are
hospitalized [74].

Typically, this disease affects children between 3
months and 3 years of age. Frequently it begins with a
nonspecific URTI 12�48 h prior to the development of
classic symptoms. The barky cough resolves within
3�4 days for 60% of cases, but some patients will con-
tinue to have symptoms for up to 1 week [74].

Although present year-round, croup often presents
with biannual peaks in late autumn and again in
spring, particularly in odd-numbered years, correlating
with the prevalence of PIV (Fig. 11.3). Of the PIV
strains, type 1 is the primary cause of croup, followed
by type 3, and then 2 [74]. This finding appears contra-
dictory since type 3 is usually associated with bronchi-
olitis. However, this observation is easily explained by
the greater prevalence of type 3 virus over type 2
virus. Other viruses implicated in the disorder include
influenza, AdV, RSV, HMPV, and HCoV-NL63. In
addition, measles remains an important cause of croup
in nonimmunized children. RV coinfection is frequent.

Croup is a clinical diagnosis. Laboratory tests are
not needed to confirm the diagnosis. Laboratory analy-
sis generally should be limited to tests necessary for
management of a more severely ill child. Viral identifi-
cation may be warranted when specific antiviral ther-
apy is being considered, such as for severely ill or
high-risk children with influenza.

Bronchiolitis

Bronchiolitis is the most common acute viral LRT
illness in children less than 2 years of age. Clinical
signs and symptoms of bronchiolitis include rhinor-
rhea, cough, tachypnea, wheezing, rales, and increased
respiratory effort which typically lasts 3�7 days. There
is commonly a prodromal URTI (coryza, cough, and
mild fever) which lasts for several days. Complications
with bronchiolitis, such as apnea and aspiration, occur
most frequently in infants within the first several
months of life, in premature infants, and in children
with chronic conditions. Indeed, it is the most common
cause of hospitalization among infants during the first
12 months of life. Although the hospitalization rates
for bronchiolitis have been increasing, mortality rates
have declined [75].

Peak occurrence of bronchiolitis is during the win-
ter to early spring, and usually correlates with the
prevalence of RSV, which causes of about 70�80% of
cases. RV/EV and HMPV are other leading cause of
bronchiolitis, but all respiratory viruses have been
associated with bronchiolitis (Table 11.2), and a con-
siderable fraction of cases (30%) involve multiviral
infections. Again, bronchiolitis is a clinical diagnosis
and laboratory tests are not needed to confirm the
diagnosis. In fact, the American Academy of Pediatrics
recommends against radiographic or laboratory stud-
ies routinely [76].

FIGURE 11.3 The seasonal occurrence of croup cases is shown in
relation to the epidemiologic activity of the respiratory viruses asso-
ciated with croup. Source: Reprinted from Hall and McBride (Bower J,
McBride JT. Croup in children (acute laryngotracheobronchitis). In:
Bennett JE, Dolin R, and Blaser MJ, Editors. Mandell, Douglas, and
Bennett’s principles and practice of infectious diseases, 8th ed. Philadelphia,
PA: Saunders/Elsevier; 2015, pp. 762�766).
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Pneumonia

Pneumonia is a common illness with high morbidity
and mortality, particularly in children less than 5 years
old and in adults over 75. Viruses are more commonly
associated with pneumonia in children, particularly
influenza, RSV, RV, HMPV, and PIV (Table 11.2) [77].
The prevalence of the causative agents is age-
dependent, with RSV and PIV being more common
causes of pneumonia in children less than 2 years old
than in older children. Dual viral infections are com-
mon, and a third of children have evidence of vir-
al�bacterial coinfection, particularly with Streptococcus
pneumoniae and Staphylococcus aureus. In adults, viral
agents are an important cause of pneumonia in the
elderly, although historically their role has been under-
estimated given the insensitivity of antigen assays and
viral culture in this population. As the result of nucleic
acid amplification testing, it is now evident that
viruses, in particular influenza viruses, RVs, and coro-
naviruses, are the putative causative agents in a third
of cases of community-acquired pneumonia [78,79].

Viral infection of the lung can be the result of either
contiguous spread from the URT or by direct inhalation,
with the former beginning with typical URTI symptoms
followed by a rapid progression of fever, cough, dys-
pnea, and cyanosis. Nonrespiratory symptoms include
fatigue, sweats, headache, nausea, and myalgia. With
increasing age, both respiratory and nonrespiratory
symptoms of pneumonia become less frequent. Primary
viral pneumonia frequently requires ICU admission and
mortality is high. The diagnosis of pneumonia is deter-
mined clinically and confirmed by radiographic imaging,
but identification of the etiological agent is important
and recommended by the Infectious Diseases Society of
America and the American Thoracic Society [80].
Indeed, viral pneumonia cannot be differentiated from
bacterial pneumonia clinically, particularly in the elderly.
Furthermore, secondary bacterial infection with certain
bacteria may be virus-specific, increasing the need to
know the causative agent [81].

MOLECULAR TECHNOLOGIES AND
LIMITATIONS OF TESTING

Since most cases of viral respiratory infection (VRI)
are associated with mild, self-limiting illness, labora-
tory testing is not necessary. However, for more seri-
ous cases, such as those requiring hospitalization or
therapy, rapid laboratory diagnosis of the etiological
agent can be important. Viral diagnostics can guide
therapy, potentially eliminating unnecessary use of
antibiotics and enabling the use of antivirals when
appropriate. In addition, knowledge of the causative

agent is important for infection control interventions to
minimize the risk of nosocomial spread. Nucleic acid
amplification tests (NAATs) have become the test of
choice for VRI because rapid antigen tests have low
sensitivities [82�86] and viral culture, which can take
3�10 days, lacks utility for patient management.
Furthermore, NAATs have superior sensitivity and
specificity in both pediatrics and adults, and results
can be obtained within minutes to hours [87�89]. Not
only has NAAT revolutionize the detection of tradi-
tional respiratory viruses with its exquisite sensitivity,
but it enabled the discovery of new respiratory viruses,
such as HMPV, many HCoV, and RV C group.

More recently, multiplexed molecular assays have
been developed in order to diagnose a large number of
respiratory viruses in single assays. As an added bene-
fit, viruses that could not be detected by conventional
virology have been included which further increases
the diagnostic yield. Refer to the review by Gaydos
[90] for details regarding the performance and work-
flow of many of these systems. The principle differ-
ences among NAATs are the throughput, turnaround
time, ease of use, automation, versatility, use of a
closed system to reduce contamination and cost.

Early problems with NAAT included lack of sensi-
tivity for specific subtypes of AdV, the inability to dif-
ferentiate RV from EV, and contamination issues with
open platforms [91]. As expected manufacturers made
or are working to make improvements, such as
enhancing the range of AdV strain detection and
reducing to eliminating postamplification processing
[92]. In addition, point-of-care tests are now available,
some with 20-min turnaround times.

The advantage of NAAT for VRI in terms of cost
reduction is still unclear. Whereas rapid antigen tests
have been shown to reduce length of stay, performance
of ancillary diagnostic tests, and antibiotic consump-
tion, the same cannot be said for multiplex assays,
despite their higher sensitivity and specificity, and
capacity to detect an extended range of viruses [91,93].
Initially, available multiplex systems were geared
toward batched workflow usually performed once or
twice per day. Subsequently, on-demand amplification
methods, with potential turnaround time of 1�2 h,
have come to market and are replacing batched test
systems. Small studies have begun to show that identi-
fying viral pathogens within a few hours does impact
antibiotic or antiviral use and reduces labor cost in the
Emergency Department [94,95]. More studies are
needed to see if these results hold true.

Specimen Collection

The general rule for optimal specimens for the diag-
nosis of viral infection dictates that the specimens
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originate from the site of viral replication. Respiratory
viruses are no different and since site of replication for
these viruses is primarily the URT, in particular the
NP region, it is best to sample that region for diagnos-
tic testing. Of the URT samples, NP aspirates have tra-
ditionally been considered the most sensitive specimen
for the detection of respiratory viruses [96,97].
However, a recent review by Jartti et al. [98] indicates
that at least in children all NP samples, aspirates,
washes, swabs, or brushings, have statistically equal
sensitivity for NAAT, particularly when flocked swabs
are used [99]. Historically, virus recovery in adults is
much more difficult than in children because virus
titers tend to be much lower in adults. The analytical
sensitivity of NAAT appears to negate this concern
[100]. Similarly, when flocked nasal swabs are used the
sensitivity is similar to NP specimens in both pediatric
and adult patients [100,101]. In addition, self-collected
(in adult patients) or parent-collected flock nasal swabs
specimens also show equivalency, opening the door
for point-of-care devices [102�104].

Respiratory viruses can also be isolated from throat
swabs or washes. Although the viral yield is typically
lower than that seen with NP specimens, combining a
throat swab and an NP swab may improve virus
detection [87,105,106], and the general consensus is
that throat swab alone is not recommended for most
viruses. Exceptions include AdV, which replicates in
the tonsils, and avian influenza, which primarily repli-
cates in the LRT.

Calcium alginate swabs and swabs with wood
shafts should not be used for respiratory specimen col-
lection because they may interfere with NAATs.
Specimens should be placed in sterile viral transport
medium and refrigerated until transported to the labo-
ratory for testing as soon as possible. However, some
NAAT assays are approved for room temperature
transport provided it occurs within a few hours.
Clinicians should be aware of the approved clinical
specimens, as well as specimen storage and transport,
for the molecular assay being ordered. Freezing and
thawing should be avoided or minimized to avoid
degradation of virus particles, exposing the viral RNA
to nucleases. Also viral integrity is needed if viral cul-
ture is to be performed, for example, for influenza
resistance testing.

For cases of LRTI, sputum, endotracheal aspirates,
or bronchoalveolar lavage specimens can increase the
PCR diagnostic yield and should certainly be consid-
ered when URT specimens yield negative results but
the suspicion is high. This is particularly true for viral
pneumonia due to influenza, especially for cases of
LRTI due to inhalation rather than spread from the
URT. In fact, false-negative NP test occur in 10�35% of

patients with viral pneumonia [107,108]. However,
LRT specimens are not recommended for routine use
as the diagnostic yield will not significantly improve.
Furthermore, specificity is not necessarily improved
with LRT specimens, particularly with the use of
NAAT, as virus can be detected in LRT samples from
asymptomatic children [98]. Lastly, none of the
commercially-available tests have been validated for
use with LRT specimens.

Although some respiratory viruses are shed from
other sites such as urine or stool, as seen with AdV,
these specimen types are not recommended for the
diagnosis of respiratory illness. The only exceptions
are SARS- and MERS-CoV where stool specimens may
provide additional diagnostic yield. Rare occurrences
of extrapulmonary manifestations have been reported
with some respiratory viruses. Indeed, there have been
anecdotal reports of respiratory virus detected in the
CNS, myocardium, liver, and other sites [109]. Most
often extrapulmonary syndromes are not due to a
direct viral effect, but rather due to cytokine release as
seen with influenza-associated encephalitis or myocar-
ditis. In such cases, influenza RNA is almost never
detected in CSF or myocardium. Likewise, rare cases
of HMPV-associated encephalitis have been reported,
but viral RNA has not been detected in CSF [53]. In
contrast, AdV replicates in multiple organs and tissues.
For example, AdV is often detected in urine, CSF, or
myocardium in cases of AdV-associated hemorrhagic
cystitis, meningitis or encephalitis, and myocarditis
[55,110]. AdV DNA can even be found in serum dur-
ing respiratory illness [55].

Timing of Disease/Virus Shedding

Generally peak respiratory virus shedding occurs
on the first or second day of acute illness and generally
declines substantially after 4 days [111�115].
However, duration varies with virus, patient age,
severity of illness, comorbidities, and immune status.
Often hospitalized patients, particularly those with
LRTI, have higher viral titers and shed virus longer
[111�114,116,117]. NAATs detect viral targets for a
longer duration than other test methods and it is not
unusual to detect viral nucleic acid a couple of weeks
after infection, albeit the mean duration is generally
6�14 days [111�114,118,119]. Of the Paramyxoviruses,
the duration of shedding for HMPV may be relatively
shorter while PIV3 maybe longer [115,120]. Some
viruses, particularly AdVs and picornaviruses, exhibit
prolonged shedding in both asymptomatic and symp-
tomatic patients, which can be a diagnostic conun-
drum [119,121].
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Prolonged shedding of all respiratory viruses is not
uncommon in severely immunocompromised patients
and viral nucleic acids have been detected months
after infection [109,118,119,122]. Prolonged shedding of
influenza can be observed in this population even in
the presence of treatment with antiviral agents. This
then has been associated with the development of
drug resistance mutations and subsequent community
spread of resistant strains [118].

The literature has been inconsistent about the corre-
lation between viral loads and disease severity [91,93].
Part of this discrepancy may be due in part to var-
iances in the viruses themselves. More studies are
needed to interpret the significance of viral loads.
Likewise, there are mixed reports concerning the asso-
ciations between infections with multiple viruses and
more severe disease [91,93]. Indeed, asymptomatic,
prolonged shedding associated with AdVs and picor-
naviruses complicates the interpretation.

Seasonality

In regions with temperate climates, the seasonal
incidence of respiratory viruses is as diverse as the
number of species associated with RTI, but the major-
ity of infections occur between fall and early spring. In
tropical climates, infections occur year-round or with
increased incidence during the rainy season. The sea-
sonal diversity of respiratory viruses is most evident
with epidemiologic patterns of respiratory viruses
associated with croup (Fig. 11.3) [123]. Influenza tends
to produce a sharp annual peak lasting 6�8 weeks,
while RSV tends to have a longer duration on the
order of 15�20 weeks [109]. HMPV typically appears
in late winter through early spring with a biennial pat-
tern of epidemics [24]. Classically, PIV1 causes autumn
epidemics in odd-numbered years and is sometimes
accompanied by PIV2. PIV3 is more endemic with
peaks in spring to early summer. Seasonality of PIV4
has not been as well characterized [109]. AdV infec-
tions occur throughout the year, but most epidemics
occur in the winter or early spring [55]. EV infections
usually occur in late summer to early fall, but those
associated with respiratory disease also tend to be
associated with sporadic outbreaks which can occur
year-round. RV infections also occur throughout the
year, but distinct peaks of illness are seen in the fall
and spring [124]. HCoV are more endemic, but a bit
more common in the cooler months [109]. Factors
affecting seasonality in temperate climates are most
likely due to environmental factors such as low tem-
peratures and humidity, as well as social factors asso-
ciated with colder months such as crowding indoors
[125,126].

Interpretation of NAAT Results

Despite the high sensitivities and specificities of
NAAT for respiratory virus detection, false-negative
results can occur due to improper specimen collection
or handling. A negative result can also occur when the
patient is no longer shedding detectable virus, or at
least at the site of collection. For hospitalized patients
with LRT disease, if no other etiology is identified and
viral pneumonia is still clinically suspected, the CDC
recommends collecting LRT specimens. Sequence devia-
tions or mutations at the site of primer or probe binding
are also a potential source of false-negative results. In
2015, the majority of circulating influenza virus in the
United States was characterized as A/Switzerland-like
H3N2 viruses with significant genetic drift, loss of vac-
cine protection, and reduced ability to culture in many
cell lines. Indeed, matrix gene primer or probe mis-
matches affect the performance of some commercial
NAATs [127]. On the other hand, sequence deviations
in the H1 gene affected typing of A(H1N1)pdm09, lead-
ing to the serendipitous discovery of a strain of influ-
enza A that cannot be typed. Similarly, pan-detection
NAATs may not adequately detect all subtypes within
a family of virus as commonly seen with commercial
assays for the detection of AdV [128�130].

False-positive results, although rare, can occur (eg,
due to lab contamination or other factors). A positive
result indicates detection of viral nucleic acid, confirm-
ing virus infection, but does not necessarily mean the
virus is the causative agent. Furthermore, patients vac-
cinated by intranasal administration of live attenuated
influenza virus will likely test positive for 7�10 days
[131].

Antiviral Resistance Testing

Antiviral resistance among influenza strains is a
public health concern because resistant strains have
spread rapidly in the community, quickly becoming
the predominant virus [132,133]. Currently, circulating
influenza A (H3N2) and 2009 H1N1 viruses are pri-
marily susceptible to oseltamivir and zanamivir, but
are resistant to the adamantanes (amantadine and
rimantadine) [133]. However, prior to the 2009 pan-
demic the seasonal H1N1 virus developed into a pre-
dominantly oseltamivir-resistant strain [132]. Luckily
this virus was susceptible to the adamantanes.
Although only sporadic cases of oseltamivir resistance
have been observed in isolates of A(H1N1)pdm09, this
virus does have the sample potential as the seasonal
H1 strain to become universally resistant.

Phenotypic susceptibility testing remains the gold
standard for the assessment of viral resistance, but
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some of the more common resistance mutations have
been identified which are useful for more rapid identi-
fication. For example, a histidine to tyrosine amino
acid substitution at residue 275 of the NA protein
(H274Y in N2 numbering; H275Y in N1 numbering) is
associated with oseltamivir resistance [132]. Similarly,
a change in amino acid 31 in the M2 gene product is
associated with resistance to adamantanes [134]. Other
potentially important mutations include a D199E
mutation which is associated with reduced susceptibil-
ity to oseltamivir in seasonal H1N1 [135], a D198G
(universal numbering, equivalent to site 199) mutation
in H5N1 is associated with reduced susceptibility to
oseltamivir and zanamivir [136], and a D198N muta-
tion in influenza B virus is associated with high oselta-
mivir resistance [137].

It is important to point out that such testing is not
available in most clinical laboratories and is generally
performed by some public health laboratories or at the
CDC for epidemiological purposes. Detection of the
H275Y mutation is usually determined by a pyrose-
quencing assay developed by the CDC, while Sanger
sequencing is used to assess mutations in the NA and
M2 genes.

CONCLUSIONS

Molecular diagnostics has revolutionized our ability
to detect RTIs by increasing sensitivity of virus detection,
broadening the array of viruses detected, and enabling
the detection of multiple infections. Furthermore,
test results are available in a timeframe that can better
impact patient management. These tools have also
advanced our understanding of the epidemiology and
pathogenesis of respiratory virus disease.
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INTRODUCTION

As the complexity of diagnostic bacteriology has
increased, so have the methods employed to detect
potential pathogens. In some cases, molecular technol-
ogy has augmented traditional methods that have his-
torically been the gold standard for pathogen detection,
such as culture and serology. In other situations, molec-
ular detection has completely replaced traditional meth-
odologies. For routine bacteriology (ie, blood cultures,
urine cultures, and respiratory cultures), culture has
remained the gold standard primarily based on cost
accounting and the potential complex nature of associ-
ated infections. However, in instances where there may
be low quantities of the pathogen present, the patient
may have received antibiotics prior to specimen collec-
tion, the etiologic agent may require unusual culture
conditions, or a more rapid turnaround time is needed,
molecular approaches are particularly beneficial.

Currently, the optimal use of molecular techniques
in bacteriology resides with specimens in which a lim-
ited number of pathogenic organisms are sought (ie,
pertussis or tuberculosis diagnosis) and in cases where
the enhanced sensitivity, decreased turnaround time,
and/or patient impact of molecular methods out-
weighs the increased cost to the laboratory (ie, molecu-
lar identification of organisms directly from positive
blood cultures). A particularly exciting advancement
in clinical microbiology is the use of mass spectrome-
try for the identification of a wide spectrum of bacte-
rial organisms. This chapter aims to discuss the most
common molecular methodologies and applications
being used in clinical bacteriology laboratories.

IDENTIFICATION OF BACTERIA

Traditional biochemical methods used for bacterial
identification have allowed for the differentiation of
bacterial pathogens for many years. However, bio-
chemical methods may take considerable time to iden-
tify an organism or may not be able to identify
particular groups of organisms accurately. The use of
probes, sequencing, and mass spectrometry has greatly
improved the accuracy in which organisms are identi-
fied and has decreased the time to identification for
many slow-growing or difficult-to-identify organisms.
The use of molecular methods for identification relies
on the fact that different species of bacteria have dis-
tinct nucleic acid sequences (and therefore peptides)
that can be interrogated for species-level identification.

Probes

Molecular Target(s) and Technologies

Nucleic acid hybridization against specific sequences
without the need for target amplification is the principle
of genetic probes. Briefly, the two strands of DNA are
dissociated by heat denaturation. A synthetic probe is
then introduced and complementarity between probe
and target sequence allows probe-target base pairing to
form a hybrid strand, which can be DNA�DNA,
DNA�RNA, or RNA�RNA. The hybrid can be
detected by radioisotopes, enzymes, chemilumines-
cence, or fluorescence reporters labeled on the probe.

Peptide nucleic acid (PNA) probes are DNA analo-
gues but the sugar phosphate backbone of DNA is
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substituted with polyamide or peptide backbone;
therefore, PNA probes are noncharged [1]. This prop-
erty helps PNA probes to overcome electrostatic repul-
sion between two negatively-charged DNA strands
and provides more stability of the PNA�RNA hybrid
during hybridization [2]. In addition, PNA probes are
relatively hydrophobic which facilitate entrance into
the hydrophobic cell membrane [3,4].

Clinical Utility

Rapid and accurate identification of bacteria pro-
vides clinicians the opportunity to use targeted antimi-
crobial therapy based on the organism and, therefore,
limit a patient’s unnecessary antimicrobial exposure.
Several genetic probes are commercially available for
direct detection of organisms from clinical samples
and identification of bacteria after growth or isolation
from culture. These probes are particularly useful as
the culture confirmation assays for slow-growing or
difficult-to-identify bacteria, such as mycobacteria.

FDA-cleared DNA probes for direct detection of
group A streptococci as well as culture identification
of Listeria monocytogenes, Staphylococcus aureus,
Streptococcus pneumoniae, Mycobacterium tuberculosis
complex, M. avium, M. intracellulare, M. avium complex,
M. gordonae, and M. kansasii are available from Hologic
(Bedford, MA). Fluorescence in situ hybridization
using PNA probes (PNA-FISH) for identification of
Enterococcus faecalis/other enterococci, Staphylococcus
aureus/coagulase-negative staphylococci, Escherichia
coli/Klebsiella pneumoniae/Pseudomonas aeruginosa from
positive blood culture bottles, and Streptococcus agalac-
tiae from broth cultures are available from AdvanDx
(Woburn, MA).

Limitations of Testing

Genetic probes generally have lower analytic sensi-
tivity than other molecular assays due to the nonam-
plified nature of the method. Therefore, the application
is usually limited to specimens with high numbers of
bacteria such as cases of group A streptococcal phar-
yngitis, positive blood cultures bottles, or isolate
confirmation.

Sequencing

Molecular Target(s) and Technologies

Ribosomal RNA (rRNA) genes are present in all
prokaryotes and weakly affected by horizontal gene
transfer and mutation. These genes, in particular the
sequence of the 16S rRNA gene, contain some regions
that are highly conserved and other regions that have
variable nucleic acid sequences. Using primers target-
ing conserved sequences of the 16S rRNA gene that

amplify a region of the gene that is variable allows for
broad-range bacterial identification [5,6]. Often only
the first 500 bp need to be amplified and sequenced to
obtain a reliable species identification. The 16S�23S
rRNA intergenic spacer (ITS) region and the large sub-
unit (23S) rRNA genes can also be used as molecular
targets [7,8]. The 16S�23S rRNA ITS region has higher
copy number and sequence variability than the 16S
rRNA gene. However, these regions have not been as
broadly used as the 16S rRNA gene in clinical microbi-
ology laboratories because of relatively limited
sequence databases and the lack of commercially-
available test kits. Alternative gene targets such as the
heat shock proteins, recA, rpoB, tuf, gyrA, gyrB, and the
cpn60 family of proteins can be amplified and
sequenced to differentiate closely related species [5].

DNA sequencing for bacterial identification generally
comprises extraction of nucleic acids, amplification of
the target sequence by PCR, sequence determination,
and comparison with sequences found in public or
commercial databases. The precision of the identifica-
tion (ie, whether an organism is identified to genus or
species level) depends on sequence homology within
the database. The Clinical and Laboratory Standards
Institute provides guidance for nucleic acid sequencing
and interpretation in clinical laboratories [5].

The Sanger dideoxynucleotide chain termination
method is the most widely used technique to determine
DNA sequence. The use of fluorescent dye terminators
and capillary electrophoresis has made the use of
Sanger sequencing by diagnostic laboratories feasible
[9]. Pyrosequencing (Qiagen, Gaithersburg, MD), which
is based on the luminometric detection of pyrophos-
phate released during DNA synthesis, is an alternative
approach for DNA sequencing [10]. Pyrosequencing
provides reliable data for sequences adjacent to the
sequencing primer termini and is a simple-to-use,
robust platform for short-read-length sequencing.

Instead of looking for particular genes, several plat-
forms for massively parallel sequencing (next-genera-
tion sequencing) are currently available. Although
these high-throughput systems have not been routinely
used in the clinical microbiology laboratory, they have
potential applications in the areas of identification of
unknown pathogens, direct specimen sequencing, and
microbiome profiling.

Clinical Utility

Sequence analysis of the 16S rRNA gene increases
our understanding of the phylogenetic relationships
among bacteria and improves the identification of
difficult-to-identify, unrecognized, or slowly-growing
bacteria regardless of phenotypic characteristics. Cook
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et al. showed the cost-effectiveness advantages for
using 16S rRNA gene sequencing compared with con-
ventional methods for identification of nontuberculous
mycobacteria. The turnaround time was improved
from 2�6 weeks to 1�2 days with decreased expenses
[11]. Moreover, direct sequencing from clinical speci-
mens or formalin-fixed paraffin-embedded tissues
offers the opportunity to identify the causative agent
when cultures are negative (ie, specimens taken post-
antimicrobial therapy or organisms that require special
growth requirements).

Limitations of Testing

The major limitations for using sequencing for bac-
terial identification include the high cost of sequencer
instrumentation and the need of experienced personnel
to review the result since public databases are not
always curated. Some organisms are very closely
related or genetically indistinguishable and require
multiple genes to be sequenced. For instance,
Mycobacterium abscessus group and M. chelonae share
100% identity of 16S rRNA sequence. Thus, alternative
targets (ie, rpoB or hsp65) are needed to provide better
resolution to species. However, most alternative gene
targets are not universal and must be chosen cau-
tiously. Like with other nucleic acid testing, contami-
nation prevention, quality control, standardization,
and validation of assay protocols are needed to pro-
vide quality results. Importantly, careful interpretation
of results and correlation with clinical presentation are
critical, particularly in the setting of direct specimen
sequencing. Unlike culture, ribosomal DNA sequenc-
ing does not inform viability of bacteria nor does it
predict antimicrobial susceptibility.

Matrix-Assisted Laser Desorption Ionization-
Time of Flight Mass Spectrometry

Molecular Target(s) and Technologies

Matrix-assisted laser desorption ionization-time of
flight mass spectrometry (MALDI-TOF MS) uses prote-
omics for bacterial identification. The range of proteins
being analyzed is 2�20 kDa, which enriches for ribo-
somal proteins. For direct colony identification, the
organism is spread on a target plate and then overlaid
with a polymeric matrix. The matrix (eg, α-cyano-4-
hydroxycinnamic acid (CHCA)) isolates analyzed
molecules and protects them from fragmentation by
the laser. After firing the laser, matrix and proteins are
desorbed and the charge is transferred to the mole-
cules. The ionized molecules enter a vacuum flight
tube and accelerate to a detector. As a result a spec-
trum signature is created according to the mass/

charge ratio of the molecular fragments [12]. The spec-
trum is compared with a database to determine the
identification of the organism. The addition of formic
acid or a preextraction step may improve identification
of yeasts and some Gram-positive bacteria [13,14]. Two
US FDA-cleared commercial MALDI-TOF MS systems
are available: BioTyper (Bruker Daltonics, Billerica,
MA) and Vitek MS (bioMérieux, Durham, NC).

Clinical Utility

MALDI-TOF MS can be used for identification of a
wide range of bacteria that are commonly found in
clinical laboratories. It is a high-throughput system
providing identification in as little as 5�20 min with
minimal hands-on time. Despite of the expensive capi-
tal equipment, MALDI-TOF MS has a low per-test cost
(,$1/organism). The overall performance between the
two commercial systems is comparable and most
errors are associated with incomplete databases rather
than the instrument. In a study of 1129 isolates, the
Bruker LT BioTyper and the Vitek MS databases cor-
rectly identified 92.7% and 93.2%, respectively [15].
The authors concluded that both systems have equal
analytical efficiency. Further discussion of the perfor-
mance of these systems can be found in the reviews by
Patel [12] and Clark et al. [16]. Besides the rapid and
accurate identification of bacteria, Tran et al. also
showed that MALDI-TOF MS provided cost savings of
US$73,646 or 51.7% in total costs (including technolo-
gist time and maintenance costs) annually [17].

Limitations of Testing

The initial instrumentation is expensive, the data-
bases are proprietary, and the databases need
improvement and expansion. There have been some
reports of misidentification. For example, MALDI-TOF
MS cannot differentiate E. coli from Shigella spp.
because of their genetic similarity [18]. Laboratories
should develop refined criteria for identification using
MALDI-TOF MS in combination with sequencing or
reference laboratory to most accurately identify closely
related organisms. Mucoid or tiny colonies may fail
identification and current procedures require growth
of a pure isolate to be tested. Protocols for identifica-
tion of bacteria directly from specimens or positive
blood cultures have been developed, but these require
validation and standardization.

RESPIRATORY INFECTIONS

While multiplexed molecular detection for respira-
tory viruses has largely supplanted culture for detec-
tion, this is not the case for bacterial respiratory
infections, with a few exceptions. Bacterial infections
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that can mimic viral respiratory tract infections, such
as those caused by Mycoplasma pneumoniae and
Chlamydophila pneumoniae, are included with some of
the viral respiratory molecular panels. Otherwise,
molecular tests for the detection of bacterial respiratory
pathogens are limited to those organisms that are fas-
tidious (Bordetella pertussis, Mycoplasma pneumoniae),
slow-growing (Mycobacterium tuberculosis), or require a
rapid result for therapeutic decisions (Group A
Streptococcus (GAS)).

Molecular Target(s) and Technologies

M. pneumoniae, C. pneumoniae, and B. pertussis are
the bacterial components of the 20-target FilmArray
Respiratory Panel (BioFire, Salt Lake City, UT), which
is FDA-cleared for testing of nasopharyngeal swabs.
The FilmArray is a self-contained pouch and instru-
ment that processes the sample from nucleic acid
extraction to nested PCR amplification and ultimately
melt curve analysis. For this moderately complex test,
the hands-on time is less than 2 min with results avail-
able in about an hour. Meridian Bioscience (Cincinnati,
OH) has moderately complex stand-alone amplifica-
tion tests for M. pneumoniae, B. pertussis, and GAS.
These tests use loop-mediated isothermal amplification
(LAMP) which requires less than 2 min of hands-on
time, and results are available in less than an hour
with minimal laboratory equipment. Additional molec-
ular tests for the detection of group A streptococci
include the Alere i Strep A Rapid Molecular Test
(Waltham, MA) and the Focus Diagnostics Simplexa
Group A Strep Direct Test (Cypress, CA). Both of these
assays are moderately complex tests and provide
results in 8 min and 1 h, respectively.

There are two FDA-approved/cleared tests for the
detection of Mycobacterium tuberculosis directly from
respiratory specimens—Amplified MTD test
(Hologic) and Xpert MTB/RIF test (Cepheid,
Sunnyvale, CA). The Hologic assay targets the rRNA
of the M. tuberculosis complex and uses transcription-
mediated amplification followed by a hybridization
protection assay to detect the amplicons. The Xpert
test relies on nested real-time PCR of the rpoB gene
followed by hybridization with five distinct molecular
beacon probes, each labeled with a different fluoro-
phore. The 81-bp region targeted in rpoB is the rifam-
pin resistance-determining region. Therefore, by
analyzing the hybridization patterns of the five
probes, both M. tuberculosis complex DNA and rifam-
pin resistance can be detected simultaneously. Both
assays are approved for smear-positive and smear-
negative respiratory specimens. In addition, the Xpert
test has been FDA-cleared to aid physicians in

determining if patients with suspected tuberculosis
can be removed from airborne isolation precautions.

Clinical Utility

Although recognized as potential agents of
community-acquired pneumonia, M. pneumoniae and
C. pneumoniae are thought to be under-diagnosed due
to the difficulty in culturing them and the reliance on a
serologic diagnosis. As molecular detection of these
organisms increases, so will our knowledge of their
epidemiology and clinical features [19]. However, the
ability to distinguish between asymptomatic carriage
and true infection needs to be addressed in carefully
conducted outcome studies.

Application of molecular assays to the detection of
B. pertussis has greatly increased the sensitivity of
detection, but often at a cost of specificity. Pseudo-
outbreaks have been reported based on false-positive
nucleic acid amplification test (NAAT) results and
DNA contamination from clinics administering pertus-
sis vaccine [20�22]. Therefore, it is recommended to
augment molecular detection with culture during an
outbreak [23]. The sensitivity of NAAT allows for
detection of B. pertussis DNA well into the course of
disease (B3 weeks) when culture would be negative.
Cross-reactivity has been observed with other
Bordetella spp., depending on the targets used in the
NAAT [24].

The diagnosis of GAS pharyngitis in children usu-
ally relies on rapid antigen detection, but due to the
lower sensitivity of antigen-based assays, specimens
negative by rapid antigen should also be cultured [25].
The increased sensitivity (B99%) of GAS molecular
detection compared to antigen/culture (81.7%) and its
similar specificity (98.5�99.6%) allows for the elimina-
tion of the reflexed culture, thereby reducing the time
to final result [26�28].

The use of NAAT for the detection of M. tuberculosis
directly from patient specimens has the potential to
impact therapeutic interventions and infection control.
Although smear results have historically been used to
determine the burden of mycobacterial disease and the
need for airborne isolation, their low sensitivity
requires that three smears be performed to rule out
tuberculosis. This often takes 24�72 h. Studies have
demonstrated that the use of a negative Xpert test
results in reduced time in airborne isolation and insti-
tutional cost savings [29,30]. Further, acid-fast smears
are not specific to M. tuberculosis. The use of NAATs
on smear-positive respiratory specimens can quickly
determine the presence of M. tuberculosis complex ver-
sus other mycobacteria. The Centers for Disease
Control and Prevention (CDC) recommends NAAT be
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performed on at least one respiratory specimen from
patients with signs and symptoms consistent with pul-
monary tuberculosis, particularly if a diagnosis of
tuberculosis has not yet been made and the test result
would alter patient care and/or TB control [31].
Although the preference is to test the first collected
specimen by NAAT to lessen the time to result, a
smear-positive specimen should take priority due to
the increased sensitivity of NAAT for smear-positive
respiratory specimens. The sensitivity of the Xpert test
is 98% for smear-positive respiratory samples com-
pared to 72% for smear-negative samples, which
increases to 86% if a second smear-negative specimen
is tested [32]. It is important to note that NAAT should
not replace or delay routine microbiologic methods,
including smear.

The Xpert assay also detects rifampin resistance. The
CDC has published recommendations for the reporting
these results [33]. Clinical trial data indicate 96.1% sen-
sitivity and 98.6% specificity for rifampin resistance, but
the sites in the clinical trial (Peru, Azerbaijan, South
Africa, and India) have a higher prevalence of TB and
multi-drug resistant TB than the United States.
Therefore, in the United States the positive predictive
value is likely to be lower. Of note, a positive rifampin
result by Xpert may be obtained even for silent muta-
tions [34]. For these reasons, it is critical that initial
rifampin resistance results be confirmed by traditional
susceptibility testing. Nonetheless, molecular screening
for rifampin resistance could potentially identify resis-
tant isolates weeks earlier, allowing clinical care to be
significantly impacted.

Limitations of Testing

The ability to distinguish between colonization and
infection for M. pneumoniae and C. pneumoniae is a chal-
lenge. This limitation is one of the primary reasons
there are not molecular tests for other potential causes
of community-acquired pneumonia, such as
Streptococcus pneumoniae, Haemophilus influenzae, and
Moraxella catarrhalis. The expansion of molecular tech-
niques to detect a broader range of bacterial pathogens
will need to be accompanied by data and analysis tools
to determine clinical relevance. The specificity of per-
tussis molecular detection and ease of contamination
should be kept in mind. As with all molecular tests, a
positive NAAT result does not differentiate between
live and dead organisms. This is particularly problem-
atic for M. tuberculosis detection. Amplification technol-
ogies should not be used on specimens collected from
patients who have received antitubercular drugs for
more than 7 days or have been treated for M. tuberculo-
sis within 2 months of collection [35]. In addition,

about 4% of pulmonary and 19% of extrapulmonary
specimens contain inhibitory substances that may lead
to false-negative results [35].

GASTROINTESTINAL INFECTIONS

Acute gastroenteritis is a significant cause of mor-
bidity and mortality worldwide, and a substantial
healthcare burden in the United States with approxi-
mately 179 million cases and almost 1.3 million hospi-
talizations occurring annually [36]. While viruses
account for the majority of cases, Salmonella and
Campylobacter jejuni are the primary causes of bacterial
gastroenteritis in the developed world, with Shigella
and pathogenic E. coli also contributing to the disease
burden. Detection of bacterial pathogens has histori-
cally relied on culture, which includes nonselective,
enrichment and selective media to enhance the isola-
tion of potential pathogens from the complex matrix of
stool. Stool cultures are time-consuming and relatively
expensive due to the significant labor required to dis-
tinguish nonpathogens from pathogens. Results are
often not available for several days. Even with
MALDI-TOF MS, there are challenges since it cannot
differentiate normal microbiota E. coli from pathogenic
E. coli or Shigella. Other methods used include
Campylobacter enzyme immunoassay (EIA) and shiga-
toxin EIA, both suffer from low sensitivity and cannot
be used to replace culture. With a low positivity rate
(usually ,5%), low sensitivity, and high labor costs,
stool cultures are an easy target for replacement by
molecular methods.

Molecular Target(s) and Technologies

Manufacturers have taken one of two approaches
when developing molecular tests for gastrointestinal
(GI) pathogens: (1) a broad multiplex panel that
includes bacterial, viral, and parasitic targets or (2) a
tiered approach where multiple panels are designed,
each comprised of different targets (ie, bacterial/viral
panel and a separate parasitic panel or extended bacte-
rial panel). A summary of the FDA-cleared molecular
panels that include bacterial targets can be found in
Table 12.1.

The BD MAX [37,38], BioFire [39,40], and
Nanosphere assays are sample-to-result platforms that
do not require preextraction of nucleic acids and are
labeled as CLIA moderate complexity. The Luminex
[41] and Hologic [42] tests require extraction and an
additional pipetting step making them more
suitable for high-volume, batched-based testing in a
molecular laboratory. These assays are labeled as CLIA

143GASTROINTESTINAL INFECTIONS

II. MOLECULAR TESTING IN INFECTIOUS DISEASE



high complexity. Regardless of the workflow imple-
mented, the time to result is vastly reduced from sev-
eral days to as little as 1 h. A study comparing the
performance of the two most comprehensive panels
(BioFire and Luminex) showed high sensitivities and
specificities for both tests, though the number of posi-
tive samples was relatively low [43].

Clinical Utility

Although many patients with acute gastroenteritis
do not seek medical attention, for those that do it is
important to determine the cause of acute gastroenteri-
tis to appropriately inform clinicians whether antibio-
tics might be warranted or if they are contraindicated.
In addition, since much of acute GI disease in the
United States is food-borne, it is prudent to diagnose
patients so that appropriate public health investiga-
tions can occur to potentially prevent more infections.
Antimicrobial susceptibility testing is rarely needed for
bacterial causes of diarrhea, so isolating the organism

is often not necessary. Since there are a limited number
of bacterial causes of acute, community-acquired gas-
troenteritis, a molecular panel is particularly attractive
to provide a syndromic-based approach to diagnosis.
It has been reported that for 65% of the positive results
obtained using a comprehensive molecular panel, the
physician did not order testing for the positive patho-
gen, arguing that multianalyte panels provide a more
accurate diagnosis [41]. It has also been noted that the
positivity rate using molecular detection is higher than
that of traditional methods which could be due to
increased sensitivity or decreased specificity.
Discrepant analysis has shown that molecular-positive
culture-negative do not always confirm, so confirma-
tion using traditional methods may be needed for
some targets [44,45].

Limitations of Testing

Although there are a limited number of bacterial
pathogens associated with acute gastroenteritis, the

TABLE 12.1 FDA-Cleared Multiplex Gastrointestinal Tests with Bacterial Targets

BD MAX Enteric

Bacterial Panel

BioFire FilmArray

GI Panel

Luminex

xTAG GPP

Nanosphere Verigene

Enteric Pathogens

Prodesse/Hologic

SSCS

Specimen types
Stool
Cary-Blair Stool Cary-Blair Stool

Stool Stool Cary-Blair or Para-
Pak C&S Stool

Campylobacter X X X X X

C. difficile X X

E. coli O157 [X]a X X [X] [X]

EAEC, EPEC X

ETEC X X

Plesiomonas shigelloides X

STEC X X X X X

Salmonella X X X X X

Shigella [EIEC] X X X X X

Vibrio X X

Yersinia enterocolitica X X

Adenovirus 40/41,
astrovirus, sapovirus

X

Norovirus GI/GII X X

Rotavirus X X

Giardia X X

Cryptosporidium X X

Entamoeba histolytica,
Cyclospora

X

aThe brackets [X] indicate that E. coli O157 is detected by detecting the shiga-toxin gene(s), but is not specifically identified as O157 in these assays.
EAEC, enteroaggregative E. coli; EPEC, enteropathogenic E. coli; ETEC, enterotoxigenic E. coli; STEC, shiga-toxin producing E. coli; EIEC, enteroinvasive E. coli.
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incidence of certain infections may vary depending on
geography, and not all potential bacterial agents are in
the currently available commercial panels. For exam-
ple, Aeromonas and Plesiomonas are not in any of the
panels, and the availability of Vibrio spp. and Yersinia
enterocolitica is variable. Even if these analytes are
included in panels, it may be difficult for laboratories
that rarely see these infections to appropriately vali-
date them for clinical reporting. Since the focus of the
molecular diarrheal panels has been on community-
onset disease, the question of what to do with
Clostridium difficile often arises [46]. Clostridium difficile
causes both healthcare- and community-associated
diarrhea, but can also be a colonizer, particularly in
children less than 2 years old. Some of the panels
include C. difficile, while others do not. Therefore, care-
ful consideration should be given to determine the
best institutional approach for the diagnosis of C. diffi-
cile-associated disease. Since most of the organisms in
the panels are not transmitted within the hospital, test-
ing should be limited to outpatients or the first 3 days
of hospitalization. As with other applications, molecu-
lar GI panels should not be used as a test of cure since
the microbial DNA may remain for much longer than
a viable organism.

Arguably the most significant impact of molecular
testing for bacterial gastroenteritis is on public health.
Although for clinical purposes, an isolate is usually
not needed, public health relies on isolates for epide-
miologic typing to assist in the identification of out-
breaks [46]. The transition away from traditional
culture has limited the number of isolates available for
public health investigations. Currently, it is advisable
for laboratories to either submit positive stool samples
to their public health laboratory for culture, or to cul-
ture molecular positive samples and send an isolate to
their public health laboratory. In time, molecular epi-
demiologic tools will catch up with those used in clini-
cal laboratories, but currently isolates continue to be
required.

BLOODSTREAM INFECTIONS

Bloodstream infections are responsible for increased
patient morbidity and mortality. In the United States,
the number of cases has been increasing due to aging
of the population, increased numbers of patients with
chronic illnesses, increase in invasive procedures,
immunosuppressive therapy, chemotherapy, and
transplantation, as well as increasing antibiotic resis-
tance [47]. Molecular methods have not yet replaced
the need for blood cultures largely due to the low
organism burden seen with septicemia. Therefore,
efforts have focused on the rapid and accurate

identification of organisms and resistance determinates
from positive blood culture bottles, decreasing the
time to identification from 24�48 to 1�3 h. Prompt
therapy with appropriate antibiotics is one of the key
factors for reducing mortality in patients with sepsis
[47,48].

Peptide Nucleic Acid Florescence In Situ
Hybridization

Molecular Target(s) and Technologies

PNA probes incorporated with fluorescence in situ
hybridization (PNA-FISH) provide rapid identification
and direct visualization of bacteria from positive blood
cultures. The probes are normally based on oligonu-
cleotides that are complementary to the organism-
specific rRNA sequences in the intact cell. Different
targets are labeled with different fluorescent dyes
allowing discrimination of various organisms. The
assay comprises the following steps: (1) smear fixation,
(2) hybridization, (3) posthybridization wash, (4)
mounting, and (5) visualization by fluorescence
microscopy. Multiple commercial assays are available
from AdvanDx including identification for Enterococcus
faecalis/other enterococci (OE), Gram-negative bacilli
(P. aeruginosa, Escherichia coli, and K. pneumoniae; GNR
Traffic Light), and staphylococci.

Clinical Utility

PNA-FISH provides species identification at least
one workday earlier than traditional or MALDI-TOF
MS identifications with the turnaround time of about
2.5 h. In a study, PNA-FISH (Staphylococcus aureus/
CNS, Enterococcus faecalis/OE, GNR Traffic Light) had
98.4% concordant results with MALDI-TOF MS in 921
positive blood samples [49]. For S. aureus, PNA-FISH
showed sensitivity, specificity, positive predictive
value, and negative predictive value of 99�100%,
96�100%, 99�100%, and 98�100% [50�52]. Utilization
of multicolored fluorescence dyes in PNA-FISH allows
qualitative identification of mixed growth, which is
often not appreciated by Gram stain alone. Several
studies have shown that patients receive earlier appro-
priate antibiotic therapy after PNA-FISH [53�55].
Forrest et al. also showed a significant decrease in 30-
day mortality after implementation of PNA-FISH for
discrimination of enterococci (25% vs 45%) [53].
However, such benefits cannot be obtained without
active notification or antimicrobial stewardship inter-
vention [56].

Limitations of Testing

PNA-FISH requires more hands-on time than other
molecular assays, fluorescent microscopy is required,

145BLOODSTREAM INFECTIONS

II. MOLECULAR TESTING IN INFECTIOUS DISEASE



and interpretation of results is subjective. Nonspecific
probe binding to nontarget bacteria and inadequate
washing after hybridization may result in false-
positivity. Stringency between probe and target
sequences is very important for the specificity of these
tests. Insufficient fixation, ineffective penetration of the
probe, and photo-bleaching may lead to false-negative
results. The limit of detection of PNA-FISH is about
105 colony-forming units/mL, so this method is only
applicable in the setting of a positive culture. While
PNA-FISH provides a rapid identification, antimicro-
bial susceptibility cannot always be inferred.

Multiplex Assays from Positive Blood Cultures

Molecular Target(s) and Technologies

The US FDA-cleared tests for the multiplexed identifi-
cation of bacteria in positive blood cultures include the
Verigene Gram-Positive Blood Culture Nucleic Acid
Test (BC-GP), the Verigene Blood Culture Gram
Negative (BC-GN) (Nanosphere, Northbrook, IL), and
the BioFire FilmArray Blood Culture Identification
(BCID) test. These platforms are highly multiplexed
panels for detection of multiple targets. There are also
multiple FDA-cleared assays for the identification of
Staphylococcus aureus, including the differentiation of
MRSA from susceptible S. aureus. For a complete list
see: http://www.fda.gov/MedicalDevices/Productsand
MedicalProcedures/InVitroDiagnostics/ucm330711.
htm#microbial.

The Verigene platform utilizes nonamplified
nucleic acid with microarray-based detection. The
instrument extracts nucleic acid, which then hybri-
dizes to capture oligonucleotides on the test cartridge.
A gold nanoparticle labeled probe with complimen-
tary sequence to the target (mediator oligonucleotide)
is introduced and coated with silver, resulting in an
enhanced optical signal. The BC-GP test detects 15 tar-
gets for Staphylococcus aureus, S. epidermidis, S. lugdu-
nensis, Streptococcus anginosus group, S. agalactiae,
S. pneumoniae, S. pyogenes, Enterococcus faecalis, E. faecium,
Staphylococcus spp., Streptococcus spp., Listeria spp., mecA
for methicillin resistance, and vanA and vanB for
vancomycin resistance. The BC-GN test detects eight
identification targets (Escherichia coli, Klebsiella pneumo-
niae, K. oxytoca, P. aeruginosa, Acinetobacter spp.,
Citrobacter spp., Enterobacter spp., and Proteus spp.) and
six resistance markers (CTX-M, IMP, KPC, NDM, OXA,
and VIM) to detect extended spectrum beta-lactamases
and carbapenemases.

The FilmArray BCID test enables detection of 27 tar-
gets including yeasts (Candida albicans, C. glabrata, C. para-
psilosis, C. tropicalis, and C. krusei), Gram-positive bacteria
(Enterococcus spp., L. monocytogenes, Staphylococcus spp.,

S. aureus, Streptococcus spp., S. agalactiae, S. pneumoniae,
and S. pyogenes), Gram-negative bacteria (Acinetobacter
baumannii, H. influenzae, Neisseria meningitidis, P. aerugino-
sa, Enterobacteriaceae, Enterobacter cloacae complex,
Escherichia coli, Klebsiella oxytoca, K. pneumoniae, Proteus
spp., and Serratia marcescens), and antibiotic resistance
genes (mecA, vanA/B, and KPC). Like other FilmArray
assays, the entire process from extraction to amplification
by nested multiplex PCR to detection by endpoint melt-
ing curve is contained within one reaction pouch.

Clinical Utility

The Verigene BC-GP showed an overall concordance
for organism identification of 92�97% in less than 2.5 h
with less than 5 min hands-on time [57,58]. In a recent
study, implementation of the Verigene BC-GP for iden-
tification of Gram-positive cocci in pairs or chains using
an institution-developed algorithm reduced time to
acceptable antibiotic overall from 13.2 to 1.9 h, and time
to appropriate antibiotic for patients with vancomycin-
resistant Enterococcus from 43.7 to 4.2 h [59,60]. The
Verigene BC-GN showed 97.4% and 92.3% agreement
with routine methods for identification and detection of
resistant markers in 125 isolates [61]. With an average
of 24 h faster for identification compared to traditional
methods in a study, BC-GN could allow modification of
medical management for 31.8% of patients 33 h sooner
[62]. Shorter time for effective (3.3 vs 7.0 h) and optimal
therapy (23.5 vs 41.8 h) has been demonstrated with the
BG-GN assay with a sensitivity of 97.1% and specificity
of 99.5% [63].

The FilmArray BCID test requires 2 min of hands-
on time and turnaround time of approximately 1 h.
The assay gives identification of 88�95% of pathogens
recovered from positive blood cultures with correct
identifications of 98% and 100% to the genus and the
species/complex level [64�66]. Implementation of the
assay, combined with an institution’s antimicrobial
stewardship program, could impact appropriate ther-
apy for 99.2% of positive blood cultures [67].

Limitations of Testing

Large panel assays are less accurate with polymicro-
bial infections. For the Verigene BC-GP, concordant
results decreased from 94% in monomicrobial infec-
tions to 76% for identification in polymicrobial infec-
tions, and the FilmArray could detect all targets in
only 71% of the polymicrobial growth samples [57,68].
Similarly, the BC-GN identified all organisms at 54.5%
and at least one organism at 95.4% of polymicrobial
specimens [69]. It is worth noting that the manufac-
turers have not evaluated all species. Moreover, false-
negative results can be due to sequence variants in the
target, inhibitors in the specimen, or inadequate con-
centration for detection. False-positive S. pneumoniae
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and Streptococcus spp. BC-GP results can occur due to
cross-reactivity of probes to Streptococcusmitis and
Lactococcus species. Although rapid results are pro-
vided, the institution must have an appropriate report-
ing scheme to allow pharmacists or physicians to
rapidly respond to the results, thereby leading to bene-
fits in patient care.

GROUP B STREPTOCOCCUS SCREENING

Group B Streptococcus (GBS) causes invasive neonatal
infections associated with morbidity and mortality.
A major risk factor for early-onset neonatal disease is
maternal colonization with GBS in the genitourinary or
GI tracts, which is preventable by intravenous intrapar-
tum antibiotic prophylaxis. About 10�30% of pregnant
women are colonized, therefore the CDC recommends
screening of all pregnant women for vaginal and rectal
GBS colonization between 35 and 37 weeks gestation
[70]. Traditional specimen processing requires 36�72 h,
including 18�24 h growth in selective enrichment broth
(ie, Lim broth) prior to subculture. Molecular techni-
ques have been developed to increase sensitivity and
facilitate rapid detection of GBS colonization.

Molecular Target(s) and Technologies

Nonamplification probe-based methods target S. aga-
lactiae-specific rRNA sequences: the GBS PNA-FISH
(AdvanDx) is indicated for turbid Lim broth and the Gen-
Probe Accuprobe GBS test (Hologic) is approved for tur-
bid Lim broth and culture identification. Multiple NAATs
for the detection of GBS are available (see: http://www.
fda.gov/MedicalDevices/
ProductsandMedicalProcedures/InVitroDiagnostics/
ucm330711.htm#microbial). The Illumigene GBS Assay
targets 213 bp sequence residing in the 593�805 bp region
of S. agalactiae genome segment 3 and is based on LAMP.
Cepheid and BD platforms are real-time PCR-based tech-
nology. BD assays target 124 bp region of cfb gene
sequence, the gene that encodes the CAMP factor,
whereas Cepheid assays detect a target within a 3�DNA
region adjacent to cfb gene. The GeneXpert and the BD
Max are fully automated systems while the Cepheid
Smart GBS Assay and the GeneOhm StrepB Assay are
performed on the SmartCycler through PCR amplification
of the target and fluorogenic target specific hybridization
(TaqMan and Molecular beacons probes, respectively).

Clinical Utility

Molecular assays are attractive in terms of sensitiv-
ity and short test times (about 55�75 min). Although

antenatal culture using enrichment broth is considered
the gold standard for detection of GBS colonization,
the sensitivity has been shown to be as low as 53.6%
[71]. NAAT performed on enriched culture increases
the sensitivity to 90.9�100% with a specificity of
92.5�99.3% [71�74]. NAATs increased GBS detection
rates from 15�26.5% using antenatal cultures to
30�31.5%. Only the Cepheid Smart GBS Assay, the
Xpert GBS, and the GeneOhm StrepB have been
approved for direct vaginal/rectal swab testing.
Therefore, they can be useful for intrapartum testing
for pregnant women who have suboptimal prenatal
care to diminish the use of antibiotics. Intrapartum
NAATs demonstrated sensitivities of 90.7�95.8% (vs
54.3�84.3% for antenatal cultures) with specificities of
64.5�97.6% [75�78]. A cost-effective analysis model
also showed a cost-saving benefit of $6�7 from the
implementation of intrapartum PCR testing over the
35- to 37-week culture for maternal risk stratification
[79].

Limitations of Testing

Though not frequently needed, susceptibility testing
of GBS is not provided by molecular methods.
Although GBS is uniformly susceptible to penicillin,
testing for clindamycin susceptibility is needed for
penicillin-allergic patients. Implementation of intrapar-
tum testing is limited by availability of testing and
turnaround time. Hence, intrapartum testing does not
replace antenatal culture. The American College of
Obstetricians and Gynecologists recommends giving
antibiotic prophylaxis regardless of the NAAT results
for pregnant women with increased intrapartum risk
factors (ie, fever, prolonged rupture of membranes)
[80].

FUTURE PERSPECTIVES

Initial challenges such as reagent costs, instrumenta-
tion, and technical expertise prevented many laborato-
ries from offering molecular tests for bacterial
pathogens. Now, many manufacturers have competi-
tive pricing and moderately complex tests that can eas-
ily be performed by any laboratorian. The simplicity of
many of these tests allows them to be offered 24 h a
day and 7 days a week, thereby greatly decreasing
time to result and increasing potential impact on
patient care. The cost�benefit of transitioning from tra-
ditional methods to molecular methods for bacterial
detection and identification is obvious, for example,
such as MALDI-TOF MS, but less clear for the large
syndromic panels. As more outcome-based studies are
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published, the clinical utility of the newer syndromic-
based molecular panels will become clearer.

Through the human microbiome project, the impor-
tance of variances in microbiota is being realized. As
these data are aligned with specific clinical predictions,
we will need to determine how and when technologies
such as next-generation sequencing will be implemen-
ted in the clinical microbiology laboratory. There are
many challenges associated with clinical next-
generation sequencing, including cost, accurate inter-
pretation, and clinically-relevant reporting, that need
to be carefully considered prior to clinical implementa-
tion of microbiome analyses.

As methodologies continue to decrease in cost and
complexity, molecular testing for clinical microbiology
laboratories will no longer be limited to large, tertiary,
or academic medical centers. They will, undoubtedly,
transition closer to patient care where their impact can
be more immediate. In fact, the first molecular point-
of-care device has now been FDA-approved (for influ-
enza and GAS). Never before has clinical microbiology
changed at the rapid pace we are currently experienc-
ing. We must remember that the power of molecular
technologies should be coupled with well-controlled
and clinically-relevant diagnostic approaches to have
the greatest impact on patient care.
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INTRODUCTION

Sexually transmitted infections (STIs) represent a
major burden in terms of Public Health. It was esti-
mated by the World Health Organization (WHO) that
500 million cases occurred in 2008 worldwide among
the most common of STIs, namely, syphilis, gonorrhea,
chlamydia, and trichomoniasis (Fig. 13.1) [1]. In addi-
tion to their immediate medical impact, notably from a
psychological point of view, STIs are the major factor
in male and female infertility, are associated with
severe obstetric and neonatal morbidity, and are
responsible for chronic life-threatening diseases includ-
ing immunodeficiency, cancer, liver and heart failure,
and neuropsychiatric disease. Their social and eco-
nomic impact is increasing with the change in sexual
behaviors, notably in low-resource areas [2]. Because
most of them are asymptomatic or paucisymptomatic
at the initial phase, the diagnosis is often missed,
which favors their epidemiological spread. The fre-
quent association of several STI agents in the genital
tract of a same subject is another feature that increases
their dissemination. The transmission of the human
immunodeficiency virus type 1 (HIV-1) is particularly
influenced by the presence of other STI agents [3�5].

This chapter provides an overview of STIs associ-
ated with bacterial agents, namely, syphilis, gonorrhea,
chlamydia, and Mycoplasma genitalium infection, and a
genital parasite responsible for trichomoniasis. Nucleic
acid amplification tests (NAATs) have played a major

role during the last decade for the screening and diag-
nosis of STIs. The aim of this review is to delineate the
place of molecular testing in the diagnosis of STIs of
bacterial and parasitic origin. In addition to specific
sections dedicated to the role of NAATs in the diagno-
sis of each of these agents, a concluding paragraph
will focus on future directions, including (1) the study
of vaginal microbiome for enhancing the control of
bacterial STIs, (2) the multiplex approach of STI diag-
nosis by using molecular tools, (3) the implementation
of point-of-care (POC) testing for better managing
STIs, and (4) the need for molecular tools dedicated to
the detection of antimicrobial resistance of STI agents.

SYPHILIS

Overview of the Disease and its Epidemiology

Syphilis is a complex bacterial disease caused by a
motile spiral-shaped spirochete, called Treponema palli-
dum. It evolves classically in three stages including a
primary phase occurring after an incubation period of
10�90 days and characterized by a nonpainful ulcer or
chancre that is located at the site of primary inocula-
tion (genital tract, anus, skin, mouth, etc.). Four to ten
weeks after chancre appearance, the secondary phase
involves blood dissemination of the motile bacteria
that infiltrate tissues, including the central nervous
system, and is sometimes revealed by various
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nonspecific symptoms dominated by disseminated
maculopapular rash, general malaise, and meningitis.
When the infection is diagnosed during these two
early phases, an antibiotic treatment, usually based on
penicillin G (or macrolides in case of allergy to penicil-
lin), is able to cure the infection definitively. If T. palli-
dum invasion is neglected, a latent infection is
established with bacterium persistence in different tis-
sues, which may lead after years or decades to nonin-
fectious tertiary lesions including gumma,
cardiovascular disease, and tertiary neurosyphilis with
two clinical pictures named general paresis and tabes
dorsalis [6]. If untreated, syphilis occurring during
pregnancy may lead to stillbirth and congenital
syphilis.

Syphilis is an old disease that was omnipresent
worldwide during the 19th century and the first half
of the 20th century. Whereas it remains highly preva-
lent in South and Southeast Asia and Sub-Saharan
Africa, the introduction of antibiotics eradicated the
disease in developed countries. However, its preva-
lence increased dramatically at the beginning of this
century, notably in association with HIV-1 infection
and within the networks of subjects with risky sexual
practices, particularly in commercial sex workers and
in men having sex with men (MSM), with outbreaks
occurring in different parts of the developed world
including the United States, Europe, Russia, and
China [7].

Current Diagnosis of Syphilis

Despite tremendous efforts, T. pallidum remains
nonculturable on inert media. At the primary phase,
the bacterium can be detected in peripheral lesions by
dark-field microscopy and direct immunofluorescence
(Fig. 13.2A), although these methods are relatively
insensitive and only accessible to specialized labora-
tories [8]. The diagnosis usually relies on serological
testing that combines the detection of two categories
of antibodies termed non-treponemal, which are
directed against phospholipids, and treponemal,
which recognize specific T. pallidum polypeptides.
Non-treponemal antibodies are detected by agglutina-
tion methods whereas treponemal serology relies on
immunofluorescence, hemagglutination, or, more
recently, immunoassays. Different algorithms are
used to date infection [6,9]. The non-treponemal anti-
bodies are a good indicator of recent infection and
their dynamics is also used for evaluating the efficacy
of treatment. Both treponemal and non-treponemal
tests may lead to false-positive results, notably in
populations with low incidence of infection, such as
pregnant women.

Place of Syphilis Molecular Testing

At the early stages of infection, the bacterium may
be detected by PCR in swabs and biopsy specimens

FIGURE 13.1 Estimated new cases of curable STIs (gonorrhea, chlamydia, syphilis, and trichomoniasis) by region from the WHO, 2008 [1].
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from genital and mucosal ulcers, placental specimens,
cerebrospinal fluid, and oral lesions, even if the pres-
ence of commensal treponemes may be responsible for
false-positive results. Different targets of T. pallidum
genome have been selected for PCR, including the pol A
gene, the 47-kDa integral membrane lipoprotein gene,
the bmp gene, and a 366 bp region of the 16S rRNA
[8,10�12]. Molecular testing is also useful for typing
strains of T. pallidum in order to better understand the
spread of the disease within different communities.
The genes that are targeted for epidemiological pur-
poses are the arp gene and different Tpr subfamily II
genes, using restriction fragment length polymorphism
(RFLP) [13]. Typing is also useful for characterizing the
epidemiology of macrolide-resistant strains [14,15]. As a
whole, molecular tests are not readily used for the rou-
tine diagnosis of syphilis and remain the exclusivity of
reference laboratories. However, their progressive incor-
poration to multiplex tools dedicated to the diagnosis of
venereal diseases is in progress.

GONORRHEA

Overview of the Disease and its Epidemiology

Gonorrhea is a bacterial infection caused by Neisseria
gonorrhoeae, a gram-negative coccus that is strictly
restricted to humans and has been shown to occupy a
particular environmental niche where it adapts rapidly
to host influences, which is responsible for difficulties
in terms of diagnosis and treatment. As for syphilis,
gonorrhea burden, with an estimated 100 million cases
worldwide each year [16], is high in low-income set-
tings and notably in many developing countries.

Gonococcal genital infection consists mainly in ure-
thritis in men that is symptomatic in most cases under
the form of a purulent discharge (also termed “pissing
glass”), and in vaginitis and cervicitis in women that is
asymptomatic in approximately half of the cases.
Rectal and pharyngeal localizations are also observed
and exhibit a high rate of asymptomatic infections.

FIGURE 13.2 Schematic representation of some diagnosis tools used for the detection of nonviral agents responsible of STI. (A) Direct
examination of a few agents using conventional microscopic methods (upper left: Giemsa staining of Trichomonas vaginalis; upper right: gram
staining of purulent discharge with neutrophils and gram-negative cocci of Neisseria gonorrhoeae; lower right: “egg-fried” microcolonies of
mycoplasma in culture; lower left: chlamydial inclusions in McCoy cells; center: fluorescent spirochetes of Treponema pallidum). (B) The most
common commercial platforms that are currently used for the NAAT of STIs (upper left: Abbott m2000 platform; upper right: Hologic
Panther platform; lower right: Becton Dickinson Visper platform; lower left: Roche Cobas 4800 platform; center: Cepheid GeneExpert
platform).
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In women, gonorrhea may lead to complicated infec-
tion including pelvic inflammatory disease, tubal infer-
tility, ectopic pregnancy, and chronic pelvic pain. It
was also shown to favor the acquisition and transmis-
sion of HIV-1, especially in MSM [17].

Current Diagnosis of Gonorrhea

Bacterial culture remains the gold standard for the
diagnosis and follow-up of gonococcal infection. In
addition to its modest cost, it is presently the only way
for managing the improving resistance of N. gonor-
rhoeae to antimicrobials, and notably to extended spec-
trum cephalosporins, which is an increasing challenge
for the future infection [16,18]. Disadvantages of bacte-
rial culture include the requirement of invasive speci-
mens with high bacterial load, the need for rapid and
appropriate transportation of these specimens in order
to preserve germ viability, and the time required for
getting the results that ranges from 2 to 5 days.

Direct examination after gram staining (Fig. 13.2A)
is very useful in case of symptomatic urethritis with
purulent discharge in males. In this situation, the sen-
sitivity is similar to that of culture with specificity
close to 100% and with results available within a few
minutes. However, this test is insensitive in cases of
asymptomatic genital infection or extragenital infection
[19]. The same approach is valuable in the different
antigen tests that were proposed as POC tests [9].

Nucleic Acid Tests Specific for Gonococcal
Infection

Many nucleic acid tests have been proposed for the
diagnosis of gonorrhea and are currently used in many
laboratories due to their relative simplicity of use.
They include hybridization methods and both in-
house and commercial amplification methods.
Concerning hybridization methods, two commercial
tests were developed that used an oligonucleotide-
specific probe, namely, GenProbe PACE II and Digene
Hybrid Capture II assays. However, both were shown
to have lower sensitivity and specificity than culture
[20]. These assays have been supplanted by
amplification-based assays that exhibit better analytical
performance. In addition to in-house PCR assays tar-
geting the porA, opa, or 16S genes of N. gonorrhoeae and
mostly used as confirmatory tests [21], at least seven
multiplex NAATs are commercially available for the
simultaneous detection of N. gonorrhoeae and Chlamydia
trachomatis in genital swabs and first-catch urine, with
different amplification technologies (Fig. 13.2B). Three
of them are based on PCR: (1) Cobas 4800 CT/NG Test
(Roche Molecular Diagnostics, New Jersey, USA), (2)

GeneXpert CT/NG Assay (Cepheid, California, USA),
and (3) RealTime CT/NG assay (Abbott Molecular,
Illinois, USA). Two are based on transcription-
mediated amplification (TMA): Aptima Combo 2 and
Aptima CT assays (Hologic Gen-Probe Inc, California,
USA). Two others are based on strand displacement
amplification (SDA): ProbeTec ET CT/GC Amplified
DNA and ProbeTec Qx Amplified DNA assays (Becton
Dickinson, Maryland, USA).

The main advantages of these tests are (1) the use of
specimens easy to collect (self-sampled vaginal swab,
first-catch urine, tampon samples) and store (nonviable
germs are sufficient), (2) their ability to be multiplexed
and automated, and (3) their great sensitivity by com-
parison to culture. However, a series of disadvantages
are also recognized [22,23], including (1) the inability
to provide epidemiological data on antibiotic suscepti-
bility, (2) the possibility of false-positive results leading
to detrimental psychological consequences and useless
antibiotic treatments, (3) the risk of selecting resistant
strains to current antibiotics due to inappropriate treat-
ment, (4) their nonvalidation for anal, pharyngeal, or
semen specimens, and finally (5) their higher cost.
Consequently, recent guidelines insisted on the need
to avoid the systematic testing of N. gonorrhoeae by
molecular assay in asymptomatic women belonging to
low-prevalence population or to confirm systematically
the positive results by a culture test [24,25]. By con-
trast, NAATs are well suited for the diagnosis of gono-
coccal genital symptomatic infections in at-risk
populations (MSM, sex workers, indigenous communi-
ties with high prevalence of infection, and others). The
development of new-generation NAATs, such as the
Cepheid GenXpert assay that exhibits high sensitivity
and specificity on genital samples and urine [26], may
modulate these recommendations.

For epidemiological purposes and investigation of
outbreaks, different molecular methods can be used,
including RFLP, opa typing (based on the family of 11
opa genes), sequencing of hypervariable genes (porB or
tbpB), and MultiLocus Sequence Typing [19,20].
Regarding antimicrobial resistance, PCR assays able to
detect penicillinase-producing N. gonorrhoeae directly
in clinical samples [27] and for predicting ciprofloxacin
resistance [28,29] have been reported. Molecular tests
targeting genes of antimicrobial resistance to ceftriax-
one and azithromycin are also needed.

GENITAL CHLAMYDIA INFECTION

Overview of the Disease and its Epidemiology

Genital chlamydia infection is due to a spherical
bacterium called C. trachomatis. Given its small size
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and its obligate intracellular parasitism, this organism
was long confused with a virus. However, unlike
viruses, it contains both types of nucleic acids and is
susceptible to certain antibiotics, including macrolides,
cyclines, and quinolones. With an estimated 100 mil-
lion cases worldwide each year [1], chlamydia is (at
equality with gonorrhea) the most common cause of
curable bacterial STI and the most common STI in the
United States and Europe. Early sexual exposure in
young women is considered as a favoring factor,
together with drug abuse, smoking, use of oral contra-
ceptives, and poor socioeconomic condition.

In men, C. trachomatis infection is responsible for
urethritis, epididymitis, proctitis, and pharyngitis,
especially in MSM. In women, it is a common cause of
asymptomatic endocervicitis. If untreated, C. trachoma-
tis infection can lead to endometritis, salpingitis, pelvic
inflammatory disease, ectopic pregnancy, and tubal
infertility. Neonates born from infected mothers are at
risk of developing conjunctivitis and severe pneumoni-
tis. In both genders, it is associated with reactive
arthritis. All these diseases are due to serovars D to K
of C. trachomatis, whereas serovars L1, L2, and L3 are
responsible for another STI called lymphogranuloma
venereum (LGV), mostly in tropical settings, but also
for proctitis in MSM. A recent review on this topic is
available [30].

Nonmolecular Methods of Laboratory Diagnosis

Traditionally, tissue culture was considered the
gold standard for the diagnosis. Due to technical diffi-
culties inherent to cell culture that is found fastidious,
long-lasting, expensive and limited to trained laborato-
ries, alternative immunological techniques were devel-
oped, based on enzymatic or fluorescent assays using
monoclonal antibodies. However, the sensitivity and
specificity of these assays were relatively poor.
Serological tests looking for IgA- or IgM-specific anti-
bodies may also be useful in case of pelvic inflamma-
tory disease.

Molecular Methods of Laboratory Diagnosis

Considering the limitations of traditional testing,
molecular methods have progressively become the
reference, notably those using amplification technol-
ogies (NAATs) [31,32]. These methods are easy to
implement in laboratories trained to molecular
biology, fast, sensitive (ranging from 86% to 100%),
specific (. 97%), and relatively inexpensive [20,21].
They can be performed on a wide range of clinical
specimens including genital and rectal swabs, first-
catch urine (considered as noninvasive specimens),

semen, pharyngeal specimens, conjunctival swabs,
or peritoneal samples collected during pelvic sur-
gery. As viable organisms are not required, the
transportation of specimens is not a critical issue.
The main genes targeted by NAATs for the diagno-
sis of C. trachomatis infection are the major outer
membrane protein (MOMP) gene, the cryptic
plasmid, the phospholipase gene, and the 16S and
23S rRNA gene. The choice of the sequence targeted
by the test is critical for its sensitivity and specificity,
as illustrated by the emergence of a mutant strain in
2006 in Sweden that was shown to be deleted of a
377 bp fragment in the cryptic plasmid [33,34]. This
strain spread rapidly to other Nordic countries and
led the manufacturers who had chosen this target
for their molecular test to modify the design of their
kit. The seven commercial NAATs currently used for
the detection of C. trachomatis DNA are the same as
those for the molecular diagnosis of gonorrhea since
all these tests were multiplexed for detecting both
organisms simultaneously (Fig. 13.2B). By contrast to
N. gonorrhoeae infection, the limitations of NAATs
used for the diagnosis of C. trachomatis are very few:
(1) resistance to antibiotics is limited and cell culture
cannot be used as an alternative for studying anti-
microbial susceptibility, (2) false-positive results are
limited to recent infections treated by antibiotics
(NAATs become negative within 3 weeks of treat-
ment), and (3) false-negative results due to amplifi-
cation inhibitors can be detected by introducing an
internal control targeting a human gene. The main
limitation of most NAATS is the relative complexity
of the platforms that are needed for performing the
extraction and amplification steps of DNA.
However, manufacturers are developing POC mole-
cular tests that can be used by nontrained
experimenters, as exemplified by the recent
cartridge-based Cepheid GeneXpert CT/NG assay
that can be performed within 90 min through a fully-
automated platform, with excellent sensitivity and
specificity on a wide range of clinical specimens
[26]. Other POC molecular tests are in development
for the diagnosis of chlamydia infection such as the
Atlas Genetics platform based on PCR amplification
and original electrochemical detection of amplicons
[35] or the microwave-accelerated metal-enhanced
fluorescent assay using silver metallic nanoparticles
to amplify the fluorescent signal [36].

All the serovars of C. trachomatis, including those
responsible for LGV, can be detected by the commer-
cial NAATs described. From an epidemiological
point of view, identification at the serovar level can
be performed by direct omp 1 gene PCR-RFLP analy-
sis or by nucleotide sequencing [20]. These techni-
ques are reserved to reference laboratories.

155GENITAL CHLAMYDIA INFECTION

II. MOLECULAR TESTING IN INFECTIOUS DISEASE



MYCOPLASMA GENITALIUM INFECTION

Overview of the Disease and its Epidemiology

Mycoplasma genitalium is a motile flask-shaped bacte-
rium of very small size (0.2�0.7 µm) that belongs to class
Mollicutes, family Mycoplasmataceae, and genus
Mycoplasma. It is the species with the smallest genome of
any known living free agent, with a genome of only
580 bp. This genome has been fully sequenced [37]. The
first two strains of M. genitalium were isolated in 1981
from the urethra of two men with non-gonococcal ure-
thritis [38,39]. Unlike other members of the
Mycoplasmataceae family naturally present in the human
genital tract, includingM. hominis, Ureaplasma urealyticum,
andU. parvum,M. genitalium is not considered a commen-
sal host of the genital tract but a sexually transmitted
agent associated to different genital infections with trans-
mission rate similar to that of C. trachomatis [40].

Several recent reviews [41�43] discuss in detail the
involvement of M. genitalium in infections of the genital
tract. Briefly, it is now well recognized that this bacte-
rium is responsible for non-gonococcal urethritis in men,
especially in persistent and recurrent ones. By contrast,
its role in genital infection of women is still unclear. It
has been associated to cervicitis and pelvic inflammatory
disease. Its involvement in adverse pregnancy outcome
and infertility needs to be documented by larger pro-
spective clinical studies. Many studies on urethritis have
pointed out the frequent association of M. genitalium to
other agents of STI or to other Mycoplasma species. The
place of M. genitalium in the epidemiology of STIs is dif-
ficult to delineate. From a series of studies involving a
large number of patients of both sexes with different
genital infections, the prevalence of the detection of the
bacterium ranged from 4.0% to 38.2% [43].

Current Diagnosis

Mycoplasma genitalium is an emergent pathogen that
was identified only recently as a significant agent of
STIs. This is due in large part to the difficulty to obtain
the bacterium in culture (Fig. 13.2B). In addition to the
fact that all mycoplasmas are fastidious agents requir-
ing specific conditions of culture for growing, the cul-
ture of M. genitalium is very slow (weeks to months),
which is not practical for routine diagnosis.

Consequently, NAATs are the only tools that are
available for detecting the presence of this agent in
clinical samples. Appropriate specimens are urethral
exudate, cervical exudate, and first-catch urine for
both men and women. PCR assays have been imple-
mented that target different genomic sequences
including the MgPa adhesin gene [44], the 16S RNA

gene [45], and the gap gene encoding glyceraldehyde
3-phosphate dehydrogenase [46]. The latter target is
probably the less prone to false-positive results with
other Mycoplasma species or to false-negative results
consecutive to mutated sequences. Hologic (California,
USA) commercialized a TMA real-time PCR assay that
performs well when compared with other methods,
but it is available in the United States only for research
purposes [47�49].

The antibiotic treatment of infection relies on the
same drugs as those used for chlamydia, including
macrolides, quinolones, and cyclines. In order to iden-
tify the emergence of multiresistant strains, molecular
tests are in development for targeting mutations
involved in the resistance to macrolides [50,51] and
quinolones [52].

TRICHOMONIASIS

Overview of the Disease and its Epidemiology

This parasitic venereal disease due to a flagellated
motile protozoan named Trichomonas vaginalis is
responsible for urethritis in men and vulvovaginitis in
women. Although mostly asymptomatic, this infection
may be associated to genital discharge both in females
and males, pelvic inflammatory disease, and
pregnancy-related complications. In addition, it was
suspected to favor the acquisition or transmission of
HIV-1 [53�55]. With an estimated annual incidence of
180 million cases worldwide [56], trichomoniasis is the
most prevalent STI of nonviral origin.

Diagnosis Based on Conventional Techniques

Conventional techniques include (1) direct examina-
tion of urine in the absence (wet mount preparation)
or presence of staining (Fig. 13.2A) that allows the
observation of typical trophozoites and (2) culture
from genital swabs or urine sediments using for
instance the InPouch TV test (Biomed Diagnostics,
Oregon, USA). The InPouch TV test consists of a pouch
that contains a medium specifically adapted to the
growth of the parasite. If positive, the device allows
the observation within 2�5 days of typical living para-
sites by using a 103 lens. Despite their relative sim-
plicity and the low cost of the first method, these tests
are time-consuming, require experienced observers,
very fresh samples, and are relatively insensitive. For
instance, the sensitivity of wet mount microscopy and
InPouch TV culture was shown to be 60% and 73%,
respectively, by comparison to PCR [57]. Commercially
available rapid antigen assays that detect T. vaginalis
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membrane proteins were also developed as POC tests.
These include the immunochromatographic OSOM
Trichomonas Rapid Test (Sekisui Diagnostics,
California, USA) and the Tv latex agglutination test
(Kalon Biological, Surrey, UK). The sensitivity of these
assays is similar to that of culture [9].

Diagnosis Based on Molecular Testing

Molecular testing represents an interesting alterna-
tive to conventional techniques for the detection of
T. vaginalis genome in genital specimens and first-
catch urine. Affirm VPIII (Becton Dickinson, Maryland,
USA) is a nonamplified nucleic acid probe hybridiza-
tion test for the simultaneous detection of T. vaginalis,
Gardnerella vaginalis, and Candida albicans. It can be
completed within 45 min but its achievement is rela-
tively complex. By comparison to amplification testing
(NAATs), its sensitivity was shown to be of only 46.1%
[58]. Currently, NAATs constitute the gold standard
for the diagnosis of TV infection. They rely either on
in-house PCR assays [59�63] or on commercial tests
including the APTIMA T. vaginalis assay (Hologic Gen-
Probe Inc, California, USA) based on TMA [64�66]
and the ProbeTec T. vaginalis method (Becton-
Dickinson, Maryland, USA) based on SDA [67]. These
tests can be run on specific platforms (Fig. 13.2B) from
a wide range of specimens (genital swabs, first-catch
urine, throat and anal swabs, semen, etc.). Their sensi-
tivity was shown to be between 88% and 100%. They
can be combined with the search of other sexually
transmitted pathogens on the same platform.
However, they are expensive and require laboratory
equipment and highly trained personnel. Persistent
positive results following treatment are possible [54].

In conclusion, insensitive tests such as culture, anti-
gen assays, and hybridization tests must be limited to
genital samples from women with symptomatic infec-
tion, whereas NAATs can be used on a wider range of
clinical specimens in populations with low prevalence of
T. vaginalis infection, including asymptomatic infections.
In case of recurrent infection in patients treated by nitroi-
midazoles, the strains need to be cultivated in order to
detect T. vaginalis resistance to these drugs. For the phy-
logenetic analysis of T. vaginalis, techniques such as ran-
dom amplified polymorphic DNA are interesting [20].

FUTURE DIRECTIONS

Vaginal Microbiome and STIs

According to R. M. Brotman [68], “. . .bacterial vagi-
nosis (BV) is a gynecologic condition of unknown

etiology and is traditionally characterized by a rela-
tively low abundance of vaginal Lactobacillus sp.
accompanied by polymicrobial anaerobic over-
growth. . ..” In addition to representing a major cause
of complaint in women, BV is recognized as a nonspe-
cific marker associated to a higher risk of STI and its
attendant complications including pelvic inflammatory
disease, increased HIV transmission, and bad preg-
nancy outcome. From a clinical point of view, BV
associates the following Amsel criteria [69]: vaginal
pH of at least 4.5, gray-white malodorous fish-
smelling discharge, and the presence of clue cells
defined as epithelial vaginal cells constellated of
attached bacteria. From a bacteriological point of view,
the Nugent gram strain score takes into consideration
the relative abundance of three kinds of bacteria
according to their morphology: different gram-positive
species of Lactobacillus, small gram-negative rods
(Gardnerella, Bacteroides), and curved gram-negative
bacilli (Mobiluncus) [70]. With an overall range from 0
to 10, a Nugent score of 7 or more is indicative of BV.
The epidemiological factors that favor the disequilib-
rium of vaginal flora responsible for BV are numerous
and include mainly menses, new sexual partners, vagi-
nal douching, receptive oral sex, and lack of condom
use [68].

The considerations noted indicate the importance of
BV as a predisposing condition of STI. Its identifica-
tion relies mainly on gram staining, which is greatly
influenced by the subjective appreciation and expertise
of the examiner. In this context, the new molecular
tools available for exploring microbial flora, notably
those based on deep sequencing methods, may be use-
ful for exploring more objectively the bacterial diver-
sity of vaginal flora. A recent study performed on 396
asymptomatic US women used pyrosequencing of the
16S RNA genes for characterizing the vaginal micro-
biome [71]. After phylogenic analysis, five different
patterns were recognized—four of them were associ-
ated with a predominance of Lactobacillus species,
whereas another one, present in approximately one-
fifth of these asymptomatic women, was characterized
by the predominance of other bacterial species.
Interestingly, women from this latter group were char-
acterized by elevated vaginal pH and Nugent score
[71]. The development of these new sequencing meth-
ods represents a fascinating way of exploring more in
depth the microbial diversity of vaginal flora, which
may lead to the identification of women at risk of
developing BV and, consequently, STIs. According to
the concept of personalized medicine, these findings
may open the way of new intervention strategies
aimed at preventing STIs through the restoration of a
normal vaginal flora.
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Multiplex Approach of STI Diagnosis Using
Molecular Tools

Two of the main concerns associated to the current
diagnosis of STIs are the diversity of agents possibly
involved in these pathologies, including bacteria,
viruses, and parasites, together with the frequent asso-
ciation of several of them within the same infection.
The asymptomatic character of some of these infec-
tions, notably in women, is an additional handicap to
their easy recognition. Ideally, it would be very useful
to produce a single multiplex molecular test, per-
formed on a simple matrix such as self-sampled vagi-
nal swab or first-catch urine, and able to detect
simultaneously a wide range of STI agents.

During the past decade, numerous tests have been
developed in order to reach, at least in part, this ambi-
tious goal. Beyond the tests that are able to detect
C. trachomatis and N. gonorrhoeae in the same assay, dif-
ferent studies reported the simultaneous detection of
several sexually transmitted agents. For instance,
highly specific and efficient primers were described

for in-house multiplex PCR detection of C. trachomatis,
N. gonorrhoeae, M. hominis, and U. urealyticum [72].
Another study reported the simultaneous identification
of 14 genital microorganisms (namely, T. vaginalis,
Streptococcus pneumoniae, N. gonorrhoeae, C. trachomatis,
U. parvum, U. urealyticum, G. vaginalis, Haemophilus
influenzae, herpes simplex virus (HSV) type 1 and
type 2, N. meningitidis, M. hominis, M. genitalium, and
adenovirus) in urine by using a multiplex PCR-based
reverse line blot assay [73]. Other authors investigated
the etiologies of cervicitis by using multiplex PCR test-
ing targeting the following agents: cytomegalovirus,
enterovirus, Epstein�Barr virus, varicella-zoster virus,
HSV type 1 and type 2, U. parvum, U. urealyticum,
M. genitalium, M. hominis, C. trachomatis, T. vaginalis,
T. pallidum, group B streptococci, and adenovirus
species A to E [74]. A recent study investigated the
simultaneous detection of seven agents (C. trachomatis,
T. pallidum, M. genitalium, T. vaginalis, N. gonorrhoeae,
and HSV type 1 and type 2), together with human
papillomaviruses, by single PCR in semen of men
involved in infertility programs [75]. Fig. 13.3

FIGURE 13.3 Example of in-house multiplex PCR assay detecting seven different pathogens involved in STI [75]. The picture illustrates
the electrophoretic analysis of the amplified fragments in 8% polyacrylamide gel stained with ethidium bromide. Lanes C correspond to con-
trols (C1: 361 bp fragment of Chlamydia trachomatis; C2: 291 bp fragment of Treponema pallidum; C3: 249 bp fragment of HSV-2; C4: 193 bp frag-
ment of Mycoplasma genitalium; C5: 170 bp fragment of Trichomonas vaginalis; C6: 162 bp fragment of Neisseria gonorrhoeae; C7: 123 bp fragment
of HSV-1; C: negative control). Lanes M1 and M2 correspond to markers of molecular sizes (in bp). Lanes A correspond to infected semen spe-
cimens (A1: double infection with C. trachomatis and HSV-1; A2: double infection with T. pallidum and HSV-2; A3: double infection with T. vagi-
nalis and HSV-2; A4: double infection with C. trachomatis and M. genitalium; A5: double infection with T. pallidum and T. vaginalis; A6: single
infection with T. vaginalis).
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illustrates the gel analysis of the PCR fragments
obtained with the multiplex method used in the latter
study [75]. All these in-house assays were shown to be
sensitive and specific and exhibited a high proportion
of coinfections by two or more microorganisms.

Different companies, including Bio-Rad (Hercules,
California, USA), Amplex Biosystems (Giessen,
Germany), PCR Diagnostics.eu (Bratislava, Slovak
Republic), and Seegene (Seoul, Korea), market multi-
plex PCR-based kits using various formats and
instrument platforms and are able to detect notably
C. trachomatis, N. gonorrhoeae, T. vaginalis, M. genita-
lium, along with other urogenital mycoplasmas and
ureaplasmas. None of these kits are yet registered by
the US Food and Drug Administration. By compari-
son to other commercial tests, the Anyplex II multi-
plex real-time PCR from Seegene was found
97.8�100% sensitive and 99.3�100% specific accord-
ing to the different pathogens on a large collection of
urine and genital samples (n5 897) from subjects of
both sexes [76].

As a whole, although further evaluation is needed
for appreciating the performances and judicious
selection of targets of these multiplex assays, it is
clear that they represent a significant advance in the
global management of STIs, notably for investigating
the frequent association of multiple pathogens within
a same patient. An increased choice of microorganism
combination will be available during the next years
and it will be important to edit recommendations rel-
ative to the list of pathogens that would need to be
detected according to the different clinical and epide-
miological situations that are most frequently
encountered.

POC Diagnostics for STIs

Another goal of STI diagnosis is the immediate
availability of microbiological investigations in order
to propose an adequate treatment when possible,
together with tailored recommendations regarding
the sexual contacts. This need is particularly urgent
when low-income or unstable populations are tar-
geted, as it is often the case with STI subjects. The
development of POC molecular tests is increasing
rapidly [77], notably in the field of genital infections
[9,78]. The PCR-based GeneXpert NG/CT assay for
simultaneous detection of C. trachomatis and N. gonor-
rhoeae on genital swabs and urine is an illustration of
the excellent performance that can be reached within
90 min of time with this kind of test [26]. Cheaper
methods based on isothermal amplification, already
optimized for viruses [79�81], and encompassing
more pathogens are in development [77].

Molecular Tools Dedicated to Antimicrobial
Susceptibility

The increased frequency of the worldwide preva-
lence of STIs is associated to a significant increase in
antimicrobial treatments, which further leads to
development of germ resistance. This is particularly
true for N. gonorrhoeae, C. trachomatis, and M. genita-
lium and to a lesser extent for T. pallidum and T. vagi-
nalis. Current phenotypic antimicrobial tests need the
growth of the corresponding microorganism, which
can be difficult due to its rapid inactivation (N. gonor-
rhoeae, T. vaginalis), its fastidious growth (M. genita-
lium), or its inability to grow in inert culture
(C. trachomatis, T. pallidum). When feasible, the results
are available within a few days, which can delay
treatment or require adjustment.

To encompass these difficulties, it would be useful
to develop molecular tests based on molecular tools,
as it has been done for viruses or tuberculosis myco-
bacteria. Pulido et al. proposed recently an overview
of the new techniques that are available for testing
antimicrobial susceptibility, including those based on
PCR assays, microarrays, microfluidics, cell lysis
based approaches, or full genome sequencing [82].
Some molecular tests are in development for targeting
mutations involved in the antibiotic resistance of
M. genitalium [50�52] and N. gonorrhoeae [27�29].
Ideally, these tests of resistance would be associated
to the multiplex assays described previously, either as
second intention testing when the screening test is
found positive for a target associated to antimicrobial
resistance or even in the same test for frequent resis-
tance patterns.

CONCLUDING REMARKS

This overview of the molecular tools used for STIs
of nonviral origin illustrates that much progress has
been made in implementing new diagnostic strategies
in this field. Herein is not the place for discussing the
cost�benefit balance of performing an etiological diag-
nosis of current STIs before treating them, especially in
low-income areas, but it seems consensual that there is
an urgent need in the future for low-cost molecular
methods able to detect pathogens together with their
resistance pattern in real time, in order to use adequate
curative means. For this purpose, isothermal amplifica-
tion methods could represent an interesting track from
an economic point of view.

Technically, there are still a lot of issues that must
be solved before NAATs become the reference for the
diagnosis of all nonviral STIs. Except for chlamydia,
the other agents reviewed in this chapter have shown
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some limitations when NAATs were used on a routine
basis. This is particularly true when the positive pre-
dictive value is lower than 90%, as often recorded in
low prevalence population, which justifies the imple-
mentation of confirmatory or complementary tests
[20]. The use of standardized specimens and methods
performed under rigorous norms (as ISO 15189) and
strict quality controls is another exigency of the gener-
alization of NAATs in microbiology settings.
Nevertheless, molecular tools are becoming important
in the management of STIs, for detecting the germs,
evaluating their susceptibility to antimicrobials, and
performing an epidemiological typing of strains. It is
now clear that molecular assays are progressively sup-
planting conventional methods of diagnosis, at least in
high-income areas.

The last words will concern prevention. In addition
to education, vaccines [83,84], and prophylactic treat-
ments such as local microbicides [85], a better knowl-
edge of the genital microbiome is essential for
understanding the complex interactions between
agents of the normal flora and pathogens that are
responsible for STIs. Revisiting this microbiological
world in the light of the new generation sequencing
techniques will probably help to identify those subjects
that are the most at risk for developing complicated
STIs and consequently to define new preventive
strategies.
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INTRODUCTION

Healthcare-acquired infections (HAIs) can put a sig-
nificant physical and economic burden on hospitals
and other healthcare institutions. A number of profes-
sional societies and organizations (CDC—Centers for
Disease Control [1]; APIC—Association of Practitioners
of Infection Control [2]; SHEA/IDSA—Society for
Healthcare Epidemiology of America/Infectious
Diseases Society of America [3]) have put forth recom-
mendations toward the practice of preventing HAIs
and/or monitoring HAIs within a particular setting or
an institution. Additional efforts have also been put
forth from the Centers for Medicare and Medicaid
Services (CMS) to reduce preventable harm (which
include HAIs) and improving patient safety. This CMS
program essentially penalizes hospitals/healthcare
institutions, in the form of reduced reimbursement,
that rank low based on scoring criteria [4].

Methicillin-resistant Staphylococcus aureus (MRSA)
and Clostridium difficile are two well-known pathogens
that have traditionally been identified as hospital-
acquired infections [5�7]. However, it is now recog-
nized that these pathogens are not exclusively nosoco-
mial pathogens [7,8]. Risk factors that have been
identified for MRSA include: (1) prior antibiotic usage,
(2) current colonization with MRSA, (3) admission to
the intensive care unit (ICU), (4) presence of skin and
soft tissue infection, and (5) prior history of MRSA
infection/colonization [3,9�11]. Healthcare-acquired
(HA) and community-acquired (CA) MRSA strains can
be differentiated by molecular typing and epidemio-
logical factors [12]. Differences have also been

observed for HA-MRSA and CA-MRSA strain preva-
lence and geography [13�15]. Risk factors for CA-
MRSA overlap with risk factors for HA-MRSA, but
CA-MRSA strains are specifically associated with soci-
etal activities that involve some level of skin contact/
exposure (ie, sports and athletics, intravenous drug
abusers) [16,17].

In 2006 and 2010, Jarvis et al. conducted an MRSA
prevalence survey to estimate the burden and impact
of MRSA to healthcare institutions in the United
States. They observed that the US MRSA colonization
prevalence rate was higher compared to the last time
the survey was conducted in 2006, 66.4 per 1000 inpati-
ents versus 46.3 per 1000 inpatients, respectively
[18,19]. Interestingly, they observed a decrease in the
MRSA infection rate from 35 per 1000 inpatients (2006)
to 25.3 per 1000 inpatients (2010). The increased coloni-
zation rate and decreased infection rate may reflect the
observation that a higher proportion of healthcare
institutions (76% in 2010 vs 29% in 2006) had an active
surveillance program in place for MRSA and an
improved ability to identify those patients that are col-
onized with MRSA. With improved ability to detect
MRSA colonization comes a more focused approach to
controlling colonization and infection.

In Canada, it was shown that the rate of MRSA
infections increased from 0.46 to 5.90 per 1000 admis-
sions from 1995 to 2004 [20]. That same study showed
that patients with MRSA required prolonged hospitali-
zation, special control measures, and more expensive
treatments, compared to methicillin-sensitive S. aureus
(MSSA) infections. The total MRSA-associated financial
burden to the Canadian healthcare system was
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estimated to be $82 million in 2004. Anderson et al.
estimated that an MRSA surgical site infection (SSI)
results in approximately $79,029 in hospital charges
[21], compared to MSSA and uninfected controls
where hospital charges were $55,667 and $38,735,
respectively. Anderson and colleagues also showed a
5- to 6-day greater length of stay for MRSA SSIs versus
MSSA SSIs [21]. Other studies show the significant eco-
nomic and physical burden MRSA infections put on
healthcare institutions [22�24].

Microbiology screening and testing have tradition-
ally been performed using culture-based and other
phenotypic methodologies. In general, clinical microbi-
ology laboratories are now adopting molecular meth-
ods because results can be available to clinicians more
rapidly versus what the traditional methods can offer.
One of the bottlenecks in the time to result for the tra-
ditional microbiology testing is the incubation period
required for culture growth. The shift to molecular
testing has already happened in the clinical virology
laboratories where it is now considered the new gold
standard. This chapter will focus on MRSA and C. diffi-
cile as examples of HAIs and the molecular screening
and diagnostic testing that are currently used in detect-
ing these two pathogens.

MRSA MOLECULAR DIAGNOSTIC
TESTING AND CLINICAL UTILITY

Molecular testing for MRSA can be divided into two
broad categories: (1) diagnostic testing and (2) screen-
ing/epidemiology. FDA-approved assays are listed in
Table 14.1. Molecular testing for diagnosis typically
utilizes real-time PCR assays. However, there is an
FDA approved method from AdvanDx/bioMerieux,
Inc. that utilizes peptide nucleic acid—fluorescent in
situ hybridization (PNA-FISH) and detection of a posi-
tive fluorescent signal directly from a positive blood
culture. In this scenario, blood cultures are collected
from a patient suspected to have bacteremia. The
blood culture bottles are sent to the microbiology labo-
ratory and are loaded onto the automated blood cul-
ture incubator. When the blood culture instrument
flags a particular bottle as suspected of having growth,
a gram-stained smear is prepared from the blood cul-
ture bottle to determine if bacteria (or yeast) are pres-
ent. PNA-FISH offers four basic assays based on the
gram stain: (1) Staphylococcus (gram positive), (2)
Enterococcus (gram positive), (3) gram negative, and (4)
Candida. Additional assays have the ability to separate
S. aureus/coagulase-negative Staphylococcus utilizing a
mecA probe for the identification of MRSA. The assay
requires a fluorescent microscope to visualize the
results. A number of studies have shown the clinical

benefits of PNA-FISH implementation as part of the
blood culture workup—knowing methicillin resistance
before confirmatory culture growth and before the full
antibiotic susceptibilities can be performed [25�29].
This testing would not, at least currently, replace the
traditional microbiology workup, but serves as another
laboratory tool to more quickly accomplish pathogen
identification so that clinical action can be taken
earlier.

The FDA-approved PCR tests for MRSA are based
upon detecting the mecA gene. Most of these assays
are real-time PCR assays utilizing fluorescent probes
with PCR cycling times taking approximately a few
hours, depending on the vendor assay. The platforms
available offer various levels of automation and hands-
on-time (ie, nucleic acid extraction, post-PCR analyses)
depending on the vendor. These are things to consider
when assessing how the assay and instrumentation
will fit based on a laboratory’s volume and workflow.
Clinical laboratories may choose to develop their own
PCR tests for the detection of MRSA or modify FDA-
approved assays by validating additional sample
types. Doing so requires extensive validation testing to
ensure analytical and clinical sensitivity/specificity
performance meet certain standards in order to be
used as a test for diagnostic purposes.

Similar to the PNA-FISH scenario, when utilizing
Cepheid’s Xpert MRSA/SA Blood Culture test the
gram-stained smear prepared from the positive blood
culture will determine whether Cepheid’s assay should
be run. Cepheid’s methodology is real-time PCR based
and does not require any subjective interpretation of
the results by the laboratory staff. The cartridge for the
Xpert MRSA/SA test houses all the reagents and is
compartmentalized to accommodate the nucleic acid
extraction, PCR amplification, and detection in a single
cartridge device. The testing is automated once the
sample is loaded into the test cartridge and the soft-
ware analyzes the PCR amplification curves to deter-
mine if a patient’s blood sample is positive or negative
for the presence of MRSA or MSSA. Studies have
shown the potential clinical benefits with the Xpert
MRSA/SA test [30�33].

Nanosphere, Inc. and BioFire Diagnostics, Inc.
approach S. aureus/MRSA testing from positive blood
cultures as more of a syndrome of bacteremia or sep-
sis. These vendors are creating multiplex, molecular
pathogen panels that target the most common bacteria
and/or fungal pathogens occurring for a particular
syndrome (ie, sepsis, gastrointestinal illness, respira-
tory infections, and encephalitis/meningitis). This is a
unique approach that addresses the confounding
overlap in patient symptoms for a specific syndrome
or condition. When the symptoms overlap, this makes
it difficult for clinicians to define the causative
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pathogen infecting their patient solely from the clini-
cal picture, which makes it difficult to provide
specific pathogen-based therapy. Historically, the
microbiological diagnosis of these pathogens involves
a combination of multiple cultures, antigen based,
biochemical based, and maybe reference laboratory
testing that piecemealed results to clinicians depend-
ing on how many tests were needed to rule-in (or
rule-out) a particular pathogen as the cause of dis-
ease. Use of these syndromic multiplex molecular
panels streamlines the testing process to more of a
one-and-done approach.

Nanosphere offers several different panels: (1) gram
positive (BC-GP panel), (2) gram negative (BC-GN
panel), and (3) yeast (BC-Y panel). The organism(s)
observed from the gram-stained smear determine
which panel(s) to run. Additional testing with the
gram-positive and gram-negative panels also includes
testing for certain antibiotic resistance genes (mecA,
vanA, and vanB) (Table 14.2). There are many studies
showing overall good performance for the BC-GP
panel [34�40]. However, Buchan et al. observed issues
where a positive mecA target was not able to be

TABLE 14.1 FDA-Approved Molecular Assays for the Identification of S. aureus

Vendor Assay name Method/intended use MRSA gene target(s)

BD Diagnostics BD Max MRSA PCR/screening SCCmeca/orfX junction, MREJb

BD GeneOhm StaphSR PCR/screening

BD GeneOhm MRSA ACP PCR/screening

AdvanDx, Inc. Staphylococcus QuickFISH BC FISHc/diagnostic S. aureus and coagulase-negative
Staphylococcus ribosomal RNA sequences

S. aureus PNA FISH FISH/diagnostic

bioMerieux, Inc. NucliSENS EasyQ MRSA NASBAd/screening MRSA DNA (target(s) not specified)

Cepheid Xpert MRSA/SA Blood Culture PCR/diagnostic Spae, mecA, SCCmec

Xpert MRSA/SA Nasal Complete PCR/screening

Xpert MRSA/SA SSTI PCR/diagnostic

Xpert MRSA PCR/screening attBscf of SCCmec

Roche LightCycler MRSA Advanced PCR/screening SCCmec/orfX junction

Infectio Diagnostic, Inc. IDI-MRSA PCR/screening SCCmec/orfX junction

Nanosphere, Inc. Verigene Gram Positive Blood Culture
Test

Multiplex PCR mecA

BioFire Diagnostics, Inc. Blood Culture Identification Panel Multiplex PCR mecA

aStaphylococcal chromosomal cassette.
bmec right extremity junction.
cFluorescent in situ hybridization.
dNucleic acid sequence based amplification.
eStaphylococcus protein A.
fSequence incorporating the insertion site (attBsc) of SCCmec.

www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm (Web page updated January 27, 2015).

TABLE 14.2 Verigene BC-GP Targets

Targets

Staphylococcus spp.

Streptococcus spp.

Listeria spp.

Staphylococcus aureus

Staphylococcus epidermidis

Staphylococcus lugdunensis

Streptococcus anginosus group

Streptococcus agalactiae

Streptococcus pneumoniae

Streptococcus pyogenes

Enterococcus faecalis

Enterococcus faecium

mecA (methicillin resistance)

vanA (vancomycin resistance)

vanB (vancomycin resistance)
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assigned due to the presence of a mixed infection [37].
In this situation, full antibiotic sensitivity testing is
recommended because the traditional methods test
each bacterial pathogen isolated individually. Beal
et al. noted that when blood culture infections were
caused by a single pathogen, there was generally good
performance of the multiplex molecular assays [38].
When polymicrobial blood culture infections were
noted, there was only 33% agreement with the routine
cultures. Mestas et al. also noticed a lower percentage
agreement for polymicrobial infections when com-
pared to monomicrobial infections [39]. Polymicrobial
bacteremia is relatively rare, but that does not mean
that it cannot happen, and depending on the organ-
isms present, can potentially have dire complications
in the patient [41]. Again, cultures are required to
determine the full antibiotic susceptibility results, and
maybe for the detection of pathogens that are not
included in the multiplex molecular panels.

The FilmArray Blood Culture Identification Panel
(BCID) is a comprehensive panel that covers gram-
positive, gram-negative, and yeast/fungal pathogens
(Table 14.3), and so a positive blood culture from the
automated instrument is still required. A gram-stained
smear is not necessarily critical to have prior to run-
ning the FilmArray panel. However, it is good routine
practice to perform the gram stain to correlate with
results obtained from the molecular panel, and the
eventual culture testing since full antibiotic susceptibil-
ity testing is required. Altun et al. observed that cer-
tain pathogens that are detected in routine cultures
were not detected in the FilmArray panel, because the
specific pathogens were not contained in the molecular
panel [42]. So although the comprehensive panel cov-
ers the most common pathogens, clinical intuition is

still ultimately needed especially when clinical symp-
toms and other laboratory data suggest a bacteremic
process in the setting of a negative FilmArray panel.
Most studies have demonstrated good performance of
these assays, and the potential for a decreased turn-
around time for obtaining a preliminary susceptibility
profile based on the antibiotic resistance genes tested
[40,42�44]. The ability to multiplex offers a greater
advantage in knowing what may be present, but the
negative predictive values of both tests offer clinical
utility in knowing a particular set of pathogens are
truly negative.

The ability to obtain a more rapid answer that is
technically more sensitive and specific provides
potentially positive downstream effects on patient
care and antibiotic stewardship. Currently, few stud-
ies in the literature show a true analysis of the impact
of these rapid PCR blood culture assays on the clini-
cal end users (infection control, pharmacy, length of
stay, and overall hospital costs). A study by Bauer
et al. in 2010 was able to show clinical benefit after
implementing the Cepheid Xpert MRSA/SA assay for
positive blood cultures [31]. The investigators ana-
lyzed a 4-month pre-PCR period and then a 4-month
post-PCR period and were able to show an overall
shorter length of stay (6.2 days shorter) and the aver-
age hospital costs were $21,387 less than what was
observed in the pre-PCR period. This study also
showed that having a quicker result available enables
infectious disease pharmacists to be more effective in
deescalating or changing to more specific antibiotic
therapies in a timelier manner when compared to the
pre-PCR period [31]. So at least in this setting, there
are benefits to be gained by having a more rapid and
more sensitive test.

TABLE 14.3 FilmArray Blood Culture Identification Panel

Gram-positive bacteria Gram-negative bacteria Yeast Antibiotic gene

Enterococcus Acinetobacter baumannii Candida albicans mecA (methicillin resistance)

Listeria monocytogenes Haemophilus influenzae Candida glabrata van A/B (vancomycin resistance)

Staphylococcus spp. Neisseria meningitidis Candida krusei KPC (carbapenem resistance)

Staphylococcus aureus Pseudomonas aeruginosa Candida parapsilosis

Streptococcus spp. Enterobacteriacae Candida tropicalis

Streptococcus agalactiae Enterobacter cloacae complex

Streptococcus pyogenes Escherichia coli

Streptococcus pneumoniae Klebsiella oxytoca

Klebsiella pneumonia

Proteus

Serratia marcescens
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Part of the difficulty in maintaining optimal perfor-
mance of PCR assays is ensuring MRSA can be
detected across the different MRSA genotypes. mecA is
responsible for the resistance to methicillin and other
beta-lactam antibiotics. mecA encodes penicillin-
binding protein 2a (PBP2a) and this differs from the
other penicillin-binding proteins as the active site is
altered so that the beta-lactam antibiotic cannot bind
[45]. The mec gene lies within the staphylococcal chro-
mosomal cassette (SCC), which is a mobile genetic ele-
ment [46,47]. There are 11 known SCCmec types along
with different mec gene complexes (A, B, C1, C2, D, E)
[46,48]. So as new SCCmec types and mec gene com-
plexes are discovered, molecular assays need to be
reassessed to determine if testing performance is com-
promised or affected. Ultimately, vendors may need to
reformulate their assay(s) to maintain or improve test
performance.

An example of this has been the observation of
mecA dropout mutant isolates that are truly sensitive
to methicillin by phenotypic testing methods, but will
yield a false positive in some of the earlier generation
of tests for MRSA detection [49,50]. Blanc et al.
observed that 13% (28/217) patients screened for
MRSA yielded false-positive results. The primers tar-
geted regions that flanked the mecA gene and an
amplicon was generated [51]. At the time, most of the
commercially-available PCR tests developed used this
same approach and the assays have improved their
specificity. It was also noted by Blanc et al. that the
MRSA assay from bioMerieux, Inc. does target specifi-
cally the mecA gene and should be more specific for
MRSA. However, the problem lies in testing from a
nonsterile site such as the anterior nares where methi-
cillin resistance (ie, presence of mecA) does occur in
other species of coagulase-negative Staphylococcus
potentially yielding a false-positive PCR result.

MRSA MOLECULAR TYPING AND
CLINICAL UTILITY

Understanding the epidemiology of MRSA cannot
be completely appreciated without molecular strain
typing. The use of molecular typing has helped in
monitoring and limiting the spread of MRSA within
healthcare facilities. These conventional molecular
methods can also help in determining if a cluster of
MRSA infections are the result of an outbreak (similar
strains observed) or just a group of unrelated MRSA
strains. Clinically, it may be important to know if sepa-
rate episodes of an MRSA infection are due to a
relapse of the initial infection or truly a second infec-
tion with a different MRSA strain.

There are a number of conventional phenotypic and
genotypic methods for determining the specific strain
of MRSA. The phenotypic methods (antibiotic suscepti-
bility profile, serotyping, phage, typing, and biotyping)
[52] have limited ability to discriminate specific stains
compared to genotypic methods (Table 14.4).

Pulsed field gel electrophoresis (PFGE) has been the
traditional genotyping method for MRSA strain typing
and is considered the gold standard [53]. The restric-
tion enzyme SmaI is most commonly used in PFGE
protocols. After the restriction enzyme digestions, the
resulting fragments of MRSA DNA are subjected to
agarose gel electrophoresis. In PFGE, the orientation of
the electrical field is altered periodically to minimize
the overlap of DNA fragments so that the resulting
banding patterns can be interpreted more easily.
Analysis of banding patterns is typically handled by a
software package that determines the degree of relat-
edness between the various MRSA strains tested. This
technique is highly reproducible and highly discrimi-
natory. The major limitations of PFGE are reflected in
the time to result (which can take at least 3 days) and
the relative expense (compared to PCR-based typing)
[52,54,55]. It is critical to impose standardization of the
PFGE protocols used, analysis of the MRSA banding
patterns, and nomenclature of the MRSA strain types
because this allows a true comparison of MRSA strains
from a global perspective [56].

TABLE 14.4 Molecular Typing Methodologies for MRSA

Molecular typing methods

Pulse field gel electrophoresis (PFGE)

Restriction endonuclease analysis (REA)

Restriction fragment length polymorphism (RFLP)

Ribotyping

SCCmec typing

agr typing

spa typing

Multilocus sequence typing (MLST)

Single-locus sequence typing (SLST)

DNA microarray hybridization

Binary typing

Arbitrarily primed PCR/randomly amplified polymorphic DNA
(AP-PCR/RAPD)

Multiple-locus variable number tandem-repeat assay (MLVA)

PCR-RFLP

Sequencing (Sanger or next generation)
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There are other restriction enzyme based methodol-
ogies such as restriction endonuclease analysis (REA),
REA with Southern blotting analysis, and ribotyping.
Overall, these restriction enzyme methods do not nec-
essarily provide a real-time result while an infection
control investigation is ensuing, and this may be a sce-
nario where the PCR-based typing methods can offer a
quicker answer to better aid in the investigations to
determine if an outbreak is truly occurring or it just
happens to be a cluster of infections due to unrelated
MRSA strains. However, compared to PFGE these
other enzymatic methods do not provide the discrimi-
natory power and technically more demanding [52].

PCR-based typing methods are generally not as
time-consuming as restriction enzyme digestion meth-
ods. Hence, PCR-based typing potentially contributes
to the real-time investigation of a suspected outbreak
by providing preliminary results related to pathogen
strain [57]. Although these methods exhibit quicker
turnaround times for results, the PCR-based typing
assays are not as reproducible and discriminatory
compared to PFGE and thereby serve as a complement
to the traditional gold standard [57].

There are a number of other molecular methods that
can be used for MRSA typing and are utilized to deter-
mine molecular fingerprints [52,54,55,58�70]. The
PCR-based methods focus on certain genes of interest
such as spa (protein A) [70], coa (coagulase), SCCmec
(SCC that has the mecA gene), agr (accessory gene reg-
ulator) [69], and then combinations of gene targets are
employed to further discriminate MRSA strains [61].
Multilocus sequence typing (MLST) can be used to
answer questions about the evolutionary and popula-
tion biology of bacterial species and is based upon
sequences of approximately 450-bp internal fragments
of seven house-keeping genes amplified by PCR [55].
The PCR-amplified fragments are analyzed using a
sequencer. The use and expense of a sequencer within
the clinical microbiology laboratory may be prohibi-
tive. Hence, this methodology may not be suitable for
infection control outbreak investigations in real time.
These molecular typing techniques have advantages
and disadvantages, and varying levels of discrimina-
tory power. There is no one best overall method for
MRSA strain typing. However, the specific question(s)
being asked in association with a single patient or
group of patients will help to determine which molec-
ular typing method(s) to choose.

Next-generation sequencing (NGS) (also known as
massively parallel sequencing) is a newer methodology
that has the potential for a quicker turnaround time to
result while providing a greater ability to discriminate
between different MRSA strains compared to PCR-
based techniques. The delineation between CA-MRSA
and HA-MRSA is not always clear from an

epidemiological perspective or even from a genetic
perspective, and NGS provides a more definitive
result. Harris et al. utilized NGS to investigate an
MRSA outbreak in a special care baby unit (SCBU) and
compared the results to their traditional infection con-
trol/laboratory techniques [71]. They observed that
NGS, in real time, was able to identify 26 additional
related cases of MRSA carriage and showed that trans-
mission occurred within the SCBU between mothers
on a postnatal ward and in the community. NGS con-
firmed that the MRSA strain identified was in fact a
new sequence type that was very closely related to the
MRSA strain identified in the initial outbreak.
Investigators traced the newly identified MRSA strain
to a staff member that was colonized and provided
the source of MRSA that supported the ongoing out-
break despite the deep cleaning that was performed in
the SCBU.

Price et al. described that NGS does have the ability
to discriminate down to single nucleotide difference
that allows a more accurate typing analysis [72]. A
number of other studies have shown the advantages of
NGS as a stand-alone technique, as well as a comple-
ment to other molecular typing methodologies. NGS
has also been utilized to look at antibiotic susceptibility
genes and virulence [73�78]. As this technology
becomes more mainstream and the ability to analyze
the data becomes more standardized, clinical microbi-
ology/molecular laboratories will adopt this as another
infection control tool. With more distinct and discrimi-
natory results for molecular typing, better inferences
can be made during outbreak investigations for deter-
mining the most likely means of transmission.
Coupled with a more specific result, infection control
may be able to implement the appropriate countermea-
sures in a timelier manner. As the general costs for
NGS decrease, the method will eventually become a
viable option for clinical microbiology/molecular
laboratories.

MRSA MOLECULAR SCREENING/
SURVEILLANCE

The implementation of an active MRSA surveillance
program is an infection control initiative for the pur-
poses of identifying MRSA-colonized patients before
they enter the hospital to be admitted or for a particu-
lar outpatient procedure. The ultimate goal is to reduce
the incidence of MRSA HAIs among those patients, as
well as prevent the horizontal transmission to other
patients within the hospital. It has been shown that up
to 33% of MRSA HAIs are a result of the patient’s own
colonizing MRSA strain [79]. Depending on the health-
care institution, patients that are identified as being
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colonized with MRSA may or may not be decolonized.
Appropriate identification and implementation of infec-
tion control precautions of an MRSA-colonized patient
also raises the awareness by the healthcare staff so that
the proper measures (ie, hand hygiene compliance) can
be taken to prevent horizontal transmission to other
patients also under their care. Legislation has worked
its way into shaping and developing MRSA screening
programs, and several states have enacted laws man-
dating that surveillance and/or screening program be
put in place for certain HAIs [3,18,80�85].

Many of the FDA-approved molecular screening
methods (Table 14.1) at a minimum target the
SCCmec. The same issues already mentioned with
respect to MRSA specificity, different strain types, and
mecA dropout mutants also apply to these tests
intended for screening/surveillance.

The most common anatomical site sampled for
MRSA screening is a swab of the anterior nares.
However, it is well known that S. aureus can colonize
extra-nasal sites such as oropharyngeal, axilla, groin,
umbilicus, perineum, and less commonly the gastroin-
testinal tract and vagina [3,86�90]. Matheson et al.
showed that combining anatomical sites increases the
yield of finding an MRSA-colonized individual [91]. It
has also been observed that pediatric patients have
higher persistent S. aureus carriage when compared to
adults [90].

Active MRSA screening or surveillance is a contro-
versial topic. This debate is outside the scope of this
chapter, and the reader is directed to a number of
references that discuss the advantages and disadvan-
tages of implementing an active surveillance program
[64,83,85,91�100].

SHEA and IDSA provided a guidance document in
2014 that describes a basic framework of an active sur-
veillance program for MRSA [3]. Depending on a myr-
iad of institutional factors, culture or PCR may be the
method of choice for screening patients. PCR does
have the advantage of greater sensitivity and specific-
ity, and also a shorter turnaround time. Being able to
get a quicker result out to the healthcare staff/infec-
tion control allows them to implement infection con-
trol precautions as appropriate in a timelier manner
versus waiting for culture results. Several studies
compared the utility of culture-based methods versus
molecular methods, and how these methods best sup-
port an active screening program [3,96�98,101�108].
It is important to recognize that MRSA DNA detected
using a molecular assay from an individual could
originate dead bacteria and might produce a clinical
false positive despite the true presence of MRSA
nucleic acid. It has also been shown that persons colo-
nized with MRSA can be intermittent or persistent
colonizers [90]. Thus, a person determined to be

negative for MRSA colonization may be an intermit-
tent carrier. This is a preanalytical factor to take into
account when deciding how often to perform repeat
testing on an individual if the institution develops an
active surveillance program. Regardless of the meth-
odology chosen, there should be a basic understand-
ing of the molecular screening and its impact to
infection control, hospital/laboratory finances, and
HAI prevention.

CLOSTRIDIUM DIFFICILE

Clostridium difficile is an anaerobic, gram-positive,
spore-forming bacterium that exists in the environment
and in the gastrointestinal tract of humans and ani-
mals. This bacterium has long been recognized as the
primary infectious cause of pseudomembranous colitis
(PMC) and the principle cause of infectious diarrhea in
hospitalized patients [109]. However, the manifesta-
tions of disease can vary from asymptomatic carrier to
PMC, toxic megacolon, and death [110]. Infections out-
side the colon are rare. Clinical disease is mediated by
the production of toxin: toxin A and toxin B, tcdA and
tcdB, respectively [111]. Approximately 6�12.5% of
C. difficile strains also produce a binary toxin (also
called C. difficile transferase) [112].

A 2015 study by Lessa et al. showed that in the
United States, C. difficile was responsible for approxi-
mately 500,000 infections and was associated with
29,000 deaths during 2011 [113]. The prevalence of hos-
pital discharges with CDI (C. difficile infection) listed
as a diagnosis increased from 3.82 per 1000 discharges
in 2000 to 8.75 per 1000 discharges in 2008 [114].
Increases in disease incidence have been observed
outside the United States as well [115,116]. Among
pediatric patients, the incidence of CDI-related hospi-
talizations increased from 0.724 per 1000 hospital days
in 1997 to 1.28 per 1000 hospital days in 2006 [117].
The highest incidence was observed in those 1�4 years
of age and the lowest incidence occurring in infants
less than 1 year of age.

Infected patients may experience a more severe clin-
ical course that is caused by the more virulent C. diffi-
cile strain BI/NAP1/O27 [116,118]. This hypervirulent
strain emerged as a result of several factors: poly-
morphisms in the down-regulatory gene (tcdC), pres-
ence of a gene encoding binary toxin (ctdA and ctdB),
high-level fluoroquinolone resistance, and polymorph-
isms in the tcdB that could result in improved toxin
binding [117]. It is now also recognized that this patho-
gen can be acquired from the community and is not
exclusively a nosocomial pathogen. An ad hoc C. diffi-
cile surveillance group has developed three categories
of infection related to the time of admission and
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discharge from the hospital/healthcare facility: (1) hos-
pital onset (HO), (2) community-onset healthcare facil-
ity associated (CO-HCFA), and (3) CA [119].

C. DIFFICILE MOLECULAR TESTING
AND CLINICAL UTILITY

The laboratory diagnosis of C. difficile is traditionally
based on the detection of the toxin produced because
nontoxin producing strains of C. difficile may be part of
the normal gastrointestinal flora. The cytotoxicity neu-
tralization assay (CCNA) was one of the first labora-
tory tests developed and is considered the gold
standard. The diarrheal stool from an individual
patient is processed and the stool filtrate is applied
onto a monolayer of a particular cell line (Vero,
McCoy, Hep2, human fibroblasts cell lines have been
used). The cultures are incubated for 24�48 h and the
cell lines are monitored for cytopathic effects (CPEs)
induced by the presence of toxin. If CPE is observed,
then a neutralization assay is performed to ensure that
the CPE was mediated by the toxin and not a false-
reacting substance. Toxigenic culture relies on the
growth of C. difficile organism, and any culture growth
is tested for the production of toxin.

The introduction of enzyme immunoassays (EIAs)
for the detection of C. difficile toxin was widely
accepted due to shorter turnaround time, elimination
of the burden of maintaining cell lines, and higher

throughput capabilities compared to CCNA and toxi-
genic culture. However, the EIAs suffer from a rela-
tively low analytical sensitivity when used as the sole
test. The subsequent generation of EIAs developed
added a second analyte to be detected (glutamate
dehydrogenase (GDH) antigen) along with testing for
the presence of toxin in order to increase the sensitivity
of the early-generation EIAs and improve the negative
predictive value [120�124]. See Table 14.5 listing the
methodologies available for C. difficile (molecular and
nonmolecular).

Newer molecular-based methods offer comparable
testing time, ease of technically performing the assays,
and relatively better performance compared to EIA
and culture-based assays [125�131]. Table 14.6 lists
FDA-approved molecular assays available for C. diffi-
cile. The primary gene target is tcdB. However, some
commercial assays target both the tcdB and tcdA genes.
There are studies showing that clinical isolates of
toxin-producing C. difficile express either tcdB or
tcdB1 tcdA, while strains that express tcdA only are
rare [132]. Some assays also claim to detect the hyper-
virulent NAP1 strain by targeting the binary toxin
(tcdC). Since there are nontoxin producing strains of
C. difficile the toxin genes are the preferred gene tar-
gets. The strain type may factor into the performance
of the molecular assays. Tenover et al. showed differ-
ences in the performance of molecular and EIA based
with respect to the O27 (NAP1 hypervirulent strain)
and non-O27 strains [133].

TABLE 14.5 Diagnostics Test for C. difficile

Diagnostic test Advantages Disadvantages

Cell culture cytotoxicity neutralization
assay (CCCNA)

Good sensitivity 2-day TAT

Requires cell culture capability

Toxigenic culture Excellent sensitivity Requires second-line test for toxin detection 3- to 4-day TAT

Good specificity Requires expertise in culturing C. difficile

Glutamate dehydrogenase (GDH) Inexpensive Very poor specificity

Rapid Requires second-line test for toxin detection

Good sensitivity

Good negative predictive value

Enzyme immunoassay (EIA) for toxin Inexpensive Poor sensitivity

Rapid Good specificity

GDH1EIA Inexpensive Poor sensitivity

Rapid Good specificity

Nucleic acid amplification/molecular Excellent sensitivity Relatively more expensive

Excellent specificity

Rapid

170 14. MOLECULAR METHODS FOR HEALTHCARE-ACQUIRED INFECTIONS

II. MOLECULAR TESTING IN INFECTIOUS DISEASE



Questions remain regarding whether an algorithmic
process consisting of EIA 1 nucleic acid amplification
test (NAAT) [121,134�138] or an NAAT-only test
[127,139,140] provides better clinical benefit for
patients. The clinical benefit is dependent upon a myr-
iad of factors, one of which is the prevalence of C. diffi-
cile disease [141]. There are operational factors such as
the total cost to the laboratory (instrumentation,
reagents, and technical labor) to do the testing, getting
results out in a timely manner, and having the labora-
tory staff expertise to perform molecular testing. These
are important things to consider when a laboratory is
considering adopting or changing the existing algo-
rithm for C. difficile.

An important preanalytical factor is that only sam-
ples of diarrheal/liquid stool should be accepted, with
the exception of a patient with an ileus where a swab
may be acceptable. Normally, swabs of stool are not
preferred and are rejected in most, if not all, clinical
laboratories. There is very limited clinical utility when
testing formed/solid stool from a patient that is not
symptomatic for C. difficile disease. It is well estab-
lished that individuals can be asymptomatically colo-
nized with this bacteria and positive results confound
clinical interpretation by the healthcare staff
[110,112,115,142,143]. However, there is the possibility
that the diarrheal stool is positive for C. difficile toxin

and/or PCR, yet the cause of the gastrointestinal ill-
ness was due to some other cause/pathogen.

There is limited utility in testing neonates (,1 year
old) for C. difficile. Interestingly, it has been observed
that neonates in a special care nursery can be asymp-
tomatically colonized with C. difficile, and potentially
serve as a reservoir for transmission in the hospital set-
ting [144,145]. It has been hypothesized that C. difficile
cannot cause clinical disease in infants less than 1 year
old because the receptor for toxin binding is not yet
expressed [146]. Therefore, a positive C. difficile result
in an infant has the potential to lead to unnecessary
treatment and other causes of the patient’s diarrhea
should be investigated and/or ruled-out.

Surawicz et al. published guidelines on preanalyti-
cal and analytical aspects of testing [147]. These guide-
lines basically state that only diarrheal stools should
be tested. These investigators also found NAAT to be
superior to the toxin A/B EIA testing, but that algo-
rithmic testing using a combination of EIA testing
(GDH 1 Tox A/B) can be implemented with the
caveat that the sensitivity is lower than the NAAT-
only testing. Additionally, repeat testing is discour-
aged, especially if the test is being ordered as a test of
cure. Testing for C. difficile “3 3” (ie, three consecutive
sample collections for three separate tests) is a com-
mon order for microbiology laboratories, most likely

TABLE 14.6 Molecular Diagnostic Tests for C. difficile

Assay name Vendor Gene target Method

ICEPlex C. difficile kit PrimeraDx tcdB PCR with capillary electrophoresis

IMDx C. difficile for
Abbott m2000

Intelligent Medical Devices,
Inc.

tcdB and tcdA Real-time PCR

Quidel Molecular Direct Quidel Corp tcdB and tcdA Real-time PCR

Verigene C. difficile test Nanosphere, Inc tcdB, tcdA, tcdC and presumptive
ID of O27/NAP1/BI strain

Real-time PCR/nanoparticle
hybridization

Portrait Toxigenic C. difficile
Assay

Great Basin Scientific, Inc. tcdB Helicase-dependent amplification/
microarray detection

Simplexa C. difficile Universal
Direct Assay

Focus Diagnostics, Inc. tcdB Real-time PCR

Xpert C. difficile/Epi Cepheid tcdB, binary toxin gene (CDT), tcdC,
also gives presumptive ID of O27/
NAP1/BI strain

Real-time PCR

Xpert C. difficile Cepheid tcdB Real-time PCR

Illumigene C difficile Meridian Bioscience, Inc. tcdB, tcdA Loop-mediated isothermal
amplification (LAMP)

ProGastro Cd Prodesse/Hologic tcdB Real-time PCR

BD Max Cdiff BD Diagnostics tcdB Real-time PCR

BD GeneOhm C diff BD Diagnostics/GeneOhm tcdB Real-time PCR

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm#microbial (Web page updated January 27, 2015).
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due to the lack of confidence clinicians may have in
the traditional EIA testing. Aichinger et al. showed
that repeat testing for C. difficile after an initial negative
result only increases the diagnostic yield by 1.9% and
1.7%, respectively, for repeat EIA and molecular test-
ing [148]. Other studies have shown similar results
indicating the lack of clinical utility for repeat testing
[132,149�152].

Similar to the multiplex molecular panels for
blood culture pathogen identification, C. difficile is
part of two FDA-approved panels from Luminex
Corp. and BioFire Diagnostics, Inc. Taking the
approach of a one-and-done model these panels
include a number of bacterial, viral, and parasitic
pathogens that can be performed from a single diar-
rheal stool sample. The reader is directed to the
respective vendor websites (https://www.luminex-
corp.com/clinical/infectious-disease/gastrointestinal-
pathogen-panel/ and http://filmarray.com/the-panels/
) to see up-to-date lists of pathogens that are represented
on their respective gastrointestinal pathogen panels.

C. DIFFICILE MOLECULAR TYPING
AND CLINICAL UTILITY

Molecular typing is an important infection control
tool to monitor the prevalence of certain strains within
a healthcare institution or to investigate if a cluster of
infections are unrelated or part of an outbreak
[110,153]. These typing assays are not normally per-
formed in the clinical laboratory because culture of
this bacterium is required and are more likely to be
performed in a public health or research laboratory
setting. See Table 14.7 for some of the methods used

for determining the genetic fingerprint of C. difficile
strains.

PFGE is the most common method used in North
America while PCR ribotyping is the most common
method used in Europe [154]. PCR ribotyping analyzes
the variability of the intergenic spacer region which is
in between the 16S and 23S ribosomal RNA (rRNA).
Primers are designed that target the conserved regions
of the 16S and 23S rDNAs and variable PCR amplicons
are produced that are separated by agarose gel
electrophoresis. The different banding patterns
observed for the C. difficile isolates are called PCR ribo-
types. Several studies have compared a number of these
methodologies from Table 14.7 and showed varying
levels of comparability, advantages, and disadvantages
[154�162]. It is important that despite the use of various
molecular typing methods, that there is some level of
standardization so that strains can be accurately com-
pared from a more global perspective. Huber et al.
noted that PCR ribotyping is becoming the method of
choice and a move toward standardizing the protocol
and interpretation is urgently needed [163].
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[43] Desoubeaux G, Bailly É, Le Brun C, et al. Prospective assess-
ment of FilmArray technology for the rapid identification of
yeast isolated from blood cultures. J Microbiol Methods
2014;106:119�22.

[44] Blaschke AJ, Heyrend C, Byington CL, et al. Rapid identifica-
tion of pathogens from positive blood cultures by multiplex
polymerase chain reaction using the FilmArray system. Diagn
Microbiol Infect Dis 2012;74(4):349�55.

[45] Lowy FD. Antimicrobial resistance: the example of
Staphylococcus aureus. J Clin Invest 2003;111:1265�73.

[46] Ito T, Hiramatsu K, Oliveira DC, et al. Classification of staphy-
lococcal cassette chromosome mec(SCCmec): guidelines for

173REFERENCES

II. MOLECULAR TESTING IN INFECTIOUS DISEASE

http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref8
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref8
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref8
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref21
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref21
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref21
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref21
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref37
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref37
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref37
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref37
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref38
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref38
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref38
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref42
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref42
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref42
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref43
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref43


reporting novel SCCmec elements. Antimicrob Agents
Chemother 2009;53:4961�7.

[47] Deurenberg R, Stobberingh E. The evolution of Staphylococcus
aureus. Infect Genet Evol 2008;8:747�63.

[48] Ito T, Hiramatsu K, Oliveira DC, et al. International Working
Group on the staphylococcal cassette chromosome elements,
,http://www.sccmec.org/Pages/SCC_ClassificationEN.html.
[accessed 24.06.15].

[49] Murray PR. Molecular diagnosis of methicillin-resistant
Staphylococcus aureus colonization. J Clin Microbiol 2013;51:4284.

[50] Stamper PD, Louie L, Wong H, Simor AE, Farley JE, Carroll
KC. Genotypic and phenotypic characterization of methicillin-
susceptible Staphylococcus aureus isolates misidentified as
methicillin-resistant Staphylococcus aureus by the BD GeneOhm
MRSA assay. J Clin Microbiol 2011;49:1240�4.

[51] Blanc DS, Basset P, Nahimana-Tessemo I, Jaton K, Greub G,
Zanetti G. High proportion of wrongly identified methicillin-
resistant Staphylococcus aureus carriers by use of a rapid com-
mercial PCR assay due to presence of staphylococcal cassette
chromosome element lacking the mecA gene. J Clin Microbiol
2011;49:722�4.

[52] Mehndiratta P, Bhalla P. Typing of methicillin resistant
Staphylococcus aureus: a technical review. Indian J Med Microbiol
2012;30:16�23.

[53] Struelens MJ, Deplano A, Godard C, Maes N, Serruys E.
Epidemiologic typing and delineation of genetic relatedness of
methicillin-resistant Staphylococcus aureus by macrorestriction
analysis of genomic DNA by using pulsed-field gel electropho-
resis. J Clin Microbiol 1992;30:2599�605.

[54] Tenover FC, Vaughn RR, Mcdougal LK, Fosheim GE, Mcgowan
JE. Multiple-locus variable-number tandem-repeat assay analy-
sis of methicillin-resistant Staphylococcus aureus strains. J Clin
Microbiol 2007;45:2215�19.

[55] Szabo J. Molecular methods in epidemiology of methicillin
resistant Staphylococcus aureus (MRSA): advantages, disadvan-
tages of different techniques. J Med Microbiol Diagn 2014;3:147.

[56] He Y, Xie Y, Reed S. Pulsed-field gel electrophoresis typing of
Staphylococcus aureus isolates. Methods Mol Biol 2014;1085:103�11.

[57] Strandén A, Frei R, Widmer AF. Molecular typing of methicillin-
resistant Staphylococcus aureus: can PCR replace pulsed-field gel
electrophoresis? J Clin Microbiol 2003;41:3181�6.

[58] Chung M, Lencastre H, de, Matthews P, et al. Molecular typing
of MRSA by pulsed-field gel electrophoresis: comparison of
results obtained in a multilaboratory effort using identical pro-
tocols and MRSA strains. Microb Drug Resist 2000;6:189�98.

[59] Chung S, Chung S, Yi J, et al. Comparison of modified
multiple-locus variable-number tandem-repeat fingerprinting
with pulsed-field gel electrophoresis for typing clinical isolates
of Staphylococcus aureus. Ann Lab Med 2012;32:50�6.
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[161] Tenover FC, Åkerlund T, Gerding DN, et al. Comparison of
strain typing results for Clostridium difficile isolates from North
America. J Clin Microbiol 2011;49:1831�7.

[162] Hardy K, Manzoor S, Marriott C, et al. Utilizing rapid
multiple-locus variable-number tandem-repeat analysis typing
to aid control of hospital-acquired Clostridium difficile infection:
a multicenter study. J Clin Microbiol 2012;50:3244�8.

[163] Huber CA, Foster NF, Riley TV, Paterson DL. Challenges for
standardization of Clostridium difficile typing methods. J Clin
Microbiol 2013;51:2810�14.

177REFERENCES

II. MOLECULAR TESTING IN INFECTIOUS DISEASE

http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref142
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref142
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref142
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref143
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref143
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref143
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref143
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref144
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref144
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref144
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref144
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref144
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref145
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref145
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref145
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref145
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref146
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref146
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref146
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref146
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref147
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref147
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref147
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref147
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref148
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref148
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref148
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref148
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref148
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref148
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref148
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref149
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref149
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref149
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref149
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref150
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref150
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref150
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref150
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref150
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref151
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref151
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref151
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref151
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref151
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref151
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref152
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref152
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref152
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref152
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref152
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref152
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref153
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref153
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref153
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref153
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref153
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref153
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref154
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref154
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref154
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref154
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref155
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref155
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref155
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref155
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref155
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref156
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref156
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref156
http://refhub.elsevier.com/B978-0-12-800886-7.00014-5/sbref156


C H A P T E R

15

Molecular Testing in Emerging
Infectious Diseases

J. Dong1, N. Ismail2 and D.H. Walker1
1Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States 2Department of

Pathology, University of Pittsburgh, Pittsburgh, PA, United States

BACKGROUND AND CATALOGUE OF
EMERGING INFECTIOUS AGENTS

By the late 1960s there was a widespread opinion
that the era of infectious diseases was finished and that
vaccines and antibiotics had controlled microbial patho-
gens. Indeed, it was commonly believed that we had
discovered the important agents of infections and that
there was little left to do in this scientific field. “. . .The
war on infectious diseases is over and we have won. . .”
was an often repeated conclusion. Yet in the quarter of
a century between 1967 and 1992 more than 30 previ-
ously unrecognized pathogens were discovered as the
etiologic agents of human infectious diseases
(Table 15.1). Some of the diseases were well character-
ized, but the causes had been unknown. Other novel
syndromes were recognized and the etiologic agents
identified including acquired immunodeficiency syn-
drome (AIDS) and human immunodeficiency virus
(HIV). Nevertheless, the general belief was that infec-
tious diseases were less important than cardiovascular
diseases and cancer, and they were not favored for
research support and public health attention.

In 1992, the concept of emerging infectious diseases
was defined and brought to the attention of physicians
and scientists by a very widely distributed and read
publication from the Institute of Medicine of the
National Academies of Sciences, Emerging Infections:
Microbial Threats to Health in the United States. The
emergence of at least 16 novel infectious agents over
the following 12 years (Table 15.2) emphasized that
this phenomenon would be a continued series of
events. The causes of awareness of the presence of an

unknown pathogen are the abrupt onset of a cluster of
severe illness (eg, Legionella pneumonia at a convention
of the American Legion), recognition of distinct gross
or microscopic pathologic lesions (eg, pseudomembra-
nous colitis caused by Clostridium difficile), and clinical
laboratory microscopy (eg, intramonocytic inclusions
of Ehrlichia chaffeensis in patients with human monocy-
totropic ehrlichiosis). In numerous other instances
application of an advanced technologic method identi-
fied the etiology of a well-defined syndrome (eg, noro-
viruses in Norwalk diarrheal illness; an outbreak had
occurred and samples retained from years earlier).

DISCOVERY OF EMERGING
INFECTIOUS AGENTS USING

MOLECULAR METHODS

Many methods have been employed for the initial
detection and identification of novel emerging patho-
gens including microscopy, bacterial culture, cell cul-
ture, animal inoculation, electron microscopy, archaic
serologic tests, cross-reactive serologic tests, serendipi-
tous serologic testing, and immunohistochemistry.
However, currently molecular methods including probe
hybridization, polymerase chain reaction (PCR) that
amplifies the target or the signal, and nucleic acid
sequencing are the most prominent methods for detec-
tion and characterization of newly emerging pathogens,
both for discovering the agent and for determining that
it is truly novel [1�11].

An example of the application of molecular meth-
ods to the identification of previously unidentified
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TABLE 15.1 Chronological List of Emerged Infectious Agents/Diseases 1967�1992

Year Agent Agent characteristics Disease CDC molecular test name (test code)a
FDA-approved/cleared molecular test
(manufacturer)b Reference

1967 Marburg virus Enveloped, single-stranded,
negative sense
RNA filovirus

Hemorrhagic fever Marburg Identification (CDC-10349) NA 1�5

1969 Lassa virus Enveloped, single-stranded,
bisegmented, ambisense
RNA arenavirus

Hemorrhagic fever Lassa Fever Identification (CDC-10343) NA 1,6�8

1972 Norovirus Nonenveloped, single-
stranded RNA, viruses in
the Caliciviridae family

Gastroenteritis Norovirus Molecular Detection (CDC-
10357), Norovirus Genotyping (CDC-
10356), Norovirus Molecular Detection
and Genotyping (CDC-10358)

NA 9

1973 Rotavirus Double-stranded RNA
virus. Five groups (A, B, C,
D, and E); group A is the
main human pathogen

Gastroenteritis Rotavirus Molecular Detection and
Genotyping (CDC-10410), Rotavirus
Genotyping (CDC-10409)

NA 10�12

1975 Parvovirus B19 Nonenveloped, single-
stranded DNA virus

Fifth disease or
erythema infectiosum

Parvovirus B19 Molecular Detection
(CDC-10363)

NA 13�15

1976 Vibrio vulnificus Gram-negative, motile,
curved, rod-shaped
bacterium of the
genus Vibrio

Vomiting, diarrhea, abdominal
pain, and a blistering, cellulitis
or septicemia

Vibrio, Aeromonas, and Related
Organisms Study (CDC-10121),
Vibrio, Aeromonas, and Related
Organisms Identification (CDC-10120),
Vibrio Subtyping (CDC-10122)

NA 16,17

1976 Cryptosporidium
parvum

A protozoan Cryptosporidiosis with
symptoms including acute,
watery, and nonbloody diarrhea

Cryptosporidium Special Study
(CDC-10491)

NA 18�20

1977 Ebola virus Enveloped, linear, single-
stranded, negative-sense
RNA filovirus

Hemorrhagic fever Ebola Identification (CDC-10309) FilmArray Biothreat-E test. Emergency
Use Authorization (EUA) (Idaho
Technology, Inc.)

2,5

1977 Clostridium
difficile

A gram-positive bacterium Colitis, diarrhea Clostridium difficile Identification
(CDC-10228),
Clostridium difficile Outbreak Strain
Typing (CDC-10229)

ICEPlex C. difficile Kit (PrimeraDx),
IMDx C. difficile for Abbott m2000
(Intelligent Medical Devices, Inc.),
BD Diagnostics BD MAX Cdiff Assay,
(GeneOhm Sciences Canada Inc.),
Quidel Molecular Direct C. difficile
Assay, (Quidel Corporation),
Verigene C. difficile Nucleic acid Test
(Nanosphere, Inc.),
Portrait Toxigenic C. difficile Assay
(Great Basin Scientific, Inc.),
Simplexa C. difficile Universal Direct
Assay (Focus Diagnostics, Inc.),
Xpert C. difficile/Epi (Cepheid),

21�23



Illumigene C. difficile DNA
Amplification Assay (Meridian
Bioscience, Inc.), llumigene C. difficile
Assay (Meridian Bioscience, Inc.),
Xpert C. difficile (Cepheid),
ProGastro Cd Assay (Prodesse, Inc.),
BD GeneOhm Cdiff Assay (BD
Diagnostics/GeneOhm Sciences, Inc.)

1977 Legionella
pneumophila

A thin, aerobic,
pleomorphic, flagellated,
non-spore forming, gram-
negative bacterium of the
genus Legionella

Legionnaires’ disease Legionella species Identification and
Typing (CDC-10159),
Legionella species Molecular Detection
(CDC-10160),
Legionella species Study (CDC-10161)

NA 24,25

1977 Hantaan virus Single-stranded, enveloped,
negative sense RNA viruses
in the Bunyaviridae family

Hantavirus hemorrhagic fever
with renal syndrome (HFRS)
and hantavirus pulmonary
syndrome (HPS)

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 26,27

1977 Hepatitis delta
virus

A small circular enveloped
RNA virus

Superimposed on conditions of
hepatitis with HBV

Hepatitis D Serology, NAT, and
Genotyping (CDC-10328)

NA 28,29

1977 Campylobacter
sp. (or jejuni)

Curved, helical-shaped,
non-spore forming, gram-
negative, and
microaerophilic bacteria

Campylobacteriosis, Guillain-
Barré syndrome (GBS)

Campylobacter and Helicobacter Study
(CDC-10125),
Campylobacter, Helicobacter, and Related
Organisms Identification (CDC-10126),
Campylobacter, Helicobacter, and Related
Organisms Identification and Subtyping
(CDC-10127)

NA 30,31

1979 Cyclospora
cayetanensis

An apicomplexan, cyst-
forming coccidian
protozoan

Cyclosporiasis, gastroenteritis Cyclospora Molecular Detection
(CDC-10477)

NA 32,33

1980 HTLV-1 A retrovirus of the human
T-lymphotropic virus
(HTLV) family

Adult T-cell lymphoma (ATL),
HTLV-I-associated myelopathy,
uveitis, Strongyloides stercoralis
hyper-infection

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 34�37

1981 Staphylococcus
aureus toxin

Exotoxins secreted by S.
aureus that are compact,
ellipsoidal proteins sharing
a characteristic folding
pattern with superantigen

Toxic shock syndrome Staphylococcal Toxic Shock Syndrome
Toxin (TSST-1) (CDC-10426)

NA 38�40

1982 Borrelia
burgdorferi

A bacterial species of the
spirochete class of the
genus Borrelia

Lyme disease Borrelia Culture and Identification
(CDC-10299),
Borrelia Special Study (CDC-10300)

NA 41,42

(Continued)



TABLE 15.1 (Continued)

Year Agent Agent characteristics Disease CDC molecular test name (test code)a
FDA-approved/cleared molecular test
(manufacturer)b Reference

1982 Escherichia coli
O157:H7

An enterohemorrhagic
serotype of the bacterium E.
coli

Hemolytic-uremic syndrome
(HUS)

Escherichia and Shigella Identification,
Serotyping, and Virulence Profiling
(CDC-10114), Bacterial Select Agent
Identification and AST (CDC-10224)

NA 43,44

1983 HIV-1 A lentivirus (a subgroup of
retrovirus)

Acquired immune deficiency
syndrome (AIDS)

HIV Molecular Surveillance Study
(International Only) (CDC-10332),
HIV-1 Drug Resistance Special Study
(International Only) (CDC-10334),
HIV-1 Genotype Drug Resistance
(International Only) (CDC-10335),
HIV-1 Nucleic Acid Amplification
(Qualitative) (CDC-10275),
HIV-1 Nucleic Acid Amplification
(Viral Load) (CDC-10276),
HIV-1 PCR (International Only)
Qualitative (CDC-10336),
HIV-1 PCR (International Only)
Quantitative Viral Load (CDC-10337)

Abbott RealTime HIV-1 Assay (Abbott
Molecular, Inc.),
COBAS AmpliPrep/COBAS TaqMan
HIV-1 Test (Roche Molecular Systems),
APTIMA HIV-1 RNA Qualitative Assay
(Gen-Probe, Inc.),
ViroSeq HIV-1 Genotyping System
(Abbott Molecular, Inc.),
TRUGENEHIV-1 genotyping Kit and
OpenGeneDNA Sequencing System
(Siemens Healthcare Diagnostics)

45,46

1983 Helicobacter
pylori

A gram-negative,
microaerophilic bacterium

Peptic ulcer, MALT lymphoma,
gastric cancer

Helicobacter pylori Special Study (CDC-
10117)

NA 47,48

1984 Haemophilus
influenzae
biogroup
aegyptius

Phylogenetically the same
as H. influenzae, a gram-
negative, coccobacillary,
facultatively anaerobic
bacterium belonging to the
Pasteurellaceae family

Acute and often purulent
conjunctivitis (pink eye)

Haemophilus influenzae Identification
and Serotyping (CDC-10221),
Haemophilus influenzae Study (CDC-
10222),
Haemophilus species (Not H. influenzae/
H. ducreyi) ID (DC-10141)

NA 49,50

1985 Enterocytozoon
bieneusi

A unicellular, obligate
intracellular eukaryote, a
species of the order
microsporida

Diarrhea Microsporidia Molecular Identification
(CDC-10481),
Enteric Isolation—Primary Specimen
(CDC-10106)

NA 20,51

1986 Chlamydophila
pneumoniae

An obligate intracellular
bacterium in the species of
Chlamydophila

Pneumonia Chlamydophila pneumoniae Molecular
Detection (CDC-10152)

FilmArray Respiratory Panel (RP)
(Idaho Technology, Inc.)

52,53

1988 Human
herpesvirus 6

Double-stranded DNA
virus within the
betaherpesvirinae
subfamily and of the genus
Roseolovirus

Neuroinflammatory diseases
such as multiple sclerosis,
exanthem subitum (also known
as roseola infantum or sixth
disease), and encephalitis, bone
marrow suppression and
pneumonitis in transplant
recipients

Human Herpes Virus 6 (HHV6)
Detection and Subtyping (CDC-10266)

NA 54,55



1989 Rickettsia
japonica

A genus of nonmotile,
gram-negative, non-spore
forming, highly
pleomorphic bacteria

Japanese spotted fever Rickettsia Molecular Detection (CDC-
10402),
Rickettsia Special Study (CDC-10405)

NA 56,57

1989 Hepatitis C
virus

A small, enveloped,
positive-sense single-
stranded RNA virus of the
family Flaviviridae

Hepatitis C Hepatitis C Serology, NAT and
Genotyping (CDC-10327)

Abbott RealTime HCV Genotype II
(Abbott Molecular, Inc.), Abbott
Realtime HCV Assay (Abbott
Molecular, Inc.), COBAS AmpliPrep/
COBAS TaqMan HCV test (Roche
Molecular Systems), Versant HCV 3.0
Assay (bDNA) (Siemens Healthcare
Diagnostics), Versant HCV RNA
Qualitative Assay (Gen-Probe, Inc.),
COBAS AMPLICOR Hepatitis C Virus
(HCV) Test (Roche Molecular Systems,
Inc.), AMPLICOR HCV Test, v2.0
(Roche Molecular Systems, Inc.)

58,59

1990 Hepatitis E
virus

A single-stranded positive-
sense RNA, nonenveloped

Hepatitis Hepatitis E Serology, NAT and
Genotyping (CDC-10329)

NA 60,61

1990 Balamuthia
mandrillaris

A free-living leptomyxid
amoeba

Amoebiasis including
granulomatous amoebic
encephalitis (GAE)

Balamuthia Molecular Detection
(CDC-10474),
Ameba Identification (Acanthamoeba,
Balamuthia, Naegleria) (CDC-10286)

NA 62,63

1990 Human
herpesvirus 7

A member of
Betaherpesviridae, a
subfamily of the
Herpesviridae

Exanthema subitum, acute
febrile diseases

Human Herpes Virus 7 (HHV7)
Detection (CDC-10267)

NA 64,65

1991 Guanarito virus Enveloped, single-stranded,
bisegmented RNA viruses
with ambisense genomes

Venezuelan hemorrhagic fever Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 66,67

1991 Encephalitozoon
hellem

A unicellular, intracellular
microsporidian species

Keratoconjunctivitis, infection of
respiratory and genitourinary
tract, and disseminated infection

Microsporidia Molecular Identification
(CDC-10481)

NA 68,69

1991 Ehrlichia
chaffeensis

An obligately intracellular
gram-negative rickettsial
bacterium

Human monocytotropic
ehrlichiosis

Anaplasma and Ehrlichia Molecular
Detection (CDC-10290),
Anaplasma and Ehrlichia Special Study
(CDC-10291)

NA 70�72

aCDC molecular test name (test code) are available from the Center for Disease Control and Prevention Test Directory, http://www.cdc.gov/laboratory/specimen-submission/list.html#M (last accessed 12/19/2014).
bFDA-approved/cleared molecular test (manufacturer) are available from the US Food and Drug Administration at http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm (last
accessed 12/19/2014).

NA, not available.
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TABLE 15.2 Chronological List of Emerged Infectious Agents/Diseases Since 1992

Year Agent Agent characteristics Disease CDC molecular test name (test code)a
FDA-approved/cleared molecular

test (manufacturer)b Reference

1992 Barmah Forest
virus

An Alphavirus (small, spherical,
enveloped viruses with a genome of
a single-strand positive-sense RNA)

Epidemic
polyarthritis (fever,
malaise, rash, joint
pain, and muscle
tenderness)

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 1,2

1992 Vibrio cholerae
O139

A gram-negative, comma-shaped
bacterium

Watery diarrhea
and vomiting

Vibrio cholerae Identification (CDC-
10119),
Vibrio Subtyping (CDC-10122),
Vibrio, Aeromonas, and Related
Organisms Identification (CDC-10120),
Vibrio, Aeromonas, and Related
Organisms Study (CDC-10121)

NA 3,4

1992 Bartonella henselae A proteobacterium Cat-scratch disease,
subacute regional
lymphadenitis

Bartonella Molecular Identification
(CDC-10295),
Bartonella Special Study (CDC-10297)

NA 5,6

1992 Rickettsia honei Nonmotile, obligately intracellular,
gram-negative, non-spore forming
bacteria

Flinders Island
spotted fever

Rickettsia Molecular Detection (CDC-
10402),
Rickettsia Special Study (CDC-10405)

NA 7�9

1992 Sabia virus An arenavirus (round, pleomorphic,
and enveloped virus containing a
beaded nucleocapsid with two
single-stranded RNA segments)

Hemorrhagic fever Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 10,11

1993 Encephalitozoon
intestinalis

A parasite Diarrhea Microsporidia Molecular Identification
(CDC-10481),
Enteric Isolation—Primary Specimen
(CDC-10106)

NA 12,13

1993 Sin Nombre virus A single-stranded RNA negative-
strand virus

Hantavirus
cardiopulmonary
syndrome (HCPS)

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 14,15

1994 Human
herpesvirus 8

A double-stranded DNA virus Kaposi sarcoma Human Herpes Virus 8 (HHV8)
Detection (CDC-10268)

NA 16,17

1994 Anaplasma
phagocytophilum

An obligately intracellular gram-
negative bacterium

Human granulocytic
anaplasmosis

Anaplasma and Ehrlichia Molecular
Detection (CDC-10290),
Anaplasma and Ehrlichia Special Study
(CDC-10291)

NA 18,19

1994 Rickettsia felis Nonmotile, obligately intracellular,
gram-negative, non-spore forming
bacteria

Flea-borne spotted
fever

Rickettsia Molecular Detection (CDC-
10402),
Rickettsia Special Study (CDC-10405)

NA 7�9



1994 Rickettsia africae Nonmotile, obligately intracellular,
gram-negative, non-spore forming
bacteria

African tick bite
fever

Rickettsia Molecular Detection (CDC-
10402),
Rickettsia Special Study (CDC-10405)

NA 7�9

1995 Hendra virus Nonsegmented, single-stranded
negative-sense RNA

Edema and
hemorrhage of the
lungs, encephalitis

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 20,21

1995 Alkhumra virus Enveloped virus with monopartite,
linear, single-stranded RNA genomes

Tick-borne
hemorrhagic fever

Alkhumra Identification (CDC-10274) NA 22,23

1997 Rickettsia slovaca Nonmotile, obligately intracellular,
gram-negative, non-spore forming
bacteria

Tick-borne
lymphadenopathy

Rickettsia Molecular Detection (CDC-
10402),
Rickettsia Special Study (CDC-10405)

NA 7�9

1999 Nipah virus Nonsegmented, single-stranded
negative-sense RNA

Respiratory,
gastrointestinal and
neurologic
symptoms,
encephalitis

Nipah Virus Identification (CDC-10354) NA 20,24

1999 West Nile virus A positive-sense, single-stranded
RNA virus

West Nile fever,
encephalitis

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 25,26

1999 Ehrlichia ewingii An obligately intracellular gram-
negative rickettsial bacteriaum

Ehrlichiosis ewingii
infection

Anaplasma and Ehrlichia Molecular
Detection (CDC-10290),
Anaplasma and Ehrlichia Special Study
(CDC-10291)

NA 9,27,28

2001 Human
metapneumovirus

A negative-sense, single-stranded
RNA virus

Pneumonia Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

Quidel Molecular RSV1 hMPV Assay
(Quidel Corporation),
Quidel Molecular hMPV Assay (Quidel
Corporation),
Pro hMPV1 Assay (Prodesse, Inc.),
FilmArray Respiratory Panel (RP)
(Idaho Technology, Inc.),
xTAG Respiratory Viral Panel (RVP)
(Luminex Molecular Diagnostics, Inc.),
xTAG Respiratory Viral Panel Fast
(RVP FAST) (Luminex Molecular
Diagnostics, Inc.)
eSensor Respiratory Viral Panel (RVP)
(GenMark Diagnostic),
ProFlu1 Assay (Gen-Probe Prodesse,
Inc.)

29,30

(Continued)



TABLE 15.2 (Continued)

Year Agent Agent characteristics Disease CDC molecular test name (test code)a
FDA-approved/cleared molecular
test (manufacturer)b Reference

2003 Monkeypox virus A double-stranded DNA virus Febrile enanthem Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 31,32

2003 SARS coronavirus A positive-sense and single-stranded
RNA virus

Severe acute
respiratory
syndrome (SARS)

SARS Molecular Detection (CDC-10412) NA 33�38

2004 Rickettsia parkeri Nonmotile, obligately intracellular,
gram-negative, non-spore forming
bacteria

American tick bite
fever

Rickettsia Molecular Detection (CDC-
10402),
Rickettsia Special Study (CDC-10405)

NA 7�9

2005 Human
retroviruses
(HTLV-3/4)

Human retroviruses Unclear association
with disease

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 39,40

2005 Human bocavirus A linear, nonsegmented single-
stranded DNA viruses

Unclear association
with disease

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 41,42

2008 Plasmodium
knowlesi

A primate malaria parasite Malaria Malaria Surveillance (CDC-10235) NA 43,44

2008 Lujo virus A bisegmented RNA arenavirus Viral hemorrhagic
fever (VHF)

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 45,46

2008 Chapare virus Enveloped, single-stranded,
bisegmented, ambisense
RNA arenavirus

Hemorrhagic fever Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 47,48

2009 Ehrlichia
muris�like

An obligate intracellular gram-
negative rickettsial bacteriaum

Ehrlichiosis Anaplasma and Ehrlichia Molecular
Detection (CDC-10290),
Anaplasma and Ehrlichia Special Study
(CDC-10291),
Bacterial ID of Unknown Isolate (Not
Strict Anaerobe) (CDC-10145),
Bacterial ID from Clinical Specimen
(16S rRNA PCR) (CDC-10146)

NA 49,50

2009 Pandemic H1N1
influenza virus

A new influenza A subtype H1N1
RNA virus, having hemagglutinin
(HA) of the H1 subtype and
neuraminidase (NA) of the N1
subtype

Flu, pneumonia,
acute respiratory
distress syndrome
(ARDS)

Pathologic Evaluation of Influenza and
Other Viral Infections (CDC-10366)

Prodesse ProFAST Assat (Gen-Probe
Prodesse, Inc.),
Quidel Molecular Influenza A1 B
Assay (Quidel Corporation),
IMDx Flu A/B and RSV for Abbott
m2000 (Intelligent Medical Devices,
Inc.),
CDC Human Influenza Virus Real-Time
RT-PCR Diagnostic Panel (CDC),
Xpert Flu Assay (Cepheid),

51,52



Simplexa Flu A/B & RSV Direct (Focus
Diagnostics, Inc.),
FilmArray Respiratory Panel (RP)
(Idaho Technology, Inc.),
artus Infl A/B RG RT-PCR Kit (Qiagen
GmbH),
JBAIDS Influenza A Subtyping Kit (US
Army Medical Materiel Development
Activity),
JBAIDS Influenza A&B Detection Kit
(US Army Medical Materiel
Development Activity),
eSensor Respiratory Viral Panel (RVP)
(GenMark Diagnostic),
ProFlu1 Assay (Gen-Probe Prodesse,
Inc.),
Verigene Respiratory Virus Plus
Nucleic Acid Test (RV1 ) (Nanosphere,
Inc.),
Simplexa Flu A/B & RSV (Focus
Diagnostics, Inc.),
CDC Influenza 2009 A (H1N1) pdm
Real-Time RT-PCR Panel (CDC),
Simplexa Influenza A H1N1 (2009)
(Focus Diagnostics, Inc.)

2010 Candidatus
Neoehrlichia
mikurensis

An obligately intracellular gram-
negative rickettsial bacteriaum

Ehrlichiosis-like
syndrome

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 53,54

2011 Severe fever with
thrombocytopenia
virus

Negative-stranded, enveloped RNA
virus

Severe fever with
thrombocytopenia
syndrome (SFTS)

Pathologic Evaluation of Unexplained
Illness Due to Possible Infectious
Etiology (CDC-10372)

NA 55,56

2012 Middle East
respiratory
syndrome (MERS)
coronavirus
(MERS-CoV)

Positive-sense, single-stranded RNA
coronavirus

Middle East
respiratory
syndrome

MERS-CoV PCR 9 (CDC-10488) NA 57,58

2013 Novel H7N9
influenza virus
(China)

A new influenza A subtype H7N9
RNA virus, having HA of the H7
subtype and NA of the N9 subtype

Flu, pneumonia,
acute respiratory
distress syndrome
(ARDS)

Pathologic Evaluation of Influenza and
Other Viral Infections (CDC-10366)

NA 59

aCDC molecular test name (test code) are available from the Center for Disease Control and Prevention Test Directory, http://www.cdc.gov/laboratory/specimen-submission/list.html#M (last accessed 12/19/2014).
bFDA-approved/cleared molecular test (manufacturer) are available from the US Food and Drug Administration at http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm (last
accessed 12/19/2014).
NA, not available.

(Continued)
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agents of human infection is that of hepatitis C virus
(HCV). After the discoveries of hepatitis A and B
viruses, it was clear that the majority of cases of post-
transfusion hepatitis were due to a condition desig-
nated non-A non-B hepatitis. The disease was
transmissible to chimpanzees. In 1989, plasma from an
infected chimpanzee was pelleted by ultracentrifuga-
tion and nucleic acids extracted from the pellet. cDNA
was synthesized from both RNA and DNA with ran-
dom primers and reverse transcriptase. Screening
identified an RNA-encoded clone that expressed an
antigen that reacted with antibodies of infected sub-
jects. Eventually the complete genomes of all of the
genotypes of HCV were determined, and a novel spe-
cies most closely related to flaviviruses was established
[12,13].

Another dramatic emergence of a viral disease
occurred in 1993 in the Four Corners region of the
southwestern United States. A mysterious highly lethal
respiratory illness was investigated by a team from the
Centers for Disease Control and Prevention (CDC).
Extensive serologic screening of numerous antigens
revealed unexpected reactivity with antigen of hanta-
viruses from other parts of the world that caused renal
disease and hemorrhagic fever, and immunohis-
tochemistry detected hantaviral antigen in pulmonary
endothelium. Regions within the M segment of the
RNA hantaviral genomes encoding G2 protein that are
highly conserved were targeted by primers for nested
PCR after reverse transcriptase generation of cDNA.
Tissues from infected patients were analyzed, and the
PCR products sequenced revealing a novel hantavirus
subsequently named Sin Nombre virus. Viral
sequences were identified in other patients and in
Peromyscus maniculatus rodents, the reservoir. The story
of hantaviral pulmonary syndrome unfolded to reveal
related agents in many locations in North, Central, and
South America [14,15].

A novel coronavirus in association with cases of
severe acute respiratory syndrome (SARS-CoV)
emerged in southern China in late 2002 and spread to
37 countries in five continents with 8273 confirmed
cases and 775 deaths. No further cases have been
reported since July 2003 [16]. RT-PCR, cloning, and
sequencing contributed to identification of the SARS-
CoV within weeks of the first cases reported in 2003
[17�20] and enabled rapid development of effective
molecular diagnostic assays for routine clinical use
[21,22]. SARS-CoV is associated with high mortality.
Thus, timely and accurate diagnosis is needed to pre-
vent the spread of this contagious disease. SARS-CoV
spreads by respiratory secretions and airborne trans-
mission. Early in the illness, SARS cannot be distin-
guished from common respiratory infections based on
clinical symptoms [16]. During the SARS epidemic,

PCR-based molecular testing was helpful because of its
ability to rapidly screen for many viruses. After the
identification of SARS-CoV, specific RT-PCR and sero-
logical assays were developed, and RT-PCR detected
infection before the appearance of antibodies when the
risk of transmission is greatest [16�22].

The bacterial rrs gene encoding 16S rRNA was rec-
ognized as a valuable phylogenetic tool for discrimina-
tion and identification of bacterial species. David
Relman crafted this tool into an approach to identify
an unknown etiologic agent by PCR of the rrs gene
with primers that corresponded to genomic regions
that were conserved among eubacteria. Using this
approach, he amplified and determined bacterial DNA
sequences from bacillary angiomatosis lesions of
patients with AIDS. Comparison with a bacterial gene
database revealed that the DNA sequences matched
bacteria that are currently named Bartonella henselae
and B. quintana. Serendipitous testing of a patient who
also had been diagnosed with cat scratch disease led to
the recognition that B. henselae was also the long
sought-after etiology of this well-characterized disease
[23,24].

The same approach to discovery using rrs gene
amplification and DNA sequencing led to the identifi-
cation of what is currently classified as Anaplasma pha-
gocytophilum as the etiologic agent of tick-transmitted
human granulocytotropic anaplasmosis [25,26].
Subsequently Ehrlichia ewingii was recognized as
another human tick-borne pathogen among patients
evaluated in a molecular diagnostics laboratory who
tested negative for E. chaffeensis infection [27�29].
More recently, Bobbi Pritt at Mayo Clinic noted that
the melting curve of the DNA amplicons in a real-time
PCR assay for Anaplasmataceae differed from the
expected curves of known pathogens for a group of
patients in Wisconsin and Minnesota. Sequence analy-
sis identified another novel tick-borne pathogen tenta-
tively designated Ehrlichia muris-like agent [8,9].

The discovery of a novel bunyavirus that has caused
thousands of human infections with a case fatality rate
of 12% in 15 provinces in China relied upon a molecu-
lar approach to identify the viral agent. Xue-Jie Yu
investigated an outbreak in China that was thought to
be due to severe infection with A. phagocytophilum. He
noted that some of the clinical manifestations differed
from those of anaplasmosis. He observed cytopathic
effect in DH-82 cells inoculated with clinical samples
rather than the typical morulae formed by Anaplasma
species in infected cells. Ultrastructural analysis sug-
gested that the pathogen causing the outbreak was a
virus that belongs to the family of bunyaviruses. Based
on the known sequence of bunyaviruses, PCR primers
were designed, which yielded no amplicons.
Subsequently, he began sequencing the RNA of
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heavily infected cells and discarded the sequences of
the culture host species, Canis familiaris. This approach
enabled him to determine that he had recovered a
novel Phlebovirus of the family Bunyaviridae. He
accomplished this feat without the use of next-
generation sequencing (NGS) [10]. The application of
NGS now allows us to obtain an abundance of viral
gene sequences from infected host cells and the discov-
ery of further novel viral and bacterial agents.

MOLECULAR EPIDEMIOLOGICAL
STUDIES OF EMERGING INFECTIOUS

PATHOGENS

Molecular technologies have been critical in the ini-
tial discovery of agents of emerging infectious dis-
eases. These methods have also been routinely used
for further characterization of pathogen strains and
sequence variations. Molecular data are now widely
used in molecular epidemiological studies and phylo-
genetic analyses, and sequence comparisons have been
performed to facilitate the specific detection of geneti-
cally diverse strains/sequences and investigate the ori-
gin, transmission, distribution, biology, and diversity
of these pathogens [12,13,21,30�33], which are funda-
mentally important in the prevention and tracking of
disease outbreaks. Knowledge of sequence variations
is used in the development of accurate diagnostic
assays and for the design of effective treatment strate-
gies of diseases caused by these agents. Molecular epi-
demiological studies are critical for public health
surveillance [14,15,34�65]. We provide here examples
of how molecular tests contributed to public health
surveillance and patient care.

Influenza A

Seasonal and pandemic influenza A represents one
of the greatest threats to global health [66�68].
Continuing challenges in influenza include the spo-
radic human cases of highly pathogenic avian H5N1
influenza, emergence of pandemic H1N1 influenza in
2009 [62,69], and human infections with avian H7N9
influenza in 2013 [11]. Influenza A virus undergoes
continuous antigenic drift and sporadic antigenic shifts
in the viral surface glycoproteins, hemagglutinin (H)
and neuraminidase (N). Influenza A has 15 H and 9 N
subtypes. Antigenic H and N subtypes to which
humans lack immunity are introduced by reassortment
of virus genes and cause pandemics, whereas H and N
antigenic variants determined by point mutations
cause seasonal influenza epidemics [66,67].

Molecular assays are the preferred method for iden-
tification and surveillance of new strains of influenza
A infections [11,62,67]. Influenza A has no pathogno-
monic symptoms, and diagnosis based on clinical signs
is correct in only two-thirds of patients [68,70].
Therefore, sensitive and rapid laboratory tests are
required to diagnose and guide antiviral treatment.
Recently, multiplex molecular assays for respiratory
viruses including influenza viruses have been devel-
oped, and several have received approval/clearance
by the US Food and Drug Administration (FDA) for
routine clinical use (Table 15.2, listed under pandemic
H1N1 influenza virus). These assays provide rapid
and sensitive tests for respiratory viral infections.

Human Immunodeficiency Virus 1

Human immunodeficiency virus 1 (HIV-1) was dis-
covered in 1983 (Table 15.1). It is a single-stranded,
positive-sense, enveloped RNA retrovirus (http://
www.hiv.lanl.gov/). HIV-1 can cause AIDS, a chronic
disease leading to immunodeficiency and susceptibil-
ity to opportunistic infections (http://www.who.int/
hiv/en/). Three groups of HIV-1 have been identified
based on sequence similarity, including M (main), O
(outlier), and N (non-M/non-O) (http://www.hiv.lanl.
gov/). Of the three groups of HIV-1, group M domi-
nates the global epidemic and is further classified into
subtypes A, B, C, D, F, G, H, J, and K. In addition, cir-
culating recombinant forms (CRFs), mosaic viruses
formed between subtypes during co- or super-
infection, have also been recognized (http://www.hiv.
lanl.gov/). Although subtype B is predominant in
North America and Europe, non-B variants represent
more than 90% of HIV-1 circulating globally [71]. In
recent years, the prevalence of non-B subtypes and
CRFs in the United States is steadily increasing due to
increased international travel and immigration
[72�74]. Sequencing data of HIV-1 genomes have been
used for tracking HIV epidemics and for the design of
accurate viral detection, viral load, and HIV-1 drug-
resistance genotype assays to guide clinical use of anti-
retroviral treatment [38,75]. The recent availability of
the NGS approach has greatly facilitated generation of
HIV-1 sequences and detection of quasispecies, which
can improve understanding of HV-1 infection, patho-
genesis, and epidemics [38,76,77].

Hepatitis C Virus

It is believed that 150 million people worldwide are
infected with HCV (http://www.who.int/mediacen-
tre/factsheets/fs164/en/). Between 70% and 80% of
people infected with HCV will develop chronic

193MOLECULAR EPIDEMIOLOGICAL STUDIES OF EMERGING INFECTIOUS PATHOGENS

II. MOLECULAR TESTING IN INFECTIOUS DISEASE

http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/
http://www.who.int/hiv/en/
http://www.who.int/hiv/en/
http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/
http://www.who.int/mediacentre/factsheets/fs164/en/
http://www.who.int/mediacentre/factsheets/fs164/en/


infection. Chronic hepatitis C is closely associated with
the development of cirrhosis and hepatocellular carci-
noma and is the most common cause of adult liver
transplantation in the United States and the world
(http://www.cdc.gov/hepatitis/hcv/). A comparison
of HCV genomic sequences from around the world
revealed substantial heterogeneity of nucleotide
sequences. Phylogenetic analyses have shown that
HCV strains can be classified into six genotypes (num-
bered 1�6) and a large number of subtypes within
each genotype [78]. HCV genotypes 1, 2, and 3 appear
to have a worldwide distribution, but their relative
prevalence varies from one geographic area to another.
HCV genotype 1 is reported to be the most common in
the United States [79�81]. HCV virus genome sequenc-
ing has been used to study HCV genotypes, subtypes,
quasispecies, and mutations. The information is impor-
tant for epidemiological studies, to trace the source of
infection, for development of direct acting antiviral
(DAA) therapy, and for understanding of susceptibility
and resistance to antiviral treatment [82�85].

MOLECULAR DIAGNOSTICS OF
EMERGING INFECTIOUS PATHOGENS

Many methods have been employed for the clinical
diagnostics of emerging pathogens including micros-
copy, bacterial culture, cell culture, and serologic tests.
However, each of these methods has its own limita-
tions that must be considered by the clinical labora-
tory. For example, even though cell culture could be
considered as the gold standard in diagnosis of infec-
tion with emerging obligate intracellular bacteria such
as Rickettsia or Ehrlichia, the requirement for biological
safety laboratory level 3 (BSL-3) (for Rickettsia) or BSL-
2 (for Ehrlichia) makes this test difficult to implement
in many conventional clinical microbiology laborato-
ries. Further, the prolonged turnaround time (TAT)
(eg, detection by culture at 7�10 days after sample
processing) makes this approach impractical. Results
from such a test are not clinically useful due to failure
to guide therapy during the early stages of infection
when appropriate antibiotic treatment is highly effec-
tive. Similar to culture, serologic tests such as indirect
immunofluorescence assays, which rely on detection of
antigen-specific antibodies, have several limitations
such as low sensitivity during the early stages of infec-
tion when there is a low level of specific antibodies
and false-positive results due to cross-reaction of anti-
bodies to antigens from closely-related bacterial spe-
cies. In addition, diagnosis of acute infection by IgG
serology using single or paired (acute and conva-
lescent) serum samples has the limitation of lack of a
standardized cutoff titer among laboratories if a single

sample is obtained, or the frequent inability to obtain
convalescent serum when paired samples are required.
In the latter case, while IgG serology could be useful
for epidemiologic surveillance, paired sera are not
optimal for timely diagnosis and treatment of acute
infection. Thus, the emergence of molecular methods
including probe hybridization, target or signal amplifi-
cation, and sequencing provides better diagnostic
advantages compared to microscopy, culture,
and serology such as rapid TAT, higher sensitivity and
higher specificity in different patient populations, and
using different specimen types (eg, blood, plasma,
cerebrospinal fluid, tissues, fluids). These molecular
tests have become the gold standards due to their high
negative and positive predictive values and their abil-
ity to detect and characterize newly emerging patho-
gens for clinical purposes [1�11].

Molecular assays are routinely used in clinics for
the diagnosis, prognosis, and treatment decisions of
various emerging infectious diseases [12,13,38,75,
86�91] (Tables 15.1 and 15.2). As listed in Tables 15.1
and 15.2, there are US FDA-approved/cleared tests for
some of these pathogens, and CDC has tests for all
these agents. There are also laboratory-developed tests
brought to clinical use after significant research and
development and validation studies by individual lab-
oratories [12,13,38,75,86�91]. As in other infectious dis-
eases, clinical molecular tests for emerging infectious
diseases include (1) nucleic acid detection assays with
defined limit of detection cutoffs, (2) quantitative
methods with broad dynamic ranges, lower and higher
limit of quantification values, (3) genotyping and sub-
typing assays, and drug resistance mutation assays at
even single base-pair resolution are used for disease
prognosis and guiding treatment strategies [71,81,92].
General quality management protocols that cover prea-
nalytic, analytic, and postanalytic phases also apply to
molecular tests of emerging pathogens.

Following the discovery of HIV-1 in 1983 and HCV
in 1989, molecular tests were developed and imple-
mented for routine clinical use to detect viral infection,
monitor viral load, and examine specific HIV-1 drug-
resistant mutations and HCV genotypes to guide
patient management. Several practice guidelines
have incorporated HIV-1 and HCV molecular
tests (eg, http://www.who.int/hiv/pub/guidelines/en/;
http://www.hcvguidelines.org/full-report-view). For
example, because detection of HCV RNA, not IgG anti-
body, is diagnostic of current HCV infection, and HCV
genotype 1 is more difficult to treat than genotype 2 or
3, testing for HCV genotype is recommended to guide
selection of the most appropriate treatment regimen.
HCV RNA detection and genotyping assays
are routinely performed in clinical diagnostics laborato-
ries (http://www.hcvguidelines.org/full-report-view).
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Over the years, with advances in molecular technol-
ogy, HIV-1 and HCV clinical molecular tests have
improved significantly with respect to performance
characteristics including sensitivity, specificity, and
dynamic range. Currently, there are several FDA-
approved/cleared molecular tests for HIV-1 and
HCV (Table 15.1), and new methods are continu-
ously developed and evaluated for better care of
patients with HIV-1 and HCV infection [38,75,89,93].

LIMITATIONS OF CURRENT TESTING
AND FUTURE PROSPECTS

A high portion of emerging infectious diseases are
vector-borne zoonoses that have emerged from natu-
ral cycles. The underlying causes of their emergence
are a combination of environmental changes, such as
increased populations and geographic distribution of
their reservoir hosts and vectors, and development
of new scientific tools that contribute to their detec-
tion and identification. For example, PCR-based
molecular methods have enabled the discovery of a
large number of bacterial and viral organisms in
ticks, which preceded the identification of these
organisms as etiologic agents of emerging infectious
diseases.

Among these emerging infectious diseases are two
contrasting tick-borne infections, Lyme borreliosis
[37,47], and human monocytotropic ehrlichiosis (HME)
[27�29]. Lyme disease is well known, feared, at times
inappropriately diagnosed, and very rarely fatal. HME
is largely unknown, frequently misdiagnosed as
another tick-borne disease such as Rocky Mountain
spotted fever or a viral infection, and is often life-
threatening. Lyme borreliosis occurs particularly in
suburban populations in the northeastern United
States and has been investigated extensively in promi-
nent academic medical institutions in this region. HME
occurs particularly in the rural southeastern United
States and has not been the focus of in-depth clinical
studies in academic medical centers in this region.
Both Lyme borreliosis and HME have high incidence
although that of HME is not well recognized.

The effects of these conditions on the development
and application of diagnostic tests including molecular
diagnostics are far from satisfying. Diagnosis of Lyme
borreliosis depends heavily on serological assays.
Patients with Lyme disease frequently have developed
antibodies to Borrelia burgdorferi by the time in their
course of illness when they present for medical atten-
tion. These patients and those with a classic bulls-eye
appearing rash are diagnosed, treated effectively with
appropriate antibiotics and recover. As with other
infections antibodies take time to be stimulated and

produced. Thus, some patients’ diagnoses may be
delayed. Molecular methods seldom provide a diagno-
sis owing to the paucity of organisms in the blood and
other readily obtained clinical samples [94].

A tremendous problem is the large number of per-
sons with atypical symptoms of a wide range that
includes those similar to chronic fatigue syndrome or
fibromyalgia who are convinced that they are suffering
from chronic Lyme disease but whose results of vali-
dated tests do not support the diagnosis. Many of
them are convinced that the tests are inadequate and
that better tests are needed [94]. In contrast, patients
with HME often have not developed antibodies to the
etiologic agent, E. chaffeensis, at the time when they
present for medical attention. The bacteria can infect
mononuclear phagocytes and are present in circulating
monocytes providing an often effective target for
molecular diagnostics at a time when appropriate anti-
biotic treatment results in rapid recovery from an oth-
erwise life-threatening infection [29]. Yet HME, which
likely has an incidence similar to Lyme disease, lacks a
readily available point-of-care diagnostic test. Effective
molecular target genes have been identified, and
in-house assays provide proof-of-concept that molecular
diagnostics offer an effective approach [28,95]. Moreover,
low-cost instrument-free devices for nucleic acid amplifi-
cation and specific identification have been developed
that would be appropriate for point-of-care diagnosis.

Why have no more effective efforts been made to
devise, develop, and commercialize molecular
approaches to these two important emerging infec-
tions? For Lyme borreliosis, molecular diagnostics may
not possess the solution when too few or no Borrelia
are present. For HME, the issues lie in the realms of
clinical practice, public health, and business.
Physicians who are unaware of HME and note that
febrile illnesses during the tick season often respond to
doxycycline therapy are not inclined to order send out
tests that would cost the patient. Serology that is based
on comparing IgG antibody levels in paired sera often
fails to provide a diagnosis of acute infection as it
relies on the seldom-obtained convalescent serum.
Public health agencies are powerless to address effec-
tively a disease that is not diagnosed, and if diagnosed,
is not reported. The epidemiologic reports depend on
the data obtained by passive surveillance. In fact,
active, prospective, population-based surveillance in
endemic regions such as Missouri suggested that HME
is a highly prevalent disease [96]. The combination of
nonspecific clinical manifestations of HME, test under-
utilization, lack of a gold standard test that is effective
when therapeutic decisions are made, and problems in
interpretation of diagnostic tests such as serology, and
misleading epidemiologic data have accounted for
reported low incidence of HME. This situation has
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failed to stimulate interest in commercial development
and marketing of a useful point-of-care assay, although
there could be an adequate pull from the potential
users of the test.

The advances of sequencing technology, nanotech-
nology, and bioinformatics have driven molecular tests
including assays for emerging pathogens to be more
comprehensive and precise. For example, the availabil-
ity of various sequence databases permits quick identi-
fication of sequence identity and variations. For
example, the HIV database http://www.hiv.lanl.gov/
contains data on HIV genetic sequences and drug
resistance associated mutations. It is valuable for HIV
epidemiological studies, research, development, and
clinical validation studies of HIV clinical assays
[38,71]. It is well known that there are significant varia-
tions of clinical phenotypes in the presence of emerg-
ing infections ranging from asymptomatic carrier to
lethal infection. Recently, assays to examine multiple
pathogen panels have been developed [97�102], which
should increase the diagnostic yield for many patho-
gens. A critical need for emerging pathogen analysis is
quicker, easier, cost-effect assays that can be used in a
point-of-care setting. New assays that are performed
on platforms with a small footprint and detect patho-
gens quickly (in minutes instead of hours or days)
have entered clinical use. For example, the FilmArray
(BioFire Diagnostics, Inc.) and Simplexa (Focus
Diagnostics, Inc.) molecular assays can generate results
in approximately 60 min. The user-friendly Alere i
(Alere Inc.) and Cobas Liat (Roche Molecular Systems)
platforms are compact and portable, generate rapid
molecular results in 15�20 min, can use electricity or
rechargeable battery, and therefore are completely
mobile and suited for point-of-care testing. It is obvi-
ous that the current rapid development of new tech-
nologies will further enhance the utility of molecular
diagnostics in various emerging infectious diseases.

The advancement of molecular methods for emerg-
ing infections comes hand-in-hand with other areas
including general infectious diseases, genetics and
genomics, and oncology. There are needs to develop
unified sequence databases for the input and search of
emerging pathogens and other sequences, to under-
stand pathogen/genotype/sequence correlation with
phenotypes (eg, lethality or carrier with an emerging
infection), to develop panels to more effectively diag-
nose patients based on shared clinical signs and symp-
toms, and to develop point-of-care molecular
platforms and assays for emerging infectious diseases.

Over the last two decades, sequencing technology
has evolved from labor-intensive and time-consuming
methodologies to automatic and real-time sequence
detection. Recent development and use of NGS has
revolutionized the landscape of microbiology and

infectious disease. The availability of sequencing data
has speeded up pathogen discovery, and also helped
improve diagnosis, typing of pathogens, detection of
virulence and drug resistance, and development of
new vaccines and targeted treatment [103�106].

With the ever-extending use of NGS on a variety of
clinical samples, rapid progress on determining the
composition of the human microbiome and its impact
upon human health are to be expected in the coming
years. This deluge of sequencing data requires a con-
solidated and curated database to input and search
sequences, sequence variations, associated symptoms
and diseases, available tests, and treatment options.
A unified reporting guideline for molecular epidemiol-
ogy has been proposed recently [107]. Adoption of this
guideline by the research and clinical communities
should help to integrate the effort for the comprehen-
sion of genomics and metagenomics relevant to the
field of medical microbiology, and to improve manage-
ment of infectious diseases.

Traditional pathogen detection methods in infec-
tious diseases rely upon the identification of agents
associated with a particular clinical syndrome. The
availability of a significant amount of sequence infor-
mation and the emerging field of metagenomics using
NGS have the potential to revolutionize pathogen
detection by allowing the simultaneous detection of all
microorganisms in a clinical sample, without a priori
knowledge of their identities. This can identify new
sequences and organisms that may be initially consid-
ered nonpathogenic and may cause infections in differ-
ent human populations and health conditions. They
may cause diseases not previously thought to have a
microbial component, and the methods may determine
previously unknown etiology of infections. For exam-
ple, infection with certain emerging pathogens may
only cause disease symptoms in patients with AIDS or
immune suppression after organ transplantation, or in
travelers not previously exposed to the agents. Further
biological and clinical studies are necessary to catego-
rize sequence information and interpret clinical rele-
vance when a pathogen sequence is detected, which is
critical for diagnosis, treatment, and public health sur-
veillance of emerging infectious diseases.

Assays to examine multiple pathogen panels have
been developed [97�102]. These assays are designed
either to detect many infections that can cause similar
symptoms (eg, FDA-approved/cleared respiratory
viral panels as listed in Table 15.2, multiple viruses
that can trigger gastrointestinal symptoms) [100,101],
pathogens that share homologous sequences, for exam-
ple, 16S rRNA sequencing [98,99,102,108] or are
expected to occur under the circumstances of biothreat
[97]. The availability of more pathogen sequences and
further understanding of their correlation with clinical
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symptoms are necessary for the rational design of
panels that can fit various needs.

New technological developments including micro-
fluidics, nanotechnology, and lab-on-a-chip technolo-
gies have enabled development of user-friendly, easy,
and quick point-of-care molecular tests including
Alere i (Alere Inc.) and Cobas Liat (Roche Molecular
Systems). In the setting of emerging infectious dis-
eases, rapid and accurate identification of the causative
agent is critical to facilitate effective patient manage-
ment and enable prompt initiation of infection con-
trols. Point-of-care assays are especially needed in
resource-limited settings and in situations with lack of
access to centralized medical facilities. Further devel-
opment of point-of-care molecular tests for emerging
pathogens is critical to timely diagnosis, treatment,
and subsequent control of emerging infectious disease.
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INTRODUCTION

Prenatal screening for fetal anomalies began in the
mid-1970s with the observation that maternal serum
alpha-fetal protein (AFP) levels were elevated in cases
with fetal neural tube defects [1]. In the 1980s, research-
ers found a link between decreased serum AFP and
Down syndrome, but the sensitivity of the test was
low, approximately 21% at a 5% screen positive (or
false-positive) rate [2]. However, the attributable risk
due to maternal age and the risk defined by second tri-
mester serum AFP were shown to be independent and
could thus be combined to calculate a net risk for a
pregnancy affected with Down syndrome. The combi-
nation of age and serum marker resulted in a higher
detection rate, at a constant cutoff, than either parame-
ter alone [3].

Over the next decade, a variety of biomarkers were
proposed and evaluated for second trimester screen-
ing. At the time of writing, the standard second tri-
mester serum screen in use is the so-called quad
screen—testing for (1) serum AFP, (2) free beta hCG,
(3) unconjugated estriol, and (4) inhibin A. The
FASTER trial, a multi-institutional trial of Down syn-
drome screening that tested over 35,000 singleton
pregnancies, found a sensitivity of 83% for the quad
screen at a 5% false-positive rate [4]. For a recent
review, see Ref. [5].

In the original description of Down syndrome (the
eponym proposed by the WHO in the 1960s over the

ethnically-biased term Mongoloid) by Langston Down
in 1866, Dr. Down noted that, among other features, the
skin of individuals with Down syndrome “. . .appeared
to be too large for the body. . .” [6]. In the 1990s, it was
proposed that this could be due, at least in part, to the
accumulation of fluid and edema of the back of the fetal
neck, observed by ultrasound imaging as an increase in
nuchal translucency (NT) [7]. Increased NT has since
proven to be a sensitive indicator of the presence of a
fetus with trisomy 21 (T21, Down syndrome). However,
it is not completely specific. NT is also increased in a
number of other fetal anomalies and genetic conditions,
including Turner syndrome, cardiac defects, and
hydrops. Since the optimal gestational age for the detec-
tion of Down syndrome by NT measurement is
between 11 and 14 weeks, there was incentive to iden-
tify biochemical markers, such as those used in the
quad test, that can be used in the first trimester and be
used in conjunction with the ultrasound NT measure-
ments. Of the four quad screen markers, only free
beta-hCG correlates with Down syndrome risk in the
first trimester. However, an additional biomarker,
pregnancy-associated plasma protein A (PAPP-A) was
shown to also be associated with Down syndrome in
the first trimester. At the time of writing, the standard
first trimester screen consists of a first trimester serum
screen (free β-hCG and PAPP-A) plus NT measurement
(in locations that staff experienced sonographers) [7].

The multi-institutional FASTER trial was designed
to test the first and second trimester screens, in various
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combinations, and provide data on each screening
approach from a large cohort of prospectively followed
women. The study concluded that detection of serum
biomarkers, when performed in both the first and sec-
ond trimester and combined with ultrasound, could
achieve sensitivities for the detection of Down syn-
drome of 90�95% with a specificity of 95�97% (3�5%
false positive). These markers therefore provided very
good screening approaches to Down syndrome, but
there was room for improvement [4].

It should be noted that the sensitivity of all of the
screening modalities could be increased by decreasing
the thresholds for positive results However, the great
majority of these high-risk cases would test negative
on definitive testing by amniocentesis or chorionic vil-
lus sampling (CVS). The 5% cutoff is a generally
agreed upon compromise between the sensitivity of
the screen and the number of women who could rea-
sonably receive good genetic counseling and elect for
an invasive procedure.

THE MOLECULAR TARGET:
APPROACHES USING PLASMA

NUCLEIC ACIDS

In 1997, Lo et al. demonstrated the existence of pla-
cental DNA in maternal circulation [8]. They immedi-
ately realized the potential of this discovery for
prenatal diagnostics. The Lo laboratory, at the Chinese
University of Hong Kong, and many others began
intensive efforts to utilize this resource.

The application of circulating cell-free fetal DNA
(cffDNA) to the prenatal detection of Down syndrome
was presented in two ground-breaking publications
that appeared 2 months apart in the journal
Proceedings of the National Academy of Sciences: Fan
et al., from the Quake laboratory at Stanford
University, appeared in the October 21, 2008 issue [9]
and Chui et al., from the Lo laboratory and
Sequenom, Inc., was published in the December 23,
2008 issue [10]. Both studies utilized similar method-
ology—shotgun massively parallel sequencing (MPS;
also commonly termed next-generation sequencing
(NGS)) of DNA isolated from the plasma of pregnant
women. Both studies sequenced unselected DNA
fragments from plasma and mapped the reads to spe-
cific loci in the human genome. After mapping, the
reads per chromosome were simply counted and
ratios of the counts per chromosome versus total
counts for all the chromosomes were calculated. If the
woman was carrying a euploid fetus, then the ratios
of reads on each chromosome to each other and to
the total would be the same as either DNA from

nonpregnant plasma, or even genomic DNA.
However, if the fetus had an additional copy of chro-
mosome 21, then the relative number of hits on chro-
mosome 21 was recorded as higher than normal. Both
groups calculated Z-scores to quantify the relative
ratios of hits on chromosome 21 to the total. Both
groups found that the variance of the method was a
function of the GC content of each chromosome,
which was near a minimum for chromosome 21
[9,10]. Both groups turned to private companies to
commercialize their findings. The Stanford group
licensed their intellectual property to a new start-up
company, Verinata (later acquired by Illumina, Inc.).
The Illumina test is branded as the Verify test. The
Hong Kong group licensed their intellectual property
to a publically traded company, Sequenom, Inc. The
Sequenom test is known as the MaterniT21 test.

Two other companies developed technology to uti-
lize MPS and cffDNA from maternal circulation.
Ariosa (originally Aria, Inc.) launched a test, branded
as the Harmony Prenatal test, which differs from the
Verify and MaterniT21 tests in that Ariosa applies a
capture step and sequences DNA that is greatly
enriched for DNA sequences from chromosomes 13,
18, and 21. Natera, a Silicon Valley company that had
previously focused on preimplantation diagnosis,
added a prenatal aneuploidy test, Panorama, to its test
menu. The Panorama test differs in that it interrogates
several thousand targeted single-nucleotide poly-
morphisms (SNPs) on chromosomes 13, 18, 21, X, and
Y and uses a proprietary algorithm to identify aneu-
ploidy and copy number variation.

As one might expect in a new, potentially lucra-
tive, field featuring young companies with similar
methodologies, there were immediate claims of intel-
lectual property infringement from all four compa-
nies. A discussion of intellectual property and the
current landscape of patent litigation is beyond the
scope of this chapter and well beyond the expertise of
its authors. At the time of writing, Illumina and
Sequenom had settled their outstanding lawsuits and
pooled their intellectual property investments.
Litigation against and between Ariosa and Natera
continues. In addition, the four primary companies
have begun aggressive licensing campaigns to allow
other testing companies to rebrand the primary tests
for distribution. LabCorp, Inc., for instance, now
offers an in-house test called InformaSeq, and
Counsyl (a preconception screening company) offers
a version of Verify. Although there are now addi-
tional companies offering MPS-based prenatal screen-
ing for fetal anueploidy internationally, the following
discussion will focus on the four largest companies
based in the United States.
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MOLECULAR TECHNOLOGIES AND
CLINICAL UTILITY: FOUR APPROACHES
BY FOUR COMMERCIAL LABORATORIES

Sequenom

Sequenom, Inc. (San Diego, CA) was the first entity
to launch a commercial MPS test for Down syndrome
screening in the United States. Sequenom (as well as
the other three US companies) has presented a sub-
stantial validation of their test’s performances in a
series of publications in the peer-reviewed literature.
The initial trial consisted of 480 high-risk women (high
risk is typically defined as: positive serum screening
test, maternal age .35 years, ultrasound findings, or
history of pregnancy affected with Down syndrome).
After eliminating samples that had low plasma vol-
ume, processing errors, or quality control issues,
Sequenom analyzed 449 samples. All cases had a diag-
nostic amniocentesis with karyotyping. Forty samples
were called positive for T21 by the MPS assay, 39 of
which were confirmed by karyotyping. One sample
was shown to be euploid (false positive). Four hun-
dred and nine samples were called normal, none of
which were false negatives. The calculated sensitivity
of 100% and specificity of 99.7% demonstrated the
large improvement of plasma DNA-based testing over
serum and ultrasound-based screening methods [11].
Shortly after this study appeared, a larger, interna-
tional case-control study with 212 Down syndrome
cases and 1484 euploid births was published. The sen-
sitivity and specificity reported in this trial were 98.6%
and 99.8% [12]. The same group mined the sequencing
data to show that the MPS method reliably detected
fetal trisomies for chromosomes 13 (T13, Patau syn-
drome) and 18 (T18, Edwards syndrome). The sensitiv-
ity and specificity for T13 (n5 12) were 91.7% and
99%, respectively, and 100% and 99.7% for T18 (n5 59)
[13]. These results confirmed the applicability of MPS
of cell-free plasma DNA to T13 and T18 previously
reported by Fan et al. [9] and the Lo laboratory [14].
The commercial test, MaterniT21, was expanded to
include testing for all three trisomies. Shortly thereaf-
ter, Sequenom demonstrated that trisomies could be
detected in pregnancies with multiple gestations [15].
Using an improved methodology, which featured the
use of robotics for sample preparation, higher level
multiplexing in the MPS, and improved bioinformatics
in cohorts of 1587 (blinded) and 1269 (unblinded) sam-
ples, Sequenom reported 100% sensitivity for the
detection of all three trisomies, with false-positive rates
of less than 0.1% [16]. Finally, in 2013, Sequenom
added testing for sex chromosome aneuploidies
(SCAs) [17]. A second international collaborative trial

of 137 fetuses with T21, 39 with T18, 16 with T13, and
15 with SCAs reported 100% sensitivity for T21 and a
specificity of 99.9%. Sensitivity and specificity were
92.3% and 100% for T18, and 87.5% and 100% for T13.
All 15 SCA cases were detected. However, there were
11 false-positive results for 45, X. All of the pregnan-
cies reported in this paper were singleton and 54 cases
with complex karyotypes on amniocentesis were
excluded [18].

Illumina (Formerly Verinata Health, Inc.)

Investigators at Verinata Health extended the work
of Fan et al. [9] and published a proof-of-concept paper
featuring an improved data analysis strategy in which
the counts from each chromosome of interest (13, 18, 21,
X, and Y) were normalized, not to the total number of
counts in the genome, but to specific denominator chro-
mosomes which were matched in terms of sequencing
efficiency to the chromosome of interest. This maneuver
decreased the variance of the method and allowed
detection of aneuploidies for five chromosomes (13, 18,
21, X, and Y). After analyzing a pilot set of 71 samples
(26 aneuploid), the group tested their method on a set
of 48 samples (27 aneuploid). Trisomies of 21 (n5 13)
and 18 (n5 8) were all correctly identified. The sole T13
case could not be interpreted and yielded a no-call
result. Two of the three 45, X cases were identified, and
the third was a no-call [19].

To further characterize the MPS methodology,
Verinata funded a prospective, multicenter observa-
tional study with a blinded, nested, case-control analy-
sis. Between June 2010 and August 2011, the MELISSA
trial (MatErnal bLood IS Source to Accurately diagnose
fetal aneuploidy) recruited women who were undergo-
ing an invasive procedure for fetal karyotyping and
had at least one of the following high-risk criteria: (1)
age 38 years or older, (2) positive serum and/or ultra-
sound screening for Down syndrome, (3) ultrasound
finding suggestive of an aneuploidy, or (4) a prior
aneuploid pregnancy. Blood samples were collected
from 2882 women. Two thousand six hundred and
twenty-five samples were eligible for analysis and 221
had abnormal karyotypes. In keeping with the prede-
fined statistical plan, 534 samples were selected for
sequencing (two were excluded due to sample tracking
errors). After sequencing, each sample was analyzed
for six categories: aneuploidy for chromosomes 13, 18,
and 21; fetal sex, male or female; and monosomy X.
The bioinformatics analyses were as described by
Sehnert et al. [20], but with new normalizing chromo-
somes (due to the different instrumentation used in the
larger study) and more samples multiplexed together
[20]. Of 89 nonmosaic T21 karyotypes, the MPS method

205MOLECULAR TECHNOLOGIES AND CLINICAL UTILITY: FOUR APPROACHES BY FOUR COMMERCIAL LABORATORIES

III. MOLECULAR TESTING IN GENETIC DISEASE



detected 100% and found no false positives in the 404
samples without T21. Interestingly, three of three
mosaic T21 cases were also identified as T21. Seven
samples did not return a result and were unclassified.
With regard to T18, all 37 cases were detected, five
samples were unclassified, and there was one false pos-
itive in 461 non-T18 samples. Eleven of 14 T13 cases
were detected and three false positives were called in
488 non-T13 samples (two samples were unclassified).
Of 433 samples, all were correctly called male or not
male, two were miscalled female or not female. Fifteen
of 20 cases of Turner syndrome were correctly identi-
fied, there was one false-positive 45XO of 417 cases
with normal sex chromosomes. Forty-nine cases were
unclassified for the monosomy X analysis [21].

Bianchi et al. [21] noted the very high, but not per-
fect, sensitivity and specificity of this method for aneu-
ploidy of chromosomes 13, 18, 21, fetal sex, and
monosomy X identification and emphasized that theirs
is a screening, rather than diagnostic, test. However,
they observed that this technology may well reduce
the number of invasive procedures performed due to
the poor specificity of the currently available serum
and ultrasound markers. They also urged caution in
extrapolating these results to low-risk pregnancies and
recommended detailed genetic counseling prior to test-
ing. It is useful to note that this study excluded preg-
nancies with multiples, as well as some complex
karyotypes that were identified prior to MPS testing.
Some of these karyotypes included balanced and
unbalanced translocations, trisomies of other chromo-
some (16 and 22), and triploidy. These observations
highlight the fact that, while extremely powerful and
useful, plasma DNA screening will not substitute for,
nor eliminate, invasive testing [21].

In a follow-up study, Bianchi and colleagues
reported separately on a group of 113 cases from the
MELISSA study that had cystic hygromas observed on
ultrasound. The authors confirmed that the MPS
method had high sensitivity and specificity in this
group, 29 of 30 karyotype T21 cases were confirmed,
as were 20 of 21 Turner syndrome (45, X) cases. Of the
44 cases that did not have abnormal karyotypes after
invasive procedures, there were no false positives.
Overall, the fraction of cases with cystic hygroma that
had chromosome abnormalities was 61%, which is in
accord with previous literature [22].

Based on the results of the MELISSA study, Verinata
launched its version of an MPS cell-free DNA aneu-
ploidy test in February of 2012. In 2013, the laboratory
presented a summary of its clinical testing of almost
6000 samples. Aneuploidy was reported in 284 cases,
for which confirmation by karyotype was available in
77. The fraction of submitted samples that were posi-
tive for aneuploidy was 4.8%, which was very close to

that seen in the MELISSA study, indicating that the test
was being used appropriately in high-risk populations.
As in the MELISSA study, the positive rate (30%) was
much greater than that seen in the general population.
However, it was approximately half the rate seen in the
trial. Verinata includes an unclassified zone between
the chromosome count ratios that define high risk or
low risk for trisomy. In the follow-up study, there were
170 cases with an individual chromosome that were
unclassified. Interestingly, there were unusual histories
or negative outcomes, including co-twin demise, false-
negative trisomies, pregnancy loss, and severe ultra-
sound abnormalities, in 51% of the unclassified cases,
suggesting that there may be useful information in the
unclassified condition [23].

In response to calls for evidence of MPS test perfor-
mance in the general obstetrical practice, as opposed to
high-risk women only, and several publications on this
population in non-US cohorts, Illumina funded a sec-
ond, prospective, blinded, multiinstitutional, study—
the Comparison of Aneuploidy Risk Evaluations
(CARE) study. The purpose of the CARE study was to
compare the performance characteristics of the MPS
test to the standard first and second trimester serum
and ultrasound methods in the general, or low-risk,
obstetrical population. The study design allowed for
cffDNA specimen collection in the third trimester if
the patient had completed either first or second trimes-
ter standard screening. Five hundred and forty-four
samples of the total 1914 eligible samples were col-
lected in the third trimester. Both the standard and
MPS methods detected all cases of T21 (n5 5), T18
(n5 2), and T13 (n5 1), for a sensitivity and negative
predictive value (NPV) of 100%. However, the MPS
test performed with better specificity: there were 6
false positives in the MPS group for T21 and 69 for the
standard testing (0.3% vs 3.6%). Thus, the positive pre-
dictive value (PPV) was 45% with MPS and only 4%
with standard screening. Performance was similar for
aneuploidy of chromosomes 13 and 18. The authors
concluded that the performance of the MPS assay was
equivalent in a low-risk population to that seen by
multiple studies in high-risk ones. They note that the
increase in PPV test by 10-fold would reduce the theo-
retical invasive procedure volume by almost 90%. The
study concluded that plasma DNA testing “. . .merits
serious consideration as a primary screening method
for fetal aneuploidy. . .” [24].

Ariosa Diagnostics (Previously Aria
Diagnostics)

The MPS assays offered by Sequenom and Illumina
have some differences, primarily in their bioinformatic
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analyses, but they take a similar overall approach—
total cell-free plasma DNA is isolated, made into a
library, and sequenced without manipulation or
attempts to target specific regions of the genome. By
contrast, investigators at Aria Diagnostics specifically
targeted chromosomes 18 and 21. In a proof-of-
concept paper, they outlined their method, which
they termed digital analysis of selected regions
(DANSR). In this method, 384 regions on each chro-
mosome are designated a set of three oligonucleo-
tides, two outside and one middle probe, that are
designed to hybridize to the region in a head-to-tail
configuration. After hybridization, a DNA ligase is
added and the probes that specifically hybridize to
their complementary genomic sequences are ligated
together. Because the two outside oligonucleotides are
tagged with universal PCR primer sequences (and
one of them additionally tagged with a multiplexing
index tag), the ligation mix can be amplified by PCR,
while simultaneously adding the Illumina sequencing
tags. The mixture is then sequenced on an Illumina
sequencer, such as the HiSeq 2000. In this approach, if
the mother carries a fetus with a trisomy of either
chromosome 18 or 21, the ratio of counts would be
disturbed, and the magnitude of the shift can be mea-
sured with a Z-score statistic. In the proof-of-principle
experiment, the Aria investigators evaluated samples
from 289 pregnancies. All 39 T21 cases and all 7 T18
cases were identified. Although accuracy increased
with increasing read depth (ie, decreased number of
samples multiplexed in a sequencing lane), the effect
was very small after a certain depth (420,000 total
counts). The authors noted that it would be possible
to multiplex as many as 96 samples in one lane [25].
In a follow-up paper, Aria scientists included poly-
morphic loci on chromosomes 18 and 21 in order to
calculate the percentage of the total cell-free DNA
that was fetal in origin (fetal fraction). Fetal fraction is
an important parameter because the accurate call rate
for all MPS methods varies with fetal fraction. The
authors introduced a novel analysis algorithm, named
fetal-fraction optimized risk of trisomy evaluation
(FORTE), which includes fetal fraction and outputs
the result in terms of a probability of having either
T18 or T21. A cohort consisting of 250 normal, 72 T21,
and 16 T18 cases, all confirmed by invasive procedure
and karyotyping, were split into training and valida-
tion sets. After optimization of the FORTE algorithm
in the training set, all of the trisomies and all of the
normal samples in the validation set were correctly
identified. The authors noted that this approach
allows the combination of multiple parameters, such
as fetal fraction and maternal age, into a final proba-
bility of the pregnancy being trisomic or euploid.
They also emphasized that the ability to highly

multiplex the sequencing leads to markedly lower
costs than the shotgun sequencing methods [26].

To further characterize their assay, Ariosa funded a
prospective, multiinstitutional, international, blinded,
cohort study—the noninvasive chromosomal evalua-
tion (NICE) study. Samples were collected from 4002
pregnant women who were planning to have invasive
diagnostic for any reason. After setting aside approxi-
mately 400 samples for method development, and
excluding ineligible samples, 3080 paired DANSR-
FORTE analyses/karyotype pairs were analyzed. All
of the 81 T21 cases were identified, and there was one
false positive in the 2888 karyotype normal samples.
Thirty-seven of 38 T18 cases were identified, and there
were 2 false positives in 2888 normal samples. For the
majority of samples, there was a greater than 100,000-
fold magnitude separation in the probabilities of tri-
somy versus euploidy. In 17 cases (0.5% of the total),
intermediate risk scores were obtained. However,
these were typically large enough to make a high-risk/
low-risk call. However, in the end the authors of the
NICE study returned to the theme raised by their
counterparts in other validation studies, noting that
almost 40% of the abnormal karyotypes seen in the
study had abnormalities other than T18 or T21. They
reiterated that cffDNA analysis for aneuploidy is a
screening test, and not a replacement for invasive test-
ing and karyotyping or chromosome microarray [27].

Reports extending this methodology to chromosome
13, and the sex chromosomes X and Y, soon followed
[28,29]. However, these authors raised important bio-
logical difficulties in calling fetal SCAs.

Natera

Natera uses a different approach for the detection of
aneuploidy. All the methods discussed so far involve
counting MPS reads that map to chromosomes of
interest and utilize a ratio of those counts to the num-
ber of counts obtained from one or more different
chromosomes. As described in the proof-of-concept
paper by Zimmermann et al. [30], Natera utilized MPS
to sequence and obtain plasma DNA, maternal, and
paternal genotypes from a set of 11,000 multiplexed
PCR products, each of which span well-characterized
SNP loci. After sequencing, alignment, and SNP call-
ing, Natera’s method employs a proprietary algorithm,
termed Parental Support. This algorithm uses parental
genotypes and the information is then used to calcu-
late theoretical mixtures of maternal and fetal geno-
types at various fetal fractions if each chromosome of
interest was monosomic, disomic, or trisomic. Each of
these genotypes, or hypotheses, is compared to what is
observed from the cffDNA. The hypothesis with the
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maximum likelihood is selected as the copy number
and fetal fraction of the sample. Importantly, the
Parental Support algorithm calculates the accuracy of
its prediction by comparing the observed distribution
of alleles and determining the likelihood of the pre-
dicted distribution. In this study, 166 samples were
tested, including 11 T21, 3 T18, 2 T13, one 45, X, two
47, XXY, 57 normal female fetuses, and 69 normal male
fetuses. Twenty-one samples did not pass the rigorous
quality control metrics for inclusion. The remaining
145 samples were tested for five different chromo-
somes: 13, 18, 21, X, and Y, generating 725 total chro-
mosome results. All results were correct, yielding a
sensitivity and specificity of 100% [30]. The authors
concluded that the Parental Support method was a
promising method for prenatal detection of fetal aneu-
ploidies. However, they noted that confined placental
mosaicism is a fundamental biological issue that can
confound any method based on cffDNA. In addition,
the authors commented that their 12.6% no-call rate
was high. However, these no-calls were on samples
that did not pass QC metrics such as DNA quality or
concentration. Apparently, there were no samples with
sufficient DNA and fetal fraction that did not return a
result. Studies evaluating other methods screened out
samples of insufficient quality as well.

An improvement to the Parental Support algorithm
termed NATUS (next-generation sequencing aneu-
ploidy test using SNPs) was published in a paper
focused on the detection of the rarest of the common
trisomies, T13. The new algorithm performed flaw-
lessly, identifying all 17 T13 cases and 51 age-matched
controls [31]. In 2013, Nicolaides et al. [32] employed
the NATUS algorithm in additional validation studies.
Samples were collected from 242 pregnant women
who were planning invasive diagnostic procedures
and the number of multiplexed SNP assays was
increased from 11,000 to 19,488. The NATUS algorithm
identified all cases of T13, T18, T21, and 45, X with no
false positives. Fetal sex was correctly called in all
cases. One case of triploidy was included in this series
and multiple alleles were detected, consistent with
either twins or triploidy. After ultrasound confirmed a
single fetus, the diagnosis of 69, XXX was correctly
made. The SNP-based approach is the only current
method that reliably detects triploidy in cffDNA.
Interestingly, while the test did not identify complex
karyotypes (n5 5), the copy number enumeration for
the chromosomes of interest was all correct, with no
interference [32].

A further study by Natera included samples from
women who were not at high risk for having a baby
with an aneuploidy. In this study, 1064 samples were
collected, roughly half from high-risk and half from
low-risk women. As in previous studies, the sensitivity

and specificity for the detection of T21 (n5 58) and
T13 (n5 12) were 100%. However, the NATUS method
had one false positive and one false negative each for
T18 and monosomy X. The false-negative T18 was
shown to be due to mosaicism in the placenta.
Although the number of aneuploidy pregnancies was
significantly less that in the high-risk group, all five (1
T21, 2 T13, 2 45, X) were correctly identified, leading
the investigators to conclude that the sensitivity and
specificity of the method was the same in both
groups [33].

Natera has published its clinical experience after
receiving 31,030 samples for noninvasive prenatal test-
ing (NIPT) for aneuploidy. Of these, 1966 failed sample
QC, and 28,739 received a result. Approximately 38%
of the samples were referred from outside partner lab-
oratories, so follow-up clinical or karyotype informa-
tion was not available. Almost 18,000 samples were
available for clinical follow-up. Of these, 356 cases
with an aneuploidy were identified and data regarding
invasive testing results was available in 222 (62.4%;
data was not available for cases where invasive testing
was declined, or for the spontaneous fetal demise
cases, or elective terminations). Of the 222 cases with
confirmed outcomes, 184 (83%) were true positives
and 38 (18%) were false positives. The PPV test was
very good for T21 (91%) and T18 (93%), but lower for
T13 (38%) and monosomy X (50%). The report on live
clinical samples therefore demonstrated some degrada-
tion in performance compared to earlier validation
studies. Nevertheless, the performance of the NATUS
methodology is much better than current serum and
ultrasound testing and is in-line with the performance
of tests using counting methods [34].

There were a number of interesting observations
made in this study. For instance, approximately 30% of
cases included a paternal sample. Inclusion of the
paternal sample was associated with a decreased sam-
ple QC failure rate. As noted by others, the authors
observed that the percent fetal fraction was inversely
proportional to maternal body mass index and directly
proportional to gestational age.

LIMITATIONS OF TESTING

The principle limitation of noninvasive cffDNA-
based prenatal screening is the fact that this is a screen
for specific aneuploidies and not a definitive or diag-
nostic test. Thus, the term noninvasive prenatal screen-
ing (NIPS) is preferred over the original term NIPT.

Additional limitations are associated with the fact that
circulating fetal DNA in maternal circulation is actually
a misnomer. The pregnancy-derived DNA in mat-
ernal circulation is predominantly placental DNA [8].

208 16. NONINVASIVE PRENATAL SCREENING (NIPS) FOR FETAL ANEUPLOIDIES

III. MOLECULAR TESTING IN GENETIC DISEASE



Thus, there is a theoretical limit on clinical sensitivity
given by the population frequency of confined placen-
tal mosaicism (CPM), in which the fetus and placenta
have differing karyotypes. Because CVS, an invasive
diagnostic test, directly samples the placenta, a review
of the CVS literature reveals the levels of CPM of sin-
gle trisomic chromosomes expected in the population.
A review of over 90,000 CVS cases in Europe between
1986 and 1994 showed mosaicism or results discordant
with the fetus in 1415 cases (1.5%). Of these, approxi-
mately half (0.75%) had mosaic or discordant results
for one trisomic chromosome. Of 192 cases that were
extensively evaluated, including karyotyping at least
three different cells types (fetal and placental), 42
(22%) involved chromosomes 13, 18, or 21 [35]. Thus,
the minimal level of CPM expected for cffDNA
screening, potentially resulting in false-positive
or false-negative results, is approximately 0.16%
(0.75% 3 22%). Because all NIPS methods described
here interrogate circulating placental DNA, this
figure is likely to represent a hard limit on the sensitiv-
ity and specificity of the assays. Hence, claims of
greater than 99.9% sensitivity and specificity are there-
fore unlikely to be correct.

Clearly, a test with sensitivity and specificity of 99%
is extremely good. Nevertheless, the truly useful mea-
sures, the PPV or NPV test, are functions of both the
specificity and sensitivity, respectively, and the inci-
dence of the condition being tested. In the context of
trisomies, the incidence of trisomies for chromosomes
13, 18, and 21 is very different. For example, in the
CARE study, the sensitivity of the NGS method for the
detection of T21 and T18 was 100%, giving an NPV
test of 100%. However, there were false positives for
both T21 and T18, resulting in PPVs of 45.5% and
40.0%, respectively [24]. The Natera study found a bet-
ter PPV for T18 than the CARE study, but a very simi-
lar one for T13 [34]. These results emphasize the fact
that NIPS is a screening test, and that follow-up diag-
nostic testing is essential. Even more essential is appro-
priate pretest and posttest genetic counseling.

False-positive cffDNA screening results have been
reported in the peer-reviewed literature. Typically,
these are case reports [36] or small series from one or
two collaborating institutions [37]. At the time of writ-
ing, the largest series of cffDNA screening results dis-
cordant with follow-up karyotyping or chromosome
microarray is a series of 109 cases reported from the
commercial reference laboratory, Quest Diagnostics.
Platform presentations at national genetics conferences
[38,39] prompted Quest investigators to review 109
consecutive cases submitted to their laboratory for con-
firmation of a positive NIPS test results. One advan-
tage of this report is inclusion of cases from all four
commercial laboratories providing NIPS. This paper

reported that the positive rate across all providers was
93% for T21 (38/41 NIPS positive for T21), 64% for T18
(16/25), 44% for T13 (7/16), and only 38% for SCAs.
Results discordant with NIPS findings were observed
for monosomy 21, trisomy 16, triploidy, and 22q11.2
microdeletion syndrome. Interestingly, only one dis-
cordant case was due to a low-level mosaic fetus, and
confined placental mosaicism was confirmed in only
two cases. The cause of the majority of false-positive
results was unexplained. The authors note that the
observed true-positive rate was similar to that pre-
dicted for tests with 99.9% sensitivity and specificity in
a population of 38-year-old women based on the inci-
dence of the trisomies at birth The observed true posi-
tive rate of 93% for T21 versus the predicted 84% (for
an incidence of Down syndrome of 1 in 185 births)
may be due to additional selection via serum screen-
ing. The authors emphasized that it is critical to edu-
cate providers regarding the difference between
sensitivity/specificity, which are analytical properties
of the assays, and predictive value of test results,
which is strongly influenced by incidence. They noted
that many physicians expect false-positive rates of less
than 1% for tests with sensitivities greater than 99%.
However, this is not the case for rare disorders, such
as T13 and T18 [40].

CONCLUSIONS AND FUTURE
DIRECTIONS

The field of prenatal screening utilizing cffDNA in
maternal circulation is rapidly evolving. Although it is
difficult to estimate the number of tests performed in
the United States at this time, conservative estimates
are at greater than 200,000 per year. In addition, the
number and type of disorders included in cffDNA-
based screening is growing. Screening currently
includes not only the common trisomies for chromo-
some 13, 18, and 21, but also rare trisomies such as T16
and T22. In addition, copy number variation for sex
chromosome (Klienfelter and Turner syndromes, and
related conditions) is now routinely included in NIPS
results, as well as for subchromosomal deletions, such
as those responsible for DiGeorge, Wolf-Hirschhorn,
and Cri-du-chat syndromes. How providers and
patients react to these increased offerings, and whether
they can be place into proper context of the predictive
values for increasingly rare disorders remains to be
determined. Also remaining to be seen is whether
there will be a paradoxical increase in the number of
invasive procedures (CVS and amniocentesis) to con-
firm the expected increase number of positive results
for the additions conditions.
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This is one of the few, if not the only, widespread
clinical tests that remain (at this writing) solely in the
providence of commercial laboratories that are focused
(exclusively or almost exclusively) on this single test.
The influence of corporate advertising on the analytical
sensitivity and specificity versus the more relevant
predictive values is an open question, as is the rapid
expansion of the testing to include conditions other
than Down syndrome or the common trisomies. This
rapid expansion is reminiscent of the arms race for
ever-larger numbers of mutations in cystic fibrosis car-
rier screening panels [41].

What is unequivocal at this point is that the NIPS
approach is superior to the serum and ultrasound-
based screening for detection of Down syndrome.
Although this, in and of itself, raises crucial ethical
considerations regarding the increasing importance of
pretest genetic counseling and how to deliver such in
increasingly busy clinical practices, there is little doubt
that, if the price of the testing is competitive with
serum-based testing, the plasma nucleic acid approach
is very likely to replace current prenatal screening
algorithms for Down syndrome.
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INTRODUCTION

Inherited cardiomyopathies are a clinically and geneti-
cally heterogeneous group of disorders characterized by
the disruption of normal structure and/or function of
the myocardium [1]. Cardiomyopathies can lead to seri-
ous clinical complications including arrhythmia, throm-
boembolism, heart failure, and even sudden cardiac
death (SCD). Indeed, undiagnosed cardiomyopathy
accounts for a significant portion of SCD in young adults
and athletes [2,3]. Cardiomyopathies primarily character-
ized by structural abnormalities of the myocardium
include hypertrophic cardiomyopathy (HCM), restric-
tive cardiomyopathy (RCM), dilated cardiomyopathy
(DCM), arrhythmogenic right ventricular cardiomyopa-
thy (ARVC), and left ventricular noncompaction cardiop-
athy (LVNC). Together, structural cardiomyopathies are
estimated to effect approximately 1/390 individuals [4].
However, this may be an underestimate because mildly
affected individuals often remain undiagnosed [5]. This
chapter will review the clinical features of the major
inherited cardiomyopathies, outline the cellular and
molecular mechanisms of disease associated with each
disorder, and explore the clinical utility and limitations
of the current genetic testing modalities being utilized.

MAJOR FORMS OF CARDIOMYOPATHY

Hypertrophic Cardiomyopathy

HCM is the most common inherited cardiomyopa-
thy and is estimated to affect approximately 1/500

individuals [1]. HCM is characterized by maximal
left ventricular wall thickness greater than or equal
to 15 mm, myocyte disarray, and fibrosis [1,6,7] in
the absence of other known causes of hypertrophy
(eg, chronic hypertension). Clinically, HCM typically
manifests between 20 and 40 years of age, but has
also been identified in infants and in the elderly
[8�10]. HCM is most commonly inherited in an auto-
somal dominant manner, although autosomal reces-
sive forms have been identified (Table 17.1). Some
storage disorders, such as Fabry disease or Danon
disease, can present with apparently isolated left
ventricular hypertrophy [13,14]. However, these
disorders are typically accompanied by additional
clinical features including acroparesthesia, angiokera-
tomas, sweating abnormalities, and renal disease in
individuals affected with Fabry disease [15], and
skeletal myopathy and intellectual disability in indi-
viduals affected with Danon disease [16]. In severe
or end-stage cases of HCM, the phenotype may
mimic DCM [17].

Restrictive Cardiomyopathy

RCM is a rare myocardial disorder characterized
by myocardial stiffness, impaired left ventricular dia-
stolic filling, and reduced diastolic volume in the
presence of normal systolic function [18]. RCM is
commonly caused by myocardial infiltration or fibro-
sis. However, RCM has been documented in the
absence of these features and is usually referred to as
idiopathic cardiomyopathy [19]. Idiopathic RCM is
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TABLE 17.1 Genes Implicated in Inherited Cardiomyopathies

Gene Protein MOI

Cardiomyopathy
Protein function/

cellular location Syndromic disorders��HCM RCM DCM ARVC LVNC

ABCC9 ATP-binding cassette,

subfamily c, member 9

AD X Potassium channel

ACTC1 Actin, alpha, cardiac

muscle

AD X X X X Sarcomere

ACTN2 Actinin, alpha-2 AD X X Z-disc

ANKRD1 Ankyrin repeat domain-

containing protein 1

Unknown X X Z-disc

BAG3 BCL2-associated

athanogene 3

AD X X X Z-disc Myofibrillar myopathy

��

CASQ2 Calsequestrin 2 AD X Sarcoplasmatic

reticulum

CAV3 Caveolin 3 AD X X Plasma membrane

CRYAB Crystallin, alpha-B Unknown X Chaperone Myofibrillar myopathy

AD/AR ��

CSRP3 Cysteine- and glycine-rich

protein 3

AD X X Z-disc

DES Desmin AD X X X Intermediate filament Myofibrillar myopathy

AD/AR ��

DMD Dystrophin XL �� Dystrophin-

associated protein

complex

Duchenne muscular

dystrophy

DSC2 Desmocollin 2 AD X X Desmosome

DSG2 Desmoglein 2 AD X X Desmosome

DSP Desmoplakin AD X X Desmosome Carjaval syndrome

AR �� ��

DTNA Dystrobrevin, alpha AD X Dystrophin-

associated protein

complex

EMD Emerin XL �� Nuclear membrane Emery�Dreifuss muscular

dystrophy

FHL2 Four-and-a-half LIM

domains 2

Unknown X Z-disc

GATAD1 GATA zinc finger domain-

containing protein 1

AR X Gene expression

regulation

GLA Galactosidase, alpha XL �� Lysosome Fabry disease

JUP Junction plakoglobin AD X Desmosome

LAMA4 Laminin, alpha-4 Unknown X Basement membrane

LAMP2 Lysosome-associated

membrane protein 2

XL �� �� Lysosome Danon disease

LDB3 LIM domain-binding 3 AD X X X Z-disc

LMNA Lamin A/C AD X X Nuclear membrane Myopathy, muscular

dystrophy, lipodystrophy
AD/AR ��

MYBPC3 Myosin-binding protein C,

cardiac

AD X X X X Sarcomere

(Continued)
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TABLE 17.1 (Continued)

Gene Protein MOI

Cardiomyopathy
Protein function/

cellular location Syndromic disorders��HCM RCM DCM ARVC LVNC

MYH6 Myosin, heavy chain 6,

cardiac muscle, alpha

AD X X Sarcomere

MYH7 Myosin, heavy chain 7,

cardiac muscle, beta

AD X X X X Sarcomere

MYL2 Myosin, light chain 2,

regulatory, cardiac, slow

AD X Sarcomere

MYL3 Myosin, light chain 3,

alkali, ventricular,

skeletal, slow

AD X X Sarcomere

MYLK2 Myosin light chain kinase 2 Unknown X Kinase

MYOZ2 Myozenin 2 AD X Z-disc

NEBL Nebulette Unknown X Z-disc

NEXN Nexilin (F actin

binding protein)

Unknown X X Z-disc

PKP2 Plakophilin 2 AD X X Desmosome

PLN Phospholamban AD X X X Sarcoplasmatic
reticulum

PRKAG2 Protein kinase, AMP-

activated, noncatalytic,

gamma-2

AD �� Kinase Wolff-Parkinson-White

syndrome, glycogen

storage disease

RBM20 RNA-binding motif

protein 20

AD X RNA-binding motif

protein

RYR2 Ryanodine receptor 2

(cardiac)

AD X X Ryanodine receptor

SCN5A Sodium channel,

voltage-gated, type V,

alpha subunit

AD X X Sodium channel

SGCD Sarcoglycan, delta AD X Dystrophin-

associated protein

complex

Limb-girdle muscular

dystrophy
AR ��

TAZ Tafazzin XL �� �� Mitochondrium Barth syndrome

TCAP Titin-cap Unknown X Z-disc Limb-girdle muscular

dystrophy
AR ��

TMEM43 Transmembrane protein 43 AD X Transmembrane
protein

TNNC1 Troponin C type 1 (slow) AD X X Sarcomere

TNNI3 Troponin I type 3 (cardiac) AD X X X Sarcomere

TNNT2 Troponin T type 2 (cardiac) AD X X X X Sarcomere

TPM1 Tropomyosin 1 (alpha) AD X X X Sarcomere

TTN Titin AD X X X Sarcomere

TTR Transthyretin AD �� Transport protein Amyloidosis

VCL Vinculin AD X X X Z-disc

MOI, mode of inheritance; AD, autosomal dominant; AR, autosomal recessive; XL, X-linked; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; ARVC,

arrhythmogenic right ventricular cardiomyopathy; LVNC, left ventricular noncompaction; ��, cardiomyopathy seen as part of other disease/syndrome.

All genes are reviewed in Refs. [1] Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and
cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm
2011;8:1308�39; [11] Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 2011;32:1446�56; [12] Wilde

AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol 2013;10:571�83.
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most commonly sporadic, but autosomal dominant
inheritance has been reported in individuals with a
family history of disease [20,21].

Dilated Cardiomyopathy

DCM is characterized by left ventricular enlarge-
ment or dilatation and systolic dysfunction [1,7,22,23].
The prevalence of DCM was originally estimated to be
1/2500 individuals. However, more recent appraisals
indicate that the true prevalence is closer to 1/250 [23].
DCM often occurs as a result of external factors such
as hypertension, ischemia, inflammation, and drug or
alcohol abuse [23]. If none of these external causes can
be identified, idiopathic DCM is diagnosed and a
genetic cause can be considered. It is estimated that
20�35% of individuals with idiopathic DCM have a
family history of the disease [24,25]. Familial DCM is
typically inherited in an autosomal dominant manner
with isolated cardiomyopathy. However, DCM can
also be inherited in an autosomal recessive or
X-linked manner and some affected individuals may
also present with arrhythmia and/or myopathic
involvement. Several syndromic disorders include
DCM as a cardinal feature including Barth syndrome,
Duchenne muscular dystrophy, Emery�Dreifuss
muscular dystrophy, and myofibrillar myopathy
[26�29]. There is phenotypic overlap between DCM
and severe or end-stage HCM [17] and there is also
an increasing appreciation for phenotypic similarities
and genetic overlap between ARVC and DCM—
leading to the increasing adoption of the term
arrhythmogenic cardiomyopathy [30�34].

Arrhythmogenic Right Ventricular
Cardiomyopathy

ARVC is characterized by gradual replacement of
myocytes with fibro-fatty tissue [35,36]. This infiltra-
tion occurs primarily in the right ventricle, though the
left ventricle is also involved in a proportion of cases
[37�39]. Left ventricular involvement and dilation
often confounds an accurate diagnosis because fibro-
fatty filtration can only be diagnosed after cardiac
biopsy. Moreover, there is an increasing appreciation
for phenotypic similarities and genetic overlap
between ARVC and DCM [30�34]. ARVC may lead to
secondary complications including arrhythmia, syn-
cope, and an increased risk for SCD, especially in the
young [40,41]. ARVC, which was originally referred to
as arrhythmogenic right ventricular dysplasia, is
estimated to affect 1/2000�1/5000 individuals and is
typically inherited in an autosomal dominant manner.
Up to 50% of individuals with ARVC have a family

history of disease, though penetrance is age-dependent
and often incomplete [42,43].

Left Ventricular Noncompaction
Cardiomyopathy

LVNC is characterized by left ventricular hypertro-
phy with deep ventricular trabeculations. However,
right ventricular involvement has been described in
approximately 50% of cases [11,44]. Clinical complica-
tions of LVNC include heart failure, arrhythmia, and
an increased risk for thromboembolic events [45].
LVNC is thought to occur due to failure of the myo-
cardium to properly compact into mature mus-
culature during embryonic development, though this
hypothesis is still controversial because adult-onset
LVNC has been identified in individuals without tra-
beculations at birth [44,46]. Approximately 45% of
patients have a family history of the disease and
though the prevalence of the disorder has not been
well studied, it is estimated to affect 7/50,000�13/
1000 individuals [11,47].

MOLECULAR TARGET

Hypertrophic Cardiomyopathy

Most disease-causing variants in HCM occur in
genes encoding components of the sarcomere, a struc-
ture that serves as the contractile unit of the myocyte
(Fig. 17.1) [1,49,50]. While disease-causing variants
have been identified in more than 20 sarcomere-
encoding genes (Table 17.1), pathogenic variants in the
MYH7 gene, encoding a cardiac beta-myosin heavy
chain, and the MYBPC3 gene, encoding a cardiac myo-
sin binding protein, account for the majority (B80%)
of disease-causing variants in HCM [6,49,51,52]. Most
HCM-associated variants, including those in MYH7,
are missense variants that elicit a dominant-negative
effect on sarcomere function [53,54]. Disease-associated
MYBPC3 variants are the clear exception, with loss-of-
function variants leading to haploinsufficiency serving
as the predominant mechanism of disease [55].

Restrictive Cardiomyopathy

RCM is a rare disorder and the genetic etiology of
this cardiomyopathy is not well defined. Variants in
the ACTC1, MYPBC3, MYH7, MYL3, TNNI3, TNNT2,
and TPM1 genes have been identified in individuals
with RCM (Table 17.1), suggesting that some cases are
related to sarcomere dysfunction [1,46]. In addition,
variants in the DES and BAG3 genes have been identi-
fied in several families with myopathy 1/2 RCM
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(Table 17.1) [56,57]. Clinically significant variants in
these genes are identified in approximately 35% of
individuals with RCM [46].

Dilated Cardiomyopathy

DCM has much greater locus heterogeneity com-
pared to the other cardiomyopathies discussed in this
chapter. More than 30 genes associated with DCM
encode proteins with a wide variety of cellular loca-
tions including the sarcomere, Z-disc, desmosome,
intermediate filaments, and various cellular mem-
branes (Fig. 17.1; Table 17.1) [58,59]. Truncating var-
iants in the TTN gene, which encodes the largest
human protein, are estimated to account for roughly
12�25% of inherited DCM [59,60]. Disease-associated

variants in the MYH7, LMNA, TNNT2, and RBM20
genes make up for another 10�20% of familial DCM
cases [58,59].

Arrythmogenic Right Ventricular
Cardiomyopathy

ARVC is primarily caused by pathogenic variation
in genes associated with the desmosome, a
cytoskeleton-interacting cell�cell adhesion complex
that is important for myocardial mechanical activity
(Fig. 17.1). Loss-of-function variants in the PKP2 gene,
encoding the plakophilin 2 protein, account for the
majority of ARVC cases [36], although disease-
associated variants in several other desmosomal genes
including DSC2, DCG2, and DSP have also been iden-
tified (Table 17.1).

Left Ventricular Noncompaction
Cardiomyopathy

Because LVNC is so rare, the genetic etiology of this
cardiomyopathy is less well understood. However,
disease-associated variants have been identified in a
number of genes encoding sarcomeric and Z-disc pro-
teins including ACTC1, DTNA, LDB3, MYBPC3,
MYH7, TNNT2, and VCL (Table 17.1).

MOLECULAR TECHNOLOGIES

Over the last decade, molecular genetic discoveries
have uncovered the molecular basis for many cardio-
myopathies and over 55 disease-associated genes have
been identified to date (Table 17.1). These discoveries
have resulted in a dramatic increase in the utilization
of clinical genetic testing by physicians caring for
patients with these disorders [12,61,62]. Genetic testing
not only provides molecular diagnoses for affected
individuals, it can also refine clinical diagnoses for
individuals with inconclusive diagnoses and can pro-
vide presymptomatic testing for individuals with a
family history of disease.

Diagnostic Testing

Due to widespread allelic heterogeneity and the
fact that very few recurrent pathogenic variants exist
for inherited cardiomyopathy, clinical laboratories
typically sequence all coding exons and consensus
splice sites (1/2 1,2) for each disease-associated
gene tested. The extreme locus heterogeneity that
exists for these disorders also necessitates that multi-
ple genes be sequenced for each cardiomyopathy.

FIGURE 17.1 Cellular locations of proteins involved in inherited
cardiomyopathies. Structural components of the myocyte that are
impacted by cardiomyopathy include the sarcomere, Z-disc, nuclear
lamina proteins, intermediate filaments, the desmosome, and the
dystrophin-associated glycoprotein complex. Genes linked to cardio-
myopathy and the locations of their protein products are indicated.
Source: Adapted with permission from Elsevier and the American Society
for Clinical Investigation ([46] Teekakirikul P, Kelly MA, Rehm HL,
Lakdawala NK, Funke BH. Inherited cardiomyopathies: molecular genetics
and clinical genetic testing in the postgenomic era. J Mol Diagn
2013;15:158�70; [48] Morita H, Seidman J, Seidman CE. Genetic causes of
human heart failure. J Clin Invest 2005;115:518�26).
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Laboratories may use Sanger sequencing to interro-
gate multiple genes, but large next-generation
sequencing (NGS) panels that allow for simultaneous,
cost-effective interrogation of many disease-
associated genes are becoming the norm [46,61]. NGS
cardiomyopathy panels may be offered as large tests
that span many cardiomyopathies with the option to
order disease-specific subpanels focusing on genes
implicated in a specific cardiomyopathy. Disease-
specific subpanels often use the same NGS exon cap-
ture kit as the full panel, allowing for reflex testing to
the remaining genes if the initial result is negative.
Copy number variation (CNV) testing may also be
offered as part of the NGS test or as a separate assay.

Presymptomatic Testing

Genetic testing for individuals with a family history
of disease is typically offered via Sanger sequencing of
pathogenic or suspected pathogenic variants that have
been previously identified in an affected relative.

Emerging Technologies

As the number of genes in NGS cardiomyopathy
assays continues to grow and new disease-associated
genes are discovered, whole exome sequencing
(WES) and whole genome sequencing (WGS) technol-
ogies are beginning to gain momentum in the field of
inherited cardiomyopathy. While the cost of these
assays currently inhibits widespread adoption, it is
likely that utilization of WES and WGS testing will
continue to grow as costs decline because they allow
great flexibility and circumvent multiple rounds of
stepwise testing that often occurs in patients with
equivocal phenotypes.

CLINICAL UTILITY

One of the most important clinical utilities of genetic
testing in the field of cardiomyopathy is the ability to
provide at-risk family members with presymptomatic
testing when the disease-causing variant is definitively
established within a family. Identification of indivi-
duals with pathogenic variants allows for timely clini-
cal evaluation and management in presymptomatic
individuals. Genetic testing in cardiomyopathies also
allows for more informed reproductive decision-
making in individuals with known pathogenic var-
iants, allowing for preimplantation genetic diagnosis
and proper genetic counseling.

Clinical genetic testing can confirm a suspected clin-
ical diagnosis in cases where the phenotype is clear

and may define or refine clinical diagnoses in situa-
tions where a patient’s clinical features are equivocal
[46]. Achieving an accurate diagnosis is important for
physicians treating patients with cardiomyopathy
because treatment options can vary widely depending
on the diagnosis. Genetic diagnoses may provide some
patients with therapeutic opportunities (eg, enzyme
replacement therapy in patients with Fabry disease or
implantable cardioverter defibrillator placement in
patients with cardiomyopathy) and certain diagnoses
associated with syndromic disorders may alert the
physician to screen for features of the disease that may
benefit from medical management (eg, renal disease in
Fabry disease) [13,63]. Unfortunately, the prognostic
value of genetic testing for inherited cardiomyopathy
is currently poor and there is insufficient evidence
supporting genotype�phenotype correlations.

LIMITATIONS OF TESTING

Technical Limitations

There are several inherent technical limitations to
genetic testing in cardiomyopathies. First, not all
disease-associated genes have been identified, and
many NGS tests focus solely on gene-coding regions.
Therefore, pathogenic variation may be missed in
genes not included on the assay and variants in func-
tionally important nonexonic regions (eg, regulatory
regions) may be missed. Secondly, NGS may not pro-
vide complete coverage of disease-associated genes
and false positives may occur. Sanger sequencing is
therefore often required to sequence genes to comple-
tion and confirm variants detected via NGS. Finally,
CNVs are not always readily detected using sequenc-
ing technologies and some disease-associated variants,
especially those in genes where loss-of-function is an
established disease mechanism, may be missed.

Interpretive Limitations

While our ability to provide genetic diagnoses for
inherited cardiomyopathies is continuously improving,
there are several factors that make interpretation of
these genetic tests difficult. First, the majority of car-
diomyopathies exhibit a high degree of both locus and
allelic heterogeneity with many genes and variants
implicated with disease. Second, multiple modes of
inheritance for these disorders exist and autosomal
dominant, autosomal recessive, and even X-linked
forms have been described. Finally, the penetrance of
these disorders is age-dependent and incomplete
and some individuals with pathogenic variants may
not exhibit clinical features of the disease. Variable
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expressivity has also been described and affected fam-
ily members carrying an identical pathogenic variant
may have differing clinical features or ages of onset.
All of these issues require genetic test results to be
interpreted within the context of a patient’s clinical
features and family history.
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INTRODUCTION

The most important elements of the hemostatic sys-
tem include endothelial cells, platelets, and the clotting
proteins that comprise the classical coagulation cas-
cade (Fig. 18.1). Disruption of any of these elements
can alter the hemostatic balance, resulting in bleeding
or thrombotic tendencies. Genes that code for coagula-
tion proteins have been studied using DNA technolo-
gies to detect specific mutations that result in the
formation of smaller amounts of protein or a molecule
with less functional activity. Several of these technolo-
gies are used clinically to assess individuals for their
risk for either bleeding or thrombosis.

The major clotting proteins that have been charac-
terized at the molecular level include the procoagulant
proteins factor VII (FVII), factor IX (FIX), and factor XI
(FXI), and the anticoagulant proteins protein C (PC),
protein S (PS), and antithrombin (AT) (Table 18.1).
Mutations that result in PC, PS, and AT deficiency are
found in a small minority of patients with thrombotic
disease, and these mutations are spread throughout
the corresponding genes. Both PC and PS deficiency
are transmitted in an autosomal dominant fashion.
Heterozygotes have mild protein deficiency and are at
risk for thrombosis, whereas homozygotes have severe
deficiency and a life-threatening clotting disorder
called neonatal purpura fulminans [1]. With the excep-
tion of specific mutations that lead to reduced affinity
for heparin, homozygous deletions for AT appear to
be lethal.

This chapter highlights the use of molecular technol-
ogies in evaluating individuals with disorders of
hemostasis. This will include disorders that increase
the risk of thrombosis such as the factor V Leiden
(FVL) and prothrombin (PT) G20210A gene mutations
and genetic diseases that cause significant bleeding

including hemophilia A (HA), hemophilia B (HB), and
von Willebrand disease (vWD). Other less common
coagulation disorders in which molecular mechanisms
have been elucidated will be discussed including
inherited disorders of platelet function.

MOLECULAR TARGETS

The pathogenesis of venous thromboembolism, a
condition that affects a large number of individuals, is
often associated with acquired and/or genetic risk fac-
tors [2]. These risk factors are generally associated
with either the overexpression of procoagulant pro-
teins or a reduction in proteins with anticoagulant
properties. The most common acquired conditions
associated with thrombosis include oral contraceptive
use, estrogen therapy, pregnancy including the post-
partum state, the antiphospholipid syndrome, chemo-
therapy, and malignancy. The latter includes Janus
kinase 2 (JAK2) mutations found in certain cancers.
Inherited germline mutations have also been linked to
thrombophilia and these disorders will be discussed
in detail.

Factor 5 (F5) Gene Mutations

Factor V (FV) is a procoagulant molecule that inter-
acts with other clotting proteins including activated
factor X and PT to increase the production of throm-
bin, the key hemostatic enzyme that converts soluble
fibrinogen to a fibrin clot [3]. Mutations in the gene
that encodes FV, F5, have been extensively studied as
risk factors for thrombosis. Activated protein C (APC)
plays an important role as an anticoagulant because it
inactivates FV through a specific cleavage site. A single
nucleotide mutation in the F5 gene (FVL mutation)
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results in an arginine (R) to glutamine (Q) substitution
at position 506 of the FV protein (R506Q). The mutant
FV protein is relatively resistant to degradation by
APC. The lower rate of FV inactivation increases the
risk of thromboembolism by increasing thrombin pro-
duction and subsequent clot formation [4,5]. Over 5%
of FVL heterozygotes in the general population will
experience venous thrombosis during their lifetime [6].
General recommendations for FVL mutation testing
have been proposed (Table 18.2) [7,8]. Other rare F5

FIGURE 18.1 Classical clotting cascade and associated defects.

TABLE 18.1 Major Coagulation Proteins and Genes

Gene name

Gene

symbol

Gene

location

Genetic disorders

(phenotype)

Coagulation
factor VIII
(antihemophilic
factor, procoagulant
component)

F8 Xq28 Hemophilia A
(FVIII deficiency,
bleeding)

Coagulation factor
IX (Christmas
factor)

F9 Xq27.1�q27.2 Hemophilia B (FIX
deficiency,
bleeding)

Coagulation factor
V (proaccelerin,
labile factor)

F5 1q23 FVL mutation
(thrombophilia)

FV deficiency
(bleeding)

Coagulation
factor XI

F11 4q35.2 Hemophilia C (FXI
deficiency,
bleeding)

Coagulation
factor II
(prothrombin, PT)

F2 11p11 PT 20210 mutations
(thrombophilia)

Prothrombin
deficiency
(bleeding)

Coagulation factor
XII (Hageman
factor)

F12 5q35.3 Hereditary
angioedema type III
(swelling,
angioedema)

Coagulation
factor X

F10 13q34 Factor X deficiency
(bleeding)

(Continued)

TABLE 18.1 (Continued)

Gene name

Gene

symbol

Gene

location

Genetic disorders

(phenotype)

Coagulation
factor VII

F7 13q34 Factor VII
deficiency
(bleeding)

Kallikrein B,
plasma (Fletcher
factor) 1

KLKB1 4q35 KLKB1 mutations
(generally
asymptomatic)

Protein S (alpha) PROS1 3q11.2 Protein S deficiency
(thrombophilia)

Protein C
(inactivator of
coagulation factors
Va and VIIIa)

PROC 2q13-q14 Protein C
deficiency
(thrombophilia)

Serpin peptidase
inhibitor, clade C
(antithrombin)

SERPINC1 1q25.1 Hereditary
antithrombin
deficiency
(thrombophilia)
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variants, such as the heterozygous G1689A [9] and
C1690T [10] mutations, are not typically detected by
some commercially available in vitro diagnostic assays
and if present, may produce an invalid or error result.
In these circumstances, bidirectional sequencing may
be necessary for confirmation. However, these muta-
tions may also result in FV proteins that are resistant
to APC. For this reason, some laboratories may screen
patients with thrombophilia for APC resistance using
coagulation-based assays as a first-line testing instead
molecular assays that detect only the FVL mutation.

Factor 2 (F2) Gene Mutations

PT (coagulation factor II) is the precursor of throm-
bin, the end-product of the coagulation cascade that
converts soluble fibrinogen to a fibrin clot. PT is
encoded by the F2 gene, and a specific mutation in the
F2 gene, PT G20210A, is associated with an increased
risk of deep venous and cerebral venous thromboem-
bolism attributed to enhanced plasma PT activity [11].
The point mutation, lying within the 3’ untranslated
region, results in mRNA accumulation and increased
synthesis of PT and subsequently, thrombin [12,13].
Approximately 2% of the US population are carriers of
this mutation, which is most frequently observed in
Caucasians [14]. PT protein activity can be measured
directly in plasma but these tests cannot be used to
detect PT G20210A gene mutation carriers because
their PT activity overlaps those seen in individuals

lacking the mutation; molecular analysis is required
[15]. It is recommended that testing for PT G20210A
mutations be considered whenever testing for FVL
mutations is indicated (Table 18.2) [7]. In addition to
the G20210A mutation, other rare mutations in the F2
gene have been reported (eg, PT C20209) that are of
uncertain significance [16]. It is important that clinical
assays be designed to clearly distinguish clinically sig-
nificant G20210A abnormalities from nonsignificant
polymorphisms. As with F5 mutations, these other
mutations can interfere with the performance of some
assays used by clinical laboratories, producing invalid
or error results. Again, resolving these cases may
require repeating the test using different primers or an
alternate technology such as bidirectional sequencing.

Methylenetetrahydrofolate Reductase Mutations

The conversion of 5,10-methylenetetrahydrofolate to
folate, a cosubstrate for homocysteine remethylation to
methionine, is catalyzed by the enzyme 5,10-methyle-
netetrahydrofolate reductase (MTHFR). Methionine is
then converted to S-adenosylmethionine, which func-
tions as an essential methyl donor. A thermolabile var-
iant C665T (p.Ala222Val, more commonly referred to
as C677T) and the A1286C (p.Glu429Ala) variant are
two common polymorphic genetic variants that encode
for forms of this enzyme with decreased enzymatic
activity [17,18]. Approximately 25% of Hispanics and
10�15% of North American Caucasians are homozy-
gous for the thermolabile variant [19]. C665T and
C1286A are in linkage disequilibrium with each other.
Therefore, a combination of both variants is usually
seen only in individuals who are compound heterozy-
gotes in the trans position. Combined homozygosity
for one variant and heterozygosity for the other variant
is not uncommon [20]. It was originally thought that
reduced MTHFR activity led to hyperhomocysteine-
mia, which may lead to an increased risk for coronary
heart disease, venous thromboembolism, and recurrent
pregnancy loss [21�23]. A recent meta-analysis chal-
lenged the hypothesis that long-term moderately ele-
vated homocysteine levels have any effect on
cardiovascular disease [24]. As a result of these and
other studies, the American College of Medical
Genetics (ACMG) has issued a practice guideline that
does not recommend MTHFR testing as part of the
routine evaluation of patients with thrombophilia test-
ing because of the lack of clinical utility [25].

AT Gene (AT Deficiency)

AT is a serine protease inhibitor that inactivates
thrombin and factor Xa. AT deficiency is an

TABLE 18.2 Recommendations for FVL Mutation Testing

GENERAL RECOMMENDATIONS FOR FVL MUTATION
TESTING

• Venous thrombosis in patient ,50 years old
• Recurrent venous thrombosis
• Relatives of patients who had venous thrombosis at ,50 years

of age
• Venous thrombosis and strong family history of thrombosis
• Venous thrombosis during pregnancy or while taking oral

contraceptives
• Myocardial infarction in women ,50 years old who smoke
• Thrombosis in unusual locations (eg, mesenteric, cerebral,

hepatic veins).

MUTATION TESTING MAY BE CONSIDERED IN THE
FOLLOWING SITUATIONS

• Venous thrombosis, age .50, except when active malignancy
is present

• Relatives of individuals known to have FVL. Knowledge that they
have FVL may influence management of pregnancy and may be
a factor in decision-making regarding oral contraceptive use

• Women with recurrent pregnancy loss or unexplained severe
preeclampsia, placental abruption, intrauterine fetal growth
retardation, or stillbirth. Knowledge of FVL carrier status may
influence management of future pregnancies.
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uncommon disorder that may be congenital or
acquired and has a prevalence of approximately of
1:500 to 1:5000 [26�28]. Congenital AT deficiency is
typically inherited as an autosomal dominant disorder
and has variable clinical penetrance [29]. The gene for
AT, SERPINC1, is located on chromosome 1q23.1�23
and is 13.5 kb in length containing seven exons [30].
Over 120 mutations associated with congenital AT
deficiency have been identified. Type I AT deficiencies
are caused by heterozygous mutations that cause
reduced synthesis of a functionally active AT protein
[31]. Immunologic (antigenic) and functional AT levels
are 50% or less of normal. Homozygous type I AT defi-
ciency is thought to be incompatible with life [32].
Type II deficiencies are associated with a qualitative
defect in which AT is dysfunctional. These mutations
are heterozygous and patients typically have normal
AT antigen levels but decreased functional AT activity.

There are three subtypes of type II deficiency
(IIa, IIb, IIc), which are categorized based on the
mutation-binding sites. Type IIb, the most common
type II deficiency, is due to a defect in the heparin-
binding region of AT. Although less common, the IIa
type caused by mutations in the thrombin-binding site
is more thrombogenic. Type IIc deficiencies include a
pleotropic group of mutations located close to the reac-
tive loop site in the AT gene [33]. Genetic testing is not
usually performed in routine clinical practice.
However, genetic testing may be considered to confirm
the presence of a congenital defect in patients with
quantitative or qualitative deficiencies as determined
by antigenic and/or functional assays. Since type II
deficiencies have mutations located in specific areas of
the SEPINC1 gene, targeted mutation testing may be
appropriate. Type I deficiency is associated with muta-
tions throughout the AT gene and may require full
gene sequencing for detection [34].

Cytochrome P4502C9 and Vitamin K
Epoxide Reductase

Warfarin has a narrow therapeutic range and unto-
ward effects including serious bleeding are common.
At least 30 genes may be involved in warfarin metabo-
lism and differences in expression of these genes may
explain the wide variation in warfarin doses needed to
achieve a therapeutic effect [35]. By identifying genetic
polymorphisms that affect the metabolism or action
of warfarin, it may be possible to tailor dosing to more
rapidly achieve a therapeutic drug level as measured
by the international normalized ratio (INR).
Maintaining a therapeutic INR may minimize both
bleeding risk from over-anticoagulation and throm-
botic risk from under-coagulation. The two most

important genes implicated in warfarin sensitivity are
cytochrome P4502C9 (CYP2C9) and vitamin K epoxide
reductase complex 1 (VKORC1) [36].

The VKORC1 gene located on chromosome 16 pro-
duces an enzyme, VKOR, that reduces vitamin K 2,3-
epoxide to an enzymatically activated form required for
the posttranslational modification of vitamin K depen-
dent coagulation factors. Warfarin decreases VKOR
activity, which lowers levels of these coagulation fac-
tors. Thus, polymorphisms of the VKORC1 gene,
including a promoter polymorphism (21639G.A) and
an exonic polymorphism (C1173T), result in warfarin
sensitivity in which lower drug doses are needed to
produce an anticoagulant effect. The contribution of the
VKORC1 genotype to the variability in warfarin
response has been estimated between 15% and 30%
[37]. Variation is also observed between ethnic groups,
with very few African-Americans but approximately
80% of Chinese being homozygous carriers of the
warfarin-sensitive VKORC1 mutant AA genotype [38].

The highly polymorphic CYP2C9 gene located on
chromosome 10 encodes an enzyme that metabolizes the
more potent S-isomer of warfarin. Polymorphisms of the
CYP2C9 gene are associated with reduced enzymatic
activity, resulting in significant reductions in drug
metabolism [39,40]. With reduced warfarin clearance,
lower warfarin doses are required to achieve a therapeu-
tic INR. The most common allelic variants in Caucasians
are CYP2C9�2 (C430T) and CYP2C9�3 (A1075C), which
result in about 70% and 20% of the wild-type enzyme
activity, respectively. These polymorphisms can be
detected using various methodologies.

Pharmacogenomic (PGx) algorithms incorporating
VKORC1, CYP2C9�2, and CYP2C9�3 polymorphism
testing have been developed to help guide warfarin
dosing based on phenotypic differences in drug metab-
olism [41�45]. Adding genetic data appears to par-
tially explain variation in warfarin response not
predicted based on clinical parameters alone, even
across racially diverse groups [46,47]. A retrospective
international trial used mathematical models to dose
warfarin that were based on either clinical factors
alone or a combination of clinical and genetic factors.
This study found that stable warfarin doses were bet-
ter predicted by the PGx algorithm—which included
both clinical and genetic factors—than by clinical fac-
tors alone [48]. Several studies suggest that warfarin
can be dosed more precisely when genotypic informa-
tion is available, including a small number of prospec-
tive trials that have associated genotype-specific
dosing with decreased time to achieve a target INR
with fewer dose changes. However, the utility of PGx-
based warfarin dosing remains controversial. A large
randomized controlled trial did not observe a reduc-
tion in nontherapeutic INRs when comparing standard
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and PGx-guided warfarin dosing, although PGx-
guided dosing did provide smaller and fewer dosing
changes [41]. Two larger studies comparing PGx-
guided dosing to standard-of-care dosing reached
opposite conclusions [49,50]. The conflicting studies
regarding PGx-based drug dosing guided by CYP2C9
and VORC1 polymorphism status could be due to yet
unidentified factors that alter warfarin efficacy [51].
Most PGx trials exclude individuals with coexisting
morbidity or who are receiving other medications, fac-
tors that clearly affect drug metabolism. Algorithms
used to dose warfarin may become more complex
when patients are further stratified based on comorbid
conditions and other genetic predispositions for clot-
ting such as FVL and PT gene mutations [52].

An additional obstacle for the widespread adoption
of PGx testing for dosing warfarin is the difficulty prov-
ing improvements in health outcomes or cost. Relative
to the targeted therapies used in oncology, warfarin is a
relatively inexpensive drug. Many clinicians who pre-
scribe warfarin are not convinced that PGx testing will
improve their ability to achieve warfarin therapeutic
levels, despite the inclusion of this information in warfa-
rin labeling by the FDA. Several professional societies
including the ACMG and the American College of
Chest Physicians do not currently recommend routine
screening of patients prior to warfarin treatment [53,54].
The increasing use of platelet inhibitors and alternative
anticoagulants (eg, direct oral anticoagulants) that do
not require monitoring has also hindered adoption of
testing for warfarin sensitivity [55].

Factor 8 Gene (HA)

HA is an X-linked recessive bleeding disorder most
commonly caused by mutations in the F8 gene that
result in reduced production of FVIII. The severity of
the clinical phenotype correlates with residual FVIII
activity, ranging from less than 1% for severe disease,
1�5% for moderate bleeding, and 5�40% for milder
forms [56]. In general, carriers of HA mutations have
FVIII levels of over 35% which may not be detected by
routine screening tests like the activated partial throm-
boplastin time (aPTT) that has varying sensitivity to
FVIII levels. As an X-linked recessive disorder, HA is
much more common in men than women. However,
approximately 10% of female carriers of HA mutations
have low FVIII clotting activity that causes unexpected
bleeding. This includes women with Turner syndrome
(45X) or abnormal X-inactivation. Other very rare
causes of reduced FVIII activity in women include
homozygosity, a translocation between the X chromo-
some and an autosome involving a breakpoint within
the F8 gene, and uniparental disomy [57].

The F8 gene, located on the short arm of the X chro-
mosome, contains 26 relatively short exons and encom-
passes about 186 kb. More than 1200 HA mutations of
various types have been identified in the F8 gene. The
intron 22 inversion (int22) is the most common F8 gene
defect encountered in severe HA, accounting for
approximately 40% of all observed mutations [58].
Within this intron are two genes, the 2 kb F8-associated
gene A, which is transcribed in the opposite direction
of F8, and the 2.5 kb F8-associated gene B, which is tran-
scribed in the same direction as F8. The functions of
these genes are not known. Additionally, the F8-
associated gene A is replicated in two other locations
external to the F8 gene (INT22H2 and INT22H3)
[59,60]. The net effect of this abnormality is to confer
the F8-associated gene A sequences the potential to inter-
act through homologous recombination to create a
gene rearrangement. With this rearrangement, the
int22 inversion places exons 1�22 of the F8 gene about
500 kb upstream of exon 23�26 and oriented in the
opposite direction [61,62]. Due to significant gene
disruption, patients with int22 inversions typically
demonstrate a severe form of HA. The recombinatorial
events leading to int22 inversions generally occur
during spermatogenesis [63].

Another common mutation includes an inversion
involving exon 1 that is present in about 5% of patients
with severe HA [64]. Many other mutations in the F8
gene have been reported in HA, which include reading
frame shifts leading to nonfunctional gene products
[65,66]. Large deletions in the F8 gene occur in approx-
imately 15% of HA cases. The severity of bleeding in
patients with large F8 deletions depends on the loca-
tion of the deletion and the resulting impact on exon
splicing. HA patients with large F8 deletions or non-
sense mutations also have a significant (40�60%) risk
of developing FVIII inhibitory antibodies [67,68]. In
these patients with large deletions, immune tolerance
therapy used to eliminate or weaken FVIII inhibitors is
less successful than for other mutations [69]. Thus, in
some cases sequencing of the F8 gene to determine the
specific molecular alteration responsible for HA may
help to predict clinical outcomes.

Diagnosing HA is typically straightforward and is
based on clinical and family bleeding history, and
measurements of plasma FVIII clotting activity.
Molecular testing is not usually indicated but may be
helpful in some circumstances. For example, difficul-
ties may arise in patients with mild FVIII deficiencies
and when other conditions coexist that can transiently
increase FVIII levels such as inflammatory processes,
pregnancy, oral contraceptive use, and exercise.
Patients with vWD may have low FVIII levels because
FVIII circulates bound to von Willebrand factor (vWF)
such that low vWF levels result in a shorter FVIII
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half-life. Rarely, a mutation in the ERGIC-53 gene that
encodes for a transport protein utilized by both FVIII
and FV may lead to a combined mild deficiency of
these two factors [70,71]. FVIII activity assays alone
cannot identify carriers of F8 mutations because refer-
ence ranges for FVIII testing are wide and some
carriers may have apparently normal FVIII levels.
Thus, molecular testing is required when clinicians
wish to determine carrier status. Molecular testing
may also be helpful identifying patients at higher risk
for developing FVIII inhibitors or characterizing the
specific F8 mutation in family members of a female
carrier who may become pregnant [72]. The molecular
diagnosis of HA in cases not caused by the common
inversions may be more challenging because of the
size of the F8 gene and the heterogeneity of the muta-
tions spread across the gene. A database listing previ-
ously characterized mutations and polymorphisms in
the F8 gene is available to use in conjunction with
sequence data to diagnose HA [73].

In rare cases when extensive molecular testing can-
not identify a mutation, linkage analysis may be used
to trace the mutation through a pedigree. This method
is also employed in developing countries with limited
access to advanced molecular testing [74]. Linkage
analysis is a relatively cumbersome technique that
relies on access to accurate pedigree data and to sam-
ples from the proband and both parents. Furthermore,
linkage analysis confers the risk of revealing nonpater-
nity and genetic counseling should be offered before
the analysis is undertaken. Approximately 30% of
patients have spontaneous mutations and no family
history of disease. These cases presumably result from
de novo F8 mutations or from gene transmission
through several generations of asymptomatic female
carriers. Other diagnostic difficulties arise when a
mother is germline mosaic for an F8 mutation. This
occurs when the mutation is present in only a subpop-
ulation of her germ cells. In this situation, the mutation
cannot be easily detected in blood samples and the
risk for her offspring cannot be precisely quantified,
although the risk appears to be less than 50% [75]. If a
family-specific mutation is detected, at-risk male rela-
tives can be assessed using an FVIII activity assay or a
molecular assay specific for the familial mutation.
Testing of female relatives is performed using molecu-
lar techniques.

Factor 9 Gene (HB)

HB is an X-linked recessive bleeding disorder
caused by a deficiency of coagulation factor 9 (FIX)
that is clinically identical to HA. The F9 gene is located
on Xq27.1�q27.2 and contains eight exons. Various F9

mutations have been described including several pro-
moter region mutations (eg, HB Leyden 1, 2, 3) that
are associated with a phenotype characterized by
severe disease at birth [76,77]. Several mutations that
affect the alanine�10 loci confer increased sensitivity
to warfarin treatment and are associated with a dispro-
portionately prolonged aPTT [78].

The diagnosis of HB is established by clinical his-
tory and by measuring plasma FIX activity, in the
same way history and FVIII levels are used to diagnose
HA. Vitamin K deficiency should be excluded because
deficiency of this vitamin results in lower levels of FIX
and other vitamin-K-dependent proteins. As in HA,
molecular testing is required to identify carriers of FIX
mutations with normal or near-normal FIX activity.
Knowledge of mutation status will not directly affect
clinical management. However, it may help predict the
risk of developing FIX inhibitors or anaphylactic reac-
tions during FIX replacement therapy [79]. About 25%
of HB patients have one of three founder mutations
(Gly60Ser, Ile397Thr, or Thr296Met), and other muta-
tions have been reported [80]. F9 mutation testing may
incorporate an initial test for the three most common
mutations. If these mutations are not found in a patient
with severe HB, the functional regions of the F9 gene
can be screened. Sequencing of the F9 gene is clinically
available.

Factor 11 Gene (Hemophilia C)

Factor 11 (FXI) is involved in normal hemostasis
and upon activation by factor 12a, thrombin, or by
self-activation, FXIa cleaves FIX in the intrinsic coagu-
lation pathway [81]. FXI deficiency can be congenital
or acquired. Congenital FXI deficiency is a rare bleed-
ing disorder with an overall estimated prevalence of
one in a million [82], with a higher frequency (1:450)
among Ashkenazim [83]. Generally, FXI deficiency is
inherited as an autosomal recessive trait. However,
due to the dimeric structure of circulating FXI, an auto-
somal dominant form has been described presumably
due to a dominant negative effect [84]. Severe FXI defi-
ciency is associated with a plasma FXI activity less
than 20% of normal and is often discovered during
presurgical testing when the patient’s aPTT is elevated
[85]. Patients with FXI deficiency may be asymptom-
atic and those with abnormal bleeding usually have
symptoms milder than those seen in HA or HB.
Bleeding typically occurs following injury and the
extent of bleeding correlates better with the site of
injury rather than the genotype itself [86].
Interestingly, FXI deficiency may have a protective
effect against ischemic stroke [87]. The F11 gene is
23.6 kb, contains 15 exons, and is located at the end of
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the long arm of chromosome 4 (4q35.2) [88]. More than
220 mutations have been described within the F11
gene. In Ashkenazi Jewish populations, there are two
common mutations accounting for 95% of cases,
Glu117-stop (type II) and Phe283Leu (type III).
However, in the non-Ashkenazim population, there is
a relatively even distribution of mutations throughout
the gene [82]. Testing for the underlying F11 mutations
may be warranted in patients with low FXI activity
levels (B1%) as these patients may be prone to
develop inhibitors against FXI following factor replace-
ment therapy. Genetic testing for F11 mutations typi-
cally focuses on the founder mutations that are
common in Ashkenazi Jewish patients—expanded
gene sequencing may be required in other populations.

vWF Gene (vWD)

vWD is the most commonly recognized inherited
bleeding disorder caused by either quantitative (types
1 and 3) or qualitative (type 2) abnormalities of vWF, a
multimeric glycoprotein that plays a critical role in pri-
mary hemostasis. Following binding to the platelet gly-
coprotein Ib receptor, vWF forms a bridge between the
platelet surface and the subendothelial collagen
exposed by vascular injury. vWF consists of low, inter-
mediate, and high-molecular-weight multimers. The
higher weight forms are more efficient adhesive mole-
cules [89]. Acquired forms of vWD caused by struc-
tural or functional defects in vWF that are secondary
to autoimmune and malignant diseases will not be dis-
cussed. The initial diagnosis of inherited vWD is made
using laboratory tests for vWF activity (eg, ristocetin
cofactor activity), vWF antigen levels, FVIII clotting
activity, vWF multimer analysis, and platelet function
tests [90]. The vWF gene, located on the short arm of
chromosome 12 (12p13.3), is approximately 180 kb in
size and consists of 52 exons.

Type I vWD is the most common form of vWD and
is associated with a quantitative defect in structurally
normal vWF. The disorder is usually inherited in an
autosomal dominant manner with variable pene-
trance and clinical heterogeneity that can complicate
pedigree analysis. Symptoms of type I vWD are often
mild and patients may not be diagnosed until after
they bleed excessively following trauma or surgery.
Laboratory testing for type I vWD can be complicated
by the fact the vWF levels can increase in response to
inflammation, stress, infection, hormone therapy,
pregnancy, exercise, surgical procedures, and liver
disease. Therefore, low normal levels of vWF may not
exclude mild vWD. Over 100 different mutations
have been associated with type 1 vWD. However, the
mutations leading to type 1 vWD are not well

characterized in terms of genotype�phenotype corre-
lation. Locus heterogeneity for type 1 vWD involving
genes other than the vWF gene further complicates
the interpretation of genetic testing [91,92]. For these
reasons, genetic testing for type 1 vWD is usually of
little clinical value.

The type 2 vWD subtypes (2A, 2B, 2M, 2N) result
from a primary qualitative abnormality of vWF. The
most common type 2 subtypes, 2A and 2B, are inher-
ited in an autosomal dominant fashion. Type 2A cases
typically manifest normal or mildly reduced plasma
levels of vWF antigen and FVIII, but have reduced
vWF activity levels that are discordant with the vWF
antigen levels. In addition, type 2A cases demonstrate
significant reductions in high- and intermediate-
weight multimer complexes. Numerous mutations
have been described in type 2A vWD, the majority of
which are missense mutations. Approximately 80% of
the identified mutations are found in exon 28.
Common mutations in exon 28 include 4517C.T,
4789C.T, and 4790G.A [93]. These mutations effect
the A2 domain of vWF. Large deletions have not been
reported in association with type 2A vWD.

Type 2B patients have a qualitatively abnormal vWF
with an increased affinity for the platelet glycoprotein
Ib. As the platelets bind to vWF multimers they are
rapidly cleared from the circulation, resulting in
thrombocytopenia. Like type 2A, there is significant
reduction in high- and intermediate-weight multimer
complexes and a disproportional decrease in vWF
activity compared to vWF antigen levels. As platelet
counts can vary over time in individuals with type 2B
vWD, platelet aggregation studies are necessary to dis-
tinguish these patients from those with type 2A vWD.
There are approximately 25 mutations currently associ-
ated with type 2B vWD and all are located in exon 28.
The most commonly reported mutations include
C3916T, C3922T, G3946A, and G4022A. These gain-of-
function mutations are located in the Gp Ib-binding
site in the A1 domain of the protein. It is thought that
these mutations may inactivate specific ligand-binding
sites or disrupt the regulation of vWF binding to plate-
lets [90]. Sequencing exon 28 of the vWD gene should
identify the majority of mutations in type 2A and 2B
vWD. Distinguishing type 2B from 2A vWD is impor-
tant due to the differences in clinical management.
Specifically, patients with type 2B vWD may experi-
ence worsening thrombocytopenia when administered
desamino-8-D-arginine vasopressin [94,95]. Since most
mutations in both type 2A and 2B vWD are clustered
in exon 28 of the vWF gene, sequencing studies may be
specifically targeted to this exon [96]. However, geno-
type�phenotype correlation is not always possible
since many loci have not yet been characterized at a
functional level.
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Type 2M vWD patients have decreased vWF activ-
ity levels with normal vWF antigen levels and FVIII
activity, and multimeric studies are usually normal
[97]. Over 20 mutations are associated with type 2M
vWD, with more than 80% of these located in exon 28.
Type 2N (ie, Normandy variant) vWD is an autosomal
recessive disorder characterized by a decreased half-
life of FVIII. Approximately 30 different mutations
have been identified with type 2N vWD, and 40% of
these are found in exon 18. Common mutations
reported include 2372C.T in exon 18, 2446C.T in
exon 19, and 2561G.A in exon 20. These mutations
correspond to deficiencies in the D’-D3 region of vWF
which involves the FVIII-binding domain [98]. This
results in decreased or absent binding of FVIII to vWF,
causing rapid degeneration of FVIII. Patients typically
present with low FVIII activity levels of approximately
5�40% of normal. In these cases, it is often important
to differentiate this disorder from HA through use of
molecular techniques [99].

Type 3 vWD is a severe autosomal recessive bleed-
ing disorder. Most affected individuals are compound
heterozygotes for mutations in the vWF gene.
However, homozygous individuals have been identi-
fied in consanguineous pedigrees. Patients with type 3
vWD demonstrate an absence of vWF with markedly
decreased FVIII levels. Mutations in type 3 vWD are
well characterized, with over 90 types reported.
Diagnosis and clinical management of type 3 vWD
does not require molecular testing, although knowl-
edge of specific mutations may be useful in genetic
counseling and prenatal diagnosis [100].

Genes Associated with Polycythemia and
Coagulopathy

Polycythemia is defined as an increase in peripheral
blood red blood cells (RBCs) as demonstrated by
increased hemoglobin content, hematocrit, and RBC
counts after adjusting for altitude, gender, and/or
race [101]. Polycythemia can be primary/congenital
(germline mutations) or secondary/acquired (somatic
mutations). Molecular abnormalities have been char-
acterized in specific entities of both types. Primary
polycythemias associated with coagulopathies include
a broad group of hereditary disorders including pri-
mary familial polycythemia (benign erythrocytosis)
and Chuvash polycythemia. Acquired polycythemia
includes the myeloproliferative neoplasms associated
with JAK2 mutations.

Acquired polycythemia is seen in patients with
myeloproliferative neoplasms (MPNs) such as polycy-
themia vera (PV) and essential thrombocytosis (ET).
Thrombosis is a significant cause of morbidity and

mortality in these patients and the initial thrombotic
event may occur at the time of diagnosis or during the
treatment period [102]. A recent study from the Italian
Group for Haematological Diseases described a recur-
rence rate of 5.6% per patient-year and a cumulative
10-year probability of approximately 50% for a throm-
botic event in patients with PV and ET [103].
Cardiovascular events appear to significantly affect
patients with MPN and evidence is building for
supporting a role of JAK2V617F mutation as a risk
factor for thrombosis irrespective of the patient’s spe-
cific type of MPN [104�106]. Additionally, thrombosis
has been associated with both JAK2 exon 12 mutations
[107] and calreticulin gene mutations, although the
thrombotic risk appears smaller in the latter [108].
Testing for JAK2 mutations is routinely performed as
part of the evaluation of patients with an MPN.
Although there are no FDA-approved assays for JAK2
mutations currently available, testing is performed
by many reference laboratories using laboratory-
developed tests.

Congenital polycythemia is suspected in patients
with either an early onset of or family history of poly-
cythemia. Congenital erythrocytosis includes patients
with germline mutations that result in: (1) enhanced
responsiveness of the erythropoietin (EPO) receptor,
(2) disrupted intracellular oxygen sensing as occurs in
mutations involving the von Hippel-Lindau (VHL)
tumor suppressor gene, or (3) increased affinity of
hemoglobin for oxygen associated with some hemoglo-
binopathies [101]. Of these disorders, primary familial
polycythemia and Chuvash-type polycythemia (CTP)
can be associated with thrombosis.

Primary familial polycythemia (benign erythrocyto-
sis) is an autosomal dominant disorder which may
result from mutations in the gene coding for the EPO
receptor. It is characterized by an increased absolute
RBC mass due to uncontrolled RBC production in the
background of low EPO levels [109]. Over 10 different
mutations have been described in single families [110].
Most identified EPO receptor mutations are linked to a
truncated C-terminal cytoplasmic domain of the recep-
tor that results in heightened sensitivity to circulating
EPO because of a lack of negative feedback regulation
[111,112]. These patients are at an increased risk of
thrombotic events [113].

CTP, or autosomal recessive benign congenital
polycythemia, is a rare disorder associated with muta-
tions in the VHL gene present on chromosome 3p25.
It occurs worldwide and is endemic in the Chuvash
region of central Russia [114]. This disorder is associated
with a C-T missense mutation at amino acid residue
200 resulting in an arginine to tryptophan substitution.
VHL protein is involved in modulating ubiquitination
and the resulting destruction of hypoxia-inducible factor
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1 subunit alpha (HIF1α). This mutation is thought to
decrease interactions between VHL protein and HIF1α,
thereby decreasing the rate of HIF1α degradation. This
can lead to increased expression of downstream gene
targets including EPO, solute carrier family 2 (GLUT1),
transferrin, transferrin receptor (p90, CD71), and vascu-
lar endothelial growth factor [115]. Other rare mutations
in the VHL gene associated with CTP have been identi-
fied including 235C.T, 562C.G, and 598C.T muta-
tions [110]. CTP is clinically associated with arterial and
venous thrombosis and also with major bleeding
episodes [114]. Resources are available describing the
clinical utility of mutation testing for familial polycythe-
mias including CTP [116].

Genes Affecting Platelet Function

Platelets play a key role in primary hemostasis and
variations in platelet genes that result in abnormal
platelet function and/or thrombocytopenia can lead to
a bleeding phenotype. The loci responsible for many of
these platelet function defects have been identified
(Table 18.3) [117�121]. Of these, the most studied gene
variants are those that encode platelet receptors, such
as the integrin αIIb gene (ITGA2B) or the integrin β3
gene (ITGB3). Abnormalities of these genes result in
Glanzmann thrombasthenia, a disorder of platelet
aggregation in which platelets cannot bind fibrinogen
normally. In Bernard�Soulier syndrome, mutations in
genes encoding platelet receptors (GP1BA, GP1BB,
GP9) that interact with vWF lead to pathologic bleed-
ing. Mutations in several genes involved in the
formation of lysosomal-related organelles are found in
patients with Hermansky�Pudlak syndrome (HPS), a
bleeding disorder associated with oculocutaneous

albinism. Next-generation sequencing (NGS) has been
used to identify a pathogenic single-nucleotide varia-
tion in one of the HPS genes (HPS4) in a patient with
this disorder. However, this technology is not
routinely used when evaluating platelet function disor-
ders [122]. RNA and exome sequencing were used to
identify NBEAL2 as the causative gene in gray platelet
syndrome [123], a disease in which platelets are defi-
cient in granules that contain proteins (eg, platelet fac-
tor 4, vWF) critical for normal platelet responses to
injury. Wiskott-Aldrich syndrome (WAS) results from
mutations in the WAS gene located on the X chromo-
some, which results in disruption of actin cytoskeletal
organization and signaling. Gene sequencing has been
used to identify 62 unique WAS mutations including
17 novel sequence variants in 87 affected males and
48 female carriers [124]. Overall, characterization of
inherited platelet disorders has been challenging
because of the rarity of these diseases and often lack of
correspondence between a genetic polymorphism and
the platelet phenotype. For these and other reasons,
testing for common sequence variants is currently of
little clinical utility.

CLINICAL UTILITY

The clinical utility of molecular-based assays used
to test patients with hemostatic disorders is most
clearly established for thrombotic disorders such as
FVL and factor II PT mutations. The role of molecular
testing for bleeding disorders is less clear as many of
these disorders are often screened for and diagnosed
using immunogenic and functional assays. Although
molecular testing has become more available for some

TABLE 18.3 Inherited Platelet Disorders

Platelet disorder Clinical findings Inheritance Etiology Molecular findings

Glanzmann
thrombasthenia

Spontaneous mucocutaneous
bleeding, excessive trauma
related bleeding

Autosomal recessive Quantitative or qualitative
deficiencies of integrins
αIIb and β3

Mutations in ITGA2B and
ITGB3

Bernard�Soulier
syndrome

Low platelet count,
abnormally large platelets,
often severe bleeding

Autosomal recessive
(biallelic) Autosomal
dominant (monoallelic)

Defects in glycoproteins
Ibα, Ibβ, IX

Mutations in GP1BA,
GP1BB, GP9

Hermansky�Pudlak
syndrome

Oculocutaneous albinism,
bleeding

Autosomal recessive Platelet storage pool defect
and lysosomal accumulation
of ceroid lipofuscin

Mutations in multiple
genes (AP3B1, BLOC,
HPS family)

Gray platelet
syndrome

Mild thrombocytopenia,
enlarged platelets, mild/
moderate bleeding

Autosomal recessive Reduced platelet α-granules Mutations in NBEAL2

Wiskott-Aldrich
syndrome

Thrombocytopenia, small
platelets, eczema, immune
disorders, malignancies

X-linked Abnormal actin cytoskeletal
organization and signaling

Mutations in the WAS
gene
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hemostatic disorders, these techniques are still
reserved for a small number of cases. Molecular testing
must be coordinated with clinical colleagues who will
need to interpret the results within the clinical context
and offer counseling as appropriate. With the advent
of targeted therapies based on specific genetic find-
ings, testing may become more commonplace for some
of the clotting disorders.

LIMITATIONS OF TESTING

In general, the basic technology utilized in molecu-
lar testing for coagulopathies (eg, FVL, factor II) has
not changed significantly in the past few years.
However, some testing has been discontinued due to
concerns regarding clinical utility. The greatest techno-
logical changes have arisen with the commercial adop-
tion of NGS, allowing for expanded menu offerings
utilizing this newer technology. As NGS technologies
become more widely accepted and affordable in the
clinical laboratory, targeted mutation assays or even
whole exome sequencing could be applied to hemosta-
sis testing [125]. These technologies could detect many
of the mutations described in this chapter in a single
assay. One important aspect that requires further clar-
ification in hemostatic and other disorders is the chal-
lenge determining the difference between mutations
that confer a disease phenotype and those genetic
polymorphisms that produce no adverse effects [126].
These technologies also have the potential to identify
new genetic variants of unclear significance [127].
Careful use of informatics approaches will be needed
to analyze novel sequence data related to coagulopa-
thies and to determine their clinical significance.
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INTRODUCTION

Cystic fibrosis (CF) is one of the most common life-
threatening autosomal recessive disorders affecting
approximately 1 in 2500 people of European Caucasian
descent [1]. Worldwide there are approximately 70,000
individuals affected with CF [2,3]. In the United States
alone, 30,000 individuals are affected with CF and an
additional 12 million people are CF carriers [4].
Typically, individuals affected with classic CF disease
survive into their 40s [5]. However, studies have
shown that early diagnosis and treatment of CF can
improve both survival and quality of life [6�8].

CF is caused by loss-of-function mutations in the CF
transmembrane conductance regulator (CFTR) gene
[9,10]. The CFTR gene encodes an ATP-binding cas-
sette (ABC) transporter protein called CFTR that is
expressed on the apical side of epithelia [11,12]. CFTR
functions as a low conductance chloride-selective chan-
nel and mediates electrolyte transport across epithelial
membranes. Therefore, the loss of CFTR function can
affect any organ system with epithelia. As a result, the
clinical manifestations of CF are widespread and can
include findings in the lungs, pancreas, intestine, hepa-
tobiliary systems, exocrine sweat glands, and male
genital tract [6,13]. Due to the broad variability of clini-
cal findings and disease severity, a clinical designation
of CFTR-related disorders has gained acceptance in the
general medical community to refer to the myriad
effects of the loss of CFTR function [14,15]. The wide
spectrum of clinical findings and disease severity in
CF and related disorders is not only due to multisys-
tem involvement, but also by the complexity of the
genetic variations in CFTR gene [13].

Clinical Criteria for Diagnosis of CF

Clinical diagnosis of CF requires that the patient
demonstrate one or more of the characteristic pheno-
typic features of CF (Table 19.1) plus evidence of
abnormality in CFTR protein function based on one
of the three laboratory criteria: [16,17] (1) presence of
two disease-causing mutations in the CFTR gene,
(2) two abnormal quantitative sweat chloride values
(.60 mEq/L) [18], and/or (3) transepithelial nasal
potential difference measurements characteristic of
CF [19]. Positive test results for any of these tests in
a symptomatic patient confirm a clinical diagnosis. It
is important to note that in prenatal samples and
newborns, a diagnosis of CF can be made based
solely on the identification of two disease-causing
mutations in the CFTR gene or (in the case of new-
borns) multiple abnormal sweat chloride values.
Sweat chloride testing is considered the gold stan-
dard for confirming a CF diagnosis and for the
majority of cases molecular testing is not strictly
required to support clinical diagnosis [18]. However,
in such situations molecular confirmation still carries
clinical utility in terms of confirming diagnosis and
enabling carrier testing and prenatal diagnosis
within the extended family. In some situations, indi-
viduals may demonstrate atypical (monosympto-
matic) disease symptoms and have sweat chloride
values that are inconclusive. These cases require
genetic analysis to identify the disease-causing muta-
tions and confirm a diagnosis of atypical CF. In addi-
tion, the recent development of FDA-approved
targeted drug therapy necessitates accurate CFTR
genetic testing [20�22].
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CFTR Gene and Mutation Spectrum

The CFTR gene was first identified in 1989 and was
met with great excitement that this discovery would
provide the tools necessary to do population-based
screening for CF [23]. However, due to gene complex-
ity and the wide spectrum of CFTR gene mutations,
CF screening did not become a reality for a decade
after the gene was described. CFTR (7q31.2) is a large
gene that spans 250 kb and contains a total of 27 exons
[24]. The most common (and first identified) CFTR
gene mutation, p.Phe508del (historically called ΔF508),
accounts for 70% of CF mutations among the non-
Jewish white population [25�27]. However, the distri-
bution of known CFTR mutations encompasses all
exons, introns, and regulatory regions of the gene.
Mutations in the CFTR gene are not limited to any spe-
cific class and can include missense, nonsense, frame-
shift, in-frame or out-of-frame insertions/deletions,
splicing, and promoter mutations.

Over 1900 CFTR gene variants have been cataloged
in the Sickkids CFTR mutation database [5]. However,

only a subset of the described variants are known to
be disease causing [28]. CFTR mutations have tradi-
tionally been classified into one of five categories.
Recently, class VI was added to the classification sys-
tem (Table 19.2). These classifications are solely based
on the effect that the mutation has on the CFTR protein
(eg, premature termination). Briefly, the six classes of
mutations are as follows:

Class I—Mutations that cause a premature stop
codon and result in defective CFTR protein
synthesis. Nonsense mutations, frameshift
mutations, large deletions, and splice junction
mutations are included in this category.
Collectively, they account approximately 10% of
CFTR mutations [29].
Class II—Mutations that lead to defective protein
trafficking or protein processing. The most common
CFTR mutation, p.Phe508del, some missense
mutations, and all in-frame deletion mutations fall
into this category.
Class III—Mutations that result in a defect in
channel regulation affecting chloride transport.
Class IV—Mutations that result in defective channel
conduction due to channel narrowing.
Class V—Mutations caused by splicing defects
resulting in the improper processing of mRNA. This
leads to a reduced amount of protein capable of
reaching the cell surface.
Class VI—Mutations that cause reduced stability of
the CFTR protein at the cell surface.

It is worth noting that some mutations may fall into
multiple categories. The most common CFTR gene
mutation, p.Phe508del, mainly results in misfolded
protein and is typically categorized as a class II muta-
tion. However, in some cases the CFTR protein with a
p.Phe508del mutation makes it to the apical surface,
but exhibits gating and conductance defects and would
classify as a class III and VI mutation [30,31].

TABLE 19.1 Common Clinical Symptoms of Cystic Fibrosis
Patients

• Pulmonary findings
• Chronic cough
• Recurrent lung infection
• Exertional dyspnea
• Bronchiectasis

• Gastrointestinal findings
• Meconium ileus
• Rectal prolapse
• Pancreatic insufficiency/recurrent pancreatitis
• Diabetes mellitus

• Infertility
• Azoospermia
• Congenital absence of the vas deferens

TABLE 19.2 Classification of CFTR Gene Mutations

Class I Class II Class III Class IV Class V Class VI

Functional
consequence

No protein synthesis Defective trafficking
or protein processing

Defect in channel
regulating or
“gating”

Altered channel
conductance

Reduced protein
synthesis

Reduced protein
stability

Molecular
defect

Nonsense, frameshift,
deletions, splicing

Missense, in-frame
deletions

Missense Missense Splicing,
missense

Varies

Examples p.Trp1282�

p.Arg553�

p.Gly542�

c.1717-1G.A

p.Phe508del
p.Asn1303Lys

p.Gly551Asp
p.Gly551Ser
p.Gly1349Asp

p.Arg117His
p.Arg334Trp
p.Arg347Pro

c.27891 5G.A
p.Ala455Glu

p.Asn287Tyr
c.4278insA

236 19. MOLECULAR DIAGNOSIS OF CYSTIC FIBROSIS

III. MOLECULAR TESTING IN GENETIC DISEASE



Mutations in classes I, II, III, and VI are commonly
associated with severe impairment of channel function
and a severe disease phenotype. In contrast, CFTR pro-
tein function is usually preserved at some level in class
IV and V mutations. Individuals with mutations in
these two classes typically exhibit a milder phenotype.

Genotype�Phenotype Correlations

Genotype�phenotype correlations for CF are estab-
lished in the context of pancreatic function. The most
common CF-causing mutations can be categorized as
either pancreatic sufficient (PS) or pancreatic insuffi-
cient (PI). Typically, mutations in classes I, II, III, and
VI predict a PI phenotype, while classes IV and V pre-
dict a PS phenotype [32,33]. Individuals with at least
one mild mutation are usually PS, indicating that the
milder of the two mutations is dominant with respect
to pancreatic function. In contrast to the fairly accurate
genotype�pancreatic phenotype correlation, genoty-
pe�phenotype correlation for lung function in CF
patients is not an adequate method to predict disease
progression. Multiple studies have demonstrated that
individuals carrying identical CF mutations, even
those in the same family, can have different pulmo-
nary manifestations [4,34].

The mildest form of CF is a form of infertility
known as congenital bilateral absence of the vas defe-
rens (CBAVD). CBAVD is most commonly observed as
an isolated phenotype, but has also been described in
individuals with respiratory and/or pancreatic issues
[35,36]. Usually, individuals with CBAVD carry both a
severe and a mild (or very mild) CFTR gene mutation.

It is important to note that clinical manifestations of
CF are highly variable, complex, and influenced by
environmental factors and additional genetic factors
(eg, modifier genes) [37]. Caution should always be
applied when trying to utilize genotype information
(or mutation classification) to predict the clinical
course of the disease.

ACMG Guideline for CFTR Molecular Testing

As one of the most common severe autosomal reces-
sive disorders (see Table 19.3 for the carrier frequencies
in various ethnic groups), CF carrier screening has been
recommended by a number of professional organiza-
tions [38�41]. In 1997, the NIH published recommenda-
tions suggesting that all couples seeking reproductive
counseling should be offered genetic testing for CF [42].
The NIH recommendations also suggested that any
individual with a family history of CF or reproductive
partners of those with CF should be offered genetic test-
ing [43]. Subsequently, both the American College of

Medical Genetics (ACMG) and the American College of
Obstetricians and Gynecologists (ACOG) published
statements that recommended a universal, pan-ethnic
CFTR mutation screening panel for all individuals plan-
ning pregnancy or to pregnant females [38]. Based on
phenotypic severity and a population frequency more
than or equal to 0.1% in the general US population
affected with CF, a group of 25 mutations was selected
for the core mutation panel [44]. In 2004, the core panel
was updated and reduced to 23 CFTR gene mutations
(Table 19.4) [28].

Expanded Mutation Panels

Although expanded CFTR mutation panels are not
recommended by the ACMG, these panels have been
available since the earliest days of CF molecular testing
[45]. Currently, most clinical molecular diagnostics lab-
oratories offer a CF screening panel containing more
than the 23 ACMG-recommended mutations. In many
cases, these expanded panels are targeted to cover the
mutations most commonly seen in the local ethnic

TABLE 19.3 CFTR Mutation Carrier Risk by Ethnicity [44]

Ethnic group Detection rate

Risk before

testing

Risk after

negative result

Ashkenazi
Jewish

95% 1 in 25 B1 in 930

European
Caucasian

89% 1 in 25 B1 in 220

African
American

65% 1 in 65 B1 in 207

Hispanic
American

73% 1 in 46 B1 in 105

Asian American B30% 1 in 90 ���

���Based on p.Phe508del only. No additional data available.

TABLE 19.4 Mutations Recommended for CF Screening by the
ACMG

Missense Deletions Nonsense Frameshift Splicing

p.Gly85Glu p.Ile507del p.Gly542� c.2184delA c.6211 1G.T

p.Arg117His p.Phe508del p.Arg553� c.3659delC c.7111 1G.T

p.Arg334Trp p.Arg1162� c.17172 1G.A

p.Arg347Pro p.Trp1282� c.18981 1G.A

p.Ala455Glu c.27891 5G.A

p.Gly551Asp c.31201 1G.A

p.Arg560Thr c.38491 10 kb

p.Asn1303Lys
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groups (eg, Hispanic) resulting in an increase in clini-
cal sensitivity [46,47]. However, some reference labora-
tories offer expanded CF mutation screening panels
that test for variants that are not known with certainty
to be pathogenic. As a result, the ACMG has published
statements expressing concern about expanded CFTR
mutation panels [48,49]. The primary concerns con-
veyed by the ACMG were that the lack of available
information on some variants may increase the com-
plexity of variant reporting and that a negative test
result may give patients a false sense of security as no
assay provides 100% clinical sensitivity [48].

MOLECULAR TECHNOLOGIES

Platforms for Targeted CF Mutation Testing

There are multiple FDA-approved molecular testing
platforms that can be used for clinical molecular genetic
testing for CF. The decision of which testing platform to
implement in a clinical laboratory must take many fac-
tors into account. Some factors that should be taken into
consideration include (but are not limited to):

Required instrumentation—Is it already present in the
laboratory or will new equipment purchases be
necessary?
Flexibility of panel design—Is it a set mutation panel
or can it be tailored to include mutations relevant to
your patient population?
Analytical sensitivity/specificity
Dedicated technologist time—Is the process largely
automated or will it require more hands-on time
from a technologist?
Assay repeat rate

Most CF testing platforms are either multiplex PCR-
based or use a form of liquid array. Some of the com-
mercially available platforms available for CF testing
include (but are not limited to) the following. Most of
these platforms have comparable analytical sensitiv-
ity/specificity and no-call rates [50].

eSensor: This is a multiplex PCR-based method in
which patient DNA is amplified, converted to single-
stranded DNA, and loaded onto a microfluidics-based
cartridge. The cartridge is loaded onto a proprietary
detection platform where the single-stranded DNA is
hybridized to a signal probe and patient genotype is
generated through electrochemical detection [50,51].

InPlex CF: This is a multiplex method that utilizes
targeted oligos that anneal to target DNA sequences.
The oligos are specifically designed such that a one-base
overlapping structure is formed any time the oligo is
bound to template DNA. A proprietary enzyme is used
to cleave the overlapping structure which then binds to

a fluorescence resonance energy transfer probe to pro-
duce a signal that is used for genotyping [52].

Oligonucleotide ligation assay: This is a multiplex
method in which a set of probes target each single-
nucleotide polymorphism (SNP) region. One probe is
specific for the SNP site such that the terminal 3’ base
sits directly on the targeted mutation while a second
probe is designed to an upstream wild-type sequence.
When both probes hybridize to the target region liga-
tion can occur (Fig. 19.1). Ligated products are then

Template
DNA

Allele-specific probes
of variable length

WT allele

xxxx

xxxxx

xxxx

xxxx xxxxx

xxxxx

T

T
A

T
A

A

G

G
C

G
C

C

I. Probe hybridization

II. Ligation

Wild-type Heterozygous
mutant

Homozygous
mutant

III. Capillary electrophoresis

Ligase

Size Size Size

Ligase

Mutant allele

Common probe with
fluorescent 3′ tag

FIGURE 19.1 The oligonucleotide ligation assay (OLA). OLA
requires adjacent hybridization of both the allele-specific oligonucle-
otide (ASO) probe and a common probe. The specificity of the ASO
probe is determined by the terminal nucleotide at its 3’end which is
complementary to either the mutant nucleotide or the wild-type
allele. The common probe contains a fluorescent tag at the 3’ end
and this probe hybridizes to the nucleotide position adjacent to the
area of interest. In this example, (I) we show template DNA with
both a wild-type allele (T) and mutant allele (C). An ASO is designed
to hybridize to either the wild type or mutant allele. The 5’ end of
ASO can be attached with a nongenomic sequence to modify the size of
the generated product for separation allowing for the interrogation of
multiple targets in a single reaction. (II) The ASO hybridize to their
target allowing ligation with the adjacent common probe. (III) The
ligated allele-specific, fluorescent-labeled fragments can be separated by
capillary electrophoresis. Based on the size of the fragments, the mutant
and normal alleles can be determined and genotype can be assigned
accordingly. Source: Adapted from Abbott Molecular: http://www.abbottmo-
lecular.com/us/products/genetics/sequencing/cystic-fibrosis.html.
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separated electrophoretically and visualized. By using
different fluorescent labels and different product
lengths, it is possible to interrogate a number of targets
in a single reaction [44,53].

xTAG liquid bead array: A multiplex method that
combines PCR, primer extension, and flow cytometry.
The liquid bead array starts with a multiplex PCR tar-
geting all gene regions of interest. The PCR reaction
undergoes allele-specific primer extension where pro-
ducts are tagged with an xTAG universal sequence.
The universal xTAG sequence hybridizes to beads and
is sorted using a flow cell [44,52].

MassARRAY: A multiplex method that combines
PCR with matrix-assisted laser desorption/ioniza-
tion�time-of-flight mass spectrometry (MALDI-TOF).
Briefly, a PCR reaction is performed for the SNP-
containing region (typically designed to generate an
amplicon of approximately 100 bp). The amplicon is
subjected to a single-base extension or fragmentation
reaction to generate DNA fragments of different mass
and analyzed by MALDI-TOF. This method quantita-
tively measures genetic material and is able to detect
nucleic acid variation through the measurement of
sample mass [54].

Full Gene Sanger Sequencing and Multiplex
Ligation-Dependent Probe Amplification

CFTR full gene Sanger sequencing is considered to
be the gold standard for CF diagnostic testing. An ear-
lier study showed that more than 98% of CFTR muta-
tions can be identified by Sanger sequencing all exons,
intron exon junctions, regulatory, and promoter
regions, as well as specific intronic regions [55].
However, full gene sequencing is typically considered
to be a second-tier test as the majority of classically
affected individuals (depending on ethnicity) are
detected using a panel containing the 23 ACMG-
recommended mutations. It should also be noted that
individuals with atypical (mild or monosymptomatic)
CF may require sequencing for the detection of milder
mutations not included on screening panels [16].

CFTR gene deletion and duplication analysis is usu-
ally performed as the next tier of diagnostic testing fol-
lowing the negative findings of full gene Sanger
sequencing. Multiplex ligation-dependent probe ampli-
fication (MLPA) can detect large exonic level deletions
and duplications and is the most common method
used in clinical laboratories for this type of testing
[16,56�58]. As the name suggests, MLPA is a multi-
plex method that utilizes allele-specific probes that are
attached to a universal primer sequence and a stuffer
sequence of varying lengths (Fig. 19.2). The allele-
specific probes hybridize to adjacent areas of the target

DNA and subjected to a ligation reaction. Ligation only
occurs when both allele-specific probes are hybridized
to the target DNA. Following ligation, a PCR reaction is
performed and amplicons are analyzed by capillary
electrophoresis for visualization of results [59].

Future Platforms

In 2013 the FDA approved the first high-throughput
next-generation sequencer [60]. Next-generation
sequencing (NGS) is rapidly evolving to the point
where it is possible to sequence a patient’s entire
genome at a relatively low expense and in a time
frame fitting to a clinical laboratory. Therefore, it is
likely that NGS-based gene panels may become the
preferred platform for diagnosis in many clinical sce-
narios, including CF. The adaptation of an NGS-based

I. Probe hybridization

II. Ligation

III. PCR

PCR primer

Template DNA

Allele-specific probes

Stuffer sequence

FIGURE 19.2 Multiplex ligation-dependent probe amplification
(MLPA). For each target sequence/region, a pair of target-specific
probes (red) are designed for both the 5’ and 3’ sequences in the
region of interest such that they will hybridize adjacent to each other.
Attached to each of the probes is a universal primer sequence (black)
that allows for a multiplex PCR of all ligated probes in a single reac-
tion. Additionally, the 3’ probe also contains a stuffer sequence that
varies in length for every area of interest. This facilitates the physical
separation of each ligated product for analysis. Each MLPA reaction
occurs in a series of steps: (I) The target probes hybridize to dena-
tured (single-stranded) template DNA. (II) Ligation occurs only
when both of the targeted probes hybridize to target sequence. As a
result the left and right probes are ligated to yield a continuous
sequence flanked by the PCR primer sequences. (III) A multiplex
PCR is performed using the universal primer set attached to each
ligated probe set. The amplified products can then be separated by
size using capillary electrophoresis. Source: A detailed summary of the
MLPA assay can be found at https://www.mlpa.com/WebForms/
WebFormMain.aspx.
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panel allows for grouping together genes that cause
many disorders for a single expanded carrier testing
panel [61]. Many clinical laboratories have already
embraced this methodology to great success.

CLINICAL UTILITY

Molecular Genetic Testing

Testing for mutations in the CFTR gene is one of the
most common forms of genetic testing performed in
the United States. Genetic testing for CF is typically
divided into carrier screening, diagnostic testing (in
symptomatic individuals, prenatal samples in at-risk
pregnancies, and presymptomatic individuals), and
newborn screening [31]. In this section, we will discuss
these types of tests and the different testing modalities
utilized.

Carrier Screening for CF

CF carrier screening is one of the most commonly
ordered molecular genetic tests and has been consid-
ered a standard of care for prenatal patients in the
United States for many years. Given that the selection
criteria for the CFTR mutation screening panel estab-
lished by the ACMG and ACOG [38,40], it is crucial to
know a patient’s ethnicity and family history of CF.
For each individual the pretest carrier risk and test
sensitivity vary based on ethnicity (Table 19.3). It is
also important to note that given the complex ethnic
makeup in the United States, often the self-identified
ethnicity of the tested individual can be misleading
[62,63]. As such, it is good practice to provide general
ethnic carrier frequencies and residual carrier risks on
most negative CF carrier screening reports.

Carrier testing is preferably carried out before con-
ception. According to the ACOG recommendation
[38,41], CF carrier testing using a panel that contains
the 23 ACMG-recommended mutations should be
offered to all women of reproductive age, regardless of
ancestry. It is also recommended that a pretest evalua-
tion be carried out to identify the couples’ ethnicity
and family history of CF. Based on the ethnicity, a neg-
ative test result can significantly reduce the risk of
having a child affected with CF, but does not
completely eliminate the possibility. It should be noted
that regardless of the testing platform utilized, there is
always residual risk that the patient is a CFTR muta-
tion carrier [48,64].

Family History of CF

When an individual has a family history of CF, it
is important to determine and document the CFTR
gene mutations associated with disease in the family.

The risk of being a CFTR mutation carrier depends on
the degree of relationship between an affected individ-
ual and the patient. For example, the unaffected sibling
of an affected individual has a 2/3 chance of being a
CFTR mutation carrier. Likewise, a second-degree rela-
tives has 1/4 chance of being carrier. Individuals with
a family history of CF should be strongly encouraged
to seek genetic counseling so that an accurate assess-
ment of their a priori risk can be obtained.

Diagnostic Testing of Symptomatic Individuals

Individuals with symptoms of classic CF or atypical
CF (eg, CBAVD, pancreatitis) should be offered diag-
nostic testing for mutations in the CFTR gene.
Comprehensive CFTR gene testing in these individuals
can confirm or rule out a suspected diagnosis of CF. In
most clinical scenarios, diagnostic testing for CFTR
gene mutations uses a tiered approach. The first step
in this approach is to offer a targeted CFTR mutation
panel including the 23 ACMG-recommended muta-
tions. If this panel is negative or only a single mutation
identified then the patient undergoes full gene
sequencing of the CFTR gene which detects more than
98% of causative CFTR mutations [55]. However, deep
intronic mutations and large gene deletions cannot be
detected by DNA sequencing. Hence, the final step in
comprehensive CF testing is typically deletion/dupli-
cation analysis that is able to identify an additional
1�3% of CFTR mutations [65]. This three-tiered testing
method has a high clinical sensitivity (. 98%) across
all ethnicities [16,55] and is typically the preferred
approach for CF molecular diagnosis. It is important to
note that this tiered testing strategy is typically not
indicated for carrier screening because it is costly and
time-consuming.

Prenatal Diagnosis

When reproductive partners are both carriers of
CFTR gene mutation, they have 25% risk of having a
child affected with CF. In this clinical scenario, the
couple is often offered CF prenatal genetic testing.
Prenatal diagnosis of CF allows the medical team to
be prepared for any possible complications at the
time of birth and for disease management after birth.
Additionally, prenatal diagnosis allows the couple to
make termination decisions early in the pregnancy. It
is important to note that CFTR genotype alone cannot
predict the clinical course of disease. It is not uncom-
mon for a child with a molecular diagnosis of CF to
be born without clinical symptoms. Previous studies
have demonstrated that prenatal diagnosis identify-
ing two pathogenic mutations in the CFTR gene
establishes approximately 4.0% of newly diagnosed
individuals [5].
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Newborn Screening

Studies indicate that the early diagnosis of CF and
the subsequent monitoring of affected individuals
improve the overall health of these patients and result
in lower medical costs [8]. As a result, in 2009 newborn
screening for CF was added to the list of mandatory
diseases tested for in the United States [66]. Testing
methodologies used for newborn screening are typi-
cally capable of identifying both affected individuals,
as well as asymptomatic carriers. However, it is often
difficult to distinguish CF carriers from affected indivi-
duals using newborn screening methods alone.
Therefore, it is necessary for individuals suspected to
be either carriers or affected to move on from newborn
screening to a second-tier testing protocol that typi-
cally involves a molecular panel that includes the 23
ACMG-recommended mutations. An earlier publica-
tion demonstrated that through newborn screening,
12.8% of newly diagnosed individuals were identified
in 2002 [5].

Targeted Therapy

Over the past several years, new advances have
been made in the development of novel therapeutic
agents that target the pathophysiological process at the
CFTR chloride channel. In the wake of these findings,
CF may no longer be considered a disease with only
supportive therapy. Three main categories of new
drugs (potentiators, read-through agents, and correc-
tors) have been developed to target the different
classes of CFTR gene mutations and are already in
phase 2 and phase 3 clinical trials [67,68]. For example,
the potentiator category of drug targets class III muta-
tions and is intended to interact with mutant CFTR
protein at the apical membrane and enhance the ability
of the protein to transport chloride. Likewise, read-
through agents target class I mutations by promoting
polymerase read-through of nonsense mutations.
Finally, correctors act like a pharmacological chaper-
one and promote trafficking rescue of the mutated
CFTR protein.

In 2014, the first mutation targeted drug, Ivacaftor,
was approved by the FDA for the treatment of CF in
patients 6 years of age or older [21]. Ivacaftor belongs
to the potentiator category of CF drugs and works to
enhance the ability of the mutant CFTR channel to
transport chloride in those patients with class III�V
mutations [69]. Specifically, this drug has been shown
to be effective in the treatment of patients carrying at
least one copy of the p.Gly551Asp (a class III) mutation
[70]. Ivacaftor has also been approved for the use in
patients who may carry any one of eight additional
mutations: p.Gly178Arg, p.Ser549Asn, p.Ser549Arg,
p.Gly551Ser, p.Gly1244Glu, p.Ser1251Asn, p.Ser1255Pro,

p.Arg117His, and p.Gly1349Asp. It is recommended that
CFTR genetic testing be performed to determine a
patient’s genotype before therapy is initiated. Recently,
the clinical pharmacogenetics implementation consor-
tium published guidelines regarding Ivacaftor therapy
and CFTR genotyping [71,72].

Molecular Testing Result Interpretation

CF is inherited in an autosomal recessive manner.
Therefore, the detection of two pathogenic mutations
in a symptomatic patient (assuming they are on oppo-
site alleles) confirms a diagnosis of CF. It is important
to note that CF result reporting relies heavily on the
clinical scenario for which the testing is being per-
formed. For example, if a single CFTR gene mutation
is identified in a healthy individual undergoing rou-
tine pre- or postnatal testing then they are reported to
be a carrier of CF. In contrast, if a symptomatic patient
is tested by a screening panel and only a single muta-
tion is identified then it is typically recommended that
the patient then undergo full gene Sanger sequencing
to identify the second mutation [73]. Sequence variants
detected by Sanger analysis should be interpreted
according to the ACMG standards and guidelines [74].

In the majority of cases, the results of CF screening
are negative and straightforward to report. However,
it should be noted that no CFTR mutation screening
panel detects 100% of mutations and consequently
there is always a residual risk that a screened patient
is still a carrier of CF. Hence, it is important that a
report on a patient who has undergone screening
includes information on residual carrier risk so that
proper counseling can be performed by the patient’s
physician. Table 19.3 illustrates the residual risk pres-
ent after screening performed using only the ACMG-
recommended 23 mutation panel and can be used as a
model for information that should be included on car-
rier screening reports.

LIMITATIONS OF TESTING

Diagnostic errors can occur due to rare sequence
variations in primer/probe sites in almost all of the
technologies mentioned. In addition, a major limitation
of any targeted CF-mutation panel is that only
the listed CFTR mutations, such as the ACMG-
recommended 23 mutations, will be detected. There
are no commercially available CF screening panels that
detect 100% of the CF-causing mutations. Even with
comprehensive CFTR full gene Sanger sequencing it is
possible to miss CF disease-causing mutations as regu-
latory regions (promoters/enhancers) and introns are
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typically not sequenced so rare mutations in these
areas will not be detected. It should also be noted that
rare sequence variants located in allele-specific probe
hybridizing regions can result in interference with the
probe hybridization process and lead to a false-
positive result. As such, MLPA results should always
be correlated with CFTR sequencing data for proper
interpretation.
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INTRODUCTION

For a long time, this disease corresponding to sys-
temic iron overload of genetic origin has been confined
to a single entity called hereditary hemochromatosis
(HC), primary HC, or idiopathic HC. The discovery of
the HFE gene in 1996 by Feder et al. [1], and later on
of multiple molecular actors of iron metabolism,
opened the field to the identification of a variety of
non-HFE-related genetic iron overload disorders [2�4].
Therefore, since this is a collection of diseases, it
should be referred to as HCs rather than by the singu-
lar HC. Molecular testing has become the critical step,
not only for diagnostic purposes in a given individual,
but also for prevention in the context of the family
study. Molecular diagnostics must be precisely guided
by the phenotype and is part of an overall diagnostic
approach, which has become essentially noninvasive.

BACKGROUND ON DISEASE
MECHANISMS

Mechanistically, two main types of HC can be con-
sidered (Fig. 20.1): (1) HC due to increased iron entry
into targeted cells and (2) HC due to decreased iron
egress from the cells.

HCs Due to Increased Iron Entry into
Targeted Cells

Causes and mechanisms of hepcidin deprivation. HC
due to increased iron entry into target cells

encompasses most HC and the common causal feature
is cellular hepcidin deficiency. Most forms involve
quantitative hepcidin deficiency. In these conditions,
there is decreased production, by the hepatocytes, of
hepcidin which is the iron hormone regulating sys-
temic iron homeostasis [5�9]. Four genes are of great-
est significance: (1) most importantly, the HFE gene.
Mutations of the HFE gene may impact the ERK/
MAPK and BMP-SMAD signaling pathways, leading
to decreased hepcidin mRNA transcription [10�12].
The main mutation profile is C282Y homozygosity
(C282Y/C282Y or, according to the recommended
nomenclature, p.Cys282Tyr/p.Cys282Tyr). However,
some other rare genetic HFE profiles can cause HC,
especially compound heterozygosity where one allele
carries the mutation C282Y and the other exhibits a
rare mutation [13�15] or deletion [16�18]. In contrast,
the frequently occurring compound heterozygote
C282Y/H63D (p.His63Asp) should not been considered
as responsible for significant iron overload and clinical
HC [19]. The same holds true for H63D homozygosity
[20,21]. Likewise, the variant S65C (p.Ser65Cys) is no
longer considered clinically significant [22]. (2) The
hemojuvelin (HJV or HFE2) gene [23]. Mutations in
HJV (homozygous or compound heterozygous) affect
the BMP-SMAD signaling pathway, leading to hepci-
din decrease. (3) The transferrin receptor 2 (TFR2)
gene. Mutations in TFR2 may exert their effect on hep-
cidin via the ERK/MAPK pathway (like HFE muta-
tions) [24�26]. (4) Mutations of HAMP which encodes
hepcidin can directly result in hepcidin deficiency and
cause HC [27,28].

A peculiar and rare form of HC is related to qualita-
tive hepcidin deficiency. Hepcidin production is not
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affected, but its effect on iron metabolism is hampered
by a state of resistance to this hormone due to muta-
tions of the ferroportin gene (SLC40A1) which affect
the receptor function of ferroportin to circulating hep-
cidin [29�31].

The following names have been assigned to those
different forms of HC: type 1 for HFE-related HC, type
2A for HJV (HFE2)-related HC, type 2B for HAMP-
related HC, type 3 for TFR2-related HC, and type 4B
for FPN (SLC40A1)-related HC (Table 20.1).

Consequences of hepcidin deprivation. All these forms
of HC related to hepcidin deficiency deprivation share
a common phenotype resulting from the pathophysiol-
ogy underlying the development of systemic iron

overload (Fig. 20.1). Due to low plasma concentration
of hepcidin (HC 1, 2A, 2B, 3) or inefficient plasma
hepcidin (HC 4B) [32], the iron exportation property of
ferroportin is increased [8]. Ferroportin has two func-
tions: (1) to act as the hepcidin receptor and (2) cellular
iron exporter. Increasing the iron exportation proper-
ties of ferroportin leads to increased entry of iron into
the plasma at both the enterocyte level (corresponding
to enhanced intestinal absorption of iron at the duode-
nal level) and the macrophage level, especially in the
spleen. Chronic hypersideremia leads to increased
transferrin saturation (TS) and to the subsequent
appearance in the blood of abnormal iron forms
[33,34]. One form, which may appear when TS is over

FIGURE 20.1 Hemochromatosis pathophysiolog-
ical cascade. The left panel shows hemochromatosis
with hepcidin deficiency. The right panel shows
hemochromatosis with ferroportin deficiency. NTBI,
non-transferrin bound iron.

TABLE 20.1 Characteristics of the Major Genetic Iron Disorders

Type Chromosome Gene Mechanism (iron excess) Phenotype severity Mode of inheritance

HC 1 6 HFE HD 11 R

HC 2A 1 HJV HD 1111 R

HC 2B 19 HAMP HD 1111 R

HC 3 7 TFR2 HD 11 R

HC 4A 2 SLC40A1 FD 6 D

HC 4B 2 SLC40A1a HD 11 D

HA 3 CP FD1HD(?) 111 R

aHepcidin-resistant ferroportin.
HC, hemochromatosis; HJV, hemojuvelin; HAMP, hepcidin; TFR2, transferrin receptor2; HA, hereditary aceruloplasminemia; CP, ceruloplasmin; HD, hepcidin-

deficient phenotype; FD, ferroportin-deficient phenotype; IO, iron overload; R, recessive mode of transmission; D, dominant mode of transmission.
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45%, corresponds to non-transferrin bound iron
(NTBI). NTBI has the special kinetic properties to be
very avidly taken up by parenchymal cells, especially
in the liver, explaining iron deposition within the
hepatocytes. In contrast, most transferrin iron targets
the bone marrow. The other abnormal iron form, pres-
ent when TS is over 75%, is termed labile plasma iron
(LPI) or reactive plasma iron (RPI). RPI corresponds to
a potentially toxic species of plasma iron due to its
high propensity to produce reactive oxygen species
[35�37]. RPI-related cellular damage is likely responsi-
ble for the main syndromes observed in hepcidin-
related HC, such as liver, pancreas, and heart diseases.
Therefore, the common phenotype to hepcidin-related
HC is characterized by high plasma iron, high plasma
TS, major hepatocytic iron deposition, and lack of
hepatic and splenic macrophagic iron. However, dif-
ferences exist in terms of phenotype severity, HC type
2 and HC type 3 (to a certain extent) correspond to
more severe forms affecting children or adolescents
(also referred to as juvenile HC) with dominant endo-
crine (pituitary deficiency) and cardiac lesions [2].

HC Due to Decreased Iron Egress from Cells

HC due to ferroportin deficiency [38�40]. In HC due
to ferroportin deficiency, the iron export property of
ferroportin is altered, leading to iron trapping inside
cells, especially in macrophages which express a high
level of ferroportin (Fig. 20.1). Therefore, the pheno-
type is associated with low plasma iron, low plasma
TS, preferential iron deposition in the macrophages
and within the spleen. Since TS is low, no abnormal
forms of plasma iron, dominant NTBI-related hepato-
cytic iron excess, or RPI-related cellular damage are
expected. The corresponding HC form is HC type 4A,
also termed ferroportin disease, which is a relatively
mild disease despite pronounced systemic iron over-
load [41].

HC due to ceruloplasmin deficiency. Hereditary aceru-
loplasminemia (HA), due to mutations of the cerulo-
plasmin gene (CP) [42,43], should also be classified as
HC since it corresponds to systemic iron overload of
genetic origin. Ceruloplasmin-related ferroxidase activ-
ity is critical for cellular iron egress, probably also at
the brain level, and may account for both systemic and
cerebral iron excess. The phenotype is characterized by
very low levels of plasma iron and TS, with frequent
anemia, and organ iron excess (mainly the liver, pan-
creas, and the brain).

In summary, HFE-related HC is the most frequent
HC form, exclusively observed in Caucasian popula-
tions. The non-HFE-related HCs are rare diseases but
with a broader geographical distribution [44].

CLINICAL STRATEGY LEADING TO
DIAGNOSIS OF HC

The clinical strategy to diagnose HC is based on a
three-step process: (1) to identify iron overload, (2) to
confirm iron overload, and (3) to exclude nongenetic
iron overload.

To Identify Iron Overload

Clinical context. A number of clinical symptoms are
suggestive of iron overload, including chronic unex-
plained fatigue, erectile dysfunction, joint pains,
melanodermia, osteoporosis, diabetes, liver disease
(hepatomegaly, mild transaminase increase), cardiac
signs (rhythm disturbances, heart failure). Rarely, ane-
mia and/or neurological symptoms are associated
with and reflect iron overload (HA).

Biological context. In clinical practice, the most fre-
quent biochemical parameter suggesting iron excess is
hyperferritinemia (usually .300 µg/L in men and
.200 µg/L in women). It is of utmost importance to
interpret this increase correctly [45]. While low plasma
ferritin levels always indicate iron deficiency, high
levels are not always associated with iron excess. The
following situations can produce hyperferritinemia
independently of significant iron excess: (1) inflamma-
tory syndrome, (2) alcoholism, (3) dysmetabolic syn-
drome, and (4) various other causes. Ferritin is an
acute phase protein. Hence, in inflammatory syndrome
it is important to systematically evaluate plasma levels
of C-reactive protein. In alcoholism, the apparently
spontaneous fluctuations of ferritin levels typically
correspond to the fluctuations of alcohol consumption.
Besides the clinical data which will support this cause,
checking for macrocytosis and increased plasma
gamma-glutamyltranspeptidase levels is biologically
very useful. Dysmetabolic syndrome is by far the most
frequent cause of hyperferritinemia. Plasma ferritin
concentrations are usually less than 1000 µg/L, TS is
normal (,45%), and the metabolic context is highly
suggestive (overweight, increased blood pressure, non-
insulin dependent diabetes, hyperlipidemia, hyperuri-
cemia, hepatic steatosis). A mild hepatic iron increase
is sometimes noticed, corresponding to the syndrome
of dysmetabolic hepatosiderosis [46], but always con-
trasts with the sharpness of the plasma ferritin rise.
Among the other causes of hyperferritinemia are
marked cytolysis (requiring evaluation of plasma
transaminase activities), macrophage activation syn-
drome, Still disease, ferritin-cataract syndrome [47,48],
and mutations of the L-ferritin gene (FTL) [48]. A
peculiar form of genetic iron overload in which ferritin
levels are unexpectedly low compared to iron excess is
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represented by the exceptional divalent metal trans-
porter (DMT1)-related iron overload, due to SLC11A2
gene mutations, and usually expressed as microcytic
anemia present from birth and which is refractory to
oral iron supplementation [49,50].

To Confirm Iron Overload

Regardless of the clinical and/or biochemical con-
text leading to suspicion of iron overload, confirmation
of body iron excess requires direct investigation. For
many years, liver biopsy was required to show exces-
sive iron deposition, to provide a means for semiquan-
tification, and to determine cellular iron distribution
(hepatocytic vs macrophagic) [51�54]. The cellular
iron distribution is important to orientate the patho-
physiology underlying the iron excess. Today, liver
biopsy can be replaced by magnetic resonance imaging
(MRI) [52�54]. MRI has several advantages. It is a non-
invasive method that enables detection and quantifica-
tion of iron excess, not only in the liver but also in the
pancreas, spleen, heart, and pituitary gland. Moreover,
through determination of the ratio between hepatic
and splenic iron excess, valuable pathophysiological
information is obtained: hepatic iron overload is
mainly due to parenchymal iron deposition affecting
the hepatocytes, whereas splenic iron indicates reticu-
loendothelial iron excess affecting the macrophages.

To Exclude Nongenetic Iron Overload

When considering nongenetic iron overload, the dif-
ferential diagnosis is represented by chronic parenteral
iron administration, either due to excessive iron injec-
tions for supplementation purpose or to repeated
transfusions, knowing that each blood unit provides
200�250 mg of iron. Those transfusions are performed
in the context of chronic anemias, such as observed in
the myelodysplastic syndrome [55], in hemolytic ane-
mias (thalassemia [56] and sickle cell disease [57]), or
in aplasia related to bone marrow transplantation pro-
cedures [58]. The differential diagnosis with HC is
usually easy by considering the context of chronic ane-
mia. However, it should be recalled that HA is a form
of genetic iron excess which can give chronic anemia,
but in HA TS is low, in contrast with the situations
where iron overload is due to excessive iron input.

Dyserythropoiesis, as seen in myelodysplastic syn-
drome and in chronic hemolytic anemias (especially
non-transfusion-dependent thalassemia [59]), is
another mechanism accounting for iron overload in
these diseases, before any transfusion. Iron excess is
explained by the bone marrow production of the hor-
mone erythroferrone, which exerts an inhibiting effect

on the hepatic synthesis of hepcidin [60]. Therefore,
the iron overload phenotype mimicks that of hepcidin
deprivation related HC (high plasma iron, high plasma
TS, and hepatocytic iron deposition).

CLINICAL STRATEGY FOR MOLECULAR
TESTING IN INDIVIDUALS

The clinical strategy for molecular testing differs
depending upon whether one considers an individual
diagnosis or family screening (Fig. 20.2) [22,61]. In a
given individual, the phenotype must guide the geno-
typing approach. Four main bioclinical data strongly
orientate the diagnosis: ethnicity, age, neurologic
symptoms, and TS.

Ethnicity

HFE-related HC is expected only in Caucasian indi-
viduals. In contrast, non-HFE HC can be observed in
non-Caucasian populations [44].

Age

Juvenile HC, corresponding to fully developed HC
under the age of 30, is not expected in the typical HFE-
related HC. In contrast, several forms of non-HFE HC
can manifest in younger individuals. Juvenile onset is
the rule for HJV and HAMP-related HC (HC types 2A
and 2B) and may also occur in TFR2-related HC (HC
type 3).

Neurological Symptoms

The only HC condition with neurological damage is
represented by HA.

Transferrin Saturation

Whenever marked organ iron overload has been
established (by MRI and/or liver biopsy), the plasma
TS value is pivotal for the genetic classification. When
TS is normal or low (,45%), the two main likely diag-
noses are the ferroportin disease (HC type 4A) in
which iron excess predominates in the spleen and HA.
It should be noted that, in the latter situation, a simple
biochemical test is essential to support the diagnosis,
namely, the determination of plasma ceruloplasmin
concentration which is dramatically decreased. When
TS is elevated (. 45%, but often .60% or close to
100%), the most frequent diagnosis (in Caucasian indi-
viduals and over 30 years of age) is HFE (C282Y/
C282Y)-related HC. If the C282Y mutation is absent,
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the genetic search should concern non-HFE mutations
(preferentially HJV and HAMP mutations in younger
people, and TFR2 mutations in adults). In all these
situations, iron excess spares the spleen and affects the
liver, and to a lesser degree the pancreas and heart. If
the C282Y mutation is heterozygous, it cannot be held
responsible for organ iron overload [62], and an associ-
ated rare HFE mutation [13�15,63] should be sought,
before searching for associated non-HFE mutations.

Limitations of Diagnostic Clues

Ethnicity. Due to increasing racial mixing, it may be
difficult to ascertain that a given person is purely of
Caucasian or non-Caucasian origin.

Age. If the threshold of 30 years old is practically
useful to differentiate between adult and juvenile HC,
this threshold is closely dependent on the definition
that is assigned to HC. This notion joins those of

phenotypic variability and partial penetrance. For
instance, in the case of C282Y homozygosity, five
stages of expression have been defined [64], and if
stage 0 (no TS or ferritin elevation, no clinical
symptoms) rules out HC, all the other stages (stage 1—
increased TS, no ferritin increase, no clinical symp-
toms; stage 2—increased TS, increased ferritin, no
clinical symptoms; stage 3—increased TS and ferritin,
mild clinical symptoms; stage 4—increased TS and
ferritin, severe clinical symptoms) can be assimilated
to biochemically and/or clinically expressed HC.
Therefore, a milder phenotype may be observed in
younger HC patients. A further limitation concerning
the age threshold is that some cases of highly
expressed C282Y/C282Y homozygotes may be related
to associated rare mutations [65].

Transferrin saturation. Before using this parameter as
a key indicator of genetic etiology, it is essential to
(1) obtain coherent results from at least two dosages,
considering the spontaneous fluctuations of TS values

FIGURE 20.2 Diagnostic strategy for hemochromatosis. TS, transferrin saturation; MRI, magnetic resonance imaging; HC, hemochromato-
sis; HA, hereditary aceruloplasminemia; FPN, ferroportin gene; CP, ceruloplasmin gene; HJV, hemojuvelin gene; HAMP, hepcidin gene; TFR2,
transferrin receptor 2 gene.
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(notably due to the nycthemeral cycle of plasma iron);
(2) exclude an increase of TS related to low transferrin
levels, due to hepatocellular dysfunction, protein
losses, or rarely to transferrin (TF) gene mutations [66];
(3) rule out factors which could, independently of HC,
interfere with TS results (false-positive values due to
concomitant cytolysis or hemolysis, false-negative
values due to coexisting fortuitous inflammation).

HFE mutations. Some rare profiles of compound het-
erozygosity involving the C282Y mutation and another
rare HFE mutation can account for clinically expressed
HFE-related HC. It should be noted, according to the
recent EMQN (European Molecular Genetics Quality
Network) recommendations, that the most frequent
HFE compound heterozygosity, C282/H63D, cannot
explain the classical form of HFE-related HC and
should rather lead to a search for associated factors
such as alcoholism and the metabolic syndrome [67,68]
or for non-HFE mutations. At most, this compound
heterozygosity can by itself give some increase of TS
but not a significant increase of plasma ferritin (in the
absence of those associated cofactors). It is therefore
advised either to not perform the search for H63D
mutation whenever C282Y is present in the heterozy-
gous state (as is the case in France), or, if performed,
to be very cautious in the interpretation of results.
With regard to the S65C variant, it is recommended
not to test for this variation, and if this variant is
detected not to report the result.

Non-HFE mutations. Non-HFE mutations must be
explored by expert laboratories, ideally in the frame of
reference centers for rare iron overload diseases of
genetic origin.

CLINICAL STRATEGY FOR MOLECULAR
TESTING IN FAMILY SCREENING

In the context of family screening, the genotyping
approach is most often used, but investigators should
also consider phenotypic iron markers. Once the diag-
nosis of HC has been made in a given individual, the
involved genotype will serve as a flag to evaluate at-
risk family members. The screening strategy must
obviously consider the dominant or recessive mode of
transmission of the disease, knowing that the only HC
form with a dominant transmission is ferroportin dis-
ease (HC type 4). In the frequent and typical situation
of recessive transmission as observed in C282Y/C282Y-
related HC, the following procedure can be adopted.
The proband must be informed that he (she) is respon-
sible for getting in touch with his (her) family mem-
bers to convey the importance of genetic screening (the
general practitioner or medical specialist is not sup-
posed to contact family members directly) and to

advise them to contact their general practitioner (or
specialist) in order to test for the C282Y mutation. The
family process should ideally be conducted by genetics
counselors, in the frame of specialized centers for HC
family screening, who will gather the results (often
coming from various geographical areas), and once all
the family data have been collected will synthetize the
results and propose to the general practitioner a plan
for personalized management. The overall procedure
typically takes several months to complete.

The Most At-Risk Individuals Are Siblings

Once all major siblings of an index case are geno-
typed for the C282Y mutation, three main situations can
be observed: (1) absence of C282Y mutation, (2) the
C282Y mutation is present in the heterozygous state,
and (3) there is homozygosity for the C282Y mutation.
In the absence of the C282Y mutation, the individual is
not at-risk for iron overload and does not require any
surveillance related to iron metabolism. If the C282Y
mutation is present in the heterozygous state, there is
no risk of developing clinically significant iron excess
and no special follow-up is necessary. As to the first-
degree relatives, systematic genetic testing is not cur-
rently recommended [22]. However, it should be
remembered that a heterozygote has a 50% risk of trans-
mitting the mutation to his (her) offspring, and that, if
the spouse is also heterozygote, there exists a risk of
homozygosity in their children. Therefore, heterozygote
subjects should be informed that their offspring would
benefit from checking TS and ferritin when they become
over 18 years old and, in case of abnormal results, the
C282Y mutation will need to be evaluated. If there is
homozygosity for the C282Y mutation, the individual
is at-risk of iron overload. Phenotypic evaluation is
required both clinically and biologically (initially
involving plasma TS and plasma ferritin). If phenotypic
parameters are normal, regular follow-up of the plasma
TS and ferritin is required. However, follow-up should
be conducted knowing that C282Y homozygosity only
expresses partial penetrance. In fact, it has been
reported that less than 30% of men and 1% of women
will develop clinically diagnosed iron overload. The
proposed frequency of follow-up is every 3 years for
stage 0 individuals and every year for stage 1 patients.

Testing Procedures for Offspring and Parents

Although HC type 1 is a recessive disorder, it is
advised to test offspring given the high prevalence of
the C282Y mutation in Caucasians (at least 1 in 10 sub-
jects). Therefore, there is significant risk (1/10) that a
given homozygote will have a heterozygote spouse
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and half of their children will be homozygous and the
other half heterozygous (pseudo-dominant transmis-
sion). Again, according to the guidelines from the
American College of Medical Genetics and the
European Society of Human Genetics, no genetic testing
is advised in minor subjects. This is often poorly
accepted by parents who are anxious to know whether
or not their children are homozygous. It should be con-
veyed to the parents that identifying homozygosity in a
minor may not be socially harmless (subsequent risk of
societal discrimination) and is not medically justified
(given the low penetrance of the genotype). There are
two solutions to this issue: (1) advise the parents to
check for plasma TS and ferritin after the child reaches
puberty, or (2) genotype the spouse while remaining
aware of the risk of biological paternity.

For parents, a simple phenotypic study (plasma TS
and ferritin) is usually recommended. Genotyping
studies are performed only in case of phenotypic
abnormalities.

MOLECULAR BIOLOGY METHODS
AND STRATEGY

HFE Testing

Real-time PCR is the most common testing method
for C282Y and H63D. Other currently performed meth-
odological approaches are PCR and restriction frag-
ment length polymorphism, PCR and reverse
hybridization, and direct sequencing. Testing for the
C282Y and H63D variants can be simultaneous or
sequential. Adopting a sequential strategy, testing
begins with C282Y. This approach enables avoidance
of the controversial H63D homozygosity (in terms of
iron overload risk), but reflects a longer and more
expensive procedure. Compound heterozygosity
C282Y/H63D must be reported as excluding the most
common form of HFE-related HC, and as being com-
patible only with mild iron overload in the setting of
associated excessive alcohol consumption, fatty liver
disease, and/or metabolic syndrome. Testing laborato-
ries are recommended to be accredited to international
standards (ISO 15189 or equivalent).

Non-HFE Testing

Non-HFE testing should be performed by specialty
centers in close connection with expert clinicians, con-
stituting, at best, national reference centers, whose mis-
sions will also be to disseminate recommendations for
good medical practice and to stimulate clinical and
basic research in this area of rare genetic iron overload
diseases. These laboratories usually offer a panel of

iron-related genes (HFE, HAMP, HJV, TFR2, SLC40A1,
CP, TMPRSS6, SLC40A12, FTL, and others), increasingly
utilizing next-generation sequencing (NGS) technology.

PERSPECTIVES

The traditional limited-throughput sequencing
based on the Sanger method is now giving way to the
arrival of NGS. These technologies offer the possibil-
ity to perform billions of sequencing reactions, open-
ing the way not only for quick simultaneous testing
of numerous target genes, but also for performing
whole exome or genome sequencing. The advantage
of this approach is the huge amount of data pro-
duced. However, information technology manage-
ment is required to handle the data and its analysis.
Likewise, the identification of many variants of
uncertain significance through NGS raises medical
and ethical issues. Hence, newly identified variants
require functional studies before they can be used in
clinical decision making.

CONCLUSIONS

Molecular testing for the HFE gene is one of the
most frequently prescribed genetic tests. In the context
of documented tissue iron excess with high plasma TS,
the presence of the p.Cys282Tyr mutation in the homo-
zygous state confirms the diagnosis of HFE-related
HC. If there is only heterozygosity for p.Cys282Tyr,
HFE sequencing should be performed by a specializing
center to search for rare compound heterozygosity. If
no p.Cys282Tyr mutation is present, rare non-HFE
mutations should be tested. NGS technologies will
facilitate the study of known genes, but also open the
field for discovering new iron-related genes.

References

[1] Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like
gene is mutated in patients with hereditary haemochromatosis.
Nat Genet 1996;13:399�408.

[2] Brissot P, Bardou-Jacquet E, Jouanolle AM, Loreal O. Iron disor-
ders of genetic origin: a changing world. Trends Mol Med
2011;17:707�13.

[3] Bardou-Jacquet E, Ben Ali Z, Beaumont-Epinette MP, Loreal O,
Jouanolle AM, Brissot P. Non-HFE hemochromatosis: patho-
physiological and diagnostic aspects. Clin Res Hepatol
Gastroenterol 2014;38:143�54.

[4] Pietrangelo A, Caleffi A, Corradini E. Non-HFE hepatic iron
overload. Semin Liver Dis 2011;31:302�18.

[5] Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-
specific gene, encoding a protein homologous to human antimi-
crobial peptide hepcidin, is overexpressed during iron overload.
J Biol Chem 2001;276:7811�19.

251REFERENCES

III. MOLECULAR TESTING IN GENETIC DISEASE

http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref1
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref1
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref1
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref1
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref2
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref2
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref2
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref2
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref3
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref3
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref3
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref3
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref3
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref4
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref4
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref4
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref5
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref5
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref5
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref5
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref5


[6] Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene
expression and severe tissue iron overload in upstream stimula-
tory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA
2001;98:8780�5.

[7] Ganz T. Systemic iron homeostasis. Physiol Rev 2013;93:1721�41.
[8] Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cel-

lular iron efflux by binding to ferroportin and inducing its
internalization. Science 2004;306:2090�3.

[9] Bardou-Jacquet E, Philip J, Lorho R, et al. Liver transplantation
normalizes serum hepcidin level and cures iron metabolism
alterations in HFE hemochromatosis. Hepatology
2014;59:839�47.

[10] Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to
tango: regulation of mammalian iron metabolism. Cell
2010;142:24�38.

[11] Ramey G, Deschemin JC, Vaulont S. Cross-talk between the
mitogen activated protein kinase and bone morphogenetic pro-
tein/hemojuvelin pathways is required for the induction of
hepcidin by holotransferrin in primary mouse hepatocytes.
Haematologica 2009;94:765�72.

[12] Wu XG, Wang Y, Wu Q, et al. HFE interacts with the BMP type
I receptor ALK3 to regulate hepcidin expression. Blood
2014;124:1335�43.

[13] Aguilar-Martinez P, Grandchamp B, Cunat S, et al. Iron over-
load in HFE C282Y heterozygotes at first genetic testing: a strat-
egy for identifying rare HFE variants. Haematologica
2011;96:507�14.

[14] Merryweather-Clarke AT, Cadet E, Bomford A, et al. Digenic
inheritance of mutations in HAMP and HFE results in different
types of haemochromatosis. Hum Mol Genet 2003;12:2241�7.

[15] Cezard C, Rabbind Singh A, Le Gac G, Gourlaouen I, Ferec C,
Rochette J. Phenotypic expression of a novel C282Y/R226G
compound heterozygous state in HFE hemochromatosis: molec-
ular dynamics and biochemical studies. Blood Cells Mol Dis
2014;52:27�34.

[16] Pelucchi S, Mariani R, Bertola F, Arosio C, Piperno A.
Homozygous deletion of HFE: the Sardinian hemochromatosis?
Blood 2009;113:3886.

[17] Le Gac G, Congiu R, Gourlaouen I, Cau M, Ferec C, Melis MA.
Homozygous deletion of HFE is the common cause of hemo-
chromatosis in Sardinia. Haematologica 2010;95:685�7.

[18] Cukjati M, Koren S, Curin Serbec V, Vidan-Jeras B, Rupreht R.
A novel homozygous frameshift deletion c.471del of HFE asso-
ciated with hemochromatosis. Clin Genet 2007;71:350�3.

[19] Gurrin LC, Bertalli NA, Dalton GW, et al. HFE C282Y/H63D
compound heterozygotes are at low risk of hemochromatosis-
related morbidity. Hepatology 2009;50:94�101.

[20] Kelley M, Joshi N, Xie Y, Borgaonkar M. Iron overload is rare
in patients homozygous for the H63D mutation. Can J
Gastroenterol Hepatol 2014;28:198�202.

[21] Neghina AM, Anghel A. Hemochromatosis genotypes and risk
of iron overload—a meta-analysis. Ann Epidemiol 2011;21:1�14.

[22] Porto G, Brissot P, Swinkels DW, Zoller H, Alonso I, Morris
MA, et al. EMQN best practive guidelines for the molecular
genetic diagnosis of hereditary hemochromatosis (HH). Eur J
Hum Genet 2016;24:479�95.

[23] Papanikolaou G, Samuels ME, Ludwig EH, et al. Mutations in
HFE2 cause iron overload in chromosome 1q-linked juvenile
hemochromatosis. Nature Genet 2004;36:77�82.

[24] Poli M, Luscieti S, Gandini V, et al. Transferrin receptor 2 and
HFE regulate furin expression via mitogen-activated protein
kinase/extracellular signal-regulated kinase (MAPK/Erk) sig-
naling. Implications for transferrin-dependent hepcidin regula-
tion. Haematologica 2010;95:1832�40.

[25] Camaschella C, Roetto A, Cali A, et al. The gene TFR2 is
mutated in a new type of haemochromatosis mapping to 7q22.
Nat Genet 2000;25:14�15.

[26] Radio FC, Majore S, Binni F, et al. TFR2-related hereditary
hemochromatosis as a frequent cause of primary iron overload
in patients from Central-Southern Italy. Blood Cells Mol Dis
2014;52:83�7.

[27] Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicro-
bial peptide hepcidin is associated with severe juvenile hemo-
chromatosis. Nat Genet 2003;33:21�2.

[28] Hattori A, Tomosugi N, Tatsumi Y, et al. Identification of a
novel mutation in the HAMP gene that causes non-detectable
hepcidin molecules in a Japanese male patient with juvenile
hemochromatosis. Blood Cells Mol Dis 2012;48:179�82.

[29] Sham RL, Phatak PD, West C, Lee P, Andrews C, Beutler E.
Autosomal dominant hereditary hemochromatosis associated
with a novel ferroportin mutation and unique clinical features.
Blood Cells Mol Dis 2005;34:157�61.

[30] Sham RL, Phatak PD, Nemeth E, Ganz T. Hereditary hemochro-
matosis due to resistance to hepcidin: high hepcidin concentra-
tions in a family with C326S ferroportin mutation. Blood
2009;114:493�4.

[31] Fernandes A, Preza GC, Phung Y, et al. The molecular basis
of hepcidin-resistant hereditary hemochromatosis. Blood
2009;114:437�43.

[32] Drakesmith H, Schimanski LM, Ormerod E, et al. Resistance to
hepcidin is conferred by hemochromatosis-associated mutations
of ferroportin. Blood 2005;106:1092�7.

[33] Hershko C, Graham G, Bates GW, Rachmilewitz EA. Non-
specific serum iron in thalassaemia: an abnormal serum iron
fraction of potential toxicity. Br J Haematol 1978;40:255�63.

[34] Brissot P, Ropert M, Le Lan C, Loreal O. Non-transferrin bound
iron: a key role in iron overload and iron toxicity. Biochim
Biophys Acta 2012;1820:403�10.

[35] Cabantchik ZI, Breuer W, Zanninelli G, Cianciulli P. LPI-labile
plasma iron in iron overload. Best Pract Res Clin Haematol
2005;18:277�87.

[36] Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko
C, Cabantchik ZI. Labile plasma iron in iron overload: redox
activity and susceptibility to chelation. Blood 2003;102:2670�7.

[37] Le Lan C, Loreal O, Cohen T, et al. Redox active plasma iron in
C282Y/C282Y hemochromatosis. Blood 2005;105:4527�31.

[38] Pietrangelo A. The ferroportin disease. Blood Cells Mol Dis
2004;32:131�8.

[39] Njajou OT, Vaessen N, Joosse M, et al. A mutation in SLC11A3
is associated with autosomal dominant hemochromatosis. Nat
Genet 2001;28:213�14.

[40] Montosi G, Donovan A, Totaro A, et al. Autosomal-dominant
hemochromatosis is associated with a mutation in the ferropor-
tin (SLC11A3) gene. J Clin Invest 2001;108:619�23.

[41] Le Lan C, Mosser A, Ropert M, et al. Sex and acquired cofactors
determine phenotypes of ferroportin disease. Gastroenterology
2011;140:1199�207.

[42] Miyajima H. Aceruloplasminemia. Neuropathology 2014;35:83�90.
[43] Kono S. Aceruloplasminemia: an update. Int Rev Neurobiol

2013;110:125�51.
[44] McDonald CJ, Wallace DF, Crawford DH, Subramaniam VN.

Iron storage disease in Asia-Pacific populations: the impor-
tance of non-HFE mutations. J Gastroenterol Hepatol
2013;28:1087�94.

[45] Aguilar-Martinez P, Schved JF, Brissot P. The evaluation of
hyperferritinemia: an updated strategy based on advances in
detecting genetic abnormalities. Am J Gastroenterol
2005;100:1185�94.

252 20. MOLECULAR TESTING IN HEMOCHROMATOSIS

III. MOLECULAR TESTING IN GENETIC DISEASE

http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref6
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref6
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref6
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref6
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref6
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref7
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref7
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref8
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref8
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref8
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref8
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref9
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref10
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref11
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref12
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref13
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref14
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref15
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref16
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref17
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref18
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref19
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref20
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref21
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref21
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref21
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref22
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref23
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref24
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref25
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref26
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref27
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref28
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref29
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref30
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref31
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref32
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref33
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref34
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref35
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref36
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref37
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref37
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref37
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref38
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref38
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref38
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref39
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref40
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref41
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref42
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref42
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref43
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref43
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref43
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref44
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref44
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref44
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref44
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref44
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref45
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref45
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref45
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref45
http://refhub.elsevier.com/B978-0-12-800886-7.00020-0/sbref45


[46] Mendler MH, Turlin B, Moirand R, et al. Insulin resistance-
associated hepatic iron overload. Gastroenterology
1999;117:1155�63.

[47] Yin D, Kulhalli V, Walker AP. Raised serum ferritin concentra-
tion in hereditary hyperferritinemia cataract syndrome is not a
marker for iron overload. Hepatology 2014;59:1204�6.

[48] Kannengiesser C, Jouanolle AM, Hetet G, et al. A new missense
mutation in the L ferritin coding sequence associated with ele-
vated levels of glycosylated ferritin in serum and absence of
iron overload. Haematologica 2009;94:335�9.

[49] Iolascon A, De Falco L. Mutations in the gene encoding DMT1:
clinical presentation and treatment. Semin Hematol
2009;46:358�70.

[50] Bardou-Jacquet E, Island ML, Jouanolle AM, et al. A novel
N491S mutation in the human SLC11A2 gene impairs protein
trafficking and in association with the G212V mutation leads to
microcytic anemia and liver iron overload. Blood Cells Mol Dis
2011;47:243�8.

[51] Deugnier Y, Turlin B. Pathology of hepatic iron overload.
Semin Liver Dis 2011;31:260�71.

[52] Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment
of hepatic iron stores by MRI. Lancet 2004;363:357�62.

[53] St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive
measurement and imaging of liver iron concentrations using
proton magnetic resonance. Blood 2005;105:855�61.

[54] Wood JC. Impact of iron assessment by MRI. Hematology Am
Soc Hematol Educ Program 2011;2011:443�50.

[55] Steensma DP, Gattermann N. When is iron overload deleteri-
ous, and when and how should iron chelation therapy be
administered in myelodysplastic syndromes? Best Pract Res
Clin Haematol 2013;26:431�44.

[56] Porter JB, Shah FT. Iron overload in thalassemia and related
conditions: therapeutic goals and assessment of response to
chelation therapies. Hematol Oncol Clin North Am
2010;24:1109�30.

[57] Porter J, Garbowski M. Consequences and management of iron
overload in sickle cell disease. Hematology Am Soc Hematol
Educ Program 2013;2013:447�56.

[58] Sivgin S, Eser B. The management of iron overload in allogeneic
hematopoietic stem cell transplant (alloHSCT) recipients: where
do we stand? Ann Hematol 2013;92:577�86.

[59] Musallam KM, Cappellini MD, Taher AT. Iron overload in
beta-thalassemia intermedia: an emerging concern. Curr Opin
Hematol 2013;20:187�92.

[60] Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T.
Identification of erythroferrone as an erythroid regulator of iron
metabolism. Nature Genet 2014;46:678�84.

[61] Jouanolle AM, Gerolami V, Ged C, et al. Molecular diagnosis of
HFE mutations in routine laboratories. Results of a survey from
reference laboratories in France. Ann Biol Clin (Paris)
2012;70:305�13.

[62] Zaloumis SG, Allen KJ, Bertalli NA, et al. The natural history of
HFE simple heterozygosity for C282Y and H63D: a prospective
twelve year study. J Gastroenterol Hepatol 2015;30:719�25.

[63] Barton JC, West C, Lee PL, Beutler E. A previously undescribed
frameshift deletion mutation of HFE (c.del277; G93fs) associ-
ated with hemochromatosis and iron overload in a C282Y het-
erozygote. Clin Genet 2004;66:214�16.

[64] HAS. French recommendations for management of HFE hemo-
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INTRODUCTION

Molecular techniques have both changed our under-
standing of the basic biology of breast cancer and pro-
vided the foundation for new methods of personalized
diagnostics and treatment strategies. Traditionally, clini-
cians treating breast cancer have relied on prognostic
information such as patient age, cancer grade, and
stage at presentation to make clinical decisions about
how aggressively to treat individual patients. The field
has advanced significantly by using diagnostic tests
to determine not just prognosis—but to predict benefit
from a particular therapeutic modality. This has placed
the pathologist in the role of a diagnostic oncologist, with
the interpretation of ancillary tissue-based test results
now critical to determining what specific therapies will
be used to maximize survival benefit [1].

The first of these predictive tests detected the level of
estrogen receptor (ER) and progesterone receptor (PR) in
breast cancers to predict benefit from hormone-targeting
therapies. Hormone receptor testing was originally per-
formed by ligand-binding assays on fresh tissue samples.
Cases that were ER or PR positive were associated with
both a significantly better prognosis and showed benefit
from hormone-targeted therapies like tamoxifen [2�4].
While the ligand-binding technique offered a quantitative
result, disadvantages included having to use fresh tissue,
the inability to separate out the contribution of noninva-
sive tissue to results, and the use of radioactivity in the
assay. It was replaced by immunohistochemistry (IHC)
techniques because of the ability to score only the inva-
sive cancer and improvement in the ease of testing. IHC
has remained the standard for hormone receptor testing
today, with guidelines for testing and interpretation
established by laboratory-accrediting agencies like the
College of American Pathologists (CAP) [5]. However,
some of the panel-based RT-PCR molecular assays also
report quantitative hormone receptor results.

Non-immunohistochemistry-based standardized
molecular testing in breast cancer first began with fluo-
rescence in situ hybridization (FISH) methods to test
for gene amplification of the human epidermal growth
factor receptor 2 (HER2) gene. This molecular method
is used to identify patients with cancers with an
aggressive biology that may respond to HER2-targeted
biologic therapies. HER2 testing has become standard
practice for all newly diagnosed or newly metastatic
breast cancers [6�8].

In addition to single-marker testing to identify the
most common drug targets in breast cancer (hormone
receptors and HER2), there has been an increase in the
use of panel-based molecular tests for both prognostic
and predictive testing [9�12]. These tests were devel-
oped after molecular signatures were described that
could separate breast cancers into groups associated
with unique signatures and associated outcomes.
The clinical utility of these molecular signatures will be
discussed in this chapter.

Additional molecular genetic techniques, such as
testing for germline mutations in breast cancer related
genes like BRCA1 and BRCA2 and genetic testing for
resistance to endocrine therapy, have contributed to
risk management and treatment strategies in breast
cancer. However, this chapter will focus on tissue-
based molecular testing in breast cancer.

HER2 TESTING BY FLUORESCENCE IN
SITU HYBRIDIZATION

Molecular Target and Clinical Utility

HER2 is a transmembrane receptor tyrosine kinase
that is over-expressed in 10�15% of breast cancers and
is believed to be responsible for driving an aggressive
clinical course in this subset of breast cancers [13�20].
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When over-expressed, there can be a 40-fold to 100-fold
increase in protein expression [20,21]. The primary mech-
anism of protein over-expression is gene amplification
of the encoding region on chromosome 17.

HER2 testing of breast cancers was traditionally
performed for the purposes of identifying cancers with
more aggressive biology and worse outcomes. Because
of the association with poor survival rates, a positive
HER2 test often leads treating oncologists to use more
aggressive chemotherapy regimens. However, when
antibody-based therapies specifically targeting HER2-
positive cancer cells showed dramatic increases in
survival rates for patients with HER2-positive cancers
(used in conjunction with chemotherapy), HER2 test-
ing became essential to predict if patients would
benefit from these targeted drugs [22�25].

The first HER2-targeted drug to be approved in the
adjuvant setting in 2006 was the humanized monoclo-
nal antibody, trastuzumab, which is believed to bind
HER2 and block downstream signaling pathways
[26]. Other HER2-targeted drugs have also been
developed that use different mechanisms of action.
Some of these drugs have been approved for use
in combination with each other in the setting of tradi-
tional neoadjuvant chemotherapy [27,28]. In addition,
agents combining HER2-targeted biologic drugs with
highly toxic chemotherapy, such as ado-trastuzumab
emtansine (T-DM1), are undergoing trials to deter-
mine if more targeted chemotherapy delivery can
offer a reduced side effect profile and additional
survival advantages [29]. Accurate HER2 testing to
predict response to these drugs on the initial core
biopsy sample has become critical in determining
which agents a patient may receive.

In order to guide appropriate treatment decisions,
testing for HER2 gene amplification or HER2 protein
over-expression is required for all primary and meta-
static breast cancers [6]. Because of this, CAP and The
American Society of Clinical Oncology (ASCO) pub-
lished HER2 testing guidelines in 2007, with a more
recent update in 2013, in an attempt to set standards for
HER2 testing in breast cancer [6,7]. According to these
guidelines, HER2 testing can be performed by looking
for protein over-expression by IHC, but if there is an
equivocal result, the test needs to be confirmed by
molecular methods such as FISH or other in situ hybrid-
ization methods to look for HER2 gene amplification.

There is concern for the variability in HER2
IHC test performance and interpretation, particularly
with false-positive results from over-staining or over-
interpretation [30,31]. The 2007 CAP/ASCO HER2
testing guidelines attempted to address these issues
by creating standards for tissue fixation, test interpre-
tation, test validation, and requiring proficiency
testing for HER2 test interpreters. Greater than 95%

concordance was required between HER2 IHC and
FISH-negative and -positive results (or another previ-
ously validated test). There is evidence that these
guidelines may have reduced false-positive rates and
increased concordance rates between laboratories, but
some issues persist [32].

Molecular Testing Technique

HER2 FISH testing can be performed using a
dual- or single-probe technique on formalin-fixed par-
affin-embedded tissue specimens. Both dual- and
single-probe assays use a fluorescent-labeled DNA
probe to detect the HER2 gene, with the dual-probe
assays using a second probe to centromere of chromo-
some 17 (CEP17) (Fig. 21.1). Intended as form of
internal control, the CEP17 probe is then compared to
the number of HER2 signals per cell and the results
reported as an HER2:CEP17 ratio as well as the abso-
lute HER2 and CEP17 per cell counts. Single-probe
assays use only an HER2 gene probe, and only the
HER2 copy number is reported.

After probe hybridization, the FISH assay is inter-
preted using a fluorescence microscope. It is critical to
have a pathologist identify which area of the slide
to score such that only the invasive carcinoma is
scored (Fig. 21.2). The presence of large areas of in situ
carcinoma or other findings can confound results if
this is not done carefully and only invasive carcinoma
should be scored. Next, the areas with invasion on the
slide are scanned at low power under the fluorescence
microscope to get an overview of the findings and to
identify if there is more than one population of cells
with variable numbers of signals per cell. According
to the CAP/ASCO HER2 testing guidelines, the pathol-
ogist must perform this review prior to counting of
the FISH slide or IHC can be used as the pathologist’s
screening method to identify any areas of protein over-
expression that should be counted separately [6].
If present in more than 10% of the overall cell
population, these clustered foci of cells with amplified
HER2 are counted separately from the rest of the inva-
sive cancer cell population. Clustered heterogeneity is
rare, estimated to occur in less than 5% to 10% of
cases. However, it is important to rule out [33,34].
Most cases have more uniform findings.

After scanning the slide, at least two areas are
counted at high power (oil immersion) for a total of
a minimum of 20 cells (at least 10 cells from
each area counted). The individual cell counts are
recorded, but in contrast to some FISH assays in
which any detectable abnormality counts as a positive
result, HER2 FISH results are reported as a cell
population average. The criteria for positive, negative,
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and equivocal results by FISH testing have changed
slightly between the 2007 and the 2013 update to the
HER2 ASCO/CAP guidelines [6,35]. The 2013 HER2
FISH interpretation criteria are shown in Fig. 21.3.

In the case of the dual-probe assays, these reported
results include the overall HER2:CEP17 ratio, the
mean HER2 signals per cell and the mean CEP17
signals per cell (Fig. 21.4).

FIGURE 21.2 Steps involved in the initial scoring
of an HER2 FISH test are outlined. The pathologist is
involved in selecting the appropriate area to score
(only invasive carcinoma), reviewing controls, evalu-
ating for HER2 heterogeneity, requesting additional
scoring of cases close to the positive thresholds or
with other issues, and review of the final scoring
of the case with correlation of any additional case
findings.

HER2:CEP17 ratio: 1.0

HER2:CEP17 ratio: 4.0

CEP17

CEP17

HER2

HER2

FIGURE 21.1 Example of HER2 FISH testing. The red fluorescent probe is hybridized to the HER2 gene, located on chromosome 17. The
green fluorescent probe is hybridized with DNA in the centromeric region of chromosome 17 (CEP17) and is intended to serve as an internal
control. In the HER2-negative example (upper panels), there are two copies of both HER2 and the CEP17 genes per cell (normal). In the HER2-
amplified example (lower panels), there are many more copies of the HER2 gene present, causing both high mean HER2 signals per cell and
an HER2:CEP17 ratio greater than 2.0.

259HER2 TESTING BY FLUORESCENCE IN SITU HYBRIDIZATION

IV. MOLECULAR TESTING IN ONCOLOGY



While classic HER2 amplification (ratio $ 2.0 and $ 6
mean HER2 signals/cell) and classic nonamplified cases
(ratio ,2.0 and ,4 HER2 signals/cell) are typically
straightforward, there are cases with less clear results

that warrant additional consideration by pathologists
and treating clinicians. The 2013 update to the CAP/
ASCO HER2 Testing Guidelines emphasized the critical
role of the pathologist in correlating morphologic and

HER2 FISH Interpretation Criteria

FIGURE 21.3 HER2 FISH interpretation criteria according to the 2013 CAP/ASCO guideline recommendations [36].

Cell HER2 CEP17

1 15 2

2 9 2

3 7 1

4 12 2

5 10 2

6 10 1

7 8 3

8 2 2

9 2 2

10 8 2

11 15 1

12 12 3

13 8 2

14 2 2

15 7 2

16 9 2

17 12 1

18 12 2

19 15 2

20 10 3

Mean 9.25 1.95

Ratio 4.74

HER2 FISH reporting

INTERPRETATION:

HER2:CEP17 ratio: 4.7  

Number of cells counted: 20

Mean HER2 signals/cell: 9.3 

Mean CEP17 signals/cell: 2.0

FIGURE 21.4 Example of the individual
cell counting sheet results, used to calculate
the mean HER2 signals per cell, mean CEP17
signals per cell, and the overall HER2:CEP17
ratio results. The pathologist is required to
include these results in their report with an
interpretation as positive, negative, equivo-
cal, or indeterminate.
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clinical findings with HER2 test results. These updates
emphasized that the pathologist should recognize HER2
testing results that would be considered discordant that
might require additional testing or explanation [6,37,38].
In addition, the guidelines went further to clarify cases
with nonclassical results that could be considered HER2
positive and eligible for treatment with HER2-targeted
agents. These cases are clarified more extensively in the
supplemental material of the guidelines and they include
the following: (1) “polysomy” or coamplified cases ($6
HER2 signals/cell with concurrent increases in CEP17),
(2) cases amplified only by ratio but with less than 4
mean HER2 signals per cell (“monosomy”), (3) “low-
amplified” cases with ratio more than 2.0 but between
4.0 and 5.9 HER2 signals per cell, (4) “heterogeneous”
cases with a clustered subpopulation of cells with
HER2 amplification representing at least 10% of the
total population. All of these categories are considered
HER2-positive results by the 2013 guidelines update and
eligible for HER2-targeted treatment. However, correla-
tion with other features of the case and clinical setting
should be emphasized in these nonclassical amplified
cases.

Cases that are equivocal by both IHC and FISH
testing results remain in a gray zone if repeat testing
does not resolve the equivocal result. Some of these
cases are “low amplified” with low-level increases
in both HER2 and CEP17 signals, which may have
amplified ratios if an alternative probe for CEP17
is attempted; however, the use of alternative probes
is currently not standardized [39]. FISH equivocal
cases also frequently have intermixed, nonclustered
cells with HER2 amplification that do not meet crite-
ria for a heterogeneously amplified case [40,41].
Discussion of “nonclassical” HER2 FISH positive
cases, as well as FISH-equivocal cases, in a multidisci-
plinary setting can be helpful when treatment deci-
sions are challenging.

The guidelines also note that HER2 testing can be
performed on either the initial core biopsy sample or
the surgical specimen as long as preanalytical vari-
ables are properly controlled. The core biopsy sample
offers the advantage of better control of the ischemic
time and adequate penetration of the formalin for
appropriate tissue fixation in addition to the benefit
of knowing the HER2 status at initial diagnosis if
neoadjuvant therapy is being considered. However, to
ensure appropriate sampling, consideration for repeat
testing on the surgical specimen is recommended
when the core biopsy sample was very limited, equiv-
ocal, or had high-risk features such as a grade 3
cancer. While repeat testing after a core biopsy with a
negative HER2 result is not mandated, its purpose
is to ensure that in high-risk patients, heterogeneity
for HER2 is not missed [37,38].

Test Limitations

While HER2 testing in breast cancers is straight-
forward in the majority of cases, there can be issues with
HER2 concordance by different testing methods and bor-
derline or equivocal results. Discussion of “nonclassical”
HER2 FISH positive cases, as well as FISH-equivocal
cases, in a multidisciplinary setting can be helpful when
treatment decisions are challenging. HER2 testing guide-
lines will also continue to evolve as additional evidence
helps clarify which patients may benefit most from
treatment.

BREAST CANCER MOLECULAR SUBTYPE

Molecular Target and Clinical Utility

Studies evaluating the gene expression profiles
of breast cancers have segregated them into intrinsic or
molecular subtypes based on the relatedness of their
gene expression patterns [42�44]. These techniques
confirmed that the major drivers of breast cancer biol-
ogy are hormone receptor-related genes and HER2-
related genes and highlighted the importance of
proliferation-related genes [45�50]. They support clas-
sification of breast cancers into four main molecular/
intrinsic breast cancer subtypes that have prognostic
relevance to survival. These subtypes have been
termed luminal A, luminal B, HER2-related, and
basal-like (a fifth normal breast-like category has not
been reproducibly identified). Originally defined by
gene expression profiling, similar groupings using
different platforms, including genomic DNA copy
number arrays, DNA methylation, exome sequencing,
microRNA sequencing, and reverse-phase protein
assays are also seen [51]. Although significant hetero-
geneity still exists within these four main groupings
of breast cancer (especially in the basal-like category),
and additional categories have also been described,
these four main groupings provide a major classifica-
tion framework for further exploration of the biology
of breast cancers, especially in the clinical trial setting
[10]. Fig. 21.5 shows examples of the four main molec-
ular subtypes and their additional clinicopathological
features.

There are several studies that suggest breast cancer
subtyping with multigene tests can outperform stan-
dard clinical and pathologic prognostic predictors
[52�55]. However, their value in guiding treatment
decisions is still unclear. In clinical practice, the typical
breast panel markers and grade are often used as a
surrogate for molecular subtypes, with ER-positive
breast cancers correlating with the luminal subtypes,
HER2-positive cancers with the HER2 subtype, and
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triple-negative cancers with the basal-like subtype
[56,57]. However, these surrogate markers are imperfect,
classification schemes vary, and they do not always
correlate with molecular subtype results. Therefore, in
certain settings, molecular testing to determine subtype
may add additional data to the clinical picture.

The most common of these scenarios is distinguishing
between the two main luminal subtypes because of
the worse outcomes and potential benefit from
chemotherapy associated with luminal B cancers when
compared to luminal A cancers (both of which are ER
positive) [58]. The differences between these two groups

are largely based on differences in proliferation-related
genes, with the luminal B cancers having higher prolifer-
ation rates and often lower levels of hormone receptors
[45,59,60]. Distinguishing which ER-positive luminal
breast cancers may benefit from chemotherapy as an
adjunct to hormone-targeted therapy is an area of great
interest, and several clinical assays have been developed
with this specific subset of breast cancers patients in
mind.

Outside of the setting of a clinical trial, determining
if a triple-negative breast cancer by standard markers
also has a basal-like molecular profile has not proven

Molecular 

subtype
Luminal (A and B) HER2 Basal

 Luminal CKs and ER-
related genes (A>B)  
B  in proliferation- 

related genes

HER2-related
genes

Basal CKs

Histologic 

correlates

A Lower-
grade ER+

B Higher-
grade ER+

High-grade,
± apocrine 

features

Surrogate 

markers

Prognosis Worse Worse

Response to 

chemotherapy
Higher Higher

Targeted 

therapies
Hormone therapies

HER2-targeted 
therapies

Currently 
investigational

Good

Lower

Intermediate

Intermediate

A  
Strong 
ER+, 

PR±,
HER2-,
low Ki67

ER/PR- 
HER2-

CK5/6±
EGFR±

B 
Weaker 

ER+, 
PR±,

HER2±,
Ki67

HER2+,
± ER/PR

High-grade, sheet-like, 
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FIGURE 21.5 The four main molecular subtypes of breast cancer and their additional clinicpathological features. The luminal category is
unified by its ER expression and is divided into the lower-risk, lower-grade, lower-proliferation luminal A cancers and the higher-risk,
higher-grade, higher-proliferation luminal B cancers. The HER2 subtype is unified by increased expression of HER2-related genes, higher
grade, more aggressive behavior, but increased rates of response to HER2-targeted therapies and chemotherapies. The basal-like cancers are
also characterized by high grade, aggressive behavior, and better response to chemotherapy, but no additional targeted therapy since they are
typically hormone receptor-negative and HER2-negative.
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useful since there are currently no differences in stan-
dard treatment protocols. Since a subset of basal-like
cancers are actually weak�moderately ER-positive,
some oncologists have an interest in using molecular
profiling to distinguish between a luminal B and
basal-like subtype in these cancers for prognostic
purposes [61]. However, there is limited data on how
to use this information in management decisions.
Basal-like cancers are also noted to occur more often
in younger patients and African-American women
and are associated with a worse prognosis than the
luminal subtypes [62,63]. Interestingly, the vast major-
ity of BRCA1-associated breast cancers appear to have
a basal-like molecular profile, suggesting a common
pathway of carcinogenesis in these patients [64�67].
However, a basal-like or triple-negative profile by itself
does not necessarily predict BRCA1 mutation status
(ie, many of these cancers are in BRCA1-negative
patients), so it is currently not used clinically as a
screen for this genetic test [68,69].

Similarly, molecular subtyping of HER2-positive
breast cancer (by standard assays) has not provided
clear clinical utility beyond standard HER2 testing.
Although studies looking at molecular subtype find
that many HER2-positive carcinomas fall into the
luminal B subtype by molecular profiling, and there-
fore may identify patients with a lower likelihood
of responding to targeted therapy, HER2-targeted
treatments should not be withheld from these patients
on this basis [70].

Molecular Technique

The original studies that classified breast cancers
into molecular subtypes used cDNA microarrays and
unsupervised hierarchical clustering analysis [42,43].
Commercially-available assays have also been devel-
oped with more selected panels to classify breast cancers
on an individual case basis into molecular subtypes.
The two most widely used of these assays are the
Prosigna PAM-50 assay (Nanostring Technology, Seattle,
WA) and Agendia’s BluePrint and MammaPrint
assays (Agendia, Inc., Irvine, CA), both of which have
now been validated for use in formalin-fixed paraffin-
embedded tissue.

The Prosigna PAM-50 assay is a commercially-
available quantitative reverse transcriptase PCR assay
that uses a 50-gene set to classify cancers into the four
molecular types (luminal A, luminal B, HER2-enriched,
basal-like) [71]. NanoString’s nCounter technology uses
a digital barcode that allows for direct multiplexed
measurement of gene expression using color-coded
probe pairs, without requiring an amplification step
[72]. After an overnight hybridization step using a

single tube, samples are processed and purified in the
nCounter and then analyzed in the digital analyzer.
Results are then classified into molecular subtype based
on their gene expression patterns. It also has been
validated and FDA approved to generate and report a
risk of recurrence (ROR) score that uses the expression
profile in combination with a proliferation score, gross
tumor size, and nodal status to estimate risk of distant
recurrence within 10 years for postmenopausal women
with hormone receptor positive, early-stage breast
cancers (with 0�3 positive lymph nodes) [70]. In the
United States, only the ROR is reported, while in non-
US countries NanoString has approval to also report
the intrinsic molecular subtype. There are laboratories
with nCounter technology in both the United States
and Europe that offer testing and institutions can
purchase the technology to set up testing in-house.

BluePrint is another recently developed microarray-
based assay that examines the mRNA levels of 80
genes to classify cancers into luminal type, HER2
type, or basal type [73]. Using further analysis
with MammaPrint’s 70-gene classifier, the luminal
subtype cases can be further divided into the low-risk
luminal A and high-risk luminal B subtypes [52,70].
MammaPrint/BluePrint testing is only performed
at Agendia laboratories and unlike PAM-50 testing,
cannot be brought in-house.

When compared directly to each other, the PAM-50
assay classifies more patients in the low-risk luminal A
category than BluePrint/MammaPrint [74]. It is argued
that when used clinically, these assays may reclassify a
large percentage of breast cancer cases with prognostic
and treatment implications [75].

Test Limitations

Because molecular subtypes were developed on
the basis of hierarchical clustering rather than as a pre-
dictive test on an individual sample, these tests have
been criticized as single-sample predictors [76,77].
When multiple platforms are compared with the same
samples, there is only moderate agreement among
them [77�81]. PAM-50 and BluePrint correlation is
reported to be as low as 59% [74]. While the classifica-
tion of the basal-like subtype appears to be the most
reliable, the critical distinction between luminal A and
B subtypes produces variable results. The impact of
intermixed normal tissue has also been suggested as a
source of interference with gene expression profiling
used as a predictive single-sample test [82,83].

Although molecular/intrinsic subtypes have empha-
sized the importance of the biology driving different
breast cancers, it remains to be seen whether molecular
assays for subtyping will prove to be reproducible,
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clinically useful, and practical as a part of standard
clinical practice. However, results from these tests may
help add data to complex clinical pictures and inform
treatment decisions and clinical trials.

PROGNOSTIC SIGNATURES AND
PREDICTION OF BENEFIT FROM

CHEMOTHERAPY

Molecular Target and Clinical Utility

It has become clear that not all breast cancers
presenting at the same stage have the same underlying
biology or clinical behavior [84,85]. While hormone
receptor and HER2 testing can also help define which
cancers may respond to targeted therapies, predicting
which will respond to chemotherapy is more challeng-
ing. Traditionally, breast cancer subtypes known to
have worse outcomes are treated with chemotherapy.
However, worse prognosis and benefit from chemo-
therapy are not exactly the same outcome measure.
In the ER-positive group of cancers, this distinction is
a particular challenge since most of these are good
prognosis luminal A type cancers would receive little
benefit if given chemotherapy in addition to hormone
therapies. There are a variety of prognostic assays
using gene expression signatures to help determine
which breast cancers are at higher ROR. However,
assays that predict patient benefit from chemotherapy
(rather than just prognosis) have become the most

widely adopted by oncologists treating breast cancer
because of their predictive value.

OncotypeDX and MammaPrint are the assays
most widely used, both of which are now available
in formalin-fixed paraffin-embedded tissue. These
assays have their primary utility in the hormone recep-
tor positive cancers and are often used by oncologists
to determine which ER-positive, lymph node-negative
breast cancer patients may not benefit from the addi-
tion chemotherapy to hormone therapy treatment regi-
mens. Thus, these tests are most frequently used when
chemotherapy is being considered in ER-positive
breast cancer, with a low recurrence score (RS) sup-
porting a decision to opt-out of chemotherapy.

Although both OncotypeDX and MammaPrint
assays have many genes in their panels (21 for
OncotypeDX and 70 for MammaPrint), their recurrence
risk scores are heavily weighted by the proliferation-
related genes in their panels. This makes sense since
chemotherapy targets more rapidly dividing cells.
Multigene prognostic assays are now endorsed by the
ASCO, St. Gallen, and National Comprehensive Cancer
Network guidelines as information that could assist
therapeutic decision-making in ER-positive cancers.
A summary of the most commonly used panel-based
assays is shown in Table 21.1.

Molecular Testing Technique

OncotypeDX is a quantitative reverse transcriptase
PCR assay that quantifies the expression of 16

TABLE 21.1 Common Panel-Based Molecular Tests Used to Predict Outcomes in Breast Cancer

Test (company)

Centralized

testing?

Number of

genes tested

Patient

population

validated for

Results

reported Clinical utility

OncotypeDX (Genomic Health,
Redwood City, CA)

Yes Expression of
16 cancer-related
genes
(5 reference genes)

ER1 ; 0�3
positive
lymph nodes

1. RS and low-,
intermediate-, or
high-risk category

2. Quantitative ER,
PR, and HER2
levels

Estimation of
recurrence risk (three
categories) and benefit
of chemotherapy (in
addition to hormonal
therapy)

MammaPrint BluePrint TargetPrint
(Agendia, Amsterdam, the
Netherlands)

Yes Expression of
70 genes

ER1 or
ER2 ; stage
1�2, 0�3
positive
lymph nodes

1. Low or high
recurrence risk
categories

2. Molecular subtype
3. Quantitative ER,

PR, and HER2
levels

Estimation of
recurrence risk (high vs
low)—most useful in
ER1 patients; and
subtype used as
outcome indicator

PAM50/Prosigna (NanoString
Technologies, Seattle, WA)

No (laboratories
can purchase
testing system)

Expression of
50 cancer-related
genes

ER1 , stage
1�2, lymph
node negative
or 1�3
positive
lymph nodes

1. Molecular subtype
(only reported in
non-US countries)

2. ROR score

Estimation of
recurrence risk (three
categories) and subtype
used as outcome
indicator
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cancer-related genes and 5 control genes [86�88]. The
genes quantified include ER, PR, HER2, and Ki67, in
addition to several other proliferation-related genes.
The quantitative results are used in an equation that is
then used to calculate an RS. This calculation gives the
greatest weight to the panel of five proliferation-
related genes. The RS is divided into low (RS, 18),
intermediate (RS5 18�30), and high (RS. 30) recur-
rence risk categories. In validation studies, cancers
with a low-risk RS received no benefit from adding
chemotherapy to hormone therapy, while cancers in
the high-risk category received significant benefit
from chemotherapy treatment [86]. However, a signifi-
cant percent of cancers fall into the intermediate-risk
category, which has unclear clinical implications for
treatment [89]. Despite these limitations, the RS has
been reported to change treatment decisions in
16�49% of patients undergoing testing [89]. The net
result of OncotypeDX testing appears to be a reduc-
tion in chemotherapy use, a cost-saving that some
argue justifies the high cost of testing [90].

Agendia’s MammaPrint was one of the first
prognostic gene expression assays available for clinical
use [91]. One advantage over OncotypeDX is its ability
to stratify patients into low-risk and high-risk catego-
ries without an intermediate-risk category. Originally,
this assay used microarray technology that required
fresh tissue, which limited its clinical utility. But the
test is now available and FDA approved for use in
formalin-fixed paraffin-embedded tissues.

MammaPrint’s 70-gene profile was developed by
examining over 25,000 genes in lymph node-negative
patients (,55 years old). Supervised classification
identified 70 genes that correlated with poor prognosis
[91,92]. The prognostic capabilities of the 70-gene clas-
sifier was validated in a series of 295 patients (some of
which were lymph node positive) to show that those
with the low-risk signatures had a 10-year recurrence
risk less than 15% while those with the high-risk signa-
ture had a 50% 10-year risk of distant metastasis
[91,93]. More recent meta-analysis data supports that
MammaPrint is also predictive of chemotherapy bene-
fit [94]. However, since almost all ER-negative cancers
have high-risk signatures, the test is most valuable in
discriminating which ER-positive cancers are high risk
and low risk. While most studies to date have been
retrospective analyses, there are now some limited
prospective 5-year survival data showing the ability of
MammaPrint to restratify 20% of clinically high-risk
patients into the low-risk category, which was associ-
ated with a 97% distance recurrence-free interval at
5 years [95].

In addition to the RS result and risk category, a
quantitative result for the traditional markers ER, PR,
and HER2 can be reported by both the OncotypeDX

assay and MammaPrint’s TargetPrint assay [96,97].
While these quantitative results were validated by
traditional testing methods (IHC and ISH testing),
they have not been validated as predictive of response
to targeted hormonal and HER2-directed therapies
and need to be used with caution rather than as
replacements for traditional testing methods [98,99].

Test Limitations

To date, OncotypeDX and MammaPrint have been
validated primarily on retrospective cohorts. Similar
to the molecular subtype assays, they have been
criticized for not being as thoroughly examined as
prospective predictors of outcome on an individual
patient basis. High discordance rates between
OncotypeDX and MammaPrint risk categories when
tested on the same samples have been reported as
well, with as many as 30% of MammaPrint high-risk
cases reclassified as low risk by OncotypeDX [100].
Studies looking at the concordance of multiple gene
signatures including PAM50, MammaPrint, and
Oncotype DX have also found that while the each
had significant prognostic value, the individual risk
assessments were often discordant with each other
(Cohen’s kappa values ranging from 0.24 to 0.70)
[100�102]. Results of large multi-institutional studies
including the TAILORx, MINDACT, and ISPY-2 trials
are anticipated to better evaluate the prospective value
of these assays.

One of the inherent limitations of an assay that is
not interpreted in situ (such as IHC and ISH testing)
is the possibility of the contribution of noncancer
tissue to confound results. Intermixed inflammation,
in situ carcinoma, or desmoplastic stroma may influ-
ence results on an individual case basis [103,104].
Therefore, the results need to be correlated with
morphologic findings and taken in the context of
other data points about the behavior of the cancer
rather than taking any panel-based test results as a
new gold standard.

It is of interest that no molecular markers have
emerged from these panels that are associated with
tumor size or nodal status, suggesting that prognostic
information captured by these histopathologic vari-
ables is not captured in current prognostic gene sig-
natures. These first-generation prognostic/predictive
assays have also been critiqued as being poor
predictors of late recurrences, which account for
most deaths in the ER-positive group of cancers.
Other assays are being developed that aim to
determine which ER-positive patients remain at high
risk after treatment and may benefit from more
prolonged endocrine, chemotherapeutic regimens, or
clinical trials.
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CONCLUSIONS

Molecular testing has transformed the way we think
about breast cancer biology and contributed to the way
we diagnose and treat this disease. However, as with
any test, molecular tests need to provide clear clinical
utility in a cost-effective manner and standards need to
be in place to ensure testing is performed accurately
and reproducibly. Pathologists have a critical role in
this process whether or not they are from the laboratory
performing the molecular test. Fig. 21.6 outlines the role
of the pathologist in ensuring accurate molecular testing
in cancer, including ensuring appropriate tissue han-
dling, selection of the most appropriate tissue sample to
test, and being able to shed light on molecular test
results within their clinical context such that discordant
results can be recognized and dealt with appropriately.
Molecular testing in breast cancer will continue to
evolve and bring new advances to the field.
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FIGURE 21.6 The general role of the
pathologist in evaluation of molecular testing
in breast cancer. The pathologist is involved
not only in selection of the best tissue for
additional molecular testing, but also in
controlling for preanalytical variables, corre-
lation of test results with other clinical
and histologic features, and recognition and
troubleshooting of discordant results.
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INTRODUCTION

In the United States, prostate cancer is the most com-
mon noncutaneous malignancy in men [1]. In 2015, an
estimated 220,800 men will be diagnosed with prostate
cancer, and approximately 27,540 men will die from
the disease. Despite the relatively high number of
cancer-related deaths each year, the majority of pros-
tate cancers are clinically localized, indolent, and can
be treated effectively with surgery (ie, radical prostatec-
tomy), with or without adjuvant radiation or hormone
therapy. However, a subset of patients will present
with nonlocalized disease or recur and progress after
primary treatment. For these patients, the development
of bone or visceral organ metastases carries a very poor
prognosis, given that nearly all metastatic prostate can-
cers will eventually become resistant to anti-androgen
therapies and progress despite castrate levels of serum
testosterone (ie, metastatic castration-resistant prostate
cancer). Finally, a small proportion of patients will be
diagnosed with high-grade neuroendocrine prostate
cancer (NEPC), an aggressive form of prostate cancer
with unique clinical and molecular features, either de
novo (ie, small cell carcinoma of the prostate) or sec-
ondary to treatment of conventional prostatic adeno-
carcinoma [2].

Prior to widespread introduction of serum prostate-
specific antigen (PSA) as a protein-based early detection
biomarker, prostate cancer patients commonly pre-
sented with symptomatic and/or nonlocalized disease.
However, over the past several decades, the high inci-
dence in older men, coupled with the effectiveness of

definitive therapy for localized disease, has spurred
development of early detection programs. Currently,
serum PSA is the most widely utilized prostate cancer
early detection biomarker, although there is significant
controversy regarding its ability to prevent prostate
cancer-specific death (the goal of early detection) and
whether it should be used as a screening test [3]. Once a
patient has been identified for evaluation of possible
prostate cancer, the gold standard for diagnosis is
pathological examination of core biopsy tissue from a
well-sampled prostate gland. Prostatic biopsy is usually
performed with ultrasound guidance using a transrectal
approach, although advances in multiparametric MRI
will likely dramatically impact prostate biopsy in the
near future. At present, prostate cancer is graded
according to the Gleason grading system yielding an
overall score of 2�10, although nearly all cancers diag-
nosed currently fall between Gleason score 6 and
10 (higher scores indicate more aggressive disease).
Localized prostate cancer may be definitively treated
using surgery (radical prostatectomy) or radiation
therapy. If the patient chooses radical prostatectomy,
standard pathological examination of the resected pros-
tate gland yields essential information regarding the
need for additional adjuvant therapy and risk of future
recurrence and/or progression. Alternatively, in
response to acknowledged overtreatment of lower risk
prostate cancer, a growing number of patients with
indolent tumors are being offered active surveillance, a
monitoring program which defers definitive therapy
unless and until the tumor progresses to a more aggres-
sive form [4].
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Advances in our understanding of the molecular
underpinnings of prostate cancer have created new
opportunities for early detection, diagnosis, prognosti-
cation, and targeted therapeutics. In addition, new
technologies are rapidly changing the landscape of clin-
ical molecular diagnostics and generating new para-
digms for the treatment of a wide variety of oncologic
diseases, including prostate cancer [5]. Despite these
exciting developments, few molecular assays are cur-
rently utilized in routine clinical care of prostate cancer
patients—although this will surely change in the era of
personalized medicine.

MOLECULAR TARGETS

Prostate-Specific Kallikreins

Kallikreins are a large family of related serine pro-
teases with diverse roles in a variety of human tissues,
including prostate and breast. These proteins are pre-
dominantly localized to the cytoplasm of glandular epi-
thelial cells and may be present in excreted fluids of
these tissues [3,6,7]. Two kallikreins are regulated by
androgen signaling and expressed at high levels specif-
ically in the prostate gland: (1) PSA (which is encoded
by KLK3) and (2) human kallikrein 2 (or hK2, which is
encoded by KLK2). Similar to other serine proteases,
PSA and hK2 are produced as preproenzymes and
require posttranslational modification to become cata-
lytically active—specifically, proteolytic cleavage of the
preproenzyme signal sequence and release of the
N-terminal activation domain. While the mechanisms
of hK2 processing are not fully understood, for PSA,
the preproenzyme (preproPSA) is processed by a signal
peptidase into the proenzyme (proPSA), which is then
enzymatically cleaved by trypsin-like proteases
(including hK2) to yield active PSA. However, for a
subset of molecules, proPSA is truncated into a stable,
catalytically inactive form (ie, [-2]proPSA) that is not
further processed into active PSA, and in seminal fluid,
a proportion of active PSA molecules are proteolyti-
cally inactivated by different proteases.

When present in the peripheral blood, the vast
majority of active PSA molecules are bound to protease
inhibitors (eg, alpha-1 antitrypsin). The remainder of
the PSA molecules, including inactive PSA and proPSA
forms, circulate unbound as free PSA. Detailed analysis
of these free PSA forms has revealed a number of
unique circulating molecules, including multichain and
nicked PSA forms. To distinguish among these differ-
ent forms of free PSA, all inactive, single-chain, free
PSA molecules are collectively referred to as intact
PSA. Thus, for a given patient, multiple serum values
can be measured, including total PSA, free PSA, intact

PSA, and [-2]proPSA (among others). In normal
patients, total PSA is usually low, serumfree PSA is
often relatively high (B10�30%), and the proportion of
intact PSA is typically low. However, in patients with
prostate cancer, total PSA is often high, serumfree PSA
is usually relatively decreased, and the proportion of
intact PSA, including proPSA forms such as [-2]
proPSA, is frequently high. For a complete review of
the biology and biochemistry of prostate-specific kallik-
reins, we recommend recent comprehensive reviews
[3,6,7].

ETS Gene Rearrangements

Over the past decade, significant progress has been
made in defining the molecular oncogenesis of prostate
cancer [8,9]. High-throughput gene expression profil-
ing studies bore early fruit in the study of prostate can-
cer, through the seminal discovery 10 years ago of
highly prevalent fusions of androgen-responsive genes
and ETS family proto-oncogenic transcription factors
[10]. Bioinformatic analyses of a large group of
microarray-based gene expression datasets identified
outlier expression of ETS family transcription factors
(including ERG) in prostate cancer, and subsequent
experiments demonstrated recurrent ETS gene fusions
in nearly 50% of human prostate cancers [11]. The most
prevalent ETS gene fusion in prostate cancer is
TMPRSS2:ERG [12], which results from an intrachro-
mosomal rearrangement of chromosome 21. This gene
fusion event joins the androgen signaling responsive
elements in the TMPRSS2 50-untranslated region to the
protein-coding exons of the ERG transcript, essentially
bringing the full-length ERG oncoprotein under andro-
genic regulation. Subsequent studies have demon-
strated that ETS gene rearrangements are early, clonal
events in the pathogenesis of prostate cancer [13],
which activate distinct oncogenic transcriptional pro-
grams [14].

PTEN Deletion

Another frequent genomic alteration in prostate can-
cer is PTEN deletion. In fact, apart from the TMPRSS2:
ERG gene rearrangement, PTEN deletion is the most
common recurrent genetic aberration in prostate cancer
[15]. PTEN, a tumor-suppressor gene, encodes a protein
and lipid phosphatase that negatively regulates the
PI3K signaling pathway. Thus, PTEN deletion in pros-
tate cancer leads to dysregulated PI3K signaling, result-
ing in increased proliferation and decreased apoptosis
[16]. Interestingly, while PTEN deletion occurs in both
ETS-positive and ETS-negative prostate cancers, it is
much more common in ETS-positive tumors; and
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PTEN deletion and ETS gene rearrangement may
synergize to promote prostate cancer development and
tumor progression [17�20].

Long Noncoding RNA

Long noncoding RNA (lncRNA) is an emerging area
of focus in prostate cancer biology, and recent transcrip-
tomic profiling studies have identified sets of lncRNAs
associated with prostate cancer [21,22]. Some lncRNAs,
such as PCAT-1 and PCAT29, have novel oncogenic or
tumor-suppressor roles in prostate cancer progression
[21,23�25]. SChLAP1, for example, is an lncRNA with
outlier expression in a subset of prostate cancers. It antag-
onizes the SWI/SNF chromatin-modifying complex, pro-
motes tumor cell invasion and metastasis, and is strongly
associated with aggressive, lethal disease [26,27]. In con-
trast, while its precise function in prostate cancer onco-
genesis is not known, the lncRNA PCA3 is a sensitive
and specific biomarker for prostate cancer detection (as
assessed in the urine) [28�30].

Germline Mutations

Recent genomic sequencing has identified germline
mutations in several genes, including HOXB13, BRCA1,
and BRCA2, that predispose patients to prostate cancer
[31,32]. HOXB13 encodes a homeobox transcription fac-
tor with central roles in prostate gland development
[33]. A recurrent HOXB13 G84E germline mutation is
associated with a significantly increased risk of early-
onset prostate cancer [31]; and interestingly, these
tumors have a low frequency of ERG gene rearrange-
ment and correspondingly high rate of SPINK1 overex-
pression [34]. BRCA1 and BRCA2 are tumor-suppressor
genes with roles in multiple intracellular processes,
including DNA damage repair, transcriptional regula-
tion, and chromatin remodeling, and germline muta-
tions in these genes are associated with an increased
risk of prostate cancer and may predispose to aggres-
sive disease [32].

Rare Potentially Targetable Alterations

High-throughput characterization of the prostate
cancer genome and transcriptome has not identified
frequent alteration of easily druggable targets (ie, tyro-
sine kinases or G-protein-coupled receptors). However,
characterization of large prostate cancer cohorts has
identified rare potentially targetable recurrent altera-
tions. For example, Palanisamy et al. used RNAseq to
characterize a cohort of ETS fusion negative prostate
cancers and identified gene rearrangements involving
RAF family members (BRAF or RAF1), which were

shown to drive tumor development in model systems
[35]. Subsequent studies identified additional RAF
family fusions and activating mutations (eg, BRAF
T599_V600insHT) in 2�4% of prostate cancers,
although BRAF V600E mutations are very infrequent,
at least in Caucasian cohorts [36�38]. Likewise, using
comprehensive exome and transcriptome sequencing
as part of the MI-ONCOSEQ program, Wu et al. identi-
fied an androgen-driven SLC45A3:FGFR2 fusion in a
patient with ETS fusion negative CRPC [39]. Modeling
of FGFR2 fusions (observed in prostate and other can-
cers) supports these fusions as drivers targetable by
FGFR inhibitors, and in silico analysis of publically
available gene expression data suggested a frequency
of FGFR2 fusions in prostate cancer of approximately
0.1%. Lastly, recurrent IDH1 R132H mutations have
been identified in 1�2% of prostate cancers (exclusively
ETS fusion negative) across multiple independent
cohorts [40�43]. These results suggest that rare poten-
tially targetable alterations may occasionally drive
prostate cancer development, particularly in tumors
lacking ETS fusions.

MOLECULAR TECHNOLOGIES

Prostate-Specific Kallikreins

Prostate-specific kallikreins can be detected in sam-
ples of peripheral blood or urine by a variety of immu-
noassays (ie, enzyme-linked immunosorbent assay),
although urine samples are not routinely analyzed in
clinical practice (Fig. 22.1A). Monoclonal antibodies pro-
vide specificity for hK2 and the various PSA isoforms.

ETS Gene Rearrangements

As shown in Fig. 22.1B, multiple technologies have
been used to detect TMPRSS2:ERG transcripts in the
urine of patients with prostate cancer, including
reverse transcription qPCR after whole transcriptome
amplification and transcription-mediated amplification
(TMA) [44�47]. TMA is a specialized nucleic acid
based amplification method that utilizes RNA polymer-
ase and reverse transcriptase to rapidly and specifically
produce RNA amplicons, which can subsequently be
quantitated by a number of detection methods. In stan-
dard tissue sections, ETS gene rearrangements, includ-
ing the dominant TMPRSS2:ERG gene fusion, can be
detected with high sensitivity and specificity by inter-
phase fluorescent in situ hybridization (FISH) [48,49].
In addition, in clinically localized prostate cancer,
immunohistochemistry with a monoclonal ERG anti-
body has a high sensitivity and specificity for ERG
gene rearrangements [50], again using standard tissue
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sections (Figs. 22.2 and 22.3). Given the lack of vali-
dated antibodies against non-ERG ETS genes involved
in recurrent prostate cancer fusions (ETV1, ETV4,
ETV5, and FLI1), RNA-based assays, including emerg-
ing chromogenic in situ hybridization (ISH), are being
developed for the detection of ETS gene rearrange-
ments in tissue [51]. These technologies employ small
target sequence-specific probes and specialized amplifi-
cation methods to allow visualization of chromogenic
dyes in tissue by routine light microscopy. Lastly, a
variety of high-throughput approaches, including qRT-
PCR, multiplexed PCR based RNAseq, RNAseq, and

whole genome sequencing, have been used to charac-
terize ETS gene fusions in fresh frozen and formalin-
fixed paraffin-embedded (FFPE) tissue samples, in both
the translational and clinical settings [38,40,41,52�54].

PTEN Deletion

In prostate cancer, PTEN deletion results in either
heterozygous or homozygous PTEN loss, and in tissue,
these genomic aberrances can be detected with high
sensitivity and specificity by interphase FISH [55�57],
as shown in Fig. 22.4. In addition, PTEN expression can
be assessed by immunohistochemistry with a monoclo-
nal PTEN antibody. Although this protein-based assay
cannot discriminate between heterozygous and homo-
zygous genomic loss, lack of PTEN expression by IHC
has been analytically validated as sensitive and specific
for PTEN loss [57,58].

Long Noncoding RNA

Similar to detection of TMPRSS2:ERG transcripts
(Fig. 22.1B), PCA3 transcript levels can be assessed in
urine specimens with a TMA assay [59,60]. In addition,
in standard tissue sections, both PCA3 and SChLAP1
expression (Fig. 22.5) can be examined using an RNA-
based ISH assay [27,60�62].

Germline Mutations

Although not currently utilized in routine clinical
practice (unless as part of a workup for hereditary can-
cer), testing for germline mutations in HOXB13, BRCA1,
and/or BRCA2 could be performed using a variety of
standard DNA-based methods, including Sanger
sequencing, allele-specific PCR, single-strand conforma-
tion polymorphism, melting point analysis, and/or tar-
geted next-generation sequencing, depending on the
mutation type and frequency.

Rare Targetable Oncogenic Alterations

A variety of techniques can be used to identify
targetable alterations (depending on alteration type) in
prostate cancer tissue specimens, including FISH,
Sanger sequencing, and next-generation sequencing, as
shown in Fig. 22.6.

CLINICAL UTILITY

Early Detection

For prostate cancer, early detection efforts have
essentially two main goals: (1) recognizing patients
with clinically significant disease and (2) identifying

(A)

(B)

Total PSA:

Free PSA

KLK2Intact PSA

[-2]pro PSA

Complexed PSA

% Free PSA:

+

/ +( )

phi: / * +( )

4Kscore: Clinical info, + , , ,

PCA3

TMPRSS2:ERG

Progensa PCA3:

MiPS: + , ,

FIGURE 22.1 Clinically available prostate cancer early detection
biomarkers. (A) Multiple serum- and (B) urine-based prostate cancer
early detection biomarkers are available (FDA-approved biomarkers
are in bold). (A) Multiple forms of prostate-specific antigen (PSA;
KLK3) can be quantified from serum, including free PSA, intact PSA
(a form of free PSA), [-2]pro PSA (another form of free PSA), and
complexed PSA. KLK2 (hK2) is a related enzyme that can also be
quantified from serum. Multiple combinations are used clinically,
including: total PSA (free1 complexed PSA); % free PSA (free/total
PSA); phi ([-2]pro PSA/free PSA � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

total PSA
p

); and 4Kscore (logistic
regression model including clinical information, total PSA, free PSA,
intact PSA, and KLK2). (B) In urine, prostate cancer specific tran-
scripts from PCA3 (a long noncoding RNA) and the TMPRSS2:ERG
gene fusion are used as biomarkers. The Progensa PCA3 assay
quantifies urine PCA3 transcripts (normalized to urine PSA tran-
scripts) through a transcription-mediated amplification approach to
generate a PCA3 score, while the Mi-Prostate Score (MiPS) test uses
a logistic regression model incorporating serum PSA and urine PCA3
and TMPRSS2:ERG scores (generated by the Progensa assay and an
analogous assay for TMPRSS2:ERG).
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patients at increased risk for developing disease. While
current prostate cancer early detection programs are
focused on recognizing patients with clinically signifi-
cant disease (goal #1), in the future, these programs will
likely be expanded and refined in order to identify
patients at increased risk for developing disease (goal
#2). Serum PSA—more specifically, total PSA—is the
current standard for the early detection of prostate
cancer. However, while an elevated PSA is sensitive for
prostate cancer, it is certainly not specific. Certain
benign conditions, such as prostatitis and benign pros-
tatic hyperplasia, can lead to elevated PSA levels (ie, a
false-positive test result) and subsequent unnecessary
prostate biopsies. In addition, an elevated PSA is not
specific (or even necessarily sensitive) for high-grade
cancers. Therefore, standard PSA-based early detection
programs may identify many low-grade, indolent can-
cers, which may be unnecessarily biopsied and treated,
and may fail to detect some high-grade, aggressive
cancers.

With these limitations in mind, additional protein-
based assays have been developed to improve the
early detection of clinically significant prostate cancer.
Such assays include—but are not limited to—assess-
ment of serum-free PSA, intact PSA, [-2]proPSA, hK2
levels, and various combinations (Fig. 22.1A). For
example, the Prostate Health Index (phi) test, which is
FDA approved for prostate cancer risk estimation in
men with a serum total PSA between 4 and 10 ng/mL,
combines total PSA, free PSA, and [-2]proPSA levels
into a single score, and in a multiinstitutional prospec-
tive clinical trial, phi outperformed any of its individ-
ual elements for the detection of clinically significant
prostate cancer [63]. Another assay, the four kallikrein
(or 4K) panel, combines total PSA, free PSA, intact
PSA, and human kallikrein 2 into a single score.
Compared to total PSA alone, the 4K assay has shown
clinical improvement for the detection of high-grade
cancer in multiple independent large European and
American cohorts [64�66]. Importantly, in another

PIN-4

ERG PIN-4

ERG

FIGURE 22.2 Diagnostic utility of immunohistochemistry (IHC) for ERG protein expression as a surrogate for ERG gene fusions. Multiple
monoclonal antibodies directed against ERG have been validated with ERG rearrangement status by FISH and shown to have more than
99.99% specificity for prostate cancer at the tissue level. Low power views (left panels) of hematoxylin and eosin (H&E), PIN-4 IHC (basal
markers and AMACR), and ERG IHC for a core containing a suspicious but atrophic focus as indicated in the orange box. Higher power view
(right panels) demonstrates some glands with nuclear atypia (inset shows blue dashed box) while others are more benign appearing (includ-
ing areas consistent with complete atrophy). IHC demonstrates lack of basal cell markers and AMACR (PIN-4), while ERG is diffusely posi-
tive, consistent with a focus of atrophic carcinoma (green bracket). Note benign glands (black arrows) showing retained basal cells and lack of
AMACR and ERG expression.
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recent large European prostate biopsy cohort, the 4K
and phi assays demonstrated similar overall improved
detection of high-grade cancer (GS$ 7), compared to
total PSA alone [67].

In addition to serum protein biomarkers, risk calcu-
lators that incorporate demographic and clinical infor-
mation have been developed to improve the early
detection of clinically significant prostate cancer. For

example, the Prostate Cancer Prevention Trial Risk
Calculator 2.0 (PCPTRC 2.0) demonstrated excellent
discrimination between no disease, low-grade disease
(GS, 7), and high-grade disease (GS$ 7) in a large
American cohort with total PSA alone [68]. This calcu-
lator was subsequently validated in 10 large indepen-
dent American and European cohorts, and improved
performance of PCPTRC 2.0 after inclusion of free PSA

ERG

ERG

ERG

(E)

(C) (D)

(A) (B)

PSA

SYNAPT

FIGURE 22.3 Utility of ERG assessment by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) to identify andro-
gen receptor signaling positive (AR1 ) and negative (AR2 ) prostate cancer. Expression of androgen-driven ETS gene fusions (most com-
monly TMPRSS2:ERG) in cases harboring these alterations at the genomic level informs on AR signaling status. (A) Areas of conventional
acinar adenocarcinoma (orange brackets) and neuroendocrine small cell carcinoma (SCC, black bracket) are present in a prostate biopsy core.
(B) Neuroendocrine differentiation is supported by synaptophysin (SYNAPT) expression exclusively in the SCC component. (C) ERG protein
expression is present diffusely in both components, consistent with clonality; however, ERG expression is weaker in the SCC component (note
black arrows). (D) Reduced ERG expression is consistent with decreased AR signaling in the SCC component, supported by lack of PSA
expression in this component. (E) Presence of ERG gene rearrangement supports prostatic origin of poorly differentiated carcinoma and neuro-
endocrine/SCC. A neuroendocrine SCC was identified on a transurethral resection specimen from the urinary bladder in a man with a history
of prostatic adenocarcinoma. Although ERG staining was negative (right panel), an ERG rearrangement was present by FISH using split signal
probes (right panel inset). For ERG FISH, 50 (red) and 30 (green) probes flanking ERG were used. A single normal signal (colocalized 50/30 sig-
nals, yellow arrow) and loss of a 50 signal (unpaired 30 signal, green arrow) are consistent with the presence of a TMPRSS2:ERG rearrangement
through deletion and support prostatic origin.
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was demonstrated in two large American cohorts [68].
A similar integrated, protein-based risk calculator
(4Kscore), which incorporates the 4K assay and routine
clinical and demographic information, has been vali-
dated for the detection of high-grade prostate cancer in
large prospective American cohort [66]. When com-
pared directly to a modified PCPTRC 2.0 (without

family history), 4Kscore showed superior discrimina-
tion for detecting high-grade cancer (GS$ 7) and had a
higher net benefit at all thresholds by decision curve
analysis [66].

Several new RNA-based biomarkers have been pro-
posed for the early detection of prostate cancer, includ-
ing urine assessment of PCA3 and TMPRSS2:ERG
transcripts (Fig. 22.1B). Importantly, in contrast to
existing protein-based assays, these RNA molecules
are highly specific for prostate cancer and are likely to
improve specificity of early detection efforts [66,69].
TMA assays are currently clinically available for the
quantification of PCA3 and TMPRSS2:ERG assays in
postattentive digital rectal exam urine [46,47]. When
incorporated into prostate biopsy nomograms that
include total PSA and standard clinical and demo-
graphic information, urine PCA3 significantly
improved the predictive accuracy for prostate cancer
in multiple large international cohorts [70,71].
Although the Progensa PCA3 assay is FDA approved
for prostate cancer risk assessment in men with a prior
negative biopsy, a recent validation study demon-
strated clinical utility in men presenting for initial
biopsy [72]. Similarly, inclusion of urine PCA3 results
in PCPTRC 1.0 yielded better diagnostic accuracy for
prostate cancer than either total PSA, PCPTRC 1.0, or
urine PCA3 [73]. Given sensitivity concerns, urine
TMPRSS2:ERG quantification/detection has most com-
monly been combined with more sensitive markers of
prostate cancer (ie, total PSA and/or urine PCA3) and
standard clinical and demographic information. For
example, urine TMPRSS2:ERG assessed by qRT-PCR
after whole transcriptome amplification significantly
improved detection of prostate cancer in patients with
total PSA less than 10 ng/mL [74]. In addition, in mul-
tiple independent large prostate biopsy cohorts, urine
TMPRSS2:ERG and PCA3 quantification by TMA
assays improved performance of clinical risk assess-
ment tools, including PCTPRC 1.0 and European
Randomized Study of Screening for Prostate Cancer
risk calculator, and increased detection of clinically
significant and high-grade prostate cancer [45,47]. At
the University of Michigan Health System, this combi-
nation of assays (total serum PSA, and urine PCA3 and
TMPRSS2:ERG by TMA) has been developed into a
clinically available test (Mi-Prostate Score) for the early
detection of prostate cancer (Fig. 22.1B).

Finally, while no molecular tests are currently used
in routine clinical practice to identify patients at
increased risk for developing prostate cancer, in the
future, targeted or whole genome sequencing
approaches may be utilized to screen specific cohorts
of clinically identifiable high-risk patients (ie, strong
family history) for germline mutations in prostate can-
cer associated genes, including HOXB13, BRCA1, and

PTEN
CEP10

FIGURE 22.4 Evaluation of PTEN in prostate cancer tissue speci-
mens by immunohistochemistry (IHC) and fluorescence in situ
hybridization (FISH). PTEN is one of the most frequently deleted
genes in prostate cancer, with numerous studies demonstrating an
association between PTEN deletion and aggressiveness. Here, conse-
cutive sections from a routine biopsy specimen with high-grade
prostate cancer were evaluated by histology (top panel), IHC for
PTEN (middle panel) expression and quantum dot FISH for PTEN
copy number (bottom panel). By IHC, note retained PTEN expres-
sion in stromal cells and blood vessels (green arrowheads) with com-
plete loss of PTEN expression in cancer (orange arrowheads). For
quantum dot fish, probes for PTEN and the centromeric region of
chromosome 10 (CEP10) were labeled in magenta and cyan, respec-
tively, with nuclei stained by DAPI in gray. Note equal numbers of
PTEN and CEP10 signals in benign stromal cells (green arrows) and
complete loss of PTEN signals in cancerous cells (orange arrows).
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BRCA2. Our understanding of hereditary prostate can-
cer is as-of-yet incomplete, which limits the potential
utility of this molecular data in current clinical
practice. However, emerging research suggests that
hereditary prostate cancer may have unique clinico-
pathological characteristics with important prognostic
and therapeutic implications [32,34]. Likewise, numer-
ous single-nucleotide polymorphisms (SNPs), which
are associated with relatively modest increases in
prostate cancer risk, have been identified through
genome-wide association studies [75]. Assessment of
such markers may be useful in stratifying men for
early detection efforts in the near future, although typi-
cally only a small subset of patients have combinations
of SNPs with moderate effect size (eg, .2 odds ratios
compared to men at the median risk) [76,77].

Diagnosis

To date, molecular advances have not provided a
disruptive innovation for the diagnosis of prostate can-
cer, where traditional histopathologic review remains
the gold standard. This usually entails surgical patho-
logical review of needle core biopsies sampled from an
anatomic template of six or more areas of the gland,
although increasingly, sampling is performed in
conjunction with the guidance of advanced imaging
technologies (including multiparametric MRI), which
enable correlation of specific samples to imaged
lesions. Nonetheless, there are a few specific scenarios
for which molecular techniques may be helpful
diagnostically. The diagnosis of prostate cancer in core
biopsy specimens has become generally straightfor-
ward, especially with the support of reliable, widely
available ancillary immunohistochemistry (ie, PIN-4
cocktail). It bears mention that the now quotidian

PIN-4 cocktail utilizes alpha methyl acyl-coA racemase
(AMACR) as a cancer-specific component, a use that
actually arose from early molecular profiling (ie,
microarray-based gene expression profiling) of normal
and cancerous prostate tissue [78]. Even greater preci-
sion is provided by contemporary prostate cancer
immunohistochemistry for the ERG gene product, the
expression of which can be detected in approximately
half of prostate cancers. For example, in some cases,
small foci of atypical prostate glands—generally
termed atypical small acinar proliferations (ASAP)—
may be suspicious for but difficult to definitively
classify as cancer, due to quantitative (ie, amount
sampled) or qualitative (ie, degree of atypia) limita-
tions of the focus. Since benign prostate epithelium,
including benign mimickers that may express
AMACR, essentially never expresses ERG, the immu-
nohistochemical detection of ERG protein expression
in atypical prostate glands that are morphologically
suspicious for cancer (ie, ASAP) confirms the diagnosis
of prostate cancer [79�81]. Fig. 22.2 shows a focus of
atrophic prostate cancer that is negative for AMACR
but diffusely overexpresses ERG. However, it is impor-
tant to note that because only approximately half of
prostate cancers have ERG gene rearrangements, in
this scenario, the lack of ERG protein expression in
ASAP neither supports nor excludes a diagnosis of
prostate cancer. Hence it remains a marker that is
exquisitely cancer specific but only 40�50% sensitive.

Another situation in which molecular techniques
may be helpful in prostate cancer diagnostics is distin-
guishing de novo high-grade NEPC (ie, small cell car-
cinoma of the prostate) from small cell carcinomas of
other organs. While in many cases it is relatively
straightforward to diagnose NEPC based on anatomic
location, small cell carcinomas involving the prostatic
base/bladder neck may be of either prostatic or

SChLAP1 SChLAP1

(A) (B)

FIGURE 22.5 Detection of the long noncoding RNA (lncRNA) SChLAP1 in prostate cancer. Next-generation sequencing and DNA microar-
ray based approaches have identified numerous prostate and/or prostate cancer specific lncRNAs. SChLAP1 has been identified as a prostate
cancer specific lncRNA that is strongly associated with aggressive prostate cancer. SChLAP1 expression by RNA in situ hybridization (brown
signal) is shown in (A) localized and (B) metastatic castration resistant prostate cancer.
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FIGURE 22.6 Targeted next-generation sequencing (NGS) to enable precision medicine for prostate cancer. NGS can be used to identify
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pies. A schematic of an integrative NGS-based system to identify potentially actionable somatic alterations in prostate cancer using the
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bladder origin. In these cases, as in Fig. 22.3, docu-
menting the presence of an ERG gene rearrangement,
either by FISH or immunohistochemistry, supports the
diagnoses of NEPC, since ERG gene rearrangements
are found in greater than 50% of NEPC but not in
small cell carcinoma of the bladder or other primary
sites relevant to this differential [82]. Similarly, evi-
dence of an ERG gene rearrangement by FISH or
immunohistochemistry would strongly support the
diagnosis of metastatic prostatic cancer in patients for
whom a prostatic primary is known or suspected [83].
Of course, in either case, the caveat applies that
negative ERG FISH or ERG immunohistochemistry
does not exclude a diagnosis of prostate cancer.
Furthermore, it is important to note that because
androgen signaling may be dysregulated in NEPC or
metastatic prostate cancer (indeed, often in an iatro-
genic fashion through androgen blockade), ERG pro-
tein expression (which is androgen regulated in the
TMPRSS2:ERG gene fusion) in such cancers may be
falsely negative by immunohistochemistry, as
shown in Fig. 22.3 [82,84]. In these cases, ERG FISH
may be the preferred method to detect ERG gene
rearrangements.

Finally, although not used routinely in current clini-
cal practice, there is some utility for the ConfirmMDx
assay in patients with a negative biopsy for whom
prostate cancer is strongly suspected on clinical
grounds [85]. This assay detects methylation at multi-
ple gene loci, including APC and GSTP1, using
methylation-specific PCR [86]. Hypermethylation of
APC and GSTP1 is significantly more frequent in pros-
tate cancer than benign prostatic tissue [86], and the
absence of APC hypermethylation (as determined by
the ConfirmMDx assay) in prostatic tissue from core
biopsies without prostate cancer has a very high nega-
tive predictive value for the detection of prostate can-
cer on repeat biopsy in high-risk patients [85].

Prognostication

Biomarkers for prostate cancer prognostication are
an emerging area of focus in genitourinary pathology,
and both single-gene and multigene assays have been
developed. Genomic loss of PTEN, the second most
common genetic aberration in prostate cancer after

ERG gene rearrangements, can be detected by FISH or
immunohistochemistry [55�58], as shown in Fig. 22.4.
PTEN deletion, as detected by FISH, is associated with
advanced disease at the time of radical prostatectomy
(ie, extraprostatic extension, seminal vesicle invasion),
as well as a decreased time to biochemical recurrence
[87]. In a large European cohort of patients treated
with radical prostatectomy, PTEN deletion was signifi-
cantly associated with decreased time to biochemical
recurrence in univariate and multivariate analyses,
and this effect was independent of ERG gene rear-
rangement status [88]. Similarly, loss of PTEN by
immunohistochemistry, which shows high concor-
dance with PTEN FISH, is associated with high
Gleason score, advanced pathological stage, and
decreased time to metastasis in high-risk patients after
radical prostatectomy [58]. Finally, for conservatively
managed, clinically localized disease, the detection of
PTEN deletion by FISH or immunohistochemistry is
highly predictive of cancer-related death in low-risk
but not high-risk patients [89].

Increasing awareness of oncogenic roles for lncRNA
in prostate cancer raises the intriguing possibility of
prognostic lncRNA-based assays. For example, the
lncRNA SChLAP1 demonstrates outlier expression in a
subset of prostate cancers, promotes cancer cell inva-
sion and metastasis, and is strongly associated meta-
static progression in a large multi-institutional analysis
[26,27]. SChLAP1 expression can be detected by ISH in
FFPE tissue [22,26,27] (Fig. 22.5), and high SChLAP1
expression by ISH in radical prostatectomy specimens
is associated with poor outcome, after univariate and
multivariate analyses [62]. Future studies will explore
the potential clinical utility for SChLAP1 ISH in pros-
tate biopsy material.

Targeted Therapeutics

In current clinical practice, there is very limited tar-
geted therapeutic selection for the treatment of pros-
tate cancer, and only recently have clinical trials been
developed to assess possible targeted therapeutic strat-
egies [83]. Given that nearly half of all prostate cancers
harbor ETS gene rearrangements, the development of
therapeutics targeting the molecular mechanisms of
ETS-related oncogenesis has been area of active

� (upper left panel); a representative specimen, demonstrating a castration-resistant prostate cancer (CRPC) lung metastasis is shown. Samples
were assessed by NGS using multiplexed PCR-based DNA and RNA sequencing (top right). Data was analyzed using a highly automated
pipeline to generate an integrative molecular profile for each sample consisting of predefined potentially actionable somatic point mutations,
CNAs, and gene fusions (bottom panel). Sample information is shown in the header according to the legend at the bottom. The heatmap
shows individual alterations according to the bottom legend. Integrative profiles for two samples (PR-160 and PR-122) are shown, with copy
number plots visualized (colored points represent individual amplicons for a given gene; black bars represent gene level copy number ratios)
and prioritized somatic mutations indicated. Of note, PR-160, a CRPC metastasis, shows an acquired androgen receptor (AR) amplification, a
known adaptive response to anti-androgen therapy. PR-122 harbors an IDH1 R132H mutation and no other prioritized alterations.
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research [90]. Poly (ADP-ribose) polymerase 1 (PARP1)
is a chromatin-associated enzyme with roles in multi-
ple intracellular processes. In ETS-positive prostate
cancer, PARP1 physically interacts with ETS proteins
and is required for ETS-mediated transcription, and in
preclinical models, pharmacologic inhibition of PARP1
reduces ETS-dependent cellular proliferation [91].
PARP1 is also involved in the DNA damage response
pathway, and inhibition of PARP1 induces DNA dam-
age mediated cellular apoptosis, which sensitizes
tumor cells to radiotherapy and platinum-based alky-
lating agents [92,93]. Mutations in BRCA1 and/or
BRCA2 also impact DNA damage response via inhibi-
tion of homologous recombination, which leads to an
accumulation of DNA double-stranded breaks and sen-
sitivity to PARP1 inhibitors [90,93�95]. Therefore,
while sporadic BRCA1 and/or BRCA2 mutations are
uncommon in prostate cancer, patients with BRCA-
associated hereditary prostate cancer could benefit
from PARP1 inhibition—with or without radiotherapy
and platinum-based chemotherapy. Interestingly,
PCAT-1, an lncRNA with outlier overexpression in a
subset of prostate cancers, represses BRCA2 expression
in prostate cancer cell lines, resulting in a functional
BRCA-deficient phenotype (BRCAness). Similar to
tumors with BRCA1 and/or BRCA2 mutations, this
BRCAness bestows sensitivity to PARP1 inhibitors and
suggests that PCAT-1 may be a biomarker for predict-
ing response to PARP1 inhibitors in prostate cancer
[25]. Aside from ETS gene rearrangements, several of
the recurrent genomic aberrations in prostate cancer
are likely amenable to targeted therapy in the future.
For example, PTEN deletion is the second most com-
mon molecular abnormality in prostate cancer and
leads to dysregulation of the PI3K signaling pathway
[15]. Drugs that inhibit the PI3K pathway are currently
in clinical trials for a range of malignancies and may be
useful for prostate cancers harboring PTEN deletions.

Prostate cancer harbors rare but potentially
targetable alterations, including mutations or fusions
involving RAF family members (including BRAF and
RAF1), FGFR2, and IDH1 [35�39,41]. Importantly,
molecularly informed clinical trials enrolling patients
with prostate or any cancer (so-called basket trials) are
increasingly available. In the near future, we anticipate
that both targeted and comprehensive molecular pro-
filing efforts may be used to identify potential treat-
ment strategies for patients with aggressive or
advanced prostate cancer. For example, we recently
utilized a pan-cancer, multiplexed PCR-based targeted
DNA/RNA sequencing based approach to identify
potentially targetable alterations in a prostate cancer
cohort [41]. Examples of patients harboring AR/
PIK3CA amplifications and IDH1 R132H mutations are
shown in Fig. 22.6.

LIMITATIONS OF TESTING

Despite tremendous recent progress in our under-
standing of the molecular mechanisms of prostate can-
cer, as well as emerging molecular-based clinical
assays for the early detection, diagnosis, prognostica-
tion, and treatment of prostate cancer, the role for
molecular pathology in routine clinical practice is still
limited, due to many factors. These include (1) the
fragmentation of care for men at risk for or with pros-
tate cancer (eg, early detection by general practitioners,
biopsy by urologists, definitive treatment usually by
urologists or radiation oncologists, and medical ther-
apy by oncologists), (2) the lack of predictive biomar-
kers, (3) the relatively modest additional benefit that
prognostic biomarkers provide when added to stan-
dard clinical, radiological, and pathological evaluation,
(4) the challenges of working with small diagnostic
FFPE biopsies, and (5) the lack of routine biopsy of
metastatic tissues. In particular, perhaps with the
exception of PTEN deletion, currently available single-
gene assays lack the ability to add to optimized clinico-
pathological models, either at the time of biopsy or
after radical prostatectomy. Critically, this is the key
question when evaluating a new prognostic biomarker:
does its inclusion improve the performance of an opti-
mized model (ie, a nomogram) that incorporates all
relevant and easily assessable clinicopathological para-
meters (eg, grade, stage, serum PSA, margin status
and node status in the prostatectomy setting) [96]?

Multigene Assays

Several multigene assays for prostate cancer prog-
nostication have been introduced over the past several
years, including Oncotype DX Prostate, GenomeDx
Decipher, and Prolaris [97,98]. Oncotype DX Prostate,
designed for use with prostate biopsy material, is an
RT-PCR-based assay that measures expression of 12
prostate cancer related genes and 5 references genes to
generate the Genomic Prostate Score (GPS) [97]. In a
large retrospective American cohort of patients who
met clinical criteria for active surveillance, the biopsy
GPS was associated with high grade and stage cancers
at radical prostatectomy, even after multivariate analy-
sis, and by decision curve analysis, the addition of
biopsy GPS to the Cancer of the Prostate Risk
Assessment (CAPRA) score provided increased net
benefit over clinical information alone [99]. In an inde-
pendent American cohort, the biopsy GPS was simi-
larly associated with high grade and stage cancers at
radical prostatectomy (after multivariate analysis), as
well as increased risk of biochemical recurrence (after
univariate analysis) [100].
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Similar to Oncotype DX Prostate, Prolaris is an RT-
PCR-based gene expression assay. The Polaris test inte-
grates expression of 31 genes involved in cell cycle
progression (CCP) to generate a CCP score [101]. The
CCP score was useful for predicting biochemical
recurrence after radical prostatectomy, as well as
cancer-related death after transurethral resection of the
prostate in a conservatively managed prostate cancer
cohort [102]. Similarly, in a large independent
American cohort, addition of the CCP score increased
the predictive capability of the Cancer of the Prostate
Risk Assessment post-Surgical (CAPRA-S) score for
recurrence after radical prostatectomy, and the com-
bined CCP and CAPRA-S score outperformed either
score alone in decision curve analysis [103]. In two
large independent prostate biopsy cohorts, the CCP
score is significantly associated with adverse out-
comes, including biochemical recurrence after radical
prostatectomy and prostate cancer related death after
conservative management [102,104]. An independent
meta-analysis confirmed that the CCP score demon-
strates robust prognostic value for predicting biochem-
ical recurrence of prostate cancer, after univariate and
multivariate analyses [105].

In contrast to Oncotype DX Prostate and Prolaris,
GenomeDx Decipher is an RNA microarray based test
that integrates expression of 22 RNA molecules to gen-
erate a genomic classifier (GC) score [106]. The GC
score was developed from a radical prostatectomy
cohort enriched for patients with metastatic disease
and was validated for the prediction of metastatic pro-
gression after radical prostatectomy in a cohort of
high-risk prostate cancer patients [106,107]. While GC
and CAPRA-S scores were significant independent
predictors of cancer-related death after radical prosta-
tectomy in a cohort of high-risk prostate cancer, inte-
gration of GC and CAPRA-S scores identified a subset
of patients with very high prostate cancer related mor-
tality [108].

Most recently, an eight biomarker multiplexed
immunofluorescence (IF) based assay on FFPE prostate
biopsy tissues has recently been validated for predict-
ing prostatectomy pathology [109]. This panel, which
uses quantitative multiplex proteomics imaging, inte-
grates morphological object recognition and molecular
biomarker measurements from tumor epithelium at
the individual slide level. In a blinded study of 276
cases using trained logistic regression models, the
eight biomarker multiplexed IF assay improved the
AUC for predicting favorable disease at prostatectomy
from 0.69 (NCCN guideline classification) to 0.75. Net
reclassification and decision curve analysis demon-
strated benefit from the combined eight biomarker IF
assay and NCCN classification, compared to NCCN
classification alone [109].

Future Directions

In summary, over the past several years, a number
of promising new molecular assays have been devel-
oped for early detection, diagnosis, and prognostica-
tion of prostate cancer; and in the near future, these
tests will find increasing utility in routine clinical prac-
tice. The challenge moving forward will be to under-
stand what test needs to be used for which patients at
a given stage in the clinical presentation of prostate
cancer and, furthermore, to demonstrate that the over-
all net benefit for these assays justifies their routine
use and cost to patients and payers. In particular, it
will be important to determine the true added value of
these tests over the current clinical risk stratification
tools, which are effective, widely available, and essen-
tially free.

Based on currently available molecular assays, one
can imagine the future state of prostate cancer early
detection, diagnosis, and prognostication: (1) for
patients with a strong family history of prostate cancer,
germline HOXB13, BRCA1, and/or BRCA2 sequencing
identifies those for close clinical monitoring; (2) for
otherwise low-risk patients in the general population,
advanced serum-based protein and/or urine-based
RNA assays select those for subsequent prostate
biopsy; (3) for patients with a high clinical suspicion of
prostate cancer but negative prostate biopsy, a tissue-
based DNA methylation assay detects those for repeat
prostate biopsy; (4) for patients with relatively low-
grade prostate cancer on prostate biopsy, tissue-based
RNA assays distinguish those who would benefit from
radical prostatectomy over active surveillance; and
(5) for patients with high grade and stage prostate can-
cer at radical prostatectomy, a tissue-based RNA assay
identifies those at high risk for metastatic progression.

Given our rapidly evolving understanding of the
molecular underpinnings of prostate cancer, we are
poised to enter an era of targeted therapeutics for pros-
tate cancer treatment. Emerging therapies for prostate
cancer with ETS gene rearrangements and PTEN dele-
tions are promising advances. Currently, molecular tests
that might be useful to detect molecular aberrations for
the selection of targeted therapeutics are overwhelming
single-gene assays (ie, ERG FISH, PTEN FISH, or
immunohistochemistry). However, significant technical
advances over the past several years promise to
fundamentally change the field of clinical molecular
diagnostics, through targeted next-generation and/or
integrative comprehensive sequencing [41,110,111]. In
contrast to current single-gene assays, these advanced
molecular approaches will provide mutational informa-
tion for hundreds to thousands of genes simultaneously,
a development that will support the dual clinical goals
of personalized medicine and targeted therapeutics.
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INTRODUCTION

Lung cancer continues to be the most common
cause of cancer incidence and mortality worldwide
with an estimated 1.8 million new cases reported in
2012 and 1.59 million deaths (19.4% of all cancer-
related deaths) [1]. Similar to other cancers, lung can-
cer patients who present with advanced clinical stage
show significantly poorer 5-year survival rates (7�9%
for stage IIIB and 2�13% for stage IV) as compared to
early-stage presentations (50�73% for stage IA and
43�58% for stage IB) [2]. Although the current 5-year
overall survival for all lung cancer patients remains
low at 16.8%, recent results from the randomized
National Lung Screening Trial show reduction in lung
cancer related mortality with low-dose CT screening
for early detection [3].

The current WHO classification of lung cancer
includes over 30 histologic subtypes, reflecting the
impressive heterogeneity of cancers of pulmonary ori-
gin [4]. The most clinically relevant division of cancers
is between small cell lung cancer (SCLC, 15%) and
non-small cell lung cancer (NSCLC, 85%) given the
availability of chemotherapy agents for SCLC and the
historically similar prognosis and treatment options
available for NSCLC. However, the NSCLC category is
exceptionally heterogeneous and can be further
broadly divided to include adenocarcinoma (ADC,
40%), squamous cell carcinoma (SQCC, 25%), large cell
carcinoma (10%), adenosquamous carcinoma, and
other less common subtypes [5,6]. Recent advances in
our understanding of the molecular biology in NSCLC
and the ever-evolving availability of targeted agents
have now increased the demand on pathologists to
distinguish between subtypes of NSCLC. In 2011, a
collaborative multidisciplinary reclassification of lung

ADC was undertaken by the International Association
for the Study of Lung Cancer (IASLC), American
Thoracic Society, and European Respiratory Society in
an effort to standardize terminology and match histo-
logic subtype morphology with cancer genetics [7].
The usage of the term “NSCLC—not otherwise speci-
fied (NOS)” by pathologists in the setting of a poorly
differentiated cancer has been strongly discouraged.
The usage of just three markers—thyroid transcription
factor-1 (TTF-1), a mucin stain, and either p63 or p40—
can reduce the number of NSCLC-NOS diagnoses to
less than 5�10% [8]. For well-differentiated lesions,
cancers previously diagnosed as bronchioloalveolar
carcinoma are now reported as ADC with lepidic pre-
dominant pattern as part of an effort to standardize
reporting of the predominant pattern in ADC (lepidic,
acinar, papillary, micropapillary, solid, mucinous),
even within small biopsy samples (Table 23.1).

Advancements in systemic treatment for lung can-
cer have been revolutionary within the last few dec-
ades with numerous potential oncogenic targets
identified in NSCLC (Fig. 23.1) [9]. The discovery of
genetic aberrations involving epidermal growth factor
receptor (EGFR) and anaplastic lymphoma kinase
(ALK) [7,10,11] as drivers of tumorigenesis in NSCLC
has established the basis for personalized medicine in
lung cancer patients. Together with the development
of targeted tyrosine kinase inhibitors (TKIs), there has
been an added pressure on laboratories to be able to
test available cancer tissue for a wide array of genetic
mutations in order to direct clinical treatment.

The overexpression of EGFR (7p11.2) in NSCLC has
been well established within the literature as early as
the 1980s [12]. In 2004, oncogenic somatic mutations in
the kinase domain of EGFR gene were identified
in association with cancer response to EGFR-TKIs
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[13�15]. The Iressa Pan-ASia Study (IPASS) was the
first randomized trial demonstrating improvement in
progression-free survival (PFS) when comparing
EGFR-TKI to chemotherapy (carboplatin/paclitaxel) in
an Asian patient population selected for high probabil-
ity of their cancer harboring the EGFR tyrosine kinase
(TK) domain mutation [16]. Retrospective correlative
studies of IPASS identified that the EGFR mutation sta-
tus of a patient’s cancer was a strong predictor of
response to EGFR-TKI [16]. Several randomized trials

of gefitinib (WJTOG3405 [17], NEJ002 [18]) and erlotinib
(OPTIMAL [19], EURTAC [20]) in chemotherapy-naı̈ve
(first-line) advanced lung ADC patients with EGFR
mutation showed significantly improved PFS when com-
pared to chemotherapy, despite the lack of demonstrated
improvement in overall survival. Additional studies
demonstrated that with rare exception, these sensitizing
somatic mutations are identified predominantly in lung
ADC or cancers with features of ADC (including adenos-
quamous carcinoma and NSCLC-NOS). In order to pro-
spectively identify patients who would most benefit
from targeted therapy, the College of American
Pathologists (CAP), IASLC, and Association of
Molecular Pathology (AMP) released clinical guidelines
in 2013 recommending that EGFR and ALK testing be
performed on lung ADC or cancer biopsy samples in
which ADC component cannot be excluded [21].

The fusion of ALK (2p23) with echinoderm microtu-
bule-associated protein-like 4 gene—EML4 (2p21) was
identified in a small subset (5�7%) of lung ADC as of
2007 [22,23]. Further investigation showed the fusion of
ALK with other genes as well as other variants of the
ALK�EML4 fusion product. For this reason, ALK-TKIs
have received greater interest as a targeted therapy for
cancers showing ALK fusion products [24�26].
Commercially available fluorescence in situ hybridiza-
tion (FISH) probes exist to facilitate the identification of
patients who would benefit from this targeted therapy
(Vysis ALK Break-Apart FISH Probe Kit, Abbott
Molecular, Des Plaines, IL).

TABLE 23.1 Classification of NSCLC

Large resection specimensa
Small biopsy or

cytology specimens

Adenocarcinoma

Preinvasive lesion
Atypical adenomatous
hyperplasia
ADC in situ (#3 cm,
formerly BAC)

ADC with lepidic pattern
(invasive component cannot
be excluded)

Formerly BAC

Nonmucinous, mucinous,
mixed

Nonmucinous, mucinous,
mixed

Minimally invasive ADC (#3 cm,
lepidic predominant, # 5 mm of
invasion)

Nonmucinous, mucinous,
mixed

Invasive ADC ADC (no predominant
pattern identified)Lepidic predominant

(formerly BAC)
Acinar predominant
Papillary predominant
Micropapillary predominant
Solid predominant with
mucin production

ADC with acinar pattern
ADC with papillary pattern
ADC with micropapillary pattern
ADC with solid pattern

Variants of invasive ADC
Invasive mucinous ADC
(formerly mucinous BAC)
Colloid
Fetal (low and high grade)
Enteric

Mucinous ADC

ADC with colloid pattern
ADC with fetal pattern
ADC with enteric pattern

Squamous cell carcinoma
Papillary, clear cell, small cell,
basaloid types

SQCC

Small cell carcinoma SCC
Large cell carcinoma

Large cell neuroendocrine
(NE) carcinoma
Large cell carcinoma with
NE features

NSCLC-NOS
NSCLC with NE morphology

Adenosquamous carcinoma NSCLC with SCC and ADC
patterns

Sarcomatoid carcinoma Poorly differentiated NSCLC with
spindle or giant cell features

aBased on 2004 WHO classification of lung tumors [4].
BAC, bronchioloalveolar carcinoma.

Source: Adapted from Travis WD, Brambilla E, Noguchi M, et al. International
Association for the Study of Lung Cancer/American Thoracic Society/European
Respiratory Society international multidisciplinary classification of lung

adenocarcinoma. J Thorac Oncol 2011;6:244�85.
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FIGURE 23.1 Many somatic oncogenic drivers have been identi-
fied in NSCLC with varying percentages. The majority of these muta-
tions are mutually exclusive. Source: Adapted from Faugeroux V, Pailler
E, Auger N, et al. Clinical utility of circulating tumor cells in ALK-
positive non-small-cell lung cancer. Front Oncol 2014;4:281.
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Epidermal Growth Factor Receptor

EGFR or ErbB-1 is a transmembrane receptor tyro-
sine kinase (RTK) and is commonly overexpressed in a
wide range of cancers from lung, brain, breast, head
and neck, colorectral, pancreas, and bladder [27].
EGFR forms homodimers and heterodimers with other
members of the ErbB family of receptors, including
HER2/c-neu (ErbB-2), HER3 (ErbB-3), and HER4
(ErbB-4). Upon binding to one of its many ligands (epi-
dermal growth factor—EGF, transforming growth
factor alpha—TGFα, amphiregulin, betacellulin,
heparin-binding like EGF factor, or epiregulin—EREG)
[28], EGFR forms a homodimer or heterodimer result-
ing in subsequent activation of intracellular protein
TK, leading to autophosphorylation of tyrosine resi-
dues in the C-terminal domain of EGFR. Downstream
activation of multiple signaling pathways, including
RAS/RAF/MAPK, PI3K/AKT, JNK, and JAK/STAT,
lead to cell proliferation and survival [29,30]. Thus,
mutations in the extracellular portion of EGFR leading
to constitutive activation of receptor (independent of
growth factor ligand) or leading to overexpression and
over-activity of EGFR have been associated with carci-
nogenesis. In particular, mutations that alter the kinase
domain (ATP-binding cleft) are of particular interest as
these may confer sensitivity to targeted EGFR-TKIs.

Mutations in EGFR

The TK domain of EGFR is coded for by exons
18�21 of the EGFR gene (Fig. 23.2) [31]. Mutations in
this region can be classified as: (1) in-frame deletions
of exon 19, (2) missense (point) mutations in exons
18�21, and (3) insertion mutations in exon 20 [32].
Approximately 90% of the sensitizing mutations in
EGFR are comprised of exon 19 deletions (15 bp and
18 bp deletions most commonly) as well as a single
point mutation L858R in exon 21. Additional muta-
tions with a frequency of at least 1% of all mutation-
positive ADC include exon 18 point mutations (E709
and G719, 5%), exon 20 point mutations (S768 and
T790M), exon 20 insertions, and exon 21 point muta-
tions (T858R and L861Q, 3%) [10]. Among the various
mutations, there are some point mutations in exon 20
that confer primary (insertions involving D770, P772,
and V774) or secondary (T790M) resistance to TKIs
[33,34]. While most rapid screening high-sensitivity
methods identify exon 19 deletions and the specific
exon 21 L858R mutation, detection of the multitude of
other mutations requires an alternate testing platform
(Fig. 23.2) [31,35].

EGFR mutations are more commonly associated
with certain clinical characteristics (female, East Asian
demographics, and nonsmokers or light smokers of
# 10 pack-years) and histologic characteristics
(ADC subtype, positive TTF-1 immunohistochemistry

Exon 18 Exon 19 Exon 20 Exon 21

G719X (3%) LREA deletion (45%)
VAIKEL insertion (1%)

V765A (1%)
T783A (<1%)
V774A (<1%)
S784P (<1%)

L858R (40%)
L861X (2%)

L747S (1%)
D761Y (<1%)

T790M*
Exon 20 insertion (4%)
V769M (<1%)

T854A (<1%)
A871E (<1%)
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FIGURE 23.2 Mutations identified in the intracellular TK domain of EGFR gene by exon. The most common sensitizing mutations include
deletions in exon 19 involving a string of amino acids (LREA—leucine, arginine, glutamic acid, alanine; VAIKEL—valine, alanine, isoleucine,
lysine, glutamic acid, leucine) and the point mutation in exon 21 at position 858 resulting in an amino acid substitution from leucine (L) to
arginine (R). Other mutations cause primary or acquired resistance to EGFR-TKIs. The most common acquired mutation following treatment
by EGFR-TKIs is identified as a point mutation in exon 20 at position 790, resulting in an amino acid substitution from threonine (T) to methi-
onine (M)�. Current guidelines recommend identification of all EGFR mutations with prevalence of 1% among EGFR-mutated lung ADC [21].
Source: Adapted from Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer
2007;7:169�81.
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staining, and nonmucinous morphology) [10,14,21,36].
The prevalence of EGFR mutation in East Asian popu-
lation studies varies between 30% and 50% compared
to Caucasian populations showing a prevalence of
10�20% [37]. The association with nonsmokers has
also raised the possibility of EGFR mutation being a
carcinogenic pathway that is less likely related to ciga-
rette smoke exposure [38]. Although these mutations
are also more commonly identified in cancers with
lepidic growth pattern (formerly known as bronchiolo-
alveolar carcinoma pattern) and papillary or acinar
patterns, it occurs in poorly differentiated ADCs (often
classified as NSCLC), adenosquamous carcinomas, and
rarely in cases of SCC especially with an admixed
ADC component [39,40]. Earlier studies suggesting the
prevalence of EGFR mutation in squamous carcinomas
as approximately 5% have been questioned as a poten-
tial result of incomplete sampling in cancers of adenos-
quamous histology [41]. However, further studies of
advanced squamous cell lung cancer in Asian popula-
tions have demonstrated the presence of EGFR sensitiz-
ing mutations in 6�10% of patients, although EGFR-
TKIs are less effective in this setting [42,43]. In the case
of TTF-1 immunohistochemistry and nonmucinous
morphology, both have been proposed as a potential
surrogate marker for streamlining EGFR mutation
testing [44,45]. However, approximately 7% of TTF-1-
negative cancers and 9% of mucinous cancers show
EGFR mutation [36,46]. As a significant number of
cancers are found to be mutation positive despite the
proposed clinicopathological characteristics, these are
considered insufficient for excluding a cancer from
molecular testing [21].

TKI-Resistant Mutations in EGFR

Patients who show an initial response to first-
generation TKI therapy eventually show cancer
progression. Approximately 50% of these cancers
show the missense mutation T790M, identified in
cancers with a preexisting sensitizing EGFR mutation
[35,47,48]. The substitution of the threonine side group
for the larger methionine side group results in some
steric hindrance of the kinase receptor domain and is
postulated to cause difficulty for TKI binding while
maintaining the ability to bind ATP. This effectively
reduces the potency of the TKI and returns the recep-
tor back to the effectiveness of wild-type EGFR despite
the presence of a molecularly detected sensitizing
mutation [49]. The ability to test for the presence of the
T790M mutation at the time of initial identification of a
sensitizing mutation can help identify patients who
may show poorer response to traditional EGFR-TKIs
or who may benefit from novel agents designed to tar-
get EGFR-sensitizing mutation in the setting of T790M
mutation (AZD9291 [50], HM61713 [51], CO-1686 [52]).

In approximately 5�10% of patients who develop
resistance to TKIs, there is focal amplification of
c-MET, allowing reactivation of the signaling pathways
for cell proliferation despite the presence of EGFR inhi-
bition [53]. This has raised the possibility of consider-
ing inhibition of multiple kinases in order to produce a
more durable treatment response [54].

EGFR Copy Number and EGFR Protein Expression

There are multiple methods available to detect
EGFR gene copy number (GCN) including the most
commonly used FISH, as well as silver in situ hybrid-
ization, and real-time quantitative PCR. Multiple stud-
ies have identified that cancers with high EGFR GCN
are often associated with the presence of an EGFR
mutation (80%) [55]. In theory, a high GCN may result
in increased translation of the mutant protein product
or increase in the dependence of the cancer cell on the
EGFR signaling pathway. Although initial studies pro-
posed high GCN as a marker of higher response rates
with TKI treatment, follow-up clinical trials have not
reliably demonstrated this relationship. Thus, assess-
ment of EGFR GCN is not routinely recommended for
the selection of patients for targeted therapy.

Expression of EGFR protein may be demonstrated
using immunohistochemistry showing membranous
staining of the cancer cells and has been available for
many years. However, the expression of this stain does
not correlate with the presence of sensitizing EGFR
mutations nor with EGFR GCN or treatment response.
Thus, immunohistochemistry studies for EGFR protein
expression are not recommended, especially in the set-
ting of biopsy samples with limited cancer DNA.

Anaplastic Lymphoma Kinase

ALK or CD246 is a transmembrane TK receptor
which is hypothesized to play a role in the develop-
ment of the peripheral nervous system [56]. ALK was
initially identified as a fusion partner with nucleophos-
min in a subset of anaplastic large-cell lymphoma,
resulting in its nomenclature. ALK has an intracellular
domain that is involved in the RAS/RAF/MAPK,
PI3K/AKT, and JAK-STAT pathways. It is coded by
the ALK gene located on the short arm of chromosome
2 (2p23).

While mutations in ALK have been identified in a
variety of cancers, it is the fusion of ALK with a variety
of other genes that is identified in a small subset of
NSCLC (5�7%) [22,23]. The most common fusion part-
ner is EML4 resulting from a small inversion on the
short arm of chromosome 2 (Fig. 23.3).

ALK rearrangements are associated with certain
clinical features (nonsmoking or light-smoking history
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of # 10 pack-years, and younger age) and histologic
characteristics (ADC histology, mucinous morphology,
or signet-ring cell morphology) [61,62]. Similar to
EGFR, clinicopathological features should not be used
to exclude a cancer from ALK molecular testing. ALK
rearrangements are mutually exclusive of other onco-
genic driver mutations. Cancers with ALK rearrange-
ment show dependency on the continued signaling of
the fusion protein and are thus highly susceptible to
targeted therapy [63].

TKI-Resistant Mutations in ALK

ALK-positive NSCLC shows variable PFS as cancers
eventually develop resistance to first-generation ALK
inhibitor crizotinib within 1�2 years. Like EGFR, there
are resistance mutations within the TK domain of
ALK, most commonly L1196M [64,65]. This mutation
causes steric hindrance at the binding site resulting in
decreased potency of response to crizotinib. However,
unlike in EGFR-TKI resistance, there are multiple
kinase domain mutations (G1269A, G1202R, S1206Y,
F1174C/L, D1203N) as well as mutations away from

the binding site (threonine insertion at 1151, C1156Y,
L1152R) that have been identified in the setting of
ALK-TKI resistance (Fig. 23.4) [56,66�68]. In vitro
studies indicate that the different resistance mutations
confer different levels of resistance to structurally dif-
ferent TKIs, highlighting the need to identify the sec-
ondary resistance mutation through a repeat cancer
sample at the time of acquired resistance and a more
detailed sequencing method rather than FISH analysis
[69,70]. In addition, there are other cases of ALK-TKI
resistance that show only amplification of the fusion
product by FISH testing, some which show one of the
identified resistance mutations and others that show
only amplification.

It has been noted in a small series of patients that
wild-type EGFR may be activated in the setting of
ALK inhibition [66,71]. Similar bypass tracks have
been identified through amplification of cKIT in a
smaller proportion of cases [66]. Both tracks effectively
activate signaling pathways for cell proliferation in the
presence of ALK inhibition. Initial in vitro studies
demonstrated that inhibition of EGFR in these cases
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FIGURE 23.3 EML4�ALK fusion products result from a translocation on the short arm of chromosome 2. The break point of ALK is well
conserved within exon 20 (most commonly) or intron 19 with the fusion partner EML4 demonstrating multiple break points [22,57]. The trans-
location results in fusion of the 5’ portion of EML4 including the promoter (P) region of the gene to the 3’ portion of ALK including the intra-
cellular TK portion of the gene. The commercially available FISH break-apart probes are used to detect the fusion product when the
SpectrumOrange signal (3’ telomeric side of ALK) is identified separate from the SpectrumGreen signal (5’ centromeric side of ALK) rather
than the fused yellow signal seen in the nonrearranged ALK [58]. Other identified fusion partners include KIF5B, TFG, and KLC1 [24,57,59,60].
In all cases, the genomic breakpoint of ALK is well conserved, resulting in fusion of the partner protein to the intracellular domain of ALK.
The fusion promotes aberrant dimerization of ALK with other receptors and leads to constitutive activation of the ALK kinase activity, leading
to uncontrolled cellular proliferation.

291MOLECULAR TARGETS

IV. MOLECULAR TESTING IN ONCOLOGY



resensitizes the cancer cells to crizotinib, strengthening
the case for multiple kinase inhibition as a means of
addressing secondary acquired resistance [68].

Kirsten Rat Sarcoma

Kirsten rat sarcoma (KRAS) viral oncogene homolog
is an intracellular GTPase that is tethered to the cell
membrane. KRAS acts as an early player in the signaling
pathways of PI3K/AKT, RAF/MEK/ERK, and RLF/
RAL, leading to cell proliferation and survival when acti-
vated [72]. Normally, KRAS has intrinsic enzymatic
activity that allows it to cleave GTP to GDP, effectively
stopping the downstream signaling pathways. The

KRAS gene is located on the short arm of chromosome
12 (12p12.1). Mutations in codons 12 and 13 of exon 2 of
KRAS result in an inability to hydrolyze GTP to GDP,
leaving KRAS constitutively activated.

Approximately 25�35% of lung ADC show the
presence of mutation in KRAS [73]. Interestingly, since
KRAS is considered downstream from EGFR, muta-
tions in both genes are generally considered mutually
exclusive. Cancers with KRAS mutation are often asso-
ciated with a history of smoking as well as mucinous
morphology. Recent studies with 5-year follow-up
demonstrate no difference in prognosis of KRAS-
mutated NSCLC versus cancers with wild-type KRAS.
Thus, KRAS mutation status is not recommended for
usage in selecting patients for adjuvant chemotherapy
or predicting response to EGFR-TKI treatment [74,75].

ROS1 Gene

The ROS1 gene is located on the long arm of chro-
mosome 6 (6q22) and codes a type-1 integral mem-
brane protein with TK activity. Activation of the
protein product results in growth and differentiation
of a cell through the MAPK signaling pathway and
phosphorylation of RAS.

Rearrangements in ROS1 have been identified in up
to 2.5% of lung ADC [76] with the most common fusion
partner identified as CD74 [t(5;6)(q32:q22)]. Patients
with ROS1-rearranged NSCLC are often younger age
with nonsmoking or light-smoking history, Asian eth-
nicity, and ADC histology [77]. Rearrangements can be
detected utilizing FISH with dual break-apart probes.
In general, ROS1-rearranged and ALK-rearranged can-
cers are mutually exclusive, despite similarities in clini-
copathological characteristics.

Although ROS1-rearranged NSCLC represents a
small subset of cancers, their sensitivity to crizotinib
has led to growing interest as both a first-line treat-
ment as well as an alternate target for multiple kinase
inhibition [78,79]. Acquired resistance to crizotinib
treatment has been identified in one patient with a
resistance mutation (G2032R) in a cancer with known
CD75�ROS1 fusion product [80].

BRAF Gene

The BRAF gene is located on the long arm of chromo-
some 7 (7q34) and codes for the serine/threonine pro-
tein kinase, B-Raf. B-Raf is a member of the Raf kinase
family and is a downstream target of RAS, playing a
pivotal role in the MAPK/ERK signaling pathway.

Activating mutations in BRAF have been well
described in melanoma with the specific V600E muta-
tion being the most common. BRAF mutations have
been identified in approximately 1�4% of NSCLC with
V600E and non-V600E mutations showing relatively
equal frequency [81�83]. V600E mutations are more
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often associated with younger, nonsmoking female
patients and show micropapillary ADC pattern. In
contrast, non-V600E mutations are associated with
smoking history and Caucasian ethnicity. However,
currently available case numbers remain small and
these clinicopathological characteristics may not hold
true in larger population based studies.

Multiple BRAF inhibitors are available with specific
targeted affinity for the V600E mutation of BRAF, and
NSCLC with this specific mutation has been reported
to show good response [84]. Patients with non-V600E
mutations may show resistance to specific BRAF
inhibition, but may potentially respond to MEK inhibi-
tion as a downstream target [85]. Thus, a new highly
selective MEK inhibitor (selumetinib—AZD6244) is
currently being tested in phase 2 clinical trials for
patient with BRAF mutation.

MOLECULAR TECHNOLOGIES

Methodology for Molecular Testing of
Multiple Targets

Sanger sequencing is the most widely used testing
platform for mutation detection in various cancer set-
tings, as it provides a comprehensive examination of
all genetic aberrations in the sample material.
However, the disadvantage of this testing platform is
the requirement for 40�50% tumor cellularity in the
test sample (20�25% mutated allele assuming hetero-
zygosity at the targeted chromosomal site), with tested
samples of lower tumor cellularity showing a higher
number of false-negative results [86�88]. Furthermore,
while FFPE samples generally provide sufficient cancer
DNA quality for most molecular analysis methods,
artifacts of deamination at cytosine and adenine bases
(with transition to uracil and hypoxanthine residues)
can occur resulting in small numbers of artifactual
mutations [89]. Multiple rounds of PCR on a sample
containing an artifactual mutation may result in
amplification of this aberration and a subsequent
false-positive result if the original sample is of limited
quantity (low DNA copy number) [90�92]. To avoid
this artifact, the sample can be pretreated with uracil-
N-glycosylase and a minimum amount of template
DNA (at least 1 μg) should be used in PCR reactions
[92]. Any novel mutations identified using Sanger
sequencing on a sample of low cancer DNA content
should be cross-referenced with known artifactual
mutations or considered for an alternate molecular
analysis method. Given that the majority of lung can-
cer patients are diagnosed based on a small-volume
cancer sample, achieving the minimum specimen
requirements for this methodology to avoid both

false-negative and false-positive results would exclude
a large proportion of available test material, necessitat-
ing a second procedure to obtain additional tumor tis-
sue, and yet with no guarantee of meeting the tumor
cellularity requirements with the new sample [36].

Next-generation sequencing (NGS) methods (also
known as massive parallel sequencing) show great
promise in replacing Sanger sequencing [93,94]. Recent
head-to-head comparisons between Sanger sequencing
and NGS show improved sensitivity of mutation
detection utilizing NGS in cases with tumor cellularity
less than 40% [95�101]. In addition, NGS has demon-
strated a 100-fold improvement in throughput over
Sanger sequencing and has the capability to detect
multiple forms of genetic aberrations (single base-pair
substitution, copy number alterations, rearrangements)
[102]. The main disadvantage of NGS is the prohibitive
start-up cost of this methodology for most small labo-
ratories to obtain both appropriate hardware for this
test platform as well as the bioinformatics support for
analysis of the generated data. However, use of a cen-
tralized laboratory and batching of samples to reduce
costs may help facilitate future utilization of this test-
ing methodology [103].

Multiple additional ultrasensitive testing platforms
are available that offer the advantages of high caseload
throughput and rapid turnaround time. These include
amplification refractory mutation system, length analy-
sis, restriction length polymorphism, real-time PCR,
high-resolution melting curve analysis, single-base
extension genotyping, mass spectrometry, and dena-
turing high-performance liquid chromatography
[104�111]. The main advantage of these methods is
the ability to detect mutations in test samples with
very low cancer cellularity (,10%) as well as the rapid
turnaround time and cost-effective application of some
of these techniques, allowing smaller centers to offer
molecular testing without the delay of transporting a
sample to an off-site laboratory. However, many of
these methods allow detection of only a limited scope
of very specific mutations and may not be able to
detect all sensitizing mutations as recommended by
the CAP/IASLC/AMP guidelines [21].

It has been proposed that having a two-tiered test-
ing strategy may be helpful, with an ultrasensitive
method offered first as a means of expediting
treatment in cases that show the most common
detectable mutations, and a second step using a
sequencing methodology that would allow for a more
comprehensive genetic analysis of the test sample
[21,100]. However, the challenge of limited tumor
material in lung cancer diagnoses as well as the
increase in turnaround time remains the limiting step
as we attempt to glean the most genetic information
from small-volume tumor samples.
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Methodology for EGFR Testing

CAP/IASLC/AMP guidelines recommend that all
cancers with ADC histology or for which the presence
of an ADC component cannot be excluded should be
tested for the presence of all individual EGFR muta-
tions with a frequency of 1% of EGFR-mutated lung
ADC [21]. In addition, given the frequency of EGFR
mutations compared to all other currently identified
molecular targets, prioritization of cancer DNA in lim-
ited samples for the identification of EGFR mutations
is recommended.

There are mutation-specific immunohistochemical
stains available that may be utilized to detect specifi-
cally the exon 21 L858R mutation and the exon 19
15 bp deletion [112�115]. While the mutation-specific
antibodies show high specificity (97.8% for exon 21
L858R and 95.5% for exon 19 deletion), the sensitivity
remains insufficient to use as the sole method of test-
ing (75.6% and 42.2%, respectively). However, the
availability of these immunohistochemical tests may
allow rapid identification of a TKI-sensitizing mutation
to facilitate early initiation of treatment, especially in
the setting of a small volume tumor sample that may
contain insufficient tumor DNA for molecular testing.

Methodology for ALK Testing

CAP/IASLC/AMP guidelines recommend that all
cancers with ADC histology or ADC component be
tested for the presence of ALK rearrangements [21]. In
small biopsy samples that are identified as wild-type
EGFR, prioritization of the remaining cancer DNA for
the identification of ALK rearrangements is suggested.
The recommended testing platform is a dual-labeled
break-apart FISH assay [58] for which there is a Food
and Drug Administration (FDA) approved diagnostic
commercial assay (Abbott Molecular, Des Plaines, IL).
Detection of a fusion product is identified when the
SpectrumOrange-labeled 5’ telomeric end of ALK is
identified separate from the SpectrumGreen labeled 3’
centromeric end (Figure 23.3).

Given the success of FISH testing for ALK-positive
NSCLC, the samples amenable to testing are not as
limited by low cancer cellularity compared to EGFR
testing. It is more important to ensure that an area of
tumor cells can be distinguished from surrounding
nontumor cells and that the tumor DNA is well pre-
served. As such, FISH testing should be performed
and supervised by pathologists and technologists with
dedicated training in solid-tumor FISH testing. Cases
are considered positive if 15% or more of 50 tumor
nuclei are identified to show a split signal [116].
Formalin-fixed specimens that are preferred as alcohol
fixatives may interfere with FISH probes.

More recent publications have reported higher sen-
sitivity and specificity for ALK immunohistochemistry
to detect ALK-rearranged lung cancers [116�119]. This
requires optimization of the staining protocol that
includes signal amplification with linked-polymer
methods, as the routinely used protocol for detection
of anaplastic large cell lymphoma (CD246 clone ALK1)
demonstrates poor sensitivity, likely due to the low
expression of protein product in NSCLC compared to
the lymphomas [117,120]. Newer antibodies (ALK
mouse monoclonal clone 5A4, rabbit monoclonal
clones D5F3 and D9E4) have been developed that
show increased sensitivity and specificity for fusion
products [120]. A multicenter Canadian study examin-
ing ALK testing has shown 100% sensitivity and speci-
ficity for immunohistochemistry utilizing the mouse
monoclonal 5A4 antibody compared to FISH in 373
routine clinically tested cases [118]. Given the rapid
turnaround time and cost-effectiveness of an immuno-
histochemical stain compared to cytogenetics testing,
mutation-specific immunohistochemistry as an initial
screening test may serve to streamline ALK testing,
allowing preservation of valuable cancer tissue for
additional tests that may be required.

LIMITATIONS OF TESTING

Sample Limitations

Approximately 70% of lung cancer patients are pres-
ent with surgically unresectable and locally advanced
(stage IIIB) or metastatic disease (stage IV) [21,121,122].
Establishing a tissue diagnosis for this patient popula-
tion involves predominantly small-volume tumor sam-
ples, including transbronchial biopsies, core needle
biopsies, fine needle aspiration biopsies, and pleural
effusion samples [36,123]. This introduces an added
layer of complexity in pursuing molecular testing
when the amount of available tumor tissue may be
very limited. In addition, the vast majority of tissue
samples undergo traditional processing, resulting in
formalin-fixed paraffin-embedded (FFPE) specimens
from which to procure tumor DNA for analysis.

In current pathology practice, a nonspecific diagno-
sis of NSCLC has become insufficient to guide treat-
ment, as the specific histologic subtype may help
prioritize molecular testing in the setting of a small
biopsy sample. To preserve as much tumor DNA as
possible for mutation testing, judicious usage of immu-
nohistochemical stains for diagnostic purposes has
been recommended [7,21]. When a diagnosis cannot be
established based on morphologic features alone, a
limited panel of TTF-1 or mucin stain (to establish
ADC lineage) and p63/p40 or CK5/6 (to establish SCC
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lineage) is recommended [8]. If strong TTF-1 staining
is present, the lesion should be classified as ADC (or
favor ADC), even when squamous markers are posi-
tive in the same cancer cells. Once a tissue diagnosis
has been established, the remaining cancer tissue
should be made available for further molecular testing.
Currently, molecular testing is recommended for
patients presenting with advanced-stage disease (stage
IV) who are suitable for targeted therapy or at the time
of recurrence or progression in patients who presented
at an earlier stage [21]. In the latter case, an archived
resection specimen of the primary cancer may be avail-
able for testing [124].

The genetic material present within the sample may
be a mixture of tumor DNA and nontumor DNA, lead-
ing to potential dilution of the desired testing target.
Thus, review of the corresponding slides is important
to estimate the relative abundance of tumor DNA pres-
ent within the material submitted for mutation testing.
This is most commonly done through an estimation of
tumor cellularity, defined as the percentage of epithe-
lial tumor cells to all cells in the submitted test mate-
rial [36,125]. Efforts to enrich the tumor DNA content
may be made through manual macrodissection of a
designated area of a histologic section (scraping of the
glass slides), core sampling of a tissue block, or laser
capture microdissection (for cytologic specimens).
However, often the tumor cells are admixed with an
abundance of stromal fibroblasts or inflammatory cells,
resulting in limited tumor DNA enrichment despite
best efforts.

Although mutations have been detected in as little
as 1�3% tumor DNA content, there are increased
chances of false-negative results in these cases. A mini-
mum number of tumor cells has not been well estab-
lished in the literature or within the CAP/IASLC/
AMP guidelines. However, some studies have indi-
cated that mutations can be detected with as few as
100�400 tumor cells total [126,127].

Each testing laboratory must identify the sensitivity
limits of their mutation testing platform and communi-
cate this with the clinician or pathologist requesting
the molecular test, noting that a negative result in such
cases may still warrant a repeat test on an alternate
sample [21,36]. In addition, it is important for clini-
cians to be aware of the testing platform being utilized
for molecular testing as different platforms require
variable specimen characteristics in order to produce
reliable results.

Selecting the Best Sample to Test

Ideally, molecular testing should be carried out on a
preexisting tissue sample with good preservation of

tumor DNA, high tumor cellularity, and limited necro-
sis and mucin [21]. Multiple studies have shown that
cytology specimens (fine needle aspiration biopsies,
pleural effusion samples) perform equivalently to his-
tology biopsy samples in mutation testing [36,128�132].
The majority of studies have been performed utilizing
FFPE samples although fresh-frozen tissue and samples
in alcohol-based fixative (including cytology prepara-
tions) are also considered appropriate for testing.
Fixatives containing heavy metals (Zenker, B5, B-plus,
acid-zinc formalin) may interfere with molecular testing
and are not routinely used in everyday surgical pathol-
ogy practice [133]. Acidic decalcifying solutions that
may be used in postfixation processing may result in
extensive DNA fragmentation and are also not recom-
mended for molecular testing [134].

For patients with multiple available cancer samples,
the most recent adequate sample is the best choice,
especially in the case of a patient with recurrence fol-
lowing lower-stage disease. There are exceptionally
rare occurrences of differences in mutation status
between primary cancer and metastatic foci [135,136],
as well as synchronous primary lung lesions [137].
Thus, if previous mutation tests have been negative, a
patient with a new primary lesion or metastatic focus
not responding to treatment may be considered for
repeat molecular testing.

Currently, there is no requirement to test different
areas of the same tumor as the issue of intra-tumor
heterogeneity remains controversial [125,138]. Studies
indicating EGFR testing on biopsies compared to final
resection specimens show good concordance of results
[36,139], while other studies have shown an association
of intra-tumor heterogeneity with decreased tumor
response to EGFR-TKIs [140,141]. Subpopulations of a
tumor may also show variation in the type of mutation
detected by high-sensitivity sequencing methodology,
although only 4% of tumors showed a significant sub-
clone (. 2% of tumor DNA) with a different mutation
[98]. This may partially contribute to the variable
response to targeted therapy and the emergence of
resistance over time.

Circulating Tumor Cells and Circulating
Tumor DNA

There has been growing interest in the use of circu-
lating tumor cells (CTCs) to monitor the presence and
genetic evolution of solid tumors as CTCs can be
detected in up to 70% of patients with metastatic dis-
ease [142,143]. While this testing methodology offers
the main advantage of being a blood test rather than a
tissue biopsy procedure, the limited amount of tumor
DNA and the verification of the detected transcripts as
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having arisen from true CTCs remain a challenge.
Most methods utilized to detect the presence of
NSCLC in blood exploit the presence of specific
nucleic acid sequences (mRNA released from CTCs),
epithelial proteins (immunocytometric strategy, exam-
ining for TTF-1 or CK19), or other distinctive charac-
teristics (tumor cell size) [144,145]. Currently, studies
examining the presence of specific mutations in
NSCLC CTCs have shown good specificity, but poor
sensitivity, likely due to the small volume of tumor
DNA available through this sampling method
[146,147]. However, CTCs may still play a role in real-
time monitoring of treatment response and evolution
of acquired resistance to TKIs as the technology con-
tinues to evolve [148,149].

Circulating DNA fragments are 140�170 bp in
length and present within the plasma or cell-free frac-
tion of blood [150,151]. There may be a few-thousand
amplifiable copies of DNA per milliliter of blood, of
which a small fraction (0.01�0.1%) may represent
DNA from a solid tumor (circulating tumor DNA
(ctDNA)) [152,153]. This also represents a potential
noninvasive source of tumor DNA that can be assessed
by highly sensitive sequencing techniques to identify
potential oncogenic driver mutations. ctDNA can be
identified in the plasma of patients who have only
localized disease and do not show CTCs, and thus
may represent a separate underlying biological process
rather than cancer cell metastasis [154]. Unlike analysis
of CTCs, deep sequencing or NGS analysis of ctDNA
from NSCLC represents both a specific and highly sen-
sitive biomarker that can be used to detect cancer bur-
den, oncogenic mutations, and TKI-resistance mutation
subclones before clinically or radiologically apparent
[155�157]. This has the potential to identify patients
on TKI treatment who may require early salvage ther-
apy or could be considered for an alternate targeted
agent.

CLINICAL UTILITY

The last two decades have shown incredible
advances in our understanding of oncogenic driver
mutations in lung cancer, specifically in ADC or
tumors with an ADC component. Together with tar-
geted designer agents with high selectivity for the
aberrant protein products, there has been renewed
focus and hope for advanced-stage NSCLC. Although
great improvements in 5-year overall survival remain
a challenge, the improvements in PFS and manage-
ment of drug resistance are continuously being gener-
ated by researchers worldwide. Effective testing
platforms with high sensitivity and specificity and effi-
cient turnaround times between tissue diagnosis and

molecular analysis are necessary to facilitate the early
initiation of targeted therapy for patients with tumors
harboring specific genetic aberrations. While there are
many agents that exist in particular for EGFR- and
ALK-mutated cancers, our ability to identify targets in
both treatment-naı̈ve cancers and previously treated
cancers can help to facilitate development of new
agents. Thus, in the current clinical practice, the ability
to test and identify these potential targets—especially
for EGFR mutations and ALK rearrangements—has
become the standard of care that will continue to direct
clinical treatment options for patients.

EGFR-Targeted Therapy

First-generation 4-anilinoquinazoline small-molecule
reversible TKIs (gefitinib and erlotinib) competitively
bind at the kinase domain of EGFR [158]. Detection of
one of the sensitizing mutations in a timely manner is
important in order to initiate therapy with these drugs.
Approximately 60�80% of EGFR mutation-positive
chemotherapy-naı̈ve patients show response to TKIs
[16�20,159]. In general, the treatment is well tolerated
with the main adverse events being a mild to moderate
skin rash and mild diarrhea, often occurring within
the first month of treatment. Regardless of the initial
effectiveness of the treatment, all patients eventually
progress due to acquired drug resistance.

Second-generation quinazoline-based small-mole-
cule irreversible TKIs (afatinib, dacomitinib) have been
studied as potential agents to overcome the drug resis-
tance identified in first-generation TKIs [160�162].
Afatinib (BIBW-2992) has demonstrated increased PFS
in patients with acquired resistance to first-generation
EGFR-TKI therapy [163,164] and may show improved
response when used in combination with paclitaxel
(LUX-Lung 5 trial) [165]. The small benefit in overall
survival identified in phase 3 trials of afatinib was
ascribed mainly to the cohort of patient with exon 19
deletion in EGFR (compared to the exon 21 L858R
mutation) [166]. In addition, the combination of afati-
nib and cetuximab has demonstrated a synergistic
effect where afatinib targets the phosphorylated EGFR
and cetuximab affects total EGFR protein expression
[167]. With these promising results from phase 3 stud-
ies [165,168,169], afatinib has also been approved for
first-line therapy for advanced EGFR-mutated lung
cancer patients. The most common adverse events
associated with afatinib include skin rash or acne,
severe diarrhea, and paronychia. Dacomitinib (PF-
00299804) showed a modest improvement in PFS
compared to erlotinib in EGFR-TKI-naı̈ve patient pop-
ulation in phase 2 trial, particularly in patients with
EGFR mutation [170]. Unfortunately, subsequent phase
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3 trials (ARCHER-1009, NCIC CTG BR.26) did not
show increased benefit of dacomitinib compared to
erlotinib in second- or third-line treatment [171,172].
Currently, a phase 3 trial (ARCHER-1050) is underway
comparing dacomitinb to gefitinb as a first-line treat-
ment for EGFR-mutated lung cancer [173,174].

Third-generation non-quinazoline-based TKIs
(AZD9291, rociletinib [CO-1686], HM61713) have been
designed in response to the challenges of second-
generation agents which irreversibly bind both mutant
and wild-type EGFR [50�52,175]. These new agents
show preferential activity against T790M mutant recep-
tors over wild-type EGFR. As such, the adverse gastro-
intestinal and dermatologic effects commonly noted in
first-generation and second-generation TKIs are much
less common or milder in severity. Response rates for
these agents in phase 1 trials have been promising (64%
for AZD9291, 58% for CO-1686, 29.2% for HM61713).
AZD9291 is currently being studied in phase 2 and
phase 3 trials (AURA 2—NCT02094261 and AURA 3—
NCT0215198) comparing AZD9291 to pemetrexed plus
platinum chemotherapy in patients with acquired
resistance to EGFR-TKI therapy due to the T790Mmuta-
tion. Additional phase 1 studies utilizing AZD9291 in
combination with MEDI4736 (an anti-PD-L1 antibody),
selumetinib (MEK inhibitor), or AZD6094 (MET-TKI)
are also ongoing. Rociletinib (CO-1686) is also being
studied in phase 2 trials (TIGER 1—NCT 02186301 and
TIGER 2—NCT02147990) for patients with progression
on first-generation EGFR-TKI therapy.

A second class of targeted agents include monoclo-
nal antibodies that bind to the extracellular domain of
EGFR (including cetuximab and panitumumab). These
antibodies function as receptor antagonists to inhibit
binding of growth factor ligands and may lead to inter-
nalization and breakdown of EGFR [176].
Unfortunately, the clinical studies (FLEX) combining
cetuximab with conventional therapy have only shown
modest improvement in overall survival and were cor-
related with increased protein expression of EGFR
determined by immunohistochemistry rather than
molecular mutation analysis [157]. The difficulties in
reliably identifying patients who will benefit from this
treatment and the minimal improvement in survival
have led to the worldwide failure of regulatory
approval for this class of anti-EGFR agents as a mono-
therapy agent in the setting of advanced NSCLC.
However, the possibility of using cetuximab in combi-
nation with afatinib is still under evaluation [167].

ALK-Targeted Therapy

Crizotinib is a small-molecule first-generation TKI
that was initially designed as an inhibitor of c-MET

but shows activity against other TKs including ALK
and ROS1 [177]. Identification of the EML4�ALK
fusion product in NSCLC was identified during the
initial phase 1 multicenter trial [23] and the first two
patients with ALK-positive lung cancer were enrolled,
showing significant improvement in symptoms.
Further studies have shown a response rate of approxi-
mately 50�60% to patients with ALK-positive NSCLC
with PFS of 8�9 months (compared to 2�3 months
with single agent chemotherapy) [178�180]. As a
result of the response rates demonstrated and in light
of the historical significance of EGFR-TKIs, crizotinib
received accelerated approval from the FDA for first-
line use in ALK-positive NSCLC in August 2011. The
medication is generally well tolerated with common
adverse effects including nausea, vomiting, vision pro-
blems, and dizziness. Unfortunately, patients ulti-
mately develop acquired resistance to crizotinib
therapy within 1 year [181].

Second-generation ALK-TKIs (ceritinib, alectinib,
AP26113) with greater selectivity or potency for the
ALK-TK domain have been developed to address the
issue of acquired resistance [69,70]. Ceritinib shows a
20-fold greater potency than crizotinib and
demonstrated a response rate of 55.4�56% in
crizotinib-resistant patients during phase 1 and 2 trials,
and prolonged PFS in ALK-TKI-naı̈ve patients [182].
Thus, ceritinib has been granted FDA approval for
treatment of ALK-rearranged tumors following failure
or intolerance to crizotinib as of August 2014. Phase 3
trials comparing ceritinib to standard chemotherapy
are ongoing (NCT01828112 patients previously treated
with chemotherapy, NCT01828099 chemotherapy-
naı̈ve patients). Alectinib is a potent and selective
ALK-TKI with activity against the L1196M and
G1269A resistance mutations in ALK. Phase 2 trials
have demonstrated response rate of 93.5% in a crizoti-
nib-naı̈ve patient population and 55% in crizotinib-
resistant patients [183,184]. Thus, alectinib has been
granted breakthrough therapy designation by FDA for
ALK-rearranged cancers following progression on cri-
zotinib. Ongoing phase 3 trials including comparison
of ceritinib and alectinib are underway (Alex study—
NCT02075840). AP26113 is a dual TKI with activity
against native ALK, L1196M ALK, mutated EGFR, and
T790M EGFR. Preliminary results from phase 2 studies
have demonstrated a response rate of 72.2% in
crizotinib-resistant patients [185].

As an alternate strategy to combat crizotinib
acquired resistance, there is ongoing investigation of
using crizotinib in combination with a second agent.
Pemetrexed (antifolate) may augment the effect of cri-
zotinib as ALK-positive cancers have been identified as
being more sensitive to pemetrexed [186]. A targeted
Hsp90 inhibitor (ganetespib, AUY922) is also an ideal
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candidate as Hsp90 is a chaperone protein involved in
the degradation of several oncogenic proteins includ-
ing the ALK fusion product [187].

In order to optimize clinical therapy, it is rapidly
becoming insufficient to simply identify the presence
of an ALK fusion product. At the time of acquired
resistance to crizotinib, the precise resistance mutation
that has evolved may help direct the clinical choice of
a second-line agent. Further evolution of clinical test-
ing assays is required to monitor the genetic changes
in cancers throughout the treatment process.

KRAS/MEK-Targeted Therapy

Although no specific targeted agents are available
for KRAS-mutated NSCLC, new agents targeting the
downstream MEK1/MEK2 have shown promise in
phase 2 trials. Selumetinib, a MEK inhibitor, has dem-
onstrated modest improvement in PFS when used in
combination with docetaxel (162 days vs 63 days in
placebo group) although no improvement in overall
survival has been identified [188]. The adverse events
included diarrhea, vomiting, stomatitis, and dry skin
with increased neutropenic effects above what would
be expected for docetaxel alone. Further study with
larger cohorts will be needed to determine if specific
KRAS mutations can further predict for response to
MEK inhibition.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most com-
monly diagnosed malignancies worldwide and
continues to be a major global public health problem.
Despite continued advances in detection and treat-
ment, CRC ranks third in both incidence and cause of
cancer deaths in the United States [1,2]. CRC may pres-
ent as sporadic or inherited/familial disease and has
long been considered a single disease process with
shared causality, clinical characteristics, and prognosis.
The prototypical genetic model for the tumorigenesis
of CRC, termed the adenoma-carcinoma sequence [3],
describes a multistep process resulting from the accu-
mulation of mutations in oncogenes and tumor sup-
pressor genes in the cells of the colonic mucosa.
However, through recent advances in, and applications
of, molecular technologies, coupled with extensive
analysis of precursor lesions and hereditary forms of
the disease, it is now clear that CRC is a heterogeneous
and complex disorder that develops as a consequence
of accumulation of both genetic and epigenetic geno-
mic alterations [4]. Three distinct molecular pathways
have now been described that all lead to the develop-
ment of CRC, based on different global cellular events
that occur during the development of CRC: (1) the con-
ventional suppressor pathway or chromosomal instabil-
ity (CIN) pathway, (2) the serrated pathway or CpG
island methylator phenotype (CIMP), and (3) the micro-
satellite instability (MSI) pathway [3,5�7]. Different
genes may be mutated or altered in CRCs arising from
the same genetic pathway. Comprehensive exome
sequencing studies have demonstrated that individual
CRCs harbor an average of 76 gene mutations [8],
which adds to the complexity of the disease.

The role for molecular diagnostics in the diagnosis
and management of CRC is increasing. The risk of
recurrence and subsequent death in patients with CRC
is known to be closely related to the stage of the dis-
ease at the time of first diagnosis [9]. Therefore, con-
siderable effort has been directed toward identifying
specific molecular alterations and biomarkers that sup-
port early diagnosis and selection of effective thera-
peutic strategies. Current indications for standard-of-
care molecular testing in CRCs include identification
of hereditary colon cancer syndromes, examination of
molecular biomarkers to predict prognosis and
response to antiepidermal growth factor receptor
(EGFR) therapies, and testing of MSI status. As growth
continues in the area of personalized cancer medicine,
additional molecular testing will likely become increas-
ingly recommended in clinical decision making for
patients with CRC.

GENETIC PATHWAYS TO CRC

Conventional Suppressor Pathway or
CIN Pathway

CIN is the most common type of genomic instability
identified in CRC. CIN demonstrates accelerated gains
or losses of large portions or whole chromosomes and
commonly results in gross chromosomal or karyotypic
abnormalities [10,11]. The consequence of CIN is a
high frequency of aneuploidy (an imbalance in chro-
mosome number), genomic amplifications, and loss of
heterozygosity [10]. Approximately 60% of all CRCs,
including those arising from Familial Adenomatous
Polyposis (FAP), follow this conventional suppressor
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pathway [12]. CRC caused by CIN has a poor progno-
sis, regardless of tumor stage or therapy [13,14].

The accumulation of mutations in specific onco-
genes and tumor suppressor genes, coupled with the
gross chromosomal abnormalities in CIN cancers,
leads to the activation of pathways that cause the initi-
ation and progression of CRC over a period of years to
decades. The conventional suppressor or CIN pathway
is initiated by inactivation of the adenomatous polypo-
sis coli (APC)/β-catenin/Wnt signaling pathway,
typically by mutation of one copy of the APC tumor
suppressor gene. This is followed by a second event
that leads to inactivation of the second APC allele
through allelic deletion or additional mutations. These
alterations of the APC gene lead to the development of
dysplasia in aberrant crypt foci and early adenomas.
Sequential accumulation of additional genetic events,
including mutations in the oncogene KRAS, as well
as in the tumor suppressor genes DCC, SMAD4,
and TP53, drives tumor progression and the develop-
ment of CRC.

MSI Pathway

MSI is present in approximately 15% of all CRCs
[15]. Microsatellites are stretches of short-tandem DNA
sequence repeats, approximately 1�6 bases in length,
and are found throughout the human genome [16].
Microsatellites are prone to the accumulation of
mutations, largely due to inefficient binding of DNA
polymerases to these sequence motifs [17]. The mis-
match repair (MMR) system is mainly composed of
five genes (MSH2, MLH1, MSH3, MSH6, and PSM2)
that encode proteins which are critical to the proper
repair of DNA sequence mismatch errors missed by
DNA polymerases and the preservation of genomic
integrity [16]. As microsatellites are present in the cod-
ing regions of key genes for regulation of cell growth
and apoptosis, loss of MMR function may result in
frameshift mutations due to expansion or contraction
of these regions and create an environment of
uncontrolled cell survival and carcinogenesis [18]. One
example is frameshift mutations in the TGF-βRII gene,
which have been reported in 90% of CRCs with MSI
[19]. Inactivation of the MMR system may be caused
by a germline mutation in one of four MMR genes
(MSH2, MLH1, MSH6, and PSM2), as seen in Lynch
Syndrome (hereditary nonpolyposis colorectal cancer/
HNPCC), or by aberrant epigenetic methylation of
MLH1, as seen in sporadic CRCs with MSI [9,13]. Two
of the MMR genes, MSH3 and MSH6, contain coding
region microsatellites themselves, which may be
mutated in MSI-high (MSI-H) CRCs [12]. When
compared to microsatellite-stable (MSS) CRCs, MSI-

associated CRCs demonstrate a better prognosis at all
stages, despite their known resistance to some chemo-
therapy regimens [4,16].

Serrated Pathway or CIMP Pathway

DNA methylation, an epigenetic modification that
regulates gene expression, is essential for normal embry-
onic development and functions in X-chromosome
inactivation and genomic imprinting [20,21]. The normal
mammalian genome contains methylated CpG islands
in nonpromoter regions. However, approximately half
of CpG islands are located in promoter regions around
transcription start sites and are unmethylated in normal
cells [21,22]. Genes that contain these unmethylated
CpG islands will undergo normal transcription in
the presence of transcriptional activators. The CIMP
pathway refers to widespread CpG island methylation
within promoter regions of tumor suppressor genes
[13]. In cancer cells, hypermethylation of CpG islands
within these promoter regions leads to transcriptional
silencing of tumor suppressor genes and loss of gene
function, contributing to the tumorigenic process [16].
The CpG island methylator phenotype (CIMP1 )
accounts for approximately 35% of all CRCs.

The most common carcinomas arising through
CIMP pathway begin with sessile serrated adenomas
(SSAs), which frequently harbor an activating mutation
in the BRAF gene [23,24] (Fig. 24.1). SSAs are prone to
hypermethylation of a number of genes rich in CpG
islands within their promoter regions. Depending on
which genes are silenced by hypermethylation, the
arising carcinoma may be microsatellite-stable (60% of
CIMP1 CRCs) or MSI-H (40% of CIMP1 CRCs).
Most sporadic MSI-H CRCs result from epigenetic
silencing of hMLH1 due to hypermethylation of CpG
islands in the promoter region. It has been proposed
that the loss of hMLH1 protein function in SSAs leads
to rapid accumulation of additional mutations in other
genes, such as transforming growth factor-β (TGFβ)
and BAX, which then drive cancer progression [12].
Morphologically, SSAs with hMLH1 hypermethylation
are characterized by cytologic dysplasia, which is
followed by the rapid development of malignant trans-
formation. CpG island hypermethylation may also
occur in tumor suppressor genes other than hMLH1,
resulting in CIMP1 MSS CRCs.

HEREDITARY COLON CANCER
SYNDROMES

Several hereditary colon cancer and polyposis syn-
dromes have been characterized, which are all
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associated with a high risk of developing CRC.
Together, these account for ,10% of all CRCs. The
hereditary colon cancer syndromes are classified based
upon the clinical presence or absence of colonic polyps
as a major disease manifestation and the presence of
known causative genetic mutation, which are summa-
rized in Table 24.1 [25,26].

Lynch Syndrome

Lynch Syndrome is the most common hereditary
colon cancer syndrome, accounting for approximately
2�7% of all CRCs [7,27]. It is an autosomal dominant
disorder that carries an increased risk for the devel-
opment of CRC, endometrial cancer, and other can-
cers (Table 24.1) [28]. Lynch Syndrome is typically
caused by a germline mutation in one of the MMR
genes, including MSH2, MLH1, MSH6, and PSM2.
Loss of MMR function leads to development of CRC
through the MSI pathway. In Lynch Syndrome, 90%
of MMR mutations involve either MLH1 or MSH2
genes [18,21]. The two-hit hypothesis of tumorigene-
sis applies, where germline mutation in one copy of

one MMR gene represents the first hit, and somatic
inactivation of the remaining wild-type allele repre-
sents the second hit. Additionally, a novel mecha-
nism has recently been identified in a subset of
Lynch Syndrome families, which includes hyper-
methylation of the MSH2 promoter without MMR
gene mutations and germline deletions in the 30

region of the epithelial cell adhesion molecule
(EPCAM) gene [21,29,30].

Individuals at risk for Lynch Syndrome are identi-
fied in clinical practice using the Amsterdam criteria
and the revised Bethesda guidelines, which recom-
mend MSI testing of CRCs in individuals as outlined
in Table 24.2 [31]. Diagnosis of Lynch Syndrome
requires assessment of patient tissue samples for defec-
tive MMR proteins by molecular testing for MSI or
immunohistochemical (IHC) methods, and further
testing is always necessary to differentiate sporadic
from hereditary MSI-H CRCs. Unfortunately, appli-
cation of the revised Bethesda criteria as a screening
tool for Lynch Syndrome is not sufficient for identi-
fication of all affected patients [12]. Current National
Comprehensive Cancer Network (NCCN) guidelines
now recommend evaluation of MSI status by

FIGURE 24.1 The serrated or CIMP genetic pathway of tumorigenesis in CRC with associated progression of a sessile serrated adenoma
(SSA) bearing an activating mutation in BRAF V600E and demonstrating aberrant CpG island hypermethylation. Depending upon which
genes are silenced by hypermethylation, the arising CIMP1 CRC may be MSS or MSI-H. Loss of tumor suppressor genes leads to a MSS
CRC (60% of CIMP1CRCs), represented morphologically by progression of an SSA to a poorly differentiated adenocarcinoma. Loss of
hMLH1 by hypermethylation leads to an MSI-H CRC (40% of CIMP1CRCs), which morphologically display increasing cytologic dysplasia
(Images: SSA with low-grade cytological atypia, SSA with high-grade cytological atypia) followed by rapid development of frank malignant
transformation (Image: invasive mucinous adenocarcinoma).
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molecular or IHC methods on all resected CRCs, or
CRCs diagnosed in patients ,70 years of age and in
patients $ 70 years of age who meet the Bethesda
guidelines. Gold-standard germline testing is then typ-
ically offered if one of the screening tests (MSI or IHC)
is positive and further testing supports a hereditary
MSI-H CRC.

Familial Adenomatous Polyposis

Familial Adenomatous Polyposis (FAP) is the most
common polyposis syndrome and is associated with
approximately 0.5% of all CRCs [13,32]. FAP displays
autosomal dominant inheritance, though up to 25% of
CRCs classified as FAP are caused by de novo germ-
line mutations [17]. FAP is characterized by the pres-
ence of hundreds to thousands of adenomas and
carries a 100% lifetime risk of CRC with the median
age for CRC development being 36 years old. Classic
FAP typically shows the presence of .100 colonic
polyps, autosomal dominant inheritance, other cancers
(Table 24.1), and extracolonic findings such as congeni-
tal hypertrophy of the retinal pigment epithelium,
osteomas, supernumerary teeth, desmoids, and small
bowel adenomas. Attenuated FAP (AFAP) is a less
severe form of the disease which presents with less
than 100 adenomas that tend to demonstrate a flat
morphology. AFAP is characterized by a lifetime risk
for the development of CRC of up to 69% [33].

FAP and AFAP are caused by germline mutations
of the APC gene on chromosome 5q21, which encodes
a tumor suppressor gene. The development of CRC in
FAP/AFAP follows the conventional suppressor
(CIN) pathway. Distinctive phenotypic correlations
have been described for specific mutations of the

TABLE 24.1 Hereditary CRC Syndromes

Syndrome Inheritance Gene(s) Associated cancers

NONPOLYPOSIS

Lynch

Syndrome

Autosomal

Dominant

MLH1 Colon

MLH2 Endometrium

MSH6 Stomach

PMS2 Ovary

EpCAM Hepatobiliary tract

Upper urinary tract

Pancreatic

Small bowel

CNS (glioblastoma)

ADENOMATOUS POLYPOSIS

FAP Autosomal

Dominant

APC Colon

Duodenum

Stomach

Pancreas

Thyroid

Liver (hepatoblastoma)

CNS (medulloblastoma)

AFAP Autosomal

Dominant

APC Colon

Duodenum

MAP Autosomal

Recessive

MUTYH Colon

Duodenum

PPAP Autosomal

Dominant

POLE Colon

POLD1 Endometrium (with POLD1

mutation)

HMPS Autosomal

Dominant

GREM1 Colon

HAMARTOMATOUS POLYPOSIS

PJS Autosomal

Dominant

STK11 Breast

Colon

Pancreas

Stomach

Ovary

Lung

Small bowel

Uterine/Cervix

Testicle

JPS Autosomal

Dominant

SMAD4 Colon

BMPR1A Stomach

ENG Pancreas

Small bowel

FAP, familial adenomatous polyposis; AFAP, attenuated familial adenomatous polyposis;

MAP, MUTYH-associated polyposis; PPAP, polymerase proofreading associated polyposis;

HMPS, hereditary mixed polyposis syndrome; PJS, Peutz-Jeghers syndrome; JPS, juvenile

polyposis syndrome; CNS, central nervous system.

TABLE 24.2 Revised Bethesda Guidelines for MSI Testing
in CRC

CRC diagnosed in a patient younger than 50 years of age

Presence of multiple, synchronous or metasynchronous CRC,
or other Lynch-related tumorsa in a patient of any age

CRC with MSI-H histology (presence of tumor-infiltrating
lymphocytes, Crohn’s-like lymphocytic response, mucinous/signet
ring differentiation, or medullary growth pattern) in a patient
younger than 60 years of age

CRC diagnosed in a patient with one or more first-degree relatives
with an Lynch-related tumor,a with one of the cancers diagnosed at
younger than 50 years of age

CRC diagnosed in a patient with two or more first- or second-degree
relatives with Lynch-related tumorsa diagnosed at any age

aLynch-related tumors include endometrial, small bowel, gastric, ovarian, pancreatic,
biliary, ureteral, or renal pelvis carcinomas, brain tumors, sebaceous gland adenomas,
and keratoacanthomas.
MSI, microsatellite instability; CRC, colorectal cancer.

308 24. MOLECULAR TESTING IN COLORECTAL CANCER

IV. MOLECULAR TESTING IN ONCOLOGY



APC gene [32,33]. To date, more than 3000 unique
disease-causing mutations of APC have been
reported, not all of which result in FAP/AFAP
(COSMIC—http://cancer.sanger.ac.uk/cosmic) [34].

Other Hereditary Gastrointestinal Polyposis
Syndromes

In addition to FAP and AFAP, there are three other
inherited adenomatous polyposis syndromes that have
been described (Table 24.1): (1) MUTYH-associated
polyposis (MAP), (2) polymerase proofreading associ-
ated polyposis (PPAP), and (3) hereditary mixed poly-
posis syndrome (HMPS). MAP is inherited in an
autosomal recessive manner. While the true incidence
is not yet known, MAP may account for 0.5�1% of all
CRCs [13,21]. MAP has a cumulative risk for CRC
development of 80% by 70 years of age [35]. MAP is
caused by a biallelic germline mutation in MUTYH, a
base-excision repair gene for oxidative DNA damage
[28,31]. Testing for MAP is recommended in patients
with more than 10 adenomatous polyps, particularly
those with a family history of CRC consistent with
recessive inheritance and test negative for APC muta-
tions [31,32]. PPAP is inherited in an autosomal domi-
nant manner and is characterized by the presence of
multiple colorectal adenomas and early onset CRC
[36]. PPAP is associated with germline mutations in
the proofreading domains of POLE and POLD1, two
DNA polymerases with exonuclease activity [37,38].
HMPS is inherited in an autosomal dominant manner
and presents with polyps that display multiple and
mixed morphologies, including serrated polyps, Peutz-
Jeghers polyps, juvenile polyps, and conventional
adenomas, that may progress to CRC without extraco-
lonic features [39]. HMPS is associated with a 40 kb
duplication present at the 30 end of the SCG5 gene and
upstream of the GREM1 locus, leading to increased
GREM1 expression [39].

Two major inherited hamartomatous polyposis
syndromes have also been described: Peutz-Jeghers
syndrome (PJS) and juvenile polyposis syndrome
(JPS). Both PJS and JPS are inherited in an autosomal
dominant manner and carry an increased risk for
development of CRC, as well as pancreatic and other
gastrointestinal cancers (Table 24.1) [40]. Lifetime
risk for development of CRC is 39% in PJS patients
and 10�38% in JPS patients [21,41]. PJS is associated
with germline mutations or deletions in STK11,
which is a serine-threonine kinase that regulates
TP53-mediated apoptosis [32]. JPS is associated with
mutations in SMADH4, BMPR1A, and ENG, all
related to the transforming growth factor-β/SMAD
pathway [21,32].

BIOMARKERS FOR TARGETED
THERAPIES IN CRC

The EGFR signaling pathway plays an integral role
in carcinogenesis and progression of cancer, including
CRC, which makes it an important target for therapeu-
tic drugs. EGFR activation leads to autophosphoryla-
tion of its c-terminal tyrosine residues, which serve as
docking sites that bind to several intracellular proteins
and activate a number of downstream signaling path-
ways, including the RAS-RAF-MAP kinase signaling
pathway and the PI3K-AKT-mammalian target of
rapamycin (mTOR) signaling pathway (Fig. 24.2) [12].
The PI3K-AKT-mTOR signaling pathway may also be
activated by KRAS. These signaling pathways are
involved in cancer cell proliferation, invasion, migra-
tion, and inhibition of apoptosis.

EGFR

EGFR is upregulated in up to 85% of CRCs.
Increased copy numbers of the EGFR gene are present
in some CRCs and overexpression of EGFR may be
demonstrated by IHC methods [42,43]. However, there
is no apparent correlation between EGFR expression
and response to therapy with anti-EGFR monoclonal
antibodies (MoAbs), such as cetuximab and panitumu-
mab [44]. EGFR gene mutations are rare in CRCs,
unlike lung cancers, and have not been shown to

FIGURE 24.2 Epidermal growth factor receptor (EGFR) signal-
ing pathway. Activation of EFGR by its ligands leads to activation
of the RAS-RAF-MAP kinase signaling pathway and the PI3K-
AKT1-mTOR signaling pathway, which are ultimately involved in
tumor cell proliferation, invasion, migration, and inhibition of apo-
ptosis. Mutation of genes within these signaling pathways in CRCs
may predict disease prognosis and resistance to anti-EGFR mono-
clonal antibody therapy.
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predict response to therapy [45]. Nonetheless, numer-
ous clinical trials have demonstrated that anti-EGFR
MoAbs are effective in treating some metastatic CRCs
[46]. Anti-EGFR MoAbs play a role in inhibition of
downstream signaling pathways and may also have
therapeutic effects through antibody-dependent cell-
mediated cytotoxicity. Mutations in downstream genes
like KRAS and expression levels of EGFR ligands have
been shown to affect the sensitivity of CRCs to anti-
EGFR therapy [47]. Therefore, a focus on downstream
signaling pathway biomarkers has been explored to
predict response to therapy in CRCs.

KRAS and NRAS

KRAS is a small G protein that functions as a signal
transducer and downstream integrator of EGFR and is
an integral component of the EGFR signaling pathway.
Activating KRAS mutations result in constitutively
active RAS proteins that stimulate the RAS/mitogen-
activated protein (MAP) kinase signaling pathway
independent of EGFR signaling. Activating KRAS
mutations involving codons 12, 13, or 61 have been
detected in 40�50% of sporadic CRCs, with approxi-
mately 90% of mutations occurring in codons 12 and

13 [48] (Table 24.3). Activating mutations in codon 146
of exon 4 in the KRAS gene have also been described
in 1�6% of CRCs [49,50]. NRAS, a member of the RAS
family, has also been shown to have activating muta-
tions in 1�6% of CRCs [51]. These mutations serve to
constitutively activate the downstream signaling path-
way. KRAS mutations have been demonstrated in
MSS, sporadic MSI-H, and HNPCC CRCs [12,52].
However, sporadic MSI-H cancers have a lower fre-
quency of KRAS mutations and a higher frequency of
BRAF mutations, which are mutually exclusive muta-
tions in a single tumor.

KRAS mutations, in general, have not been shown
to have a significant prognostic value in CRC [13,53].
However, KRAS mutations have been associated with
poor response to anti-EGFR MoAbs in randomized
clinical trials. Only cancers with wild-type KRAS show
a significant response to these agents. Review of ran-
domized and nonrandomized clinical studies suggests
that patients with CRCs that contain KRAS mutations
should not receive anti-EGFR MoAb therapy
[48,54�56]. Similarly, NRAS mutations have also been
associated with poor response to anti-EGFR MoAb
therapy [57]. Therefore, KRAS and NRAS mutational
testing is increasingly recommended for selection of
appropriate therapeutic treatment in CRC. Current

TABLE 24.3 Gene Mutations in the EGFR Signaling Pathway in CRCs

Gene Mutation frequency (%)

Location of

mutations Marker of poor prognosis Resistance to anti-EGFR therapy

EGFR 0.3 Exon 18 Unknown Unknown

KRAS 36�40 Codon 12, 13a No, remains controversial Yes

Codon 61

Codon 117b

Codon 146

NRAS 1�6 Codon 12 Unclear, needs validation Yes, reported by most studies

Codon 61

BRAF 5�22 V600Ea Yes, in MSS tumors Unclear, reported in some
studies

Othersb

PIK3CA 10�30 Exon 9a Unclear, suggested by some
studies

Unclear, reported with Exon 20

Exon 20

Exon 1, 2b

PTEN 5�14 (higher in MSI-H
CRCs)

Exon 6 Unclear, needs validation Unclear, needs validation

Exon 7

AKT1 1�6 Exon 4 Unclear, needs validation Unclear, needs validation

aMost common mutation.
bRare mutation.
CRC, colorectal cancer; EGFR, epidermal growth factor receptor; MSI-H, microsatellite instability-high; MSS, microsatellite-stable.

Source: Modified from Walther A, Houlston R, Tomlinson I. Association between instability and prognosis in colorectal cancer: a meta-analysis. Gut 2008;57:941�50 and

Forbes, S.A. et al, COSMIC: exploring the world’s knowledge of somatic mutations in human cancer Nucl. Acids Res. 2015;43 (D1): D805�D811 (COSMIC).
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NCCN guidelines recommend KRAS and NRAS geno-
typing of cancer tissue for all patients with metastatic
CRC—if KRAS or NRAS mutations are present, anti-
EGFR MoAb therapy is not recommended.

BRAF

BRAF is a serine/threonine protein kinase and an
immediate downstream effector of KRAS in the MAP
kinase signaling pathway. BRAF mutations are present
in 5�22% of CRCs (Table 24.3), with the most common
mutation being V600E [51,53,58]. Mutated BRAF is
detected at a higher frequency in sporadic MSI-H can-
cers than in MSS cancers [59,60] and is never detected
in HNPCC [60]. The current clinical importance of
BRAF mutational testing in CRC is in differentiating
sporadic MSI-H cancers from HNPCC, though its role
as a prognostic and predictive biomarker for anti-
EGFR MoAb therapy continues to evolve.

Some studies have indicated that BRAF mutations
are associated with a more aggressive phenotype and
overall shorter survival in CRCs [58,59,61,62].
However, others have reported that the prognostic
effect of BRAF mutation is actually related to the MSI
status of the cancer, with MSI-low (MSI-L) or MSS
cancers demonstrating a poor prognosis and MSI-H
cancers demonstrating no difference in prognosis
compared to BRAF wild-type cancers [59,60]. BRAF
status may also predict response to anti-EGFR therapy.
In a retrospective study, wild-type BRAF was required
for response to anti-EGFR MoAbs in metastatic CRC
patients [61]. Current NCCN guidelines state that
BRAF mutational testing should be performed when
KRAS testing indicates a wild-type KRAS gene; how-
ever, BRAF mutational analysis is not currently
required for treatment decisions, though it is useful for
determining prognosis.

Small molecular BRAF inhibitors are currently being
investigated as potential therapeutics in CRC, as many
have shown efficacy in the treatment of BRAF mutant
melanoma. Preclinical models using a BRAF inhibitor,
vemurafenib, with standard-of-care or novel targeted
therapies in BRAF mutated CRCs have shown
enhanced antitumor efficacy [63]. However, CRC
patients with V600E mutations showed only a limited
response to the inhibitor, likely due to rapid feedback
activation of EGFR [64]. As additional clinical studies
are performed using these targeted BRAF inhibitors,
new recommendations regarding mutational analysis
of BRAF in CRC may be forthcoming.

PIK3A

Class 1A PI3Ks are heterodimeric proteins com-
posed of two subunits: the p85 regulatory subunit and
the p110 catalytic subunit. Three catalytic isoforms
exist, which are the products of three genes—PIK3CA,

PIK3CB, and PIK3CD. Class I PI3Ks are activated by
G-protein coupled receptors, receptor tyrosine kinases
such as KRAS and EGFR, and certain oncoproteins
such as RAS. Mutations in PIK3CA are the most com-
mon genetic alterations in the PI3K signaling pathway
seen in CRCs and are detected at a frequency of
10�30%, mostly in exon 9 (60�65%) and exon 20
(20�25%) [65,66] (Table 24.3). Multiple studies have
suggested that PIK3CA mutation is associated with a
poor prognosis in CRCs, though some studies have not
supported this relationship to prognosis [67,68].

The clinical effect of PIK3CA mutations on anti-
EGFR MoAb therapy is an area of current investiga-
tion. Most early clinical studies demonstrated contra-
dictory results and did not evaluate the individual
PIK3CA mutations separately. It is now known that the
exon 9 gain of function mutation is RAS-dependent
while the exon 20 mutation is not [13]. Recent studies
have shown that CRCs with PIK3CA exon 20 muta-
tions may be associated with a lack of response to anti-
EGFR therapy, while the response to therapy is
retained in KRAS wild-type CRCs with PIK3CA exon 9
mutations [51]. PIK3CA mutated CRCs may also have
either KRAS or BRAF mutations, making the use of
PIK3CA as a single marker for predicting response to
anti-EGFR therapy of little current clinical value in
patients with CRC.

PTEN

PTEN is a tumor suppressor gene in the PI3K/AKT
pathway that negatively regulates the PI3K-AKT-
mTOR signaling pathway [69]. Loss of PTEN via muta-
tions, deletions, or promoter methylation of the PTEN
gene is seen in 20�40% of CRCs and allows for consti-
tutive activation of the signaling pathway [12]
(Table 24.3). CRCs with inactivated PTEN may also
have mutations of KRAS, BRAF, or PIK3CA. In addition
to downstream involvement in the EGFR pathway, loss
of PTEN has been demonstrated to confer resistance to
cetuximab in vitro [70]. Additionally, loss of PTEN
expression may predict a lack of response and shorter
survival in patients with wild-type KRAS metastatic
CRCs treated with anti-EGFR therapy [71�73].

MOLECULAR TECHNOLOGIES,
CLINICAL UTILITY, AND LIMITATIONS

OF TESTING

Molecular diagnostic evaluation of sporadic CRCs
now commonly includes eight genes to identify MSI
status and to guide evaluation of prognosis and thera-
peutic interventions, including those for the family of
MMR proteins: MLH1, MSH2, MSH6, and PMS2, as
well as KRAS, BRAF, PIK3CA, and PTEN. Molecular
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evaluation of the known hereditary colon cancer syn-
dromes involves testing for germline alterations in the
MMR genes, as well as five additional genes: APC,
MUTYH, STK11, BMPR1A, and SMAD4. Mutational
analyses of many additional molecular biomarkers in
CRCs will likely become increasingly recommended as
new targeted therapies make their way into clinical
practice. As the various molecular technologies and
use of distinct validated intratumor molecular assays
for single genetic mutations in CRC have increased,
many companies and academic medical centers now
offer clinical molecular testing on a variety of different
platforms. Many multiplexed assays for more compre-
hensive and simultaneous assessment of multiple
genes involved in CRCs on a single patient specimen
are currently available. However, it is important to rec-
ognize that a number of different methodologies are
employed at individual institutions to meet current
clinical testing recommendations and guidelines for
CRC, based on what technologies are available.

Molecular Testing in Hereditary CRC
Syndromes

The genes associated with each of the inherited
colon cancer syndromes have been identified, and
molecular testing is available for the diagnosis of these
conditions [40,74,75]. Inherited conditions typically
arise from mutation of a single gene, though different
families with the same disorder may have separate
and distinct mutations of the implicated gene. Genetic
testing for each of the hereditary colon cancer syn-
dromes follows a similar approach, with the exception
of Lynch Syndrome. Testing is typically performed on
DNA obtained from a peripheral blood sample. DNA
sequencing (Sanger sequencing) is the standard
method utilized for initial identification of mutations,
though additional methods may be utilized prior to
sequencing to detect and localize the mutation [76].
Once the disease-causing mutation is identified in the
index patient, family members may be tested for the
presence of that specific mutation (mutation-specific
testing) using various methodologies. Depending on
the syndrome, the likelihood of finding the disease-
causing mutation in the index patient may range from
50% to greater than 90% [76].

Semiautomated Sanger sequencing of DNA has
been utilized for many years in clinical genetic testing
and is still considered the gold standard, though there
are limitations to this methodology, including failure
to detect large deletions, low throughput, and cost.
DNA sequencing methodologies have evolved quickly,
and whole exome sequencing of all DNA-coding
regions is now often utilized clinically [77]. With

Sanger sequencing, initial DNA screening methods for
localization of the area within the implicated gene to
be sequenced may be used to increase the efficiency
and likelihood of mutation detection. These screening
methods include conformation-specific gel electropho-
resis, single-strand conformation polymorphism, and
denaturing gradient gel electrophoresis [76]. Large
deletions or rearrangements within the gene, which
may not be detected by sequencing, often require
southern blot hybridization analysis or multiplex
ligation-dependent probe amplification (MLPA) for
detection. If MLPA is used as the original method of
detection, then Southern blot or quantitative polymer-
ase chain reaction (PCR) are performed for confirma-
tion [78]. Chromosomal karyotyping and fluorescent in
situ hybridization are used to detect gross chromo-
somal alterations caused by large deletions and gene
rearrangements. Protein truncation testing may also be
used to detect the presence of a truncated protein by
gel electrophoresis, generally caused by nonsense or
frameshift mutations within the gene.

Genetic testing should be considered in individuals
with more than 10 adenomas to identify the familial
disease-causing mutation in the APC gene, due to the
clinical concern for FAP, AFAP, or MAP in these
patients [79,80]. The majority of disease-causing muta-
tions that have been identified in the APC gene are
nonsense or frameshift mutations resulting in a termi-
nation codon and a truncated protein, 95% of which
may be identified by sequencing [81]. Mutations con-
tributing to classic FAP typically occur between exon
5 and the 50 portion of exon 15 (codons 169�1393),
and mutations associated with AFAP typically occur
at the 50 or 30 end of the gene beyond codon 1595
[21,78]. The gold standard for detection of APC muta-
tions is direct DNA sequencing. Protein truncation
testing may be performed prior to sequencing in sus-
pected cases of FAP/AFAP. Linkage testing of APC
may be performed if other molecular approaches are
unsuccessful. This method utilizes multiple DNA
markers near or within the gene among multiple
affected members of a family to correlate with disease
phenotype. The currently available DNA markers for
linkage analysis may be used in 90�95% of FAP fami-
lies with .98% accuracy [74].

In patients where FAP or AFAP is suspected and an
APC mutation cannot be determined, MAP testing
should be performed as MUTYH mutations are found
in approximately 10�20% of these patients [80,82].
Mutation specific testing of MUTYH is performed
prior to sequencing for suspected cases of MAP, as
80% of affected individuals have one of two specific
mutations: Y165C and G382D [80,83]. If one of these
MUTYH mutations is present, sequencing is performed
to identify an inactivating mutation in the second
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MUTYH allele. Both alleles must be mutated to inacti-
vate the gene and cause disease [76]. Sequencing of the
MUTYH gene for less common mutations is performed
if neither of the two common mutations is identified
by mutation specific testing and MAP is still clinically
suspected.

MSI Testing and Diagnosis of Lynch Syndrome

MSI testing is conducted using a PCR-based assay
and/or IHC staining for MMR protein expression.
Examination of the expression of MLH1, MSH2,
MSH6, and PMS2 in tissues with commercially avail-
able antibodies is the most common IHC method used
for identification of MSI-H CRCs (Fig. 24.3), with a
sensitivity of 90�95% and specificity of 100% [7]. In
addition, a two-antibody panel (MSH6 and PMS2), has
been shown to exhibit similar sensitivity to the four-
protein antibody panel [84], as loss of MLH1 and
MSH2 causes concurrent loss of MSH6 and PMS2,
respectively. Intact expression of all four proteins

indicates that the MMR proteins are present, but does
not entirely exclude Lynch Syndrome. Missense muta-
tions, particularly in MLH1, are present in 5�8% of
Lynch Syndrome families and may lead to nonfunc-
tional proteins with retained antigenicity [12]. Defects
in lesser-known MMR proteins may also show a simi-
lar IHC result. Additionally, IHC labeling for the
MMR proteins may be heterogeneous, which may
compromise the sensitivity of the test. Further, caution
should be taken in examination of MMR protein
expression following therapy, as neoadjuvant treat-
ment may reduce protein expression and lead to a
false-positive IHC result [85]. Loss of MLH1 expres-
sion may be the result of promoter methylation (as in
sporadic MSI-H CRC) or Lynch Syndrome. Loss of
MSH2/MSH6 expression almost always indicates
Lynch Syndrome [84].

Molecular testing for MSI relies on the evaluation of
loci within the human genome known to harbor micro-
satellites. As microsatellites vary in size between indi-
viduals, DNA is typically extracted from both normal
and cancer tissue for evaluation, obtained from either

FIGURE 24.3 MSI testing by tissue immunohistochemistry. IHC staining for expression of MLH1, MSH2, MSH6, and PMS2 proteins in
tissue using commercially available antibodies may be used to identify MSI in CRCs. MMR protein immunohistochemistry images shown,
original magnification 2003 . Intact MMR protein expression or a positive result is indicated by the dark brown staining nuclei of the colonic
epithelial cells, as shown in the image panels MSH2 and MSH6. Loss of MMR protein expression or a negative result is indicated by no stain-
ing of the nuclei within the colonic epithelial cells, as shown in the image panels MLH1 and PMS2. This pattern of MMR protein expression
shown in tissue immunohistochemistry from a CRC (with intact expression of MSH2 and MSH6 proteins, and loss of expression of MLH1 and
PMS2 protein expression) would be reported as abnormal expression of MLH1 and PMS2 proteins. Depending upon the patient history,
morphologic features of the tumor, and results of any other testing performed, the pattern of MMR protein expression shown would be
concerning for an MSI-H CRC or Lynch Syndrome.
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fresh tissue or formalin-fixed paraffin-embedded
(FFPE) tissue blocks. Following PCR amplification of
the selected microsatellite, the sizes of PCR products
obtained from normal and cancer tissue are compared.
MSI is considered to be present when there is a change
of any length within the PCR products obtained from
cancer tissue, as compared to the normal tissue. The
original Bethesda guidelines for identification of indi-
viduals with HNPCC proposed a panel of five mono-
nucleotide and dinucleotide microsatellite markers for
PCR-based detection of MSI [86]. Cancers are classified
as MSI-H if instability is present at two or more loci,
MSI-L if instability is present at one locus (with addi-
tional testing of other loci for definitive classification),
and MSS if no instability is present. The revised
Bethesda guidelines recommended a secondary panel
of mononucleotide markers be used in MSI-L cases in
which only a dinucleotide marker is mutated, as

mononucleotide markers are more sensitive than dinu-
cleotide or trinucleotide markers [87]. Currently, a
fluorescent multiplex PCR-based method is typically
used for detecting MSI, with amplification of five to
seven microsatellite markers (Fig. 24.4). Many molecu-
lar diagnostic laboratories utilize a commercially avail-
able kit with five mononucleotide markers (BAT-25,
BAT-26, MON0-27, NR-21, and NR-24) for detection of
MSI and two pentanucleotide markers (Penta C and
Penta D) for specimen identification to ensure that can-
cer and normal DNA samples are derived from a sin-
gle patient. Fluorescently-labeled PCR products are
sized by capillary electrophoresis. The patterns of
normal and cancer genotypes are compared for
each marker and scored as MSI-H, MSI-L, or MSS
(Fig. 24.4). The sensitivity of PCR-based testing is simi-
lar to that of the IHC method. Low cancer cellularity
may contribute some false-negative PCR-based testing
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FIGURE 24.4 Fluorescent multiplex
PCR-based MSI testing. (A) An example
of a MSS tumor sample with chromatog-
raphy results that are identical to those
of a matched normal tissue sample.
(B) An example of an MSI-H tumor sam-
ple with chromatography results show-
ing deletions (black arrows) in five of
five mononucleotide microsatellite loci
compared to a matched normal tissue
sample. The pentanucleotide loci are uti-
lized as specimen identification markers.
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results. Cases with a high index of suspicion that show
a negative MSI result by PCR should be tested with
the IHC method, and vice versa.

Additional methods of MSI detection using diagnos-
tic microarrays are in development and may have
potential for clinical use, but are not yet commonly
offered. One such assay was developed based on a 64-
gene expression signature using genes that correlated
with MSI status by full-genome expression data [88].
This assay has shown high accuracy in identification of
MSI in patients with CRC (sensitivity of 90.3�94.3%
and overall accuracy of 84.8�90.6%) and may have
utility in identification of MSI in patients not recog-
nized by traditional PCR or IHC methods [88]. The use
of miRNA expression profiles for determination of
MSI status by spotted locked nucleic acid-based oligo-
nucleotide microarrays has also been investigated [89].

CRCs identified as MSI-H require further testing to
differentiate sporadic from hereditary MSI-H CRCs.
Analysis for somatic mutations in the V600E hot spot
of BRAF may be indicated for CRCs that show MSI-H
or loss of MLH1 expression, as this mutation is present
in sporadic MSI-H cancers but not in HNPCC-
associated cancers [90]. The mutational analysis of
BRAF prior to germline genetic testing for HNPCC in
patients with MSI-H CRCs is a cost-effective method
of identifying patients with sporadic CRC, in whom
further testing is not indicated [12]. The presence
of BRAF mutations may be assessed by many methods,
including IHC staining of tissue with a recently
developed mutation-specific antibody for BRAF V600E
[91]. If BRAF is wild-type, methylation analysis of
the hMLH1 promoter may be performed using
methylation-specific MLPA or methylation-specific
PCR testing, as the hMLH1 promoter is rarely methyl-
ated in HNPCCs.

Germline mutation analysis is required in MSI-H
CRCs that are BRAF wild-type and lack hMLH1 pro-
moter methylation due to the high probability of
Lynch Syndrome in these cases. MMR genes may con-
tain pathologic mutations, including nonsense or
frameshift mutations that cause protein truncation,
missense mutations that lead to a dysfunctional pro-
tein, and large deletions. Sequence analysis of exons
and intron�exon boundaries of the implicated gene is
performed to detect small insertions or deletions and
missense mutations. Large deletions may be detected
using MLPA or other methods.

Molecular Technologies for Detection of
Specific Gene Mutations in CRCs

The vast majority of gene mutations that occur in
CRCs are point mutations (single base substitutions),

including those identified in sporadic CRCs, inherited
CRC syndromes, and molecular biomarkers utilized
for evaluation of prognosis and therapeutic responses
in CRCs. Multiple technologies are available for molec-
ular detection of gene mutations, including Sanger
DNA sequencing, allele-specific PCR, melting-curve
real-time PCR (RT-PCR), pyrosequencing, single base
extension, and mass spectrometry. These methods
offer varying degrees of sensitivity and have disadvan-
tages associated with their use. For example, these
methods may be time-consuming (Sanger), labor-
intensive with high costs, have short read length limits
(pyrosequencing), and lack multiplex and high-
throughput capabilities. Therefore, the field of molecu-
lar diagnostics has seen continuous development of
new technologies and implementation of multigene
and multiplexed assays for improved diagnosis and
management of patients.

Standard DNA sequencing (Sanger sequencing) may
be used to detect mutations in the gene of interest, but
sensitivity is low and generally requires greater than
25% cancer cells in a specimen for detection [12]. More
sensitive technologies have been developed and are
widely utilized to detect point mutations, including
allele-specific PCR, quantitative PCR with melting-
curve analysis, and pyrosequencing. These techniques
are most useful clinically to specifically determine the
presence of a single mutation, such as allele-specific
PCR for reflex BRAF mutation analysis in MSI-H CRCs,
as they have limited multiplex and high throughput
capabilities. More recently, multigene assays have been
developed using various technologies for the simulta-
neous detection of multiple mutations. These include
single nucleotide extension assays, such as mass spec-
trometry�based assays and the SNaPSHOT platform
(Life Technologies). These assays are performed using
multiplex PCR amplification of specific gene targets
such that different alleles will result in PCR products of
differing and predictable sizes, followed by multiplex
single base extension of oligonucleotide primers using
fluorescently-labeled ddNTPs for detection of single
nucleotide polymorphisms (SNPs). In the mass spectro-
metry�based assay, genotype is determined by single
base differences of the extension products distin-
guished by their mass-charge ratio. On the SNaPSHOT
platform, capillary electrophoresis allows size determi-
nation and genotype is determined by the color of the
fluorescently labeled nucleotide added during single
base extension (Fig. 24.5).

Multiplex platforms for gene express profiling strat-
ification have been developed based on known bio-
markers of prognosis and treatment responses in CRC
to identify patients with Stage II CRC who are more
likely to develop recurrent disease and may be candi-
dates for adjuvant chemotherapy [12]. While not yet
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standard-of-care or widely used, these tests are
urgently needed, as clinicopathologic features alone
have not been shown to effectively identify high-risk
Stage II patients who may show survival benefit from
adjuvant chemotherapy, similar to that demonstrated
in patients with Stage III metastatic CRC [12,92,93].
These include the ColoPrint assay (Agendia, Irvine,
CA) which is an oligonucleotide microarray gene
expression profile composed of 18 genes and devel-
oped using gene expression data from whole genome
oligonucleotide arrays [94,95], and the Oncotype DX
colon cancer test (Genomic Health, Redwood City, CA)
which is a quantitative multigene RT-PCR-based gene
expression assay developed to assess recurrence risk

and treatment benefits based on expression levels of
seven genes associated with recurrence and six genes
associated with treatment benefit in Stage II CRC
patients [96].

The use of next-generation sequencing technolo-
gies (NGS), which enable high-throughput massively
parallel sequencing of nucleic acids at lower cost,
faster speeds, higher sensitivity, and with reduced
error rates compared to traditional Sanger sequenc-
ing, are increasingly utilized for molecular testing in
clinical laboratories [97,98]. Three levels of analysis
can be performed by NGS, including targeted-gene
panels, exome sequencing, and whole-genome
sequencing. Multiple NGS platforms have been

FIGURE 24.5 Detection of point mutations or SNPs using a multiplexed single base extension assay (SNaPshot assay platform, Life
Technologies). DNA is extracted from FFPE tumor tissues. A multiplexed PCR is performed to amplify multiple loci in which specific muta-
tions or SNPs may have diagnostic, therapeutic, or prognostic significance in cancer, often performed in tumor-specific panels (ie, CRC). At
each of the loci of interest, mutant (Mut) or wild-type (WT) alleles may be amplified, which serve as templates for single-base extension using
an oligonucleotide primer that binds immediately upstream of a known mutational hot spot or SNP. This is followed by multiplexed single-
base primer extension using fluorescently labeled dideoxynucleotides (ddNTPs). Labeled primer extension products are analyzed by capillary
electrophoresis; the color and relative size of the fluorescent peak determines which nucleotide was added during single-base extension and
the resultant genotype at each locus. An example shows detection of a BRAF V600E mutation (1799T.A, black arrow).
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developed with the capacity to massively sequence
millions of DNA fragments in parallel. These plat-
forms differ in sequence read length, total sequence
capacity, run-times, and quality and accuracy of the
data produced [98]. NGS assays require genomic
DNA extracted from a patient sample and enriched
for a subset of targets by PCR amplicon-based or
hybridization capture approaches [99]. As such, it
is now possible to sequence all genes implicated
in CRC at a lower cost than that for performing
Sanger sequencing. However, it is important to note
that the data analysis is complex for NGS, requires
significant bioinformatics input, and a major effort is
required for annotation and variant classification.
Recently, standard and professional practice guide-
lines were established for NGS clinical applications
to assist clinical laboratories with the validation of
NGS methods and platforms, monitoring of NGS
testing, and interpretation of variants found using
these technologies [77].

Multiple multigene panels for CRC have been
developed for clinical use with various NGS technolo-
gies at select companies and academic institutions and
include genes for which the FDA has approved single-
gene companion diagnostic assays. These include
hereditary colon cancer panels for CRC, such as
ColoNext (Ambry Genetics) and ColoSeq (Washington
University) [100,101]. NGS panels for personalized
CRC diagnosis and therapy have also been developed
using genetic biomarkers associated with response
to anti-EGFR therapy, chemotherapy, or other targeted
therapies. These are currently being evaluated
for use in metastatic CRCs [98], including the
Molecular Intelligence for CRC (CARIS Life Sciences)
and FoundationOne pan-cancer test (Foundation
Medicine). A recent study by Cragun et al. [101]
reported the prevalence of clinically significant muta-
tions and variants of uncertain significance among 586
patients who underwent ColoNext panel testing for
hereditary colon cancer. Sixty-one patients (10.4%) had
genetic alterations consistent with pathogenic muta-
tions or likely pathogenic variants and 42 patients
(7.2%) were considered to have actionable mutations.
In addition, 118 patients (20.1%) had at least one vari-
ant of uncertain significance, including 14 patients
who had at least one variant of uncertain significance
in addition to a pathologic mutation. Of the 42 patients
with an actionable pathologic mutation, most (30
patients, 71%) clearly met NCCN guidelines for
syndrome-based testing, screening, or diagnosis, based
on the available clinical and family history. Therefore,
at this time, the true clinical utility of NGS multigene
panels for CRC may be in building a comprehensive
knowledge base of genes and mutations which may
direct patients to future targeted therapies.

There has been an increasing role for molecular
testing in the diagnosis and management of CRC and
a rapid expansion in the molecular technologies
available for clinical use. Current standard-of-care
recommendations for molecular testing in CRC will
likely rapidly evolve with the vast amount of
information now available through the molecular
technologies currently in use, advances in our under-
standing of molecular mechanisms of disease, and
the rapid development of new targeted therapies
for CRC.
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INTRODUCTION

Cutaneous melanoma is thought to arise from mela-
nocytes, which are neural crest-derived cells located in
the epidermis and skin appendages. The major role of
melanocytes is synthesizing melanin pigments that are
scattered among keratinocytes, and protect the skin
from ultraviolet (UV) light and solar radiation [1]. Many
melanin-containing tumors that demonstrate nuclear
pleomorphism and cherry-red macronucleoli may be
composed of various cancers, but are currently consid-
ered under the broad category of melanoma. Therefore,
melanoma is not a single entity, but rather a genetically
heterogeneous group of neoplasms that differ in cells of
origin, age of onset, clinical and histologic presentation,
pattern of metastasis, ethnic distribution, causative role
of UV radiation, predisposing germline alterations,
mutational processes, and patterns of somatic mutations
[2]. Bastian and colleagues evaluated 37 melanoma cases
and demonstrated distinct evolutionary trajectories for
different melanoma subtypes [2]. Additionally, UV light
has been shown to be a major factor in nevus formation
and progression to melanoma [3].

Incidence rates for melanoma are gradually increas-
ing. In 2014, approximately 76,100 Americans (43,890
men and 32,210 women) were diagnosed with mela-
noma. With an estimated 9710 deaths, melanoma
accounts for 1.7% of all cancer-related deaths in the
United States [4]. Identification of at-risk patients, imple-
mentation of preventive actions, early screening and
diagnosis, and prompt treatment remain the mainstays

of care for melanoma. Implementation of genome-wide
approaches, systems biology and technologies such as
array-based platforms, immunohistochemistry (IHC),
and fluorescence in situ hybridization (FISH) has
enabled evaluation of cancers for various mutations and
identification of key signaling molecules and pathways.
These methods have contributed to the current concepts
of melanoma pathogenesis.

This chapter is devoted to the recent diagnostic
methods in molecular diagnostics of melanoma and
some of the proliferative disturbances of the melanocy-
te�nevus cell system. It is not intended to be an all-
encompassing treatise on melanocytic lesions as those
are well developed in other texts and publications.

MELANOMA-ASSOCIATED CONDITIONS
AND SYNDROMES

Melanoma has been associated with many other con-
ditions and syndromes, including squamous and basal
carcinoma [5,6], xeroderma pigmentosum [6], ocular
melanoma [7], albinism [8�12], retinoblastoma [13�16],
Li�Fraumeni syndrome [17], pancreatic carcinoma
[18�20], chronic inflammatory demyelinating polyneuro-
pathy [20,21], mesothelioma [22], meningioma [23], renal
cell carcinoma [24,25], LEOPARD syndrome [26],
Birt�Hogg�Dubé syndrome [27�29], Hailey�Hailey
disease [30], Gorlin syndrome [31], Cowden disease [32],
neurofibromatosis [33,34], Beckwith�Wiedemann syn-
drome [35], Lynch syndrome, pulmonary carcinoid [36],
soft tissue sarcomas [37�39], gastrointestinal stromal
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tumors [40], thyroid carcinoma [41,42], Merkel cell carci-
noma [43], mycosis fungoides [44,45], other leukemias
and lymphomas [46�54], Castleman disease
[55], systemic mastocytosis [56], bronchogenic cysts [57],
cystic teratomas [58], epidermal inclusion cysts [59], pha-
comatosis pigmentovascularis [60], Turner syndrome
[61,62], Down syndrome, Parkinson disease,
Charcot�Marie�Tooth disease, retinoblastoma, derma-
tomyositis, erythema dyschromicum perstans, sarcoido-
sis, stasis dermatitis, chronic wounds/ulcers and
lymphedema, burn scars, cesarean skin scars [63],
tattoos [64�67], trauma (subungual melanomas) [68,69],
lichen sclerosus of the vulva [70,71], epidermolysis
bullosa simplex [72], Marjolin ulcers [41], human
papillomavirus infections linked to epidermodysplasia
verruciformis (HPV16) [73,74], and infections with the
human immunodeficiency virus [75,76]. Genes
associated with these syndromes may either represent a
chance occurrence with melanomas or may be mutually
exclusive. Therefore, it is unclear whether these genes
have a causal effect for melanomagenesis.

It is generally accepted that about 10% of melanomas
are hereditary with a strong family history for
melanoma-related germline mutation. The familial type
is typically inherited in an autosomal dominant manner

affecting every generation. A positive family history
increases the risk of melanoma twofold [42,77]. Over the
last two decades much progress has been made in dis-
covering and expanding panels of somatic driver muta-
tions in melanocytic neoplasms. These genes are known
to activate oncogenes or inactivate tumor-suppressor
genes leading to the pathogenesis of melanoma.

MOLECULAR ANALYSIS OF MELANOMA

Introduction of molecular testing in the context of
melanoma has been a breakthrough to better under-
stand the histogenesis. Genomic aberrations are a hall-
mark of cancer cells including malignant melanoma
(MM). The following mutations have been associated
with melanoma and are divided into two groups:
(1) genes associated with initiating events in melanocy-
tic lesions and (2) genes associated with progression
events in melanocytic lesions.

Initiating Events in Melanoma: Oncogenes

The following oncogenic events are shared by
almost all classes of melanocytic lesions and are
known as the initiating oncogenes (Fig. 25.1).

FIGURE 25.1 Major pathways disrupted and involved in development of melanoma. -: Activating signal; \: Inhibiting signal; blue
boxes: proteins affected by loss of function; orange boxes: proteins affected by gain of function.
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ROS proto-oncogene 1, receptor tyrosine kinase, (ROS1).
ROS1 is a kinase fusion mutation that affects the mito-
gen kinase-activated protein kinase (MAPK), phos-
phoinositides 3-kinase (PI3K), and signal transducer
and activator of transcription 3 (STAT3). Wiesner and
colleagues reported ROS1 rearrangements in 19 of 73
(26%) Spitz nevi, 3 of 34 (8%) atypical Spitz tumors,
and 3 of 33 (9%) Spitzoid melanoma [78].

RET proto-oncogene (RET). RET is a kinase fusion
mutation that affects the MAPK, PI3K, and STAT3
pathways. Wiesner and colleagues reported RET muta-
tions in 2 of 75 (3%) Spitz nevi, 1 of 32 (3%) atypical
Spitz tumors, and 1 of 33 (3%) Spitzoid melanoma [78].

Neurotrophic tyrosine kinase, receptor, type 1 (NTRK1).
NTRK1 is a kinase fusion mutation that affects MAPK,
PI3K, and STAT3 pathways. Wiesner and colleagues
reported NTRK1 rearrangements in 8 of 75 (10.7%)
Spitz nevi, 8 of 32 (25%) atypical Spitz tumors, and 7
of 33 (21%) Spitzoid melanoma [78,79].

Anaplastic lymphoma receptor tyrosine kinase (ALK).
ALK is a kinase fusion mutation that affects MAPK,
PI3K, and STAT3 pathways. Wiesner and colleagues
reported ALK fusions in 8 of 75 (10.7%) Spitz nevi, 5 of
32 (15.6%) atypical Spitz tumors, and 1 of 33 (3%)
Spitzoid melanoma [78].

V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene
homolog (KIT). KIT is a cell surface receptor tyrosine
kinase. KIT is affected through an amplification
mutation that can affect the PI3K, MAPK, and STAT3
pathways. Curtin and colleagues examined 102 primary
melanomas and found mutations and/or copy number
increases of KIT in 39% of mucosal, 36% of acral, and
28% of melanomas on chronically sun-damaged skin,
but not in any (0%) melanomas on skin without chronic
sun damage. Seventy-nine percent of tumors with KIT
mutations and 53% of tumors with multiple copies of
KIT demonstrated increased KIT protein levels [79].
Traditional Sanger sequencing is typically used for the
purpose of evaluating multiple exon regions of the KIT
gene for somatic point KIT mutations. This is primarily
due to discovery of the mutations in exons 9, 11, 13, and
17 without a predominant mutation [80].

Guanine nucleotide binding protein, q polypeptide
(GNAQ) and guanine nucleotide binding protein alpha 11
(GNA11). GNAQ and GNA11 are subject to point muta-
tions that affect protein kinase C and MAPK pathways
by encoding α subunits of G-protein-coupled receptors
[80]. Frequent somatic mutations of GNAQ and GNA11
are reported in blue nevi, blue nevus-like melanomas,
and uveal melanomas [81,82]. Van Raamsdonk and
colleagues evaluated 186 uveal melanomas, of which
83% had somatic mutations in GNAQ or GNA11
[81,82]. Constitutive activation of the pathway involv-
ing these two genes appears to be a major contributor
to the development of uveal melanoma [83].

B-Raf proto-oncogene, serine/threonine kinase (BRAF).
The BRAF gene encodes a serine/threonine protein
kinase downstream of the epidermal growth factor
receptor and RAS family of small G-proteins. BRAF is
mutated in 40�60% melanomas [84,85]. BRAF mutation
is a point mutation and kinase fusion that affects
MAPK pathway. BRAF is a member of the RAF kinase
family, which acts in the ERK/MAPK pathway, a sig-
naling cascade that regulates cellular proliferation, dif-
ferentiation, and survival. It is typically involved in
acquired nevi, Spitz tumors, acral melanomas, non-
cumulative sun-damaged skin (non-CSD), and cumula-
tive sun-damaged skin (CSD) [85�87]. The RAS/RAF/
MEK/ERK signaling pathway has been linked to
induction and maintenance of melanoma, particularly
BRAF, which is mutated in approximately 44% of
melanoma cases [86]. Oncogenic BRAF signaling leads
to progression of melanoma through the activation of
tumor progression-related genes that are downstream
of BRAF. BRAF can also induce autocrine vascular
endothelial growth factor secretion leading to
angiogenesis and promoting tumor survival and
growth [86�88].

The most common BRAF mutation, p.V600E (c.1799
T.A) mutation, causes upregulation of the kinase
activity [89]. In 2003, Pollock and colleagues examined
BRAF mutations on microdissected melanoma and
nevus samples [90]. This study showed that a muta-
tion in BRAF plays an important role in melanocytic
lesion development but do not necessarily contributes
to progression to melanoma [90]. BRAF V600E muta-
tions are associated with lesions arising in the back-
ground of benign nevus and are more common in
younger patients on intermittently sun-exposed areas
[3]. In addition, BRAF V600E are more common in
older patients on chronically sun-exposed areas asso-
ciated with melanomas arising in a background of
intermediate lesions [3]. In 2011, the Food and Drug
Administration of the United States approved
vemurafenib for treatment of unresectable or meta-
static melanomas with a BRAF p.V600E mutation.
Therefore, clinical detection of the BRAF p.V600E
mutation has become the standard of care for patients
with advanced melanoma in order to predict response
to vemurafenib, dabrafenib, and trametinib
[89,91�93].

Neuroblastoma RAS viral (v-ras) oncogene homolog
(NRAS). NRAS is subject to point mutation that affects
the MAPK and PI3K pathways and are involved in cell
growth and differentiation [94]. NRAS mutations,
upstream of BRAF, are usually mutually exclusive of
BRAF mutations. BRAF may be activated by the
common V600E mutations, as well as by upstream
NRAS mutations. NRAS mutations are the predomi-
nant mutation in large congenital nevi [95]. NRAS

323MOLECULAR ANALYSIS OF MELANOMA

IV. MOLECULAR TESTING IN ONCOLOGY



mutations are also reported to occur in nodular mela-
nomas and melanomas arising in CSD [88].

Harvey rat sarcoma viral oncogene homolog (HRAS).
HRAS gene mutation also affects MAPK and PI3K
pathways. Involvement of Q61 of exon 3, with replace-
ment of glutamine by lysine is the most common muta-
tion [96�98]. van Dijk and colleagues reported HRAS
mutations in 29% of Spitz nevi, in 14% of atypical Spitz
nevi, 7% Spitzoid tumors suspected for melanoma [97].
However, these mutations rarely occur in melanomas
[97]. Morphologically, the bulky Spitz nevi with sclerosis
of the deep dermal component usually have been
reported to carry the HRAS mutation. However, only
about 20% of Spitz nevi carry this mutation [96].

Considering that Spitz melanomas rarely carry this
mutation, HRAS mutation analysis may be a useful
diagnostic tool in differentiating between Spitz nevus
and Spitzoid melanoma, and to help predict the bio-
logical behavior of Spitz tumor of unknown malignant
potential [97,98]. However, mutational analysis of
BRAF, NRAS, and HRAS may not be useful in
differentiating between Spitzoid melanoma and Spitz
nevus in children [96,97,99].

Genes Associated with Progression Events in
Melanocytic Lesions: Loss-of-Function
Mutations

Neurofibromin 1 (NF1). NF1 deletion affects the
MAPK pathway. According to Nissan et al., loss of
NF1 is common in cutaneous melanoma and is
associated with RAS activation, MEK-dependence, and
resistance to RAF inhibition [100]. Additionally, loss of
the NF1 gene was reported in melanomas lacking
BRAF or NRAS mutations as well as a subset with
RAS/BRAF mutation. Wiesner and colleagues
performed sequencing on 15 desmoplastic melanomas
(DMs) and 20 non-DMs and reported NF1 mutation in
93% of DMs and 20% non-DMs [101]. Therapeutically,
melanomas with NF1 gene mutations were more
resistant to treatments that target BRAF [100].

BRCA1-associated protein 1 (BAP1). BAP1 is a tumor-
suppressor gene that affects chromatin modulation
and transcriptional regulation. BAP1 is a nuclear
protein encoded by the tumor-suppressor gene located
on chromosome 3p21.1 [102]. Somatic BAP1 mutations
have been reported to increase susceptibility for the
development of cutaneous melanocytic tumors
(including epithelioid atypical Spitz tumors and
melanoma), uveal melanoma, mesothelioma, clear-cell
renal cell carcinoma, and other tumors [102�104].

BAP1 hereditary cancer predisposition syndrome
was first described in 2011 [104]. It is an autosomal
dominant tumor syndrome caused by inactivating

germline mutations of the BAP1 gene. Affected indivi-
duals have increased risk of developing mesothelioma
and uveal melanoma [103]. The combination of BRAF
mutation and loss of BAP1 nuclear expression have
been shown to characterize a subset of atypical Spitz
tumors with distinct features, although their clinical
prognostic significance is not yet clear [22]. Evaluation
of melanocytic lesions for BAP1 protein expression
using IHC or chromosomal microarray tools such as
single nucleotide polymophism array or comparative
genomic hybridization array may serve as a rapid and
cost-effective means of identifying BAP1-deficient
melanocytic lesions [104].

Cyclin-dependent kinase inhibitor 2 (CDKN2A).
CDKN2A is the first familial melanoma gene identified
and accounts for the majority of high-density
melanoma-prone families [105�107]. CDKN2A is a gene
located at chromosome 9p21 and it encodes for two
tumor-suppressor proteins—p14CDKN2A and p16CDKN2A

[108]. p16CDKN2A inhibits CDK4, which in turn
phosphorylates pRB leading to immortalization and
proliferation of cancer cells [2,109]. p14CDKN2A inhibits
the oncogenic actions of the downstream MDM2
protein, whose direct interaction with p53 blocks any
p53-mediated activity and targets the p53 protein for
rapid degradation [109]. Fargnoli and colleagues
performed a meta-analysis study and showed that
multiple variants of the melanocortin-1 receptors (MC1R)
gene increase the risk of melanoma in CDKN2A mutation
carriers [110]. Loss of CDKN2A is reported to be almost
exclusively associated with invasive melanoma [3].

Genes with Nonspecific Melanocytic
Association

SWI/SNF-related, matrix-associated, actin-dependent reg-
ulator of chromatin, subfamily a, member 4 (SMARCA4).
SMARCA4 is also known as BRG1. BRG1 can be
affected by deletions affecting the chromatin-
remodeling pathway leading to differentiation of
melanoma cells. Lin and colleagues evaluated BRG1
immunostaining in 48 dysplastic nevi, 90 primary
melanomas, and 47 metastatic melanomas [111]. This
study showed that BRG1 is significantly increased in
primary cutaneous melanoma and metastatic melanoma
compared to dysplastic nevi [111]. BRG1 is essential for
melanoma cell proliferation and for normal melanocyte
development [112]. In 2012, Zhang and colleagues
evaluated multiple markers to distinguish melanoma
from dysplastic nevi [113]. This study showed BRG1 is
one of the markers that can optimally aid in the clinical
diagnosis of melanoma from dysplastic nevi [113].
Furthermore, SWI/SNF is shown to be predominantly
associated with invasive melanomas [3].
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Phosphatase and tensin homologue deleted from
chromosome 10 (PTEN). PTEN is reported to be an
important tumor-suppressor gene in melanoma.
PTEN functions as a lipid phosphatase opposing
the action of PI3K [114]. PTEN has a key role in
cellular signal transduction by decreasing intracellu-
lar phosphatidylinositol that is produced by the
activation of PI3K. PI3K activation leads to confor-
mational change of AKT. Activated AKT, then
phosphorylates serine/threonine kinase mTOR,
leading to increased synthesis of target proteins
that regulate cell division and apoptosis, pigmenta-
tion, and proliferation [115,116]. In melanoma,
activation of AKT and/or MAPK pathways has been
reported to increase degradation of inhibitor-of-κB
kinase effector, with subsequent release of NF-κB,
which may thus move to the nucleus and activate
transcription. Additionally, AKT has the ability to
suppress apoptosis through phosphorylation and
inactivation of many pro-apoptotic proteins, such as
Bcl-2 antagonist of cell death and MDM2, as well as
activation of NF-κB [117]. Inactivation of PTEN
gene is mainly due to epigenetic mechanisms involv-
ing DNA hypermethylation, with less than 10%
of inactivation events involving somatic mutation
[118]. Alteration of the BRAF�MAPK pathway is
frequently associated with PTEN�AKT impairment
[119]. Shain and colleagues reported loss of PTEN
and TP53 in thicker invasive melanoma cases [3].

Tumor protein p53 (TP53). TP53 is inactivated
through a loss-of-function mutation that affects the p53
pathway (see CDKN2A for more information).

AT-rich interaction domain (ARID1A, ARID1B, and
ARID2) genes. The ARID1A, ARID1B, ARID2 genes
contain deletion mutations that affect chromatin
remodeling and lead to cellular differentiation.

Serine/threonine-protein phosphatase 6 catalytic
(PPP6C). The PPP6C gene encodes subunit the enzyme
PPP6C. Mutation in this gene can affect the cell cycle
regulation and inhibit CCND1 (see CCND1 and
Fig. 25.1 for more information).

Genes Associated with Progression Events in
Melanocytic Lesions: Gain-of-Function
Mutations

Cyclin-dependent kinase 4 (CDK4). CDK4 activates the
G1-S transition that phosphorylates RB. (see CDKN2A
for more information).

Microphthalmia-associated transcription factor (MITF).
MITF is a helix-loop-helix leucine zipper protein
important for melanocyte development and differen-
tiation and is considered to be a master regulator of
melanocyte biology [2]. MITF is activated by cAMP,

MAPK (KIT/NRAS), and CDKN2A pathways.
Garraway and colleagues reported that MITF
amplification is correlated with resistance to
chemotherapy and decreased overall survival [120].
Conversely, reduction of MITF activity sensitizes
melanoma cells to chemotherapeutic agents [120].

MITF can act as both an inducer and a repressor
in cellular proliferation. High levels of MITF leads to
G1 cell cycle arrest and differentiation, through induc-
tion of p16CDKN2A and p21 [121,122]. Low MITF
expression has been associated with apoptosis predis-
position, while intermediate MITF expression levels
promote cell proliferation [120�122]. Therefore,
melanoma cells are thought to have acquired strategies
to maintain MITF levels in the intermediate range
compatible with tumorigenesis. Additionally,
constitutive activation of MEK with BRAFV600E in
melanoma cells is associated with MITF ubiquitin-
dependent degradation [123].

MEK1 and MEK2. Mutations in MEK1 and MEK2
result in gain of function and involve the MAPK path-
way [2]. Fernandes and colleagues assessed the status
of the MAPK pathways in the pathogenesis of acral
melanomas by examining the components of the
RAS�RAF�MEK�ERK cascades in a series of 16
primary acral melanomas by tissue microarray [124].
They demonstrated absence of RAS and presence of
MEK2, ERK1, and ERK2 in every invasive case with
high thickness (Fig. 25.1) [124].

Catenin beta 1 (CTNNB1). The CTNNB1 gene encodes
a protein called β-catenin. Mutation in this gene
primarily affects the WNT signaling pathway [2].
Glycogen synthase kinase-3 (GSK-3) is a widely
expressed serine/threonine protein kinase. CTNNB1
mutation leads to stabilization of the β-catenin protein
and an increased transcription [125]. Wnt/β-catenin
pathway is crucial in both embryonic development
and adult homeostasis. Aberrant Wnt/β-catenin path-
way may lead to developmental malformations and is
associated with many various malignancies including
melanoma. For this reason much effort has been made
to specifically target the Wnt/β-catenin pathway with
anticancer drugs [126].

Cyclin D1 (CCND1). Gain-of-function mutation
affects the RB pathway. In 1996, Maelandsmo and
colleagues reported an over-expression of CCND1,
suggesting that functional inactivation of pRB through
this pathway is involved in the development or
progression of sporadic human melanomas [127].

Protein phosphatase 6, catalytic subunit (PPP6C). See
CDKN2A and Fig. 25.1 for more information.

Enhancer of zeste 2 polycomb repressive complex 2 sub-
unit (EZH2). EZH2 is affected by a gain-of-function
mutation that is involved in chromatin remodeling
leading to cellular differentiation (Fig. 25.1).
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Ras-related C3 botulinum toxin substrate 1 (RAC1).
RAC1 is subject to point mutation. RAC1 is involved in
cell adhesion, migration, invasion, and motility. It is
related to and activated by NRAS (Fig. 25.1).

Telomerase reverse transcriptase (TERT). TERT
promoter mutations and amplification have been
shown to affect telomerase elongation [128] and are
also associated with fast growing melanoma [129].
TERT promoter mutations are reported to be the
earliest secondary molecular alterations during mela-
nomagenesis, emerging in intermediate lesions and
melanoma in situ [3]. Griewank and colleagues studied
410 melanoma cases and reported that UV-induced
TERT promoter mutations are one of the most frequent
genetic alterations [128]. Furthermore this study
demonstrated that in non-acral cutaneous melanomas,
the presence of TERT promoter mutations is indepen-
dently associated with poor prognosis [128]. Shain and
colleagues demonstrated that melanoma precursors
that acquire TERT mutations also acquire subsequent
mutations, with progression toward melanoma [3].

Cyclin-dependent kinase 4 (CDK4). CDK4 is subject to
gain-of-function amplification mutation leading to
influence RB (see CDKN2A for more information).

Microenvironment Changes and Melanoma

Hypoxia has been shown to be prerogative of
advanced neoplasia and a cradle for melanoma
development and progression [130]. Notch1 has been
demonstrated to be a key effector of both AKT and
hypoxia in melanoma [131]. Furthermore, physiologic
tissue hypoxia together with activity of HIF1α and
stimulation of KIT can function as a promoting factor
in melanogenesis (Fig. 25.1) [132]. Notch signaling
pathway has been shown to be a potential therapeutic
target in melanoma treatment [131].

MOLECULAR TESTING IN MELANOMA

The current gold standard for melanoma diagnosis
is histopathology. The majority of melanocytic lesions
can be diagnosed based on Hematoxylin and Eosin
(H&E). However, when faced with a challenging lesion
or when there is discrepancy in a small percentage of
lesions, there are ancillary studies available that may
help in making a definitive diagnosis.

Immunohistochemistry

Melanomas mimic the histologic features of other
malignancies such as lymphomas, poorly different-
iated carcinomas, and sarcomas [133]. IHC is a useful
tool to differentiate melanomas from other tumors that

they mimic. For a more comprehensive detailed review
of IHC markers utilized in the diagnosis of melanoma,
see Ref. [134].

S100. In cutaneous melanomas (with the exception of
the S100-negative melanoma), S100 is present in both
nucleus and cytoplasm (Fig. 25.2) with a sensitivity of
97�100% [135]. However, the specificity of S100 is low
(75�87%) as it can be expressed in other cells such as
nerve sheath cells, myoepithelial cells, Langerhans cells,
and dermal dendrocytes [134,136]. Also considering that
S100 can be expressed in spindle cells in dermal scars,
it could be a diagnostic pitfall, especially when evaluat-
ing desmoplastic melanomas [134]. Therefore, other
specific markers should be used in addition to S100 to
differentiate melanomas from other malignancies.

HMB45. HMB45 is a cytoplasmic marker (Fig. 25.2)
and compared to S100, it is more specific than sensi-
tive. The reported sensitivity for HMB45 for cutaneous
melanoma is 69�93% [134]. Immunopositivity is the
highest in primary melanoma. However, it has
reduced expression in metastatic melanomas. This
decreased sensitivity in cases of metastatic melanoma
necessitates utilization of other markers when there is
doubt in the diagnosis [134]. Uguen and colleagues
demonstrated that HMB45 is helpful in distinguishing
melanomas versus benign nevi [137]. Benign nevi
show positive HMB45 staining in the superficial
portion, but negative in the deep portion. The HMB45
gradient is considered to be positive when the most
superficial cells are HMB45 stained. It is considered
negative when the staining involves equally the super-
ficial and deep parts of the tumor. Absence of HMB45
gradient has been described to be more frequent in
melanomas [137].

MART-1 and Melan-A. Melanoma antigen recog-
nized by T cell-1 (MART-1) and Melan-A (Fig. 25.2) is
cytoplasmic protein of melanosomal differentiation
recognized by T cells [135]. Two clones of the antibody
to this cytoplasmic protein are M2-7C10 (also referred
to as MART-1) and A103 (also referred to as Melan-A)
[138]. The sensitivity and specificity of MART-1/
MelanA in cutaneous melanomas are 75�92% and
95�100%, respectively [134]. Similar to HMB45, there
is decreased sensitivity in metastatic melanoma
compared to the primary lesions [139]. Conversely,
compared to HMB45, it has a more diffuse and more
intense staining, making it a better marker in distin-
guishing metastatic melanomas [134,138]. MART1/
Melan-A is also helpful in distinguishing in situ and
invasive melanoma and measuring thickness [140].
Another application of MART1/Melan-A is differenti-
ating neurotized melanocytic nevi, which are immuno-
positive, from neurofibroma (immunonegative) [141].

SOX-10. SRY-related HMG-box 10 (SOX10) is a cru-
cial transcription factor in the specification of the
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(A) (B)

(C) (D)

(E) (F)

FIGURE 25.2 Immunostaining with various IHC stains in one melanoma case. (A) H&E of metastatic melanoma, (B) SOX10, (C) HMB45,
(D) S100, (E) MITF, and (F) Melan-A.
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neural crest and maintenance of Schwann cells and
melanocytes [142]. It is expressed in the nuclei of
melanocytes (Fig. 25.2) and breast myoepithelial cells.
SOX10 has been shown to be a sensitive and specific
marker of MM of multiple histologic types. SOX10
shows an increased specificity for soft tissue tumors of
neural crest origin compared with S100 [143]. It is
proposed in the literature that it could supplement or
potentially replace the traditionally utilized immuno-
histochemical stains such as S100.

Tyrosinase. Tyrosinase (also known as T311) is a
protein that hydroxylates tyrosine as the first step in
melanin synthesis [134,135] and is important for mela-
nosome formation. This antibody shows strong and
diffuse cytoplasmic stain. Furthermore, in cutaneous
melanomas, there is diffuse reactivity compared to
diminish expression toward the base in nevi or
melanomas with paradoxical maturation. Additionally,
it may be useful in evaluating melanomas with
extensive necrosis [144]. The specificity of tyrosinase
for melanoma is 97�100% [134,145]. Its sensitivity
decreases in metastatic lesions or with increased
clinical stage (79�93%) [134,139,146].

MITF. MITF (also known as MI, WS2, CMM8, WS2A,
bHLHe32) encodes a transcription factor on chromosome
3p14.1, which is important for development and sur-
vival of melanocytes [147]. This nuclear marker is used
in diagnosis of melanoma and other melanogenic
tumors (Fig. 25.2). The sensitivity and specificity of this
immunostain have been reported as 81�100% and about
88%, respectively [134,146,147]. The specificity of MITF
is even lower in spindle cell neoplasms [134].
Additionally, this stain has been reported to be reliably
positive in S100-negative melanomas [148]. One of the
important limitations of MART-1/Melan-A is that it can
overestimate the number of melanocytes in actinically
damaged skin. In such cases, MITF, showing nuclear
staining pattern, is more accurate for evaluation of
intraepidermal melanocytes. Therefore, MITF is useful
in assisting diagnosis in such cases [149].

Ki67. Ki67 has utility in determination of prolifera-
tion index and has been reported to be useful in distin-
guishing benign nevi from MM. Ki67 index is reported
to be less than 5% in benign nevi versus 13�30% in
melanomas [134,150,151]. Additionally, Ki67 immuno-
positivity is increased in Spitz neoplasms and atypical
nevi [152�156]. Ki67 staining index in melanoma is
correlated with tumor mitotic figures, depth of
invasion, tumorigenic vertical growth phase, vascular
invasion, and metastatic potential. Ki67 as an indepen-
dent prognostic indicator in overall survival has
shown variable significance [157�160].

BAP1. Inactivating somatic mutations in BAP1, the
gene encoding BRCA-associated protein 1 in the
predominantly metastasizing (class 2) uveal melanoma

was reported by Koopmans and colleagues [161,162].
BAP1 is a nuclear immunostain and should be inter-
preted in the context of the H&E features. For example,
Spitzoid neoplasms and a subset of combined nevi with
a population of large epithelioid cells have been reported
to demonstrate loss of BAP1 immunostaining [163].
Additionally, when BAP1 mutation is confirmed in a
tumor, the possibility of a BAP1 germline mutation
should be raised and addressed with potential genetic
counseling and further testing of the family [105]. This is
especially important as loss of BAP1 may be involved in
the progression of uveal melanoma to an aggressive,
metastatic phenotype [162].

p16. p16 is a tumor-suppressor gene that is located
in 9p21 that leads to inhibiting of cyclin-dependent
kinases in phosphorylating the retinoblastoma protein
(see CDKN2A and Fig. 25.1). Gerami and colleagues in
2013 showed that homozygous loss of 9p21 in atypical
Spitzoid melanocytic neoplasms is highly associated
with clinically aggressive behavior and death [164].
Loss of nuclear expression of p16 by IHC method has
been shown to be associated with poor outcome in
melanoma patients [165�167].

pHH3. Phosphohistone H3 (pHH3) is a histone
protein that is closely related to the mitotic process
and IHC with antibody to PHH3 is used for labeling
mitotic figures in all phases of mitosis, including early
prophase [168�170]. The mitotic rate is an important
prognostic criterion in patients with thin melanoma
not more than 1 mm and is part of the American Joint
Committee on Cancer guidelines. IHC with antibody
to pHH3 is a useful tool for pathologists and dermato-
pathologists to confirm mitotic figures [171].

Array Comparative Genomic Hybridization

Comparative genomic hybridization (CGH) is a
molecular testing method for detecting copy number
changes throughout the genome [172�174]. DNA is
isolated from tissue samples and is labeled with fluoro-
chromes before being hybridized to a microarray of
mapped genomic DNA clones or probes. Hybridization
signals are then digitized and analyzed using software
that generates a virtual karyotype highlighting regions of
copy number changes. One reported limitation of this
technology is that if the copy number is present only at
low quantities in a tumor, they can potentially escape
detection. This can limit the capability of detecting tumor
cell heterogeneity in a subset of tumors [175].

Benign nevi are expected to show minimal to no
copy number variations, whereas melanomas are
expected to have numerous copy number variations
[3,172,176�178]. For example, melanomas have been
shown to have chromosomal gains (1q, 6p, 7, 8q, 17q,
and 20q) and losses (6q, 8p, 9p, and 10q). When
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dealing with a challenging melanocytic lesion
histologically or where there is ambiguity in diagnosis,
application of array CGH (aCGH) may be helpful in
supporting the diagnosis of melanoma (when there is
copy number changes) versus a benign lesion (when
there is a lack of copy number aberrations).

While it is expected to see copy number changes in
melanoma, occasionally no abnormality is detected by
aCGH in a histologically obvious MM. This finding may
be related to test sensitivity or intrinsic reasons [80].
Additional limitations of aCGH include the quantity of
DNA needed, a lower limit of resolution of 400 kb
throughout the genome [179]. Therefore, if the quality or
the amount of extracted DNA is inadequate or if the
melanocytes harboring aberrations are not present in the
sampled tissue, CGH results may be falsely negative.
Additionally, if a very large sample is dissected that
includes other cells such as lymphocytes, stromal cells,
and nevomelanocytes, the isolated DNA can be too
dilute to reliably and accurately show copy number
aberration in the abnormal melanocytes. Rarely a uni-
form CGH-negative MM has been observed [80].

Another limitation of aCGH is differentiating
heterozygous versus homozygous deletions. For
example, a single copy loss of 9p21 can be seen in
both melanomas and atypical Spitz nevi. However, a
homozygous loss of 9p21, which encodes the
CDKN2A gene, is a specific finding in melanoma and
is associated with aggressive behavior in melanocytic
lesions [164,180]. The presence of a single copy
number aberration does not prove malignancy. The
homozygous versus heterozygous loss of 9p21 is not
distinguishable using the aCGH technology.
Therefore, homozygosity versus heterozygosity of
9p21 should be further studied with FISH ancillary
study, when clinically indicated.

Spitz nevi have been shown to harbor a variety of
chromosome losses [78,177,181,182]. Therefore, each
case should be carefully examined taking into account
the age, clinical setting, specific copy number
aberration, light microscopic features and morphology,
and immunohistochemical staining patterns [80].

Single Nucleotide Polymorphism Array

Genome positions at which there are two distinct
nucleotide residues that each appears in a significant
portion of the human population are termed single
nucleotide polymorphisms (SNPs). They comprise a
major part of the DNA variants. There are approxi-
mately 10 million SNPs in the human genome [183].
Manufacturers typically arbitrarily assign the two
alleles of an SNP as A and B. As each individual
inherits one copy of each SNP position from each
parent, the individual’s genotype at an SNP site is

therefore AA, AB, or BB. The Oncoscan SNP array
utilizes over 220,000 probes across all chromosomes,
compared to the FISH technology with only a few
specific probes. Additionally, it provides information
of copy number changes and losses of heterozygosity
(LOH). LOH in melanocytic lesions occurs when one
allele is deleted and the normally functioning allele is
lost. Using SNP-array technology can help in identify-
ing patterns of allelic imbalance in melanocytic lesions
and potentially provide prognostic and diagnostic
value.

Literature regarding the affected genes in melanoma is
developing at a rapid rate. SNP array is especially useful
when the melanocytic lesions appear questionable and
ambiguous. To further delineate the behavior of these
lesions, SNP array can show if there are copy number
changes or copy-neutral LOH. In benign nevi, minimal to
no changes in copy number are expected. Conversely in
melanoma, it is expected to see copy number changes
and or copy-neutral aberrations [3,172,176�178]. Fig. 25.3
shows a benign melanocytic nevus with features of
congenital onset, with a corresponding SNP array
schematic showing no chromosomal aberrations.
Conversely, Fig. 25.4 shows an MM with multiple
chromosomal copy number changes and LOH.

Fluorescence In Situ Hybridization

Gerami and colleagues introduced the FISH technol-
ogy in the context of diagnostic melanocytic lesions
[184]. In their study they determined cut-off values
which permitted a test sensitivity of 85% and specific-
ity of 95% for unambiguous benign versus malignant
lesions using various FISH probes. FISH targets a few
individual chromosomes and specific regions of the
chromosome in contrast with SNP array that utilizes
over 220,000 probes across all chromosomes. Specific
fluorescence-labeled oligonucleotide probes bind to
their complementary DNA sequence resulting in label-
ing of that region which can be visualized under a
fluorescence microscope.

There are six probes available that are designed
specifically for melanocytic lesions. FISH testing in the
context of melanoma uses the following probes
[178,185,186]:

1. Ras-responsive element-binding protein 1 (RREB1)
2. Myeloblastosis (MYB)
3. Cyclin D1 or chromosome 11q13 (CCND1) [203].
4. Centromeric enumeration probe control for

chromosome 6 (CEP6)
5. 9p21 (CDKN2A) (useful in diagnosing conventional

and Spitzoid melanomas [181,187])
6. 8q24 (useful in diagnosing nodular amelanotic and

nevoid melanomas [188,203])
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FISH interpretation requires analysis of 30 lesional
melanocytes for each case. Gerami and colleagues in
2009 proposed that a positive lesion needs one of these
criteria [178]:

1. Gain in 6p25 (RREB1) relative to CEP6 greater
than 55%

2. Gain in 6p25 (RREB1) greater than 29%

3. Loss in 6q23 (MYB) relative to CEP6 greater than 42%
4. Gain in 11q13 (CCND1) greater than 38%

A negative FISH test result does not automatically
exclude the diagnosis of melanoma. Melanoma can
have other copy number changes that are not
specifically targeted by the few FISH probes [187].
This makes the sensitivity of this testing method as a

(A) (B)

(C)

FIGURE 25.3 Benign nevus with some congenital features. (A) H&E, 203 ; (B) H&E, 1003 ; and (C) SNP array. SNP array shows a normal
diploid SNP array with no copy number changes or copy-neutral LOH.
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first-line diagnostic tool inferior to other molecular
testing methods such as SNP array and aCGH.
Furthermore, not all melanomas harbor copy number
changes. Hence, this could be another reason for a
FISH-negative melanoma and should be pondered in
the context of morphology. One of the pitfalls of FISH-
positive lesions is polyploidy. For example, some Spitz
nevi have been reported to be tetraploid [188,189].

Hence, FISH results should be interpreted accordingly
in order to correct for this. Another possible interpre-
tive error of false-positive FISH is choosing only the
large nuclei at different foci in a lesion instead of
counting all nuclei in a given area [80].

Clear cell sarcoma (CCS), formerly known as MM of
soft parts, is a rare malignant soft tissue tumor that
resembles cutaneous MM morphologically [190]. CSS

(A) (B)

(C)

FIGURE 25.4 Metastatic melanoma. (A) H&E, 403 ; (B) H&E, 2003 ; and (C) SNP array. SNP array shows multiple copy number gains,
losses, and multiple copy-neutral LOH.
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cells can produce melanin and have been reported to
extend into the subcutis and dermis [191]. However, a
reciprocal translocation t(12;22)(q13;q12) is observed in
more than 90% of CCS cases [192]. This translocation
results in fusion of activating transcription factor gene
(ATF1) on the 12q13 and the Ewing’s sarcoma onco-
gene R1 (EWSR1) on 22q12 [192,193]. It is important to
distinguish these two entities, as the treatment options
are different. MM and CCS can be distinguished via
FISH to detect EWS gene rearrangement [194]. In addi-
tion, diagnosis of MM can be made in the presence of
BRAF mutation [195]. Therefore, molecular diagnosis
such as chromosome analysis, reverse transcriptase
polymerase chain reaction, and FISH are key to differ-
entiate it from cutaneous or mucosal melanoma.

Targeted Next-Generation Sequencing

Next-generation sequencing (NGS) or massively
parallel sequencing has become a critical tool in
assessing numerous genes for somatic mutations and
for the potential selection of targeted therapy [196,197].
Recent discoveries of novel mutations in melanoma
and their impact on response to therapy have made
somatic mutation analysis a significant part of
the routine workup for melanoma. NGS can sequence
thousands to millions of DNA fragments in parallel, in
contrast to the traditional Sanger-based sequencing.
This results in substantially more throughputs and the
capability to sequence numerous genes simultaneously
from multiple patient samples. Details for performing
NGS can be found from our validation study of a
50-gene cancer hotspot panel [198].

Molecular testing is routinely performed for patients
with advanced melanoma. In 2015, Siroy and collea-
gues reported results of clinical testing of 699
advanced melanoma patients using a pan-cancer NGS
panel of hotspot regions in 46 genes [199]. The most
common mutations were reported to be BRAFV600E

(36%), NRAS (21%), TP53 (16%), BRAFNon-V600 (6%),
and KIT (4%). Additionally this study showed that
BRAFV600E and KIT mutations were significantly asso-
ciated with melanoma subtypes, whereas BRAFV600E

and TP53 mutations were significantly associated with
cutaneous primary tumor location [199].

NGS technology has helped with identifying key
genetic mutations for targeted therapy. Historically, the
goal of the treatment has been to reduce tumor burden
together with palliative care, with little hope for
prolonged survival. Systemic treatment of patients
with advanced melanoma has been focused on
cytostatic chemotherapy, such as dacarbazine or other
alkylating agents such as temozolomide, fotemustine,
or taxanes [200]. Chemotherapy has remained the

standard of care for advanced melanoma, but it has not
altered survival [200�202]. Therefore, a major consider-
ation for physicians is to integrate chemotherapy
agents into clinical practice. Immune-based therapies,
such as IFN-α and IL-2 have not yielded significant
impact on the overall survival [201].

New research has led to the development of new
treatments with different mechanisms of action such as
ipilimumab, nivolumab, and pembrolizumab
(immunotherapies) and vemurafenib, dabrafenib, and
trametinib (targeted therapies). Details on treatment
options and drug method of action is beyond the scope
of this text and more information regarding the most
recent therapeutic agents can be found from the
Michielin and Hoeller update on new options and
opportunities for the treatment of advanced melanoma
or other texts focused on melanoma treatment [202].

CONCLUSIONS

Pathogenesis of melanoma and histogenesis of
melanoma has been a hot topic in molecular pathology.
Accumulation of genetic and acquired alterations may
lead to unrestricted cell proliferation and melanoma-
genesis. Several key signaling molecules and pathways
have been associated with complex disease process such
as PTEN/AKT, CDKN2A, and MAPK. Other signaling
pathways and melanomas have been proposed that are
triggered by environmental factors and UV radiation. In
other words, the number of mutations and amount of
UV exposure is related to the progression of melanomas.
Giant leaps in molecular pathology have led to better
diagnosis and treatment of melanocytic lesions. Much
work is ahead in discovering and bridging the gaps in
knowledge.
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MOLECULAR TARGET

Epidermal Growth Factor Receptor

The epidermal growth factor receptor (EGFR) gene is
located at 7p12 and encodes a 170 kDa transmembrane
receptor protein which transfers signals from extracellu-
lar molecules such as epidermal growth factor (EGF)
and transforming growth factor α (TGF-α) to activate
downstream signaling molecules such a phosphatidyli-
nositide 3-kinase (PI3K) and AKT (protein kinase B)
(Fig. 26.1) [2]. EGFR is the most frequently amplified
gene in glioblastoma (GBM) and is often associated
with structural abnormalities, including the mutant
protein EGFRvIII, characterized by deletion of the
extracellular domain. 30�40% of GBMs show amplifica-
tion of EGFR and approximately half of these will show
the EGFRvIII mutation [3�5]. Patients with EGFR
amplification have decreased overall survival (OS) com-
pared to other types of GBM [6].

O6-Methylguanine Methyltransferase

O6-Methylguanine methyltransferase (MGMT) is a
dealkylating enzyme that removes methyl groups from
the O6 position of guanine, inducing resistance to
alkylating chemotherapeutic agents [7]. Initial studies
demonstrated that inactivation of MGMT was associ-
ated with tumor regression and prolonged overall and
disease-free survival in GBM [8]. Later studies showed
that methylation of specific promoter sites in the
MGMT promoter decreased protein expression and
were associated with increased progression-free and
OS [7]. It now appears that the presence of a methyl-
ated MGMT promoter (Fig. 26.2) confers survival
advantage, regardless of therapy [10].

Isocitrate Dehydrogenase

Isocitrate dehydrogenase (IDH) enzymes catalyze
the oxidative decarboxylation of isocitrate to form
α-ketoglutarate, during which NADPH is produced
(Fig. 26.3) [12]. NADPH is critical for the synthesis of
fatty acids and cholesterol, the oxidative metabolism
of drugs by cytochrome P450 enzymes, and the gener-
ation of nitric oxide and reactive oxygen species by
neutrophils.

Three isocitrate dehydrogenases are present within
the human genome with IDH1 and IDH2 share approxi-
mately 70% sequence similarity. IDH1 plays a crucial
role in lipid metabolism, promoting glycogenesis during
hypoxia by catalyzing the reductive carboxylation of
α-ketoglutarate dehydrogenase to acetyl-CoA for lipid
biosynthesis. IDH1 is the main source of NADPH in the
human brain where it is protective against oxidative
damage [12].

In 2008, sequencing of gliomas as part of the TCGA
project revealed recurrent missense mutations in IDH1
in GBM [13]. Additional studies revealed that IDH1
and IDH2 mutations occurred in a high percentage of
WHO grade II/III astrocytomas, oligodendrogliomas,
and oligoastrocytomas [14]. IDH mutations occurr in a
number of other malignancies including acute myeloid
leukemia (AML), intrahepatic cholangiocarcinoma, car-
tilaginous tumors, and melanoma. In malignant glio-
mas, mutant IDH proteins are invariably expressed
within tumor cells and the mutation appears to be an
early event in the genesis of brain tumors [14].
Mutations in IDH are generally heterozygous missense
mutations, and mutations in IDH1 and IDH2 occur at a
specific arginine residues in the enzyme’s active site—
the most common alteration is R132H (approximately
85% of mutations in IDH1; Table 26.1).
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1p/19q Loss

Oligodendrogliomas are diffusely infiltrating well-
differentiated low-grade gliomas that typically occur in
adults and have a predilection for the cerebral hemi-
spheres. The classic histologic features of an oligoden-
droglioma include the fried egg appearance of the tumor
cells with the nuclei surrounded by clear cytoplasm,
secondary to formalin fixation. Oligodendrogliomas
were one of the first gliomas characterized by a distinct
genetic alteration—the loss of chromosomal arms 1p
and 19q. This characteristic co-deletion is observed in
50�90% of cases, particularly those with the classic
histology described above [15�17]. In addition to

having diagnostic value, the loss of 1p/19q is associated
with prolonged survival time and favorable response to
procarbazine, CCNU (1-(2-chloroethyl)-3-cyclohexyl-1-
nitrosourea), vincristine (PCV), and temozolomide
chemotherapy and radiation therapy [18,19].

In GBM, the most common loss of heterozygosity
(LOH) occurs due to loss of chromosome 10 [20,21].
While the loss of chromosomal arms 1p and 19q is not
common in GBM, there is a variant of this tumor
where oligodendroglial-like features predominate.
These lesions are often assessed for the loss of chromo-
somal arms 1p and 19q in the hopes that they will be
more responsive to chemotherapy compared to the

FIGURE 26.1 The Epidermal growth factor receptor (EGFR) pathway. EGFR binds to signaling molecules such as epidermal growth factor
(EGF) or transforming growth factor (TGF). This binding induces autophosphorylation that activates downstream signaling transduction
pathways that control cell proliferation, differentiation, and survival [1].
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standard GBM. LOH of chromosome 1p is seen in both
primary and secondary GBM at similar frequencies
(12�15%) [2]. LOH of 19q is seen in 20�25% of GBM
and is more frequently present in secondary rather
than primary GBM [22�25].

MOLECULAR TECHNOLOGIES

Epidermal Growth Factor Receptor

Determining the amplification of EGFR has classically
relied upon cytogenetics, specifically fluorescent in situ
hybridization (FISH) studies. In situ hybridization uses
the localization and detection of specific DNA or RNA
sequences in cells, preserved tissue sections, or,
occasionally, entire specimens [26]. The sequence of
interest is located by hybridizing the complimentary
strand of a nucleotide probe to the sequence [26]. These
tests can be performed on formalin-fixed paraffin
embedded (FFPE) tissue as well as cultured cells. Testing
in FFPE tissue allows for testing to be performed after
standard microscopic analysis has determined the
identity of the tumor.

FISH requires pretreatment of the target tissue—
agents such as isothiocyanate permeabalize the tissue,
followed by acid hydrolysis, and treatment with
proteases [27]. DNA probes can be generated via
cloning and amplification while single-stranded cDNA
probes can be created by reverse transcriptase PCR (RT-
PCR). The probes are conjugated to fluorescent labels,

generally rhodamine or fluorescein. Today, most probes
are prepared either by selecting clones for the gene/
region of interest from appropriate yeast, bacterial, or
P1 artificial chromosomes, or by amplifying the target
sequence using PCR. Hybridization stringency is con-
trolled by adjusting factors such as pH, salt and form-
amide concentrations, and temperature, in order to
minimize cross-hybridization of probes to nonspecific
targets. Interpreting FISH signals requires experienced
personnel. FISH signals can vary in terms of size and
shape, extensive denaturation can lead to loss of signal,
and samples must not be over-layered or inadequately
counterstained which interferes with accurate signal
enumeration. In addition to the standard cytogenetic
materials, equipment requirements include a fluores-
cent microscopic with an oil immersion lens and the
necessary excitation and emission filters for the probe
in question.

Determining the presence or absence of EGFRvIII is
frequently performed by immunohistochemistry using
specific EGFRvIII antibodies or by RT-PCR to detect rear-
ranged RNA transcripts [4,28,29]. Immunohistochemistry
is generally performed on FFPE tissue with antibodies
either produced in-house or purchased from commercial
vendors. Antibodies can be either polyclonal or
monoclonal [30]. Generally two antibodies are applied to
the fixed tissue; the primary antibody which recognizes
the antigen of interest (eg, EGFRvIII) and the secondary
antibody which is conjugated to a fluorescent dye, biotin,
or to an enzyme that can produce a visible result after
reaction with a chromogenic substrate [30]. Antigen

MGMT promoter region

Exon 1

1 97

979080706050

MSP

qMSP-MethyLight

PyroSeq

Minimal promoter

CpG island

Enhancer

FIGURE 26.2 O6-Methylguanine methyltransferase (MGMT) promoter region. Diagram of the MGMT promoter region, demonstrating
sites interrogated by methylation-specific PCR (MSP), MethylLight qMSP, and pyrosequencing [9].
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retrieval is frequently performed using a technique
known as heat-induced epitope retrieval. Briefly, anti-
gens are uncovered by exposing the tissue to different
temperatures in different buffers, with different heating
methods used depending upon the antigen in question
[30]. In today’s laboratories, labeled antigen detection
methods, using avidin�biotin, streptavidin�biotin, and
other complexes are generally used, followed by signal
amplification using agents such as tyramide [30].

O6-Methylguanine Methyltransferase

Various methodologies exist to test MGMT pro-
moter methylation and there has yet to be an agreed
standardized testing methodology [31]. However,
regardless of the methodology used nearly all share an

FIGURE 26.3 Isocitrate dehydrogenase (IDH) and IDH mutations in metabolism. Normally, IDH1 catalyzes the production of
α-ketoglutarate from isocitrate, creating NADPH in the process. When IDH is mutated, the initial reaction still occurs, but α-ketoglutarate is
converted into 2-hydroxyglutarate, which consumes NADPH (and leaves the cell vulnerable to oxidative stress). It is hypothesized that the
accumulation of 2-hydroxyglutarate may then lead to the accumulation of HIF-1α and predispose the cell to oncogenesis [11].

TABLE 26.1 IDH1 and IDH2 Mutations in Gliomas [12]

Gene Mutation

Amino acid

change Frequency (%)

IDH1 c. 395G.A R132H 83.5�88.9

c. 394C.T R132C 3.9�4.1

c. 394C.A R132S 1.5�2.4

c. 394C.G R132G 0.6�1.3

c. 395G.T R132L 0.3�4.1

IDH2 c. 515G.A R172K 2.4�2.7

c. 515G.T R172M 0.8�1.8

c. 514A.T R172W 0.0�0.7

c. 514A.G R172G 0.0�1.2
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initial critical step—the bisulfite modification of DNA
which converts unmethylated cytosine to uracil,
leaving methylated cytosine unchanged [9]. This modi-
fied DNA is then the basis for all subsequent testing
and it is critical to have appropriate controls present to
determine if complete conversion has occurred.

The most common methodology is methylation-specfic
PCR (MSP). In this technique, bisulfite-treated DNA is
amplified using methylation-specific primers. The pri-
mers are designed to bind only to the bisulfite-modified
products of methylated or unmethylated DNA (Fig. 26.2).
The product of the PCR generally covers several possible
CpG sites in the MGMT promoter [31]. PCR products can
be qualitatively analyzed via gel-based techniques or
quantitatively via real-time PCR. An example of the latter
is the MethyLight assay which is based on the TaqMan
PCR principle [9]. Forward and reverse primers are
designed to the methylated MGMT sequence as well as
an oligomeric probe that emits fluorescence following
degradation by the 50-30 exonuclease activity of Taq poly-
merase [9].

Sequencing is another approach for analyzing the
methylation of the MGMT promoter. Pyrosequencing
following bisulfite conversion provides a semiquantita-
tive analysis of multiple sites in the promoter (Fig. 26.4).
Pyrosequencing uses the real-time detection of inorganic
pyrophosphate that is released by successful incorpo-
ration of nucleotides during DNA synthesis [32].
Inorganic pyrophosphate is converted to ATP by ATP
sulfurylase and then the amount of ATP generated is
detected by the luciferase-producing photons. The light
produced from this procedure is observed as sequence
signal peaks in pyrograms. ATP and nonincorporated
nucleotides are degraded by the enzyme apyrase, then
the sequencing reaction continues. The sequence signals
are proportional to the number of bases incorporated
[32]. Pyrosequencing has the advantage of being
semiquantitative and can be standardized, but there are
debates as to what level should be used as cutoffs to
determine if the MGMT promoter is methylated.

Combined bisulfite restriction analysis (COBRA)
relies on bisulfite conversion of DNA followed by PCR
and then digestion of the purified PCR product with
the endonucleases Taqα1 and BstUI. Methylation at a
limited number of CpG sites can be determined fol-
lowing enucleation digestion and comparison of frag-
ment percentages [33].

Isocitrate Dehydrogenase

IDH mutations are typically initially detected using
immunohistochemistry with sequencing as an accom-
panying methodology. Monoclonal antibodies have
been developed that are specific for the IDH1 R132H

mutation [34,35]. The application of IDH1 antibodies is
similar to that of other antibody techniques. Unstained
slides are cut, dried, pretreated, and then incubated
with the antibody of choice. This incubation is then fol-
lowed by standard signal amplification, washing, and
counter staining with appropriate agents such as 3,
3-diaminobenzidine (DAB) and hematoxylin.

Detection of IDH mutations can be accomplished
via using either typical Sanger sequencing, pyrose-
quencing, or multiplex allele-specific PCR. An initial
step for each of these approaches is to macro-dissect
the tissue to enhance the amount of tumor present.
Following DNA extraction, PCR is performed with
appropriate primers that encompass codon 132 in

FIGURE 26.4 Pyrosequencing for detection of O6-Methylguanine
methyltransferase (MGMT) promoter methylation. The first
pyrogram shows an unmethylated MGMT promoter (with the cut
off set at ,20%), the middle pyrogram a methylated promoter
(.80% methylation) and the bottom pyrogram a partially methylated
promoter [9].
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IDH1 and if necessary codon 172 in IDH2. Commercial
sequencing kits can then be used and the PCR pro-
ducts analyzed on a commercial sequencing instru-
ment followed by sequence analysis for the presence/
absence of the mutation.

1p/19q

To assess for the loss of chromosome arms 1p and
19q (Fig. 26.5), the typical approaches involve either
FISH or LOH studies. Both of these methodologies
have inherent advantages and disadvantages.

In FISH, fluorescent-labeled DNA probes bind to
regions of interest in tumor nuclei. For oligodendro-
gliomas and other tumors where there is concern for
1p/19q loss, there are commercially-available probe
pairs that target 1p36/1p25 and 19q13/19p13 [37].
Technically, FISH is performed using standard
methodology. Slides from FFPE tissue are deparaffi-
nized, typically using xylene and ethanol. Following
water rinses, molecular targets are retrieved using
a citrate buffer and heat, enzymatic digestion per-
formed, the probe mixture applied, and specimens
denatured overnight. The next day the slides are
washed in appropriate buffers and counterstained,
generally with DAB, and visualized under a fluores-
cent microscope [38].

The most common alternative to FISH for determin-
ing 1p/19q loss is PCR-based analysis of LOH studies,
using microsatellite DNA repeats. The number of
repeats in each microsatellite varies; when both alleles
(maternal and paternal) of a microsatellite have differ-
ent numbers of repeats, this is considered an informa-
tive microsatellite as the PCR products from each

allele will migrate differently on an agarose or acryl-
amide gel. When a tumor shows only a single PCR
product size in comparison to the results for the infor-
mative microsatellite from the patient’s normal tissue,
one allele is assumed to be lost [37].

To perform LOH studies, one needs paired tumor
and normal tissue (or a constitutional DNA sample),
the latter can be DNA from a tube of the patient’s
blood. Microsatellite markers are selected that are
localized to 1p and 19q. Frequently used microsatellite
markers include D1S1184, D1S1592, D19S4311, and
D19S718. Primers are designed to each microsatellite
and PCR performed using standard methodology.
Classically, PCR products were analyzed on a poly-
acrylamide gel and band intensity determined by ethi-
dium bromide staining. Today, there are numerous
commercially-available single nucleotide polymor-
phism (SNP) chips to which the PCR products can be
hybridized, and the loss of microsatellite sequence
determined in that manner.

CLINICAL UTILITY

While EGFR is an extensively studied molecule in
GBM, its clinical utility at this time is more questionable.
A meta-analysis of studies that examined either the pres-
ence/absence of EGFR amplification or the presence/
absence of the EGFRvIIImutation did not find conclusive
evidence that either change carried prognostic value in
GBM patients [39]. However, there are numerous thera-
peutic approaches being explored that target the EGFR
molecule. Tyrosine kinase inhibitors (TKIs) have been
efficacious in other tumors, such as non-small cell lung

FIGURE 26.5 Whole arm translocation leading to 1p/19q deletion. Two derivative chromosomes are believed to be created following the
translocation between chromosomal arms 1p and 19q, creating the chromosome designated with an asterisk (�) corresponding to der(1;19)
(p10;q10) and the chromosome designated by the double asterisk (��) corresponding to der(1;19)(q10;p10). Following the loss of der(1;19)(p10;
q10) (orange box), an abnormal chromosome configuration (shown in the gray box) remains. Source: This figure was adapted from Pinkham MB,
Telford N, Whitfield GA, Colaco RJ, O’Neill F, McBain CA. FISHing tips: what every clinician should know about 1p19q analysis in gliomas using fluores-
cence in situ hybridisation. Clin Oncol 2015; 27:445�453 [36].
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cancer (NSLC) [40]. However, although these TKIs have
been shown in preclinical results to inhibit tumor cell
growth, angiogenesis, survival, and proliferation in
EFGR transfected cell lines, these results have not been
replicated in clinical trials [29,41].

Similarly, antibody-targeting of EGFR that has been
successful in other tumors has not been efficacious
in treatment of GBM. EGFR-amplified GBM cells
in mouse xenografts that are treated with cetuximab
demonstrate decreased proliferation and increased OS.
However, increased survival benefit has not been
demonstrated in Phase II studies, stratifying patients
with GBM by their EGFR gene amplification status
[42,43]. Other approaches have used antibodies conju-
gated to toxins or radioisotopes as adjuvant therapy.
125I-Mab425 is a radiolabeled antibody which has
shown survival benefit in Phase II trials when com-
bined with temozolamide (TMZ), increasing median
survival by approximately 6 months [44].

One promising area in EGFR-based therapies
appears to be in using vaccines to target cells expres-
sing EGFRvIII. Vaccines based upon the unique amino
acid sequence created by the in-frame deletion of
EGFRvIII, chemically conjugated to keyhole limpet
hemocyanin (Rindopepimut) have been tested, with
the goal to create a specific immune response against
EGFRvIII1 tumor cells [45]. Phase II trials indicated
that rindopepimut is well-tolerated in patients
with resected EGFRvIII1 GBM who demonstrated
improvement in both progression-free survival (PFS)
and OS [46,47]. The follow-up study confirmed these
initial findings with increase in PFS and OS with a
double-blind phase III trial underway [45].

O6-Methylguanine Methyltransferase

The clinical utility of MGMT lies in the fact that it
carries both prognostic and predictive value. The
predictive value of MGMT was the first to be realized
when it was demonstrated that patients with low
levels of MGMT expression showed greater OS and
PFS when treated with temozolomide than those with
high levels of MGMT expression [7]. The difference in
MGMT expression levels correlates with levels of
methylation in the MGMT promoter [7]. More recently,
analysis of long-term survival demonstrated that
patients with methylated MGMT showed improved
survival compared to patients with a unmethylated
promoter [10].

Isocitrate Dehydrogenase

IDH mutations have proven to have both diagnostic
and prognostic value in gliomas. Characterization and

classification of gliomas is classically by histologic
criteria, using guidelines created by the World Health
Organization. Unfortunately, this creates diagnostic
dilemmas due to the inherent subjectivity in the assess-
ment of histologic features. The presence of IDH muta-
tions in a large subset of gliomas, particularly WHO
grade II/III gliomas, is of diagnostic utility as the pres-
ence of the mutation is strongly suggestive that,
regardless of what histologic features are present, the
changes are that of a glioma. The presence of an IDH
mutation also carries prognostic value. IDH1/2
mutations are associated with a younger age of diag-
nosis, which is a favorable prognostic factor, in both
low-grade and high-grade gliomas, compared to
tumors with wild-type IDH [48,49]. IDH mutations are
generally associated with a favorable prognosis, partic-
ularly in patients with GBM and anaplastic astrocy-
toma when compared to tumors of the same histologic
type that lack the IDH mutation [50�53].

1p/19q

The clinical utility of 1p/19q is unquestioned in
terms of oligodendrogliomas and testing for this alter-
ation is frequently requested by clinicians for GBM
that show any oligodendroglial features. It has been
demonstrated that the loss of 1p/19q is associated
with better OS and response to chemotherapy and
radiation therapy [17,18]. While the same results have
not been demonstrated consistently in epidemiologic
studies of GBM, given the dismal outcome associated
with this tumor, oncologists frequently request 1p/19q
analysis in the hopes of finding more efficacious
therapy for their patients.

LIMITATIONS OF TESTING

The amount of tissue obtained and the type of tissue,
in terms of how it is prepared in the laboratory, is fre-
quently the predominant limitation to molecular testing
in gliomas and other tumors. For successful sequencing
to assess the presence of promoter methylation in
MGMT and the presence of the IDH1 or IDH2 muta-
tions, at least 20�30% of the specimen must consist of
tumor cells. This limitation can be surmounted in many
cases by macro-dissecting the tumor away from the
surrounding brain in order to keep contamination by
normal tissue to a minimum.

The type of tissue available also limits the types of
studies that can be performed. FFPE tissue can be used
for DNA extraction, but is less robust in producing
usable RNA. Some cytogenetic studies (eg, FISH) can
be performed on FFPE, but other studies cannot. Thus
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it is necessary for the clinician and pathologist to work
together to determine what type of tissue will be
needed for which tests before performing a biopsy.

For determining promoter methylation in MGMT,
the critical step is successful bisulfite conversion of the
tumor DNA. Appropriate controls must be performed
in all cases to ensure that the conversion is as complete
as possible. For IDH1 and IDH2 mutations, the limita-
tions are created predominantly by the type of tissue
available and what particular techniques are chosen to
detect the presence or absence of the mutation.
The IDH1 R132H mutation can be detected by immuno-
histochemistry, but also by sequencing. The former
obviously only detects the presence or absence of
the R132H mutation, while the latter will demonstrate
the presence of the most common mutation but also that
of the less frequent variants (see Table 26.1 for
percentages).

The advantage to using FISH for determining 1p/
19q status is that a small number (60�100) of tumor
nuclei are required and thus FISH can be performed
on very small tissue biopsies. The drawbacks to FISH
are that there can be loss of tumor cells in the cutting
of unstained slides. One also needs nonneoplastic
brain tissue as a negative validation control. There is
internal lab variation in terms of the cutoff criteria that
should be used to determine whether true deletion of
1p/19q is present. FISH probes are limited by size and
cannot be used to analyze all of the chromosomal arm
of 1p and 19q; only smaller representative areas can be
assayed [37].

The limitations to LOH studies are predominantly
secondary to possible contamination of the tumor
tissue with normal tissue that may skew the results of
the PCR. PCR-based LOH studies also tend to be more
expensive than FISH due to the more sophisticated
equipment required.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a dev-
astating disease with high mortality. Current therapeu-
tic modalities offer patients with PDAC only a chance
for cure as long the disease is limited to the pancreas.
The chances of cure decrease with cancer involvement
of adjacent vessel structures and lymph nodes, and
eventually progresses to a terminal disease in the set-
ting of unresectable locally advanced cancer and the
presence of distant metastasis. Therefore the current
goal is to detect PDAC in its earliest stages. Diagnostic
biomarkers for pancreatic cancer must not only fulfill
this criterion with a high sensitivity, specificity, and
accuracy, but also be able to distinguish PDAC from
other pancreatic conditions which have increased risk
for developing PDAC but do not have invasive disease
at the time of testing, in order to avoid unnecessary
invasive testing and surgery. These pancreatic condi-
tions include chronic pancreatitis, mucinous cystic neo-
plasms (MCN), and intraductal papillary mucinous
neoplasms (IPMN). Although genetic alterations are
well described in chronic pancreatitis, MCN, and
IPMN, the natural progression of these lesions to
PDAC is not well understood.

Most PDAC arise from premalignant lesions termed
pancreatic intraepithelial neoplasia (PanIN), which are
further divided into PanIN-1a, PanIN-1b, PanIN-2, and
PanIN-3, based on their morphologic dysplasia and
accumulation of genetic mutations. In this context,
Plectin-1 has been described as marker for PanIN-3
lesions, which are believed to be the earliest stage of
PDAC [1].

Over the last three decades, the search for adequate
diagnostic biomarkers for PDAC followed closely the
establishment of new biotechnological methods. Early

methods detected protein biomarkers utilizing ELISA
and Western blots. Subsequently, the PCR was
developed and found utility for detection of genetic
alterations. The latest chromatographic methods, gene-
chips, and protein-chips enable a very broad search for
diagnostic biomarkers including genome-wide screen-
ing. Most recently, epigenetic changes which encom-
pass DNA methylation status, histone posttranslational
modifications, and microRNA expression levels were
found to be significantly altered in PDAC drawing
significant attention to this field.

Several studies have shown that panels of biomar-
kers increase sensitivity, specificity, and diagnostic
accuracy in the diagnosis of PDAC and its discrimina-
tion from chronic pancreatitis and IPMN [2�4]. This
observation probably reflects the fact that PDAC exhi-
bits significant heterogeneity. Despite similar anatomic
location, cancers can have different biologic back-
grounds reflecting the molecular pathways to tumori-
genesis. Cancers that arise through distinct molecular
pathways require different diagnostic biomarkers [5].

PDAC BIOMARKERS IN SERUM

Carbohydrate antigen 19-9 (CA19-9) is the most
accurate and well-studied serum biomarker to distin-
guish PDAC from other diseases. A systematic review
of literature that included over 2000 patients concluded
that CA19-9 has a median sensitivity of 79% and speci-
ficity of 82% for the diagnosis of PDAC in symptomatic
individuals [6]. Numerous other potential markers
have been tested and compared against CA19-9, but
none has proven more accurate. Obstructive jaundice
(due to any cause) is commonly associated with an
increase in levels of most investigated biomarkers
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(including CA19-9). It is increasingly evident that no
single marker performs better than CA19-9 for the diag-
nosis of PDAC. This has led to studies where a novel
biomarker(s) was combined with CA19-9 in an attempt
to improve its performance. One such combination
tested consisted of alpha-1 chymotrypsin (AACT),
thrombospondin-1 (THBS1), and haptoglobin (HPT)
with CA19-9. This combination of biomarkers demon-
strated improved ability to distinguish PDAC from
healthy controls (AUC 0.99 versus 0.89 for CA19-9
alone), diabetics without PDAC (AUC 0.90 versus 0.85
for CA19-9), pancreatic cysts (AUC 0.90 versus 0.81),
CP (AUC 0.90 versus 0.79), obstructive jaundice from
other causes (AUC 0.74 versus 0.68), and other condi-
tions (AUC 0.92 versus 0.81) [7]. In another study,
CA19-9 alone distinguished pretreatment PDAC from
benign conditions with an AUC of 0.80 while in
combination with CA125 and LAMC2 the AUC increased
to 0.87. The combination also performed better than
CA19-9 to distinguish early stage PDAC from benign
conditions (AUC 0.76 versus 0.69) and from chronic pan-
creatitis (AUC 0.74 versus 0.59) [8]. Similar improvements
have been reported by combining CA19-9 with other
serum biomarkers [9], including microRNAs [10,11].

A key shortcoming of most studies investigating
novel biomarkers for PDAC is that these studies were
conducted using samples from patients who already
had the malignancy at the time of serum collection.
Few studies have examined whether these same mar-
kers retain their accuracy when tested in patients in
the precancer stage. In one study ICAM-1 and TIMP-1
were tested in patients between 0 and 12 months
before development of PDAC and in the same patients
after they developed PDAC. While both proteins were
significantly elevated in serum of PDAC cancer
patients, no difference was observed in the precancer
samples from the same patients [12]. Prospective stud-
ies (ie, on patients who did not have cancer at the time
of collection of serum, but developed it during follow-
up) would be ideal to understand the natural history
of PDAC and of potentially useful biomarkers. In a
study employing serum collected from participants in
the Prostate Lung Colorectal and Ovarian Cancer
Screening Trial (PLCO), the investigators tested 67
potential biomarkers in serum collected either 1�12
months, .12 months, or .24 months prior to diagno-
sis of PDAC. There was significant overlap between
healthy controls and those who developed PDAC. No
biomarker was better than CA19-9 in distinguishing
PDAC from non-PDAC cases. However, a combination
of CA19-9, CEA, and Cyfra 21-1 with cut-off set to
specificity of 95% was about 32% and 30% sensitive in
identifying PDAC in samples collected ,1 and .1
year prior to diagnosis of PDAC (compared to sensitiv-
ity of 26% and 17% for CA19-9 alone) [13].

It is estimated that for a rare disease like PDAC, with
an estimated prevalence of 40 per 100,000 (http://seer.
cancer.gov/statfacts/html/pancreas.html) a test with a
specificity of 90% used for screening would identify
nearly 10 million false positives. By increasing the spec-
ificity of the test to 99.9%, we can reduce the number of
false positives to an acceptable 100,000 while achieving
a sensitivity of 99.99%. Given the heterogeneity of the
disease, finding a single marker that is applicable in all
patients and identifies cancer in all stages (preclinical,
clinical but treatable, and precancerous) is unlikely.
Another problem is that while mean levels of the serum
marker may be higher in PDAC than in controls, there
is significant overlap between individual PDAC sam-
ples and controls in nearly 100% of studies, thereby
weakening the power of the test. Mathematical model-
ing has revealed that if we take 40 biomarkers whose
levels do not correlate (ie, correlation coefficient zero)
with one another and delineate a cut-off such that each
marker has a sensitivity of at least 32% and forced spec-
ificity of at least 95%, then if at least 7 biomarkers are
above the threshold, the panel will distinguish PDAC
from non-PDAC cases with a sensitivity and specificity
of 99%. If the correlation coefficient is 0.05 or 0.15 the
sensitivity of the panel decreased to 94% and 85%,
respectively. One could still achieve nearly 100% sensi-
tivity (for the combination), but this requires larger
number of biomarkers. The study suggests that the
identity of the biomarker does not matter, and impor-
tantly a group of uncorrelated weak classifiers can be
combined to generate a strong classifier. Thus a panel
comprising of a mix of different biomarkers such as
proteins, miRNAs, mRNAs, genetic mutations, and
metabolic products could be envisioned that can then
be employed to screen asymptomatic populations [14].

PDAC BIOMARKERS IN
PANCREATIC JUICE

Similar to the search for diagnostic biomarkers of
PDAC in serum, numerous investigators have
explored diagnostic biomarkers of PDAC in pancreatic
juice (PJ). The rational for this is that approximately
1.5 L PJ are excreted daily into the small bowel.
Multiple investigators hypothesized that secreted pan-
creatic proteins and shed cells, which represent poten-
tial diagnostic biomarkers for PDAC, should be
detected in higher concentrations in PJ due to its prox-
imity to the pancreas and the pancreatic ductal system
[15,16]. However, PJ as a source of biomarkers has
similar limitations compared to other common speci-
mens reflecting the need to distinguish between
pancreatic malignancies and benign pancreatic condi-
tions. An early study addressing K-ras mutations in PJ
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detected its occurrence in 61% of PDAC-derived speci-
mens and in 10% of chronic pancreatitis cases [17].

PJ is collected following intravenous secretin injec-
tion. A common limitation of previous studies is that
the PJ collection required cannulation of the pancreatic
duct, which is usually performed in the setting of an
Endoscopic Retrograde Cholangio-Pancreatography
(ERCP). This method is invasive and associated with
significant risks and adverse outcomes, which limits
this approach for screening purposes. Therefore, the
results of studies analyzing PJ following pancreatic
duct cannulation must be interpreted with caution.
The goal is to identify a reliable general diagnostic
biomarker for PDAC that can also be detected in speci-
mens that are collected using less invasive methods.
Of note, the investigative group headed by Raimondo
overcame the previously mentioned limitations by col-
lecting PJ following intravenous secretin injection
without cannulation of the pancreatic duct, utilizing PJ
collection techniques employed for the measurement
of pancreatic exocrine function [18].

Two recent studies evaluated the utility of bile col-
lected during ERCP as a biomarker carrier for PDAC
without the utilization of Secretin. Interestingly, in this
context nasoduodenal tubes have not been evaluated
as a tool to obtain PJ or bile specimens. Farina et al.
measured potential protein biomarkers in bile collected
during the workup for biliary strictures. The authors
utilized liquid chromatography�tandem mass spec-
trometry with subsequent confirmation by immuno-
blotting and ELISA using specimens from 41 patients
of which 23 had PDAC. Ten patients had a benign
stricture, including eight patients with chronic pancre-
atitis. In this study, biliary carcinoembryonic cell adhe-
sion molecule 6 (CEAM6) levels produced an AUC of
0.92 reflecting a sensitivity and specificity of 93% and
83%, respectively, for distinguishing benign and malig-
nant biliary strictures. However, combining biliary
CEAM6 and serum Ca19-9 level showed only a mini-
mal improvement in diagnostic efficiency [19]. In
another study, Zabron et al. measured neutrophil
gelatinase-associated lipocalin (NGAL) level in bile
from 16 patients with pancreatobiliary malignancies
(including 8 PDAC) and 22 patients with benign dis-
ease (choledocholithiasis and chronic pancreatitis).
NGAL levels were significantly higher in bile from
patients with pancreatobiliary malignancies. The calcu-
lated AUC of 0.76, reflected a sensitivity, specificity,
positive predictive value, and negative predictive
value of 94%, 55%, 60%, and 94%, respectively for dis-
tinguishing malignant from benign pancreatobiliary
conditions. Combining biliary NGAL level and serum
CA 19-9 improved the sensitivity, specificity, positive
predictive value, and negative predictive value to 85%,
82%, 79%, and 87%, respectively [20].

Historically, cytology of shed pancreatic ductal cells
in PJ obtained by ERCP in most cases was studied
for its utility as diagnostic biomarker of PDAC.
Unfortunately, its test performance was insufficient.
Despite the drawbacks, several investigators improved
this technique by increasing the PJ volume, by adding
brushing cytology, or by combining cytology with
known genetic alterations in PDAC. Both Iiboshi and
Mikata placed a nasopancreatic drainage tube during
ERCP and collected PJ 5 times (mean) or for a maximal
of 6 times, respectively. In Iiboshi’s study all 14
patients with PDAC yielded a positive cytology for
malignancy. Sensitivity, specificity, and accuracy to
detect PDAC were 100%, 83%, and 95%. However, the
stage of PDAC was not specified [21]. Mikata’s study
included 40 patients with PDAC and 20 patients with
benign pancreatic diseases and had sensitivity, speci-
ficity, positive predictive value, negative predictive
value, and accuracy for PDAC of 80%, 100%, 100%,
71%, and 87% respectively [22]. The addition of brush
cytology to PJ analysis in 127 patients with PDAC and
74 patients with benign pancreatic strictures increased
the sensitivity for PDAC diagnosis compared with PJ
alone from 21% to 62% [23]. Combining PJ cytology
and endoscopic ultrasound fine needle aspiration (EUS-
FNA) biopsy in 90 patients with pancreatic mass
increased the sensitivity, specificity, positive predictive
value, negative predictive value, and accuracy for
PDAC from 86%, 100%, 100%, 70%, and 89% for EUS-
FNA alone to 92%, 100%, 100%, 92%, and 96%, respec-
tively. Of note, 29 of 90 patients had stage 1 and 2
PDAC [24]. Nakashima et al. studied human telomerase
reverse transcriptase (hTERT) in PJ samples of 97
patients who underwent pancreatic resection, including
48 PDAC, 43 IPMN, and 6 patients with chronic pancre-
atitis and compared the test performance with cytology.
hTERT is a catalytic subunit of human telomerase
which is known to be activated in pancreatic cancer.
Again, the sensitivity, specificity, positive predictive
value, negative predictive value, and accuracy for
PDAC increased from 47%, 89%, 93%, 35%, and 57% for
cytology alone to 92%, 75%, 92%, 75%, and 88%, respec-
tively for combined cytology and hTERT immunohis-
tochemistry of the cytology specimen [25,26].

DNA mutations are well-documented in the carci-
nogenesis of PDAC, most commonly involving K-ras,
CDKN2A, SMAD4, and BRCA. Multiple investigators
addressed the utility of these mutations as biomarkers
for PDAC using various specimens including PJ. The
K-ras gene is the most extensively studied, and K-ras
mutations are detected in up to 90% of PDAC tissue
specimens. Of interest, a metaanalysis by Liu et al.
included seven studies which measured K-ras
mutations in PJ. The calculated pooled sensitivity,
specificity, positive, and negative likelihood ratio, and
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diagnostic odds ratio to diagnose PDAC based on
presence of K-ras mutations were 57%, 84%, 2.87, 0.55,
and 6.05 respectively, which emphasize that the pres-
ence of K-ras mutation alone in PJ is insufficient to
serve as a diagnostic biomarker for PDAC [27].
Subsequently, several investigators addressed whether
the number of detected K-ras mutations in PJ proves to
be of utility to distinguish PDAC from nonmalignant
pancreatic diseases. Shi et al. found more than 0.5%
mutant K-ras in relation to wild-type K-ras in 16 of 17
(94%) patients with PDAC compared to one of 9 (11%)
patients with chronic pancreatitis, producing a sensi-
tivity and specificity of 94% and 89%, respectively. Of
note, 10 patients with PDAC, who did not have this
particular K-ras mutation, were not included in the
final calculation [28]. Eshleman et al. examined K-ras
mutations in PJ of 194 patients with family history or
genetic predisposition for PDAC, 30 patients with
PDAC, and 30 controls with pancreatic cysts, pancrea-
titis, or normal pancreata. Three or more K-ras muta-
tions were detected in 47% of patients with PDAC,
21% patients with risk for PDAC, and in 6% of the
control cohort. The investigators suspected that the
measured K-ras mutations likely arise from PanIN
lesions. However, these lesions are not incorporated in
any guidelines as of now, and clinical consequences
for the general population are not understood, which
again emphasizes that K-ras alone has no utility as
diagnostic biomarker for PDAC [29].

Beyond known genetic mutations, multiple investi-
gators detected differences in gene expression patterns
in PDAC. However, none of these gene expression sig-
natures serves as a reliable diagnostic biomarker for
PDAC in PJ. The search for biomarkers in PJ is further
complicated by the fact that mRNA expression levels
frequently do not correlate between expression in
PDAC tissue and in PJ, as shown by Oliveira-Cunha
et al. In this study, only ANXA1 mRNA expression (of
30 genes examined) correlated between PDAC tissue
and PJ. Of note, all of the genes analyzed displayed
similar gene expression levels between PDAC and
chronic pancreatitis [30]. S100A6 mRNA was found to
be overexpressed in PDAC tissue, including PanIN
lesions [31]. S100A6 mRNA expression was also mea-
sured in PJ and was found to be expressed at higher
levels in patients with PDAC (mainly stage 4) and
IPMN than in patients with chronic pancreatitis.
A ROC analysis measured an AUC of 0.864 distin-
guishing PDAC from chronic pancreatitis [32].

Methylated DNA levels have been investigated as
potential biomarkers for PDAC. The initial landmark
studies by Tan et al. and Omura et al. evaluated different
methylation profiles in pancreatic cancer cell lines, PDAC
tissue, and normal pancreata. Of a total of 807 genes, Tan
found 23 hypermethylated and hypomethylated genes in

PDAC [33]. Omura et al. analyzed the methylation status
of promoters and CpG islands of 606 genes and identified
hypermethylation most significantly inMDFI, hsa-miR-9-
1, ZNF415, CNTNAP2, and ELOVL4 [34].

PJ was evaluated in multiple studies for aberrantly
methylated DNA levels as a potential diagnostic bio-
marker for PDAC. Matsubayashi et al. profiled aber-
rantly methylated DNA for 17 genes in PJ from
patients with PDAC, IPMN, chronic pancreatitis, and
controls with positive family history for PADC. Six
genes, namely Cyclin D2, FOXE1, NPTX2, ppENK, p16,
and TFPI2 were further quantified using a cutoff of
.1% methylated DNA. 82% (9 of 11) of patients with
cancer had .1% methylation for two or more genes,
whereas none of 64 individuals without neoplasia
demonstrated this level of DNA methylation.
Calculated sensitivity and specificity to predict PDAC
was 82% and 100%, respectively. A limitation to the
findings of this study was that the investigators noted
a higher prevalence of methylated DNA in PJ of
patients with chronic pancreatitis [35].

Watanabe et al. evaluated the methylation status of
secreted apoptosis-related protein-2 (SARP2) gene in
PJ after previous studies demonstrated aberrantly
methylated SARP2 frequently in PDAC tissue, but not
in normal pancreatic tissue. PJ was collected from 33
patients with PDAC, 20 IPMN, 19 chronic pancreatitis,
and 10 control patients. Methylated SARP2 was
detected in 26 of 33 (79%) PDAC-derived PJ samples
and 17 of 20 (85%) from IPMN. However, only 1 of 19
(5%) PJ samples from chronic pancreatitis patients
exhibited methylated SARP2, and none of the 10 con-
trols exhibited methylated SARP2. Although signifi-
cant differences were also detected in terms of the
concentration of methylated SARP2, testing perfor-
mance was not calculated [36].

Most recently, Yokoyama et al. analyzed the methyl-
ation status of Mucins (MUC) genes in 45 patients with
PDAC and IPMN. MUCs are known to play crucial
role in carcinogenesis. Utilizing methylation-specific
electrophoresis, the DNA methylation status of MUC1,
MUC2, and MUC4 in PJ differentiated PDAC with a
specificity and sensitivity of 87% and 80%, discrimi-
nated intestinal-type IPMN with a specificity and
sensitivity of 100% and 88%, and distinguished gastric-
type IPMN with a specificity and sensitivity of 88%
and 77% [37]. Additional studies found aberrant DNA
methylation of several genes in IPMN, MCN, and
PDAC. However, their test performances as diagnostic
biomarkers were less promising [38�43].

Protein-based biomarkers have also been analyzed
in PJ. Chromatography techniques are ideal for this
type of discovery research. The following studies are
of particular interest. The proteome of PJ was initially
profiled by Gronborg et al. who performed a liquid
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chromatography�tandem mass spectrometry on PJ of
three patients with PDAC. One hundred and seventy
proteins were identified including CEA, MUC1, HIP/
PAP, and PAP-2 of which 23 were present in all 3
patients with PDAC. However, a comparison with a
control group was not performed [44]. Chen et al. used
an isotope-code affinity tag (ICAT) technology with
mass spectrometry for PJ from patients with PDAC
and normal controls, and found 30 proteins to be at
least two-fold upregulated in PDAC. Of these proteins,
insulin-like growth factor binding protein 2 (IGFBP-2)
was confirmed by immunoblotting utilizing PJ and
pancreatic tissue [15]. A subsequent analysis by Chen
et al. utilizing similar methods identified 27 proteins to
be abundant in PJ from 1 patient with chronic pancrea-
titis compared with PJ of 10 normal controls. When
analyzing both studies, Chen et al. identified 21 pro-
teins with altered levels only in PJ from PDAC [15,45].

Utilizing a two-dimensional electrophoresis with sub-
sequent MALDI-TOF mass spectrometry of PJ, Park et al.
identified 26 upregulated proteins in PDAC compared
with chronic pancreatitis and controls. Three of these
proteins, namely lithostathine-1-alpha (REG1alpha), bre-
feldin A-inhibited guanine nucleotide-exchange protein
2 (BIG2), and peroxiredoxin 6 (PRDX6), were confirmed
with immunohistochemistry in PDAC tissue. REG1alpha
was further evaluated as a biomarker in serum, and
yielded a sensitivity and specificity of 83% and 81%,
respectively, for distinguishing PDAC from normal con-
trols. Lower performance was noticed for chronic
pancreatitis [46]. Using a comparable two-dimensional
electrophoresis for PJ, Gao et al. found serine proteinase
2 (PRSS2) preproprotein and pancreatic lipase-related
protein-1 (PLRP1) to be upregulated, and chymotrypsin-
ogen B (CTRB) precursor and elastase 3B (ELA3B) pre-
proprotein to be downregulated in PDAC compared
with chronic pancreatitis and controls [16].

Distinguishing premalignant lesions from PDAC is
crucial for a reliable diagnostic biomarker. In this con-
text, two studies evaluated biomarkers for PanIN and
IPMN. Chen et al. identified 20 proteins that were 2-
fold to 10-fold increase in PJ of 3 patients with PanIN-
3 compared with 5 controls. Of these proteins, the
anterior gradient-2 (AGR2) protein was further con-
firmed to be elevated by ELISA in PJ in a cohort of 25
patients with PanIN-2, PanIN-3, and IPMN, as well as
8 patients with PDAC (stage 2�4). AGR2 reached a
sensitivity and specificity of 67% and 90%, respec-
tively, differentiating PanIN-3 from nonmalignant con-
ditions [47]. Focusing on premalignant IPMN lesions,
Shirai utilized surface-enhanced laser desorption and
ionization time-of-flight (SELDI-TOF) mass spectro-
metry for PJ from 33 patients with IPMN, 54 with
PDAC, and 31 with chronic pancreatitis. Spectrometry
identified a significantly higher peak at 6240-Da in

IPMN derived PJ than in PDAC and chronic pancreati-
tis. Further analysis targeted pancreatic secretory tryp-
sin inhibitor (PSTI). Utilizing a diagnostic cutoff value
of 25,000 ng/mL for PSTI, sensitivity, specificity, posi-
tive and negative predictive value were 48%, 98%,
89%, and 83% respectively, to diagnose IPMN [48].

Addressing specific protein biomarkers in PJ, Rosty
et al. identified hepatocarcinoma-intestine-pancreas/
pancreatitis-associated protein I (HIP/PAP-I) in 10 of
15 (67%) PJ samples from PDAC patients with mostly
advanced disease stage utilizing SELDI mass spec-
trometry and Protein Chip technology. Subsequently,
ELISA of PJ from 28 patients with PDAC and 15 con-
trols was utilized and HIP/PAP-I levels were found to
be significantly higher in PJ-derived from PDAC. The
investigators calculated the sensitivity and specificity
of 75% and 87% respectively, for differentiating PDAC
from controls [49]. Tian et al. identified 14 upregulated
proteins inducing matrix metalloproteinase-9 (MMP-9),
oncogene DJ1 (DJ-1), and alpha-1B-glycoprotein pre-
cursor (A1BG) based on difference gel electrophoresis
(DIGE) and tandem mass spectrometry in PJ from 9
patients with PDAC compared with 9 cancer-free con-
trols. The protein was also confirmed with Western
blot, but test performance based on these biomarkers
was not calculated [50]. Kaur et al. measured NGAL,
macrophage inhibitory cytokine 1 (MIC-1), and CA19-9
in PJ from 58 patients with PDAC, 24 with chronic
pancreatitis, and 23 with no pancreatic disease. NGAL
reached the highest sensitivity and specificity of 79%
and 83% differentiating PDAC from controls, whereas
only MIC-1 level was significantly different between
PDAC and chronic pancreatitis [51].

Of note, biliary obstruction was shown to affect the
protein composition of PJ significantly. Zhou et al. per-
formed a two-dimensional electrophoresis on PJ and
identified proteins by MALDI-TOF mass spectrometry
in five patients with PDAC, six patients with benign
pancreatic disease, and three patients with cholelithia-
sis. In this study, biliary obstruction affected the pro-
tein composition of PJ significantly [52]. Similarly, Yan
et al. found that only transthyretin in PJ but not apoli-
poprotein A1 or apolipoprotein E were associated with
PDAC. Moreover, differences of apolipoprotein A1
and apolipoprotein E between PJ of PDAC and control
cohorts originated from biliary obstruction [53].

MicroRNAs are small RNAs which regulate gene
expression. Alterations in their levels have been
recently found in multiple cancers, including PDAC
[54,55]. Sadakari et al. analyzed miR-21 and miR-155
levels (which are known to be overexpressed in
PDAC) in PJ of 16 patients with PDAC (mostly stage 3
and 4) and 5 patients with chronic pancreatitis. Real-
time reverse transcription-PCR found significant
elevation of both microRNAs in PDAC-derived PJ
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compared with the control cohort [56]. Another study
by Wang et al. was of particular interest. First, the
investigators identified alterations of microRNAs in PJ
from PDAC patients by microarray analysis. Then, the
results were validated using a panel of microRNAs
from 50 patients with PDAC, 19 with chronic pancrea-
titis, and 19 controls. Combining miR-205, miR-210,
miR-492, miR-1427, and serum 19-9 levels predicted
PDAC with a sensitivity and specificity of 91% and
100% [57]. Habbe et al. evaluated microRNA levels in
PJ from patients with IPMN which can be, second to
chronic pancreatitis, particularly challenging to distin-
guishing from PDAC. Again miR-21 (mean 11.6-fold)
and miR-155 (mean 12.1-fold) were found in signifi-
cantly higher levels in PJ of 10 patients with IPMN
compared to controls. Although the authors concluded
that aberrant miRNA expression is an early event in
pancreatic cancer, it became clear that microRNA can-
not distinguish IPMN from PDAC [58].

Beyond protein, genetic, and epigenetic biomarkers,
several investigators have focused on PJ-derived bio-
markers which are seldom recognized as a diagnostic
biomarker for malignancies. Most interestingly, Noh
et al. measured cytokine levels of interleukin-8 (IL8),
interleukin-6 (IL6), transforming growth factor-beta1
(TGF-β1), and intercellular adhesion molecule 1
(ICAM-1) in PJ of 38 patients with PDAC, 39 with
chronic pancreatitis, and 41 normal controls. A multi-
variate analysis detected only IL8 as a potential diag-
nostic biomarker, distinguishing PDAC from normal
pancreas and from chronic pancreatitis with an AUC
of 0.9 and 0.67, respectively [18]. Another study of
interest measured the concentration of heavy metals in
PJ. The investigators found elevated chromium, sele-
nium, and molybdenum concentrations in 35 patients
with PDAC compared with 30 patients with chronic
pancreatitis, and 35 controls, but test accuracy was not
calculated [59]. The most significant differentially
expressed proteins, miRNA, and methylated DNA in
PJ and bile derived from patients with PDAC are sum-
marized in Table 27.1. For comparison, the most signif-
icant differentially expressed proteins, miRNA, and
methylated DNA in serum and plasma derived from
patients with PDAC are summarized in Table 27.2.

PDAC BIOMARKERS IN STOOL

Similar to the rational search for pancreatic biomar-
kers in PJ, several investigators hypothesized that pan-
creatic biomarkers should also be detectable in feces
since 1.5 L of PJ are secreted into the intestine daily of
which a fraction undergoes fecal excretion [60�63].
Tobi et al. analyzed the utility of Adnab-9 monoclonal
antibodies as biomarker in feces for PDAC. This

antibody was previously shown to be a potential diag-
nostic biomarker for colorectal neoplasia. The authors
analyzed 1132 stool samples from the United States
and another 249 stool samples from China which were
initially utilized for colorectal cancer screening pur-
poses. 15 patients in the Chinese patient cohort eventu-
ally developed pancreatic cancer, at a median of 2.3
years following stool submission. Interestingly, 12 of
those patients (80%) had positive stool binding for
Adnab-9, suggesting Adnab-9 as a potential screening
tool. However, calculated sensitive and specificity ran-
ged only from 67% to 80% and 87% to 91%, respec-
tively [64].

An early study by Lu et al. addressed the utility of
K-ras and p53 mutations as biomarkers for PDAC. Both
mutations were previously detected in pancreatic tis-
sue specimens of PDAC. The investigators collected
feces of patients undergoing resection for PDAC and
60 controls (chronic pancreatitis, pancreatic adenoma,
and pancreatic endocrine neoplasm). K-ras mutation
was detected in 66 of 75 (88%) patients with PDAC
and in 24 of 47 patients (52%) of the control cohort.
Similarly, a significant overlap between PDAC and
controls was observed for p53 mutations. p53 muta-
tions were detected in 23 of 62 (37%) patients with
PDAC, and 4 of 21 (19%) patients with chronic pancre-
atitis. Of note, the authors also measured p53 muta-
tions in PJ, which were detected in 47% of PDAC and
13% of control PJ specimens [63]. Focusing on genetic
markers, Kisiel et al. analyzed epigenetic alterations in
fecal specimens as a potential biomarker for PDAC.
The investigators measured the concentration of four
methylated target genes which were previously
detected in elevated levels in PDAC tissue specimens,
namely EYA4, MDFI, UCHL1, and BMP3. The investi-
gators included 58 stool samples of patients with
PDAC (stage 1: 5%, stage 2: 35%, stage 3: 26%, stage 4:
33%) and 65 age-matched and sex-matched healthy
controls. BMP3 yielded the best performance, with a
sensitivity of 51% and specificity of 90%. Utilizing a
panel consisting of two K-ras mutations, age, and
methylated BMP3 as biomarkers, sensitivities of
52�79% were reached. At a set specificity of 90%, the
sensitivity was 67% [61].

Link et al. focused on microRNA detection in fecal
samples. The authors measured seven microRNAs
which are known to be frequently deregulated in
PDAC (miR-21, miR-143, miR-155, miR-196a, miR-210,
miR-216a, and miR-375) in stool samples derived from
15 patients with PDAC (11 of 15 with stage 4), 15
patients with chronic pancreatitis, and 15 healthy con-
trols. miR-143, miR-155, miR-196a, and miR-216a were
found in lower concentrations in the stool of patients
with PDAC compared with controls and chronic pan-
creatitis. Combined microRNA expression of miR-143,
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miR-155, miR-196a, and miR-216a resulted in differ-
ences between the three cohorts with greater signifi-
cance, although the sensitivity and specificity were not
calculated [62].

In summary, fecal material has gained wide accep-
tance as screening specimen since its introduction as a
screening method for colorectal neoplasia. Preliminary
reports of fecal material as a biomarker source
in PDAC are encouraging, and test performances
resemble the early studies of serum and PJ as PDAC
biomarker sources.

TABLE 27.1 Summary of the Most Significantly Differentially
Expressed (A) proteins, (B) miRNA, and (C) Methylated DNA in
Pancreatic Juice (PJ) and Bile Derived from Patients with PDAC,
in Comparison with patients with Benign Pancreatic Conditions or
Normal Controls. Most Markers Were Identified from Proteomics
and Microarray Analysis

A—PROTEINS IN PJ OR BILE DIFFERENTIALLY EXPRESSED
IN PDAC

14-3-3 Protein sigma

Alpha-1B-glycoprotein precursor (A1BG)

Annexin A4 (ANXA4)

Anterior gradient homolog 2(AGR2)

Anterior gradient-2 (AGR2) protein

Beta 2 microglobulin

Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BIG2)

Carbohydrate antigen (CA19-9)

Carcinoembryonic antigen (CEA)

Carcinoembryonic cell adhesion molecule 6 (CEAM6)

Chymotrypsinogen B (CTRB) precursor

Collagen alpha-1 (IV) chain (COL6A1)

Elastase 3B (ELA3B)

Hepatocarcinoma-intestine-pancreas/pancreatitis-associated
protein I (HIP/PAP-I)

Insulin-like growth factor binding protein 2 (IGFBP-2)

Lithostathine-1-beta precursor

Lithostathine-1-alpha (REG1alpha)

Macrophage inhibitory cytokine 1 (MIC-1)

Matrix metalloproteinase-9 (MMP-9)

Mucin 1 (MUC1)

Neutrophil gelatinase-associated lipocalin (NGAL)

Olfactomedin 4 (OLFM4)

Oncogene DJ1 (DJ-1)

Pancreatic elastase 3B (CEL3B)

Pancreatic lipase-related protein-1 (PLRP1)

Pancreatic secretory trypsin inhibitor (PSTI)

Pancreatitis-associated protein 2 (PAP-2)

Peroxiredoxin 6 (PRDX6)

S100A10

S100A8

S100A9

Serine proteinase 2 (PRSS2)

Syncollin (SYNC)

Transthyretin (TTR)

(Continued)

TABLE 27.1 (Continued)

B—MIRNA IN PJ OR BILE DIFFERENTIALLY EXPRESSED
IN PDAC

miR-18a

miR-21

miR-31

miR-93

miR-155

miR-196a

miR-205

miR-210

miR-216 (downregulated)

miR-217 (downregulated)

miR-221

miR-224

miR-492

miR-1427

C—METHYLATED DNA IN PJ OR BILE DIFFERENTIALLY
EXPRESSED IN PDAC

Apoptosis-related protein-2 gene (SARP2)

Contactin associated protein-like 2 (CNTNAP2)

Cyclin D2

Cyclin-dependent kinase inhibitor 2A (p16)

FOXE1 (Forkhead box E1)

Mucin 1 (MUC1)

Mucin 2 (MUC2)

Mucin 4 (MUC4)

MyoD family inhibitor (MDFI)

Neuronal pentraxin II (NPTX2)

Proenkephalin (ppENK)

Tissue factor pathway inhibitor 2 (TFPI2)

Zinc finger protein 415 (ZNF415)
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TABLE 27.2 Summary of the Most Significantly Differentially
Expressed (A) Proteins, (B) miRNA, and (C) Methylated DNA in
Serum and Plasma Derived from Patients with PDAC, in
Comparison with Patients with Benign Pancreatic Conditions or
Normal Controls

A—PROTEINS IN SERUM OR PLASMA DIFFERENTIALLY
EXPRESSED IN PDAC

Activated leukocyte cell adhesion molecule (ALCAM)

Adaptor-related protein complex 2, alpha 1 (AP2A1)

Adrenomedullin (ASM)

Alpha-1 chymotrypsin (AACT)

Annexin A1 (ANXA1)

Annexin A2 (ANXA2)

Anterior gradient-2 (AGR2)

Basigin (BSG)

Caldesmon 1 (CALD1)

Carbohydrate antigen (CA19-9)

Carcinoembryonic antigen (CEA)

Carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1)

Carcinoembryonic antigen-related cell adhesion
molecule 5 (CEACAM5)

Collagen alpha-1(VI) (COL6A1)

CYFRA 21-1

Cytokeratin-18 (CK 18)

Fascin actin-bundling protein 1 (FSCN1)

Heat shock protein 27 (Hsp 27)

Heat shock protein 70 (HSP 70)

Hematopoietic cell kinase (Hck)

Insulin-like growth factor binding protein 2 (IGFBP-2)

Insulin-like growth factor binding protein 4 (IGFBP4)

Intercellular adhesion molecule 1 (ICAM-1)

L1 cell adhesion molecule (L1CAM)

Laminin, gamma 2 (LAMC2)

Lipocalin 2 (LCN2)

Macrophage inhibitory cytokine 1 (MIC-1)

Matrix metallopeptidase 7 (MMP7)

Matrix metallopeptidase 9 (MMP-9)

Matrix metallopeptidase 11 (MMP11)

Menkes protein (ATP7A, MNK)

Mesothelin (MSLN)

Mucin 4 (MUC4)

Mucin 5AC (MUC5AC)

(Continued)

TABLE 27.2 (Continued)

Neuropilin 1 (NRP1)

Olfactomedin 4 (OLFM4)

Osteoprotegerin (OPG)

Plasminogen activator urokinase

Plectin-1

Polymeric immunoglobulin receptor (pIgR)

Proliferation-inducing ligand (APRIL)

Regenerating islet-derived 1alpha (REG1alpha)

Regenerating islet-derived 3alpha (REG3A)

S100A6

S100P

Secreted phosphoprotein 1 (SPP1)

Serine protease inhibitor (SPINK1)

SNAIL

Spark-like 1 (SPARCL1)

Syncollin (SYNC)

Tenascin-C (TNC)

Thrombospondin-1 (THBS1)

Thrombospondin 2 (THBS2)

Tissue inhibitor of metalloproteinase 1 (TIMP-1)

Trefoil factor 1 (TFF1)

UL16 binding protein 2 (ULBP2)

B—MIRNA IN SERUM OR PLASMA DIFFERENTIALLY
EXPRESSED IN PDAC

miR-10

miR-18a

miR-20a

miR-21

miR-24

miR-25

miR-99a

miR-100a

miR-155

miR-191

miR-196a

miR-200a

miR-200b

miR-210

miR-216

miR-217

(Continued)
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PDAC BIOMARKERS IN URINE

Urine is a commonly used specimen for a multitude
of testing given its noninvasive nature. Despite the
advantages of urine-based testing, significantly fewer
studies have evaluated urine as a potential source for
diagnostic biomarkers for PDAC compared with serum
or PJ. Weeks et al. performed two-dimensional differen-
tial gel electrophoresis on urine samples from patients
with PDAC, chronic pancreatitis, and healthy controls.
one hundred and twenty seven differentially expressed
protein spots were detected, of which 101 were further
identified as annexin A2, gelsolin, and CD59 using
MALDI-TOF mass spectrometry. Due to technical
challenges, the investigators did not validate the markers
with immunoblotting, which prevented a calculation of
their test performance [65].

PDAC BIOMARKERS IN SALIVA

Another promising approach is the detection of cancer
biomarkers in saliva given its simple specimen collection.
Zhang et al. performed a gene chip analysis on saliva
derived from PDAC patients. Upregulated mRNAs were
identified. Four of them were used as a panel (K-ras,
MBD3L2, ACRV1, DPM) to distinguish 30 patients with
PDAC from 30 patients with chronic pancreatitis and 30
healthy controls. ROC analysis calculated a sensitivity
and specificity of 90% and 95%, respectively. This study
provided proof of principle and demonstrated the feasi-
bility of detecting PDAC biomarkers in saliva [66].

Roy et al. analyzed urinary levels of matrix metallo-
proteases (uMMPs) and their endogenous inhibitors,

tissue inhibitor of metalloproteases (uTIMPs), by
ELISA. Both protein groups have been previously
described to be elevated in PDAC. The investigators
included urine samples of 51 patients with PDAC, 28
with pancreatic neuroendocrine tumors, and 60
healthy controls. Using a multivariable logistic regres-
sion analyses controlling for age, sex, uMMP-2, and
uTIMP-1, significant differences were identified
between PDAC patients and healthy controls. ROC
analysis revealed a sensitivity and specificity of 91%
and 75%, respectively, for the panel of uMMP-2 and
uTIMP-1 [67]. Most recently, Davis et al. performed a
metabolomic study on urine of 32 patients with PDAC
(mostly stage 2), 25 patients with chronic pancreatic
and cystic neoplasms, and 32 healthy controls. The
investigators achieved a particularly high AUC distin-
guishing PDAC from controls. These very promising
results are yet to be confirmed in large cohorts [68].

SUMMARY

Tremendous progress has been made over the last
two decades to detect reliable diagnostic biomarkers
for PDAC. Common obstacles encountered include: (1)
the heterogeneity of PDAC which makes a single diag-
nostic marker unlikely to be successful, and (2) the
close molecular biological relationship to known
premalignant conditions, namely chronic pancreatitis,
MCN, and IPMN. Studies utilizing a panel of bio-
markers achieved better test performance than single
biomarker studies. An additional challenge for inter-
pretation of these studies reflects the common inclu-
sion of patients with advanced stage PDAC which are
not curable. The future search for diagnostic biomar-
kers for PDAC will require that studies are limited to
the earliest invasive stage of PDAC, that all premalig-
nant PDAC conditions are included as controls, and
that utilization of a panel of biomarkers is required.
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BACKGROUND

The diagnosis of cancers specific to women has
been traditionally within the anatomic pathologist’s
realm. However, gynecologic pathologists have made
increasing use of molecular tests to refine microscopic
diagnosis as the genetic understanding of female can-
cer improves. Additionally, the prevention and early
detection of some gynecologic cancers have been
enhanced by molecular techniques. The model of
molecular screening has been human papilloma virus
(HPV) testing in uterine cervical cancer screening
[1�3], but molecular tests may eventually aid in the
detection of endometrial and ovarian cancer. Finally,
cancers of women have been traditionally treated with
a one-size-fits-all chemotherapeutic approach of
platinum-based regimens. However, molecular data is
increasingly being recognized as a potential way to
personalize therapy for cancers of women by histologic
and molecular subtype [4,5]. This chapter will explore
molecular techniques currently useful in the diagnosis
of gynecologic cancers, but will present only a glimpse
into the rapidly evolving future of gynecologic cancer
screening, prognostics, and theranostics.

HPVAND UTERINE CERVICAL CANCER

Background

HPV is now recognized as the almost exclusive pri-
mary cause of uterine cervical cancer. HPV-related cer-
vical cancer can have morphologic and clinical overlap
with other cancers such as endometrial cancer [6,7],
and uterine cervical cancer may not have distin-
guishing morphologic features when presenting at a
metastatic site. Additionally, benign entities such as

seborrheic keratosis, genital warts, squamous atrophy,
immature squamous metaplasia, and tuboendome-
trioid metaplasia can show morphologic overlap with
precursors to cervical cancer (high-grade squamous
intraepithelial lesion (HSIL) and adenocarcinoma in
situ) [8�11]. In these situations, biomarkers of high-
risk HPV viral integration and/or direct detection of
HPV DNA and/or RNA can be useful in making a
more accurate diagnosis. This section describes the use
of molecular testing in the context of surgical
pathology.

Overview of Molecular Mechanisms
and Traditional testing

Overall, uterine cervical cancer is the second most
common cancer in women worldwide [12]. In the third
world, cervical cancer is the most common cancer of
women, whereas in developed countries cervical can-
cer incidence has reduced to 10th in rank [12,13] due
to the successes of cervical cancer screening for precur-
sor lesions. The diagnosis of cervical cancer and its
precursors has traditionally relied upon the viral cyto-
pathic effects of HPV, including disorganized and
decreased squamous maturity, nuclear hyperchro-
masia, enlargement, and membrane irregularities,
increased/abnormal mitotic activity, and abnormal
cytoplasmic clearing (koilocytosis) [9]. The diagnosis of
metastatic lesions has required morphologic compari-
son to the primary uterine cervical tumor.

Molecular Target

The two most common molecular targets used to
aid in cervical cancer diagnosis are p16 (CDKN2A)
protein and HPV DNA and/or RNA. Briefly, E6 and
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E7 HPV DNA, mRNA, and protein are conserved in
relevant human HPV types [14]. These proteins have
the ability to take control of host cell machinery. E6
causes p53 (TP53) to be targeted for degradation via
the ubiquitin pathway, preventing normal DNA repair
and/or apoptosis. E7 binds to retinoblastoma family
proteins, causing the release of Rb-bound E2F tran-
scription factor, driving forward the cell cycle. p16 is a
nonspecific biomarker of HPV, because CDKN2A
expression is upregulated by the HPV-infected cell in
an attempt to (unsuccessfully) overcome the drive to
cell cycle progression [15,16]. In most early research
studies of the relationship of HPV with cervical cancer,
the conserved L1 DNA region (encoding a component
of the viral capsid) was used as a target to detect a
broad range of HPV types [12].

Molecular Technologies

CDKN2A upregulation can be detected by immuno-
histochemistry (IHC) directed to p16 protein in
formalin-fixed paraffin-embedded (FFPE) tissues. In

the clinical surgical pathology laboratory, HPV DNA
and/or E6/E7 RNA are usually detected by chromo-
genic in situ hybridization (CISH) directed to FFPE tis-
sues (Fig. 28.1) that can be made specific for HPV
types. Assays are usually divided into low-risk HPV
(family 6 and 11, found in benign genital warts) and
high-risk HPV (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58,
59, 67, 68, found in cervical cancer) types. PCR amplifi-
cation of the conserved L1 DNA region with MY09/11
and GP5/6 primers has been the gold standard assay
for detecting HPV in epidemiologic studies due to
high sensitivity (B99% of cervical cancer is positive
for HPV by L1 PCR) [12], but this approach has not
been widely adopted in clinical laboratories due to the
ubiquitous nature of the HPV carrier state in sexually
active populations [17,18].

Clinical Utility

In the Lower Anogenital Squamous Terminology
(LAST) standardization project guidelines [9], p16 was
recommended for use in lower anogenital tract biopsies

(A) (B)

(C) (D)

FIGURE 28.1 HPV DNA chromogenic in situ hybridization. (A) Vulvar condyloma (H&E, 4003 ) and (B) HPV DNA family 6, 11 CISH
(4003 ). Note the homogeneous nuclear pattern of staining with the HPV CISH typical of an episomal HPV copies in a low-risk HPV infection.
(C) Sacral recurrence of uterine cervical squamous cell carcinoma (H&E, 6003 ) and (D) HPV DNA family 16, 18 CISH (6003 ). Note the dis-
crete nuclear probe signals typical of HPV that has been integrated into the host genome.
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in the following situations: (1) The pathologist is consid-
ering a diagnosis of intraepithelial neoplasia grade 2
(moderate dysplasia or “IN2”). In these situations, mor-
phologic IN2 lesions represent a mixture of low-risk and
high-risk HPV lesions. A positive p16 stain can be used
to confirm a diagnosis of HSIL rather than low-grade
squamous intraepithelial lesion (LSIL). (2) The morpho-
logic differential diagnosis is between a benign lesion
(such as immature squamous metaplasia or atrophy) and
HSIL. A positive p16 stain should be used as evidence of
HSIL. (3) p16 can be used to adjudicate professional dis-
agreement regarding morphologic interpretation in small
biopsies. To qualify for a positive stain, p16 must show a
diffuse block positive reaction pattern (Fig. 28.2) within
the lesional tissue. The stain should be interpreted as
negative if there is patchy staining.

The LAST guidelines did not make any recommen-
dations for the use of HPV ISH or PCR in the context
of making a diagnosis of HSIL. Several situations arise
in routine surgical pathology practice that make HPV
ISH useful. First, warty lesions such as seborrheic kera-
tosis, traumatized skin tags (acrochordon), and rarely
epidermal nevus can show significant morphologic
overlap with anogenital condylomas [10,11]. The diag-
nosis of condyloma in some situations could have pro-
found social consequences (eg, in a child where sexual
abuse may or may not be suspected [19,20] or in cer-
tain religious groups). In these situations, it may be
preferable to document the presence of an HPV-
associated lesion by morphology and a second molecu-
lar method such as HPV ISH. Second, it can be difficult
to morphologically distinguish endocervical and endo-
metrial adenocarcinoma when the cancer is well differ-
entiated and there is not a precursor lesion (HSIL/AIS
or atypical complex endometrial hyperplasia) for refer-
ence. IHC can be useful [7], but results can be mislead-
ing in some cancers. Documenting the presence of
HPV by ISH is specific for endocervical cancer
(Fig. 28.2). Finally, metastatic HPV-associated cancers
can present a diagnostic challenge when other primary
sites are included in the differential diagnosis.

Limitations of Testing

Carrier status for anogenital HPV is approximately
50% in college-aged women [17], while the prevalence
of high-risk disease in this age group is low [21].
Highly sensitive techniques for detecting HPV are not
very specific for high-risk disease. p16 IHC may be
more specific for high-risk disease in the context of
anogenital tract biopsy specimens, but approximately
30% of expert adjudicated LSIL is p16 positive [9],
demonstrating the need to interpret HPV and bio-
marker testing in context.

Future Directions

Despite the successes of cervical cancer screening,
the high sensitivity and low specificity of current
screening methods result in overtreatment of clinically
insignificant lesions in some women. The costs and
morbidity associated with colposcopy and cervical
excision procedures are not trivial [22�25]. This situa-
tion leaves room for the development of more specific
biomarkers of cervical lesions at higher risk of devel-
oping into invasive carcinoma if left untreated.

GESTATIONALTROPHOBLASTIC
DISEASE

Background

Gestational trophoblastic disease (GTD) is defined
by tumor-like growths and frank malignancies that
arise from abnormal placental tissue. GTD, if defined
genetically, affects at least 1 in 100 pregnancies, but
many less pregnancies result in clinically significant
disease [26�28]. GTD can be subdivided into complete
hydatidiform molar pregnancy, partial mole, and
malignant neoplasms (choriocarcinoma, epithelioid
trophoblastic tumor (ETT), and placenta site tropho-
blastic tumor (PSTT)). Partial mole is estimated to
affect 1 in 100 pregnancies [27], while complete mole
affects approximately 1 in 1000 pregnancies [28]. PSTT
and ETT are rare [29,30]. Choriocarcinoma, the most
rapidly progressive form of malignant GTD, usually
arises after molar pregnancy, but occasionally these
cancers arise in the mature placenta [31]. The incidence
of choriocarcinoma after molar pregnancy appears to
vary by population, but is higher after complete mole
(B3�4%) than after partial mole (,1%) [27,28].

With rare exceptions, GTD seems to be driven by
paternal genetic (androgenetic) material present in
excess, or to the exclusion of, genetic material from the
woman [26]. Fig. 28.3 outlines the most common types
of conceptions leading to GTD. Complete hydatidiform
mole (Fig. 28.4) is an overgrowth of abnormal placental
tissue that occurs after fertilization of an empty ovum
by one (or rarely more) sperm that reduplicates to
form a diandrogenetic diploid conception. A fetus
does not form, but the placenta grows rapidly, poten-
tially leading to death of the woman from local growth
or metastasis, or progression to choriocarcinoma
(Fig. 28.5), if undetected. Partial mole (Fig. 28.6), like
complete mole, is a growth of abnormal placental tis-
sue that occurs after fertilization of an ovum with a
normal haploid maternal chromosome complement by
two (or rarely more) sperm, resulting in a diandroge-
netic triploid conception. An abnormal fetus usually
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(C) (D)

(E) (F)

(G) (H)

FIGURE 28.2 IHC and HPV testing in the differential diagnosis of endocervical versus endometrial adenocarcinoma. (A) A cervical/endo-
cervical cytology screening (Pap) test showed atypical glandular and squamous cells in a 51-year-old woman (Papanicolau stained liquid-
based preparation, 6003). Concurrent HPV testing for the Pap test was negative. (B) The patient underwent fractional endometrial and endo-
cervical curettage, both of which showed well-differentiated adenocarcinoma (H&E, 4003). (C) IHC was positive with antibodies directed to
p16 (4003) and (D) polyclonal carcinoembryonic antigen (4003), and (E) was negative for vimentin (4003) and (F) estrogen receptor (4003).
(G) HPV DNA CISH (4003) was negative. (H) HPV E6/E7 RNA CISH was positive (4003).
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forms in addition to the abnormal placental tissue of
partial mole. In contrast to the androgenetic mecha-
nism of most molar pregnancies, some complete moles
are biparental, arising from a seemingly normal dip-
loid conception. Some of these women have been
found to have mutations in the NLRP7 gene with an
autosomal recessive pattern of inheritance [32].
Termed familial molar pregnancy, women with two
deleterious NLRP7 mutations do not have normal
pregnancies and usually report only miscarriages and
molar pregnancies. The mechanism of GTD in these
women is not yet clear. Some data suggest that carriers
of NLRP7 mutations also have more frequent miscar-
riages than the general population, but these women
can have normal children [33].

Earlier prenatal care has led to the earlier detection
and cure of most GTD. Even choriocarcinoma, one of
the most rapidly progressive and aggressive human
cancers, is usually curable if detected before advanced
complications occur [33]. It is usually recommended
that a woman be cured of GTD prior to becoming
pregnant again, because serum beta-HCG levels are
the mainstay of monitoring patients during and after
treatment [34]. Unfortunately, the clinical and patho-
logic diagnosis of molar pregnancy is imperfect
due to overlapping clinical and morphologic features
with a normal missed abortion (Fig. 28.7), and so the

traditional approach of caution in monitoring women
with only suspected molar pregnancy as a cause of
miscarriage has often become unacceptable, especially
as women are more frequently attempting pregnancy
within smaller reproductive windows later in life. As
such, molecular techniques have become part of the
standard of care for appropriately diagnosing GTD
and triaging women into the appropriate management
stratified by risk.

Molecular Target

The molecular diagnosis of GTD capitalizes on two
important principles: paternity and ploidy. As outlined
in Fig. 28.1, the molecular distinction between nonmo-
lar, partial molar, and complete molar pregnancy can
be usually deduced using one or both of these princi-
ples. For example, approximately 85% of all triploid
conceptions are diandric triploid partial moles (the
remaining are digynic triploids and do not carry the
risk of subsequent recurrence and GTD of partial
mole) [26]. Detection of triploidy alone in a suspicious
morphologic context is virtually diagnostic of partial
mole. However, ploidy does not separate complete
mole from normal and this is a diagnostic problem
that commonly arises in early pregnancy when the

FIGURE 28.3 Mechanisms of molar pregnancy. Partial
moles are usually conceived as a result of two different
sperm fertilizing a normal ovum, but occasionally partial
moles arise through other mechanisms (eg, triandrogenetic
tetraploidy) that produce paternal chromosome comple-
ments in excess of maternal chromosome complements.
Complete moles are usually conceived as a result of one
sperm fertilizing an empty ovum and then reduplicating its
chromosome complement, but complete moles also can be
dispermic diploid, tetraandrogenetic tetraploid, or biparen-
tal. Biparental complete moles should raise concern for
familial molar pregnancy syndrome, caused by biallelic
maternal mutations in the NLRP7 gene (autosomal recessive
inheritance).
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morphologic differences are subtle [35]. Techniques
that determine either parental imprinting or genotype
can be used to distinguish diandric diploid complete
moles from normal biparental diploid conceptions [36].

Molecular Technologies

p57 IHC. Because the highest risk of recurrent GTD
and choriocarcinoma is after complete molar preg-
nancy, it follows that accurate and timely diagnosis
of complete mole is of primary importance. p57 IHC
is a rapid and accurate technique [36] that utilizes
the concept of imprinting. It is important to note that
p57 protein, encoded by the CDKN1C gene locus,
does not play a specific role in the mechanism of
molar pregnancy and is only used as a convenient
marker of maternal contribution of DNA. Because
CDKN1C is normally paternally imprinted, the lack
of maternal p57 protein expression can be used as a

(A) (B)

(C) (D)

FIGURE 28.4 Complete hydatidiform mole. (A) Complete moles are recognized by abnormal enlargement and irregularity in shape of
chorionic villi at low power magnification (H&E, 203 ). (B and C) Circumferential atypical trophoblastic proliferation, peripheral fibroplasia
of villous stroma, and abortive or no fetal vessels are typical (H&E, 1003 and 2003 , respectively). (D) IHC for p57 protein (p57 IHC, 2003 ),
expressed maternally from the paternally imprinted CDKN1C gene, is lost in the villous stroma and cytotrophoblast, but expression is main-
tained in the intermediate trophoblast.

FIGURE 28.5 Choriocarcinoma (H&E, 1003 ). Choriocarcinoma
shows similar features to the atypical trophoblast of complete mole,
characterized by a biphasic proliferation of mononuclear trophoblast
and syncytiotrophoblast. To make a diagnosis of choriocarcinoma,
immature chorionic villi should be absent. Occasionally, choriocarci-
noma arises in the mature placenta.

366 28. MOLECULAR TESTING IN GYNECOLOGIC CANCER

IV. MOLECULAR TESTING IN ONCOLOGY



surrogate for androgenetic complete molar preg-
nancy. In developing placental tissue, paternal
imprinting of CDKN1C occurs in the villous stroma
and cytotrophoblast, but not in the intermediate tro-
phoblast. Therefore, the intermediate trophoblast can
be used as a good internal control of antigenicity
(Fig. 28.4). One can imagine a variety of pitfalls using
this approach (abnormal imprinting of CDKN1C,
monosomy or uniparental disomy of chromosome 11,
biparental complete mole, etc.) that could cause
false-negative or positive results [36].

Ploidy analysis by flow cytometry, digital image analysis,
and FISH. Ploidy is useful for detecting partial moles,
which are usually triploid. Flow cytometry and digital
image analysis (DIA) have largely been replaced
by fluorescence in situ hybridization (FISH) for
determining ploidy on FFPE tissue [37] (Fig. 28.8).

Flow cytometry can estimate the ploidy of a concep-
tion by measuring the amount of incorporated fluores-
cent dye binding to double-stranded DNA per cell as
compared to normal diploid cells. Likewise, DIA uses
a Fuelgen DNA stain to bind FFPE sections of placen-
tal tissue. Light is shined through the stained slide,
and the amount of light detected after passing through
the slide is normalized to the amount of light passing
through control diploid cells to determine ploidy.
Virtually any FISH assay used to detect copy number
can be used to deduce ploidy of placental tissue. For
example, a simple HER2 FISH assay used to detect
ERBB2 amplification in breast cancer can also be used
to detect triploid conceptions [38]. A single-locus probe
could give false-positive results in a case of single
chromosome trisomy, and so using probes on multiple
chromosomes increases the specificity for triploidy.

(A) (B)

FIGURE 28.6 Partial mole. (A) Partial mole shows some features in common with complete mole, including abnormal villous enlargement
and irregularity in villous shape (H&E, 203 ). The villous outlines in partial mole may be more dramatically scalloped, and the degree of tro-
phoblastic hyperplasia is usually less. (B) A fetus or other evidence of fetal development may be present (H&E, 4003 , demonstrating erythro-
blasts in fetal vessels).

(A) (B)

FIGURE 28.7 Hydropic nonmolar pregnancy. Hydropic change occurs in all immature placentas after fetal death and becomes more dra-
matic as the postmortem interval increases. (A) This can result in villous enlargement (H&E, 403 ). (B) Additionally, single chromosome
anomalies can be associated with villous hydrops and architectural abnormalities (H&E, 1003 , first trimester placenta with trisomy 21).
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Some clinically available FISH assays test the most
common chromosome gains and losses in early preg-
nancy, providing information about these abnormali-
ties in addition to the overall ploidy [37].

Genotyping. Genotyping has become the gold stan-
dard in molecular diagnosis of molar pregnancy,
because it can be used to both determine ploidy and
parent of origin of the genetic material present [36].
The combination of these two factors can be used in a
single test that distinguishes complete mole, partial
mole, and nonmolar pregnancy in most settings.
Genotyping is most simply accomplished by short tan-
dem repeat (STR, also known as microsatellite repeat)
testing. This technology is widely available for other
purposes such as paternity testing, bone marrow
engraftment, forensic and clinical specimen identity
testing, zygosity determination in twins, and maternal
cell contamination in prenatal specimens. Each STR is
PCR amplified and the product measured for fragment
size, usually by capillary electrophoresis. Measuring
multiple highly polymorphic loci can be used to deter-
mine the number of chromosome complements that
are likely to be present and the parent of origin for
each haploid set. A complete mole would be expected
to show two doses of paternal marker contribution
(usually identical) with no maternal contribution. A
partial mole would show two (usually nonidentical)
paternal contributions and one maternal contribution
at each marker. A nonmolar pregnancy would typi-
cally show biparental inheritance at each marker.
Genotyping can also be used to determine whether a
malignant tumor is GTD [39] (Fig. 28.9).

Clinical Utility

Testing for molar pregnancy is optimally done using
a combination of clinical, morphologic, and molecular
test result data. Guidelines for when and when not to
use ancillary testing in addition to morphology have
not been established. In general, an experienced surgi-
cal pathologist can distinguish between products of
conception that are clearly morphologically normal and
those that are not classically normal. Because even
experts in placental and gynecologic pathology are not
perfect in distinguishing molar from nonmolar preg-
nancy in difficult cases [35], consideration should be
given to ancillary techniques when morphologic clues
are equivocal or there is clinical suspicion for GTD.
Most referral laboratory practices use morphology and
p57 IHC as a rapid triage to diagnose complete moles,
with reflex to genotyping or ploidy testing when the
morphology is abnormal but p57 is normal.

Limitations of Testing

Many exceptions occur in early pregnancy losses that
may contribute to false assumptions if molecular tests
are not used correctly in conjunction with morphologic
and clinical data. For example, complete moles in famil-
ial molar pregnancy are biparental diploid, producing
normal molecular test results. Likewise, ploidy testing
cannot be used blindly as a test for partial molar preg-
nancy, as approximately 15% of triploid conceptions and
most tetraploid conceptions represent nonmolar preg-
nancies without excess paternal contribution. Genotype
testing comes with its own technical problems. Ideally
one would have pure maternal, paternal, and placental
DNA to compare by STR testing, but gathering parental
blood samples is inconvenient. Such testing usually com-
pares placental tissue and maternal decidual tissue dis-
sected from the FFPE blocks, a process that requires
skilled laboratory staff for sample preparation and inter-
pretation of specimens that are invariably contaminated
due to the natural admixture of maternal and placental
tissue in endometrial curettage specimens.

Future Directions

Array comparative genomic hybridization and
noninvasive prenatal screening have the potential to
determine ploidy and genotype in the prenatal setting,
sooner than currently available test methods for diag-
nosing molar pregnancy. As these tests develop, it is
likely that many molar pregnancies will be detected
even before a surgical pathologist examines the pro-
ducts of conception, and so the pathologist may move
into an equally important confirmatory and backup
role to the prenatal tests.

FIGURE 28.8 Partial mole demonstrating triploid chromosome
complement by multiplex FISH. Centromeric probes are directed to
chromosomes X (green), Y (red), and 18 (aqua). The arrows indicate
cells with an XXY, 118 signal pattern. All other tested FISH probes
(13, 15, 16, 21, 22) also showed three copies, indicating triploidy.
Correlation with morphology and/or genotyping is required to dis-
tinguish diandrogenetic triploid partial moles from digynic nonmolar
triploid conceptions.
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ENDOMETRIAL STROMAL SARCOMA

Background

A limited number of mesenchymal tumors of
the gynecologic tract have reproducible chromosomal
translocations that can be used to make a diagnosis
when morphology or context is challenging. Endometrial
stromal sarcoma (ESS) [40], inflammatory myofibroblas-
tic tumor (IMT) [41], aggressive angiomyxoma [42], and

rare perivascular epithelioid cell (PEC) tumors [43] are
examples. ESS is a rare, malignant neoplasm arising in
the endometrial stroma, accounting for less than 1% of
all uterine malignancies [44]. In the usual case with clas-
sic morphology mimicking normal endometrial stroma,
a diagnosis can be confidently rendered by morphology
alone. IHC (desmin, caldesmon, smooth muscle actin,
CD10, ALK, HMB45) can be helpful in distinguishing
ESS from smooth muscle tumors, PEComa, and IMT, but
there can be immunophenotypic overlap, in particular

FIGURE 28.9 Genotyping in diagnosis of gestational trophoblastic disease. A young woman presented with choriocarcinoma in an ovar-
ian teratoma, initially diagnosed as mixed germ cell tumor. It came to light that she had a molar pregnancy 4 years prior. Genotyping anal-
ysis was performed using DNA extracted from (A) normal ovary, (B) teratoma, (C) prior molar pregnancy, and (D) choriocarcinoma. Both
the molar pregnancy and choriocarcinoma showed allelotypes that matched and were different from the woman’s ovary and teratoma,
proving gestational choriocarcinoma occurring in the ovary arising from the prior molar pregnancy. The molar pregnancy and choriocarci-
noma were homozygous at all alleles, suggesting a monospermic mechanism of conception typical of complete hydatidiform mole.
Contaminating inflammatory cells in the choriocarcinoma are responsible for the minor contaminating maternal peaks in the electrophero-
grams for the choriocarcioma (even smaller contaminating peaks from maternal decidua are present in the electropherograms from the
molar pregnancy).
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between pure smooth muscle tumors and ESS with
smooth muscle differentiation [45,46]. CD10 has been the
most useful positive marker for ESS, but CD10 can show
variable expression in other cancers, and some ESS are
CD10 negative. Even more challenging are scenarios
where the diagnosis of ESS was initially missed in a hys-
terectomy specimen (usually diagnosed as leiomyoma)
or documentation has been lost, and a woman presents
with metastatic disease in an unexpected location such
as peritoneum, liver, or lung. Recurrences can notori-
ously happen years to even decades after the primary
cancer is removed [47�49]. Molecular testing can be use-
ful in confirming a suspected diagnosis of ESS in these
scenarios. Additionally, some rearrangements have rela-
tive prognostic value [50].

Molecular Target

The most common rearrangement in ESS occurs
between the short arm of chromosome 7 and the long arm
of chromosome 17, t(7;17)(p15;q21), resulting in a fusion
gene between JAZF1 and JJAZ1 [51]. Other reported trans-
locations involve a variety of genes, including YWHAE,

PHF1, EPC1, NUTM2A/B, SUZ12, MEAF6, ZC3H7B,
BCOR, MBTD1, CXorf67. Approximately 60% of ESS
harbor a JAZF1, YWHAE, or PHF1 rearrangement [40,48].

Molecular Technologies

A variety of technologies are now available to detect
chromosomal translocations. Break-apart FISH strate-
gies can be used to detect rearrangements in the most
common involved genes, JAZF1, YWHAE, and PHF1
(Fig. 28.10). Reverse transcriptase PCR can also be
used to amplify the transcripts of gene fusions, but a
multiplex approach would be needed to detect all
common rearrangements.

Clinical Utility

Most ESS can be diagnosed by a surgical pathologist
using gross morphology and microscopy. In morpho-
logically difficult cases, molecular testing can be useful
to confirm the suspected diagnosis (excellent specific-
ity), but current approaches lack sensitivity for use of

(A) (B)

(C) (D)

FIGURE 28.10 High-grade endometrial stromal sarcoma. (A�C) High-grade endometrial stromal sarcoma (H&E, 203 , 1003 , and 4003 ,
respectively). (D) FISH break-apart strategy demonstrated rearrangement of the 17p13.3 YWHAE locus (3’ probe red, 5’probe green, fusion
yellow).
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molecular testing in isolation. Molecular testing can be
particularly useful in confirming the diagnosis of
ESS when suspected based on morphology at an
extrauterine site, especially when a clinical history
of ESS has not been previously documented [46�48].
Additionally, some data suggest that the YWHAE
translocation is confined to high-grade ESSs having
worse prognosis, suggesting that testing may even
have prognostic value at diagnosis, especially if tumor
grade is in question [40,50].

Limitations of Testing

Unfortunately, a large subset of ESS do not harbor
one of the common recurrent translocations, making
currently available tests less useful in the primary
diagnostic setting. Additionally, benign endometrial
stromal nodules can also harbor JAZF1 rearrange-
ments [45,51]. This is particularly important in the
setting of endometrial biopsy or morcellated hyster-
ectomy showing an endometrial stromal tumor
[49,52]. A JAZF1 translocation cannot be used as evi-
dence of malignancy in these settings where determi-
nation of invasion is also challenging (if not
impossible).

Future Directions

Next-generation sequencing (NGS) technologies
(both DNA- and RNA- based) have the potential to
increase the sensitivity of molecular testing for ESS by
widening the net of variant translocations that can be
detected in a single assay. As costs for NGS go down,
it is likely that these technologies will increasingly be
used by surgical pathologists to make more accurate
and prognostically useful diagnoses for unusual mes-
enchymal tumors in the gynecologic tract.

ADULT GRANULOSA CELLTUMOR

Background

Adult granulosa cell tumor (GCT) is a neoplasm
that is thought to arise from the granulosa cell tissue
in developing ovarian follicles, corpus lutea, or persis-
tent follicle cysts. GCT cells usually have a similar
appearance to their benign counterparts, but undergo
neoplastic transformation and tumorigenesis to pro-
duce a cancer with malignant potential through
unknown mechanisms. GCT is the most common of
sex-cord stromal tumors of the ovary, affecting a broad
age range of adult women [53,54]. Classic morphology
tumors do not present a diagnostic challenge, but there
is morphologic overlap with other entities, including

benign ovarian fibroma. Similar to ESS, GCT often
recurs years after the initial presentation [53,54] and
can occasionally provide significant diagnostic chal-
lenge in the metastatic setting.

Molecular Target

Whole transcriptome RNA sequencing of GCT has
shown a single hotspot mutation in FOXL2, c.402C.G
(p.C134W) in nearly all GCT with classic morphology
[55]. Rarely, juvenile GCTs, fibromas, and thecomas
have been reported to have the FOXL2 mutation, but
no other neoplasms have been shown to be mutated at
this locus. The presence of FOXL2 mutations in cancers
other than GCT is controversial due to the morpho-
logic overlap with juvenile GCT and fibroma, calling
into question the diagnostic gold standard [56,57].
FOXL2 mutations have been shown to rarely occur in
granulosa cell proliferations in epithelial ovarian
tumors, suggesting the possibility of hybrid epithelial
and sex-cord stromal neoplasia [58].

Molecular Technologies

Any molecular test designed to detect DNA point
mutations in FFPE tissue could be used to detect the
hotspot FOXL2 mutation. Fig. 28.11 provides an exam-
ple of a pyrosequencing approach.

Clinical Utility

The c.402C.G FOXL2 mutation is present in nearly
all classic morphology GCT, but such tumors are not a
diagnostic challenge for the experienced surgical
pathologist. Variant morphology GCT (diffuse GCT,
luteinized GCT) can show overlap with fibrothecoma
and other sex-cord stromal tumors, making the test
possibly helpful in such cases. When GCT presents as
recurrence in an extraovarian location, FOXL2 testing
can be very useful for confirming the diagnosis when
other available information (morphology, IHC) are rel-
atively nonspecific.

Limitations of Testing

It should be noted that variant morphology GCT, as
defined by expert pathologists has a FOXL2 mutation
rate that is much less than classic GCT, begging the
question of gold standard for these tumors
[55�57,59�61]. Until a better understanding of these
variant morphology neoplasms is obtained, a negative
FOXL2 mutation test cannot be used as evidence to
exclude the diagnosis of GCT, but a positive test may
aid in expert diagnostic consensus and may have
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prognostic significance [60,61]. IHC for FOXL2 protein
is available, but expression is seen in GCT and a vari-
ety of other sex-cord tumors [62].

Future Directions

Discovery of FOXL2 as an early driver of adult
granulosa cell tumorigenesis may be important to fur-
ther refining morphologic cancer classification in this
category. Other, as yet undiscovered, drivers may be
prognostically important in malignancies currently
classified as adult GCTs that are FOXL2 negative.
Additionally, discovery of these drivers could result in
targeted therapy for these cancers that currently do not
have specialized therapy available beyond what has
been the standard for epithelial ovarian cancer.

LYNCH SYNDROME SCREENING
IN ENDOMETRIAL CANCER

Background

Approximately 50,000 women in the United States
are diagnosed with endometrial cancer each year, and
10,000 will die as a result of their disease. The lifetime
incidence is approximately 1 in 37 women [63].
Although major risk factors revolve around estrogen
excess (unopposed estrogen therapy, obesity), approxi-
mately 3�7% of cases are thought to be attributable to
hereditary predisposition [64�68]. The most common
hereditary predisposition is germline mismatch repair
(MMR) deficiency, also known as Lynch syndrome.
Though the prototypic Lynch syndrome cancer is
colorectal adenocarcinoma, over half of women with

(A) (B)

(C)

FIGURE 28.11 Adult granulosa cell tumor. (A and B) Retroperitoneal mass, core biopsy (H&E, 403 and 4003 , respectively). This post-
menopausal woman presented with retroperitoneal mass after hysterectomy and bilateral salpingo-oophorectomy 5 years prior to remove an
infarcted ovarian mass. (C) A FOXL2 c.402C.G mutation was detected by pyrosequencing in DNA extracted from the retroperitoneal tumor
tissue, confirming a diagnosis of metastatic adult granulosa cell tumor. The prior infarcted ovarian mass was likely the primary site.

372 28. MOLECULAR TESTING IN GYNECOLOGIC CANCER

IV. MOLECULAR TESTING IN ONCOLOGY



Lynch syndrome will present first with endometrial
cancer [64,66,68]. Ovarian cancer is less common as an
incident Lynch syndrome cancer. Because over half of
women with Lynch syndrome and incident endome-
trial cancer do not have a personal or family history
suggestive of Lynch syndrome [64,66,68,69], universal
screening of endometrial adenocarcinoma for evidence
of MMR defects has become increasingly accepted.
Detection of affected women can reduce morbidity and
mortality of the proband and affected family members
through appropriate cancer screening and preventative
measures [70,71].

Overview of Molecular Mechanisms
and Traditional Testing

Microsatellite instability (MSI), shortening or length-
ening of small repetitive elements in DNA, is a result of
the inability of MMR enzymes to repair random muta-
tions that occur during DNA synthesis [72,73]. This
increased mutation rate is thought to be a major driver
of tumorigenesis in endometrial cancer, as approxi-
mately 25�30% of endometrial cancers show MSI
[64,66,74,75]. MMR proteins can be thought of as tumor
suppressors, and deficiency can be caused by damaging
point mutations, insertions and deletions, promoter
methylation, and rearrangement. These alterations can
happen in the germline, such as in Lynch syndrome, or
sporadically. Though a large proportion of endometrial
cancers show MSI, germline mutations in MMR genes
are only detected in about 2�4% of patients with endo-
metrial cancer [64,65,68,69]. Most of these cancers are of
endometrioid type, but other histologies have been
reported. Factors that increase the probability of Lynch
syndrome in a woman with incident endometrial can-
cer include location in the lower uterine segment, dedif-
ferentiated or mixed endometrioid and clear-cell
histology tumors, synchronous ovarian cancer (espe-
cially clear cell carcinoma), and detailed cancer charac-
teristics, including tumor infiltrating lymphocytes and
mucinous differentiation [76,77].

Molecular Target

The first tests that were used to screen for MSI in can-
cer targeted a variety of types of microsatellites, includ-
ing dinucleotide and pentanucleotide DNA repeats [72],
but current methods target mononucleotide repeats that
are usually nonpolymorphic in the population [78�80].
MMR proteins most commonly altered in incident endo-
metrial cancer are MLH1, MSH6, MSH2, and PMS2.
MSH2 and MLH1 germline mutations, as in colorectal
cancer, are usually associated with a much younger age
of endometrial cancer onset. Finally, most microsatellite

instability high (MSI-H) endometrial cancers are spo-
radic and driven by the methylation pathway, showing
methylation of the MLH1 gene promoter as the cause
MLH1 expression loss [75].

Molecular Technologies

MSI can be detected by PCR through amplification of
microsatellites that are scattered throughout the genome.
Mononucleotide repeats are preferred due to the sensi-
tivity of these regions to MMR deficiency, relatively non-
polymorphic nature of the loci, and ease of
interpretation of mononucleotide repeats in microsatel-
lite unstable cancers due to the tendency for these
regions to uniformly shorten (rather than lengthen) in
the face of MMR deficiency [78�80]. A normal compari-
son is used to prevent false-positive results that could
otherwise occur if a patient shows microsatellite length
variation polymorphically in the germline. Variation in
microsatellite length can be detected by electrophoresis
of amplification products. An MSI-H cancer is defined as
a cancer with greater than 20% of tested markers show-
ing instability (eg, two of five markers) (Fig. 28.12).
Alternatively, IHC can be used to detect loss of expres-
sion of MMR proteins (Fig. 28.13). MLH1 promoter
hypermethylation is usually detected by using bisulfite
treatment of cancer DNA followed by PCR using pri-
mers directed to wild-type DNA and the sequence
change caused by bisulfite treatment of methylated
DNA in the MLH1 promoter. A difference in amplicon
length and fluorescent color can be created in the primer
design to detectMLH1 promoter methylation.

Clinical Utility

Guidelines are rapidly evolving to suggest that all
women with endometrial cancer should receive Lynch
syndrome screening in some form. Clinical screening
(taking a detailed family and personal history) should be
done for all women with endometrial or ovarian cancer.
Some screening proponents have suggested that all
women with endometrial cancer should have their can-
cers screened for evidence of Lynch syndrome, but in a
resource-constrained environment, an upper age cutoff
of 60 or 70 years may be reasonable. Screening with both
MMR IHC and MSI PCR is the most sensitive due to
uncommon false-negative results with both methods, but
either method is considered to be acceptable. IHC offers
the advantage of identifying the most likely affected
gene so that women with sporadic MLH1 promoter
hypermethylation can be identified quickly and triaged
to methylation testing. Women with MMR IHC sugges-
tive of Lynch syndrome can be referred for genetic
counseling and germline mutation testing (Fig. 28.14).
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A significant proportion of women identified with
probable Lynch syndrome by universal screening do not
have a detectable germline mutation, suggesting that
other somatic alterations may be at play in some cancers
[64,66,68,81]. It is recommended that women diagnosed
with Lynch syndrome undergo enhanced colon cancer
screening. Annual transvaginal ultrasound and/or endo-
metrial biopsy, urine cytology, and prophylactic hyster-
ectomy and oophorectomy can be considered [70,82,83].
Potentially affected family members can also be tested
for the familial mutation and undergo preventative
screening and surgeries if confirmed to be affected.
Increased frequency of colonoscopy has been shown to
decrease the incidence of colon cancer in patients with
Lynch syndrome, justifying the cost of inclusive univer-
sal tumor screening to identify these patients [84�86].

Limitations of Testing

Microsatellite fragment length shifts may be more sub-
tle in endometrial cancer patients than in colon cancer
patients [87], especially in MSH6 carriers, potentially

resulting in false-negative MSI PCR results. Conversely,
MMR IHC is normal in the cancers of some patients with
Lynch syndrome [64], usually due to a germline missense
mutation that is associated with normal expression of a
dysfunctional protein. It is estimated that over half of
women having an MMR IHC pattern suggestive of
Lynch syndrome do not have a detectable germline
mutation by current methods [64,66,68]. Some of these
women have uncommon mutations (eg, gene inversions
or deep intronic mutations) [81,88,89], but more of these
women probably have uncommon somatic mutations as
the cause of their disease [81].

Future Directions

Recently, biallelic MMR gene mutations have been
shown to explain some endometrial and colon cancers
with abnormal MMR IHC patterns that would other-
wise be suggestive of Lynch syndrome [81]. Some of
these patients have somatic or germline mutations in
POLE, a DNA polymerase [74,81,90]. When POLE is
mutated in its exonuclease domain, the result is an

FIGURE 28.12 PCR detection of MSI
in cancer. The electropherogram shows
five mononucleotide repeat markers in the
tumor (top) that demonstrate shortening in
the tumor versus the matched normal tis-
sue (bottom). When 20% or greater of
tested markers show instability, the cancer
is considered to be MSI-H.
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ultramutated cancer. If secondary biallelic MMR gene
mutations occur, this results in cancer MSI. NGS has
now made possible the detection of MSI, POLE, and
MMR gene defects all in one test. It is not yet clear if
this type of testing will be advantageous at the initial
cancer screening step or should be used when a posi-
tive screen by MSI and/or MMR IHC is not explained
by MLH1 promoter hypermethylation and/or germline
MMR gene testing.

FUTURE DIRECTIONS IN MOLECULAR
TESTING IN GYNECOLOGIC CANCER

The Cancer Genome Atlas has analyzed extensive
genome level sequencing, expression, and copy number
variation analysis in endometrial carcinoma [74], carci-
nosarcoma, and high-grade serous ovarian carcinoma
[91]. These studies have shown new ways of thinking
about cancer classification (other than histologic

(A) (B)

(C) (D)

(E)

FIGURE 28.13 Mismatch repair IHC in an endometrial cancer. (A) Endometrial cancer (H&E, 2003 ) demonstrating loss of expression of
(B) MLH1 and (C) PMS2 with normal expression of (D) MSH2 and (E) MSH6. This pattern of MMR protein expression is most commonly the
result of somatic hypermethylation of the MLH1 gene promoter in the cancer, but can also be seen in women with Lynch syndrome that have
an MLH1 germline mutation.
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differences) that are probably prognostically and thera-
nostically useful. Though molecular classifications often
largely overlap with traditional histopathology classifi-
cation of tumors, these studies have shown distinct
molecular subtypes that explain cancers that behave in
an unexpectedly good or poor manner based on histol-
ogy alone. It is likely that all common gynecologic can-
cers in the future will undergo some combination of
pathology review and molecular testing to better refine
cancer classification, prognosis, and management.
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INTRODUCTION

Renal cell carcinoma (RCC) represents a group of
diseases arising from renal tubule epithelial cells,
which historically has been resistant to available thera-
pies. The major socioeconomic impact of this disease
continues to grow with its rising incidence worldwide.
More than 63,000 new diagnoses of malignant tumors
of the kidney are projected in the United States in
2014, and an estimated 13,860 patient deaths will be
attributed to this disease [1]. RCC consists of three
main histopathologic subgroups with clear-cell RCC
(ccRCC) being the predominant histology, representing
approximately 70�75% of reported cases. In contrast,
papillary (pRCC) and chromophobe RCCs account for
approximately 10�15% and only 5% of cases, respec-
tively [2]. The remaining histologic subtypes are rarer
entities including: multiloculated clear cell, collecting
duct, mucinous tubular, spindle cell, medullary, Xp11
translocation RCC, carcinomas associated with neuro-
blastoma, RCC unclassified, and newer varieties being
introduced in recent years [3�5].

Historically, histology has been the primary means
of risk-stratifying patients and it continues to play an
important role in clinical management. ccRCC is
known to carry an unfavorable prognosis compared
with other, less common, histologic subtypes [6]. Like
other malignant diseases, the multitude of separate
histologic entities and their associated variable progno-
sis has led to the hypothesis that a variety of molecular
derangements underlie RCC oncogenesis and that elu-
cidation of these mechanisms will lead to the develop-
ment of more effective targeted therapies.

The study of hereditary RCC models has revealed
the importance of genetics and has been applied to
develop a deeper understanding of somatic mutations
and the interplay within the landscape of cancer devel-
opment and propagation. Hereditary RCC accounts for
3�5% of all cases of kidney cancer [7]. There are 10
described cancer susceptibility syndromes with 12
associated germline mutations [7�11] (Table 29.1). In
recent years, mutated genes identified through the
study of familial kidney cancers have been of para-
mount importance in understanding carcinogenesis of
sporadic kidney cancers. Von Hipple-Lindau (VHL)
disease was the first of these conditions to be recog-
nized and the genomic discoveries related to this entity
serve as a foundation on which the molecular under-
standing of RCC is based.

MOLECULAR TARGETS AND
TECHNOLOGIES

VHL Disease

VHL disease is an autosomal-dominant cancer syn-
drome that predisposes involved patients to hemangio-
blastomas of the cranial neural axis and retina, as well
as pancreatic and kidney cysts, pancreatic neuroendo-
crine tumors, endolymphatic sac tumors, pheochromo-
cytomas, and ccRCC [15]. Early cases of this syndrome
were described in 1860 in France. However, the heredi-
tary nature of the syndrome was not recognized until
30 years later by von Hipple with later contributions
by Lindau. There is significant variation in the pheno-
type of affected patients, which we now know is
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attributable to the heterogeneity of mutations in the
target gene. The mapping and identification of the
mutated gene to 3p25�26 occurred in the early 1990s
and has vastly broadened the understanding of both
familial and sporadic kidney cancer [15].

The VHL gene is a classic tumor suppressor in that
mutations of both copies are required for cancer devel-
opment. It encodes the substrate recognition compo-
nent of an E3 ligase, the major targets of which are
hypoxia-inducible factor-1α (HIF1α) and hypoxia-
inducible factor-2α (HIF2α) [16]. HIF1α and HIF2α are
transcription factors that regulate hypoxia-responsive
genes, including, among others, vascular endothelial
growth factor (VEGF), platelet-derived growth factor
(PDGF), TGFα (a ligand of the epidermal growth factor
receptor), the glucose transporter, GLUT1, and car-
bonic anhydrase IX [17]. In normoxia, the VHL com-
plex, which is formed by the interaction between VHL,
elongin B/C, and Cul2, targets HIF1α and HIF2α for
polyubiquitylation and subsequent proteasome-
mediated degradation [16]. However, in the presence
of hypoxia and absence of HIF modification by prolyl
hydroxylases, the complex does not bind HIF, allowing
for robust transcription of downstream HIF-dependent

genes [18]. Mutations that inactivate the VHL protein,
which occur typically in the alpha domain that binds
elongin C/B and Cul2, or in the beta domain that tar-
gets HIF, result in constitutive production of HIF tar-
get genes leading to cell proliferation and angiogenesis
[19]. In addition, there are non-HIF targets of VHL
involving the regulation of microtubules, integrin mat-
uration [20�22], NF-κB activity [23], and p53 stability
[24] that likely contribute to RCC pathogenesis.

VHL alterations represent the classic paradigm of a
hereditary cancer gene that is often somatically
mutated in sporadic forms of kidney cancer. Nickerson
et al. detected somatic mutations of VHL in 82.4% of
tumors from patients with ccRCC [25]. This study also
revealed that 8.3% of tumors had VHL promoter sites
that were hypermethylated and silenced. In total, 91%
of ccRCCs studied expressed alterations of the gene
through genetic or epigenetic mechanisms. These find-
ings have been corroborated in larger scale genetic
sequencing studies [26,27].

Other inherited cancer susceptibility syndromes
associated with an increased risk of kidney cancer
have played a role in identifying molecular targets for
therapeutic intervention. Hereditary pRCC (type I

TABLE 29.1 Kidney Cancer Syndrome Gene Targets [7�14]

Gene Protein Disease/syndrome Histology

VHL pVHL VHL disease Clear cell

MET c-MET Hereditary papillary renal cell
carcinoma

Papillary type 1

BAP-1 BRCA-associated
protein

BAP1-mutant disease Clear cell

FLCN Folliculin Birt�Hogg�Dube syndrome Oncocytic, chromophobe

TSC1 Hamartin Tuberous sclerosis complex Anigomyolipoma

TSC2 Tuberin

FH Fumarate hydratase Hereditary leiomyomatosis renal
cell carcinoma

Papillary type 2

t(3;8)(p14.2)(q24.1) TRC8 Familial clear-cell kidney cancer
with chromosome 3 translocation

Clear cell

t(3;6)(q12;q15)

t(1;3)(q32-q41;q13q21)

t(2;3)(q35;q21) DIRC2

Other chromosome 3 translocations

PTEN PTEN PTEN hamartoma syndrome Clear cell

SDHB Succinate
dehydrogenase
subunits B, C, D

SDH-associated kidney cancer Clear cell, chromophobe,
oncoytoma

SDHC

SDHD
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papillary) is characterized by activating mutations of
the MET gene on 7q31 with a reported rate of mutation
in sporadic cases between 4% and 10% [28].
Alterations of the tuberous sclerosis complex, com-
prised of TSC1 and TSC2, have recently been found to
occur in approximately 5% of ccRCCs and are
expected to predict sensitivity to mTOR inhibitor treat-
ment in patients [29]. Conversely, somatic mutations of
other noted germline targets have been rarely identi-
fied, including FLCN, FH, and SDHB [30]. Likewise,
commonly altered genes in other cancers, for example,
RAS, BRAF, TP53, RB, CDKN2A, PIK3CA, PTEN,
EGFR, and ERBB2, are rarely directly genetically
affected in the oncogenesis of kidney cancer.

Chromatin Remodeling/Histone Modification:
SETD2, JARID1C (KDM5C), UTX, MLL2

With the advancement of genomic technologies, such
as next-generation sequencing (NGS) and high-density
single-nucleotide polymorphism (SNP) arrays, further
identification of somatic gene mutations has become
possible. These previously unidentified biologic
mechanisms and genetic pathways are, in essence,
restructuring the way we look at kidney cancer and cre-
ating ways for newer classification systems and novel
treatments. In one of the first large-scale sequencing
studies in RCC, Dalgliesh et al. examined the coding
exons of 3544 genes in 101 kidney cancers [31]. In addi-
tion to NF2 alterations, inactivating mutations were
identified in genes involved in chromatin remodeling
and histone methylation, that is, SETD2, JARID1C (also
known as KDM5C), UTX (KMD6A), and MLL2. SETD2
is a histone H3 lysine 36 methyltransferase, JARID1C is
a histone H3 lysine 4 demethylase, UTX is a histone H3
lysine 27 demethylase, and MLL2 is a histone H3 lysine
4 methyltransferase. Methylation of histone H3 lysine
residues regulates chromatin structure and is implicated
in transcriptional control. The clustering of these muta-
tions around genes that control epigenetic modifications
of histone H3 has opened the door to a new target path-
way in the pathogenesis or progression of kidney can-
cer. However, these mutations encompassed less than
15% of samples in the reported cohort, which suggested
that unidentified genes still existed.

Chromatin Remodeling/Histone
Modification: PBRM1

Varela et al., using protein-coding exome sequencing
of ccRCCs and matched normal tissue, identified yet
another target, PBRM1 [32]. The PBRM1 gene maps to
3p21 and encodes the BAF180 protein [33], which is the
chromatin-targeting subunit of the Polybromo BRG1-

associated factor complex (PBAF, SWI/SNF-B). The
PBAF complex is active in nucleosome remodeling. In
general, DNA tightly wrapped around a nucleosome is
inaccessible for transcription. This is due, in part, to
strong interactions between unmodified lysine residues
on histones and the sugar phosphate backbone of DNA.
However, posttranslational modifications of lysine resi-
dues such as acetylation and methylation can loosen
these interactions and yield a more open configuration
to provide access for transcription factors. Nucleosome
remodeling complexes function to restructure the DNA
and histone interaction and regulate transcription. The
SWI/SNF complexes are comprised of multiple subu-
nits. BAF180 contains multiple bromodomains that bind
acetylated lysine residues on histone tails. In this cancer
cohort, PBRM1 truncating mutations were identified in
a substantial 41% of samples [32]. Most mutations
occurred together with VHL alterations, and nearly all
PBRM1-mutant cancers examined (36/38) exhibited a
hypoxia gene expression signature. The SWI/SNF com-
plex is involved in the normal cellular response to hyp-
oxia and a dysfunctional complex may leave cells
resistant to cell-cycle arrest. Initial reports indicated that
PBRM1 mutations correlate with phenotypic advanced
disease stage, high Fuhrman grade, and poor overall
survival [34]. However, more recent reports suggest
that these mutations are seen at similar rates regardless
of stage and may not have an adverse impact on sur-
vival [35,36].

Chromatin Remodeling/Histone
Modification: BAP1

Carrying this methodological approach forward,
Peña-Llopis and colleagues performed whole-genome
and exome sequencing followed by tumor graft analy-
ses and identified several putative tumor-suppressor
genes. Mutations of the BRCA1-associated protein-1
(BAP1) gene were identified at a rate of 14% [35].
BAP1 encodes a nuclear protein containing a ubiquitin
carboxy-terminal hydrolase domain reported to target
histone H2A. Approximately 53% of cancers in this
study exhibited PBRM1 mutations. However, only 4 of
21 BAP1-mutant cancers were also deficient in PBRM1.
These results suggested that PBRM1 and BAP1 are
mutually exclusive driver mutations. Since both genes
are located on the short arm of chromosome 3 (3p21)
and represent classical tumor-suppressor genes, the
investigators proposed that the loss of 3p subsequent
to VHL mutation represents the initial event in tumori-
genesis. This would leave cells vulnerable to loss of
the remaining PBRM1 or BAP1 allele, and acquisition
of further mutations in these genes would determine
the course of ccRCC.
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BAP1-mutated and PBRM1-mutated cancers are phe-
notypically distinct [36]. BAP1-mutated carcinomas dem-
onstrate higher tumor grade and mTOR activation
compared to PBRM1-mutated counterparts [36]. In further
support of the important role of BAP1, mice with com-
bined cre-mediated loss of VHL and BAP1 develop pro-
gressive atypical cysts and tumor formation resembling
patients with VHL disease [37]. The investigators propose
that the lack of synteny, with BAP1 and VHL residing on
different chromosomes in the mouse, is responsible for
the lack of RCC in the mouse model of VHL.

Other Mutation Studies Involving
Whole-Genome and Exome Sequencing

More recently, in an effort to further standardize the
approach to this disease, the Cancer Genome Atlas
Research Network (TCGA) published results on more
than 400 histologically confirmed ccRCCs and analyzed
cases for clinical and pathologic features, genomic
alterations, DNA methylation profiles, and RNA and
proteomic signatures [26]. The results showed a lack
of focal somatic copy number alterations (SCNAs).
However, SCNAs were detected involving entire whole
chromosomes and chromosomal arms, most notably,
frequent loss of chromosome 3p (91% of samples). This
was expected, as PBRM1, BAP1, SETD2, and VHL all
map to this region. Other significantly identified chro-
mosomal alterations included: loss of chromosome 14q
(45% of samples) and gains of 5q (67% of samples).
Whole-exome sequencing validated 19 genes with high
mutation frequencies. Eight of these were identified as
significantly mutated genes (SMGs): VHL, PBRM1,
SETD2, KDM5D, PTEN, BAP1, mTOR, and TP53.
Among the genes classified as SMGs, BAP1 correlated
with poor survival outcomes. By examining DNA
methylation profiles, the authors were able to elucidate
yet another novel target: UQCRH (ubiquinol-cyto-
chrome c reductase hinge protein). This gene was
hypermethylated in 36% of cancers and increased pro-
moter methylation correlated with higher stage and
grade disease. However, at this time, little more is
known about the function of this gene.

Sato et al. reported on a Japanese cohort, involving
100 ccRCC cases, analyzed by whole-genome or exome
sequencing, RNA sequencing with microarray-based
gene expression, DNA methylation, genomic copy
number analyses, and immunohistochemistry, pub-
lished around the same time as the Cancer Genome
Atlas Research Network [27]. They identified 28 genes
that were significantly mutated compared to back-
ground mutations rates. Of the top mutated genes,
VHL, PBRM1, BAP1, and SETD2 were all located
within the common site of LOH at 3p between 3p25

and 3p21. Other important identified targets included:
TCEB1, which is the gene-encoding Elongin C,
known to be an essential part of the VHL complex;
TET2, which encodes an α-ketoglutarate-dependent
oxygenase catalyzing a critical step in DNA demethyl-
ation; Kelch-like ECH-associated protein 1 (Keap1), which
is a key component of a cullin�RING ubiquitin ligase
complex that targets nuclear factor erythroid 2 related
factor (NRF2) in oxidative stress responses; and finally
mTOR, PTEN, PIK3CA, MTORC1, PIK3CG, RPS6KA2,
TSC1, TSC2, and others, which together comprised 26%
of reported cases involving the PI3K/AKT/mTORC1
signaling pathway.

PI3K/AKT/mTORC1 Signaling Pathway

mTOR pathway is subject to mutational activation in
RCC (Fig. 29.1). Although mTOR itself is mutated in
only 5�6% of ccRCCs [26,27], cumulative mutations
within the pathway are significantly more frequent [27].
The mTOR gene encodes a serine/threonine protein
kinase that belongs to the phosphatidylinositol 3-kinase
family and is the catalytic subunit in both mTORC1 and
mTORC2 complexes. mTOR mutations evaluated
in vitro have been found to increase mTORC1 activity
without doing the same to mTORC2 activity [38].
Mutations within the protein typically converge on two
domains, the kinase and FAT domains, and often sensi-
tize cells to sirolimus analogs [39]. The two FAT
domains flank the kinase domain and bind the inhibi-
tor, Deptor. Mutations proximal to mTOR within the
mTORC1 pathway have also been identified. The
PIK3CA gene, which encodes the catalytic subunit
p110α of PI3K, is mutated in 2�5% of ccRCC [26,27].
PI3K catalyzes the formation of phosphatidylinositol-
3,4,5-triphosphate (PIP3), which is a lipid secondary
messenger that is down-regulated by the tumor sup-
pressor, PTEN. PTEN mutations have also been identi-
fied in ccRCC, at a frequency of 1�5% [26,27]. Both
activating mutations of PI3K and inactivating mutations
of PTEN lead to increased levels of PIP3 at the plasma
membrane, which result in increased binding and trans-
location of AKT to the membrane. AKT is activated
through a dual phosphorylation mechanism and subse-
quently phosphorylates multiple substrates, one of
which is TSC2. TSC2 forms a complex with TSC1 and
together this complex (TSC1/TSC2) functions as a
tumor suppressor [29]. The TSC1/TSC2 complex is
inactivated in the tuberous sclerosis hereditary cancer
syndrome, which leads to the development of renal
angiomyolipomas in a large proportion of patients
afflicted, while a TSC2 mutation in the Eker rat model
leads to ccRCC [40]. The TSC1/TSC2 complex acts as a
GTPase-activating protein, which hydrolyzes GTP from
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the protein, Ras homologue enriched in brain (Rheb).
When Rheb is in its GTP-bound state, it binds and acti-
vates mTORC1. Mutations in TSC1 have been reported
in 4% of ccRCCs [29] with Rheb mutations representing
only four cases as reported by the Cancer Genome
Atlas [26]. Thus, mutations in the TSC1/TSC2 complex,
mTOR, and Rheb represent mechanisms to activate the
mTORC1 pathway. Collectively, the identification of
cancers with mTOR activation is clinically important
since those tumors may be exquisitely sensitive to
mTORC1 inhibitors [29].

In addition to the above mechanisms of mTORC1
control, another protein, regulated in development and
DNA damage response 1 (REDD1), is involved in reg-
ulation as a response to hypoxia. REDD1 is directly
induced by HIF1α and HIF2α in ccRCC, and REDD1
induction is sufficient to inhibit mTORC1 [41,42]. As
approximately 90% of ccRCC tumors harbor a VHL
alteration [25], HIF1α and HIF2α are often upregulated
and this explains the consistently increased REDD1
activity seen in most ccRCC [29]. However, based on
these findings, mTORC1 activity in ccRCC would be
low, unless harboring an inactivating escape mutation
within the TSC1/TSC2 complex or PTEN. We know
that these mutations occur, but at low frequency
[26,27] and as such, other mechanisms of mTORC1
activation must be present that remain yet unknown.

Intratumoral Heterogeneity

Large-scale sequencing endeavors over the last few
years have substantially increased the knowledge of

mutations in ccRCC and have implicated new potential
therapeutic targets. However, intratumoral heterogene-
ity, as described by Gerlinger et al. in 2012, adds yet
another layer to the genomic landscape [43]. Based on
multiple samples from primary and metastatic sites,
considerable variability in gene expression signatures,
allelic imbalances, and somatic mutations was identi-
fied. This study classified somatic mutations as ubiqui-
tous, shared, or private. Ubiquitous mutations were
seen in all subclones analyzed, whereas shared and
private mutations were seen in more distant sub-
clones—purposing a branching phylogenetic tree of
tumor regions by clonal ordering [43]. In short, a single
biopsy is unlikely to adequately represent the muta-
tional spectrum of these heterogeneous cancers, imply-
ing that therapeutic approaches should take these
findings into consideration.

Metabolism in RCC

Returning to hereditary cancer syndromes as a
roadmap for uncovering pathways to carcinogenesis, a
close link between metabolism and RCC was identified.
SDH-associated kidney cancer and hereditary leiomyo-
matosis renal cell carcinoma (HLRCC) are both genetic
cancer syndromes that involve germline mutations
in genes-encoding enzymes of the Krebs cycle [44]
(Fig. 29.2). Succinate dehydrogenase (SDH) is a complex
of four polypeptides (SDH A�D) that catalyzes the con-
version of succinate to fumarate. The genes encoding the
subunits of SDH are mutated in the SDH-associated kid-
ney cancer syndrome. Fumarate hydratase (FH) catalyzes
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the conversion of fumarate to malate and germline muta-
tions in the gene encoding this enzyme cause HLRCC,
which predisposes those affected to the development of
pRCC type 2. The FH and SDH genes function as tumor
suppressors [45] and loss-of-function mutations lead to
accumulation of fumarate and succinate, respectively
[44]. Increased levels of succinate and fumarate inhibit
HIFα prolyl hydroxylase domain (PHD) containing
enzymes, which are responsible for HIF hydroxylation
and binding by VHL [44,46�48]. Alpha-ketoglutarate, an
upstream intermediate, is a known substrate for PHD
and increased levels competitively inhibit succinate and
fumarate and restore PHD and HIF1α to normal level
activity [47]. However, fumarate and succinate at excess
levels also interact with other proteins, including Keap1
[49]. Keap1 is a component of an E3 ubiquitin ligase that
targets NRF2, a master regulator of antioxidant response.
NRF2, under normal conditions, is anchored in the cyto-
plasm by binding to Keap1. Upon succination of Keap1,
the complex dissociates, NRF2 accumulates in the
nucleus and leads to increased expression of antioxidant
and antiinflammatory responses [50].

Autophagy: SQSTM1 and NRF2

Autophagy is a mechanism of protein degradation
responsible for the disposal of damaged organelles
and clearance of aggregated proteins. During this
process, nuclear membranes engulf cytoplasmic
substrates forming autophagosomes that then fuse
with lysosomes and lead to protein degradation. Of
note, autophagy-inducing drugs were reported to have
selective toxicity for VHL-deficient cells [51].
Sequestosome 1 (p62) is a scaffold protein and both an
essential component and a target of autophagy. When
autophagy is impaired, p62 accumulates and inacti-
vates Keap1, allowing NRF2 to translocate to the
nucleus and induce the transcription of genes involved
in redox response [52]. Increased levels of p62 are toxic
to normal cells [52] and also promote tumorigenesis
[53]. The SQSTM1 gene, which maps to chromosome
5q35, has been reported to be the target of copy num-
ber gains occurring in approximately 70% of RCCs
[26,27,54,55]. The p62 protein interacts with a variety
of proteins involved in the NRF2, NF-κB, and mTOR
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pathways [55,56]. Thus, identifying RCC cases with
p62 overexpression is likely to have future therapeutic
implications as more details emerge [57].

CLINICAL UTILITY

Gene expression analyses have provided important
insight into the heterogeneity among kidney cancer
and within the clear-cell subtype. Some groups have
proposed a new classification of clear-cell kidney can-
cer using gene expression analysis [54,58]. Brannon
et al. demonstrated that two or more molecular sub-
classifications of ccRCC exist [58]. A meta-analysis per-
formed in 2011 by the same group identified two
distinct subsets, ccA and ccB, as well as a third diver-
gent group characterized by wild-type VHL and a
clear-cell papillary histology [59]. Subtypes ccA and
ccB were associated with a significant difference in
outcome, with ccA patients having a median overall
survival of 103 months compared to 24 months for ccB
[60]. RNA expression profiles reported from the
Cancer Genome Atlas showed four stable subsets of
mRNA and miRNA expression data sets, which were
compatible with the new subtypes proposed by
Brannon et al. [26]. A similar survival advantage was
again observed in the mRNA profile m1 comparable to
ccA subtype and these cases were characterized by a
higher frequency of mutations within the chromatin
remodeling system. The mRNA profile m3, compara-
ble with the previously described ccB subtype, was
characterized by CDKN2A and PTEN mutations, while
the m4 profile included cancers with a higher rate of
BAP1 and mTOR mutations.

Gene expression profiling by microarray analysis
provides important information for prognostication
and treatment. However, gene expression analysis is
costly and may be difficult to implement on a large
scale. Therefore, we would advocate for mutation test-
ing of ccRCCs for driver mutations to at least include
VHL, PBMR1, BAP1, SETD2, mTORC, and NF2. With
the increased availability of platforms for the simulta-
neous exon sequencing of many mutated cancer genes,
and with the development of new therapeutic agents
that can target specific epigenetic alterations, an RCC
chip that includes most recurrently mutated genes in
this disease should provide the most rational approach
to improving outcome. Upfront identification of these
mutations will provide valuable prognostic informa-
tion and may predict response to available therapies.
For example, the identification of cancers with mTOR
pathway activation is rationale for the optimal use of

mTOR inhibitors [61,62]. Conversely, NF2 mutations,
which lack a hypoxic gene expression signature, may
not respond to anti-VEGF-targeted therapies, currently
the standard first-line treatment for patients with met-
astatic disease [63]. In acute lymphoblastic leukemia,
mutations in the histone H3 lysine 27 demethylase
gene, UTX, confer sensitivity to the histone demethy-
lase inhibitor, GSKJ4 [64], although responses in RCCs
with this mutation have not been reported. Other ther-
apeutic agents, such as EZH2 inhibitors, potentially
may have selective toxicity in cancers with high EZH2
expression [33,65] or in cancers with loss-of-function
mutations involving the SWI/SNF complex [33],
which demonstrates epigenetic antagonism with the
Polycomb PRC2 complex [66]. These and other thera-
peutic strategies will require careful testing given the
complexity of epigenetic modifications. As we learn
more about the genetic landscape of renal cell cancer
and develop more targeted therapies, determining the
appropriate targeted therapy for each individual
patient should become achievable.

LIMITATIONS OF TESTING

Universal guidelines for molecular testing in RCC
have not yet been established. Current techniques
broadly used include histologic review and immuno-
histochemical staining for hypoxia-responsive proteins
such as carbonic anhydrase IX, GLUT, and HIF1α.
This analysis alone is limited and quickly becoming
arcane given the recent discoveries of a number of
molecular targets. One method for further stratifying
ccRCCs is use of whole-genome RNA profiling.
Brannon et al. [58,59] and TCGA investigators [26]
have published subtyping algorithms that are associ-
ated with prognostication [67]. However, the process
of determining these molecular subtypes will require
validation. Therefore, at this time we do not recom-
mend routine use of this technique outside of the set-
ting of a clinical trial. Molecular testing for single
biomarkers, such as BAP1 and PBRM1, has been
shown to confer prognostic information [68] and is a
cost-conscious approach for the moment. Lastly, we
would be remiss to not again emphasize the impor-
tance of the work of Gerlinger et al. [43] and its impli-
cation in the future treatment of RCC. This work gives
us a greater sense of the complexity and intratumoral
heterogeneity that exists within this disease and
reminds us that molecular analysis of any one biologic
sample at any one time represents only a piece of a
much larger puzzle.
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INTRODUCTION

Thyroid cancer is one of the most common endocrine
tumors, with an estimated annual incidence of 12.2
cases per 100,000 people in the United States [1].
Women are approximately three times more likely to
develop thyroid cancer than men [1]. Risk factors for
thyroid cancer development include environmental
factors such as exposure to radiation and diets low in
iodine, as well as genetic factors such as hereditary syn-
dromes that predispose to thyroid cancer (eg, MEN2A/
2B or Cowden syndrome), or positive family history of
thyroid cancer. Indeed, although the genes underlying
thyroid cancer predisposition remain yet to be fully
characterized, thyroid cancer in a first-degree relative
results in an increased risk of 4- to 10-fold [2,3].

Thyroid cancer typically presents as a nodule and
rarely may be accompanied by symptoms such as diffi-
culty swallowing, hoarseness, or pain. Most thyroid
nodules (present in up to 50% of patients older than
60 years of age) are discovered incidentally, and only
approximately 5% are malignant [4�7]. Most thyroid
cancers are well-differentiated tumors and are associated
with a low mortality rate, particularly in patients with
stage I or II disease (survival rate .98%) [8]. However,
although the mortality rate is low and has remained
relatively stable, the incidence of thyroid cancer has
been increasing over the last four decades [9�11]. The
increased incidence of thyroid cancer, in particular
tumors of small (subcentimeter) size, may be primarily
due to improved detection of thyroid nodules by thyroid
ultrasound, but improved detection alone may not fully
explain the increased incidence of thyroid cancer as the
incidence of tumors of all sizes has been reported to be
increased [9,12]. The increase in thyroid cancer has been

mostly attributed to papillary thyroid carcinoma, and
specifically, RAS mutation positive, follicular variant of
papillary thyroid carcinomas [12].

The increased incidence of thyroid cancer has
increased the challenge in clinical management.
Identifying patients with low-risk disease who may be
appropriately managed with active surveillance, and
those patients with risk factors for more aggressive
disease and higher mortality rates can guide clinical
treatment and management. Molecular diagnostics are
increasingly being incorporated into routine clinical
management of thyroid cancer patients.

MOLECULAR TARGETS IN THYROID
CANCER DIAGNOSTICS

The molecular mechanisms underlying the majority
of thyroid cancers have been well characterized
through work from many laboratories over the last
few decades. Indeed, for papillary thyroid carcinomas,
recent data from 496 papillary thyroid carcinomas
sequenced by The Cancer Genome Atlas (TCGA) ini-
tiative identified confirmed or likely oncogenic driver
mutations in 96.5% of cases [13].

Papillary thyroid carcinomas have very low overall
mutation frequency as compared to most other
solid cancers [13]. In most well-differentiated follicular
thyroid tumors, a single early oncogenic driver
mutation is likely to be sufficient to initiate tumorigen-
esis, while aggressive or poorly differentiated tumors
often harbor multiple driver mutations. Most genes
described to play a role in thyroid cancer development
involve the mitogen-activated protein kinase (MAPK)
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and phosphatidylinositol-3 kinase (PI3K) pathways.
Dysregulation of the MAPK pathway in thyroid cancer
frequently occurs through mutation of BRAF or RAS
genes, or through rearrangements involving RET/PTC
and TRK [14�17]. PI3K pathway dysregulation may
occur through activating mutations of PIK3CA and
AKT1 or through inactivating mutations of PTEN.
Certain molecular alterations, on the other hand,
are typically present in benign nodules and may be
helpful in differentiating tumor from benign disease
(Fig. 30.1 and Table 30.1).

Mutation of BRAF, a serine�threonine kinase that
functions in the MAPK pathway, occurs in 40�45% of
papillary thyroid cancers [16,18]. In more than 95% of
cases, BRAF activation results from the V600E muta-
tion, whereas other activating BRAF mutations (such
as K601E mutation and small in-frame insertions or
deletions) are seen in the remaining cases [17,19�21].
Typically, the BRAF V600E mutation is seen in classical
papillary thyroid cancer and tall-cell variant of papil-
lary thyroid cancer [14,22,23]. The BRAF K601E muta-
tion, however, is frequently seen in the follicular
variant of papillary thyroid cancer [24]. BRAF activa-
tion may also occur through chromosomal rearrange-
ment. The AKAP9�BRAF fusion has been detected in
papillary thyroid cancers associated with radiation
exposure and, rarely, in sporadic papillary cancers
[25]. Several other BRAF fusions (eg, SND1�BRAF and
MKRN1�BRAF) have been recently reported [13].

Other genes frequently found mutated in thyroid
lesions are the RAS genes (NRAS, HRAS, and KRAS).
The RAS proteins signal to both the MAPK and PI3K
pathways. Activating mutations of the RAS genes typi-
cally occur at codons 12, 13, and 61. NRAS mutations
are the most frequent reported change, followed by
HRAS mutations, and then by KRAS mutation. RAS
mutations have been reported in both benign follicular
adenomas as well as follicular carcinomas [26�28].
Thyroid nodules with KRAS codon 12 or 13 mutation
may have a lower risk of carcinoma than thyroid
nodules with NRAS codon 61 mutation [29]. RAS
mutations are also seen in papillary thyroid carcino-
mas, usually the follicular variant of papillary thyroid
cancer, as well as some sporadic medullary thyroid
cancers [14,30,31].

In both familial and sporadic medullary thyroid car-
cinomas, RET mutation is frequently seen. RET is a
receptor tyrosine kinase expressed in thyroid C cells.
RET is typically activated by mutation in the tyrosine

TABLE 30.1 Prevalence of Mutations in Thyroid Tumors

Papillary thyroid

carcinoma

Follicular

adenoma

Follicular

carcinoma

Poorly
differentiated

carcinoma

Anaplastic

carcinoma

Medullary

carcinoma

BRAF V600E (40�45%) RAS (20�30%) RAS (40%) RAS (20�30%) TP53 (70�80%) RET (60�70%)

RET/PTC (10%) PAX8/PPARG (5�10%) PAX8/PPARG (30�35%) TP53 (20�30%) RAS (30�40%) RAS (5�10%)

RAS (20%) PTEN (40%) PIK3CA (,10%) BRAF (10�15%) BRAF (20�30%)

NTRK1/3 (5%) TSHR (50�80%)a PTEN (,10%) TERT (30�40%) PIK3CA (10�20%)

ALK (1�2%) GNAS (3�6%)a TERT (15�30%) CTNNB1 (,10%) PTEN (10�20%)

TERT (10�20%) AKT1 (10�20%)

TERT (30�40%)

CTNNB1 (10%)

aIncidence in hyperfunctioning adenomas.

FIGURE 30.1 Scheme of major molecular events in thyroid
tumorigenesis and putative tumor progression.
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kinase domain (most commonly M918T mutation) or
by mutation of cysteine residues in the extracellular
domain. The M918T mutation is associated with spo-
radic medullary thyroid carcinomas or with medullary
carcinomas arising in MEN2B syndrome [32�36].
Cysteine residue mutations, which confer the mutant
RET protein the ability to undergo ligand-independent
dimerization with another mutant RET protein, are
seen in familial medullary thyroid carcinoma and
MEN2A syndrome [37,38].

Poorly differentiated and anaplastic thyroid cancers
are thought to typically arise from dedifferentiation of
a well-differentiated cancer (Fig. 30.1). In many cases,
both differentiated and undifferentiated components
have been observed in these tumors, and these compo-
nents share mutations in RAS or BRAF. However,
poorly differentiated and anaplastic tumors often
acquire additional mutations, most commonly in TP53,
PIK3CA, and AKT1. TP53 is a tumor suppressor with
important roles in cell cycle regulation and apoptosis.
The most commonly seen mutations in TP53 are point
mutations within the DNA-binding domain. TP53
mutations have been reported in 20�30% of poorly
differentiated carcinomas and 70�80% of anaplastic
carcinomas [39�43]. Activating mutations of PIK3CA
typically occur in poorly differentiated and anaplastic
thyroid carcinomas, and AKT1 mutations can be found
more often in advanced, metastatic, and dedifferentiat-
ing thyroid cancer [44�46].

PTEN, a negative regulator of the PI3K/AKT path-
way, may be mutated in both follicular thyroid carci-
nomas and follicular adenomas [45,47�50]. In addition
to PTEN, other genes that have been reported to be
altered in benign lesions include TSHR and GNAS.
Activating mutations of TSHR, a membrane receptor
whose function is mediated by G proteins, may be
seen in 50�80% of hyperfunctioning nodules [51,52].
GNAS, an alpha subunit of heterotrimeric G protein
complexes, is mutated in 3�6% of hyperfunctioning
nodules [53�55]. TSHR and GNAS mutation are found
predominantly in benign hyperfunctioning nodules,
and very rarely in follicular carcinomas that may also
present as hot nodules [50].

Finally, other novel mutations have been recently
described in thyroid tumors. Telomerase (TERT) pro-
moter mutations, c.1-124C.T (C228T) and c.1-146C.T
(C250T), have been described in several tumors includ-
ing thyroid cancer and are thought to increase promoter
activity [56,57]. These TERT promoter mutations are
found in follicular cell derived thyroid cancers (but not
in medullary carcinoma) and tend to occur at the highest
frequency in poorly differentiated and anaplastic carci-
nomas [58�61]. The Cancer Genome Atlas study identi-
fied three novel significantly mutated genes, EIF1AX,
PPM1D, and CHEK2 [13]. EIF1AX mutations were found

to be mutually exclusive with other known driver
mutations, while PPM1D and CHEK2 mutations were
found to co-occur with driver mutations [13]. The role of
these genes in thyroid tumorigenesis is yet to be fully
characterized.

In addition to gene mutations, chromosomal rearran-
gements are also important in thyroid cancer. In papil-
lary thyroid carcinomas, RET/PTC1 (fusion of RET with
CCDC6) and RET/PTC3 (fusion of RET with NCOA4) are
the most common rearrangements and are currently
seen in approximately 10% of cases [62,63], down from
20% to 30% frequency observed two decades earlier [12].
The PAX8/PPARG rearrangement is a common event in
follicular carcinoma, being found in 30�40% of these
tumors [64�66]. This rearrangement may also be seen in
the follicular variant of papillary thyroid carcinoma and
in follicular adenomas [64�68]. Rearrangements involv-
ing the NTRK genes (NTRK1 and NTRK3) are seen in
up to 5% of papillary thyroid cancers. Several fusion
partners (TPM3, TPR, and TFG) have been identified
for NTRK1 and one fusion partner, ETV6, has been iden-
tified for NTRK3 [69�73]. Other fusions, such as ALK
fusions are found in approximately 2% of papillary carci-
nomas and with higher frequency in anaplastic and par-
ticularly poorly differentiated thyroid carcinomas [74].

MOLECULAR TECHNOLOGIES

Several molecular approaches are available and
used in molecular diagnostics of thyroid cancer to
detect point mutations, small insertions/deletions, and
chromosomal rearrangements. As with all assays, high
sensitivity and specificity are desirable in choosing a
molecular diagnostic test. However, specific to testing
of thyroid specimens is the typically limited amount
of material available in thyroid fine-needle aspiration
(FNA) biopsy. As such, molecular technologies that
require small amounts of DNA or RNA are best suited.
Other sample types commonly encountered in thyroid
testing include formalin-fixed paraffin-embedded
(FFPE) tissue and fresh/frozen tissue.

Testing for recurrent mutations in hotspots in
oncogenes important in thyroid cancer such as codons
12/13 or 61 in the RAS genes, or codon 600 or 601 in
BRAF can be accomplished by a variety of assays
including real-time PCR, sequencing (Sanger and next
generation), or single-base (primer) extension assays.
Real-time PCR typically involves hybridization of fluo-
rescently labeled probes (TaqMan or FRET probes) to
detect and quantify PCR products. The TaqMan
(Applied Biosystems) assay utilizes the 5ʹ nuclease
activity of Taq polymerase and allele-specific TaqMan
probes to detect mutations. In this assay, the region
of interest is amplified, and an allele-specific probe
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(specific to wild-type or mutant sequence) with a fluor-
ophore at the 5ʹ end and a fluorescence quencher
at the 3ʹ end is hybridized to the DNA. As Taq poly-
merase extends DNA and reaches the probe, the
hybridized allele-specific probe functions as a sub-
strate for the 5ʹ nuclease activity of Taq polymerase,
and the 5ʹ fluorophore is released. Separation of the
5ʹ fluorophore from the 3ʹ fluorescence quencher
allows fluorescence to be emitted and measured. The
fluorescence emitted is proportional to the amount
of amplified product. Other real-time PCR assays such
as LightCycler real-time PCR (Roche) utilize FRET
probes. In this assay, two probes are required: one
probe is labeled at the 3ʹ end with a donor fluorophore
and the other probe is labeled at the 5ʹ end with
an acceptor fluorophore. The region of interest is
amplified, and when both probes are bound to the tar-
get, they are brought into close proximity, allowing
emission through fluorescence resonance energy trans-
fer. A post-PCR melting curve can then be generated
to determine whether any mismatches are present
between the probe and the target sequence.

Single-base (primer) extension assays are another
type of assay commonly used to detect point muta-
tions. Following PCR amplification of the region of
interest, these assays utilize a probe in which the 3ʹ
end of the probe is a single base upstream of the nucle-
otide to be interrogated. The probe is extended by a
single dideoxynucleotide base, and the incorporated
base determined. In the SNaPshot (Life Technologies)
assay, the incorporated base is fluorescently labeled
and in the MassARRAY system (Sequenom), the incor-
porated base is unlabeled but the identity is deter-
mined by mass spectrometry. These assays are very
sensitive and may be multiplexed, with multiple hot-
spots interrogated in a single reaction.

Finally, sequencing analysis is useful both in detec-
tion of mutations in hotspots and in detection of nonre-
current mutations, for example, inactivating mutations
in tumor suppressors which can occur at many differ-
ent locations across a gene. Both Sanger sequencing
and next-generation sequencing (NGS) technologies
are widely used. NGS allows high-throughput, mas-
sively parallel sequencing, which allows many genes to
be analyzed simultaneously in a cost-effective way.
Commonly used NGS technologies include the Ion
Torrent (Life Technologies) and Illumina platforms.
Both technologies are based on the sequencing by syn-
thesis methodology. With the Ion Torrent platform,
incorporation of a nucleotide results in the release of a
hydrogen ion that is detected by an ion sensor, and
with the Illumina platform, the incorporated nucleotide
is fluorescently labeled. NGS technology is particularly
well suited for use in thyroid cancer, as the genes
involved in the majority of tumors have been described,

and these genes can be sequenced simultaneously,
using only small amounts of DNA.

Chromosomal rearrangements such as RET/PTC1,
RET/PTC3, and PAX8/PPARG can be detected using
techniques such as reverse transcription PCR (RT-
PCR), fluorescence in situ hybridization (FISH), or
RNA sequencing. In RT-PCR, RNA is transcribed into
cDNA by reverse transcriptase. The cDNA is then
amplified using primers specific to the fusion gene
product. With real-time PCR amplification, use of
internal probes further increases specificity. RT-PCR
works best on fresh or frozen thyroid tissue. In FFPE,
RNA is often degraded, which may limit assay sensi-
tivity. FISH analysis may be performed on fresh, fro-
zen, or FFPE tissue. In FISH, a fluorescently labeled
probe is hybridized to DNA and visualized by micros-
copy. Probes can be designed to each fusion partner,
each labeled with a different color, and fusion detected
by the overlap of colors. A break-apart probe strategy
can also be utilized to detect translocations for all pos-
sible fusion partners. The break-apart probe is
designed to a known partner, for example, RET, which
if undergoes translocation, will break apart and split
the signal. Finally, NGS-based analyses of RNA are
being increasingly used to detect gene fusions. RNA is
reverse transcribed to cDNA, and adapters are ligated.
Short sequence reads are obtained and used to search
for fusion genes and measure gene expression levels.
Targeted RNA NGS panels can be used to detect
known fusions and measure gene expression levels
and are ideal for the limited amounts of nucleic acids
typically present in FNA specimens. Alternatively,
RNA sequencing of total RNA can be performed which
in addition to detection of known fusions, allows for
discovery of new fusions. However, this approach usu-
ally requires a larger amount of input RNA.

CLINICAL UTILITY

The majority of thyroid nodules are classified
as benign or malignant through ultrasound examination
and FNA biopsy. However, 20�30% of nodules are
cytologically indeterminate [75,76]. These indetermi-
nate nodules, which fall into the categories of Atypia
of Undetermined Significance or Follicular Lesion of
Undetermined Significance (AUS/FLUS) (Bethesda cate-
gory III), Follicular Neoplasm or Suspicious for a
Follicular Neoplasm (FN/SFN) (Bethesda category IV),
and Suspicious for Malignancy (SUSP) (Bethesda cate-
gory V), carry a risk of malignancy ranging from 5�15%
to 50�75% [75,77]. Molecular testing of indetermi-
nate thyroid nodules can help to rule in or rule out can-
cer and can guide appropriate clinical management
(active surveillance vs surgery). Prognostic information
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to predict the aggressiveness of a tumor can also be
obtained, as well as potential targets for therapy.

Molecular testing of thyroid nodules has been
shown to have utility in the clinical setting as a
diagnostic tool. Testing for the BRAF V600E mutation,
a mutation highly specific for malignancy in thyroid
nodules, has been shown to increase the sensitivity of
the FNA biopsy [78�80]. Further increases in sensitiv-
ity and specificity have been achieved through the
use of multigene panels. In three prospective studies, a
multigene panel consisting of the most commonly
mutated genes (BRAF, KRAS, HRAS, NRAS, PAX8/
PPARG, RET/PTC1, RET/PTC3 (and TRK rearrange-
ment)) was shown to have high specificity for thyroid
cancer [81�83]. Recently, a multigene NGS thyroid
panel was reported [84]. This panel includes muta-
tional analysis of 13 genes for point mutations and
small indels (BRAF, KRAS, HRAS, NRAS, RET, GNAS,
TSHR, CTNNB1, TP53, AKT1, PTEN, PIK3CA, and
TERT), and detection of 42 types of rearrangements
involving RET, BRAF, PPARG, NTRK1, NTRK3, ALK,
and THADA genes. Cancer risk prediction based on
the results of testing is based on the mutational hot-
spot, allelic frequency, and consideration of somatic
versus germline nature of the particular variant. In
indeterminate thyroid nodules with FN/SFN cytology,
this panel demonstrated high sensitivity (90%), speci-
ficity (93%), PPV (83%), and NPV (96%) for cancer
detection [84].

In addition to aiding in establishing a diagnosis,
molecular findings have been shown to have utility in
guiding clinical management of patients with thyroid
nodules. Patients with indeterminate cytology nodules
may undergo repeat FNA (AUS/FLUS nodules),
surgical lobectomy (FN/SFN nodules), or near-total
thyroidectomy, or lobectomy (SUSP nodules). Most
nodules on diagnostic lobectomies are found to be
benign, but in 10�40% of cases, the nodule is found
to be malignant [85�87]. If the cancer is found to
be greater than 1 cm in size, patients typically undergo
a completion thyroidectomy. Multigene panels have
been shown to have high negative predictive value
and thus could be used to rule out malignancy [84].
Patients who are negative for mutations could poten-
tially avoid unnecessary surgery. Multigene panels
also have been demonstrated to have high specificity
and positive predictive value [81�84]. Detection of
mutation or gene fusion (with the possible exception
of genes that may be found mutated in both benign
and malignant lesions (such as RAS or TSHR)) could
be used as an indication to recommend a total thyroid-
ectomy prospectively, rather than a diagnostic lobec-
tomy that would have to be followed by a completion
lobectomy. Use of a seven-gene thyroid mutation panel
has been shown to reduce the likelihood of requiring a

two-step surgery by 2.5-fold [88]. Similar results were
seen in a small series of cases in pediatric patients
(who tend to have higher frequencies of indeterminate
nodules) [89].

Prognostic information is also obtainable through
molecular testing of thyroid nodules. Prognostic infor-
mation could be used preoperatively to plan a more
extensive initial resection that includes central com-
partment lymph node dissection and postoperatively
for close clinical follow-up postsurgery. BRAF V600E
mutation is associated with cancer recurrence or per-
sistent disease (25% of BRAF V600E positive tumors
vs 13% of BRAF mutation negative tumors) and with
a small, but significant, increased risk of mortality
(5% of BRAF V600E mutation positive tumors vs 1% of
BRAF mutation negative tumors), but BRAF V600E
alone lacks sufficient specificity to guide more aggres-
sive management of patients with thyroid cancer
[90,91]. While detection of BRAF V600E mutation in
thyroid FNA biopsy has been used as a highly accurate
diagnostic marker of cancer, it needs to be used in
combination with other mutations for predicting
aggressive tumor behavior with high specificity [87].

TP53 mutation and TERT promoter mutation are
two other promising prognostic molecular markers.
TERT promoter mutations and to lesser extent TP53
mutation occur in some well-differentiated carcinomas,
but can be found at much higher frequencies in
poorly differentiated and anaplastic thyroid carcino-
mas [39,40,58�61]. TP53 mutation, typically a late
event in tumorigenesis, is important in tumor dediffer-
entiation, and thus detection of a TP53 mutation
may signal an aggressive tumor. TERT promoter muta-
tion has been found to be an independent predictive
marker of disease recurrence, distant metastases,
and disease-related mortality in well-differentiated
thyroid cancer [61]. Cancers carrying both TERT and
BRAF V600E mutation may represent the most aggres-
sive subset of well-differentiated papillary carcinomas
[58,60].

An additional marker of aggressive tumors is the
presence of multiple mutations. The vast majority
of thyroid cancers will have a single mutation, but
observation of mutation in an early driver gene
such as BRAF or RAS along with mutation in genes
such as PIK3CA, AKT1, or TP53, thought to be
acquired as a late event, has been reported in radioio-
dine refractory, poorly differentiated and anaplastic
carcinomas [44,45,92]. NGS panels which are able to
examine multiple genes simultaneously are ideal for
this type of analysis.

Finally, molecular diagnostics may be helpful in
guiding therapy, especially in locally advanced and
inoperable tumors or those with distant metastases
that are refractory to radioactive iodine treatment.
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Current FDA-approved therapies include sorafenib
and lenvatinib (multi-tyrosine kinase inhibitors) for the
treatment of locally recurrent or metastatic, progres-
sive differentiated thyroid carcinoma and vandetanib
and cabozantinib, which are tyrosine kinase inhibitors
with activity against RET, for medullary thyroid can-
cer. Many therapies are under investigation and target
the MAPK and PI3K/AKT pathways. Specific targeted
therapies that could be considered for utilization
include vemurafenib and dabrafenib, which are BRAF
inhibitors, and crizotinib or other ALK inhibitors in
patients with advanced thyroid cancer positive for
STRN�ALK or other ALK fusions [74,93,94]. In addi-
tion, other therapies currently being studied include
PPARG agonists in thyroid cancers that are positive
for PAX8�PPARG fusion and NTRK inhibitors in thy-
roid tumors with NTRK1 or NTRK3 fusions.

LIMITATIONS OF TESTING

The limitations to molecular testing of thyroid speci-
mens relate both to sample limitations as well as limita-
tions of technology. Testing of thyroid FNA biopsies
may be challenging because of limited specimen avail-
able, but also because of difficulties in assessing sample
adequacy. Sufficient material from thyroid FNA biopsy
for molecular testing can be obtained from the residual
material and needle washes from the first two FNA
passes [82,83]. Although this material is generally rep-
resentative of the material used in cytological examina-
tion, determination of thyroid cell percentage (vs other
cells such as lymphocytes) is useful to ensure an ade-
quate sample and reduce the risk of false negatives.
This can be done by measuring the expression of
genes expressed in thyroid epithelial cells (such as
KRT7, KRT19, TPO, TG, or TTF1) and comparing
the expression level with that of a housekeeping gene
(such as GAPDH or PGK1).

Other limitations of testing arise from the sensitivity
of the testing method used. Many techniques may
be used to detect point mutations and chromosomal
rearrangements, such as Sanger sequencing, real-time
PCR, RT-PCR, and NGS. The analytical sensitivity of
these assays range from B5% to 20%. Although in
general NGS-based assays have very high sensitivity,
and are more cost-effective than assaying each gene
separately, NGS requires specialized equipment and
expertise. NGS generates complex information and
specialized requirements for analysis and reporting.
However, this information can be managed with bioin-
formatics tools (such as SeqReporter) [95]. Use of bio-
informatics tools can reduce the difficulty in analysis
and reporting and turnaround times comparable to
those for conventional testing can be achieved.

Another limitation of testing thyroid nodules is that
it is intended to address somatic mutations, but identi-
fication of germline mutations can have important
implications. For example, germline RET mutations
have implications for intraoperative management of
parathyroid glands, for surveillance and management
of other tumors, and for screening and prophylactic
thyroidectomy of family members [32]. Clinical charac-
teristics or family history generally guide recommen-
dations for genetic counseling and germline testing.
However, in some cases, specific mutations are present
that are characteristic of patients with familial forms
of carcinoma. In MEN2A, 90% of mutations occur
at codon 634 of RET [35�37]. Detection of such a
mutation could be an additional indication for germ-
line testing.
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INTRODUCTION

Pediatric cancer, while rare, remains the leading cause
of childhood death past infancy [1]. It has long been
appreciated that childhood cancer differs remarkably
from that in adulthood in incidence, treatment, and out-
come. Growth and development present opportunities
for malignant transformation in the populations of divid-
ing and differentiating cells that are unique to childhood.
In this chapter, we present three of the most common
malignancies that are largely restricted to the pediatric
population—retinoblastoma (RB), Wilms tumor (WT,
nephroblastoma), and neuroblastoma (NB)—and discuss
the role of molecular genetic testing in each.

RETINOBLASTOMA

Background

RB is an intraocular tumor that arises from imma-
ture cells of the retina, the thin membrane at the back
of the eye. Although it is the most common childhood
ocular tumor and represents approximately 3% of all
childhood cancer diagnoses, it remains a rare malig-
nancy, with a stable worldwide incidence of 1/15,000
births [2]. Because the tumor begins in developing cells,
nearly all cases occur during the first 5 years of life
[2,3]. Early detection and treatment (including laser
ablation and enucleation) are important, because RB is
an aggressive tumor that can spread rapidly along the
optic nerve to the brain. Once extraocular cancer is
present, survival probability declines significantly.

RB can present unilaterally or bilaterally. Among the
unilateral cases, most are sporadic, but approximately
10% have been found to be heritable [4]. All cases of
bilateral RB are assumed to be heritable. In the majority
of the heritable cases, the germline mutation occurs
de novo, and the remainder are parentally inherited
in an autosomal-dominant manner [5]. Penetrance in
heritable disease varies but is generally high, estimated
in some instances to approach 95%, and those with a
germline mutation are at increased risk of developing
additional malignancies throughout life [5,6]. Trilateral
RB is the co-occurrence of bilateral RB with pineoblasto-
ma and represents the most common extraocular tumor
in childhood, while adults are at risk for a number of
other cancers, particularly lung and bladder cancer, oste-
osarcoma, and soft tissue sarcomas [7,8]. Since those with
sporadic RB have not been found to be at increased risk
for these or other malignancies, determining whether a
case is heritable or sporadic has important implications
for medical management and counseling.

Molecular Target

The primary genetic locus for RB is the retinoblas-
toma 1 gene (RB1) on chromosome 13 [9]. Genetic vari-
ation at this locus accounts for approximately 98% of
RB [10]. The protein product, pRB, is a classic tumor
suppressor involved in cell-cycle regulation. As pre-
dicted by Knudson’s two-hit hypothesis, RB arises fol-
lowing biallelic loss-of-function mutation of RB1 [5]. In
sporadic cases, the two mutations are acquired somati-
cally, while in heritable cases, there is one germline
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mutation and one somatic mutation. The molecular
insults that cause loss or inactivation of pRB are varied
and include cytogenetically-visible deletions, smaller
deletions, and many types of sequence variants
(eg, nonsense, frameshift, missense, splicing, and pro-
moter) [11]. Importantly, penetrance in germline cases
correlates with the nature of the genetic insult. Nearly
complete penetrance is observed in cases arising from
premature termination mutations or large deletions,
while incomplete penetrance and variable expressivity
have been observed in families transmitting certain
missense, splicing, or promoter mutations [4,12].

Comprehensive RB1 testing is negative in approxi-
mately 2% of RB cases. Amplification of the MYCN
oncogene has been identified in tumorigenesis in
approximately half of such cases, but the clinical impli-
cations of MYCN amplification (MYCNA) in RB remain
to be identified [10].

Molecular Technologies

The appropriate genetic testing approach for newly-
diagnosed RB is determined by the likelihood that a
germline RB1 mutation is present. In familial and bilat-
eral cases, the priority is to identify the putative germ-
line mutation, typically by testing a peripheral blood
sample. In the unilateral sporadic cases, testing may be
first performed on tumor tissue, with the goal of iden-
tifying both RB1 mutations. Peripheral blood is tested
next, in order to determine whether either mutation is
present in the germline. Tumor tissue may only be
available following enucleation. RB biopsy is rarely
performed, largely because the diagnosis is usually
certain by clinical exam, but also due to the concern of
causing tumor dispersal during the procedure.

Genetic testing is typically undertaken in a reflexive
manner, beginning with sequence analysis to detect the
point mutations and small deletions and insertions that
comprise approximately 75% of RB1 mutations. To date,
over 1500 such mutations have been reported and are dis-
tributed throughout all 27 exons over the 178 kb gene [4].
Clinical sequence analysis by both Sanger sequencing
and next-generation sequencing is commercially avail-
able. Targeted analysis for the most common mutations is
offered, but sensitivity is low, often approximately 25%.

If sequence analysis is negative, then deletion/
duplication analysis is usually performed, most
commonly by multiplex ligation dependent probe
amplification (MLPA), to identify the single-exon or
multi-exon deletions, and whole-gene deletions that
account for approximately 15% of causative mutations.
Approximately half of these are large cytogenetically-
visible rearrangements involving the RB1 locus, and
most are associated with 13q14 deletion syndrome
(OMIM #613884), characterized by dysmorphic features,

mild to moderate intellectual disability, and growth
retardation. Larger deletions that extend distally into
13q32 are associated with major malformations of the
brain, genitourinary organs, and gastrointestinal tract.
In some instances, karyotype or chromosomal microar-
ray analysis (CMA) for congenital abnormalities has
identified the deletion and RB susceptibility before the
tumor was present [13]. The smaller, submicroscopic
whole-gene deletions can be detected by fluorescence in
situ hybridization (FISH) analysis, but this technique
has been largely replaced by the higher resolution
MLPA. FISH analysis remains useful for the rare
instances (,5%) in which RB1 is interrupted by a sub-
microscopic balanced translocation or insertion. If both
sequence analysis and deletion/duplication testing are
negative, methylation analysis will identify an addi-
tional approximately 10% with hypermethylation of the
RB1 promoter region resulting in gene silencing.
Together, these tests have been demonstrated to iden-
tify more than 95% of causative RB1mutations [14].

Clinical Utility

The primary goal of RB1 genetic testing is to iden-
tify patients with a hereditary predisposition for RB in
order to properly screen them for RB and other malig-
nancies. An intensive protocol of surveillance is recom-
mended in young children at risk for RB (e.g., those
known to carry a hereditary RB1 mutation, and unilat-
eral RB survivors of unknown mutation status) [15].
Ophthalmologic examination, typically under general
anesthesia, is performed every 3�4 weeks until the
child is 3 years of age or until there has been no tumor
activity for 8�12 months. Once old enough to cooper-
ate, children are subjected to dilated eye exam without
anesthesia in decreasing intervals as the risk of new
tumors decreases, typically every 6 months until age 9.

In patients with unilateral disease, identifying the
two RB1 mutations in the tumor and demonstrating
their absence in a peripheral blood sample reduce the
risk of germline mutation from approximately 15% to
less than 1% and justify omitting them from the exten-
sive RB screening protocol, although it is recom-
mended that they undergo repeated dilated eye exam.
Since most RB patients do not carry a germline muta-
tion, the cost of genetic RB1 testing is generally out-
weighed by the substantial health care savings of
avoiding intensive tumor surveillance [16].

Limitations of Testing

Although RB1 genetic testing is clinically useful in
most cases, there are a number of circumstances in
which it is less effective. First, the reported 95% sensi-
tivity of comprehensive RB1 testing is high but
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incomplete, so a negative result for an RB1 mutation
does not eliminate the possibility of hereditary RB.
Second, the necessity of identifying both RB1 mutations
in the tumor of patients with unilateral RB can be prob-
lematic. Current treatments aim to spare the eye, so
enucleation is not performed in all cases, and tumor
may not be available for testing. Similarly, in a subset of
patients with sporadic, unilateral RB, testing will fail to
identify both RB1 mutations in the tumor, and germline
testing will be uninformative. These patients will need
to remain on the intensive screening protocol although
the a priori risk for hereditary RB is low. Last, in cases of
hereditary RB, the recurrence risk for the patient and for
his or her relatives is dependent to some extent on the
nature of the germline mutation. Evidence that certain
alleles are associated with reduced penetrance and/or
variable expressivity is emerging, but there are as yet
insufficient data to support modifying clinical care or
risk estimates based on the type of mutation identified.

WILMS TUMOR

Background

Renal tumors represent approximately 7% of all child-
hood cancer diagnoses, and WT, or nephroblastoma, is
by far the most common, accounting for 95% of cases
among children younger than 15 years [17]. WT is
thought to develop from nephrogenic rests, collections of
abnormally persistent fetal blastema cells. These cells,
which usually do not persist beyond 36 weeks’ gestation,
represent precursor lesions for which there are multiple
potential outcomes. The vast majority spontaneously
regress by early childhood, some remain stable, and only
a very few will proliferate and undergo tumorigenesis.
Nephrogenic rests have been identified in approximately
1% of newborns, 40% of unilateral WT patients, and 90%
of bilateral WT patients [18,19].

In most cases, WT occurs as an isolated finding in a
previously healthy child. However, approximately 5%
of cases occur among children with a congenital syn-
drome associated with an increased risk of WT [20,21].
Although WT has been reported in association with a
wide range of Mendelian diseases and constitutional
chromosome abnormalities, the number of conditions
for which multiple studies have convincingly demon-
strated an increased risk of WT is limited. Those known
to have the highest risk of WT include Wilms
tumor�aniridia�genitourinary abnormalities�mental
retardation (WAGR) syndrome, Denys�Drash syn-
drome (DDS), Beckwith�Wiedemann syndrome (BWS),
Perlman syndrome, and Fanconi anemia (FA) subtypes
D2 and N. An additional 1�2% is familial, occurring

among children who have one or more relatives with
WT but no evidence of a WT-associated syndrome [22].

Molecular Target

The molecular targets in WT testing are varied and
include germline and mosaic mutations leading to
tumor predisposition as well as somatic mutations
acquired within the cancer cells.

WT1. The Wilms tumor 1 gene, WT1, encodes a tran-
scription factor that can act as either an enhancer or a
repressor and is required for proper kidney develop-
ment [23,24]. Mutation or deletion of WT1 has been
identified in approximately 20% of WT patients [25].
The majority of these are somatic mutations in nonsyn-
dromic sporadic cases and include deletions, insertions,
missense, and splice site mutations. Germline mutation
of WT1 is found in approximately 5% of cases, includ-
ing both congenital syndromic cases and cases of
heritable WT without other features [20,25].

TheWT1-associated predisposition syndromes include
WAGR (OMIM #194072) and DDS (OMIM #194080).
Both are characterized by a spectrum of genitourinary
abnormalities and WT predisposition. There is a strong
genotype�phenotype correlation among these cases.
WAGR is clinically the more severe, and as its name sug-
gests, causes WT predisposition, aniridia, genitourinary
abnormalities such as ambiguous genitalia, undescended
testicles or hypospadias in males, and internal genital or
urinary anomalies in females, and varying degrees of
intellectual disability. It is caused by a deletion at 11p13
that comprises both the WT1 and PAX6 genes. The esti-
mated risk of WT in these patients is consistently high,
varying between approximately 45% and 60% [26,27]. In
contrast, DDS is associated with undermasculinized
external genitalia in 46,XY individuals that can range
from ambiguous to a normal female appearance, while
affected 46,XX individuals have normal female genitalia.
Patients with DDS have an exceptionally high risk of WT
(. 90%) and of early-onset renal failure [28,29]. DDS is
most often associated with missense mutation in exon 8
or 9 ofWT1 [28]. Frasier syndrome (OMIM #136680) is an
allelic disorder which is similarly associated with under-
masculinization of male external genitalia but has a
much lower risk of WT and renal failure. Frasier syn-
drome is caused by splicing mutations of IVS9 [30]. In
addition to the syndromic cases, germlineWT1mutations
have been identified in patients with WT and no other
features [31]. These mutations include missense, frame-
shift, nonsense, and splicing and have been found to be
distributed throughout the gene [32].

11p15 locus. Converging lines of evidence indicate
that one or more genes at 11p15 influence WT risk.
Somatic abnormalities of 11p15 have been demonstrated
in a subset of sporadic WT [33] and constitutional
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chromosomal abnormalities of 11p15 are associated
with both syndromic and nonsyndromic WT [31,33].

The syndrome associated with 11p15 abnormalities,
BWS, is characterized by overgrowth and elevated inci-
dence of multiple types of malignancies, of which WT is
the most common with an approximately 9% risk [34].
The genetic abnormalities that underlie BWS are complex,
and their thorough consideration is outside the scope of
this chapter. Put very simply, the BWS critical region at
11p15 includes two imprinting centers, IC1 and IC2,
which are differentially methylated on the maternal and
paternal alleles. These imprinting centers regulate the
parental-specific expression of five genes: at IC1, IGF2 is
paternally expressed while H19 is maternally expressed,
and at IC2, KCNQ10T1 is paternally expressed, while
both CDKN1C and KCNQ1 are maternally expressed.
Taken together, maternal hypermethylation of IC1,
maternal hypomethylation of IC2, mutation of the
maternal CDKN1C allele, paternal uniparental disomy of
the BWS critical region, and cytogenetic abnormalities
disrupting the BWS critical region account for approxi-
mately 80% of BWS [34]. Interestingly, constitutional
11p15 defects have been identified in approximately 3%
of children with WT and no evidence of overgrowth [33].

Other WT predisposition syndromes. A number of addi-
tional Mendelian diseases are clearly associated with an
increased risk of WT. Those with the highest risk of WT
include Perlman syndrome, a severe autosomal reces-
sive overgrowth syndrome that is often fatal in infancy,
and two FA complementation groups, FANCD1 and
FANCN. Those with lower WT risk include the rare over-
growth conditions, Simpson�Golabi�Behmel syndrome
and Bohring�Opitz syndrome, and the cancer predispo-
sition conditions, Bloom syndrome and Li-Fraumeni syn-
drome. The genes associated with these syndromes and
the WT risk for each are detailed in Table 31.1.

Acquired cytogenetic abnormalities. Tumor-specific
recurrent cytogenetic abnormalities have been observed,
and some of these abnormalities have prognostic impli-
cations. Among the most common are gain of 1q and
loss of heterozygosity (LOH) for chromosomes 1p and
16q, which are poor prognostic indicators [36,37].

Molecular Technologies

Genetic testing in WT is determined in part by the
likelihood that a patient has an unrecognized WT pre-
disposition syndrome. Any patient presenting with
apparently isolated WT should be evaluated for subtle
manifestations of one of these syndromes. Some, such as
WAGR, are of course highly unlikely in an otherwise
healthy and typically developing child, but others, par-
ticularly DDS in females, can be difficult to discern. In
one study, approximately 17% of patients presenting
with WT were clinically diagnosed with a WT-
associated syndrome [38]. If clinical suspicion is high,
genetic testing of a peripheral blood sample is indicated.

For suspected cases of WAGR, FISH analysis for the
associated deletion at 11p15.5 is the most common
method of diagnosis, but chromosomal microarray is
also available. Although the reported deletion sizes
vary greatly, most are too small to be detected by rou-
tine cytogenetic analysis. For DDS, sequence analysis
of the relevant regions of WT1 is clinically available by
Sanger sequencing, massively parallel sequencing, and
genotyping assays for the more common mutations.
For sporadic WT cases, full sequence analysis of the
coding region of WT1 is available by Sanger sequenc-
ing and massively parallel sequencing.

Genetic evaluation of BWS is most often performed
in a tiered fashion. Because methylation defects are
responsible for the majority of cases, analysis of the

TABLE 31.1 Congenital Syndromes Associated With an Increased Risk of WT

Syndrome Locus Estimated WT risk Inheritancea

DDS WT1 90% [28] AD

WAGR 11p13; WT1 and PAX6 45�60% [27] AD

FA, N PALB2 38% [35] AR

FA, D1 BRCA2 30% [35] AR

Perlman syndrome DIS3L2 30% [35] AR

BWS 11p15.5 9% [34] N/Ab

Simpson�Golabi�Behmel syndrome GPC3 6% [35] XLR

Bloom syndrome BLM 3% [35] AR

Frasier syndrome WT1 ,1% AD

aAD, autosomal dominant; AR, autosomal recessive; XLR, X-linked recessive.
bOnly a few percent of BWS cases, such as those with mutations in CDKN1C or with cytogenetic abnormalities involving 11p15.5 are heritable, and these are typically

transmitted in an AD manner.
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two imprinting centers at 11p15.5 by methylation-
sensitive MLPA is usually performed first. This test
will identify hypomethylation of IC2 in approximately
50% of cases and hypermethylation of IC1 in approxi-
mately 5%. Paternal uniparental disomy, which
accounts for an additional approximately 20%, is sus-
pected if both hypomethylation of IC2 and hyper-
methylation of IC1 are detected, and confirmatory
testing can be performed using highly informative
short tandem repeat (STR) markers. Among patients
with normal methylation results, sequence analysis of
the coding region of CDKN1C may be performed.
Causative mutations within this gene are identified in
approximately 5% of sporadic BWS, but in up to 40%
of cases with a positive family history [39]. Routine
karyotype analysis has been shown to detect relevant
cytogenetic rearrangements involving 11p15.5 in a small
fraction (B1�2%) of patients [40,41].

Perlman syndrome is caused by biallelic mutation
in DIS3L2, and both sequence analysis and deletion/
duplication testing are clinically available [42].

For the FAs, FANCD2, and FANCN, the initial
genetic diagnosis is by chromosome breakage assay.
In this test, cultured lymphocytes are exposed to a
DNA cross-linking or alkylating agent, such as diepoxy-
butane or mitomycin C, and the number of DNA abnor-
malities (e.g., chromosome and chromatid breaks, radial
formation, fragmentation) is quantified and compared
to that of normal controls. Cells from FA patients are
deficient in DNA repair, and an increase in the number
of abnormalities is diagnostic for FA. Once a diagnosis
of FA has been established, the particular subgroup can
be identified. This is commonly done by massively par-
allel sequencing, which permits simultaneous analysis
of all FA-associated genes and has largely replaced the
historical complementation group analysis.

Genetic testing of the tumor sample, whether a
biopsy or an excision, is most often undertaken by kar-
yotype analysis of cultured cells to identify numerical
and structural chromosome abnormalities. CMA is a
useful tool for identifying smaller unbalanced struc-
tural abnormalities and regions of LOH.

Clinical Utility

Genetic testing in the setting of WT is used in the
estimation of recurrence risk for the patient and for his
or her relatives, to determine whether additional tumor
surveillance is appropriate, and to inform prognosis.

Most cases of WT are unilateral (B90%) and spo-
radic (B98%), and after treatment the patient’s risk of
recurrence or development of additional malignancies
is low. Distinguishing these patients from the few with
WT predisposition syndromes permits the former to

avoid unnecessarily intensive tumor surveillance. In
certain cases, genetic testing may be the best way to
differentiate between clinically similar syndromes with
different health risks, as in DDS and Frasier syndrome.
Even among patients with the same diagnosis, the
exact nature of the causative mutation can have pro-
found clinical implications. For example, the overall
risk of WT in BWS is routinely cited as approximately
5%, but to date no cases of WT have been reported in
association with the most common cause of BWS, iso-
lated hypomethylation of IC2, or with mutation in
CDKN1C.

Regardless of whether a patient has a genetic predis-
position syndrome, karyotype analysis of tumor cells to
identify the presence or absence of important recurrent
cytogenetic abnormalities can aid accurate prognosis.
WT karyotypes are often complex, with multiple
numerical and structural abnormalities. Fig. 31.1 shows
a karyotype from a WT sample exhibiting a number of
common recurrent abnormalities, including isochromo-
somes 1q and 16p, and gain of an additional copy each
of chromosomes 1, 7, and 8. As gain of 1q and loss of
16q are associated with inferior outcome, this patient
may be expected to require aggressive treatment. In
addition, CMA for the detection of tumor-specific LOH
at 1p or 16q is used to stratify prognosis.

Limitations of Testing

Among the primary limitations of genetic testing for
WT is our incomplete understanding of the genetic
mechanisms that underlie WT risk and tumorigenesis.
In one study, 52 WT patients were observed to have
associated malformations indicative of a congenital syn-
drome, but genetic testing identified a causative muta-
tion among the known syndromic predisposition genes
in only 14 (B27%) [20]. A related concern is the diffi-
culty in calculating risk when many of the associated
syndromes are characterized by variable expressivity
and reduced penetrance. Interpretation is further com-
plicated by the large number of private variants
observed in certain genes, particularly of WT1 variants
in nonsyndromic familial cases. Although these are
active areas of research, the low incidence of the individ-
ual predisposition syndromes makes it difficult to obtain
datasets of sufficient power for prospective study.

The interpretation of tumor-specific acquired genetic
abnormalities has similar limitations. Although a hand-
ful of poor prognostic indicators have been discovered,
there are a large number of recurrent abnormalities
with unknown clinical implication. In addition, karyo-
type analysis is generally limited to imbalances of
greater than approximately 5 Mb in good preparations,
and WT metaphase spreads, like those of most solid
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tumors, often result in short chromosomes that further
increase the limit of detection. Thus, many abnormali-
ties may be too subtle to be observed.

NEUROBLASTOMA

Background

NB is a solid tumor arising from embryonic neural
crest cells. It accounts for approximately 8�10% of all
childhood cancers and 15% of all deaths related to can-
cer in children. NB is the most common cancer diagno-
sis in infants with the majority of patients diagnosed
between birth and age 4. Although NB can be seen in
older children and young adults, fewer than 5% of NB
diagnoses are made after age 10. NB is characterized
as heterogeneous in terms of both presentation and
outcome. Tumors can arise in a variety of locations
including the adrenal gland (most frequent site), medi-
astinum, connective, subcutaneous, and soft tissues,
retroperitonium, central and autonomic nervous sys-
tems, and other locations. Outcomes can range from
spontaneous regression of the tumor to very aggressive
metastatic disease and death [2,44].

The diagnosis of NB is generally based either on tis-
sue biopsy and histopathology or the finding of NB
cells in the bone marrow and the elevated presence of
specific serum or urine analytes [45]. Staging of the
tumor at diagnosis takes into consideration whether
the tumor is localized, involves vital structures, crosses
the midline, and the presence of involved lymph nodes

and distant metastases [46]. Age at diagnosis has long
been recognized as an important prognostic indicator
with infants having a superior outcome compared to
patients older than 1�2 years at ascertainment. Current
treatment trials are examining the efficacy of reducing
the toxicity of treatment regimens for patients diag-
nosed before 18 months of age [47].

Treatment algorithms are generally based on risk clas-
sifications developed as a result of large clinical trials
performed by collaborative groups like the Children’s
Oncology Group (COG) and data analysis projects that
combine data from multiple trials. The International
Neuroblastoma Risk Group (INRG) Project risk classifi-
cation combines staging, age, histology, and genetic char-
acteristics of the tumor to classify patients, pretreatment,
into very low, low, intermediate, and high-risk categories
[48]. In one COG study (ANBL00B1), infants less than 6
months of age at diagnosis with small localized adrenal
tumors demonstrated spontaneous regression in 81% of
cases without surgery or other treatment. Patients with
intermediate-risk classification were treated with chemo-
therapy alone, and those at high risk had surgery, che-
motherapy, stem cell transplant, immunotherapy, and/
or treatment with other biological agents [49�51].

Molecular Targets and Technologies

Genomic testing for NB falls into two categories: (1)
testing for germline mutations in predisposition genes
and (2) testing for somatic alterations in tumor tissue
that may have prognostic significance or suggest treat-
ment options.

FIGURE 31.1 49,X,-Y,11,i(1)(q10),17,18,i(16)(p10),120 karyotype of a tumor cell from a young male WT patient. Blue arrows indicate
cytogenetic abnormalities. Structural abnormalities involving 1q and 16p, as well as trisomy 8, are recurrent abnormalities [43]. Gain of 1q and
loss of 16q are poor prognostic indicators [36].
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Approximately 1�2% of NB cases are thought to be
familial with an autosomal dominant pattern of inheri-
tance and unknown penetrance. The two genes most
often identified as predisposition genes for NB are
Phox2b and ALK. Patients with familial NB are often
present with multifocal tumors and may also have, or
have a family history of, other disorders of the sympa-
thetic nervous system, such as Hirschsprung disease
(HSCR), congenital central hypoventilation syndrome
(CCHS), or neurofibromatosis type 1 (NF1). Germline
mutations in Phox2b (at 4p12�13) are seen in patients
with NB and HSCR or CCHS. Pedigree analysis in
familial cases of NB led to the identification of germline
mutations in the tyrosine kinase domain of the ALK
oncogene in some patients. ALK is involved in the
development of the nervous system. Some clinical labo-
ratories are offering germline testing for Phox2b and
ALK mutations using next-generation sequencing or
other sequencing approaches. Approximately 12% of
high-risk NB tumors also contain somatic ALK muta-
tions. In their 2013 paper describing the genetic land-
scape of high-risk NB tumors using a combination of
whole-exome and whole-genome sequencing, Pugh
et al. identified five genes with germline mutations that
could potentially predispose to NB: ALK, CHEK2,
PINK1, TP53, and BARD1. They concluded that germ-
line mutations may play a larger role in NB pathogene-
sis than previously reported. In the same paper, the
authors also identified five genes with a relatively high
number of somatic mutations in these tumors and bio-
logic evidence for involvement in the development of
NB: ALK, PTPN11, ATRX, MYCN, and NRAS [52�54].

Somatic genomic testing in NB tumors has tradition-
ally addressed cytogenetic markers. MYCNA status
has been studied since the mid-1980s and is highly cor-
related with high-risk disease [55]. In the INRG cohort
of 8800 NB patients, 16% of NB tumors exhibited
MYCNA, but the majority of metastatic tumors did not

have MYCNA [48]. Ploidy status is also an indepen-
dent indicator of outcome and many aggressive NB
tumors without MYCNA have diploid (2N) or tetra-
ploid (4N) karyotypes. Hyperdiploid or near triploid
NB tumor karyotypes are generally associated with a
good outcome [56]. More recently, segmental chromo-
some abnormalities (SCAs) have been identified as
indicators of poor outcome in patients without
MYCNA. SCAs are losses, gains, or rearrangements of
chromosomal regions. Specific SCAs have been identi-
fied as having prognostic significance in tumors with-
out MYCNA. Gain of 17q, loss of 1p, and loss of 11q
are the most common SCAs in tumors without
MYCNA and the presence of any one of these abnor-
malities is predictive of a higher risk of relapse and
poorer outcome. Less frequent, but also recurring
SCAs include deletions in 3p and 4p, and gains of 1q
and 2p [57].

In nonresearch settings, karyotype and FISH assays
are most commonly used to distinguish among tumors
with diploid, triploid, MYCNA, and SCA genomes.
MYCNA is usually demonstrated with an FISH assay
that combines a probe for the MYCN gene in one color
and a different color probe for a similar-sized gene on
the long arm or for the centromere region of chromo-
some 2 (Fig. 31.2). A positive MYCNA result is defined
as more than four times as many MYCN signals as con-
trol probe signals in the same cell, while a lower dis-
crepancy between MYCN and control signals is termed
MYCN gain. Although MYCN gain has been shown to
be associated with a poor outcome in other studies, the
INRG study did not have sufficient data on MYCN sta-
tus to confirm this observation [48]. Clinical laborato-
ries often use either karyotypic evidence of 11q23
deletion or a loss of an FISH probe in the 11q23 region
to demonstrate the 11q SCA. Similarly, 1p loss or 17q
gain can be shown by the use of FISH probes that map
to the relevant region. The prognostic significance of

FIGURE 31.2 MYCN amplification.
Two interphase nuclei from an NB tumor
probed with the Abbott/Vysis LSI probe
set for MYCN (green) and the centromere
region (orange) of chromosome 2. The
nucleus on the left is normal with two cop-
ies each of MYCN (2p24) and the chromo-
some 2 specific centromere alpha satellite
sequences. The nucleus on the right has
over 100 copies of MYCN and two copies
of the centromere signal. This degree of
MYCN amplification is seen in some high-
risk NB tumors.
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SCAs reported by Schleiermacher et al. [57] from the
INRG cohort and the inclusion of LOH for these
regions in their definition of SCA suggest that pange-
nomic assays such as SNP microarray may be a more
efficient and thorough approach for this analysis, and
this technology is also in use in clinical laboratories for
NB tumor classification [49].

The observation that ALK is one of the most com-
monly mutated genes in NB has led to clinical trials
with the small-molecule tyrosine kinase inhibitor crizo-
tinib. Approximately 7�10% of NB tumors have acti-
vating mutations in the tyrosine kinase domain of ALK,
and mutations in three amino acid domains account of
approximately 86% of these mutations. Clinical trials
are in progress using varying dosage levels of crizoti-
nib depending on the degree of sensitivity of the differ-
ent mutations to the treatment. Sequencing of tumor
tissue for the presence of these mutations is taking
place in the clinical research setting. Initial trials have
focused on patients with refractory or relapsed disease
[58,59].

Clinical Utility

The clinical utility of germline testing is somewhat
limited by the small number of NB tumors that are
thought to arise in carriers of NB-predisposing germ-
line mutations. Overall it has been estimated that
about 2% of NB tumors fall into this category, and the
majority of these mutations are in the ALK gene, with
6% of the 2% estimated to occur in PHOX2B [60].
The question as to whether this is an underestimate of
the prevalence of hereditary NB has been raised by at
least one sequencing study that identified five candi-
date genes that may be involved in predisposition to
NB tumors [52]. Because NB is one of the most
common tumors of childhood and infancy, population
screening for NB in infants has been attempted,
but with mixed results. The presence of elevated
urinary catecholamines is a significant marker for NB.
A Japanese program of universal screening of asymp-
tomatic 6-month-old infants resulted in a significant
increase in the incidence of NB in that population, but
the tumors identified had biological markers associ-
ated with good outcomes. Similar results were seen in
two other studies in Germany and Quebec, and over-
all, because high-risk tumors were not identified, pop-
ulation screening has not impacted mortality rates. The
use of a similar screening approach for monitoring
patients at increased risk for NB because of inherited
mutations may prove to be more effective [61�63].

Low-risk NB patients enrolled in the COG ANBL00B1
biology study which opened in 2001, had a 3-year event-
free survival (EFS) of over 95%. Intermediate-risk
patients had a 3-year EFS of 80�95%. Treatment

strategies were in part based on the biology of the
tumors, including some genetic characteristics. However,
patients with high-risk tumors had only a 40�50%
3-year EFS, although even that disappointing statistic
was a marked improvement over similar data on patients
treated before the development of biology-based treat-
ment algorithms. Current efforts to improve treatment
for low- and intermediate-risk patients are focused on
reducing the treatment toxicity while maintaining excel-
lent survival [49]. Patients who have received the most
toxic levels of treatment, usually the high-risk patients
who received high levels of chemotherapy and/ or radia-
tion, have been observed to have some late effects which
can include hearing loss, renal impairment, and other
organ system dysfunction. Some NB survivors have also
developed secondary malignancies including myelodys-
plastic syndrome, acute myeloid leukemia, and some
solid tumors [64,65]. In terms of clinical utility, treatment
algorithms that are based on tumor biology have worked
well for low- and intermediate-risk patients, but high-
risk patients with higher intensity treatments have seen
relatively smaller benefits and an increased risk of
treatment-related morbidity.

Limitations of Testing

The primary limitation of testing to date seems to
reside with the heterogeneity of this tumor, the paucity
of known driver mutations, and the relatively small
number of recurring somatic mutations identified in
high-risk NB tumors. While excellent outcomes have
been achieved for low- and intermediate-risk patients,
the goal of finding targeted therapies for the approxi-
mately 40�50% of patients in the high-risk group has
not made much headway.
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Molecular Testing in Chronic Myelogenous
Leukemia

N.A. Brown and B.L. Betz
Department of Pathology, University of Michigan, Ann Arbor, MI, United States

INTRODUCTION

Chronic myelogenous leukemia (CML) is a myelo-
proliferative neoplasm that has become a paradigm of
molecular diagnosis, targeted therapy, and disease
monitoring. The disease is defined by the BCR�ABL1
fusion gene, resulting from the translocation of chro-
mosomes 9 and 22 [1]. This fusion leads to constitutive
activation of the ABL1 tyrosine kinase, resulting in
growth factor independent myelopoiesis [2].

CML has an incidence of 1�2 cases per 100,000 popu-
lation and is diagnosed at a median age of approxi-
mately 50 years [3,4]. The natural course of CML can be
divided into three phases. A chronic phase lasting
approximately 4�5 years is characterized by leukocytosis
with marked proliferation of granulocytes and their pre-
cursors, particularly, myelocytes and segmented neutro-
phils. Basophilia, eosinophilia, and thrombocytosis are
also common, but blast counts are typically less than 2%.
Progression to accelerated phase has been defined by
(1) leukocytosis, splenomegaly, or thrombocytosis uncon-
trolled by therapy; (2) thrombocytopenia unrelated to
therapy; (3) clonal cytogenetic evolution; (4) basophilia
comprising 20% or more of cells in the peripheral blood;
or (5) 10�19% myeloblasts in the blood or bone marrow
[1]. Blast phase is the most advanced stage and is
marked by an acute leukemia (. 20% blasts) of either
myeloid or lymphoid phenotype.

The development of imatinib (STI571) and other tyro-
sine kinase inhibitors (TKIs) with activity against
BCR�ABL1 has revolutionized the treatment of patients
with CML [5,6]. Following publication of findings from
the International Randomized Study of Interferon ver-
sus STI571 (IRIS) trial in 2003, imatinib has quickly
replaced interferon-α as the standard of care [7]. Since

2003, additional TKIs such as dasatinib and nilotinib
have also gained FDA approval for treatment of CML.
Molecular testing has evolved in parallel with these
treatments and has become standard of care in the diag-
nosis and monitoring of CML, as well as the selection
of specific therapeutic agents.

MOLECULAR BIOLOGY OF CML

At the time of diagnosis, approximately 95% of CML
cases demonstrate the characteristic t(9;22)(q34;q11.2)
reciprocal translocation resulting in the Philadelphia
chromosome [der(22q)] and the fusion of the 50 portion
of the BCR gene to the 30 portion of ABL1 [8] (Fig. 32.1).
The remaining cases have either cytogenetically cryptic
BCR�ABL1 fusions or variant BCR�ABL1 translocations
involving other chromosomes in addition to 9 and 22.
While BCR�ABL1 is present in all cases of CML, this
fusion is not unique to CML and can also be found in
many cases of de novo B lymphoblastic leukemia/lym-
phoma (B-ALL) [9].

The specific chromosomal breakpoints giving rise to
the BCR�ABL1 fusion transcript can vary [10,11]
(Fig. 32.2). Breakpoints in ABL1 are almost always 50

(upstream) of the second exon, leading to juxtaposition
of ABL1 exon 2 (previously known as a2) with one of
several possible BCR exons. Variant ABL1 breakpoints
that are 50 to exon 3 (a3) have also been described but
these are rare. BCR breakpoints most commonly occur
in the major breakpoint region (M-bcr) which spans
exons 12�16 (previously known as b1�b5). Within the
M-bcr, the vast majority of translocations involve either
exon 13 (e13 previously known as b2) or exon 14 (e14
previously known as b3). The juxtaposition of these
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BCR b2 or b3 breakpoints with ABL1 a2 creates e13a2
(b2a2) or e14a2 (b3a2) fusion transcripts and a
BCR�ABL1 protein of 210 kDa (p210). This p210
protein is present in the vast majority of CML cases

(B98%) as well as approximately 50% of adult and 20%
of pediatric t(9;22)-positive B-ALL [9,10]. A shorter
fusion protein (p190) results from breaks in the minor
breakpoint region (m-bcr) and the juxtaposition of BCR
exon 1 (e1) with ABL1 exon 2 (a2) leading to e1a2. This
fusion is rare in CML (B1%) but occurs in approxi-
mately 50% of adult and 80% of pediatric patients with
t(9;22)-positive B-ALL [9]. Rarely, fusions involve an
extreme 30 region of BCR designated the micro break-
point region (μ-bcr). Breaks in this region lead to the
fusion of BCR exon 19 (e19) with ABL1 exon 2 (a2) and
a larger protein product (p230). This event is commonly
associated with a variant of CML in which mature
granulocytes predominate [13]. Other extremely rare
variants have been described but are infrequently coun-
tered in clinical practice [14].

MOLECULAR METHODS

Traditional laboratory methods such as morphology,
hematologic assays, and conventional cytogenetics
remain important tools in the diagnosis and monitoring
of CML. However, several molecular techniques have
improved the sensitivity and precision of detecting and

Chr 9

q34

Chr 22

q11.2

FIGURE 32.1 Metaphase cytogenetics. CML is characterized by a
reciprocal translocation involving 9q34 and 22q11.2, resulting in two
derivative chromosomes. The derivative chromosome 22 [der(22q] is
known as the Philadelphia chromosome (shown with arrowhead)
and contains a fusion of the 50 portion of the BCR gene to the 30 por-
tion of ABL1. The derivative chromosome 9 is also shown (arrow).
Source: Image courtesy of Diane Roulston.
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FIGURE 32.2 The t(9;22)(q34;q11) translocation and associated BCR�ABL1 fusion products. The translocation of chromosomes 9 and 22
leads to the juxtaposition of the BCR and ABL1 genes and is cytogenetically recognizable by the presence of the Philadelphia (Ph) chromosome.
A large breakpoint region upstream of ABL1 exon 2 is joined with one of several BCR breakpoint regions. In CML, the M-bcr (major) breakpoint
region is most common (B98% cases) and leads to juxtaposition of either BCR exon 13 or 14 to ABL1 exon 2, producing e13a2 or e14a2 tran-
scripts and a 210 kDa BCR�ABL1 fusion protein (p210). This transcript is also found in B-ALL/LBL. Fusion of the BCR minor breakpoint region
(m-bcr) with ABL1 exon 2 leads to e1a2 transcripts and a 190 kDa protein (p190). This transcript is associated with B-ALL/LBL and only rarely
occurs in CML. The micro breakpoint region (μ-bcr) is rare and juxtaposes BCR exon 19 with ABL1 exon 2, resulting in e19a2 transcript and a
230 kDa (p230) protein. Source: Reprinted with kind permission of [12] Behdad A, Betz BL, Lim MS, Bailey NG. Molecular testing in hematologic malig-
nancies. In: Yousef GM, Jothy, editors. Molecular testing in cancer. New York, NY: Springer Science1Business Media; 2014. pp.135�68.
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monitoring CML and offer additional information that
informs targeted treatment decisions.

Fluorescence In Situ Hybridization

Fluorescence in situ hybridization (FISH) assays
employ fluorescently labeled probes to interrogate the
BCR and ABL1 loci. A dual-color, dual-fusion approach
is commonly used and can detect all BCR�ABL1
fusions with excellent sensitivity and specificity includ-
ing cytogenetically cryptic translocations (Fig. 32.3). The
dual-fusion design also significantly reduces the risk of
false positivity due to random colocalization of probe
signals [15]. The limit of detection using this approach
is approximately 1�2% CML cells in a background of
normal cells when 200 cells are scored and can improve
to approximately 0.5% when 500 cells are scored.
Despite the improved sensitivity over conventional kar-
yotyping, FISH is considered a complimentary method
for monitoring treatment response in CML due to lack
of standardized response criteria. Further, technologies
with higher sensitivity are required to effectively moni-
tor minimal residual disease for signs of early relapse
in patients undergoing kinase inhibitor therapies.
Therefore, FISH is more useful in the initial diagnosis
of CML rather than disease monitoring.

Reverse Transcription Polymerase Chain
Reaction

In reverse transcription polymerase chain reaction
(RT-PCR), RNA is isolated from cells, reverse transcribed
into cDNA, and subjected to PCR amplification. Because
intronic sequence is spliced out of RNA transcripts, this
approach enables the detection of gene fusions regard-
less of the specific breakpoint within a given intron. RT-
PCR assays are generally designed to detect both M-bcr
and m-bcr rearrangements accounting for the large

majority of BCR�ABL1 rearrangements and can be
designed to be either qualitative or quantitative.

Qualitative assays offer a sensitive means of detect-
ing BCR�ABL1 with a rapid turnaround time and are
therefore well suited for initial diagnosis. These assays
should always include a control RT-PCR reaction for
another mRNA such as GAPDH or ABL1 to ensure the
integrity of the extracted RNA and to assess for the
presence of RT-PCR inhibitors. Qualitative RT-PCR
can be performed with a simple, nested, or multiplex
approach. While multiplexing may reduce the sensitiv-
ity of the individual reactions, this effect is not likely
to be relevant in the diagnostic setting. Qualitative
assays can also be designed to identify rare variant
breakpoints such as those involving BCR μ-bcr or
ABL1 exon 3 (a3) that may not be amenable to monitor-
ing by quantitative PCR assays.

Quantitative RT-PCR using real-time RT-PCR has
emerged as the preferred method for posttherapeutic
monitoring of CML [16]. This approach offers a
sensitive, reproducible, and rapid means of quantifying
BCR�ABL1 fusion transcripts. BCR�ABL1 can be quanti-
tated over a broad range of values spanning many orders
of magnitude and the lower limit of detection real-time
RT-PCR has been reported at less than one CML cell in a
background of 100,000 [17]. Common chemistries
employed include Taqman and FRET probe methods to
enable florescent detection of accumulated amplification
product after each PCR cycle [18,19]. Quantitation relies
on the fact that the PCR cycle at which the reaction prod-
uct crosses a specified fluorescent threshold (Ct) is
inversely proportional to log of the number of template
copies. Accurate quantitation requires the generation of a
standard curve using standards of known concentration
(Fig. 32.4A). Based on this curve, the number of copies in
an unknown patient sample can be determined. The
number of BCR�ABL transcripts is normalized against
an internal reference transcript—most commonly
ABL1—and reported out as a BCR�ABL1/ABL1 ratio. In

(A) (B) FIGURE 32.3 FISH for detection of
BCR�ABL1. (A) Metaphase FISH using dual-
fusion probes. The green fluorescent probe is
designed to span the breakpoint region of the
BCR gene on chromosome 22q11.2 and the red
probe spans the ABL1 breakpoint region on
chromosome 9q34. The reciprocal t(9;22)(q34;
q11.2) results in colocalized green/red fusion
signals on both derivative chromosomes: a
BCR�ABL1 fusion signal on der(22q) and an
ABL1�BCR fusion signal on der(9q). (B)
Interphase FISH using the same dual-fusion
probes. Both cells harbor the translocation as
indicated by two fusion signals. Source: Images
courtesy of Diane Roulston.
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addition to calibration standards, quantitative controls
(typically both a high positive and a low positive control)
are required with each run and should be closely moni-
tored to ensure adequate performance of the assay and
reliability of the quantitative results.

ABL1 Mutational Analysis

Substitution mutations in the ABL1 kinase domain are
a common mechanism for acquired resistance to kinase
inhibitor therapy. Sequencing of the ABL1 kinase domain
(Fig. 32.4B) is required to identify the wide array of dif-
ferent mutations that confer variable resistance to various
kinase inhibitor therapies [16]. A nested PCR strategy is
typically employed prior to sequencing to specifically
amplify the kinase domain from translocated ABL1, thus
avoiding sequencing of the native wild-type ABL1 allele.
The first PCR reaction is performed using forward BCR
primers and reverse ABL1 primers to yield a BCR�ABL1
product containing the ABL1 kinase domain. One or
more additional PCR reactions are utilized to further
amplify the kinase domain of translocated ABL1 to a

sufficient copy number. This amplicon is then sequenced
using standard Sanger sequencing to identify the specific
resistance mutation if present.

INDICATIONS FOR TESTING AND
INTERPRETING RESULTS

Initial Diagnosis

CML is frequently suspected based on characteristic
clinical and pathologic findings. However, many condi-
tions such as a leukemoid reaction or another myelo-
proliferative neoplasm can mimic CML. Therefore, a
definitive diagnosis requires the identification of the
BCR�ABL1 fusion [1]. In addition, the diagnosis of
many non-CML myeloproliferative neoplasms requires
the exclusion of BCR�ABL1. Conventional cytogenetics
can be used to detect the t(9;22) or variant translocation
in approximately 95% of cases. Cytogenetic evaluation
also enables the detection of additional chromosomal
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FIGURE 32.4 PCR tests for BCR�ABL1. (A) Quantitative BCR�ABL1 testing. Real-time RT-PCR is a sensitive means to detect and quantify
BCR�ABL1 transcripts across a 4�6 log range of BCR�ABL1 levels. Amplification products can be detected during each PCR cycle using a
fluorescent probe specific to the PCR product. The accumulated fluorescence in log(10) value is plotted against the number of PCR cycles. For
a given specimen the PCR cycle number is measured when the increase in fluorescence is exponential and exceeds a threshold. This point is
called the quantification or threshold cycle (Ct), which is inversely proportional to the amount of PCR target in the specimen (ie, lower Ct

values indicate a greater amount of target). Calibration standards of known quantity are used in standard curves to calculate the amount of
target in a tested specimen. Shown are real-time RT-PCR plots of calibration standards for BCR�ABL1 quantitation. Note that PCR increases
the amount of amplification product by a factor of 2 with each PCR cycle. Therefore, specimens that produce a Ct value that is 1 cycle lower
are expected to have a two-fold higher concentration of target. Specimens that differ in target concentration by a factor of 10 (as shown) are
expected to be 3.3 cycles apart (23.35 10). Note the calibration samples with 500 and 50 copies of BCR�ABL1 produced Ct values of 29.7 and
33.0, respectively. (B) ABL1 kinase mutation testing. A variety of substitution mutations within the ABL1 kinase domain of BCR�ABL1 can
lead to differential resistance to TKI therapies. Sanger sequencing of this region within the BCR�ABL1 transcript is a preferred method to
detect the variety of mutations. Shown is a sequencing trace of a C to T nucleotide transition leading to a threonine (Thr) to isoleucine (Ile)
substitution at amino acid 315 (T315I). A wild-type trace is included for reference. Source: Reprinted with kind permission of Behdad A, Betz BL,
Lim MS, Bailey NG. Molecular testing in hematologic malignancies. In: Yousef GM, Jothy, editors. Molecular testing in cancer. New York, NY: Springer
Science1Business Media; 2014. pp.135�68.
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abnormalities, providing a baseline that can later be
used to determine if a patient has undergone cyto-
genetic evolution and disease progression. However,
approximately 5% of BCR�ABL1 fusions are cytogeneti-
cally cryptic and require detection using molecular
methods. Both FISH and RT-PCR can be used to detect
BCR�ABL1 fusions with greater sensitivity and typically
have a shorter test turnaround time compared with
metaphase cytogenetics. While FISH identifies essen-
tially all BCR�ABL1 fusions, RT-PCR will only identify
specific fusions for which the primers were designed
and may fail to detect BCR�ABL1 with rare breakpoints.
RT-PCR may afford a shorter turnaround time and
lower limit of detection, though high sensitivity is not
typically needed at the time of diagnosis. Quantitative
RT-PCR testing should be performed at the time of
diagnosis, prior to initiating therapy, in order to ensure
the presence of quantifiable BCR�ABL1 transcripts and
to obtain a baseline BCR�ABL1/ABL1 ratio [19].
Qualitative RT-PCR with breakpoint analysis may be
useful to identify rare BCR�ABL1 breakpoints that
are not amenable to monitoring by quantitative RT-PCR
tests.

Monitoring of Disease

Following diagnosis, CML patients are initiated on
TKI therapy such as imatinib mesylate or newer agents.
The degree of remission achieved following such ther-
apy can be graded according to the sensitivity of the
parameter used to monitor disease response. The earli-
est form of remission occurs when blood counts and
spleen size normalize signifying a complete hematologic
remission. Cytogenetic response is graded based on the
percentage of residual t(9;22)-positive cells with major
complete response defined as 0% t(9;22)-positive cells,
major partial response 1�34%, minor response 35�94%,
and no response 95% or greater [15]. However, the use
TKI therapy has made this schema less relevant. FISH is
a more sensitive approach than metaphase cytogenetics,
but FISH is seldom used in monitoring disease due to
its limited analytic sensitivity.

Quantitative RT-PCR has emerged as the preferred
method for posttherapeutic monitoring of CML [13].
Once the diagnosis of CML has been established, TKI
therapy is initiated and BCR�ABL1 transcripts are
monitored by quantitative RT-PCR every 3 months
[20]. Historically, the wide variation in RT-PCR testing
platforms, control genes, and result reporting made
interlaboratory comparisons of quantitative RT-PCR
results difficult. However, recent guidelines and the
widespread implementation of the International Scale
(IS) have significantly improved the consistency, qual-
ity, and comparability of RT-PCR testing across differ-
ent laboratories [21]. The IS was originally derived

from a pool of 30 patient samples with untreated,
newly-diagnosed chronic phase CML in the IRIS trial
[22]. The median baseline BCR�ABL1 level from this
patient cohort was taken to represent a value of 100%
on the IS. The same IRIS study was the first to establish
a more favorable outcome in patients who achieved
a 3 log reduction in BCR�ABL1 values, which was
defined as a major molecular response (MMR).
Consequently, a 3 log reduction in BCR�ABL1 tran-
scripts and achieving MMR is equal to a value of 0.1%
on the IS. Complete molecular response is defined as
a 4.5 log reduction. Recent data also point to the favor-
able prognostic significance of achieving a 1 log reduc-
tion (10% IS) in BCR�ABL1 levels by 3 months and
6 months after initiation of TKI, and this is now included
as a response milestone at these time points [23].
To translate their results into an IS value, laboratories
must establish a conversion factor for their individual
quantitative BCR�ABL1 assay by testing commercially
available reference materials or exchanging specimens
with an IS-calibrated reference laboratory.

Therapy Refractoriness

TKI resistance can be suspected if an appropriate ini-
tial response to TKI therapy is not obtained at 3 months,
there is a 1 log increase in BCR�ABL1 transcripts later
in therapy, or there is other evidence of disease progres-
sion such or hematologic or cytogenetic relapse [24].
While TKI resistance is multifactorial, approximately
half to three-fourths of patients have point mutations
within the ABL1 kinase domain that contribute to resis-
tance [25]. Numerous mutations have been described
that span the entire kinase domain. ABL1 kinase domain
sequencing offers an unbiased approach to detect all
mutations and may even detect mutations prior to
relapse [26] (Fig. 32.4). Individual mutations display a
range of effects on TKI refractoriness and prognosis
with some mutations conferring resistance against some
TKIs but preserved susceptibility to others. Other muta-
tions confer moderate TKI resistance which can be over-
come by higher doses. In addition, more than one
resistant clone may exist with each clonal component
bearing a different mutation. One of the most common
and notorious mutations involves a substitution of iso-
leucine for the threonine at position 315 (T315I), which
imparts resistance to multiple TKIs including imatinib,
dasatinib, and nilotinib [20]. Recently, novel TKIs have
been developed that have shown promise in targeting
the T315I mutation [27]. Identification of ABL1 muta-
tions allows appropriate, patient-specific selection of
TKIs with activity against specific resistance mutations.
Patients who are determined to be resistant to all avail-
able TKI may be referred for hematopoietic stem cell
transplantation or clinical trial.
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CONCLUSIONS

CML is a myeloproliferative neoplasm that has become
a paradigm of targeted molecular therapy as well as
molecular diagnosis and disease monitoring. The disease
is defined by the BCR�ABL1 fusion which can be
detected by a variety of techniques. While conventional
morphology and hematology as well as cytogenetics
remain important diagnostic tools, both FISH and RT-
PCR for the BCR�ABL1 fusion offer increased sensitivity.
TKI therapy has revolutionized the treatment of CML
and quantitative RT-PCR has become the standard of care
for monitoring patients after the initiation of therapy.
Finally, the identification of ABL1 kinase domain muta-
tions using sequencing allows appropriate, patient-
specific selection of TKIs in patients who are refractory to
first-line treatment.
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INTRODUCTION

Acute myeloid leukemia (AML) is the most com-
mon type of leukemia in adults. The American Cancer
Society estimates 18,860 new cases of AML in adults
with an estimated 10,460 deaths from the disease in
2014 [1]. AML is a clinically heterogeneous disease,
and prognosis and response to therapy is variable
among patients. Early attempts to classify this cancer
were based on the morphologic and immunochemical
characteristics of the leukemic cells. The most widely
accepted classification prior to the integration of
genetic information, was the French�American�
British (FAB) system, which divided AML based on
the type of cell from which the leukemia cells devel-
oped and the degree of maturation. Due to this, with
few exceptions, the majority of groups in the FAB clas-
sification do not show a significant prognostic differ-
ence [2].

Recent advances in our understating of the genetic
basis of cancer have revolutionized the diagnosis and
treatment of this disease. In AML, perhaps more than
any other neoplasm, genetic findings have been incor-
porated into the diagnostic classification scheme.
Genetic-based classification has facilitated the prognos-
tic stratification of various AML subtypes to favorable,
intermediate, and poor risk categories which is a key
factor in determining the mode and intensity of ther-
apy. This information also provides the opportunity to
utilize therapy that is targeted against the underlying
genetic aberration. A classic example is acute promye-
locytic leukemia (APL) in which the mainstay of treat-
ment, all-trans retinoic acid (ATRA), specifically and
effectively targets the underlying pathogenic aberra-
tion, the PML�RARA fusion gene product.

AML is the result of somatic genetic alterations in
hematopoietic progenitor cells that affect normal
mechanisms of proliferation, self-renewal, and differ-
entiation [3]. In rare instances, AML can arise in the
background of an inherited mutation. Examples of
inherited genes that have been linked to AML include:
CEBPA, SRP72, DDX41, RUNX1, and GATA2. The pro-
cess of leukemogenesis is believed to be multistep
as evidenced by the fact that introduction of single-
gene mutations is insufficient to induce AML in
animal models. Through study of families with inher-
ited germline mutations [4,5], Gilliland and Griffin
proposed a two-hit model for AML pathogenesis that
divides the genetic aberrations involved in AML into
two classes [6]. Class 1 mutations comprise those
that activate signaling pathways to promote prolifera-
tion and survival of hematopoietic progenitors. In
contrast, class 2 mutations affect transcription factors
that impair hematopoietic differentiation. Examples of
class 1 mutated genes include receptor tyrosine kinases
(FLT3, KIT) and downstream signaling genes (NRAS,
KRAS), while class 2 mutations include gene fusions
such as t(8;21) RUNX1/RUNX1T1 and inv(16) CBFB/
MYH11 and gene mutations in NPM1, CEBPA, and
RUNX1 [7]. Whereas class 1 mutations are typically
later events, the class 2 mutations occur early in leuke-
mogenesis, are stable during the disease course, and
consequently are believed to be initiating (founder)
mutations. Furthermore, class 2 mutations usually do
not coexist and the presence of each is frequently asso-
ciated with specific clinicopathological features, sug-
gesting that each defines a distinct entity [8]. These
observations provided rationale for AML classification
under the World Health Organization (WHO) scheme
(Table 33.1).
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DIAGNOSTIC WORKUP OF AML

The first step in diagnosis of AML is morphologic
evaluation of the neoplasm, which establishes the pres-
ence of leukemia. Diagnosis in most cases requires the
presence of at least 20% myeloid blasts and monocytic
progenitors. The exception to this rule is AML with
cytogenetic abnormalities t(8;21), inv(16)/t(16;16), and t
(15;17), which can be rendered based solely on the pres-
ence of the cytogenetic abnormality. Certain morpho-
logic characteristics of the leukemic cells (such as
presence of Auer rods) can be diagnostic of a myeloid
lineage. However, immunophenotypic analysis of the
leukemic cells is generally needed to distinguish AML
from lymphoblastic leukemia. This is often achieved
using flow cytometry, but other ancillary techniques
such as cytochemistry and/or immunohistochemistry
may also be utilized. After the diagnosis of AML is
established, further subclassification requires cyto-
genetic and/or molecular diagnostic information. From
a technical standpoint, the presence of at least 20% neo-
plastic cells in a diagnostic specimen is beneficial since
it facilitates the use of common cytogenetic and molecu-
lar diagnostic assays that have a relatively low analyti-
cal sensitivity (such as karyotyping, fluorescence in situ
hybridization (FISH), and Sanger sequencing).

Suitable diagnostic specimens include blood and
bone marrow aspirate. When the diagnosis of AML is
suspected and particularly if a bone marrow biopsy is
performed, various dedicated specimens are sent to the
hematology, flow cytometry, cytogenetics, and molecu-
lar diagnostic laboratories. The sequence in which vari-
ous tests are performed can vary among laboratories.
Flow cytometry, immunophenotyping, and cytogenetic
analysis are typically performed on all cases. In current
practice, molecular diagnostic tests for gene mutations
at the time of diagnosis are typically indicated only in

AML cases without recurrent cytogenetic abnormali-
ties. An exception is KIT mutation testing in core-
binding factor AML (CBF-AML). While the significance
of cytogenetic and many molecular assays (eg, mutation
testing for FLT3, NPM1, CEBPA, KIT) is primarily rele-
vant for postremission therapeutic decisions, testing is
typically performed on diagnostic samples when the
burden of disease is usually sufficiently high to allow
reliable detection of the relevant genetic aberrations.

CYTOGENETIC ABNORMALITIES IN
AML

Cytogenetic karyotyping remains the most powerful
prognostic factor in AML and provides the framework
for disease classification and approach to treatment
(Table 33.2). The WHO classification recognizes several
diagnostic entities that are based on cytogenetic abnor-
malities [9]. Here we discuss these chromosomal
abnormalities as they are currently relevant to the clin-
ical management of patients with AML.

Core-Binding Factor AML

CBF is a transcription factor complex that plays a key
role in hematopoiesis [14]. The CBF complex includes

TABLE 33.1 AML Classification Based on Recurrent
Cytogenetic and Molecular Abnormalities [9]

Abnormality Affected genes

t(8;21)(q22;q22) RUNX1�RUNX1T1

inv(16)(p13.1q22) or t(16;16)(p13.1;q22) CBFB�MYH11

t(15;17)(q22;q12) PML�RARA

t(9;11)(p22;q23) MLLT3-KMT2A(MLL)

t(6;9)(p23;q34) DEK�NUP214

inv(3)(q21q26.2) or t(3;3)(q21;q26.2) GATA2, MECOM(EVI1)

t(1;22)(p13;q13) RBM15�MKL1

AML with NPM1 mutation NPM1

AML with biallelic CEBPA mutations CEBPA

TABLE 33.2 AML Risk Categories Based on Established
Cytogenetic and Molecular Abnormalities [10�13]

Risk

category Cytogenetics Gene mutations

Favorable t(15;17) Normal cytogenetics without
FLT3-ITD and with either NPM1
or biallelic CEBPA mutationst(8;21)

inv(16)/t(16;16)

Intermediate t(9;11) t(8;21) or inv(16)/t(16;16) with
KIT mutation

Normal cytogenetics

18 alone

Other karyotype

Poor Complex
cytogenetics ($3
abnormalities)

Normal cytogenetics with FLT3-
ITD mutation

inv(3)/t(3;3)

t(6;9)

11q23 abnormalities
other than t(9;11)

t(9;22)

25, del(5q)

27, del(7q)
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two subunits: RUNX1 (AML1, CBFA2) and CBFB.
Disruption of CBF can lead to various hematopoietic
neoplasms such as myelodysplastic syndrome (MDS),
acute lymphoblastic leukemia (ALL), and AML [15].
CBF-AML usually results from translocations that dis-
rupt CBF function and accounts for the most common
cytogenetic subtype of AML. Two chromosomal abnor-
malities are associated with CBF-AML: (1) translocation
(8;21) that creates a RUNX1�RUNX1T1 (AML1�ETO)
gene fusion and (2) inversion or translocation within
chromosome 16 [inv(16) or t(16;16)] that results in the
CBFB�MYH11 fusion gene. AML with either t(8;21) or
inv(16)/t(16;16) is associated with excellent prognosis
and better response to chemotherapy [16].

Conventional cytogenetic analysis may not detect a
small subset of AML cases with t(8;21) or inv(16)/t
(16;16) [17]. In these instances, FISH or reverse
transcriptase-polymerase chain reaction (RT-PCR) can
be utilized to evaluate specimens for these abnormali-
ties when CBF-AML is suspected by morphology. This
is particularly important in AML with inv(16)/t(16;16)
as the karyotypic finding may be subtle.

CBF-AMLs can be accompanied by other chromo-
somal abnormalities or gene mutations. Several animal
studies have demonstrated that although essential,
RUNX1�RUNX1T1 and CBFB�MYH11 are not
adequate for leukemogenesis and require cooperative
genetic/epigenetic events [18]. Secondary genetic
mutations affecting KIT, FLT3, or RAS can be fre-
quently seen in CBF-AML.

Acute Promyelocytic Leukemia

APL is a morphologically and genetically unique
subtype that accounts for approximately 12% of AML.
Before the utilization of cytogenetic information for
classification, APL was clinically suspected by
bleeding diathesis and diagnosed by its unique
cytomorphologic features (Fig. 33.1A). The characteris-
tic t(15;17) chromosomal rearrangement was first
observed in the mid-1970s, followed later by the iden-
tification of the specific chromosomal breakpoints and
involved genes in the 1990s (Fig. 33.1B) [19�21].

Translocation (15;17) creates a PML�RARA fusion
gene that halts myeloid progenitor differentiation and
leads to expansion of neoplastic promyelocytes [22].
The RARA (retinoic acid receptor alpha) and PML
(promyelocytic leukemia) gene products both play
roles in normal hematopoiesis [23,24]. The chromo-
some 17 breakpoints associated with t(15;17) always
occur within intron 2 of the RARA gene. By contrast,
three distinct chromosome 15 breakpoints are
involved, all occurring within the PML gene: intron 6
(bcr1; 55% of cases), exon 6 (bcr2; 5%), and intron 3

(bcr3; 40%). As a consequence, there are three possible
PML�RARA isoforms, referred to as long (L, or bcr1),
variant (V, or bcr2), and short (S, or bcr3). The variant
(bcr2) isoform is so-called because of the variable
breakpoint positions in exon 6 leading to variably
sized RT-PCR amplification products. A minor subset
of APL cases harbor variant translocations that fuse
RARA to alternative partners including NPM1, NUMA,
FIP1L1, BCOR, ZBTB16 (PLZF), PRKAR1A, and
STAT5B [10,25]. Cases with these variant translocations
are designated as AML with a variant RARA transloca-
tion in the WHO classification [9].

There are several clinical features of APL that set
it apart from other AMLs and highlight the impor-
tance of rapid and accurate diagnosis. Although a
highly curable disease with treatment, most APL
mortalities occur during the first few days following
initial diagnosis, predominantly due to coagulopathy.
In order to reduce early mortalities, APL-specific
treatment including ATRA must be initiated as early
as possible. ATRA, often in combination with a sec-
ond drug, is able to induce complete remission in
almost all APL patients. The discovery and utiliza-
tion of ATRA for APL was a historic advance in can-
cer treatment as it was one of the first examples of a
highly effective targeted therapy [26,27]. Although
APL is frequently suspected based on the clinical
presentation, as well as morphologic and flow
cytometric findings, definitive diagnosis requires
detection of the PML�RARA fusion. Traditional
karyotyping cannot offer a sufficiently short turn-
around time for optimal management of these
patients. In addition, karyotyping may fail to detect
the classic reciprocal t(15;17) at diagnosis in a sizable
percentage of APL cases with PML�RARA [25].
Many of these harbor PML�RARA fusion through
other mechanisms including cryptic microinsertions
or complex translocations. However, FISH and RT-
PCR will detect the fusion in most of these instances
(Fig. 33.1C and D). Rare cases with microinsertions
may test negative by FISH using standard probes,
but these are usually detectable by RT-PCR [28,29].
These findings highlight the importance of testing
via multiple methods in suspicious cases. Molecular
assays such as FISH or RT-PCR can be performed
on an urgent basis to help confirm or rule out
this diagnosis when needed. Notably, some AMLs
with RARA variant translocations (PLZF�RARA and
STAT5B�RARA) have been associated with poor out-
comes and resistance to ATRA [30,31].

Residual disease monitoring for early relapse is
important in the posttherapy setting for APL. RT-PCR
represents the most sensitive means to detect
PML�RARA, and achieving molecular remission with
a negative RT-PCR test is a treatment milestone
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FIGURE 33.1 Diagnostic testing in AML. (A) The presence of leukemic blasts in blood or bone marrow aspirate is typically the first step
in establishing a diagnosis of AML. The presence of certain morphologic features is characteristic of some AML subtypes, such as Auer rods
in APL (shown with arrow). However, further subclassification of the AML usually requires other ancillary techniques. (B) Cytogenetic analy-
sis provides a framework for both classification and disease prognosis. Recurrent genetic alterations are detected by karyotyping in approxi-
mately 45% of AML cases. APL is characterized by fusion of the PML and RARA genes that is usually the result of a reciprocal translocation
between chromosomes 15 and 17 (arrows). Some gene fusions occur as cryptic submicroscopic insertions that are undetectable by karyotype.
Identifying these requires FISH or RT-PCR. (C) Dual-color dual-fusion FISH is useful to detect gene fusions when specific translocation part-
ners are consistently involved, such as PML�RARA. This assay utilizes a red FISH probe specific to the PML gene locus and a green probe
specific to the RARA gene, each spanning the respective breakpoint regions. Colocalization of the red and green probes is observed when a
PML�RARA gene fusion is present. FISH can be performed on metaphase chromosomes or interphase nuclei as shown (arrows on the meta-
phase spread and arrowheads on the interphase nucleus indicate the fused probes). The two sets of colocalized probes within a metaphase
spread or interphase nucleus indicate both rearranged chromosomes [der(15) and der(17)] resulting from the reciprocal translocation; the func-
tional PML�RARA fusion is on der(15). The isolated red and green signals indicate the remaining normal PML and RARA alleles, respectively.
(D) Real-time RT-PCR achieves a high analytic sensitivity and therefore is useful for posttreatment disease monitoring for detection of early
relapse. There are three alternate breakpoint regions within the PML gene (intron 6, exon 6, and intron 3) that fuse to a conserved breakpoint
region within RARA intron 2. Depending on which PML breakpoint is used, the resulting PML�RARA fusion transcript is referred to as the
long (bcr1), variant (bcr2), or short (bcr3) subtype. Real-time PCR assays are designed to detect each fusion transcript type such that amplifica-
tion products are detected during each PCR cycle using a fluorescent probe specific to the PCR product. The accumulated fluorescence is plot-
ted against the number of PCR cycles. For a given specimen, the PCR cycle number is measured when the increase in fluorescence is
exponential and exceeds a threshold. This point is called the quantification or threshold cycle (Ct) and is inversely proportional to the quantity
of fusion transcript (a high Ct corresponds to a low level of fusion transcript). Shown is a real-time RT-PCR plot for the PML�RARA bcr1 tran-
script, demonstrating a limit of detection down to 1 leukemic cell in a background of 100,000 normal cells.
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following consolidation therapy [11]. Patients with
detectable PML�RARA in two consecutive tests, with
one being in the bone marrow, will require therapeutic
intervention for relapse. In contrast, consecutive nega-
tive RT-PCR results are associated with remission,
long-term survival, and possible cure.

Other Cytogenetic Abnormalities

Several other recurrent cytogenetic abnormalities are
included in the WHO classification [9]. These include
KMT2A(MLL) rearrangements, t(6;9)(p23;q34), inv(3)
(q21q26.2), t(3;3)(q21;q26.2), and t(1;22)(p13;q13). Over
60 KMT2A(MLL) translocation partner genes have been
identified which are in general associated with aggres-
sive leukemia and poor prognosis. The exception is the
most common KMT2A(MLL) rearrangement t(9;11)/
MLLT3-KMT2A(MLL), which is associated with inter-
mediate risk disease [9,32�34]. Not all KMT2A(MLL)
translocations are detected by conventional karyotyp-
ing, in which cases FISH analysis is useful [35]. AML
with t(6;9) and inv(3)/t(3;3) are both associated with
poor prognosis. AML with inv(3)/t(3;3) may occur de
novo, or secondary to prior MDS. AML with t(1;22) is
very rare, occurring predominantly in children less
than 3 years old and is associated with acute megakar-
yoblastic leukemia.

GENE MUTATIONS IN AML

Approximately half of AML cases lack chromosomal
abnormalities; these are grouped under cytogenetically
normal AML (CN-AML) [36]. This is a heterogeneous
category, which can be further stratified based on the
presence of nucleotide-level gene mutations. Three
genes, NPM1, FLT3-ITD, and CEBPA, have established
clinical utility and testing is now standard of care in
patients with CN-AML. KITmutation testing is also rele-
vant in CBF-AML. The presence or absence of mutations
in each of these four genes has established prognostic
significance and plays an essential role in guiding
postremission therapy (Table 33.2). The latest WHO clas-
sification now includes AML with NPM1 or CEBPA as
provisional entities, highlighting the pathogenic and
clinical importance of these mutations (Table 33.1) [9].

The list of mutations in AML is rapidly expanding,
particularly with the increasing utilization of massively
parallel sequencing to evaluate large gene panels.
Many of these additional mutations are believed to
play a fundamental role in AML pathogenesis, includ-
ing recurrent mutations in several genes involved in
epigenetic regulation of transcription. To translate this
plethora of new data into clinically actionable

information remains a challenge, a feat even more dif-
ficult given the heterogeneity of this disease. However,
this is an active area of study, and the expectation is
that the list of clinically relevant mutations will
increase with further refinement of prognostic stratifi-
cation and approaches to therapy.

To facilitate reader’s review of this section we
divide gene mutations in AML into two categories: (1)
those that are well established and have known clinical
utility and (2) those that are under investigation and
may gain clinical relevance in the near future
(Table 33.3).

Gene Mutations with Well-Established Clinical
Utility

NPM1 mutations. Mutations in the nucleophosmin
(NPM1) gene are the most common genetic abnormal-
ity in AML, occurring in approximately 30% of all
AMLs and in 50% of CN-AML [37,38]. NPM1 is a
nucleolar phosphoprotein that serves as a shuttle
between the nucleus and the cytoplasm and regulates
the transport of preribosomal particles through the
nuclear membrane [39,40]. Mutations in NPM1 were
first discovered in AML following the observation of
abnormal cytoplasmic localization of the mutant
NPM1 protein, rather than that its normal nuclear
localization [41]. Genetic evaluation of leukemic blasts
with cytoplasmic NPM1 led to the discovery of a vari-
ety of frameshift mutations clustering within exon 12
of NPM1 gene. As depicted in Fig. 33.2A, virtually all
of these mutations result in a net insertion of four
nucleotides that lead to a consequent shift in the trans-
lational reading frame. The functional result is loss of
a nucleolar localization signal and generation of a
novel nuclear export signal, both of which contribute
to the aberrant cytoplasmic localization of the protein.

Clinically, NPM1 mutation in the absence of
FLT3-ITD mutation is associated with better overall sur-
vival, event-free survival, and response to treatment
[37,38,43]. Patients with this genotype are classified as
favorable risk and are therefore not typically candidates
for allogeneic stem cell transplantation [11]. Of note,
concurrent testing for both NPM1 and FLT3-ITD is indi-
cated in cases with CN-AML since NPM1 is prognosti-
cally favorable only in the absence of FLT3-ITD.

Sensitive and reliable detection of NPM1 mutations
can be achieved with a simple PCR fragment-sizing
assay that detects the larger amplification products
that result from the 4 bp insertion [44]. The affected
region within exon 12 is amplified by PCR and the
amplification products are resolved and analyzed by
capillary electrophoresis (Fig. 33.2B and C). This
approach is advantageous, as it will detect all reported

423GENE MUTATIONS IN AML

V. MOLECULAR TESTING IN HEMATOPATHOLOGY



NPM1 mutations, of which greater than 50 variants
have been reported. Used in this way, capillary frag-
ment sizing can achieve an analytic sensitivity down to
approximately 2% mutant allele, which is easily suffi-
cient for diagnostic specimens that will typically con-
tain greater than 20% leukemic blasts. Exquisite
sensitivity down to 1025 can be achieved with real-
time PCR assays using mutation-specific primers
[45,46]. However, this technique will only detect the
specific NPM1 mutations targeted by the assay and
thus is better suited for posttherapy minimal residual
disease monitoring.

FLT3 mutations. Mutations in FMS-like tyrosine
kinase 3 (FLT3) are the second most common mutation
in AML, occurring in approximately 25�30% of all
patients [47]. FLT3 is a receptor tyrosine kinase that is
involved in regulating proliferation of hematopoietic
progenitor cells. Two classes of activating FLT3 muta-
tions occur in AML: (1) internal tandem duplication
(FLT3-ITD) which occur in 20�25% of patients and

(2) tyrosine kinase domain mutations (FLT3-TKD)
which are seen in 5�10% of patients [48]. Both classes
of mutations lead to ligand-independent constitutive
activation of the FLT3 receptor. ITD mutations are the
result of duplicating insertions that occur within exon
14 or 15 of the FLT3 gene [49]. These are always in-
frame and vary in length from 3 to several hundred
base pairs [50]. FLT3-TKD mutations are typically mis-
sense mutations that affect codon 835 aspartic acid
(D835) within exon 20, and less frequently deletions of
amino acid I836 [51].

The prognostic significance of FLT3-ITD mutations
is well established. The presence of this mutation is
consistently associated with inferior outcomes in CN-
AML [47,52,53]. FLT3-ITD also appears to have a nega-
tive prognostic impact when occurring concurrently
with NPM1 or CEBPA mutations, which in isolation
are each associated with favorable prognosis [12].
From a therapeutic standpoint, testing for FLT3-ITD
mutations is important for two reasons. Firstly, AML
patients with FLT3-ITD may benefit from hematopoi-
etic stem cell transplantation [12]. Additionally, there
are several clinical trials currently exploring the utility
of nonspecific tyrosine kinase inhibitors (TKIs) as well
as FLT3-specific TKIs in FLT3-mutant AMLs [54]. In
contrast to FLT3-ITD, the prognostic impact of FLT3-
TKD mutation is less clear due to conflicting clinical
data [51,55,56]. Consequently, FLT3-TKD testing is not
included in current National Comprehensive Cancer
Network (NCCN) guidelines [11].

As with NPM1 testing, detection of the variably sized
FLT3-ITD mutations is efficiently performed with PCR
fragment-sizing assays that detect larger PCR products
indicative of duplication (Fig. 33.3). This approach can
reliably detect ITDs of all sizes. Other techniques such
as next-generation sequencing (NGS) based assays may
have difficulty in detecting larger duplications.
Concurrent detection of FLT3-TKD mutations can be
accomplished in multiplex with the addition of a PCR
amplicon within exon 20 that is evaluated for resistance
to digestion by EcoRV at the D835 mutation site [57].
The wild-type D835 sequence contains an EcoRV
restriction site that is eliminated in the presence of a
mutation, leading to a larger amplicon that can be
detected on the capillary electropherogram.

Despite being present early in leukemogenesis,
FLT3-ITD mutations may be lost at relapse or vice ver-
sa [58,59]. These observations suggest that ITD muta-
tions may be a secondary event, either present in a
subclone of leukemic cells at diagnosis or acquired
during disease progression. For this reason, and due to
the limited analytic sensitivity of available tests, FLT3-
ITD mutation is not an ideal minimal residual disease
marker in follow-up testing. A caveat in test interpreta-
tion in diagnostic specimens relates to the relative level

TABLE 33.3 Recurrent Gene Mutations in AML

Name Physiologic function

Frequency in

CN-AML Prognosis

MUTATIONS IN CURRENT CLINICAL PRACTICE

NPM1 Nuclear-cytoplasmic
shuttling phosphoprotein

50% Favorable

FLT3-ITD Receptor tyrosine kinase 25�30% Unfavorable

CEBPA Transcription factor 10�15% Favorable

KIT Receptor tyrosine kinase 30% of CBF-
AML

Unfavorable

MUTATIONS UNDER INVESTIGATION

FLT3-TK Receptor tyrosine kinase 5�10% Inconclusive

RUNX1 Transcription factor 10�15% Unfavorable

IDH1/
IDH2

Epigenetic modifier 15�30% Inconclusive

DNMT3A Epigenetic modifier 20�30% Inconclusive

TET2 Epigenetic modifier 10% Inconclusive

ASXL1 Chromatin modifier 5�10% Unfavorable

KMT2A
(MLL)-
PTD

Epigenetic modifier 5�10% Inconclusive

WT1 Transcription factor 10�15% Inconclusive

TP53 Cell cycle regulator 2�5% Unfavorable

RAS Membrane-associated
signaling

10% Neutral

PHF6 Chromatin modifier ,5% Unfavorable

ITD, internal tandem duplication; TK, tyrosine kinase; PTD, partial tandem

duplication.
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of FLT3-ITD mutation. Several studies have suggested
that very high-level (biallelic) FLT3-ITD mutations are
associated with even worse outcomes when compared
to lower level mutations [47,52]. Although fragment
analysis assays are not typically utilized in a quantita-
tive manner, diagnosis of a high-level FLT3-ITD muta-
tion can be rendered if the amplitude of the mutant
peak is higher than the wild-type peak (Fig. 33.3D).

CEBPA mutations. CCAAT/enhancer-binding pro-
tein alpha (CEBPA) is a member of the basic region
leucine zipper (bZIP) family of transcription factors
and plays an important role in the differentiation of
myeloid progenitors [60]. Mutations of CEBPA occur

in 8�15% of AML and are most commonly seen CN-
AML [12,61,62]. AML can carry one or two CEBPA
mutations. The majority of cases with two mutations
have a combination of an N-terminal frameshift muta-
tion on one allele and an in-frame C-terminal mutation
on the other (Fig. 33.4A). This pattern of mutations
results in loss of function of the differentiation promot-
ing p42 isoform while allowing expression of a smaller
pro-proliferative p30 isoform [61]. Numerous studies
have demonstrated that only double-mutated CEBPA
is associated with favorable prognosis in CN-AML
[63�65]. From a practical standpoint, testing can be
limited to CN-AML that lacks NPM1 and FLT3-ITD
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FIGURE 33.2 Molecular testing for NPM1 mutation. (A) The NPM1 gene consists of 12 exons which encode three alternatively spliced
transcripts, the most prevalent of which excludes exon 10. Greater than 50 different mutations have been described in AML, however virtually
all lead to a net insertion of 4 bp within exon 12. The three most common mutations (types A, B, and D) constitute approximately 90�95% of
mutations. Wild-type NPM1 contains two tryptophan residues (W, shaded pink) that are important for its normal nucleolar localization. All of
the mutations lead to a frameshift that disrupt one or both W residues while also generating a novel leucine-rich nuclear export signal (shaded
green). Together, these mutations disrupt wild-type NPM1 function through aberrant localization of mutant NPM1 to the cytoplasm. (B)
Detection of NPM1 mutations can be accomplished with a simple PCR fragment-sizing assay to detect the larger amplification products result-
ing from the insertion mutation. Forward and reverse primers are designed to flank the mutation region, generating a PCR amplicon of known
size (169 bp in this example). One primer is fluorescently labeled to permit detection and sizing via capillary electrophoresis. (C) Capillary
electropherograms demonstrating mutation negative (left panel) and positive (right panel) case examples. A positive result is indicated by the
presence of a mutant amplicon peak that is usually 4 bp larger than the wild-type peak. Of note, a track of repetitive T nucleotides within
intron 11 causes the PCR polymerase to stutter during amplification which is observed as shoulder peaks on the electropherogram.
Furthermore, the poly-T tract is also polymorphic within the normal population, ranging from 12 to 14 nucleotides in length. This variation
does not affect the sensitivity or specificity for detection of the 4 bp insertion mutation but must be taken into account when interpreting the
assay. Panel A is adapted from published Refs. [41] Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin
in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254�66; [42] Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich
M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006;107:4011�20.
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mutation since CEBPA is prognostically relevant only
in this subgroup of cases.

Unlike FLT3 and NPM1 in which similar types of
mutations cluster within specific gene regions, CEBPA
mutations are highly variable and span the entire cod-
ing region. Detection of these mutations therefore
requires a technology capable of interrogating the
entire coding region for a wide range of nucleotide
alterations. As most CEBPA mutations are length-
affecting insertions and deletions, fragment-sizing
assays have been utilized [67]. But as the specific type
of nucleotide alteration has clinical relevance, cases
with a positive PCR result require further characteriza-
tion by a sequencing-based assay. Further, the pres-
ence of benign length-affecting polymorphisms and
cases with only substitution mutations present con-
founding issues for fragment analysis based
approaches. Although more laborious, the utilization
of Sanger sequencing assays with guidance on muta-
tion interpretation currently represents the preferred
method for CEBPA testing (Fig. 33.4B) [66]. Sequencing
of CEBPA as part of a large NGS-based panel can be
difficult due to the high GC content of the gene.
Additional reagents such as DMSO are frequently
employed in Sanger-based assays to overcome this
challenge. Sanger sequencing inherently suffers from a
lower analytic sensitivity (B10% mutation), but this
limitation is diminished since diagnostic specimens
typically contain at least 20% of leukemic blasts.

KIT mutations. Activating mutations in the KIT
receptor tyrosine kinase are common in CBF-AML
(AML with t(8;21) or inv(16)/t(16;16)) occurring with
a frequency of approximately 30% in these subtypes
[68�70]. KIT mutations predominantly occur as
small length-affecting mutations in exon 8 that affect
the extracellular domain, and point mutations in
exon 17 at D816 and N822 that affect the tyrosine
kinase domain. Sanger sequencing of KIT exons 8
and 17 remains the most widely used method for
mutation testing given the variety of mutations
(Fig. 33.5).

CBF-AML is generally classified as favorable risk
with a lower rate of relapse. However, several stud-
ies have shown that KIT mutations in CBF-AML, par-
ticularly D816 mutations in adult AML with t(8;21),
are associated with a higher risk of relapse
[68,71�73]. Current NCCN guidelines have defined
both t(8;21) and inv(16)/t(16;16) AMLs with KIT
mutations as intermediate risk [11]. However, it
should be noted that the prognostic impact of KIT
mutations in AML with inv(16) or t(16;16) and in
pediatric CBF leukemia is less clear than in adult
AML with t(8;21). In addition, it is not clear if less
frequent KIT mutations have the same prognostic
significance as D816 mutations.
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FIGURE 33.3 Molecular testing for FLT3-ITD mutation. (A) ITD
mutations result from the duplication and tandem insertion of a vari-
ably sized fragment of the FLT3 gene. The ITDs range in size from 3 to
several hundred base pairs and most commonly occur within exon 14,
but also affect exon 15. Despite the variety, FLT3-ITDs are always
in-frame since they are gain-of-function mutations that lead to constitu-
tive activation of the FLT3 kinase. Detection of FLT3-ITDs is frequently
accomplished with a PCR fragment-sizing assay that utilizes primers
that flank the mutation region to detect the larger mutant fragments.
Fluorescent labeling of one primer permits detection and sizing via cap-
illary electrophoresis. (B) Capillary electropherogram demonstrating a
negative result as indicated by the presence of only the 330 bp wild-
type amplicon. (C) FLT3-ITD positive result showing an additional
amplicon of 417 bp in size, consistent with the presence of an ITD
mutation of 87 bp. (D) High-level (biallelic) ITD mutation is associated
with even worse prognosis and is indicated by a mutant peak of higher
amplitude than the WT peak. (E) Multiple ITD mutations are detected
in approximately 15% of ITD positive cases. The presence of multiple
ITD peaks at different allelic levels exemplifies the clonal heterogeneity
that can be observed with these mutations.
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Genes Under Investigation in AML

Recent progress in genomic sequencing has led to
the recognition of an increasing number of gene muta-
tions in AML. Several of these are involved in epige-
netic regulation of transcription, which may constitute
a third class of AML mutations [74]. In this section, we

discuss gene mutations that are not incorporated in cur-
rent testing guidelines, but are increasingly gaining
clinical relevance and are often incorporated into multi-
gene testing panels.

RUNX1. The Runt-related transcription factor 1
(RUNX1) plays a critical role in hematopoietic
differentiation as it is required for hematopoiesis [75].

FIGURE 33.4 Molecular testing for CEBPA mutations. (A) Distribution of CEBPA mutations. The locations of mutations and variants are
shown with respect to the CEBPA protein and functional regions. Arrows depict the two translation initiation sites at amino acids (aa) 1 and
120. For interpretative purposes, the coding region of CEBPA is divided into three regions: N-terminal (aa 1�120), mid-region (aa 121�277),
and C-terminal (aa 278�358). The majority of CEBPA double-mutation positive cases harbor a combination of a truncating frameshift or non-
sense mutation in the N-terminal region and an in-frame insertion/deletion or missense mutation in the C-terminal region (lower panel).
Mutations in CEBPA single-mutant cases are distributed in the entire coding region with a greater proportion in the mid-region (mid
panel). Missense and in-frame mutations of the N-terminal and mid-regions are typically classified as variants of unknown significance (upper
panel). TAD1, transactivation domain 1 (aa 70�97); TAD2, transactivation domain 2 (aa 127�200); DBD/ZIP, DNA binding and dimerization
domain (aa 278�358). (B) Sequencing is the preferred method to detect CEBPA mutations since they are highly variable and occur throughout
the coding region. Depicted in the figure are Sanger sequence examples of an N-terminal frameshift mutation and a C-terminal in-frame muta-
tion. Brackets in each panel indicate the deleted and duplicated nucleotide sequences, respectively. Panels A and B are reprinted from Ref. [66]
Behdad A, Weigelin HC, Elenitoba-Johnson KS, Betz BL. A clinical grade sequencing-based assay for CEBPA mutation testing: report of a large series of
myeloid neoplasms. J Mol Diagn 2015;17:76�84.
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Inaddition to being involved in CBF-AML through the
t(8;21) RUNX1�RUNX1T1 chromosomal translocation,
RUNX1 is implicated in CN-AML by virtue of recur-
rent gene mutations in 10�15% of cases [76�78].
RUNX1 mutations can also be seen in MDS and AML
with myelodysplasia-related changes [79,80]. In AML,
RUNX1 mutations have been proposed to be initiating
events since they are generally found in the absence of
recurrent gene fusions and NPM1 and double CEBPA
mutations [78,81]. Further, RUNX1 mutations are asso-
ciated with an adverse prognosis [78,81,82]. Given the
emerging role of RUNX1 mutation in AML pathogene-
sis and prognosis, it is possible that AML with RUNX1
mutation may be recognized as a distinct clinicopatho-
logical entity in the near future. Testing for RUNX1
mutation requires sequencing of a significant portion
of the gene since mutations are highly variable (substi-
tutions, insertions, deletions) and are distributed
throughout most of the coding region [81].

IDH1 and IDH2. Mutations in isocitrate dehydroge-
nase genes IDH1 and IDH2 were first discovered in
glioma and subsequently described in AML [83,84].
IDH1 and IDH2 mutations are cumulatively detected
in up to 15�30% of AML patients, occurring most
commonly in CN-AML [85]. All IDH mutations
described in AML are substitution mutations affecting
three codons—R132 of IDH1, and R140 or R172 of
IDH2. These mutations affect the active site of the IDH
enzyme leading to high levels of 2-hydroxyglutarate
(2HG) [83,86]. IDH1 and IDH2 mutations occur in a
mutually exclusive fashion suggesting functional
overlap.

Most studies suggest that IDH1 and IDH2 mutations
in AML are associated with adverse outcome, unlike
the favorable outcome in glioma [85,87�89]. Notably,
the presence of an IDH1 mutation in CN-AML that is
NPM1 mutatant, FLT3 wild type is associated with a
worse prognosis in this otherwise favorable risk group
[88]. However, a recent study of prognostic relevance
of integrated genetic profiling demonstrated improved
overall survival for AML with IDH2 mutations, as well
as NPM1-mutated AMLs with IDH1 or IDH2 mutation
[90]. Additionally, mutant IDH is a target for selective
inhibitors and clinical trials are now emerging. Many
clinical laboratories currently offer targeted IDH1 and
IDH2 testing, which can be utilized in both AML and
glioma. Sequencing-based assays are typically the pre-
ferred method given the diversity of different substitu-
tion mutations across the three affected codons.

DNMT3A. Somatic mutations in the DNA (cytosine-
5-)-methyltransferase 3 alpha (DNMT3A) gene in AML
were first identified utilizing massively parallel DNA
sequencing [91,92]. These mutations are encountered in
approximately 20% of AML patients and are most com-
mon in CN-AML. DNA methylation regulated by
DNMT3A is an important epigenetic modification that
is critical in regulating gene expression. Most studies
have demonstrated that DNMT3A mutations are associ-
ated with adverse outcome [91�94]. However, this was
not confirmed in a recent large study [90]. The most
common DNMT3A mutation is a substitution mutation
at arginine residue 882 (R882), which accounts for
approximately 60% of all mutations. The remaining
mutations are scattered throughout much of the

(A) (B)

T G A C A C G A C A CCC TT GG

Wild-type KIT

T G A C A C G A C A CCC TT GG
TT C C A CGG T C G T AG

KIT exon 8 mutation

Wild-type KIT

G A G A C A T

KIT exon 17 mutation

G A G A C A T
T

9 bp deletion + insert TCT

FIGURE 33.5 Molecular testing for KIT mutations. Activating KIT gene mutations occur in CBF-AML with t(8;21) or inv(16)/ t(16;16). KIT
mutations mostly occur in exon 8 or 17 and are commonly detected by Sanger sequencing. (A) Exon 8 mutations are predominately small in-
frame insertions/deletions that affect codon 419. Depicted is a Sanger sequencing example of a c.1248_1256delinsTCT (p.T417_D419delinsL)
mutation within KIT exon 8. This is a 9 bp deletion (GACTTACGA) with insertion of three nucleotides (TCT) that results in the in-frame dele-
tion of amino acids T417-D419, substituting them with an L (Leu) amino acid. Overlapping peaks in the sequence chromatogram indicate the
mutation. A wild-type trace is shown for reference. (B) Exon 17 mutations are typically substitution mutations at codon 816 or 822. Shown is a
case with a c.2447A.T (p.D816V) substitution mutation. The presence of a KIT mutation, particularly at codon 816 in AML with t(8; 21), is
associated with a higher risk of relapse in this otherwise favorable risk disease.
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DNMT3A-coding region and include both in-frame and
frameshift mutations [92]. Testing requires coverage of
the majority of the coding exons given the wide distri-
bution of mutations in this large gene. This is frequently
achieved as part of NGS testing panels. Targeted muta-
tion testing is also available at some centers using high-
resolution melting and/or Sanger sequencing assays
that interrogate the R882 site within exon 23.

KMT2A(MLL). Chromosomal translocations involv-
ing the KMT2A(MLL) gene were discussed earlier in
this chapter. Another type of recurrent genetic alter-
ation involving this gene is the partial tandem duplica-
tion (PTD) which results from intragenic duplication
of a genomic region between exons 5�11 or 5�12.
KMT2A(MLL)-PTDs are found in 5�10% of patients
with CN-AML [95,96]. While earlier studies demon-
strated an inconsistent prognostic role for KMT2A
(MLL)-PTD [95�97], growing evidence suggests this
aberration confers an adverse prognosis, irrespective
of the presence of FLT3-ITD mutation [90].

ASXL1. Mutations of the additional sex combs like-1
(ASXL1) gene have been described in various myeloid
neoplasms including AML and MDS. The ASXL1 gene
belongs to the enhancer of trithorax and polycomb
(ETP) family and functions as a transcriptional regula-
tor through its chromatin-binding activity. ASXL1
mutations are more common in older patients and are
seen in 5�10% of AML cases [98,99]. Almost all
reported mutations are frameshift or nonsense truncat-
ing mutations in exon 12 and have been associated
with inferior outcomes in most studies [90,98,99].

WT1. Wilms tumor 1 (WT1) gene mutations occur in
approximately 10�15% of CN-AML [100,101]. The WT1
gene is located at chromosomal band 11p13 and encodes
a potent transcription factor that can serve as either a
tumor suppressor or an oncogene. Germline deletion of
WT1 was first identified in patients with WAGR syn-
drome characterized by Wilms tumor, aniridia, genito-
urinary malformations, and mental retardation. A
connection between WT1 mutation and AML was made
in patients with WAGR syndrome who developed sec-
ondary AML [102]. Various studies have found a contra-
dictive prognostic role for somatic WT1 mutations in
CN-AML [100,101,103]. The majority of WT1 mutations
are frameshift insertions and deletions in exon 7, but var-
ious mutations occur throughout other exons [103].

TET2. Mutations in the ten-eleven-translocation 2
(TET2) gene have been identified in MDS and AML.
TET2 is an enzyme that converts 5-methylcytosine to
5-hydroxymethylcytosine and thus is implicated in
regulating the demethylation of DNA. The TET2 muta-
tions identified in AML are inactivating and have been
associated with increased hematopoietic stem cell
renewal and myeloproliferation [104,105]. The prog-
nostic role of TET2 mutation remains controversial.

TP53. Mutations of the tumor-suppressor gene TP53
have been described in a wide variety of cancers due
to its important role in cell cycle regulation. The preva-
lence of TP53 mutation is low in AML as a whole
(2�5%) [106]. However, TP53 mutation is strongly
associated with complex karyotype AML, occurring in
approximately 75% of these cases where it is associ-
ated with poor outcome [107�109].

RAS. The RAS family of oncogenes contains several
well-known membrane-associated signaling proteins
with key roles in regulating proliferation, differentia-
tion, and apoptosis. Oncogenic activating KRAS and
NRAS mutations are found in approximately 20% of
human cancers, including approximately 10% of CN-
AML. Their presence in AML has no known prognos-
tic value [12,110,111].

Gene expression profiling. The relative expression of
specific genes has also been utilized to predict progno-
sis in AML. Overexpression of BAALC (brain and
acute leukemia, cytoplasmic), MN1 (meningioma 1),
ERG (v-ets erythroblastosis virus E26 oncogene homo-
log, avian), and EVI1 (ecotropic viral integration site 1)
has been associated with worse outcome in most stud-
ies [112�115]. Among these, BAALC is the most exten-
sively studied and has demonstrated to be an
independent negative prognostic indicator in CN-AML
[113,116]. On a broader scale, genome-wide expression
profiling has been investigated for AML classification
for over a decade [117�119]. Despite the longstanding
history of use as investigational tools, gene expression
analyses have not been incorporated into clinical prac-
tice for classification, prognostication, or to guide treat-
ment in AML.

MINIMAL RESIDUAL DISEASE TESTING

Detection and monitoring of low-level residual
disease requires quantitative technology with high
analytical sensitivity. Compared to flow cytometry,
which is widely used for MRD detection in AML,
molecular techniques have the potential to provide
higher sensitivity. In particular, the stability of the
class 2 mutations (recurrent gene fusions, NPM1,
CEBPA) throughout the disease course makes them
excellent markers for MRD testing. This has been
exemplified in APL (PML�RARA) and CBF-AML
(RUNX1�RUNX1T1 and CBFB�MYH11) where serial
monitoring of fusion transcripts by RT-PCR has been
extensively studied as a marker of early relapse
[120�122]. Molecular testing in these instances is facili-
tated by recurrent exon to exon fusions that allow
RT-PCR assays to be designed for each fusion
transcript. However, in CN-AML molecular testing for
MRD monitoring has proven more difficult and
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molecular testing is not widely utilized for this pur-
pose at present. A major limiting factor is the challenge
associated with developing sensitive PCR assays for
gene mutations that are highly variable. This is partic-
ularly true in the case of CEBPA, where hundreds of
different mutations prevent the practical implementa-
tion of mutation-specific PCR assays. In the case of
NPM1, several mutation-specific PCR assays can be
designed to target the most common mutations, a
strategy which has shown promise in clinical trials
[46]. The high frequency of FLT3 mutations in CN-
AML and other subtypes make this an attractive candi-
date for MRD monitoring. However, clonal evolution
and lack of sufficiently sensitive testing platforms pre-
vent the use of FLT3 mutations as reliable MRD
markers.

NEW HORIZONS

Gene mutations do not occur in isolation, and a
patient with de novo AML, harbors an average of 13
mutations, 5 of which are in recurrently mutated genes
[123]. Defining the prognostic and predictive value of
each may frequently depend on the existence of other
mutations. A prime example of this paradigm is the
nullified prognostic value of NPM1 and CEBPA muta-
tions in the presence of FLT3-ITD mutation. This
emphasizes the need for comprehensive mutational
analysis, which becomes cumbersome and expensive
using single-gene assays given the growing list of clini-
cally relevant genes. High-throughput sequencing
(NGS), which was previously utilized only as a
research tool in mutation discovery, is now being vig-
orously tested for clinical application. By combining
comprehensive mutational analysis and cytogenetic
data, a recent study by Patel et al., devised a new risk
stratification scheme for AML [90]. The integrated clas-
sification in this study enabled better stratification of
AML by subclassifying more patients from the hetero-
geneous intermediate risk group to favorable and
unfavorable groups. This study provides a compelling
example how the power of integrated genetic informa-
tion may enable better patient care.

In addition to providing a broad platform for com-
prehensive genetic testing in AML, NGS has improved
analytic sensitivity and holds potential for quantitative
trending of variant allele frequency. The study of
genetic heterogeneity and clonal evolution in AML is
currently an active area of investigation, and it has
become clear that most AMLs acquire additional muta-
tions during the disease course [124,125]. Detecting
and trending therapy-resistant subclones may gain
importance in improving long-term outcomes [126].

The role of microRNAs in AML pathogenesis is
another active area. MicroRNAs are small noncoding
RNAs that regulate posttranscriptional control of gene
expression and play a central role in many cellular
processes including normal hematopoiesis [127].
Aberrant expression of multiple microRNAs has
recently been reported in AML, and microRNA-
expression signatures have been shown to distinguish
AML subtypes and provide prognostic value [128,129].

AML diagnosis is increasingly based on the under-
lying genetic characteristics. While cytogenetic analysis
still comprises the backbone of AML classification,
evaluation of several gene mutations is now standard
of care for diagnosis, prognostic stratification, and dif-
ferentially tailored treatment strategies. Genomic tech-
nologies have rapidly increased our understanding of
the molecular pathogenesis of AML, and this new
information is being actively evaluated in comprehen-
sive mutation panels with promise to further improve
patient outcomes. Expanded targeted sequencing tests
are already implemented in some centers and this will
soon become commonplace, as interpretative algo-
rithms, sequencing infrastructure, and bioinformatics
pipelines are further refined. Looking toward the near
future, molecular laboratories will be relied upon to
play an even more expanded role in AML care with
the increasing application of molecular testing in dis-
ease monitoring, emerging technologies involving
microRNAs, and the adoption of new targeted
therapies.
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INTRODUCTION

Myeloproliferative neoplasms (MPNs), previously
known as myeloproliferative disorders, are acquired
clonal hematopoietic malignancies, characterized by the
abnormal and excessive proliferation of one or more of
myeloid cell lines (granulocytes, erythrocytes, and/or pla-
telets) with no marked alterations in cellular maturation
[1]. This heterogeneous group of disorders is classified
by the World Health Organization (WHO) 2008 as
Philadelphia chromosome (BCR�ABL1)-positive MPNs
which include chronic myelogenous leukemia, and
Philadelphia chromosome (BCR�ABL1)-negative MPNs
that among other entities include polycythemia vera (PV),
essential thrombocythemia (ET), and primary myelofibro-
sis (PMF).

The primary characteristics of PV and ET are the
increased production of red blood cells and platelets,
which predispose these patients to thrombosis or hem-
orrhage. Patients with PV and ET can also present with
constitutional symptoms, such as night sweats, fever,
pruritus, and splenomegaly [2]. These diseases tend to
take a protracted chronic course. As long-term sequelae,
some patients progress to an accelerated myelofibrosis
phase, marked by cytopenias and insufficient extrame-
dullary hematopoiesis that is often clinically and mor-
phologically indistinguishable from PMF [3]. PMF is
characterized by progressive marrow fibrosis and vari-
able degree of megakaryocyte and granulocyte prolifera-
tion [4]. Compared to PV and ET, PMF patients tend to
exhibit more severe disease-associated symptoms and
more rapid disease progression, which markedly impact
their quality of life [5]. MPNs may also progress to

myelodysplastic syndrome (MDS) or transform to acute
myeloid leukemia (AML) as long-term sequelae of their
chronic phase or secondary to cytoreductive therapies
such as alkylating agents or radioactive phosphorus
[6�9]. The reported risk of leukemic transformation is
approximately 20% for PMF, 4.5% for PV, and less than
1% for strictly WHO-classified ET cases [10�12].

The vast majority of MPN cases are sporadic and the
disease has an overall incidence of 5 in 100,000 indivi-
duals, with approximately 15,000 new cases in the
United States each year [13,14]. MPNs are typically diag-
nosed in the fifth to sixth decade of life, although it can
be diagnosed in younger individuals, especially when
there is a familial predisposition [15]. The life expectancy
of all MPN subtypes is reduced when compared with
the general population [16] with the shortest survival
rates being observed among PMF patients [17].

MOLECULAR PATHOGENESIS OF MPNs

JAK2 V617F Mutation

In 2005, several independent groups identified a sin-
gle somatic activating mutation in the Janus Kinase 2
(JAK2) gene on chromosome 9p24 that had a high
incidence in PV, ET, and PMF [18�21]. JAK2 is a cyto-
plasmic tyrosine kinase protein, which mediates signal
transducing downstream of various cytokine receptors
implicated in erythropoietin receptor signaling and
hematopoiesis [22,23]. The protein is composed of 1132
amino acids and has four functional domains: (1)
FERM domain, (2) SH2 domain, (3) pseudokinase (JH2)
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domain, and (4) tyrosine kinase (JH1) domain [24]. The
JH2 domain negatively regulates the JAK function [25].

The G to T substitution mutation in JAK2 exon 14
(nucleotide 1849) replaces a phenylalanine with a valine
at amino acid 617 in the JH2 pseudokinase domain of
the JAK2 protein. As a result, the JAK2 V617F mutation
leads to constitutive activation of JAK�STAT, PI3K,
and AKT pathways, as well as mitogen-activated pro-
tein kinase and extracellular signal regulated kinase
[18�20,26]. Consequently, hematopoietic cells harboring
the JAK2 V617F mutation show cytokine hypersensitiv-
ity and cytokine-independent growth [27]. The role of
the JAK2 V617F mutation in the pathogenesis of MPN
has been validated in vitro and in vivo by means of
murine models of myeloproliferative phenotype driven
by this mutation [28,29].

The JAK2 V617F mutation is found in approximately
95% of PV, 55% of ET, and 65% of PMF cases [18,20,21].
A significant number of PV and PMF patients have
biallelic JAK2 V617F mutation as a result of mitotic
recombination involving chromosome 9p that leads to
uniparental disomy (UPD) [18�21], but this event is
uncommon in ET patients [30]. Some evidence suggests
that both an advanced disease stage and some MPN
complications, such as marrow fibrosis, thrombotic
propensity, and overall survival, correlate with the
overall proportion of the mutant allele in circulating
clonal granulocytes [31�35]. Other hematological neo-
plasms (eg, hypereosinophilic syndrome, chronic mye-
lomonocytic leukemia, chronic neutrophilic leukemia,
myelodysplasia, acute lymphoblastic leukemia, or
AML) may also harbor JAK2 V617F mutation in a low
proportion of cases [36�41].

JAK2 Exon 12 Mutations

The JAK2 V617F mutation is identified in approxi-
mately 95% of patients with PV, but the molecular basis
of cases lacking this mutation was unclear until 2007,
when mutations affecting JAK2 exon 12 were reported
in most of the remaining patients [42�45]. Exon 12
mutations cluster in a distinct region of JAK2 that is
adjacent to the JH2 pseudokinase domain where V617F
is located. Despite this difference, exon 12 mutations
lead to a similar constitutive activation of erythropoie-
tin signaling that results in a myeloproliferative pheno-
type, as demonstrated by in vitro analysis and murine
model experiments [42].

Unlike the V617F mutation that is found in several
MPNs, JAK2 exon 12 mutations are restricted only to
cases of PV [42]. At the nucleotide level, at least 37 dif-
ferent JAK2 exon 12 mutations have been reported to
date [46]. Despite this variety, all exon 12 mutations
cluster within a 36 nucleotide stretch of the exon that

spans codons 536�547 [42,45,47]. The majority are
small in-frame deletions of three to nine nucleotides
(6 bp deletions are most common). Less frequent are
substitutions leading to K539L, and in-frame duplica-
tions usually 33 bp in length. With respect to the pro-
tein, most JAK2 exon 12 mutations fall within three
main types: (1) deletions that include E543, (2) amino
acid substitution or deletion mutations that involve
K539, and (3) duplications of 10�12 amino acids that
occur in the region of V536 to F547 [45].

Exon 12 mutations can be detected in variable per-
centages of peripheral blood granulocytes, monocytes,
and platelets, but rarely lymphocytes [45,48]. Most
cases exhibit heterozygous exon 12 mutation with only
rare reports of biallelic mutation [42,45,48�50]. This is
in contrast to V617F-positive PV in which biallelic
mutations are frequent and mutation burdens are gen-
erally higher [48,50]. Patients with exon 12 mutations
frequently present with erythrocytosis as the predomi-
nant feature, but without concurrent elevations in the
megakaryocytic or granulocytic lineages as seen in
V617F-positive PV [42,49,51]. Consequently some may
have previously received a diagnosis of idiopathic ery-
throcytosis. JAK2 exon 12 and V617F mutations are
mutually exclusive. Additional JAK2 variants have
been reported in exons 13, 14 (other than V617F), and
15, but their biological and clinical significance is
unclear at present [52].

MPL Mutations

In 2006, a search for genetic alterations in JAK2 V617F
negative patients with ET and PMF revealed mutations
in the myeloproliferative leukemia virus oncogene
(MPL) [53,54]. The MPL gene, located on chromosome
1p34, has 12 exons and encodes the thrombopoietin
receptor. MPL mutations associated with ET and PMF
are gain-of-function and lead to receptor activation in
the absence of thrombopoietin binding with constitu-
tional activation of the JAK�STAT signaling pathway
[42,53]. Five recurrent MPL mutations have been
reported in ET and PMF patients, all clustering in exon
10 (juxtamembrane domain) and affecting two amino
acids (W515 and S505). Of those, W515L and W515K
represent the vast majority of reported MPL mutations,
whereas the W515A, W515R, and S505N mutations are
less commonly reported [53,55�59]. Notably, the S505N
mutation has been reported as both a germline and an
acquired (sporadic) mutation in ET and PMF [55,59,60].
Several reports of patients harboring two concurrent
MPL mutations have been described, including W515L
1 W515K, or W515L 1 S505N [53,57,61,62], but the
pathogenic implications of these findings remain to be
elucidated. A few MPL mutations outside exon 10 have
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also been reported, but their biological and clinical sig-
nificance is unclear [63,64].

MPL mutations can be detected in progenitors of both
myeloid and lymphoid lineages [65]. The mutant allele
burden in specimens harboring MPL mutations is fre-
quently greater than 50%, suggesting that biallelic muta-
tion (or loss of heterozygosity) is somewhat common
[55,56,58]. However, mutations in patients with MPNs
have also been reported at lower levels (5% and less)
[55,56,58,66]. MPL mutations occur in ET and PMF
with an approximate frequency of 3% and 10%, respec-
tively [67,68], but have not been reported in PV [53].
Significantly, MPL and JAK2 mutations are not mutually
exclusive and can occasionally occur in conjunction
[53,55].

Clinically, patients with MPL mutations tend to be
more anemic, present at older age, have higher platelet
counts, and have a higher risk of developing arterial
thrombosis than those with a JAK2 V617F mutation
[55,69,70]. MPL mutations do not seem to have a sig-
nificant influence on hemorrhagic or venous throm-
botic events or progression to myelofibrosis, nor do
they seem to impact survival. However, in PMF
patients, MPL mutations are associated with a more
severe phenotype, older age, female gender, and lower
hemoglobin levels [55,69].

CALR Mutations

In 2013, two independent research groups identified
CALR somatic mutations in JAK2/MPL wild-type
patients with ET and PMF [71,72]. CALR is located on
chromosome 19p13.2 and has nine exons, which
encode the endoplasmic reticulum associated, calcium-
binding protein calreticulin. The CALR protein is com-
posed of three domains: N-domain (residues 1�180),
P-domain (residues 181�290), and C-domain (residues
291�400). Thus far, more than 36 different CALR
frameshift insertions or deletions have been reported,
all clustering within exon 9 [71,72]. Of those, type 1
mutations (52 bp deletion, L367fs�46) and type 2 muta-
tions (5 bp TTGTC insertion, K385fs�47) account for
greater than 80% of all CALR mutations. CALR muta-
tions are detected at a frequency of 20�30% in ET and
PMF. In the subset of cases negative for JAK2 V617F,
CALR mutation incidence is 49�71% in ET and
56�88% in PMF [71�75]. Although CALR mutations
have been regarded as mutually exclusive with muta-
tions in both JAK2 and MPL, a few ET and PMF
patients with concurrent JAK2 V617F and CALR muta-
tions have been reported [74,76]. Most patients carry
heterozygous mutations with an allele burden of
40�50% [77,78], although a low allele burden (2%) of
the CALR type 2 mutation has been reported in a PMF
patient [79]. Homozygous CALR mutations have also

been reported in rare instances, almost exclusively in
type 2 mutations. Due to clonal evolution, more than
one type of CALR mutation can be detected. CALR
mutations have been reported primarily in MPN cases
and have only infrequently been detected in MDS and
atypical chronic myeloid leukemia [72,80]. Notably,
germline polymorphisms (in-frame deletions) have
been reported in healthy individuals [71,72].

Clinically, ET and PMF patients with CALR mutations
tend to present with lower hemoglobin levels, lower leu-
kocyte count, higher platelet count, and lower risk of
thrombosis than JAK2-mutated patients [71�73,77].
CALR mutations also correlate with male gender and
younger age at presentation [73,77], although a better
overall survival has been observed only in PMF patients
[73,74,77]. Overall, the clinical course of sporadic CALR-
mutated patients tends to be more indolent than that of
JAK2-mutated patients [71,81]. However, emerging evi-
dence suggests that the prognostic advantage of calreti-
culin mutations in PMF might be confined to type 1
CALR variants [75,82]. Further, in CALR-mutated PMF,
the concomitant presence of ASXL1 mutations has been
associated with an unfavorable prognosis [83].

Other Genetic Alterations

In addition to the common JAK2, MPL, and CALR
mutations, several other recurrent mutations of TET2,
ASXLI, IDH1/2, CBL, LNK, NRAS, SF3B1, DNMT3A,
and EZH2 genes have been reported in MPN [84]. The
relevance of these mutations in the pathogenesis of
MPN is currently an active area of investigation.

A small number of MPN patients have karyotypic
abnormalities, the most frequent being gain of chromo-
some 9 in PV, which is correlated with a copy number
gain of JAK2 V617F [18�21]. Gain of chromosome 8, par-
tial trisomy for 1q, and interstitial deletions of 13q and
20q have been noted in all MPN subtypes. Acquired
UPD 1p, 4q 7q, 9p, and 11q is commonly associated with
homozygosity for MPL, TET2, EZH2, JAK2, and CBL
mutations, respectively [85].

Deregulated miRNA profiles have also been reported
in MPN patient samples [86,87] and in various MPN
cell lines [88,89]. Differential miRNA expression has
been observed not only between MPN patients and
healthy donors but also among the three MPN entities
(PV, ET, and PMF).

MOLECULAR TESTING IN MPNs

Indications for Testing

Molecular testing has become standard of care for
the diagnostic workup of any suspected MPN. The
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primary indication for molecular analysis in this set-
ting is to support the diagnosis of a clonal MPN over a
secondary or reactive condition in the context of unex-
plained polycythemia, thrombocytosis, or neutrophilia.
However, molecular testing cannot subclassify MPNs
because JAK2 V617F, CALR, and MPL mutations are
not MPN specific. The exception is JAK2 exon 12 muta-
tions, which are exclusively detected in PV. Further,
other hematological neoplasms (eg, MDS, chronic mye-
lomonocytic leukemia, AML, and acute lymphoblastic
leukemia) may harbor JAK2 V617F, CALR, and MPL
mutations in low frequencies [37�41]. For this reason,
the detection of mutations in any of these genes in iso-
lation does not warrant a diagnosis of MPN. Likewise,
the absence of mutations in JAK2, CALR, or MPL does
not rule out a diagnosis of ET and PMF, because a
triple-negative genotype accounts for approximately
10�15% of these patients [74,90]. Consequently, molec-
ular testing is an adjunct, not a replacement to bone
marrow morphology and other clinical and laboratory
data for the diagnostic workup of a suspected MPN.

The usefulness of follow-up testing for JAK2, CALR,
and MPL mutations in routine clinical practice has not
yet been established. Quantitative monitoring of JAK2
V617F allele burden has been reserved to patients
enrolled in some clinical trials [91]. Even though a
decrease in allele burden has been demonstrated after
therapy with some of the available JAK inhibitors,
there is no consistent correlation of allele burden with
clinical response.

Testing Algorithm

Due to its high prevalence among all MPN subtypes,
it is recommended that JAK2 V617F mutation screening
is carried out first when a diagnosis of MPN is sus-
pected. In patients with suspected PV due to abnormal
hemoglobin (hematocrit) levels of greater than 18.5 g/dL
(. 52%) in men and greater than 16.5 g/dL (. 48%) in
women and subnormal serum erythropoietin level, JAK2
exon 12 mutation analysis is recommended following a
negative JAK2 V617F result [47,92]. The vast majority
(. 98%) of PV cases harbor a JAK2 mutation [44].
Consequently, both JAK2 V617F and exon 12 mutation
testing is an important diagnostic adjunct to rule out sus-
pected PV. In contrast, CALR and MPL mutation screen-
ing is not routinely indicated in the workup of a case
suspicious of PV. Likewise, bone marrow examination is
not essential for the diagnosis of PV, and in the appropri-
ate clinical context, the absence of JAK2 mutations virtu-
ally rules out this diagnosis. Of note, CALR type 1
deletions have been reported in two JAK2 V617F nega-
tive PV patients, raising the possibility that CALR muta-
tions can be associated with a PV phenotype [93].

Molecular workup of ET and PMF should also start
with the assessment of JAK2 V617F, followed by CALR
mutation analysis in patients negative for JAK2 V617F.
Screening for CALR mutation is expected to be formally
incorporated in the diagnostic workup of MPN in future
revisions of the WHO classification system [94]. MPL
mutation screening should be reserved in patients who
are negative for both JAK2 V617F and CALR mutations
[94]. JAK2 exon 12 mutation testing is not indicated as a
part of the molecular testing algorithm for patients with
a suspicion for ET or PMF since these mutations are
restricted to cases of PV [42]. Significantly, the diagnosis
of ET and PMF is based on combined assessment of
bone marrow morphology, laboratory values, and clini-
cal history. The presence of JAK2 V617F, CALR, or MPL
mutation is supportive but not essential or specific
for the diagnosis of ET or PMF. The absence of these
mutations does not rule out a diagnosis of ET or PMF,
because approximately 10% of PMF and 13% of ET
patients are triple negative [74,90].

With the advent of next-generation sequencing
(NGS)-based multigene panels, it is becoming feasible to
screen for pathogenic mutations in these and many other
genes simultaneously. The rapid technological advances,
falling cost, and increased accessibility of these platforms
may supplant the need for a stepwise approach for
MPN molecular analysis in the near future.

Preanalytical Considerations

Both peripheral blood and bone marrow aspirate
specimens are suitable for JAK2, CALR, and MPL muta-
tion analysis. The qualitative and quantitative assess-
ments of JAK2 V617F mutant allele burden in
peripheral blood have been shown to be equivalent to
that in bone marrow aspirate specimens when sensitive
molecular assays are employed [95,96]. This is because
granulocytes (which carry the mutations) constitute
the predominant cell population in both of these speci-
men types. Blood and bone marrow samples should be
drawn into anticoagulated tubes. The preferred
anticoagulant for these molecular assays is ethylenedia-
minetetraacetic acid (EDTA, lavender top tube).
Heparinized tubes should be avoided because heparin
inhibits the polymerase enzyme utilized in PCR, which
may lead to assay failure. Blood and bone marrow sam-
ples can be transported at ambient temperature. Blood
samples should not be frozen prior to separation of cel-
lular elements because this causes hemolysis, which
interferes with DNA amplification. Most clinical labo-
ratories perform DNA-based analyses for MPN-related
genes, because with sensitive assays there is not
expected to be substantial different in the clinical sensi-
tivity of mutation testing in DNA compared to RNA.
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For DNA extraction, the preferred age for blood and
bone marrow samples is less than 5 days. Bone marrow
biopsy specimens that are subjected to acid decalcifica-
tion during processing are usually unsuitable for PCR-
based testing due to extensive DNA degradation.

Molecular analysis for MPN-related mutations are
adequately performed in total white blood cells from
peripheral blood, because this cell population is largely
composed of granulocytes. Granulocyte isolation
increases time, labor, and cost on a routine basis, and
the increase in analytical sensitivity by this approach is
less remarkable than the one achieved with the use of
sensitive PCR-based methods [97].

MOLECULAR METHODS FOR MPN
TESTING

Several methods have been used to detect JAK2,
CALR, and MPL mutations, each with different analytical
and diagnostic sensitivities. Currently, there are no Food
and Drug Administration (FDA)-cleared tests and no
standardized test platforms for these analyses. The choice
of which assay to implement should take into consider-
ation the type, spectrum, distribution, frequency, and
allelic burden of mutations for each disease-associated
gene, as well as financial and practical aspects, such as
laboratory infrastructure, workflow, and expertise.

JAK2 V617F Mutation Analysis

The V617F mutant allele burden varies widely
among MPN patients (between 0.1% and 100%) and
often reaches levels below 10�25% [35,98]. The analyti-
cal sensitivity of a clinical JAK2 assay should be at least
1% to ensure that more than 90% of JAK2 V617F muta-
tions are detected [99�101]. Detection methods cur-
rently utilized for the JAK2 V617F mutation include:
Sanger sequencing, pyrosequencing, restriction frag-
ment length polymorphism analysis, amplification
refractory mutation system, allele-competitive blocker
PCR, and high-resolution melting [26,36,39,102�104].
Most of the scanning technologies that have been
reported for V617F detection, such as high-resolution
melting, pyrosequencing, and Sanger sequencing, typi-
cally do not achieve sensitivities of less than 5�15% of
mutant allele frequency and have the potential to gen-
erate false-negative results. For instance, a study using
Sanger sequencing detected JAK2 V617F mutation in
65% of PV, 23% of ET, and 30% of PMF cases [21].
Reassessment using more sensitive methods showed
higher JAK2 V617F mutation frequencies: 95�97% in
PV, approximately 65% in PMF, and approximately
55% in ET, corroborating that these analytically

insensitive techniques do not appear suitable for clini-
cal diagnostic testing.

Currently, allele-specific quantitative PCR (qPCR) is
the most commonly used technique for V617F testing
(Fig. 34.1). This approach is advantageous for several
reasons: It has high specificity and analytical sensitiv-
ity (down to 0.1% mutant allele), allows for straightfor-
ward interpretation, provides a rapid turnaround time
in a closed tube format, can be easily deployed in most
clinical laboratories, and is adaptable to a quantitative
assay. However, false-positive results may be gener-
ated with assays that detect less than 0.1% of the
mutant allele, because such low levels of JAK2 V617F
mutation have been reported in the peripheral blood
of healthy individuals [101]. In addition, the risk of
false-positive results due to amplicon contamination
within the laboratory is another important issue when
using extremely sensitive techniques. Further, allele-
specific PCR may not provide detection of rare V617F
mutations other than the canonical c.1849G.T muta-
tion for which the specific primers are designed, and
variants present at oligonucleotide-binding sites may
negatively interfere with primer hybridization poten-
tially resulting in false-negative results.

The clinical utility of JAK2 V617F quantitative assays
have not yet been validated in routine clinical practice.
Quantitative assays have been employed to guide
adoptive immunotherapy, such as donor lymphocyte
infusion [105] in patients who have received allogeneic
stem cell transplant. Currently, there are several JAK2
kinase inhibitors at various stages of clinical develop-
ment for therapeutic management of MPN. For
instance, Ruxolitinib is an oral JAK1 and JAK2 inhibitor
that has been approved by the US FDA for treatment of
patients with myelofibrosis. While serial monitoring of
posttreatment levels of JAK2 V617F is controversial at
present, quantification of JAK2 V617F is being consid-
ered as an end point in several clinical trials with novel
JAK inhibitors. As new JAK2-specific inhibitors and
other new drugs become available for therapeutic use,
the relevance of monitoring disease response using
quantitative assays may increase. Notably, there are
currently no reference standards available for quantita-
tive JAK2 testing. As a result, JAK2 quantitative assays
are not standardized and test results may not be com-
parable across different laboratories.

JAK2 Exon 12 Mutation Analysis

Strategies to detect JAK2 exon 12 mutations must
have sufficient analytic sensitivity to detect mutations
that can occur at low allelic levels (,15%) in affected
individuals, as well as the ability to detect the wide
variety of mutations that occur in this exon.
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Sanger sequencing has been widely used for JAK2
exon 12 mutation analysis. However, this approach is
relatively expensive, labor intensive, and has poor ana-
lytical sensitivity (B15%). Other methods, such as
allele-specific PCR [42], quantitative real-time PCR
[106], quantitative bead-based assay [107], and clamp-
based methods [108], can achieve low analytical sensi-
tivity (B2�0.1%), but they do not query the wide vari-
ety of possible exon 12 mutations, leading to potential
false-negative results. Some JAK2 exon 12 testing
approaches have included a combination of mutation
screening methods, such as high-resolution melting
curve analysis which provides detection down to
5�10% mutant allele (Fig. 34.2A), followed by a Sanger
sequencing confirmatory assay. A limitation of this
approach is that equivocal melt profiles can occur, par-
ticularly in cases with a low mutant allelic burden that
may not be confirmable by direct sequencing [109].
Therefore, it is important to use a sensitive screening
method for exon 12 mutations that provides a

straightforward interpretation and can be reliably used
as a standalone test, especially for cases with mutation
levels that approach the detection limit of the assay. To
this end, our group has recently reported a multiplex
fragment analysis based assay that combines a length
mutation assay to detect deletion and duplication muta-
tions with an allele-specific PCR assay to detect K539L
substitution mutations (Fig. 34.2B) [109]. This assay
detects nearly all JAK2 exon 12 mutations associated
with PV with a high analytic sensitivity (1�2%) that
exceeds direct sequencing and high-resolution melting.
Notably, an exquisite analytic sensitivity may not be
critical for exon 12 mutation analysis, given that diag-
nostic certainty of JAK2 mutations is enhanced in the
presence of greater than 1% mutant allele burden [101].

MPL Mutation Analysis

Similar to JAK2 exon 12 mutation screening, strate-
gies to detect MPL mutations must have sufficient
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FIGURE 34.1 JAK2 V617F mutation testing. Allele-specific real-time PCR is an effective and widely used technique to detect the JAK2
c.1849G.T (V617F) substitution mutation. Allele-specific PCR refers to the selective amplification of targets that contain a specific allele.
In the case of JAK2 V617F, detection of the G.T nucleotide mutation is achieved by designing a PCR primer that matches the mutant base
(T) at the most 30 end of the primer. An intentional mismatch is also introduced at the -2 or -3 position from the 30 end of the primer to
maximize specificity by decreasing the efficiency of mismatched amplification products. Sensitivity of the assay is limited to the number of
cycles of amplification before known negatives give rise to detectable mismatched PCR products. Detection of amplification products in real--
time PCR occurs during each PCR cycle using fluorescent reporter probes or dyes. The accumulated fluorescence in log(10) value (y axis) is
plotted against the number of PCR cycles (x axis). For a given specimen, the PCR cycle number at which the exponential increase in fluores-
cence exceeds a threshold line above the baseline signal is called cycle threshold (Ct). The Ct value is inversely proportional to the amount of
PCR target in the specimen (ie, higher Ct values for a given specimen indicate lesser amount of target). Shown are real-time PCR plots of an
allele-specific assay for the JAK2 c.1849G.T (V617F) mutation. In this example, specimens with Ct values less than 36 are considered positive
for the mutation. The Ct cutoff of 36 was determined during the preclinical validation of the assay to accurately distinguish mutant from wild-
type cases while maintaining a clinically relevant limit of detection, which in this test approaches 0.1% mutant allele. Note that PCR increases
the amount of amplification product by a factor of 2 with each PCR cycle. Therefore, specimens with a twofold lower concentration of target
will exceed the fluorescent threshold 1 cycle later to produce a Ct value that is 1 cycle higher. This inherent feature of real-time PCR permits
these assays to be utilized for quantitative testing.
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analytical sensitivity, as well as the ability to detect the
variety of clinically relevant nucleotide alterations that
occur within MPL exon 10.

Sanger sequencing appears insufficiently sensitive
for robust MPL mutation testing, given the frequency
of MPN cases that harbor mutations at levels below
15% mutant allele [55,56,58]. Because the detection of
an MPL mutation at any level is significant in the set-
ting of possible ET or PMF, and allows for appropriate
medical decision making, sensitive assays that are
capable of capturing cases with low mutant allele fre-
quency should be employed for MPL mutation analy-
sis. Several methods described for the detection of MPL
mutations, such as high-resolution melting [53,57],
qPCR [61,110], bead-based assay with locked nucleic
acid modified probes [111], amplification refractory
mutation system qPCR [112], pyrosequencing [113],
and singleplex allele-specific PCR [55], can achieve low

analytical sensitivity (B3�0.1%). However, most of
these previously reported assays do not include the
S505N mutation [53,61,110�112], which can been iden-
tified in a significant proportion (10.3%) of MPL muta-
tion positive cases [62]. We have described an allele-
specific PCR assay capable of detecting nearly all MPL
exon 10 mutations associated with PMF and ET
(W515L, W515K, W515A, and S505N) at high analytic
sensitivity (B2.5%) that can be easily deployed in most
clinical laboratories (Fig. 34.3) [62].

CALR Mutation Analysis

Several methods have been reported for CALR muta-
tion analysis, including PCR followed by Sanger
sequencing [71,72,73,77], fragment length analysis
assay [71], high-resolution melting curve analysis [114],
and NGS.
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FIGURE 34.2 JAK2 exon 12 mutation testing. (A) High-resolution melting (HRM) curve analysis. HRM can be an efficient method to detect
a variety of different mutations that cluster in a specific region, such as occurs with JAK2 exon 12 mutations in polycythemia vera. PCR is uti-
lized to amplify the target region in the presence of a fluorescent reporter molecule. Following amplification, the double-stranded PCR pro-
ducts are melted (ie, denatured) with increasing temperature, during which time the decay of emitted fluorescence is measured. Plotting
fluorescence versus temperature generates a characteristic melt curve (top plot). The presence of a mutation alters the melt profile due to mis-
matched double-stranded heteroduplexes of mutant and wild-type (WT) fragments. A difference plot in which sample curves are subtracted
from a WT control can accentuate the melt profile differences (bottom plot). (B) Multiplex fragment length analysis. Most JAK2 exon 12 muta-
tions are small length-affecting deletions of 3�12 bp, duplications of 27�36 bp, or substitutions leading to K539L. Sensitive detection of these
mutations can be accomplished by combining a PCR fragment sizing assay to detect deletions and duplications with an allele-specific PCR
assay for detection of the K539L mutation. PCR products are resolved by capillary electrophoresis to distinguish the size of the amplicons.
Shown is a negative case with only WT JAK2 exon 12 amplicon (top) and cases with a 6 bp deletion mutation (middle), and a 33 bp duplica-
tion mutation (bottom). Pink analysis bins represent the locations of expected mutant fragment sizes. Arrows indicate the mutant fragments.
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Sanger sequencing is a gold standard technique for
CALR mutation analysis. This method has the ability to
detect the wide variety of nucleotide alterations, can
determine the exact change in DNA sequence, and can
distinguish in-frame length variants (germline poly-
morphisms) from pathogenic frameshift mutations.
However, direct sequencing may be insufficiently sensi-
tive in cases with low CALR mutant rate (,15%) [79].
Fragment analysis (Fig. 34.4A) can achieve higher ana-
lytical sensitivity (2�5%), but a validation of the differ-
ent amplicon fragments sizes that correspond to specific
CALR insertions and deletions based on direct sequenc-
ing results is required for accurate differentiation of
length-affecting polymorphisms from mutations. In spe-
cimens with low mutant allelic burden, mutations iden-
tified by fragment analysis may not be confirmable by
an alternate method, such as Sanger sequencing. NGS
represents a viable approach for CALR mutation screen-
ing (Fig. 34.4B). It has higher analytical sensitivity than
Sanger sequencing (B5�10% mutant allelic frequency)
and can simultaneously interrogate multiple MPN-
related genes during diagnostic workup.

Test Interpretation and Reporting

As with other molecular pathology tests, reports for
MPN molecular testing should include information
about preanalytic (eg, specimen type, indication for
testing), analytic (eg, test methodology, analytic result,
and test limitations), and postanalytic (eg, interpreta-
tive comments) components of the assay [115].

Mutations identified by sequencing-based methods
should be reported using standard Human Genome
Variation Society (HGVS) nucleotide and amino acid
nomenclature (HGVS, http://www.hgvs.org/mutno-
men). The mutant allelic frequency should be reported
for quantitative assays, but the terms heterozygous
and homozygous should not be used to describe cases
with allele burdens of less than 50% and greater than
or equal to 50%, respectively, because the mutation
phase cannot be ascertained by traditional qPCR meth-
ods [116]. CALR in-frame length-affecting polymorph-
isms should not be reported to avoid confusion and
potential misinterpretation by the clinical team.
However, information about the type of CALR muta-
tion detected (type 1 vs type 2) should be incorporated
into the clinical report due to growing evidence sug-
gesting differential impact on disease prognosis
between these two variant types [75].

FUTURE DIRECTIONS

Advances in defining the mutational landscape of
MPNs over the past decade have revolutionized the
molecular diagnosis of these entities. Looking to the
future, there is vast potential for expanded application
of NGS technologies toward discovering novel MPN-
related genes and defining new clinically relevant
genetic subtypes of this heterogeneous group of neo-
plasms. With NGS making its way into clinical laborato-
ries, testing will progressively move from mutational
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FIGURE 34.3 MPL mutation testing. (A) Sanger sequencing can detect the various nucleotide substitution mutations in MPL, albeit with
limited sensitivity down to 10�15% mutant allele. Overlapping peaks in the DNA sequence chromatogram indicate the presence of a muta-
tion. Cases with c.1544 G.T (W515L) and c.1543_1544delinsAA (W515K) mutations are shown. Mutant peaks are highlighted with asterisks.
(B) Allele-specific PCR. Primers specific to various MPL substitution mutations can be utilized in a multiplexed PCR assay using capillary
electrophoresis for detection. Primers designed to amplify a wild-type MPL product are included as a control. This technique is capable of
detecting mutations down to 2% mutant allele burden and lower. Corresponding allele-specific PCR results are shown for the two cases that
were Sanger sequenced. The size location of the expected mutation-specific PCR products is indicated with pink analysis bins.
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analysis of single genes toward a multigene panel
analysis. The simultaneous evaluation of multiple
MPN-associated genes has the potential to better refine
disease diagnosis and to allow for the development of
more personalized approaches for disease prognostica-
tion, risk stratification, management, and minimal resid-
ual disease monitoring.

CONCLUSIONS

Mutation testing is standard of care for diagnostic
workup of any suspected MPN, with JAK2 V617F
being the most useful first test for PV, ET, and PMF.
Well-established second-order tests include: JAK2 exon
12 mutation analysis (suspected PV) and CALR and
MPL mutation screening (suspected PMF or ET). The
presence of a mutation establishes a clonal (neoplastic)
proliferation and rules out a secondary/reactive condi-
tion. While the absence of JAK2 mutations virtually
rules out PV, the absence of JAK2 V617F, CALR, and
MPL does not rule out ET or PMF, given that approxi-
mately 13% ET and 10% PMF cases are triple negative
[74,90]. Clinicopathological correlation is required for a
final diagnosis of ET and PMF.
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation
(HSCT) has been used for decades to treat a wide vari-
ety of inherited and acquired disorders. Inherited disor-
ders treated with HSCT include hemoglobinopathies,
bone marrow failure syndromes, immunodeficiencies,
and inborn metabolic diseases [1,2]. HSCT is also used
in the treatment of acquired hematological malignancies
and solid tumors. The application for solid tumors is
for the benefit from graft-versus-tumor activity [3] and
as an adjunct to high-dose chemotherapy [4].

The source of hematopoietic stem cells for HSCT can
be from peripheral blood (obtained by apheresis), bone
marrow, or cord blood. The best source of stem cells is
somewhat controversial in the literature and is likely
dependent on the mobilization regimen, precondition-
ing regimen, and reason for transplant [1,5]. While ear-
lier HSCT used bone marrow as a donor source, the
most recent literature suggests that HSCT utilizing stem
cells from peripheral blood may actually be advanta-
geous [6,7]. T-cell depletion prior to transplant can min-
imize the risk of graft-versus-host disease (GVHD), but
increases the risk of graft rejection and also diminishes
graft-versus-leukemia (GVL) activity [8,9].

Engraftment kinetics depends upon the type of pre-
transplant regimen the patient receives. HSCT was
originally developed for patients who had received
myeloablative doses of chemotherapy and radiotherapy
[10]. Myeloablative conditioning was considered opti-
mal for patients receiving HSCT for hematopoietic
malignancies until the benefit of graft-versus-tumor

activity was recognized [11]. Myeloablative conditioning
regimens are expected to ablate marrow hematopoiesis
and do not allow for autologous hematologic recovery.
Nonmyeloablative conditioning regimens use lower
doses of chemotherapeutic agents and total body irradi-
ation which results in minimal cytopenias, without the
requirement for stem cell support. Reduced intensity
conditioning (RIC) falls between myeloablative and
nonmyeloablative, resulting in prolonged cytopenias
that do require hematopoietic stem cell support,
although the cytopenia may not be irreversible [12].
While myeloablative regimens are still used, RIC and
nonmyeloablative regimens continue to evolve as they
are optimized for types and stages of disease. The less
intensive regimens, which essentially represent a contin-
uum, make HSCT available to patients who would not
be expected to tolerate myeloablative conditioning.

Regardless of the pretransplant conditioning regi-
men, when engraftment is successful the recipient
becomes a chimera (an organism comprised of more
than one individual). Longitudinal monitoring of
chimerism is used for the early detection of impending
graft rejection, information relevant to GVHD, and
when the transplant was performed as a treatment for
a malignant hematological disorder, monitoring chime-
rism can be used for early detection of relapse [13].

Monitoring engraftment of HSCT is routinely
accomplished through identity testing, also known as
DNA fingerprinting. It is generally the same methodol-
ogy employed for paternity testing, identification of
maternal cell contamination in fetal samples, and most
significantly, in the field of forensics [14]. Forensic
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analysis requires a highly robust and dependable
method that can absolutely discriminate between
two individuals, even when samples are minute or
compromised.

MOLECULAR TARGET

The predominant method currently used for monitor-
ing of HSCT engraftment utilizes short tandem repeats
(STRs), also known as microsatellites. STRs are repetitive
DNA sequences between 1 and 6 bp in length that are
repeated in tandem [15]. The number of times any given
STR is repeated is highly polymorphic between indivi-
duals, making them an ideal target for identity testing.
These sequences account for about 3% of the human
genome and are scattered throughout the genome [16].
The majority occur in noncoding regions of the genome,
with 8% located within coding regions [17].

Alternative methods utilizing single-nucleotide
polymorphic (SNP) markers include pyrosequencing
[18], allele-specific real-time polymerase chain reaction
(PCR) [19,20], and TaqMan real-time PCR [21,22].
Additionally, allele-specific PCR of insertion/deletion
markers can be used [23�28]. SNP and indel markers
require analysis of a greater number of specific mar-
kers compared to STRs due to their relatively low
discriminating power. However, their greater sensitiv-
ity is advantageous for monitoring minimal residual
disease (MMR) [29].

MOLECULAR TECHNOLOGIES

Monitoring HSCT engraftment is typically per-
formed using DNA extracted from leukocytes present
in peripheral blood and bone marrow. Analysis can be
accomplished with unfractionated samples, as well
as from specific cellular subsets purified by flow
cytometry or immunomagnetic methods. There are
commercially-available kits for the multiplex amplifi-
cation of STRs as well as laboratory-developed assays
for single marker and multiplex analysis. PCR primers
are designed to flank the DNA region containing the
tandem repeats, positioned in regions that do not con-
tain SNPs that might interfere with annealing and
amplification. For any given marker, the size of the
PCR product is determined by the number of repeats
present on the two alleles of an individual. Typically,
each forward primer is labeled with a fluorescent dye
so that the resultant amplification product is fluores-
cently labeled. During assay development, the overall
size range that includes all repeat number known for
any given marker can be controlled by the placement
of the primers. Primers that are positioned close to the

repeat region will generate products that are overall
smaller than those generated by primers that are posi-
tioned further away from the repeat region.

Multiplex assays are designed such that the range
in size of the alleles of each marker is distinguishable
from the range of alleles of other markers by the size
range of the amplified products as well as the fluores-
cent dyes that are used. Resultant fluorescently-labeled
PCR products are separated by capillary gel electro-
phoresis with a size standard included with each sam-
ple and an allelic ladder included on each run. An
allelic ladder for each STR (consisting of all available
alleles for that marker) enables software to identify
the alleles present in each sample. Software is used to
measure the height and area of each resultant peak.
Calculations to determine the relative contribution of
cells from donor and recipient can be accomplished
based upon either the peak area or peak height.

Monitoring of engraftment begins with the analysis
of donor and pretransplant recipient samples to iden-
tify informative STR markers. An informative marker
is one that provides clear differentiation between the
donor and recipient. Because STR markers have been
selected for their high degree of polymorphism, most
individuals inherit two different alleles for each
marker (one from each parent). As long as the donor
and recipient differ by at least one allele of a specific
marker, that marker is informative for monitoring
engraftment in that individual.

A technical issue that impacts selection of infor-
mative markers for monitoring engraftment is the phe-
nomenon of stutter which occurs during PCR
amplification [30]. Due to the repetitive nature of the
STRs, there is some slippage during amplification
which results in a product one repeat smaller or larger
than the true allele and is referred to as stutter. The
stutter product can be as great as 10% of the amplified
product of the true allele and can occur in either direc-
tion (one repeat smaller or larger than the true allele),
but is more commonly one repeat smaller. If a stutter
product is large enough, it can generate an additional
stutter product which would be two repeats smaller
than the true allele. The consequence of stutter is that
it limits the selection of informative markers. If for any
given marker the donor and recipient share an allele
that differs by only a single repeat, it can impact usage.
For example, consider the THO1 marker and a donor
whose two alleles have 8 and 10 repeats and a recipi-
ent whose two alleles have 7 and 10 repeats. If a small
amount of seven repeats is present in a posttransplant
sample, it cannot be determined whether this repre-
sents cells of recipient origin, or if it is stutter from the
eight-repeat allele in the donor. Therefore, THO1
would not be an informative marker for this particular
donor and recipient.
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In theory, amplification from an individual with two
alleles for any given marker should be roughly equal.
What is seen in practice is variability, sometimes with
preferential amplification of the smaller allele, which
might be expected, and sometimes with preferential
amplification seen for the larger allele. Because of the
variability, which can result from technical artifact or a
true biological process, multiple informative markers are
analyzed for each posttransplant sample and averaged,
for the most accurate estimate of chimerism. Results are
reported as percent cells of donor origin and percent
cells of recipient origin. Sensitivity of chimerism testing
by STR is 1�5% [31], meaning that for a patient who is
mostly engrafted with donor cells, STR analysis has the
ability to detect as little as 1�5% of cells of recipient
origin in a posttransplant sample from that patient.

It is not uncommon to have transplant patients trans-
fer care over time, and when that happens, the new labo-
ratory does not always receive a pretransplant recipient
or donor sample. While not ideal, buccal or saliva
samples can be used as a substitute for a pretransplant
recipient sample as the cells obtained from these samples
are primarily epithelial and will not have been replaced
with donor cells. In reality, there are often lymphocytes
which, if the patient is well engrafted, would be from the
donor [32]. Comparison of the recipient’s buccal or saliva
sample with bone marrow or peripheral blood generally
makes it possible to identify informative alleles. For any
marker in the buccal or saliva sample that has four
alleles, two can be matched with the donor present in
peripheral blood or bone marrow, and the other two can
be attributed to the recipient. For any marker that has
two alleles that are not present in the peripheral blood or
bone marrow, they can also be attributed to the recipient.
This is possible if the patient is well engrafted, but
becomes less reliable if there is a significant recipient
contribution in the posttransplant peripheral blood or
bone marrow sample.

CLINICAL UTILITY

Quantitative assessment of the state of chimerism in
a transplanted individual’s blood or bone marrow can
provide critical information regarding transplant rejec-
tion, GVHD, and in some cases, relapse. While moni-
toring patients at critical points such as a change in
clinical status or altered therapeutics can provide valu-
able information, it is more informative if the patient is
monitored longitudinally so the results can be inter-
preted in the context of the patient’s history and previ-
ous levels of chimerism. Additionally, results from
longitudinal testing can be compared to engraftment
kinetics of other HSCT patients with the same treat-
ment and prognosis [33].

Following HSCT, there can be a delicate balance
between the risks of graft failure or relapse and
GVHD [34]. Immunosuppressive therapy can be
increased to prevent graft rejection when the trans-
plant was performed for nonmalignant disease [35].
With malignant diseases, decreasing immunosuppres-
sive therapy can optimize graft-versus-tumor activity,
along with donor lymphocyte infusions and the use of
immunomodulatory cytokines [36].

The kinetics of donor engraftment are dependent
upon the pretransplant conditioning regimen. With
less intense pretransplant conditioning regimens, a
higher degree of mixed chimerism is expected, at least
shortly after the transplant. In patients who received
RIC and have been transplanted to treat inherited
or acquired nonmalignant disease, it is not necessary
to completely replace the recipient’s hematopoietic
system and mixed chimerism may exist indefinitely.
Studies have shown that mixed chimerism persists in
50% of such patients and 10�20% of donor cells are
necessary to produce a significant clinical effect [37].
When HSCT is utilized in the treatment of malignant
disease, persistent or increasing recipient cells
can either indicate relapse or survival of host
hematopoietic cells.

Longitudinal monitoring of engraftment from
peripheral blood or bone marrow can provide valuable
information and guide clinical decisions. Chimerism
studies on different cell populations within the
myeloid and lymphoid lineages can provide additional
information about graft rejection, GVHD, and relapse.
Isolation of desired subsets of cells can be performed
by flow cytometry or immunomagnetic bead-based
techniques. Once the targeted population has been
obtained, the procedure and analysis are identical to
that for unfractionated samples—DNA is extracted
from the isolated cell population, STR markers are
amplified by PCR, and the resultant products are visu-
alized by capillary gel electrophoresis. The relative
contribution of donor and recipient cells is calculated
and reported, along with results from an unfractio-
nated sample. Interpretation depends on the status of
the patient, previous results, reason for the transplant,
and the pretransplant conditioning regimen that was
employed.

Chimerism studies for specific cell populations are
most frequently performed for CD31 cells as increas-
ing or consistently high levels of recipient CD31 T
cells and CD561 NK cells are associated with graft
rejection [38,39]. This is in contrast to complete donor
engraftment of cells from the myeloid lineage which
can be seen at the same time. Monitoring CD31 T-cell
and CD561 NK-cell populations along with unfractio-
nated samples provides an early indication of impend-
ing graft rejection, which is often treated with a donor
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lymphocyte infusion. There are many other opportu-
nities for performing lineage-specific chimerism studies.
For example, chimerism studies on the CD341 subset
in patients with acute myeloid leukemia and B-cell
acute lymphoblastic leukemia are useful in detecting
imminent relapse earlier than studies on unfractionated
cells from the same patients [40,41].

Utilizing engraftment studies for early indications
of relapse can be challenging as the sensitivity of
chimerism testing by STR analysis is generally in the
range of 1�5% which is several orders of magnitude
higher than what is optimal for monitoring of MMR,
which aims to be in the range of 1023 to 1026. In cases
where there is a molecular target for a malignant pop-
ulation, the tumor-specific molecular marker will likely
provide a more sensitive method for MMR detection.
However, in many malignancies there are no known
tumor-specific molecular markers and chimerism
studies may be the only means for monitoring of
MMR. In such cases, sensitivity can be significantly
increased by lineage-specific testing. Depending on the
contribution of a specific lineage to the overall leuko-
cyte population, sensitivity within subsets can be in
the range of 0.1�0.01% [42].

LIMITATIONS OF TESTING

The greatest limitation of chimerism testing is sensi-
tivity. STR markers are distributed throughout the
genome and can be selected to cumulatively represent
multiple chromosomes. Care should be taken when
HSCT is used in the case of a hematological malig-
nancy characterized by or susceptible to chromosomal
aneuploidy [43]. If chromosomal aneuploidy is present
in the malignancy, and relapse occurs, it is possible to
either miss it or have the calculated chimerism values
be incorrect if the only informative markers are on
the impacted chromosome(s). When multiple markers
are analyzed, and a single marker yields a value that is
an outlier, the presence of chromosomal aneuploidy
should be considered.

A challenge presented by the literature on monitor-
ing engraftment in HSCT is that there are so many
variables present both for the donor and recipient
prior to transplant as well as follow-up treatments
after the transplant, it is difficult to interpret any given
single chimerism result [44]. With longitudinal testing,
results are interpreted in the context of a specific
patient, their disease, type of pretransplant condition-
ing, preparation of transplanted cells, posttransplant
therapy, and previous chimerism results. It is in this
context that chimerism testing offers the greatest
potential for impacting patient care.

Technologies are rapidly changing and there will
likely be more efficient, automated, and sensitive
methods for monitoring engraftment in the future. It is
important to keep in mind that results from different
methods, or even the same method performed in
different laboratories, are not necessarily interchange-
able, which becomes relevant when a patient transfers
to a different laboratory. A final consideration for
HSCT recipients who achieve complete donor engraft-
ment is that any future genetic testing that is per-
formed on peripheral leukocytes will yield results on
the donor, rather than the recipient.
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INTRODUCTION

Cardiovascular disease is a leading cause of morbid-
ity and mortality worldwide. Conservative, interven-
tional (eg, cardioversion), and surgical approaches are
implemented to ameliorate the burden of cardiovascu-
lar disease, although the mainstay physician-directed
strategy remains pharmacological therapy. However,
notable interindividual variation in cardiovascular
drug response exists, which manifests clinically as
reduced effectiveness and/or adverse drug reactions
(ADRs). Variable drug response is a large healthcare
problem. It has been previously estimated that the
proportion of patients who respond beneficially to the
first drug offered in the treatment of a wide range of
diseases, including cardiac arrhythmias, is typically
just 50�75% [1]. In the hospital setting, 6.5% of admis-
sions are related to ADRs [2] and 14.7% of inpatients
experience an ADR [3]. For any given drug, the etiol-
ogy underlying variable response can be parsed into
three categories: (1) drug-specific (eg, drug regimen
differences, including variable adherence), (2) human
body (the system), and (3) environmental (eg, smoking,
drug�drug, and food�drug interactions). The human
body has a compartmentalized and hierarchical design
composed of different levels of biological organization
including genomic, epigenomic, transcriptomic, prote-
omic, metabolomic, tissue, and organ. The wide range
of intrinsic factors present in each level, the complex
interplay between factors within (horizontal interaction)
and between (vertical interaction) biological levels, and

the capacity for drugs and environmental factors to
provoke network-based system-wide perturbations
plausibly underpin the broad spectrum of emergent,
complex phenotypes seen in clinical practice, including
variable health/disease status and drug response.

Pharmacogenomics is the study of genetic determi-
nants of interindividual variation in response to a
given drug and aims to optimize drug efficacy and/or
minimize ADRs through the stratification of medicines
to prospectively-identified genetically-distinct patient
subgroups by genotype(s)-informed drug and/or dose
selection strategies. Pharmacogenomics research has
successfully decreased the incidence of abacavir hyper-
sensitivity syndrome in clinical practice through pro-
spective genotyping for HLA-B�57:01 [4]. Furthermore,
oncology therapies targeted to patients with specific
cancer biomarkers are becoming increasingly common.
For example, the tyrosine kinase inhibitor, crizotinib, is
licensed for treatment of non-small-cell lung cancers
carrying oncogenic anaplastic lymphoma kinase (ALK)
gene rearrangements [5].

Pharmacogenomic information is included within the
product labels of 10 US Food and Drug Administration
(FDA)-approved cardiovascular drugs and 128 other
drugs [6]. However, there is no cardiovascular pharma-
cogenomic test currently used in widespread clinical
practice. Clinical translation of pharmacogenomic
research is hampered by evidential, logistical, financial,
and healthcare provider knowledge barriers [7]. In par-
ticular, inconsistent study findings, a lack of prospective
evidence of patient benefit, and the focus on approved
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cardiovascular drugs all hamper cardiovascular trans-
lational pharmacogenomics. The latter is because
commonly prescribed cardiovascular drugs are often
off-patent, inexpensive, and prescribed by a broad
range of community and hospital physicians in contrast
to, for example, new expensive targeted antineoplastic
agents that are managed exclusively by oncologists.
Therefore, even if robust and consistent randomized
controlled trial (RCT) evidence supporting a cardiovas-
cular pharmacogenomic test emerges, cardiovascular
medicine faces the extra challenges of changing
accepted clinical practice and existing physician behav-
ior. Perhaps the most disconcerting observation is that
although cardiovascular drug�gene associations typi-
cally have larger effect sizes than the expanding
number of cardiovascular disease susceptibility loci [7],
pharmacogenomic predictive values remain predomi-
nantly inadequate for clinical utility. This indicates that
they do not explain enough interindividual variation
and so pharmacogenomics alone, while intrinsically
necessary, is unlikely to be sufficient to adequately
parse interindividual response variability for most
drugs. As a consequence, investigation into and incor-
poration of novel factors identified using other omics
technologies, alongside pharmacogenomic associ-
ations, are being perceived as increasingly necessary.
Nevertheless, pharmacogenomics is integral to
interindividual drug response variability, multiple car-
diovascular pharmacogenomics associations have been
determined and the field is continuing to advance
through new technologies (eg, next-generation sequenc-
ing—NGS) (Fig. 36.1).

This chapter focuses on contemporary cardiovascu-
lar pharmacogenomics, but is supplemented where
appropriate with novel insight from alternate omics-
levels. Table 36.1 provides a summary of established
and novel pharmacogenomic associations for cardio-
vascular drugs including warfarin, clopidogrel, bucin-
dolol, statins, and antiarrhythmics [8�23].

WARFARIN

The anticoagulant warfarin is a widely prescribed
coumarin-derived racemic mixture, first approved for
use in humans in 1954 [24], and is indicated in throm-
boembolism prophylaxis (eg, in atrial fibrillation (AF)
and following mechanical heart valve implantation)
and venous thromboembolism treatment. The degree
of anticoagulation is determined by the international
normalized ratio (INR): the target INR range for most
warfarinized patients is 2.0�3.0. There is widespread
interindividual variation in warfarin stable dose (WSD)
requirements, ranging from 0.6 to 15.5 mg/day [25] and
attributable to incompletely characterized genetic, clini-
cal, and environmental components. Patients conven-
tionally spend approximately 45�63% of the time within
the therapeutic range [26,27] and elevated INRs are asso-
ciated with an increased risk of warfarin-associated
hemorrhage [28]. Therefore, the high prevalence of use,
narrow therapeutic index, and multifactorial etiology of
warfarin exposure make warfarin the leading cause of
preventable ADRs [29] and a priority for pharmacoge-
nomic studies [30].

VKORC1

VKORC1 encodes vitamin K epoxide reductase com-
plex subunit 1, the warfarin target that catalyzes the
rate-limiting step of the vitamin K cycle [25], and facili-
tates posttranslational γ-carboxylation to produce
functional clotting factors II, VII, IX, X, and proteins
C and S (Fig. 36.2) [31]. The single-nucleotide polymor-
phism (SNP) rs9923231 (�1639G.A; G3673A) alters a
transcription factor binding site in the VKORC1 pro-
moter region and �1639A is associated with decreased
gene expression [32]. The allele frequency of �1639A
in African-American, Asian, and Caucasian
populations is approximately 0.13, 0.92, and 0.40,
respectively, indicating minor allele reversal in Asian
populations. Carrying �1639A has been associated
with decreased WSD requirements in several popula-
tions [33] and over-coagulation [14], although not with
hemorrhage [14]. While rs9923231 alone explains
approximately 20�25% of WSD variation in Asian and
Caucasian populations, this decreases to approximately
6% in African-Americans [34], perhaps due to the lower
frequency of �1639A and/or a collective larger
influence of additional factors in Africa-Americans.
Interestingly, rare nonsynonymous VKORC1 variants,
such as rs61742245 (D36Y), have been identified which
are associated with warfarin resistance and higher WSD
requirements [35].

As well as genetic factors, VKORC1 expression
appears to be under epigenetic regulation. In vitro

FIGURE 36.1 The evolution of pharmacogenomics studies from
candidate gene studies to the implementation of NGS. Systems phar-
macology holds promise and may become the norm for future stud-
ies but poses many challenges.
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TABLE 36.1 Select Examples of Pharmacogenomics Variants Significantly Associated with Cardiovascular Drug Response

Clinical outcome Study Locus/Gene Variant(s) Effect sizea Reference

WARFARIN

(a) Dose requirement MA VKORC1 �1639G.A GA vs GG: B1.5 mg/day increase [8]

AA vs GG: B2�3 mg/day reduction [8]

MA CYP2C9 �2 �1/�2 vs �1/�1: B1 mg/day reduction [8]

�2/�2 vs �1/�1: B1.5 mg/day reduction [8]

MA �3 �1/�3 vs �1/�1: B1.5 mg/day reduction [8]

�3/�3 vs �1/�1: B2.5 mg/day reduction [8]

CG �5, �6, �8, �11 �5, �6, �8, or �11 carriers vs �1/�1: B1 mg/day
reduction

[9]

GWAS CYP4F2 1297G.A (V433M) A carriers vs GG: B0.2 mg/day increase [10]

GWAS CYP2C
cluster

rs12777823 (G.A) AG vs GG: B1 mg/day reduction [11]

AA vs GG: B1.5 mg/day reduction [11]

ES FPGS rs7856096 (A.G) AG: B1 mg/day reduction [12]

GG: B1.5 mg/day reduction [12]

CG GATA4 rs867858 (G.T)1
rs10090884 (A.C)

GG/AA vs all other genotype combinations:
B1 mg/day reduction

[13]

rs2645400 (G.T)1
rs4841588 (G.T)

GG/GT,TT vs all other genotype combinations:
B2 mg/day reduction

[13]

(b) Hemorrhage MA CYP2C9 �3 �1/�3 vs �1/�1: HR 2.05
(95% CI 1.36, 3.10)

[14]

�3/�3 vs �1/�1: HR 4.87
(95% CI 1.38, 17.14)

[14]

(c) Over-
anticoagulation
(INR. 4)

MA CYP2C9 �2 �2 vs �1: HR 1.52 (95% CI 1.11, 2.09) [14]

�3 �3 vs �1: HR 2.37 (95% CI 1.46, 3.83) [14]

MA VKORC1 �1639G.A GA vs GG: HR 1.49 (95% CI 1.15, 1.92) [14]

CLOPIDOGREL

(a) Stent thrombosis MA CYP2C19 �2, �3, �4��8 ROF alleles present vs noncarriers: HR 2.81
(95% CI 1.81, 4.37)

[15]

1 ROF allele vs noncarriers: HR 2.67 (95% CI
1.69, 4.22)

[15]

2 ROF alleles vs noncarriers: HR 3.97 (95% CI
1.75, 9.02)

[15]

(b) MACE in patients
at high
risk of MACE
(eg, requiring PCI)

MA CYP2C19 �2, �3, �4��8 ROF alleles present vs noncarriers: HR 1.57
(95% CI 1.13, 2.16)

[15]

1 ROF allele vs noncarriers: HR 1.55 (95% CI
1.11, 2.27)

[15]

2 ROF alleles vs noncarriers: HR 1.76 (95% CI
1.24, 2.50)

[15]

(c) MACE MA CYP2C19 �17 HR 0.82 (95% CI 0.72, 0.94) [16]

SIMVASTATIN

Myopathy GWAS SLCO1B1 rs4149056, T.C Per copy of C allele: OR 4.5
(95% CI 2.6, 7.7)

[17]

CC vs TT: OR 16.9 (95% CI 4.7, 61.1) [17]

(Continued)
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assays have reported that the hepatic microRNA, miR-
133a, interacts with the 3ʹUTR of VKORC1 mRNA,
decreases VKORC1 mRNA dose-dependently, and in
ex vivo liver samples from healthy subjects, mirR-133a
levels are inversely correlated to VKORC1 mRNA
levels [36]. However, the influence of miR-133a on
WSD requirements is yet to be determined.

CYP2C9

CYP2C9 metabolizes the S-warfarin enantiomer,
which is three- to five-fold more potent than R-warfarin.
The main CYP2C9 variants, CYP2C9�2, �3, �5, �6, �8, and
�11, are all nonsynonymous reduction-of-function (ROF)
SNPs resulting in variously attenuated S-warfarin
metabolism except CYP2C9�6, which is an exonic single
nucleotide deletion that shifts the reading frame causing
loss of function [37]. CYP2C9�2 and �3 are the most com-
mon Caucasian variants (minor allele frequencies
(MAFs) 0.13 and 0.07, respectively). CYP2C9�2 is very
rare and CYP2C9�3 has a low frequency (0.04) in Asians,

TABLE 36.1 (Continued)

Clinical outcome Study Locus/Gene Variant(s) Effect sizea Reference

BUCINDOLOL

(a) All-cause mortality RCT B vs P overall in RCTb: HR 0.90
(95% CI 0.78, 1.02), NS

[18]

CGS of RCT ADRB1 Arg389Gly B vs P if Arg389Arg: HR 0.62
(95% CI 0.39, 0.99)

[19]

CGS of RCT ADRA2C Ins322�325Del B vs P if Ins322�325Ins: HR 0.70
(95% CI 0.51, 0.96)

[20]

(b) VT/VF RCT genetic
substudy

B vs P overallb: HR 0.42 (95% CI 0.27, 0.64) [21]

CGS of RCT ADRB1 Arg389Gly B vs P if Arg389Arg: HR 0.26
(95% CI 0.14, 0.50)

[21]

(c) New onset atrial
fibrillation

RCT B vs P overall in RCTb: HR 0.59
(95% CI 0.44, 0.79)

[22]

CGS of RCT ADRB1 Arg389Gly B vs P if Arg389Arg: HR 0.26
(95% CI 0.12, 0.57)

[22]

AMIODARONE

Torsades de Pointes CG NOS1AP rs10919035 (C.T) T carriers vs CC: OR 2.81 (95% CI 1.62, 4.89) [23]

aAll effect sizes are statistically significant unless otherwise stated.
bOverall risk estimate of drug versus placebo in RCT independent of genotype, provided when available to aid interpretation of corresponding statistically significant within

genotype analyses.

B, bucindolol; βB, beta-blocker; CG, candidate gene study; CGS, candidate gene substudy; CI, confidence interval; ES, exome sequencing study; GWAS, genome-

wide association study; HR, hazard ratio; MA, meta-analysis; MACE, major adverse cardiovascular events; NS, not statistically significant; OR, odds ratio;

P, placebo; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; ROF, reduction-of-function; VT/VF, ventricular tachycardia/ventricular

fibrillation.

Adapted from Turner RM, Pirmohamed M. Cardiovascular pharmacogenomics: expectations and practical benefits. Clin Pharmacol Ther 2014;95:281�93.

FIGURE 36.2 Warfarin is a racemic mixture of two enantiomers
that perturb the vitamin K cycle through inhibition of vitamin K
epoxide reductase complex subunit 1 (VKORC1). This decreases the
regeneration of reduced vitamin K, an essential cofactor for
γ-glutamyl carboxylase (GGCX), decreasing the posttranslational
activating γ-carboxylation of glutamate residues in clotting factors II,
VII, IX, and X. The more potent S-warfarin is metabolized by cyto-
chrome P450 (CYP) 2C9, while R-warfarin is metabolized by
CYP1A1, CYP1A2, and CYP3A4. CYP4F2 depletes the vitamin K
cycle of reduced vitamin K [31]. The therapeutic action of warfarin is
modulated by established pharmacokinetic (CYP2C9) and pharmaco-
dynamic (VKORC1, CYP4F2) pharmacogenes.
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while in African populations they are both absent or
rare (0�0.036 and 0.003�0.02, respectively) [38].
CYP2C9�2 and �3 impair S-warfarin metabolism by
approximately 30�40% and 80�90%, respectively [39],
decrease WSD requirements [40], and a meta-analysis
has reported a gene�dose trend for increased risk of
hemorrhage with CYP2C9�3 in heterozygotes (�1/�3) and
homozygotes (�3/�3) compared to wild-type homozy-
gous (�1/�1) patients. The hazard ratios for bleeding
were 2.05 (95% confidence interval (CI) 1.36, 3.10) and
4.87 (95% CI 1.38, 17.14), respectively [14].

CYP2C9�5, �6, �8, and �11 occur predominantly in
African populations [34] and approximately 20% of
African-Americans carry at least one [37]. Although
there is insufficient evidence currently for CYP2C9�6,
the others (CYP2C9�5, �8, and �11) have all been associ-
ated with decreased WSD requirements in African-
American patients [37]. A recent genome-wide associa-
tion study (GWAS) of African-American patients iden-
tified and replicated a novel noncoding variant,
rs12777823, near CYP2C18 on chromosome 10. The
minor A allele was associated with reduced S-warfarin
clearance and decreased WSD requirements [11].
Interestingly, although rs12777823 is present in other
ethnicities it has never before been associated with
WSD, suggesting it is in linkage disequilibrium with
an underlying African-specific causal variant [11].
However, further research into the underlying mecha-
nism is required.

GATA4 encodes a liver-specific transcription factor
involved in the regulation of CYP2C9 expression [41]
and combinations of noncoding GATA4 SNPs have
recently been associated with WSD requirements in a
cohort of Korean patients with prosthetic cardiac valves
[13]. Of note, patients homozygous wild type for both
rs867858 and rs10090884 had lower WSD requirements
compared to patients with other allele combinations of
these SNPs, independent of age, CYP2C9�3, VKORC1,
and CYP4F2 genotypes [13]. However, these novel
associations require independent replication.

CYP4F2

CYP4F2 metabolizes reduced vitamin K to hydroxy-
vitamin K, removing reduced (active) vitamin K from
the vitamin K cycle. GWAS investigations have identi-
fied the variant allele of rs2108622 (1297G.A, V433M)
to be independently associated with higher WSD
requirements in Caucasian [42] and Asian [10] indivi-
duals, but not African-American patients [11].
rs2108622 is correlated with lower CYP4F2 hepatic
concentrations [31] and greater vitamin K availability,
although it only explains an additional 1�2% of
observed WSD variability [10,42].

Clinical Utility

There is unequivocal evidence that genetic variants
influence warfarin dose requirements [37] and multi-
variable pharmacogenomics warfarin dosing algo-
rithms, incorporating clinical and pharmacogenomic
determinants (mainly CYP2C9�2, �3, and VKORC1
�1639G.A) have been constructed [43,44]. However,
they are predominantly derived from retrospective
studies insufficiently robust for cardiovascular clinical
translation. Importantly, two multicenter prospective
large warfarin pharmacogenomic RCTs, COAG [27],
and EU-PACT [45], have recently been published.
Briefly, COAG was US-based (n5 1015), compared a
pharmacogenomic to clinical algorithm and found no
difference in the mean time in the therapeutic INR
range (TTR) between days 4 and 5 after warfarin initia-
tion through to 4 weeks (45.2% and 45.4%, respec-
tively, p5 0.91) [27]. EU-PACT was based in the
United Kingdom and Sweden (n5 455), compared a
pharmacogenomic algorithm to standard dosing and
found that the TTR during the first 12 weeks after
warfarin initiation was significantly higher in the phar-
macogenomic (67.4%) compared to standard dosing
arm (60.3%, p, 0.001) [45].

There are many reason(s) for these divergent results,
which have been recently reviewed [46]. An important
reason is ethnicity-specific pharmacogenomics. The
pharmacogenomic algorithms used best explain warfa-
rin variability in Caucasians. EU-PACT recruited
predominantly Caucasians, but approximately 30% of
COAG participants were African-American and
approximately 6% Hispanic [27]. Importantly, African-
American COAG participants had a lower TTR and
higher incidence of INR values greater than 3 with
pharmacogenomic dosing compared to clinical algo-
rithmic dosing [27], emphasizing the necessity to
utilize ethnicity-specific algorithms. Therefore, there is
a need to identify additional pharmacogenomic
variants in non-Caucasian populations. Interestingly,
exome sequencing in 103 African-American patients
with extreme WSD requirements (#35 and $ 49 mg/
week) recently associated the population-specific regu-
latory SNP, rs7856096, with lower WSD requirements
[12]. rs7856096 is located within the folate homeostasis
gene, folylpolyglutamate synthase (FPGS), and corre-
lates with FPGS gene expression, although the reason
for its impact on WSD requirements remains unre-
solved [12].

Five overlapping aggregate data meta-analyses of
RCTs [47�50], or RCTs with prospective cohort studies
[51], have been published since COAG/EU-PACT
were reported, comparing pharmacogenomics to clini-
cal dosing (Table 36.2) [47�51]. For deaths and throm-
boembolic events, when analyzed individually, no
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meta-analysis has demonstrated a significant differ-
ence between dosing strategies. Beyond this, con-
clusions are elusive: for TTR and major bleeding,
different meta-analyses both support pharmacoge-
nomic [48,51] and show no overall benefit [47,49,50].
Heterogeneity is high for TTR, there are low absolute
numbers of major bleeding events and individual stud-
ies are reused between meta-analyses, further limiting
conclusions. One meta-analysis stratified by compara-
tor and reported superiority of pharmacogenomics to
fixed initial-dose standard practice but not when
pharmacogenomics-guided dosing was compared to
nonfixed initial dosing (eg, clinical algorithms) [49].
However, given that the standard dosing EU-PACT

arm had a higher TTR than the clinical algorithmic
COAG arm (60.3�45.4%, respectively) an individual
patient data meta-analysis might be illuminating.
There are other trials ongoing such as GIFT [52], but
whether they will shed light on the use of warfarin
pharmacogenomics in a global sense seems unlikely.
A major confounder is that the way in which warfarin
is used globally varies widely: these include differ-
ences in initial dosing (ie, use of loading doses), the
dosing used for early maintenance phases, the fre-
quency of INR monitoring, whether computerized dos-
ing software is used, how anticoagulation services are
delivered, and who delivers them. Given these practice
differences, no generalized conclusions can be made

TABLE 36.2 A Table of Recently Published Meta-Analyses That Report Outcomes for Warfarin Pharmacogenomics Dosing Compared
to Clinical Dosing

Meta-analysis

Included

study design

Summary estimate for difference in
time in therapeutic INR range (95%

CI) with pharmacogenomics

compared to clinical dosing

Risk estimate for clinical adverse

events with pharmacogenomics

compared to clinical dosing

Franchini et al. (2014)a [47] RCT WMD: 4.25 (21.95, 10.45), I25 89.4%,
n5 2812

Major bleeding: 0.47 (0.23, 0.96),
I25 0%

Thromboembolism: 0.98 (0.45, 2.11),
I25 0%

Death: 0.71 (0.19, 2.60), I25 0%

Goulding et al. (2014) [48] RCT MD: 6.67 (1.34, 12.0), I25 80%,
n5 1952

Bleeding or thromboembolism: 0.57
(0.33, 0.99), I25 60%, n5 2211

Liao et al. (2014) [49] RCT Overall SMD: 0.08 (20.02, 0.17),
I25 65%, n5 1729

Composite of adverse eventsb: 0.94
(0.84, 1.04), I25 0%, n5 1763

SMD if initial dose fixed in clinical
dosing arm: 0.24 (0.09, 0.40),
I25 47.8%

Death: 1.36 (0.46, 4.05), I25 10.4%,
n5 1571

SMD if initial dose nonfixed in
clinical arm: 20.02 (20.14, 0.10),
I25 0%

Stergiopoulos and
Brown (2014)a [50]

RCT SDM: 0.14 (20.10, 0.39), I25 88%,
n5 2812

Major bleeding: 0.60 (0.29, 1.22),
I25 0%, n5 2586

Thromboembolism: 0.97 (0.46, 2.05),
I25 0%, n5 2586

Tang et al. (2014) [51] RCT and prospective cohort Overall MD: 5.72 (1.84, 9.59), I25 84%,
n5 5148

Major bleeding: 0.47 (0.24, 0.91),
I25 0%, n5 2614

MD during first 1�4 weeks: 4.64
(20.31, 9.60), I25 88%

Thromboembolism: 0.79 (0.38, 1.63),
I25 4%, n5 2423

MD during 5�8 weeks: 7.99 (1.35,
14.63), I25 69%

aOf the same nine RCTs included in each of these two meta-analyses [47,50], one included RCT investigated warfarin analogues (acenocoumarol, phenprocoumon). Exclusion of
this trial was reported by Stergiopoulos and Brown to not change the results for any endpoint in their study [50].
bComposite of adverse events includes major bleeding, thromboembolism, myocardial infarction, death, clinically relevant nonmajor bleeding, or other conditions needed for

emergency medical management (including an elevated INR) [49].
CI, confidence interval; INR, international normalized ratio; MD, mean difference; SDM, standardized difference in means; WMD, weighted mean difference.

I2 statistic5 a measure of heterogeneity. It determines the proportion of total variation observed between trials attributable to differences between trials rather

than sampling error [48].
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about the implementation of genotype-guided warfarin
dosing, and it will be important that local initiatives
are developed which allow a full evaluation of the util-
ity of genotype-guided warfarin dosing when this is
embedded in (local) clinical care pathways.

CLOPIDOGREL

The second-generation thienopyridine prodrug, clo-
pidogrel, is used following ischemic stroke, acute coro-
nary syndrome (ACS), and percutaneous coronary
intervention (PCI). Although newer antiplatelet agents
(eg, prasugrel, ticagrelor) have been developed, it is still
anticipated that clopidogrel prescribing will remain
high in cardiovascular medicine for the foreseeable
future [53]. Approximately 85% of absorbed clopidogrel
is hydrolyzed by hepatic carboxylesterase (CES1) to an
inactive metabolite [54], and approximately 15% is
oxidized by the CYP system in a two-step process
involving CYP1A2, CYP3A4/5, CYP2B6, CYP2C9, and
CYP2C19 to produce the active 5-thiol metabolite
(R-130964) [54]. This active metabolite irreversibly inhi-
bits the platelet purinergic P2Y12 receptor, ameliorating
adenosine diphosphate (ADP)-induced platelet aggrega-
tion. In patients with myocardial infarction undergoing
PCI, up to 25% may exhibit clopidogrel resistance as
determined by ex vivo platelet function testing [55],
although definitions of clopidogrel resistance vary
between studies. Importantly, clopidogrel nonresponse
can be associated with an increased risk of myocardial
infarction, stent thrombosis, and death [56]. Clinical
factors associated with ex vivo high on-treatment plate-
let reactivity (HTPR) include older age (.65 years),
increased body mass index, diabetes mellitus, reduced
left ventricular function, and renal failure [57].

CYP2C19

The two-step process of clopidogrel biotransforma-
tion is largely catalyzed by CYP2C19 [54], which is
encoded by polymorphic CYP2C19 and enzymatic activ-
ity is inherited in an autosomal codominant manner.
Over 25 CYP2C19 variants have been identified. The
most common ROF CYP2C19 variant is CYP2C19�2
(rs4244285, c.681G.A), which has an allelic frequency of
approximately 0.15 in Africans and Caucasians, and less
than or equal to 0.35 in Asians [53]. In Asians
CYP2C19�3 (rs4986893, c.636G.A) is also common with
an appreciable MAF of 2�9% [53]. However, the major-
ity of other variants with decreased enzymatic activity
(eg, �4��8) are rare (MAF, 1%) [57]. The defining SNPs
of CYP2C19�2 and CYP2C19�3 lead to a cryptic splice
variant and a premature stop codon, respectively,

reducing conversion of clopidogrel to its active meta-
bolite [57]. Several studies have demonstrated that
CYP2C19 ROF alleles are associated with increased
HTPR compared to �1/�1 wild-type homozygotes [53]. In
fact CYP2C19�2 explains more variability in ex vivo
platelet function response than any established clinical
predictor, although CYP2C19�2 still only accounts for
approximately 5�12% of ADP-induced aggregation var-
iability [57]. Another common variant is CYP2C19�17
(rs12248560, c.-806C.T) that has estimated allelic fre-
quencies of 0.16, 0.027, and 0.18 in Africans, Asians, and
Caucasians, respectively [7]. CYP2C19�17 is associated
with increased CYP2C19 transcription, resulting in a
modest gain of function [57]. Furthermore, CYP2C19�17
has been associated with a decreased prevalence of
HTPR, although the magnitude of effect is lower than
for the ROF alleles [34]. CYP2C19 metabolizer pheno-
type is predicted from CYP2C19 genotype: �1/�1
(predicts the normal or extensive metabolizer phenotype
(EM)), ROF heterozygotes (intermediate metabolizer—
IM), ROF/ROF (poor metabolizer—PM), and both �1/�17
and �17/�17 (ultrarapid metabolizer—UM) [53].

Multiple meta-analyses investigating the impact of
CYP2C19 variation on clinical response to clopidogrel
have been undertaken [7]. These meta-analyses uni-
formly and robustly demonstrate that CYP2C19 ROF
alleles (principally CYP2C19�2) significantly increase
the risk of stent thrombosis [7] and furthermore, a
gene�dose trend is evident [15]. Second, the interaction
between clopidogrel and CYP2C19 genotype on the risk
of major adverse cardiovascular events (MACE—
predominantly cardiovascular death and nonfatal myo-
cardial infarction or ischemic stroke) is more evident in
patients undergoing PCI, compared to indications of
lower baseline MACE risk [34,58]. Stratification by PCI
indication appears to not further influence the effect of
CYP2C19 ROF alleles on clopidogrel clinical response
[58]. Interestingly, one meta-analysis has reported that,
even when high-dose clopidogrel therapy is used in
patients receiving PCI, CYP2C19 ROF alleles are signifi-
cantly associated with increased risks of stent thrombo-
sis and MACE, compared to wild-type homozygotes
[59]. Finally, meta-analyses that have stratified by eth-
nicity have reported that the risk of MACE [58,60] and
stent thrombosis [58] in clopidogrel-treated patients
carrying CYP2C19 ROF alleles compared to wild-type
homozygotes appears higher in Asian compared to
Caucasian populations. However, it is currently unclear
whether these observed ethnicity differences are due to
the higher prevalence of CYP2C19 ROF alleles in Asian
populations or are attributable to other genetic and/or
clinical differences (eg, Asian studies have a trend for
increased use of drug-eluting stents) [58].

On balance, CYP2C19�17 may confer a marginally
decreased risk of MACE [7]. No meta-analysis has
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demonstrated that it reduces stent thrombosis and it has
been inconsistently linked with bleeding [7]. However,
the gain-of-function CYP2C19�17 allele is in linkage dis-
equilibrium with the wild-type allele at the CYP2C19�2
locus and therefore its clinically observed effects may, in
part, be due to the absence of CYP2C19�2 [53].

Carboxylesterase 1

Besides CYP2C19, other genes including adenosine
triphosphate binding cassette subfamily B member 1
(ABCB1) and paraoxonase-1 (PON-1) have been incon-
sistently associated with clopidogrel pharmacoge-
nomics [7]. There is growing interest in CES1, which is
important in the metabolism of approximately 85% of
absorbed parent clopidogrel, but it also metabolizes the
intermediate product (2-oxo-clopidogrel) and 5-thiol
active metabolite produced during the CYP-mediated
bioactivation steps, limiting clopidogrel activity [54].
The nonsynonymous CES1 SNP, G143E (rs71647871), is
significantly associated with decreased in vitro clopido-
grel and 2-oxo-clopidogrel hydrolysis [54], higher
plasma levels of the clopidogrel active metabolite in
healthy volunteers (n5 506), reduced ADP-induced
platelet aggregation in healthy volunteers (n5 566),
and clopidogrel-treated coronary heart disease patients
(n5 350) carrying 143E [61]. A nonsignificant trend for
reduced 1-year cardiovascular events associated with
143E carriage was observed, although this comparison
was relatively underpowered [61]. Recently, a study of
162 clopidogrel-treated patients reported that carrying
CES1A2 A(-816)C, a SNP in the promoter region associ-
ated with increased carboxylesterase transcription
efficiency, was associated with significantly higher
ex vivo platelet reactivity [62], implying increased
carboxylesterase-mediated clopidogrel metabolism and
so reduced circulating clopidogrel active metabolite.
Interestingly, several angiotensin-converting enzyme
inhibitors (ACEIs) are metabolized by CES. In vitro,
enalapril inhibits CES1-mediated hydrolysis and enala-
pril and trandolapril are associated with increased for-
mation of 2-oxo-clopidogrel and clopidogrel active
metabolite in human liver s9 fractions [63]. A large
pharmacoepidemiological study (n5 70,934) has sug-
gested that cotreatment of selected ACEIs and clopido-
grel may increase bleeding risk (p5 0.002) [63],
although the role of CES1 variants on this potential
adverse drug�drug interaction requires further study.

miR-223

Platelets harbor a diverse and abundant miRNA
repertoire [64] and miR-223 has been shown in a
reporter gene activity assay to have the potential to

repress platelet P2Y12 mRNA expression [64].
Interestingly, low circulating plasma miR-223 levels in
unstable angina clopidogrel-treated patients of Chinese
ancestry (n5 62) have been significantly correlated
with increased ex vivo platelet reactivity [65]. A smal-
ler study (n5 21) has reported that elevated plasma
miR-223 is significantly associated with decreased
platelet reactivity in patients on P2Y12 inhibitors [66].
Both these studies, although focusing on opposing
miR-223 levels, are consistent with the hypothesis that
miR-223 and P2Y12 expression are inversely related
and may influence antiplatelet response.

Clinical Utility

The 2012 American College of Cardiology Foundation/
American Heart Association (ACCF/AHA) guidelines
for patients with unstable angina/non-ST-elevation
myocardial infarction do not recommend routine
CYP2C19 genotyping in clinical practice largely due to
insufficient supportive data from adequately powered
prospective randomized genotype-directed clopidogrel
trials [67]. However, the ACCF/AHA guidelines permit
CYP2C19 genotyping on a case-by-case basis, such as for
patients who experience recurrent ACS events despite
clopidogrel therapy [67]. Overall, the current evidence
base suggests that patients undergoing PCI (especially
those of Asian ancestry) and carrying CYP2C19 ROF
alleles, compared to wild-type homozygotes, are at an
increased risk of stent thrombosis and MACE. For the
increasing number of patients in whom genetic data is
already available, the 2013 Clinical Pharmacogenetics
Implementation Consortium (CPIC) guidelines recom-
mend consideration of CYP2C19 genotype in ACS
patients undergoing PCI and the prescribing of an alter-
native antiplatelet agent (prasugrel, ticagrelor) in place
of clopidogrel in patients predicted to be IMs or PMs
[53]. Ultimately the goal of antiplatelet therapy is throm-
botic event prevention without hemorrhagic comp-
lications and it remains to be established whether
pre-clopidogel genotyping with antiplatelet stratifica-
tion, compared to routine contemporary prasugrel/tica-
grelor therapy, is clinically and cost-effective. These
questions are being addressed in the large prospective
ongoing POPular Genetics trial in patients with ST eleva-
tion myocardial infarction undergoing primary PCI [68].

STATINS

Statins are hypolipidemic drugs efficacious in the
prevention of cardiovascular disease and are the most
commonly prescribed class of medication worldwide
[69]. Over 40 candidate genes have been associated
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with differential statin effects on lipid-lowering effi-
cacy and/or cardiovascular endpoints [70]. However,
the association between simvastatin-induced myopa-
thy and SLCO1B1 rs4149056 (521T.C, V174A) [17]
has the largest effect size of any known statin�gene
association and is highlighted here.

Statins are associated with a spectrum of clinical
skeletal muscle ADRs ranging from myalgias (B1�5%)
[71] to increasingly severe myopathies with elevated
plasma creatine kinase (CK) levels (eg, B0.11% of
patients with CK .10-fold but ,50-fold the upper
limit of normal—ULN) [72], to potentially fatal rhab-
domyolysis (B0.1�8.4/100,000 patient-years) [72], and
to the rare autoimmune-mediated necrotizing myositis
(B2/million/year) [72]. Clinical correlates of statin
myotoxicity include female gender, older age, low
body mass index, untreated hypothyroidism, and
concomitant drug therapies such as gemfibrozil [71].
As well as directly affecting patients, statin-associated
(mild) muscle side effects confer an increased risk of
statin discontinuation and nonadherence [73], and var-
iable statin adherence is associated with an increased
risk of cardiovascular events [74].

SLCO1B1

A case-control genetic substudy of the SEARCH RCT
compared 85 cases of myopathy (CK. 33 ULN) to 90
controls. All cases/controls were prescribed simvastatin
80 mg daily [17]. This seminal GWAS identified a single
strong association between the intronic SNP rs4363657
and myopathy. The regional analysis found rs4363657 to
be in almost complete linkage disequilibrium with the
nonsynonymous SNP rs4149056. The risk of myopathy
conferred by the rs4149056 C allele (MAF 0.15) showed a
gene�dose trend: odds ratio (OR) 4.5 (95% CI 2.6, 7.7) per
copy of the C allele and 16.9 (95% CI 4.7, 61.1) in CC
homozygotes, compared to TT wild-type patients [17].
This pharmacogenomic association has been replicated
[17] and confirmed by meta-analysis [75], although the
effect size is lower in patients administered simvastatin
40 mg daily [17]. Furthermore, rs4149056 has been associ-
ated with milder statin (predominantly simvastatin)-
associated events suggestive of intolerance including a
composite of discontinuation, dose reduction, switching
lipid-lowering therapy associated with biochemical test-
ing, and mild biochemical abnormalities (CK 1�33 ULN
and/or an elevated alanine aminotransferase level) [76].

SLCO1B1 encodes the organic anion-transporting
polypeptide 1B1 (OATP1B1), a hepatocyte-specific sinu-
soidal xenobiotic influx transporter. Mechanistically,
rs4149056 does not cause OATP1B1 mis-localization and
so plausibly decreases OATP1B1 intrinsic transport func-
tion [77]. In healthy volunteers, rs4149056 had no

significant impact on the pharmacokinetics of the lipo-
philic parent compound, simvastatin lactone, but CC
homozygotes experienced a mean increase of 221% in the
area under the plasma concentration�time curve (AUC)
of the active metabolite, simvastatin acid, compared to
TT wild-type homozygotes [78]. Therefore, decreased
OATP1B1-mediated hepatic uptake of simvastatin acid is
hypothesized to increase muscle exposure, predisposing
to myotoxicity through ill-defined mechanisms. This
elevated muscle exposure hypothesis accounts for the
increased effect size of rs4149056 with higher simvastatin
doses [17]. However, rs4149056 has not been significantly
associated with pravastatin [79] and rosuvastatin [80]
muscle ADRs, while the effect with atorvastatin [75]
seems to be less marked, suggesting that the SLCO1B1
variation is either simvastatin specific, or the effect size
of rs4149056 for muscle ADRs with other statins is smal-
ler. The latter hypothesis is consistent with: (1) rs4149056
increases the AUC of several statins (except fluvastatin)
but to a lesser degree than simvastatin acid [81], (2) sim-
vastatin is intrinsically more myotoxic than other
approved statins [82], and (3) smaller effect sizes are
more challenging to demonstrate empirically.

Other Genes Associated with Statin Myopathy

Although rs4149056 is the most well-validated sta-
tin�gene association, other genes have been implicated
in exploratory analyses [83]. Interestingly, the
incidence of patients with drug (predominantly statin)-
induced myopathy carrying aberrant metabolic myop-
athy genes, including CPT2 (encoding carnitine
palmitoyltransferase 2), appears higher compared to a
control population [84]. Furthermore, in vitro
transcriptomics revealed CPT2 to be in the top 1%
of genes whose mRNA levels are perturbed by 75
rhabdomyolysis-inducing drugs [85]. Deleterious
mutations in RYR1 (encoding ryanodine receptor 1)
predispose to anesthesia-induced malignant hyperther-
mia [86] and RYR1 candidate mutations are more fre-
quent in statin myopathy patients than controls [87].
Although these findings remain at the discovery stage,
they suggest that targeted NGS of influential skeletal
muscle genes (and genes whose proteins interact with
the protein products of these skeletal muscle genes in
the protein�protein interaction network) in large sam-
ple sizes with rare variant gene enrichment analyses
may help identify novel pharmacogenomic genes asso-
ciated with statin (likely severe) myotoxicity.

Clinical Utility

The CPIC has proposed recommendations that
incorporate rs4149056 when considering simvastatin
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initiation in patients whose rs4149056 genotype is
already known [71]. However, clinical uptake of
SLCO1B1 genotyping has not entered widespread clin-
ical practice. Although highly validated, no definitive
prospective study has been undertaken and on its own
it has a low positive predictive value [88]. However,
incorporation of rs4149056 into the Qstatin risk score
for myopathy, which is a model derived from elec-
tronic medical records, based on clinical predictors
[89] and of borderline clinical utility, could be poten-
tially beneficial [88].

BUCINDOLOL

Beta-adrenoreceptor (β-AR) antagonists (β-blockers)
are indicated in the management of several cardiovas-
cular pathologies including heart failure, hypertension,
ACS, angina pectoris, and arrhythmias. Here, we
highlight the contemporary pharmacogenomics of
bucindolol.

Bucindolol is a nonselective β-AR inhibitor with
sympatholytic activity (ie, reduces circulating nor-
adrenaline levels) and weak alpha-1 (α1)-AR antago-
nism [90], which is currently unlicensed. The BEST
RCT evaluated the clinical effectiveness of bucindolol
compared to placebo in patients with New York Heart
Association functional class III and IV heart failure
due to primary or secondary dilated cardiomyopathy
with impaired left ventricular ejection fractions (#0.35)
[18]. However, BEST was ceased early due to the
accrual of contemporary data establishing the useful-
ness of β-blocker therapy in chronic heart failure and
the equipoise of continuing the trial. At the time of ter-
mination, a mean of 2.0 years follow-up had been
undertaken and bucindolol conferred no overall sur-
vival benefit (p5 0.13), but marginally reduced cardio-
vascular deaths (p5 0.04) [18].

Subsequent investigations using the 1040 patient
BEST genetic substudy have revealed that bucindolol
efficacy is modulated by Arg389Gly (rs1801253) in
ADRB1 (encoding β1-AR) and to a lesser extent by the
Ins322�325Del polymorphism of ADRA2C (encoding
α2C-AR) [19]. Patients can be stratified into three
clusters based on genotype that delineate the
effectiveness of bucindolol in reducing six clinical end-
points (including death) into those with enhanced
(Arg389Arg homozygotes1 any Ins322�325Del allele),
intermediate (Gly389 carriers1 Ins322�325Ins wild-
type homozygotes), and no bucindolol response
(Gly389 carriers1Del322�325 carriers), compared to
placebo [19]. Further work using the BEST genetic sub-
study demonstrated that this three-genotype construct
can differentiate the risks of new-onset AF (interaction
test; p5 0.016) [22] and ventricular arrhythmias

(interaction test; p5 0.028) [21]. In particular, the sub-
group of homozygous Arg389Arg heart failure patients
on bucindolol experienced a clear reduction in the inci-
dence of both arrhythmia types in contrast to placebo
[21,22]. New-onset AF in patients with heart failure is
associated with increased mortality and increased hos-
pitalization days [91].

The β1-AR is the prevalent cardiomyocyte β-AR sub-
type and functionally Arg389Arg human nonfailing
left ventricular membranes have higher affinities for
noradrenaline than membranes expressing the Gly389
β1-AR form [19]. The Arg389 β1-AR is also associated
with enhanced downstream signaling. It is therefore
conceptually plausible that β-blocker therapy might be
more beneficial in the presence of the Arg389 β1-AR.
Indeed, a meta-analysis has reported that in heart fail-
ure patients on β-blocker therapy, the Arg389Arg
genotype is associated with a significantly improved
left-ventricular ejection fraction compared to Gly389
carriers, although there was no difference in clinical
endpoints [92].

α2C-AR is a presynaptic receptor that mediates
negative feedback of noradrenaline release. The ROF
Del322�325 minor allele is associated with adrenergic
dysfunction and an exaggerated sympatholytic response
(ie, increased reduction in circulating noradrenaline) to
bucindolol [20]. It is hypothesized that carrying both
ADRB1 Gly389 and ADRA2C Del322�325 cancels all
bucindolol efficacy because the marked sympatholysis
leads to insufficient noradrenaline for the hypofunc-
tional Gly389 β1-AR to adequately support the failing
myocardium [19].

These genetic substudy findings have led to the
GENETIC-AF phase IIB/III RCT [93], which has
recently begun recruiting patients. This RCT aims to
determine whether bucindolol is superior to metoprolol
in Arg389Arg heart failure patients who have persistent
symptomatic AF requiring electrical cardioversion to
stable sinus rhythm for reducing the time to event of
recurrent symptomatic AF/atrial flutter or all-cause
mortality during 24 weeks follow-up [93]. If bucindolol
superiority is demonstrated, bucindolol may become
the first β-blocker licensed for a genotype-specific
patient subgroup.

Antiarrhythmics

Prolongation of the QT-interval can be congenital or
acquired, lead to the long QT syndrome (LQTS), and is
associated with ventricular arrhythmias [94] and
mortality [95]. The principle mechanism of drug-
induced QT prolongation is blockade of the rapidly
activating delayed rectifier potassium current (IKr),
perturbing cardiac repolarization and predisposing to
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drug-induced Torsades de Pointes (DITdP) [96]. DITdP
is a rare, unpredictable, potentially fatal drug-induced
ventricular arrhythmia and a leading cause of drug
withdrawal [97]. Most DITdP is related to antiarrhyth-
mic medications (eg, amiodarone, flecainide, sotalol).
However, multiple classes of noncardiac drugs are also
associated with QT prolongation, although only a pro-
portion have been implicated in DITdP (eg, erythromy-
cin, chlorpromazine, domperidone) [97]. Besides
drugs, other clinical factors prolong the QT-interval
including electrolyte disturbances (especially hypoka-
lemia), bradycardia, and heart failure [97], and in
many DITdP cases, one or more of these secondary
risk factors is also present.

A GWAS meta-analysis of greater than 100,000 indi-
viduals of European ancestry has identified 35 com-
mon variant loci associated with QT-interval variation
in the general population, collectively explaining
approximately 8�10% of QT-interval variation [98].
However, two recent pharmacogenomics GWAS that
were designed to identify genetic variants modifying
the effect of drugs on the QT-interval [99] or increasing
DITdP risk [100] uncovered no variants of genome-
wide significance. The latter GWAS compared 216
North-western European cases of DITdP due to any
culprit drug to 771 ancestry-matched controls. No SNP
reached genome-wide significance, despite an 80%
power to detect a variant at genome-wide significance
with an MAF of 0.1 conferring an OR of greater than
or equal to 2.7. Subgroup analyses restricting DITdP
cases to specific drugs (sotalol, amiodarone, or quini-
dine) were similarly insignificant [100]. These pharma-
cogenomics GWAS argue that in Caucasian patients,
common pharmacogenomic variants do not predispose
to drug-induced QT prolongation or DITdP, unlike the
pharmacogenomic associations of other cardiovascular
drugs. Nevertheless, it is still possible that they could
be underpowered for individual drugs. Interestingly, a
recent candidate gene study identified common non-
coding SNPs in NOS1AP (encoding nitric oxide
synthase 1 adapter protein) to be significantly associ-
ated with amiodarone-related TdP in Caucasians, after
correcting for multiple testing [23]. The most signifi-
cant SNP, rs10919035, was present in approximately
13% of controls and conferred an OR of 2.81 (95% CI
1.62, 4.89) [23]. NOS1AP is known to modulate base-
line QT-interval [98]. Furthermore, the significance of
variants in other ethnicities remains undefined.
rs7626962 (S1103Y) in SCN5A (encoding sodium
voltage-gated channel, type V α-subunit) has been
implicated in arrhythmias including DITdP in African-
American patients [101]. The MAF of S1103Y is
approximately 0.05 in African-American patients, but
is rare in other ethnicities. Rare SCN5A mutations
cause approximately 10% of congenital LQTS [102].

Candidate gene studies have also associated low fre-
quency and rare variants with DITdP in Caucasians.
A large candidate gene study of Caucasian individuals
found rs1805128 (D85N) in KCNE1 (encoding potas-
sium voltage-gated channel subfamily E member 1) to
be significantly associated with DITdP. D85N was
present in 8.6% of cases, 2.9% of drug-exposed con-
trols, 1.8% of population controls, and conferred an
OR of 9.0 (95% CI 3.5, 22.9) [103]. However, only a
nonsignificant trend was present when D85N was gen-
otyped in the validation cohort [103]. Rare KCNE1
mutations cause approximately 1% of congenital LQTS
[102]. Finally, NGS found that 23.1% of Caucasian indi-
viduals (6 of 26) with DITdP carried a highly con-
served nonsynonymous variant within 22 congenital
arrhythmia genes (including the 13 congenital LQTS
genes) compared to 1.7% in 60 control subjects from
the 1000 Genomes CEU data [104].

Clinical Utility

DITdP is challenging to study given its rare and
capricious phenotype. Recent pharmacogenomic
GWAS have reported no genome-wide significant
results, arguing against common genomic variation
predisposing to DITdP in Caucasians. On the other
hand, candidate gene studies have suggested rare and
ethnically-restricted DITdP associations, although they
remain in the discovery phase. Meanwhile, a clinical
decision support algorithm has been implemented at
the Mayo Clinic (USA) which alerts a physician if they
attempt to prescribe a medication that can predispose
to DITdP for a patient with a history of QT prolonga-
tion (QTc. 500 ms) [105]. This system has significantly
reduced exposure to QT-prolonging medications in
patients at high DITdP risk [105], although its impact
on clinical endpoints will require further observation.

CONCLUSION AND FUTURE
PERSPECTIVE

Large-scale initiatives, including the 1000 Genomes
projects [106], have led to a prolific increase in our
knowledge of common and infrequent human genetic
variation. The Exome Sequencing Project [107] and
recently commenced Rare Diseases Genomes Project,
which will sequence the genomes of 10,000 rare dis-
ease patients in the next 3 years [108], are cataloging
rare and potentially deleterious genetic variation.
Concurrent to and facilitated by such initiatives, inten-
sive pharmacogenomics research is ongoing and
several cardiovascular drug�gene associations have
been established. However, as yet no cardiovascular
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pharmacogenomic biomarker has been translated into
routine clinical practice. Undoubtedly logistical, finan-
cial, and knowledge barriers exist [7], but the major
current obstacle remains a lack of robust evidence
demonstrating patient benefit. Therefore, the near
future results of ongoing warfarin, clopidogrel, and
bucindolol pharmacogenomics trials, and the forth-
coming real-world observational data from pharmaco-
genomics early adopter sites [109], are anticipated with
cautious optimism.

Another reason for optimism is the emerging, novel,
interdisciplinary field of systems pharmacology,
which includes but goes beyond pharmacogenomics
(Fig. 36.1). The wide range of drug-specific, environ-
mental, and multilevel human factors and their com-
plicated interrelationships indicate the complexity
underlying interindividual drug response variation
and the potential benefits of a multifaceted approach.
Systems pharmacology represents a paradigm shift
toward multilevel systems biology and its integration
with quantitative pharmacological modeling (pharma-
cometrics) [110], aiming to identify novel drug targets,
enhance drug development, and facilitate precision
medicine [111]. Systems pharmacology recognizes that
drug response is an emergent phenotype resulting
from drug-induced perturbations occurring at different
biological levels (eg, proteomic, metabolomic, and
organ) on different spatial and temporal scales, which
are further shaped by the drug-specific (eg, dose regi-
men) and environmental factors (eg, smoking). Within
and between levels, molecules are interlinked to form
biological networks (eg, macromolecular protein�
protein structure and gene regulatory networks) that
coalesce to ultimately form the overall human system.
Biological network properties include redundancy and
robustness and drug-induced network perturbations
can be additive, synergistic, or opposing. Therefore,
rather than just understanding the effect of a drug on a
single biological component (eg, molecule) in isolation,
systems pharmacology aspires to adequately under-
stand drug action on the interlinked system as a whole
to increase predictive utility and clinical application
[111]. One approach is construction of multiscale
models, whose development is envisaged through an
iterative cycle of new empirical data acquisition lead-
ing to model refinement and subsequent model predic-
tions (and prioritization of unknown parameters)
driving the next round of empirical investigations
[111]. For example, a quantitative multiscale model of
calcium homeostasis and bone remodeling has been
constructed that can predict nonlinear longitudinal
changes to the clinical surrogate endpoint of lumbar
spine bone mineral density during and following

discontinuation and reinstitution of the antiresorptive
drug, denosumab [112]. However, many technical hur-
dles exist including the difficulties of multiscale
modeling and producing a user-friendly, updateable
software platform capable of integrating data from the
growing array of publically-available biological data-
bases to maximize data usefulness. The key to systems
pharmacology will be ever greater intradisciplinary
and interdisciplinary collaboration to pool financial
and distinct skillsets, increase sample sizes, standard-
ize phenotypes, and facilitate multi-omics analyses, in
silico network-based investigations and pharmacologi-
cal modeling.
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INTRODUCTION

The concept of personalized medicine evolved sev-
eral centuries ago and Hippocrates (c. 460�c. 370 BC)
once stated “. . .It’s far more important to know what
person the disease has than what disease the person
has. . .” [1]. The present working definition of personal-
ized medicine based on The Personalized Medicine
Coalition document on The Case for Personalized
Medicine states “. . .The molecular methods that make
personalized medicine possible include testing for var-
iation in genes, gene expression, proteins, and metabo-
lites, as well as new treatments that target molecular
mechanisms. Test results are correlated with clinical
factors � such as disease state, prediction of future dis-
ease states, drug response, and treatment prognosis �
to help physicians individualize treatment for each
patient. . .” [2]. A more comprehensive definition states
“. . .Personalized Medicine is the concept that manag-
ing a patient’s health should be based on the individ-
ual patient’s specific characteristics, including age,
gender, height/weight, diet, and environment, and so
on. Recent developments in genetic testing allow the
development of ‘Genomic Personalized Medicine’ and
Predictive Medicine, which is the combination of com-
prehensive genetic testing with proactive, personalized
preventive medicine. Personalized medicine is not
solely about genomics, however, as personalized medi-
cine is about you, the health consumer. Personalized
medicine also allows your healthcare provider, such as
your physician, to focus their attention on what makes
you, instead of abiding by generalities. . .” [3]. The
European Union defined personalized medicine as
“. . .Providing the right treatment to the right patient,
at the right dose at the right time. . ..” President’s
Council of Advisors on Science and Technology
defined it as “. . .the tailoring of the medical treatment

to the individual characteristics of each patient. . ..”
The American Medical Association defined it as
“. . .Health Care that is informed by each person’s
unique clinical and genetic and environmental
information. . ..” The National Cancer Institute (NCI) of
National Institutes of Health (NIH) defined personal-
ized medicine as “. . .A form of medicine that uses
information about a person’s genes, proteins and envi-
ronment to prevent diagnose and treat disease. . ..”

The discipline of mapping/sequencing (including
analysis of the information), born from a marriage of
molecular and cell biology with classical genetics and
fostered by computational science, was termed geno-
mics by T.H. Roderick of the Jackson Laboratory (Bar
Harbor, ME) [4]. In the interesting course of History of
Genomics (Table 37.1), the year 2003 is significantly
marked by the announcement of the completion of the
Human Genome Project. The practice of personalized
medicine entails the application of genomics, the con-
cept which is defined in Webster’s Dictionary as “. . .a
branch of biotechnology concerned with applying the
techniques of genetics and molecular biology to the
genetic mapping and DNA sequencing of sets of genes
or the complete genomes of selected organisms, with
organizing the results in databases and with applica-
tions of the data (as in medicine or biology). . ..”
According to the World Health Organization defini-
tions, genetics is the study of heredity [4] and geno-
mics is the study of genes and their functions and
related techniques [5,6]. While genetics scrutinizes the
functioning and composition of the single gene, geno-
mics addresses all genes and their interrelationships in
order to identify their combined influence on the
growth and development of the organism [5,6].

Hemostasis is physiologic homeostasis resulting
from a dynamic equilibrium between coagulation and
fibrinolysis. An intact endothelium is by far the largest
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endocrine, paracrine, and autocrine gland ever known
to man. Alteration of this delicate hemostatic balance
may lead to bleeding disorders. Thanks to Vogel who
for the first time introduced the term pharmacogenomics
in 1959 [7], pharmacogenomics-guided drug develop-
ment has enabled personalized or individualized ther-
apy for clotting or bleeding disorders, given to the
right patient, at the right dosage, and at the right time.
Completion of the Human Genome Project has been a
significant achievement. Gene expression profiling and
identification of single-nucleotide polymorphisms
(SNPs) will facilitate the diagnoses of various hemo-
static and other disorders. Pharmacogenetics involves
the entire library of genes that determine drug efficacy
and safety. According to the SNP Map Working Group
[8], there are 1.42 million SNPs: one SNP per 1900
bases; 60,000 SNPs within exons; two exonic SNPs per
gene (1/1080 bases); and 93% of genetic loci contain

TABLE 37.1 Milestones of Genomic Development

Years Name Event

1745 Maupertuis Adaptationist account of organic design

1859 Darwin The origin of species

1865 Mendel Combinatorial rules of inherited traits

1869 Miescher Discovered “Nuclein” (DNA) in pus cells

1874 Miescher Separated nucleic acids into a protein and
an acid molecule

1918 Muller Formulation of the chief principles of
spontaneous gene mutations

1920s Nucleic acid found to be a major component
of the chromosome

1930s Tetranucleotide�adenylic, guanylic,
thymidylic, cytidylic acids

1940s Molecular weight of nucleic acid much
higher than tetranucleotide hypothesis

1944 Avery Identified nucleic acids as active principle in
bacterial transformation

1950 Chargaff Nucleotide composition differs according to
its biologic source

1951 First protein sequence (insulin)

1952 Hershey and
Chase

Bacteriophage—80% of viral DNA entry in
cell and 80% protein outside

1953 Watson and
Crick

Discovery of double helix structure of DNA

1960s Elucidation of the genetic code

1975 King and
Wilson

Discovery of regulatory genes

1976 First cloning of human genes and output of
structural genes

1977 Advent of DNA sequencing

1980s McClintock Discovered transposable strands of genes in
maize

1984 McGinnis Discovered homeotic (HOX) regulatory
genes—basic body plan of animals

1986 Fully automated DNA sequencing

1995 Identification of first whole genome
(Haemophilus influenzae)

1999 Discovery of first human chromosome
(Chr#22)

2000 Drosophila/Arabidopsis genomes

2000 The human genome project presents
preliminary results

2001 Human and mouse genome

2003 US White House announces completion of
the human genome project

(Continued)

TABLE 37.1 (Continued)

Years Name Event

2004 NHGRI and DOE publish scientific
description of human genome sequence

2005 International Hap Map Consortium—catalog
of human genetic variation

2006 NCI and NHGRI—study of first three
cancers first phase of Cancer Genome Atlas

2007 NIH announces the official launch of the
human microbiome project

2008 President Bush signed into law the Genetic
Information Nondiscrimination Act

2009 Therapeutics for Rare & Neglected Diseases
Program or TRND

2010 NIH awards to support the genotype tissue
expression (GTEx) project

2011 NHGRI’s new strategic plan for the future of
human genome research

2012 The Encyclopedia of DNA Elements
project—working of human genome

2013 10th anniversary of human genome project
(HGP)

2013 Smithsonian Institute (Washington, DC)
presents “Unlocking the life’s code”

2014 NIH issues final genomic data saving
(GDS) policy

2015 NIHGRI’s Workshop—research directions in
genetically-mediated SJS/TEN

2015 Stanford Researchers suss out cancer
mutations in genome’s dark spots
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two SNPs. Because each person is different at one in
1000�2000 bases, SNPs are responsible for human
individuality. A list of genes involved in hemostatic
disorders is given in Table 37.2.

TABLE 37.2 Genes Related to Coagulation

Clone ID Name Gene title

22040 MMP9 Matrix metalloproteinase 9 (gelatinase B)

26418 EDG1 Endothelial differentiation, sphingolipid
G-protein-coupled receptor

32609 LAMA4 Laminin, alpha 4

34778 VEGF Vascular endothelial growth factor

40463 PDGFRB Platelet-derived growth factor (PDGF)
receptor, betapolypeptide

41898 PTGDS Prostaglandin D2 synthase (21 kD, brain)

44477 VCAM1 Vascular cell adhesion molecule 1

45138 VEGFC Vascular endothelial growth factor C

49164 VCAM1 Vascular cell adhesion molecule 1

49509 EPOR Erythropoietin receptor

49665 EDNRB Endothelin receptor type B

49920 PTDSS1 Phosphatidylserine synthase 1

51447 FCGR3B Fc fragment of IgG, low affinity III B,
receptor for Z (CD16)

66982 PLGL Plasminogen like

67654 PDGFB PDGF betapolypeptide (Simian sarcoma
viral (v-sim) oncogene homolog)

71101 PROCR Protein C receptor, endothelial (EPCR)

71626 ZNF268 Zinc finger protein 268

768246 G6PD Glucose-6-phosphate dehydrogenase

85678 F2 Coagulation factor 2

85979 PLG Plasminogen

120189 PSG4 Pregnancy-specific beta 1-glycoprotein 4

121218 PF4 Platelet factor 4

127928 HBP1 HMG-box containing protein 1

130541 PECAM1 Platelet/endothelial-cell adhesion molecule
(CD31 antigen)

131839 FOLR1 Folate receptor 1 (adult)

135221 S100P S100 calcium-binding protein P

136821 TGFB1 Transforming growth factor, beta 1

137836 PDCD10 Programmed cell death 10

138991 COL6A3 Collagen, type VI, alpha 3

139009 PN1 Fibronectin 1

142556 PSG2 Pregnancy-specific beta-glycoprotein 2

(Continued)

TABLE 37.2 (Continued)

Clone ID Name Gene title

143287 PSG11 Pregnancy-specific beta-1 glycoprotein 11

143443 TBXASa Thromboxane A synthase 1

149910 SELL Selectin E (endothelial adhesion molecule 1)

151662 P11 Protease, serine, 22

155287 HSPA1A Heatshock 70 Kd protein 1A

160723 LAMC1 Laminin, gamma 19—formerly, LAMB2

179276 FASN Fatty acid synthase

180864 ICAM5 Intercellular adhesion molecule 5,
telencephalin

184038 SPTBN2 Spectrin beta, nonerythrocytic 2

191664 THBS2 Thrombospondin 2

194804 PTTPN Phosphatidylinositol transfer protein

196612 MMP12 Matrix metalloproteinase 1 (interstitial
collagenase)

199945 TGM2 Transglutaminase 2

205185 THBD Thrombomodulin

210687 AGTR1 Angiotensin receptor 1

212429 TF Transferrin

212649 GRG Histidine rich glycoprotein

234736 GATA6 GATA-binding protein 6

240249 APLP2 Amyloid beta (a4) precursor-like protein 2

241788 FGB Fibrinogen, B, betapolypeptide

243816 CD36 CD36 antigen (collagen type 1 receptor,
thrombospondin receptor)

245242 CPB2 Carboxypeptidase B2 (plasma
carboxypeptidase U)

260325 ALB Albumin

261519 TNFRSF5 TNF receptor (superfamily, member 5)

292306 LPC Lipase, hepatic

296198 CHS1 Chediak�Higashi syndrome 1

310519 F10 Coagulation Factor X

360644 ITGB8 Integrin, beta 8

343072 ITGB1 Integrin, beta 1

345430 PIK3CA Phosphoinositide 3 kinase, catalytic, alpha
polypeptide

589115 MMP1 Matrix metalloproteinase 1 (interstitial
collagenase)

666218 TGFB2 Transforming growth factor, beta 2

712641 PRG4 Proteoglycan 4 (megakaryocyte stimulating
factor)

714106 PLAU Plasminogen activator, urokinase

(Continued)
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There are approximately three billion base pairs of
DNA in the human genome that code for at least
30,000 genes. Although the sequence of the majority of
base pairs is identical from individual to individual,
natural variation occurs and 0.1% of DNA base pairs
contribute to individual differences. Three consecutive
base pairs form a codon that specifies an amino acid
constitute of an encoded protein. Genes represent a
series of codons that specify the amino acid sequence
of a particular protein. At each gene locus, an individ-
ual carries two alleles, one from each parent. If there
are two identical alleles, it is referred to as a homozy-
gous genotype, and if the alleles are different, it is
referred to as a heterozygous genotype. Genetic varia-
tions usually occur as SNPs and occur on average at
least once every 1000 base pairs, reflecting approxi-
mately three million base pairs distributed throughout
the entire genome. Genetic variations that occur at a
frequency of at least 1% in the human population are
referred to as polymorphisms. Genetic polymorphisms
are inherited and monogenic—they involve one locus
and have interethnic differences in frequency. Rare
mutations occur at a frequency of less than 1% in the
human population. Other examples of genetic varia-
tions include insertion�deletion polymorphisms, tan-
dem repeats, defective splicing, aberrant splice site,
and premature stop codon polymorphisms. Through
the discovery of new genetic targets, pharmacoge-
nomics is expected to improve the quality of life and
control healthcare costs by treating specific genetic
subgroups, avoiding adverse drug reactions, and by
decreasing the number of treatment failures.

GENOMICS OF COAGULATION
DISORDERS

Arterial and venous thromboembolism are major
causes of significant morbidity and mortality especially
in developed countries. With respect to arterial throm-
bosis, factor XIII 34Leu was reported in several studies
to have protective effect on the development of myo-
cardial infarction [9]. No other single polymorphism is
considered as a significant risk factor for arterial
thrombosis, although factor V Arg506Gln, factor VII
Arg353Gln, and vWF Thr789Ala may be involved in
patient subgroups [9]. Factor V Arg506Gln and pro-
thrombin 20210 mutations are known to play a role in
venous thrombosis.

Factor V Leiden R506Q

The factor V Leiden R506Q mutation (G1691A)
occurs in 8% of the population with a specific G-A

TABLE 37.2 (Continued)

Clone ID Name Gene title

726086 TFP12 Tissue factor pathway inhibitor (TFPI) 2

727551 IRF2 Interferon regulatory factor 2

753211 PTGER3 Prostaglandin E receptor 3 (subtype EP30)

753418 VASP Vasodilator stimulated phosphoprotein

753430 ATRX Alpha thalassemia

754080 ICAM3 Intercellular adhesion molecule 3

755054 IL18R1 Interleukin 18 receptor 1

758266 THBS4 Thrombospondin 4

770462 CPZ Carboxypeptidase Z

770670 TNFAIP3 Tumor necrosis factor (TNF), alpha-induced
protein 3

770859 ITGB5 Integrin, beta 5

776636 BHMT Betaine-homocysteine methyltransferase

782789 AVPR1A Arginine vasopressor receptor 1A

785975 F13A1 Coagulation factor XIII. A1 polypeptide

788285 EDNR A Endothelial receptor type A

809938 TACSTD2 Matrix metalloproteinase 7 (matrilysin,
uterine)

810010 PDGFRL PDGF-receptor-like

810017 PLAUR Plasminogen activator, urokinase receptor

810117 ANXA11 Annexin A11

810124 PAFAH1B3 Platelet-activating factor acetylhydrolase,
isoform 1b, gamma subunit (29 kD)

810242 C3AR1 Complement component 3a receptor 1

810512 THBS1 Thrombospondin 1

810891 LAMA5 Laminin, alpha 5

811096 ITGB4 Integrin, beta 4

811792 GSS Glutathione synthetase

812276 SNCA Synuclein, alpha (non-A4 component of
amyloid precursor)

813757 FOLR2 Folate receptor 2 (fetal)

813841 PLAT Plasminogen activator, tissue serine (or
cysteine) proteinase inhibitor

814378 SPINT2 Serine proteinase inhibitor, Kunitz type 2

814615 MTHFD Methylene tetrahydrofolate dehydrogenase
(NAD dependent)

825295 LDLR Low-density lipoprotein receptor (familial
hypercholesterolemia)

840486 vWF Von Willebrand factor

842846 TIMP2 Tissue inhibitor of metalloproteinase-2

1813254 F2R Coagulation factor II (thrombin) receptor
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substitution at nucleotide 1691 in the gene for factor V.
The defective protein product is cleaved less efficiently
(10%) by activated protein C, resulting in deep vein
thrombosis (DVT), recurrent miscarriages, portal vein
thrombosis in cirrhotic patients, early kidney transplant
loss, and other forms of venous thromboembolism
(VTE) [10�13]. A dramatic increase in the incidence of
thrombosis is seen in women who are taking oral con-
traceptives. Both prothrombin G20210 and factor V
Leiden mutation in the presence of major risk factors
may contribute to atherothrombosis (a thrombus that
forms due to rupture of an atherosclerotic plaque).
Antithrombin drugs play a crucial role in the manage-
ment of these thrombotic disorders. The factor V
Leiden allele is common in Europe, with a population
frequency of 4.4%. The mutation is very rare outside
Europe, with a frequency of 0.6% in Asia Minor [14].

Factor VII

Polymorphism in the factor VII gene, especially the
Arg-353Gln mutation in exon 8 located in the catalytic
domain of factor VII, influences plasma FVII levels. The
Gln-353 allele is associated with strong protective effect
against the occurrence of myocardial infarction [15].
Since FVIIa/tissue factor (TF) is involved in the initial
coagulation cascade, much attention has been given to
blocking this pathway by developing FVIIa inhibitors
and tissue factor pathway inhibitor (TFPI) [16].

Prothrombin 20210A Mutation

The coagulation factor II (prothrombin) G20210
mutation occurs in 2% of the population and is located
in the 3’ UTR of the coagulation factor II polypeptide
near a putative polyadenylation site [17]. This muta-
tion is associated with increased levels of prothrombin
resulting in DVT, recurrent miscarriages, and portal
vein thrombosis in these conditions. The interactive
role of hormone replacement therapy and prothrombo-
tic mutations has been reported to cause the risk of
nonfatal myocardial infarction in postmenopausal
women [18].

Laki Lorand Factor (FXIII)

Factor XIII SNP G-T in exon 2 causes a Val/Leu
change at position 34. The Val/Leu polymorphism
increases the rate of thrombin activation by factor XIII
and causes increased and faster clot stabilization [19,20].
The Leu34 allele has been shown to play a protective role
against arterial and venous thrombosis [21,22].

Natural Anticoagulant System

Genetic defects in the antithrombin, protein C, and
protein S systems are very rare, but result in increased
risk of venous thrombosis. The role of inherited defi-
ciencies of antithrombin, protein C, and protein S in
arterial disease is not completely understood and may
not contribute to the risk of arterial thrombosis.

Thrombomodulin

Thrombomodulin mutations are more important in
arterial diseases than in venous diseases. The thrombo-
modulin polymorphism, G-A substitution at nucleo-
tide position 127 in the gene has been studied
regarding its relation with the arterial disease. The
25Thr allele was reported to be more prevalent in male
patients with myocardial infarction than the control
population [23]. Polymorphisms in the thrombomodu-
lin gene promoter (233G/A) influence the soluble
thrombomodulin levels in plasma and cause increased
risk of coronary heart disease [24]. Carriers of
the 233A allele were reported to exhibit increased
occurrence of carotid atherosclerosis in patients less
than 60 years old [25].

Tissue Factor Pathway Inhibitor

TFPI or lipoprotein-associated coagulation inhibitor
is one of the coagulation protease inhibitors which
combines and inhibits FVIIa�TF complex and FXa
(Figs. 37.1 and 37.2). Sequence variation in the TFPI
gene has been reported. The four different polymorph-
isms reported include: (1) Pro-151Leu, (2) Val-264Met,
(3) T384C exon 4, and (4) C33T intron 7 [26,27] The
Val264Met mutation causes decreased TFPI levels [27].
It is reported that the Pro-151Leu replacement is a risk
factor for venous thrombosis [28]. A polymorphism in
the 3’ UTR of the TFPI gene (2287T/C) did not alter
the TFPI levels and did not influence the risk of coro-
nary atherothrombosis [29]. It has been recently
reported that the �33T-C polymorphism in the
intron 7 of the TFPI gene influences the risk of VTE,
independently of the factor V Leiden and prothrombin
mutations and its effect is mediated by increased total
TFPI levels [30].

People who have a genetic predisposition to thrombo-
philia may harbor DNA mutations that result in defi-
ciency of endogenous anticoagulants such as protein C,
protein S, and antithrombin [31,32]. There could be at
least 100 different types of mutations including point
mutations, deletions, or insertions with each of the
endogenous anticoagulants which would make genetic
testing for diagnosis not feasible. Therefore, functional
assays are employed for diagnostic purposes.
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Polymorphism Associated with VTE

VTE is a complex thrombotic disorder with environ-
mental and genetic determinants, an annual incidence
of one per 1000, and is the third leading cause of cardio-
vascular morbidity. Rudolph Virchow initially identified
three factors contributing to risk of VTE, commonly
referred to as Virchow’s triad: (1) endothelial injury or
activation, (2) reduced blood flow, and (3) hypercoagu-
lability of blood [33]. While genome-wide association
strategy is an effective way to identify common SNPs
associated with VTE, previous genome-wide association
studies (GWAS) have not included more than 1961 sub-
jects [34,35]. The well-established genetic risk factors for
VTE include heterozygous deficiencies of the endoge-
nous anticoagulants such as antithrombin, protein C,
and protein S (relatively rare affecting ,1% of the

general population), as well as deficiencies of factor V
(FV) (MIM 612309) Leiden, prothrombin (MIM 176930)
G20210A, fibrinogen γ (FGG) (MIM 134850) rs2066865,
and blood group non-O (which are more frequent). A
recent meta-analysis of 65,734 individuals reported
identification of SNPs affecting TSPAN15 (MIM 613140),
SLC44A2 (MIM 606106), and ZFPM (MIM 603140) as
risk factors for VTE [36]. SNPs associated with each of
these loci were selected for validation in three indepen-
dent case-control studies totaling 3009 VTE-affected
individuals and 2586 controls subjects, leading to identi-
fication of TSPAN15 and SLC44A2 as susceptibility loci
for VTE [36]. Furthermore, the lead SNP at the TSPAN15
locus was reported to be the intronic rs78707713 and that
of SLC44A2 as the nonsynonymous rs2288904 which
was previously reported to be associated with
transfusion-related acute lung injury. This study also
identified six other susceptibility loci which were already
known to be associated with VTE, namely, ABO (MIM
110300), FII, FV, FXI (MIM 264900), FGG, and endothelial
protein C receptor (PROCR) (MIM600646) [36].
Investigators associated with the Leiden Thrombophilia
study and the Multiple Environmental and Genetic
Assessment of Risk Factors for Venous Thrombosis
study examined two SNPs (rs2289252 and rs2036914) in
factor XI and concluded that these SNPs are associated
with increased plasma factor XI levels and are indepen-
dent risk factors for DVT [37].

Hyperhomocysteinemia and Thrombosis

Polymorphism in methylenetetrahydrofolate (MTHFR
C677T) has been shown to be associated with arterial and
venous thromboses [38,39]. However, but recent studies
reported uncertainties of such an association [40,41].

Anticoagulant drugs
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FIGURE 37.1 Structural representation of
different anticoagulant drugs. This schematic
shows a structural representation of heparin
comprising of a heterogeneous mixture of
low-, medium-, and high-molecular-weight
fractions. Structural representations of other
anticoagulants (such as direct thrombin inhi-
bitors like hirudin and hirulog) can be seen.
Other endogenous anticoagulants such as
TFPI and antithrombin are also shown. TFPI,
tissue factor pathway inhibitor; TAFI,
thrombin-activatable fibrinolysis inhibitor-1;
PAI-1, plasminogen activator inhibitor-1.
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FIGURE 37.2 Diagrammatic representation of the interior of a
blood vessel showing the mechanism of thrombogenesis. This sche-
matic shows the intact endothelium lining the interior of the blood
vessel on one side and the platelet aggregation forming a primary
hemostatic plug on the other side where the structural integrity of
endothelium has been breached.
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Polymorphism in Fibrinogen and Thrombosis

SNPs in the β-chain of fibrinogen (SNP 455G/A)
were found to be associated with increased plasma
fibrinogen levels and increased risk for stroke [42]. The
association between fibrinogen gene mutation and
arterial thrombosis is controversial because of different
findings in different studies. The α-chain Thr-312Ala
polymorphism is reported to increase the stability of
clots [43].

PHARMACOGENOMICS OF
ANTIPLATELET AND

ANTICOAGULANT DRUGS

Anticoagulant, antiplatelet, and thrombolytic drugs
are very commonly used agents for VTE
(Figs. 37.1�37.3). Warfarin, aspirin, and clopidogrel are
some of the very commonly used drugs. There are well-
known interindividual patient responses to these agents
which may pose a challenge to medical practice [44].

Warfarin

Warfarin is the most commonly used oral anticoagu-
lant drug. Several limitations of its use include: (1) fre-
quent anticoagulant monitoring using prothrombin time
and international normalized ratio, (2) drug�food inter-
actions and drug�drug interactions, (3) allergic manifes-
tations, (4) Warfarin-induced skin necrosis, (5) bleeding
complications, and (6) wide interindividual differences in
anticoagulant response due to VKORC polymorphism.

Warfarin has a relatively narrow therapeutic index and
as a result underdosing may cause thrombosis and
overdosing may result in bleeding complications. Newer
oral anticoagulant drugs such as dabigatran, rivaroxaban,
apixaban, and edoxaban have been approved as alterna-
tives to warfarin and several anticoagulant reversal
agents are in advanced phases of clinical development.
However, the use of warfarin will continue. Warfarin is
derived from dicoumarol, a natural product isolated
from sweet clover and its synthetic form consists of R
and a more active S enantiomer. The S and R enantiomers
of warfarin have different mechanisms of metabolism.
S-warfarin is primarily metabolized by cytochrome P450
2C9 (CYP2C9), and R-warfarin by CYP3A4 [45]. Warfarin
inhibits vitamin K epoxide reductase complex by binding
to the VKORC1 subunit, thereby preventing reduced
vitamin K dependent gamma-carboxylation of coagula-
tion factors II, VII, IX, and X, as well as protein C and
protein S (Fig. 37.3) [46]. Variation in three genes account
for 40�54% of the observed interindividual response to
warfarin dosing. GWAS have provided further insights
into warfarin pharmacogenomics. CYP2C9�2 (C430T,
rs1799853) and CYP2C9�3 (A1075C, rs1057910) are the
most common alleles associated with decreased function
and patients who harbor them require smaller doses of
warfarin due to their greater sensitivity to the drug
[47,48].

Aspirin

Aspirin is one of the most commonly used drugs for
cardioprotection. It has been reported that 0.4�70.1%

Antithrombotic drugs and their targets
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FIGURE 37.3 Coagulation cascade
showing sites of actions of different anti-
coagulant drugs. The schematic shows
the coagulation cascade comprising the
intrinsic and extrinsic pathways, and
sites of actions for various anticoagulant
drugs including heparin, vitamin K
antagonists, direct thrombin inhibitors,
and factor Xa inhibitors.
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of patients respond poorly to aspirin or exhibit aspirin
resistance [49]. It has been reported that genetic suscep-
tibility may be the key to aspirin sensitivity and that
genetic polymorphisms of HO-1 and COX-1 are associ-
ated with aspirin resistance defined by light transmit-
tance aggregation in Chinese Han patients [50].

Clopidogrel

Clopidogrel is a thienopyridine that irreversibly
inhibits the P2Y12 ADP receptors on the surface of pla-
telets (Fig. 37.4) [51]. Following oral absorption and
introduction into the blood circulation, 85% of the
drug is hydrolyzed into inactive metabolites by carbox-
ylesterases, mainly carboxyesterase 1 in the liver [52].
The remainder of the drug is biotransformed into an
active drug by two steps that involve CYP2C19,
CYP2B6, and others (including CYP1A2, CYP2C9,
CYP3A4/5, and PON1) [53�55]. The active metabolite
oxidizes cysteine residues and irreversibly blocks
platelet P2Y12 ADP receptors. Patients treated with
clopidogrel show interindividual variability in
response [56�61]. Common loss-of-function variants in
CYP2C19 represent the genetic determinants of clopi-
dogrel responsiveness. CYP2C19�2 (rs4244285) is the
most common loss-of-function variant with allele fre-
quencies of 29% in Asians, and 15% in Caucasians and
Africans. Other alleles (such as CYP2C19�2 and
CYP2C19�3) are rare. Patients harboring one CYP2C19
loss-of-function allele are considered intermediate

metabolizers and patients with two loss-of-function
alleles are considered poor metabolizers. Patients with
loss-of-function variants of CYP2C19 have lower
clopidogrel active metabolite concentrations [62�64],
greater on-treatment residual platelet function [65�68],
and poorer cardiovascular outcomes in percutaneous
coronary intervention patients on clopidogrel therapy
[62,68�72].

GENOMICS OF BLEEDING DISORDERS
AND PERSONALIZED MEDICINE IN

HEMOPHILIA CARE

The inherited bleeding disorders include coagula-
tion factor and platelet bleeding disorders and genetic
analysis for hemophilia A, hemophilia B, and von
Willebrand disease is routinely performed in most lab-
oratories [73�77]. Next-generation sequencing that
enables parallel sequencing of many genes regions at
once is becoming available in diagnostic laboratories
[78]. Replacement therapy of FVIII/FIX in hemophiliac
patients either having absence or functionally inactive
factors causes the development of allo-antibodies (inhi-
bitors) as a part of the immune response in the indi-
vidual patient. Understanding of why the inhibitors
develop in only 25�30% of patients and not in all is
not completely understood [79]. It is generally thought
that the immune response triggered is T-helper cell
mediated and that it involves the processing of
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FIGURE 37.4 Diagrammatic repre-
sentation of the platelet and the differ-
ent platelet receptors on its surface
and the sites of actions of different
antiplatelet drugs. This schematic
shows the platelet and various recep-
tors on its surface with the sites of
actions of different antiplatelet drugs
such as aspirin, NSAIDS, clopidogrel,
ticlopidine, and other GPIIb/IIIa
receptor antagonists such as tirofiban,
eptifibatide, and abciximab. Source:
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proteins by antigen-presenting cells and subsequent
association of these peptides to HLA molecules [80,81],
especially to HLA class II alleles such as
HLA-DRB1�14, DRB1�15, HLA-DQB1�06:02, and
DQB1�06:03. Genetic polymorphism immune-response
associated genes such as IL1b, IL4, IL10, TNFα, and
CTLA4 have been analyzed [81]. In the Hemophilia
Inhibitor Genetic study, new genes, such as CD44,
CSF1R, DOCK2, MAPK9, and IQGAP2, responsible for
inhibitor development have been identified [82].
However, DRB1�16 and DQB1�05:02 alleles had lower
inhibitor development risk [83�86].

Genotype-based individualized patient care for the
treatment of thrombotic and bleeding disorders is
expected to reduce the number of adverse drug�drug
interactions, and drug failure rates, besides providing
the right dosage to the right person thereby improving
the quality of life and reducing healthcare expenditure.
Next-generation DNA sequencing will enable parallel
sequencing of many genes at once for a defined panel
of coagulation and bleeding disorders.
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INTRODUCTION

Hepatitis C is a viral infection of the liver that ulti-
mately causes the liver to become swollen and inflam-
mation occurs. Hepatitis C virus (HCV) is an infectious
particle that causes cirrhosis and hepatocellular carci-
noma around the globe [1]. HCV infects an estimated
185 million individuals worldwide and up to 4.4 mil-
lion in the United States. HCV prevalence is approxi-
mately 5% in the general population and 57% in the
injecting drug use (IDU) population. Approximately
3% of the population of world is affected by HCV and
it is estimated that end-stage liver disease develops in
30% of these patients. The incidence of HCV infection
is elevated among IDU people. In 2010, an estimated
10 million IDU individuals were positive for HCV anti-
bodies and the global prevalence of HCV was 67%
among that population, especially for people who
inject drugs [2]. In several parts of the world, IDU has
become the most widespread risk factor for current
cases, particularly in the United States. Sexual trans-
mission of HCV does not appear to be so common, as
the studies proved its spread in less than 1% of cou-
ples yearly, among monogamous heterosexual part-
ners. Reinfection has been observed in 26% of patients
who had previously eliminated the initial infection.
Many researchers have demonstrated reinfection and
superinfection. Today, HCV mostly spreads through
sharing of syringes and needles. Transmission of infec-
tion from mother-to-child is more common among
patients with hepatitis B or HIV than those with hepa-
titis C, but it can occur in HCV-infected mothers none-
theless. This type of viral infection transference occurs
mostly in HCV viremic women. The most common
risk factor that becomes the cause of HCV transference
from mother-to-child is coinfection of HIV in mother

with HCV viremia detectable during pregnancy. This
transmission has not been found to be related to breast
feeding or type of delivery (whether Cesarean or vagi-
nal). HCV infection is a serious problem in centers
where hemodialysis is done. Hence, many steps are
taken by these centers to prevent HCV infection. These
preventative steps include: (1) HCV-infected patients
are grouped or isolated in separate rooms of dialysis
center, (2) adherence to infection-control rules has
been increased (eg, the screening for HCV at regular
intervals), (3) not to reuse the shared vials or syringes,
and (4) regularly vaccinating HCV-infected patients
for hepatitis A virus (HAV) and hepatitis B virus
(HBV) [3,4].

In the United States, HCV infection is the most com-
mon blood-borne infection. The best estimates of HCV
prevalence derive from analysis of serum specimens
taken from participants in the National Health and
Nutrition Examination Survey (NHANES). The first
estimate of HCV prevalence in the United States was
generated from NHANES conducted between 1988
and 1994 and it estimated 2.7 million persons had
chronic HCV. In a similar subsequent NHANES analy-
sis, which involved a survey conducted between 1999
and 2002, investigators estimated 3.2 million persons
had chronic hepatitis C, which corresponded to
approximately 1.3% of the population [4]. A recent
follow-up NHANES study that involved survey data
from 2003 to 2010 estimated 2.7 million persons are
chronically infected with HCV, corresponding to a
population prevalence of chronic hepatitis C of 1%.
However, these NHANES surveys did not sample
certain populations, including the incarcerated, home-
less, nursing home residents, persons on active mili-
tary duty, and immigrants. HCV prevalence is highest
among persons born from 1945 to 1965. Indeed, the
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CDC estimates that approximately 75% of all persons
living with HCV infection in the United States were
born between 1945 and 1965. The relatively high prev-
alence of HCV infection among persons born from
1945 to 1965 reflects the high HCV incidence (new
infections) that occurred among young adults in the
1970s and 1980s [4,5].

An estimated 40�85% of persons infected with HCV
are unaware of their HCV infection status. Persons with
HCV infection have all-cause mortality greater than twice
that of HCV-negative persons. In the United States, hepa-
titis C is the cause of death or contributing cause of death
in approximately 15,000 people per year. From 1997 to
2007, the number of annual deaths related to hepatitis C
increased substantially, and in 2007 the number of deaths
related to hepatitis C exceeded those related to HIV [6,7].
The number of hepatitis C related deaths is at least eight-
fold greater than those related to hepatitis B.
Investigators have identified factors associated with an
increased risk of death in persons with chronic hepatitis
C infection: chronic liver disease, coinfection with HBV,
alcohol-related conditions, minority status, and coinfec-
tion with HIV. Among the HCV-related deaths in recent
years, more than 70% have involved persons 45�64 years
of age. Overall, approximately 20% of persons infected
with HCV will develop cirrhosis after 20 years of infec-
tion if not treated, and this number increases as the dura-
tion of infection increases. Hepatitis C associated liver
disease is the number one indication for liver transplan-
tation and approximately one-third of all persons on liver
transplantation waiting lists have hepatitis C associated
liver disease. In addition, hepatitis C associated liver dis-
ease is the number one cause of hepatocellular carci-
noma, accounting for approximately 50% of cases of
hepatocellular carcinoma [7]. Modeling studies have pro-
jected a dismal future in the next 40�50 years related to
HCV-related disease burden. In general, these models
make forecasts based on current conditions of low rates
of screening and treatment and do not include a wide-
spread program of identifying and treating the large pro-
portion of undiagnosed HCV-infected individuals [8].
Factoring in treatment gives lower estimates of death.
Investigators predict that 1.76 million persons with
chronic HCV infection (if not treated) will develop cir-
rhosis during the next 40�50 years, with a peak preva-
lence of about 1 million in the mid-2020s. Several
research studies are being conducted for developing new
therapeutic and prophylactic vaccines for HCV [9,10].

HCV is a small, enveloped, positive-sense single-
stranded RNA virus that belongs to the genus
Hepacivirus and it is a member of the family
Flaviviridae [1]. The HCV particle consists of a core of
genetic material (RNA), surrounded by an icosahedral
protective shell of protein, and further encased in a
lipid bilayer envelope of cellular origin. Two viral

envelope glycoproteins, E1 and E2, are embedded in
the lipid envelope. HCV core genetic material has a
positive-sense single-stranded RNA genome (Fig. 38.1)
[1,11,12]. The genome consists of a single open reading
frame that is 9600 nucleotide bases in length. This
single open reading frame is translated to produce a
single protein product, which is then further processed
to produce smaller active proteins. At the 5ʹ and 3ʹ
ends of the RNA are the untranslated regions (or
UTRs), which are not translated into proteins but are
important to translation and replication of the viral
RNA. The 5ʹUTR has a ribosome-binding site that
starts the translation of a very long protein containing
about 3000 amino acids. The large pre-protein is later
cut by cellular and viral proteases into the 10 smaller
proteins that allow viral replication within the host cell
or assemble into the mature viral particles.
Structural proteins made by the HCV include core pro-
tein, E1, and E2, and nonstructural proteins include
NS2, NS3, NS4A, NS4B, NS5A, and NS5B. The pro-
teins of this virus are arranged along the genome in
the following order: N-terminal-core-envelope
(E1)�E2�p7-nonstructural protein 2 (NS2)�NS3
�NS4A�NS4B�NS5A�NS5B�C-terminal. The genera-
tion of mature nonstructural proteins (NS2 to NS5B)
relies on the activity of viral proteinases. The NS2-NS3
junction is cleaved by a metal-dependent autocatalytic
proteinase encoded within NS2 and the N-terminus of
NS3. The remaining cleavages downstream from this
site are catalyzed by a serine proteinase also contained
within the N-terminal region of NS3. NS2 protein is a
transmembrane protein with protease activity. NS3 is a
protein whose N-terminal has serine protease activity
and whose C-terminal has NTPase/helicase activity. It
is located within the endoplasmic reticulum and forms
a heterodimeric complex with NS4A—a membrane
protein that acts as a cofactor of the proteinase. NS4B
is a small hydrophobic integral membrane protein
with four transmembrane domains. NS5A is a hydro-
philic phosphoprotein which plays an important role
in viral replication, modulation of cell signaling path-
ways, and the interferon response. The NS5B protein is
the viral RNA dependent RNA polymerase. NS5B has
the key function of replicating the HCV’s viral RNA
by using the viral-positive RNA strand as its template
and catalyzes the polymerization of ribonucleoside tri-
phosphates (rNTP) during RNA replication synthesis.
HCV encodes two proteases, the NS2 cysteine auto
protease and the NS3�4A serine protease. The NS pro-
teins recruit the viral genome into an RNA replication
complex, which is associated with rearranged cyto-
plasmic membranes. RNA replication takes places via
the viral RNA dependent RNA polymerase NS5B,
which produces a negative-strand RNA intermediate.
The negative-strand RNA then serves as a template for
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the production of new positive-strand viral genomes.
HCV replicates mainly in the hepatocytes of the liver,
where it is estimated that daily each infected cell pro-
duces approximately 50 virions with a calculated total
of 1 trillion virions generated [13,14]. The virus may
also replicate in peripheral blood mononuclear cells,
potentially accounting for the high levels of immuno-
logical disorders found in patients chronically infected
with HCV. Once inside the hepatocyte, HCV takes
over portions of the intracellular machinery to repli-
cate. Nascent genomes can then be translated, further
replicated, or packaged within new virus particles.
New virus particles are thought to bud into the secre-
tory pathway and are released at the cell surface
[14�19].

Based on genetic differences between HCV isolates,
the HCV species is classified into seven genotypes
(numbered 1�7) with several subtypes within each
genotype (represented by lower-case letters) [18,20].
Subtypes are further broken down into quasispecies
based on their genetic diversity. Genotypes differ at
30�35% of the nucleotide sites over the complete
genome. The difference in genomic composition of
subtypes of a genotype is usually 20�25%. HCV has a
wide variety of genotypes and mutates rapidly due to
the high error rate on the part of the virus’ RNA-
dependent RNA polymerase. The mutation rate pro-
duces so many variants of the virus it is considered a

quasispecies rather than a conventional virus species.
HCV 1a and 1b are the most prevalent HCV genotypes
in Western Europe and the United States and these
genotypes account for 60% of all HCV cases. HCV gen-
otypes 2 and 3 are less prevalent. HCV genotype 4 is
widespread in Egypt, genotype 5 is common in South
Africa, and genotype 6 is found in Southeast Asia. In
patients from Canada and Belgium, another seventh
genotype has also been identified. In the United States,
approximately 70% of chronic HCV infections are
caused by genotype 1, 15�20% by genotype 2, 10�12%
by genotype 3, 1% by genotype 4, and less than 1% by
genotypes 5 and 6. Among the HCV infections associ-
ated with genotype 1, approximately 55% correspond
to genotype 1a and 35% to genotype 1b [18�20].

HCVANTIVIRALTREATMENTS

Treatment of HCV Using Indirect-Acting
Antivirals

Until 2011, the standard of care treatment for
chronic HCV was the combination of weekly pegylated
interferon alpha (INF) and daily doses of Ribavirin
(RBV) in a 24- or 48-week course (Table 38.1) [20,21].
INF and RBV dual therapy is associated with several
important side effects, including anemia, depression,

Hepatitis C virus

5’ UTR 3’ UTR

9.6 Kb

C E1 E2 NS1 NS2 NS3 NS4A NS4B NS5A NS5B

p56/58P22 gp35 gp70 p7 p23 p70 p8 p27 p68

Nucleocapsid

Envelope
glycoproteins

Transmembrane
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Protease
RNA helicase
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resistant protein

RNA polymerase

Nonstructural proteinsStructural proteins

FIGURE 38.1 Translation and processing of the HCV polyprotein. The HCV polyprotein is processed cotranslationally and posttranslation-
ally by host and viral proteases into at least 10 different proteins, which are arranged in the order of NH2�C-
E1�E2�p7�NS2�NS3�NS4A�NS4B�NS5A�NS5B-COOH. Host signal peptidase is required for the cleavages at C-E1, E1�E2, E2�p7, and
p7�NS2 junctions. NS2 cleaves the site between NS2 and NS3. NS3-4A serine protease cleaves the sites at NS3�NS4A, NS4A�NS4B,
NS4B�NS5A, and NS5A�NS5B junctions. The wavy lines mark the UTR of HCV genomic RNA while the rectangle represents the polyprotein
derived from the long open reading frame.
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TABLE 38.1 HCV Therapies

Brand name Generic name Activity Status Pharmaceutical company

PEGYLATED INTERFERON ALPHA

PegIntron Peginterferon alfa-2b All HCV genotypes Approved Merck

Pagasys Peginterferon alfa-2a All HCV genotypes Approved Genentech

NUCLEOSIDE ANALOG

Copegus, Rebetol,
Ribasphere, and Virazole

Ribavirin All HCV genotypes Approved Genentech, Merck,
Kadmon

NS3/4A PROTEASE INHIBITORS

Incivek Telaprevir HCV genotypes 1a and 1b Approved (to be
discontinued as of
10/16/2014)

Vertex

Victrelis Boceprevir HCV genotypes 1a and 1b Approved Merck

Olysio Simeprevir (TMC435) HCV genotypes 1a and 1b Approved Janssen and Medivir AB

Sunvepra Asunaprevir
(BMS-650032)

HCV genotypes 1a and 1b Phase III (not pursuing
approval in the United
States)

Bristol-Myers Squibb

n/a Vaniprevir (MK-7009) HCV genotypes 1a and 1b Phase III Merck

n/a ABT-450 HCV genotypes 1a and 1b Phase III AbbVie

n/a MK-5172 HCV genotypes 1a and 1b Phase III Merck

NUCLEOSIDE AND NUCLEOTIDE NS5B POLYMERASE INHIBITORS

Sovaldi Sofosbuvir (GS-7977) All HCV genotypes Approved Gilead Sciences

n/a Mericitabine (RG-7128) All HCV genotypes Phase III Roche

NS5A INHIBITORS

Daklinza Daclatasvir (BM-790052) All HCV genotypes Phase III (submitted to
FDA 4/7/2014)

Bristol-Myers Squibb

n/a Ledipasvir (GS-5885) All HCV genotypes Phase III Gilead Sciences

n/a Ombitasvir (ABT-267) All HCV genotypes Phase III AbbVie

n/a GS-5816 All HCV genotypes Phase III Gilead Sciences

n/a Elbasvir (MK-8742) All HCV genotypes Phase III Merck

NON-NUCLEOSIDE NS5B POLYMERASE INHIBITORS

Exviera Dasabuvir (ABT-333) HCV genotypes 1a and 1b Phase III (submitted to
FDA 4/2/2014)

AbbVie

n/a Beclabuvir (BMS-791325) HCV genotypes 1a and 1b Phase III Bristol-Myers Squibb

n/a ABT-072 HCV genotypes 1a and 1b Phase II AbbVie

MULTICLASS COMBINATION DRUGS

Viekirax Ombitasvir (ABT-267)1
Paritavir (ABT-450)
1Ritonavir

Phase III (submitted to
FDA 4/21/2014)

AbbVie

n/a Asunaprevir 1Daclatasvir
1 BMS-791325

Phase III Bristol-Myers Squib

Harvoni Sofosbuvir1Ledipasvir
(GS-79771 GS-5885)

Approved Gilead Sciences

n/a Grazoprevir (ML-8742)1
Elbasvir (MK-5172)

Phase III Merck
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and nausea, which can lead to discontinuation of ther-
apy. Cure of chronic HCV infection is tantamount to
the sustained virologic response (SVR), which is
defined as undetectable HCV RNA in the blood at the
end of treatment and again 6 months later [22]. HCV
RNA viral load measurement at baseline, weeks 4, 12,
and 24, at the end of treatment, and 24 weeks after
treatment withdrawal are used to characterize the viro-
logical response: (1) the rapid virologic response (RVR)
is defined as undetectable HCV viral load at week 4,
(2) early virologic response (EVR) is defined as HCV
viral load detectable at 4 weeks, but undetectable at
week 12, and (3) the slow or delayed virologic
response (DVR) is defined as detectable at week 12,
but undetectable after week 24 of therapy. Patients
who show a RVR and a low baseline HCV RNA viral
load need 24 weeks of therapy, patients who achieved
an EVR require 48 weeks of treatment, whereas
patients with DVR appear to benefit from extending
treatment to 72 weeks. Patients with less than a 2 log
decline in HCV viral load level at week 12 are unlikely
to experience an SVR and could be taken off therapy.
SVR rates vary among individuals infected with differ-
ent HCV genotypes. SVR rates of 70�90% are observed
in patients infected with HCV genotypes 2, 3, 5, and 6,
but with SVR rates of less than 50% for genotypes 1
and 4 [21,22].

Treatment of HCV Using Direct-Acting
Antivirals

Major advances in the understanding of the molecu-
lar virology of HCV came with the development of
genotype 1 subgenomic and genomic replicon system
and the identification of the genotype 2a JFH1 clone
that leads to productive infection in cell culture after
transfection. With these new model systems and the
resolution of the three-dimensional structure of key
HCV enzymes, the steps of the HCV life cycle were
unraveled, identifying multiple targets for drug devel-
opment. The development of HCV direct antiviral
agents (DAAs) has occurred extremely rapidly, mov-
ing from approval of the first-wave, first-generation
protease inhibitors that were combined with INF and
RBV, to oral single tablet DAA combinations in less
than 4 years (Table 38.1) [23�25]. Despite the dramatic
success of DAA development, there were challenges
along the way. The two first-wave, first-generation
HCV NS3�4A protease inhibitors, Telaprevir (TVR)
and Boceprevir (BOC), were approved in combination
with INF and RBV for the treatment of chronic HCV
genotype 1 in 2011 [26,27]. These two drugs are linear
ketoamine inhibitors, which form a reversible but
covalent complex with the HCV NS3-4A serine

protease catalytic site and block posttranslational pro-
cessing of the viral polyprotein. Adding one or two
NS3-4A inhibitors to dual INF plus RBV therapy
increased SVR to 75% in treatment naı̈ve and to 64%
for previous nonresponders to INF�RBV dual therapy.
Initial treatment regimens were complicated and
proved less effective and more toxic in the real world
than in clinical trials. Multiple promising agents were
abandoned for toxicity, including fatal complications
in a small number of patients. Due to these issues TVR
was discontinued in October 2014 and BOC was dis-
continued in December 2015 [26�29].

Viral polymerases are prime targets for the develop-
ment of antiviral drugs since their enzymatic sites are
highly conserved between different genotypes. In addi-
tion, mutations in the active site of the viral poly-
merases are rarely well tolerated, because they are
often associated with reduced viral replication. In
2014, the marketing and approval of the first nucleo-
tide NS5B polymerase inhibitor Sofosbuvir represented
a major milestone in the treatment of chronic hepatitis
C [30]. Considered safe and well tolerated with pan-
genotypic activity and a high barrier for resistance, the
once daily in combination with INF and RBV dual
therapy for 12 weeks improved SVR rates to 82�100%
in treatment-naı̈ve patients infected with HCV geno-
types 1, 4, 5, and 6. The overall SVR was 92% in
patients without cirrhosis versus 80% SVR in those
with cirrhosis. Furthermore, phase II clinical trials in
treatment-experienced patients showed SVR of 96%
and 83% in patients infected with HCV genotype 2 or
3, respectively. The triple combination INF, RBV, and
the second wave, first-generation NS3-4A protease
inhibitor Simeprevir was also approved in 2014 for
patients infected with HCV genotype 1 or 4 [28,29].

A further step forward toward the next generation
of HCV treatment represented the first DAA-only regi-
mens (Table 38.1). Daclastasvir and Lepdipasvir are
inhibitors of the HCV NS5A protein, which play an
important role in the viral replication and assembly
[31�34]. These NS5A inhibitors bind the domain 1 of
the NS5A protein and block its ability to regulate repli-
cation within the replication complex. In addition,
NS5A inhibitors inhibit assembly and release of viral
particles. Some of these NS5A inhibitors have pan-
genotypic activity whereas others are poorly active
against genotype 3. Second-generation NS5A inhibitors
have pan-genotypic activity [30,31].

Combinations of agents targeting different stages of
the life cycle have proven highly effective. INF-sparing
regimens will probably be completely replaced in 2015
by INF-free regimens with improved efficacy and toler-
ability for both previously untreated patients and pre-
viously INF nonresponder patients [34,35]. These
regimens comprise the following: (1) a protease
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inhibitor or an NS5A inhibitor plus a nucleoside NS5B
inhibitor, with or without RBV; (2) a protease inhibitor,
an NS5A inhibitor, and an NS5B non-nucleoside inhibi-
tor, with or without RBV; or (3) a protease inhibitor and
NS5A inhibitor, with or without RBV. Two new INF-
free DAA-based combinations were approved in late
2014/early 2015 in the United States and Europe. The
combination pill of Sofosbuvir and Ledipasvir adminis-
tered daily, with or without RBV according to severity
of liver disease, is approved for HCV genotypes 1 in
the United States, and HCV genotypes 1, 3, and 4 in
Europe. The triple combination of Ritonavir-boosted
Paritaprevir and Ombitasvir in a single pill plus
Dasabuvir in another pill with or without RBV accord-
ing to HCV subtype and the presence of cirrhosis were
approved for HCV genotype 1 early this year [32�37].

WHEN AND IN WHOM TO INITIATE
HCV TREATMENT

The goal of treatment of HCV-infected individuals is
to reduce all-cause mortality and liver-related health
adverse consequences, including end-stage liver
disease and hepatocellular carcinoma, by achieving an
SVR to treatment [22]. Successful HCV treatment
results in SVR, which is tantamount to virologic cure,
and as such, is expected to benefit nearly all chronically
infected persons [29,32,36,37]. The proximate goal of
HCV therapy is SVR, defined as the continued absence
of detectable HCV RNA at least 12 weeks after comple-
tion of therapy. SVR is a marker for cure of HCV infec-
tion and has been shown to be durable in large
prospective studies in more than 99% of patients fol-
lowed up for 5 years or more. In other words, SVR is
achieved in patients who have HCV antibodies, but no
longer detectable HCV RNA in circulation, liver tissue,
or mononuclear cells, and achieve a substantial
improvement in liver histology. Assessment of viral
response, including documented SVR, requires specific
nucleic acid based test (NAT) such as those approved
by the Food and Drug Administration (FDA) or FDA
qualitative or quantitative NAT with detection levels of
25 IU/mL or lower. Evidence clearly supports treat-
ment in all HCV-infected individuals, except those
with limited life expectancy (,12 months) due to non-
liver related comorbidity. Urgent initiation of treatment
is only recommended for those patients with advanced
fibrosis or compensated fibrosis [22,33,35,37,38].

Immediate treatment is recommended for patients
with chronic HCV infection with advanced fibrosis
(Metavir F3), those with compensated cirrhosis
(Metavir F4), liver transplants recipients, and patients
with severe extrahepatic HCV, such as type 2 and type
3 essential mixed cryoglobulinemia with end-organ

manifestations, proteinuria, nephritic syndrome, or
membranoproliferative glomerulonephritis [38].
Treatment should be considered for patients with
fibrosis (Metavir F2), HIV-1 infection, HBV coinfection,
other coexisting liver disease (eg, NASH), debilitating
fatigue, type 2 diabetes mellitus, and porphyria cuta-
nea tarda [38,39]. A third group that should be consid-
ered for treatment includes individuals who pose
elevated risk of HCV transmission and in whom treat-
ment may yield transmission reduction benefits. This
population includes men who have sex with men with
high-risk sexual practices, active injection users, incar-
cerated individuals, persons on long-term hemodialy-
sis, HCV-infected women of child-bearing potential
wishing to get pregnant, and HCV-infected healthcare
workers who perform exposure-prone procedures [37].

An accurate assessment of fibrosis is critical in asses-
sing the urgency for treatment [38]. The degree of
hepatic fibrosis is one of the most robust prognostic
factors used to predict disease progression and clinical
outcomes. Those with substantial fibrosis defined at
Metavir F2 or higher should be given priority for
therapy in an effort to decrease the risk of clinical conse-
quences such as cirrhosis, liver failure, and hepatocellu-
lar cancer. Although liver biopsy is the diagnostic
standard, sampling error and observer variability limit
test performance. Noninvasive tests to stage the degree
of fibrosis in patients with HCV infection include mod-
els incorporating indirect serum biomarkers and vibra-
tion controlled transient liver elastography. No single
method is recognized to have high accuracy alone and
each test must be interpreted carefully [38,39].

When therapy is deferred, it is very important to
monitor liver disease in these patients. Among indivi-
duals with less advanced stages of fibrosis, fibrosis
progression over time will help determine the urgency
of subsequent antiviral therapy. Fibrosis progression
varies markedly between individuals based on host,
environmental, and viral factors. Host factors associated
with more rapid fibrosis progression include male sex,
longer duration of infection, and an older age at the
time of infection. Many hepatitis C patients have con-
comitant nonalcoholic fatty liver disease, the presence
of hepatic stenosis with or without steatohepatitis on
liver biopsy, as well as elevated body mass index and
insulin resistance. Chronic alcohol consumption is an
important risk factor because alcohol consumption has
been associated with more rapid fibrosis progression
[38,39]. The level of virus in serum or plasma is not
highly correlated with the stage of disease (degree of
inflammation or fibrosis). Available data suggest that
fibrosis progression occurs most rapidly in patients
with genotype 3 HCV infection. Aside from coinfections
with HBV or HIV, no other viral factors are consistently
associated with disease progression [38].
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Patients who are cured of their HCV infection expe-
rience numerous health benefits, including decreased
liver inflammation as reflected by improved liver
function and a reduction in the rate of progression
of liver fibrosis. In addition, these patients have
decreased symptoms for severe extrahepatic manifesta-
tions including cryoglobulinemic vasculitis, a condi-
tion affecting 10�15% of HCV-infected patients [38].

INITIALTREATMENT OF HCV
INFECTION

HCV Genotype 1

Three highly potent direct-acting antiviral or DAA
oral combination regimens are recommended for HCV
genotype 1 infected individuals, although there are dif-
ferences in the recommended regimens based on the
HCV subtype [39]. Patients with HCV genotype 1a
tend to have higher relapse rates than patients with
genotype 1b with certain regimens. Genotype 1 HCV
infection that cannot be subtyped should be treated as
a genotype 1a infection [38,40�58].

For HCV genotype 1a infected, treatment-naı̈ve
patients or patients who do not have cirrhosis, or in
whom prior INF and RBV treatment has failed,
there are three regimens of comparable efficacy: (1)
daily fixed-dose combination of Ledipasvir/Sofosbuvir
for 12 weeks, (2) daily fixed-dose combination of
Paritaprevir/Ritonavir/Ombitasvir plus twice daily
dose Dasabuvir and weight-based RBV for 12 weeks
for patients without cirrhosis or 24 weeks for
patients with cirrhosis, and (3) daily Sofosbuvir plus
Simeprevir with or without weight-based RBV for 12
weeks for patients without cirrhosis or 24 weeks for
patients with cirrhosis. More importantly, the safety
profiles of all the recommended regimens listed are
excellent. Across numerous phase III trials, less than
1% of patients without cirrhosis discontinued treat-
ment early and adverse events were mild. Most
adverse events occurred in RBV-containing arms.
Discontinuation rates were higher for patients with cir-
rhosis [40�47].

For genotype 1b infected, treatment-naı̈ve patients
and patients who do not have cirrhosis, in whom prior
INF/RBV treatment has failed, there are three regi-
mens of comparable efficacy: (1) daily fixed combina-
tion of Ledipasvir for 12 weeks, (2) daily fixed-dose
combination of Paritaprevir/Ritonavir/Ombitasvir
plus twice daily dosed Dasabuvir for 12 weeks (the
addition of weight-based RBV is recommended), and
(3) daily Sofosbuvir plus Simeprevir for 12 weeks for
patients without cirrhosis or 24 weeks for patients
with cirrhosis. For patients with prior treatment failure

the addition or not of weight-based RBV is an option.
Also discontinuation rates were higher for patients
with cirrhosis [40�45].

Although regimens of Sofosbuvir and RBV or INF
and RBV plus Sofosbuvir, Simeprevir, TVR, or BOC
for 12�18 weeks (some using response-guided therapy
(RGT)) are also FDA approved, they are inferior to the
current recommended regimens. Most of the IFN-
containing regimens are associated with higher rates of
serious side adverse events (eg, anemia and rash), lon-
ger treatment duration, high pill burden, numerous
drug�drug interactions, more frequent dosing, and
higher intensity of monitoring for continuation and
stopping of therapy, and the requirements to be taken
with food or with high fats meals. Although clinical
trials for Sofosbuvir reported the highest SVR rate of
89% for an INF-containing regimen in combination
with INF and weight-based RBV in HCV genotype 1
infection and limited exposure to INF to just 12 weeks,
the safety and tolerability profile limits its usefulness
in the setting of FDA-approved, highly efficacious oral
DAA combinations. INF and RBV for 48 weeks for
treatment-naı̈ve patients with HCV genotype 1 has
been replaced by treatments incorporating DAA [38].

Recommendations for patients infected with HCV
genotype 1a or genotype 1b with compensated cirrho-
sis, in whom prior INF and RBV treatment has failed
are: (1) daily fixed-dose combination of Ledipasvir/
Sofosbuvir for 24 weeks, (2) daily fixed dose of
Ledipasvir/Sofosbuvir plus weight-based RBV for 12
weeks, (3) daily fixed dose of Paritaprevir/Ritonavir/
Ombitasvir plus twice daily dosed Dasabuvir and
weight-based RBV for 24 weeks for HCV genotype 1a
and 12 weeks for HCV genotype 1b, and (4) daily
Sofosbuvir plus Simeprevir with or without weight-
based RBV for 24 weeks [40�45].

Recommended treatment for patients without cirrho-
sis who have HCV genotype 1 infection, regardless of
subtype, in whom a prior INF, RBV, and HCV protease
inhibitor regimen has failed is daily dose of Ledipasvir/
Sofosbuvir for 12 weeks. In addition, there are two
options of similar efficacy for patients with cirrhosis
regardless of subtype, in whom INF and RBV, and
HCV protease inhibitor regimens have failed. Daily
fixed-dose of Ledipasvir/Sofosbuvir for 24 weeks or
daily fixed-dose combination of Ledipasvir/Sofosbuvir
plus weight-based RBV for 12 weeks [44,45].

HCV Genotype 2

The recommended treatment regimen for treatment-
naı̈ve patients or patients in whom prior INF and RBV
treatment has failed with HCV genotype 2 infection is
daily Sofosbuvir and weight-based RBV for 12 weeks,
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and extending to 16 weeks for patients with cirrhosis.
Although there are no other alternative regimens listed
for patients infected for HCV genotype 2, several avail-
able DAA have activity in vitro and in vivo against
HCV genotype 2. Simeprevir has moderate potency
against HCV genotype 2 but has not formally been
tested in combination with Sofosbuvir [38,40,48,49].

Because of its poor activity in vitro and in vivo, BOC
should not be used as therapy for patients with HCV
genotype 2 infection. Although TVR plus INF/RBV has
antiviral activity against HCV genotype 2, additional
adverse effects and longer duration of therapy required
do not support use of these regimens [40].

HCV Genotype 3

For individuals with HCV genotype 3 infection, the
recommended regimen for treatment-naı̈ve patients
and patients in whom prior INF/RBV treatment has
failed is daily Sofosbuvir and weight-based RBV for 24
weeks. The alternative regimen for treatment is daily
Sofosbuvir and weight-based RBV plus INF treatment
for 12 weeks. The combination of Sofosbuvir plus INF
and RBV was evaluated in several clinical trials.
Treatment-naı̈ve patients infected with HCV genotype
3 achieved SVR during 4�12 weeks of therapy and
RBV. For many patients, the adverse events and
increased monitoring requirements of INF make the
recommended regimen of Sofosbuvir plus weight-
based RBV less desirable. However, the shortened
period of treatment may be of interest to some. Due to
limited in vitro and in vivo activity against HCV geno-
type 3, BOC, TVR, and Simeprivir should not be used
as therapy for patients with HCV genotype 3 infection.
The same is true for regimens including INF and RBV
for 24�48 weeks, or monotherapy with INF/RBV, or a
DAA [40,50�52].

HCV Genotype 4

There are three recommended therapeutic options
with similar efficacy for treatment-naı̈ve HCV geno-
type 4 infected patients and patients in whom prior
INF and RBV treatment has failed: (1) daily fixed-dose
combination of Ledipasvir plus Sofosbuvir for 12
weeks, (2) daily fixed-dose combination of Paritaprevir
and Ritonavir plus Ombitasvir and weight-based RBV
for 12 weeks, and (3) daily Sofosbuvir and weight-
based RBV for 24 weeks. Alternative treatment regi-
mens for HCV genotype 4 include daily Sofosbuvir
and weight-based RBV plus weekly INF for 12 weeks
or daily Sofosbuvir plus Simeprevir with or without
weight-based RBV for 12 weeks. An additional recom-
mendation for patients in whom prior INF/RBV

treatment has failed is daily Sofosbuvir and weight-
based RBV for 24 weeks. The following therapies are
not recommended for HCV genotype 4: INF with or
without Simeprevir for 24 or 48 weeks, monotherapy
with INF, RBV, or a DAA, or TVR or BOC-based regi-
mens [39].

HCV Genotypes 5 and 6

There is limited data available to help guide deci-
sion making for patients infected with HCV genotype
5 or genotype 6. Nonetheless, for these patients for
whom immediate treatment is required, the following
has been recommended: daily Sofosbuvir and weight-
based RBV plus weekly INF for 12 weeks for treat-
ment-naı̈ve patients as well as patients in whom INF
and RBV treatment has failed. An alternative treatment
for HCV genotype 5 infection is weekly INF plus
weight-based RBV for 48 weeks. Recommended treat-
ment for treatment-naı̈ve HCV genotype 6 infected
patients is daily fixed-dose combination of Ledipasvir
or 12 weeks or daily Sofosbuvir and weight-based RBV
plus weekly INF for 12 weeks. It is not recommended
for patients infected with either HCV genotype 5 or
genotype 6 to utilize monotherapy with INF, RBV, or a
DAA, TVR, or BOC-based regimens [39].

MONITORING PATIENTS WHO ARE
STARTING HCV TREATMENT, ARE

ON TREATMENT, OR HAVE
COMPLETED TREATMENT

This section provides guidance on monitoring
patients with chronic HCV who are starting treatment,
are on treatment, or have completed treatment and
addressees pretreatment and ongoing treatment moni-
toring, and posttreatment follow-up for persons in
whom treatment has failed to clear the virus, and post-
treatment follow-up for those who achieved SVR (viro-
logic cure) [22,39].

Pretreatment testing assumes that a decision to treat
with antiviral medications has been reached and that
testing involved in deciding to treat, including testing
for HCV genotype and assessment of hepatic fibrosis
has already been completed. These tests will determine
the best option and regimen for treatment. It is recom-
mended that 12 weeks prior to initiation of treatment
patients have a complete blood count, international
normalized ratio (or INR), liver function panel,
thyroid-stimulating hormone (if INF is used), and
calculated glomerular filtration rate (or GFR). In addi-
tion, testing for HCV genotype and subtype and quan-
titative HCV viral load should be done.
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During treatment individuals should be followed
up at clinically appropriate intervals to ensure medica-
tion adherence, assess adverse events and potential
drug�drug interactions, and monitor blood test results
necessary to assure patient safety. The assessment of
HCV viral load at week 4 of therapy is useful to deter-
mine initial dose response to therapy and adherence.
In phase III clinical trials, almost all patients who did
not have cirrhosis had undetectable HCV RNA levels
at week 4, those with cirrhosis may require more than
4 weeks of treatment before HCV RNA levels become
undetectable. There is not a lot of data on how to use
HCV RNA levels during therapy to determine when to
stop treatment for futility. The current recommenda-
tions to repeat quantitative HCV RNA levels at week 4
of treatment and to discontinue treatment if quantita-
tive HCV RNA levels increase by more than 10-fold
(. 1 log10 IU/mL) is based on expert opinion. There
are no data to support stopping treatment based on
detectable HCV RNA results at week 2, 3, or 4 of ther-
apy, or that detectable HCV RNA level at these time
point signifies medication nonadherence. Although
HCV RNA testing is recommended at week 4 of treat-
ment, the absence of HCV RNA at week 4 does not
provide justification reason to discontinue therapy. If
quantitative HCV viral load is detectable at week 4 of
treatment, repeat quantitative HCV RNA viral load
testing is recommended after two additional weeks of
therapy (treatment week 6). If quantitative HCV viral
load has increased by greater than 10-fold on repeat
testing at week 6 or thereafter, then discontinuation of
HCV treatment is recommended. The significance of
HCV RNA test results at week 4 that remains positive
but lower at week 6 or week 8 is unknown. No
recommendations to stop therapy or extend therapy
are available at this time. Quantitative HCV RNA
level testing at the end of treatment will help differen-
tiate viral breakthrough from relapse, if necessary.
Quantitative HCV viral load testing can be considered
at the end of treatment or 24 weeks or longer follow-
ing the completion of therapy. Some may choose to
forgo end of treatment viral load testing given the
high rate of viral response with the newer treatments
and focus on the week 12 posttreatment viral load.
Virologic relapse is rare at 12 or more weeks after
completing treatment. Nevertheless, repeat quantita-
tive HCV RNA testing can be considered at 24 or
more weeks after discontinuing treatment for selected
patients [22,39].

The availability of INF-free treatment has simplified
HCV therapy by allowing shorter duration oral ther-
apy for most patients. However, INF and RBV-based
regimens are beneficial for selected patients, and these
require specific monitoring for toxic effects associated
with this type of therapy.

Patients who do not achieve an SVR, because of fail-
ure of the treatment to clear or to maintain clearance
of HCV infection with relapse after treatment comple-
tion, have ongoing HCV infection and the possibility
of continued liver injury and transmission. Such
patients should be monitored for progressive liver dis-
ease and considered for retreatment when alternative
treatments are available. Patients who have
undetectable HCV RNA in the serum, when assessed
by a sensitive PCR assay, 12 or more weeks after com-
pletion of treatment, are deemed to have achieved
SVR. In these patients, HCV-related liver injury stops,
although the patients remain at risk for non-HCV
related liver disease or alcoholic liver disease. Patients
with cirrhosis remain at risk for developing hepatocel-
lular carcinoma [22].

HCV RNA Results and Interpretations

Definitions and descriptions of the terms used to
describe HCV RNA viral load level are provided in
Table 38.2. Major improvements to quantitative HCV
viral assays have been developed recently (Table 38.3).
It is important to note that if HCV RNA is detected by
a PCR test (and lower than the linear range of the test),
the result is reported by the software as “HCV RNA
detected, less than the lower limit of quantitation
(LLOQ)” even if the actual viral load titer is below the
sensitivity or limit of detection (LOD) of the test. Being
able to detect RNA, even below the LOD may seem
counterintuitive since it is typically presumed that if
the actual HCV RNA titer is below the LOD then there
is nothing to detect. However, the LOD is defined and
calculated by the ability of the assay to detect HCV
RNA greater than or equal to 95%. This means that
even at HCV RNA titers that are half the LOD, the
PCR amplification may still detect HCV RNA

TABLE 38.2 Definitions of Key Analytical Performance Terms
Used in Defining HCV RNA VL Titer Measurements

Result Definition

Target not
detected

HCV RNA is not detected, no PCR
amplification or detection

LLOQ Lowest limit of
quantification

Lowest HCV RNA titer within the
test’s dynamic range that is
quantifiable and accurate

LLOD Lowest limit of
detection

Lowest amount of HCV RNA in a
sample that can be detected greater
than or equal to 95% of times

ULOQ Upper limit of
quantification

Highest HCV RNA titer result within
the test’s dynamic range that is
quantifiable and accurate
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approximately 50% of the time, in which case, the
result will be reported as “HCV RNA detected, below
the LLOQ” if the RNA is detected [22,47,59].

Viral Kinetics and RGT

In patients treated with INF and RBV, the best pre-
dictor of an SVR was shown to be a rapid on-treatment
HCV RNA decline to undetectable levels early in ther-
apy. To this end, a RVR or an undetectable (eg,
,50 IU/mL) by 4 weeks of INF and RBV has been used
to determine eligibility for shortening therapy (eg, 24
weeks vs 48 weeks for HCV genotype 1 infection). Each
real-time assay has its own linear range, with an upper
and lower limit of detection (LLOD), but the terminol-
ogy used to interpret results is the same. It is possible to
define (1) LLOQ—the lowest value of HCV RNA that is
possible to accurately quantify, HCV RNA is
detectable and quantifiable; (2) LOD—the lower
amount of HCV RNA that can be detected always or
LLOD; (3) HCV RNA that is detectable but not quantifi-
able, the interpretation is the same as LOD; and (4) tar-
get not detected (TND)—no HCV RNA amplification,
HCV RNA is undetectable or not detected [59�61].
Timing of sample collection is also assessed by guide-
lines, depending on the specific futility rules of each
drug, as otherwise happens for SOC. However, HCV
RNA kinetics induced by DAA treatments exhibits a
different trend in comparison to that observed with
IFN/RBV bi-phasic therapies.

New Definitions for an Undetectable HCV
RNAViral Load

While the goal of treating chronic HCV patients is
to eradicate the infection as measured by an undetect-
able HCV RNA result, the concept of undetectable
HCV levels has evolved alongside the treatment

algorithm. For INF/RBV therapy, an undetectable
result is any result that is less than 50 IU/mL. In
contrast, for INF 1 BOC or TVR regimens, the term
undetectable is defined as a target not detected result,
that was required for patients to be eligible for shorten
therapy, but for SVR assessments, a less than
25 IU/mL HCV RNA detected was acceptable. For the
recently approved regimens containing Simeprevir, a
stopping rule cutoff of 25 IU/mL is used at 4, 12, or 24
weeks in which all therapies are discontinued if HCV
RNA results are above this cutoff. For Sofosbuvir, HCV
RNA testing is only recommended following treatment
of a fixed duration and to assess SVR. Both regimens use
less than 25 IU/mL HCV RNA detected for defining
undetectable. Given that the trials used a test with a
LLOQ of 25 IU/mL, differences in a test LLOQ are
important. These are practical considerations that might
cause uncertainty for healthcare providers [59�62].

Under some circumstances, a target not detected
result can be used to shorten therapy. With the intro-
duction of BOC and TVR, new RGT rules were intro-
duced which lead to considerable confusion in the
terms used to define undetectable and when to apply
this interpretation. These rules were assessed on a
reanalysis of the BOC and TVR trails data that was pub-
lished by the FDA where it was concluded that a “HCV
RNA detectable, less than LLOQ” result predicted a sig-
nificantly lower cure rate compared with subjects with
an undetectable “target not detected” result. Based on
this analysis, it was determined that a confirmed
“detectable but below LLOQ” HCV RNA result should
not be considered equivalent to an undetectable HCV
RNA result (target not detected) for the purpose of RGT
[59]. Therefore, the target not detected result at 4 and 12
weeks of INF/RBV/TVR therapy was required to
shorten therapy (48 weeks to 24 or 36 weeks of INF and
RBV). To further add complexity, stopping rules are
also different for BOC and TVR regimens [61,63].

TABLE 38.3 Quantitative Real Time Assays for HCV

Assay Vendor

Technology

(target region) IVD status

Dynamic range

(IU/mL)

LLOQ

(IU/mL)

LLOD

(IU/mL)

COBAS Ampliprep/COBAS
TaqMan v 2.0

Roche Molecular
Systems

Real-Time PCR
(5ʹUTR)

FDA, CE 15�1.00 3 108 15 15

COBAS TaqMan High Pure
System Test, v 2.0

Roche Molecular
Systems

Real-Time PCR
(5ʹUTR)

FDA, CE 25�3.91 3 108 25 20

Abbott Real Time HCV test Abbott Diagnostics Real-Time PCR
(5ʹUTR)

FDA, CE 12�1.00 3 108 12 12

Versant HCV RNA test,
v 1.0 (kPCR)

Siemens Real-Time PCR
(pol gene)

CE 15�1.00 3 108 15 15

Artus Hepatitis C Test
(QS-RGQ)

Qiagen Real-Time PCR
(target proprietary)

CE 65�1.00 3 106 35 21
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Although all commonly used HCV RNA assays
report results in a standardized IU/mL, not all tests
have the same performance characteristics. Several
reports have demonstrated differences between how
assays report results, particularly in detecting low
amounts of HCV RNA. Concordance analysis in these
studies have shown that HCV RNA differences in
reporting results that are “target not detected” versus
“HCV RNA detected, less than LLOQ” have become
apparent. This is particularly true for a study that
examined the results generated from HPS TaqMan
HCV Test version 2.0 as part of the phase III clinical
trial with Simeprevir plus INF/RBV and compared to
it to the Abbott Real Time HCV test. Overall there was
concordance between the two assays. However, a large
number of samples (26�35%) at week 4 of treatment
had detectable HCV RNA level below LLOQ with the
Abbott Real Time assay that produced a target not
detected result by the HPS TaqMan HCV Test version
2.0. These patients received shorten therapy based on
the HPS assay “target not detected” result and high
SVR rates were achieved. Thus, if the Abbott Real
Time assay results at week 4 had been used to deter-
mine treatment duration, these patients may have been
over-treated by an additional 6 months [63].

Since these new DDA-containing triple therapies
require HCV RNA to be not detected at both 4 and 12
weeks in order to shorten therapy, differences between
HCV RNA assays can affect key medical decisions. In
this case, differences in testing results lead to a larger
portion of patients being treated for longer duration.
While BOC and TVR have been replaced by more
potent regimens, differences in the performance of
HCV RNA viral load tests might be important, particu-
larly if they are not clinically validated.

VIRAL RESISTANCE VARIANTS

The high turnover rate in HCV replication com-
bined with a poor fidelity and high error rate of the
RNA-dependent RNA polymerase leads to the contin-
uous production of numerous variants known as
HCV-quasispecies. In the natural course of the HCV
life cycle, the wild-type virus is predominantly pro-
duced. Several isolates within the HCV-quasispecies
can carry mutations which confer resistance to DAAs
either by direct (binding site) or indirect (functional
restoration of the protein) effects. Naturally-occurring
resistance-associated variants (RAVs) are selected early
in monotherapy with TVR [64] and BOC [65], and an
occurrence in treatment-naı̈ve patients could be con-
firmed [66]. Therefore, selected variants are considered
to be preexisting mutations generated during the natu-
ral HCV life cycle. The incidence of resistant variants

is variable and depends on the binding domain, differ-
ent populations, and HCV genotypes and subtypes.
Deep-sequencing analysis enables detection of viral
variants with a sensitivity of approximately 0.5�1%.
Using these techniques nearly all described RAVs in
the NS3/4A gene can be detected [67]. To date, RAVs
at very low frequencies have no impact on treatment
response. Population-based sequencing showed cumu-
lative frequencies of different protease inhibitor resis-
tant mutations in 10.8% of patients [68]. In this study,
treatment-naı̈ve patient with TVR-resistant variants
prior to treatment achieved similar SVR rates com-
pared to patients without RAVs [69]. Further analysis
of the TVR and BOC phase 3 studies emphasized that
treatment response is independent of the presence of
preexisting RAVs if there is good responsiveness to the
INF/RBV backbone. On the other hand, patients with
baseline RAVs who were also poor INF/RBV respon-
ders (,1 log decrease in HCV RNA during lead-in-
phase) showed lower SVR rates compared to poor
INF/RBV responders without baseline RAVs (22% vs
37%). In particular, the presence of V36M, T54S, V55A,
or R155K at baseline combined with a poor INF
response led to an SVR in only 7% of BOC-treated
patients [70]. Prior null-responders with the preexist-
ing variants T54S or R155K treated with TVR in the
REALIZE study always had on-treatment virologic
failure, whereas patients who had previously relapsed
achieved SVR in most cases [71].

The mutational variant Q80K is a preexisting RAV
frequently found in HCV genotype 1a (prevalence:
South America 9%, Europe 19%, and North America
48%) and is rarely detected in genotype 1b (0.5%) [72].
Resistance is associated with Simeprevir only. As cur-
rently shown, SVR and RVR rates were distinctly
reduced in patients with prior relapse who exhibit the
Q80K mutation at baseline (SVR12 47% vs 79%; RVR
43% vs 76%), which highlights the relevance of Q80K
mutation in all patients, including good INF/RBV
responders. The NS5B-substitution S282T is the only
resistance mutation associated with decreased suscepti-
bility to Sofosbuvir. At baseline of phase 3 studies, none
of the 1292 patients exhibited the S282T mutation. Also
there was no correlation between other NS5B variants
detected prior to treatment and treatment outcome [73].

Viral breakthrough or relapse to HCV treatment is
linked to the existence of the RAVs L31M/F and Y93H
at baseline. In a Japanese study, 58% of patients
infected with HCV genotype 1b with these baseline
mutations failed therapy [74]. The natural occurrence
of Y93H is reported to be between 4% and 23% and is
lower for HCV genotype 1a than for subtype 1b [75].
However, most cases of treatment failure have been
observed in genotype 1a without baseline RAVs and
many patients with baseline RAVs exhibit SVR [75].
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To date, eight amino acid positions within the HCV
NS3/4A protease that associate with resistance
have been described (major variants: V36A/M, T54S/
A, V55A/K, Q80R/K, R155K/T/Q, A156S/D/T/V,
D168A/V/T/H, V170A/T). Protease inhibitors,
whether linear or macrocyclic, show different profiles
of resistance, but are subject to significant cross-
resistance. Among all protease inhibitors, quasispecies
at position R155 were selected. Second-generation
polymerase inhibitors like MK-5172 and ACH-1625
have a broader genotypic coverage and lower levels of
resistance. During monotherapy with MK-5172, quasis-
pecies containing resistant variants could be detected,
but no virologic breakthrough occurred [73], indicating
a higher barrier of resistance. In contrast to other pro-
tease inhibitors, MK-5172 interacts with the catalytic
triad rather than directly with amino acid sites that
confer resistance [76].

Resistance to Simeprevir. During in vivo studies,
mutations at three amino acid sites were detected
(Q80, R155, D168), whereas in vitro studies showed
emerging resistance at positions F43 and A156 [77].
Mutations at position Q80 confer low-level resistance,
at positions R155 and F43 moderate-level resistance,
and at position D168 high-level resistance. At position
A156, the susceptibility to Simeprevir depends on the
amino acid change. High-level resistance is observed
for A156V and moderate-level resistance for A156G/T
[77]. The PROMISE study in patients who relapse, as
well as the QUEST trials in treatment-naı̈ve subjects,
illustrates the impact of preexistent Q80K in genotype
1 patients on treatment outcome. In QUEST-1, patients
with preexisting Q80K variant did not show signifi-
cantly superior SVR rates compared to INF/RBV [78].
The majority of patients (83.7%) in phase 2b and 3
studies with genotype 1a and baseline Q80K exhibited
the emergence of a single R155K variant at time of
treatment failure, suggesting that the presence of
Q80K alone is not sufficient to explain treatment fail-
ure. The median time until loss of mutation was 36
and 24 months for genotype 1a and 1b, respectively.
Interestingly, the median time to loss of mutation for
the R155K variant without baseline Q80K was 64
months compared to 32 months for patients who had
emerging R155K and baseline Q80K [77].

Resistance to Faldaprevir. After FDV treatment failure
RAVs are predominantly found at positions R155 and
D168 [75]. Most of the RAVs confer moderate- (R155Q,
D168G) to high-level resistance (R155K, A156T/V,
D168A/V). Although rates of virologic failure were
consistently higher in genotype 1a versus genotype 1b,
there was no influence of the Q80K mutation on SVR
rates. Patients with treatment failure during phase 2
studies predominantly selected R155K variants in
genotype 1a and D168V variants in genotype 1b [79].

After treatment with FDV the time until loss of muta-
tions was similar to TVR and BOC (median time 8�11
months) [73].

Resistance to Sofosbuvir. S282T mutation is the
primary Sofosbuvir resistance mutation selected in
genotype 1�6 in vitro. S282T confers a low- to
medium-level resistance. To date S282T variant was
only found in few patients after treatment. In an analy-
sis of all patients with treatment failure during phase 3
trials, the S282T substitution was not detected by deep
sequencing in any of the 225 patients [80]. In general,
Sofosbuvir exhibits a high genetic barrier to resistance.
Therefore, together with the low replicative fitness of
the S282T variant, to date no viral breakthrough has
been observed.

Resistance to Daclatasvir. In general the barrier to
resistance for Daclatasvir is low. After 14-day mono-
therapy with Daclatasvir RAVs at positions M28, Q30,
L31, and Y93 for subtype 1a, and L31 and Y93 for sub-
type 1b were observed in vivo [81]. The major muta-
tions Y93H and L31V confer medium-level resistance
to Daclatasvir [81]. The antiviral activity of Daclatasvir
is less potent for subtype 1a than subtype 1b and also
less potent for genotype 3 than genotype 2 in vitro. In
line with these preclinical data, clinical studies demon-
strated lower response rates for patients infected with
subtype 1a and genotype 3 [61].

Treatment-naı̈ve patients and patients after INF/RBV
treatment failure. The frequency of preexisting RAVs in
this population is generally low. In fact, successful
treatment is independent of the preexistence of RAVs
to TVR, BOC, and FDV. Given sufficient adherence to
the therapeutic regimen, treatment failure occurs only
in combination with other unfavorable factors, primar-
ily unresponsiveness to the INF/RBV backbone. For
these rare cases resistance testing is not justified. For
Simeprevir the relative high frequency of preexisting
Q80K variants in genotype 1a especially in European
and North American populations has to be considered
(19�48%) as this variant is associated with lower rates
of SVR and RVR. Therefore, for genotype 1a patients
in whom a treatment with Simeprevir is considered,
resistance testing for the detection of Q80K has to be
discussed. For Sofosbuvir no preexisting RAVs are
known, therefore resistance testing is not indicated in
this situation. Although a link between DCV�RAVs at
baseline and treatment failure exists, combined with
another potent antiviral like Sofosbuvir the rates of
breakthrough or virologic relapse are low [82], so resis-
tance testing is not indicated.

In contrast to TVR or BOC, second-wave protease
inhibitors represent a significant improvement for dose
administration, being administered once daily and are
generally better tolerated by the patient. While the first-
generation protease inhibitors are most active against

496 38. PERSONALIZED MEDICINE FOR HEPATITIS C VIRUS

VI. MOLECULAR TESTING IN PERSONALIZED MEDICINE



HCV genotype 1, the second generation of protease
inhibitors is active against all genotypes with the excep-
tion of genotype 3, due to the presence of the natural
polymorphism D168Q that confers resistance to avail-
able protease inhibitors [77]. Although broad cross-
resistance exists between protease inhibitors mainly due
to the selection for mutations at positions 155 and 156
(first generation) and 168 (second generation), resistance
to first-generation protease inhibitors (TVR and BOC)
does not completely overlap with the second genera-
tion, such as Simeprevir, ABT-450, Faldaprevir, or
Asunaprevir [77,83]. MK-5172 is a second-generation
protease inhibitor that is administered as a once a day
pill that seems to be very potent with broad HCV geno-
type coverage. In vitro, MK-5172 is very potent and
retains activity against HCV viruses that harbor
resistance mutations to other HCV protease inhibitors,
such as V36A/M, T54A/S, R155K/Q/T, A156S,
V36M1R155K, or T54S1R155K. Moreover, MK-5172
is expected to be broadly active against multiple HCV
genotypes [83�85]. The prevalence of natural poly-
morphisms associated with resistance to HCV protease
inhibitors has been evaluated in treatment-naı̈ve
patients. Using population-based sequencing, less than
1% of subjects harbored mutations at codons 36, 155,
156, or 168, whereas changes at codons 54 or 55 were
seen in 3�7% of patients. However, the polymorphism
Q80K is frequently found (19�48%) among NS3 prote-
ase sequences from genotype 1a [67,77,80,86]. The over-
all rates of SVR were lower for genotype 1a than in
genotype 1b (63% vs 80%, respectively), similar to that
observed for other protease inhibitors. The presence of
Q80K did not affect Sovaprevir SVR rates in patients
with HCV genotype 1 infection after a 28-day adminis-
tration with IFN/RBV. No significant effect of Q80K on
the SVR at week 12 was recognized during the phase II
clinical trial evaluating the efficacy of Faldaprevir in
combination with IFN/RBV (75% if wild type vs 82% if
Q80K was present [73,87�89].

The impact of natural polymorphisms at positions
involved in DAA resistance may be negligible in the
context of combination therapies when other com-
pounds of the regimen retain full activity. Using DAA-
based therapies in combination with IFN/RBV the
presence of baseline polymorphisms or RAVs might
negatively influence the virologic response in poorly
INF-responsive patients (ie, genotypes 1a and non-CC
IL-28B) [74,90�92]. It is noteworthy that the high prev-
alence of the Q80K polymorphism among patients
infected with HCV genotype 1a (19�48%) negatively
impacts virological response to Simeprevir/IFN/RBV.
For these reasons, baseline resistance testing for Q80K
is strongly recommended for HCV genotype 1a, and
alternative treatments to Simeprevir should be consid-
ered if this mutation is present.

For INF-free regimens, the presence of baseline
polymorphisms and/or RAVs may have a clinically
significant impact. The low genetic barrier to resistance
for many DAAs, with the exception of nucleoside/
nucleoside analogs, might facilitate the on-therapy
emergence of resistance variants in patients harboring
baseline polymorphisms and/or resistance mutations.
Indeed, baseline polymorphisms associated with resis-
tance to NS5A inhibitors have a nonnegligible preva-
lence (10�15%) and their presence has been associated
with lower rates of virologic response in some
Daclatasvir-based regimens [74,81].

Routine monitoring for HCV drug RAVs during
therapy is not recommended. Patients in whom anti-
viral therapy fails to achieve SVR may harbor viruses
that are resistant to one or more of the antivirals at
the time of virologic breakthrough. However, there is
no evidence to date that the presence of RAVs results
in more progressive liver injury compared to the
damage that would have occurred if the patient was
infected with a nonresistant form of the virus. The
presence of a baseline RAV does not preclude achiev-
ing an SVR with a combination DAA regimen.
Furthermore, RAVs are often not detectable with rou-
tine methods, or with more sensitive tests of HCV
variants, even when patients are followed for several
months. Subsequent retreatment with combination
antivirals, particularly regimens containing antiviral
drugs that have a high barrier to resistance such as
NS5B nucleotide polymerase inhibitors, may over-
come the presence of resistance to one or more antivi-
ral. The exception is testing for the presence of Q80K
polymorphism at baseline in patients with HCV geno-
type 1a infection before treatment with Simeprevir
plus INF/RBV. Testing for RAV before repeat antivi-
ral treatment is not routinely done.

ROLE OF HOST PHARMACOGENETICS
AS PREDICTORS OF HCV TREATMENT

OUTCOME

The genetic background of the host has an important
impact on the natural course of HCV infection. CD81
T cells are the major effector cells that mediate viral
clearance. CD81 T cells recognize viral peptides bound
to HLA class I molecules on virus-infected cells. HLA
genes display a high degree of genetic variation among
individuals, which is reflected in the variations in bind-
ing and presentation of viral epitopes. HLA-B27, HLA-
B57, and HLA-A3 alleles are significantly associated
with spontaneous clearance of HCV infection. The pro-
tective role of these alleles has been linked to viral epi-
topes which do not allow immune escape mutations
because of profound negative effects on viral replication
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fitness, resulting in a highly crippled virus. Genome-
wide association studies (GWAS) have become the stan-
dard approach to discovering the genetic basis of
human disease. The goal of therapy against HCV is to
eradicate infection and to achieve SVR. Given the vari-
ability of INF and RBV treatment response in individual
patients, and in order to reduce side effects and avoid
the heavy medication cost, knowing baseline viral load
and host parameters that predict response before the
treatment would be quite useful. Several studies have
proven the roles of both viral factors (such as HCV
genotype, quasispecies diversity, baseline viremia) and
host factors (ie, age, sex, ethnicity, grade of liver fibro-
sis, body mass index, and comorbidities) in predicting
the natural course of HCV and response to INF treat-
ment [92]. The observation that the response rate for
INF-based regimens in African/American is less than
half of that observed in Caucasians suggests additional
factors associated with patient genetic background are
related to likelihood of SVR and may influence tailored
INF-based treatment duration [92,93]. In 2009, there
was a major breakthrough in the understanding of host
genomics in HCV infection through the discovery
of several single-nucleotide polymorphisms (SNPs)
upstream of the interleukin 28B locus (IL28B), in partic-
ular the SNP rs12979860, which predicts both spontane-
ous recovery from HCV infection and therapy-induced
viral clearance in patients infected with HCV genotype
1. The IL28B gene on chromosome 19 encodes the cyto-
kine IFN-lambda3 (INF-λ3), which belongs to the type
III INF family (INF-λ). INF-λ is rapidly induced during
HCV infection and has antiviral activity against HCV
[93,94]. Recent studies have reported an association
between the IL28B SNPs and the expression of intrahe-
patic interferon-stimulated genes (ISG) in liver. Low
ISG expression prior to treatment has already been
correlated with high response to INF-based therapy and
the protective IL28B genotype is associated with ISG
expression levels, suggesting that ISG induction in part
segregates according to IL28B haplotype. Patients carry-
ing rs12979860 CC genotype had a clearance rate three-
fold higher compared with patients carrying the CT or
TT genotype. Interestingly, the frequency of the favor-
able CC genotype differs markedly among ethnic
groups, reaching 90% in certain North and Eastern
Asian populations, an intermediate frequency in
Europe, and the lowest frequencies in Africans [94].
Other SNPs of IL28B (rs8099917, rs12980275, rs8103142,
rs81057790, rs11881222, rs28416813, rs4803219, and
rs7248668) have been identified in HCV genotype 1
patients [8]. IL28B SNPs rs1299860 (CC) and rs8099917
(TT) genotype are significantly associated with SVR in
patients infected with HCV genotype 1 who are treated
with INF-based therapies [95,96]. Moreover, a meta-

analysis validated the strength of these genotypes as
independent predictors of patient response to therapy.
Determination of this SNP appears sufficient for pre-
dicting response to INF-based therapy and the current
consensus for utilization of INF-based therapy suggests
that IL28B SNP status is the strongest predictor for
response, suggesting the possibility of personalized
therapy with significant clinical and pharmacoeconomic
implications. Thus, carriers of rs1297860 CC infected
with HCV genotype 1 or genotype 4 should be treated
with INF-based therapies, whereas carriers of the T
allele with HCV genotype 1 and no advanced liver
fibrosis may delay therapy and wait for new DAAs
[96]. IL28B genotyping is less clinically significant
among patients infected with HCV genotype 2 or geno-
type 3 which are more INF responsive. Understanding
the mechanisms associated with HCV control in
patients with specific IL28B polymorphisms is still lim-
ited. IL28B appears to affect INF-λ3 expression, with
the unfavorable genotypes resulting in reduced INF-λ3
expression. Patients with the unfavorable genotypes
also had a lower induction of innate immune genes,
suggesting that the IL28B polymorphism may regulate
innate immune functions [97,98].

In the era of DAAs in combination with INF ther-
apy, an important question is whether and how the
determination of IL28B polymorphisms may be useful
in predicting patient’s likelihood of response and the
potential implications for treatment decision making
[99,100]. However, the rapid move of HCV therapy
toward DAAs without INF has weakened the rele-
vance of IL28B genotyping for prediction and manage-
ment of chronic HCV infection [101�103].

Hemolytic anemia is a common side effect of RBV-
based HCV therapy. While this condition is reversible
and dose related, it is cause for dose reduction or pre-
mature withdrawal from therapy in approximately 15%
of cases [104]. Recently, a GWAS study identified two
variants in the ITPA gene (rs1127354 and rs7270101)
that are responsible for ITPA deficiency and correlated
with risk of RBV anemia in the European�American
population. More recently, it was confirmed that
rs1127354 is strongly associated with protection against
anemia in a Japanese cohort [105]. These findings were
also seen in a HCV/HIV coinfected patient cohort with
all HCV genotypes. Two other SNPs (rs11697186 and
rs6139030) are located within and around DDRGK1
gene on chromosome 20, with reduced platelet count in
response to INF/RBV treatment in Japanese HCV
patients. Even though these studies support the per-
spective of pharmacogenetic diagnostic tools for tailor-
ing therapy to minimize drug-induced adverse events,
the future of DAAs will likely progressively replace
RBV-based treatment [32,106].
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INTRODUCTION

Although the primary focus of molecular oncology
research and cancer treatment often centers on somati-
cally mutated genes, germline genetic variation can also
influence some cancer treatments. Pharmacogenetics is
the study of the genetic determinants of drug response
variability and this chapter focuses on germline or
constitutional variants in an individual’s DNA that
can impact cancer treatments. Polymorphic variant
alleles often occur in genes that encode drug metabo-
lism enzymes and alter their enzymatic activity. These
enzymes can activate a prodrug to its active form
or catalyze the inactivation and elimination of a
drug or metabolite. Prominent among these enzymes
are the cytochrome P450 (CYP450) superfamily, which
directly influence the pharmacokinetics of many
drugs. In addition, genetic variants in cell receptors
can influence drug transport, which often plays a role
in pharmacodynamics.

Oncology supportive care is frequently targeted
toward mollifying adverse effects of cancer treatment
while eradicating the cancer. Germline variation can
potentially play an important role in the selection
and administration of cancer drugs. Demonstrating
clinical utility for cancer pharmacogenetic testing has
been challenging and is an ongoing area of research.
However, clinical tests are currently available for
selected genes where clinical validity has largely been
established. Examples of cancer therapies and related
genes with germline genetic variants that influence
patient response are detailed below.

MOLECULAR TARGET:
FLUOROPYRIMIDINES AND DPYD

Fluoropyrimidines (ie, 5-fluorouracil (5-FU), capeci-
tabine, tegafur) are widely used for the treatment of
several solid tumors, including breast and colorectal
cancers, and typically are administered in combination
with other antineoplastic agents [1]. Both capecitabine
and tegafur are inactive prodrugs that are metabolized
to 5-FU. The main mechanism of 5-FU activation is
believed to be conversion to fluorodeoxyuridine mono-
phosphate, which inhibits the enzyme thymidylate
synthase, an important part of the folate�homocysteine
cycle and purine and pyrimidine synthesis. The resul-
tant damage occurs due to increased base excision
repair causing DNA fragmentation and ultimately
cell death. In addition, the fluorouridine triphosphate
metabolite can be incorporated into RNA in place
of uridine triphosphate and interfering with RNA
processing and protein synthesis. Approximately
10�40% of individuals who receive 5-FU develop severe
toxicity such as neutropenia, nausea, vomiting, severe
diarrhea, stomatitis, mucositis, hand-foot syndrome,
and neuropathy [2].

The rate-limiting step of 5-FU catabolism is dihydro-
pyrimidine dehydrogenase (DPD) conversion of 5-FU to
dihydrofluorouracil [3]. Importantly, several germline
genetic variants in the DPYD gene on chromosome
1p21.3 result in deficient DPD activity, and increased
drug half-life that can translate to severe and even fatal
5-FU toxicity [4]. In addition, the FDA label for the
fluoropyrimidines indicates that variants in DPYD are
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associated with increased risk for adverse and poten-
tially toxic events, and therefore is contraindicated in
patients with known DPD deficiency (note that genetic
testing or screening of DPD activity is not mentioned in
the drug label). However, although several variants
have been associated with low DPD activity and fluoro-
pyrimidine toxicity, the presence of these variants does
not always result in toxicity, and associations have
not been consistently replicated, which is likely due
to inconsistencies in treatment regimens across stud-
ies [5]. The available literature on DPYD and fluoropyri-
midine response prompted Clinical Pharmacogenetics
Implementation Consortium (CPIC) practice guidelines
that recommend a 50% reduction in starting dose for
patients who are heterozygous for a nonfunctional
DPYD variant and an alternate therapy for those with
two nonfunctional DPYD variants (ie, homozygous or
compound heterozygous) (Table 39.1) [5].

DPD deficiency is an autosomal recessive disorder
that is characterized by a wide range of severity, with
neurological problems in some individuals and no
signs or symptoms in others. In individuals with severe
DPD deficiency, the disorder becomes apparent in
infancy with recurrent seizures, intellectual disability,
microcephaly, hypertonia, delayed development of
motor skills such as walking, and autistic behaviors
that affect communication and social interaction.
Other affected individuals are asymptomatic and may
be identified only by laboratory testing. More than 50
mutations in the DPYD gene have been identified in
people with DPD deficiency. It is estimated that 3�5%
of the Caucasian population has partial DPD deficiency
and 0.2% have complete DPD deficiency [6].

Molecular Technologies: DPYD

Genetic testing for DPYD can be performed from
DNA extracted from whole blood or other tissues,
which typically involves targeted genotyping of the
DPYD�2A decreased activity allele [7]. However, many
other variant alleles have been identified [8]. Some lab-
oratories may offer full gene DPYD sequencing, which
will identify all known and novel sequence variants,
many potentially with uncertain clinical significance.
Clinical laboratories that offer DPYD genetic testing
can be found at the voluntary National Institutes of
Health Genetic Testing Registry (http://www.ncbi.
nlm.nih.gov/gtr/) [9].

Clinical Utility: DPYD

Evidence for the clinical utility of DPYD genotype
directed fluoropyrimidine dosing is based on prospec-
tive studies [6,10], retrospective genetic studies, case
studies of patients with severe toxicity, and meta-
analyses [11]. Together, these data suggest that patients
heterozygous for loss-of-function DPYD alleles have
significantly reduced 5-FU clearances, ranging from
40% to 80% less than the clearances in patients without
these variants. Despite the lack of a prospective
randomized clinical trial directly evaluating the utility
of DPYD genotyping, the available evidence was uti-
lized to inform the CPIC guidelines on dose reduction
among DPYD-variant carriers when genotype data
is available [5]. Cost-effectiveness studies on DPYD
genotype directed fluoropyrimidine dosing have not
been reported. As noted above, patients homozygous
for loss-of-function DPYD variants have DPD defi-
ciency, a disease with a variable phenotype that ranges
from no symptoms to severe convulsive disorders with
motor and mental retardation [12,13].

TABLE 39.1 CPIC Recommended Dosing of Fluoropyrimidines
by DPYD Genotype/Phenotype

Phenotype

(genotype)

Examples
of

diplotypes

Implications for
phenotypic

measures

Dosing

recommendations

Homozygous
wild-type or
normal, high
DPD activity
(two or more
functional �1
alleles)

�1/�1 Normal DPD
activity and
“normal” risk for
fluoropyrimidine
toxicity

Use label-
recommended
dosage and
administration

Heterozygous or
intermediate
activity (one
functional allele
�1, plus one
nonfunctional
allele)

�1/�2;
�1/�13

Decreased DPD
activity
(leukocyte DPD
activity at
30�70% that of
the normal
population) and
increased risk for
severe or even
fatal drug
toxicity when
treated with
fluoropyrimidine
drugs

Start with at least
a 50% reduction
in starting dose
followed by
titration of dose
based on toxicity
or
pharmacokinetic
test (if available)

Homozygous or
compound
heterozygous
variant, DPD
deficiency, at risk
for toxicity with
drug exposure
(two
nonfunctional
alleles)

�2/�2;
�2/�13;
�13/�13

Complete DPD
deficiency and
increased risk for
severe or even
fatal drug
toxicity when
treated with
fluoropyrimidine
drugs

Select alternate
drug

Adapted from Caudle KE, Thorn CF, Klein TE, et al. Clinical Pharmacogenetics
Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype
and fluoropyrimidine dosing. Clin Pharmacol Ther 2013;94:640�5.
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Limitations of Testing: DPYD

Targeted DPYD genotyping will not detect any
alleles that are not directly interrogated so a negative
genotyping result does not rule out the possibility
that a patient carries another DPYD variant. Full gene
sequencing will detect all DPYD variants, but rare
or novel variants will likely be of uncertain clinical
significance. In addition, other genes may influence
responses to 5-FU, including ABCB1, MTHFR, and
TYMS [1,10], which will not be detected by DPYD
genetic testing. Alternatives to DPYD genotyping
that assess DPD enzyme activity directly include
dihydrouracil/uracil ratio determination in plasma,
the uracil breath test method, and measurement of
DPD activity in peripheral mononuclear cells [14].

MOLECULAR TARGET: IRINOTECAN
AND UGT1A1

Irinotecan is used to treat metastatic colorectal
cancer, typically given in combination with other
anticancer agents (eg, 5-FU, leucovorin). It is also used
in combination with cisplatin for the treatment of
extensive small cell lung cancer. Irinotecan works by
binding to the topoisomerase I�DNA complex and
preventing DNA replication, and thus causes double-
strand DNA breakage and cell death. The active
form of irinotecan is SN-38, which is glucoronized to
SN-38 glucoronic acid (SN-38G) and detoxified in
the liver via conjugation by the uridine diphosphate
glucuronosyltransferase (UGT) 1A1 enzyme, which
releases SN-38G into the intestines for elimination [15].
Notably, impaired elimination of the cytotoxic SN-38
metabolite can result in severe toxicities, including
myelosuppresion, diarrhea, and neutropenia, which
have all been associated with variation in the UGT1A1
gene on chromosome 2q37.1 [16].

The most important variant UGT1A1 alleles is �28,
which is a promoter polymorphism comprised of
seven thymine-adenine (TA) dinucleotide repeats
[(TA)7TAA] [17], compared to the normal UGT1A1�1
allele with six TA repeats [(TA)6TAA]. Importantly,
the length of the TA repeat sequence is inversely
correlated with UGT1A1 expression and activity [18].
Consequently, UGT1A1�28 heterozygotes and homozy-
gotes have an approximate 25% and 70% reduction in
enzyme activity, respectively [18], and individuals
who are homozygous for UGT1A1�28 are at increased
risk for myelosuppression, diarrhea, and neutropenia
due to the buildup of SN-38. Although the US FDA
package insert for irinotecan does include information
on toxicity risk due to UGT1A1�28 and the availability
of testing, clinical UGT1A1 genetic testing is not

required prior to treatment. Instead it is recommended
that a loading dose be administered and subsequent
dosing based on symptoms (ie, granulocyte count and
treatment-related diarrhea).

The UGT family is responsible for the glucuronida-
tion of hundreds of compounds, including hormones,
flavonoids, environmental mutagens, and pharmaceuti-
cal drugs. Most of the UGTs are expressed in the liver,
as well as in other types of tissues, such as intestinal,
stomach, or breast tissues. As such, the UGT1A1�28
allele and other UGT1A1 missense variants have been
implicated in Gilbert syndrome, which is an autosomal
recessive unconjugated hyperbilirubinemia [19]. This
mild disorder does not indicate liver damage but
affects the metabolism of several substances, which
can present with jaundice among affected individuals,
with mild abdominal pain or nausea triggered by
fasting or infections. Given that patients with Gilbert
syndrome have normal liver function tests and
typically require no treatment, a correct diagnosis is
essential to avoid unnecessary testing.

Molecular Technologies: UGT1A1

Genetic testing for UGT1A1 can be performed from
DNA extracted from whole blood or other tissues,
which typically involves targeted testing of the
UGT1A1�28 TA repeat polymorphism. The most com-
mon assay is a laboratory-developed test involving
fluorescent PCR amplification and size separation by
capillary electrophoresis. Of note, this assay will also
detect the five [(TA)5TAA] and eight [(TA)8TAA]
repeat alleles. The five TA repeat allele is assumed to
maintain efficient transcription, while the uncommon
eight TA repeat allele indicates irinotecan sensitivity
similar to the seven TA repeat allele (�28). Clinical
laboratories that offer UGT1A1 genetic testing can be
found at the voluntary National Institutes of Health
Genetic Testing Registry (http://www.ncbi.nlm.nih.
gov/gtr/) [9].

Clinical Utility: UGT1A1

Although the Evaluation of Genomic Applications
in Practice and Prevention (EGAPP) Working Group
found that the evidence was insufficient to recom-
mend for or against the routine use of UGT1A1 geno-
typing in patients with metastatic colorectal cancer
who are treated with irinotecan [20], the Royal Dutch
Pharmacists Association—Pharmacogenetics Working
Group (KNMP-PWG) has evaluated irinotecan dosing
based on UGT1A1 genotype and recommends dose
reduction for �28 homozygous patients receiving
more than 250 mg/m2 [21]. Cost-effectiveness studies
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on UGT1A1 genotype directed irinotecan indicate
that UGT1A1�28 testing may be cost-effective, but
only if irinotecan dose reduction in homozygotes
does not reduce efficacy [22,23]. Individuals who
are homozygous for UGT1A1�28 have a mild uncon-
jugated hyperbilirubinemia, which is consistent with
a diagnosis of Gilbert syndrome.

Limitations of Testing: UGT1A1

Targeted testing of the UGT1A1�28 TA repeat poly-
morphism will not detect any other coding UGT1A1
variants that may influence irinotecan metabolism.
In addition, other genes may influence irinotecan
toxicity risk, including CYP3A4 [24], which will not be
detected by UGT1A1 genetic testing.

MOLECULAR TARGET: RASBURICASE
AND G6PD DEFICIENCY

Rasburicase is a drug approved by the FDA for
prophylaxis and treatment of hyperuricemia during
chemotherapy in adults and children with lymphoma,
leukemia, and solid cancers. When chemotherapy is
administered, cancer cells are destroyed, releasing
large amounts of uric acid into the blood. Rasburicase
is a recombinant urate oxidase enzyme that works by
breaking down uric acid to allantoin and hydrogen
peroxide, which is eliminated from the body by the
kidneys. The pegylated form of urate oxidase, pegloti-
case, is also FDA approved for the treatment of
refractory gout [25]. Notably, both rasburicase and
pegloticase carry an FDA boxed warning and are
contraindicated for use in patients with known
glucose-6-phosphate dehydrogenase (G6PD) deficiency
due to mutations in the G6PD gene on chromosome
Xq28 [26].

G6PD deficiency is an X-linked disorder that
affects over 400 million people worldwide and
approximately 1 in 10 African-American males in the
United States [27]. It occurs most frequently in
the malarial endemic regions of Africa, Asia, and the
Mediterranean due to the protection it provides against
malaria infection [28]. Of note, different racial and
ethnic groups have predominant founder mutations
such as the G6PD Mediterranean (c.563C.T) variant,
which has important implications when considering
genetic testing. The G6PD enzyme catalyzes the
first step in the pentose phosphate pathway, which
produces antioxidants to protect cells against oxidative
stress [26]. Triggers that heighten oxidative stress
in red blood cells result in hemolytic anemia and
symptom onset in patients with G6PD deficiency [27].

Without enough functional G6PD, red blood cells
are unable to protect themselves from the damaging
effects of reactive oxygen species and subsequent
hemolysis. Factors such as infections, certain drugs,
and ingesting fava beans can increase the levels of
reactive oxygen species, causing red blood cells to
undergo hemolysis faster than the body can replace
them. The loss of red blood cells causes the signs and
symptoms of hemolytic anemia such as dark urine,
enlarged spleen, fatigue, rapid heart rate, shortness of
breath, and jaundice, which are the characteristic
features of G6PD deficiency [27].

G6PD variants that result in enzyme deficiency
confer a G6PD-deficient phenotype in hemizygous
males and homozygous or compound heterozygous
females. It is difficult to diagnose G6PD deficiency in
heterozygous females due to random X chromosome
inactivation. Targeted G6PD genotyping can establish
a molecular diagnosis of G6PD deficiency. However,
prediction of drug response can be difficult without
testing G6PD enzyme activity levels. More than 400
disease causing mutations in G6PD have been identi-
fied, and most are missense mutations that affect
protein stability [29]. All G6PD variants are broadly
divided into five classes according to the resulting
level of enzyme activity, with class I being the most
severely dysfunctional and class V having the highest
enzyme activity (Table 39.2).

The production of hydrogen peroxide following the
oxidation of uric acid and allantoin by rasburicase can
result in hemolytic anemia after rasburicase adminis-
tration among G6PD-deficient patients, as evidenced

TABLE 39.2 Classification of G6PD Variants

WHO
class

Enzyme
activity Associated phenotype Variant example

I Severe
deficiency

Congenital non-
spherocytic hemolytic
anemia (CNSHA)

Tondela, Palermo

II ,10%
severely
deficient

Risk of acute hemolytic
anemia

Mediterranean,
Canton, Chatham

III 10�60%
moderate
deficiency

Risk of acute hemolytic
anemia

A- Haplotype,
Asahi, Orissa,
Kalyan-Kerala

IV 60�150%
normal
activity

No clinical
manifestations

B (wildtype), A,
Mira d’Aire, Sao
Borja

V 150%
enhanced
activity

Hektoen

Adapted from McDonagh EM, Thorn CF, Bautista JM, Youngster I, Altman RB,
Klein TE. PharmGKB summary: very important pharmacogene information for

G6PD. Pharmacogenet Genomics 2012;22:219�28.
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by numerous clinical reports [30]. Together, these data
prompted drug label warnings in several countries
that contraindicate rasburicase in patients with G6PD
deficiency, and informed the recent CPIC guidelines
that recommend an alternative therapy (eg, allopuri-
nol) for G6PD-deficient patients (Table 39.3) [30].

Molecular Technologies: G6PD

Genetic testing for G6PD can be performed from
DNA extracted from whole blood or other tissues,
which typically involves targeted genotyping of a
panel of G6PD-deficient alleles. However, many G6PD
variants have been identified [26]. In addition, the US
National Newborn Screening Program routinely tests
for G6PD deficiency by genotyping in some states with
a panel of five variants followed by confirmatory
enzyme activity testing [31]. Clinical laboratories that
offer G6PD genetic testing can be found at the volun-
tary National Institutes of Health Genetic Testing
Registry (http://www.ncbi.nlm.nih.gov/gtr/) [9].

Clinical Utility: G6PD

Despite the lack of a prospective randomized clinical
trial directly evaluating the utility of G6PD genotype
directed rasburicase therapy, the available evidence was
utilized to inform the CPIC guidelines recommending
an alternative therapy from rasburicase among G6PD-
deficient patients when genotype data is available [5].

The limited data reported from cost-effectiveness stud-
ies on G6PD genotyping suggest that G6PD screening
may be cost-effective [32]. A number of adverse reac-
tions, such as drug-induced hemolytic anemia, have
been reported for several medications among patients
with G6PD deficiency. As such, individuals with a
diagnosis of G6PD deficiency should exercise caution
when initiating new drug treatments to avoid hemolytic
anemia and other adverse phenotypes.

Limitations of Testing: G6PD

Targeted G6PD genotyping will not detect any alleles
that are not directly interrogated so a negative genotyp-
ing result does not rule out the possibility that a patient
carries another G6PD variant. Full gene sequencing will
detect all G6PD variants, but rare or novel variants
will likely be of uncertain clinical significance. In
addition, other genes may influence responses to ras-
buricase, which will not be detected by G6PD genetic
testing. Alternatives to G6PD genotyping that assess
G6PD enzyme activity directly are available and can
be used to confirm a diagnosis of G6PD deficiency.

MOLECULAR TARGET: TAMOXIFEN AND
CYP2D6

Tamoxifen is used for the treatment and prevention
of estrogen receptor positive (ER-positive) breast

TABLE 39.3 CPIC Recommended Dosing of Rasburicase by G6PD Phenotype

Phenotype (genotype) Examples of diplotypes

Implications for

phenotypic
measures

Dosing recommendations for
rasburicase

Normal. A male carrying a nondeficient
(class IV) allele or a female carrying two
nondeficient (class IV) alleles

Male: B, Sao Boria. Female: B/B, B/Sao Boria Low or reduced
risk of hemolytic
anemia

No reason to withhold rasburicase
based on G6PD status

Deficient or deficient with CNSHA. A
male carrying a class I, II, or III allele, a
female carrying two deficient class I�III
alleles

Male: A-, Orissa, Kalyan-Kerala,
Mediterranean, Canton, Chatham, Bangkok,
Villeurbanne. Female: A-/A-, A-/ Orissa,
Orissa/Kalyan-Kerala, Mediterranean/
Mediterranean, Chatham/Mediterranean,
Canton/Viangchan, Bangkok/Bangkok,
Bangkok/Villeurbanne

At risk of acute
hemolytic
anemia

Rasburicase is contraindicated;
alternatives include allopurinol

Variable. A female carrying one
nondeficient (class IV) and one deficient
(class I�III variants) allele

B/A-, B/Mediterranean, B/Bangkok Unknown risk
of hemolytic
anemia

To ascertain that G6PD status is
normal, enzyme activity must be
measured; alternatives include
allopurinol

CNSHA, chronic non-spherocytic hemolytic anemia.

Adapted from Relling MV, McDonagh EM, Chang T, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of
G6PD deficiency genotype. Clin Pharmacol Ther 2014;96:169�74. See original reference for complete footnotes.
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cancer. It has been shown to decrease disease recur-
rence and mortality rates by as much as 50% and 30%,
respectively, and has also been used as a prophylactic
treatment for those at high risk of developing breast
cancer [33]. However, tamoxifen response has a high
degree of interindividual variability that is likely due,
in part, to differences in tamoxifen metabolism [34].
Hot flashes, the most common side effect of tamoxifen,
affect up to 80% of treated women. Individuals receiv-
ing tamoxifen also seem to have approximately
2.5-fold increased risk of developing endometrial
cancer. Additionally, tamoxifen may contribute to an
increased risk for thromboembolic events, as well as
clinical depression. Selective serotonin reuptake inhibi-
tors (SSRIs) are commonly used to treat both hot
flashes and depression. However, the potential drug
interaction between some SSRIs and tamoxifen necessi-
tates careful consideration of which SSRI to prescribe
for these patients [35].

Tamoxifen competitively inhibits cancerous ER-
positive cells from getting the estrogen required
for growth. However, its metabolites also act as
aromatase inhibitors that decrease the amount of avail-
able estrogen in the body [36]. The metabolism of
tamoxifen is complex, mostly occurring through the
4-hydroxylation and N-demethylation pathways, both of
which result in the very potent secondary metabolite,
endoxifen [33]. The 4-hydroxylation pathway contributes
approximately 7% of tamoxifen metabolism and the
N-demethylation to N-desmethyltamoxifen pathway
contributes approximately 92% of tamoxifen metabolism
[37]. Endoxifen is formed from N-desmethyltamoxifen
primarily through hydroxylation by cytochrome P450-
2D6 (CYP2D6) and from 4-hydroxy-tamoxifen through
demethylation by CYP3A4 [33]. In addition to ER inhibi-
tion, endoxifen also targets ERα (coded for by ESR1
gene) for proteasomal degradation, together indicating
that endoxifen is the primary metabolite responsible for
the efficacy of tamoxifen treatment [38].

The highly polymorphic nature of the CYP2D6
gene on chromosome 22q13.2 and the central role
that CYP2D6 plays in the metabolism of tamoxifen to
endoxifen have prompted many studies on the
potential pharmacogenetic association between
CYP2D6 genotype and tamoxifen response. Some of
these studies identified a significant association
between loss-of-function CYP2D6 alleles and poor
prognoses [39�43]. However, others did not detect
any association and concluded that clinical CYP2D6
genotyping is not warranted [44,45]. These conflicting
findings have resulted in ongoing debate over the
clinical validity of CYP2D6 in tamoxifen response,
as well as stimulating a recent meta-analysis
by the International Tamoxifen Pharmacogenomics
Consortium (ITPC) [46]. Notably, the ITPC confirmed

the association between CYP2D6 poor metabolizer
status and poorer invasive disease-free survival
(hazard ratio5 1.25; 95% confidence interval5 1.06,
1.47; P5 0.009). However, this was only when
implementing a post hoc strict inclusion criteria
(eg, dose, duration of treatment, menopausal status,
and genotyping quality) as no effect was detected
when applying limited or no exclusion criteria among
the heterogeneous study populations [46]. Although
not independently conclusive, these data suggest that
CYP2D6 is likely one of several factors influencing
outcome following adjuvant tamoxifen treatment [47].
Moreover, the KNMP-PWG recommends consideration
of aromatase inhibitors for postmenopausal women
who are CYP2D6 poor or intermediate metabolizers
due to increased risk for relapse of breast cancer when
treated with tamoxifen [21].

Molecular Technologies: CYP2D6

Genetic testing for CYP2D6 can be performed from
DNA extracted from whole blood or other tissues,
which typically involves targeted genotyping of a panel
of CYP2D6-variant alleles. Several commercial assays
are currently available, including the Luminex [48] and
AutoGenomics [49] assays, as well as other laboratory-
developed tests. The Tag-IT Luminex platform
(Luminex Molecular Diagnostics, Toronto, Canada) is a
bead array with oligonucleotides bound to micro-
spheres and genotyping by allele-specific primer
extension. The AutoGenomics (Carlsbad, CA) platform
is a film-based microarray tested on the INFINITI
Analyzer. These assays typically interrogate 15�20
important CYP2D6 variants including the deletion
and duplication alleles. Clinical laboratories that offer
CYP2D6 genetic testing can be found at the voluntary
National Institutes of Health Genetic Testing Registry
(http://www.ncbi.nlm.nih.gov/gtr/) [9].

Like other CYP450 genes, CYP2D6 alleles are
designated by the common star (�) allele nomenclature
system, which often include multiple variants on the
same haplotype. The CYP2D6�1 allele is the wild-type
haplotype encoding normal enzyme activity. More
than 100 CYP2D6-variant alleles have been described
(http://www.cypalleles.ki.se/cyp2d6.htm). However,
many are rare in the general population. Although the
effect of all of these variant alleles on enzyme activity
has not been established, many of the commonly inter-
rogated CYP2D6 variants include nonfunctional,
reduced, and increased function alleles (Table 39.4).
The combination of these alleles in a given genotype
results in four predicted phenotype categories:
(1) ultrarapid, (2) extensive (normal), (3) intermediate,
and (4) poor metabolizers [50].
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Clinical Utility: CYP2D6

Despite the lack of a prospective randomized
clinical trial directly evaluating the utility of CYP2D6
genotyping, the available evidence was utilized to
inform the KNMP-PWG guidelines that recommend
consideration of using aromatase inhibitors for post-
menopausal women who are CYP2D6 poor or interme-
diate metabolizers due to increased risk for relapse of
breast cancer with tamoxifen [21]. The limited data
reported from cost-effectiveness studies on CYP2D6
genotype directed tamoxifen therapy have generally
concluded that there is not enough evidence available
to support or reject routine CYP2D6 testing. However,
these studies have underscored the heterogeneity in
CYP2D6 genotyping across the published retrospective
studies and the need for further analyses of large
adjuvant aromatase inhibitor trials to better under-
stand any association between CYP2D6 genotype and
tamoxifen outcomes [51,52].

Limitations of Testing: CYP2D6

Targeted CYP2D6 genotyping will not detect any
alleles that are not directly interrogated so the wild-
type CYP2D6�1 allele is typically assigned in the
absence of other detected variants. Consequently,
when �1 is reported by targeted genotyping, a rare
CYP2D6 star (�) allele not included in the genotyping
panel would not be detected, which can only be iden-
tified by gene sequencing. Furthermore, in addition
to duplicated functional CYP2D6 alleles (eg, �1xN,
�2xN), duplicated nonfunctional (eg, �4xN) and
reduced function (eg, �10xN) alleles have also been
described. As such, determining which CYP2D6 allele
is duplicated is important for proper interpretation
when a gene duplication is identified in conjunction
with a heterozygous genotype [53]. Although labora-
tory guidelines for CYP2D6 genotyping in relation to
tamoxifen therapy have been reported [54], no current
professional guidelines detail which alleles should
be included in clinical CYP2D6 assays. Therefore,
different laboratories may include different CYP2D6
alleles in their testing panels, which can result in
conflicting CYP2D6 genotypes and predicted pheno-
types between laboratories and studies. Other genes
likely influence responses to tamoxifen, including
other CYP450s and members of the UGT and SULT
families [33], which will not be detected by CYP2D6
genetic testing.

MOLECULAR TARGET: THIOPURINES
AND THIOPURINE

METHYLTRANSFERASE

Thiopurines (ie, azathioprine, mercaptopurine, and
thioguanine) are used for the treatment of childhood
acute lymphoblastic leukemia, autoimmune diseases,
inflammatory bowel diseases, lupus, and transplanta-
tion. Specifically, mercaptopurine and azathioprine are
used for nonmalignant immunologic disorders, mer-
captopurine for lymphoid malignancies, and thiogua-
nine for myeloid leukemias. Thiopurines are inactive
precursors that are metabolized by hypoxanthine gua-
nine phosphoribosyl transferase to active thioguanine
nucleotides (TGNs), which are inactivated by thiopur-
ine methyltransferase (TPMT) [55]. These drugs are
analogs of the nucleic acid guanine and are incorpo-
rated into RNA and DNA by phosphodiester linkages,
ultimately inhibiting several metabolic pathways and
inducing apoptosis. In addition, mercaptopurines are
metabolized to methyl-thioinosine monophosphate,
which inhibits de novo purine synthesis and cell pro-
liferation, and adding another mechanism of cytotoxic-
ity. However, approximately 10% of the population

TABLE 39.4 Commonly Interrogated CYP2D6 Alleles

Predicted activity

CYP2D6 alleles (major nucleotide variants:

GenBank accession number M33388)

Increased activity �1xN, �2xN, �35xN

Functional (normal
activity)

�1 (wild type)

�2 (-1584C.G, 1661G.C, 2850C.T,
4180G.C)

�35 (-1584C.G, 31G.A, 1661G.C,
2850C.T, 4180G.C)

Reduced function �9 (2613�2615delAGA)

�10 (100C.T, 1661G.C, 4180G.C), �10xN

�17 (1023C.T, 1661G.C, 2850C.T,
4180G.C)

�29 (1659G.A, 1661G.C, 2850C.T,
3183G.A, 4180G.C)

�41 (1661G.C, 2850C.T,2988G.A,
4180G.C), �41xN

Nonfunctional �3 (2549delA)

�4 (100C.T, 1661G.C, 1846G.A, 2850C.T,
4180G.C), �4xN

�5 (gene deletion)

�6 (1707delT, 4180G.C)

�7 (2935A.C)

�8 (1661G.C, 1758G.T, 2850C.T,
4180G.C)

�11 (883G.C, 1661G.C, 2850C.T,
4180G.C)

�15 (138insT)
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have intermediate levels of TPMT activity and 0.3%
have low or undetectable enzyme activity, which
results in significantly increased risks for TGN toxicity
and life-threatening myelosuppression [56,57].

Thirty-one variant alleles of the TPMT gene on
chromosome 6p22.3 have been identified, many of
which are missense mutations associated with
decreased in vitro activity [58]. The most commonly
studied and tested variant alleles are TPMT�2, �3A, �3B,
and �3C. TPMT�3A contains two missense variants
in cis, p.Ala154Thr and p.Tyr240Cys, and is the most
common variant allele associated with low TPMT
activity in Caucasians (frequency B5%) [56]. With
conventional doses of thiopurines, individuals who
inherit two loss-of-function TPMT alleles universally
experience severe myelosuppression, a high proportion
of heterozygous patients show moderate to severe mye-
losuppression, and homozygous wild-type patients
have lower levels of TGN metabolites and a low risk of
myelosuppression [56,59,60]. Taken together, these data
prompted CPIC practice guidelines recommending
dose reductions and/or alternate therapies among los-
s-of-function TPMT allele carriers (Table 39.5) [56].

Molecular Technologies: TPMT

Genetic testing for TPMT can be performed from
DNA extracted from whole blood or other tissues,
which typically involves targeted genotyping of the
TPMT�2, �3A, �3B, and �3C alleles [61,62]. PCR-based
assays that interrogate the three common variants
detect 80�95% of low and intermediate enzyme activ-
ity individuals in the Caucasian, African-American,
and Asian populations [63]. Clinical laboratories that
offer TPMT genetic testing can be found at the volun-
tary National Institutes of Health Genetic Testing
Registry (http://www.ncbi.nlm.nih.gov/gtr/) [9].

Clinical Utility: TPMT

Available data suggest that patients with reduced or
nonfunctional TPMT alleles are at high risk for bone mar-
row toxicity and require significant dose reduction [56].
Despite the lack of a prospective randomized clinical
trial directly evaluating the utility of TPMT genotyp-
ing, the available evidence was utilized to inform
the CPIC guidelines on dose reduction among

TABLE 39.5 CPIC Recommended Dosing of Thioguanine by TPMT Genotype/Phenotype

Phenotype (genotype)

Examples of

diplotypes

Implications for pharmacologic measures

after thioguanine Dosing recommendations for thioguanine

Homozygous wild-type or
normal, high activity (two
functional �1 alleles)

�1/�1 Lower concentrations of TGN metabolites,
but note that TGN after thioguanine are
5�103 higher than TGN after
mercaptopurine or azathioprine

Start with normal starting dose. Adjust
doses of thioguanine and of other
myelosuppressive therapy without any
special emphasis on thioguanine. Allow
2 weeks to reach steady state after each
dose adjustment

Heterozygote or intermediate
activity (one functional allele—�1,
plus one nonfunctional allele)

�1/�2, �1/�3A,
�1/�3B, �1/�3C,
�1/�4

Moderate to high concentrations of TGN
metabolites, but note that TGN after
thioguanine are 5�103 higher than TGN
after mercaptopurine or azathioprine

Start with reduced doses (reduce by
30�50%) and adjust doses of thioguanine
based on degree of myelosuppression and
disease-specific guidelines. Allow 2�4
weeks to reach steady state after each dose
adjustment. In setting of
myelosuppression, and depending on
other therapy, emphasis should be on
reducing thioguanine over other agents

Homozygous or compound
heterozygous variant, mutant,
low, or deficient activity (two
nonfunctional alleles)

�3A/�3A,
�2/�3A,
�3C/�3A,
�3C/�4, �3C/�2,
�3A/�4

Extremely high concentrations of TGN
metabolites; fatal toxicity possible without
dose decrease

Start with drastically reduced doses
(reduce daily dose by 10-fold and dose
thrice weekly instead of daily) and adjust
doses of thioguanine based on degree of
myelosuppression and disease-specific
guidelines. Allow 4�6 weeks to reach
steady state after each dose adjustment. In
setting of myelosuppression, emphasis
should be on reducing thioguanine over
other agents. For nonmalignant conditions,
consider alternative nonthiopurine
immunosuppressant therapy

Adapted from Relling MV, Gardner EE, Sandborn WJ, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and

thiopurine dosing. Clin Pharmacol Ther 2011;89:387�91. Note that this CPIC guideline also has TPMT-directed guidelines for mercaptopurine and azathioprine.
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TPMT-variant carriers when genotype data is
available [56]. Cost-effectiveness studies on TPMT
genotype directed thiopurine dosing have been
reported. However, they largely have concluded with
conflicting results [64�66].

Limitations of Testing: TPMT

Targeted TPMT genotyping will not detect any alleles
that are not directly interrogated so a negative genotyp-
ing result does not rule out the possibility that a patient
carries another TPMT. Full gene sequencing will detect
all TPMT variants, but rare or novel variants will likely
be of uncertain clinical significance. In addition, other
genes may influence responses to thiopurines, including
ITPA [1,10], which will not be detected by TPMT genetic
testing. Alternatives to TPMT genotyping are available
and include testing TPMT enzyme activity directly
and/or TPMT metabolites levels.

OTHER CONSIDERATIONS FOR
PERSONALIZED MEDICINE IN CANCER

TREATMENT

While pharmacogenetics can play a direct role in
some cancer treatments, it also plays a significant role
in supportive care for oncology patients. These patients
are often treated with additional medications to manage
pain, infections, and psychosocial distress (eg, antide-
pressants), and some of which have clinically actionable
pharmacogenetic gene variant associations.

Codeine and CYP2D6

Codeine is an opioid analgesic indicated for the relief
of mild to moderately severe pain. The analgesic
properties of codeine stem from its conversion to
morphine, which is predominately mediated by the
polymorphic CYP2D6 enzyme (tamoxifen and CYP2D6)
[67]. Importantly, CYP2D6 poor metabolizers are unable
to efficiently convert codeine to morphine and as
a consequence may not experience pain relief [68].
Conversely, CYP2D6 ultrarapid metabolizers may
metabolize codeine too efficiently leading to morphine
intoxication and toxicity [69]. These data have resulted
in several professional societies, including CPIC [70],
to recommend an alternate analgesic for CYP2D6
ultrarapid and poor metabolizer patients.

Antidepressants and CYP2D6

Significant evidence exists for a role of CYP2D6 gen-
otyping for individualized treatment with tricyclic

antidepressants, which also has prompted a recent
CPIC guideline [71]. For example, CYP2D6 poor meta-
bolizers treated with amitriptyline and nortriptyline
have impaired drug metabolism and increased risks of
side effects, whereas ultrarapid metabolizers have
elevated risks of reduced drug efficacy due to rapid
drug elimination. Similarly, evidence supporting a role
for CYP2D6 in SSRI response variability also exists and
a CPIC guideline on CYP2D6 genotype directed SSRI
treatment is currently in development (http://www.
pharmgkb.org/page/cpic).
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INTRODUCTION

The diagnosis of disease through the examination of
cells and tissues in pathology relies heavily on macro-
scopic, microscopic, immunologic, and biochemical anal-
yses. This discipline has been standardized over many
years and today makes use of modern technologies such
as immunohistochemistry (IHC), in situ hybridization,
flow cytometry, cytogenetics, electron microscopy, and
cytopathology, among others. Information obtained
from these protocols and technologies allows patholo-
gists to organize and correlate patient specimens in such
a way as to deliver a relatively uniform standard of care
and ultimately provide a meaningful diagnostic deci-
sion. Nevertheless, as new and more detailed molecular
information is gathered from the study of diseases in
terms of genomic, proteomic, and metabolomic altera-
tions, it is clear that new technology is desperately
needed to provide a way for this important molecular
information about an individual patient to impact clini-
cal care. These new technologies will ultimately lead to
better diagnosis, prognosis, and long-range outcomes.

The ongoing discovery and increased understanding
of the molecular basis of disease are revolutionizing the
practice and delivery of health care. Application of this
knowledge is most essential in the initial diagnosis of
disease by pathologists. Single markers for disease are
often found to be either unreliable or insufficient to
describe the increasingly complex molecular phenotypes
now known even in relatively simple diseases. It is
essential to rapidly and accurately assess a plurality of
disease biomarkers in a cost-effective and high-
throughput manner—a capability that has not yet been

realized by current anatomical pathology techniques in
the clinical laboratory.

Mass spectrometry (MS) technologies continue to
grow and provide central capabilities in the clinical lab-
oratory because of their high molecular specificity,
rapid analysis time, and cost-effectiveness in high-
volume analyses. Liquid chromatography tandem mass
spectrometry (LC-MS/MS) is now a standard analytical
technology in high-volume clinical laboratories used for
the analysis of body fluids (eg, serum, plasma, and
urine), vitamins, biomarkers of endocrine function, ther-
apeutic drugs and drugs of abuse, and toxicants [1�3].
Such assays are performed hundreds of thousands of
times daily in these laboratories. Although MS is excel-
lent for the analysis of analytes in solution, to the con-
trary, it does not currently provide a viable capability
in the clinical setting for anatomic pathology where the
correlation of molecular data with tissue morphology is
a major consideration.

Advanced laser-based imaging MS (IMS) technology
has been developed for the rapid analysis of tissues and
has matured to the point where the molecular specificity
of IMS can now be translated to the anatomic pathology
laboratory. A major strength of IMS lies in the unique
combination of the molecular specificity and sensitivity
of MS with the spatial information inherent in images of
tissue sections obtained from various forms of micros-
copy. It is a powerful tool to elucidate the molecular
phenotype of the tissue. Further, it does not require a
surrogate marker such as an antibody to detect the pro-
tein of interest but rather measures the molecules of
interest in their native state from the tissue section.
Moreover, MS can scan the entire mass range facilitating

517
Diagnostic Molecular Pathology

DOI: http://dx.doi.org/10.1016/B978-0-12-800886-7.00040-6 © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-800886-7.00040-6


the multiplex analysis of many analytes, such as those
formulated for signatures of disease. In all, the unique
performance capabilities of imaging by MS are well
matched to the current and future needs of anatomic
pathology, providing a molecular platform for the diag-
nosis, prognosis, and assessment of treatment modalities
for patients.

The early work using MS for imaging purposes in
the basic science laboratory goes back several decades
[4,5] and since then, many different MS technologies,
especially ionization methods, have been implemented
to perform imaging experiments [6]. The common fea-
ture of imaging ion sources is the capability to directly
irradiate the sample using a high energy beam of
photons, atoms, neutral molecules, or fine solvent dro-
plets with sufficient energy to ablate material from the
sample. This ablated material is ionized and then intro-
duced into the analyzer of the mass spectrometer. Over
recent years, several detailed reviews have been pub-
lished that describe these technologies from both a his-
torical and technological perspective, and the reader is
directed to these works for a detailed discussion of the
relative advantages of each approach [7�14].

This chapter will focus on matrix-assisted laser
desorption/ionization (MALDI) IMS for imaging tissue
specimens [4] and will review its current and potential
use in anatomic pathology. For simplicity, MALDI IMS
will be termed IMS from this point forward. This plat-
form has emerged as the most widely applicable of the
IMS technologies from the viewpoint of its use for the
analysis of biological materials, especially tissue sec-
tions. IMS can be applied to a wide range of different
types of biomolecules such as proteins [15], peptides

[16], lipids [17�23], metabolites [24,25], drugs [26�32],
and even biologically relevant metals [33�36]. The
modern IMS instrument has great speed because it
employs lasers having repetition rates of up to 10 kHz
coupled with high-speed analyzers such as time-of-
flight (TOF) analyzers. These instruments have high
sensitivity and mass resolution and also high molecular
weight (MW) capabilities. The lasers used are typically
UV lasers with wavelengths of approximately 350 nm.
In most commercial instruments, the laser spot size can
be focused to about 20�30 μm, ultimately providing
image spatial resolutions at this level [9]. Some MS
instruments modified or built in special research labo-
ratories have been reported to be capable of delivering
1�10 μm laser spot sizes [37�43].

IMAGING MASS SPECTROMETRY

IMS technology provides spatial information about
specific regions of tissue specimens using one of two
distinct but related acquisition modes: imaging and
profiling/histology-directed acquisition (Fig. 40.1). The
particular mode that is used will depend primarily on
the overall goal of the experiment, but also somewhat
on the specific instruments and accessories at hand.
Imaging acquisition is accomplished by ablating and
analyzing material from a uniform matrix coating or an
ordered array of spots across the tissue surface, with
each spot representing a pixel in the final images gener-
ated. Each pixel is associated with a mass spectrum
containing thousands of m/z values and their individ-
ual intensities. Specific molecular images are produced

FIGURE 40.1 Sample preparation and data acquisition workflow for MALDI IMS. (A) In a typical IMS workflow, matrix is deposited,
either by spray coating or spotting, and data are acquired over the entire tissue section. (B) In a histology-directed workflow, matrix is applied
in specific regions of interest annotated by a trained pathologist.
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by plotting the intensity of each of the measured peaks
over the entire array. Many hundreds of molecular
images can be produced from a single raster of the tis-
sue. On the other hand, profiling or histology-directed
profiling/acquisition provides similar molecular infor-
mation from specific spots or regions on the tissue as
determined by the investigator from other imaging
modalities, such as microscopy. In this way, specific
molecular information is spatially placed in the context
of a histological image. Often, full imaging and profil-
ing are frequently used together. For example, a few
representative samples may be fully imaged at high
spatial resolution to complement and validate a larger
profiling experiment, which may be performed on hun-
dreds of patient specimens.

Sample preparation protocols for full imaging and
histology-directed profiling of a tissue section are simi-
lar and can be applied to frozen sections as well as
formalin-fixed paraffin-embedded (FFPE) sections.
Fresh frozen tissue samples are sectioned on a cryostat
to a thickness of approximately 5�20 μm. For protein
analyses, the tissues are washed to remove lipids and
salts (which interfere with matrix crystallization and
may cause ionization suppression) and to dehydrate
and fix the proteins while maintaining tissue architec-
ture. This is typically achieved by successive washes in
graded ethanol (generally 70%, 90%, 95% for 30 s each)
[44�46] or other solvents [47]. Serial sections are often
obtained, where one is stained with hematoxylin and
eosin (H&E) and used to either guide deposition of
matrix on the other section (eg, in a histology-directed
fashion) or used to register a full MS image with its his-
tological counterpart. For the analysis of FFPE tissue
sections, the overall procedure is much the same except
that the last step requires trypsin digestion with the
application of a homogeneous spray coating of the
enzyme [48] or by individual spots on the tissue
[49,50]. This digestion step is needed to release pep-
tides from the protein cross-links induced by formalin.
The tryptic peptides released from the sample are sub-
sequently analyzed and identified by MS.

For the MALDI process to occur efficiently and
reproducibly over the entire section, the application of
matrix must be performed carefully to maintain unifor-
mity and to preserve spatial localization of the endoge-
nous analytes. Typical MALDI matrices are applied in
solution to tissues using protocols optimized for analyte
extraction, minimal analyte migration, and efficient
matrix crystal formation. Sinapinic acid is the matrix
primarily used for protein analysis, while α-cyano-4-
hydroxycinnamic acid is commonly used for peptides
and 2,5-dihydroxybenzoic acid is used for lipids and
small molecules. These are typical matrices and many
others have been reported, each having some specific
advantages for a given kind of analysis [45,51]. Matrix

is commonly applied robotically either as individual
spots or as a homogeneous spray. Manual application
of approximately 0.25�1 μL of matrix solution by
pipette also produces excellent MS signals and is often
used as a quick check to test and validate instrument
performance prior to data acquisition.

For profiling experiments, small accurately placed
spots are desired and this can be accomplished through
the use of automated robotic spotters [52]. Several com-
mercial instruments are available that are capable of
depositing pL volumes of solutions at specified coordi-
nates on the tissue. These result in matrix spots of
approximately 100�200 μm on tissue, with multiple
passes required for adequate analyte extraction and crys-
tal formation. Placement of individual spots has the
advantage of minimizing analyte migration to the diame-
ter of the matrix spot, but these usually are relatively
large and cover many cells.

For imaging, obtaining a homogeneous coating of
matrix on the tissue section is ideal and is accom-
plished by spraying the matrix solution over the tissue
section using robotic spray devices, electrospray, air-
brush, or glass reagent sprayers. The resultant spray
forms a thin layer of small crystals when dry. Several
commercial instruments are now marketed for this pur-
pose. The best results are obtained, either manually or
robotically, when the tissue is sufficiently wetted to
allow efficient extraction of analyte and where small
crystals are uniformly deposited over the surface of the
tissue. Optimal matrix application often takes multiple
cycles of spraying and drying to allow a crystal layer to
slowly build up on the tissue [45]. In this mode, the pri-
mary factor limiting the maximum achievable spatial
resolution is the diameter of the laser beam on
target, which is approximately 20�80 μm in diameter
using the default settings of commercially available
instruments.

Data acquisition is performed similarly for profiling
and imaging. Most mass spectrometer manufacturers
provide software to facilitate experimental design and
image acquisition. Precision stepper motors under soft-
ware control move the sample stage under the laser
focus position, and multiple shots are fired. UV lasers
are commonly used (N2 at 335 nm or Nd:YAG at
355 nm) and are capable of firing at repetition rates of
up to 10 kHz. Typically approximately 50�400 laser
shots are summed for a single average spectrum at each
given location. Tissue protein analyses are commonly
performed on TOF or TOF/TOF instruments, although
commercial hybrid quadrupole TOF and Fourier trans-
form ion cyclotron resonance (FTICR) instruments can
also be used. In these experiments, mass spectra range
from approximately 2000�50,000 Da. Higher MW pro-
teins over 200 kDa have been measured from tissue [53],
although the analysis is not routine and requires
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optimized instrumental parameters and typically addi-
tional acquisition time. The mass accuracy in the protein
mass range is approximately 10 ppm for state-of-the-art
TOF instruments.

After acquisition, these data are processed, by base-
line subtraction, noise reduction, and normalization
(eg, total ion current). For profiling features of interest,
detected peak areas that meet certain threshold criteria
(eg, minimal S/N and prevalence in a certain percent-
age of sampled spectra) are exported for biostatistical
analysis. To accomplish this, packaged software from
some MS vendors and third parties are readily avail-
able. For example, ClinPro Tools (Bruker Daltonics)
enables spectral preprocessing as well as statistical
evaluation (eg, average values, standard deviation,
and t-test) and classification (eg, via hierarchical clus-
tering, genetic algorithm, and support vector machine)
directly from the generated spectra. Image processing
may be performed on instrument-associated software
or exported into freely available third-party software
such as BioMap [54].

Signals, or peaks recorded in a mass spectrum, can be
identified in one of several ways. For low MW com-
pounds, up to 4�5 kDa, direct identification can be
accomplished using MS/MS-based IMS on the same tis-
sue section. For higher MW proteins (greater than
B5 kDa), more conventional biochemical techniques are
commonly used to isolate and identify proteins that
correspond to specific m/z signals resulting from
histology-directed protein profiling studies. In one
approach, tissue samples are suspended in lysis buffer
with protease inhibitors, homogenized, and prepared
for high-performance liquid chromatography (HPLC)
separation [55]. Individual fractions are analyzed by
MALDI MS and fractions containing the protein of inter-
est are further separated using one dimension SDS-
PAGE [56]. After staining, bands containing the MW
region with the m/z signals observed in the MALDI
spectra are excised from the gel, reduced, and alkylated.
Trypsin is added and the samples are digested. Peptides
are extracted from the gel and analyzed by LC-MS/MS.
Tandem mass spectra from the LC-MS/MS analyses are
then searched against a protein database using commer-
cial software. These data are filtered to a false discovery
rate of 5% with a requirement of two or more peptide
identifications per protein to obtain minimally
acceptable confidence in the identification. Recently, a
method was described for top�down protein identifica-
tion by directly sampling a tissue section via microex-
traction. This method was able to identify
approximately 50�100 proteins from a 1 μL extraction
with protein MWs in the range of approximately
5�20 kDa [57]. Another recently published approach to
identify the ions observed during IMS experiments
introduced the use of trypsin-containing hydrogels to

digest and extract proteins directly from small regions
(1�4 mm) of tissue [58,59]. The on-tissue hydrogel-
mediated digestion is performed subsequent to imaging
and provides a similar number of protein identifications
as traditional in-solution digests. This technique is able
to identify high MW proteins (100�500 kDa) directly
from tissue and retains information about spatial
localization.

APPLICATIONS TO ANATOMIC
PATHOLOGY

Histology-directed molecular analysis is most often
used when applying IMS to the analysis of clinically
important anatomic pathology investigations. In this
workflow, a skilled pathologist would inspect micro-
scopic images of thin tissue sections, suitably stained,
and fixed, to visually identify changes in cell morphology
and to locate regions indicative of disease. Presently,
characterization of disease subtypes often relies on tech-
niques such as IHC, which employs specific tagged
antibodies to visualize protein biomarkers at the cellular
and subcellular levels. However, IHC requires a
suitable antibody directed toward a single antigen in
order to be used effectively. Since IMS measures the dis-
ease markers directly and can accurately distinguish
modified proteins and protein isoforms [60], it is becom-
ing a major technology for the molecular characterization
of disease. IMS is able to target small clusters of approxi-
mately six to seven cells, as guided by a pathologist’s
input, and some research instruments are capable of pro-
filing a single cell. This requires a matrix spot diameter of
about 50 μm for small cellular clusters and about
10�20 μm for a single cell. By selectively targeting cells in
a histology-directed manner based on foreknowledge of
putative biomarkers or specific disease traits, the sensitiv-
ity and specificity of IMS will increase by minimizing
contributions from more numerous unrelated cell types
[61]. This task remains a challenge for current commercial
MALDI imaging/profiling platforms but promises to be
addressed in next-generation instruments to appear in
the near future. In its current state, IMS continues to be a
powerful tool that advances the understanding of and
treatment for significant clinical problems. As examples,
this review will summarize the application of IMS to dia-
betes and cancer.

Diabetes

It is critical to advance our understanding of diabe-
tes in a manner that leads to improved treatment and
outcomes. Diabetes is a long-term condition that ulti-
mately leads to a host of complications such as
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nephropathy, retinopathy, atherosclerosis, etc. Among
this spectrum of complications, diabetic nephropathy
(DN) is a serious condition that can progress to more
acute renal disease affecting approximately one in three
patients with diabetes.

Recently, Grove et al. examined lipid distributions
using IMS in the glomeruli and tubules of eNOS2/2

C57BLKS db/db mice, a model for type 2 DN [19].
Mouse kidney sections were imaged in a histology-
directed manner at 10 μm spatial resolution in negative
ion mode using an m/z range of 400�1500. Differences
in lipid distributions between control and diabetic
mice were observed for four lipid classes: gang-
liosides, sulfoglycosphingolipids, lysophospholipids,

and phosphatidylethanolamines (PEs). Within the first
class, two species had apparent differences—
N-acetylneuraminic acid (NeuAc)-monosialodihexosy-
lganglioside (GM3) and N-glycolylneuraminic acid
(NeuGc)-GM3, the hydroxylated form of NueAc-GM3.
Both species were specific to the glomeruli and
NeuAc-GM3 showed similar levels in diabetic, control,
and diabetic mice treated with pyridoxamine, a drug
that has been shown to slow the progression of early-
stage DN. However, NueGc-GM3 was significantly
higher in diabetic mice compared to control mice and
mice treated with pyridoxamine (Fig. 40.2). Disease-
specific expression of lysophospholipids, specifically
lysophosphatidylcholine and lysophosphatidic acid

FIGURE 40.2 Gangliosides NeuAc-GM3 and NeuGc-GM3 show distinct changes in diabetic glomeruli. (A) MALDI TOF IMS ion images
of m/z 1151.7 (NeuAc-GM3) and m/z 1167.7 (NeuGc-GM3) in kidneys from nondiabetic control mice, diabetic mice, and diabetic mice treated
with pyridoxamine. MALDI IMS was performed at 10 μm spatial resolution and compared with PAS staining of the same section to confirm
localization to glomeruli. (B) IMS of the signal at m/z 1167.7 and corresponding PAS staining showing the specific localization of NeuGc-GM3
to glomerulus. (C) Structures of gangliosides corresponding to the signals at m/z 1151.7 and m/z 1167.7 as identified using FTICR MS. The bar
graph (D) represents mean 6 SEM for three biological replicates per group analyzing 200 glomeruli total. The average signal per glomerulus
was determined in ImageJ and data were normalized to nondiabetic NeuAc-GM3. �P, 0.05, diabetic versus nondiabetic groups; ��P, 0.05,
diabetic versus diabetic1PM groups. PAS, periodic acid-Schiff. Source: Reprinted with permission from Grove KJ, Voziyan PA, Spraggins JM, et al.
Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res 2014;55:1375�85.
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species, was also observed in the glomeruli. These
lipids were significantly more abundant in diabetic
mice compared to control and pyridoxamine-treated
mice. Several sulfoglycolipids were also analyzed
and found localized to the tubules. These included
sulfogalactoceramide (SM4s), sulfolactoceramide (SM3),
gangliotriosylceramide sulfate (SM2a), and gangliote-
traosylceramide-bis-sulfate (SB1a). SB1a was increased in
diabetic mice compared to control mice and diabetic
mice treated with pyridoxamine. SM3 and SM4 did not
show differences in abundance among the three groups.
However, within the tubules these species localized to
histologically discrete regions.

PE species unique to the diabetic condition were also
detected from these mouse kidney sections. Unmodified
PE species did not change among treatment groups.
However, glucose-modified PE species were observed
in diabetic mouse kidneys, but not in kidneys from the
nondiabetic group.

In this study, IMS provided a more complete under-
standing of the molecular changes that occur in DN
and showed where in the tissue these molecular events
occur, providing unique insight into DN pathogenesis.
IMS is a powerful tool that can characterize the molecu-
lar signature of DN, and other diabetes complications,
on a large scale (ie, thousands of molecules per experi-
ment) in defined structural and cellular regions, thus
reducing confounding and nonspecific signals. This
technology offers the potential to reveal key molecular
changes that lead to disease progression and to identify
important targets for successful treatment.

Cancer

IMS has been applied to a number of cancer investi-
gations, covering a broad range of tissue types and dis-
ease stages, the analysis of human glioblastoma being
one of the first [62]. This work revealed the power and
potential of IMS to characterize and identify disease
states, predict outcomes, and advance the understand-
ing of cancer-specific processes [63]. Since then, IMS
has been applied to study: (1) the status of human epi-
dermal growth factor receptor 2 in cancer tissue [64,65],
(2) bladder cancer [66], (3) the identification of disease
origin in metastatic cancers, (4) Wilms tumor [67,68],
(5) pancreatic cancer [69], (6) lung cancer [70], as well
as others [63]. Here we summarize recent IMS investi-
gations and show how this technology helps drive the
understanding of disease at the molecular level.

Skin Cancer. According to the American Cancer
Society, in the United States skin cancer has more diag-
noses than any other cancer [71]. Two categories of skin
cancer include: (1) nonmelanoma skin cancer, which is
frequently diagnosed and cured, and (2) melanoma
representing less than 2% of the diagnoses, but a

disproportionate number of deaths. Approximately
73,000 new melanoma cases will be reported in 2015
[71]. At an early stage, melanoma treatment usually
results in a cure. However, as the cancer progresses to
stage III the prognosis is variable, with a 5-year survival
outcome falling between 24% and 70% [72].

Recently, histology-directed IMS was used to eluci-
date molecular markers that could subclassify patients
with stage III melanoma into groups likely to experience
recurrence or survival [72]. In the training set, several
proteins were detected at higher levels in the cancerous
tissues compared to control lymph node. These proteins
were used to establish a classification system for objec-
tively grading stage III melanoma. Four models were
developed, each of which had a recognition capability of
89.9% or greater and a cross-validation score of 92% or
higher. Seven proteins were correlated with survival
and two were associated with recurrence. The intensities
of these proteins were used to generate a compound
predictor score, which classified a patient with stage III
melanoma as poor or favorable for recurrence and sur-
vival (Fig. 40.3). This example illustrates the power of
IMS to characterize molecular expression in various spe-
cific tissue types and provide a diagnostic tool to clini-
cians for improved patient care.

Laser ablation inductively coupled plasma mass spec-
trometry was used to study melanoma in human lymph
nodes [73]. The study found that 31P readily distin-
guished the tumor from surrounding lymph tissue,
where higher levels of 31P indicated nontumor regions
and lower levels of 31P marked areas of tumor presence.
Development of this method may provide a diagnostic
tool and a means of sampling for metastatic melanoma
without surgical removal of biopsies [73].

Histology-directed IMS has been used to distinguish
Spitz nevi (SN)—benign melanocytic lesions—from
Spitzoid malignant melanomas (SMMs), which has been
a longstanding significant challenge in the field of der-
matopathology [74]. While there are recognized and veri-
fied histopathology standards for distinguishing SN and
SMM, these criteria are unable to classify atypical SN. A
training set of 26 SN and 25 SMM biopsies was used to
establish classification models for both tumor tissue and
dermis surrounding the tumor (ie, the tumor microenvi-
ronment). The models were applied to a test group of 30
SN and 33 SMM and accurately classified 97% of SN
cases and 90% of SMM cases when the tumor region was
analyzed. When the surrounding dermis was assessed,
the models properly identified 90% of the SMM cases
but only 64% of the SN cases. The success of the model
for dermis in SMM tissues may be due to higher levels
of secreted molecules (eg, cytokines) in the tumor micro-
environment compared to dermis in SN tissues [74].

In a case study, a pregnant woman was diagnosed
with a malignant melanoma lesion on her arm [75].
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After delivery of the child, it was apparent that he had
melanocytic lesions on his torso, but histological analy-
sis was inconclusive in determining if the lesions were
malignant or benign. IMS analysis classified the
mother’s lesion as malignant and the baby’s lesions as
benign. Furthermore, genetic analysis of the baby’s
lesions showed the presence of a Y chromosome, indi-
cating the lesion was indeed a congenital nevi and not a
metastasis from the mother. In this case, it is established
that the use of IMS technologies on clinical samples has
the potential to achieve the ultimate goal of improved
patient care and quality of life due to the avoidance of
unnecessary surgical procedures.

Cancer Margins. In many cases when cancer is diag-
nosed, the treatment strategy includes surgical resec-
tion, and the extent to which the tumor can be
removed influences chances of survival or recurrence
[76,77]. It has become evident that the current estab-
lished methods for assessing tumor margins during
surgery do not lead to complete excision of the malig-
nancy in all cases [77,78]. Traditionally, tumor margins
are determined visually and tactually during surgery,
but intraoperative optical imaging methods are becom-
ing more prominent to visualize the molecular tumor
margin, allowing surgeons to more accurately assess
tumor boundaries [77,78]. Research that continues to

characterize and define tumor molecular margins will
lead to improved markers and outcomes by reducing
disease recurrence.

IMS has been used to study the molecular tumor mar-
gins of clear-cell renal cell carcinoma (ccRCC) [76]. The
results show that histologically normal cells outside of
the visual tumor margin are molecularly abnormal, in
contrast to the conclusion rendered by morphological
analysis alone. As an example, proteins of the electron
transport system showed lower abundance in ccRCC
tumors compared to normal tissue. Tissue outside of the
histologically determined margin also exhibited this
lower expression pattern similar to that observed in
ccRCC tumors. This effect is postulated to be due to
secretions from adjacent tumor cells, infiltration of normal
tissue by microfoci of tumor cells, and/or to malignant
transformation of cells in the tumor microenvironment to
some degree, but not to the extent that the cell is visually
affected [76]. This exemplifies the necessity of molecular
analyses to help define cancer margins. IMS is an effec-
tive tool for such analyses as it can detect thousands of
molecules specific to tissue regions with 5�10 μm spatial
resolution, providing molecular signatures to discrimi-
nate cancer from healthy tissue [76].

Prostate Cancer. Prostate cancer is projected to be
the second leading cause of cancer in the male

FIGURE 40.3 Evaluation of melanoma by histology-directed IMS. (A) Histology-directed MALDI IMS. Cellular regions are selected by a
pathologist to ensure melanoma foci are targeted. (B) The MALDI spectra from these regions were averaged and compared by SAM (control
LN vs tumor-positive LN) and by CPH to determine proteins associated with survival and recurrence. SAM, significance-analysis-of-microar-
ray; LN, lymph node; CPH, Cox proportional hazard. Source: Reprinted with permission from Hardesty WM, Kelley MC, Mi D, Low RL, Caprioli
RM. Protein signatures for survival and recurrence in metastatic melanoma. J Proteomics 2011;74:1002�14.
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population in 2015 [71]. Chances of survival are nearly
100% for local and regional cases. However, survival
drops to 28% among patients with distant metastases.
Once prostate cancer is diagnosed, the ability to deter-
mine disease aggressiveness is challenging due to the
heterogeneity of the disease at each stage [79]. Various
imaging modalities, including MALDI IMS [79],
have been developed to improve tumor classification
and identify biomarkers for prostate cancer [80].
Summarized below are IMS studies that have identified
distinguishing features of several prostate cancer
stages.

In the first study applying IMS to human prostate
tissue, cancerous and noncancerous sections were
assessed to determine a proteomic pattern for tissue
classification [81]. Proteins were imaged between 1 and
20 kDa, and many were found to display distinct differ-
ences in expression between cancerous and noncancer-
ous regions. A classification model was established that
distinguished between these two regions with cross-
validation, sensitivity, and specificity scores of 88%,
85%, and 91%, respectively. This work did not identify
the differentially expressed proteins, but provided a
first step and proof-of-concept for the utility of IMS in
classifying tissue samples not readily distinguished by
classic histology techniques [81]. A similar study was
conducted by investigators who identified and con-
firmed through IHC the ability of a mitogen-activated
protein kinase/extracellular signal regulated kinase 2
fragment to distinguish between cancerous and non-
cancerous prostate tissues [82].

To optimize the distinction of prostate cancer from
healthy tissue, investigators combined two techniques,
IMS and texture analysis [83]. For the texture analysis,
tissue sections were scanned with a high-magnification
digital microscope and the textures were assessed. The
analysis examined 13 features that discriminated
between healthy tissue and prostate cancer regions: 11
gray-level run length matrix features (eg, short and
long run emphasis, high and low gray-level run
emphasis, and run-length nonuniformity), average
pixel value, and variance of the pixel values. IMS pro-
filed peaks from 2 to 45 kDa. Features (ie, texture fea-
tures and peaks) were selected that best classified the
tissue regions into noncancerous or cancerous. The
two datasets were computationally combined to opti-
mize a classification model utilizing both techniques.
Representative results from one of three experiments
showed that the texture analysis alone had a sensitiv-
ity and specificity of 87% and 75%, respectively, while
the MALDI analysis resulted in 51% and 100% sensi-
tivity and specificity, respectively. When combined,
the sensitivity improved compared to the MALDI
(80%) and the specificity improved compared to tex-
ture analysis (93%) [83].

COMPUTATIONAL APPROACHES IN IMS

Image Fusion

Many IMS experiments utilize or can benefit from
additional, complementary images that have been
acquired via other modalities, such as microscopy. At a
minimum, these ancillary images provide guidance for
histology-directed imaging or can be overlaid with ion
images to provide an anatomical reference for ion dis-
tributions. Beyond this, these complementary sources
of data can be used together to provide additional
insight by computationally combining the results. This
approach, called image fusion, was recently published
and the discussion herein comes from that work [84].

When a tissue section is imaged using separate
modalities, there is usually an observable set of com-
mon features in the patterns acquired. These correlat-
ing spatial patterns enable recognition of the same
anatomical region within different modalities, even if
they are acquired at different spatial resolutions. When
these patterns are analyzed and combined via an algo-
rithm, a wealth of new information can be gained.

The field of image fusion captures these cross-
correlations in a mathematical model [85,86] in order to
relate the patterns observed in one imaging modality
(eg, IMS) to correlating measurements in the other
modality (eg, microscopy). These correlations facilitate
several predictive processes in IMS, such as sharpening
ion images to higher spatial resolutions, predicting ion
distributions in regions that were never analyzed via
IMS but only by another imaging modality, and
enhancing biological signals while minimizing artifacts.
All of these applications are examples of a new multi-
modality concept for tissue exploration whereby min-
ing relationships between different imaging techniques
yield a novel imaging modality that combines and sur-
passes what can be gleaned from the source technolo-
gies alone [84].

The concept of sharpening IMS images was
inspired by developments in remote sensing and satel-
lite imaging [87]. In the latter case, the concept of pan-
sharpening was introduced, where a high-resolution
pan-chromatic (gray-level) image and a low-resolution
color image were merged into a single high-resolution
color image. Such a sharpening procedure provides a
mathematically verifiable way of estimating higher
spatial resolution versions of IMS datasets and can
surpass the physical spatial resolution capabilities of
the instrument. However, given the difference in mea-
surement principles and sources of distortion, the
algorithms and implementations from the satellite-
imaging field cannot be transferred readily to IMS. A
custom sharpening algorithm was developed specifi-
cally for MS data to facilitate the transformation of an
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ion image acquired at a set spatial resolution (eg,
100 μm) into a higher resolution estimate (eg, 5 μm) of
that same ion image using the information gleaned
from an accompanying tissue image, such as a stan-
dard H&E stain or a specialized immunohistological
stain (Fig. 40.4) [84].

The image fusion workflow can be separated into
three broad steps. The first step is to build a data set of
locations for which data from both modalities have been
recorded. The result is a database of microscopy loca-
tions for which both RGB and IMS data are available,
and also a list of microscopy locations for which the IMS
variables can be estimated since they were not physi-
cally measured. The second step is to build a cross-
modality model that mathematically links variables
from one modality (eg, m/z bins or peak m/z ratios in
IMS) to variables in the other modality (eg, red, green,
and blue in microscopy). Once a database of IMS-to-
microscopy instances has been constructed, building a
cross-modality model becomes a task of multivariate
regression, a well-documented process in statistics
[85]. The general linear model, and subsequently the
partial least squares regression were used. In prelimi-
nary experiments, these models showed impressive

performance and were able to link most of the patterns
that showed high contrast in both modalities. Once a
model is built it can be treated as a predictor, using
microscopy values as inputs and producing estimated
IMS values for missing pixels in MS images. The model
can then be used to predict ion intensity for various m/z
ratios at those pixels for which only microscopy mea-
surements are available. The result is an estimated ver-
sion of an ion image at a higher spatial resolution. The
target resolution can be put anywhere between the IMS
and microscopy resolutions, as dictated by the biological
application and with the knowledge that a lower up-
sampling factor means higher reliability [84].

In addition to sharpening the fusion process can also
provide additional ways to utilize IMS data. These
applications include the capability to predict molecular
distributions in tissue regions not measured by IMS but
only by microscopy and to enhance molecular discov-
ery through multimodal enrichment and denoise IMS
data. A fusion-driven separation of measurements into
modality-specific or cross-modality supported varia-
tion provides crucial information toward increasing
instrumental sensitivity, which is not available in
single-technology analysis.

FIGURE 40.4 Concept of image fusion of IMS and microscopy. Image fusion generates a single image from two or more source images,
combining the advantages of the different sensor types. The integration of IMS and optical microscopy is given as an example. The
IMS�microscopy fusion image is a predictive modality that delivers both the chemical specificity of IMS and the spatial resolution of micros-
copy in one integrated whole. Each source image measures a different aspect of the content of a tissue sample. The fused image predicts the
tissue content as if all aspects were observed concurrently. Source: Reprinted with permission from Van de Plas R, Yang J, Spraggins J, Caprioli RM.
Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nat Methods 2015;12:366�72.
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Three-Dimensional Imaging

Recently, images acquired via various MS techniques
have been reconstructed into three-dimensional (3D)
molecular ion images [88�91]. In a few cases, the result-
ing 3D images were coregistered with images acquired
through magnetic resonance imaging (MRI) to produce
overlays for comparing specific molecular information
with anatomical features [92�94]. Examples include
imaging whole heads from mice containing brain
tumors [94], analysis of systemic Staphylococcus aureus
infection in mice and the effect of linezolid treatment
(Fig. 40.5) [92], and imaging of mouse kidney [93]. These
data provide valuable insight into clinically significant
issues [92,94]. Through the application of image fusion,
the analysis of MR and MALDI images can be further

refined to include such processes as discussed above—
sharpening, denoising and enrichment of specific sig-
nals, and even prediction of molecular signals in regions
not imaged by MALDI. While these studies are prelimi-
nary, they promise a remarkable and informative view
of the molecular composition within specific anatomical
regions and pathological processes.

CONCLUSIONS

The ability to measure and provide insight into the
molecular basis of disease has advanced remarkably in
the previous decade. Where classical macroscopic,
microscopic, and biochemical investigations are limited,
genomic, proteomic, and metabolomic studies can

FIGURE 40.5 Three-dimensional integration of MALDI IMS and MRI for imaging the inflammatory response to infection. (A and B)
Orthogonal blockface and MRI slice data of linezolid-treated mouse with overlaid (A) alpha-globin protein density (m/z 5020) and (B) calgra-
nulin A protein density (m/z 10,165) volume renderings. (C and D) Orthogonal blockface and MRI slice data of untreated mouse with overlaid
(C) alpha-globin protein density (m/z 5020) and (D) calgranulin A protein density (m/z 10,165) volume renderings. (E and F) Protein density
(m/z 5020) from (E) linezolid-treated and (F) untreated mice superimposed on whole mouse image. The data in all panels are presented as
arbitrary units of intensity from 0 (dark red) to 1 (white). Source: Reprinted with permission from Attia AS, Schroeder KA, Seeley EH, et al.
Monitoring the inflammatory response to infection through the integration of MALDI IMS and MRI. Cell Host Microbe 2012;11:664�73.
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inform biologists and clinicians of disease diagnosis,
prognosis, and treatment. However, despite these
advancements there remain numerous diseases and con-
ditions that elude a molecularly specific and confident
diagnosis, that could have a better prognosis if the dis-
ease were detected at an earlier stage, or for which indi-
vidual treatment options would vastly improve
outcomes. As reviewed here, IMS plays an important
role in advancing our knowledge of disease at the molec-
ular level. It can determine and monitor molecular mar-
kers that characterize disease stage or disease type where
histology is inconclusive, leading to more accurate diag-
noses. Further this technology can reveal previously
unknown molecular changes associated with a disease
stage, providing more reliable prognoses and can aid in
the elucidation of disease pathogenesis, leading to effec-
tive therapeutics. The ultimate goal is for the use of IMS
technology to improve clinical care and patient
outcomes.

While IMS technology has developed greatly over
the last decade, it is still relatively new and not yet a
standard analysis technique in the clinical laboratory.
Current technological developments in progress aim to
facilitate the integration of IMS as an everyday tool for
clinical pathologists. For example, the development of
software to automate the process of transferring tissue
annotations to regions of interest and registering anno-
tated optical images with the MALDI image is forth-
coming. Precoated slides have also been produced
[95�98] to improve throughput and reproducibility.
Furthermore spatial resolution is improving, with the
capability to perform analyses at 5 μm [38,42,43] and
even 1�2 μm spatial resolution [39�41]. This provides
enhanced molecular specificity for tissues with
detailed anatomical structure and in some cases pro-
vides cell-specific resolution. Lastly, the combination
of IMS data and other imaging outputs through image
fusion [84] provides a powerful technique that will be
of certain value in the clinical setting. Where MRI or
histology can be used to assess morphological and
pathological changes, IMS can provide highly specific
molecular information.

IMS technology is well suited for clinical applications.
It has already proven to aid in better patient care [75].
Future applications should only increase the power of this
technique to bring spatially distinct molecular specificity
that can inform diagnosis, prognosis, and treatment.
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INTRODUCTION

Genome-scale sequencing technologies have trans-
formed clinical diagnostics and will continue to propel
the field of molecular pathology forward over the next
several years. Since their demonstrated success in genetic
diagnosis a few years ago [1,2], whole exome sequencing
(WES) and whole genome sequencing (WGS) have been
adopted as a clinical test by several diagnostic laborato-
ries. Genome sequencing is likely to significantly change
the way that physicians, laboratories, and genetic counse-
lors handle genetic testing. While this technology has
made the opportunity for genetic testing more widely
available to patients, it has increased the number of
uncertain results. In addition, guidelines for best prac-
tices are currently evolving in order to deal with impor-
tant issues brought up by the use of genome-scale
sequencing as a clinical diagnostic test, including
informed consent and reporting of incidental findings.
The potential for WGS to uncover the full spectrum of
genomic pathogenic contribution to disease—both coding
and noncoding—ensures this technology will continue to
be developed for clinical use, but the challenge will be
storing, interpreting, and reporting the wealth of infor-
mation produced by this type of testing.

The methodology, time, and cost involved in
sequencing a whole human genome have changed
drastically over the last decade [3] (Fig. 41.1). An
increasing number of academic and private laborato-
ries certified by the College of American Pathologists
and Clinical Laboratory Improvement Amendments
are offering genome-scale sequencing tests, in order to
aid diagnosis of rare heritable diseases or for detecting

mutations in cancer. The indications for genome-wide
testing are expanding and span the spectrum between
neonatal emergencies and adult mystery conditions
where the diagnosis cannot be made based solely on
clinical symptoms [4,5]. In this chapter, we discuss
how genomic sequencing is currently being used in
the molecular diagnostic laboratory and discuss the
ways in which it is likely to be applied in the future.

MOLECULAR TECHNOLOGY

Both WGS and WES are considered next-generation
sequencing (NGS) or massively parallel sequencing
techniques, aimed at generating base level coverage
across the coding regions of the genome and beyond,
and collectively can be referred to as clinical genomic
sequencing (CGS). Although the majority of disease-
causing variants that we know about reside within
coding regions of the genome, WES only captures
1�2% of the genome. Thus, the capability of WGS to
capture the full potential spectrum of genomic patho-
genic contribution to human disease—both coding and
noncoding—will require continued optimization to
improve clinical utility.

Prior to NGS-based genomic testing, physicians
evaluating a patient might develop a differential diag-
nosis that included the possibility of mutations in
many different genes that could potentially cause their
patient’s phenotype. The genetic testing process might
sequentially evaluate one condition at a time using a
combination of molecular and biochemical tests. CGS
offers a more comprehensive and efficient approach to
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testing all potentially causative genes at the same time.
Thus, CGS exists at the end of a spectrum comprised
of single gene tests, gene panels, and genome-scale
sequencing tests. For those conditions caused by muta-
tions in only one or a few genes, CGS may not be prac-
tical, and instead its application is best suited to
genomically heterogeneous conditions. Depending on
the number of genes that are known to cause the
condition, and the extent to which the laboratory will
further pursue novel findings, the use of CGS over
NGS-based gene panels, which provide great coverage
of the targeted genes, will have to be weighed. Even
between WES and WGS, the technological differences
between these two comprehensive approaches results
in relative advantages and disadvantages which must
be weighed in order to choose the right CGS test given
the clinical application.

Although WES targets the majority of known
disease-causing mutations, WGS may provide more
consistent coverage of all genomic regions, including
the exome, in a technically efficient manner that can
increase turnaround time and limit biases introduced
by target enrichment or amplification. On the other
hand, WGS typically results in a 100 GB data file (com-
pared to 25 GB for WES), so the need for computa-
tional and storage capabilities is increased. Both
technologies are prone to mapping and alignment
errors in homologous or repetitive genomic regions,
and full coverage of clinically relevant genes may be
lacking [6]. CGS is indicated for those individuals in
whom a genetic etiology is strongly indicated. The test
can detect substitutions, small insertions and deletions,
inversions, and rearrangements. Given the large

number of potential findings in each patient, the stan-
dards for reporting variants are still being developed.
Laboratories have developed different reporting
thresholds for variants of uncertain significance, with
respect to the possibility that they may play a role in
the patient’s condition.

Limitations of CGS

The impulse to order CGS in those patients who are
difficult to diagnose, must be tempered by an under-
standing of the test limitations. Sequencing is simply
not able to detect many clinically relevant genomic
changes that for some conditions comprise the bulk of
causal pathogenic changes. For example, the majority
of hereditary spinal motor neuropathy is due to dele-
tion of exon 7 in SMN1 and is modified by duplication
of SMN2 [7]. As CGS is limited in its ability to detect
copy number changes, it is not an appropriate first-line
test for these patients. CGS is also unable to reliably
detect low-level mosaicism, imprinting, or uniparental
disomy, although optimizing CGS for some of these
applications is an ongoing area of research. For detect-
ing rare causes of Mendelian disease, the laboratory
may routinely apply an allele frequency filter to
sequence variants. In some cases, the laboratory must
customize their bioinformatics pipeline to confidently
detect particular types of pathogenic variants. Two
examples are the Factor V Leiden thrombophilia-
associated variant, R506Q, which is the reference allele,
and the common CFTR Phe508del variant, which can
be misaligned due to shifting of reads with the dele-
tion, or might be inadvertently filtered out due to its

FIGURE 41.1 Cost of sequencing. The cost
of sequencing per genome is depicted over
time. Since the initiation of the Human
Genome Project, when genome sequencing
was a multimillion-dollar proposition, the
contributions of federally funded researchers
and for-profit biotechnology companies have
enabled the development of massively parallel
sequencing platforms capable of generating
sequence data at a fraction of the cost. These
advancements have driven the cost of
sequencing a human genome below $10,000
and will almost certainly continue to push
costs toward the $1000 genome milestone. It
should be noted that these costs only reflect
the technical side of sequence generation and
do not address the interpretive costs.

532 41. WHOLE GENOME SEQUENCING IN THE MOLECULAR PATHOLOGY LABORATORY

VII. THE FUTURE OF MOLECULAR TESTING



high frequency in the population [8,9]. In these cases,
it may be necessary for the laboratory to manually
search for these variants or customize their pipeline to
consistently identify known pathogenic (KP) variants.
Subsequently, the laboratory must validate the sensi-
tivity and specificity of their detection. If any targeted
regions are not well covered, as is often the case for
the first exon of many genes, these areas should be
highlighted in the reported results.

While the costs of CGS are still formidable
(B$10,000 for WGS and B$5000 for WES), comprehen-
sive genomic testing can make sense for genetically
heterogeneous Mendelian conditions and may result in
time and cost savings compared to the traditional
gene-by-gene approach. Instead, it can be argued that
the greatest challenge in the clinical application of
WGS is interpreting the large number of variants iden-
tified by this type of testing. The initial automated var-
iant analysis typically involves annotation of key
metrics, including genomic position of the variant, fre-
quency within the general population, and predicted
effect, as well as quality and depth of the sequencing
run. Ultimately, variants of interest must be manually
investigated through review of the primary literature,
use of genome browsers, and online variant databases.
Over 100 filtered variants may need to be evaluated in
any one individual [10]. As a result, the manual vari-
ant curation step has necessitated an expansion in lab-
oratory personnel and is generally one of the most
time-consuming aspects of WGS.

In order to limit and prioritize the number of var-
iants that need to be manually analyzed, many labora-
tories first filter for variants present within a list of
genes known to be related to the patient’s presenting
phenotype. If no pathogenic variants are identified in
this initial diagnostic list, the laboratory can subse-
quently reflex into analyzing variants present on a
broader diagnostic gene list. If the clinical diagnosis is
unclear, analyzing a broader diagnostic list encom-
passing all of the possible causal genes might make
sense to analyze initially, but increases the workload
in terms of the number and breadth of variants that
need to be evaluated.

Interpreting Variants in CGS

CGS-identified variants are classified as KP, likely
pathogenic (LP), known benign (KB), likely benign
(LB), or a variant of unknown significance (VUS). The
American College of Medical Genetics and Genomics
(ACMG) has recommended guidelines regarding the
implementation of this classification scheme for molec-
ular laboratories [11]. Variants generally start as VUS
and are upgraded or downgraded depending on the

supporting evidence. Published genetic and functional
data, frequency of the variant in the general popula-
tion, its conservation among species, the incidence of
the disease, the demonstrated mode of inheritance,
expression, and penetrance of the condition, and the
number of independent reports demonstrating the seg-
regation of the variant with disease, are used as sup-
porting evidence (Fig. 41.2). In silico prediction
programs designed to score the effect of a missense
change do not provide strong evidence on their own,
but can be used as mild supportive evidence if all
models agree. While truncating variants are presumed
to have a deleterious effect on the protein, they may
not necessarily be pathogenic, particularly if they occur
at the very 3’ end of the gene where nonsense-
mediated decay may not occur. In such cases, the
known mutation spectrum of the disease can help
determine whether a novel truncating variant is LP or
a VUS. The VUS category is appropriate for those var-
iants in which the evidence does not clearly support
classification in the pathogenic or benign categories.

CGS Returns Many Variants of
Uncertain Significance

For KP or LP variants with strong supporting evi-
dence, the laboratory may recommend targeted testing
of other family members and appropriate medical man-
agement changes for those individuals carrying the vari-
ant. Many of the variants currently being returned to
patients in CGS reports are VUS, and these would not be
reported with any recommendations for targeted testing
or change in medical management, as the pathogenicity
of the variant is unclear. In these cases, the laboratory
can offer family testing if that had not been done at the
outset in order to evaluate the presence or absence of the
VUS in affected and unaffected family members.
Presence of the VUS in affected family members, particu-
larly first-degree relatives who have a 50% chance of
having inherited the proband’s variant, does not prove
the variant is causal. However, failure of the variant to
segregate with affected family members or the presence
of the VUS in unaffected family members can provide
moderate to strong evidence against pathogenicity,
depending upon the penetrance of the condition. For all
reported variants, the laboratory can recommend clinical
testing via a separate modality that would be meaningful
to the interpretation of a particular variant. In some
cases, follow-up clinical testing will reveal a histological,
radiological, or biochemical result that either supports or
is inconsistent with the original molecular findings. In
this case, it is useful for physicians to report this back to
the laboratory so that they can more accurately adjudi-
cate the pathogenicity of that variant in the future.
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For most genomic variants, there is a significant
lack of genetic, functional, and clinical evidence, and
their current classification as VUS is likely to evolve.
As more people are sequenced clinically, it will help
define the true frequency of variants in cases and con-
trols and will facilitate genotype�phenotype correla-
tions. Variants previously deemed pathogenic, which
may have relied on small internal control populations,
have since had their pathogenicity downgraded simply

by noting that their allele frequency is much too com-
mon in the general population to be considered patho-
genic for a rare disease [12]. The exome aggregation
consortium has frequency information for over 60,000
individuals, so it is now possible to obtain more pre-
cise allele frequencies for many variants than we had
previously, at least for those present in the exome [13],
although phenotypic details for this dataset are not yet
publically available.

FIGURE 41.2 Validation of discoveries from genome sequencing. In genetics research aimed at the discovery of new gene�disease asso-
ciations, generation of sequence variant data is now far more straightforward than demonstrating causality or defining mechanisms of disease.
This has led to an explosion of studies implicating genes as candidates for various monogenic disorders. Clinical phenotyping, family segrega-
tion studies, in vivo animal models, in vitro studies, and other evidence types must complement genetic variant data. The challenge of demon-
strating causality for very rare disorders will also impact the ability of variants to be interpreted in the molecular diagnostic laboratory.
Diagnosticians must therefore be able to evaluate the evidence supporting a gene�disease association and determine whether a particular
finding meets a sufficient threshold of clinical validity to be returned in the setting of clinical molecular diagnostic testing.
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The use of trios at the outset can facilitate CGS anal-
ysis, particularly for those conditions that are known
to be recessive (because phase can be determined) and
those conditions for which a large number of patho-
genic variants are generated de novo (because variants
not present in either parent can be quickly identified),
such as intellectual disability/autism [14], or certain
seizure conditions [15,16]. Although some laboratories
are reporting variants in novel genes, simply relying
on trio-based testing to report de novo variants in
novel genes, or genes with a weak disease association
as pathogenic may result in false positives. The distinc-
tion between reporting variants in a known disease
gene versus novel candidate genes will result in differ-
ences in the diagnostic rate reported for WGS among
laboratories. Currently, the average diagnostic yield
for CGS is around 15�40%, depending upon the condi-
tion being tested, and whether trios are tested simulta-
neously [10,17].

Incidental Findings and the Ethical, Legal, and
Social Implications of CGS

CGS will inevitably uncover incidental findings
unrelated to the patient’s primary condition. A small
number of these variants will be pathogenic for rela-
tively penetrant conditions, for which medical inter-
ventions exist. The ACMG has issued guidelines
regarding the return of incidental findings [18], and
the current consensus is that pathogenic variants in a
list of 56 medically actionable genes should be
reported if the patient chooses to receive them. Studies
are currently looking at how often these secondary
findings are encountered, how best to report them, as
well as understanding how people differ in their pref-
erence to find out about different categories of second-
ary results. Although the finding of a mutation that
highly predisposes to disease in an asymptomatic indi-
vidual does not provide a medical diagnosis, it can still
produce a great deal of anxiety and worry. For many,
CGS will be viewed as the opening of Pandora’s box.
Parents may learn things about their children or about
their ex-spouse. Individuals may learn about predispo-
sitions to develop disease that they cannot do anything
about. These issues warrant a better understanding of
the ethical, legal, and social aspects of applying geno-
mic testing clinically.

Given how impactful comprehensive genomic test-
ing information is, genetic counselors must include in
their discussions the potential return of secondary
findings during the enrollment and return of results
process. People are not uniform in terms of what they
want—some people may want to learn all of their

results at the same time, but there will always be some
people who do not want to know everything [19]. This
may be particularly true for conditions that are severe
and we cannot do anything about, such as
Huntington’s, but is also highly influenced by people’s
personal histories. Thus, patient preferences should be
considered when developing guidelines regarding
how consenters, laboratories, and reporting clinicians
handle WGS test results. This awareness has been
reflected in part by the recent update of the ACMG’s
guidelines on incidental findings to include an opt-out
for receipt of incidental findings. It will be particularly
important for practitioners to be aware of the wishes
and privacy of minors—will we allow their parents to
receive WGS results that are entered into their medical
record? Will parents know of their children’s carrier
status? If this sort of information is going to be clini-
cally utilized, protections on health information must
be sought in parallel, and this is currently an area of
legislation [20].

DOES WGS ADD CLINICAL UTILITY?

The ability of WES to provide a molecular diagnosis
in a significant fraction of previously undiagnosed
patients suspected to have a monogenic condition is
clear. However, WGS is not yet routinely used in clini-
cal care. While the computing and data storage issues
continue to pose a challenge for routine clinical use of
WGS, it is also unclear whether WGS will add any
clinical benefit to patients. Because of more consis-
tently even coverage across the genome, WGS may
allow for more accurate detection of copy number var-
iants (CNVs) that play a significant role in many dis-
eases. A recent report demonstrated the ability of WGS
to significantly increase the diagnostic yield for some
patients, even after microarray and WES, and many of
these were CNVs [17]. In addition to its potential to
call CNVs more reliably, WGS does not solely target
the exome, and therefore is able to identify variants in
the rest of the genome. The defined noncoding geno-
mic regions that could theoretically be a source of
pathogenic variants include enhancers and repressors,
insulators, locus control regions, and repetitive regions
(Fig. 41.3). The challenge resides in being able to ascer-
tain that a WGS-identified variant indeed falls within
one of these important regions, and having enough
information on the variant to report it as pathogenic.
While coverage of more of the genome is achievable
with WGS, the clinical relevance of these regions has
not yet been established, and targeted approaches may
achieve higher average coverage of the most clinically
relevant variants (Fig. 41.4).

535DOES WGS ADD CLINICAL UTILITY?

VII. THE FUTURE OF MOLECULAR TESTING



The Clinical Relevance of Noncoding Regions
of the Genome Is Unclear

A number of molecular genetic techniques have
recently been developed to define and characterize the
landscape of genomic regulatory regions [21,22]. These
include ChipSeq, DnaseSeq, FaireSeq, chromatin con-
formation techniques, cap analysis of gene expression,
as well as bioinformatics-based approaches and are
used to identify transcription factor binding motifs,
ultra-conserved elements, physically interacting
regions of the genome, and regions of open chromatin
associated with transcription control. Many other non-
coding genomic regions have been defined, including
mini, micro, or satellite repeats, SINE and LINE ele-
ments, and DNA and LTR retrotransposons [23]. As
the function of these noncoding regions are validated,
and as variants are identified in them that are present
in cases and not controls, one could imagine that in
the future, CGS may expand to include the return of
variants in these more distal genomic regions if the
clinical context fits with the genes or pathways pre-
dicted to be disrupted by the testing. Currently
though, this sort of result would be considered a
research finding and would have somewhat question-
able clinical value. Until more genomes are sequenced,
and functional studies are done on candidate variants,
demonstrating the relevance of most of these noncod-
ing variants to clinical phenotypes will be impossible.

It is presumed that many of the disease-associated
variants lying outside of coding regions are located

within functional enhancers or other regulatory
regions of the genome. Enhancers are distal regulatory
elements that often reside 10,000�100,000 nucleotides
from their target gene. Variants located within tran-
scriptional enhancers (or repressors) can disrupt
sequence motifs required for sequence-specific binding
of transcription factors, chromatin regulators, and
nucleosome positioning signals. The role of distal
enhancers in human disease has been suggested for
some time, based upon the identification of many
patients with Mendelian disorders for which some
patients had translocations or structural variants far
from the promoter [24,25]. If WGS can pick up some
fraction of these clinically relevant noncoding point
mutations, small insertions or deletions, or structural
variants, it could increase the diagnostic yield for this
subset of patients. Structural variants affecting distal
enhancers can disrupt their regulatory activity by mov-
ing them away from their targets, altering local chro-
matin conformation, or creating interactions with
insulators or repressors that can hinder their action
[26]. Although it is thought that looping interactions
that facilitate contact with target promoter regions
mediate the functional effects of enhancers, the molec-
ular details of enhancer-gene targeting and regulatory
mechanism of action are incompletely understood.
Although this lack of clarity related to mechanism
makes the current interpretation of a genome sequenc-
ing identified variant in a putative enhancer region
challenging, the clinical relevance of at least some
types of noncoding variants has been demonstrated.

FIGURE 41.3 Model of long-range genomic interactions. To date, most of the variants that cause rare monogenic disorders have been
found in the coding regions of genes. In rare cases, disease-causing variants have been demonstrated in the 5’- or 3’-untranslated regions
(UTRs). This is one reason why WES has emerged as the preferred assay for research and clinical applications. However, despite the intense
focus on the genes as the basic elements encoding the functional proteins, it is well known that noncoding elements, some of them a great
distance away from the gene itself, can have important roles in controlling gene expression in a tissue-specific or context-specific manner.
These additional genomic elements may provide an important target for the discovery of disease-causing variants in patients whose previous
gene-centered testing has been unrevealing.

536 41. WHOLE GENOME SEQUENCING IN THE MOLECULAR PATHOLOGY LABORATORY

VII. THE FUTURE OF MOLECULAR TESTING



Clinically Relevant Noncoding Variants

Enhancers. One of the most recognized examples of
a noncoding variant causing a Mendelian human dis-
ease is the dysmorphology associated with mutations
in the zone of polarizing activity regulatory sequence
(ZRS). Several point mutations, as well as copy num-
ber changes in the ZRS, which reside in intron 5 of the
LMBR1 gene, have been described in humans. These
mutations cause enhanced sonic hedgehog (SHH)
activity, ectopic expression of SHH, and a variable
phenotype of preaxial polydactyly, triphalangeal
thumb, absent digits, and kidney and cardiac defects
[27,28]. Mutations in the ZRS are thought to account
for approximately 2�3% of patients with congenital
limb abnormalities [29,30] and testing is currently
available clinically.

Promoters. Several promoter variants have been
described that effect the expression of clinically rele-
vant genes, including APOE [31], CCR5 [32], and HO1
[33], although clinical testing for these types of variants
is not routinely offered as their effects are not consis-
tent with causing monogenic disease, but rather elevat-
ing risk to disease. For oncology patients, clinical
testing for mutations in a number of gene promoters,
including TERT for gliomas, thyroid cancer, and mela-
noma, can clarify diagnosis, inform prognosis, and
guide entry into clinical trials [34,35]. Identification of
recurrent TERT promoter mutations in melanoma sug-
gests that somatic mutations in noncoding gene regula-
tory regions may represent an important mechanism
in tumorigenesis [36]. As the numbers of clinically rel-
evant oncological mutations are identified in noncod-
ing regions of the genome, the utility of a
comprehensive test like CGS becomes increasingly rel-
evant to medical management of these patients.

Intronic Region and UTR. Comprehensive gene
sequencing that includes intronic regions is clinically
available for well-known disease genes with previ-
ously described clinically relevant noncoding variants.
Cystic fibrosis (CF) represents a significant clinical
entity in genetic testing referral, and several intronic
variants have been reported to contribute to disease
outcome. The poly T tract, a string of thymidine bases
located in intron 8 of the CFTR gene, can be associated
with CFTR-related disorders depending on its size.
The presence of 5T at this position is considered a vari-
ably penetrant mutation, which is thought to decrease
the efficiency of intron 8 splicing. Another clinically
relevant noncoding region of CFTR is the TG tract,
which lies just 5’ of the poly T tract and consists of a
short string of TG repeats that commonly number 11,
12, or 13. A longer TG tract (12 or 13) in conjunction
with a shorter poly T tract (5T) has the strongest
adverse effect on proper intron 8 splicing and stron-
gest association with pathogenic phenotype [37,38].
Males with congenital absence of the vas deferens
(CAVD) or suspected CAVD, individuals with non-
classic CF, or adult carriers of 5T who wish to further
refine their reproductive risks are all appropriate for
5T/TG tract typing. A recent study identified 23 var-
iants in the 6000 bp CFTR 5’UTR in phenotypic
patients with none or only one CFTR coding variant
previously identified. Many of these variants led to
gene expression changes in vitro, suggesting some of
these variants may have functional consequences. The
investigators suggested that noncoding variants could
be the primary or second hit resulting in this recessive
condition for a subset of CF patients [39]. Considering
the high frequency of this condition in the population,
and how informative diagnostic testing is for these

FIGURE 41.4 Trade-offs between WGS versus WES. This sche-
matic figure represents important trade-offs between different
approaches for genome-scale sequencing. Since by definition any tar-
geted approach (such as WES) enriches for specific parts of the
genome, it will have reduced coverage for regions of the genome not
included in the target region that is captured. The decision about
which platform to use for a given assay will depend on the goals of
the test, the spectrum of disease-causing variants, and the cost of
generating, storing, and analyzing the sequence data. Thus, WES
largely covers the coding regions and nearby intronic sequences rele-
vant for the canonical splice sites, but typically has reduced cover-
age, or none at all, for deep intronic sequences or more distal
regulatory regions. This limitation, when considered in combination
with the costs of sequencing, is generally deemed acceptable since
the vast majority of clinically relevant variants are known to have an
impact on the mRNA and translated protein.
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families, there will likely be more research looking into
the diagnostic utility of WGS for CF, as its comprehen-
sive nature would allow for concurrent detection of all
potential genomic contribution to the disease.

GWAS Variants. In addition to being able to detect
monogenic disease-causing variants, WGS can detect
variants that may only slightly contribute to disease
risk, and the clinical reporting of these variants poses
unique challenges. The overwhelming majority of the
hundreds of genome-wide association study (GWAS)
variants that have now been identified are associated
with very modest changes in risk for disease.
Nevertheless, the disease association for some of these
variants has been consistently replicated, and the func-
tional effect of the variant has been elucidated. If these
types of variants are to be returned clinically, clearly
their interpretations will need to take into consider-
ation the contribution of other genetic and nongenetic
factors that may be working together, to impact the
disease outcome [40,41].

WGS for Oncology Applications

Several noncoding variants have been identified
that are relevant to the care of subsets of cancer
patients, suggesting that WGS may be an attractive
comprehensive testing modality for these individuals.
However, current WGS read depths average around
30-fold, and thus would likely not be able to detect
low levels of genetic mosaicism. Molecular heterogene-
ity is an important characteristic displayed by many
cancers, and surveying the genetic landscape over
time, as well as evaluating the relative percentages of
genetically distinct clonal subpopulations in tumors
can indicate differential sensitivity of the neoplasm to
various chemotherapeutic agents [42,43]. This limita-
tion may impair the utility of WGS in oncology testing,
until methods are developed to simultaneously evalu-
ate multiple cancer sites at sufficient read depths. In
addition, research is examining the use of genome-
scale sequencing in conjunction with transcriptome
analysis in order to identify pathway dependencies in
the tumor [44]. These newer approaches, which look at
the entire repertoire of variants in a particular path-
way, could identify potentially targetable pathways
that may impact how we treat certain malignancies.

One major potential advantage of using CGS in
oncology is its capability to detect clinically relevant
oncological fusions, copy number changes, inver-
sions, translocations, and other rearrangements that
are not currently detectable via WES or chromosomal
microarray. How WGS will integrate into the current
molecular oncology testing workflow is a continued
area of research, and will be determined in large part

by how much tissue is available for testing, and the
goals of the test. Testing should be prioritized such
that those results offering the most clinical utility are
evaluated first, such as diagnostic information or
results that will impact entry into clinical trials, fol-
lowed by those results offering less clinical utility
(prognostic information or molecular subtype). Since
breakpoints can be precisely identified with WGS,
incorporating this test might make sense for those
cancers where particular fusions are diagnostic or
prognostic indicators. While it is theoretically possi-
ble that more copy number information can be
obtained from WGS than from WES because of cover-
ing more of the genomic landscape, laboratories will
likely need software packages that are specifically
designed for copy number detection, and this is cur-
rently an evolving area of research.

APPLICATION OF WGS IN THE FUTURE

Public Health Screening

In the near future, it will likely become more com-
mon for patients with suspected genetic conditions to
undergo CGS after some modicum of genetic testing
has been attempted, or even as a first-line test, particu-
larly for genomically heterogeneous conditions, mys-
tery conditions, or neonates in distress. In addition to
its use in diagnostic testing for patients, massively par-
allel sequencing may be utilized as a public health tool
to screen for treatable conditions in children or adults
[45]. One could imagine that many of the conditions
currently tested for using traditional newborn screen-
ing techniques could be augmented by targeted
sequencing, by providing genotypic classification of
inborn errors of metabolism detected though tandem
mass spectrometry, as well as expanding the number
of potentially screenable disorders. Some conditions
may not be amenable to detection via sequencing,
although it will most certainly be able to add to the list
of detectable monogenic conditions. The prospect of
being able to diagnose children earlier so that they can
receive life-saving medicines or be directed into more
effective treatment protocols makes genomic sequenc-
ing an attractive component of a comprehensive pre-
ventative health care strategy. At the same time, we
must ensure that testing is focused on those genes that
are going to provide the highest clinical utility. While
current research is looking into the clinical application
of sequencing for newborn screening, concurrent
efforts must be undertaken to understand the unique
ethical challenges raised by comprehensive sequencing
in this population and formulate appropriate protec-
tions for minors.
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Personalized Medicine and Pharmacogenomics

As the quest for personalized medicine advances,
physicians may utilize CGS to screen individuals for the
over 500 pharmacogenomic variants that have been asso-
ciated with a clinical drug response [46]. Pharmaceutical
companies that develop treatments and physicians who
implement them seek to identify those individuals who
are most likely to respond positively and want to be
alerted to those individuals who might develop serious
side effects. Thus, the increased uptake of genomic test-
ing for companion diagnostics is another area where
CGS may be applied in the future to screen for greater
numbers of different genomic variants simultaneously.
Research is needed to understand how to optimize inte-
grating pharmacogenomic information into the current
clinical workflow, in order to ensure maximum clinical
utility. Most importantly, outcomes research is needed
in order to justify the routine and widespread use of
pharmacogenomics in the clinical setting.

The emergence of private companies offering per-
sonalized genomic test results portends a patient-
driven medical future where individuals inquire about
their genetic status regarding a number of different
Mendelian and complex diseases, pharmacogenomics
variants, and genetic risk factors. Laboratories will
need to decide which types of results they offer and at
which times during the testing workflow. Physicians
will likely be in a position where they will see patients
who have received genome-scale sequencing results
and are now looking for guidance or clarification on
various aspects of those results. The clinical laboratory
must therefore be capable of serving as an interpretive
and consulting resource for physicians throughout the
CGS ordering and interpretation lifecycle.

OPTIMISM SURROUNDING WGS

The ability to perform WGS has provided a great
deal of optimism to both patients and physicians.
Many physicians view genome-scale sequencing as an
opportunity to provide testing to patients who previ-
ously would not have qualified for genetic testing—
perhaps they did not have a clinical diagnosis, there
was no clinical test available for their suspected causal
gene, or the causative gene was simply not known.
Although better phenotyping at the outset may
increase the likelihood of obtaining relevant results,
with the advent of this comprehensive testing, a clear
clinical diagnosis is not absolutely required. In fact,
genome-scale sequencing can often lead to finding
pathogenic variants in genes that were not suspected,
and this can lead to exciting changes in patient treat-
ment plans [47].

The comprehensive nature of the testing can impact
patient expectations regarding CGS results. Compared
to single-gene tests, there is more excitement that
sweeping the genome will lead to a diagnosis and dis-
appointment when a negative result is returned [48].
However, even with a negative test result, physicians
and patients understand that the data can be reevalu-
ated in the future as more information regarding the
genetic basis of disease is published. This opportunity
for subsequent research gives patients hope that CGS
may ultimately facilitate a molecular diagnosis.
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Arg389 β1-AR, 466
Aria diagnostics. See Ariosa diagnostics
ARID1A genes, 325
ARID1B genes, 325
ARID2 genes, 325

ARIDs. SeeAT-rich interaction domain (ARIDs)
Ariosa diagnostics, 206�207
arp gene, 152�153
array comparative genomic hybridization

(aCGH), 328�329
Arrhythmogenic right ventricular

cardiomyopathy (ARVC), 213, 216�217
Arrhythmogenic right ventricular dysplasia,

216
ART, 50, 55�56

resistance determination, 57�58
triple therapy, 52

Arterial thromboembolism, 476
ARV drugs. See Antiretroviral drugs

(ARV drugs)
ARVC. See Arrhythmogenic right ventricular

cardiomyopathy (ARVC)
ASAP. See Atypical small acinar

proliferations (ASAP)
ASC-H. See Atypical squamous cells

high-grade lesions (ASC-H)
ASCCP. See American Society for

Colposcopy and Cervical Pathology
(ASCCP)

ASCO. See American Society of Clinical
Oncology (ASCO)

ASCUS. See Atypical squamous cells of
undetermined significance (ASCUS)

ASCUS-LSIL Triage Study (ALTS), 83�84
Aspirin, 479�480
Association of Molecular Pathology (AMP),

287�288
Association of Practitioners of Infection

Control (APIC), 163
ASXL1 gene. See Additional sex combs like-1

gene (ASXL1 gene)
AT. See Antithrombin (AT)
AT-rich interaction domain (ARIDs), 325
ATF1. See Activating transcription factor

gene (ATF1)
ATHENA study, 83
Atorvastatin, 465
ATP-binding cassette transporter protein

(ABC transporter protein), 235
ATRA. See All�trans retinoic acid (ATRA)
Atrial fibrillation (AF), 458
Attenuated familial adenomatous polyposis

(AFAP), 308
Atypia of Undetermined Significance or

Follicular Lesion of Undetermined
Significance (AUS/FLUS), 394�395

Atypical small acinar proliferations (ASAP),
278

Atypical Spitz nevi, 324, 329
Atypical Spitz tumors, 322�324
Atypical squamous cells high-grade lesions

(ASC-H), 77
Atypical squamous cells of undetermined

significance (ASCUS), 77
AUC. See Area under plasma

concentration�time curve (AUC)
AUS/FLUS. See Atypia of Undetermined

Significance or Follicular Lesion of
Undetermined Significance
(AUS/FLUS)

AutoGenomics platform, 508
Automatic control. See Automation
Automation, 35

in genetics and molecular oncology
diagnostics, 39�44

in infectious disease molecular
diagnostics, 38�39

automated devices and FDA-approved
assay, 38t

nucleic acid extraction, 37�38
thermal cycler evolution, 36f

Autophagy, 386�387
Avian myeloblastosis virus RT (AMV RT), 21
Avidin�biotin, 341�342
Azathioprine, 509�510
AZD6244. See Selumetinib
Azithromycin, 154

B
B lymphoblastic leukemia/lymphoma

(B�ALL), 413
B-Raf proto-oncogene, serine/threonine

kinase (BRAF gene), 292�293, 309f,
311, 323

K601E mutation, 392
V600E mutation, 391�392, 395

B19V, 108
genome, 103
genotypes, 106

B19V. See Parvovirus B19 (B19V)
BAALC. See Brain and acute leukemia,

cytoplasmic (BAALC)
Bacteria identification, 139

clinical utility, 140
limitations of testing, 140
molecular target(s) and technologies,

139�140
Bacterial agents, 151
Bacterial infections. See also Hospital-

acquired infections (HA infections);
Sexually transmitted infections (STIs)

bacteria identification, 139�141
bloodstream infections, 145�147
gastrointestinal infections, 143�145
GBS screening, 147
molecular technology, 139
respiratory infections, 141�143
sequencing
clinical utility, 140�141
limitations of testing, 141
MALDI-TOF MS, 141
molecular target(s) and technologies, 140

Bacterial vaginosis (BV), 157
Bacteroides, 157
BAF180 protein, 383
BAL. See Bronchoalveolar lavage (BAL)
B�ALL. See B lymphoblastic leukemia/

lymphoma (B�ALL)
BAM format. See Binary counterpart

Alignment/Map (BAM format)
BAP1. See BRCA1-associated protein 1

(BAP1)
Basal-like 1 (BL1), 13
Basal-like 2 (BL2), 13
Base calling, 29
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Basic region leucine zipper (bZIP), 425�426
Basophilia, 413
BC-GN. See Blood Culture-Gram negative

(BC-GN)
BC-GP. See Blood Culture-Gram positive

(BC-GP)
BC-GP Test. See Verigene Gram-Positive

Blood Culture Nucleic Acid Test
(BC-GP Test)

BC-yeast (BC-Y), 165�166
BCID. See Blood Culture Identification

(BCID)
bcr2 isoform. See Variant isoform
BCR�ABL1, 413, 415�416
bDNA. See branched DNA (bDNA)
Beckwith�Wiedemann syndrome (BWS), 403
Bernard�Soulier syndrome, 229
BEST, 466
Beta-adrenoreceptor antagonists (β-AR

antagonists), 466
BIG2. See Brefeldin A�inhibited guanine

nucleotide�exchange protein 2 (BIG2)
Bile, 351
Biliary carcinoembryonic cell adhesion

molecule 6 (CEAM6), 351
Binary counterpart Alignment/Map (BAM

format), 30
Bioinformatic processing, 28�29, 31
Biological safety laboratory level 02 (BSL-2),

194
Biological safety laboratory level 03 (BSL-3),

194
BioMap, 520
Biomarkers, 203, 349
detection of serum, 203�204
diagnostic, 349
PDAC biomarkers

in pancreatic juice, 350�354
in saliva, 357
in serum, 349�350
in stool, 354�356
in urine, 357

prostate cancer early detection, 274f
for prostate cancer prognostication,

280
RNA-based, 277
for targeted therapies in CRC, 309

BRAF, 311
EGFR, 309�310
KRAS, 310�311
NRAS, 310�311
PIK3A, 311
PTEN, 311

Bisulfite, 373
BK viruses (BKVs), 115�118. See also

Influenza viruses
BK nephropathy, 116�118
commercially-available BK virus assays,

116t
DNA, 115�116
genomic sequence variability in, 119�120
load testing use, 118
qualitative PCR, 116
quantitative PCR, 116�117
subtypes, 120

BKVs. See BK viruses (BKVs)
BL1. See Basal-like 1 (BL1)
Bleeding disorders, genomics of, 480�481.

See also Coagulation
Blood culture, 172

multiplex assays from positive blood
cultures

clinical utility, 146
limitations of testing, 146�147
molecular target(s) and technologies,
146

Blood Culture-Gram negative (BC-GN), 146,
165�166

Blood Culture-Gram positive (BC-GP),
165�166

Blood Culture Identification (BCID), 166
test, 146

Blood safety, 54
Bloodstream infections, 145. See also

Gastrointestinal infections;
Respiratory infections

multiplex assays from positive blood
cultures, 146�147

peptide nucleic acid FISH, 145�146
BluePrint assay, 263
bmp gene, 152�153
Boceprevir (BOC), 489
Bone marrow transplant engraftment

clinical utility, 451�452
HSCT, 449
limitations of testing, 452
molecular target, 450
molecular technologies, 450�451
monitoring engraftment, 449�450

Bordetella pertussis, 141�142
Borrelia burgdorferi, 195
Bouin solution, 17
Bovine serum albumin (BSA), 18�19
BRAF gene. See B-Raf proto-oncogene,

serine/threonine kinase (BRAF gene)
Brain and acute leukemia, cytoplasmic

(BAALC), 429
branched DNA (bDNA), 67�69
BRCA1-associated protein 1 (BAP1), 324, 328,

383
Break�apart probe strategy, 394
Breast cancer. See also Prostate cancer;

Colorectal cancer; Lung cancer
HER2 testing by FISH

molecular target and clinical utility,
257�258

molecular testing technique, 258�261
test limitations, 261

microarray analysis, 9f
molecular classification, 6�7
molecular subtypes, 262f

molecular target and clinical utility,
261�263

molecular technique, 263
test limitations, 263�264

panel-based molecular tests, 264t
pathologist in evaluation of molecular

testing, 266f
prognostic signatures and prediction,

264�265

Brefeldin A�inhibited guanine
nucleotide�exchange protein 2
(BIG2), 353

Bronchiolitis, 130
Bronchiolo-alveolar carcinoma pattern,

289�290
Bronchoalveolar lavage (BAL), 94
BSA. See Bovine serum albumin (BSA)
BSL-2. See Biological safety laboratory level

02 (BSL-2)
Bucindolol, 458, 466�467

antiarrhythmics, 466�467
clinical utility, 467

BV. See Bacterial vaginosis (BV)
BWS. See Beckwith�Wiedemann syndrome

(BWS)
bZIP. See basic region leucine zipper (bZIP)

C
C282Y, 251

homozygosity, 245, 249�250
mutation, 248�251

C677T variant, 223
CA MRSA strains. See Community-acquired

MRSA strains (CA MRSA strains)
CA19�9. See Carbohydrate antigen 19�9

(CA19�9)
Cabozantinib, 395�396
Calcium alginate swabs, 132
CALR mutations, 437�438

analysis, 441�442
screening for, 438
testing, 443f

Campylobacter jejuni, 143
Cancer, 522�524. See also Breast cancer;

Colorectal cancer; Lung cancer;
Prostate cancer

genome atlas, 375�376
margins, 523
pharmacogenetic testing, 503
therapies, 503
treatment, 503

Cancer molecular testing, 12
Cancer of Prostate Risk Assessment

(CAPRA), 281
Cancer of Prostate Risk Assessment

post-Surgical (CAPRA-S), 282
Candida albicans, 157
Canis familiaris, 192�193
CAP. See College of American Pathologists

(CAP)
Capecitabine, 503
Capillary electrophoresis, 41
CAPRA. See Cancer of Prostate Risk

Assessment (CAPRA)
CAPRA-S. See Cancer of Prostate Risk

Assessment post-Surgical (CAPRA-S)
Carbohydrate antigen 19�9 (CA19�9),

349�350
Carboxylesterase 1 (CES1), 463�464
Cardiomyopathy, 213

ARVC, 216�217
DCM, 216�217
field, 218
HCM, 213, 216
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Cardiomyopathy (Continued)
LVNC, 216�217
RCM, 213�217

Cardiovascular disease, 457
bucindolol, 466�467

antiarrhythmics, 466�467
clinical utility, 467

clopidogrel, 463
CES1, 464
clinical utility, 464
CYP2C19, 463�464
miR-223, 464

pharmacogenomic information, 457�458
pharmacogenomics, 457

variants, 459t
statins, 464�465

clinical utility, 465�466
genes association with statin myopathy,

465
SLCO1B1, 465

warfarin, 458, 460f
clinical utility, 461�463
CYP2C9, 460�461
CYP4F2, 461
meta-analyses, 462t
VKORC1, 458�460

Cardiovascular translational
pharmacogenomics, 457�458

CARE study. See Comparison of Aneuploidy
Risk Evaluations study (CARE study)

Carmustine, 345
Carnitine palmitoyltransferase 2 (CPT2),

465
Castration-resistant prostate cancer (CRPC),

280
Catenin beta 1 (CTNNB1), 325
CAVD. See Congenital absence of the vas

deferens (CAVD)
CBAVD. See Congenital bilateral absence of

vas deferens (CBAVD)
CBF�AML. See Core�binding factor AML

(CBF�AML)
CCAAT/enhancer-binding protein alpha

(CEBPA), 425�426
molecular testing for, 427f

cccDNA. See circular covalently closed DNA
(cccDNA)

CCHS. See Congenital central
hypoventilation syndrome (CCHS)

CCNA. See Cytotoxicity neutralization assay
(CCNA)

CCND1. See Cyclin D1 (CCND1)
CCNU. See 1-(2-Chloroethyl)-3-cyclohexyl-1-

nitrosourea (CCNU)
CCP. See Cycle progression (CCP)
ccRCC. See clear-cell renal cell carcinoma

(ccRCC)
CCS. See Clear cell sarcoma (CCS)
CD246, 287, 290
CD31 cells, 451�452
CD561 NK cells, 451�452
CDC. See Centers for Disease Control and

Prevention (CDC)
CDK4. See Cyclin-dependent kinase 4

(CDK4)

CDKN2A. See Cyclin-dependent kinase
inhibitor 2 (CDKN2A)

cDNA, 21, 179�192, 394
direct cDNA sequencing, 69

CE. See Conformité Européene (CE)
CEAM6. See Biliary carcinoembryonic cell

adhesion molecule 6 (CEAM6)
CEBPA. See CCAAT/enhancer-binding

protein alpha (CEBPA)
Cell-free fetal DNA (cffDNA), 204
Cellular iron exporter, 246�247
Centers for Disease Control and Prevention

(CDC), 75, 142�143, 163, 192
Centers for Medicare and Medicaid Services

(CMS), 163
Central nervous system (CNS), 91, 126, 132
Centromere of chromosome 17 (CEP17), 258
Centromeric enumeration probe control for

chromosome 6 (CEP6), 329
CEP17. See Centromere of chromosome 17

(CEP17)
CEP6. See Centromeric enumeration probe

control for chromosome 6 (CEP6)
Cepheid GenXpert assay, 154
Cerebrospinal fluid (CSF), 90�91, 116
Ceruloplasmin deficiency, 247
Ceruloplasmin gene (CP), 247
Cervical cancer, 75, 84

high-risk HPV testing for, 39
HPV and, 76�78
uterine, 361�363

Cervical dysplasia, 76, 78
progression, 77, 77f, 83�84
sensitivity and specificity for the detection,

77
Cervical epithelial cells, 77
Cervical intraepithelial neoplasia (CIN), 77
Cervical specimens, 79
Cervista

assays, 81�83
HPV 16/18 assay, 79�81
HPV HR assay, 79�81

CES1. See Carboxylesterase 1 (CES1)
Cetuximab, 297, 309�310, 345
CF. See Cystic fibrosis (CF)
cffDNA. See Cell-free fetal DNA (cffDNA)
CFTR gene. See Cystic fibrosis

transmembrane conductance regulator
gene (CFTR gene)

CGH. See Comparative genomic
hybridization (CGH)

CGS. See Clinical genomic sequencing (CGS)
CHCA. See α-cyano-4-hydroxycinnamic acid

(CHCA)
Chemotherapy, 258, 506

ceritinib to, 297
EGFR-TKI to, 288
prognostic signatures and prediction

molecular target and clinical utility, 264
molecular testing technique, 264�265
test limitations, 265

Chickenpox, 92
Children’s Oncology Group (COG), 406
Chimerism, 451�452
Chlamydia, 154�156

Chlamydia trachomatis, 154�155, 159
Chlamydophila pneumoniae, 141�142
1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea

(CCNU), 340
Chlorpromazine, 466�467
Choriocarcinoma, 363, 366f
Chorionic villus sampling (CVS), 204
Chromatin remodeling, 383

BAP1, 383�384
PBRM1, 383
SETD2, JARID1C UTX, MLL2, 383

Chromatography techniques, 352�353
Chromogenic in situ hybridization (CISH),

362
Chromosomal alterations, 4
Chromosomal instability pathway (CIN

pathway), 305�306
Chromosomal microarray analysis (CMA),

41�42, 402, 405
Chromosomal rearrangements, 394
chromosomally-integrated version of HHV-6

(ciHHV-6), 95
Chromosome 11q13. See Cyclin D1 (CCND1)
Chromosome(s), 207�208

microarray, 209
Chronic alcohol consumption, 490
Chronic myelogenous leukemia (CML), 413,

416�417. See also Acute myeloid
leukemia (AML)

indications for testing and interpreting
results

initial diagnosis, 416�417
monitoring of disease, 417
therapy refractoriness, 417

molecular biology, 413�414
molecular methods, 414�416

Chuvash-type polycythemia (CTP), 228
Chymotrypsinogen B (CTRB), 353
Cidofovir, 94�95
ciHHV-6. See chromosomally-integrated

version of HHV-6 (ciHHV-6)
CIMP. See CpG island methylator phenotype

(CIMP)
CIN. See Cervical intraepithelial neoplasia

(CIN)
CIN pathway. See Chromosomal instability

pathway (CIN pathway)
Ciprofloxacin, 154
circular covalently closed DNA (cccDNA),

64�65
Circulating recombinant forms (CRFs), 193
Circulating tumor cells (CTCs), 295�296
circulating tumor DNA (ctDNA), 295�296
CISH. See Chromogenic in situ hybridization

(CISH)
Cisplatin, 505
CK. See Creatine kinase (CK)
Clear cell sarcoma (CCS), 331�332
clear-cell renal cell carcinoma (ccRCC), 381,

387, 523
Clindamycin, 147
Clinical genomic sequencing (CGS), 531
Clinical Pharmacogenetics Implementation

Consortium (CPIC), 465�466, 503�504
ClinPro Tools, 520
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Clopidogrel, 458, 463, 479�480
CES1, 464
clinical utility, 464
CYP2C19, 463�464
miR-223, 464

Clostridium difficile, 163, 169�170, 179
clinical utility

molecular testing and, 170�172
molecular typing and, 172

diagnostics test for, 170t
molecular diagnostic tests for, 171t
transferase, 169

Clustered heterogeneity, 258
CMA. See Chromosomal microarray analysis

(CMA)
CML. See Chronic myelogenous leukemia

(CML)
CMS. See Centers for Medicare and Medicaid

Services (CMS)
CMV. See Cytomegalovirus (CMV)
CN-AML. See AML with normal

cytogenetics (CN-AML)
CNS. See Central nervous system (CNS)
CNVs. See Copy number variants (CNVs)
CO-HCFA. See Community-onset healthcare

facility associated (CO-HCFA)
Coagulase (coa), 168
Coagulation, 221
factor II, 223

G20210 mutation, 477
genes relation to, 475t
proteins and genes, 222t

Coagulation disorders, genomics of,
476�479. See also Bleeding disorders,
genomics of

factor V Leiden R506Q mutation, 476�477
factor VII polymorphism, 477
FXIII, 477
hyperhomocysteinemia, 478
natural anticoagulant system, 477
polymorphism association with VTE, 478
polymorphism in fibrinogen and

thrombosis, 479
prothrombin 20210A mutation, 477
TFPI, 477
thrombogenesis mechanism, 478f
thrombomodulin polymorphism, 477
thrombosis, 478

Coagulopathies, 230
classical clotting cascade and associated

defects, 222f
clinical utility, 229�230
coagulation proteins and genes, 222t
hemostatic system, 221
limitations of testing, 230
molecular targets, 221�229
personalized medicine, 473

genes relation to coagulation, 475t
genomics of bleeding disorders,

480�481
genomics of coagulation disorders,

476�479
in hemophilia care, 480�481
pharmacogenomics of antiplatelet and

anticoagulant drugs, 479�480

COBAS-Ampliprep technology, 66
COBRA. See Combined bisulfite restriction

analysis (COBRA)
Codeine, 511
COG. See Children’s Oncology Group (COG)
College of American Pathologists (CAP), 257,

287�288
Colorectal cancer (CRC), 305. See also Breast

cancer; Lung cancer; Prostate cancer
biomarkers for targeted therapies, 309�311
clinical utility, 311�317
diagnosis of lynch syndrome, 313�315
genetic pathways, 305�306
hereditary colon cancer syndromes,

306�309
molecular technologies, 311�317

for detection of specific gene mutations,
315�317

molecular testing
in hereditary CRC syndromes, 312�313
limitations, 311�317

MSI testing, 313�315
Combined bisulfite restriction analysis

(COBRA), 343
Common cold, 123, 129

rates of respiratory viruses, 129t
Community-acquired MRSA strains (CA

MRSA strains), 163
Community-onset healthcare facility

associated (CO-HCFA), 169�170
Companion diagnostics, molecular testing

and, 7�9, 9f, 10f, 11f
Comparative genomic hybridization (CGH),

42, 328�329
Comparison of Aneuploidy Risk Evaluations

study (CARE study), 206
Complete hydatidiform mole, 363�365, 366f
Complete molecular response, 417
Complete moles, 363�368, 365f, 366f
Computed tomography (CT), 90�91
Computer science, 29

base calling, 29
sequence alignment, 29�30
variant calling, 30�31

Confined placental mosaicism (CPM), 208
Conformité Européene (CE), 64
Congenital absence of the vas deferens

(CAVD), 537�538
Congenital bilateral absence of vas deferens

(CBAVD), 237, 240
Congenital central hypoventilation

syndrome (CCHS), 407
Congenital FXI deficiency, 226�227
Congenital polycythemia, 228
Conventional cytogenetics, 416�417
Conventional suppressor pathway.

See Chromosomal instability pathway
(CIN pathway)

Copy number variants (CNVs), 40, 217�218,
535

Core�binding factor AML (CBF�AML),
420�421, 426

AML risk categories, 420t
Coronaviruses, 128
Cost-effective analysis model, 147

Cost-effectiveness studies, 505�506
Counsyl, 204
“Coverage” sequence, 30
CP. See Ceruloplasmin gene (CP)
CPEs. See Cytopathic effects (CPEs)
CpG island methylator phenotype (CIMP),

305�306, 307f
CPIC. See Clinical Pharmacogenetics

Implementation Consortium (CPIC)
CPM. See Confined placental mosaicism

(CPM)
CPT2. See Carnitine palmitoyltransferase 2

(CPT2)
CRC. See Colorectal cancer (CRC)
Creatine kinase (CK), 465
CRFs. See Circulating recombinant forms

(CRFs)
Critical variable, 19
Crizotinib, 291�292, 297�298, 395�396, 408,

457
Cross-reactivity of in situ hybridization

probes, 120
Croup, 126, 130
CRPC. See Castration-resistant prostate

cancer (CRPC)
CSD. See Cumulative sun-damaged skin

(CSD)
CSF. See Cerebrospinal fluid (CSF)
CT. See Computed tomography (CT)
CTCs. See Circulating tumor cells (CTCs)
ctDNA. See circulating tumor DNA (ctDNA)
CTNNB1. See Catenin beta 1 (CTNNB1)
CTP. See Chuvash-type polycythemia (CTP)
CTRB. See Chymotrypsinogen B (CTRB)
Cumulative sun-damaged skin (CSD), 323
CVS. See Chorionic villus sampling (CVS)
α-cyano-4-hydroxycinnamic acid (CHCA),

141
Cycle progression (CCP), 282
Cyclin D1 (CCND1), 325, 329
Cyclin-dependent kinase 4 (CDK4),

325�326
Cyclin-dependent kinase inhibitor 2

(CDKN2A), 324
Cyclines, 156
CYP2C19, 463�464, 480

ROF alleles, 463�464
CYP2C9. See Cytochrome P4502C9 (CYP2C9)
CYP2D6. See Cytochrome P450�2D6

(CYP2D6)
CYP450. See Cytochrome P450 (CYP450)
CYP4F2, 460f, 461
Cysteine residue mutations, 392�393
Cystic fibrosis (CF), 235, 537�538

clinical criteria for diagnosis, 235
clinical symptoms of patients, 236t
clinical utility, 240�241
limitations of testing, 241�242
molecular target, 236�238
molecular technologies, 238�240

Cystic fibrosis transmembrane conductance
regulator gene (CFTR gene), 235

and mutation spectrum, 236�237
CFTR gene mutations classification,

236t
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Cytochrome P450 (CYP450), 503, 508
Cytochrome P4502C9 (CYP2C9), 224�225,

460�461, 479
Cytochrome P450�2D6 (CYP2D6), 508, 511
CYP2D6�1 allele, 508
tamoxifen and, 507�508

4-hydroxylation pathway, 508
clinical utility, 509
interrogated CYP2D6 alleles, 509t
limitations of testing, 509
molecular technologies, 508

Cytogenetic abnormalities in AML, 420
APL, 421�423
CBF AML, 420�421

AML risk categories, 420t
cytogenetic abnormalities, 423

Cytogenetic analysis, 420, 422f, 430
Cytogenetic karyotyping, 420
Cytomegalovirus (CMV), 39, 89, 93�95, 117
clinical syndromes and application, 90t

Cytopathic effects (CPEs), 170
Cytotoxicity neutralization assay (CCNA),

170

D
DAAs. See Direct antiviral agents (DAAs)

Directly acting antivirals (DAAs)
Dabigatran, 479
Dabrafenib, 323, 332, 395�396
Dacarbazine, 332
Daclastasvir, 489
Daclatasvir, 496
Dacomitinib, 296�297
Danon disease, 213
DANSR. See Digital analysis of selected

regions (DANSR)
Dasatinib, 413, 417
Data acquisition, 519�520
DBS. See Dried blood spots (DBS)
DCM. See Dilated cardiomyopathy (DCM)
ddNTPs. See Dideoxynucleotides (ddNTPs)
ddPCR. See digital droplet PCR (ddPCR)
DDS. See Denys�Drash syndrome (DDS)
Deep vein thrombosis (DVT), 476�477
Delayed virologic response (DVR), 487�489
Denys�Drash syndrome (DDS), 403
deoxynucleotide triphosphates (dNTPs),

16�17
“Depth of coverage” sequence, 30
Deregulated miRNA profiles, 437
Desktop sequencers, 43
DNA sequencer, 43f

N-Desmethyltamoxifen pathway, 508
Desmoplastic melanomas (DMs), 324
DFA testing. See Direct fluorescent antibody

testing (DFA testing)
DIA. See Digital image analysis (DIA)
Diabetes, 247, 520�522
Diabetic nephropathy (DN), 520�521
Diagnosis
in AML, 422f
for inherited cardiomyopathy, 217�218
parvoviruses, 108�109
in prostate cancer, 278�280
of symptomatic individuals, 240

Dideoxynucleotides (ddNTPs), 35�36
DIGE. See Gel electrophoresis (DIGE)
Digene Hybrid Capture 2 assay (Digene HC2

assay), 78�79
Digital analysis of selected regions (DANSR),

206�207
digital droplet PCR (ddPCR), 40�41, 56
Digital image analysis (DIA), 367�368
Dihydro-pyrimidine dehydrogenase (DPD),

503�504
deficiency, 504

Dilated cardiomyopathy (DCM), 213, 216�217
Dimethyl formamide (DMF), 18�19
Dimethylsulfoxide (DMSO), 18�19
Direct antiviral agents (DAAs), 489
Direct fluorescent antibody testing (DFA

testing), 92
Direct thrombin inhibitors, 479f
Directly acting antivirals (DAAs), 69,

193�194, 489�490
Disease overview and its epidemiology,

151�152
DITdP. See Drug-induced Torsades de

Pointes (DITdP)
Divalent metal transporter 1 (DMT1), 247�248
DKA. See Dual Kinetic Assay (DKA)
DMF. See Dimethyl formamide (DMF)
DMs. See Desmoplastic melanomas (DMs)
DMSO. See Dimethylsulfoxide (DMSO)
DMT1. SeeDivalent metal transporter 1 (DMT1)
DN. See Diabetic nephropathy (DN)
DNA

binding dyes, 21, 23
fingerprinting, 449�450
HBV DNA detection assays, 65�66, 66t
methylation, 5
mutations, 351�352
polymerase, 15

enzyme, 17
sequencing chemistry, 26

advantages and disadvantages, 28�29
illumina sequencing, 27, 27f
Ion Torrent sequencing, 27�28, 28f
SMRT sequencing, 28

template, 17
Thermal Cycler 480 system, 35�36

DNA damage response 1 (REDD1), 385
DNA(cytosine-5-)�methyltransferase 3 alpha

gene (DNMT3A gene), 428�429
dNTPs. See deoxynucleotide triphosphates

(dNTPs)
Domperidone, 466�467
Donor positive/recipient negative

(D1/R�), 93�94
Down syndrome, 203�204, 321�322

MPS test for, 205
Downstream signaling genes, 419
DPD. See Dihydro-pyrimidine

dehydrogenase (DPD)
DPS. See Dried plasma spots (DPS)
DPYD gene, 503

fluoropyrimidines and
clinical utility, 504
limitations of testing, 505
molecular technologies, 504

Dried blood spots (DBS), 55
Dried plasma spots (DPS), 55
Driver mutations, 322
Drug resistance testing, 91
Drug-induced Torsades de Pointes (DITdP),

466�467
Dual Kinetic Assay (DKA), 81
Dual-probe technique, 258
Dual�color approach, 415
Dual�fusion approach, 415
DVR. See Delayed virologic response (DVR)
DVT. See Deep vein thrombosis (DVT)
Dyserythropoiesis, 248
Dysmetabolic syndrome, 247�248

E
E6 oncogenes, 75�76
E7 oncogenes, 75�76
Early detection of prostate cancer, 274�278

biomarkers, 274f
effects, 277�278
goals, 274�275
limitations, 274�275

Early virologic response (EVR), 487�489
EBV. See Epstein�Barr virus (EBV)
Ecotropic viral integration site 1 (EVI1), 429
Edoxaban, 479
Efalizumab, 118�119
Effavirenz, 58
EFS. See Eventfree survival (EFS)
EGAPP. See Evaluation of Genomic
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InPlex CF, 238
InPouch TV test, 156�157
INR. See International normalized ratio (INR)
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Ivacaftor, 241

J
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LOD. See Limit of detection (LOD)
LOH. See Loss of heterozygosity (LOH)
Long control region (LCR), 75�76
Long noncoding RNA (lncRNA), 273�274,

278f
Long QT syndrome (LQTS), 466�467
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Malignant melanoma (MM), 322
mammalian target of rapamycin (mTOR)
gene, 384�385
mTORC1, 384�385
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probe amplification (MLPA)
MLST. See Multilocus sequence typing

(MLST)
MM. See Malignant melanoma (MM)
MMLV RT. See Moloney murine leukemia

virus RT (MMLV RT)
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Myelodysplastic syndrome (MDS), 248, 435
Myeloproliferative disorders.
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239�240, 293, 332, 383, 424, 438, 531
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SMRT sequencing, 28
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cancers; Gynecologic cancer;
Thyroid cancer

hTERT activation, 351
miRNA expression, 353�354
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Parvoviruses. See also Herpes viruses
clinical utility
diagnostic approach, 108�109
limitations of testing, 110�111
qPCR result interpretation and

relevance, 109�110

555INDEX



Parvoviruses (Continued)
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technical developments, 106�107

Pathogen sequence, 196
PBAF complex. See Polybromo BRG1-

associated factor complex (PBAF
complex)

PBMCs. See Peripheral blood mononuclear
cells (PBMCs)

PBP2a. See Penicillin-binding protein 2a
(PBP2a)

PCPTRC 2.0. See Prostate Cancer Prevention
Trial Risk Calculator 2.0 (PCPTRC 2.0)

PCR. See Polymerase chain reaction (PCR)
PDAC. See Pancreatic ductal adenocarcinoma

(PDAC)
PDGF. See Platelet-derived growth factor

(PDGF)
PEC tumors. See Perivascular epithelioid cell

tumors (PEC tumors)
PECI. See PerkinElmer Cetus Instruments

(PECI)
Pediatric cancers, 401. See also Gynecologic

cancer; Pancreatic cancer; Thyroid
cancer

clinical utility, 408
limitations of testing, 408
molecular targets and technologies,

406�408
MYCN amplification, 407f

NB, 406
RB, 401�403
WT, 401, 403�406

Pedigree analysis, 407
Pegloticase, 506
Pembrolizumab, 332
Pemetrexed, 297�298
Penicillin-binding protein 2a (PBP2a), 167
Peptide nucleic acid (PNA), 139�140
Peptide nucleic acid—fluorescent in situ

hybridization (PNA-FISH), 140, 145,
164

clinical utility, 145
limitations of testing, 145�146
molecular target(s) and technologies, 145

Pericarditis, 126
Peripheral blood mononuclear cells

(PBMCs), 55, 93
Perivascular epithelioid cell tumors (PEC

tumors), 369�370
PerkinElmer Cetus Instruments (PECI),

35�36
Perlman syndrome, 403�405
Peroxiredoxin 6 (PRDX6), 353
Personalized medicine, 473, 539
in cancer treatment

antidepressants and CYP2D6, 511
codeine and CYP2D6, 511
fluoropyrimidines and DPYD, 503�505
irinotecan and UGT1A1, 505�506

pharmacogenetics, 503, 511
rasburicase and G6PD deficiency,
506�507

tamoxifen and CYP2D6, 507�509
thiopurines and thiopurine
methyltransferase, 509�511

for coagulopathies, 473
genes relation to coagulation, 475t
genomics of bleeding disorders,
480�481

genomics of coagulation disorders,
476�479

pharmacogenomics of antiplatelet and
anticoagulant drugs, 479�480

in hemophilia care, 480�481
milestones of genomic development, 474t

Pertussis diagnosis, 139
PEs. See Phosphatidylethanolamines (PEs)
Peutz-Jeghers syndrome (PJS), 309
PFGE. See Pulsed field gel electrophoresis

(PFGE)
PFS. See Progression-free survival (PFS)
PGx algorithms. See Pharmacogenomic

algorithms (PGx algorithms)
pH, 17
Pharmacogenetics, 503, 511

as predictors of HCV treatment, 497�498
Pharmacogenomic algorithms (PGx

algorithms), 224�225
Pharmacogenomics, 457�458, 539

of antiplatelet and anticoagulant drugs,
479

pharmacogenomics-guided drug
development, 473�475

variants, 459t
PHD. See Prolyl hydroxylases (PHD)
pHH3. See Phosphohistone H3 (pHH3)
phi. See Prostate Health Index (phi)
Philadelphia chromosome (BCR�ABL1)-

negative MPNs, 435
Philadelphia chromosome (BCR�ABL1)-

positive MPNs, 435
Phosphatase and tensin homologue (PTEN),

309f, 311, 325
deletion, 272�273, 280�281
evaluation in prostate cancer, 277f

Phosphatidylethanolamines (PEs), 521�522
Phosphatidylinositide 3-kinase (PI3K),

322�323, 339, 391�392
Phosphatidylinositol�3,4,5�triphosphate

(PIP3), 384�385
Phosphohistone H3 (pHH3), 328
PI. See Pancreatic insufficient (PI)
PI3K. See Phosphatidylinositide 3-kinase

(PI3K)
PI3K�AKT�mTORC1 signaling pathway,

384�385
mTOR pathway schema, 385f

PIK3A, 309f, 311
PIK3CA gene, 384�385
PIP3, 4, 5�triphosphate (PIP3).

See Phosphatidylinositol�3
“Pissing glass”, 153�154
PIV. See Parainfluenza virus (PIV)
PJ. See Pancreatic juice (PJ)

PJS. See Peutz-Jeghers syndrome (PJS)
Placenta site trophoblastic tumor (PSTT),

363
Plasma samples, 63
Platelet-derived growth factor (PDGF), 382
Platelets, 229

platelet function, genes affecting, 229, 229t
Platinum Taq polymerase, 19
PLCO. See Prostate Lung Colorectal and

Ovarian Cancer Screening Trial
(PLCO)

Ploidy, 367�368, 407
PLRP1. See Pancreatic lipase�related

protein�1 (PLRP1)
PMC. See Pseudomembranous colitis (PMC)
PMF. See Primary myelofibrosis (PMF)
PML. See Progressive multifocal

leukoencephalopathy (PML)
PNA. See Peptide nucleic acid (PNA)
PNA-FISH. See Peptide nucleic acid—

fluorescent in situ hybridization
(PNA-FISH)

Pneumonia, 123, 131
POC. See Point-of-care (POC)
Point-of-care (POC), 52, 151

diagnostics for STIs, 159
molecular assays, 57

Poly (ADP-ribose) polymerase 1 (PARP1),
280�281

Poly-deoxythymidine (polyT), 81
Polybromo BRG1-associated factor complex

(PBAF complex), 383
Polycythemia, 228

and coagulopathy, genes with, 228�229
Polycythemia vera (PV), 228, 435
Polymerase chain reaction (PCR), 6�7,

15�17, 16f, 35�36, 49, 63�64, 78,
90�91, 179, 312, 341, 415, 450

amplification reaction variations, 20�23
amplification of target sequences, 22f
optimization, 19

analysis of RNA, 21
buffer, 18
components, 17�19
DNA polymerase enzyme, 17
DNA template, 17
oligodeoxynucleotide primers, 17�18
PCR reaction buffer, 18�19

contaminants, 19�20
hot-start, 21
inhibitors, 20
nested, 21
PCR-based molecular diagnostic

technologies, 40
PCR-based typing methods, 168
primers, 192�193
products analysis, 20, 20f
reaction buffer, 18�19
real-time, 21�23
ribotypes, 172
ribotyping, 172
specificity and sensitivity, 19

Polymerase proofreading associated
polyposis (PPAP), 309

Polymorphic variant alleles, 503
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Polymorphism, 476
association with VTE, 478
in fibrinogen and thrombosis, 479
thrombomodulin, 477

Polyomaviruses, 115. See also Respiratory
viruses

clinical utility, 117�119
BK virus, 117�118
JC virus, 118�119
MCC, 119

human, 115
limitations of testing, 119�120
molecular targets, 116
molecular technologies, 116�117, 117f

polyT. See Poly-deoxythymidine (polyT)
PON-1. See Paraoxonase-1 (PON-1)
Population-based sequencing, 495
Positive predictive value (PPV), 129�130,

206
Post-PCR product analysis, 23
Posttransplant lymphoproliferative disorder

(PTLD), 92
Potassium voltage-gated channel subfamily

E member 1 (KCNE1), 467
PPAP. See Polymerase proofreading

associated polyposis (PPAP)
PPP6C. See Serine/threonine-protein

phosphatase 6 catalytic (PPP6C)
PPV. See Positive predictive value (PPV)
PR. See Progesterone receptor (PR)
Pravastatin, 465
pRB protein, 401�402
PRCA. See Pure red cell aplasia (PRCA)
PRDX6. See Peroxiredoxin 6 (PRDX6)
Pre-polymerase chain reaction period (Pre-

PCR period), 166
Precision medicine, targeted NGS, 279f
Predictive testing, 257
Pregnancy-associated plasma protein A

(PAPP-A), 203
Preimplantation genetic diagnosis, 218
Prenatal diagnosis, 240
Presymptomatic testing, 218
Pretreatment testing, 492
Primary myelofibrosis (PMF), 435�439
Primer extension assays. See Single�base

extension assays
Primer labeling, 15�16
Probe(s)
clinical utility, 140
labeling, 15�16
limitations of testing, 140
molecular targets and technologies,

139�140
Procoagulant proteins, 221
PROCR. See Protein C receptor (PROCR)
Progesterone receptor (PR), 13, 257
Prognostication, 280
prognostic information, 394�395
prognostic testing, 257

Progression-free survival (PFS), 287�288, 345
Progressive multifocal leukoencephalopathy

(PML), 116, 421
Prolyl hydroxylases (PHD), 385�386
Promoters, 537

Prophylactic HPV vaccine, 77�78
Prophylaxis, 91
Prosigna PAM-50 assay, 263
Prostate cancer, 271, 523�524. See also Breast

cancer; Colorectal cancer; Lung cancer
clinical utility

diagnosis, 278�280
early detection, 274�278
prognostication, 280
targeted therapeutics, 280�281

detection biomarkers, 274f
limitations of testing, 281�282

future directions, 282
multigene assays, 281�282

molecular targets
ETS gene rearrangements, 272
germline mutations, 273
lncRNA, 273
prostate-specific kallikreins, 272, 274f
PTEN deletion, 272�273
rare potentially targetable alterations,
273

molecular technologies
ETS gene rearrangements, 273�274
germline mutations, 274
lncRNA RNA, 274, 278f
prostate-specific kallikreins, 273, 274f
PTEN deletion, 274
rare targetable oncogenic alterations, 274

Prostate Cancer Prevention Trial Risk
Calculator 2.0 (PCPTRC 2.0), 276�277

Prostate Health Index (phi), 275�276
Prostate Lung Colorectal and Ovarian

Cancer Screening Trial (PLCO), 350
prostate-specific antigen (PSA), 271
Prostate-specific kallikreins, 272�273, 274f
Protein analysis, 519
Protein C receptor (PROCR), 478
Prothrombin (PT), 221, 477

G20210 mutation, 476�477
20210 mutations, 476
20210A mutation, 477

PRSS2 preproprotein. See Serine proteinase 2
preproprotein (PRSS2 preproprotein)

PS. See Pancreatic sufficient (PS)
PSA. See prostate-specific antigen (PSA)
Pseudokinase domain (JH2 domain), 435
Pseudomembranous colitis (PMC), 169
PSTI. See Pancreatic secretory trypsin

inhibitor (PSTI)
PSTT. See Placenta site trophoblastic tumor

(PSTT)
PT. See Prothrombin (PT)
PTEN. See Phosphatase and tensin

homologue (PTEN)
PTLD. See Posttransplant

lymphoproliferative disorder (PTLD)
Public health screening, 538
Pulsed field gel electrophoresis (PFGE), 167,

172
Pure red cell aplasia (PRCA), 104�105
Purulent discharge. See “Pissing glass”
PV. See Polycythemia vera (PV)
Pyridoxamine, 521�522, 521f
Pyrosequencing, 140, 343�344

Q
Q80K mutational variant, 495
qPCR. See quantitative PCR (qPCR)
Qualitative assays, 415
quantitative PCR (qPCR), 40, 106�107, 116,

439
assay design, 107, 107f
assay validation, 107�108
result interpretation and relevance,

109�110
Quantitative real-time PCR methods, 95
Quasi-species, 67
Quinazoline, 296�297
Quinidine, 467
Quinolones, 156

R
RAC1. See Ras-related C3 botulinum toxin

substrate 1 (RAC1)
Randomized controlled trial (RCT), 457�458
RARA gene. See Retinoic acid receptor alpha

gene (RARA gene)
Ras homologue enriched in brain (Rheb),

384�385
Ras-related C3 botulinum toxin substrate 1

(RAC1), 326
Ras-responsive element-binding protein 1

(RREB1), 329
Rasburicase, 506
RAVs. See Resistance-associated variants

(RAVs)
RB. See Retinoblastoma (RB)
RBCs. See Red blood cells (RBCs)
RBV. See Ribavirin (RBV)
RCC. See Renal cell carcinoma (RCC)
RCM. See Restrictive cardiomyopathy (RCM)
RCT. See Randomized controlled trial (RCT)
REA. See Restriction endonuclease analysis

(REA)
Reactive plasma iron (RPI), 246�247
“Reads” sequences, 29
Real-time PCR. See Reverse transcription-

polymerase chain reaction (RT-PCR)
Real-time quantitative PCR, 40
Receptor tyrosine kinase (RTK), 289,

392�393, 419
Recurrence score (RS), 13, 264
Red blood cells (RBCs), 228
REDD1. See DNA damage response 1

(REDD1)
Reduced intensity conditioning (RIC), 449
REG1alpha proteins.

See Lithostathine�1�alpha proteins
(REG1alpha proteins)

Renal cell carcinoma (RCC), 381
autophagy, 386�387
chromatin remodeling/histone

modification
BAP1, 383�384
PBRM1, 383
SETD2, JARID1C, UTX, MLL2, 383

clinical utility, 387
genome and exome sequence mutation

studies, 384
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Renal cell carcinoma (RCC) (Continued)
intratumoral heterogeneity, 385
kidney cancer syndrome gene targets, 382t
limitations of testing, 387
metabolism in, 385�386, 386f
PI3K�AKT�mTORC1 signaling pathway,

384�385, 385f
VHL disease, 381�383

Renal tumors, 403
Resistance-associated variants (RAVs), 495
Respiratory infections, 141�142. See also

Bloodstream infections;
Gastrointestinal infections

clinical utility, 142�143
limitations of testing, 142�143
molecular targets and technologies, 142

Respiratory syncytial virus (RSV), 123, 126
Respiratory tract infections (RTIs), 123
Respiratory viruses. See also Polyomaviruses
clinical utility of molecular diagnostics for

infection, 128�129
lower respiratory tract infections, 128f,

130�131
upper respiratory tract infections, 128f,

129�130
molecular targets, 123�128
molecular technologies and limitations,

131
antiviral resistance testing, 133�134
interpretation of NAAT results, 133
seasonality, 133
specimen collection, 131�132
timing of disease, 132�133
virus shedding, 132�133

natural history, pathogenesis, and clinical
presentation, 124t

RTIs, 123
Response-guided therapy (RGT), 491
Restriction endonuclease analysis (REA), 168
Restriction fragment length polymorphism

(RFLP), 40, 152�153
Restrictive cardiomyopathy (RCM), 213�217
Resultant fluorescently-labeled PCR

products, 450
RET kinase. See Receptor tyrosine kinase

(RTK)
RET proto-oncogene, 323
Retinoblastoma (RB), 401
clinical utility, 402
genetic testing, 402
limitations of testing, 402�403
molecular target, 401�402
molecular technologies, 402
RB1 gene, 401�402

genetic testing, 402
Retinoic acid receptor alpha gene (RARA

gene), 421
Reverse transcription (RT), 21, 63�64
Reverse transcription-polymerase chain

reaction (RT-PCR), 20�23, 64, 341,
394, 415�417, 421, 422f

amplification of target sequences, 22f
assays, 393�394
instruments, 22
technology, 52�53

RFLP. See Restriction fragment length
polymorphism (RFLP)

RGT. See Response-guided therapy (RGT)
Rheb. See Ras homologue enriched in brain

(Rheb)
Rhinoviruses (RVs), 123, 127�128
Rhodamine, 341
Ribavirin (RBV), 69, 487�489
ribonucleoside triphosphates (rNTP),

486�487
ribosomal RNA (rRNA), 140, 172

16S rRNA gene, 140�141
Ribotyping, 168
RIC. See Reduced intensity conditioning

(RIC)
Rifampin, 143
Rindopepimut, 345
Risk of recurrence (ROR), 263
Rivaroxaban, 479
RNA, 21, 394

HAV RNA detection tests, 63�64
HCV RNA detection assays, 67�69

detection and quantification, 68t
genotyping, 69

HDV RNA detection, 69
HEV RNA detection, 70, 70t
RNA-based assays, 273�274
sequencing, 394

rNTP. See ribonucleoside triphosphates
(rNTP)

Roche cobas HPV test, 83
Rociletinib, 297
ROR. See Risk of recurrence (ROR)
ROS proto-oncogene 1, receptor tyrosine

kinase (ROS1), 292, 322�323
ROS1. See ROS proto-oncogene 1, receptor

tyrosine kinase (ROS1)
Rosuvastatin, 465
Routine karyotype analysis, 404�405
RPI. See Reactive plasma iron (RPI)
RREB1. See Ras-responsive element-binding

protein 1 (RREB1)
rRNA. See ribosomal RNA (rRNA)
RS. See Recurrence score (RS)
rs4149056 gene association, 465
RSV. See Respiratory syncytial virus (RSV)
RT. See Reverse transcription (RT)
RT-PCR. See Reverse transcription-

polymerase chain reaction (RT-PCR)
RTIs. See Respiratory tract infections (RTIs)
RTK. See Receptor tyrosine kinase (RTK)
Runt-related transcription factor 1 mutations

(RUNX1 mutations), 427�428
Ruxolitinib, 439
RVs. See Rhinoviruses (RVs)
Ryanodine receptor 1 (RYR1), 465

S
S100 marker, 326
S505N mutation, 436�437
Saliva, PDAC biomarkers in, 357
SAM format. See Sequence Alignment/Map

format (SAM format)
Sanger dideoxynucleotide chain termination

method, 140

Sanger method, 25
Sanger sequencing, 25, 26f, 218, 293, 312, 394,

441�442
SARP2 gene. See Secreted apoptosis�related

protein�2 gene (SARP2 gene)
SARS-CoV. See Severe acute respiratory

syndrome associated CoV
(SARS-CoV)

SB1a. See Gangliotetraosylceramide-
bissulfate (SB1a)

SBS. See Sequencing by Synthesis (SBS)
SCAs. See Segmental chromosome

abnormalities (SCAs)Sex chromosome
aneuploidies (SCAs)

SCBU. See Special care baby unit (SCBU)
SCC. See Staphylococcal chromosomal

cassette (SCC)
SCD. See Sudden cardiac death (SCD)
SChLAP1, 273�274
SCLC. See Small cell lung cancer (SCLC)
SCNAs. See Somatic copy number alterations

(SCNAs)
Screening of blood products, 52�53
SDA. See Strand displacement amplification

(SDA)
SDH. See Succinate dehydrogenase (SDH)
SDH-associated kidney cancer, 385�386
Seasonality, 133
Secondary bacterial pneumonia, 126
Secreted apoptosis�related protein�2 gene

(SARP2 gene), 352
Segmental chromosome abnormalities

(SCAs), 407
SELDI�TOF. See Surface�enhanced laser

desorption and ionization time-of-
flight (SELDI�TOF)

Selective serotonin reuptake inhibitors
(SSRIs), 507�508

Selumetinib, 293, 297�298
Semen samples, screening HIV-1 genome, 55
Seminal fluid, 272
Sepsis, 145, 164�165
Sequence alignment, 29�30
Sequence Alignment/Map format (SAM

format), 30
Sequence interpretation and clinical

reporting, 31�32
Sequencing, 25, 473, 532�533

techniques, 58
Sequencing by Synthesis (SBS), 27, 57t
Sequenom, Inc., 205
Sequestosome 1, 386�387
Serine proteinase 2 preproprotein (PRSS2

preproprotein), 353
Serine/threonine-protein phosphatase 6

catalytic (PPP6C), 325
Serine�threonine kinase, 392
Serrated pathway. See CpG island

methylator phenotype (CIMP)
Serum, 63, 349�350
Sessile serrated adenomas (SSAs), 306
Severe acute respiratory syndrome

associated CoV (SARS-CoV), 128, 192
Sex chromosome aneuploidies (SCAs),

205
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Sexually transmitted infections (STIs), 151.
See also Bacterial infections; Hospital-
acquired infections (HA infections)

curable STIs, 152f
future directions

molecular tools to antimicrobial
susceptibility, 159

multiplex approach of STI diagnosis
using molecular tools, 158�159

POC diagnostics for STIs, 159
vaginal microbiome and STIs, 157

genital chlamydia infection, 154�155
gonorrhea disease, 153�154
mycoplasma genitalium infection, 156
syphilis disease, 151�153
trichomoniasis disease, 156�157

SHEA. See Society for Healthcare
Epidemiology of America (SHEA)

SHH. See Sonic hedgehog (SHH)
Short tandem repeats (STRs), 450, 452
markers, 404�405
testing, 368

Signal amplification, 78�80
Signal transducer and activator of

transcription 3 (STAT3), 322�323
Simeprevir, 496
Simvastatin, 459t, 465�466
Sinapinic acid, 519
Single Molecule Real Time sequencing

(SMRT sequencing), 26�28
SMRT sequencer, 28�29

Single nucleotide polymorphism (SNP),
39�40, 204, 208, 238�239, 277�278,
315, 316f, 344, 383, 458, 473�475, 478,
497�498

array, 329, 330f, 331f
β-chain of fibrinogen, 479
genotyping, 22
markers, 450

Single nucleotide variants (SNVs), 40
Single-probe technique, 258
Single�base extension assays, 394
Skin cancer, 522
SLC11A2 gene mutations, 247�248
SLCO1B1 gene, 465
SM2a. See Gangliotriosylceramide sulfate

(SM2a)
SM3. See Sulfoactoceramide (SM3)
SM4s. See Sulfogalactoceramide (SM4s)
Small cell lung cancer (SCLC), 287
SMARCA4. See SWI/SNF-related, matrix-

associated, actin-dependent regulator
of chromatin, subfamily a, member 4
(SMARCA4)

SMMs. See Spitzoid malignant melanomas
(SMMs)

SMRT sequencing. See Single Molecule Real
Time sequencing (SMRT sequencing)

SN. See Spitz nevi (SN)
SN-38 glucoronic acid (SN-38G), 505
SNaPshot, 41
SNF complex, 383
SNP. See Single nucleotide polymorphism

(SNP)
SNVs. See Single nucleotide variants (SNVs)

Society for Healthcare Epidemiology of
America (SHEA), 163

Sofosbuvir, 494, 496
Solid organ transplant (SOT), 89
Somatic copy number alterations (SCNAs),

384
Somatic genomic testing, 407
Sonic hedgehog (SHH), 537
Sorafenib, 395�396
SOT. See Solid organ transplant (SOT)
Sotalol, 466�467
SOX10. See SRY-related HMG-box 10

(SOX10)
Special care baby unit (SCBU), 168
Specimen collection, 131�132
Specimen Transport Medium (STM), 79
Spectrum cephalosporins, 154
Spitz nevi (SN), 522
Spitz nevus, 324
Spitzoid malignant melanomas (SMMs), 522
Spitzoid melanoma, 324
Squamous cell carcinoma (SQCC), 287
SRY-related HMG-box 10 (SOX10), 326�328
SSAs. See Sessile serrated adenomas (SSAs)
SSI. See Surgical site infection (SSI)
SSRIs. See Selective serotonin reuptake

inhibitors (SSRIs)
Staphylococcal chromosomal cassette (SCC),

167
Staphylococcus, 164

S. aureus, 131, 146, 163
STAT3. See Signal transducer and activator

of transcription 3 (STAT3)
Statins, 458, 464�465

clinical utility, 465�466
genes association with statin myopathy, 465
SLCO1B1, 465

STIs. See Sexually transmitted infections (STIs)
STM. See Specimen Transport Medium

(STM)
STRs. See Short tandem repeats (STRs)
Strand displacement amplification (SDA),

154
Stratification of medicines, 457
Streptavidin�biotin, 341�342
Streptococcus agalactiae, 140
Streptococcus pneumoniae, 131
Stutter, 450
Substrate, 79
Succinate dehydrogenase (SDH), 385�386
Sudden cardiac death (SCD), 213
Sulfoactoceramide (SM3), 521�522
Sulfogalactoceramide (SM4s), 521�522
Surface�enhanced laser desorption and

ionization time-of-flight
(SELDI�TOF), 353

Surgical site infection (SSI), 163�164
SUSP. See Suspicious for Malignancy (SUSP)
Suspicious for Malignancy (SUSP), 394�395
Sustained virologic response (SVR), 487�489
SVR. See Sustained virologic response (SVR)
SWI/SNF-related, matrix-associated, actin-

dependent regulator of chromatin,
subfamily a, member 4 (SMARCA4),
324

Syndromic disorders, 216
Syphilis, 152. See also Gonorrhea disease;

Trichomoniasis disease
disease
diagnosis, 152, 153f
epidemiology, 151�152
place of syphilis molecular testing,

152�153

T
T-DM1. See Ado-trastuzumab emtansine

(T-DM1)
T21. See Trisomy 21 (T21)
T311. See Tyrosinase
T315I. See Threonine 315 (T315I)
TA. See Thymine-adenine (TA)
Tag-IT Luminex platform, 508
Tamoxifen, 13, 257, 507�509, 511

and CYP2D6, 507�508
4-hydroxylation pathway, 508
clinical utility, 509
interrogated CYP2D6 alleles, 509t
limitations of testing, 509
molecular technologies, 508

Taq polymerase, 15�16, 19
TaqMan real-time PCR, 450
Target amplification, 139
Target cell, 76
Target not detected (TND), 494
Target sequence, 16�17
Targeted therapy, 241, 280�281, 287�288

ALK-targeted therapy, 297�298
EGFR-targeted therapy, 296�297
KRAS/MEK-targeted therapy, 297�298

TAT. See Turnaround time (TAT)
Taxanes, 332
TCGA. See The Cancer Genome Atlas

(TCGA)
Tegafur, 503
Telaprevir (TVR), 489
Telomerase reverse transcriptase (TERT),

326, 393
Temozolamide (TMZ), 332, 345
Temperature, 17
TERT. See Telomerase reverse transcriptase

(TERT)
TF. See Tissue factor (TF)
TF gene mutations. See Transferrin gene

mutations (TF gene mutations)
TFPI. See Tissue factor pathway inhibitor

(TFPI)
TFR2 gene. See Transferrin receptor 2 gene

(TFR2 gene)
TGFα. See Transforming growth factor alpha

(TGFα)
TGFβ. See Transforming growth factor-β

(TGFβ)
TGNs. See Thioguanine nucleotides (TGNs)
THBS1. See Thrombospondin�1 (THBS1)
The Cancer Genome Atlas (TCGA), 384, 391
Therapeutic INR range (TTR), 461
Thermal cycler, 35�36, 36f
Thermolabile variant C665T, 223
Thermus aquaticus, 15�16
Thioguanine, 510t
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Thioguanine nucleotides (TGNs), 509�510
Thiopurine methyltransferase (TPMT),

509�510
dosing of thioguanine, 510t
thiopurines and

clinical utility, 510�511
limitations of testing, 511
molecular technologies, 510

Thiopurines, 509�511
CPIC recommended dosing, 510t
and TPMT

clinical utility, 510�511
limitations of testing, 511
molecular technologies, 510

THO1 marker, 450
Three-dimensional imaging, 526
3TC test. See Lamivudine (LMV)
Threonine 315 (T315I), 417
Thrombocytosis, 413
Thrombogenesis mechanism, 478f
Thrombolytic drugs, 479
Thrombomodulin polymorphism, 477
Thrombophilia, 221�223
Thrombosis, 228, 478
polymorphism in, 479

Thrombospondin�1 (THBS1), 349�350
Thymine-adenine (TA), 505
Thyroid cancer, 391. See also Gynecologic

cancer; Pancreatic cancer; Pediatric
cancers

clinical utility, 394�396
limitations of testing, 396
molecular targets, 391�393

mutations in thyroid tumors, 392t
molecular technologies, 393�394

Thyroid nodules, 394�395
Thyroid specimens testing, 393
Thyroid transcription factor-1 (TTF-1), 287
Ticlopidine, 480f
Time-of-flight (TOF), 518
Tirofiban, 480f
Tissue biopsy, 12�13
Tissue factor (TF), 477
Tissue factor pathway inhibitor (TFPI), 477
TK. See Tyrosine kinase (TK)
TKIs. See Tyrosine kinase inhibitors (TKIs)
TMA. See Transcription-mediated

amplification (TMA)
TMPRSS2:ERG gene rearrangement,

272�273, 277�280
TMZ. See Temozolamide (TMZ)
TND. See Target not detected (TND)
TOF. See Time-of-flight (TOF)
Toxin production, 169
TP53 gene. See Tumor�suppressor gene

(TP53 gene)
TP53. See Tumor protein p53 (TP53)
TPMT. See Thiopurine methyltransferase

(TPMT)
Trametinib, 323, 332
Transcription-mediated amplification (TMA),

52�53, 78, 81, 154, 273�274
Transferrin gene mutations (TF gene

mutations), 249�250
Transferrin receptor 2 gene (TFR2 gene), 245

Transferrin saturation (TS), 246�250, 249f
Transforming growth factor alpha (TGFα),

289, 339
Transforming growth factor-β (TGFβ), 306,

309
TGF�β1, 354

Transmission, 104
Trastuzumab, 258
Treponema pallidum, 151�152
Trichomoniasis disease. See also Gonorrhea

disease; Syphilis, disease
diagnosis on

conventional techniques, 156
molecular testing, 157

epidemiology, 156
Trilateral RB, 401
Triple-negative breast cancer, 13
Trisomy 21 (T21), 203
“True variant” threshold, 31
TRUGENE test, 67
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Ubiquinol�cytochromec reductase hinge

protein (UQCRH), 384
UGT. See Uridine diphosphate
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