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Preface

The origin of queueing theory and its application traces back to Erlang’s historical
work for telephony networks as recently celebrated by the Erlang Centennial, 100
Years of Queueing, Copenhagen, recalling his first paper in 1909. Ever since, the
simplicity and fundamental flavour of Erlang’s famous expressions, such as his loss
formula for an incoming call in a circuit switched system to be lost, has remained
intriguing. It has motivated the development of results with similar elegance and
expression power for various systems modeling congestion and competition over
resources.

A second milestone was the step of queueing theory into queueing networks as
motivated by the first so-called product form results for assembly type networks
in manufacturing in the nineteen fifties (R.R.P. Jackson 1954, J.R. Jackson 1957,
and E. Koenigsberg 1958, 1959). These results revealed that the queue lengths at
nodes of a network, where customers route among the nodes upon service comple-
tion in equilibrium can be regarded as independent random variables, that is, the
equilibrium distribution of the network of nodes factorizes over (is a product of) the
marginal equilibrium distributions of the individual nodes as if in isolation. These
networks are nowadays referred to as Jackson networks.

A third milestone was inspired by the rapid development of computer systems
and brought the attention for service disciplines such as the Processor Sharing dis-
cipline introduced by Kleinrock in 1967. More complicated multi server nodes and
service disciplines such as First-Come-First-Served, Last-Come-First-Served and
Processor Sharing, and their mixing within a network have led to a surge in theoret-
ical developments and a wide applicability of queuing theory.

Queueing networks have obtained their place in both theory and practice. New
technological developments such as Internet and wireless communications, but also
advancements in existing applications such as manufacturing and production sys-
tems, public transportation, logistics, and health care, have triggered many theoreti-
cal and practical results.

Queueing network theory has focused on both the analysis of complex nodes,
and the interaction between nodes in networks. This handbook aims to highlight
fundamental, methodological and computational aspects of networks of queues to
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vi Preface

provide insight and unify results that can be applied in a more general manner.
Several topics that are closely related are treated from the perspective of different
authors to also provide different intuition that, in our opinion, is of fundamental
importance to appreciate the results for networks of queues. Of course, applications
of modern queueing networks are manifold. These are illustrated in the concluding
chapters of this handbook. The handbook is organized in five parts.

Part 1. Exact analytical results, chapters 1–7

Product form expressions for the equilibrium distribution of networks are by far
leading and have been most dominant in the literature on exact analytical results
for queueing networks. In recent years, features such as batch routing, negative cus-
tomers and signals have been introduced to enhance the modeling power of this
class of networks. A unified theory from different perspectives is contained in the
first part of this handbook. Topics include

• a characterization of product forms by physical balance concepts and simple traf-
fic flow equations,

• classes of service and queue disciplines such as Invariant Disciplines and Order
Independent queues that allow a product form,

• a unified description of product forms for discrete time queueing networks,
• insights for insensitivity from the classical Erlang loss model up to Generalised

Semi Markov Processes and partially insensitive networks,
• aggregation and decomposition results that allow subnetworks to be aggregated

into single nodes to reduce computational burden.

These product form results encompass a number of intriguing aspects that are not
only most useful for practical purposes but also indicate a variety of open problems
which remain to be tackled.

Part 2. Monotonicity and comparison results, chapters 8–9

Exact (product form) results are only available for a limited class of networks. These
exact results, however, may also be invoked to obtain bounds for performance mea-
sures for intractable queueing networks. Two basic approaches can be identified:

• stochastic monotonicity and ordering results based on the ordering of the gener-
ators of the processes,

• comparison results and explicit error bounds based on an underlying Markov re-
ward structure which leads to ordering of expectations of performance measures.

There is a clear trade-off for applying either of these two approaches. Stochastic
monotonicity yields stronger results such as with non-exponential service times.



Preface vii

The Markov reward approach in turn is applicable under less stringent conditions,
particularly with more complex structures as in a queueing network. These results
are not only of theoretical and qualitative interest by themselves, but also motivate
the derivation of exact analytical results to enable bounds.

Part 3. Diffusion and fluid results, chapters 10–12

Limiting regimes often allow for amenable expressions for performance measures
in systems that are otherwise intractable. Two particular regimes are of interest:
the fluid regime and the diffusion regime that are illustrated through the following
topics:

• fluid limits for analysis of system stability,
• diffusion approximation for multi-server systems,
• system fed by Gaussian traffic to model variation in the arrival process.

These topics illustrate a rich class of systems that may be analyzed in the limiting
regime and identify an important area of current research.

Part 4. Computational and approximate results, chapters 13–15

Practical applications such as in manufacturing, computer performance and com-
munications rapidly prove to be beyond analytical solvability due to e.g. non-
exponential service times, capacity constraints, synchronization or prioritization.
Numerically exact or approximate approaches for averages or distributions of per-
formance measures have been developed in literature. An illustration is provided via
the following topics:

• MVA (mean value analysis) and QNA (queueing network analyzer) focusing on
mean and variance of performance measures such as queue length and sojourn
times,

• numerical approximation of response time distributions
• approximate decomposition results for large open queueing networks.

The numerical approach to performance analysis is a lively research community
that considerably contributes to the success of queueing theory in applications as it
allows for explicit numerical results for performance measures.
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Part 5. Selected applications, chapters 16–18

Applications of queueing networks are manifold. To illustrate the application power
of queueing theory, some special application areas and their specific queueing net-
work aspects are enlightened:

• loss networks as originating from circuit switched telecommunications applica-
tions,

• capacity sharing as originating from packet switching in data networks,
• hospital logistics.

The first two applications have a theoretical nature as they illustrate a typical class of
queueing networks. The last application illustrates a typical approach for application
of queueing theory in a practical environment.

Despite the fundamental theoretical flavour of this book, it is to be kept in mind
that the area of queueing theory would not have existed and would not have pro-
gressed so strongly had it not been driven by application areas that led to the various
fundamental questions. The intertwined progress of theory and practice will remain
to be most intriguing and will continue to be the basis of further developments in
queueing theory. You are highly invited to step in.
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Chapter 1

On Practical Product Form Characterizations

Nico M. van Dijk

Abstract

Do we have a product form?
If so, how is it characterized?
If not, how can product forms still be useful?

The first question is not be that easy as it seems. The answer might depend on the
state level of interest, the service assumptions imposed and the system restrictions
or flexibilities in order. This chapter aims to address these question in two parts:

A: Product Forms: A Single Station
B: Product Forms: Tandem and Cluster Structures

scription and notions of balance may lead to analytic forms that can be referred to as

some Jacksonian cluster extensions are dealt with to show:

(i) The effect on the existence of a product form under practical phenomena
as blocking and service sharing

(ii) How this existence can be characterized
• in an analytic manner by ’adjoint’ reversibility
• by simple physical station or cluster ’outrate=inrate’ principles

(iii) The practical way in which these insights can be used to obtain
simple product form bounds for únsolvable systems

Nico M. van Dijk
University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands
e-mail: n.m.vandijk@uva.nl

1 

In A just a single service station is studied to show how different levels of a state de-

In B just a tandem type structure (that is with consecutive service stations) and
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for multi-class stations, and symmetric up to so-called invariant disciplines.
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’product forms’. It covers simple birth-death type systems, forms of access blocking
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A: Product Forms: Single Station Hierarchy

1.1 Introduction

No doubt that the popularity of queueing networks, next to its potential for modeling
a variety of practical service networks, is largely due to the existence of the well-
known product form expressions ever since the pioneering work by Jackson (1957).

In several subsequent chapters, various generalizations of this product form in more
abstract settings will be provided (and different lights will be shed on its validity).
For further interest in these generalizations the reader is referred to these chapters.

Nevertheless, as of today, a number of questions related to the existence of product
forms still seem to be open, most notably among which:

• The simple question whether a specific network of interest has a product form
or not.

• What is actually meant by a product form, is it uniquely defined, and under
which conditions and to what extent or level does it apply.

• Last but not least, how can we guess and verify a particular product form in a
down-to-earth manner.

This chapter merely aims to provide some more insights and partial answers for
these questions. It also aims to do so in an instructive manner by following the down-
to-earth approach of straightforward verification of balance equations. As such, it
will be far from exhaustive. Roughly the objectives are:

Objectives.

1. To show the verification and the relation of product forms with different (levels
of) partial balance and to emphasize the physical interpretation of these partial
balances.

2. To show (a hierarchy of) different levels of product forms and partial balance
as depending on state description and conditions satisfied.

3. To show the characterization of these partial balances and its related product
forms by means of reversibility and, as will be called:
’adjoint reversibility’.

4. To provide instructive as well as ’non-standard’ product form examples, some
of which might still be regarded as ’new’, or at least which have not been
reported explicitly.

5. To illustrate the application of these product form insights such as to provide
simple and possibly insensitive product form bounds for practical non-product
form systems.
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Outline and results.

In line with the first three objectives, in A (sections 1.2-1.4) just a single service
station will be analyzed. More precisely, three levels of balance will be considered

• for a total number at a station

• for each job-class separately

• for each service position

First in section 1.2, it is shown that these three levels lead to the well-known cate-
gories of

(i) birth-death systems
(ii) coordinate convex access structures and
(iii) insensitive symmetric service disciplines

It is shown that these three categories and their hierarchy can be generalized
to ’product form’ structures for single service stations with more general ac-
cess/blocking mechanisms and service disciplines. Among others these results cover
and extend classical results for multiclass service stations. Next, in section 1.3 the
symmetric disciplines and its insensitivity are generalized to service invariant disci-
plines. These include some ’nonstandard’ examples. Section 1.4 completes A with a
direct application of simple bounds for M|G|c|c+m systems, a literature discussion
and an overview of the balances.

Next, in B (sections 1.5-1.7) tandem type networks are dealt with. First, in sec-
tion 1.5, the most simple and generic but nón-reversible ’network structure’ of a
simple but finite two station open tandem queue is extensively studied. Despite its
nón-reversibility it is shown how product forms can be concluded as based upon
an artificially constructed adjoint tandem queue and an extended form of reversibil-
ity, which will be called ’adjoint reversibility’. This characterization by ’adjoint
reversibility’ leads to a sufficient and necessary characterization of a product form.

Various product form examples can so still be concluded also for tandem queues
with finite capacities (blocking) or service sharing (fair sharing), such as of practical
interest for manufacturing or internet modeling.

In section 1.6 extensions are provided with a single service station replaced by a
Jackson network.

In section 1.7 it is argued and also numerically illustrated how these product form
results may provide useful bounds for more natural but únsolvable systems with
blocking. A simple optimal design application is included.

Section 1.8 shows how the results from B led to a special recent practical application
for hospitals

Section 1.9 completes B with a literature discussion, a brief review and some re-
maining open questions for research.
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1.2 Product Forms: Three Balances

Product forms are generally associated with a closed form expression that factorizes
into separate terms for separate service stations. But in fact, such factorizations also
exist for just one service station as by characterizations of partial balance. To shed
some more light on this phenomenon of a product form characterization, in B we
will simply consider a single service station.

1.2.1 Station Balance: B-D or Erlang-Engset systems

Consider a single server station. With n the number of jobs present, let
{

λ (n) : be the arrival rate
µ(n) : be the service rate

where it is assumed that µ(n) > 0 for n > 0 and where λ (n) > 0 for all n < N, with
N some finite number or infinite. (More precisely, that is, with n jobs present the
arrival time up to the next arrival is exponentially distributed with parameter λ (n)
and similarly the time up to a next departure with parameter µ(n)).

Note that no further specification is given on possible different job-types or on a
possible service discipline, (e.g. a first-come first-served or other discipline in the
single server case with µ(n) = µ for all n > 0).

Let {π(n)} represent the steady state distribution for the number of jobs present.
This distribution is uniquely determined (up to its normalization) by the global bal-
ance (backwards Chapman-Kolmogorov) equations:
{

π(n)λ (n)+

π(n)µ(n)

}
=

{
π(n +1)µ(n +1)+

π(n−1)λ (n− 1)

}
(1.1.1)
(1.1.2)

(1.1)

for any n≤ N. These equations can be interpreted as ”out = in”-stream equations in
the ”mathematical” sense of bringing you out of (left hand side) and bringing you
into (right hand side) state n. However, substituting n = 0, necessarily requires that




π(0)λ (0) = π(1)µ(1)

⇐⇒ (2.1.1) for n = 0⇐⇒ (2.1.2) for n = 1

=⇒ π(1)λ (1) = π(2)µ(2)⇐⇒ (2.1.1) for n = 1⇐⇒ (2.1.2) for n = 2

and so on. Hence, the global balance relation (1.1) necessarily requires that

π(n)µ(n) = π(n−1)λ (n−1)⇐⇒ (2.1.1) for n≥ 0⇐⇒ (2.1.2) for n > 0. (1.2)

Clearly, the relations (1.2) in turn, which are also well-known as ’birth-death equa-
tions’, are sufficient for (1.1) to be satisfied. Though these relations are completely
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standard, in contrast with the ’mathematical’ out = in interpretation of (1.1), an im-
portant point that might be emphasized here, is that the relations (1.2) have the more
detailed interpretation that for any state n:

The (physical) outrate due to a departure =

the (physical) inrate due to an arrival at the service station. (1.3)

Here the outrate and inrate are to be read in the mathematical sense of leaving and
entering that state respectively, as in (1.1). In this chapter this form of (physical)
balance for a service station will be referred to as station balance (SB), so as to
distinguish from more detailed notions of balances that will follow.

For N < ∞, and for N = ∞ under the standard ergodicity assumption that a prob-
ability solution π(n) of (1.2) exists, roughly speaking that is, that a normalization
constant c can be computed, (1.2) is satisfied by

π(n) = c
n−1

∏
k=0

[
λ (k)

µ(k +1)

]
0≤ n≤ N (1.4)

Example 1.2.1 (Erlang systems) As a most standard example, for given values s
and m and by setting

λ (n) = λ1(n<s+m)

µ(n) =

{
nµ (n < s)
sµ (n≥ s)

the standard M|M|s|s + m is included, with s servers and a waiting room of size m
(possibly m = ∞), also known as an Erlang-system. (Erlang’s pure delay system by
m = ∞; Erlang’s pure loss system by m = 0). In fact, even for these standard multi-
server systems, the form (1.4) can already be regarded as a product form, as will be
made more explicit by the following example.

Example 1.2.2 (Engset or Machine-Repair systems) By

λ (n) = (M− n)γ1(n<s+m) (n < M)

where M is some given finite (integer) number, and µ(n) as in example 1, we can
also incorporate a finite source system with M sources (e.g. machines) each of which
independently generates a service request (e.g. for a repair or maintenance) at an
exponential rate γ . The service systems can be seen as in example 1 with s servers
and a waiting facility of size m, hence a finite capacity for at most N = s + m jobs
(with N < M). When N sources (machines) are already in service mode, a next
request is cancelled and a new request by that source is to be (exponentially) regen-
erated at rate γ .

As opposed to an Erlang system, in teletraffic theory this system is known as an
Engset system. More generally it is also referred to as a Machine-Repair system. As
a special case, for s = N, (1.4) reduces to
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1

M

n

Fig. 1.1: Engset (Machine Repair) system.

π(n) = c̃

(
M
n

)(
1
µ

)n(1
γ

)M−n

with c̃ = cγM

For M≤N this is intuitively obvious as if each source can be seen as having its own
devoted server and alternates between an operative mode, for an average length
of time (1/γ) and a service mode, for an average length of time (1/µ). For N <
M, however, this first intuition seems less justified as a source may have multiple
repeated operative sessions when all servers are busy. Nevertheless the form still
applies.

A Product Form. More precisely, with M fixed, n = (n1,n2) where n1 = M− n
and n2 = n, γ(k) = λ (M− k) we can also rewrite (1.4) as:

π(n) = π(n1,n2) = ˜̃c

[
n1

∏
k=1

γ(k)

]−1[ n2

∏
k=1

µ(k)

]−1

(1.5)

with

˜̃c = c

[
M

∏
k=1

γ(k)

]
,

This form can be regarded as a first representation of a product form in that it fac-
torizes in stations: in this case: a source station and a service station, with a service
rate γ(k) and µ(k) respectively, when k jobs are present at that station.

1.2.2 Class balance: Coordinate convex property (CCP)

1.2.2.1 Two class coordinate convex case

Now consider a service station in which we can distinguish different job-classes.
For its instructive purpose first assume two job-classes which can be regarded as
independent up to common capacity constraints, say as determined by some set of
admissible states C = {(m1,m2) |m1 ≥ 0,m2 ≥ 0}. More precisely, with state
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m = (m1,m2) denoting by

mi : the numbers of jobs of type i present, for i = 1,2.

let





λ1(m) = λ11(m1+1,m2)∈C be the arrival rate for job type 1

λ2(m) = λ21(m1,m2+1)∈C the arrival rate for job type 2, and

µi(m) = µi(mi) be the service rate for job type i = 1,2.

Then, as in section 1.2.1, the steady state distribution {π(m)} is uniquely deter-
mined (up to normalization) by the global balance equation which require that for
any m ∈ C:






π(m1,m2)λ11((m1+1,m2)∈C)+
π(m1,m2)λ21((m1,m2+1)∈C)+
π(m1,m2)µ1(m1)+
π(m1,m2)µ2(m2)






(1.6.1)
(1.6.2)
(1.6.3)
(1.6.4)

=




π(m1 +1,m2)µ1(m1 +1)1((m1+1,m2)∈C)+
π(m1,m2 + 1)µ2(m2 +1)1((m1,m2+1)∈C)+
π(m1−1,m2)λ1+
π(m1,m2− 1)λ2






(1.6.1)′

(1.6.2)′

(1.6.3)′

(1.6.4)′

(1.6)

In general, a simple analytic solution will no longer be available unless the more
detailed relations (1.6.i) = (1.6.i)′ can be verified for i = 1, . . . ,4. For example,
with the natural assumptions of just a common constraint for M jobs, i.e.

1C(m1 +1,m2) = 1C(m1,m2 +1) = 1(m1+m2+1≤M)

one directly verifies these detailed equations by

π(m1,m2) = c

[
m1

∏
k=1

λ1

µ1(k)

][
m2

∏
k=1

λ2

µ2(k)

]
(1.7)

Coordinate Convex Property (CCP). More generally, expression (1.7) satisfies
(2.6.i) = (2.6.i)′, for i = 1, . . . ,4, provided the set C is coordinate convex, i.e.

(m1,m2) ∈ C =⇒
{

(m1−1,m2) ∈ C (m1 > 0)

(m1,m2−1) ∈ C (m2 > 0)

Roughly speaking that is, C may not contain ’holes’. This condition is quite natu-
ral, such as in telecommunication structures, as will be illustrated below by some
examples.
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M1

M2

M3

Fig. 1.2: End-to-end finite link groups.

Example 1.2.3 (Circuit switch) As a simple circuit switch communication exam-
ple consider type 1 and type 2 calls each of which with its own limited trunk group
of M1 and M2 local channels connected to a common, say regional, trunk group of
M channels. A call simultaneously requires, a local and regional channel during
its entire call duration. With mi the number of ongoing type-i calls, C is coordinate
convex by

C = {(m1,m2) | 0≤ m1 ≤M1 ; 0≤ m2 ≤M2 ; m1 +m2 ≤M}

M1 M

M2

M

Fig. 1.3: CCP for circuit switch.

Example 1.2.4 (Overflow with call packing) Now consider the most simple situa-
tion with type-1 calls at some finite primary trunk group with N1 channels and type
-2 calls at some second trunk group with N2 channels. If all N1 channels are busy a
type-1 call can be overflowed to a free channel of the second group. Type-2 calls can
only be handled by the second group. If an incoming type-1 or type-2 call cannot
find an available channel as specified, it is rejected and lost. In addition (also see
section 1.2.2.3), the so-called principle of call packing (or repacking) is assumed.
That is, when a type-1 call at the primary group is completed, the channel that has
become available takes over a type-1 call form the second group, if any. In this
present setting this principle may seem unrealistic. Nevertheless, we refer to section
1.2.2.3 for further explanation of its ’necessity’ as well as also a possible practical
motivation.



1 On Practical Product Form Characterizations 9

N1

N2

1

2

Fig. 1.4: Overflow system with CP.

Now note that under the call packing principle it suffices to keep track of just the
total numbers m1 and m2 of ongoing type-1 and type-2 calls as specified by the
coordinate convex region

C =
{
(m1,m2) |m2 +(m1−N1)

+ ≤ N2 ; m1 ≥ 0 ; m2 ≥ 0
}

As a consequence, under the the call packing principle, the form (1.7) thus applies
for this overflow problem.

N1

N2

N1 + N2

Fig. 1.5: CCP for overflow with CP.

Example 1.2.5 (Specialized servers) As a slightly more generalized but possibly
also more natural extension of the overflow situation in example 1.2.4, now con-
sider two type of service requests, e.g. by critical and regular patients for intensive
and medium care beds in a hospital, each with its own devoted group of S1 and S2

servers, e.g. special beds with associated nurses and equipment. In addition, how-
ever, if all type-1 servers are busy also type-2 servers, up to a maximum of K, can
be used for type 1 requests, as far as available. The service times are request depen-
dent. If no server is available a service request is rejected (e.g. in hospital practice
some transfer takes place).

Again, also a call packing principle is to be assumed to provide the product form
solution (1.7). In this case of specialized servers (e.g. beds), however, it may even be
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natural. More precisely, when a type-1 service (e.g. at an ICU bed) at a type 1 server
is completed, a type-1 service (patient) at a (lower preference) type-2 server (e.g. a
medium care bed) is ’switched’ to this (higher preference) type-1 server (again see
section 1.2.2.3).

With mi the number of ongoing type i servers, C is coordinate convex as shown in
figure 1.6, as specified with K ≤ S2 by:

{
m1 ≤ S1 +K

m2 +(m1− S1)
+ ≤ S2

which for K = S2 reduces to:

m2 +(m1−S1)
+ ≤ K = S2

S1

S2

S1 + K

K

Fig. 1.6: CCP for specialized servers.

Remark 1.2.6 Note that the practical descriptions and mechanisms in example
1.2.4 and 1.2.5 are quite different but that the product form solutions and the graph-
ical representations of the admissible regions C are identical in form.

1.2.2.2 Class Balance and Product Form

The two class situation can directly be generalized to R job classes. Let m =
(m1,m2, . . . ,mR) denote by mr the number of jobs of job class r present, r = 1, . . . ,R.

Let er denote the r-th unit vector with the r-th component equal to 1 and 0 otherwise.
Hence m+ er = (m1, . . . ,mr−1,mr +1,mr+1, . . . ,mR) and similarly for m− er. With

{
λr(m) = λr1(m+er∈C) the arrival rate and

µr(m) = µr(mr) the service rate
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for r = 1, . . . ,R and C some set of admissible states, the global balance equation
then requires that for any state m ∈ C:

{
π(m)∑r µr(mr)+

π(m)∑r λr1(m+er∈C)

}
(1.8.1)

(1.8.2)

={
∑r π(m− er)1(m−er∈C)λr+

∑r π(m+ er)1(m+er∈C)µr(mr +1)

}
(1.8.1)′

(1.8.2)′

(1.8)

These are directly verified by each job class r separately by (1.8.i) = (1.8.i)′ for
i = 1,2 and with mr > 0:

π(m)µr(mr)1(m∈C) = π(m− er)λr1(m−er∈C) (1.9)

provided C is coordinate convex, that is:

m ∈ C =⇒m− er ∈ C (if mr > 0) (1.10)

Relation (1.9) directly leads to the solution at C:

π(m) = c∏
r

[
mr

∏
k=1

λr

µr(k)

]
(1.11)

This steady state expression (1.11) can be referred to as a ’product form’ in that it
factorizes to the steady state solutions for each job class separately with arrival rate
λr and service rates µr(mr) as if these are completely independent up to a common
admissability region C.

Furthermore, one may note that (1.9) states that for any job class r:

The rate out of any state due to a class r departure =

the rate into this state due to a class r arrival
(1.12)

In the present setting of this chapter (1.12) will be referred to as class balance (CB).
Again a detailed and physical notion of an outrate = inrate interpretation (in this
case by (1.12)) thus seems to be directly related to a ’product form’ solution in that
it factorizes to the individual components of this detailed balance.

Remark 1.2.7 (Population distribution) Clearly, by a product form expression as
in (1.7) or (1.11) we can also, compute the steady state distribution π(n) for the
total number of jobs present n = m1 + m2 by

π(n) = c∑{(m1,m2)|m1+m2=n}π(m1,m2) (1.13)

For example, in example 1.2.3 with M1 = M2 = ∞ and just a common capacity
constraint m1 + m2 ≤ M, for the pure multiserver case with µi(mi) = miµi, one
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directly obtains

π(n) = c∑ (m1,m2)

[
2

∏
i=1

1
mi!

(
λi

µi

)mi
]

= c
1
n!

(λ τ)n ,

τ =

[
λ1

λ1 +λ2

]
τ1 +

[
λ2

λ1 +λ2

]
τ2 and λ = λ1 +λ2 (1.14)

Note however, that the distribution by (1.13) will not generally have this simple
geometric form, as due to the common admissibility restrictions by C.

1.2.2.3 More examples

M1

M2

M3

M4

M5

M6

M7

Fig. 1.7: Multiple class circuit switch.

Example 1.2.8 (Circuit Switching) Example 1.2.3 can directly be extended to multi-
stage switch networks, in which a type-i call requires an available trajectory, that
is a free channel from each of its channel groups along its trajectory, such as illus-
trated in figure 1.7 with the coordinate convex capacity constraints






mi ≤Mi i = 1, . . . ,4

m1 +m2 ≤M5

m3 +m4 ≤M6

m1 +m2 +m3 +m4 ≤M7

Example 1.2.9 (Alternate routing) Example 1.2.5 can be extended to multiple
specialized servers such as naturally arising in communication routes or call center
skills provided the ’call packing’ principle is assumed, i.e. a job should always uses
an available server of its highest preference.

As a hierarchical routing example in circuit switching, consider a circuit switching
communication network as illustrated in figure 1.8 between locations A, B and C.



1 On Practical Product Form Characterizations 13

C

A B

Fig. 1.8: Alternate routing example.

There are input sources for communications between AB, AC and BC with parame-
ters λ1, λ2 and λ3 and with exponential call duration parameters µ1, µ2 and µ3 for
each of this call types. The number of links between the locations is limited by N1 for
AB, N2 for AC and N3 for BC. A type 2 or type 3 is directly lost if all N2 or N3 chan-
nels are busy. For type 1 requests between AB, however, alternate routing is used.
That is, if all N1 links are busy, the AB connection can be made via C, which requires
one link between AC and BC at the same time. In addition, call packing is in order.
That is, if a direct AB link becomes available, an alternately routed transmission is
instantaneously switched to this link.

With mr the number of ongoing type r communications, the coordinate convexity
conditions now apply with:





m1 ≤min(N1 +N2,N1 +N3)

m2 ≤ N2− (m1−N1)
+

m3 ≤ N3− (m1−N1)
+

Example 1.2.10 (Two other coordinate convex examples.) As mentioned in remark
1.2.6, the examples 1.2.3, 1.2.4 and 1.2.5, although different in practical physical
descriptions, seem to be identical in its graphical (and mathematical) form.

Nevertheless, by just the condition of a coordinate convex region C (and an im-
plicit assumption of call packing so as to justify a sufficient state description for this
region), various other product form examples can so be devised, as illustrated in
figures 1.9(a) and 1.9(b).

For example, figure 1.9(a) could represent hospital departments for type-1 and type-
2 patients with B1 and B2 beds. In addition, a standby department is available in
case of excess. However, this department can only be used for one patient type (e.g.
as due to contamination risks), up to a maximum of K1 type-1 or K2 type-2 patients.

Also figure 1.9(b) could represent hospital departments for type-1 and type-2 pa-
tients. Here it is assumed that each patient requires one nurse up to Ni nurses in
department i = 1,2. The N2 nurses of department 2 are assumed to be more ’ca-
pable’. Therefore, department 2 even allows up to P2 patients once all N2 nurses
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(a) (b)

Fig. 1.9: Two other examples with CCP.

are present. In addition, department 1 may also make use of one or more of these
specialized N2 nurses as far as available.

Call packing. As for the ’call packing’ assumption in the overflow example 1.2.4,
first note that without call packing, that is by naturally assuming that a call remains
dedicated to the channel that it is allocated to, one cannot describe the system dy-
namics by just the numbers m1 and m2. In that case, also the separate numbers of
channels at the second group have to be kept track of that are occupied by type-1
and type-2 calls. (As the call rates are different and as type 2 calls are lost when all
channels at this group are occupied). Say that we would let (p1,o1,o2) denote the
state with





p1 : type-1 calls at the primary group (class-1 jobs)

o1 : type-1 calls at the secondary group (class-2 jobs)

o2 : type-2 calls at the secondary group (class-3 jobs)

Then, without call packing, by regarding the entire system as a multi-class service
station, a notion of class balance is necessarily violated for class-2 jobs. For ex-
ample, for N1 = 10 in state (4,6,2), the outrate due to a class-2 job (type-1 call at
group 2) is positive but the inrate into this state due to a class-2 job is equal to 0 (as
a type-1 call arrival in state (4,5,2) will lead to state (5,5,2) rather than (4,6,2)).

Hence, by relying upon the relationship that a ’product form’ solution in numbers
of job classes necessarily requires this notion of class-balance, we cannot expect a
’product form’ for the overflow example 1.2.4 without the call packing assumption.

With this call packing assumption, in contrast, the product form solution π(m1,m2)
can be concluded as by expression (1.7) with m1 = p1 +o1 and m2 = o2. In fact, this
product form also satisfies the class-balances for each job-class r = 1,2,3. More
precisely, for example 1.2.4 the class balance relations become:



1 On Practical Product Form Characterizations 15





π(p1,o1,o2)p1µ11(p1>0)1(o1=0)+

π(p1,o1,o2)(N1 +o1)µ11(p1=N1)1(o1>0)+

π(p1,o1,o2)o2µ21(o2>0)





(1.15.1)

(1.15.2)

(1.15.3)

=




π(p1−1,o1,o2)p1λ11(p1>0)1(o1=0)+

π(p1,o1− 1,o2)λ11(p1=N1)1(o1>0)+

π(p1,o1,o2−1)λ21(o2>0)






(1.15.1)′

(1.15.2)′

(1.15.3)′

(1.15)

Here, to be complete, one must note that the outrate (left hand side) and inrate
(right hand side) are indeed both equal to 0 for class-1 jobs when o1 > 0 and hence
p1 = N1. (In that case, the number of class-1 jobs will remain to be N1 even by a call
completion at the primary group). Conversely, an inrate by a class-1 job could not
have taken place as it would have come from a state (N1,o1− 1,o2). Furthermore,
also the corresponding outrate for the ’outside station 0’ (the total inrate for the
system) and inrate (the total outrate from the system) are to be checked.

With m1 = p1 + o1 and C as in example 1.2.4, for (m1,m2) ∈ C the class balances
(1.15.i) = (1.15.i)′ for i = 1,2,3, are verified by

π(p1,o1,o2) = c
1

m1!

(
λ1

µ1

)m1 1
m2!

(
λ2

µ2

)m2

(1.16)

Example 1.2.11 (Practical use) As proven and numerically illustrated in [58], this
product form expression (1.16) (for the overflow example under call packing as in
example 1.2.4) provides secure (and rather accurate) upper bounds for the loss
probability of type-1 calls for an overflow system, as in example 1.2.4, without call
packing. The call packing principle and its product form consequences, even though
’unrealistic’ in particular cases, can thus still be of practical interest, such as for
dimensioning purposes to guarantee a sufficiently small loss percentage. (The tech-
nical details of the proof in [58] are rather complex and rely upon the Markov
reward approach as will be outlined in a chapter later on).

1.2.3 Job Local Balance: Necessity

1.2.3.1 Introduction: single server system

So far, no distinction or mentioning has been made as to the specific service disci-
pline in order, such as whether jobs have to wait or not and if so whether it is, for
example, in first-come first-served or last-come-first-served order. In fact, no other
specification is given than just by a simple service rate µ(n) for all jobs in section
1.2.1 or service rate µr(mr) for class-r jobs in section 1.2.2.
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Apparently, as for the steady state distributions π(n) in section 1.2.1 or π(m) in
section 1.2.2, the specific service discipline does not seem to play a role. In contrast,
two implicit assumptions have been essential:

• the assumption of just one type of exponential service in section 1.2.1 and

• of an independent service rate for each job-class seperately in section 1.2.2.

In this and the next section we aim to relax both assumptions by allowing different
service parameters for different job classes as well as a common service such as by a
single server and processor sharing mechanism for different job-classes. As before,
let us first obtain some more insight by a simple situation.

Single-server system (FCFS/LCFS). Even though we might only be interested in
the total number of jobs present, as the service rates of different jobs are allowed
to be different, for either the FCFS or LCFS discipline we necessarily have to keep
track of which type of job is in service position 1 and so on. To this end, in a state
with n jobs present, let

[R] = [r1,r2, . . . ,rn] denote by

ri : the job-type of the job at service position i = 1,2, . . . ,n

In addition, for clarity, in state [r1,r2, . . . ,rn] we also use the symbols

s = r1 : for the job-type of the job in service and

l : for the job-type of the job last entered,

Hence,

l =

{
rn for the FCFS-case

r1 for the LCFS-case.

Below we will separately treat the FCFS- and LCFS-served case in order to investi-
gate the existence of a ’product form’ or just an ’analytic’ solution for π(n).

1.2.3.2 Instructive FCFS case

The global balance equations here require that

π(s,r2, . . . ,rn)µs +∑
r

π(r1,r2, . . . ,rn)λr =

π(s,r2, . . . ,rn−1)λl +∑
r

π(r,r1,r2, . . . ,rn)µr (1.17)

which equate the mathematical out=in rate for any state [R] = [r1, . . . ,rn]. Now note
that the physical outrate as due to the job in position 1 has a factor µs while the
physical inrate is as due to the job at position n has a factor λl . As a solution is to
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Out

In

Fig. 1.10: Out and inflow for FCFS-queue.

be sought which holds for any s and l, one cannot expect (find) a simple solution
unless the services of different job-types are identical, i.e., for some µ

µr = µ (r = 1, . . . ,R) (1.18)

In other words, without this condition we necessarily seem to fail both a notion
of physical out = in rate balance and a notion of out = in rate for each position
separately.

Alternatively, under condition (1.18) by substituting µs = µ and µr = µ and setting

π(r1, . . . ,rn) = c
n

∏
i=1

[
∏

r
λr1(r=ri)

]
µ−1 (1.19)

one easily verifies (1.17) by

π(s,r2, . . . ,rn)µ = π(s,r2, . . . ,rn−1)λl (all l)

π(r1,r2, . . . ,rn)λr = π(r,r1,r2, . . . ,rn)µ (all r)
(1.20)

The relations (1.20) in turn can again be interpreted as station balance as defined
in section 1.2.1. However, even under condition (1.18) a notion of balance for each
position (or rather job) separately remains to fail, as necessarily for n≥ 1:

the rate out of a state [r1, . . . ,rn] due to the job at position 1 > 0

the rate into this state due to that job at position 1 = 0

The importance of this notion will become more apparent in the next section.
Among other things its failure for the FCFS-situation implies that the solution (1.19)
cannot be insensitive, i.e. next to its equality condition (1.18) it also strictly requires
exponential services. This will be clarified later on.
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1.2.3.3 LCFS-pre case

Out

In

Fig. 1.11: Out and inflow for LCFS-pre queue.

Now consider the Last-come first-served (LCFS) case (with preemption). With the
notation from section 1.2.3.2 adopted, in state [R] = [r1, . . . ,rn] with s = l = r1, the
global balance equation here becomes:

π(s,r2, . . . ,rn)µs +∑
r

π(r1,r2, . . . ,rn)λr =

π(r2, . . . ,rn)λs +∑
r

π(r,r1,r2, . . . ,rn)µr (1.21)

Clearly, (1.21) is directly verified by requiring that for any state R = [r1, . . . ,rn] and
with s = r1:

π(s,r2, . . . ,rn)µs = π(r2, . . . ,rn)λs

π(r,r1, . . . ,rn)µr = π(r1, . . . ,rn)λr (1.22)

with solution:

π(r1, . . . ,rn) = c
n

∏
i=1

∏
r

[
λr

µr
1(r=ri)

]
(1.23)

Furthermore, the relations (1.22) have the interpretation that in any state:

The physical outrate due to a service completion at position 1 =

the physical inrate due to an arrival at that position 1.

while for any other position p 6= 1:

Both the outrate due to a service completion at that position

and the inrate due to an arrival at that position are equal to 0.

We have thus verified a notion of balance for each position or job separately. The
expression (1.23) in turn appears to factorize to traffic loads for each of these jobs
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separately. Again, it could therefore be referred to as product form. This property
of balance per job (or position) and a detailed ’product form’ in jobs (or positions)
separately, thus appear to be interrelated. This will be made more explicit and be
extended in sections 1.2.4, 1.2.5 and section 1.3.

First, however, for this particular form of detailed balance, as will be called job-
local balance later on, in the next section let us reveal another appealing property
that seems to be directly related.

1.2.4 LCFS-pre case: Nonexponential

In this section reconsider the LCFS-preemptive case from section 1.2.3.3 but drop
the exponential assumption. From this section onward in the remainder of this chap-
ter, for notational convenience and to distinguish from a subscript for different ser-
vice stations later on, we will consistently use superscripts to indicate the job-class
in order. Hence for job-class r from now on we use:

λ r : as arrival parameter

µ r : as service parameter in the exponential case

Instead, assume that class r jobs require an amount of service according to a distri-
bution function:

Gr =
∞

∑
k=1

qr(k)E(k,νr) (1.24)

where qr(k) represents the probability that the distribution is an Erlang E(k,νr)
distribution of k exponential phases with parameter νr. Here we refer to remark
1.2.14 below to justify the restriction to this class of distributions. Let






µ r = [τr]−1

τr = ∑∞
k=1 qr(k) [k/νr]

Hr(a) = [τrνr]−1 ∑∞
k=a qr(k)

(1.25)

Hence, µ r can be seen as equivalent to the exponential parameter for the pure expo-
nential case and τr is the mean service requirement. Furthermore, the terms Hr(·),
which sum up to 1, can be seen as steady state probabilities for the number of resid-
ual exponential phases up to a next renewal in a discrete renewal process with (inter)
renewal distribution function Gr. These probabilities satisfy the discrete renewal re-
lation:

Hr(a) = Hr(a +1)+ Hr(1)qr(a) (1.26)

Now note that the system dynamics or rather the transition rates requires one to keep
track of the residual number of exponential phases for each job. Therefore, let
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[(r1,a1), . . . ,(rn,an)] (1.27)

denote that n jobs are present with the job at position i of class ri at position i with
ai residual exponential phases of service requirement. The following product form
can then be proven.

Result 1.2.12 (Detailed product form)

π ([(r1,a1), . . . ,(rn,an)]) = c
n

∏
i=1

{
∏

r

[
λ r

µ r

]
Hr(ai)1(r=ri)

}
(1.28)

Proof. Motivated by section 1.2.3.3 for the exponential case, the proof is based on
showing:

The rate out of state [(r1,a1), . . . ,(rn,an)] due to the job at position 1 =

The rate into state [(r1,a1), . . . ,(rn,an)] due to the job at position 1
(1.29)

For clarity, write r1 = s and a1 = a. In formula, (1.29) then requires

π ([(s,a),(r2,a2), . . . ,(rn,an)])νs

=

π ([(r2,a2), . . . ,(rn,an)])λ sqs(a)+

π ([(s,a +1),(r2,a2), . . . ,(rn,an)])νs (1.30)

By substituting (1.28), this can be rewritten as requiring that

π ([(s,a),(r2,a2), . . . ,(rn,an)])νs =

π ([(s,a),(r2,a2), . . . ,(rn,an)])νs
[

λ sqs(a)
1
νs

µ s

λ s

1
Hs(a)

+
Hs(a+ 1)

Hs(a)

]

(1.31)

With µ s = [τs]−1, this is satisfied by the renewal relation (1.26).

As the rate out of and into the state ([(r1,a1), . . . ,(rn,an)]) due to a departure from
and arrival at any other position p 6= 1 are both equal to 0, for each position p
separately, the notion of job-local balance is verified. In addition, also the total inrate
and the total outrate for the system have to be shown to be equal as by:

∑
r

π ([(r1,a1), . . . ,(rn,an)])λ r =

∑
r

π ([(r,1),(r1,a1), . . . ,(rn,an)])νr (1.32)

and verified (in fact for each job-class r separately), by substituting (1.28)

π ([(r,1),(r1,a1), . . . ,(rn,an)]) = π ([(r1,a1), . . . ,(rn,an)])H(1)
λ r

µ r (1.33)



1 On Practical Product Form Characterizations 21

and using that (also see (1.26)): Hr(1)= [τrνr]−1 and τr = 1/µ r. The global balance
equation is hereby satisfied. This completes the proof of the result 1.2.12. ⊓⊔

Result 1.2.13 (Insensitive ’product form’ for LCFS-pre case) For arbitrary ser-
vice distribution of the form (1.24):






(1.23) holds and

π(n) = c(λ τ)n with

τ = ∑r prτr ; pr = λ r/λ ; λ = ∑r λ r

(1.34)

Proof. By using the factorizing form of the product form of result 1.2.12, by sum-
ming over all possible numbers of residual phases and recalling that the terms Hr(·)
represent renewal probabilities that sum up to 1, first conclude that

π(r1, . . . ,rn) = ∑
a1,...,an

π ([(r1,a1), . . . ,(rn,an)])

= c
n

∏
i=1

[λ riτri ]

[
∞

∑
ai=1

[Hri(ai)]

]

= c
n

∏
i=1

[λ riτri ] (1.35)

The proof is completed by

π(n) = c∑r1,...,rn
π(r1, . . . ,rn) = c

[
∑
r

λ rτr
]n

= c(λ τ)n

⊓⊔

Remark 1.2.14 (Insensitivity and general nonexponential services) Result 1.2.13
shows that the steady state distribution π(n) is not dependent on the actual service
distributions other than by their means τr. Such a result is known in the literature as
’insensitivity’. In fact, as arbitrary nonnegative and continuous distributions can be
approximated arbitrarily closely, in weak convergence sense, by mixtures of Erlang
distributions, i.e. by distributions of the form (1.24), by weak continuity arguments
the closed form (1.34) can also be concluded for arbitrary service distributions.

Remark 1.2.15 (Insensitivity⇔ job-local balance) Note that the insensitivity re-
sult 1.2.13 for the total number of jobs has been proven by showing a notion of
physical balance for each job (position) separately. This relationship appears to
be generally valid, as will also become more apparent in the next section. More
precisely, as shown in [47], [48] and [26] in more abstract setting the concepts of
insensitivity and, as it will be called here, job-local balance, appear to be one-to-one
related.
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Remark 1.2.16 Chapter 3 by P.G. Taylor provides different insights and results of
insensitivity. The interested reader on this intriguing phenomenon is referred to this
chapter.

1.2.5 Symmetric Disciplines and Job-Local-balance (JLB)

In this section we will combine and extend the ’product form’ insights and results
from sections 1.2.3.2, 1.2.3.3 and section 1.2.4 to a more general setting of service
disciplines (directly related to the work by [3], [10], [11], [33], [34]).

To this end, as before, assume that jobs are numbered by service positions 1, . . . ,n
when n jobs are present. The service discipline is characterized by a 3-tuple ( f ,γ,δ )
of functions which represent by:






f (n) the total service capacity when n jobs are present where
f (n) > 0 for n > 0

γ(p | n) the fraction of this capacity assigned to the service
position p ; p = 1, . . . ,n when n jobs are present

δ (p | n− 1) the probability that an arriving job when n−1 jobs
are present is assigned position p ; p = 1, . . . ,n > 0.

As the service positions are assumed to be successive with only one job in each
position, also a shift mechanism is operated. When a job at position p completes its
service the jobs at positions p +1, . . . ,n are shifted to positions p, . . . ,n− 1. When
n−1 jobs are present and an arriving job is assigned position p, the jobs previously
at positions p, . . . ,n−1 are shifted to positions p+ 1, . . . ,n. As an additional prop-
erty, that will be distinguished, a service discipline of the form above, is said to be
symmetric if:

δ (p | n− 1) = γ(p | n) for all p = 1, . . . ,n and n > 0 (1.36)

The present parametrization covers a reasonably large class of natural service disci-
plines as:
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D1: 1-server FCFS: f (n) = 1
δ (n | n− 1) = γ(1 | n) = 1 and
δ (p | n−1) = γ(p | n) = 0 otherwise

D2: 1-server LCFS-pre: f (n) = 1
δ (1 | n− 1) = γ(1 | n) = 1 and
δ (p | n−1) = γ(p | n) = 0 otherwise

D3: 1-server Processor Sharing: f (n) = 1 and
δ (p | n−1) = γ(p | n) = 1/n, for all p

D4: Pure multi-server (PS) system: f (n) = n and
δ (p | n−1) = γ(p | n) = 1/n, for all p

Here it is to be noted that the most natural FCFS discipline (D1) is not (and cannot
be) parameterized as a symmetric discipline, while the disciplines D2, D3 and D4
do meet the condition (1.36), that is are indeed symmetric.

Consider a given discipline ( f ,γ,δ ) and let jobs arrive and be serviced at the station
as in sections 1.2.3 and 1.2.4, that is with different job classes with arrival rate λ r

and exponential service requirements with parameter µ r for job class r.

As before, let [R] = [r1, . . . ,rn] denote the state of job classes for each service po-
sition when n jobs are present. Note that we need to keep track of this detailed
state description even though we might eventually only be interested in just the total
number of jobs. Let

F(n) =

[
n

∏
k=1

f (k)

]−1

(1.37)

Result 1.2.17 Let S denote the set of symmetric and NS of non-symmetric disci-
plines. Then for any discipline D of the form ( f ,γ,δ ) with either one of the two
conditions:

D ∈ S ⇔ (1.36)

D ∈ NS⇔ µr = µ for all r

we have

π(R) = c F(n)
n

∏
p=1

[λ rp/µ rp] ,D ∈ S (1.38)

π(R) = c F(n)µ−n
n

∏
p=1

λ rp ,D ∈ NS (1.39)

Proof. For notational convenience let

[R− rp] = (r1, . . . ,rp−1,rp+1, . . . ,rn) (p = 1, . . . ,n)

[R + sp] = (r1, . . . ,rp−1,s,rp,rp+1, . . . ,rn) (p = 1, . . . ,n +1)
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where r = rp identifies the job-class for the job at position p in state R and s the
job-class for the job at position p in state [R + sp]. The global balance equation in
state R then becomes

{
π([R])∑n

p=1 f (n)γ(p | n)µ r+

π([R])∑n+1
p=1 ∑s λsδ (p | n)

}
(1.40.1.p)

(1.40.2.p)
={

∑n
p=1 π([R− rp])λ rδ (p | n− 1)+

∑n+1
p=1 ∑s π([R + sp]) f (n +1)γ(p | n +1)µ s

}
(1.40.1.p)′

(1.40.2.p)′

(1.40)

Now distinguish for a symmetric or non-symmetric discipline D. First consider the
symmetric case.

D : Symmetric. By assuming the form (1.38) we can write

π([R− rp]) = π([R])µ r f (n)[λ r]−1 (1.41)

π([R+ sp]) = π([R])λ s[µ s f (n +1)]−1 (1.42)

By substituting (1.41) in (1.40.1.p) and (1.40.1.p)′, cancelling equal terms and us-
ing (1.36), we directly verify (1.40.1.p) = (1.40.1.p)′ separately. Similarly, by sub-
stituting (1.42) in (1.40.2.p) and (1.40.2.p)′ and using (1.36) we verify (1.40.2.p)=
(1.40.2.p)′ for each possible class s and position p = 1, . . . ,n +1.

D: Non Symmetric. We can substitute µ r = µ and µ s = µ in (1.40.1.p) and
(1.40.1.p)′. By substituting (1.39), both (1.41) and (1.42) remain valid with µ r =
µ and µ s = µ substituted. As µ r = µ and µ s = µ can then be taken outside the
summations over p in (1.40.1.p) and (1.40.1.p)′, (1.40) follows directly by using
that {

∑n
p=1 γ(p | n) = ∑n

p=1 δ (p | n−1) = 1

∑n+1
p=1 δ (p | n) = ∑n+1

p=1 γ(p | n +1) = 1
(1.43)

⊓⊔

Remark 1.2.18 (Insensitivity of symmetric disciplines) As shown in the proof of
result 1.2.17, symmetric disciplines guarantee the notion of job-local balance to
be satisfied. In more abstract setting this notion has been shown in [47], [48] and
[26] to be both sufficient and necessary for insensitivity. As a consequence, also for
symmetric disciplines the product form result can be shown to be insensitive, that is
to apply for arbitrary service distributions with mean τr = 1/µ r for job-class r. This
insensitivity conclusion for symmetric disciplines has first been shown explicitly in
[2] and can also be found in [24] and [10]. A straightforward and selfcontained
proof in the present setting can be given similarly to the LCFS-pre case as in section
1.2.4. It is omitted here as it is also covered by the generalized setting of invariant
disciplines in section 1.3.3.
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By result 1.2.17 and taking remark 1.2.18 into account, as in result 1.2.13 and its
proof, we can conclude:

Result 1.2.19 For arbitrary discipline D of the form ( f ,γ,δ ) with µ r = µ = τ−1

for all r when D ∈NS and for arbitrary service distributions when D ∈ S, we have
{

π(n) = c(λ τ)n [∏n
k=1 f (k)]−1 with

τ = ∑r prτr ; pr = λ r/λ ; λ = ∑r λ r
(1.44)

Remark 1.2.20 (Job local balance and product form) Again, as in the proof for
the LCFS-pre case in section 1.2.4, note that the factorizing form of the steady state
expression into the traffic ratio’s of the individual jobs, relied upon showing balance
for each position (job) p, as if these can be regarded as being independent, sepa-
rately. To distinguish its concept from the class and station balances in section 1.2.2
and section 1.2.1, this most detailed notion of balance will therefore be referred as
job-local balance.

Remark 1.2.21 (Necessity of symmetric discipline) Conversely, in [25] it has been
shown that a notion of job-local balance for disciplines as parameterized in this sec-
tion, requires the symmetric condition (1.36). In other words, by also referring to the
one-to-one relationship between job-local balance and insensitivity, as mentioned
and referenced to literature in remark 1.2.15, we can thus conclude that a discipline,
which only depends on the total number of jobs n, necessarily has to be symmetric
in order to be insensitive.

1.3 Invariant Disciplines and JLB

1.3.1 Invariance Condition

The disciplines defined in section 1.2.5 only depend on the total number of jobs
present and the order of arrival and not on which type of jobs are possessing which
positions. By this parametrization, for example, we cannot model different servicing
for different job-classes or some kind of priority for one type of job over the other.
In this section therefore a more extended discipline is provided that also takes into
account which type of jobs have arrived and in which order.

To this end, in state R = [r1,r2, . . . ,rn], where again positions are assumed under the
shift protocol as in section 1.2.5, let the functions ( f ,γ,δ ) be represented by:
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f (r1,r2, . . . ,rn) : is the total capacity that the facility provides

γ(p | r1,r2, . . . ,rn) : is the fraction of this capacity assigned to position p

δ (p | r1,r2, . . . ,rn) : is the probability that a job of class r− rp is accepted
and assigned position p when arriving in state
(r1, . . . ,rp−1,rp+1, . . . ,rn). Further, we also assume
the shift protocol as before.

Remark 1.3.1 (Blocking and service delay) It is emphasized that we allow

∑p δ (p | r1, . . . ,rn)≤ 1

∑p γ(p | r1, . . . ,rn)≤ 1

In particular, this implies that an arrival can be blocked. In this case it is assumed
to be lost. In addition, a fraction of the service capacity (e.g. by a single server) can
also be lost (which can also be regarded as a service thinning or delay).

Remark 1.3.2 (Definition of δ ) Merely for presentational convenience in the def-
inition of the assignment function δ the arriving job is included. Note that this in-
cludes the possible dependence on the job-class of the arriving job.

Remark 1.3.3 (One-Parallel queues) (Single queue) Clearly, the parametrization
from section 1.2.5 is included by





f (r1, . . . ,rn) = f (n)

γ(p | r1, . . . ,rn) = γ(p | n)

δ (p | r1, . . . ,rn) = δ (p | n−1)

(1.45)

(Parallel class-queues) The parametrization also allows to group jobs of the same
class in separate registers. More, precisely, in a state with mr jobs of class r,






class 1 at positions 1, . . . ,m1

class 2 at positions m1 + 1, . . . ,m1 +m2

...

class r at positions m1 + . . .+mr−1 +1, . . . ,m1 + . . .+mr−1 +mr

Position pr = m1 + . . .+mr−1 + p then corresponds to the p-th position in register
r for class r. By setting





f (r1, . . . ,rn) = ∑r f (mr)

δ (pr | r1, . . . ,rn) = δ r(p | mr−1)

γ(pr | r1, . . . ,rn) = γ r(p | mr)[ f r(mr)/∑r f r(mr)]

(1.46)
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we can then let each class r have its own discipline ( f r ,γr,δ r) as according to
section 1.2.5.

Before providing some examples let us directly resent the necessary condition which
is required as an extension of the symmetric condition. To this end, we need to
introduce some additional notation.

Notation. Let P denote the set of admissible states R = (r1, . . . ,rn). As the shift
protocol also changes positions of other jobs upon arrival or departure of a job,
the actual positions that jobs got upon arrival is not directly readable form a state
(r1, . . . ,rn). We therefore use the notation of arrival orders (p1, . . . , pn) which in-
dicates that the job at position pk was the k-th arriving job from the jobs present.
From the arrival order p1, . . . , pk−1, pk and the state description (r1, . . . ,rn), we then
know exactly the job classes rp1 ,rp2 , . . . ,rpk at these positions, that is the job classes
in order of their arrival denoted by (rp1 ,rp2 , . . . ,rpk). In addition, we also know the
position p̄k that was assigned to the k-arriving job rpk upon its arrival.

The symmetry condition (1.36) can now be extended to:

Service invariance condition (SIC). For any R = [r1,r2, . . . ,rn] there exists at
least one p≤ n such that γ(p | r1, . . . ,rn) > 0 and

δ (p | r1, . . . ,rn) = 0⇐⇒
γ(p | r1, . . . ,rn) = 0 (p = 1, . . . ,n) (1.47)

Furthermore, there exists a function Ψ such that for any (r1, . . . ,rn) ∈ P and for any
permutation (p1, . . . , pn) ∈ (1, . . . ,n) of arrival orders for which the denominators in
the product below are positive:

Ψ(r1, . . . ,rn) =
n

∏
k=1

[
δ (p̄k | rp1 , . . . ,rpk)

γ(p̄k | rp1 , . . . ,rpk) f (rp1 , . . . ,rpk)

]
(1.48)

Or equivalently, such that for any (r1, . . . ,rn) ∈ P and p≤ n for which the denomi-
nator is positive:

Ψ (r1, . . . ,rn) = Ψ(r1, . . . ,rp−1,rp+1, . . . ,rn)

[
δ (p | r1, . . . ,rn)

γ(p | r1, . . . ,rn) f (r1, . . . ,rn)

]

(1.49)

Remark 1.3.4

1. (Instantaneous attention) Condition (1.47) reflects a requirement of instanta-
neous attention.

2. (Interpretation of (1.48)) Roughly speaking, the invariance condition (1.48) re-
quires that it should not matter in which order jobs arrive, even though state
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dependence is involved, if we consider δ (· | ·) as arrival and γ(· | ·) f (·) as de-
parture rate.

3. (Reversibility) Condition (1.48) does in fact follows from a so-called principle of
reversibility (see Kelly 79). This principle will also come along in extended form
of ’adjoint reversibility’ in the next section.

4. (Condition (1.48) and (1.49)) Either by the principle of reversibility or directly,
the equivalence of the conditions (1.48) and (1.49) can so be proven rather easily
and is left to the reader.

5. (Use of conditions (1.48) or (1.49)) Condition (1.48) can be seen as the condi-
tion for its insight whether or not a discipline can be expected to be invariant.
Condition (1.49) is the more practical form that will be used in the proof as well
as to specify the product form in order.

1.3.2 Service invariant examples

First let us illustrate that the service invariance condition provides a useful general-
ization of the standard symmetric case. It includes for example:

• symmetric systems with class interdependent blocking

• systems with class interdependent servicing

• and combinations

In these examples for a state (r1,r2, . . . ,rn), as before let m = (m1,m2, . . . ,mR) de-
note by mr the number of class r jobs present.

Example 1.3.5 (Coordinate convex blocking and symmetric disciplines) Consider
a coordinate convex region C, for example in a 2-class case by

C =
{
(m1,m2) | m1 ≤M1,m2 ≤M2,m1 +m2 ≤M1 +M2}

Jobs accepted are serviced by a symmetric discipline ( f ,γ,δ ), e.g. the single or
multi server processor sharing discipline D3 or D4, satisfying (1.36). The class de-
pendent discipline is parameterized by

{
δ (p | r1, . . . ,rn) = 1C(m) δ (p | n−1)

γ(p | r1, . . . ,rn) = γ(p | n)

The invariance condition is then directly verified with

Ψ(r1, . . . ,rn) =

{
F(n) as by (1.37) for (m1,m2) ∈ C
0 otherwise

Hence (1.39) applies restricted to C.
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Example 1.3.6 (Coordinate convex blocking and parallel symmetric disciplines)
The same example also applies with separate symmetric disciplines for each job-
class (register) r as by (1.46) in remark 1.3.3 and a coordinate convex common
admissibility region C. In this case, again (1.39) applies but with F(n) replaced by:

Ψ(r1, . . . ,rn) = 1C(m) ∏
r

[
mr

∏
k=1

f r(k)

]−1

with

δ (p | r1, . . . ,rn) = (1/mr)br(m1,m2) for each p with rp = r

γ(p | r1, . . . ,rn) = (1/mr)γr(m1,m2) for each p with rp = r

1

2

Z
1

Fig. 1.12: Type-1 dependence for type-2.

Example 1.3.7 (Type 1 level) Consider a system with 2 job-classes in which class-
2 jobs are not accepted or serviced if the number of class-1 jobs is too large, say
when m1 ≥ Z1, as parameterized by

δ (p | r1, . . . ,rn) = γ(p | r1, . . . ,rn) =





1/n p = 1, . . . ,n if m1 < Z1

1/m1 for any p with rp = 1 if m1 ≥ Z1

0 for any p with rp = 2 if m1 ≥ Z1

Here one may note that for m1 ≥ Z1, there is no position p at which an arriving job
of class 2 is accepted in a state (r1,r2, . . . ,rp−1,rp+1, . . . ,rn−1) with m1 ≥ Z1 jobs
of class-1 already present. In other words, a class-2 job is strictly blocked.

Nevertheless, the state (r1, . . . ,rn) with rp = 2 and m1 ≥ Z1 is admissible, in which
case the servicing of all class-2 jobs is stopped. The invariance condition is directly
verified with Ψ(·)≡ 1

Type 1 jobs can thus be seen as receiving some sort of preference or priority. The
servicing sharing, say of a capacity f (k) when k jobs are present, is processor shar-
ing otherwise. The invariance condition applies with Ψ(·)≡ 1 and hence by (1.38)
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π(R) = c F(n)
2

∏
r=1

[
λ r

µ r

]

Example 1.3.8 (Blocking probabilities) Clearly, by the arrival probability func-
tion δ (· | ·) blocking probabilities can be incorporated, say by

δ (p | r1, . . . ,rn) = br(mr−1)δ (p | n) with rp = r

to represent that a class-r job is accepted only with probability br(k) when k jobs of
class-r are already present with br(k) > 0 for k < Mr. With δ (p | n) = γ(p | n) for
all p = 1, . . . ,n a symmetric discipline as by (1.36), f (r1, . . . ,rn) = f (n) and F(n)
given by (1.38), the service invariance condition is satisfied with

Ψ(r1, . . . ,rn) = F(n)
R

∏
r=1

mr

∏
k=1

b j(k−1) (mr ≤Mr ; r = 1, . . . ,R)

Example 1.3.9 (Service scaling) Alternatively, in line with example 1.3.6 if the
number of type-1 jobs becomes too large, say again by m1 ≥ M1, the service ca-
pacity might be doubled so as to speed up the servicing while assuming an allover
single of multiserver processor sharing servicing as by






δ (p | r1, . . . ,rn) = γ(p | r1, . . . ,rn) = 1/n p = 1, . . . ,n

f (r1, . . . ,rn) = f (n) for m1 < Z1 while

f (r1, . . . ,rn) = 2 f (n) for m1 ≥ Z1.

Note that this service acceleration also applies to the type-2 jobs present. In other
words, the service speed of one class also depends on the number of the other class
present. The service invariance condition is directly verified

Ψ(r1, . . . ,rn) = F(n)2[m1−Z1]+

Example 1.3.10 (Workload balancing) As both the arrival and service function δ
and γ allow some form of class dependent ’blocking’, invariant examples can also be
given in which the states can be selectively handled, such as to balance a workload
with class preference. For example, again consider a two-class system, say with a
single server with arrival and service dependence given by

δ (p | r1, . . . ,rn) =

{
δ 1(m1− 1,m2)(1/n)
δ 2(m1,m2−1)(1/n)

p = 1, . . . ,n , rp = 1
p = 1, . . . ,n , rp = 2

γ(p | r1, . . . ,rn) = γ r(m1,m2)(1/n) p = 1, . . . ,n , rp = 1,2
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δ 1(m1,m2) =






1
1/4
0

δ 2(m1,m2) =






0
3/4
1

m1 = m2−1
m1 = m2

m1 = m2 +1

γ1(m1,m2) =






0
1/4
1

γ2(m1,m2) =






1
3/4
0

m1 = m2−1
m1 = m2

m1 = m2 +1

Roughly speaking, the system has a triple preference for getting and servicing a
class-2 job while in addition the number of jobs of each class are kept to a difference
of at most one, as shown in figure

3

4

1

4

1

4

1

4

3

4

3

4

1

4

Fig. 1.13: Service Invariance Values Ψ for workload balancing.

The invariance condition is checked with

Ψ(r1, . . . ,rn) =






1/4 m1 = m2 +1
1 m1 = m2

3/4 m1 = m2−1

Example 1.3.11 (Approximate priority) Consider a service system which has reg-
ular class-1 jbs and which can accommodate (at most) one special class-2 job. Each
class-1 job is always serviced at unit rate (as by a multi-server processor sharing
discipline). A class-2 job, however, which has a low priority, is only served at a rate
τ, and only if no other (class-1) is placed behind it. By letting τ → 0 the discipline
thus approximates a strict waiting of the class-2 job and priority for the class-1 jobs.
This can be parameterized by
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δ (n | r1, . . . ,rn) = 1 rn = 2
γ(n | r1, . . . ,rn) = τ/[τ +(n−1)] rn = 2, p < n
δ (p | r1, . . . ,rn) = 1/[n− 1] rk = 2, p 6= k
γ(p | r1, . . . ,rn) = 1/[n− 1] rk = 2,k 6= n, p 6= k
γ(p | r1, . . . ,rn) = τ/[τ +(n− 1)] rn = 2, p < n
δ (p | r1, . . . ,rn) = γ(p | r1, . . . ,rn) = 1/n rk 6= 2 for all k ≤ n






f (r1, . . . ,rn) = [τ +(n−1)] rn = 2
f (r1, . . . ,rn) = [n− 1] rk = 2 for some k < n
f (r1, . . . ,rn) = n rk 6= 2 for all k ≤ n

The invariance condition now applies with:

Ψ(r1, . . . ,rn) =

{
1/n! rk 6= 2 for all k
1/[τ(n− 1)!] rk = 2 for some k

Clearly, an extension to more class-2 jobs is possible along the same type of
parametrization.

1.3.3 A generalized symmetric insensitivity result

Now let us extend the results from section 1.2.5 for symmetric disciplines to Service
Invariant disciplines. It will be shown that the detailed product form as in sections
1.2.4 and 1.2.5 particularly the related insensitivity results 1.2.13 and 1.2.19 for the
simple LCFS-preemptive case and 1.2.19 for symmetric disciplines, can be gener-
alized to class- and position-dependent service disciplines provided it satisfies the
invariance condition (1.47). In fact, we will implicitly show that

The service invariance condition =⇒
Job-local balance =⇒
Insensitivity

Formulation. Consider a single service station with arrival rates λ r and non-
exponential service requirements of the form (1.24) for class r-jobs. The service
discipline is of the generalized form as in section 1.3.1 under the invariance condi-
tion, that is (1.47) and (1.48) or equivalently and (1.49). We further adopt all notation
from sections 1.2.4 and 1.2.5. Let

[R,A] = [(r1,a1),(r2,a2), . . . ,(rn,an)]

be the state which denotes that the job at position p is of class rp and has ap residual
exponential phases for servicing each with parameter νr where r = rp. First, a more
technical key-result 1.3.12 is provided. Next, the more practical insensitivity product
form result 1.3.13 is concluded.
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Result 1.3.12 (Detailed Product From.) Under the invariance condition (1.47) and
with R = (r1, . . . ,rn) ∈ P:

π([R,A]) = c Ψ([R])
n

∏
p=1

{[
λ r

µ r

]
·Hr(a)1(rp=r,ap=a)

}
(1.50)

Proof. Again, as in result 1.2.17 and result 1.2.19 for the symmetric discipline, let
us first show that a notion of balance is satisfied for each position p separately, i.e.

The rate out of this state due to the job at position p =

the rate into this state due to the job at that position.
(1.51)

Consider a fixed p and the job at position p. For notational simplicity assume rp =
r,ap = a and introduce the shorthand notation

[R,A]− (r,a)p =

((r1,a1), . . . ,(rp−1,ap−1),(rp+1,ap+1), . . . ,(rn,an))

[R,A]− (r,a)p +(r,a+ 1)p =

((r1,a1), . . . ,(rp−1,ap−1),(r,a +1),(rp+1,ap+1), . . . ,(rn,an))

for the same state with that job left or with its residual service changed from a to
a+ 1 phases. Then (1.51) becomes:

π([R,A])νr f (r1, . . . ,rn)γ(p | r1, . . . ,rn) =

π([R,A]− (r,a)p)λ rδ (p | r1, . . . ,rn)qr(a)+

π([R,A]− (r,a)p +(r,a +1)p)νr f (r1, . . . ,rn)γ(p | r1, . . . ,rn) (1.52)

First note that by (1.47):

δ (p | r1, . . . ,rn) = 0⇐⇒ γ(p | r1, . . . ,rn) = 0

so that (1.52) is trivially satisfied if γ(p | r1, . . . ,rn) = 0. Now assume: γ(p |
r1, . . . ,rn) > 0. By substituting (1.50) we obtain






π([R,A]− (r,a)p +(r,a +1)p)

π([R,A])
=

Hr(a +1)

Hr(a)

π([R,A]− (r,a)p)

π([R,A])
=

Ψ(r1, . . . ,rp−1,rp+1, . . . ,rn)

Ψ(r1, . . . ,rn)

[
µ r

λ r

]
1

Hr(a)

(1.53)

By the invariance condition (1.48) or equivalently (1.49), we can substitute

Ψ(r1, . . . ,rp−1,rp+1, . . . ,rn)

Ψ(r1, . . . ,rn)
=

f (r1, . . . ,rn)γ(p | r1, . . . ,rn)

δ (p | r1, . . . ,rn)
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where δ (p | r1, . . . ,rn) > 0 by virtue of (1.47). As a consequence, (1.52) can be
reduced to:





π([R,A])νr f (r1, . . . ,rn)γ(p | r1, . . . ,rn) =

π([R,A])νr f (r1, . . . ,rn)γ(p | r1, . . . ,rn)

[
µ r

νr

qr(a)

Hr(a)
+

Hr(a +1)

Hr(a)

]
(1.54)

With µ r = [τr]−1 as in the proof of result 1.2.17, the renewal relation (1.26) com-
pletes the proof of (1.52), that is, of equality of the outrate and inrate due to the job
at any position p = 1, . . . ,n. To conclude that global balance is satisfied, it remains
to show that:

The outrate due to arrivals=

The inrate due to departures

With [R+ rp] = (r1, . . . ,rp−1,r,rp, . . . ,rn), this relation becomes:

π([R,A])∑r λ r
[
∑p δ (p | [R+ rp])

]
=

∑r ∑p π([R,A]+ (r,1)p)νrγ(p | [R + rp]) f ([R + rp]) (1.55)

By substituting (1.49) and (1.50) again, and noting that Hr(1) = [τrνr]−1 = [µ r/λ r],
we obtain:

π([R,A]+ (r,1)p)

π([R,A])
=

λ r

µ r

µ r

νr

δ (p | [R + rp])

γ(p | [R+ rp]) f ([R + rp])
(1.56)

provided the denominator is positive. By also recalling that δ (p | [R + rp]) = 0 if
γ(p | [R + rp]) = 0 by virtue of (1.47), (1.55) is directly verified by substituting
(1.56). This concludes the proof. ⊓⊔

Result 1.3.13 (SIC: Insensitive Product Form) For arbitrary service distributions
with means [µ r]−1 and for arbitrary service disciplines satisfying the invariance
condition, we have

π(R) = cΨ(R)
n

∏
p=1

[
λ r

µ r

]
1(rp=p) (R ∈ P)

Proof. Identical to that of result 1.2.13 by summing over all possible numbers ai of
residual exponential phases and using that ∑a Hr(a) = 1. ⊓⊔

Remark 1.3.14 (Non service invariant but generalized discipline)
Clearly, as in section 1.2.5 and result 1.2.17, we could also include a detailed prod-
uct form result for a generalized discipline as in this section without SI condition,
provided other stringent conditions as strictly equal and exponential services for all
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job-classes are imposed. The situation of independent service mechanisms for each
job class separately each with a generalized discipline, also without SI condition,
can so be concluded. With general class service interdependence, however, an in-
variance condition such as also illustrated later on for class balance to hold, over
job classes rather than individual jobs as in this section will still be required.

Remark 1.3.15 (Population distribution) The population distribution π(n) is di-
rectly obtained by

π(n) = ∑
(r1,...,rn)∈P

π(r1, . . . ,rn)

In order to get a simple expression for π(n), however, the actual form of Ψ(·) and
of the set of admissible states C play a role.

1.4 An application, literature discussion and hierarchy review

1.4.1 An M|G|c|c+m application

As shown in section 1.2.3.2 in the single-server case, the natural assumption of
a first-come first-served queueing discipline violates a notion of balance for each
job or position. More precisely, as by condition (1.47) for the service invariance
condition, the notion of job-local balance necessarily requires the condition of in-
stantaneous attention: if accepted a job should also immediately receive an amount
of service by which it may complete its service. As a consequence:

Any system in which an arriving job may have to wait necessarily fails to
satisfy job-local balance and thus as in section 1.3.3 cannot (be expected
to) have a simple and ’insensitive product form type expression’.

This holds for the most simple M|G|c|c+m-system, thus with c servers and m wait-
ing places, for any m > 0, as in section 1.2.5 note that no symmetric discipline can
be defined to cover a FCFS waiting discipline.

Modification. Intuitively, however, this failure of job-local balance for an M|G|c|c+
m-system can be repaired by simply not allowing waiting positions. To this end, we
can either

add extra servers for each waiting position or
delete the waiting positions

that is by modifying the system into an

• M|G|c +m|c +m or
• M|G|c|c-system
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These pure multi-server loss systems can be parameterized by a symmetric (and thus
also invariant) processor sharing discipline (as in section 1.2.5), as well-known and
proven in section 1.3.3, these systems have an ’insensitive product form’ solution as
in result 1.2.19 (or result 1.3.13). Particularly, the corresponding loss probabilities
are well-known to be insensitive as Erlang’s loss expression for s servers as:

F(s) = [(λ τ)s/s!]/

[
s

∑
k=0

(λ τ)k/k!

]

Simple bounds. Intuitively, by adding servers we will increase the system ca-
pacity and thus decrease the loss probability, while conversely by deleting waiting
positions we decrease the system capacity and thus increase the loss probability. We
have thus obtained a lower bound BL and upper bound BU on the loss probability B
by:

BU = F(s)

BL = F(s+m)

In combination with the inequality:

(ρ−1)+

ρ
≤ B≤ ρ

(ρ + 1)
(1.57)

where ρ = λ τ/s as proven by Heyman (1980) and Sobel (1980) (see [60] for the ref-
erences), and the observation that F(s)≤ ρ/(ρ +1) for any s, the following simple
bounds are thus concluded:

max
[
(ρ−1)

ρ
, F(s+m)

]
≤ B≤ F(s) (1.58)

Practical relevance and numerical results. Clearly, as adding or deleting servers
is a drastic system modification, one cannot expect accurate bounds. However, as
the bounds are insensitive and most easily computed, they can be useful as quick
secure estimates for the order of magnitude as well as for qualitative purposes as
in the optimal design application below (the numerical results below support these
claims which show a significant improvement over (1.57) for small traffic values
and more accurate intervals for large traffic situations. Here we used µ = 1 and the
value B applies to the exponential case.

An optimal design example. Let us give a simple illustration of how these insensi-
tive bounds can be used for qualitative purposes in practical situations. The numbers
in this example are chosen rather arbitrarily.

Consider a service station which accommodate at most 10 jobs in total. The total
number of servers s, however, is yet unspecified and is to be fixed. Each server
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incurs a salary cost of 100 dollar per hour. Each lost arrival, in turn, is seen as
an opportunity loss of 100 dollar. On hourly basis λ = 10 and µ = 2. The figure
below graphically illustrates the total costs depending on s, the number of servers,
as corresponding to (1.58).
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Fig. 1.14: M|G|c|c +m - cost bounds by (1.58).

Since both the lower and upper bound calculations lead to the same optimal num-
ber of servers s = 5, this number is also most likely to be optimal for the original
system, regardless of the distributional forms of the service requirements. Although
a 100% guarantee cannot be given, it is the best indication that one can get without
further knowledge of the service distributions and approximate calculations. More-
over, as graphically illustrated, in any case the optimal number will be restricted to
the ’optimal region’: (3,4,5,6,7), regardless of service distributional form.

1.4.2 Literature discussion

Closed form expressions for queues and queueing networks are generally known to
be related to notions of ’partial balance’; that is, by which the global (Kolmogorov)
equations are satisfied in some special decomposed form. Most notably, ever since
the pioneering work by Erlang in the twenties (e.g. see [9], [43]), birth-death equa-
tions for M|M|s|s + m-queues are standardly used as starting point in virtually any
introductory OR-textbook.

Nevertheless, the necessity of these equations rather than just sufficiency, as well as
its physical rather than mathematical interpretation, as presented in section 1.2.1 as
’station balance’, seems far less commonly emphasized. For its explicit form (1.4)
as a product form result for the machine-repair system, as historically known as an
Engset system (see [[9], [43]]), a similar statement applies.
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Coordinate convex multiple class extensions in the setting of a single service stage
with blocking as in section 1.2.2 date back to the seventies as by [15], [31], [39].

Coordinate convex examples as examples 1.2.3 and 1.2.8 can be found in these
references. Also the call packing principle and its closed form expressions as in
examples 1.2.4 and 1.2.9 are long known in teletraffic literature (e.g. [20], [27],
[43]).

The example 1.2.5, its observations in remark 1.2.6 as well as the example 1.2.10
seem to have remained únreported. The special call packing application in example
1.2.11 in order to provide simple bounds for únsolvable overflow systems is based
on [58].

Also in the setting of networks with multiple service stages but essentially without
blocking (or accessibility constraints), closed (product) form results for multiple
job-class extensions have been reported more or less at same time ([3], [10], [11],
[32], [33], [44] as will also be referred to in section 1.8.2 of B. These references also
introduced the condition of symmetric disciplines and proved its relationship with
(sufficiency for) product forms, as presented in section 1.2.5.

(The necessity of a discipline to be symmetric (or invariant) to guarantee a notion
of balance for each position separately (job-local balance), and correspondingly in
order for a discipline to be insensitive, has been shown in [25]).

An extension of these symmetric disciplines related to but more restricted than the
service invariance disciplines in section 1.3.1, can already be found in [3], [10],
[11]. The conditions in these references are more restricted in that it excludes access
or service blocking as covered herein (see remark 1.3.1). The service invariance
condition and its insensitive product form relationship as presented in sections 1.3.1
and 1.3.3, but again without blocking, are essentially based upon [24]. The examples
1.3.8-1.3.11 rely upon [25].

The optimal design application in section 1.4.1 and a formal proof of the bounds
(1.57) for M|G|s|s+ m-systems, as by sample path comparison, have been given in
[60].

As mentioned, different notions of ’partial’ balance and its relationship with a (pos-
sibly insensitive) closed (product) form expression have been reported in the liter-
ature, as local balance ([3], [10], [11], [47], [48], detailed balance ([32], [33], [34]
and job-local balance ([25], [26]). In particular these notions were used in these
references in relation to insensitivity (also see [2], [13], [20], [24], [26], [47], [48],
[65]). For a more detailed exposition and related references on the phenomenon of
insensitivity the reader is also referred to the chapter by Taylor.

As such the three notions as used in (this first part of) this chapter are not exclusive or
absolute, but simply used for their distinction in line with their natural interpretation
and corresponding hierarchy, as will be reviewed in the next section.
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1.4.3 A hierarchy review

On the basis of just a single service station rather than on that of a network of service
stations, this first part for just a single station (A) aimed to illustrate and highlight a
number of aspects, which are just as representative for networks of queues, related
to the concept of product forms. These aspects are:

1. The notion of a ’product form’ as factorizing to different components (e.g. sepa-
rate stations, different job-classes or individual jobs).

2. Its direct relationship with a form of partial balance with the interpretation of a
physical out = in rate for that particular component.

3. The different detailed levels of a product form as determined by its state descrip-
tion.

4. The corresponding system conditions (e.g. on a service discipline or blocking)
and service assumptions (as indistinguishable and exponential or not) that might
be required.

5. A hierarchy of product form results (as summarized in table 1.1) from:

• A simple expression, say for just the total numbers of jobs, with hardly no
discipline limitation on the one hand but a strict assumption of indistin-
guishable and exponential services on the other, up to:

• A most detailed expression which allows distinguishable jobs and which
might even apply to arbitrary services on the one hand but only under more
restricted system mechanisms (as a symmetric discipline or even rather spe-
cialized as an invariant discipline).

Table 1.1: Balance Hierarchy Scheme.

State State System Service Product Form

Global Station Class Stronger Stronger Stronger Insensitive-PF

Detailed Job local Conditions Conditions Result

This scheme is not complete (for example other balance notions not mentioned but
which could have fitted in are:

• Cluster balance (at a level of multiple stations, also see section 1.7)

• Group balance (at a level for groups of jobs that move simultaneously)(e.g. [7])
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• Source balance (related to job-local balance for the situation of networks in
which each job is generated by a specific source, e.g. as in the machine-repair
system of section 1.2.1).

Nevertheless, the scheme is meant to be illustrative for the hierarchical (weaker and
stronger) results and conditions related to product form expressions as will even be
more complicated but with the same flavour in the setting of networks of service
stations. Numerous specific product form results that fit within such a scheme have
been reported widely in the literature and under different terminologies (as local,
detailed or partial balance with a specific meaning). As such the balance notions as
used in this chapter are not assumed or claimed to be as unique definition. They are
simply used as ’natural terms’ for the distinctions in physical interpretations as used
in this chapter. This interpretation can be useful, as will be illustrated in the next
section, to recognize whether a product form can be expected or not and of what
form.

To summarize, the question whether a system has a product form or not might not
be easily answered. It may require a more specified formulation such as at which
level and under what conditions. And even so the answer might not be as simplistic
as it seems.

Particularly, as mentioned, the specific notion of partial balance might be highly
practical to obtain more insight in its answer. This insight might lead to either of
three practical directions:

• To conclude a product form of specific form

• To conclude that the notion of partial balance necessarily fails so that a corre-
sponding product form cannot exist

• To suggest appropriate product form modifications that might still be practical
(for approximate or bounding purposes)

In a second part (B), this essential role of a specific form of partial balance in this
case of just station balance, and its ’practical’ consequences will be illustrated and
investigated further for situations with, consecutive service stations and practical
features as blocking or service sharing.
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B: Product Forms: Tandem and Cluster Structures

1.5 Tandem Queues

1.5.1 Introduction

So far the characteristic feature of a queueing network, rather than just a single
service station, has not yet been covered explicitly, that is:

Two (or more) successive service stages for a job to be processed, at different
service stations. At each of these stations this job may interact with a different
set of other jobs.

Example 1.5.1 (Machine-repair example revisited) In fact, in line with and as a
slight modification of the Engset or Machine-repair system from example 1.2.2 from
section 1.2.1, let us first consider a most simple example with blocking.

N1 N2

Fig. 1.15: Finite Machine-repair System.

This concerns a closed system with M jobs and two single server stations, say each
with a single server with exponential service parameter µi, and a routing from one
station to the other back and forth. In addition, however, each of these stations has a
finite capacity to accommodate at most Ni jobs, i = 1,2. When station i is saturated
(ni = Ni) jobs from the other station are blocked so that effectively the service of the
other can be seen as being ’stopped’ as long as the other remains saturated.

Although it is sufficient (as M is fixed) to only specify the number of jobs at one
station, let n = (n1,n2) denote the number of jobs ni at either station i = 1,2. The
global balance equations then become

{
π(n1,n2)µ11(n1>0)1(n2<N2)+

π(n1,n2)µ21(n2>0)1(n1<N1)

}
(1.59.1)

(1.59.2)

={
π(n1−1,n2 + 1)µ21(n1>0)1(n2<N2)+

π(n1 +1,n2− 1)µ11(n2>0)1(n1<N1)

}
(1.59.1)′

(1.59.2)′

(1.59)

Clearly, as the indicator values that takes into account the finite capacity Ni in
the left and right hand side of (1.59.1) for station i = 1 and (1.59.2) for station
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i = 2 are identical, one directly verifies the station balances (1.59.1)=(1.59.1)′ and
(1.59.2)=(1.59.2)′, and thus the global balance (1.59), by the solution.

π(n1,n2) = c

[
1
µ1

]n1
[

1
µ2

]n2

(n1 ≤ N1 ; n2 ≤ N2) (1.60)

This example seems to suggest that the notion of station balance also allows capacity
constraints and interactions of service stations and ensures a product form solution
also in the situation of multiple stations. However, this particular example can in
fact still be analyzed by only keeping track of the number of jobs, say n = n2, at one
station, that is as a one dimensional system, as if it can be regarded (as in section
1.2.1) as a single (birth-death) service station.

As a first and most simple situation which strictly requires a multi-dimensional de-
scription, in the next example therefore, a two station tandem queue is considered
(which can also be regarded as equivalent to a closed three station network with
station 0 representing the outside).

Fig. 1.16: Tandem Queue.

Example 1.5.2 (A tandem queue) Consider an open system of two station tandem
queue with arrival rate λ , and two single server stations in series with exponential
service rates µi at station i = 1,2 with λ/µi < 1, i = 1,2. With n = (n1,n2) denoting
the number of jobs ni at station i = 1,2, the global balance equations become:






π(n1,n2)λ+

π(n1,n2)µ11(n1>0)+

π(n1,n2)µ21(n2>0)






(1.61.0)

(1.61.1)

(1.61.2)
=



π(n1,n2 + 1)µ2+

π(n1−1,n2)λ 1(n1>0)+

π(n1 +1,n2− 1)µ11(n2>0)





(1.61.0)′

(1.61.1)′

(1.61.2)′

(1.61)

Clearly, this equation is directly verified by each of the more detailed balances
(1.61.i)=(1.61.i)′ separately by substituting

π(n1,n2) = c

[
λ
µ1

]n1
[

λ
µ2

]n2
(

λ
µi

< 1 ; i = 1,2

)
(1.62)
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The relations (1.61.i)=(1.61.i)′ in turn can be seen as station balance relation, as
formulated as by equating the physical outrate = physical inrate, for

station 0 as representing the outside for i = 0
station 1 for i = 1, and
station 2 for i = 2

The notion of station balance thus seems to be directly responsible for a factoriza-
tion to the stations as if these are completely independent. In fact, as the state space
is unlimited also the normalizing constant c factorizes as c = (1− ρ1)(1− ρ2) so
that π(n1,n2) = π1(n1)π2(n2) with πi(ni) the steady state distribution of a single
server queue.

However, in this case no interaction between jobs at all is involved, say as due to a
finite capacity constraint. To also include these constraints, in the next example let
us first assume just a finite capacity constraint at station 2.

S

Fig. 1.17: Tandem Queue with Finite Buffer.

Example 1.5.3 (A simple finite tandem queue) Reconsider the tandem system from
example 1.5.2 at which the number of jobs at station 2, such as by a finite (interme-
diate) storage buffer of size S, is restricted (the job in service included) to a num-
ber n2 ≤ N2 = S + 1. In order for station balance to apply, now note that relation
(1.61.2) = (1.61.2)′ for station 1 would have to be replaced by

π(n1,n2)µ11(n1>0)1(n2<N2) = π(n1−1,n2)λ1(n1>0) (1.63)

But clearly, for n2 = N2, this relation cannot be satisfied as the left hand side is equal
to 0 while the right hand is positive. Similarly, (1.61.1) = (1.61.1)′ can no longer
be satisfied. In other words, for the more natural situation with a finite capacity
constraint for the second station, station balance is necessarily violated so that a
product form can no longer be expected.

n2 = N2

Fig. 1.18: Finite Tandem Queue.
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Product Form Modification. This observation, however, can still be practically
useful. By artificially assuming that arrivals are blocked when the second station is
saturated (n2 = N2), intuitively both the outrate and inrate for station 1 have become
0 so that (1.61) seems to be restored.

n2 = N2

n2 = N2

Fig. 1.19: Product Form Modification.

Indeed, under this modification the global balance equations become:





π(n1,n2)µ11(n1>0)1(n2<N2)+

π(n1,n2)µ21(n2>0)+

π(n1,n2)λ1(n2<N2)





(1.64.1)

(1.64.2)

(1.64.3)
=



π(n1−1,n2)λ 1(n1>0)1(n2<N2)+

π(n1 +1,n2− 1)µ11(n2>0)+

π(n1,n2 + 1)µ21(n2<N2)





(1.64.1)′

(1.64.2)′

(1.64.3)′

(1.64)

These are directly verified again by the station balance equations (1.64.i)= (1.64.i)′

for i = 1,2,3 separately by substituting the product form (1.62) restricted to {(n1,n2)
| 0≤ n1 ; 0≤ n2 ≤ N2}.
Such a modified product form result, in turn, as based on its required partial balance,
can still be useful such as to provide an approximate order or a secure bound for
some performance measure of interest. This will be elaborated upon more formally
in a separate chapter on bounds and error bounds later on.

In the next section, therefore, the possible existence of product forms, even under
’un’natural system protocols will be explored further for multiple service stations
with dependencies such as due to finite capacity restrictions (blocking) or common
service sharing. In section 1.7 it will also be explored and numerically illustrated
for networks with groups of stations (clusters) having finite constraints.



1 On Practical Product Form Characterizations 45

1.5.2 Product Form Tandem Queues

Consider an open tandem structure of two service stations i = 1,2. We aim to inves-
tigate the existence of a product form which may possibly include

• Acces blocking

• Stations to be fully congested

• A load dependent service sharing over the stations

To this end, we will allow (but also may need) a state dependent parameters for
servicing and routing. To this end, as before let n = (n1,n2) denote the number of
jobs at stations 1 and 2 and let n + ei denote the same state except for one job more
at station i and n− e j for one job less at station j. Furthermore, for unification the
index i = 0 or j = 0 is used to represent the ’outside from the system’ as a ’station
0’ and the convention is used that n + e0 = n− e0 = n. Jobs arrive at station 1 by a
Poisson arrival rate λ and require an exponential amount of service at station 1 and
2 with parameter µ1 and µ2. Then, in state n, the system dynamics is parameterized
by two functions fi(n) and b j(n) as representing:

fi(n): the total service capacity of station i, i = 1,2. This capacity can be
equal to 0 which represents that that station is effectively stopped

b j(m): the probability that an entering request at station j, that is a
transition from station i = j−1 into station j with underlying
state m, hence from m+ ei into m + e j is accepted, with
{

i = j−1 = 0 for an arrival at the system and
j = i+1 = 0 for a departure from the system

Remark 1.5.4 (Separate service and blocking function) Clearly, the functions fi(n)
and b j(n) can be combined into a single mathematical function

µi j(n) = fi(n)b j(n− ei) ( j = i+ 1)

Nevertheless, a distinction in a separate service and blocking function is made

• for clarity of its physical interpretations related to possible applications

• for the insight in the possible existence of a product form more and

• to highlight another characterization of a product form.

Remark 1.5.5 (Blocking) With probability [1−b j(m)] a transition from state n+ei

into n+ e j with j = i+1 will thus be blocked. For an arrival (i = 0) this effectively
means that the arrival is lost. For a service completion (i = 1,2) this effectively
means that the state remains unchanged (that is n + ei) as if the blocked job will
have to undergo a new service at station i. Alternatively, this probability can also
be regarded as if the effective service at station i is completely stopped (when this
factor is 0 as by complete blocking) or delayed by this factor (when it is positive).
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Remark 1.5.6 (Strict 0-values) In contrast with results in the literature for proces-
sor sharing systems, (e.g. see [4], [10], in which capacity functions are assumed to
be strictly positive), it is noted again that the capacity functions can take on 0-values
in which the service at a station is stopped. This relaxation is included as it may ei-
ther arise naturally so as to give full service priority to one station or as it may be
required, in order to conclude a product form, even though unnatural as in example
1.5.3. For similar reasons also arrivals may (have to) be blocked. Examples for both
situations (natural and unnatural) will be given in sections 1.5.3-1.5.5.

Station balance and adjoint reversibility. Let C be the set of admissible states.
Under the assumption (of ergodicity) for its existence let π(n) denote the steady
state distribution at C as determined by the global balance equations. These require
that for any n ∈ C:





π(n)λb1(n)+

π(n)µ1 f1(n)1(n1>0)b2(n− e1)+

π(n)µ2 f2(n)1(n2>0)b0(n− e2)





(1.65.0)

(1.65.1)

(1.65.2)
=



π(n+ e2)1(n+e2∈C)µ2 f2(n+ e2)b0(n)+

π(n− e1)1(n1>0)1(n−e1∈C)λ b1(n− e1)+

π(n− e2 + e1)1(n2>0)1(n−e2+e1∈C)µ1 f1(n− e2 + e1)b2(n)





(1.65.0)′

(1.65.1)′

(1.65.2)′

(1.65)

(Here it is noted that some of the notation and implicit assumptions can be overlap-
ping. For example, if m + e2 /∈ C necessarily π(m + e2) = 0 as the state m + e2 is
not admissible. Nevertheless, the various functions are used to keep the ’boundary
aspects’ explicit).

One cannot expect an analytic solution for (1.65) unless for each i = 0,1,2 sepa-
rately we can verify the station balance equation: (1.65.i) = (1.65.i)′; that is by a
balance of the departure and arrival rate each station and in the natural flow direction
of the system dynamics.

With µ0 = λ and f0(n) ≡ 1, and i− 1 = 0 for i = 1 and i + 1 = 0 for i = 2, the
equations (1.65.i) in turn can be rewritten as requiring that for any underlying con-
figuration m (not necessarily in C) and i = 0,1,2:

{
π(m+ ei)µi fi(m+ ei)bi+1(m)1(m+ei∈C) =

π(m+ ei−1)µi−1 fi−1(m+ ei−1)bi(m)1(m+ei−1∈C)

(1.66)

Here (1.66) is equivalent to the station balances:

(1.65.0) = (1.65.0)′ for m = n and i = 0
(1.65.1) = (1.65.1)′ for m = n− e1 and i = 1
(1.65.2) = (1.65.2)′ for m = n− e2 and i = 2
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Before continuing, note that (1.66) already imposes implicit conditions as C is not
assumed to be of any particular form (such as coordinate convex as in section 1.2.2).

A non-coordinate convex region C might thus be allowed, as will be illustrated later
on (e.g. see example 1.5.18 and 1.5.20). In contrast, though, (1.66) does require
compensation by 0-values for the service or blocking functions f and b. For exam-
ple, if

m+ e1 ∈ C but also f1(m+ e1)b2(m) = 0,

so that the outrate in state m+ e1 due to a departure at station 1 = 0, also the inrate
into this state m+ e1 due to an arrival at station 1 should be equal to 0, by either

m /∈ C or f0(m)b1(m) = b1(m) = 0.

Now in order to investigate the existence of a solution for this more restricted (sta-
tion) balance relation (1.66), define a continuous-time Markov chain, which will be
called the adjoint Markov chain, at the same state space C of admissible states but
with transition rate q̄(m + ei,m + e j) for a change from m+ ei into m+ e j defined
by:

For i = 0,1,2: {
q̄(m+ ei,m+ ei+1) = fi(m+ ei)bi+1(m)

q̄(m+ ei,m+ ei−1) = fi(m+ ei)bi+1(m)
(1.67)

Hence, for the exterior:




q̄(m+ e2,m) = f2(m+ e2)b0(m)

q̄(m+ e1,m) = f1(m+ e1)b2(m)

q̄(m,m+ e2) = q̄(m,m+ e1) = λb1(m)

(1.68)

In words that is, up to an exponential service scaling, the adjoint chain covers the
original chain in natural flow direction but it also includes a proportional flow in
opposite direction.

Result 1.5.7 There exists a steady state solution π(n) of (1.65) of the product form
structure (with c a normalizing constant at C):

π(n) = cH(n) ∏
i=1,2

[
1
µi

]ni

(n ∈ C) (1.69)

if and only if adjoint reversibility applies with solution H(·). That is, for some func-
tion H(n) at C, the adjoint Markov chain is reversible, i.e. for any pair of states
n,n′ ∈ C:

H(n)q̄(n,n′) = H(n′)q̄(n′,n) (1.70)

Proof. The proof is concluded directly by substitution of (1.67) in (1.66) or equiv-
alently in (1.65) and showing equality for (5.6.i) = (5.6.i)′ for i = 0,1,2. ⊓⊔
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Remark 1.5.8 (Adjoint reversibility) Result 1.5.7 characterizes the existence of a
product form solution by means of the so-called concept of reversibility, as will be
defined below, of the adjoint Markov chain. Here we emphasize that the original
system itself is nót reversible. The characterization will therefore be referred to as
’adjoint reversibility’.

Remark 1.5.9 (Reversibility characterization) The major advantage of result 1.5.7
is that it enables one to verify the existence of a product form of the form (1.69), by
simply investigating the existence of a reversible solution H(n). This in turn, can
be verified by the so-called Kolmogorov criterion (see [33]) as based upon just the
transition rates as defined by (1.67). More precisely, either by checking whether for
all cycles of transitions:

q̄(n0,n1)q̄(n1,n2) . . . q̄(nt ,n0) = q̄(n0,nt)q̄(nt ,nt−1) . . . q̄(n1,n0) (1.71)

or, equivalently, whether for some fixed n0 ∈C and any state n ∈ C:

H(n) = c
K−1

∏
k=0

[
q̄((nk→ nk+1)

q̄((nk+1→ nk)

]
for any path n0→ n1→ . . .→ nK = n
(for which the denominator is positive).

(1.72)

Remark 1.5.10 (Routing and service factorization) Either of these ’adjoint re-
versibility’ checks in turn can generally be reduced to basic cycles or short paths
(also see section 1.5.4) that directly suggest a necessary form of H(n). This form in
turn can generally be decomposed in a service and routing component, by

H(m+ ei)

H(m+ e j)
=

xi(m)

x j(m)

f j(m+ e j)

fi(m+ ei)
= R(m)S(m) (1.73)

for some functions R(n) and S(n) provided, as for (1.66), both states m+ei,m+e j ∈
C. In addition, necessarily the numerator has to be equal to 0 if the denominator is
equal to 0.

Here R(n) might be regarded as a component (solution) which only deals with the
routing and thus also blocking, from one station to another, as determined by

R(m+ ei)

R(m+ e j)
=

xi(m)

x j(m)
with {xi(m)} for any fixed underlying ’state’ m (1.74)

representing the local solutions of the local routing equations

∑ j xi(m)p̄i j(m) = ∑ j x j(m)p̄ ji(m) (1.75)

for the state dependent routing probabilities of the adjoint model p̄i j(m) from m+
ei → m + e j with m fixed. Similarly, S(n) represents the component (solution) for
the service durations at the stations as by:

S(m+ ei)

S(m+ e j)
=

f j(m+ e j)

fi(m+ ei)
(1.76)
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This factorization in a routing and service solution also seems to be characteristic
for product form type expressions and can by itself be regarded as a ’product form’
feature.

Remark 1.5.11 (Special examples) In the subsequent sections 1.5.3-1.5.5 three
types of examples will be provided to illustrate the possibility of product forms for
tandem (or serial) structures despite the presence of station dependencies. These
examples can be distinguished in examples with

• pure service dependence

• pure routing dependence

• or mixed

1.5.3 Service examples

In this section assume that jobs upon arrival at the system or once having completed
a service at a station can not be blocked, i.e. assume that

{
R(·)≡ 1

b0 ≡ b1(·)≡ b2(·) = 1
(1.77)

Example 1.5.12 (Independent services) Clearly, the standard case with indepen-
dent service capacities fi(ni) at station i when ni jobs are present is included by:

{
H(n) = S(n) = λ n1+n2 ∏i=1,2

[
∏ni

k=1 fi(k)
]−1

and

q̄(m+ ei,m+ e j) = fi(ni +1) j = i+ 1, i− 1 ( f0(·) = λ )
(1.78)

Example 1.5.13 (General function) As a first situation with interdependence, of-
ten provided in the literature, suppose that for some functions strictly positive func-
tions Φ(·) and Ψ (·):

fi(m + ei) =
Φ(m)

Ψ (m+ ei)
(for all m and i) (1.79)

Then one directly verifies (1.70), with f0(m+ e0) = λ , by

H(m+ ei)

H(m+ e j)
=

S(m+ ei)

S(m+ e j)
=

q̄(m+ e j,m+ ei)

q̄(m+ ei,m+ e j)
=

f j(m+ ei)

fi(m + e j)
=

Ψ (m+ ei)

Ψ(m+ e j)

by choosing
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H(n) = λ n1+n2Ψ(n)

However, forms as for what type of functions Ψ (·) and Φ(·) the service condition
(1.79) is satisfied are not obvious. This is where the Kolmogorov criterion (1.71) or
(1.72) might come in handy as will be illustrated in the next example.

Example 1.5.14 (Proportional and Unproportional Processor Sharing) As an ex-
tension of standard processor sharing disciplines for one service location, in present-
day service structures, such as Internet (cf. [4], [61]), a single service entity may
have to share its capacity over multiple service stations, by

fi(n1,n2) = T(n1 +n2)si(ni | n1 + n2)

where T (·) represents the total service capacity of the service entity and where
si(· | ·) represents the fraction of this capacity allocated to station i. A processor
sharing function by which each job present at any of the two stations (rather than
standardly at each station separately) gets an equal (fair) share of the capacity, is
hereby included by: si(ni | n1 + n2) = ni/(n1 + n2). This would allocate capacity
over both stations proportional to the workloads present. This will indeed still lead
to a product form result as can be concluded directly from (1.76) or (1.79) or could
also have been concluded indirectly from [10], with

Ψ (n) =
1

n1!
1

n2!

[
n1+n2

∏
k=1

T (k)

]−1

But also unproportional sharing functions over both stations might still retain the
necessary invariance (1.72) to secure a product form, for example

si(ni | n1 +n2) =






2
3 , i = 1, 1

3 , i = 2, n1 > n2
1
3 , i = 1, 2

3 , i = 2, n1 < n2
1
3 , i = 1,2 n1 = n2

(1.80)

In words that is, a double share is provided to the highest workload so as to strive
for an equal workload at both stations (However, as a price to pay to satisfy the
invariance condition (1.76) note that a capacity of 1

3 is lost when n1 = n2). Condition
(1.72) or (1.76) are now verified with

H(n) = λ n1+n2

[
n1+n2

∏
k=1

T(k)

]−1 [
2max(n1,n2)

]−1
[3]n1+n2

This unproportional processor sharing product form possibility seems to be unre-
ported and may lead to practical approximations.
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1.5.4 Blocking examples

Throughout this subsection assume that the service capacities are independent and
of the form fi(ni) at station i = 1,2, with corresponding service solution S(n) as in
example 1.5.12 in section 1.5.3. Hence,

H(n) = R(n)S(n) with S(n) by (1.78) and (1.81)

R(n) = 1C(n) with C as specified below. (1.82)

General blocking condition.

Fig. 1.20: Transition Structure.

In this two (dimensional) station case first observe (see figure 1.20) that any cycle
of transitions as in criterion (1.71) can be seen as a regular structure that is built by
two basic cycles of either form

(I) (II)

Fig. 1.21: Basic Cycles.

I : m + e1→m+ e2→m→m+ e1

II : m + e1→m+ e1 + e2→m+ e2→m+ e1
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The implicit assumption to be made here is that the adjoint transition rates within
each of these basic cycles are consistently positive. That is, if a transition has a
positive rate also its opposite one has a positive rate as according to the adjoint
rates. This is a quite realistic assumption. (If it is not satisfied one certainly cannot
expect a solution as of a form (1.69)).

By substituting the adjoint transition rates, leaving out the service rate functions
f·(·), the cycle condition (1.71) can now be applied to each of these two cycles.
Cycle I then leads to the trivial condition:

b2(m)b0(m)b1(m) = b1(m)b2(m)b0(m)

Cycle II however is verified if and only if

b1(m+ e1)b2(m+ e2)b0(m) =

b2(m)b1(m+ e2)b0(m+ e1) (1.83)

As a consequence, condition (1.83) can thus be seen as a necessary and sufficient
condition for adjoint reversibility to be satisfied with solution (1.69) and H(·) as by
(1.81) and (1.82). Let us provide some examples.

Example 1.5.15 (Finite capacity buffers) As an extension of example 1.5.3 in sec-
tion 1.5.1, suppose that both station 1 and station 2 have a finite capacity constraint
for at most N1 and N2 (such as due to an intermediate buffer) jobs respectively. The
equality condition (1.83) can then be verified for

b1(n) = 1(n1<N1,n2<N2) (block arrivals when either
station 1 or station 2 is saturated)

b2(n) = 1(n2<N2) (stop station 1 if station 2 is saturated)

b0(n) = 1(n1<N1) (stop station 2 if station 2 is saturated)

(Note that the product form modification for example 1.5.3 is included when n2 =
N2). For example, if n2 +1 = N2 both b2(n+e2) in the left hand side and b1(n+e2)
in the right hand side of (1.83) are equal to 0, and similarly if n1 + 1 = N1. Rather
than just by an out = 0↔ in = 0 principle, as in the finite tandem example 1.5.3 in
section 1.5.1, we have thus more formally proven the product form (1.81) with S(n)
and R(n) as specified, with C the set of admissible states:

C =





n1 ≤ N1

n n2 ≤ N2

n1 + n2 6= N1 +N2





Remark 1.5.16 In chapter 1.7 it will be numerically illustrated and formally proven
that the product form result modification as in section 1.5.1 for example 1.5.3 pro-
vides simple bounds for the more natural finite tandem queue as merely specified
by
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{
b1(n) = 1(n1<N1)

b2(n) = 1(n2<N2)

As this natural finite tandem queue has no product form (as argued in example 1.5.3
and as it violates condition (1.83)), the characterization by adjoint reversibility, as
leading to condition (1.83), can thus still be regarded as of practical interest.

More generally, example 1.5.15 can in fact be seen as a special case by setting
gi(ni) = 1(ni<Ni) when for given functions g1(n1),g2(n2) at C:

b1(n) = g1(n1)g2(n2)

b2(n) = g2(n2) and

b0(n) = g1(n1)

Condition (1.83) is satisfied and by (1.73) leads to




R(n) = ∏2
i=1

[
∏ni−1

k=0 gi(k)
]

at C with

C as in example 1.5.15 and
Ni = min{k | gi(k) = 0}

(1.84)

Example 1.5.17 Alternatively, condition (1.83) is also easily verified if for given
functions g(n),g1(n1),g2(n2):

b1(n) = d(n1 +n2)

b2(n) = d1(n1)

b0(n) = d2(n2)

with general solution

R(n) =
n1+n2

∏
k=0

d(k) ∏
i=1,2

[
ni

∏
k=Mi+1

di(k)

]−1

at C with

C =





n1 +n2 ≤M = min{k | g(k) = 0}
n ni ≥Mi = min{k | gi(k) = 0}

i = 1,2





Total number blocking probability. For example, with g1(·) = g2(·) ≡ 1 but
d(k) = α(k), arrivals can be assumed to be blocked with probability α(k) when
n = n1 +n2 jobs are already present. Say when the arrival rate is thinned by a factor
2 for n > M and completely blocked if n = N > M we would obtain

R(n) = 2−[n−M]+ n≤ N
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Service delay - minimal workloads. Clearly, the functions b2(·) and b0(·) can

Fig. 1.22: Minimal Workloads.

now also be seen as delay factors d1(n1), d2(n2) and be included in the service
rate functions f1(n) and f2(n) up to the point that these are assumed to be strictly
positive as reflected by the expression for S(n). But also strict 0-values can now be
included. As an example, with d(·)≡ 1 and

di(ni) = 1(ni>Ni) (i = 1,2)

we would block departures from and effectively stop the servicing of station i when
it has reached a minimum of Mi jobs. In other words, the station should always have
a minimum workload (which can also be regarded as safety buffers as in figure 1.22)
of Mi jobs, as specified by the solution

R(n) = 1(n1≥M1 ;n2≥M2)

1.5.5 Mixed examples

Though in some of the earlier examples blocking at a station can also be refor-
mulated as if the servicing (or arrival process) at the preceding (outside) station is
stopped, let us give two more examples in which a mixed form is necessarily re-
quired to guarantee the adjoint reversibility condition.

In both examples the servicing is assumed to be processor sharing over both stations,
say with a total service capacity Ψ(n) when n ≤ n1 + n2 jobs are present and only
arrivals and servicing can be ’blocked’ as to be parameterized by:






f1(n) = Φ(n)s1(n1 | n1 +n2)

f2(n) = Φ(n)s2(n2 | n1 +n2)

b1(·)≡ b2(·)≡ 1

Example 1.5.18 (Restricted state space) Assume that the service sharing is pro-
portional to the number of jobs present (similar to a standard processor sharing
discipline), but that there is an inclination for keeping more jobs at station 1, by
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s1(n1 | n1 +n2) = [n1/(n1 + n2)]1(n1≥n2+1)

s2(n2 | n1 +n2) = [n2/(n1 + n2)]

b0(n) = 1(n1≥n2)

with C the restricted state space

C = {n | n1 ≥ n2− 1≥ 0},

(1.70) is satisfied by

H(n) =
1

n1!
1

n2!

n

∏
k=1

Φ(k)

Fig. 1.23: Restricted state space.

Remark 1.5.19 Though the solution looks standard, note that this example cannot
be concluded by simply restricting the state space under reversibility conditions, as
mentioned in [33] and [45], as the tandem queue itself is not reversible.

Example 1.5.20 (Full service capacity) Assume that there is just a single server
whose capacity is fully devoted to one of the two stations (i.e. Φ(k) = 1), as by






s1(n1 | n1 + n2) = 1(n1 = n2 +1∨n1 = n2 +2)
s2(n2 | n1 + n2) = 1(n1 = n2∨n1 = n2− 1)

b0(n) = 1(n1 = n2∨n1 = n2 + 1)

The adjoint reversibility (1.70) is then satisfied at

C = {n | 0≤ n1 = n1−1,n2,n2 +1,n2 + 2}

as illustrated in figure 1.24 with H(n) = [n1n2]
−1
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Fig. 1.24: Full service example.

1.6 Jacksonian clusters

As shown by example 1.5.3, even for the most simple case of a two station open net-
work one cannot generally expect a product form when restricted capacities become
involved to accommodate jobs (e.g. by finite buffers). Nevertheless, under specific,
more unnatural protocols and possibly enforced by modification, specific product
form results could still be concluded.

Such results can still be of practical interest such as to provide reasonable orders
of magnitude or bounds. However, can these specific product form results also be
expected for larger networks, such as most standardly an arbitrary Jackson type
network with finite capacities?

In this section, it will be shown analytically by just two specific applications that
the results as in section 1.5 for a ’simple’ finite tandem queue can indeed also be
extended to restricted Jackson type networks.

In the next section, as of more practical interest, it will merely be argued and be
illustrated numerically how the concept of station balance and the product form re-
sults from section 1.5 can also be extended to provide practical numerical results for
assembly type networks with restricted Jacksonian clusters. First in section 1.6.1 let
us briefly review the notion and product form result of a standard Jackson network.
Here, for its illustrative purpose without restriction of generality and for its broader
use in section 1.7, we only consider an open Jackson network.

1.6.1 A Jackson cluster

Consider an open network with J service stations, numbered 1, . . . ,J and Poisson
arrival rate with parameter γ j at station j = 1, . . . ,J. After a service completion at
station i a job will instantaneously
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• route to a next service station j with probability pi j ( j 6= 0), or

• leave the system with probability pi0 = [1−∑ j 6=i pi j].

At each visit at station i a job requires an exponential amount of service with pa-
rameter µi. Station i services at a service capacity fi(ni) when ni jobs are present.
Let the vector

n = (n1, . . . ,nJ)

denote the number of jobs ni at station i = 1, . . . ,J and let ei be the unit vector
for component i. Hence, n + ei and n− ei denote the vectors equal to n with one
job more respectively less at station i and n− ei + e j indicates that one job has
moved from station i to j. Furthermore, again use the notational convention that
n+ e0 = n− e0 = n, write p0 j = γ j/λ with λ = ∑ j γ j and let

F(n) = ∏
i=1

[
ni

∏
k=1

fi(k)

]−1

For the unrestricted case, that is with unlimited state space
C∞ = {n | ni ≥ 0 , i = 1, . . . ,J} the global balance relations
{

π(n)λ +

π(n)∑ j µ j f j(n j)

}
(1.85.0)

(1.85. j)
=




∑
i

π(n+ ei)µi fi(ni +1)pi0 +

∑
j

1(n j>0)[π(n− e j)γ j +∑
i

π(n+ ei− e j)µi fi(ni +1)pi j]






(1.85.0)′

(1.85. j)′

(1.85)

are then directly verified (see remark 1.6.3 for its detail) by the station balance
relations (1.85. j) = (1.85. j)′, for each station j = 0,1,2, . . . ,J separately, i.e. for
any station j 6= 0 and state n with n j > 0 by

π(n)µ j f j(n j) = ∑i π(n+ ei− e j)µi pi j + π(n− e j)γ j (1.86)

and for the exterior (station j = 0) and each state n:

π(n)λ = ∑i π(n+ ei)µi fi(ni + 1)pi0 (1.87)

by assuming the product form

π(n) = cF(n)∏
i

[
λi

µi

]ni

where (1.88)

λ j = γ j +∑
i

λi pi j ( j = 1, . . . ,J) (1.89)
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Remark 1.6.1 (Traffic equations) Here the implicit natural assumption is made
that the so-called traffic equations (1.89) have a unique solution {λ j}.

Remark 1.6.2 (Decomposability) In fact, one might note that for the present unre-
stricted case we can also factorize the normalizing constant c and hence the steady
state solution π(n) as if the stations can be regarded as being independent.

Remark 1.6.3 (Verification of (1.85)) To verify (1.86) and (1.87), by assuming
(1.88) we can substitute

[
π(n+ ei−n j)

π(n)

]
=

[
f j(n j)

fi(ni + 1)

][
λi

λ j

][
µ j

µi

]

[
π(n+ni)

π(n)

]
=

[
1

fi(ni + 1)

][
λi

µi

]

[
π(n−n j)

π(n)

]
=

[
µ j

λ j

]
[ f j(n j)]

By dividing by π(n) and cancelling terms, (1.86) for j 6= 0 with n j > 0 then reduces
to the traffic equations (1.89). Similarly (1.87) is verified by also using (recalling
(1.89) again):

∑i λi pi0 = ∑i λi[1−∑ j pi j] = ∑ j λ j−∑i λi pi j = ∑i γ j (1.90)

1.6.2 A restricted Jackson cluster

As a first direct extension now assume that a Jackson cluster of section 1.6.1 is
constrained by:

• no more than N jobs in total and

• no less than M jobs in minimum

Loss and recycle protocol:
If upon arrival N jobs are already present, an arriving job is blocked and lost.
Conversely, if upon system departure the number of jobs left behind would
drop below M, the departing job is recycled into the system at station j with
probability p0 j = γ j/∑i γi.

Clearly, in order for a steady state solution to exist, the system has to be initiated in
a state with n≥M. In that case, the set of admissible states is restricted to:

S = {n | ni ≥ 0 , i = 1, . . . ,M ; M ≤ n≤ N}
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Fig. 1.25: Maximal and Minimal Workloads.

Result 1.6.4 (Recycle protocol) Under the loss and recycle protocol the product
form (1.88) remains valid restricted to C.

Proof. The upper limit N is directly taken into account by (1.87) as

π(n)λ1(n<N) = ∑i 1(n<N)π(n + ei)µi fi(ni +1)pi0 (1.91)

is verified as before for n < N, (see remark 1.6.3) while for n = N both sides of
(1.91) are equal to 0.

Conversely, in order to take the lower limit M into account, for any n ∈ C, hence
with n≤ N, the station balance relation (1.86) is to be replaced by

π(n)µ j f j(n j) =

∑i π(n)µi pi j + 1(n j>0) ·[
1(n>M)π(n− e j)γ j +1(n=M)π(n+ ei− e j)µi pi0 fi(ni + 1)p0 j

]
(1.92)

Clearly, for n > M, this is verified as for (1.86) by substituting (1.88). For n = M,
however, after substituting (1.88) and cancelling terms, again we need to use (1.90).

⊓⊔

To some extent the ’recycle protocol’ as described above can be regarded as most
natural as it allows services to continue. It only requires blocked departures to be
reserviced. Alternatively, a seemingly stronger stop protocol could also be thought
of stated as:

Stop protocol:
Stop the servicing of all stations if a departure from the system (Jackson cluster)
is not allowed, in this case if n = M.

In the next section we will also consider multiple clusters of Jackson networks in
which a departure from one cluster can be blocked due to a finite constraint at a
next cluster. Purely for the purpose of providing a simple product form bound the
somewhat simpler ’stop protocol’ will then be more appropriate as the two protocols
generally lead to exactly the same product form. This is shown below for the present
situation of a guaranteed minimal workload.
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Result 1.6.5 (Stop protocol) Under the stop protocol the product form (1.88) re-
mains valid restricted to C.

Proof. Again, the upper limit is directly taken into account as by (1.91) to replace
(1.87). As for the lower limit constraint M, also the verification of the station balance
(1.86), as given by (1.92), the recycle protocol, even becomes more direct for the
stop protocol by

π(n)µ j f j(n j)1(n>M) =

π(n− e j)γ j1(n>M) +∑i π(n+ ei− e j)µi fi(ni + 1)pi j1(n>M) (1.93)

where it is noted again that the state n− e j is not admissible when n = M, which
directly reduces to (1.86) with 1(n>M) at both hand sides. ⊓⊔

1.6.3 A conservative product form protocol

Now consider a Jackson network as described in section 1.6.1 but with a finite ca-
pacity constraint for no more than Nj jobs at station j; j = 1,2, . . . ,J. (Here one
or more of the values Nj can be infinite). Clearly, as already shown by the tandem
case in section 1.5.1, under a natural blocking protocol by which an upstream sta-
tion is blocked when a next downstream station is congested a product form cannot
be expected as station balance is necessarily violated. In line with the product form
modification in section 1.5.1 and example 1.5.15 for the finite tandem example,
however, a product form can be expected under the, as it is called here:

Conservative protocol.
When a station j is congested, i.e. n j = Nj

stop all other stations l 6= j and stop arrivals.

Result 1.6.6 (Conservative protocol) Under the conservative protocol, the prod-
uct (1.88) remains valid restricted to

C =
{

n | 0≤ ni ≤ Ni ; i = 1,2, . . . ,J ; ni +n j < Ni +Nj for all pairs i 6= j
}

Proof. Again we will verify the station balance relation (1.86) for j 6= 0 and j = 0 in
its present adapted form. Consider a fixed state n ∈ C. Then (1.86) for station j = 0
(also for n j = Nj) is to be replaced by:

π(n)µ j f j(n j)
[
∏l 6= j 1(nl<Nl)

]
=

π(n− e j)γ j

[
∏l 6= j 1(nl<Nl)

]
+

∑i π(n + ei− e j)1(ni+1≤Ni)

[
∏l 6=i, j 1(nl<Nl)

]
µi fi(ni +1)pi j (1.94)
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As a state n + e j− e j can only be admissible if ni +1≤ Ni. Hence, as 1(ni+1<Ni) =
1(ni<Ni), either all terms in both hand sides are equal to 0 if nl = Nl for some l 6= j, or
all indicator functions are equal to 1 so that (1.94) is identical to (1.86), as satisfied
by the product form (1.88). Similarly, for j = 0, the total outrate and inrate for the
system are equated by (1.88) at C as:

π(n)λ

[

∏
l

1(nl<Nl )

]
= ∑i π(n+ei)1(ni+1≤Ni)

[

∏
l

1(nl<Nl)

]
µi fi(ni +1)pi0 (1.95)

⊓⊔

Remark 1.6.7 (Conservative protocol) The conservative protocol is referred to as
conservative as it only continues the service at that station which resolves the con-
gestions. As a consequence it avoids that more than one station can become con-
gested at the same time.

Remark 1.6.8 (Jump-over protocol) A(nother) protocol to generally ensure the
product form (1.88) at

C = {n | 0≤ ni ≤ Ni ; i = 1, . . . ,J}

is by the

Jump-over protocol.
Let jobs jump over a saturated station i with ni = Ni to a next service station j
according to the routing probabilities pi j.

The product form can be argued intuitively by assuming infinite capacities but a
service speed fi(Ni +1)→ ∞, for all i, so that the probability for a state with more
than Ni jobs at any station i becomes virtually 0. An analytic proof, as based upon
absorbing Markov chains, can be found in [52].

n1 = N1 n2 = N2

N1 N2

Fig. 1.26: Tandem Queue with Jump-Over.

As an illustrative example, though, as of practical interest by itself and in line with
section 1.5, let us just reconsider the finite tandem queue with capacity constraints
N1 and N2 at stations 1 and 2 jump-over protocol; i.e.
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If n2 = N2 departures from station 1 clear the system.
If n1 = N1 arrivals are directly routed to station 2.
(If both n1 = N1 and n2 = N2 the arrivals are lost)

The global balance relations now become





π(n)µ1 f1(n1)+

π(n)µ2 f2(n2)+

π(n)λ
[
1(n1<N1) + 1(n1=N1)1(n2<N2)

]





=



π(n)λ+

π(n+ e1− e2)µ1 f1(n1 + 1)1(n1<N1) + π(n− e2)λ1(n1=N1)+

π(n+ e2)µ2 f2(n2 + 1)1(n2<N2) +π(n+ e1)µ1 f1(n1 +1)1(n2=N2)1(n1<N1)





(1.96)
By noting that for any state n ∈ C with (n1,n2) 6= (N1,N2):

1(n1<N1) + 1(n2=N2)1(n2<N2) = 1(n2<N2) +1(n2=N2)1(n1<N1) = 1,

again these in turn are verified by a ’station balance’ relation for each station j =
0,1,2 separately when substituting the product form:

π(n) = cF(n)

[
λ
µ1

]n1
[

λ
µ2

]n2

(n1 ≤ N1 ; n2 ≤ N2) (1.97)

Remark 1.6.9 The ’tandem example’ provided above is of some natural interest for
present day packet switch communication structures (such as internet) in which case
a load congestion might be skipped which will lead to only a partial loss of packets
(information).

1.7 Product form bounds for networks of restricted clusters

As mentioned before and shown by example 1.5.2 in section 1.5.1, a simple tandem
queue with a finite capacity constraint already violates station balance and hence
a product form. Nevertheless, as shown by its modification in example 1.5.3, its
extension in example 1.5.15. for a tandem with two finite stations, and in section 1.6
for Jacksonian type clusters, under appropriate blocking protocols a product form
expression might still be obtainable, possibly enforced by modification.

These product forms in turn, even though the protocols might be ’unnatural’, might
still be useful for the original non-product form system to provide a reasonable
approximation or bound, as announced in remark 1.5.15. More precisely, for the
simple but unsolvable tandem queue with both a finite first and a finite second station



1 On Practical Product Form Characterizations 63

(as in example 1.5.2), the product form (modification) as in example 1.5.15 turns out
to be quite fruitful to provide a simple (lower and upper) product-form bound for
the loss probability (and throughput). As some numerical results for this two-station
example can also be found in the chapter on error bounds and comparison results
(chapter 7), in section 1.7.1 below some numerical support will directly be presented
for a slightly larger four station tandem example.

In fact, in practical situations capacity constraints are often imposed upon clusters
(groups) of stations rather than individual stations. In this section, therefore, it will
merely be illustrated, in line with the two station tandem example and the results
for a single cluster as in section 1.6, how the product-form modification approach
also extends to and can be fruitful for larger networks, particularly ’assembly line or
tandem type’ structures with restricted Jacksonian clusters. Roughly speaking, this
bounding approach is based on the two concepts of:

(i) regarding a cluster of stations with some common capacity constraint as
’one aggregate station’.

(ii) a modification of the system such that both the notion of station balance for
individual stations, and of station balance for ’aggregate stations’:
referred to as ’cluster balance’, are restored and satisfied.

1.7.1 Instructive tandem extension

In production environments, capacity constraints are often imposed upon clusters of
workstations rather than individual workstations. It would thus be appealing if the
principle of station balance can also be extended to a cluster level, by regarding a
cluster as one aggregated station.

Consider, for example, the cluster extension of the tandem case (see figure 1.27)
with four stations to be seen as a two-cluster model with capacity constraints T1 and
T2 for the total number of jobs in cluster 1 (stations 1 and 2) and cluster 2 (stations
3 and 4).

B T1 T2

Finite Cluster Finite Cluster

Fig. 1.27: Finite Cluster Extension
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In order to enforce a simple product-form expression, a similar modification as ex-
ample 1.5.3 in section 1.5.1 and example 1.5.15 in section 1.5.4 would then seem
appealing at cluster level by also rejecting jobs at cluster 1 when cluster 2 is con-
gested. This would lead to an upper bound for the blocking probability. In other
words, at first glance we would expect a similar simple product-form bounding ap-
proach by simply regarding a cluster as a station and transforming the notion of
balance per station into balance per cluster by just keeping track of the total number
of jobs at each cluster. This will be referred to as cluster balance.

Example 1.7.1 To be more precise, consider the simple assembly line structure with
4 service stations, numbered 1, . . . ,4 and finite capacity constraints T1 for the total
number of jobs at stations 1 and 2 (cluster 1) and T2 at stations 3 and 4 (cluster 2).
The system has an arrival rate of λ jobs per unit of time and assume that station i
has (an exponential) service rate µi fi(k) when k jobs are present. As before, let ni

denote the number of jobs at station i, i = 1, . . . ,4 and t j the total number of jobs at
cluster j, j = 1,2. (t1 = n1 +n2 and t2 = n3 +n4). When the first cluster is saturated
(t1 = T1) an arriving job is lost. When the second cluster is saturated (t2 = T2) the
service at cluster 1 (that is at both stations) is stopped. As simple as the system may
look to analyze, there is no simple expression for the loss probability B of arriving
jobs or the throughput H = λ (1−B).

In this example, both the notion of balance per station (as by (1.3) in section 1.2.1)
and of balance per cluster (that is, as if a cluster is regarded as one aggregated
station) are violated, since when t1 < T1 but t2 = T2:

• the out-rate of stations 1 and 2 and the out-rate of cluster 1 are necessarily
equal to 0 while the in-rate for station 1 (and possibly also for 2) and for
cluster 1 are positive.

The following artificial modification to enforce these notions can therefore be sug-
gested.

• When cluster 2 is saturated (t2 = T2): stop the input.
• When cluster 1 is saturated (t1 = T1): stop cluster 2 (that is, both stations

at cluster 2).

Indeed, under this modification one easily verifies the global balance (1.98) by sta-
tion balance equations (1.98.i) = (1.98.i)′ for i = 1, . . . ,5 at SU the set of admissible
states:

SU = {n | t1 = n1 + n2 ≤ T1 ; t2 = n3 +n4 ≤ T2 ; t1 + t2 6= T1 +T2}

as
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π(n)µ1(n1) f1(n1)1(t2<T2)+

π(n)µ2 f2(n2)1(t2<T2)+

π(n)µ3 f3(n3)1(t1<T1)+

π(n)µ4 f4(n4)1(t1<T1)+

π(n)λ1(t1<T1)1(t2<T2)





(1.98.1)

(1.98.2)

(1.98.3)

(1.98.4)

(1.98.5)

=




π(n− e1)1(n1>0)λ1(t2<T2)+

π(n− e2 + e1)1(n2>0)µ1 f1(n1 + 1)1(t2<T2)+

π(n− e3 + e2)1(n3>0)µ2 f2(n2 + 1)1(t1<T1)+

π(n− e4 + e3)1(n4>0)µ3 f3(n3 + 1)1(t1<T1)+

π(n + e4)µ4 f4(n4 +1)1(t1<T1)1(t2<T2)






(1.98.1)′

(1.98.2)′

(1.98.3)′

(1.98.4)′

(1.98.5)′

(1.98)

by substituting the product-form

π(n) = cλ n1+n2+n3+n4
4

∏
i=1

{
µni

i

[
ni

∏
k=1

fi(k)

]}−1

, n ∈ SU (1.99)

with c a normalizing constant. Clearly, the modification leads to an upper bound
BU ≥ B for the loss probability

BU = ∑
{n |t1=T1 or t2=T2}

πU (n) (1.100)

Conversely, also a lower bound product-form modification BL can be suggested by
only rejecting arriving jobs when the total number of jobs n1 +n2 +n3 +n4 = T1 +T2

and allowing up to this number to be present at any station. Then (1.99) applies with
SU replaced by:

SL = {n | n1 +n2 + n3 + n4 ≤ T1 + T2 ; ni ≥ 0 , i = 1, . . . ,4} (1.101)

Below some numerical results are given for the case of single server stations. Here
µi represents the service speed of station i, BL and BU are the easily obtained lower
and upper bound for the blocking probability, Bav = (BL +BU )/2 and B is obtained
by numerical computation.

Remark 1.7.2 (Insensitive bounds) Referring to sections 1.2.5 and 1.3.3, recall
that for pure multi-server or processor sharing disciplines, the product-form ex-
pression (1.99) remains valid for arbitrary service distributions with means 1/µi.
Also the bounds BU and BL can then be expected to be insensitive.
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Table 1.2: Lower and upper bounds of the loss probability B (and throughput H by
H = λ (1−B)) for finite two-cluster tandem example.

µ1 µ2 µ3 µ4 T1 T2 BL BU Bav B

1 1 1 1 3 5 .33 .52 .43 .42

1 1 1 1 6 6 .25 .40 .33 .30

1 1 1 1 8 8 .20 .33 .27 .24

2 2 1 1 10 10 .10 .17 .14 .12

1 2 3 2 10 10 .054 .101 .078 .084

1.1 2 3 2 10 10 .021 .065 .048 .049

1.7.2 A Jackson Tandem

The simple two-station tandem clusters can directly be replaced by a Jackson cluster
as from section 1.6 by applying either of the two protocols from section 1.6, the
recycle or stop protocol for the entire cluster, if its departures are to be blocked.

• The modification at cluster level as above if either the first or
second cluster is congested

More concrete, consider the situation of two finite Jackson clusters labeled C1 and
C2. As before let t1 and t2 be the total number of jobs at cluster 1 and at cluster 2.

T1 T2

C1 C2

Fig. 1.28: Finite Jacksonian Tandem.

For the original system of interest assume that when a departure from cluster 1 say
from station i is blocked, it has to undergo a new service at station i. Effectively, this
means that as in the example above that only the departure station 2 is delayed or
completely stopped when a congestion takes place. By the modification:

PF-modification
• When a cluster is activated: stop arrivals and all stations at the other cluster

a product form can now be expected. Indeed, for any station j ∈ C1 and with n j > 0,
the station balance then becomes:
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π(n)µ j f j(n j)1(t2<T2) =

π(n− e j)γ j1(t2<T2) +∑i∈C1
1(t2<T2)π(n+ ei− e j)µi fi(n1 +1)pi j (1.102)

and for j ∈ C2

π(n)µ j f j(n j)1(t1<T1) =

1(t1<T1) ∑i∈C1
π(n + ei− e j)µi fi(ni +1)pi j +

1(t1<T1) ∑i∈C2
π(n + ei− e j)µi fi(ni +1)pi j (1.103)

Here in the first term in the r.h.s. of (1.103) it is noted that any state n + ei − e j

necessarily has t2−1 < T2 jobs at cluster 2 so that the servicing at the first cluster is
not stopped. Finally, the outrate and inrate equation for the system (station 0) are:

π(n)λ1(t1<T1)1(t2<T2) =

∑i∈C2
1(t2<T2)π(n+ ei)µi fi(n1 + 1)1(t1<T1)pi0 =

1(t1<T1)1(t2<T2) ∑i π(n+ ei)µi fi(n1 +1)pi0 (1.104)

as pi0 = 0 for i ∈ C1. By cancelling the equal indicator terms 1(t1<T1) and 1(t2<T2)

in the left hand and right hand sides, each of these relations (1.102), (1.103)
and(1.104), which together form the global balance equations, are now verified di-
rectly as before in section 1.6.1 by using the traffic relations (1.89) and (1.90) as for
a standard Jackson cluster when substituting the product form:

π(n) = c∏
i

[
λi

µi

]ni
[

ni

∏
k=1

fi(k)

]−1

(1.105)

at
C =

{
n | t1 = ∑i∈C1

ni ≤ T1 ; t2 = ∑i∈C2
ni ≤ T2 ; t1 + t2 6= T1 + T2

}

Remark 1.7.3 (Recycle protocol) In line with section 1.6.2, the same product form
(1.105) result can also be proven if, for either of the two Jackson clusters or for both,
a recycle protocol would be applied upon departure blocking. (I.e. a departing job
would be recycled into that cluster as a newly arriving job - here for cluster 2 it
would then have to be assumed that pi j = β j for j ∈ C2 and all i ∈ C1).

Remark 1.7.4 (Jump-over protocol) In line with the jump-over protocol in remark
1.6.8, a(nother) product form (modification) protocol would be to let arriving jobs
jump-over cluster 1 if t1 = T1 and let jobs leaving cluster 1 clear the system if t2 = T2.
In that case (1.105) would apply with C restricted to

C = {n | t1 ≤ T1 ; t2 ≤ T2}
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1.7.3 A nested case

B

Z1 Z2

T1

Z3 Z4

T2

Fig. 1.29: Nested Finite Constraints.

A nested extension of the example from section 1.7.1, now consider two clusters
in tandem each with 4 stations and finite constraint T1 and T2 jobs. In addition, the
stations are paired in 4 pairs (see figure 1.29) with a finite capacity constraint Zi for
the total number of jobs zi at pair i, by

zi = n2i−1 +n2i ≤ Zi

(The natural assumption is made that T1 ≤ Z1 + Z2 and T2 ≤ Z3 + Z4)As before,
cluster balance is violated at cluster 1 if t2 = T2 and at cluster 2 if t1 = T1. In addition,
station balance is violated at station 2i if Zi+1 is reached, i = 1,2,3. The following
modification is therefore is therefore suggested:

PF-modification
• When t2 = T2 stop stations 1-4
• When t1 = T1 stop stations 5-8
• When zi = n2i−1 +n2i = Zi :

stop arrivals and all stations j 6= 2i− 1,2i ; i = 1, . . . ,41− 4

Under this modification the global balance equations become





∑ j=1,...,4 π(n)µ j f j(n j)
[
∏i6=d( j) 1(zi<Zi)

][
1(t2<T2)

]
+

∑ j=5,...,8 π(n)µ j f j(n j)
[
∏i6=d( j) 1(zi<Zi)

][
1(t1<T1)

]
+

π(n)λ
[
∏4

i=1 1(zi<Zi)

][
∏2

j=1 1(t j<Tj)

]






=




∑ j=2,...,4 π(n+ e j−2− e j)µ j−1 f j−1(n j−1 + 1)
[
∏i6=d( j) 1(zi<Zi)

][
1(t2<T2)

]
+

∑ j=5,...,8 π(n+ e j−1− e j)µ j−1 f j−1(n j−1 + 1)
[
∏i6=d( j) 1(ni<Ni)

][
1(t1<T1)

]
+

π(n+ e8)µ8 f8(n8 +1)
[
∏4

i=1 1(zi<Zi)

][
∏2

j=1 1(t j<Tj)

]





(1.106)

Here in the right hand side, for j = 1 we need to read n+e j−1 +e j = n−e1, µ0 = λ
and f0(n0 + 1) = 1 and d( j) denotes the pair number that contains station j, j =
1, . . . ,8.
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For each j = 1, . . . ,8 in the first two terms in both hand sides as well as for the
third term (as can be seen as for j = 0), the indicator functions are identical. Hence,
station balance for each j separately is directly verified as before by substituting the
product form with J = 8 at C the set of admissible states:

SU = {n | t1 ≤ T1 , t2 ≤ T2 , t1 + t2 6= T1 + T2 ,

zi ≤ Zi , i = 1, . . . ,4 ; zi + z j 6= Zi +Zj for all i, j with i 6= j
}

(1.107)

Clearly, this modification leads to an upper bound BU for the loss probability B.
Conversely, a lower bound BL is obtained by the modification:

PF-modification
• Only reject arrivals when the total number of jobs t = n1 + · · ·+ n8 = T1 +T2,

while any station can accommodate up to this number of jobs.

In this case again the station balance relations are readily verified with the same
product-form as in (1.105) with λi = λ for all i at the set of admissible states::

SL = {n | t ≤ T1 +T2 , ni ≤ T1 +T2 for i = 1, . . . ,4}

Some numerical results are presented in table 1.3.

Table 1.3: Result for the nested blocking structure (λ = 1)

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 Z1 Z2 Z3 Z4 T1 T2 BL BU Bav B

1 1 1 1 1 1 1 1 3 2 4 2 4 5 .471 .724 .598 .572

2 3 4 5 1 2 3 4 3 2 4 2 4 5 .158 .398 .278 .204

Again, this nested assembly line example is also extendable to restricted Jacksonian
clusters instead of restricted pairs using the recycle or stop protocol as in section
1.6.

1.7.4 Further illustrative examples

In this section, some more examples will be provided to illustrate the potential of the
modification approach. For each of these examples there is no analytic expression
known while the modifications guarantee closed product form expressions similar
to (1.99). These in turn will lead to easily computable bounds similar to (1.100)
and (1.101). Some numerical results will be included to indicate a possible practical
usefulness.
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1.7.4.1 A Cluster With Parallel Stations

N1

T

B

N2

N3

N4

p2

p3

Fig. 1.30: A parallel routing cluster.

This example contains a random routing after completion at station 1 to either one
of two stations (with probabilities p2 and p3 = 1− p2) in parallel within one cluster
with a capacity constraint T for the total number of jobs at stations 2 and 3, next to
capacity constraints Ni at each station i, i = 1, . . . ,4. By regarding the cluster as one
aggregated station as in section 2, the following modifications lead to product-form
expressions:

PF-modification
• Stop arrivals and all stations either when one of stations (ni = Ni) or

the cluster (n2 + n3 = T) is saturated, or
• Stop arrivals when the total number of jobs is equal to N1 +T + N4 = S,

while each station may contain up to S jobs.

Clearly, the first modification leads to an upper bound BU and the second to a lower
bound BL for the loss probability B of the original system. Some numerical results
are shown by table 1.4.

Table 1.4: Results for the finite cluster with parallel stations (λ = 1)

µ1 = . . . = µ4 N1 N2 N3 N4 T p2 = p3 BL BU Bav B

2 2 2 2 2 3 0.5 .03 .30 .16 .16

10 2 2 2 2 4 0.5 .00 .02 .01 .01

1 5 5 5 5 10 0.5 .10 .30 .18 .20

1 10 5 5 10 10 0.75 .06 .17 .12 .10
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1.7.4.2 An Overflow Example

B

T2

T1

N3
N4

N1 N2

Fig. 1.31: Overflow clusters.

Consider two finite clusters in parallel with arrivals at cluster 1. If a job cannot enter
cluster 1 it is rerouted to cluster 2. Each cluster consists of two finite stations in
tandem. In addition to the total cluster constraints T1 and T2, we also allow capacity
constraints Ni for each individual station i, i = 1, . . . ,4. We assume that µ1 ≤ µ3 and
µ2 ≤ µ4.

For this example, the so-called notion of cluster balance is violated when cluster 2 is
busy while cluster 1 is not saturated. In that case the outflow at cluster 2 is positive,
but the in-rate is 0. The following two modifications are therefore suggested:

PF-modification
• Stop both stations in cluster 2 when cluster 1 is not saturated (t1 < T1), or
• Assign arriving jobs randomly to either one of the clusters proportional

to the free buffer capacity at the two clusters.

By the first modification cluster 2 is slowed down and kept more congested. The
arrival loss probability will thus be enlarged which leads to an upper bound BU

for the loss probability B of the original system. With the second modification, the
faster overflow cluster is used more frequently than in the original system, which
leads to a lower bound BL.

1.7.4.3 A breakdown Model

Reconsider two finite clusters in tandem, which are both subject to breakdowns. In
addition to the cluster constraints T1 and T2, we assume repair and breakdown rates
γ10 and γ11 for cluster 1, and similarly, γ20 and γ21 for cluster 2.
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Table 1.5: Results for parallel finite clusters with overflow.

λ µ1 µ2 µ3 µ4 N1 N2 N3 N4 T1 T2 BL BU Bav B

1 1 1 1 1 1 1 1 1 2 2 .095 .444 .270 .300

2 1 1 4 4 3 3 1 1 6 2 .005 .174 .090 .073

3 1 1 4 4 3 3 2 2 6 4 .023 .126 .075 .063

B T1 T2

N1 N2 N3 N4

0 / 1 0 / 1

Fig. 1.32: Breakdown clusters.

Clearly, cluster balance is violated when either cluster is down. The following two
modifications are therefore suggested:

PF-modification
• Stop both stations in cluster i when cluster j is down ( j 6= i), or
• The breakdown rate for both clusters is 0 (breakdowns do not take place).

Again, the first modification leads to an upper bound BU and the second to a lower
bound BL for the loss probability B of the original system. Some numerical results
are shown below.

Table 1.6: Results for finite clusters with breakdowns (λ = 1)

µ1 µ2 µ3 µ4 N1 N2 N3 N4 T1 T2 γ10 γ11 γ20 γ21 BL BU Bav B

2 2 2 2 2 2 1 1 4 4 50 1 50 1 .04 .42 .23 .20

2 1 2 1 2 4 2 4 6 6 50 1 50 1 .16 .48 .32 .28
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1.7.5 An Optimal Design Application

Reconsider the finite cluster tandem example from section 1.7.1 in which the num-
bers T1 and T2 are still be determined by trading off capacity costs (T1 + T2)

2 and
opportunity losses 1000B due to rejections. Based on the lower and upper bounds
for the loss probability, lower and upper bound curves for the costs are easily com-
puted. Despite the large discrepancy between the lower and upper bound values, the
qualitative curving behavior seems to almost pinpoint the same optimal number (9
or 10). To be more certain one can then simulate. In any case one can be 100% sure
that the optimal number is within the region 4-16.

Fig. 1.33: Total capacity optimization.

1.8 A hospital application

1.8.1 Motivation

At an Intensive Care Unit (ICU) within hospitals patients may enter directly for in-
tensive care, such as monitoring and artificial ventilation. Patients may also require
an ICU bed for postoperative care after a heavy operation at the Operating Theatre
(OT). Unfortunately, due to the limited number of beds, a request for an ICU bed
may be rejected.

For patients a rejection may lead to further delay in a critical situation which may
even put lives at risk. For the hospital (or public health) a rejection may lead to an
idle operating room, which is regarded as a loss of precious capacity. The size of an
ICU thus needs to be dimensioned carefully.
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1

OT ICU

2

Fig. 1.34: Operating Theatre (OT) - Intensive Care Unit (ICU) Tandem Model

A careful estimation of the ICU rejection probability is thus required. Unfortunately,
measurements might not be available or be sufficiently predictive for different num-
ber of beds. An analytic approach therefore will be of practical interest.

Literature and objectives. By a number of references the standard M|G|c|·multi-
server queue has already been argued as a reasonable approximate for the ICU in
isolation (see [55] and references therein). Nevertheless, these results do not contain:

• A formal justification.

• The inclusion of the OT and its interaction with the ICU.

• A secure lower and upper bound for the ICU-rejection probability.

1.8.2 Model formulation

The inflow of the ICU consists of emergency patients (the majority) and elective
patients and can be subdivided into various patient groups. However, as we are par-
ticularly interested in the effect of the limited ICU capacity and its interaction with
the OT, below we only make a cross distinction in patients, that need to visit the
ICU after having undergone an operation, and patients that enter the ICU directly
without operation. These patients will be referred to as:

• OT (or type 1-) patients.

• Direct (or type 2-) patients.

This distinction is made:

• To capture the interaction between OT and ICU.

• As the average sojourn times at the ICU significantly differ.

Original Model. To study the ICU-rejection probability R for type-1 and type-2
patients (where we refer to remark 1.8.2 below for its equality for both types)and
its interaction with the OT a number of assumptions are made. In [55] each of these
assumptions has been argued and justified by simulation to be quite reasonable for
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practical modeling. The corresponding tandem queue system under these assump-
tions (1)-(8) will be referred to as the original OT-ICU model.

(1) Patients that do not require an ICU bed are not included.
(2) A Poisson arrival rate λ1 of OT-patients (type 1) at the OT.
(3) A Poisson arrival rate λ2 of Direct patients (type 2) at the ICU.
(4) An exponential service time for the surgery at the OT with rate µ1.
(5) A (possibly non-exonential) sojourn time at the ICU with mean τ1

for OT-patients and τ2 for Direct patients.
(6) The OT has c1 identical operating rooms with a infinite waiting

facility; The ICU has a limited capacity for at most c2 patients
and no waiting facility.

(7) When no ICU bed is available, type 1-patients are rejected upon arrival
at the OT and type 2-patients are rejected upon arrival at the ICU.

(8) An ongoing operation is always continued. When no ICU bed is
available, the patient is kept in the recovery.

Modified Product Form OT-ICU system. The OT-ICU system of interest has
no product form solution. However, in line with the results from section 1.5, more
precisely example 1.5.3 and its product form modification in section 1.5.1, the fol-
lowing artificial modification of (8) can be suggested:

(8’) When the ICU becomes congested, operations are immediately
interrupted and stopped. The operations are resumed as soon
as the ICU is no longer congested.

Under this modification, the tandem system will be referred to as the modified OT-
ICU system. Similarly to the relations (1.64), for this modified OT-ICU system the
following result can be proven directly.

Result 1.8.1 Let (n1;m1,m2) denote that there are n1 patients at the OT and mi

patients at the ICU of type i (i = 1,2). For the modified OT-ICU system, with m =
m1 +m2 ≤ c2,

F1(n1) =





[n1!]−1 for n1 ≤ c1[
c1!c(n1−c1)

1

]−1
for n1 > c1

and with normalizing constant α , we have:

π(n1;m1,m2) = α F1(n1)

(
λ1

µ1

)n1

∏
i=1,2

1
mi!

(λiτi)
mi (1.108)

The product form expression (1.108) decomposes as if the OT and ICU can be re-
garded as independent. As a consequence, with c = c2 it thus directly justifies an
M|G|c|c-loss approximation for the ICU rejection probability R as by

B(c) = ρc/c!
[
∑c

k=0 ρk/k!
]−1

with ρ = (λ1τ1 + λ2τ2) (1.109)
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Intuitively, as the modified OT-ICU tandem system only differs from the original
OT-ICU tandem system for a patient in operation when the ICU becomes congested,
one may expect that the M|G|c|c-loss expression, is a quite reasonable if not accurate
approximation for the original OT-ICU system.

Indeed, as shown in table XXX below, this M|G|c|c-loss approximation for the ICU
rejection probability R of the OT-ICU as described in section 1.8.1 and practically
argued by simulation in [55], seems to approximate quite well with c in the order of
the case study as in section 1.8.3.

TABLE

Remark 1.8.2 The ICU-rejection probability for type-1 patients is equal to that for
the type-2 patients. This can be argued directly by the PASTA (Poisson Arrivals See
Time Averages) property. Alternatively, it can also be concluded from the product
form result 1.8.1 by (1.108).

1.8.3 Bounds and application

Nevertheless, there is no guarantee at all for this approximation to be accurate. More
importantly, one might intuitively expect that it provides a lower bound B(c)≤R, as
the modification seems to keep operations more conservative. In practice, in contrast
one would rather have a secure upper bound, such as for dimensioning the size of
an ICU with a secure sufficiently small rejection probability (e.g. less than 5%).
Here in addition it is also noted that the Poisson arrival assumption for type 1 jobs
is somewhat unrealistic, as operations are partly scheduled, and thus overestimates
the ’practical’ value R. An upper rather than lower bound for R would thus be of
interest. Based upon the product form modification again as in section 1.8.2, but
with c− 1 rather than c beds and a Markov reward proof technique as outlined in
section a chapter later on the following result is therefore proven in [55].

Result 1.8.3 (Bounds for the ICU-rejection probability)

B(c)≤ R ≤ B(c−1) (1.110)

Application: Case study. Data were collected for a case study in a Dutch hospital
over a one year period. The percentages of type 1 and type 2-patients were 39% and
61%.

The average sojourn time spend in the ICU over all patients was 5.2 days, for
roughly 4 days for type 1-patients and 6 days for type 2-patients. Other case char-
acteristics were:

• OT capacity (number of operating rooms): 8.
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• ICU capacity (number of beds): 12.

• ICU occupancy: 85%.

The case study situation is within a range of realistic figures as recently reported
by the Dutch ministry of health. It reported that roughly 10% of ICU requests are
strictly rejected, 3% admitted by a predischarge and 4% placed differently. Further-
more an occupancy of 75% is mentioned as norm.

Simulation results for the case study consistently support the lower and upper bound.
Particularly, for smaller rejection probabilities, say in the order of 5 -10% as for
larger hospitals with a high occupancy level, the bounds appear to be quite accurate
(in absolute sense). The results seem useful, at least, for practical purposes such as
to guarantee a sufficiently small rejection percentage by the upper bound.

For the case study, an occupancy of 85% and 12 beds were used. The results lead
to a lower bound of .127 and an upper bound of .172 (the simulation result was
.128). As a direct application of the secure M|G|c -1|c -1 upper bound computation
the required number of ICU beds could be computed as:

• 16 beds for R≤ 5%.

• 19 beds for R≤ 1%.

1.9 Evaluation

1.9.1 Literature

Product forms for queueing networks have become most familiar ever since the
pioneering work of Jackson ([28], [29]) for so-called Jackson networks. In these
networks a job can randomly route form one station to another. Some most notable
other early references here are [30], [36], [37] and [35]. Particularly, for its clear
practical motivation, special attention has been given to assembly line structures,
also referred to as Gordon-Newell networks ([18], [19]). In fact, an early first prod-
uct form result for a production line system was already reported in [36], [37].

In none of these references, though, the product forms were ’explicitly’ related to (a
notion of) balance for each station separately (In the elegant paper [35] an explicit
decomposition is made for the outside as a station).

A verification by each station separately as if it were in isolation became more
emphasized in the seventies in [3], [10], [11], [33], [34], [35], [44], [47], [48] (with
corresponding balance notions as local, detailed balance and job-local balance).

With (access) blocking due to finite capacity constraints product form results
seemed more restricted. In fact the historical paper by Jackson does already con-
tains a capacity constraint on the total number of jobs in the network. But with finite
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capacity constraints Ni for the total number of jobs at individual stations i, product
form results were concluded only provided the routing is reversible [33], [45]. As
mentioned in both these references, in this case also arbitrary truncation of the state
space can be incorporated while retaining a product form. In fact, the results in sec-
tion 1.2 on coordinate convex blocking and the corresponding references as [11],
[31], [39] fall within this category as the routing for entering and leaving a single
service station is reversible by definition. [33] and [46] also include a reversible re-
sult along this line as a job has a designated service path through the network for
which it is either entirely accepted (that is the whole path) or rejected. An interme-
diate blocking or stagnation is not allowed.

The product form papers by [3], [10], [11], [44] which focus on multiple-class ex-
tensions of Jackson networks as well as different queueing disciplines, which are
well-known in the computer communication literature (as also discussed in section
1.4.2, A) do not allow for any blocking by finite capacity constraints at all. Exten-
sions of such networks with blocking but strictly with a reversible routing can be
found in [33], [53], [67].

However, even for a simple two stage tandem model, as in example 1.5.2, the routing
is necessarily not reversible. As a consequence, a simple finite constraint as by an
intermediate buffer as in example 1.5.3, violates a product form.

In view of the practical importance of tandem (or assembly line) structures, exten-
sive attention has therefore been paid to approximations for such structures, as in
[14], [16], [17], [22], [49] and most recently [62], [63].

The approach taken in this chapter is different in that it aims to investigate the exis-
tence of product forms by more general blocking functions for two reasons:

• As of interest by itself to investigate to which extent product forms can still be
concluded also for non-reversible blocking or service sharing

• As motivated by the product form modification example under example 1.5.3.
This modification was shown to provide simple and practical bounds [56], [59].
Further exploration of a product form bounding approach is thus of practical
interest.

The notion of adjoint reversibility and its product form characterization as by (1.65)-
(1.69) in section 1.5.2 and the necessary and sufficient blocking condition (1.83)
in section 1.5.3 for the tandem example, have essentially been developed in [23].
An extension of this characterization to arbitrary multi-class Jackson type networks
with a job-configuration (state) dependent routing and servicing can be found in
[25]. This characterization is restricted in [50] to single-class networks with a state
dependence on the configuration vector n for the total number of jobs at each station.
The presentation in section 1.5.2, more precisely the characterizations (1.69) and
(1.70), as well as (1.71)-(1.76) in remarks 1.5.9 and 1.5.10 directly rely upon this
reference. This also applies to the blocking examples in section 1.5.4 while the
(mixed) service examples 1.5.14, 1.5.18 and 1.5.20 can be regarded as ’new, though
included in [51] and [61]. Other product form examples of interest which fit in this
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framework but which merely focus on service sharing over stations, such as for
internet modelling, can be found in recent work by [4] and [61].

A total network constraint N for the total number of jobs as in section 1.6.2 was
already incorporated in the original famous paper by Jackson [28]. The Jacksonian
product form results in sections 1.6.2 and 1.6.3 can be concluded from [50] and
[52] but are presented here in a self-contained compact form. The bounding results
for networks with restricted clusters in section 1.7 are adopted from [57], but are
also presented in a compact self-contained form. In this reference an analytic repre-
sentation and ’cluster balance’ relation are given to consider a restricted cluster as
one aggregate station. (For a more general setting of product form results and the
possibility of some form of decomposition or aggregation of stations, as extension
of Norton’s theorem, the interested reader is also referred to [8] and [5], [6]). The
special hospital application in section 1.8 is obtained from [54], as based on the
research paper [55].

Finally, for more detailed discussions and reference lists on product form results in
more abstract lists on product form results in more abstract settings, most notably
as in [12], [46], [64] the reader is referred to the chapters by Miyazawa, by Daduna,
and by Boucherie and Huisman in this book.

1.9.2 Review Part B

In Part B of this chapter just single-class tandem-type structures were considered, in
its most simple form with just two successive stations. Such simple structures might
already be regarded as generic for a variety of application fields, as in manufacturing
for production lines, as in communications for internet and packet switch networks,
or as in service environments like a hospital.

In contrast with Part A, however, the focus in Part B has been the phenomenon
of blocking by finite capacity limitations at stations or by service sharing between
stations, due to either of which successive stations essentially become interdepen-
dent. Even in the simple two-station case this dependence may render the system
unsolvable.

Nevertheless, by assuming general state dependent blocking and service functions,
product form results could still be concluded. These results were essentially based
upon the three types of:

(i) Requiring station balance equations.

(ii) A translation of these equations into an adjoint chain.

(iii) A product form characterization by means of reversibility for this adjoint chain
(called adjoint reversibility).
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This characterization led to concrete product form examples also with blocking such
as by a ’conservative’ or ’recycle’ blocking ’protocol’. Though these product form
examples might if not will generally be unrealistic, the underlying station balance
insights and explicit product form expressions might still be practically useful to
provide simple performance bounds.

This statement seemed supported by extensions and numerical results for more com-
plex tandem structures (with Jacksonian clusters) as well as a realistic hospital case.
Further extension and application of these product form insights and a bounding
approach is thus suggested.

1.9.3 Some remaining questions

Despite the general perception that product form results are exhaustively covered in
the literature, to the opinion of the author, a variety of intriguing questions, which
are also of practical interest, remain open for research. Three of them and far from
exhaustible are:

1. To what extent can the detailed product form results as in A for a single station
simply be embedded in a more global (blocking) network structure as in B. Only
without blocking (or dependence phenomena) or under special conditions as a re-
versible routing some results for mixed networks with different types of stations
have been reported .

2. Somewhat related to 1 and in line with decomposition and aggregation results
(as in [5], [8]), can we also recognize and come up with closed (product) form
expressions for just a subpart of a network, despite the fact the network in totality
is unsolvable.

3. The bounding approach as used in section 1.7 is strongly supported at a physical
and intuitive level as by a strict blocking or service interruption to let an inflow
or outflow become 0. The recognition of product form modifications will be a
less transparent if non-zero modifications have to be found, such as for resolving
unproportional processor sharing, as of present-day interest for internet applica-
tions modeling (fairness).

Please feel free to join these product form questions.
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Chapter 2

Order Independent Queues

A.E. Krzesinski

Abstract We present a class of queues which are quasi-reversible and therefore
preserve product form distribution when connected in multinode networks. The es-
sential feature leading to the quasi-reversibility of these queues is the fact that the
total departure rate in any queue state is independent of the order of the customers
in the queue. We call such queues Order Independent (OI) queues. A distinguish-
ing feature of the OI class is that, among others, it includes the FCFS, processor
sharing, infinite server and MSCCC queues but not the LCFS queue. We next ex-
amine OI queues where arrivals to the queue are lost when the number of customers
in the queue equals an upper bound. We prove that such queues satisfy partial bal-
ance and we obtain the stationary distribution for the OI loss queue by normalising
the stationary probabilities of the corresponding OI queue without losses. OI loss
queues can be used to model systems with simultaneous resource possession with

loss models where customers are rejected when processing resources are not avail-
able. The OI loss class is next extended to include networks of queues which can be
used to model systems with complex loss mechanisms. We finally present several
applications of OI loss queues and OI loss networks.

2.1 Introduction

Much attention has been given to product form stationary distributions for queueing

erences. Most of the known processes which have a product form distribution are
reversible or quasi-reversible. Quasi-reversibility was first presented by Muntz [24]
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the option of queueing blocked customers. The OI loss queue thus extends previous
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and later developed into a general framework [17, 29]. In the product form Jackson
networks [16], each node in isolation is a reversible Markov process. In the more
general BCMP product form networks [3], nodes may not be reversible, but they are
quasi-reversible.

However, product form is not restricted to systems of interconnected quasi-
reversible nodes. For example, Pollett [27, 28] provided a framework for intercon-
necting a collection of reversible Markov processes in such a way that the resulting
process has a product form invariant measure with respect to which the process is
reversible, although individual nodes need not be quasi-reversible. Kelly [17] devel-
oped a general framework for interconnecting quasi-reversible processes and intro-
duced a class of quasi-reversible symmetric queues that can be connected in a net-
work with a product form distribution. Walrand [29, 30, 31] provided probabilistic
arguments demonstrating how quasi-reversibility implies product form distribution.
One of the most general frameworks for interconnecting quasi-reversible nodes [14]
does not require the node to be customer preserving for each type of customer.

Other quasi-reversible queues are often variations of reversible queues [17, 30]
and can be described as reversible queues by choosing an appropriate state space for
the queue. There are other (unclassified) quasi-reversible queues [10, 17, 18, 30, 32]
and processes such as the quasi-reversible Brownian process considered in [13],
Ott’s model analysed in [14] and quasi-reversible clustering processes [32].

This paper presents a class of quasi-reversible queues which in general are neither
symmetric nor reversible. This class includes a large part of the class of symmetric
queues, but not the whole class. In particular, the well known FCFS, Infinite-Server
and Processor-Sharing queues are in the considered class which also contains the
Multiserver Station with Concurrent Classes of Customers (MSCCC) [7, 11, 12] and
the MultiServer centre with Hierarchical Concurrency Constraints (MSHCC) [21].
The quasi-reversibility for this class is not a result of the symmetry of the reversed
process as is the case for symmetric queues. It arises from a symmetry property
concerning the order of the customers in the queue, namely that the total departure
rate in any queue state is independent of the order of the customers in the queue. We
call such queues Order Independent (OI) queues.

In section 2.2 we define the OI queue using the notation presented in [17]. This
allows us to simplify the comparison of the OI queue with other well known quasi-
reversible queues and to emphasise the distinguishing features of the OI queue. The
OI property is obtained by analysing the properties of so-called service rate func-
tions which satisfy some special conditions. In section 2.2.3 we prove that if the
instantaneous service rate of a multiclass queue is described by a set of such service
rate functions, then the queue is quasi-reversible (in the appropriate state space). We
derive a closed form expression for the stationary distribution of the queue.

In section 2.2.4 we show that an appropriate choice of relative service rate func-
tions reduces the OI queue to the well known BCMP, MSCCC and MSHCC queues.
Another OI queue which is a generalisation of example 3 from [18] is presented.
Section 2.3 derives a computationally efficient recursive equation for the stationary
distribution. Section 2.4 examines OI queues with losses. We prove that although OI
loss queues are not quasi-reversible, their stationary distributions can be obtained
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by normalising the stationary probabilities of the corresponding OI queue without
losses. Finally, section 2.5 presents several applications of OI loss queues and OI
loss networks.

Much of the work presented in this Chapter was done jointly with Sergei
Berezner whom I wish to thank for his many valuable insights and discussions on
the subject.

2.2 The OI Queue

Consider a queue serving customers of type c where c ∈ C and C is a finite set.
Customers of type c arrive individually at the instants of a Poisson stream with
rate λc. The customers, whether waiting or in service, form a queue in the order of
their arrival. Arriving customers join the back of the queue and the front of the queue
is identified with position 1. Each customer of type c presents a demand for service
time which is exponentially distributed with mean 1/µc. All the random variables
involved in the description of the queue are independent.

Let C = (cn, . . . ,c1) denote the state of a queue of length n where ci denotes
the type of the customer in position i, i = 1, . . . ,n. Let 0 denote the empty queue
and S = {0}∪⋃∞

n=1 Cn denote the state space of the queue where Cn is the n−fold
product space of C.

Let the total service effort in state (cn, . . . ,c1) be supplied at the rate φ(cn, . . . ,c1).
A portion γi(cn, . . . ,c1) of the total service effort is directed at the customer in queue
position i, i = 1, . . . ,n. Upon entering service a customer is served without interrup-
tion to completion. When the customer in queue position i completes service, the
customer departs and the gap in the queue is closed by the obvious shift: the cus-
tomers in positions i+1, i+2, . . . ,n move to positions i, i+1, . . . ,n−1 respectively.
We do not require that ∑n

i=1 γi(cn, . . . ,c1) = 1 so that a part of the service facility
might be wasted. This is a distinguishing feature of an OI queue and this feature
allows complex queueing disciplines such as MSCCC and MSHCC to be described
as OI queues.

Note that the OI queue is completely described by the vector of types of cus-
tomers. For some specific cases it may be possible to introduce auxiliary variables
that describe additional characteristics of the queue and for such queues the concept
of OI could be further extended. However, this will result in a cumbersome notation
without extending the range of the models in the OI class.

We therefore restrict ourselves to queues that are completely described by a vec-
tor of types of customers. We also assume that the type membership of each cus-
tomer does not change while it passes through the queue. This is a severe restriction
since it prevents us from considering service consisting of a series of exponential
stages and, as a result, general service distributions are not possible for OI queues.
This restriction can be dropped for some specific models, for example, for PS or IS
queues. But in general, service in stages does not lead to an OI queue and typical OI
queues such as M/M/K, MSCCC and MSHCC do not permit service in stages.
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2.2.1 The Definition of an OI Queue

We next present a general description of the OI queue and show how the OI property
can be obtained by imposing certain conditions on the functions φ and γ .

First, we require that the (relative) proportion of the service effort supplied to the
customer in queue position i depends only on the composition of the queue up to
and including position i. This implies that when a server becomes free the queue is
searched from the head to the tail for a customer which can be admitted into service.

Second, we require that in any state (cn, . . . ,c1) ∈ S, the rate at which depar-
tures (service completions) occur is independent of the order of the customers in
the queue and is thus the same for any state (cσ(n), . . . ,cσ(1)), where σ denotes any
permutation of (1, . . . ,n).

Last, we assume that in any state (except for the empty queue) there is a positive
rate of service completion. This condition is required in order to ensure the irre-
ducibility of the Markov chain. This restriction is usually satisfied in systems with
exponential service that are fully described by a vector of customer types who do
not change their type membership.

A formal description of the three conditions presented above can be given as
follows. Consider the queue in state (cn, . . . ,c1). The departure rate of the customer
in queue position i is given by φ(cn, . . . ,c1)µci γi(cn, . . . ,c1) and the total departure
rate is given by the sum of these quantities over all the positions in the queue.

The queue is said to be an OI queue if, for all (cn, . . . ,c1) ∈ S and all i = 1, . . . ,n
the rates of service completion can be written as

φ(cn, . . . ,c1)µci γi(cn, . . . ,c1) = µ(n)si(cn, . . . ,c1)

such that

(i) si(cn, . . . ,c1) = si(ci, . . . ,c1) for any 1≤ i≤ n,
(ii) k(cn, . . . ,c1)= ∑n

i=1 si(cn, . . . ,c1) is independent of permutations of (cn, . . . ,c1),
and

(iii) µ(n) > 0 for n > 0 and s1(c) > 0 for any c ∈ C.

The function si(C) regulates the rate at which service is given to the customer in
position i in the queue relative to the other customers in the queue and the function
µ(n) allows the service rate to depend upon the total number of customers in the
queue.

2.2.2 The Implications of the OI Conditions

Condition (i) requires that the relative service rate of any customer in the queue
depends only upon its own customer type and the customer type of each customer
in front of it in the queue. This implies that it is only necessary to scan the queue
from the front to determine the relative service rate given to any particular customer.
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Condition (ii) is the distinguishing condition. It requires that the total departure
rate due to customer service completions is independent of the order of the cus-
tomers in the queue. Although this condition is restrictive, section 2.2.4 shows that
condition (ii) is satisfied by several well known queues.

Condition (iii) is a necessary and sufficient condition for the Markov process
describing the queue to be irreducible. This condition ensures that the empty state
can always be reached from any other state due to departures. Because arrivals allow
any state to be reached from the empty state, this is sufficient to ensure irreducibility.
Note that because Si(C) ≥ 0, a necessary and sufficient condition for k(C) > 0 for
any C ∈ S is to require that s1(c) > 0 for any c ∈ C.

Theorem 2.1. Conditions (i) and (ii) imply that the relative service rate given to a
customer in the queue is independent of the order of the customers ahead of it in the
queue.

Proof. Let (cn, . . . ,c1) be a queue state in S and let (σ(1), . . . ,σ(n− 1)) denote
a permutation of (1, . . . ,n− 1). Thus (cn,cσ(n−1), . . . ,cσ(1)) is the queue state ob-
tained when the first n− 1 customers in the queue are rearranged according to the
permutation (σ(1), . . . ,σ(n− 1)). By definition

k(cn, . . . ,c1) =
n

∑
i=1

si(cn, . . . ,c1) = sn(cn, . . . ,c1)+ k(cn−1, . . . ,c1)

and likewise

k(cn,cσ(n−1), . . . ,cσ(1)) = sn(cn,cσ(n−1), . . . ,cσ(1))+ k(cσ(n−1), . . . ,cσ(1)). (2.1)

But condition (ii) requires that k(cn,cσ(n−1), . . . ,cσ(1)) = k(cn, . . . ,c1) and
k(cσ(n−1), . . . ,cσ(1)) = k(cn−1, . . . ,c1). Substituting these two expressions into (2.1)
yields sn(cn, . . . ,c1) = sn(cn,cσ(n−1), . . . ,cσ(1)) which completes the proof. ⊓⊔

Note that the si(ci, . . . ,c1) may be dependent on the permutations of (ci, . . . ,c1),
but not on permutations of (ci−1, . . . ,c1). However k(cn, . . . ,c1) is not dependent on
permutations of (ci, . . . ,c1). For example, consider an OI queue with two customer
types where only one customer from each type may be in service. Then, for ex-
ample, s3(2,1,1) = 1 whereas s3(1,2,1) = s3(1,1,2) = 0 (the last two instances of
s3(c3,c2,c1) illustrate theorem 2.1) and k(2,1,1) = k(1,2,1) = k(1,1,2) = 2.

The following section demonstrates that the restrictions (i)–(iii) on si(C) are suf-
ficient to ensure that the OI queue is quasi-reversible at equilibrium and we find the
stationary distribution (when it exists).

2.2.3 The Stationary Distribution

The OI queue can be modeled by a continuous–time, homogeneous Markov process
C(t), t ∈ IR+, C(t) ∈ S, where C(t) denotes the queue state at time t. The Markov
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process is irreducible, since transitions due to arrivals allow any state to be reached
from the empty state and condition (iii) ensures that the empty state can be reached
from any state by the departure transitions.

For any c∈C and any (cn, . . . ,c1)∈ S the transition rate due to type c arrivals is λc

and the transition rate due to the departure of a type c customer in queue position i+
1 where 1≤ i≤ n is µ(n+1)si(cn, . . . ,ci+1,c,ci, . . . ,c1). The equilibrium equations
for the queue are given by

π(0) ∑
c∈C

λc = µ(1)k(c) ∑
c∈C

π(c) (2.2)

and

π(cn, . . . ,c1)(λ + µ(n)k(cn, . . . ,c1))

= ∑
c∈C

n

∑
i=0

µ(n +1)π(cn, . . . ,ci+1,c,ci, . . . ,c1)si+1(cn, . . . ,ci+1,c,ci, . . . ,c1)

+ λcn π(cn−1, . . . ,c1) (2.3)

where λ = ∑c∈C λc.
The arrival flow to the system is a collection of independent Poisson flows each

with rate λc with future arrivals being independent of the present state of the queue.
If we can find a collection of positive numbers π(cn, . . . ,c1) summing to unity and
satisfying the equilibrium Eqs. (2.2) and (2.3) such that for all (cn, . . . ,c1) ∈ S and
all c ∈ C

n

∑
i=0

π(cn, . . . ,ci+1,c,ci, . . . ,c1)

π(cn, . . . ,c1)
µ(n +1)si+1(c,ci, . . . ,c1) = βc (2.4)

then the queue is quasi-reversible and this collection of numbers forms a stationary
distribution of the queue [18]. Since customers in an OI queue preserve their type
membership, βc = λc. Thus (2.4) can be rewritten as

n

∑
i=0

π(cn, . . .ci+1,c,ci, . . . ,c1)

π(cn, . . . ,c1)
µ(n +1)si+1(c,ci, . . . ,c1) = λc. (2.5)

Note that condition (i) was applied in (2.4) to replace si+1(cn, . . . ,ci+1,c,ci . . . ,c1)
by si+1(c,ci, . . . ,c1). Substituting (2.5) into (2.3) yields

µ(n)k(cn, . . . ,c1)π(cn, . . . ,c1) = λcn π(cn−1, . . . ,c1) (2.6)

for all (cn, . . . ,c1) ∈ S. From (2.6) we immediately obtain a proposed form of the
stationary distribution. The result is stated and proved in the following theorem.

Theorem 2.2. If the service rate functions si(·) conform to the conditions (i)–(iii)
then for any (cn, . . . ,c1) ∈ S a collection of numbers
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π(cn, . . . ,c1) = π(0)
n

∏
i=1

λci

µ(i)k(ci, . . . ,c1)
(2.7)

where π(0) is an arbitrary positive real number, is a solution to the equilibrium
equations. The stationary distribution of the Markov chain exists if and only if

G = ∑
(cn,...,c1)∈S

n

∏
i=1

λci

µ(i)k(ci, . . . ,c1)
< ∞

in which case the stationary distribution is given by (2.7) with π(0) = 1/G and the
queue is quasi-reversible.

Proof. Equation (2.7) is clearly a solution to (2.6). We need to prove that (2.7) is
also a solution to (2.5) and thus the solution to the equilibrium equations. We prove
by induction on n that the equality (2.5) holds for all (cn, . . . ,c1) ∈ S and c ∈ C.

Consider first the empty queue (n = 0). Applying (2.7) to the right hand side of
(2.5), and noting that k(c)≡ s1(c), yields

µ(1)π(c)s1(c)
π(0)

=
µ(1)π(0)s1(c)

λcπ(0)µ(1)k(c)
= λc

so that the base of the induction is proved.
Next assume that (2.7) satisfies (2.5) up to the n−1 value of the summation index

and consider (2.5) for the value n of the summation index. The left hand side of (2.5)
(lhs (2.5)) can be written as

lhs (2.5) =
n

∑
i=0

π(cn, . . . ,ci+1,c,ci, . . . ,c1)

π(cn, . . . ,c1)
µ(n +1)si+1(c,ci, . . . ,c1)

=
n−1

∑
i=0

π(cn, . . . ,ci+1,c,ci, . . . ,c1)

π(cn, . . . ,c1)
µ(n +1)si+1(c,ci, . . . ,c1)

+
π(c,cn, . . . ,c1)

π(cn, . . . ,c1)
µ(n+ 1)sn+1(c,cn, . . . ,c1).

Application of (2.7) yields

lhs (2.5) =
µ(n)k(cn, . . . ,c1)

µ(n +1)

×
n−1

∑
i=0

π(cn−1, . . . ,ci+1,c,ci, . . . ,c1)

π(cn−1, . . . ,c1)k(cn, . . . ,ci+1,c,ci, . . . ,c1)
µ(n +1)si+1(c,ci, . . . ,c1)

+
λc

k(c,cn, . . . ,c1)
sn+1(c,cn, . . . ,c1).

Condition (ii) requires that k(C) is independent of permutations of C, hence we
obtain k(cn, . . . ,ci+1,c,ci, . . . ,c1) = k(c,cn, . . . ,c1). Condition (iii) ensures that
k(c,cn, . . . ,c1)µ(n+ 1) > 0. Thus
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lhs (2.5) =
k(cn, . . . ,c1)

k(ccn . . .c1)

n−1

∑
i=0

π(cn−1, . . . ,ci+1,c,ci, . . . ,c1)

π(cn−1, . . . ,c1)
µ(n)si+1(c,ci, . . . ,c1)

+
λcsn+1(c,cn, . . . ,c1)

k(c,cn, . . . .c1)
.

But by the induction assumption the sum on the right hand side of the above equation
is equal to λc , which yields

lhs (2.5) = λc
k(cn, . . . ,c1)+ sn+1(c,cn, . . . ,c1)

k(c,cn, . . . ,c1)
= λc

which completes the induction. ⊓⊔

2.2.4 Models Covered by the OI Class

In this section we show that the OI class includes several of the BCMP queues and
part of Kelly’s class of symmetric queues. A distinguishing feature of the OI queues
is that they include the MSCCC and the MSHCC queues.

2.2.4.1 BCMP Models in the OI Class

The M/M/K queue is an OI queue. Let µ(n) = 1 and

si(cn, . . . ,c1) =

{
µ 1≤ i ≤ K
0 i > K

for K ∈ ZZ+. These functions µ(n) and si(·) conform to the conditions (i)–(iii) and
this OI queue is equivalent to an M/M/K queue. All customer types must have the
same average service rate else k(C) would not be independent of permutations of
C. We will later show that the M/M/K queue is a special case of the MSCCC queue.
This implies that the MSCCC queue could replace the M/M/K queue as a basic
construction element (building block) for product form networks.

We next consider the Infinite Server (IS) queue. Let µ(n) = 1 and si(cn, . . . ,c1) =
µci . These functions µ(n) and si(·) conform to the conditions (i)–(iii) and this OI
queue is equivalent to an IS queue.

The choice of relative service rates for the Processor Sharing (PS) queue is ob-
vious. Let µ(n) = 1/n and si(cn, . . . ,c1) = µci . These functions µ(n) and si(·) con-
form to the conditions (i)–(iii) and the corresponding OI queue is equivalent to a PS
queue. As was mentioned in section 2.2, it is possible to extend the OI framework to
describe general service distributions for PS and IS queues. However, this extension
complicates the proofs and does not lead to any fundamentally new models since
in this case the OI conditions (i)–(iii) become very restrictive. In any event, typi-
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cal OI queues such as M/M/K, MSCCC and MSHCC do not admit general service
distributions.

Note that the PS and IS queues require all customers to be in service and that in
these cases the service effort kc(C) directed at customers of type c given by

kc(cn, . . . ,c1) =
n

∑
i=1

si(cn, . . . ,c1)1(ci = c)

is also independent of permutations of C. In general, it is not necessary that all
customers be in service at an OI queue with type dependent service rates. Service
disciplines may exist for OI queues with type dependent service rates with a bound
on the number of customers in service – all that is necessary for such a queue to be
OI is that conditions (i)–(iii) hold.

Because of condition (i) the Last Come First Served (LCFS) queue cannot be
modeled by an OI queue. The failure of the OI class to describe the LCFS queue is
another argument proving the different nature of the OI class.

If the functions φ and γ defined in section 2.2 depend only on the total number of
customers in the queue and if we allow the customers to join the queue in different
positions then, under some strong symmetric assumptions (see [17] pages 72–73),
the well known symmetric queues are obtained.

2.2.4.2 The MSCCC and MSHCC Queues

A distinguishing feature of the OI class is that it includes the MSCCC and MSHCC
queues. In fact, the OI queues were found while investigating the MSCCC queue.

The MSCCC queue consists of K parallel identical exponential servers. The cus-
tomers belong to a set of customer types. Customers of type c arrive individually
at the instants of a Poisson stream with rate λc and present demands for service
time which are exponentially distributed with mean 1/µ . The customers are queued
for service in the order of their arrival. When a server becomes free, the queue is
searched from the front looking for the first customer to admit into service subject
to the following constraints: at most K customers can be in service and at most 1
customer of each type c can be in service. The queue can thus be described as FCFS
subject to concurrency constraints.

The MSCCC queue was first investigated while simulating shared memory multi-
processors [22]. The simulations conjectured, but could not prove, that the MSCCC
queue had a product form solution. An analytic expression for the stationary dis-
tribution, which was first obtained by exploring the MSCCC state space using a
symbolic mathematics computer package, was presented in [7]. The concurrency
constraint was later extended [11] so that at most K customers can be in service and
at most Bc ≥ 1 customer of each type c can be in service. It was later shown [21]
that a suitable choice of state descriptor yields a direct calculation of the stationary
distribution. However, none of these analyses explained how the MSCCC queue is
related to the product form queues.
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The OI property presents a simple explanation of the MSCCC queue which is
shown to be a quasi-reversible generalisation of the FCFS queue. Let µ(n) = 1 and

si(cn, . . . ,c1) = µ1i(cn, . . . ,c1)

where the indicator function

1i(cn, . . . ,c1) =

{
1 if the customer in position i is in service in (cn, . . . ,c1)
0 otherwise

Then
k(cn, . . . ,c1) = µ(K∧∑

c∈C
(Mc∧Bc))

where Mc is the number of type c customers in C = (cn, . . . ,c1) and a∧ b is the
smaller of the two integers a and b. As required, k(C) is independent of permu-
tations of C and the functions µ(n) and si(·) conform to the conditions (i)–(iii).
Furthermore, if not all K servers are busy, kc(C) = Mc ∧Bc is independent of per-
mutations of C.

Theorem 2.2 presents the stationary distribution of the MSCCC queue: the anal-
ysis is simpler than the theorems currently available [7, 11] and provides further
insight into the behaviour of the MSCCC queue.

The constraints (Bc)c∈C can be further divided into an hierarchical structure
of concurrency constraints. Thus the set of customer types C is partitioned as
{Cr;r ∈ R} where R is a countable set and (with an abuse of notation) maximally
Br > 0 customers whose types are in Cr are allowed to be in service simultane-
ously where r ∈ R. Next, for each r ∈ R the set Cr is partitioned as {Crs;s ∈ Sr}
where Sr is a countable set and maximally Brs > 0 customers whose types are in
Crs are allowed to be in service simultaneously where s ∈ Sr. The Crs can be fur-
ther partitioned, with corresponding restrictions placed on the number of customers
simultaneously in service, but we shall not go beyond the Crs as this is a straight-
forward generalization. The queue discipline can thus be described as FCFS subject
to concurrency constraints and the queue is correspondingly named the MultiServer
centre with Hierarchical Concurrency Constraints (MSHCC) [21]. Then

k(cn, . . . ,c1) = µ(K ∧ ∑
r∈R

(mr ∧Br))

and
mr = ∑

s∈Rr

(mrs∧Brs)

where mrs is the number of Crs customers in C = (cn, . . . ,c1). The MSHCC queue
conforms to the conditions (i)–(iii) which immediately provides us with the station-
ary distribution.

Another example of an OI queue is provided by example 3 from [18]. This queue
consists of K servers with service rates µ1 ≥ µ2 ≥ ·· · ≥ µK . The customers, which
belong to a single customer type, are processed according to the following rule.



2 Order Independent Queues 95

If j servers are busy then these j busy servers are the servers 1, . . . , j. If j < K
then an arriving customer will be served by server j + 1, else the arrival joins the
back of the queue. Let M denote the total number of customers in the queue. If a
customer completes service at any one of the busy servers i ∈ 1, . . . , j where 1 ≤
j ≤M∧K then the customer at the end of the queue in position M will be removed
from processor j (only if M < K in which case M = j) and go into service at server i
(only if i < K). The queue is OI and the queue can be applied to model dynamic
load balancing among asymmetric multiprocessors.

Summarising, the OI conditions (i)–(iii) do not leave much room for a wide range
of applications. On the other hand, the fact that several well known quasi-reversible
queues are OI queues speaks in favour of the OI discipline. Another valuable feature
of OI queues which we prove in the next section is that they permit a standard
normalising technique for calculating the stationary distributions of OI systems.

2.3 Numerical Techniques for the OI Queue

This section presents several techniques which are used in the numerical analysis of
OI queues.

2.3.1 Aggregating the State Space

Equation (2.7) is too detailed to be of practical use when computing the performance
measures of the OI queue. In order to reduce the complexity of these equations,
we use the fact that k(cn, . . . ,c1) is independent of the order of the customers in
(cn, . . . ,c1).

Define a mapping A : S 7→ ZZC such that for any C ∈ S

A(C) = M(C) = (Mc(C))c∈C

where Mc denotes the number of type c customers in C. In the remainder of this
section, where no confusion can arise we shall write M = M(C). Let A−1(M) denote
the set of elements in S which maps onto M under A. The mapping A allows us to
define an aggregated state space

M = {M = A(C), C ∈ S}

where (with an abuse of notation)

k(M) = k(C)

for any C ∈ A−1(M) and (with an abuse of notation)
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π(M) = ∑
A(C)=M

π(C)

for any M ∈M. Because condition (ii) ensures that k(C) is identical for all C ∈
A−1(M), k(M) is well defined and unique.

Let 1c denote a unit vector in the c-direction. From (2.7) it follows that

µ(|M|)k(M)π(M) = ∑
c∈C

λcπ(M−1c) (2.8)

with the convention that π(M) = 0 if M 6∈M.
The recursive (2.8) can be further simplified if the service effort kc(M) directed

at customers of type c for any M ∈M can be determined. Although condition (ii)
requires that k(C) is independent of permutations of C, this does not necessarily im-
ply that kc(C) is independent of permutations of C. However, in the domain where
kc(C) is identical for all C ∈ A−1(M), we can define

kc(M) = kc(C)

for any C ∈ A−1(M) in which case (2.8) reduces to

µ(|M|)kc(M)π(M) = λcπ(M− 1c)

which provides a recursion for the efficient computation of the aggregated probabil-
ities and the performance measures of the queue.

2.3.2 The Performance Measures: the MSCCC Queue

Unlike the BCMP queues, efficient recursions for the MSCCC queue apply only in
a limited portion of the state space where k(M) < B.

2.3.2.1 Invariant Measures over Special Sets

Let M = (M1, . . . ,MC) denote the state of the queue where Mc is the number of type
c customers present in the queue. Let Bc denote the maximum number of type c
customers in service and B the maximum number of customers in service in total.
Define the sets

M(b) = {M ∈M | k(M) = b }
M(b,c) = {M ∈M(b) |Mx = 0 if x > c }

M(b,c, i) =

{
{M ∈M(b,c) |Mc = i } if i < Bc

{M ∈M(b,c) |Mc ≥ i } if i = Bc.
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Define the functions

P(b) = Pr(b servers busy)

P(b,c) = Pr(b servers busy and Mx = 0 if x > c)

P(b,c, i) =

{
Pr(b servers busy, Mx = 0 if x > c and Mc = i) if i < Bc

Pr(b servers busy, Mx = 0 if x > c and Mc ≥ i) if i = Bc.

The first step in the calculation of P(b) is to compute the P(b,c, i). The function
kc(M) defined in section 2.3.1 cannot be determined over the complete state space,
but in the limited portion of the state space where k(M) < B where not all servers are
busy, we know that kc(M) = Mc∧Bc and k(M−1c) = k(M)−1. Define ρc = λc/µ .
For any c ∈ C and 0 < b < B three cases arise

(1) 0 < i < b∧Bc

P(b,c, i) = ∑
M∈M(b,c,i)

π(M)

= ∑
M∈M(b,c,i)

ρc

kc(M)
π(M−1c)

=
ρc

i ∑
M∈M(b−1,c,i−1)

π(M)

=
ρc

i
P(b−1,c, i−1). (2.9)

(2) i = Bc and Bc ≤ b≤ B

P(b,c,Bc) = ∑
M∈M(b,c,Bc)

π(M)

= ∑
M∈M(b,c)

Mc=Bc

π(M) + ∑
M∈M(b,c)

Mc>Bc

π(M)

= ∑
M∈M(b,c)

Mc=Bc

ρc

Bc
π(M−1c) + ∑

M∈M(b,c)

Mc>Bc

ρc

Bc
π(M−1c)

=
ρc

Bc
∑

M∈M(b−1,c,Bc−1)

π(M) +
ρc

Bc
∑

M∈M(b,c,Bc)

π(M)

=
ρc

Bc
P(b− 1,c,Bc−1) +

ρc

Bc
P(b,c,Bc)

=
ρc

Bc−ρc
P(b− 1,c,Bc−1). (2.10)
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(3) i = 0

P(b,c,0) = Pr{b servers busy, Mx = 0 if x > c and Mc = 0}
= Pr{b servers busy, Mx = 0 if x > c−1}
= P(b,c−1). (2.11)

The starting values of the recursion presented in (2.9), (2.10) and (2.11) are obtained
from

P(0,c,0) =

{
1 if c = 0
0 otherwise

(2.12)

for all 0≤ c≤C. The next step is to compute the P(b,c)

P(b,c) =
b∧Bc

∑
i=0

P(b,c, i) = P(b,c−1)+
b∧Bc

∑
i=1

P(b,c, i) (2.13)

where

P(b,0) = Pr{b servers busy and Mx = 0 if x > 0}
= Pr{b servers busy and M = 0}

=

{
1 if b = 0
0 otherwise.

The last step is to compute the P(b)

P(b) = Pr{b servers busy}
= Pr{b servers busy and Mx = 0 if x > C}
= P(b,C)

which are multiples of π(0). To calculate π(0), note that when b customers are in
service, the departure rate is bµ . Thus ρ = ∑B

b=0 bP(b) < B where ρ = ∑C
c=1 ρc and

∑B
b=0 P(b) = 1 so that

B−ρ =
B−1

∑
b=0

(B− b)P(b). (2.14)

Let P(b) represent the values obtained by starting the algorithm with an arbitrary
value for P(0,0,0) in (2.12). Then

π(0) =
B−ρ

∑B−1
b=0 (B−b)P(b)

(2.15)

where P(0) = 1. Thus for 0≤ b < B

P(b) = π(0)P(b) (2.16)



2 Order Independent Queues 99

and

P(B) = 1−
B−1

∑
b=0

P(b). (2.17)

Equations (2.15) and (2.17) do not require the value P(B) which is not available
from the recursion presented in (2.9), (2.10) and (2.11).

Application of (2.9), (2.10) and (2.11) yields another recursion for P(b,c) namely

P(b,c) =
Bc

∑
i=0

P(b,c, i)

=
Bc−1

∑
i=0

ρ i
c

i!
P(b− i,c−1)+

ρBc
c

Bc!
Bc

Bc−ρc
P(b−Bc,c− 1) (2.18)

where 0 < c ≤ C and 0 < b < B with the convention that P(x,y) = 0 if x < 0 or
y < 0. The recursion (2.18) has the same computational complexity namely O(CB2)
as (2.9), (2.10) and (2.11) but with O(B) as opposed to O(B2) storage requirements.
Note that (2.18) does not replace the recursions (2.9), (2.10) and (2.11) which are
required in order to compute the expected number of typeC customers in the system.

2.3.2.2 The Expected Queue Length

Let L(b,C) denote the expected queue length of type C customers in M(b,C)
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BC

ρC
L(b,C) =

BC

ρC
∑

M∈M(b,C)

MCπ(M)

=
BC

ρC

∞

∑
i=1

∑
M∈M(b,C)

MC=i

iπ(M)

= BC

BC

∑
i=1

∑
M∈M(b,C)

MC=i

π(M−1C)+
∞

∑
i=BC+1

∑
M∈M(b,C)

MC=i

iπ(M−1C)

= BC

BC

∑
i=1

∑
M∈M(b,C)

MC=i

π(M−1C)+
∞

∑
i=BC+1

∑
M∈M(b,C)

MC=i

π(M−1C)

+
∞

∑
i=BC+1

∑
M∈M(b,C)

MC=i

(i−1)π(M−1C)

= BC

BC−1

∑
i=0

∑
M∈M(b−1,C)

MC=i

π(M)+
∞

∑
i=BC

∑
M∈M(b,C)

MC=i

π(M)

+
∞

∑
i=BC

∑
M∈M(b,C)

MC=i

iπ(M)

= BC

BC−1

∑
i=0

P(b−1,C, i)+ P(b,C,BC)

+
∞

∑
i=0

∑
M∈M(b,C)

MC=i

iπ(M)−
BC−1

∑
i=0

∑
M∈M(b,C)

MC=i

iπ(M)

= BC

BC−1

∑
i=0

P(b−1,C, i)+ P(b,C,BC)+ L(b,C)−
BC−1

∑
i=0

iP(b,C, i)

which yields

(BC−ρC)

ρC
L(b,C) = P(b,C,BC)+

BC−1

∑
i=0

(BC P(b− 1,C, i)− iP(b,C, i)).(2.19)

The expected number L(C) of type C customers in the queue is
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L(C) =
B

∑
b=0

L(b,C). (2.20)

Equation (2.20) cannot be used directly to determine L(C) because we do not have
a value for L(B,C). However, consider

B

∑
b=0

bL(b,C) =
B

∑
b=0

b ∑
M∈M(b)

MCπ(M)

=
B

∑
b=0

∑
M∈M(b)

MCk(M)π(M)

=
B

∑
b=0

∑
M∈M(b)

MC

C

∑
c=1

ρcπ(M−1c)

=
C

∑
c=1

ρc ∑
M∈M

MCπ(M− 1c)

=
C−1

∑
c=1

ρc ∑
M∈M

MCπ(M−1c)+ ρC ∑
M∈M

MCπ(M−1C)

=
C−1

∑
c=1

ρc ∑
M∈M

MCπ(M−1c)

+ρC ∑
M∈M

(MC− 1)π(M−1C)+ ρC ∑
M∈M

π(M−1C)

=
C−1

∑
c=1

ρcL(C)+ ρCL(C)+ ρC

= ρL(C)+ ρC

so that

ρL(C) =
B

∑
b=0

bL(b,C)−ρC. (2.21)

Combining (2.20) and (2.21) yields

(B−ρ)L(C) =
B−1

∑
b=1

(B− b)L(b,C)+ ρC. (2.22)

Little’s law is applied to obtain the expected time WC = L(C)/λC that a type C
customer spends at the queue. Equations (2.9) through (2.22) can be incorporated
into a Mean Value Analysis algorithm [7, 8, 11, 12] to compute the performance
measures for a mixed multiclass network of BCMP and MSCCC queues.

Equation (2.22) yields the type C queue length. The performance measures for
any type c ∈ C are obtained by reordering the set C. An algorithm to compute the
type C performance measures of the MSCCC queue is presented in the Appendix.
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2.4 The OI Loss Queue

The class of OI queues can be extended to include queues with complex loss mech-
anisms. Such queues can be used to model blocking systems with simultaneous
resource possession – see [26] for list of references on the application of such mod-
els.

Consider a queue serving customers which belong to C customer types. Let
C = {1,2, . . . ,C} denote the set of customer types. Customers of type c arrive indi-
vidually to a queue of length n at the instants of a Poisson stream with rate λcr(n),
where the multiplier r(n) > 0 does not depend on c. Each customer of type c presents
a demand for service which is exponentially distributed with mean 1/µ .

The customers, whether waiting or in service, form a queue in the order of their
arrival. A Markov chain with vector states C = (cn, . . . ,c1) is used to describe the
queue, where ci ∈ C, i = 1, . . . ,n identifies the type of the customer in queue position
i and n is the number of customers in the queue. The 0 state of the Markov chain
describes the empty queue. Let Cn denote the n−fold product space of C. Then
S = 0∪⋃∞

n=1 Cn is the set on which the Markov chain is defined.
An arriving customer is either accepted to the queue, in which case it joins the

back of the queue, or is rejected (lost) if certain limits on the numbers of customers
of each type in the queue are exceeded. The rejection rule for arriving customers is
defined as follows. Define a set S̃⊂ S which satisfies the following properties

(a) if (cn, . . . ,c1) ∈ S̃ then (cσ(n), . . . ,cσ(1)) ∈ S̃ for any permutation σ(1), . . . ,σ(n)
of 1, . . . ,n and

(b) if (cn, . . . ,c1) ∈ S̃ then (cn−1, . . . ,c1) ∈ S̃.

A type c customer arriving to a queue in the state C will be accepted if (c,C) ∈ S̃

and rejected otherwise.
Condition (a) implies that acceptance does not depend on the order of the cus-

tomers in the queue but only on the number of customers of each type present in the
queue. To understand condition (b) let A(C) = n = (nc)c∈C where nc denotes the
number of type c customers in C and let Ñ = A(S̃). Conditions (a) and (b) imply
that the set Ñ is coordinately convex [26] so that n ∈ Ñ implies n− 1c ∈ Ñ where
1c is a unit vector in the cth direction.

The queue described above is said to be an OI loss queue on the set S̃ if for all
C ∈ S̃ and all i = 1, . . . ,n the departure rate of the customer in queue position i can
be written as µ(n)si(cn, . . . ,c1) where

(i) si(cn, . . . ,c1) = si(ci, . . . ,c1) for any 1≤ i≤ n,
(ii) k(cn, . . . ,c1)= ∑n

i=1 si(cn, . . . ,c1) is independent of permutations of (cn, . . . ,c1)
and

(iii) µ(n) > 0 for n > 0 and s1(c) > 0 for any c ∈ C.



2 Order Independent Queues 103

2.4.1 The Stationary Distribution

The OI loss queue can be modeled by a continuous-time, homogeneous Markov
chain X(t),t ∈ IR+,X(t) ∈ S̃, where X(t) = C denotes that the queue vector at time
t is C. The Markov chain is irreducible, since transitions due to arrivals allow any
state to be reached from the empty state and condition (ii) ensures that the empty
state can be reached from any state by the departure transitions.

For C∈ S̃ and c∈ C we associate an indicator function Ic(C) such that Ic(C) = 1
if (c,C) ∈ S̃, and Ic(C ) = 0 if (c,C ) 6∈ S̃. Then for any c ∈ C and any C =

(cn, . . . ,c1) ∈ S̃, the transition rate due to type c arrivals is λcr(n)Ic(C) and the
transition rate due to the departure of a type ci customer in queue position i when
there are n customers in queue is µ(n)si(ci, . . . ,c1).

The functions r(n) and Ic(C) parametrise the rejection rule. Thus r(n) = 0 ap-
plies blocking when the queue length reaches some threshold n and Ic(C ) = 0 im-
plements a more refined form of blocking which depends on how many customers
of the various types are present.

The equilibrium equations for the Markov chain are given by

π(0) ∑
c∈C

λcr(0)Ic(0) = µ(1)k(c) ∑
(c)∈S̃

π(c) (2.23)

and

π(C)

(

∑
c∈C

λcr(n)Ic(C)+ µ(n)k(C)

)

= ∑
c∈C

n

∑
i=0

µ(n +1)π(cn, . . . ,ci+1,c,ci, . . . ,c1)si+1(c,ci, . . . ,c1)

+λcnr(n− 1)π(cn−1, . . . ,c1) (2.24)

for any state C = (cn, . . . ,c1)∈ S̃ with the convention that π(C) = 0 if C is not in S̃.
In section 2.2 we showed that if r(n) = 1 for all n and Ic(C ) = 1 for all c ∈ C and

C ∈ S̃ (thus S̃ = S) then the solution to (2.23) and (2.24) can be found as a solution
to the partial balance equations

n

∑
i=0

π(cn, . . . ,ci+1cci, . . . ,c1)

π(C)
µ(n +1)si+1(cci, . . . ,c1) = λcr(n)Ic(C) (2.25)

and
µ(n)k(C )π(C) = λcn r(n−1)π(cn−1, . . . ,c1) (2.26)

for all C ∈ S̃. This suggests the form of the stationary distribution for the OI loss
queue which is stated in the following theorem.
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Theorem 2.3. If the service rate functions si(·) conform to the conditions (i) and (ii)
on the set S̃ and S̃ conforms to conditions (a) and (b) then the stationary distribution
of the Markov chain on S̃ associated with an OI loss queue is given by π(0) = 1/G
and

π(cn, . . . ,c1) =
1
G

n

∏
i=1

λcir(i)
µ(i)k(ci, . . . ,c1)

(2.27)

if and only if

G = 1+ ∑
(cn,...,c1)∈S̃

n>0

n

∏
i=1

λci r(i)
µ(i)k(ci, . . . ,c1)

< ∞.

Further, the OI loss queue satisfies partial balance.

Proof. Equation (2.27) is clearly a solution to (2.26) on S̃. We need to show that
(2.27) is also a solution to the partial balance equation (2.25) on S̃ and is thus a
solution to the equilibrium equations. If the state (c,C ) does not belong to S̃ then
from condition (b) Ic(C ) = 0 and from condition (a) any permutation of the state
(c,C) does not belong to S̃ implying that both sides of (2.25) are equal to zero and
the equation is satisfied. If the state (c,C ) belongs to the set S̃ then Ic(C ) = 1 and
(2.5) coincides with the form of (2.25) for an OI queue without losses [4] except for
the arrival rate scaling factor r(n) which does not affect the calculations and thus
(2.27) is a solution to the equilibrium equations. ⊓⊔

Although most of the functions used in the definition of the OI loss queue are
independent of the order of the customers in the queue, the queue order cannot
be ignored. Indeed, let N be a set of non-negative integers and let NC denote the
C−fold product space of N. Define a function A from S̃ into NC such that A(C) =
N = (n1, . . . ,nC) whose cth element nc denotes the number of type c elements in
the vector C. Let Ñ denote the set of all vectors N ∈ NC for which there exists a
vector C ∈ S̃ such that A(C ) = N. Consider the process Y (t) on Ñ associated with
the OI loss queue which records only the numbers of the customers of each type
in the queue at time t. In general Y (t) is not a Markov chain because the departure
rates of the individual customer types kc(C) = ∑n

i=1 si(ci, . . . ,c1)1(ci = c) are not
necessarily order independent.

If the kc(C ) are order independent then Y (t) is a Markov chain on the aggregated
space Ñ and the following theorem holds.

Theorem 2.4. Let X(t) be a stationary Markov chain associated with an OI loss
queue. If the service rate functions kc(C ),c ∈ C, are order independent on S̃ then
the process Y (t) is a reversible Markov chain on Ñ with a stationary distribution
π(N) which can be recursively calculated from the detailed balance equations

µ(n)kc(N)π(N) = λcr(n− 1)π(N− 1c) (2.28)

where nc > 0, n = n1 + · · ·+ nC and kc(N) = kc(C ) for N = A(C).
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Proof. Y (t) is a Markov chain on the aggregated space since all the transitions due
to customer arrivals and departures are well defined. Thus the stationary distribution
π(N) on Ñ is

π(N) = ∑
C:A(C)=N

π(C). (2.29)

Equation (2.28) is obtained by summing (2.25) over all states C such that A(C) = N,
taking the order independence of kc(C ) into account. Equation (2.28) is the detailed
balance equation for the Markov chain Y(t) and is satisfied by the probabilities
given by (2.29). Thus the Markov chain Y(t) is reversible and its distribution can be
recursively calculated from the detailed balance (2.28). ⊓⊔

Theorem 2.4 demonstrates that if the departure rates kc(C) of the individual cus-
tomer types are order independent over the entire state space then the OI construc-
tion is not necessary to derive the equilibrium distribution and the queue can be
examined via standard reversibility arguments as is shown for example in the model
presented in section 2.5.7.

2.4.2 The Performance Measures: the MSCCC Loss Queue

Let C = (cn, . . . ,c1) denote the state of the MSCCC loss queue where n ≤ N. The
state space of the queue is L = SN = {0}∪⋃N

n=1 Cn. Let Mc(C) denote the number
of type c customers in C. Recall the mapping A : SN 7→ ZZC such that for any C∈ SN

A(C) = M(C) = (Mc(C))c∈C

where M(C) is the counting vector of the state C. Let M(N) denote the set of all
counting vectors. As usual |M|= M1 + · · ·+MC.

The stationary distribution πN(C) where C∈ SN for the MSCCC loss queue will,
on all states C ∈ SN , coincide (up to a normalising constant) with the stationary
distribution for the corresponding MSCCC queue with no losses. Define

πN(M) = ∑
C∈SN

A(C)=M

πN(C).

2.4.2.1 Invariant Measures over Special Sets

Recall that k(M) denotes the number of customers in service when the MSCCC is
in a state with a counting vector M. For any c ∈ C and non-negative integers n,b, i
define the sets
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L(n) = {M ∈ L | |M|= n}
L(n,b) = {M ∈ L(n) | k(M) = b}

L(n,b,c) = {M ∈ L(n,b) |Mx = 0 if x > c}
L(n,b,c, i) = {M ∈ L(n,b,c) |Mc = i}.

In the remainder of this section, where no confusion can arise we omit the subscript
N which denotes the population constraint on the MSCCC loss queue.

Let Q(n) denote the probability that n customers are present at the MSCCC.
Let Q(n,b) denote the probability that n customers are present and b servers are

busy.
Let Q(n,b,c) denote the probability that n customers are present, b servers are

busy and no customers of types higher than c are present.
Let Q(n,b,c, i) denote the probability that n customers are present, b servers are

busy, i customers of type c are present and no customers of types higher than c are
present.

The first step in the calculation of Q(n) is to compute the Q(n,b,c, i). In the
domain k(M) < B where not all servers are busy, the number of type c customers in
service is given by kc(M) = Mc∧Bc. For any c ∈ C and 0 < b < B two cases arise.

(1) 0 < i ≤ n≤ N

Q(n,b,c, i) = ∑
M∈L(n,b,c,i)

Q(M)

= ∑
M∈L(n,b,c,i)

ρc

i∧Bc
Q(M−1c)

=






ρc

i
Q(n− 1,b− 1,c, i− 1) 0 < i≤ Bc

ρc

Bc
Q(n− 1,b,c, i−1) i > Bc

(2.30)

with the convention that Q(n,b,c, i) = 0 if the condition 0 < (i∧Bc)≤ b < B is
violated.

(2) i = 0 and 0≤ n≤ N

Q(n,b,c,0) = Pr(n customers present, b servers busy, Mx = 0 if x≥ c)

= Pr(n customers present, b servers busy, Mx = 0 if x > c− 1)

= Q(n,b,c−1). (2.31)

The starting values for the recursion presented in (2.30) and (2.31) are given by

Q(n,0,c,0) =

{
1 n = c = 0
0 otherwise

(2.32)

for all 0≤ n≤ N and 0≤ c≤C. The next step is to compute the Q(n,b,c)
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Q(n,b,c) =
n

∑
i=0

Q(n,b,c, i) = Q(n,b,c− 1)+
n

∑
i=1

Q(n,b,c, i)

where

Q(n,0,c) =

{
1 n = c = 0
0 otherwise.

(2.33)

The last step is to compute the Q(n,b)

Q(n,b) = Pr(n customers present and b servers busy)

= Pr(n customers present, b servers busy and Mx = 0 if x > C)

= Q(n,b,C)

which yields

Q(N) =
B

∑
b=0

Q(N,b). (2.34)

Equation (2.34) cannot be used to compute Q(N) since Q(N,B) is not known. How-
ever, since the arrival rate of accepted traffic to the queue (the accepted traffic is the
offered traffic minus the lost traffic) equals the departure rate from the queue

ρ(1−Q(N)) =
B

∑
b=0

bQ(b) =
B

∑
b=0

b
N

∑
n=b

Q(n,b) =
B

∑
b=0

bR(N,b)

so that

BR(N,B) = ρ(1−Q(N))−
B−1

∑
b=0

bR(N,b).

Adding B∑B−1
b=0 R(N,b) to both sides of the above equation yields

B = ρ(1−Q(N))+
B−1

∑
b=0

(B− b)R(N,b) (2.35)

so that

ρQ(N) = ρ−B +
B−1

∑
b=0

(B−b)R(N,b)

where R(N,0) = π(0) yields an expression for Q(N) in terms of the previously
computed values of Q(N,b) where 0≤ b < B.

The Q(N,b) are multiples of π(0). To calculate π(0), note that if Q(N) and
Q(N,b) represent the values obtained by starting the algorithm with an arbitrary
value of Q(0,0,0,0) in (2.32), then

ρ(1−π(0)Q(N)) = π(0)
B

∑
b=0

bR(N,b).
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Subtracting Bπ(0)∑B
b=0 R(N,b) = B from both sides of the above equation yields

B−ρ(1−π(0)Q(N)) = π(0)
B−1

∑
b=0

(B−b)R(N,b)

so that

π(0) =
B+ ρ

∑B−1
b=0 (B− b)R(N,b)−Q(N)

(2.36)

where R(N,0) = 1 yields an expression for π(0) in terms of the previously computed
values of Q(N,b) where 1≤ b < B. Then

Q(N,b) =






π(0)Q(N,b) 0≤ b < B

π(0)Q(N)−∑B−1
b=0 Q(N,b) b = B.

Note that limN→∞ Q(N) = 0 and limN→∞ R(N,b) = P(b) so that in the limit where
no losses occur, (2.35) and (2.36) reduce to (2.14) and (2.15).

Another recursion with the same computational complexity as the recursion pre-
sented in (2.30) and (2.31) but with O(B2) as opposed to O(B3) storage requirements
is

Q(n,b,c) =
Bc−1

∑
i=0

ρ i
c

i!
Q(n− i,b− i,c−1)+

ρBc
c

Bc!
Q(n−Bc,b−Bc,c− 1)F(n,c)

where 0 < c≤C and 0 < b < B and

F(n,c) =






1− (ρc/Bc)
n−Bc+1

1−ρc/Bc
ρc 6= Bc

n−Bc +1 ρc = Bc.

2.4.2.2 The Expected Queue Length

Let L(n,b,C) denote the average number of type C customers at the MSCCC when
b < B servers are busy and n customers of all types are present. For 0 < b < B

L(n,b,C) =
n

∑
i=1

iQ(n,b,C, i)

where the Q(n,b,c, i) are given in (2.30). Given the relatively small number n of
terms in the above summation, it is not necessary as was in the case of the MSCCC
without losses – see section 2.3.2.2 – to compute an analytic expression for the sum.

Let L(n,C) denote the average number of type C customers at the MSCCC when
there are n customers at the MSCCC
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L(n,C) =
B

∑
b=1

L(n,b,C).

The values of the L(n,B,C) are not known. Consider therefore the following identity

BL(n,C) =
B

∑
b=1

(B +b−b)L(n,b,C) =
B

∑
b=1

bL(n,b,C)+
B−1

∑
b=1

(B− b)L(n,b,C).

Since k(M) = b we have

B

∑
b=1

bL(n,b,C) =
B

∑
b=1

b ∑
M∈L(n,b)

MCQ(M)

=
B

∑
b=1

b ∑
M∈L(n,b)

MC

C

∑
x=1

ρx

k(M)
Q(M− 1x)

=
C−1

∑
x=1

ρx

B

∑
b=1

∑
M∈L(n,b)

MCQ(M−1x)+ ρC

B

∑
b=1

∑
M∈L(n,b)

MCQ(M−1C)

=
C−1

∑
x=1

ρx ∑
M∈L(n−1)

MCQ(M)+ ρC ∑
M∈L(n−1)

(MC + 1)Q(M)

= ρL(n− 1,C)+ ρCQ(n−1)

where ρ = ∑C
c=1 ρc so that

BL(n,C) = ρL(n− 1,C)+ ρCQ(n−1))+
B−1

∑
b=1

(B−b)L(n,b,C).

The last term L(N,C) of this recursion is the expected number of type C customers in
the MSCCC loss queue. Summing the values of L(N,c) over all c ∈ C yields the ex-
pected queue length – which result can be obtained at earlier stage from ∑N

n=1 nQ(n).

2.4.3 OI Loss Networks

Although we have presented the OI system as a single queue, OI systems can also
be used to model networks of queues.

Let C(t) be a continuous time, homogeneous Markov process denoting the state
of an OI queue at time t on the state space S̃ with the stationary distribution π(C).
Let S̃′ be a subset of S̃ satisfying conditions (a) and (b). Then by definition C(t) is an
OI loss queue on the set S̃′ with a stationary distribution given by π(C)/G where G
is the corresponding normalising constant. This truncation property of the OI queue
can be extended to a network of independent OI queues as follows.
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Let Ck(t) = (ck
nk

(t), . . . ,ck
1(t)) where k = 1, . . . ,K denote a collection of in-

dependent OI queues on the corresponding states S̃k with the stationary distri-
bution πk(Ck). Consider the queue C(t) = (C1(t), . . . vCK(t)) on the state S̃ =

S̃1× S̃2× ·· · × S̃K with stationary distribution π(C) = π1(C1) . . .πK(CK). Let S̃′

be a subset of S̃ such that

(i) C ∈ S̃′ implies (C1
σ , . . . ,CK

σ ) ∈ S̃′ for any permutations Ck
σ of Ck.

(ii) A(S̃′) = Ñ′ is coordinately convex

then [5] the queue C(t) obeys the truncation property so that the stationary dis-
tribution of C(t) on the set S̃′ is given by π(C)/G where G is the corresponding
normalising constant.

Several applications of OI queues and OI networks are presented in the following
section.

2.5 OI Applications

2.5.1 Multiported Memory

Consider [7, 8, 15] a computer system consisting of N processors accessing K mem-
ory modules via a partitioned multiple bus system. Each of the G groups of B buses
gives access to a subset of K/G memory modules. Each memory module k is Bk–
ported so that maximally Bk processors can access memory module k simultane-
ously. The system is modelled as a closed queueing network consisting of an IS
centre representing the processors and G MSCCC centres, each representing one
group of B buses and the associated memory modules. Each MSCCC centre con-
sists of B servers which represent the B buses in its group. The N customers in the
network belong to K classes.

A processor service interval followed by a data transfer to/from memory mod-
ule k is modelled as a customer departing from the processor service centre, and
moving to the gth MSCCC centre where group g contains an access path to mem-
ory module k. The customer changes class to class k and queues for service at the
MSCCC centre. The class k customer enters into service if one of the B servers is
free (a bus is available) and if at most Bk class k customers are in service (at most Bk
processors can access memory module k simultaneously).

2.5.2 A Messaging Card

In some distributed architectures such as telephone switching exchanges, the mes-
saging function between a high level peripheral (decentralised call processor) and
a lower level one (line or trunk controller) is performed on the high level side by
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a specialised processor (the messaging card) which controls simplex channels to
the lower level peripherals. The processor time is partitioned into B fixed time slots,
each of which is allocated to a process whose function is to send outgoing messages.
The exchange forwards messages to K destinations, each of which is reachable on
any of Bk channels. When a buffer is queued for transmission it has to wait for a
process to be available to service the request and for an outgoing channel to be free.
The messaging card can be modelled by a MSCCC centre consisting of B servers
(the transmission processes) serving customers belonging to K classes, each with its
own concurrency limit Bk.

2.5.3 Multilayer Window Flow Control

Consider a set of K application which share a common data link. At the data link
layer maximally B transmitted packets may remain unacknowledged. For each ap-
plication k maximally Bk packets may remain unacknowledged. The data link can be
modelled [12] as a MSCCC centre consisting of B servers with an average service
time equal to the packet transfer time averaged over all the packets. The customer
arrivals represent packet transmission requests. A class k packet is transmitted if a
server is available (data link flow control) and if at most Bk− 1 class k packets are
in service (application flow control).

2.5.4 Machine Scheduling Model

Jobs of type k ∈ {1, . . . ,C} arrive according to a Poisson process with intensity λk
and are processed by machines of type k in a FCFS order. There are Bk machines
of type k which are operated by a common pool of B machine operators. If the job
processing times are exponentially distributed and are job type independent then this
model is solved by the MSCCC centre. If the job processing times are exponentially
distributed but are job type dependent, then in the two special cases B = 1 and
B = B1 + · · ·+ BC the stationary probabilities are a sum of product forms [1].

2.5.5 Blocked Calls Cleared

In the remainder of this section we apply OI queues to model circuit-switched net-
works where some blocked calls are queued for connection when the requested cir-
cuits become available. This call queueing mechanism differs from the admission
control generally used in circuit switched networks where blocked calls are lost –
see [19, 20] for an extensive literature on the subject of circuit-switched loss net-
works.
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Fig. 2.1: A circuit-switched network

Consider figure 2.1 which represents (part of) a circuit-switched network. There
are C source switches. Each switch c is connected by an access link consisting of Bc

circuits to a tandem switch T which switches the incoming calls among B outgoing
circuits to a destination switch D where B < B1 + · · ·+ BC. Calls arrive at switch
c according to a Poisson process with rate λc. Call holding times are exponentially
distributed with unit mean.

A call from switch c is connected if a circuit from c to T and a circuit from T to
D is available, else the call is lost. This model is OI although standard methods can
also be used [23] to obtain an analytic solution. Such loss models were considered
in a more general framework [2, 19] and there are many articles on this topic for
example [9].

2.5.6 Blocked Calls Queued

Rather than clearing blocked calls, the blocked calls can be held for a short pe-
riod while waiting for the required circuits to become free. This will significantly
decrease the loss probability and increase the circuit utilisation at the expense of
introducing a small connection delay.

Call queueing is implemented by storing the signalling information for each call
in a buffer at the transit switch T until the call is completed. When a call completes,
the queue is scanned from the front looking for the first call that can be connected.
If the call (say it originated at switch c) cannot be connected because all Bc circuits
in link c are busy, the next call in the queue is considered. Connection requests are
thus attempted on a FCFS basis.

The MSCCC queue provides an exact analytic solution to this model. Calls which
arrive and find N calls in the system (queued or in service) are lost. A call from
switch c will be connected to the destination switch D if a circuit in link c is available
(less than Bc customers of type c are in service) and a circuit from T to D is available
(less than B customers of all types are in service). The limit N models call holding:
up to N −min(B1, . . . ,BC) blocked calls can be queued. When N = B we obtain
Mitra’s model [23].

A feature of this model is that if the network is overloaded by class c calls then
the queue will be filled with class c calls and arrivals of other classes will be rejected.
This deficiency is addressed in the next section.
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Fig. 2.2: Local and long distance calls

2.5.7 Blocked Calls Queued with Source Rejection

Calls which arrive and find N calls in the system (queued or in service) are lost.
A call from switch c which finds all Bc access circuits busy is lost – this is termed
source rejection. Calls which seize an access circuit and find all B outgoing cir-
cuits busy are queued in a finite buffer. When an outgoing circuit becomes free, the
queued calls are searched in FCFS order for the next call to be connected. Thus
maximally N customers of all types and maximally Bc customers of type c ∈ C are
admitted to the system and up to N−min(B1, . . . ,BC) blocked calls can be queued.

For all n ∈ Ñ the un-normalised aggregated stationary probabilities for above
model are given by

π(n) = g(n)
C

∏
c=1

ρnc
c

nc!

where

g(n) =

{
1 0≤ n≤ B

n!
B!Bn−B B < n≤ N

so that Bg(n) = ng(n− 1) for B < n ≤ N. This model is an OI queue although
standard methods can also be used [6] to obtain an analytic solution.

A further OI specialisation of this model is obtained by partitioning the set of
customer types into {1, . . . ,J} and {J +1, . . . ,C}. Source rejection is applied to the
types {J + 1, . . . ,C} but is not applied to the types {1, . . . ,J} so that all customers
of types {J +1, . . . ,C} are in service whereas customers of types {1, . . . ,J} may be
queued.

2.5.8 Local and Long Distance Calls

Consider the network presented in figure 2.2. A local call from switch c requires
one circuit from switch c to the tandem switch T . A long distance call from switch c
requires one circuit from switch c to switch T and one circuit from T to the destina-
tion switch D. Blocked local calls are lost. Blocked long distance calls are queued
in a finite buffer of size N−min(B1, . . . ,C).
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Fig. 2.3: Local and transit calls

Let C+ ⊆ C denote the set of long distance call types and let n+ = ∑ j∈C+
n j

denote the number of long distance calls, both in service and queued. The un-
normalised aggregated stationary probability for the queue is given by [5]

P(n) =





∏
j∈C

ρn j
j

n j!
0≤ n+ ≤ B

n+!
B!Bn+−B ∏

j∈C

ρn j
j

n j!
B < n+ ≤ N

where ρ j = λ j/µ j. Note that P(n) can be viewed as the product of two “indepen-
dent” queues: an M/M/B/B queue serving the local calls and an M/M/B/N queue
serving the long distance calls. The processing of the local and long distance calls
is not independent.

2.5.9 Local and Transit Calls

Consider the network presented in figure 2.3. A local call from switch c requires
one circuit from link c. A local call from switch d requires one circuit from link d.
Blocked local calls are lost. A transit call from switch c to switch d requires one
circuit from link c, one circuit from link d and a circuit from switch T1 to switch T2.
A transit call is lost if it is blocked on link c or on link d. If the transit call is not
blocked on the local links it seizes the local circuits and requests a circuit from T1 to
T2. If the circuit is available it is connected. If the circuit is not available and if there
are less than N transit calls in progress (queued and in service) on the link from T1

to T2 then the transit call is queued, else it it is lost.
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2.5.10 Hierarchical Tree Networks

Several networks as presented in figure 2.1 are connected to form the network shown
in figure 2.4. A call from switch c is lost if it is blocked on any link connecting the
source switch c to the switch T . A finite queue is used to buffer calls that are blocked
on the final link from T to D. This model is a variant of the Multiserver Centre with
Hierarchical Classes of Customers [21].

2.5.11 Local and External Networks

Consider the network presented in figure 2.5. The network consists of edge switches
marked E and and interior switches marked I in a core network and access switches
marked A in an access network. The switches are connected by multi-circuit links.
The topology of the network is arbitrary and we assume that the switches in the
access network are not directly connected to each other, although this assumption is
not necessary.

Local calls are routed among the switches in the core network. Blocked local
calls are lost. Consider an outgoing call from the network via an edge switch E
to an access switch A. An outgoing call is lost if it is blocked on its local route.
If the outgoing call is not blocked on its local route then it seizes the circuits in
its local route and requests a circuit in the outgoing link from switch E to switch
A. If an outgoing circuit is available the call is connected. If an outgoing circuit is
not available and if there are less than N outgoing calls in progress (queued and in
service) on the outgoing link then the outgoing call is queued, else it it is lost. Note
that the local circuits acquired by outgoing calls are held while the calls are queued
for connection, and that each outgoing link carries traffic in the outgoing direction
only.

Call queueing is accomplished by storing the signalling information for the
blocked call in a buffer at the edge switch E . The (signalling units for the) calls

1

c

C

T D

...

...

...

...

...

Fig. 2.4: Hierarchical tree network
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Fig. 2.5: Network with outgoing traffic

are stored in FCFS order. When a call completes and releases a circuit in the out-
going link to the access switch A the first call in the queue will be connected to the
destination A.

Let γ denote a fixed route (an ordered sequence of links) connecting an origi-
nating switch I in the network via an edge switch E to an access switch A. Let R

denote the set of interior routes. Let nγ denote the number of calls in route γ ∈ R

and let n = (nγ) be a vector of numbers of calls. Let nk where k ∈ K denote the
number of calls (queued or in service) in progress on outgoing link k where K is the
set of access links, and R∩K = /0. Then the un-normalised aggregated stationary
probabilities for the network are given by [5]

P(n) = ∏
k∈K

gk(nk) ∏
γ∈R

ρnγ
γ

nγ !

and

gk(nk) =






1 0≤ nk ≤ Bk

nk!

Bk!Bnk−Bk
k

Bk < nk ≤ Nk

2.5.12 Transit Calls among Networks

Consider the system presented in figure 2.6. Each network consists of switches
connected by multi-circuit links. Some of the switches are connected to gateway
switches which route transit traffic in both directions between the networks. The
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topology of the networks is arbitrary. We assume one pair of gateway switches but
there may be many such pairs.

Local calls are routed among switches within their originating networks. Blocked
local calls are lost. Consider a transit call from network 1 to network 2. A transit
call is lost if it is blocked on its local route in network 1 from its originating switch
to the gateway switch G or if it is blocked on its local route in network 2 from the
gateway switch G to its destination switch (assuming a signalling link separate from
the bearer link). If the transit call is not blocked on its local routes then it seizes
the circuits in its local routes and requests a circuit on the transit link between the
networks. If a transit circuit is available the call is connected. If a transit circuit is
not available and if there are less than N transit calls in progress (queued and in
service) on the transit link then the transit call is queued, else it it is lost.

The transit link carries two-way traffic and an identical call queueing mechanism
is applied to calls in both directions. Each gateway has a buffer to store the signalling
units for blocked calls. Both gateway switches are aware via the signalling link of
the arrival order of blocked calls in both directions. The buffers are managed as
a single logical queue whose entries are ordered according to the times of arrival
of the blocked calls. The call resources are partitioned into two classes (local routes
and transit routes) and the resource classes are ordered such that all calls first request
their local routes and then their transit route – deadlock therefore cannot occur.

All of the models presented in sections 2.5.1 through 2.5.12 can be modelled
as OI queues. Their stationary distributions are therefore immediately available.
Efficient algorithms with space-time complexity O(B2C) exist for the calculation
of the blocking probabilities for models 2.5.5, 2.5.6 and 2.5.7. The complexity of
model 2.5.10 is O(Nℓ) where ℓ is the depth of the tree. Models 2.5.9, 2.5.11 and
2.5.12 have the same complexity as the corresponding loss networks where blocked
calls are lost.

GG

bearer link

signalling link

network 1 network 2

Fig. 2.6: Networks with transit traffic
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Glossary

B the number of servers
Bc the number of type c customers that can be in service simultaneously
C the set of customer types
C the queue state (cn, . . . ,c1)
ci the type of the customer in queue position i
γi(C) the portion of the total service effort directed at the customer in queue position i
λc the Poisson arrival rate of customers of type c
µc the Poisson service rate of customers of type c
π(C) the equilibrium probability
φ(C) the rate at which the total service effort in state C is supplied
S the state space of the queue
si(C) the rate at which service is given to the customer in queue position i in the

queue relative to the other customers in the queue
a∧b the smaller of the two integers a and b
σ a permutation of (1, . . . ,n)

2.6 An Algorithm to Compute the Performance Measures of the
MSCCC

The values of the P(b,c, i) are stored in the elements of the array P[b, i]. The index c
is suppressed to save storage. The algorithm is applied C times to compute the per-
formance measures of all the types. After each application the customer types are
relabelled.

1: // allocate and initialise the variables
2: double P[0 : B−1,0 : max(B1, . . . ,BC)],L[0 : B− 1]
3: P[0,0] = 1
4: for b = 1 to B−1 do
5: P[b,0] = 0
6: end for

// compute the un-normalised probabilities P(b,c, i)
7: for c = 1 to C do
8: for b = 1 to B− 1 do
9: for i = 1 to min(b,Bc− 1) do

10: P[b, i] = ρc ∗P[b−1, i−1]/i // eq. (2.9)
11: end for
12: if b≥ Bc then
13: P[b,Bc] = ρc ∗P[b− 1,Bc−1]/(Bc−ρc) // eq. (2.10)
14: end if
15: end for
16: for b = 1 to B− 1 do
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17: for i = 1 to min(b,Bc) do
18: P[b,0] = P[b,0]+ P[b, i] // eq. (2.13)
19: end for
20: end for
21: end for

// normalise the probabilities P(b,c, i)
22: S = 0
23: for b = 0 to B−1 do
24: S = S +(B− b)∗P[b,0] // eq. (2.15)
25: end for
26: G = (B−ρ)/S
27: for b = 0 to B−1 do
28: for i = 1 to min(b,Bc−1) do
29: P[b, i] = P[b, i]∗G // eq. (2.16)
30: end for
31: end for

// compute the type C queue length L(C)
32: L = ρC

33: for b = 1 to B−1 do
34: L[b] = P[b,BC]
35: for i = 0 to min(b,BC−1) do
36: L[b] = L[b]+ BC ∗P[b−1, i]− i∗P[b, i] // eq. (2.19)
37: end for
38: L = L +(B−b)∗L[b] // eq. (2.22)
39: end for
40: L = L∗ρC/(BC−ρC)/(B−ρ) // eq. (2.22)
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Chapter 3

Insensitivity in Stochastic Models

P.G. Taylor

Abstract A stochastic model is said to be insensitive if its stationary distribution
depends on one or more of its constituent lifetime distributions only through the
mean. Insensitivity is usually associated with partial balance in the corresponding
Markovian model when all lifetimes are taken to be exponential, and a product-form
stationary distribution of the Markov chain, constructed by supplementing the state
by information on the progress of generally-distributed lifetimes.

In this chapter I shall discuss insensitivity by presenting a detailed analysis of the
canonical insensitive queueing model, the Erlang loss system, from two different
directions, as a queue and as a Generalised Semi-Markov Process (GSMP). I shall
then show how the underlying ideas extend to insensitive queueing network models
and finish off with a discussion of the few known non-standard insensitive systems

tionary distribution.

3.1 Introduction

We shall start our discussion of insensitivity by thinking about the M/M/C/C (or Er-
lang Loss) queue. This is a queueing system which has Poisson arrivals, exponential
service times, C servers and no room for queueing customers that arrive when the
system is full. The queue can be modelled by a continuous-time Markov chain with
state space {0,1,2, . . . ,C}. If we denote the arrival rate by λ and the mean service
time by 1/µ , then the stationary probability π(n) that there are n customers present
satisfies the equations
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which are not associated with partial balance or a product-form supplemented sta-
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λ π(0) = µπ(1),

(λ + nµ)π(n) = λ π(n−1)+ (n + 1)µπ(n+1), 0 < n < C,

Cµπ(C) = λ π(C− 1). (3.1)

The solution of equations (3.1) that sums to unity is

π(n) =
ρn/n!

∑C
k=0 ρk/k!

, (3.2)

where ρ = λ/µ . The stationary probability

π(C) =
ρC/C!

∑C
k=0 ρk/k!

(3.3)

that the system is full gives the probability that arriving customers cannot be accom-
modated in the queue.

Expressed as a function of ρ and C, the expression on the right hand side of equa-
tion (3.3) is known as Erlang’s Loss Formula, which we shall denote by E(ρ ,C).
Throughout most of the twentieth century, this formula was used extensively by the
telecommunications networking community for dimensioning links. It proved to be
remarkably successful in predicting the probability that an arriving call would not be
able to find an available circuit, has been the subject of research in its own right (see,
for example, Jagerman [22]) and is still used today in more complicated contexts.

However, let us think a little more about the use of a Markovian model for the
modelling of telephone links. The average duration of a traditional phone conversa-
tion was three minutes. An easy calculation shows that if call durations are exponen-
tially distributed with mean three minutes, then the probability that a call exceeds
60 minutes is about 2× 10−9. So, if call durations really were exponentially dis-
tributed, very few of us would ever have made a phone call that lasted longer than
one hour. Since most of us have made such calls, we are led to the conclusion that the
‘service times’ corresponding to real telephone conversations are not exponentially
distributed and that a Markovian model for the system is based upon assumptions
that are not satisfied.

So why has the Erlang Loss Formula been so successful? The reason is that
the M/G/C/C queue is insensitive to the service time distribution: the stationary
probability that there are n customers present is given by (3.2) irrespective of the
shape of the service time distribution, provided that the mean is 1/µ .

Erlang himself [10] noticed that the stationary probability that there are n cus-
tomers present in an M/G/C/C queue when the service times are deterministic with
duration 1/µ is the same as it is when service times are exponentially distributed
with mean 1/µ . Subsequently, with different levels of rigour, Kosten [33], Fortet
[12] and Sevastyanov [43] showed that the service time distribution can be arbitrary
without affecting the form of the stationary probabilities, assuming that the mean
is kept constant. In fact more is possible: service times can be inter-event times in
an arbitrary stationary point process with rate µ and the stationary distribution is
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still given by (3.2), see König and Matthes [31]. Other authors who considered the
n server loss system with generally distributed service times from the point of view
of insensitivity include Takacs [44] who investigated the stationary distribution at
arrival epochs and Fakinos [11] who looked at a group arrival, group departure sys-
tem.

In the period between the late 1950s and the 1980s a number of researchers stud-
ied the phenomenon of insensitivity in other systems. The Engset loss system, which
has a finite source population, was shown to be insensitive with respect to generally
distributed, but independent, service times by Cohen [9] and with respect to succes-
sive service times which come from a stationary point process by König [29]. More
significant from a practical point view was the work of Baskett, Chandy, Muntz
and Palacios [4] and Kelly [27, 28] who showed that certain types of queueing net-
work possess the insensitivity property. Since a number of practical systems turned
out to be well-modelled by insensitive queueing networks, these papers have been
frequently cited, particularly in the telecommunications modelling community.

Baskett, Chandy, Muntz and Palacios [4] considered a network of queues where
each node could be one of four different types. These were

1. a single server, first-come-first-served queue with exponential service times,
2. a single server, processor-sharing queue with service times chosen according to

a general distribution with a rational Laplace Transform,
3. an infinite-server queue with service times chosen according to a general distri-

bution with a rational Laplace Transform, and
4. a single-server, preemptive-resume last-come-first-served queue with service

times again chosen according to a general distribution with a rational Laplace
Transform.

They showed that the queueing network possesses a steady state distribution that
is a product form over the nodes and, moreover, depends on the lifetime distribu-
tion at types (2), (3) and (4) nodes only through the mean. Weak continuity argu-
ments [1, 47] later showed that the restriction to distributions with rational Laplace
transform was unnecessary, although many later papers continued to emphasize this
restriction.

Kelly [27, 28] introduced the concept of the symmetric queue. This can be
thought of as a generalisation of the type (2), (3) and (4) nodes of [4]. A symmet-
ric queue is a queue with multiple customer classes that operates in the following
manner:

1. the service requirement of a customer is a random variable whose distribution
may depend on the class of customer.

2. the total service effort is supplied at rate φ(n) where n is the number of customers
in the queue.

3. a proportion γ(ℓ,n) of this effort is directed to the customer in position ℓ. When
this customer leaves the queue customers in positions ℓ+1, ℓ+2, . . . ,n move to
positions ℓ,ℓ+ 1, . . . ,n− 1 respectively.
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4. a customer arriving at the queue moves into position ℓ with probability γ(ℓ,n +
1). Customers previously in positions ℓ,ℓ+ 1, . . . ,n move to positions ℓ+ 1, ℓ+
2, . . . ,n +1 respectively.

Processor sharing queues, infinite server queues and last come first served queues
are all examples of symmetric queues. By keeping track of the current ‘phase’ of
service, Kelly showed that a stationary symmetric queue is insensitive to the service
time distribution, provided that it can be represented as a mixture of Erlang distri-
butions. The rigorous extension to arbitrarily distributed lifetimes was carried out
by Barbour [1]. Furthermore, Kelly established that a network of symmetric queues
has a stationary distribution that factorizes into a product form over the nodes, and
itself is insensitive.

Kelly’s techniques relied on the insight provided by the time-reversed process.
Chandy, Howard and Towsley [7] used a partial balance approach to prove insen-
sitivity in an essentially similar system. Noetzel [37] defined Last Batch Processor
Sharing (LBPS) disciplines for queues, and showed that networks of LBPS queues
have product-form stationary distribution and are insensitive. Noetzel focused on
the arrival order, rather than the position in the queue, of customers but it is possible
to set up an equivalence between LBPS queues and symmetric queues and so derive
Noetzel’s results from Kelly’s.

Jansen and König [25] modified Chandy, Howard and Towsley’s network to in-
clude different classes of customer and showed that, when the network is insensitive,
the output processes from nodes in a queueing network are Poisson. They also con-
sidered the stationary distribution embedded at jump epochs of the system. Further
work on queueing networks with multiple customer classes was given in Chandy
and Martin [8].

Hordijk and van Dijk [17] studied networks of queues with blocking. They
showed that there is some trade off between the generality of the blocking func-
tion and the degree of balance required from the routing matrix for a network to
have product-form stationary distribution and possess an insensitivity property. In
[18, 19], they introduced a new method for analysing networks of queues that de-
pends on an associated process called the adjoint process. Using this approach they
showed that a queue must be symmetric (in the definition of Kelly) to satisfy their
concept of job local balance. They also applied their analysis to a range of models
with general routing and service characteristics.

A general framework for studying insensitivity, the Generalised Semi-Markov
Process (GSMP), was introduced by Matthes [34]. The GSMP is basically an ex-
tension of the familiar Semi-Markov Process, which resides in a particular state for
a generally distributed length of time before undergoing a transition according to a
stochastic matrix which transfers the process to another state. In a GSMP, multiple
lifetimes, each with its own general distribution, are considered to be alive simul-
taneously and the death of any one of them causes the process to move to another
state. It is possible to model a wide variety of processes with a GSMP.

Matthes showed that a GSMP is insensitive with respect to a particular lifetime
s (that is its stationary distribution depends on the distribution of the lifetime s only
through its mean) if and only if a system of balance equations is satisfied by the sta-
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tionary distribution when all lifetimes are taken to be exponential. Matthes’ results,
together with the work of König and Matthes [31] and König [29] are collected in
König, Matthes and Nawrotzki [32].

A generalisation of Matthes’ framework was given by König and Jansen [30]
who introduced state-dependent speeds c(s,g) at which the lifetime s is worked
off when the state is g. The use of these speeds allowed functional dependencies
between different lifetimes in the GSMP to be modelled. In particular, by putting a
speed to zero it is possible to model the situation where a particular lifetime is not
processed at all in some states.

Schassberger [38, 39, 40] proved Matthes’ partial balance result in a different
way utilising mixtures of Erlang distributions in place of the general distributions,
extending these results to arbitrarily distributed lifetimes using weak continuity ar-
guments. A general justification for the use of these arguments was given by Whitt
[47]. Further results on insensitivity in GSMPs were given in Jansen, König and
Nawrotzki [26], Burman [5], Franken, Arndt, König and Schmidt [13], Henderson
[15] and Henderson and Taylor [16].

Whittle [49] provided a simple proof of the equivalence of partial balance and in-
sensitivity, using a structure that initially appeared to be different to the GSMP. The
simplicity of the proof derived in some part from the assumptions that Whittle made
about his process. For example, Whittle’s structure did not allow a general lifetime
to immediately restart after having died, although it is fairly easy to modify the
structure to include this feature. Whittle also implicitly assumed that all the speeds
are positive, which does sustantially simplify the situation. It was trying to cope with
these details that made the earlier proofs of König and Jansen [30] and Schassberger
[41] somewhat more complicated than they otherwise would have been. When ap-
propriate generalisations are included, Whittle’s structure is completely equivalent
to the GSMP, as was established by Schassberger [42] and Miyazawa [35]. Nonethe-
less it is notable for its elegance and simplicity. For this reason, it was used by the
author in some of his own contributions to insensitivity theory [45, 46].

In a later paper, Whittle [50] combined his previous approach with the concept of
weak coupling [48] to present an approach to insensitivity in terms of “imbedding”.
A Markov process Q with states n is said to be imbedded in a Markov process Q̂
with a finer classification of states (n,x) if certain rules about the transitions of Q̂
are obeyed and if π(n) = ∑x π(n,x) where π(n) and π(n,x) are the respective sta-
tionary distributions of Q and Q̂. Using this concept, it follows that if a process Q̂
is insensitive with respect to a set of general lifetimes then it imbeds a process with
identical transition rates but negative exponential lifetimes. This follows by consid-
ering the finer classification x to be a set of supplementary variables describing the
state of the general lifetimes. Whittle’s results on insensitivity, imbedding and weak
coupling were collected in his book [51].

The purpose of this paper is to provide an insight into the methods used in study-
ing insensitivity and to act as a starting point for readers who are interested in learn-
ing more. We shall do this by looking in some detail at how insensitivity results are
derived for the Erlang Loss System. This system has the advantage that it can be
described as a symmetric queue as defined by Kelly [27, 28], or as a GSMP. It is
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thus an ideal vehicle to point out the similarities and the differences between the
two approaches.

In Section 3.2, we shall start by looking at the Erlang Loss system as a symmetric
queue. We shall follow this in Section 3.3 by looking at the same system within a
GSMP framework. In Section 3.4 we shall illustrate how insensitivity results can be
generalised to the queueing network context, and in Section 3.5 present a discussion
of the very few non-standard insensitive systems that are known. A summary of our
approach is given in Section 3.6.

3.2 The Erlang Loss System as a Symmetric Queue

Consider the M/G/C/C queue where the service time distribution G is allowed to be
arbitrary. We shall assume that it has a density g on [0,∞), but our results can be
shown to apply to the general case by the same weak continuity arguments [47] that
were used to justify the extension from mixtures of Erlang distributions. Given that
a service time has lasted for a time y, the probability that it finishes within a time
interval δ is then given by h(y)δ + o(δ ) where the hazard function h(y) is defined
by

h(y) =
g(y)

1−G(y)
. (3.4)

We shall proceed by extending the definition of state so that the process still has a
Markovian description. We can do this by labelling each of the individual customers
and recording some information about the service at each one of them. Specifically,
we shall record the spent service time of each of the customers that is present. Thus,
instead of a continuous-time Markov chain with states n, we study a process with
states X(t) of the form (n,y1, . . . ,yn) where yi is the spent service time of the cus-
tomer with label i. We shall stipulate that
Assumptions A

1. customers arriving when n customers are present are allocated each of the n +1
possible labels with probability 1/(n +1), and

2. when a customer departs, all customers with higher labels have their label de-
creased by one.

The resulting process is still Markovian, but it has a state space with continuous
components. The infinitesimal generator

lim
t→0

d
dt

E[ f (X(t))− f (X(0))],

which acts on a suitably-defined set of functions F, is relatively easy to write down
and we can proceed from this to a derivation of the stationary distribution. However,
arguably, more insight is obtained by writing down equations that govern the proba-
bility densities P(n,y1, . . . ,yn : t) that X(t) = (n,y1, . . . ,yn). For a state (n,y1, . . . ,yn)
with y1, . . . ,yn > 0 and 0 < n < C,
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P(n,y1 +δ , . . . ,yn + δ : t + δ )

=

[
1− [λ +

n

∑
i=1

h(yi)]δ

]
P(n,y1, . . . ,yn : t)

+
n+1

∑
i=1

ˆ ∞

0
P(n +1,y1, . . . ,yi,z,yi+1, . . . ,yn : t)h(z)δdz+o(δ ). (3.5)

The first term on the right hand side reflects the situation in which no arrival or
departure occurs in the time interval (t,t + δ ) and all that happens is that the spent
service times of the customers who are present at time t age by an amount δ , while
the summand in the second term reflects the situation in which there are n +1 cus-
tomers present at time t and the one labelled i + 1 departs, with all higher labels
being decreased by one, as stipulated by Assumption A(2).

Dividing equation (3.5) by δ and letting δ → 0, we get

∂P(n,y1, . . . ,yn : t)
∂ t

+
n

∑
i=1

∂P(n,y1, . . . ,yn : t)
∂yi

= −
[

λ +
n

∑
i=1

h(yi)

]
P(n,y1, . . . ,yn : t)

+
n+1

∑
i=1

ˆ ∞

0
P(n +1,y1, . . . ,yi,z,yi+1, . . . ,yn : t)h(z)dz. (3.6)

When n =C, no arrivals can occur, nor can we ever be in state n+1, so the equations
reduce to

∂P(C,y1, . . . ,yC : t)
∂ t

+
C

∑
i=1

∂P(C,y1, . . . ,yC : t)
∂yi

= −
C

∑
i=1

h(yi)P(C,y1, . . . ,yC : t). (3.7)

When n = 0, the equation is

λP(0 : t) =

ˆ ∞

0
P(1,z : t)h(z)dz. (3.8)

To get the boundary conditions, we need to consider what happens at arrival instants,
as stipulated by our Assumption A(1). For 0 < n≤C, we have

ˆ δ

0
P(n,y1 +δ , . . . ,yi +δ ,u, . . .yn + δ : t + δ )du

=
λ δ
n

P(n−1,y1, . . . ,yn : t)+ o(δ ).
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Both sides of this equation describe the event that there were n− 1 customers
present at time t and a further customer arrived, and was allocated to position i+1,
before time t +δ . Again, dividing by δ and letting δ → 0, we get

P(n,y1, . . . ,0, . . .yn : t) =
λ
n

P(n−1,y1, . . . ,yn : t). (3.9)

To get equations for the stationary densities π(n,y1, . . . ,yn), we put the time deriva-
tive to zero in equations (3.6), (3.7) and (3.8) which gives us

n

∑
i=1

∂π(n,y1, . . . ,yn)

∂yi
=−

[
λ +

n

∑
i=1

h(yi)

]
π(n,y1, . . . ,yn)

+
n+1

∑
i=1

ˆ ∞

0
π(n+ 1,y1, . . . ,yi−1,z,yi, . . . ,yn)h(z)dz, (3.10)

C

∑
i=1

∂π(C,y1, . . . ,yC)

∂yi
=−

C

∑
i=1

h(yi)π(C,y1, . . . ,yC) (3.11)

and

λ π(0) =

ˆ ∞

0
π(1,z)h(z)dz, (3.12)

subject to

π(n,y1, . . . ,0, . . .yn) =
λ
n

π(n− 1,y1, . . . ,yn). (3.13)

The proof of the insensitivity of the Erlang Loss model proceeds by verifying that a
solution to the above set of equations is given by the product-form expression

π(n,y1, . . . ,yn) = π(0)
λ n

n!

n

∏
i=1

(1−G(yi)). (3.14)

We do this by using the facts that, for any absolutely continuous G,

d(1−G(y))
dy

=−g(y) =−h(y)(1−G(y)), (3.15)

and so the ith term in the sum on the left hand side of both equations (3.10) and
(3.11) is equal to the ith term in the sum on the right hand side. Also

ˆ ∞

0
(1−G(u))h(u)du =

ˆ ∞

0
g(u)du = 1, (3.16)

and so

−λ π(n,y1, . . . ,yn)+
n+1

∑
i=1

ˆ ∞

0
π(n +1,y1, . . . ,yi,z,yi+1, . . . ,yn)h(z)dz = 0. (3.17)
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This guarantees that the remaining terms of equation (3.10) and the two sides of
equation (3.12) are equal. Also G(0) = 0, which ensures that (3.13) is satisfied.

A justification that the set of equations (3.10), (3.11) and (3.13) have a unique so-
lution that sums to one, which indeed gives us the stationary densities of the Markov
chain, follows from the work of Miyazawa and Yamazaki [36]. So (3.14) provides
an expression for the stationary densities for the Markov process with the supple-
mented state space. It does depend on G, so where does the insensitivity come in?
This occurs when we integrate out the supplementary variables. It is elementary that

ˆ ∞

0
(1−G(u))du = 1/µ , (3.18)

and so
ˆ ∞

0
· · ·
ˆ ∞

0
π(n,y1, . . .yn)dyn . . .dy1 = π(0)

λ n

µnn!
, (3.19)

which is identical to the probability (3.2) that there are n customers present in the
system with exponential service times.

The decomposition of the stationary density of the supplemented process is typ-
ical of insensitive stochastic models. Consider the situation when lifetimes are ex-
ponential, but where we retain a notional labelling of customers. Then the flux
λ π(n− 1)/n into state n due to the arrival of the customer with label i is equal
to the flux µπ(n) out of state n due to the departure of the customer with label i.
It is this relationship, which crucially depends on the assumption that customers
arriving when n previous customers are present are allocated a label uniformly on
the set 1, . . . ,n+1, that ensures that equation (3.13) is satisfied by the product-form
expression (3.14). This relationship is reflected in the partial balance equations

λ π(n−1) = nµπ(n), (3.20)

which are a finer set of equations than the equations (3.1) that define the stationary
distribution of the Markovian model that arises when service times are taken to be
exponential. Insensitivity is usually associated with the satisfaction of some form of
partial balance equation of this type.

3.3 The Erlang Loss System as a GSMP

In this section we shall discuss insensitivity in the Erlang Loss System by modelling
it as a GSMP. We shall continue to denote the arrival rate by λ , the number of servers
by C and assume that the service time distribution G has mean 1/µ and a density g
on [0,∞). The difference between the analysis here and that in Section 3.2 will lie
in the method that we use for labelling lifetimes. Instead of shuffling labels up and
down when customers arrive and depart in such a way that, when n customers are
present, labels 1, . . . ,n are all in use, we shall assign a label to each of the servers
and denote the state by the subset of labels {1, . . . ,C} that are currently present.
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So instead of denoting our supplemented states by (n,y1, . . . ,yn), reflecting the
situation that there are n customers in the queue with the ith labelled customer hav-
ing spent service time yi, we shall use states of the form (φ ,ys1 , . . . ,ysn), where
φ = {s1, . . . ,sn} is a subset of {1, . . . ,C} recording the labels of the servers at which
customers are present and ysi is the spent service time of the customer at server si. It
should be immediately apparent to the reader that this is a finer state classification
than we used in Section 3.2: many states φ have n customers present. For s 6∈ φ , we
shall write φ + s for the state φ ∪{s}, and for s∈ φ , we shall write φ − s for the state
φ \ {s}. Also we shall write |φ | for the number of elements in the set φ and φC for
the set {1, . . . ,C}.

As in Section 3.2, we need to make an assumption about how arriving customers
are allocated to servers. Thus we have
Assumption B

1. Customers arriving when the state is φ are allocated to each of the C− |φ | free
servers with probability 1/(C−|φ |).

No assumption about what happens when a customer departs is necessary: the label
of the corresponding server is simply deleted from the current state.

When the service times are exponential, it is unnecessary to keep track of the
spent service times and the stationary probabilities of the resulting Markov chain
satisfy the equations

λ π( /0) =
C

∑
i=1

µπ({i}) (3.21)

(λ + |φ |µ)π(φ) = ∑
s∈φ

λ
C−|φ |+1

π(φ − s)+ ∑
s 6∈φ

µπ(φ + s) (3.22)

Cµπ(φC) =
C

∑
s=1

λ π(φC− s). (3.23)

The solution that sums to unity is

π(φ) = π(0)
λ |φ |(C−|φ |)!

µ |φ |C!
(3.24)

where

π(0) =
1

∑C
i=0 ρ ii!

(3.25)

and, as in Section 3.1, ρ = λ/µ .
For any φ , the expression on the right hand side of equation (3.24) depends on

φ only through |φ | and so, conditional on the fact that |φ | = n the distribution is
uniform. Summing over the

(C
n

)
states φ with |φ | = n, we see that the probability

that there are n customers present in the system is
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π(n) = π(0)
λ n

µnn!
, (3.26)

which agrees with equation (3.2).
When the service times are generally-distributed, we can supplement the state

by the spent service time of the customers at each of the servers and use an ap-
proach similar to that of Section 3.2 to derive equations for the stationary densities
π(φ ,ys1 , . . . ,ysn) of the supplemented system. These are

λ π( /0) =
C

∑
i=1

ˆ ∞

0
π({i},yi)h(yi)dyi (3.27)

∑
s∈φ

∂
∂ys

π(φ ,ys1 , . . . ,ysn) = −
[

λ + ∑
s∈φ

h(ysi)

]
π(φ ,ys1 , . . . ,ysn) (3.28)

+ ∑
s 6∈φ

ˆ ∞

0
π(φ + s,ys1 , . . . ,ysn ,ys)h(ys)dys

π(φ + s,ys1 , . . . ,ysn ,0) =
λ

C−n
π(φ ,ys1 , . . . ,ysn) (3.29)

∑
s∈φC

∂
∂ys

π(φ ,ys1 , . . . ,ysn) = −∑
s∈φ

h(ysi)π(φC,ys1 , . . . ,ysn) (3.30)

where n = |φ |. Like equations (3.10), (3.11) and (3.13), equations (3.27), (3.28)
and (3.29) and (3.30) have a solution that factorises into a product form over the
generally distributed lifetimes. This is

π(φ ,ys1 , . . . ,ysn) = π(0)
λ n(C−n)!

C!

n

∏
i=1

(1−G(ysi)). (3.31)

Integrating out the supplementary variables gives us,
ˆ ∞

0
· · ·
ˆ ∞

0
π(φ ,ys1 , . . . ,ysn)dysn . . .dys1 = π(0)

λ n(C−n)!
µnC!

, (3.32)

which demonstrates the insensitivity. The fact that (3.31) satisfies equations (3.27),
(3.28) and (3.29) and (3.30) again follows from a partial balance result. Specifically,
the stationary distribution of the Markovian system when all service times are taken
to be exponential not only satisfies equations (3.21), (3.22) and (3.23) but it also
satisfies the finer balance equations

λ
C−|φ |π(φ) = µπ(φ + s) (3.33)

for all φ 6= φC. This embodies that notion that, in the Markovian system, the proba-
bility flux into state φ + s due to the arrival of the customer at server s is equal to the
probability flux out of state φ + s due to the departure of the customer at server s.
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There are some subtle differences between the insensitivity result that we have
discussed in this section and the one that we proved in Section 3.2. First, observe that
expression (3.32) implies insensitivity of the stationary probability that the state of
the queue is φ . This is a stronger statement than saying that the stationary probability
that there are n customers present is insensitive.

Second, under the formulation of Section 3.2, particular lifetimes change their
label when arrivals and departures occur whereas, in the formulation of this section,
lifetimes retain the label for their entire duration. A consequence of this is that,
in the model of Section 3.2, all service times have to be chosen from the same
distribution while, in the formulation of this section, service times at a particular
server can have their own server-specific distribution. These distributions need not
even have the same mean, although this would necessitate a change to the form of
the stationary distribution (3.24). While this will not usually present extra flexibility
from a modelling point of view, since we usually want customers at a queue to
select their service times from the same distribution, this distinction illustrates that
the result in this section can be thought of as being more general that that of Section
3.2.

This observation might lead us to ask why we do not always use a GSMP for-
mulation rather than a symmetric queue formulation. The reason for this is that the
GSMP formulation works only when there are finitely-many possible labels avail-
able to be distributed to the lifetimes. This is the case for queueing models when
there is finite waiting room, but not when the possible number in the queue is un-
bounded. In this case, it is impossible for an arriving customer to choose a label
(that is a server) uniformly from infinitely-many possibilities, as would be required
by the analogue of Assumption B. Without this assumption, it is not possible to
show that equations analogous to (3.27) to (3.30) are satisfied by the product-form
distribution (3.31). The only alternative is the relabelling up and down of customers
at arrival and departure points that we used in our formulation of Section 3.2. In this
way, labels need only be considered for customers that are actually present in the
queue, rather than for all the customers that could potentially come to the queue.
This issue was discussed in more detail by Barbour [2] and Schassberger [42].

3.4 Insensitive Queueing Networks

As we mentioned in Section 3.1, one of the major reasons that the study of insensi-
tive systems became popular in the last part of the twentieth century was that some
classes of queueing network with wide applicability were shown to be insensitive.
In particular, the networks studied by Baskett, Chandy, Muntz and Palacios [4] and
Kelly [27, 28] were used as models for a number of different systems of engineering
significance, particular in telecommunications and computer networking.

The essential observation of [4, 27, 28] and the other papers on insensitive queue-
ing networks that followed them (see Section 3.1 for a discussion) is that many types
of insensitive queue can be inserted into a network and the whole system will retain
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the insensitivity property. Because it has finite capacity, the Erlang loss queue is not
a queue that can be inserted into such a network, at least in a natural way, so we
shall illustrate this phenomenon using the M/G/∞ queue, which we can think of as
a ‘loss queue with infinite capacity’. The model that we shall discuss below is sim-
pler that that used in the work of either Baskett, Chandy, Muntz and Palacios [4] or
Kelly [27, 28], who allowed for queues to contain multiple customer types and for
the routing to depend on customer type. However, our analysis contains the essential
idea behind the justification for insensitivity in all the queueing network models in
which it is known to occur, and the context is simple enough for the reasoning to be
straightforward.

Consider an M/G/∞ queue at which customers arrive according to a Poisson
process with parameter λ , and where the service time distribution G has density
g and mean 1/µ . Assuming that labels are allocated to customers in accord with
assumption A, an analysis similar to that in Section 3.2 can be used show that the
stationary probability density π(n,y1, . . . ,yn) that there are n customers present, and
the spent service time of the customer with label i is yi, is given by

π(n,y1, . . . ,yn) = π(0)
λ n

n!

n

∏
i=1

(1−G(yi)). (3.34)

where π(0) is equal to exp(−ρ). By integrating with respect to the yi, we can see
that the stationary probability density that there are n customers present depends on
G only through the fact that its mean is 1/µ , and so this queue is insensitive.

Now consider a finite collection of K such queues, the kth of which has external
arrivals following a Poisson process with parameter λk, and where the service time
distribution Gk has density gk, hazard function hk and mean 1/µk. When a customer
completes service at queue j, it moves to queue k with probability r jk or departs the
network entirely with probability r j0, where ∑K

k=0 r jk = 1. These routing probabil-
ities are such that every customer eventually will, with probability one, depart the
network.

When the service times are exponentially-distributed the whole system can be
modelled by a continuous-time Markov chain with states n = (n1, . . . ,nK), with nk
the number of customers in queue k, and stationary distribution π(n) that satisfies
the equations

K

∑
k=1

(λk + nkµk)π(n) =
K

∑
k=1

λkI(nk > 0)π(n− ek)+
K

∑
k=1

(nk +1)µkπ(n+ ek)rk0

+
K

∑
k=1

∑
j 6=k

(n j + 1)µ jI(nk > 0)π(n+ e j− ek)rk j, (3.35)

where ek is the unit vector with a one in the kth position. Equations (3.35) have
solution

π(n) =
K

∏
k=1

exp(−ηk)
ηnk

k

nk!
, (3.36)
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where ηk = αk/µk and α = (α1, . . . ,αK) satisfies the traffic equations

αk = λk + ∑
j 6=k

α jr jk. (3.37)

Summation of equation (3.37) over k gives us the result that

K

∑
k=1

λk =
K

∑
k=1

αkrk0. (3.38)

The key to establishing the product-form stationary distribution (3.36) is to use
equations (3.37) and (3.38) to show that, for all states n and queues k, this expression
satisfies the partial balance equations

nkµkπ(n) = λkI(nk > 0)π(n− ek)+ ∑
j 6=k

(n j +1)µ jI(nk > 0)π(n+ e j− ek)r jk,

(3.39)
and

K

∑
k=1

λkπ(n) =
K

∑
k=1

(nk + 1)µkπ(n+ ek)rk0. (3.40)

This is essentially the result of Jackson [20] that the stationary distribution of a net-
work of M/M/∞ queues factorises into a product over the queues. The fact that the
stationary distribution, defined to be the solution to equations (3.35), also satisfies
the partial balance equations (3.39) and (3.40) has important implications for insen-
sitivity. To see this, we need to expand the state description of the network so that
each service time has a label of its own.

Let the state of the network of M/G/∞ queues be defined by (n,y1, . . . ,yK) where
the vector yk = (yk1, . . . ,yknk) contains the spent service times of the customers at
queue k. We assume that labels are allocated to customers at queue k in accord with
assumption A, whether the arriving customer comes from outside the network or
from another queue. Using reasoning similar to that in Section 3.2, we can show
that the stationary density of the queueing network satisfies the partial differential
equations

K

∑
k=1

nk

∑
i=1

∂π(n,y1, . . . ,yK)

∂yki
=−

K

∑
k=1

[
λk +

nk

∑
i=1

hk(yki)

]
π(n,y1, . . . ,yK)

+
K

∑
k=1

nk+1

∑
i=1

ˆ ∞

0
π(n+ ek,y1, . . . ,yk + zi, . . .yK)hk(z)rk0dz, (3.41)

where yk + zi is short-hand notation for the vector (yk1, . . . ,yk(i−1),z,yki, . . . ,yknk ).
The boundary conditions are
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π(n+ ek,y1, . . . ,yk + 0i, . . . ,yK) =
λk

nk + 1
π(n,y1, . . . ,yk, . . . ,yK)

+ ∑
j 6=k

1
nk + 1

n j+1

∑
i=1

ˆ ∞

0
π(n+ e j,y1, . . . ,y j + zi, . . .yK)h j(z)r jkdz, (3.42)

where the nk + 1 in the denominator arises because a customer arriving at queue
k will choose any one of the nk + 1 available labels with equal probability. The
solution to equations (3.41) and (3.42) is

π(n,y1, . . . ,yK) =
K

∏
k=1

[
exp(−ηk)

αnk
k

nk!

nk

∏
i=1

(1−Gk(yki))

]
. (3.43)

This can be established by observing that relations analogous to equations (3.15)
and (3.16) hold at each of the queues. The relation corresponding to (3.15) im-
plies that the (k, i)th partial derivative on the left hand side of equation (3.41)
is balanced by the (k, i)th term of the form hk(yki)π(n,y1, . . . ,yK) on the right
hand side. The relation corresponding to (3.16), together with (3.38), implies that
−∑K

k=1 λkπ(n,y1, . . . ,yK) on the right hand side of equation (3.41) is balanced by the
integral term ∑K

k=1 ∑nk+1
i=1

´ ∞
0 π(n+ ek,y1, . . . ,yk + zi, . . .yK)hk(z)rk0dz. Using equa-

tion (3.37), it can easily be verified that expression (3.43) satisfies equations (3.42).
Integration of the stationary distribution (3.43) with respect to all of the spent

lifetimes yki gives us the fact that the stationary distribution of the occupancies at
each of the nodes is given by (3.36) for all choices of service time distributions
{Gk} that have means {µk}. It is instructive to think about the factors that lead to
this insensitivity result. These are the facts that

• that the stationary distribution of the Markovian network factorises into a product
form over the queues, and

• that the stationary distribution of the individual queues, with state spaces includ-
ing information on the spent service time of each customer, factorise into product
forms over the individual customers.

These factorisation properties have, in turn, arisen from partial balance properties:

• that the transition flux into state n of the Markovian network due to an arrival
at queue k is balanced by the transition flux out of state n due to a departure at
queue k, and

• that the transition flux into a state nk due to the arrival of the customer with label
i is balanced by the transition flux out of state nk due to the departure of the
customer with label i.

We can see that the two partial balance properties have led to the fact that the net-
work is insensitive. The second requirement can be shown to be satisfied by any
symmetric queue and thus any such queue can serve as a component in an insensitive
network. The first requirement follows from the fact that the routing of customers
is ‘of Jackson type’ and, in particular, that the rate of transition of customers from
queue j to queue k does not depend on the state at queue k. It is possible for these
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types of partial balance to be traded off in a restricted way and for a network still to
be insensitive. For example, if the routing matrix R = [r jk] is the transition matrix of
a reversible discrete-time Markov chain, then some types of dependence on the state
of the destination node, including blocking, can be incorporated (see, for example,
[17]). However, in general, the statement that insensitivity in a queueing network is
associated with partial balance holds. In the next section, we shall discuss the few
known examples of insensitivity that are not associated with partial balance.

3.5 Non-Standard Insensitive Models

In some queueing systems there has been observed a form of insensitivity which
does not fall into the class of insensitivity discussed above. This type of insensi-
tivity is not associated either with a product form of the supplemented stationary
distribution or with partial balance. The first example of such insensitivity was dis-
cussed by Jacobi [21], who showed that an Erlang loss system with one overflow
server is insensitive.

Another example was given by Wolff and Wrightson [52] who generalised a sys-
tem which was considered earlier by Chaiken and Ignall [6]. Wolff and Wrightson’s
system has two arrival streams to a two server loss system with stream-dependent
service time distribution. Stream 1 has preference for server 1, while stream 2 has
preference for server 2. If the state of the system were defined as the number of cus-
tomers of each type in the system then it would be an ordinary Erlang loss system
with two types of customer, which can be shown to be insensitive and to possess
product form using techniques similar to those discussed in Sections 3.2 and 3.3.

Wolff and Wrightson showed, however, that this system is still insensitive if the
states are defined by the busy servers, irrespective of which type of customer is
present at the server. It is interesting to note that the system with either of these state
definitions can be obtained by amalgamating states of a refined GSMP in which
both the position and type of each customer are recorded in the state space. The sta-
tionary distribution of this refined GSMP does not satisfy the partial balance equa-
tions analogous to equation (3.33) and hence is not insensitive. It appears that the
distribution-dependent components of the stationary state probabilities of the refined
process cancel out if the states are amalgamated according to either type or position.

Jacobi’s [21] result was built upon by Jansen [23] to come up with a class of
queues which are insensitive but do not possess product form over the supplemen-
tary variables. Jansen considered an Erlang loss system with C servers, m Poisson
arrival streams, with stream i having rate λi, and states φ ⊆ {1, . . . ,C} defining the
busy servers. He defined q j(φ , i) as the probability that a type-i customer, arriv-
ing to find a state φ , is allocated to server j, and derived a set of conditions on the
q j(φ , i), sufficient for the process to be insensitive. Jansen’s conditions were slightly
incorrect. However it is reasonably easy to show that the correct set of conditions is:
For j ∈ {1, . . . ,C} and i ∈ {1, . . . ,m},
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q j(φ , i)≤ 1
C− 1

(3.44)

for all φ such that |φ | < C−1, for j 6∈ φ and for all i,

q j(φ , i) =
1

C−|φ | ∑k∈φ
pk +

1
C−|φ |−1 ∑

k 6∈φ
pk (3.45)

where

pk =
∑m

l=1 λl [1− (C−1)qk(φ , l)]

∑m
l=1 λl

(3.46)

and, for all i and j
q j({1, . . . ,C}−{ j}, i) = 1. (3.47)

Jansen’s class of systems includes loss queues where the allocation of customers to
servers is “nearly random”. In particular if we take C = 2 so that q j(φ , i) ≤ 1 we
have complete freedom to choose allocation probabilities. A choice of q j(φ , i) = δi j

gives Wolff and Wrightson’s system.
The common thread in all of these “non-standard” insensitive systems is that

they apply in models where certain lifetimes are constrained to have the same dis-
tribution. Although partial balance is necessary and sufficient for the standard type
of insensitivity, the existence of these systems shows that we can have insensitivity
without partial balance if we insist that certain lifetimes have common distributions.
The only (to the author’s knowledge) clue to the form of the stationary distribution
for such a system, supplemented by variables to describe spent or residual lifetimes,
was given by Henderson [14], who presented a solution for the Laplace transform of
the equations for the supplemented stationary distribution of Wolff and Wrightson’s
model. Unfortunately, Miyazawa and Yamazaki [36] pointed out that Henderson
omitted the necessary step of verifying that the inverse Laplace transform of his
solution can be interpreted as a distribution function. Furthermore they presented a
family of solutions similar to Henderson’s. Since it is not possible for every member
of this family to be the Laplace transform of the supplemented stationary distribu-
tion of Wolff and Wrightson’s model, it is clear that the form of this distribution is
yet to be resolved.

3.6 Conclusion

In this paper, we have presented an introduction to insensitivity as it occurs in
stochastic models. Our approach has been to illustrate the main ideas using simple
special cases. Thus, in Sections 3.2 and 3.3, we illustrated insensitivity in symmet-
ric queues and insensitivity in GSMPs both within the context of an Erlang Loss
model. In Section 3.4 we used a network of infinite server queues to illustrate in-
sensitivity in a product-form queueing network. Finally, in Section 3.5 we discussed
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non-standard insensitive models in which insensitivity is not associated either with
partial balance or a product-form supplemented stationary distribution.
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Chapter 4

Palm Calculus, Reallocatable GSMP and
Insensitivity Structure

Masakiyo Miyazawa

Abstract This chapter discusses Palm calculus and its applications to various pro-
cesses including queues and their networks. We aim to explain basic ideas behind
this calculus. Since it differs from the classical approach using Markov processes,
we scratch from very fundamental facts. The main target of Palm calculus is station-
ary processes, but we are also interested in its applications to Markov processes. For
this, we consider piece-wise deterministic processes and reallocatable generalized
Markov processes, RGSMP for short, and characterize their stationary distributions
using Palm calculus. In particular, the insensitive structure of RGSMP with respect
to the lifetime distributions of its clocks is detailed. Those results are applied to
study the insensitive structure of product form queueing networks with respect to
service requirement distributions.

4.1 Introduction

In queues and their networks, it is typical that their time evolutions substantially
change only when customers arrive or complete service. That is, essential changes
occur only at embedded instants on the continuous time axis. This is a prominent
feature of stochastic models for those systems. Such time instants are caused typi-
cally by arrivals and departures of customers, and often called discrete events. As
is well known, it motivates to use discrete time stochastic processes embedded at
those time instants. However, sample paths of such embedded processes may lose
key information on the system evolution. Thus, they may be only useful in limited
situations. Of course, those sample paths can retain full information of the system if
we supplement them with all information between the embedded instants. However,
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it causes their descriptions to be complicated, and therefore analytical tractability
may be lost.

In this chapter, we introduce a stochastic model to capture those discrete time
nature in the continuous time setting. We aim to avoid to simultaneously use dif-
ferent processes for describing discrete events under the continuous time setting.
Instead of doing so, we introduce different probability measures on the same sam-
ple space. They describe observations at times of interests. That is, they are used to
compute characteristics of system states at continuous time or various embedded in-
stants. When such characteristics are expectations of some random quantities, they
are called time or event averages, respectively. Under certain stationary assump-
tions, it is shown that those probability measures are nicely related. This leads to
useful relationship among time and event averages. It is referred to as Palm cal-
culus since the probability measures concerning embedded epochs are called Palm
distributions.

We apply this Palm calculus to stochastic processes arisen in queues and their
networks. However, the Palm calculus itself may not be convenient since it usually
involves integrations over the time axis. To ease this, we introduce a rate conserva-
tion law, which may be considered as a differential form of the Palm calculus.

Those results by the Palm calculus are very general in the sense that they only
require the stationary assumption. However, we may need more specific models to
compute characteristics in closed form. For this, we consider a piece-wise deter-
ministic Markov process, PDMP for short. We then specialize it as a reallocatable
generalized semi-Markov process, RGSMP for short. We are interested in when
RGSMP has a certain nice form of the stationary distribution. It turns out that con-
ditions for this form are closely related to those for a queueing network to have a
product form stationary distribution. Under the same conditions, we also consider
the conditional mean sojourn time of a customer in a queue or in a network given
total amount of his/her work.

In this chapter, we consider analytical tools for studying queueing models rather
than just to collect results for applications. However, we divide this chapter into
small sections to highlight each topic. We expect the reader has some background
in introductory levels of the probability and measure theories. Some descriptions
particularly in the first few sections may look too formal since they are different
from those in the standard queueing literature. However, arguments are essentially
elementary. A problem is probably in the language that we use. So, we provide its
details.

4.2 Shift operator group

When we consider a stochastic process for queueing models, we usually do not
explain the probability space, i.e., the triplet of a sample space, a σ -field and a
probability measure on it under which the process is defined. This is because the
probability space is obviously identified. However, we here start from this very ba-
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sic description since we will consider different probability measures on the same
sample space and σ -field. We also play with different stochastic processes which
have a common time axis. For this, it is convenient to implement a time axis in the
sample space. Thus, we introduce a time-shift operator on it.

Let (Ω ,F) be a measurable space, and let θt be an operator on Ω , i.e., a mapping
from Ω to Ω for each real number t ∈R. Since we consider a function of time t and
analytic operations on it, we need conditions to well define them. Thus, we formally
define the operator θt in the following way.

Definition 4.1. For the operator θt on Ω for each t, define function ϕ from R×Ω
to Ω by ϕ(t,ω) = θt(ω), and let B(R) be the Borel σ-field on R. If the condition:

(4.2a) ϕ is B×F/F-measurable, i.e., ϕ−1(A) ∈B×F for all A ∈ F,

is satisfied, then {θt ;t ∈R} is said to be measurable. In addition to this, if

(4.2b) For any s,t ∈R, θs ◦θt = θs+t , namely,

θs(θt(ω)) = θs+t(ω), ω ∈Ω ,

is satisfied, then {θt} is said to be a shift operator group.

Example 4.1. A natural candidate for the sample space Ω for θt to be defined is
the set of functions on R, which represents the time axis. For example, let S be
a complete, separable metric space, which is called Polish space, and let B(S) be
the Borel σ -field on S. Thus, we have measurable space (S,B(S)). Let Ω be the
set of S-valued functions on R whose discontinuous points are countable at most
and are right continuous. Since ω ∈ Ω is a function of time, it can be written as
{ω(t)}. The σ -field F can be generated from all the following subsets of Ω for all
n≥ 1,ti ∈ R,Bi ∈B(S) for i = 1,2, . . . ,n.

{ω ∈Ω ;ω(ti) ∈ Bi, i = 1,2, . . . ,n}.

Then, we can define the shift operator group θt through

θt(ω)(s) = ω(s+ t), s,t ∈R.

We refer to this θt as a natural shift operator.

We next define stationarity with respect to the shift operator.

Definition 4.2. Let {θt} be an operator group on a measurable space (Ω ,F). If a
probability measure on (Ω ,F) satisfies

P(θ−1
t (A)) = P(A), t ∈R,A ∈ F,

then P is said to be θt -stationary, or stationary with respect to {θt}.

Up to now, we have only considered the time to be real valued, i.e., continuous.
We are also interested in discrete time. In this case, the shift operator on Ω is denoted
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by ηn for n ∈ Z, where Z is the set of all integers. Obviously, conditions (4.2a) and
(4.2b) are replaced by

(4.2c) For any n ∈ Z, η−1
n (A) ∈ F for A ∈ F,

(4.2d) For any m,n ∈ Z, ηm ◦ηn = ηm+n.

Similarly to θt , {ηn;n ∈ Z} is said to be measurable if (4.2c) is satisfied, and said
to be an discrete time shift operator group if (4.2c) and (4.2d) are satisfied. Further-
more, P is said to be ηn-stationary if P(η−1

1 (A)) = P(A) for all A ∈ F.
We next apply the shift operators to functions on Ω , that is, random variables

and sample paths. Throughout this chapter, we assume that random variables and
states of stochastic processes take values in a Polish space S with the Borel σ -
field B(S). However, in our applications, it is sufficient to assume that S is a finite
dimensional Euclid space, i.e., real valued vector space. As usual, we also assume
that a stochastic process is right-continuous with left limits.

Definition 4.3. Let {θt} be an operator group on (Ω ,F), and let X be a random
variable on this measurable space. Define random variable X ◦θt as

X ◦θt(ω) = X(θt(ω)), ω ∈Ω .

With this notation, a stochastic process {X(t)} defined on (Ω ,F) is said to be con-
sistent with θt if the following condition is satisfied.

X(s)◦θt = X(s+ t), s,t ∈ R

Similarly, we define the consistency of a discrete time process {Xn} with respect to
a discrete time shift operator ηn by

Xm ◦ηn = Xm+n, m,n ∈ Z.

The following definitions of stationary processes are standard.

Definition 4.4. A stochastic process {X(t)} is said to be stationary under P if , for
each fixed n≥ 1,ti ∈ R,Bi ∈B(S) for i = 1,2, . . . ,n,

P(X(ti +u) ∈ Bi, i = 1,2, . . . ,n)

is unchanged for all u∈R. Similarly, the stationarity of a discrete time process {Xn}
under P0 is defined, where P0 is another probability measure on (Ω ,F).

The next lemma is immediate from the definitions of the shift operators, the
consistency and the stationarity.

Lemma 4.1. If P is a θt -stationary probability measure and if {X(t)} is consistent
with {θt}, then {X(t)} is a continuous time stationary process under P. Similarly, if
P0 is ηn-stationary and if {Xn} is consistent with {ηn}, then {Xn} is a discrete time
stationary process under P0.
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It should be noted that we are concerned with different probability measures in
Lemma 4.1, but the underlying measurable spaces, i.e., the sample space and the
set of all events, are the same. This allows us to directly relate X(t) to Xn through
ω ∈Ω .

Example 4.2. How one can create a sample space Ω with operations θt and ηn for a
queueing model ? Let us consider this problem by a small example. Since an actual
system usually starts at some fixed time, we assume that a queueing system starts
with no customer at time c0≡ 0. Assume that this system is closed with no customer
just before time c1. We represents the evolution of this system on the time interval
by a function f from [c0,c1) to S, where S is a finite dimensional real vector space.
At time c1, the system restarts and repeats the same trajectory until time c2 ≡ 2c1.
If the system operates in this manner continuously, then we have a trajectory ω+

0 :

ω+
0 (t) =

∞

∑
n=1

f (t− cn−1)1(cn−1 ≤ t < cn), t ≥ 0,

where cn = nc1, and 1(·) is the indicator function of the statement “·”, i.e., it takes 1
(or 0) if the statement is true (or false). We next shift the starting time c0 to−kc1 for
positive integer k, and letting k to infinity, we have the double sided trajectory ω0:

ω0(t) =
+∞

∑
n=−∞

f (t − cn−1)1(cn−1 ≤ t < cn), t ≥ 0.

Let ω (u)
0 (t) = ω0(t− u) for u ∈ [0,c1), and define the sample space Ω as

Ω = {ω (u)
0 ;u ∈ [0,c1)}.

Since this sample space is the set of functions on R and closed under time shift, we
have a natural shift operator θt . Furthermore, let

ηn ◦ω (u)
0 (t) = ω0(t− cn), u ∈ [0,c1),t ∈ R,n ∈ Z.

Then, {ηn} is a discrete time shift operator group. Obviously, this operator group is
stationary for any probability measure. Since f is a deterministic function, a prob-
ability measure on (Ω ,F) can be determined by that on [0,c1)×B([0,c1)). In par-
ticular, if this distribution is uniform on [0,c1), then P is stationary with respect to
the natural shift operator group {θt}.

This example is trivial in the sense that all sample paths are generated by a single
function {ω0(t)}. Nevertheless, it can be used a prototype of the probability space
for shift operators. For example, if we change cn−cn−1 to be i.i.d. (that is, indepen-
dently and identically distributed) random variables and functions on the intervals
[cn−1,cn) to be also i.i.d. random functions, then, using the same uniform distribu-
tion, we can construct the probability measure which is stationary with respect to the
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natural shift operator group {θt}. This construction will be systematically studied
in the following two sections.

4.3 Point processes

We introduce a process for randomly chosen discrete time instants on the time axis.
This process is called a point process, and will be used to generate a discrete time
process, called embedded process, from a continuous time process. Thus, the point
process will make a bridge between continuous time and discrete time embedded
processes.

Definition 4.5. N is called a point process on the line if it satisfies the following two
conditions.

(4.3a) N is an integer-valued and locally finite random measure on (R,B(R)), that
is, each ω ∈ Ω , N(·)(ω) is an integer-valued measure on (R,B(R)) such that
N(B)(ω) < ∞ for any bounded B ∈B(R) and ω ∈Ω .

(4.3b) For all n≥ 1, Bi ∈B(R) and ni ∈ Z+ ≡ {0,1, . . .} for i = 1,2, . . . ,n,

{N(Bi) = ni, i = 1,2, . . . ,n} ∈ F.

Furthermore, if N({t})≤ 1 for all t ∈R, then N is said to be simple.

If we remove the assumption that N(B) is integer-valued, we can similarly define
a random measure, but we do not need this generality in this chapter except for
Section 4.11.

Similar to the case of a stochastic process, we define the operation of θt to point
process N as

N(B)◦θt(ω) = N(B)(θt (ω)), t ∈ R,ω ∈Ω ,B ∈B(R).

In what follows, we assume

N(B)◦θt = N(t +B), t ∈ R,B ∈B(R),

where t + B = {t + u;u ∈ R}. In this case, N is said to be consistent with θt . This
is meant that N and θt have a common time axis similar to the case of a stochastic
process.

The stationarity of point process N is defined similar to that of a stationary
process. That is, N is said to be stationary if, for all n ≥ 1, k1, . . . ,kn ∈ Z+ and
B1, . . . ,Bn ∈B(R)

P(N(t + B1) = k1,N(t +B2) = k2, . . . ,N(t + Bn) = kn)

is unchanged for all t ∈ R.
The next lemma is a point process version of Lemma 4.1.
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Lemma 4.2. If P is θt -stationary and if N is consistent with θt , then N is stationary
under P.

Note that N((0,t]) with t > 0 can be considered to be a counter for random events
that occur in the time interval (0,t]. Because of this, a point process is also called a
counting process. From this viewpoint, it may be convenient to define the time when
the discrete events occur. Let

Tn =

{
inf{t > 0;N((0,t])≥ n}, n≥ 1,
sup{t ≤ 0;N((t,0])≥ 1−n}, n≤ 0.

This Tn is said to be the n-th counting time of N. Since Tn = Tn+1 may occur for
n 6= 0, Tn may not be strictly increasing in n. We thus have

. . .≤ T0 ≤ 0 < T1 ≤ . . . (4.1)

From the definition of Tn, we have

N(B) =
+∞

∑
n=−∞

1(Tn ∈ B), B ∈B(R),

and the right-hand side of this equation can be written as

ˆ +∞

−∞
1(u ∈ B)N(du).

Remind that 1(·) is the indicator function of the statement “·” (see its definition in
Example 4.2).

In the remaining part of this section, we assume that N is a simple point process.
In this case, Tn is strictly increasing in n. For convenience, let

N(t) =

{
N((0,t]), t > 0,
−N((t,0]), t ≤ 0.

Since N is simple, N(Tn) = n for n≥ 1. Note that N is assumed to be consistent with
the shift operator θt . This yields, for n≥ 1 and s > 0,

Tn ◦θs = inf{t > 0;N ◦θs((0,t]) = n}
= inf{t > 0;N((s,s+ t]) = n}
= TN(s)+n− s. (4.2)

For s≤ 0 and n≤ 0, we can get the same formula (4.2). In particular, letting s = Tm

in (4.2), N(s) = m yields

Tn ◦θTm = Tm+n−Tm.

Thus, θTn shifts the counting number. From this observation, we define ηn for n≥ 1
as
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ηn(ω) = θTn(ω)(ω), ω ∈Ω . (4.3)

Lemma 4.3. For simple point process N, {ηn;n∈Z} is a discrete time shift operator
group on (Ω ,F).

Proof. From (4.3), we have

ηn ◦ηm = θTn◦ηm ◦ηm

= θTm+n−Tm ◦θTm

= θTm+n = ηm+n.

Hence, ηn satisfies (4.2d), which corresponds with (ii) of Definition 4.1. To see
condition (4.2c), let Φ(ω) = (Tn(ω),ω) for ω ∈ Ω , which is a function from Ω to
R×Ω . This function is F/(B(R)×F)-measurable. We next let ϕ((t,ω)) = θt(ω),
which is a (B(R)×F)/F measurable function from R×Ω to Ω . Hence, ηn = ϕ ◦Φ
is F/F-measurable, which completes the proof.

Thus, we get the discrete time shift operator ηn from the continuous time shift
operator θt . The ηn describes the time shift concerning the point process N. The
following observation is intuitively clear, but we give a proof since it is a key of our
arguments.

Lemma 4.4. Suppose that stochastic process {X(t);t ∈R} and simple point process
N are consistent with θt . Define discrete time process {Yn;n ∈ Z} by Yn = X(Tn) for
the counting times {Tn} of N. Then, {Yn} is consistent with ηn.

Proof. From (4.3) and the fact that X(t) is consistent with θt , we have

Yn ◦ηm = X ◦ηm(Tn ◦ηm)

= X ◦θTm(Tm+n−Tm)

= X(Tm+n−Tm +Tm) = Ym+n.

Thus, Yn is indeed consistent with ηn.

We next add information to the counting times Tn of N. This information is called
mark, and the resulted process is called a marked point process. This process is
formally defined in the following way. Let N be a simple point process which is
consistent with θt , and let {Tn} be its counting times. Further, let {Yn} be a discrete
time process with state space by K, where K is assumed to be a Polish space. Then,
Ψ ≡ {(Tn,Yn)} is called a marked point process, and Yn is said to be a mark at the
n-th point Tn.

Define a random measure MΨ on (R×K,B(R)×B(K)) as

MΨ (B,C) =
+∞

∑
n=−∞

1(Tn ∈ B,Yn ∈C), B ∈B(R),C ∈B(K)

where B(K) is the Borel σ -field on K. If we have, for all t ∈ R,
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MΨ (B,C)◦θt = MΨ (B + t,C), B ∈B(R),C ∈B(K),

then Ψ is said to be consistent with θt . In particular, if {Yn} is consistent with ηn ≡
θTn , then MΨ is consistent with θt . In fact, from (4.2), we have

{Tn ◦θt ∈ B}= {TN(t)+n ∈ B + t}.

On the other hand, Yn = Y0 ◦ηn yields

Yn ◦θt(ω) = Y0(θTn◦θt(ω)(θt(ω))

= Y0(θTN(t)(ω)+n(ω)(ω)) = YN(t)(ω)+n(ω).

Hence, the claim is proved by

MΨ (B,C)◦θt =
+∞

∑
n=−∞

1(TN(t)+n ∈ B+ t,YN(t)+n ∈C) = MΨ (B + t,C).

We also define the stationarity of Ψ similar to N. Namely, if, for all n and Bi ∈
B(R),Ci ∈B(K) (i = 1,2, . . . ,n)

P(MΨ (B1 + t,C1),MΨ (B2 + t,C2), . . . ,MΨ (Bn + t,Cn))

is unchanged for all t ∈R, then Ψ is said to be stationary under P. Similarly to 4.2,
we have the following fact, whose proof is left to the reader.

Lemma 4.5. If P is θt -stationary and if marked point process Ψ is consistent with
θt , then Ψ is stationary under P.

4.4 Palm distribution

One may wonder whether P can be θt -stationary and ηn-stationary simultaneously.
This may look possible, but it is not true. To see this, we consider time shift opera-
tions under P assuming that it is θt -stationary.

We first note that the distribution of {Tn + t;n∈ Z} is unchanged under P for any
t ∈ R by the θt -stationarity. Hence, shifting the time axis does not change the prob-
ability measure. We now shift the time axis subject to the uniform distribution on
the unit interval [0,u] independently of everything else for a large but fixed number
u > 0. The choice of this u is not essential in the subsequent arguments, but think-
ing of the large u may be more appearing. The renumbered {Tn} still has the same
distribution because P is unchanged. Under such time shifting, Tn is changed to T1

if the time interval (Tn−1,Tn] contains the origin. Because the longer time interval
has more chance to include the origin, T1−T0 would be differently distributed from
Tn+1−Tn for n 6= 0, where the numbers n of Tn are redefined after the time shifting.
On the other hand, if P is ηn-stationary, then we have
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(T1−T0)◦ηn = Tn+1−Tn,

which implies that T1− T0 and Tn+1− Tn are identically distributed. Hence, it is
impossible that P is θt -stationary and ηn-stationary simultaneously.

This observation motivates us to introduce a convenient probability measure for
ηn.

Definition 4.6. Suppose that P is θt -stationary, point process N is consistent with θt

and has a finite intensity λ ≡N((0,1). Define nonnegative valued set function P0 on
F as

P0(A) = λ−1E
(ˆ 1

0
1θ−1

u (A)N(du)
)
, A ∈ F, (4.4)

where 1A is the indicator function of set A, i.e., 1A(ω) = 1(ω ∈ A). Note that
1θ−1

u (A)(ω) = 1A(θu(ω)) = (1A ◦ θu)(ω). Then, it is easy to see that P0 is a prob-
ability measure on (Ω ,F), which is referred to as a Palm distribution concerning N.
Note that N is not necessarily simple in this definition.

Remark 4.1. (4.4) is equivalent to that, for any function f from Ω to R which is
F/B(R)-measurable and either bounded or nonnegative, the following equation
holds.

E0( f ) = λ−1E
(ˆ 1

0
f ◦θuN(du)

)
, (4.5)

where E0 represents the expectation concerning P0.

Let A = {T0 = 0} in (4.2), then, for any u ∈ R,

θ−1
u (A) = {ω ∈Ω ;θu(ω) ∈ A}

= {T0 ◦θu = 0}= {TN(u) = u}.

Furthermore, since N({u})≥ 1 implies TN(u) = u, we have, from (4.4),

P0(T0 = 0) = λ−1E(N((0,1])) = 1.

Hence, N has a mass at the origin under P0. This means that P0 is a conditional
probability measure given N({0})≥ 1.

The following result is a key to relate P0 to P when P is θt -stationary, where P0 is
the Palm distribution concerning N. The formula (4.6) below is referred to as either
Campbell’s or Mecke’s formula in the literature.

Lemma 4.6. Let {X(t)} be a nonnegative valued stochastic process, then we have

E
(ˆ +∞

−∞
X(u)◦θuN(du)

)
= λE0

(ˆ +∞

−∞
X(u)du

)
. (4.6)
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Proof. Define a nonnegative random variable f as

f =

ˆ +∞

−∞
X(s)ds =

ˆ +∞

−∞
X(s+ u)ds.

Substituting this into (4.5), we obtain (4.6) through the following computations.

λ E0

(ˆ +∞

−∞
X(s)ds

)
= E

(ˆ 1

0

(ˆ +∞

−∞
X(s+u)◦θuds

)
N(du)

)

=

ˆ +∞

−∞
E
(ˆ +∞

−∞
1(0 < u < 1)X(s+u)◦θuN(du)

)
ds

=

ˆ +∞

−∞
E
(ˆ +∞

−∞
1(0 < u < 1)X(s+u)◦θu+sN(du + s)

)
ds

=

ˆ +∞

−∞
E
(ˆ +∞

−∞
1(0 < u− s < 1)X(u)◦θuN(du)

)
ds

= E
(ˆ +∞

−∞

ˆ u

u−1
dsX(u)◦θuN(du)

)

= E
(ˆ +∞

−∞
X(u)◦θuN(du)

)
,

where the third equation is obtained using the fact that P is θt -stationary.

It is notable that {X(t)} in 4.6 is not necessarily consistent with θt , and therefore
it is not necessary stationary under P. The essence of (4.6) lies in the shift invariance
of P and Lebesgue measure on R.

Example 4.3 (Little’s formula). We derive a famous formula due to Little [20] using
4.6. Consider a service system, where arriving customers get service and leave. Let
Tn be the n-th arrival time, where Tn is also defined for n ≤ 0. Let N be a point
process generated by these Tn, and let θt be a shift operator on Ω . We assume that
N is consistent with θt . Let Un be the sojourn time of n-th customer in system. We
also assume that {Un;n ∈ Z} is consistent with ηn defined by (4.3).

Then, the number of customers L(t) in system at time t is obtained as

L(t) =
+∞

∑
n=−∞

1(Tn ≤ t < Tn +Un).

Assume that L(t) is finite for all t ∈ Z. Let N(s) = N((0,s]), then Tn ◦θs = TN(s)+n−
s, Un = U0 ◦ηn and ηn ◦θs = θTN(s)+n

. Hence,

L(t)◦θs =
+∞

∑
n=−∞

1(TN(s)+n ≤ s+ t < TN(s)+n +Un) = L(s+ t),

so {L(t)} is consistent with θt . Assume that P is θt -stationary and λ ≡ E(N((0,1]))
is finite. Thus, {L(t)} is a stationary process under P.
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Let X(u) = 1(T0 ≤−u < T0 +U0), then we have

ˆ +∞

−∞
X(u)du = U0,

ˆ +∞

−∞
X(u)◦θuN(du) =

+∞

∑
n=−∞

1(0≤−Tn < Un) = L(0).

Hence, 4.6 yields

E(L(0)) = λE0(U0). (4.7)

This is called Little’s formula.

Let Ψ = {(Tn,Yn)} be a marked point process which is consistent with θt , and
let N be a point process generated by {Tn} with a finite intensity λ ≡ E(N(0,1]). In
4.6, for each fixed B ∈B(R),C ∈B(K), let

X(u) = 1(u ∈ B,Y0 ∈C), t > 0.

Since
ˆ +∞

−∞
X(u)◦θuN(du) =

+∞

∑
n=−∞

1(Tn ∈ B,Yn ∈C),

(4.6) yields

E(MΨ (B,C)) = λ |B|E0(Y0 ∈C), t > 0, (4.8)

where |B|=
´

B du, that is, if B is an interval, then |B| is the length of B. From this,
we have known that measure E(MΨ (B,C)) on (R×K,B(R)×B(K)) is the product
of Lebesgue measure and the distribution of Y0 under P0.

Another interesting conclusion of 4.6 is the orderliness of a simple point process.

Corollary 4.1. Assume N is a simple point process that is consistent with θt and has
a finite intensity λ , then

lim
t↓0

1
t

E(N(T1,t];T1 < t) = 0, (4.9)

and therefore

lim
t↓0

1
t

P(θ−1
T1

(A),T1 ≤ t) = λP0(A), A ∈ F. (4.10)

Proof. Since N(T1,t] =
´ t

0 1(u > T1)N(du) for t > T1 and T1 ◦θ−u = T−N(−u,0]+1 +u
for u > 0, 4.6 yields
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E(N(T1,t];t > T1) = E

(
ˆ t

0
(1(u > T1)◦θ−u)◦θuN(du)

)

= E

(
ˆ t

0
1(T−N(−u,0]+1 < 0)◦θuN(du)

)

= λE0

(
ˆ t

0
1(T−N(−u,0]+1 < 0)du

)
.

Since P0(T0 = 0) = 1, the indicator function 1(T−N(−u,0]+1 < 0) vanishes as u ↓ 0
(see also (4.1)). Hence, dividing both sides of the above equation by t and letting
t ↓ 0, we have (4.9) by the mean value theorem of an elementary calculus. To get
(4.10), we apply 4.6 for X(u) = 1(0 < u≤ t)1A for t ≥ 0 and A ∈ F, then

λ tP0(A) =

(
ˆ t

0
1A ◦θuN(du)

)

= P(θ−1
T1

(A),T1 ≤ t)+ E

(
ˆ t

T1+
1A ◦θuN(du)

)
.

Dividing both sides by t and letting t ↓ 0, (4.9) yields (4.10), where the plus sign
at T1 in the integral indicates that the lower point T1 is not included in the integral
region.

Note that (4.10) gives another way to define the Palm distribution P0. This may
be more intuitive, but the limiting operation may not be convenient in addition to
the restriction to a simple point process.

4.5 Inversion formula

We next present basic properties of Palm distribution P0 and to give a formula to get
back P from P0 directly.

Theorem 4.1. Suppose that N is a simple point process which is consistent with θt

and has a finite and non-zero intensity λ = E(N((0,1]). If P is θt -stationary, then P0

is ηn-stationary. Hence, {Yn} of 4.4 is a discrete time stationary process under P0.
Furthermore, P is obtained from P0 by

P(A) = λE0

(ˆ T1

0
1θ−1

u (A)du
)
, A ∈ F. (4.11)

Proof. The first half is obtained if P0(η−1
1 (A)) = P0(A) holds. We prove this using

the definition of the Palm distribution (4.4). Because η1 = θT1 and (4.2) implies

θT1 ◦θu(ω) = θTN(u)+1(ω)−u(θu(ω)) = θTN(u)+1
(ω),

we have
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θ−1
u (η−1

1 (A)) = {η1 ◦θu ∈ A}= {θTN(u)+1
∈ A}.

Applying this to (4.4), we have

P0(η−1
1 (A)) = λ−1E

(N(1)

∑
n=1

1(θTn+1 ∈ A)
)

= λ−1

(
E
(N(1)

∑
n=1

1(θTn ∈ A)
)

+P(θTN(1)+1
∈ A)−P(θT1 ∈ A)

)
.

Since θT1 ◦θ1 = θTN(1)+1
and P is θt -stationary, we have

P(θTN(1)+1
∈ A) = P(θT1 ∈ A).

Thus, we get P0(η−1
1 (A)) = P0(A). We next prove (4.11). For this, let

X(u) = 1(N((−u,0)) = 0,u > 0)1θ−1
u (A),

then

X(u)◦θu = 1(N((0,u)) = 0,u > 0)1A = 1(0 < u≤ T1)1A.

Substituting this in the left-hand side of (4.6), we have

E
(ˆ +∞

−∞
X(u)◦θuN(du)

)
= E(1A) = P(A),

since N(du) has a unit mass at u = T1. On the other hand, the right-hand side of
(4.6) becomes

E0

(ˆ +∞

−∞
X(u)du

)
= E0

(ˆ 0

T−1

1θ−1
u (A)du

)

= E0

(ˆ 0

T−1◦η1

1(θu◦η1)−1(A)du
)

since P0 is ηn-stationary. Note that T−1 ◦η1 = T0−T1 and θu ◦η1 = θu+T1 . Hence,
changing the integration variable from u to u+T1 in the last term and using the fact
that P0(T0 = 0) = 1, we have (4.11).

An excellent feature of the definition (4.4) of Palm distribution P0 is that it com-
putes the conditional distribution given the event with probability zero, using neither
limiting operations nor conditional expectation as a Radon-Nikodym derivative of
the measure theory.

From (4.11), P is obtained from P0. In this sense, it is called an inversion formula.
Another interpretation of (4.11) is that it represents the time average of the indicator



4 Palm Calculus, Reallocatable GSMP and Insensitivity Structure 155

function of A from T0 = 0 to T1. Since {Tn−Tn−1} is stationary under P0, (4.11) is
also called a cycle formula.

The next result shows that the inverse of Theorem 4.1 holds.

Theorem 4.2. Suppose that a simple point process N is consistent with θt , a measure
P0 on (Ω ,F) satisfies that 0 < E0(T1) < ∞ for T1 ≡ sup{u > 0;N(0,u) = 0}. Let
λ = 1/E0(T1). If P0 is ηn-stationary, then P defined by (4.11) is a θt -stationary
probability measure. Furthermore, E(N((0,1]) = λ and (4.4) holds for these P0 and
P.

Proof. It is easy to see that P is a probability measure. Let us show P(θ−1
t (A)) =

P(A) for A ∈ F and for all t ∈R. From the definition (4.11) of P, we have

P(θ−1
t (A)) =

1
E0(T1)

E0

(ˆ T1

0
1θ−1

t+u(A)
du
)

=
1

E0(T1)
E0

(ˆ t+T1

t
1θ−1

u (A)du
)

=
1

E0(T1)
E0

(ˆ T1

0
1θ−1

u (A)du +

ˆ t+T1

T1

1θ−1
u (A)du−

ˆ t

0
1θ−1

u (A)du
)
.

Since P0 is ηn-stationary, we have E0(X) = E0(X ◦η1) for a nonnegative random
variable X . Hence, we have

E0

(ˆ t

0
1θ−1

u (A)du
)

= E0

(ˆ t

0
1(θu◦η1)−1(A)du

)

= E0

(ˆ t

0
1θ−1

u+T1
(A)du

)

= E0

(ˆ t+T1

T1

1θ−1
u (A)

du
)
.

Thus, we get P(θ−1
t (A)) = P(A), so P is θt -stationary. It remains to prove (4.4),

where P is defined by (4.11). Using this P, define P†
0 as

P†
0 (A) =

1
E(N((0,1]))

E
(ˆ 1

0
1θ−1

u (A)N(du)
)
, A ∈ F.

Thus, the proof is completed if we show P0 = P†
0 . This equality is equivalent to that,

for nonnegative and bounded random variable f ,

E0( f ) =
1

E(N((0,1]))
E
(ˆ 1

0
f ◦θuN(du)

)
.

From (4.11),

E
(ˆ 1

0
f ◦θuN(du)

)
= λE0

(ˆ T1

0

(ˆ 1

0
f ◦θuN(du)

)
◦θsds

)
. (4.12)
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Hence, we need to verify that

E0( f ) =
λ

E(N((0,1]))
E0

(ˆ T1

0

(ˆ 1

0
f ◦θuN(du)

)
◦θsds

)
. (4.13)

Let us prove (4.13). We first compute the inside of the expectation in the right-hand
side of (4.13). Since Lebesgue integration is unchanged by shifting the integration
variable, we have

ˆ T1

0

(ˆ 1

0
f ◦θuN(du)

)
◦θsds =

ˆ T1

0

(ˆ 1

0
f ◦θu+sN(du + s)

)
ds

=

ˆ T1

0

(ˆ s+1

s
f ◦θuN(du)

)
ds

=

ˆ +∞

−∞

ˆ T1

0
1(s < u < s+ 1)ds( f ◦θu)N(du)

=
+∞

∑
n=−∞

ˆ T1

0
1(s < Tn < s+ 1)ds( f ◦θTn).

Since P0 is stationary with respect to ηn = θTn , the expectation concerning P0 in the
left-hand side of (4.13) becomes

+∞

∑
n=−∞

E0

(ˆ T1

0
1(s < Tn < s+1)ds( f ◦θTn)

)

=
+∞

∑
n=−∞

E0

((ˆ T1

0
1(s < Tn < s+1)ds f ◦ηn

)
◦η−n

)

=
+∞

∑
n=−∞

E0

(ˆ T1−n−T−n

0
1(s < T0−T−n < s+1)ds f

)

= E0

( +∞

∑
n=−∞

ˆ T1−n

T−n

1(s < T0 < s+1)ds f
)

= E0

(ˆ +∞

−∞
1(T0− 1 < s < T0)ds f

)
= E0( f ).

Thus, (4.13) is obtained if λ = E(N((0,1])). The latter is obtained from (4.12) with
f ≡ 1 and the above computations. This completes the proof.

In applications, particularly in queueing networks, we frequently meet the situa-
tion that point process N is the superposition of m point processes N1, . . . ,Nm all of
which are consistent with θt for some m≥ 2. Namely,

N(B) = N1(B)+ . . .+Nm(B), B ∈B(R).

Assume that P is θt -stationary, and λ ≡ E(N((0,1]) < ∞ with λ 6= 0. For i =
1,2, . . . ,m, let λi = E(Ni((0,1])), and denote Palm distribution concerning Ni by
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Pi. Then, from the definition of Palm distribution, it is easy to see that

λ P0(A) =
m

∑
i=1

λiPi(A), A ∈ F. (4.14)

This decomposition of the Palm measure is shown to be useful in applications (see
Section 4.10).

4.6 Detailed Palm distribution

We have mainly considered Palm distribution when point process N is simple. The
definition of Palm distribution itself does not need for N to be simple. However, if
N is not simple, ηn defined by ηn = θTn can not properly handle events that simulta-
neously occur in time. We need to differently define Palm distribution for this case.
To this end, we consider a pair of Tn and ηn, where ηn is a discrete time operator
group. In what follows, point process N is assumed to be generated by {Tn}, and N
is not necessarily simple.

Definition 4.7. Let {Tn;n ∈ Z} be a nondecreasing sequence of random variables,
which generate point process N, and let {ηn} be the discrete time shift operator
group. If

{(Tn,ηn)}◦θt = {(Tn− t,ηn)}, n ∈ Z,t ∈R

holds, then {(Tn,ηn)} is said to be a θt -consistent marked point process with shift
operator ηn.

Definition 4.8. Suppose that P be θt -stationary and {(Tn,ηn)} is a θt -consistent
marked point process with ηn, where . . . ≤ T−1 ≤ T0 ≤ 0 < T1 ≤ T2 ≤ . . ., and
λ ≡ E(N((0,1])) < ∞. Then, we define P0 as

P0(A) = λ−1E
(N((0,1])

∑
n=1

1η−1
n (A)

)
, A ∈ F. (4.15)

This P0 is a probability measure on (Ω ,F), and called a detailed Palm distribution
concerning {Tn}.

Detailed Palm distribution P0 is different from Palm distribution P0 concerning
N if N is not simple. Nevertheless, we can extend the results in the previous two
sections to detailed Palm distribution. Since their proofs are similar to the previous
ones, we present their versions for Theorems 4.1 and 4.2 without proof.

Theorem 4.3. Suppose that P is θt -stationary, {(Tn,ηn)} is a θt consistent marked
point process, and λ ≡ E(N((0,1])) < ∞. Then, detailed Palm distribution P0 is
ηn-stationary. Furthermore, P is recovered from P0 by
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P(A) = λE0

(ˆ T1

0
1θ−1

u (A)du
)
, A ∈ F. (4.16)

where E0 represents the expectation concerning P0. Conversely, suppose that prob-
ability measure P0 on (Ω ,F) satisfies 0 < E0(T1) < ∞ and P0 is ηn-stationary for
a given discrete time shift operator group {ηn}. Let λ = 1/E0(T1) and define P by
(4.16), Then, P is a probability measure on (Ω ,F) which is θt -stationary, and we
have E(N((0,1]) = 1/E0(T1) = λ . For these P0 and P, we have (4.15).

We next consider another way to define the detailed Palm distribution. For this,
we use a simple point process which have masses at the same time instant as N.
Denote this point process by N∗. Namely, N∗ is defined as

N∗(B) =

ˆ

B

1
N({u})N(du), B ∈B(R). (4.17)

This point process is said to be a simple version of N. Let T ∗n be the n-th counting
point of N∗.

Lemma 4.7. Under the same assumptions of Definition 4.8, let λ ∗ = E(N∗((0,1]))
and denote the Palm distribution concerning N∗ by P∗0 , then we have

P0(A) =
λ ∗

λ
E∗0
(N((0,T ∗1 ])

∑
n=1

1η−1
n (A)

)
, A ∈ F, (4.18)

where E∗0 represents the expectation concerning P∗0 .

Proof. Let η∗n = θT ∗n . Then, from the definition of Palm distribution P∗0 , we have, for
random variable f ,

E∗0( f ) = (λ ∗)−1E

(
N∗((0,1])

∑
n=1

f ◦η∗n

)
.

In this equation, letting f = ∑
N((0,T ∗1 ])
ℓ=1 1η−1

ℓ (A), the expectation in the right-hand side

becomes



4 Palm Calculus, Reallocatable GSMP and Insensitivity Structure 159

E

(
N∗((0,1])

∑
n=1

(
N((0,T ∗1 ])

∑
ℓ=1

1η−1
ℓ (A)

)
◦η∗n

)

= E




N∗((0,1])

∑
n=1




N((T ∗n ,T ∗n+1])

∑
ℓ=1

1(ηN((0,T∗n ])+ℓ)
−1(A)






= E




N∗((0,1])

∑
n=1




N((0,T ∗n+1])

∑
ℓ=N((0,T ∗n ])+1

1(ηℓ)−1(A)






= E

(
N((0,1])

∑
n=1

1η−1
ℓ (A)

)
.

Since the last term equals λ P0(A) by (4.15), we have (4.18).

Example 4.4. Let us consider batch arrival queueing system. Let T ∗n be the n-th batch
arrival time. We then number all customers sequentially including those who are in
the same batch. Let Tn be the n-th arrival time of a customer in this sense. Let Bn

the size of the batch arriving at time T ∗n , and let Jn be the number of the n arriving
customer counted in his batch. That is, Jn = max{ℓ≥ 1;Tn = Tn−ℓ+1}. In particular,
J0 = B0. Let ηn = θTn , then

J0 ◦ηn = max{ℓ≥ 1;0 = Tn−ℓ+1−Tn}= Jn.

Hence, if {Tn} is ηn-stationary under P0, then we have, for any n ∈ Z,

P0(Jn = k) = P0(J0 = k)

=
λ ∗

λ
E∗0
( B1

∑
n=1

1(J0 ◦ηn = k)
)

=
1

E∗0 (B1)
P∗0 (B1 ≥ k),

because Jn = k for some positive n ≤ B1 if and only if B1 ≥ k. This means that a
randomly chosen customer is counted in its batch subject to the so called stationary
excess distribution of B1 under P∗0 .

4.7 Time and event averages

In this section, we give interpretations of stationary P and P0 through sample av-
erages. It will be shown that these sample averages are unchanged under both of
them. This means that both probability measures can be used for computing sta-
tionary characteristics when either one of them is taken for a probability model.
Furthermore, sample averages may be only a way to identify system parameters.
Thus, the unchanged sample averages are particularly important in applications of
Palm calculus. This is something like to use two machines for production which is
originally designed for one machine. Throughout this section, we assume
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(4.7a) Measurable space (Ω ,F) is equipped with a shift operator group {θt ;t ∈
R}.

(4.7b) There exists a simple point process N which is consistent with θt , and the
discrete time shift operator group {ηn;n ∈ R} is defined by (4.3).

(4.7c) There exists a probability measure P on (Ω ,F) which is θt -stationary and
satisfies λ ≡ E(N(0,1]) < ∞.

By these assumptions, Palm distribution P0 is well defined for N. Let

I = {A ∈ F;θ−1
t (A) = A holds for all t ∈ R},

then I is σ -field on Ω . Since θ−1
t (I) = I, this I is called an invariant σ -field con-

cerning θt . Similarly, an invariant σ -field concerning ηn is defined.

Lemma 4.8. For the shift operator group {ηn;n ∈ Z}, define I0 as

I0 = {A ∈ F;η−1
1 (A) = A}.

Then, I0 = I, and I0 is the invariant σ -field concerning ηn.

Proof. From the definition, I0 is clearly ηn-invariant, i.e., η−1
n (I0) = I0, Hence, we

only need to prove I0 = I. Choose A ∈ I. Since θ−1
t (A) = A, we have

η−1
1 (A) = {ω ∈Ω ;θT1(ω)(ω) ∈ A}

= ∪t∈R{T1 = t}∩θ−1
t (A)

= ∪t∈R{T1 = t}∩A = A.

Thus, we have A ∈ I0. Conversely, let A ∈ I0. Since ηn ◦ η1 = ηn+1, we have
η−1

n (A) = A for any n ∈ Z. If Tn−1 ≤ t < Tn, then

η1 ◦θt(ω) = θT1(θt)(θt(ω)) = θTn(ω)−t(θt (ω)) = θTn(ω) = ηn(ω).

Hence, for any t ∈R,

θ−1
t (A) = ∪+∞

n=−∞{Tn−1 ≤ t < Tn}∩θ−1
t (A)

= ∪+∞
n=−∞{Tn−1 ≤ t < Tn}∩θ−1

t (η−1
1 (A))

= ∪+∞
n=−∞{Tn−1 ≤ t < Tn}∩ (η1 ◦θt)

−1(A)

= ∪+∞
n=−∞{Tn−1 ≤ t < Tn}∩η−1

n (A)

= ∪+∞
n=−∞{Tn−1 ≤ t < Tn}∩A = A.

Thus, we have A ∈ I, which completes the proof.

For A ∈ I, P(A) 6= P0(A) in general, but we have the following result.

Lemma 4.9. For A ∈ I, P0(A) = 1 if and only if P(A) = 1.

Proof. Since θ−1
u (A) = A for A ∈ I, from (4.4) and (4.11), it follows that
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P0(A) = λ−1E(1AN((0,1])), P(A) =
1

E0(T1)
E0(1AT1).

Hence, if P0(A) = 1, then E(1AN((0,1])) = E(N((0,1]), which implies P0(A) = 1.
Conversely, if P(A) = 1, then E0(1AT1) = E0(T1), which implies P(A) = 1.

Clearly, the equivalence in this lemma is not true for A = {T0 = 0}. Thus, it may
not be true for A 6∈ I.

Definition 4.9. Suppose that probability measure P on (Ω ,F) is θt -stationary, and
let I be the invariant σ -field concerning θt . If either P(A) = 0 or P(A) = 1 for each
A ∈ I, then P is said to be ergodic concerning θt . As for P0 and {ηn;n ∈ Z}, we
similarly define P0 to be ergodic concerning ηn.

From 4.9, the following result is immediate.

Lemma 4.10. Assume that probability measure P on (Ω ,F) is θt -stationary. Then,
P0 is ergodic concerning ηn if and only if P is ergodic concerning θt .

The next result is a version of law of large numbers, and called ergodic theorem.
We omit its proof, which can be found in text books on probability theory (see, e.g.,
[5]).

Theorem 4.4. Let {ηn;n ∈ R} be the shift operator group on (Ω ,F), and let {Yn}
be a discrete time stochastic process which is consistent with ηn. Let P0 be a ηn-
stationary probability measure on (Ω ,F), and denote the expectation concerning P0

by E0. If E0(|Y0|) < ∞, then we have, under P0,

lim
n→∞

1
n

n

∑
ℓ=1

Yℓ = E0(Y0|I0) (4.19)

with probability one, where I0 is the invariant σ -field concerning ηn, and E0(Y0|I0)
is the conditional expectation of Y0 given I0.

This theorem leads to the following results.

Corollary 4.2. Suppose (4.7a), (4.7b), (4.7c). Then, {Yn} is consistent with ηn. If
E0(|Y0|) < ∞, then we have, under both of P0 and P,

lim
n→∞

1
n

n

∑
ℓ=1

Yℓ = E0(Y0|I) (4.20)

with probability one. Furthermore, {X(t)} is consistent with θt , and if E(|X0|) < ∞,
then we have, under both of P0 and P,

lim
t→∞

1
t

ˆ t

0
X(u)du = E(X(0)|I) (4.21)

with probability one.
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Remark 4.2. Sample averages in (4.20) and (4.21) are referred to as event and time
averages, respectively. If P or P0 is ergodic, then I consists of events which have
either probability zero or probability one. Hence, the conditional expectations in
(4.20) and (4.21) reduce to the unconditional ones. If Yn (or X(t)) is nonnegative,
we do not need the condition that E0(Y0) < ∞ (or E(X(0)) < ∞). To see this, we first
apply min(a,X(t)) to (4.20) for fixed constant a > 0, then let a ↑ ∞.

Proof. Since P0 is ηn-stationary, (4.20) holds under P0 with probability one by The-
orem 4.4. Let A be the set of all ω ∈Ω such that (4.20) holds. Since P0(A) = 1, 4.9
yields P(A) = 1. Hence, (4.20) holds under P with probability one. As for (4.21),
if it holds under P with probability one, we similarly get it under P0. To get (4.21)
under P, we let

ηn = θn, Yn =

ˆ n

n−1
X(u)du.

Then, it can be shown that Theorem 4.4 yields (4.21) under P since P is also sta-
tionary concerning this ηn.

Similarly to this corollary, we can prove the next result.

Corollary 4.3. Under the same assumptions of 4.2, we have, under both of P0 and
P,

lim
t→∞

N((0,t])
t

= lim
t→∞

N((−t,0])

t
= E(N((0,1])|I) (4.22)

holds with probability one.

4.2 and 4.3 are convenient to compute sample averages since we can choose
either P or P0 to verify them for both of P and P0.

Example 4.5 (Little’s formula in sample averages). We consider the same model
discussed in Example 4.3. Consider a service system, where arriving customers get
service and leave. For simplicity, we here assume that all Tn are distinct, i.e., not
more than one customers arrive at once. If either P or P0 is ergodic, then, by 4.2, we
can rewrite Little’s formula (4.7) in terms of time and event averages as

lim
t→∞

1
t

ˆ t

0
L(u)du = λ lim

n→∞

1
n

n

∑
ℓ=1

Un,

which holds with probability one under both of P and P0.
The simplicity condition on N is not essential in the above arguments. We only

need to replace E0 by the expectation E0 of the detailed Palm distribution.
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4.8 Rate conservation law

In the previous sections, we have considered two kinds of expectations by a sta-
tionary probability measure and its Palm distributions. Computations using those
distributions is called Palm calculus. This calculus gives relationship among charac-
teristics observed at arbitrary points in time and those in embedded epochs. Typical
formulas are (4.4), (4.6) and (4.11). They can be applied to a stochastic process.
However, they are generally not so convenient for studying a complex systems such
as queueing networks. Dynamics of those systems is typically driven by differential
operators such as generators and transition rate matrices of Markov processes or
chains while formulas in Palm calculus concern integrations over time in general.

In this section, we consider a convenient form of Palm calculus for stochastic
processes. As we shall see, this form can be used to characterize the stationary
distribution when they are Markov processes. However, in this section, we do not
assume any Markovian assumption, but use the same framework as Palm calculus.
So, our assumptions is basically of the stationary of processes. Extra assumptions
that we need is the smoothness of a sample path except jump instants, which is not
so restrictive in queueing applications.

Throughout this section, we assume (4.7a), (4.7b), (4.7c) of Section 4.7. Since
these assumptions are important in our arguments, we restate it as follows.

(4.8a) There is a probability space (Ω ,F,P) such that shift operator group {θt ;t ∈
R} is defined on Ω and P is θt -stationary. There is a simple point process N
which is consistent with θt and satisfies λ ≡ E(N(0,1]) < ∞.

We further assume the following three conditions on a stochastic process of interest.

(4.8b) {X(t)} is a real valued continuous time stochastic process such that it is
consistent with θt and right-continuous with left-limits for each t ∈ R, that is,
limε↓0 X(t + ε)(ω) = X(t)(ω), and X(t−)(ω) ≡ limε↓0 X(t − ε)(ω) exists for
each t ∈ R and each ω ∈Ω .

(4.8c) At all t, X(t) has the right-hand derivative X ′(t). That is,

X ′(t)≡ lim
ε↓0

1
ε
(X(t + ε)−X(t))

exists and finite.
(4.8d) N includes all the times when X(t) is discontinuous in t. That is, for each

B ∈B(R), N(B) = 0 implies ∑t∈B 1(X(t) 6= X(t−)) = 0.

All these conditions are sufficient to hold with probability one for our arguments.
However, we rather prefer that they hold for all ω ∈Ω for simplicity.

Lemma 4.11. Under assumptions (4.8a), (4.8b), (4.8c) and (4.8d), {X(t)} and
{X ′(t)} are stationary processes, and N is a stationary simple point process. If
E(X ′(0)) and E0(X(0−))−X(0)) are finite, then

E(X ′(0)) = λE0(X(0−)−X(0)). (4.23)
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Proof. From (4.8a) and (4.8b), X(t) and N are clearly stationary. From the consis-
tency on X(t) and the differentiability (4.8c), it follows that

X ′(t)◦θu = lim
ε↓0

1
ε
(X(t + ε)−X(t))◦θu

= lim
ε↓0

1
ε
(X(t +u + ε)−X(t + u)) = X ′(t +u).

Hence, X ′(t) is also consistent with θt , so {X ′(t)} is a stationary process. From
(4.8a), λ < ∞, so N(0,1] is finite with probability one. Hence, from (4.8d), we have

X(t) = X(0)+

ˆ t

0
X ′(u)du +

ˆ t

0
(X(0)−X(0−))◦θuN(du), t > 0. (4.24)

We tentatively suppose that E(X(t)) is finite, which implies that E(X(t)) = E(X(0))
due to the stationarity of X(t). Since E(X ′(0)) is finite and X ′(t) is stationary, we
have

E
(ˆ 1

0
X ′(u)du

)
=

ˆ 1

0
E(X ′(u))du = E(X ′(0)).

Hence, taking the expectations of (4.24) for t = 1, we have

E(X ′(0))+ E
(ˆ 1

0
(X(0)−X(0−))◦θuN(du)

)
= 0.

This yields (4.23) by applying the Palm calculus in Definition 4.6.
We next remove the assumption that E(X(t)) is finite. To this end, for each integer

n≥ 1, define function fn as

fn(x) =






x, |x| ≤ n,

− 1
2(max(0,n+ 1− x))2 + 1

2 +n, x > n,
1
2(max(0,n +1 + x))2− 1

2 −n, x <−n.

This function is bounded since | fn(x)| ≤ 1
2 +n for all x ∈ R. Furthermore, it has the

right-hand derivative:

f ′n(x) =






1, −n≤ x < n,
n +1− x, n≤ x < n +1,
n +1 + x, −n− 1≤ x <−n,
0, otherwise.

From this, it is easy to see that f ′(x) is continuous in x, and | f ′n(x)| ≤ 1. Furthermore,

| fn(x)− fn(y)| ≤
ˆ x

y
| f ′n(z)|dz≤ |x− y|.
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Let Yn(t) = fn(Y (t)), then Yn(t) is bounded and

|Y ′n(t)|= |Y ′(t) f ′n(Y (t))| ≤ |Y ′(t)|,
|Yn(t−)−Yn(t)| ≤ |Y (t−)−Y(t)|,

so E(Y ′n(0)) and E0(Yn(0−)−Yn(0)) are finite by the assumptions. Hence, from the
first part of this proof, (4.23) is obtained for Yn(t). Namely, we have

E(Y ′n(0)) = λ E0(Yn(0−)−Yn(0)).

Let n→ ∞ in this equation noting that fn(x)→ x and f ′n(x) ↑ 1 as n→ ∞. Then, the
bounded convergence theorem yields (4.23) since |Y ′n(t)| and |Yn(t−)−Yn(t)| are
uniformly bounded in n.

Remark 4.3. From the proof of 4.11, we can see that, if E(X(0)) is finite, then the
finiteness of either E(X ′(0)) or E0(X(0−)−X(0)) is sufficient to get (4.23). Here,
we note that the finiteness of E(X) for a random variable X is equivalent to the
finiteness of E(|X |) due to the definition of the expectation.

Formula (4.23) is referred to as a rate conservation law, RCL for short. In fact, it
can be interpreted that the total rate due to continuous and discontinuous changes of
X(t) are kept zero. In application of the RCL, X(t) is a real or complex valued func-
tion of a multidimensional process. Let X(t) = (X1(t), . . . ,Xd(t)) be such a process
for a positive integer d, and let f be a partially differentiable function from Rd to R.
In this case, we put X(t) = f (X(t)). Then, 4.11 yields

Corollary 4.4. Let d be a positive integer, and let f be a continuously partially dif-
ferentiable function from Rd to R. If each Xℓ(t) instead of X(t) satisfies condi-
tions (4.8a), (4.8b), (4.8c) and (4.8d) for all ℓ = 1,2, . . . ,d and if E( f (X(0))) and
E( f (X(0))− f (X(0−))) are finite, then we have

E
(
X′(0)∇ f (X(0))

)
= λE0( f (X(0−))− f (X(0))). (4.25)

where X′(0) = (X ′1(0), . . . ,X ′d(0)) and ∇ f (x) = ( ∂
∂x1

f (x), . . . ∂
∂ xd

f (x))T for x =

(x1, . . . ,xd).

This is the most convenient form for queueing applications even for d = 1 be-
cause we can choose any f as far as it is differentiable and satisfies the finiteness
conditions on the expectations. We refer this type of f as a test function.

Example 4.6 (Workload process). We consider the workload process with a state
dependent processing rate r and an input generated by a point process N and a
sequence of input works {Sn}. The workload V (t) at time t ≥ 0 is defined as

V (t) = V (0)+
N(t)

∑
n=1

Sn−
ˆ t

0
r(V (u))1(V (u) > 0)du,
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where r(x) is a nonnegative valued right-continuous function on [0,∞). If r(x)≡ 1,
then V (t) is the workload process of a single server queue.

Let Tn be the n-th point of N. We assume that N has a finite intensity λ , {(Tn,Sn)}
is consistent with θt (see Definition 4.7), and {V(t)} is a stationary process under P.
Let f be a bounded and continuously differentiable function on R. Since X(t)≡V (t)
satisfies all the conditions of 4.4 and X ′(t) = r(t), we have

E(r(V (0)) f ′(V (0))1(V (0) > 0)) = λE0( f (V (0−))− f (V(0−)+ S0)). (4.26)

Using 4.4, we can generalize this formula for a multidimensional workload process
with a multidimensional input. The virtual waiting time vector of a many server
queue is such an example.

Another useful form is obtained from decomposing the point process N.

Corollary 4.5. Under the assumptions of 4.11, suppose that the point process N is
decomposed into m point processes N1,N2, . . . ,Nm all of which are consistent with
θt for some m≥ 2. Namely,

N(B) = N1(B)+ N2(B)+ . . .+Nm(B), B ∈B(R).

Further suppose that λi ≡ E(Ni((0,1])) is finite for all i = 1,2, . . . ,m, and de-
note the expectation concerning Palm distribution with respect to Ni by Ei. If
Ei(X(0)),Ei(X(0)) are finite for i = 1,2, . . . ,m and if E(X ′(0)) is finite, then we
have

E(X ′(0)) =
m

∑
i=1

λiEi(X(0−)−X(0)). (4.27)

Proof. From the assumption on the finiteness of λi, N has the finite intensity λ ≡
∑m

i=1 λi. Denote the expectation concerning Palm distribution with resect to N by E0,
then

λE0(X(0−)−X(0)) = E

(
ˆ 1

0
(X(u−)−X(u))N(du)

)

=
m

∑
i=1

E

(
ˆ 1

0
(X(u−)−X(u))Ni(du)

)

=
m

∑
i=1

λiEi(X(0−)−X(0)).

Hence, 4.11 concludes (4.27).

We have been only concerned with the simple point process N for the rate con-
servation law (4.23). If N is not simple, we can use its simple version N∗ defined by
(4.17). However, we must be careful about the changes of X(t) at atoms of N∗. That
is, we need to use the detailed Palm distribution P0 instead of P0 in (4.23) when we
consider embedded events at Tn.
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4.9 PASTA: a proof by the rate conservation law

In queueing problems, we frequently require to compute system characteristics ob-
served at different points in time. In this section, we demonstrate how we can use
the rate conservation law to the observation of a customer arriving subject to a Pois-
son process, where point process N is called a Poisson process if {tn+1− tn;n ∈ Z}
is the sequence of independently, identically and exponential random variables for
the n-th increasing instants instant tn of N. The following result is called PASTA,
which is the abbreviation of “Poisson Arrivals See Time Averages”, which is coined
by Wolff [35].

Theorem 4.5 (PASTA). Under the assumptions (4.8a), (4.8b), (4.8c) and (4.8d), let
N0 be the Poisson process which is consistent with θt and finite intensity λ0, and
denote the expectation of Palm distribution with respect to N0 by E0. If {X(u);u < t}
is independent of {N0([t,t + s]);s ≥ 0} for all t, then we have, for all measurable
function f such that E( f (X(0))) and E0( f (X(0−))) are finite,

E( f (X(0))) = E0( f (X(0−))). (4.28)

Proof. Similarly to 4.11 and the standard arguments for approximation of functions
in expectation, it is sufficient to prove (4.28) for the f such that f is differentiable
and its derivative is bounded. Let R0(t) = sup{u≥ 0;N0(t,t +u] = 0}. That is, R0(t)
is the remaining time to count the next point of N0 at time t. For nonnegative number
s, let

Y (t) = f (X(t))e−sR0(t), t ∈ R.

Then, clearly Y (t) is bounded and consistent with θt . Since R′0(t) = −1, the right-
hand derivative of Y (t) is computed as

Y ′(t) = (X ′(t) f ′(X(t))+ s f (X(0)))e−sR0(t).

We next define a point process N1 as

N1(B) = N(B)−max(N(B),N0(B)), B ∈B(R),

where it is noted that N is the point process given in the assumption (4.8d). Obvi-
ously, N0 and N1 are simple, and do not have a common point. Furthermore, N1 is
consistent with θt and has the intensity λ1 ≡ E(N1(0,1]) < λ < ∞. Thus, we can
apply 4.5 (see (a) in Remark 4.3). Let ϕ(s) = E(e−sR0(0)), then

E
(
X ′(0) f ′(X(0))+ s f (X(0)))

)
ϕ(s)

= λ0 (E0( f (X(0−)))−E0( f (X(0)))ϕ(s))

+λ1E1 ( f (X(0−))− f (X(0)))ϕ(s). (4.29)
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By the memoryless property of the exponential distribution, we have ϕ(s) = λ0/(s+
λ0). Hence, letting s→∞ in (4.29) and using the fact that sϕ(s)→ λ0 and ϕ(s)→ 0,
we obtain (4.28).

Remark 4.4. If the reader is familiar with a martingale and the fact that the Poisson
process N of Theorem 4.5 can be expressed as

N((0,t]) = λ t +M(t), t ≥ 0,

where M(t) is an integrable martingale with respect to the filtration σ(X(u);u≤ t).
See Section 4.11 for the definition of the martingale. Then, (4.28) is almost imme-
diate from the definition of the Palm distribution since

ˆ t

0
f (X(u−))dM(u)

is also a martingale, and therefore its expectation vanishes. This proof is less ele-
mentary than the above proof.

Let us apply Theorem 4.5 together with the rate conservation law to the M/G/1
queue, which is a single server queue with the Poisson arrivals and independently
and identically distributed requirements.

Example 4.7 (Pollaczek-Khinchine formula). We consider the special case of the
workload process in Example 4.6. We here further assume that the processing rate
r(x) ≡ 1, N is the Poisson process with rate λ > 0 and {Sn} is a sequence of i.i.d.
(independent and identically distributed) random variables which are independent
of everything else.

Thus, we consider the workload process V (t) of the M/G/1 queue. The service
discipline of this queue can be arbitrary as long as the total service rate is always
unit and the server can not be idle when there is a customer in the system. This
process is known to be stable, that is, its stationary distribution exists if and only if

ρ ≡ λ E(S1) < 1.

We assume this stability condition. Then, {V (t)} is a stationary process under the
stationary distribution. For nonnegative number θ , let f (x) = e−θx for x ≥ 0, then
(4.26) yields

θE(e−θV (0)1(V (0) > 0)) = λE0(e
−θV (0−)− e−θ(V(0−)+S0))

= λE(e−θV (0−))(1−E(e−θS1)), (4.30)

where we have used the i.i.d. assumption of Sn and Theorem 4.5 to get the second
equality. We can rewrite the left-hand side as

θE(e−θV (t))−θP(V(0) = 0).

Let ϕ(θ) = E(e−θV (t)) and g(θ) = E(e−θS1), then we have, from (4.30),
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θϕ(θ)−θP(V(0) = 0) = λ ϕ(θ )(1−g(θ)).

Since ϕ(θ )→ 1 and 1−g(θ)
θ →−g′(0) = E(S1) as θ ↓ 0. we have P(V (0) = 0) =

1−ρ , dividing the above formula by θ and letting θ ↓ 0. Thus, we have the Laplace-
transform of V (0) under the stationary assumption.

ϕ(θ) =
θ (1−ρ)

θ −λ (1−g(θ))
, θ > 0. (4.31)

This formula is independently obtained by Pollaczek and Khinchine, and called
Pollaczek-Khinchine formula.

In this example, if the processing rate r(x) is not a constant, then it is generally
hard to get the stationary distribution of the workload in any form. We show that
there is an exceptional case in the following example.

Example 4.8 (State dependent service). We again consider the workload process
V (t) in Example 4.6 under the assumptions of Example 4.7 except for the pro-
cessing rate r(x), which may be arbitrary. Thus, we consider the M/G/1 workload
process with state dependent processing rate. In this case, the stability condition for
V (t) is complicated, so we here just assume that the stationary distribution exists.
Similar to (4.30), we have

θE(r(V (0))e−θV (0)1(V (0) > 0)) = λE(e−θV(0−))(1−E(e−θS1)). (4.32)

From this equation, it is generally hard to get ϕ(θ ) ≡ E(e−θV (0−)) for a given
g(θ )≡ E(e−θS1) except for the case that r(x) is a constant.

We thus consider the special case that r(x) = a + bx for nonnegative constant a
and positive constant b. In this case, the left-hand side of (4.32) can be written as

θE((a +bV(0))e−θV (0)1(V (0) > 0)) = θ (aϕ(θ )−bϕ ′(θ ))−aθP(V(0) = 0).

Hence, we have the following differential equation from (4.32).

−1
b

(
a−λ

1−g(θ)

θ

)
ϕ(θ )+ ϕ ′(θ) =−a

b
P(V (0) = 0) (4.33)

For θ ≥ 0, let

h(θ ) =−1
b

ˆ θ

0

(
a−λ

1−g(u)

u

)
du.

Then, the solution of (4.33) with the boundary condition ϕ(0) = 1 is obtained as

ϕ(θ ) = e−h(θ)

(
1− a

b
P(V (0) = 0)

ˆ θ

0
eh(u)du

)
.
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To determine P(V (0) = 0), Note that h(∞) ≡ limθ→∞ h(θ ) = −∞ if a > 0 while
h(∞) = +∞ if a = 0. Hence, if a = 0, then

ϕ(θ ) = e−h(θ).

If a > 0, then we must have 1 =
a
b

P(V (0) = 0)

ˆ ∞

0
eh(u)du, which concludes

P(V (0) = 0) =
b
a

(
ˆ ∞

0
eh(u)du

)−1

. Hence, we finally have, for a > 0,

ϕ(θ) = e−h(θ)

ˆ ∞

θ
eh(u)du

(
ˆ ∞

0
eh(u)du

)−1

.

It may be interesting to see the mean workload E(V (0)) =−ϕ ′(0), which is

E(V (0)) =

{ 1
b ρ , a = 0,

1
b (ρ−a)+

(
´ ∞

0 eh(u)du
)−1

, a > 0.

Note that these computations are not valid for b = 0.

4.10 Relationship among the queueing length processes observed
at different points in time

The rate conservation is powerful for complicated systems. This is exemplified for
the system queue length process, i.e., the total number of customer in system, un-
der a very general setting. Here, the queueing system is meant a service system
with arrivals and departures. Let Na and Nd be point processes composed of arrival
and departure instants, respectively. We here allow those point processes to be not
simple. Then, the the system queue length L(t) at time t is defined as

L(t) = L(0)+ Na((0,t])−Nd((0,t]), t ≥ 0.

Note that customers who leave the system immediately after their arrivals without
any service are counted as departure.

Theorem 4.6. For a queue system with arrival point process Na, departure point
process Nd and the system queue length L(t), assume that P is θt -stationary and
Na,Nd ,L(t) are consistent with θt , that is, (Na,Nd,{L(t)}) is jointly stationary. Let
N∗a and N∗d be the simple versions of Na and Nd . If λ ∗a ≡ E(N∗a ((0,1]) and λ ∗d ≡
E(N∗d ((0,1])) are finite, then, for n ∈ Z+,

λ ∗a P∗a (n +1−△L(0)≤ L(0−)≤ n) = λ ∗dP∗d(n+ 1+△L(0)≤ L(0)≤ n),(4.34)
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where△L(0) = L(0)−L(0−), and P∗a and P∗d are Palm distributions of N∗a and the
following point process, respectively.

N∗d(B) = N∗d (B)−min(N∗a (B),N∗d (B)), B ∈B(R),

and λ ∗d is its intensity.

Proof. We can apply 4.5 for X(t) = 1(L(t)≥ n+1) and N = N∗a +N∗d because X(t)
is bounded and X ′(t) = 0. Hence, (4.27) yields

λ ∗a (P∗a (L(0−)≥ n+ 1)−P∗a (L(0−)+△L(0)≥ n + 1))

+λ ∗d(P
∗
d(L(0)−△L(0)≥ n +1)−P∗d(L(0)≥ n +1)) = 0,

which concludes (4.34).

In Theorem 4.6, N∗d count instants when departures only occur.

Example 4.9 (Queueing model with no customer loss). In the model of Theorem 4.6,
assume that there is no lost customer, and customers singly arrive and singly depart.
Furthermore assume that arrivals and departures do not simultaneously occur. That
is, Pa(△L(0) = 1) = Pd(△L(0) =−1) = 1, where Pd is the Palm distribution of Nd .
From (4.34), it follows that

λaPa(L(0−) = n) = λdPd(L(0) = n), n = 0,1, . . . .

Summing both sides of the above equation over all n, we have λa = λd. Hence, we
have

Pa(L(0−) = n) = Pd(L(0) = n), n ∈ Z+. (4.35)

Thus, the system queue length observed by arriving customers is identical with the
one observed by departing customers. This is intuitively clear, but it is also formally
obtained, which is important to consider more complex situations.

Example 4.10 (Loss system). For the queueing system of Example 4.9, assume that
the system queue length is limited to M, and arriving customers who find M cus-
tomers in system are lost. In this case, (4.35) does not hold generally. For example,
its right-hand side vanishes for n = M, but its left-hand side may not be zero. Since
both sides of (4.34) vanishes for n≥M, we have

λaPa(L(0−) = n) = λdPd(L(0) = n), n = 0,1, . . . ,M− 1. (4.36)

Since the departure reduces one customer, Pd(L(0)≤M−1) = 1. Hence, summing
(4.36) over for n = 0,1, . . . ,M− 1, we have

Pa(L(0−) = M) =
λa−λd

λa
.

This is the probability that customers are lost, and is again intuitively clear. We here
correctly present it using Palm distributions.
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Theorem 4.6 does not have information on the system queue length at an arbitrary
point in time. Let us include this information using supplementary variables.

Theorem 4.7. Under the assumptions of Theorem 4.6, let Ra(t) be the time to the
next arrival instant measure from time t, i.e., remaining arrival time, and let T1 be
the first arrival time after time 0. For a nonnegative measurable function f on R such
that it is differentiable, Ea( f (T1)) < ∞ and |E( f ′(Ra(0)))|< ∞, where Ea represents
the expectation concerning the detailed Palm distribution of Na, we have

−E( f ′(Ra(0));L(0)≥ n + 1)

= λa
(
Ea( f (0);L(0−)≥ n +1)−Ea( f (T1);L(0)≥ n +1)

)

+λ dEd( f (Ra(0));n +1 +△L(0)≤ L(0)≤ n), n ∈ Z+, (4.37)

where E represents the expectation of the detailed Palm distribution of Nd , and λa

and λ d are the intensities of Na and Nd , respectively.

Proof. Let X(t) = f (Ra(t))1(L(t) ≥ n + 1). Since R′a(t) = −1, we have X ′(t) =
− f ′(Ra(t))1(L(t) ≥ n + 1). Since Pa(Ra(0) = T1) = 1, 4.5 and the remark on the
detailed version of the rate conservation law at the end of Section 4.8 concludes
(4.37).

Example 4.11 (NBUE distribution). In Example 4.9, assume that the interarrival
times of customers are independent and identically distributed and that arrivals and
departures do not simultaneously occur. Furthermore, assume that the interarrival
time T1 satisfies

Ea(T1− x|T1 > y)≤ Ea(T1), x≥ 0. (4.38)

The distribution of T1 under Pa satisfying this condition is said to be NBUE type,
where NBUE is the abbreviation of New Better than Used in Expectation. In fact,
(4.38) represents that the conditional expectation of the remaining arrival time is not
greater than the mean interarrival time. If the inequality in (4.38) is reversed, then
the distribution of T1 is said to be NWUE, which is the abbreviation of New Worse
than Used in Expectation. Form the NBUE assumption, we have

E(Ra(0);L(0)≥ n + 1)≤ Ea(T1)P(L(0)≥ n + 1).

We apply Theorem 4.7 with f (x) = x. Since f (0) = 0, f ′(x) = 1 and λa = λ d =
λd = 1/Ea(T1), (4.37) yields

−P(L(0)≥ n + 1)≤−Pa(L(0)≥ n+ 1)+ Pd(L(0) = n), n≥ 0.

Since Pa = Pa and Pd = Pd , this and (4.35) lead to

Pa(L(0−)≥ n+ 1)≤ P(L(0)≥ n+ 1), n≥ 0. (4.39)

Hence, the distribution of the system queue length at the arrival instants is greater
than the one at an arbitrary point in time in stochastic order, where, for two dis-
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tribution functions F and G, F is said to be greater than G in stochastic order if
1−F(G)≥ 1−G(x) for all x ∈R.

Similarly to Theorem 4.7, we can take the minimum of the remaining service
times of customers being served, and get relationships among the distributions of
the system queue lengths at different embedded points in time.

4.11 An extension of the rate conservation law

In this section, we briefly discuss how the rate conservation law (4.23) can be gen-
eralized for other types of processes. For this, it is notable that this law is obtained
from the integral representation of the time evolution (4.24) and the definition of
Palm distribution P0. There are two integrators, du of the Lebesgue measure and
N(du) of a point process, both of which are defined on the line. To closely look at
this, we rewrite (4.24) in a slightly extended form as

X(t) = X(0)+

ˆ t

0
X ′(u)A(du)+

ˆ t

0
∆X(u)N(du),

where A(t)−A(0) is consistent with the shift operator θt and has bounded variations,
and ∆X(u)= X(u)−X(u−). If X(t) has either a component of unbounded variations
or a continuous and singular component with respect to the Lebesgue measure, this
expression breaks down. To get back the expression, we subtract this component,
denoting it by M(t). Thus, we have

X(t)−M(t) = X(0)−M(0)+

ˆ t

0
Y ′(u)A(du)+

ˆ t

0
∆Y (u)N(du),

where Y (u) = X(u)−M(u). If M(t) is consistent with θt , then we have the rate
conservation law for the process {Y(t)}. It may be reasonable to assume that M(t)
is continuous. However, this rate conservation law may not be useful to study {X(t)}
because X(t) is not directly involved.

To get useful information, we make use of a test function, which is used in 4.4,
and apply Itô’s integration formula, assuming that M(t) is a square integrable mar-
tingale. That is,

(4.11a) M(t) is continuous in t and consistent with {θt}.
(4.11b) E((M(t)−M(0))2) < ∞ for all t ≥ 0.
(4.11c) {M(t)−M(0);t ≥ 0} is a martingale with respect to {Ft}, that is,

E(M(t)−M(0)|Fs) = M(s)−M(0), 0≤ s≤ t,

where Ft is a sub σ -field of F which is increasing in t ∈ R, and {Ft ;t ∈ R} is
called a filtration.
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This martingale assumption is typical for a process with unbounded variations. It is
beyond our scope to fully discuss Itô’s integration formula, but we like to see how it
works. The reader may refer to standard text books such as [16] and [17] for more
details. Assume that X(t) and M(t) are Ft -measurable for all t ∈R.

For convenience, let M0(t) = M(t)−M(0) for t ≥ 0. Under these assumptions,
M2

0(t) is submartingale, that is,

E(M2
0(t)|Fs)≥M2

0(s), 0≤ s≤ t,

and there exists a nondecreasing process 〈M0(t)〉 such that M2
0(t)−〈M0(t)〉 is a mar-

tingale. Then, Itô’s integration formula reads: for twice continuously differentiable
function f ,

f (X(t)) = f (X(0))+

ˆ t

0
f ′(X(u))dM(u)+

ˆ t

0
f ′(X(u))Y ′(u)A(du)

+
1
2

ˆ t

0
f ′′(X(u))d〈M0(u)〉+

ˆ t

0
∆ f (Y (u))N(du), (4.40)

where the integration on the interval [0,t] with respect to dM(u) is defined L2-
limit of the Riemann sum, that is, ∑n

ℓ=1 f ′(X( ℓ−1
n ))(M( ℓ

n )−M( ℓ−1
n )). See Theorems

17.18 and 26.6 of [16] and Theorem 3.3 of [17]. This integration is a martingale, and
its expectation vanishes. Define the Palm distribution with respect to 〈M0(t)〉 as

P〈M〉(C) =
1

λ〈M〉
E

(
ˆ 1

0
1C ◦θud〈M0(u)〉

)
, C ∈ F.

where λ〈M〉 = E(M(1)−M(0)). The Palm measure PA is similarly defined for the
non-decreasing process A. Thus, taking the expectation of both sides of (4.40), we
arrive at

EA( f ′(X(0))Y ′(0))+
1
2

λ〈M〉E〈M〉( f ′′(X(0)))+ λE0(∆ f (Y (0))) = 0, (4.41)

assuming suitable finiteness conditions for the expectations, where EA and E〈M〉
stand for the expectations concerning PA and P〈M〉.

We can proceed one further step using the representation theorem for a contin-
uous martingale by the Brownian motion. This theorem says that, for a continuous
martingale M0(t) with respect filtration {Ft}, there exists a progressively measur-
able process Z(t) such that

M0(t) =

ˆ t

0
Z(u)dB(u), 〈M0(t)〉=

ˆ t

0
Z2(u)du < ∞, t ≥ 0,

where {Z(t)} is said to be progressively measurable if {(u,ω) ∈ [0,t]×Ω ;Z(u) ∈
A} ∈ B([0,t])×Ft for all t ≥ 0, and {B(t);t ≥ 0} is called a Brownian motion if
it has independent and stationary increments which are normally distributed with
mean 0 and unit variance (see, e.g., Theorem 18.12 of [16] and Theorem 4.15 of
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[17]). Hence, (4.41) can be written as

EA( f ′(X(0))Y ′(0))+
λZ2

2
E
(

f ′′(X(0))Z2(0)
)
+λE0(∆ f (Y (0))) = 0, (4.42)

where λZ2 = E(
´ 1

0 Z2(u)du).
In queueing applications of (4.42), Y(t) and Z(t) are often identified as functions

of X(t) from their modeling assumptions through the expression:

X(t) = X(0)+

ˆ t

0
Y ′(u)A(du)+

ˆ t

0
Z(u)dB(u)+

ˆ t

0
∆Y (u)N(du). (4.43)

In this case, Y (t) = g(X(t)) and Z(t) = h(X(t)) for some functions g and h, and
(4.42) is really useful to consider the stationary distribution of X(t).

Example 4.12 (extended Pollaczek-Khinchine formula). Let us consider to add the
Brownian motion to the workload process V (t) in Example 4.7. That is, V (t) is
changed to the following X(t).

X(t) = X(0)+ σ2B(t)+
N(t)

∑
n=1

Sn− t + I(t)

= X(0)+

ˆ t

0
(I(du)−du)+

ˆ t

0
σ 2dB(u)+

ˆ t

0
∆Y (u)N(du)

where I(t) is a minimum non-decreasing process for X(t) to be nonnegative. That
is, I(t) is a regulator. Thus, if we put A(t) = I(t)− t, Y (t) = t +

´ t
0 ∆Y (u)N(du) and

Z(t) = σ , then we have (4.43).
Assume the stability condition that

ρ ≡ λ E(S1) < 1.

Then, {X(t)} is a stationary process under the stationary distribution. For non-
negative number θ , let f (x) = e−θx. We apply (4.42) to X(t) and this f . Since
I(t) is increased only when X(t) = 0, we have, using ϕ(θ) = E(e−θX(0))) and
g(θ ) = E(e−θS1),

θ(ϕ(θ )−EI(1))+
σ 2θ 2

2
ϕ(θ ) = λ ϕ(θ )(1− g(θ)).

Similar to Example 4.7, we have EI(1) = 1− ρ , dividing the above formula by θ
and letting θ ↓ 0. Thus, we have the Laplace-transform of X(0) under the stationary
assumption.

ϕ(θ) =
θ (1−ρ)

θ + 1
2 σ 2θ 2−λ (1−g(θ))

, θ > 0. (4.44)

This is an extension of the Pollaczek-Khinchine formula (4.31).
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The results of the present section can be obtained under weaker assumptions and
for a multidimensional process. The latter is in a similar line to 4.4 with a multidi-
mensional version of the Itô integration formula, while the continuous martingale
can be weakened to a local martingale with unbounded variational discontinuity. Of
course, we need to carefully consider the integration under such discontinuity.

4.12 Piece-wise deterministic Markov process (PDMP)

As we discussed in Section 4.1, many queueing models can be described by stochas-
tic processes whose major changes occur in embedded points in time. In this section,
we introduce a typical Markov process having such structure. The sample path of
this Markov process is assumed to satisfy the integral representation (4.24) and to
have discontinuous points only on a set, called boundary. It will be shown that this
process is flexible and has a wide range of applications.

We first introduce notation for state spaces. Let X be a countable set. An element
x ∈ X is referred to as a macro state. For each x ∈ X, let Kx be a closed subset of
Rm(x), where m(x) be a positive integer determined by x and Rn is the n-dimensional
Euclid space, i.e., vector space with the Euclidean metric. Define sets K and J(x) as

K = {(x,y);x ∈ X,y ∈ Kx}, J(x) = {1,2, . . . ,m(x)}.

For (x,y)∈K, y is referred to as a continuous component or supplementary variable
under macro state x.

On this K, we introduce a natural topology induced from those on Kx. For each
z ≡ (x,y) ∈ K, the family of its neighborhoods is generated by all the sets of the
form {x}× (Vy∩Kx), where Vy is a neighborhood of y ∈ Rm(x). Let B(K) be the
Borel σ -field on K, i.e., the σ -field generated by all open sets of K. Thus, (K,B(K))
is measurable space and we can define a probability measure on it.

We further need notation on boundary. Let Kx+ be an open subset of Kx, and let
Kx0 ≡ Kx \Kx+, which is called a boundary. For K, we define its inside K+ and its
boundary K0 as

K+ = {(x,y);x ∈ X,y ∈ Kx+}, K0 = K \K+.

Definition 4.10 (PDMP). Let Z(t)≡ (X(t),Y(t)) be a stochastic process with state
space K defined above, and assume that Z(t) is right-continuous with left-limits.
This {Z(t)} is said to be a piece-wise deterministic Markov process, PDMP for
short, if the following three conditions are satisfied.

(4.12a) X(t) is unchanged as long as Y(t) ≡ (Y1(t), . . . ,Ym(x)(t)) ∈ Kx+, which
changes according to the following differential equation when X(t) = x.

dYℓ(t)
dt

= gxℓ(Y(t)), ℓ ∈ J(x),
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where gxℓ is a bounded measurable function from Rm(x) to R for each x ∈ X,
and Y(t) hits boundary Kx0 in a finite time with probability one. We refer to
X(t) and Y(t) as macro state and continuous component, respectively.

(4.12b) At the moment when Z(t) hits the boundary K0, that is, Z(t−) ∈ K0, it
instantaneously returns to the inside, that is, Z(t−)∈K0 is changed to Z(t)∈K+

subject to the transition kernel Q from the boundary K0 to the inside K+. That
is, for each (x,y) ∈ K0,

P(Z(t) ∈ A|Z(t−) = (x,y)) = Q((x,y),A), A ∈ X×B(K).

Q is referred to as a jump transition kernel.
(4.12c) For each finite time interval, the number of the hitting times at the bound-
ary, i.e., the number of t such that Y(t−) ∈ K0 is finite. We denote the point
process generated by such hitting times by N.

Remark 4.5. The PDMP was introduced by Davis [10] (see also [11]). However, our
definition of PDMP is slightly different from his definition. They use the attained
lifetimes for the supplementary variables Y(t). Thus, the macro state transitions
randomly occur subject to intensity depending on Y(t), which may hit the boundary.
However, if the time is reversed, then their PDMP becomes ours. A minor advantage
of ours is that the existence of the intensity is not necessary. This means that we do
not need to assume the existence of densities of lifetime distributions for macro state
transitions, which will be discussed below.

The PDMP (piece-wise deterministic Markov process) looks complicated, but it
has simple structure when we only observe the embedded epochs due to the state
transition by Q. Let {tn;n ∈ Z} be the set of such epochs numbered in increasing
order. Then, {Z(tn−)} is a discrete time embedded Markov chain. Let us consider
the transition kernel of this embedded Markov chain.

For each state z≡ (x,y)∈K+, denote the time to the next transition starting from
this state by ζ (x,y), which is uniquely determined by (4.12a). We let ζ (x,y) = 0 if
(x,y) ∈ K0. We also denote the state of the continuous component Y(t) that attains
just before this time by ψ(x,y). Let H be the transition kernel H of the embedded
process {Z(tn−)}. That is,

H(z,{x′}×B) = P(Z(tn+1−) ∈ {x′}×B|Z(tn−) = z),

z ∈ K0,x
′ ∈ X,B ∈B(Kx′).

Then, it is easy to see that

H(z,{x′}×B) =

ˆ

Kx′
Q(z,{x′}×dy′)1(ψ(x′,y′) ∈ B). (4.45)

Example 4.13. As an example of PDMP, let us consider the workload process V (t)
of Example 4.8 for the M/G/1 queue with state dependent processing rate r.
Let X(t) ≡ 0, Y1(t) = t − TN(t) and Y2(t) = V (t), then Y ′1(t) = −1 and Y ′2(t) =

r(V (t))1(V (t) > 0). Hence, if we let X = {0} and K = {0}× [0,∞)2 with K0 =
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{0}2× [0,∞), then (X(t),(Y1(t),Y2(t))) is a PDMP, where the jump transition Q is
given by

Q f (0,(0,x)) = E( f (0,(T1,x +S1))), x≥ 0,

for a nonnegative valued function f on K+ ≡ {0}× (0,∞)× [0,∞). Note that Y2(t)
has no boundary in this formulation.

We next to consider the stationary distribution of PDMP (piece-wise determinis-
tic Markov process). We are interested to characterize it using the rate conservation
law. We first consider its transition operator of the Markov process {Z(t)}. Since its
state space K includes continuous components, we consider the transition operator
to work on the space of suitable functions on K.

Let Mb(K) be the set of all bounded functions from K to R which are B(K)/B(R)-
measurable. For each t ≥ 0, define operator Tt on Mb(K) as

Tt f (z) = E( f (Z(t))|Z(0) = z), z ∈ K, f ∈Mb(K).

Note that Tt is a linear function from Mb(K) to Mb(K). Furthermore, it maps a
nonnegative function to a nonnegative function. Thus, Tt is nonnegative and linear
operator on Mb(K), which uniquely determines a distribution on (K,B(K)) as is
well known.

Define operator A+ as

A+ f (z) = lim
t↓0

1
t
(Tt f (z)− f (z)), z ∈ K+,

as long as it exists. We refer to this A+ as a weak generator. Let DA+ be the set
of all f ∈Mb(K) such that A+ f exists. Note that A+ is a generator only for the
continuous part of Z(t), and does not include the information on state changes due
to the macro state transitions. Hence, A+ is not a generator in the sense that it
determines the operator Tt . This is the reason why we call it weak.

For each macro state x ∈X, let Yx be the set of all solutions {y(t)} for the differ-
ential equation (4.12a), i.e.,

dyℓ(t)
dt

= gx(y(t)), 0≤ t < ζ (x,y).

Let M1
b(K) be the set of all functions f ∈Mb(K) such that f (x,ξ (t)) has the right-

hand derivative in all t in the domain of ξ and is continuous from the left at t =
ζ (x,y) for x ∈ X and ξ ∈ Yx. Let C1

b(K) be the set of all functions f ∈Mb(K)

such that f (x,y) has bounded and continuous partial derivatives ∂
∂ yℓ

f (x,y) (ℓ =

1,2, . . . ,m(x)) for each x ∈X and y ∈ Kx+. Clearly, C1
b(K)⊂M1

b(K).
For f ∈M1

b(K) and Z(t) ∈ K, it follows from the definition of the PDMP that

f (Z(t))− f (Z(0)) =

ˆ t

0

d
du

f (Z(u))du +

ˆ t

0
( f (Z(u))− f (Z(u−)))N(du).
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Hence, for z≡ (x,y) ∈ K+ and ξ ∈M1
b(K) with ξ (0) = y, we have

A+ f (z) = lim
t↓0

1
t

E ( f (Z(t))− f (Z(0))|Z(0) = z)

= lim
t↓0

1
t

E

(
ˆ t

0

d
du

f (Z(u))du

∣∣∣∣Z(0) = z
)

=
d
du

f (x,ξ (u))

∣∣∣∣
u=0

,

where the second equality is obtained since Z(u) must stay in K+ for a finite time
under the condition that Z(0) = z ∈ K+. In particular, for f ∈C1

b(K),

A+ f (z) =
m(x)

∑
ℓ=1

gxℓ(y)
∂

∂yℓ
f (x,y). (4.46)

Hence, C1
b(K)⊂M1

b(K)⊂DA+ . However, C1
b(K) 6= M1

b(K) in general. For exam-
ple, ζ ∈M1

b(K), but ζ 6∈C1
b(K) after Definition 4.11.

Theorem 4.8. Let {Z(t)} be the PDMP and let N be the point process N generated
by hitting times at the boundary. If {Z(t)} has the stationary distribution ν and if N
has a finite intensity λ , then there exists a probability distribution ν0 on (K0,B(K0))
satisfying

ˆ

K+

A+ f (z)ν(dz) = λ
ˆ

K0

( f (z)−Q f (z))ν0(dz), f ∈M1
b(K). (4.47)

Conversely, if there exist probability distributions ν on (K+,B(K+)) and ν0 on
(K0,B(K0)) satisfying (4.47) with some positive number λ , then

ν(B) = ν(B∩K+), B ∈B(K)

is the stationary distribution of Z(t), and the point process N has the finite intensity
λ . Furthermore, let P be a probability measure on (Ω ,F) such that {Z(t)} is the
stationary process with the stationary distribution ν , then ν0 is the distribution of
Z(0−) under the Palm distribution P0 with respect to N.

Remark 4.6. Davis [11] computes an extended generator, which characterizes the
stationary distribution, for the PDMP supplemented by the attained lifetimes. We
can rewrite (4.47) in a similar form. Namely, let λ (z) = λ ν0(dz)

ν(dz) , where ν0(dz)
ν(dz) is the

Radon Nikodym derivative of ν0 with respect to ν . Then, we have
ˆ

K
(A+ f (z)+ λ (z)(Q f (z)− f (z)))ν(dz) = 0. (4.48)

λ (z) can be considered as a stochastic intensity, and the integrant corresponds with
the extended generator. (4.48) is particularly useful when λ (z) is available, but this
may not be always the case. In this situation, (4.47) is more flexible.
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Proof. Assume that {Z(t)} is a stationary process under probability measure P. De-
note the stationary distribution of Z(t) by ν . Since the set of the times when Z(t)
is on the boundary is countable, P(Z(0) ∈ K0) = 0. Hence, ν can be viewed as a
probability distribution on (K+,B(K+)). Let P0 be the Palm distribution of P with
respect to N. Since the distribution Z(0−) under P0 is determined by ν0, (4.47) is
immediate from (4.46) and 4.4.

We next prove the converse. Suppose that there exists probability measures ν,ν0

satisfying (4.47) and positive constant λ . Let f ∈Mb(K). Since Tu f is continuous
in u, we have, from the definition of A+

A+

(
ˆ t

0
Tu f du

)
(z) = lim

ε↓0
1
ε

(
Tε

(
ˆ t

0
Tu f du

)
(z)−

ˆ t

0
Tu f (z)du

)

= lim
ε↓0

1
ε

(
ˆ t

0
Tu+ε f (z)du−

ˆ t

0
Tu f (z)du

)

= lim
ε↓0

1
ε

(
ˆ t+ε

t
Tu f (z)du−

ˆ ε

0
Tu f (z)du

)

= Tt f (z)− f (z), z ∈ K+. (4.49)

Define h for f ∈Mb(K) as

h(z) =

ˆ t

0
Tu f (z)du, z ∈ K.

Then, (4.49) implies that h ∈DA+ . In general, h may not be in M1
b(K), but we can

prove that (4.47) holds for this h in the place of f by approximating h by functions
in M1

b(K). Since this proof is complicated, we omit it, but the reader can find it in
[27]. Since, for Z(0−) ∈ K0,

QTu f (Z(0−)) = E(Tu f (Z(0))|Z(0−))

= E( f (Z(u))|Z(0−)) = Tu f (Z(0−)), u > 0,

implies
ˆ

K0

Tu f (z)ν0(dz) =

ˆ

K0

QTu f (z)ν0(dz).

Integrating both sides for u ∈ [0,t], we have
ˆ

K0

h(z)ν0(dz) =

ˆ

K0

Qh(z)ν0(dz).

Hence substituting h into f of (4.47), (4.49) yields
ˆ

K+

Tt f (z)ν(dz) =

ˆ

K+

f (z)ν(dz), t > 0.



4 Palm Calculus, Reallocatable GSMP and Insensitivity Structure 181

Thus, ν is the stationary distribution of Z(t).
We next prove that N has the finite intensity λ . To this end, define ϕε for ε > 0

as

ϕε(u) =
1
ε

min(ε,u), u≥ 0.

We remind that ζ (x,y) is the hitting time at the boundary starting from the state
(x,y)∈K, where ζ (x,y)= 0 for (x,y)∈K0. For the trajectory ξ ∈Yx, d

dt ζ (x,ξ (t))=
−1. Hence,

d
dt

ϕε(ζ (x,ξ (t))) =−1
ε

1(0 < ζ (x,ξ (t))≤ ε).

Let f (x,y) = ϕε (ζ (x,y)). Then, f ∈M1
b(K). We apply this f in (4.47), and let ε ↓ 0.

Then

lim
ε↓0

ˆ

K0

ϕε(ζ (x,y))ν0(dx,dy) =

ˆ

K0

1(ζ (x,y) > 0)ν0(dx,dy) = 0,

lim
ε↓0

ˆ

K0
∑

x′∈X

Q((x′,y′),(x,y))ϕε (ζ (x,y))ν0(dx′,dy′) = ν0(K0) = 1.

Here, we have used the fact that ν0 is the distribution of Z(t) just before hitting the
boundary K0. Since ν is the stationary distribution, the above computations yield

lim
ε↓0

1
ε

ˆ

K+

1(0 < ζ (z)≤ ε)ν(dz) = λ .

Reminding that N counts the hitting times at the boundary, we have

E(N((0,1]) = λ .

That is, λ is the intensity of N. Since λ is finite, we can define Palm distribution P0

of P with respect to N. Denote the distribution of Z(0) under this P0 by ν̃0, then the
rate conservation law (4.23) yields

ˆ

K+

A+ f (z)ν(dz) = λ
ˆ

K0

( f (z)−Q f (z))ν̃0(dz), f ∈M1
b(K).

This together with (4.47) concludes
ˆ

K0

( f (z)−Q f (z))ν̃0(dz) =

ˆ

K0

( f (z)−Q f (z))ν0(dz), f ∈M1
b(K).

Here, we choose fθ for f such that, for each x ∈ X and θℓ ≥ 0 (ℓ = 1,2, . . . ,J(x)),

fθ (x′,y′) = 1(x′ = x) ∏
ℓ∈J(x)

e−θℓy′ℓ , (x′,y′) ∈ K+.
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For each subset U of J(x), we let θℓ→ ∞ for all ℓ ∈U . Then, we have ν0 = ν̃0 on
the boundary {y ∈ Kx;yℓ = 0 for all ℓ ∈U} since Q fθ (z) goes to zero. Changing U
over all subsets of J(x), we obtain ν̃0 = ν0 on K0. This completes the proof.

For applications, Theorem 4.8 is not convenient since M1
b(K) is too large for

verifying (4.47). We can replace it by a smaller class of functions.

Corollary 4.6. In Theorem 4.8, the condition (4.47) can be replaced by

ˆ

Kx+

m(x)

∑
ℓ=1

gxℓ(y)
∂

∂yℓ
f (x,y)ν(dx×dy)

= λ
ˆ

K0

( f (z)−Q f (z))ν0(dz), f ∈C1
b(K). (4.50)

The necessity of (4.50) is immediate, but its sufficiency needs approximation
arguments for functions in M1

b(K) by those in C1
b(K). This argument can be found

in [26], and omitted here.

4.13 Exponentially distributed lifetime

For the PDMP, some of its continuous components Yi(t) may be exponentially dis-
tributed and be decreased with constant rates. For example, this is the case when
customers arrive subject to a Poisson process, and Yi(t) is the remaining time to the
next arrival. In such a case, we can remove those continuous components to have
a stochastically equivalent Markov process because the exponential distribution has
memoryless property, that is, if random variable T has the exponential distribution,
then

P(T > s+ t|T > s) = P(T > t), s,t ≥ 0.

Since this case is particularly interested in our applications, we make the following
assumption.

(4.13a) The jump transition kernel Q of the PDMP does not depend on the contin-
uous components which are exponentially distributed and decreased with con-
stant rates.

In this section, we characterize the stationary distribution for this type of piece-wise
deterministic Markov processes (PDMP).

Although we do not need to keep track such continuous components, the stan-
dard description of PDMP must include them. Thus, after removing them from the
PDMP, we have to care about the modified process, which is not exactly PDMP.
In this section, we are particularly interested in the stationary distribution of this
modified process.
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Assume that the PDMP satisfies the assumption (4.13a). For macro state x ∈ X

and continuous component y ∈ Kx, let Je(x) be the index set of y’s which have
exponential distributions. We denote the decreasing rate of the i-th component for
i ∈ Je(x) by cxi ≥ 0. We replace the i-th entry of y by 0 for i ∈ Je(x), and denote this
modified vector by ỹx. Let K̃ = {(x, ỹx);x ∈X,y ∈ Kx}.

Note that the process (X(t),Ỹ(t)) is a continuous time Markov process with state
space K̃. Its macro state transition kernel Q̃ is unchanged for this process. Let Ã+

be the restriction of the weak generator A+on M1
b(K̃) for the PDMP (X(t),Y(t)).

That is, for f̃ ∈M1
b(K̃) and f̃K(x,y)≡ f̃ (x, ỹx),

Ã+ f̃ (x, ỹx) = A+ f̃K(x,y), (x,y) ∈ K. (4.51)

The following fact is intuitively clear, but its proof clarifies the role of the stationary
equation (4.47) of Theorem 4.8.

Theorem 4.9. Let the PDMP (X(t),Y(t)) have weak kernel A+ and jump transition
kernel Q. Assume that this PDMP satisfies the assumption (4.13a) and the mean
lifetime of the i-th continuous component is 1/µi(x) for i ∈ Je(x). Then, ν̃ is the
stationary distribution of (X(t),Ỹ(t)) that has a finite intensity for the embedded
point process generated by macro state transitions if and only if there exists a finite
measure ν̃x on (K̃x,B(K̃x)) for each x ∈ X such that

λ ν̃0({x}×dỹx) = ν̃x(dỹx)+ ∑
i∈Je(x)

cxiµi(x)ν̃({x}×dỹx), x ∈ X,(4.52)

ˆ

K̃
Ã+ f̃ (z̃)ν̃(dz̃) = λ

ˆ

∂ K̃

(
f̃ (z̃)−Q f̃ (z̃)

)
ν̃0(dz̃), f̃ ∈M1

b(K̃), (4.53)

where Ã+ is the weak generator of (X(t),Ỹ(t)), that is given by (4.51).

Proof. For necessity, (4.52) is immediate from the decomposition formula of Palm
distributions while (4.53) is obtained from Theorem 4.8 and (4.51). To prove suf-
ficiency, we let f̃ (x̃,y) = 1(x̃ = x)g̃(ỹx) in (4.53). Then, with help of (4.52), we
have
ˆ

K̃x

Ã+g̃(x, ỹx)ν̃({x}×dỹx) =

ˆ

∂ K̃x

g̃(ỹx)ν̃x(dỹx)

+ ∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}× dỹx)

−λ
ˆ

∂ K̃
Q(z̃′,{x}×dỹx)g̃(ỹx)ν̃0(dz̃′). (4.54)

Multiply both sides of this equation by ∏ j∈Je(x)
µ j(x)

µ j(x)+θ j
, which is the joint Laplace

transform of independent and exponentially distributed random variables with means
1/µ j(x), where θ j is a nonnegative number, and should not be confused with the
shift operator θt . Then, the second term in the right-hand side can be computed as
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∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}× dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

= ∑
i∈Je(x)

cxiµi(x)

(
1− θi

µi(x)+ θi

)
ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)\{i}

µ j(x)

µ j(x)+ θ j

= ∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)\{i}

µ j(x)

µ j(x)+ θ j

− ∑
i∈Je(x)

cxiθi

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j
.

Thus, we have
ˆ

K̃x

Ã+g̃(y)ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

+ ∑
i∈Je(x)

cxiθi

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

=

ˆ

∂ K̃x

g̃(ỹx)ν̃x(dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

+ ∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}× dỹx) ∏
j∈Je(x)\{i}

µ j(x)

µ j(x)+ θ j

−λ
ˆ

∂ K̃
Q(z̃′,{x}×dỹx)g̃(ỹx)ν̃0(dz̃′) ∏

j∈Je(x)

µ j(x)

µ j(x)+ θ j
.

This is identical with (4.47) with f given by

f (x′,y) = 1(x′ = x)g̃(ỹx) ∏
j∈Je(x)

e−θiyi .

Since θi can be any positive number, this class of function f is sufficiently large to
determine a distribution on K. Hence,

ν({x}×dy) = ν̃({x}× dỹx) ∏
j∈Je(x)

µ j(x)e−µ j(x)y j dy j

is the stationary distribution of the PDMP (X(t),Y(t)), so ν̃ is that of (X(t),Ỹ(t)).

It is notable that (4.52) is necessary to get the stationary distribution. Of course,
we can combine (4.52) and (4.53) substituting the former into the latter.

Example 4.14 (State dependent workload, revisited). In Example 4.13, we formu-
late the workload process V (t) of Example 4.8 for the M/G/1 queue with state
dependent processing rate r as the PDMP (X(t),(Y1(t),Y2(t))). Since Tn− Tn−1 is



4 Palm Calculus, Reallocatable GSMP and Insensitivity Structure 185

exponentially distributed and independent of everything else, we can drop Y1(t), and
Theorem 4.9 is applicable. Although this is not so much helpful to find the station-
ary distribution since (4.52) and (4.53) are equivalent to (4.32), we can see how
Theorem 4.9 is applied.

4.14 GSMP and RGSMP

In many queueing applications of the PDMP, all the continuous components Yℓ(t)
count the remaining lifetimes, and the macro state transitions due to Q is indepen-
dent of non-zero remaining lifetimes. Assume that the remaining lifetimes decrease
with constant rates. In this case, the weak generator A+ has a simpler form:

A+ f (x,y) =−
m(x)

∑
i=1

cxi
∂

∂yi
f (x,y), (4.55)

where cxi are nonnegative constants for each x and i. Furthermore, Q is also simpler.
We introduce this class of models adding more structure to the macro states.

Definition 4.11 (GSMP). Let X and S be countable or finite sets. Their elements are
called a macro state and a site, respectively. For each x ∈ X, a finite and non-empty
subset of S is associated, and denoted by A(x), whose element is called an active site
under macro state x. For each s ∈ A(x), a clock is attached, and counts its remaining
life time rs. Let r(x) = {(s,rs);s ∈ A(x)}.

Assume the following dynamics of macro states and clocks.

(4.14a) Under macro state x, the clock at site s ∈ A(x) advances with speed cxs.
(4.14b) If the remaining lifetime of clocks at sites in U ⊂ A(x) simultaneously
expire under macro state x, then the macro state changes to x′ with probability
pU (x,x′).

(4.14c) Under the above transition, the remaining lifetimes of clocks at sites
A(x) \U are retained, and new clocks are activates on sites A(x′) \A(x) with
lifetimes independently sampled from the distribution determined by their sites
and new macro state x′.

Thus, A(x) \U must be a subset of A(x′). Let X(t) be a macro state at time t,
and let Rs(t) be remaining lifetime of the clock at site s ∈ A(x) at time t. Then,
(X(t),{Rs(t);s ∈ A(x)}) is a Markov process. We refer to this Markov process as a
generalized semi-Markov process, GSMP for short, with macro state space X and
site space S.

This GSMP is not exactly the PDMP (piece-wise deterministic Markov process),
but can be reduced to it. To see this, let m(x) be the number of elements of A(x), and
let J(x) = {1,2, . . . ,m(x)}, where m(x) is a finite positive integer by the assumption
on A(x). For each x ∈ X, define one to one mapping ξx from A(x) to J(x). For each
ℓ∈ J(x), let yℓ = vξ−1

x (ℓ). Thus, site s∈A(x) is mapped to ℓ∈ J(x) with the remaining
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lifetime of the clock attached to s. Let Kx = [0,∞)m(x) and K = ∪x∈X{x}×Kx. Let
Rs(t) be the remaining lifetime of the clock at site s, and with Yℓ(t) = Rξ−1

X(t)(ℓ)
(t) let

Y(t) = (Y1(t),Y2(t), . . . ,Ym(X(t))(t)).

We also define the jump transition kernel Q as, for x,x′ ∈X, y ∈ Kx and Bℓ ∈B(R),

Q((x,y),{x′}×B1×·· ·×Bm(x′))

= pU (x,x′) ∏
ℓ∈ξ (A(x)\U)

1(yℓ ∈ Bℓ) ∏
ℓ∈ξ (A(x′)\A(x))

Fx′ξ−1
x′ (ℓ)(Bℓ),

where U is the set of all expiring sites under x and the remaining lifetimes yξ−1
x (s) of

the clock at site s ∈ A(x), and Fxs is the new lifetime distribution of the clock at site
s under macro state x. Note that F(B) is defined for distribution F as

F(B) =

ˆ

B
F(du), B ∈B(R).

Then, we have PDMP {(X(t),Y(t))} with state space K and jump transition kernel
Q. We refer to {(X(t),Y(t))} as a canonical form of GSMP.

From the assumption on the speed of clocks, we have

dYℓ(t)
dt

=−cX(t)ℓ, ℓ ∈ J(X(t)),

where cxℓ = cxξ−1(ℓ). Hence, let y = (y1, . . . ,ym(x)), then

ζ (x,y) = min

{
y1

cx1
, . . . ,

ym(x)

cxm(x)

}
,

ψ(x,y) =

(
y1

cx1
− ζ (x,y), . . . ,

ym(x)

cxm(x)
− ζ (x,y)

)
.

Many queueing models and their networks can be described by GSMP. For those
models, sites correspond with arrivals and services, and the remaining lifetimes are
the remaining arrival times and the remaining workloads. Particularly, GSMP is
useful for those queues with the first-come and first-served discipline since sites for
service are unchanged for them.

However, GSMP is not so convenient when services are interrupted. In this case,
we have to keep track of the remaining workloads of all customers who once started
service. Then, the macro state has to accommodate all the sites as they are since
clocks are fixed at sites in GSMP. This often unnecessarily complicates analysis,
particularly when the number of active sites is unbounded.

To reduce this complication, one may think of reallocating clocks on sites at each
transition instants. This is basically equivalent to only work on the canonical form
with the reallocation. Let us define this model.
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Definition 4.12 (RGSMP). Let X be a finite or countable set for a macro state space,
and let J(x)≡ {1,2, . . . ,m(x)} of the set of all active sites under macro state x. Let
D be the index set of lifetime distributions for clocks at their activation, where the
same distribution may have different indexes. An active clock is allocated to each
element of J(x) and has the remaining lifetime, but this allocation may change at
the macro state transitions in the following way.

(4.14d) Under macro state x, the remaining lifetime of the clock at site ℓ ∈ J(x)
decreases with rate cxℓ, where there is at least one positive rate.

(4.14e) Each clock at site ℓ∈ J(x) has an index in D. Denote this index by γx(ℓ).
This γx is a mapping from J(x) to D, which is not necessarily one-to-one.

(4.14f) When all clocks of sites in set U simultaneously expire, macro state x
changes to x′ activating clocks on sites in set U ′ with probability p((x,U),(x′,U ′)).

(4.14g) At this macro state transition, clocks on J(x) \U are reallocated on
J(x′) \U ′ by one-to-one mapping ΓxU,x′U ′ onto J(x′) \U ′, whose domain
Γ−1

xU,x′U ′(J(x′)\U ′) is a subset of J(x)\U . The clocks at sites in the set:

(J(x)\U)\Γ−1
xU,x′U ′(J(x′)\U ′)

are said to be interrupted. Under this reallocation, the remaining lifetimes of
the reallocated clocks and their indexes are unchanged while newly activated
clocks with indexes d ∈ D have the lifetimes independently sampled subject to
distribution Fd’s.

Let X(t) and Y(t) be the macro state and the remaining lifetime vector at time t.
Then, {(X(t),Y(t))} is the PDMC, and we refer to it as a reallocatable generalized
semi-Markov process, RGSMP for short.

Note that the transition kernel Q at macro state transitions is given by

Q((x,y),(x′,B1×·· ·×Bm(x′)))

= p((x,U),(x′,U ′)) ∏
j∈ΓxUx′ (J(x)\U)

1(y j ∈ B j) ∏
j∈U ′

Fγx′( j)(B j).

We assume that ΓxU,x′U ′ is deterministic for simplicity, but it could be random with-
out any difficulty. In applications, U is usually a singleton, that is, U = {ℓ} for some
ℓ. In this case, p((x,U),(x′,U ′)) and ΓxU,x′U ′ are simply written as p((x, ℓ),(x′,U ′))
and Γxℓ,x′U ′ , respectively.

Although the canonical form of the remaining lifetimes is sufficient for RGSMP,
it may not be always convenient. For example, if there are different groups of sites
and reallocations are only taken within each group, then a finite set of multidimen-
sional vectors is more convenient than one multidimensional vector y. In this case,
J(x) is divided into subsets Js1(x), . . . ,Jsk(x) for the number k of such groups and
their indexes s1, . . . ,sk. Similarly, γx(ℓ) is divided into γs1x(ℓ1), . . . ,γskx(ℓk).

In our definition of RGSMP, some of active clocks may expire at the transition. In
queueing applications, this may be the case that a customer being serviced is forced
to leave. For example, so called a negative customer causes such an event.
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We now specialize 4.6 to RGSMP (reallocatable generalized semi-Markov pro-
cess) of Definition 4.12. In this case, Laplace transform is convenient.

Corollary 4.7. Assume RGSMP satisfies the assumptions in Theorem 4.8. For each
x ∈ X, let θx = (θ1, . . . ,θm(x)), θℓ ≥ 0, 〈θx,y〉 = ∑m(x)

ℓ=1 θℓyℓ, then (4.50) can be re-
placed by

m(x)

∑
ℓ=1

cxℓθℓν̂(x,θx) = λ
(
ν̂0(x,θx)− ν̂+

0 (x,θx)
)
, θ ≥ 0,x ∈ X, (4.56)

where

ν̂(x,θx) =

ˆ

Kx+

e−〈θx,y〉ν(x,dy),

ν̂0(x,θx) =

ˆ

Kx0

e−〈θx,y〉ν0(x,dy),

ν̂+
0 (x,θx) =

ˆ

K0

ˆ

Kx+

e−〈θx,y〉Q(z′,(x,dy))ν0(z
′).

Since function e−〈θx,y〉 is in C1
b(K), the necessity is immediate. For the necessity,

we need to approximate functions in C1
b with compact supports by Fourier series.

This can be found in [26] again.
Up to now, we are mainly concerned with a single point process N for the macro

state transitions. We can decompose this N into point processes observed at sites.
For each subset U of {1,2, . . .}, define point process NU as

NU (B) = ∑
t∈B

∑
x∈X

1(X(t) = x,Yℓ(t) = 0, ℓ ∈U ∩ J(x)), B ∈B(R),

and let λU = E(NU ((0,1])). Since λU ≤ λ < ∞, we can define Palm distribution
PU of P with respect to NU . Denote the distribution of Z(t) under PU by νU . Let
ν̂U(x,θx) be the Laplace transform with respect to the remaining lifetimes under
macro state x ∈ X, and let

ν̂+
U (x,θx) =

ˆ

K0

ˆ

Kx+

e−〈θx,y〉Q(z′,(x,dy))νU (z′).

Then, (4.56) can be replaced by

m(x)

∑
ℓ=1

cxℓθℓν̂(x,θx) = ∑
U

λU
(
ν̂U (x,θx)− ν̂+

U (x,θx)
)
, θ ≥ 0. (4.57)

In many cases, U is a singleton for λU > 0. In this case, we simply write λ{ℓ} and
ν{ℓ} as λℓ and νℓ, respectively, for U = {ℓ}.
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4.15 Exponential and non-exponential clocks in RGSMP

In this section, we consider the stationary distribution of RGSMP (reallocatable
generalize semi-Markov process), provided it exists. In what follows, we use the
notations in Definition 4.12, and assume that {(X(t),Y(t))} is stationary under P.

As we have considered in Section 4.13, it is interesting to see the case where some
of lifetime distributions are exponential. We here consider such a case for RGSMP.
Denote the set of the indexes in D which specify the exponential distributions by De.
Similarly, let Je(x) be the set of the sites whose clocks have indexes in De. Those
clocks are activated with lifetimes subject to the exponential distributions. For the
other distributions, we let

Dg = D\De, Jg(x) = J(x)\ Je(x).

In this section, we shall use Theorem 4.9 and 4.7 to characterize the stationary
distribution. We first prepare some notations. For each d ∈ D, denote the mean of
distribution Fd by md , and its reciprocal by µd . Denote the Laplace transform of Fd
by F̂d(θ). Since Fd is exponential for d ∈ De,

Fd(x) = 1− e−µdx, x≥ 0, F̂d(θ) =
µd

µd +θ
, θ ≥ 0.

Let θx = (θ1, . . . ,θm(x)). For U ⊂ J(x), let θx(U) denote the θx in which the
components with indexes in U is replaced by 0. In particular, if U = {ℓ}, then θx(U)
is denoted by θx(ℓ). Let Nℓ be the point process generated by expiring instants of
clocks at site ℓ. This point process is obviously stationary under P. In what follows,
we also assume

(4.15a) The mean md of Fd is finite for all d ∈D.
(4.15b) Not more than one clock simultaneously expires.
(4.15c) ∑∞

ℓ=1 λℓ < ∞, where λℓ is the intensity of Nℓ.

Let Pℓ be the Palm distribution concerning Nℓ. We denote the distribution of
(X(t),Y(t)) under P by ν , and its Laplace transform concerning Y(t) under X(t)= x
by ν̂(x,θx) for each x ∈ X. Similarly, the distribution of (X(0−),Y(0−)) under the
Palm distribution Pℓ and its Laplace transform under X(0−) = x are denoted by νℓ

and ν̂ℓ(x,θx), respectively.

Lemma 4.12. For x ∈ X and θx ≥ 0, we have

ν̂(x,θx) = ν̂(x,θx(Je(x))) ∏
i∈Je(x)

µγx(i)

µγx(i) +θi
, (4.58)

ν̂ℓ(x,θx) = ν̂ℓ(x,θx(Je(x))) ∏
i∈Je(x)\{ℓ}

µγx(i)

µγx(i) +θi
, (4.59)

cxℓµγx(ℓ)ν̂(x,θx(Je(x))) = λℓν̂ℓ(x,θx(Je(x))), ℓ ∈ Je(x). (4.60)
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Proof. (4.58) and (4.59) are immediate from the memoryless property of the expo-
nential distribution. Substituting them into (4.57) and letting θℓ → ∞ yield (4.60).

The next result is a specialization of 4.7 to the case that some of lifetime distri-
butions are exponential, but can be viewed as a special case of Theorem 4.9.

Theorem 4.10. Under the assumptions (4.15a), (4.15b) and (4.15c), RGSMP has
the stationary distribution if and only if there exist Laplace transforms ν̂, ν̂ℓ and λℓ

(ℓ = 1,2, . . .) such that (4.60) holds and, for each x ∈ X and θx(Je(x))≥ 0,

∑
i∈Jg(x)

cxiθiν̂(x,θx(Je(x)))

= ∑
i∈J(x)

λiν̂i(x,θx(Je(x)))− ∑
x′∈X

∑
i∈J(x′)

∑
U⊂J(x)

λiν̂i(x′,Γ̂−1
x′i,xU(θx(Je(x)))

×p((x′, i),(x,U)) ∏
j∈U∩Jg(x)

F̂γx( j)(θ j), (4.61)

where Γ̂−1
x′i,xU (θx) is the m(x′)-dimensional vector whose j-th entry is θΓx′ i,xU ( j) if

j 6= i and Γx′i,xU ( j) ∈ J(x) and equals 0 otherwise. In this case, ν̂ is the Laplace
transform of the stationary distribution ν .

Remark 4.7. It is not hard to see that (4.61) is a special case of (4.54).

Proof. We apply 4.7. From the assumption (4.15a),

λ ν̂0(x,θx) =
∞

∑
ℓ=1

λℓν̂ℓ(x,θx).

Similarly, from the definition of Γ̂−1
x′ixU ,

λ ν̂+
0 (x,θx) =

∞

∑
i=1

λiν̂+
i (x,θx)

=
∞

∑
i=1

∑
x′∈X

∑
U⊂J(x)

λiν̂−i (x′,Γ̂−1
x′i,xU (θx′))p((x′, i),(x,U)) ∏

j∈U∩Jg(x)

F̂γx( j)(θ j).

Substituting these formulas together with (4.58) and (4.59) into (4.56) and dividing
both sides by ∏ j∈Je(x)

µγx( j)
µγx( j)+θ j

, we have
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m(x)

∑
i=1

cxiθiν̂(x,θx(Je(x)))

= ∑
i∈Jg(x)

λiν̂i(x,θx(Je(x))+ ∑
i∈Je(x)

λi(µγx(i) + θi)

µγx(i)
ν̂i(x,θx(Je(x))

− ∑
x′∈X

m(x′)

∑
i=1

∑
U⊂J(x)

λiν̂−i (x′,Γ̂x′i,xU (θx′(Je(x′))))p((x′, i),(x,U)) ∏
j∈U∩Jg(x)

F̂γx( j)(θ j).

By 4.12, (4.60) is necessary. We apply it to the second term in the right-hand side of
this equation, then we can see that the terms of i∈ Je(x) in the left-hand side are can-
celled, which yields (4.61). Thus, (4.60) and (4.61) are necessary. These arguments
can be traced back, so the converse is proved (see also the proof of Theorem 4.9).

Example 4.15. Let us formulate the M/G/1 queue of Example 4.7 by the RGSMP.
We here assume the first-come first-served discipline. Let X(t) be the number of
customers in the system, and R(t) be the remaining service time of a customer in ser-
vice, where R(t) = 0 if the system is empty. Obviously, (X(t),R(t)) is a continuous-
time Markov chain, and it is easy to see that this process is a RGSMP.

We show how the notations of the RGSMP are specified in this case. Let X =
{0,1,2, . . .}. D = {0,1}, where 0 represents the exponential distribution with mean
λ−1, and 1 represents a generic distribution with mean µ−1 and distribution F .
Define the jump transition function by

p((n,0),(n +1,U)) = 1 if n = 0 and U = {0,1} or if n≥ 1 and U = {0},
p((n,1),(n−1,U)) = 1 if n = 1 and U = /0 or if n≥ 2 and U = {1},

and let cn,0 = cn+1,1 = 1 for n≥ 0. Let

Je(0) = {0,1}, Je(n) = {0}, Jg(0) = /0, Jg(n) = {1}, n≥ 1.

Thus, we indeed have the RGSMP. Assume the stability condition ρ ≡ λ/µ < 1. In
what follows we solve the stationary equation (4.61), which becomes

0 = λ ν̂(0,0)−λ ν̂(1,0),

θ ν̂(1,θ) = λ (ν̂(1,θ )+ ν̂(1,0))−λ (ν̂(0,0)+ ν̂(2,0))F̂(θ),

θ ν̂(n,θ) = λ (ν̂(n,θ )+ ν̂(n,0))−λ (ν̂(n−1,θ )+ ν̂(n +1,0)F̂(θ )),

for n≥ 2, where we have used the fact that λ1 = λ . By letting θ = 0 in these formu-
las. it is easy to see that ν̂1(n,0) = ν̂(n−1,0) for n≥ 1. Then, it is routine to solve
these stationary equations by taking the generating function:

ν̂∗(z,θ) = 1−ρ +
∞

∑
n=1

znν̂(n,θ ).

Let π(0) = ν̂(0,0). This yields
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(θ −λ (1− z))(ν̂∗(z,θ)−π(0)) = λ (1− z)F̂(θ)π(0)+ λ (z− F̂(θ))ν̂∗(z,0).(4.62)

Let θ = λ (1− z) in this equation, then we have

ν̂∗(z,0) =
(1−ρ)(1− z)F̂(λ (1− z))

F̂(λ (1− z))− z
. (4.63)

We can compute ν̂∗(z,θ ) by substituting this into (4.62). These results are well
known. The advantage of the present derivation is that the existence of the density
of F is not needed, which is often assumed in the literature.

If Dg = /0 in Theorem 4.10, i.e., all the lifetimes are exponentially distributed,
then the set of equations (4.60) and (4.61) with θi = 0 uniquely determines the
stationary distribution of the macro states. Hence, we have the following corollary.

Corollary 4.8. For the RGSMP satisfying (4.15a), (4.15b) and (4.15c), if all the
lifetime distributions are exponential, then a probability distribution π on X is the
stationary distribution of X(t) if and only if, for all x ∈ X,

∑
ℓ∈J(x)

cxℓµγx(ℓ)π(x) = ∑
x′∈X

∑
ℓ∈J(x′)

∑
U⊂J(x)

cx′ℓµγx′ (ℓ)
π(x′)p((x′, ℓ),(x,U)). (4.64)

Equation (4.64) can be interpreted as the stationary equation for the macro state.
To see this, define the transition rate function q(x,x′) as

q(x,x′) = ∑
ℓ∈J(x′)

∑
U⊂J(x)

cxℓµγx(ℓ)p((x, ℓ),(x′,U)).

Then, it is not hard to see that (4.64) is equivalent to

π(x) ∑
x′∈X

q(x,x′) = ∑
x′∈X

π(x′)q(x′,x), x ∈ X.

Thus, we can find the time-reversed process of {X(t)}, which has the transition
rate function:

q̃(x,x′) =
π(x′)
π(x)

q(x′,x).

Then, it is not hard to see the following result.

Corollary 4.9. Under all the conditions of 4.8, the time-reversed macro process can
be considered as that of the RGSMP with the speeds c̃xU and the rates of the ex-
ponential distributions µ̃γx(U) and jump transition p̃((x,U),(x′, ℓ)) as long as they
satisfy
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c̃xU µ̃γx(U) =
1

π(x) ∑
x′∈X

∑
ℓ∈J(x′)

cx′ℓµγx′ (ℓ)
π(x′)p((x′, ℓ),(x,U)), (4.65)

p̃((x,U),(x′, ℓ)) =
1

π(x)c̃xU µ̃γx(U)
cx′ℓµγx′ (ℓ)

π(x′)p((x′, ℓ),(x,U)). (4.66)

Remark 4.8. If U is not a singleton in this corollary, then clocks in U are forced to
expire except for one in the constructed RGSMP for reversed time. However, active
clocks are singly created. This is contrasted with the forward process.

Example 4.16 (Reversibility of the M/M/1 queue). We show how 4.9 can be used
for applications. Consider the M/M/1 queue with arrival rate λ and service rate µ .
We assume the stability condition ρ ≡ λ

µ < 1. This model is a special case of the
M/G/1 queue, which is formulated by the RGSMP in Example 4.15, and we can
apply 4.9 because all lifetime distributions are exponential. Since F̂(θ ) = µ/(µ +
θ), (4.63) becomes

ν̂∗(z,0) =
1−ρ
1−ρz

.

Hence, the stationary distribution {π(n)} is given by π(n) = (1− ρ)ρn, as is well
known. Remind that D = De = {0,1}, J(0)= {0}, and J(n) = {0,1} for n≥ 1. From
(4.65), we have, for n≥ 0,

c̃(n+1)0µ̃0 =
1

π(n +1)
λ π(n) = λ ρ−1 = µ ,

c̃n1µ̃1 =
1

π(n)
µπ(n +1) = µρ = λ ,

Similarly we have

p̃((n,U),(n +1,1)) = p((n +1,1),(n,U)) = 1,

p̃((n +1,U),(n,0)) = p((n,0),(n+ 1,U)) = 1.

Thus, letting c̃(n+1)0 = c̃n1 = 1 for n ≥ 0, the time reversed RGSMP is identical
with the same M/M/1 queue except for the indexes, which are exchanged. Thus,
the departure process of the original M/G/1 queue is the Poisson process with rate
λ and independent of the past history of the system. This is known as the Burke’s
theorem [7], which is obtained for the M/M/s queue.

4.16 Product form decomposability

Under the assumptions of 4.8, {X(t)} is a continuous time Markov chain. However,
this is not the case if there are non exponential lifetime distributions, so π deter-
mined by (4.64) may not be the stationary distribution of the macro state. We are
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interested in the case that this π is either still the stationary distribution of X(t) or
can be modified to be the stationary distribution. We guess this could occurs when
the remaining lifetimes are independent, and give the following definition.

Definition 4.13. If RGSMP {(X(t),Y(t))} is stationary and if there exist distribu-
tion function Hd for each d ∈D such that Hd(0) = 0 and, under the stationary prob-
ability measure P,

P
(

X(0) = x,Y(0) ∈
m(x)

∏
ℓ=1

[0,uℓ]
)

= P(X(0) = x)
m(x)

∏
ℓ=1

Hγx(ℓ)(uℓ), x ∈X,uℓ ≥ 0,

then the RGSMP or its stationary distribution is said to have product form decom-
position with respect to remaining lifetimes

Remark 4.9. The product form decomposability is slightly different from the condi-
tionally independence of Yℓ(t) (ℓ = 1,2, . . . ,m(X(t)) given X(t) = x, that is,

P
(

X(t) = x,Y(t) ∈
m(x)

∏
ℓ=1

[0,uℓ]
)

= P(X(t) = x)
m(x)

∏
ℓ=1

P(Yℓ(t)≤ uℓ).

Clearly, they are equivalent if no reallocation occurs.

Lemma 4.13. Assume that the RGSMP satisfies the assumptions (4.15a) and (4.15c).
If the RGSMP has a product form decomposable stationary distribution ν , then
(4.15b) is satisfied, and there exists αd > 0 for each d ∈ D such that

Hd(x) = 1−βd

ˆ ∞

x
(1−Fd(u))e−αd(u−x)du, x≥ 0,d ∈ D, (4.67)

cxℓµ∗γx(ℓ)ν̂(x,θx(ℓ)) = λℓν̂ℓ(x,θx(ℓ)), x ∈ X, ℓ ∈ J(x), (4.68)

where βd and µ∗d are given by

βd =

{
αd

1−F̂d(αd)
, αd 6= 0,

µd αd = 0 ,
µ∗d =

{
αd F̂d(αd)

1−F̂d(αd)
αd 6= 0,

µd αd = 0 .
(4.69)

Proof. Assume that (X(t),Y(t)) is a stationary process with the stationary distri-
bution ν . When Fd is exponential, we obviously have (4.67), and (4.68) is easily
obtained similarly to (4.60). Hence, it is sufficient to prove (4.67) and (4.68) for
d ∈ Dg and for ℓ ∈ Jg(x). If cxℓ = 0, then (4.68) obviously holds, so we assume that
cxℓ > 0. Let Tℓ1 = inf{t > 0;Nℓ((0,t]) = 1}. Since Yℓ(0) = cxℓTℓ1, we have, from
4.1,

λℓPℓ (X(0−) = x,Yi(0−)≤ ui, i ∈ J(x)\{ℓ})

= lim
t↓0

1
t

P(X(Tℓ1−) = x,Yi(Tℓ1−)≤ ui, i ∈ J(x)\{ℓ},Tℓ1≤ t)

= lim
t↓0

cxℓ

cxℓt
P(X(0) = x,Yi(0)− cxiTℓ1 ≤ ui, i ∈ J(x)\{ℓ},Yℓ(0)≤ cxℓt) .
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Hence, from the product form decomposability and the definition of Palm distribu-
tion, we have

λℓνℓ

(
x,

m(x)

∏
i=1

[0,ui]

)
= cxℓ

∂
∂uℓ

ν

(
x,

m(x)

∏
i=1

[0,ui]

)∣∣∣∣∣
uℓ=0

= cxℓH
′
γx(ℓ)(0)π(x) ∏

i∈J(x)\{ℓ}
Hγx(i)(ui), (4.70)

where H ′γx(ℓ)
(0) must exist and be finite because the left-hand side is finite. Note

that this formula also holds for ℓ ∈ Je(x). Furthermore, if more than one clocks
simultaneously expire, then we can put ui = uℓ for some i 6= ℓ in the right-hand side
of (4.70), which implies that the corresponding Palm distribution vanishes. Thus,
(4.15b) is satisfied.

Letting ui = ∞ in (4.70) and summing both sides of it for all x∈X and ℓ∈ γ−1
x (d)

for each d ∈D, we have

∑
ℓ∈γ−1

x (d)

λℓ = H ′d(0) ∑
x∈X

∑
ℓ∈γ−1

x (d)

cxℓπ(x). (4.71)

Thus, the right-hand side is finite by the assumption (4.15c).
Let d = γx(ℓ), and letting θi = 0 for all i ∈ J(x) \ {ℓ} and θℓ = θ in (4.61) of

Theorem 4.10 and substituting (4.70) yield, for ℓ ∈ Jg(x),

cxℓθπ(x)Ĥd(θ ) = cxℓH
′
d(0)π(x)+ ∑

i∈J(x)\{ℓ}
cxiH

′
γx(i)(0)π(x)Ĥd(θ)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′iH
′
γx′ (i)

(0)π(x′)p((x′, i),(x,U))Ĥd(θ )

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iH
′
γx′ (i)

(0)π(x′)p((x′, i),(x,U))F̂d(θ). (4.72)

Summing this formula for all x ∈ X and ℓ ∈ γ−1
x (d) for each fixed d ∈ Dg, we can

see that the sum of the left-hand side is finite by (4.71) and the second sum is not
less than the third sum because of the interruption (they must be identical if there is
no interruption). So, there exist a nonnegative constant a and positive constants b,c
such that

θ Ĥd(θ) = c +aĤd(θ)−bF̂d(θ ).

Letting θ = 0 in this equation, we have c = b−a. Thus, we have, rewriting θ as θ ,

θ Ĥd(θ )−aĤd(θ) =−a +b(1− F̂d(θ)). (4.73)

This is equivalent to the following differential equation.

d
dx

Hd(x)− aHd(x) =−a +b(1−Fd(x)) (4.74)
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In fact, using the fact that Hd(0) = 0, one can check this equivalence by integrating
both sides of the above equation multiplying e−θx concerning x over [0,∞) for each
θ > 0. We can easily solve the linear differential equation (4.74) using the boundary
conditions Hd(0) = 0 and limx→∞ Hd(x) = 1. Thus, we get

Hd(x) = 1−b
ˆ ∞

x
(1−Fd(x))e

−a(u−x)du, x≥ 0.

Denote a by αd . Then, b = βb, and we have (4.67). From (4.74), we have

H ′d(0) = βd−αd = µ∗d .

Hence, (4.70) implies (4.68).

Remark 4.10. From (4.73) and the expression of βd , we have

Ĥd(θ) = βd
F̂d(αd)− F̂d(θ)

θ −αd
, θ ≥ 0,d ∈ Dg. (4.75)

From (4.68), we can interpret αd as the rate for the interruption of a clock with
index d. This rate does not depend on the macro state x and site ℓ ∈ J(x) as long as
d = γx(ℓ).

Lemma 4.14. Under the assumptions of 4.13, we have, for each x ∈X,

∑
i∈J(x)

cxiµ∗γx(i)π(x) = ∑
x′∈X

∑
i∈J(x′)

∑
U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)), (4.76)

cxℓ(αγx(ℓ) + µ∗γx(ℓ))π(x)

= ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)), ℓ ∈ Jg(x). (4.77)

Remark 4.11. The right-hand side of (4.77) is the rate for the event that a new clock
is activated at site ℓ. On the other hand, the left-hand side is the expiring rate of
a clock at site ℓ. Hence, (4.77) represents the balance of the rates for expiring and
activating clocks at the same site ℓ, so it is referred to as a local balance at site ℓ.

Proof. Substituting H ′γx′ (i)
(0) = µ∗γx′ (i)

into (4.72) with θ = 0 in the proof of 4.13

and noting the fact that (4.72) also holds for ℓ ∈ Je(x), we have (4.76) for their
summation. We next consider (4.72). For this let

K1(x, ℓ) = ∑
i∈J(x)\{ℓ}

cxiµ∗γx(i)π(x)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)), (4.78)

K2(x, ℓ) = ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)). (4.79)

Then, (4.72) can be written as
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cxℓθℓπ(x)Ĥd(θ ) = cxℓH
′
d(0)π(x)+ K1(x, ℓ)Ĥd(θ)−K2(x, ℓ)F̂d(θ)

Subtracting this from (4.73) multiplied by cxℓθℓπ(x), we have

(αdcxℓπ(x)−K1(x, ℓ))(1− Ĥd(θ )) = (βdcxℓπ(x)−K2(x, ℓ))(1− F̂d(θ )).

Because 1− Ĥd(θ) can not be a constant multiplication of (1− F̂d(θ )) for d ∈ Dg

by 4.13, their coefficients must vanish. Thus, we have

αdcxℓπ(x) = K1(x, ℓ), βdcxℓπ(x) = K2(x, ℓ). (4.80)

This is nothing but (4.77) because βd = αd + µ∗d .

It is notable that (4.76) represents the global balance under macro state x while
(4.77) is the local balance at site ℓ under macro state x. We are now ready to prove
the following theorem.

Theorem 4.11. The RGSMP satisfying the assumptions (4.15a) is product form de-
composable and satisfies and (4.15c) if and only if there exist the distribution π on
X and nonnegative numbers {αd ;d ∈ Dg} satisfying the global balance (4.76), the
local balance (4.77) and the finite intensity condition:

∑
x∈X

∑
ℓ∈J(x)

cxℓµ∗γx(ℓ)π(x) < ∞. (4.81)

In this case, the stationary distribution ν is given by

ν
(

x, ∏
i∈J(x)

[0,ui]
)

= π(x) ∏
i∈J(x)

Hγx(i)(ui), x ∈ X,ui ≥ 0, (4.82)

where αd = 0 for d ∈De and µ∗d and Hd are defined in 4.13. Furthermore, under this
stationary distribution, (4.15b) is satisfied, and not more than one clock is activated
at once, that is, we have, for each x ∈ X and any ℓ1, ℓ2 ∈ Jg(x) such that ℓ1 6= ℓ2,

∑
x′∈X

∑
i∈J(x′)

∑
{ℓ1,ℓ2}⊂U⊂Jg(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)) = 0. (4.83)

Proof. We have already shown that the product decomposability with conditions
(4.15a), (4.15b) and (4.15c) implies (4.76), (4.77), (4.81) and (4.82) with the non-
negative number αd for d ∈ D. Thus, for the necessity, we only need to prove the
last statement. Suppose that ℓ1, ℓ2 ∈ Jg(x) satisfying ℓ1 6= ℓ2 are simultaneously ac-
tivated. Let di = γx(ℓi) for i = 1,2. Then, similar to (4.72), it follows from (4.61)
that
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(cxℓ1θ1 + cxℓ2θ2)π(x)Ĥd1(θ1)Ĥd2(θ2)

= (cxℓ1 µ∗d1
Ĥd1(θ1)+ cxℓ2 µ∗d2

Ĥd2(θ2))π(x)

+ ∑
i∈J(x)\{ℓ1,ℓ2}

cxiµ∗γx(i)π(x)Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)F̂d2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1∈U,ℓ2 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)F̂d2(θ2). (4.84)

On the other hand, multiplying (4.72) for ℓ = ℓ1 and θ = θ1 by Ĥd2(θ2), we have

cxℓ1 θ1π(x)Ĥd1(θ1)Ĥd2(θ2)

= (cxℓ1 µ∗d1
Ĥd1(θ1)Ĥd2(θ2)+ cxℓ2 µ∗d2

Ĥd2(θ2))π(x)

+ ∑
i∈J(x)\{ℓ1,ℓ2}

cxiµ∗γx(i)π(x)Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1∈U,ℓ2 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)Ĥd2(θ2). (4.85)

Subtracting both sides (4.85) from (4.84), we have

cxℓ2θ2π(x)Ĥd1(θ1)Ĥd2(θ2) = cxℓ2 µ∗d2
π(x)(1− Ĥd2(θ2))Ĥd1(θ1)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1))(F̂d2(θ2)− Ĥd2(θ2))

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)(F̂d2(θ2)− Ĥd2(θ2)).

Dividing both sides of the above formula by θ2 and letting θ2 ↓ 0 yield

cxℓ2π(x)Ĥd1(θ1) = cxℓ2 µ∗d2
π(x)(−Ĥ ′d2

(0))Ĥd1(θ1)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1))(F̂

′
d2

(0)−H ′d2
(0))

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)(F̂

′
d2

(0)−H ′d2
(0)).
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Consequently, F̂d1(θ1) must be proportional to Ĥd1(θ1) and therefore identical with
Ĥd1(θ1). This is impossible. Thus, not more than one clock can not be activated at
once.

We next show the converse. Summing (4.77) over all ℓ ∈ Jg(x) and subtracting
this sum from (4.76), we have

∑
i∈Je(x)

cxiµ∗γx(i)π(x) = ∑
i∈Jg(x)

cxiαγx(i)π(x)

+ ∑
x′∈X

∑
i∈J(x′)

∑
U⊂Je(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)). (4.86)

From the definition of Ĥd(θ), it follows that

βdF̂d(θ) = (αd−θ )Ĥd(θ)+ µ∗d .

Multiplying both sides of (4.77) by F̂d(θ) and substituting the above F̂d(θ) to its
left side, we have

cxℓθπ(x)Ĥd(θ) = cxℓµ∗d π(x)+ cxℓαdπ(x)Ĥd(θ)−K2(x, ℓ)F̂d(θ ). (4.87)

From (4.76) and (4.77), we have

∑
i∈J(x)

cxiµ∗γx(i)π(x) = ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))

+ ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))

= ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))

+cxℓ(αγx(ℓ) + µ∗γx(ℓ)
)π(x).

Substituting cxℓαγx(ℓ)π(x) from this equation into (4.87), we arrive at

cxℓθπ(x)Ĥd(θ ) = cxℓµ∗d π(x)+ ∑
i∈J(x)\{ℓ}

cxiµ∗γx(i)π(x)Ĥd(θ )

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd(θ )

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d(θ ).

This equation is identical with (4.72). Let d = γx(ℓ), multiply both sides of it by
∏i∈J(x)\{ℓ} Ĥγx(i)(θi) and define distributions ν,νℓ and constants λℓ by
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ν̂(x,θx(Je(x))) = π(x) ∏
i∈J(x)

Ĥγx(i)(θi),

ν̂ℓ(x,θx(Je(x))) = π(x) ∏
i∈J(x)\{ℓ}

Ĥγx(i)(θi),

λℓ = ∑
x∈X

cxℓµ∗γx(ℓ)
π(x).

We then have the stationary equation (4.61). Hence, ν is the stationary distribution
of the RGSMP by Theorem 4.10.

There are a number of remarks on this theorem.

Remark 4.12. This theorem does not answer the uniqueness of the stationary dis-
tribution. However, the uniqueness can be considered through the irreducibility. In
particular, for the macro state distribution, it is not hard to check the irreducibility
from the global balance equation (4.76) similar to the irreducibility of a Markov
chain with discrete state space X.

Remark 4.13. Although at most one clock with non exponentially distributed life-
time is activated at each completion time, some clocks with exponentially dis-
tributed life times may be activated at the same instant. Thus, it is not necessary
that U = {ℓ} in (4.76) and (4.77).

Remark 4.14. From the proof of 4.14, we can see that αγx(ℓ) > 0 if and only if
K1(x, ℓ) > 0, that is

∑
i∈J(x)\{ℓ}

cxiµ∗γx(i)π(x)− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)) > 0.

By the global equation (4.76), this is equivalent to

∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))− cxℓµ∗γx(ℓ)π(x) > 0.

This means that αγx(ℓ) > 0 holds if and only if the total activation rate of type d =
γx(ℓ) clock is greater than its total completion rate. Thus, αd can be interpreted as
an interruption rate.

Remark 4.15. We have not discussed how to compute the interruption rate αd . In
many cases, they are given as modeling parameters. If this is not the case, they
would be determined by (4.80) although they are highly nonlinear equations.

In the rest of this section, we consider the case where there is no interruption, that
is, αd = 0 for all d ∈D. The following corollary is immediate from Theorem 4.11.

Corollary 4.10. Suppose the RGSMP satisfies (4.15a) and has no interruption.
Then, the RGSMP is product form decomposable and satisfies (4.15b) and (4.15c)
if and only if there exist the distribution π on X satisfying the global and local
balances:
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∑
i∈J(x)

cxiµγx(i)π(x) = ∑
x′∈X

∑
i∈J(x′)

∑
U⊂J(x)

cx′iµγx′ (i)
π(x′)p((x′, i),(x,U)), (4.88)

cxℓµγx(ℓ)π(x) = ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµγx′ (i)
π(x′)p((x′, i),(x,U)), ℓ ∈ Jg(x),(4.89)

and the finite intensity condition:

∑
x∈X

∑
ℓ∈J(x)

cxℓµγx(ℓ)π(x) < ∞. (4.90)

In this case, the stationary distribution ν is given by

ν
(

x, ∏
i∈J(x)

[0,ui]
)

= π(x) ∏
i∈J(x)

µγx(i)

ˆ ui

0
(1−Fγx(i)(v))dv, x ∈ X,ui ≥ 0. (4.91)

Furthermore, not more than one clock is activated at once.

Note that the stationary distribution π of the macro states depend on Fd for d ∈Dg

only through their means µ−1
d . This stationary distribution is said to be insensitive

with respect to Fd for d ∈Dg.

Example 4.17. Consider the M/G/1 queue of Example 4.15. We have formulated it
by the RGSMP. Since there is no interruption, we examine the product form decom-
posability by 4.10. The local balance condition (4.89) is

µ1π(1) = λ π(0)+ µ1π(2), µ1π(n) = µ1π(n +1), n≥ 2.

Obviously, these are impossible. Hence, the M/G/1 queue with the first-come first-
served discipline can not be product form decomposable.

4.17 Applications to queues and their networks

How we can check the conditions in Theorem 4.11 and 4.10 to see the decompos-
ability ? It is notable that we do not need to consider the RGSMP with generally
distributed lifetimes. Namely, we only need to find the stationary distribution of the
macro state which satisfies (4.76) and (4.77) (or (4.88) and (4.89)). In particular,
if there is no interruption, it is sufficient to consider the RGSMP all of whose life-
times are exponentially distributed. This greatly simplifies the verification of the
decomposability.

In this section, we exemplify queues and their networks by applying 4.10 and
Theorem 4.11 in this way. We first consider the following queueing system.

(4.17a) There are service positions numbered 1,2, . . . to accommodate one cus-
tomer in each position. Customers arrives subject to the Poisson process with
rate λ with i.i.d amounts of work for service, whose distribution is denoted by
F . This F is assumed to have a finite mean 1

µ .
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(4.17b) An arriving customer who found n customers in the system gets into posi-
tion ℓ with probability δn+1,ℓ for ℓ = 1,2, · · · ,n +1, and customers in positions
ℓ,ℓ+ 1, · · · ,n move to ℓ+1, ℓ+2, · · · ,n+ 1, respectively, where

n+1

∑
ℓ=1

δn+1,ℓ = 1, n≥ 0.

Thus, if there are n customers in the system, positions 1,2, · · · ,n are occupied.
(4.17c) A customer in position ℓ is served at rate cn,ℓ for ℓ = 1,2, . . . ,n when there

are n customers in the system. Denote the total service rate in this case by σ(n).
That is,

σ(n) =
n

∑
ℓ=1

cnℓ, n≥ 1.

If a customer in position ℓ leaves the system, customers in positions ℓ+ 1, ℓ+
2, · · · ,n move to ℓ,ℓ+ 1, · · · ,n− 1.

This model is referred to as a packed positioning queue. For each t, denote the
number of customers in system by X(t) and the remaining work of the customer at
position ℓ by Yℓ(t) for ℓ = 1,2, . . . ,X(t). Let Y(t) = (Y1(t), . . . ,YX(t)(t)). We show
that the process (X(t),Y(t)) is the RGSMP. Let

X = N+, D = {e,g}, Je(n) = {0}, Jg(n) = {1,2, . . . ,n} for n ∈ X,

where N+ = {0,1,2, . . .}. The index functions are defined as γen(0) = e and γgn(ℓ) =
g for ℓ ≥ 1, where e and g represent exponential and general distributions, respec-
tively.

Let cn0 = λ for all n ∈X. We interpret cnℓ for ℓ≥ 1 as the speed of a clock at the
site ℓ under the macrostate n. Define transition probabilities by

p((n,0),(n +1, ℓ)) = δ(n+1)ℓ, (n ∈ X,1≤ ℓ≤ n + 1),

p((n, ℓ),(n−1, /0)) = 1, (n≥ 1,1≤ ℓ≤ n),

µe = λ , µg = µ .

Thus, (X(t),Y(t)) can be considered as the RGSMP. Hence, by 4.10, the RGSMP
supplemented by the remaining service requirements is product-form decomposable
if and only if

cnℓµπ(n) = λ δnℓπ(n− 1) (n≥ 1,1≤ ℓ≤ n). (4.92)

From this, we see that

cnℓ = σ(n)δnℓ, n≥ 1, ℓ = 1,2, . . . ,n.

This service discipline is called symmetric by Kelly [18, 19].
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Thus, the packed positioning queue with Poisson arrivals and i.i.d. service re-
quirements is product form decomposable if and only if its service discipline is sym-
metric. In this case, (4.92) uniquely determines the stationary distribution {π(n)} as

π(n) = π(0)
λ n

µn ∏n
i=1 σ(i)

, n≥ 1.

where σ(n) = ∑n
ℓ=1 cnℓ, if

+∞

∑
n=0

λ n

µn ∏n
i=1 σ(i)

< +∞.

This stationary distribution is insensitive with respect to the work for service. Fur-
thermore, (4.92) implies

n+1

∑
ℓ=1

cnℓµπ(n+ 1) = λ π(n) n≥ 0.

Hence, by a similar time-reversed argument in Example 4.16, we can see that the
departure process from this queue is also Poisson. This is generally known as quasi-
reversibility (see [9] for its details).

Note that packing rule of service positions does not affect to get (4.92), that is,
any reallocations are possible at arriving and departing instants if all positions are
packed. In what follows, we refer to this model simply as a symmetric queue.

Remark 4.16. One might expect that the insensitivity of the queue length distribution
implies the symmetric condition. But, this is not true. For example, assume that,
for each n, cnℓ = 1

n for 1 ≤ ℓ ≤ n and δnℓ = 1 only if ℓ = 1. Then, the sample
path of {X(t)} is identical with that of the corresponding symmetric queue with
cnℓ = δnℓ = 1

n for 1 ≤ ℓ≤ n since all customers in service have a same service rate
after arriving of a new customer. Thus, (4.92) does not hold but the queue length
distribution is still insensitive. This example is rather trivial, but shows the local
balance (4.76) is indeed stronger than the insensitivity.

We next consider the case where interruptions occur in the symmetric queue
with Poisson arrivals. In addition to the assumptions (4.17a), (4.17b) and (4.17c),
we assume the following condition.

(4.17d) Negative signals arrive according to the Poisson process with rate ασ(n),
which is independent of everything else, and delete a customer in position ℓ
with probability δnℓ when n customers are in the system.

The index for this signal is denoted by −1. That is, J(n) = {−1,0,1,2, . . . ,n}
for n≥ 0. Suppose the local balance (4.77) holds. Since the general index g is only
activated by arrivals, we have

(µ∗+α)δnℓσ(n)π(n) = λ δnℓπ(n−1), n≥ 1, ℓ = 1,2, . . . ,n,



204 Masakiyo Miyazawa

where µ∗ is given by (4.69) for αd = α . Thus, the stationary distribution is given by

π(n) = π(0)
λ n

(µ∗+ α)n ∏n
i=1 σ(i)

, n≥ 0,

where the stability condition
∞

∑
n=0

λ n

(µ∗+ α)n ∏n
i=1 σ(i)

< ∞ is assumed. Then, it is

easy to see that this distribution satisfies the global balance (4.76):

(λ +(µ∗+ α)σ(n))π(n) = λ π(n−1)+ (µ∗+ α)d(n + 1)π(n+ 1), n≥ 1.

Hence, (4.77) indeed holds, and we have the product form decomposability by The-
orem 4.11.

Example 4.18. The symmetric queue can be generalized for multi-class queues and
their networks. We show how to formulate multi-class symmetric queues by an
RGSMP. Suppose there are T types of customers. Denote a set of their types
{1,2, · · · ,T} by T. We assume that the arrival process of type i customers is Poisson
with the rate λi and the arrival streams of different types of customers are indepen-
dent. Now the macrostate needs to specify the configuration of customer types in
positions. So far, we let

X = {x = (t(1),t(2), · · · ,t(n));n≥ 0,t(i) ∈ T} .

The site space is same as the packed positioning queue, but D is changed to
{e,1, · · · ,T}, which means that different types of customers may have different
service time distributions. Service discipline is also same as the packed position-
ing queue. We assume that the speeds of service and position selecting probabil-
ities of arriving customers may depends on n = |x|, so the total speed also only
depends on n, which is denoted by σ(n). Then, the local balance (4.76) becomes,
for x = (t(1), · · · ,t(n)) and x⊖ eℓ = (t(1), · · · ,t(ℓ− 1),t(ℓ+1), · · · ,t(n)),

cnℓµt(ℓ)π(x) = δnℓλt(ℓ)π(x⊖ eℓ), ℓ ∈ Jg(x)≡ {1,2, . . . ,n}. (4.93)

Thus, if the queue is symmetric, i.e., if cnℓ is proportional to δnℓ concerning ℓ for
each n = |x|, then

π(x) = π(0)
n

∏
ℓ=1

λt(ℓ)

µt(ℓ)σ(ℓ)
, x = (t(1), · · · ,t(n)),

gives a stationary distribution if the total sum of π(x) over X is finite, where π(0)
is the normalizing constant. From (4.93), we again have the quasi-reversibility for
each fixed type t as

n+1

∑
ℓ=1

cnℓµtπ(x⊕ eℓ(t)) = λtπ(x), x ∈ X,
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where x⊕ eℓ(t) = (t(1), · · · ,t(ℓ− 1),t,t(ℓ + 1), . . . ,t(n)) for x = (t(1), · · · ,t(n)).
since σ(n)µt(ℓ)π(x) = λt(ℓ)π(xℓ) by the symmetric condition. These are the well-
known results originally obtained by [18] and Chandy, Howard and Towsley [8]. We
here note that (4.93) fully verifies the insensitivity with respect to the distributions
of the amount of work for all types due to 4.10.

Consider an open or closed queueing network with multi-class Markovian rout-
ing whose nodes have symmetric service discipline in the sense of Example 4.18.
Then, each node in separation with multi-class Poisson arrivals is quasi-reversible.
Hence, from the product form solution for a quasi-reversible network (see, e.g.,
[9]), if all service requirement distributions are exponential and exogenous arrivals
are subject to Poisson processes, then this queueing network has the product form
stationary distribution for all type configurations over the network, and satisfies the
local balance at each node for each type of customers.

This concludes that the stationary distribution is insensitive with respect to the
distributions of the amount of work for all types of customers at each node. This
result is usually verified by approximating such distributions by phase types of dis-
tributions or by assuming the densities of those distributions. We can again fully
verify it by 4.10.

For those product form queueing networks, we can also consider the case that
there are negative customers or negative signals at each node as in the condition
(4.17d). Similar to the single node case, we can show the product form decompos-
ability by Theorem 4.11. Of course, the macro state distribution can not be insensi-
tive in this case.

4.18 Further insensitivity structure in RGSMP

The product form decomposable RGSMP has insensitive structure not only for the
stationary distribution but also for other characteristics. A most prominent feature
among them is the conditional mean actual lifetime of a clock given its nominal
lifetime, where the nominal lifetime is meant the total amount of lifetime when the
clock always advances with unit speed. In RGSMP, speeds of clocks may change,
so the actual lifetimes are different from their nominal lifetimes in general. The ac-
tual lifetimes are interesting for us since they correspond with the sojourn times of
customers in symmetric queues and their networks. We shall show that the mean
total sojourn time of a customer arriving at a product form decomposable queue-
ing network is proportional to his total work for service, and its coefficient can be
computed.

We first consider the attained sojourn time of an arbitrary fixed clock of a fixed
insensitive type d ∈ Dg in RGSMS. Such a clock is called tagged. For this purpose,
besides the initial distribution of the RGSMP {Z(t)} given in (4.91), we will con-
sider a further initial distribution which will be specified below and which can be
interpreted as a conditional version of that given in (4.91) under the condition that,
at time zero, a new (tagged) clock of type d ∈ Dg is activated.
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Let τ∗ denote the (total) nominal lifetime of the tagged clock. For y≤ τ∗, let T ∗y
be the length of time required by the tagged clock to process y units of its nominal
lifetime and let ℓ∗(t) denote the site at which this clock is at time t ≤ T ∗y . Then T ∗y
is given by

T ∗y = sup
{

t > 0 :
ˆ t

0
cX(u)ℓ∗(u)du < y

}
. (4.94)

Throughout this section we assume that the point process N generated by macro
state transition instants has finite intensity λ .

We need further notation for describing various point processes arising in con-
nection with stationary RGSMP. Let N(d) be the point process generated by all jump
instants at which a new clock of type d is activated. Let λ(d) and P(d) denote the
intensity of N(d) and the Palm distribution of P with respect to N(d), respectively.
Note that P(d) can be interpreted as the conditional probability measure of P given
that a clock of type d starts at time 0. For each site s ∈ J, we also introduce the point
process Ns generated by all jump instants at which site s gets a new clock of type
d, and denote its intensity and the corresponding Palm distribution by λs and Ps,
respectively. Furthermore, we use the following notation:

Jd = ∪x∈X{s ∈ J(x) : γx(s) = d}, Xs = {x ∈ X : s ∈ J(x)}.

Since N(d) = ∑s∈Jd
Ns, from the definition of Palm distribution, we have (see

(4.14))

λ(d)P(d)(C) = ∑
s∈Jd

λsPs(C), C ∈ F. (4.95)

By A∗(t) we denote the amount of the nominal lifetime of the tagged clock processed
up to time t, i.e.

A∗(t) =

ˆ t

0
cX(u)ℓ∗(u)du

for every t ≥ 0 with A∗(t) < τ∗. For t ≥ T ∗τ∗ , we put A∗(t) ≡ τ∗. Furthermore, by
A∗s (t) we denote the amount of the nominal lifetime that a clock of type d, which
has been activated at time zero at site s, has consumed up to time t ≥ 0. Since
Ps(Ns′(0) = 1) = 1{s}(s

′) for s,s′ ∈ J. Hence, (4.95) yields, for u,y≥ 0, s′ ∈ Jd and
C ∈ F,

λ(d)P(d)(A
∗(u) < y, l∗(0+) = s′,C) = ∑

s′′∈Jd

λs′′Ps′′(A
∗(u) < y, l∗(0+) = s′,C)

= λs′Ps′(A
∗
s′(u) < y,C)

Thus, by summing up for all possible s′ in the above equation, we get the following
result.

Lemma 4.15. For u,y≥ 0 and C ∈ F,
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λ(d)P(d)(A
∗(u) < y,C) = ∑

s′∈Jd

λs′Ps′(A
∗
s′(u) < y,C) .

We denote the nominal lifetime τ∗ of the tagged clock by τ∗s if the tagged clock
is created at site s. For s ∈ S, x ∈Xs and u,yℓ ≥ 0, define the event Cxs(u,yℓ) ∈ F by

Cxs(u,yℓ)≡ {X(u) = x,Rs′(u)≤ ys′(s
′ ∈ J(x)\{s})} ,

where yℓ = {ys′ ;s′ ∈ J(x) \ {s}}. Since the probability Ps′(A
∗
s′(u) < y, ℓ∗(u) =

s,Cxs(u,yℓ) |τ∗s′) does not depend on τ∗s′ on the set {τ∗s′ ≥ y} ∈ F, we can write,
for 0≤ z≤ t∗ − y,

Ps′(A
∗
s′(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗s′ = t∗)

= Ps′(A
∗
s′(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗s′ = y+ z) , (4.96)

where t∗ = sup{u : 1−Fd(u) > 0}. Moreover, by 4.15, we have

λ(d)

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗ = z)Fd(dz)

= ∑
s′∈Jd

λs′

ˆ ∞

0
Ps′(A

∗
s′(u) < y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗s′ = z)Fd(dz) . (4.97)

We are now in a position to prove the next lemma.

Lemma 4.16. Assume that Fd is purely atomic and has a finite number of atoms,
i.e. Fd(x) is a step function with a finite number of jumps. Then, for every x∈X and
s ∈ J(x) satisfying γx(s) = d, for 0≤ y≤ t∗ and for yℓ ≥ 0, we have

µdπ(x)y ∏
s′∈J(x)\{s}

F (r)
γx(s′)

(ys′)

= λ(d)

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du.(4.98)

Proof. Let ks(t) denote the site at which the clock being at time t at site s was
originally activated. For u≤ v let As(u,v), ℓs(u,v) and τs(u,v) be the attained sojourn
time, the site and the nominal lifetime, respectively, of a clock of type d at time v
which started at site s at time u. Let x≥ 0, s,s′ ∈ Jd , x ∈ Xs, and yℓ ≥ 0 be arbitrary
but fixed. Then, by the definition of ℓs′(u,v) and Ns′ , we have

P(Rs(0) > y,ks(0) = s′,Cxs(0,yℓ))

= E

(
ˆ 0

−∞
1{Rs(0)>y,ks(0)=s′,Cxs(0,yℓ),ℓs′ (u,0)=s}Ns′(du)

)

= E

(
ˆ 0

−∞
1{Rs(0)>y,Cxs(0,yℓ),ℓs′(u,0)=s}Ns′(du)

)
.
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Moreover, note that, for u < 0, As′(u,0)+ Rs(0) = τs′(u,0) on the set {ℓs′(u,0) =
s}, and that As′(u,0) = As′(0,−u) ◦ θu, τs′(u,0) = τs′(0,−u) ◦ θu and ℓs′(u,0) =
ℓs′(0,−u)◦θu. Then, the last term of the above formula becomes

E

(
ˆ 0

−∞
1{As′ (u,0)<τs′(u,0)−y,Cxs(0,yℓ),ℓs′(u,0)=s}Ns′(du)

)

= E

(
ˆ 0

−∞
1{As′(0,−u)<τs′(0,−u)−y,Cxs(−u,yℓ),ℓs′ (0,−u)=s} ◦θuNs′(du)

)
,

which, by 4.6, equals

λs′Es′

(
ˆ 0

−∞
1{As′ (0,−u)<τs′(0,−u)−y,Cxs(−u,yℓ),ℓs′ (0,−u)=s}du

)

= λs′Es′

(
ˆ ∞

0
1{As′(0,u)<τs′(0,u)−y,Cxs(u,yℓ),ℓs′ (0,u)=s}du

)

= λs′

ˆ ∞

0
Ps′ (As′(0,u) < τs′(0,u)− y,Cxs(u,yℓ), ℓs′(0,u) = s)du,

where Es′ denotes the expectation taken with respect to the Palm distribution Ps′ .
Thus, from the fact that

As′(0,u) = A∗s′(u), τs′(0,u) = τ∗s′ , ℓs′(0,u) = s = ℓ∗(u) Ps′-a.s. ,

we get

P(Rs(0) > y,ks(0) = s′,Cxs(0,yℓ))

= λs′

ˆ ∞

0
(

ˆ t∗

y
Ps′(A

∗
s′(u) < z− y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗s′ = z)Fd(dz))du

= λs′

ˆ t∗

y
(

ˆ ∞

0
Ps′(A

∗
s′(u) < z− y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗s′ = t∗)du)Fd(dz) ,(4.99)

where we have used (4.96) in the last equality of (4.99). Define a function Hd by

Hd(y,yℓ) =

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du .

Sum up both sides of (4.99) for all s′ ∈ Jd , then (4.97) yields

P(Rs(0) > y,Cxs(0,yℓ)) = λ(d)

ˆ t∗

y
Hd(z− y,yℓ)Fd(dz) . (4.100)

On the other hand, from (4.91), the left-hand side of (4.100) becomes

π(x)F(r)
d (y) ∏

s′∈J(x)\{s}
F(r)

γx(s′)
(ys′) = µdπ(x) ∏

s′∈J(x)\{s}
F(r)

γx(s′)
(ys′)

ˆ t∗

y
(z− y)Fd(dz),(4.101)
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where F
(r)
d (y) = 1−F(r)

d (y). Because of our assumption on Fd , there exist a positive
integer n, two sets of positive numbers {ai; i = 1,2, . . . ,n} and {pi; i = 1,2, . . . ,n}
satisfying

Fd(y) =
n

∑
i=1

pi1[ai,∞)(y) .

Here, we can assume that ai is increasing in i. Then, from (4.100), (4.101), we get,
for 0≤ y≤ t∗,

λ(d)

n

∑
i=1

piHd((ai− y)+,yℓ) = µdπ(x) ∏
s′∈J(x)\{s}

F(r)
γx(s′)

(ys′)
n

∑
i=1

pi(ai− y)+ ,(4.102)

where y+ = max(y,0). Finally, (4.102) implies that, for 0≤ y≤ t∗,

λ(d)Hd(y,yℓ) = µdπ(x)y ∏
s′∈J(x)\{s}

F(r)
γx(s′)(ys′) . (4.103)

This can be proved in the following way. Consider (4.102) for each sub-interval
(ai−1,ai], where a0 = 0. First, from (4.102) for y ∈ (an−1,an], we have (4.103) for
0 ≤ y ≤ an− an−1. Then, from (4.102) for y ∈ (an−2,an−1], we have (4.103) for
an− an−1 ≤ y ≤ min[an− an−2,2(an− an−1)]. If 2(an− an−1) < an− an−2, then,
by using the equation just proved, we get (4.103) for 2(an−an−1)≤ y≤ min[an−
an−2,3(an− an−1)]. We repeat the argument and eventually get (4.103) for an−
an−1 ≤ y ≤ an− an−2. In a similar way we inductively get (4.103) for all the sub-
intervals. (4.103) is nothing but (4.98), and therefore the lemma is proved.

Note that, by (4.94), T ∗y is defined for 0 ≤ y ≤ τ∗. Now, we extend T ∗y to the
whole non-negative half-line by changing the nominal lifetime of the tagged clock
to infinity, and denote T ∗y in this case by T ∞

y . Clearly T ∗y = T ∞
y for 0≤ y ≤ τ∗. The

nondecreasing process {T ∞
y ;y≥ 0} is called a attained sojourn time process.

Analogously, by ℓ∞(t) we denote the site at which the tagged clock is at time t
when its nominal lifetime is changed to infinity. Under the assumption of 4.16, we
consider a time change of the RGSMP {Z(t)} by {T ∞

t }.
Definition 4.14. Let {T ∞

t ;t ≥ 0} be the attained sojourn time process for a fixed
index d ∈ D. Let X̃(t) = X(T ∞

t ), ℓ̃(t) = ℓ∞(T ∞
t ) and R̃s(t) = Rs(T ∞

t ). We define a
time-changed process {Z̃(t);0 ≤ t < ∞} as

Z̃(t) = (X̃(t), ℓ̃(t), R̃s′(t);s′ ∈ J(X̃(t))\{ℓ̃(t)}) .

This process is said to be a time changed RGSMP concerning the attained lifetime.

Note that {Z̃(t)} is a Markov process because we can trace its history by using
analogous dynamics as for the strong Markov process {Z(t)} and by using the sup-
plementary information ℓ̃(t), which indicates the site at which the tagged clock is at
present. For s ∈ Jd, x ∈ Xs and t,yℓ ≥ 0, define the event C̃xs(u,yℓ) ∈ F by

C̃xs(t,yℓ)≡ {X̃(t) = x, R̃s′(t)≤ ys′(s
′ ∈ J(x)\{s})} .
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Note that, if we put v = A∗(u) on {l∗(u) = s} ∩Cxs(u,yℓ), then dv = cxsdu and
T ∗A∗(u) = u for cxs > 0 while dv = 0 for cxs = 0. Hence, by Fubini’s theorem and by
changing variables from u to v = A∗(u), we have, for 0≤ y≤ t∗,

cxs

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du

= E(d)

(
ˆ ∞

0
1{A∗(u)<y,ℓ∗(u)=s,Cxs(u,yℓ)}cxsdu

∣∣∣∣τ
∗ = t∗

)

= E(d)

(
ˆ ∞

0
1{v<y,l∗(T ∗v )=s,Cxs(T∗v ,yℓ)}dv

∣∣∣∣τ
∗ = t∗

)

= E(d)

(
ˆ y

0
1{ℓ∞(T ∞

v )=s,Cxs(T ∞
v ,yℓ)}dv

)

= E(d)

(
ˆ y

0
1{ℓ̃(v)=s,C̃xs(v,yℓ)}dv

)
=

ˆ y

0
P(d)

(
ℓ̃(v) = s,C̃xs(v,yℓ)

)
dv,(4.104)

where the expectation E(d) is taken with respect to P(d). Multiplying both sides of
(4.98) by cxsλ−1

(d)
, substituting (4.104) into its right-hand side and differentiating it

with respect to y, we get, for 0≤ y≤ t∗,

cxsµdπ(x)

λ(d)
∏

s′∈J(x)\{s}
F(r)

γx(s′)(ys′) = P(d)(ℓ̃(x) = s,C̃xs(y,yℓ)) . (4.105)

Hence, {Z̃(t);0 ≤ t < ∞} is a stationary process. By summing up both sides of
(4.105) for all possible s,x, we get

λ(d) = µd ∑
x∈X

∑
s∈J(x)∩Jd

cxsπ(x) .

Hence, the left-hand side of (4.105) can be expressed by

π∗(x,s) ∏
s′∈J(x)\{s}

F (r)
γx(s′)(ys′). (4.106)

where π∗(x,s) is the probability distribution on {(x,s);s ∈ Jd,x ∈ Xs} defined as

π∗(x,s) =
cxsπ(x)

∑
x′∈X

π(x′) ∑
s′∈J(x′)∩Jd

c(s′,x′)
. (4.107)

Thus, we arrive at the following result.

Lemma 4.17. Under the assumption of 4.16, {Z̃(t);t ≥ 0} is a stationary Markov
process provided that the initial distribution of {Z̃(t)} is given by (4.106).

We now remove the assumption of 4.16. For this purpose, we will use a certain
continuity property of Markov processes. Let Fd be a general lifetime distribution,
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and let {Fd,n} be a sequence of distributions which satisfy the condition of 4.16 and
which weakly converge to Fd . Let {Zn(t);t ≥ 0} and {Z̃n(t);t ≥ 0} be the processes
corresponding to {Z(t);t ≥ 0} and {Z̃(t);t ≥ 0}, respectively, for the RGSMP’s
with Fd,n instead of Fd . We define the initial distribution of {Z̃n(t)} by (4.106), in
which Fd is replaced by Fd,n. By 4.17, {Z̃n(t)} are stationary Markov processes.
{Z̃n(t)} and {Z̃(t)} are self-clocking jump processes as introduced in [26]. We ap-
ply Theorem 5.2 of [26] to those processes. Condition (i) of this theorem is clearly
satisfied because of (4.90). The stationary one-dimensional distribution of {Z̃n(t)}
weakly converges to the left-hand side of (4.106), and the transition function at the
jump instants of {Z̃n(t)} satisfy conditions (ii) and (iii) of Theorem 5.2 of [26],
which can easily be verified because we only change the lifetime distributions Fd,n
(see also Remark 5.2 of [26]). Thus, we get

Theorem 4.12. Assume that RGSMP is product form decomposable, and let d ∈Dg

be fixed. Then, for a general lifetime distribution Fd, {Z̃(t);t ≥ 0} is a stationary
Markov process provided that the initial distribution of {Z̃(t);t ≥ 0} is given by
(4.106). Furthermore, combining (4.104) with (4.105) and (4.106), we also have
(4.98), namely,

cxsπ(x)y

∑
x′∈X

π(x′) ∑
s′∈J(x′)∩Jd

c(s′,x′) ∏
s′∈J(x)\{s}

F(r)
γx(s′)(ys′)

=

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du. (4.108)

We have the following verbal interpretation of Theorem 4.12. Under stationarity
conditions, given we freeze a randomly chosen type-d clock once it has been started
(i.e. putting its nominal lifetime equal to infinity), we observe a stationary process
if we look at the remaining system at those times T ∞

y when the frozen clock has
consumed y units of resource, i.e. reached age y ≥ 0. In particular, the distribution
we see when the tagged clock has reached age y is the same for all y and hence, if we
draw the age to be reached, blindly from some distribution, e.g. from Fd, we have
the same distribution of the process at the time this (random) age is reached. Thus,
the next corollary is a direct consequence of Theorem 4.12, i.e. the stationarity of
{Z̃(t)}.

Lemma 4.18. Under the conditions of Theorem 4.12, for x ∈ X, s ∈ Jd and y > 0,
we have

P(d)(X(0) = x, l(0) = s) = P(d)(X(T ∗τ∗−) = x, l(T ∗τ∗−) = s|τ∗ = y). (4.109)

Note that formula (4.109) can be somewhat sharpened: In steady state, at the
instants right after the starting of a randomly chosen type-d clock and right before
expiring of that same clock, the joint distributions of the state x, the site s∈ J(x)∩Jd
on which that clock is found, and the residual lifetimes of the other clocks are both
the same.
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Theorem 4.12 also yields the following corollary because {T ∞
y ;x ≥ 0} is com-

pletely determined by {Z̃(t);t ≥ 0} (see also Theorem 1 of [13]).

Corollary 4.11. Under the conditions of Theorem 4.12, the attained sojourn time
process {T ∞

y ;y≥ 0} has stationary increments.

Let T ∞
y (x,s) denote the total sojourn time of the system in state x ∈ X while the

tagged clock is at site s ∈ J(x)∩ Jd, until the tagged clock has processed y units of
its nominal lifetime, where the nominal lifetime of the tagged clock is assumed to
be infinity. Then we have the following result.

Theorem 4.13. Under the conditions of Theorem 4.12, we get, for y ≥ 0, and for
x ∈ X and s ∈ J(x)∩ Jd,

E(d)(T
∞

y (x,s)) =
π(x)

∑x′∈X π(x′)∑s′∈J(x′)∩Jd
cx′s′

y , (4.110)

and, in particular, by summing up over all possible x and s,

E(d)(T
∞

y ) =
∑x∈X π(x)|J(x)∩ Jd|

∑x∈X π(x)∑s∈J(x)∩Jd
cxs

y (4.111)

where |J(x)∩ Jd| denotes the number of elements of the set J(x)∩ Jd.

Proof. Since, for 0≤ y≤ t∗,

T ∞
y (x,s) = T ∗y (x,s) =

ˆ ∞

0
1{A∗(u)<x,ℓ∗(u)=s,X∗(u)=g}du ,

(4.108) of Theorem 4.12 yields (4.110) and (4.111).

Remark 4.17. Note that the right-hand side of (4.110) does not depend on s ∈ J(x)∩
Jd. Furthermore, if we sum (4.110) up over all x,s such that cxs = 0, we get a
formula for the expected total time during which the tagged clock is interrupted (i.e.
stands still) up to the time age y is reached.

In some systems, e.g., in the processor-sharing queue, many clocks of a given
type d may run at the same time. Consider the time-changed process with respect
to a clock of type d whose lifetime is infinite. Suppose that type-d clocks never
run at zero speeds. Then the time-changed process is the RGSMP with macrostates
(x,s), s ∈ Jd, c ∈ Xs, and where, in state (x,s), a clock s′ ∈ J(x) \ {s} is running
at the speed cxs′/cxs. Because (4.106) is the stationary distribution of this RGSMP,
we can, for instance, consider the successive instants at which another type-d clock
gets started, and study the corresponding time-changed process, all from the starting
point of the first time-changed process. This new time-changed process lives on the
states [s′,(x,s)] with s ∈ J(x)∩ Jd, s′ ∈ J(x)∩ Jd, s′ 6= s. Let (4.107) be written
as π∗(x,s) = 1

k∗ cxsπ(x). Then the corresponding distribution for the second time-
changed process is given by
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π∗∗(s′,(x,s)) =
1

k∗∗
cxs′

cxs
π∗(x,s)

on account of (4.107) applied to the second time-changed process. So

π∗∗(s′,(x,s)) =
cxs′π(x)

k∗k∗∗
=

cxs′π(x)

∑
x′∈X

π(x′) ∑
s′′∈J(x′)∩Jd

cx′s′′
.

This would be, in steady state, the probability that, right after the instant of birth of
a type-d clock chosen at random while another type-d clock is already running (at
site s), the state is x and that clock is sitting on s′.

Example 4.19 (Symmetric queue). Consider the symmetric queue of Section 4.17.
Since there is only one type of customers, |J(x)∩Jd|= n for x = n. Hence, by The-
orem 4.13, the conditional mean sojourn time of a customer who brings y amount
of work is

Ed(T
∞

y ) =
∑∞

n=1 nρn ∏n
i=1 σ(i)−1

∑∞
n=1 ρn ∏n−1

i=1 σ(i)−1
y,

where ρ = λ/µ . In particular, σ(n) = a for all n≥ 1 for some positive constant a,
then

Ed(T
∞

y ) =
ρ

a(a−ρ)
y.

As is expected, the coefficient of the linear function is proportional to the mean
queue length. For the product form decomposable network, similar results can be
obtained for a given sequence of the amounts of work at visiting nodes of a tagged
customer when his route is specified.

4.19 Bibliographic notes

We briefly discuss about the literature in this chapter. Point processes and Palm mea-
sures are now standard in queueing books (see, e.g., [1]). In particular, Baccelli and
Bremaud [2] is devoted to this topic and “Palm calculus” was coined there. Histori-
cally, the first comprehensive book on this topic for queues was written by Franken,
König, Arndt and Schmidt [14]. However, point processes and Palm distributions
are old stuff, going back to the ninety-sixties (see, e.g., [30, 21, 22]). There are
some other approaches (see, e.g., [6]). The treatments of this topic from Section 4.2
to 4.7 are somehow different from the standard one as in [2]. We more emphasize
the symmetric role of time stationary and Palm probability measures. This idea goes
back to Miyazawa [23].

The materials in Sections 4.8 and 4.10 are taken from Miyazawa [24, 25]. The
rate conservation law and their applications are surveyed in [28]. Example 4.8 is
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new. Piece-wise deterministic process (PDMP) in Section 4.12 was coined by Davis
[10], and detailed in [11]. However, similar types of processes would have been con-
sidered long before since they are typical in queueing applications. Our treatments
of PDMP is slightly different from those of Davis’ as mentioned in Remark 4.5.
Generalized semi-Markov process (GSMP) for the insensitivity in the same sec-
tion has a long history. The earlier literature is Schassberger [31, 32] and Jansen
König and Nawrotzki [15]. However, its limitation had been recognized (see, e.g.,
[3]). Schassberger [33] proposes “relabeling” to relax the limitation. Reallocatable
GSMP (RGSMP) was introduced by Miyazawa[27]. It has a similar mechanism to
Schassberger’s, but allows interruptions.

The stationary equations in Section 4.12 is taken from Miyazawa [26], and those
in Section 4.16 from Miyazawa [27]. Symmetric queue and their networks in Sec-
tion 4.17 is due to Kelly [18, 19]. The locally balanced conditions and product
form solutions are largely discussed in the queueing network literature (see, e.g.,
[4, 8, 9, 34] and references there). Section 4.18 is largely taken from Miyazawa,
Schassberger and Schmidt [29], which generalizes the results in [12, 13].
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Chapter 5

Networks with Customers, Signals, and Product
Form Solutions

Xiuli Chao

Abstract In this chapter we present an overview of the latest developments in
queueing networks with product form stationary distributions. Under a general
framework that allows instantaneous movements, we present sufficient conditions
for the network to possess a product form solution. For the case where transitions
can involve at most two nodes, we present necessary and sufficient conditions for
the network to have a product form solution.

5.1 Introduction

services to jobs. The processing stations in the network are typically referred to as
nodes. Examples of queueing networks include computer systems, manufacturing
systems, job shops, airport terminals, railway or highway systems, and telecommu-
nication systems. In these settings, jobs (data, parts or sub-assemblies, customers,
planes, vehicles, phone calls, etc.) arrive at the system, and require some form of
service (operation executions, assembly processes, machining, airplane take-offs,
bridge or toll booth passings, phone conversations, etc.). Queueing network mod-
els have been successfully applied in the performance evaluation and optimization
of computer systems, communication systems, manufacturing systems and logis-
tic systems. Typical performance measures of practical interest are sojourn time,
congestion level, blocking probability, and throughput; and system design and op-
timization issues include dynamic routing control of jobs (packets), trunk designs,
resource allocation, load balancing, or throughput maximization.
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A queueing network is a system consisting of a finite number of stations that provide
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A number of methods have been developed for analyzing queueing networks,
each with its own limitations. For example, rapid advances in computers have made
it possible to perform large-scale simulations. Still, in addition to the high costs be-
cause of the extensive use of computer time and memory, the results of large-scale
simulations tend to be application-specific, and are not always useful for detecting
general trends in performance measures. Another method for evaluating a queueing
system is approximation. However, a theoretical basis is often required to guarantee
that an approximation is not far from the real solution. A theoretical analysis of a
queueing model is therefore not only important for its own sake; it is also important
to complement simulation results and approximations. Such a theoretical analysis
involves determining the stationary distribution of the network states, e.g., the num-
ber of jobs at each node, from which various performance measures can be derived.

Clearly, a closed form solution for the stationary distribution, if obtainable, is
the most preferred. Of the networks with tractable solutions, networks with prod-
uct form stationary distributions are the ones most researchers have focused on and
most applications are based on. Networks with product form solutions have many
properties that facilitate their analysis. In this class of networks, in spite of the high
level of interaction between the nodes, the joint distribution of all the nodes is the
product of the marginal distributions of the individual nodes. Roughly speaking, it
implies that the stationary distribution of the network can be obtained by multiply-
ing the stationary distributions of the individual nodes assuming that each node is
in isolation and subject to Poisson arrivals. Due to this property, the analysis of a
queueing network reduces to the analysis of single node queues, simplifying the
applications tremendously. Nevertheless, we shall see that this area is, from a the-
oretical as well as from a practical point of view, not as narrow as it appears. As a
matter of fact, were it not because of Jackson’s celebrated product form result and
its extensions, applications of queueing networks would most likely not have been
as widespread as they are today.

The study of queueing network starts with the celebrated papers of Jackson
(1957) (1963). Other work in the nineteen sixties includes Whittle (1968) and Gor-
don and Newell (1967). These models focus on networks with exponential process-
ing times. Significant breakthrough of queueing network research appeared in mid
seventies with the work of Baskett, Chandy, Muntz, and Palacios (1975), and Kelly
(1975) (1976), that extend the product form results to networks with arbitrary pro-
cessing time distributions and multiple classes of jobs. During the nineteen eighties
and nineteen nighties researchers extend the theory of queueing networks with batch
movements and networks with instantaneous movements and signals, and the repre-
sentative works in this area are Henderson and Taylor (1990), Gelenbe (1991), Chao
and Pinedo (1993), and Chao and Miyazawa (2000). See also the books by Chao, et
al. (1999) and Serfozo (1999).

In this chapter we present an overview of the latest developments in queueing net-
works with tractable solutions. We focus on continuous-time network models. The
starting point for the network is a multi-dimensional continue-time Markov chain.
This may sound restricted, but it should be noted that, by expanding the state space
appropriately, we can approximate a continuous-time network by a continuous-time
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Markov chain to any degree of accuracy. In particular, it allows the processing times
and interarrival times to have any phase-type distributions (see Neuts 1986). To
present the result in a general format we shall start with an abstract framework. We
first develop sufficient conditions for the queueing network to possess product form
stationary distribution, and for the case with no instantaneous movements we also
present the necessary and sufficient conditions for the network to possess product
form solution. Numerous examples are given that are covered by the result of the
chapter as special cases.

This chapter consists of ten sections. In the following two sections we present the
definition of quasi-reversibility for both nodes without triggering and with trigger-
ing. In Sections 4 and 5 we introduce networks with quasi-reversible nodes, without
and with triggering respectively. Section 6 presents a special class of queueing net-
works called networks with positive and negative signals as well as their solution.
In Section 7 addresses the following question: What is the necessary and sufficient
condition for a network to possess a product form stationary distribution, and a com-
plete answer is given to this question for the class of networks that involve simulta-
neous transitions of at most two nodes. Quasi-reversibility is revisited in Section 8
under the framework of Section 7, and several classes of networks are investigated
for which quasi-reversibility is not only a sufficient, but also a necessary condi-
tion for product form. Section extends the results to allow customers to randomly
change positions at their nodes, both at arrival and customer departure epoches. We
conclude with a brief discussion in Section 10.

Sections 2-6 follow Chao and Miyazawa (2000) and Chao, Miyazawa and Pinedo
(1999). Sections 7 and 8 follow from Chao, Miyazawa, Serfozo and Takada (1998)
and Takada and Miyazawa (1997), see also Chao Chao, Miyazawa and Pinedo
(1999). Section 9 extends the model and results in Bonald and Tran (2007).

5.2 Quasi-Reversibility of Queues

Quasi-reversibility is an input-output property of queues. It implies that when the
system is in stochastic equilibrium, the future arrival processes, the current state of
the system, and the past departure processes are independent.

In conventional queueing models, a job arrives at a system to receive service,
and leaves the system after its service is completed. The networks discussed in this
chapter include, in addition to conventional jobs, other entities that carry along com-
mands and induce actions at the nodes where they arrive. These entities are, in case
they do not trigger instantaneous departures, still referred to as jobs. If, however, an
arrival has a positive probability of triggering a departure, it is called a signal. Thus,
the cascading effects of signals may generate throughout the network an arbitrary
number of arrivals and departures simultaneously.

It is useful to make a distinction between different classes of jobs and signals.
Jobs of different classes may have different characteristics with respect to their pro-
cessing requirements, their routings through the network, etc. Signals of different
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classes may carry different messages and may have different effects on the system.
When there is no need to make a distinction between them, jobs as well as signals
are referred to as entities; they may be viewed as different classes of entities.

In the theory of continuous time Markov chain with transition rates q(x,y),x,y ∈
S, it is conventional to define q(x,x) as−∑x′∈S\{x} q(x,x′). However for the purpose
of our study, we forgo this convention and define q(x,x) as a nonnegative number
presenting the transition rate from x to itself. This modification allows us to signal
such event as arriving entities that cause no change of stage.

In some stochastic systems, such as Example 1 below, both the arrival and the
service completion of a regular job result in a transition from n + 1 to n. Hence,
different events may result in the same transition from x to x′. For this reason, we
introduce the following notation. Let the system be modeled by a continuous time
Markov chain with state space S and transition rates. q(x,x′), x,x′ ∈ S. For each pair
of states (x,x′), we decompose the transition rate function q(x,x′) of the queue into
three types of rates, namely,

qA
u (x,x′), u ∈ T,

qD
v (x,x′), v ∈ T,

qI(x,x′),

where T is the set of the classes of arrivals and departures, which is countable.
Even though in many queueing systems the classes of arrivals are different from
the classes of departures, we use a single index set T because we can take T as the
union of both arrival and departure classes. Thus the transition rate of the queue can
be written as

q(x,x′) = ∑
u∈T

qA
u(x,x′)+ ∑

v∈T
qD

v (x,x′)+ qI(x,x′), x,x′ ∈ S. (5.1)

These thinned transition rate functions qA
u , qD

v and qI generate the embedded point
processes corresponding to class u arrivals, class v departures and the internal tran-
sitions, respectively. The first two embedded point processes are often referred to as
the arrival process of class u entities and the departure process of class v entities.
The superscripts “A”, “D”, and “I” stand for “arrival”, “departure” and “internal”.
The internal transition typically represents a change of status of the jobs such as a
decrease of their remaining processing times, or, in the case the node contains mul-
tiple processing stations, the movements of jobs among the different stations of the
node.

If the supports of the rate functions in (5.1) are disjoint, the decomposition above
would only have one term. However, we do not make any restriction with regard to
their supports. They are distinguished only by the probabilities, i.e., rate decomposi-
tion. It should be noted that, even though q(x,x′) is said to be decomposed into three
types of components (arrival, departure, and internal transition rates) that result in
the same transition from x to x′, it is the opposite in applications. One is usually
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given the arrival, departure and internal rates that result in the same transition, and
they have to be added up in order to obtain q(x,x′).

Example 1. Consider an M/M/1 queue with two classes of arrivals. The first class
of arrival, denoted by c, represents regular customer, and an arrival of class c in-
creases the number of customer in system by 1. The second class of arrival, denoted
by c− and referred to as negative customer, is a kind of entity whose arrival decreases
the number of customer in system, if any, by 1. Thus, T = {c,c−}. Service times
are exponentially distributed with mean 1/µ , and a service completion is classified
as class c departure:

qD
c (n,n− 1) = µ , n = 1,2, . . . .

Regular customers arrive according to a Poisson process with rate α , so

qA
c (n,n+ 1) = α, n = 0,1, . . . .

Negative customers arrive according to a Poisson process with rate α− and reduce
the number of customers by 1, we have

qA
c−(n,n− 1) = α−, n = 1,2, . . . .

Finally, a negative customer that arrives at an empty node simply disappears, thus

qA
c−(0,0) = α−.

Let q(n,n′) denote the transition rate of the queue, then its non-zero transition rates
are

q(n,n +1) = qA
c (n,n +1), n≥ 0,

q(n,n−1) = qD
c (n,n−1)+ qA

c−(n,n−1), n≥ 1,

q(0,0) = qA
c−(0,0).

Definition 1. The continuous time Markov chain with transition rate q is called
quasi-reversible with respect to {qA

u(x,x′);u ∈ T}, {qD
u(x,x′);u ∈ T} and qI(x,x′) if

there exist two sets of non-negative numbers {αu;u ∈ T} and {βu;u ∈ T} such that

∑
x′∈S

qA
u (x,x′) = αu, x ∈ S,u ∈ T, (5.2)

∑
x′∈S

π(x′)qD
u (x′,x) = βuπ(x), x ∈ S,u ∈ T, (5.3)

where π is the stationary distribution of the Markov chain q.
The non-negative numbers αu and βu are often called the arrival rate and depar-

ture rate of class u entities.
Quasi-reversibility is a property concerning the arrival and departure processes.

In fact, it is often useful to study this property with regard to only a portion of
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the arrival and departure processes. This is particularly true in networks of queues
where only some of the departures from a node join another node, while the rest are
either absorbed at that node or exit the network. These cases, however, are included
in the definition above since one can classify the non-routed arrivals (or departures)
as internal transitions.

An alternative definition for quasi-reversibility is the following.

Definition 2. A stationary continuous time Markov chain {X(t);t ≥ 0} with transi-
tion rate q of (5.1) is quasi-reversible if the following two conditions hold.

(i) The X(t) is independent of the arrival process of class u entities subsequent to
time t for all u ∈ T .

(ii) The X(t) is independent of the departure process of class u entities prior to time
t for u ∈ T .

Before going further, we present an important result, known as Kelly lemma,
which will be used numerous times later in this chapter. Its proof can be found, for
example, in Kelly (1979).
Lemma 1. (Kelly lemma) For a stationary continuous time Markov chain with state
space S and transition rates q(x,x′), if we can find a collection of nonnegative num-
bers q̃(x,x′),x,x′ ∈ S and a collection of positive numbers π(x),x ∈ S, summing to
unity, such that

∑
x′∈S

q(x,x′) = ∑
x′∈S

q̃(x,x′), x ∈ S,

π(x′)q(x′,x) = π(x)q̃(x,x′), x,x′ ∈ S,

then q̃(x,x′),x,x′ ∈ S are the transition rates of the reversed process, and π(x), x ∈ S

is the stationary distribution of both processes.
Since different transitions may result in the same change of states, it turns out

that a more detailed form of Kelly’s lemma is often more convenient to apply. As
the relationship between Lemma 1 and the following result is analogous to that of
balance equation and detailed balance equation for continuous time Markov chain,
we call it detailed Kelly lemma (see Chao, et al. (1999)).
Lemma 2. (Detailed Kelly lemma) Let q(x,x′) be the transition rates of a station-
ary continuous time Markov chain with state space S. Assume that q(x,x′) can be
decomposed into transition rates qσ(x,x′), indexed by σ ∈ U, i.e.,

q(x,x′) = ∑
σ∈U

qσ (x,x′), x,x′ ∈ S.

If we can find a collection of nonnegative numbers q̃σ (x,x′),x,x′ ∈ S,σ ∈ U, and a
collection of positive numbers π(x),x ∈ S, summing to unity, such that

∑
x′∈S

qσ(x,x′) = ∑
x′∈S

q̃σ (x,x′), x ∈ S,σ ∈U,

π(x′)qσ(x′,x) = π(x)q̃σ (x,x′), x,x′ ∈ S,
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then
q̃(x,x′) = ∑

σ∈U
q̃σ (x,x′), x,x′ ∈ S

are the transition rates of the reversed process, and π(x),x ∈ S is the stationary
distribution of both processes.

Quasi-reversibility is closely related to Poisson flows, as is shown in the follow-
ing theorem.

Theorem 1. Definitions 1 and 2 are equivalent, and each of them implies that

(a) the arrival process of class u ∈ T entities are Poisson and the arrival processes
of different classes of entities are independent,

(b) the departure process of class u ∈ T entities are Poisson and the departure
processes of different classes of entities are independent.

Proof. The first quasi-reversibility condition (5.2) implies condition (i) of Definition
2 and part (a) of the theorem. On the other hand, condition (i) implies that the left
hand side of condition (5.2) is a constant. Denoting this constant by αu, we obtain
(5.2). We next show that condition (5.3) of the first definition implies condition
(ii) of the second definition and part (b) of the theorem. To this end, consider the
reversed process X(−t). Define q̃A

u , q̃D
u and q̃I as

q̃A
u(x,x′) =

π(x′)
π(x)

qD
u(x′,x),

q̃D
u(x,x′) =

π(x′)
π(x)

qA
u(x′,x),

q̃I(x,x′) =
π(x′)
π(x)

qI(x′,x) .

Let q̃ be the transition rate function of X(−t). Its transition rates are

q̃(x,x′) = ∑
u

q̃A
u(x,x′)+∑

u
q̃D

u(x,x′)+ q̃I(x,x′) .

Thus, the time reversed process also represents a queueing model with thinned tran-
sitions q̃A

v , q̃D
u and q̃I. From condition (5.3), we have

∑
x′

q̃A
u(x,x′) =

1
π(x) ∑

x′
π(x′)qD

u(x′,x) = βu .

This implies that the class u arrival process in X(−t) is Poisson with rate βu. How-
ever, from the definition of q̃A

u and the detailed Kelly lemma, a class u arrival in the
reversed process X(−t) corresponds to a class u departure in process X(t). Thus
we obtain condition (ii) of the second definition. Since a Poisson process reversed
in time is Poisson with the same rate, we have (b). Finally, condition (ii) implies
that the arrival epochs in the reversed process X(−t) are generated at a constant rate
independent of the current state, which gives (5.3).
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5.3 Quasi-Reversibility of Queues
with Triggered Departures

The quasi-reversibility defined in the last section is concerned with arrival and de-
parture epochs. One prominent feature is that an arrival cannot occur at the same
time as a departure. In queueing systems with signals, however, the arrival of a signal
may immediately trigger a departure. Thus the definition of quasi-reversibility is not
applicable in these cases. In this section we extend the notion of quasi-reversibility
to include such simultaneous events.

As before, let q be the transition rate of the node and let it be decomposed into
the components {qA

u ;u ∈ T}, {qD
u ;u ∈ T} and qI of (5.1). Assume that q admits the

stationary distribution π . Furthermore, assume that when a class u entity arrives and
induces the state of the node to change from x to x′, it instantaneously triggers a
class v departure with triggering probability fu,v(x,x′), where

∑
v∈T

fu,v(x,x′)≤ 1, u ∈ T,x,x′ ∈ S.

With probability
1−∑

v∈T
fu,v(x,x′)

the class u arrival does not trigger any departure.
Note that when ∑v∈T fu,v(x,x′) ≡ 0 for all x and u, the system reduces to that of

the previous section with no instantaneous movements.

Definition 3. If there exist two sets of non-negative numbers {αu;u ∈ T} and
{βu;u ∈ T} such that

∑
x′∈S

qA
u (x,x′) = αu, x ∈ S,u ∈ T,

(5.4)

∑
x′∈S

π(x′)

(
qD

u(x′,x)+ ∑
v∈T

qA
v (x′,x) fv,u(x′,x)

)
= βuπ(x), x ∈ S,u ∈ T,

(5.5)

then the queue with signals is said to be quasi-reversible with respect to {qA
u , fu,v;u∈

T,v ∈ T}, {qD
u ;u ∈ T}, and qI.

As in the last section, quasi-reversibility for queues with signals implies that
the arrivals of the different classes of entities form independent Poisson processes,
and the departures of different classes of entities, including both triggered and non-
triggered departures, also form independent Poisson processes. Moreover, future
arrivals and past departures are independent of the current state of the system.

In many applications, triggered and non-triggered departures belong to different
classes, i.e.,
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qA
v (x,x′) fv,u(x,x′)qD

u(x,x′) = 0, for all x,x′ and u,v ∈ T.

Let T ′ and T ′′ be the sets of the non-triggered and triggered departure classes, re-
spectively, such that

T = T ′ ∪T ′′, and T ′ ∩T ′′ = /0.

Then (5.5) is reduced to

∑
x′∈S

π(x′)qD
u (x′,x) = βuπ(x), x ∈ S,u ∈ T ′,

∑
x′∈S

π(x′) ∑
v∈T ′

qA
v (x′,x) fv,u(x

′,x) = βuπ(x), x ∈ S,u ∈ T ′′.

This is equivalent to saying that both the triggered and non-triggered departure pro-
cesses are independent Poisson with rate βu for class u ∈ T .

The triggering arrivals and triggered departures are referred to as signals since
they pass through a node and change its state instantaneously. The following exam-
ple illustrates this.

Example 2. Consider an M/M/1 queue with two classes of arrivals, denoted by c
and s. Class c refers to the regular jobs, and class s refers to signals. When a signal
arrives at the node, it triggers a job to depart immediately as a class s departure, pro-
vided the queue is not empty upon its arrival. If a signal arrives at an empty queue,
nothing occurs and no departure is triggered. The job departures generated by regu-
lar processing completions are still classified as class c departures. The decomposed
transition rates are

qA
c (n,n +1) = α, n≥ 0,

qA
s (n,n−1) = α−, n≥ 1,

qA
s (0,0) = α−,

qD
c (n,n−1) = µ , n≥ 1.

All other transition rates are zero. By the triggering mechanism, we have

fc,c(n,n′) = fc,s(n,n′) = 0, n,n′ ≥ 0,

fs,s(n,n− 1) = 1, n≥ 1.

Since the dynamics of this queue is the same as that of a regular M/M/1 queue with
arrival rate α and service rate µ + α−, its stationary distribution π is given by

π(n) =

(
1− α

µ + α−

)(
α

µ +α−

)n

, n≥ 0.

If we set
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β =
αµ

µ + α−
,

β− =
αα−

µ +α−
,

then this system is quasi-reversible with departure rates β and β−, since,

∑
n′

qA
c (n,n′) = α, n≥ 0,

∑
n′

qA
s (n,n′) = α−, n≥ 0,

∑
n′

π(n′)
(

qD
c (n′,n)+ ∑

u=c,s
qA

u(n′,n) fu,c(n′,n)
)

= ∑
n′

π(n′)qD
c (n′,n) = β π(n), n≥ 0,

∑
n′

π(n′)
(

qD
s (n′,n)+ ∑

u=c,s
qA

u(n′,n) fu,s(n′,n)
)

= ∑
n′

π(n′)qA
s (n′,n) fs,s(n

′,n) = β−π(n), n≥ 0.

This is a very simple system, but many queueing networks with negative signals are
generated by this model.

5.4 Networks of Quasi-Reversible Nodes

In this section we connect N quasi-reversible nodes into a queueing network with
Markovian routing mechanisms. The main result is that such a network has a prod-
uct form solution, i.e., the stationary distribution of the network factorizes into the
product of the marginal distributions of the individual nodes.

We consider a queueing network with an arbitrary Markovian routing mechanism
and multiple classes of entities. As discussed earlier, entities include both jobs and
signals, and their effects on the nodes can be quite general. For instance, the arrival
of an entity may decrease the number of jobs or trigger other actions before instan-
taneously moving to another node. In this section we consider a network structure
without signals, i.e., an arrival does not trigger any instantaneous departure. This
enables us to give an explicit expression for the network transition rates. The model
in this section forms the basis for the network with signals that will be discussed in
Section 5. However, when signals are present, the model becomes more involved,
and a mathematical expression for the network transition rates becomes complicated
without the use of matrix operators.

Suppose the network has N nodes. Each node represents a single processing sta-
tion, or a cluster of stations (subnetwork). In addition to these nodes we have node
0, which represents the outside world. In this section, the state space S0 of node 0
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is the singleton, i.e., S0 = {0}. Node 0 is a Poisson source, i.e., exogenous entities
arrive at the network according to a Poisson process. Even though our main con-
cern is an open network, the arguments can be applied to closed networks as well
by simply removing node 0. However, we keep node 0 for consistency. For node
j = 0,1, . . . ,N, let Tj denote the class of arrival and departure entities at node j.
As discussed earlier, we do not make any distinction between arrival and departure
classes, even though they may be different. In case they are different we simply let
Tj be the union of the arrival and departure classes. For instance, in Example 1,
Tj = {c,c−}, even though the arrival classes are {c,c−} and the departure class is
{c}.

Let x j be the state of node j with state space S j . For node 0, apparently x j ≡ 0.
When node j contains a single station, x j may represent, for instance, the number of
each class of jobs as well as their positions in the queue. Since node j may also be a
subnetwork, x j can be more general, e.g., it may represent the number of each class
of jobs present at each station as well as their positions at the stations within the
node. It may also include the remaining processing times at the node when the pro-
cessing times are not exponentially distributed. Furthermore, since each node may
be a subnetwork, there may be internal transitions within x j , e.g., job movements
between different stations within the same node, or between positions in the same
station of node j.

What is the necessary information to construct a queueing network model? A
little reflection reveals that we need two types of information: Node (or local) infor-
mation, i.e., how does each node operate and react to arrivals from other nodes; and
inter-node (or global) information, i.e., how are the nodes interconnected.

With regard to node information, we first note that the arrival process at each
node of the network is not known before the network is put together. Therefore the
arrival transition rate of each node, i.e., qA

j , is not known, nor is it needed for the con-
struction of the queueing network. What we do have to know is what would happen
with the node when an arrival occurs. Thus, in order to construct the network, we
need for each node the following information.

(i) Arrival effects: The rules according to which the node changes state with the
arrival of an entity.

(ii) Departure transition rates: The rate at which the state of the node changes and
it may induce the state of another node to change.

(iii) Internal transition rates: The rate at which the state of the node changes and
it does not affect the states of other nodes.

For these reasons, we specify each node by a transition probability function that de-
scribes the changes of state upon arrivals and transition rate functions that describe
changes of state due to departures and internal transitions. Thus, for node j and an
entity of class u, we introduce functions pA

ju, qD
ju and qI

j on state space S j .

pA
ju(x j,x′j) = the probability that a class u arrival at node j changes the state from

x j to x′j, where it is assumed that
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∑
x′j∈S j

pA
ju(x j,x′j) = 1, x j ∈ S j.

qD
ju(x j,x′j) = the rate at which class u departures change the state of node j from

x j to x′j.
qI

j(x j,x′j) = the rate at which internal transitions change the state of node j from
x j to x′j.

For node 0, we set pA
0,u(0,0) = 1, qD

0,u(0,0) = β0u, and qI
j(0,0) = 0. This implies

that exogenous class u entities, i.e., class u departures from node 0, arrive at the
network from the outside according to a Poisson process with rate β0u. Note that
pA

ju(x j ,x j) may be positive, i.e., an arrival may not cause a change of state with a
positive probability. We refer to pA

ju as the arrival effect function.
We describe each queue by the three components qA

u , qD
u and qI. If a queue in the

network is initially characterized by qA
u , qD

u and qI, then the arrival effect function
may be defined as

pA
u(x,x′) =

qA
u(x,x′)

∑
y

qA
u(x,y)

, (5.6)

and qD
u , qI are the departure and internal transition functions. However, unless a node

is a separate queue, we assume that it is characterized by pA
u , qD

u and qI because, as
discussed earlier, the arrival process at a node of a network depends on the structure
of the entire network.

Example 3. Assume that node j of the network is a queue with negative customers,
i.e., Example 1. It has two classes of arrivals and a single class of departures, Tj =
{c,c−}, and is characterized by the following arrival and departure functions:

pA
jc(n j,n′j) =

{
1, n′j = n j +1,

0, otherwise,

pA
jc−(n j,n

′
j) =

{
1, n′j = n j−1≥ 0,

0, otherwise,

pA
jc−(0,0) = 1,

qD
jc(n j,n′j) =

{
µ j, n′j = n j−1,n j ≥ 1,

0, otherwise.

There are no class c− departures and there are no internal transitions, so

qD
jc−(n j,n

′
j) ≡ 0, n j,n

′
j ≥ 0,

qI
j(n j,n

′
j) ≡ 0, n j,n

′
j ≥ 0.

Node j has a single server with service rate µ j. When a customer arrives, the
number of customers in the node increases by 1, when a negative customer arrives,
the number of customer decreases by 1, provided the node is not empty. When a
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negative customer arrives at an empty node, the state does not change. Note that the
arrival process at node j, which is denoted by qA

ju, is not given. It is characterized by
pA

ju, which describes what happens when a class u (u = c,c−) entity arrives at the
node when it is in state n j. Also note that pA

ju and qA
ju in Example 1satisfy (5.6).

The interactions between the nodes are defined as follows. A class u departure
from node j enters node k as a class v arrival with probability r ju,kv, and an exoge-
nous class u arrival is routed to node k as a class v arrival with probability r0u,kv. It
is assumed that

N

∑
k=0

∑
v∈Tk

r ju,kv = 1, j = 0,1, . . . ,N, u ∈ Tj. (5.7)

Note that class u departures from node j leave the network with probability ∑v∈T0
r ju,0v.

This probability is often denoted by r ju,0. In this way, we associate the departures
from one node with the arrivals at another.

Let
S = S1×S2×·· ·×SN

be the product state space. Then,

x = (x1,x2, . . . ,xN) ∈ S

is the state of the network. This network is a continuous time Markov chain with
state space S and transition rate function q, where

q(x,x′) =
N

∑
j=0

N

∑
k=0

∑
u∈Tj

∑
v∈Tk

qD
ju(x j,x

′
j) r ju,kv pA

kv(xk,x
′
k) 1[xℓ = x′ℓ for all ℓ 6= j,k]

+
N

∑
j=0

qI
j(x j,x′j) 1[xℓ = x′ℓ for all ℓ 6= j] , (5.8)

for x = (x1,x2, . . . ,xN) ∈ S and x′ = (x′1,x
′
2, . . . ,x

′
N) ∈ S. The first summation on the

right hand side of (5.8) represents the state changes due to job transfers from one
node to another, and the second summation represents internal state changes. If

qD
ju(x j,x j) = pA

ju(x j,x j) = qI
j(x j,x j) = 0,

then the transition rate function (5.8) can be partitioned into disjoint sets:

q(x,x′) =





∑
u∈T

∑
v∈T

qD
ju(x j,x

′
j) r ju,kv pA

kv(xk,x
′
k) , xℓ = x′ℓ, for all ℓ 6= j,k,

qI
j(x j,x′j) , xℓ = x′ℓ, for all ℓ 6= j,

0 , otherwise.

This is a typical situation in a conventional queueing network such as Jackson net-
work. However, it is not true in general. For instance, if a departing job transforms
itself into a negative signal and there is no job present at the node where it arrives,
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then the signal does not have any effect. In this case only the state of the node from
which the job departs changes. That is, the transition caused by a signal may result
in a change of state that is similar to an internal transition.

We now derive the stationary distribution for the queueing network just con-
structed. Assuming that each node in isolation is quasi-reversible, we show that the
stationary distribution of the network process has product form.

Consider for each node j the following auxiliary process:

q
(α j)
j (x j ,x

′
j) = ∑

u∈Tj

(
α ju pA

ju(x j,x
′
j)+ qD

ju(x j,x
′
j)
)
+qI

j(x j,x
′
j), x j,x

′
j ∈ S j. (5.9)

Clearly, q
(α j)
j (x j,x′j) can be viewed as node j being in isolation, with class u ∈ Tj

entities arriving according to a Poisson process with rate α ju. In general, pA
ju, qD

ju,
and qI

j are allowed to be functions of α j = {α ju;u ∈ Tj}. However, this dependency
of α j is made implicit for simplicity.

Suppose q
(α j)
j has a stationary distribution π (α j)

j , i.e.,

π(α j)
j (x j)

(

∑
u∈Tj

(
α ju + ∑

x′j∈S j

qD
ju(x j,x′j)

)
+ ∑

x′j∈S j

qI
j(x j,x′j)

)

= ∑
u∈Tj

∑
x′j∈S j

π (α j)
j (x′j)

(
α ju pA

ju(x
′
j,x j)+ qD

ju(x
′
j,x j)

)
+ ∑

x′j∈S j

π (α j)
j (x′j)q

I
j(x
′
j,x j) ,

x j,x′j ∈ S j . (5.10)

This π(α j)
j is expected to be the marginal distribution of node j for some parameters

α j = (α ju;u ∈ Tj). However, the exact values of α1, . . . ,αN are not yet known.
Thus, for the time being, the α j may be regarded as dummy parameters, and their
values will be determined later by the traffic equations.

First, note that we always have

∑
x′j∈S j

α ju pA
ju(x j,x′j) = α ju, u ∈ Tj .

Hence, quasi-reversibility is equivalent to the property that there exists a set of non-
negative numbers {β ju;u ∈ Tj} such that

∑
x′j∈S j

π(α j)
j (x′j)q

D
ju(x
′
j,x j) = β juπ (α j)

j (x j), x j ∈ S j (5.11)

for all j = 1,2, . . . ,N and v ∈ Tj. By (5.11), β ju is determined by

β ju = ∑
x j ,x′j∈S j

π(α j)
j (x j)q

D
ju(x j,x

′
j) . (5.12)
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Consider now the network generated by linking nodes 1,2, . . . ,N through the
routing probability matrix R = {r ju,kv}, where node j is defined by pA

ju, qD
ju, and qI

j.
Assume that class u ∈ T0 entities arrive at the network from the outside (node 0) at
rate β0u, which is given, and that each entity joins node k as a class v entity with
probability r0u,kv. Let βkv be the average departure rate of class v entities from node
k. The average arrival rate of class u entities at node j satisfies

α ju =
N

∑
k=0

∑
v∈Tk

βkvrkv, ju, j = 0,1, . . . ,N, u ∈ Tj. (5.13)

These equations are referred to as the traffic equations. Note that β jv is a non-linear
function of α j , which is determined by (5.12), so the traffic equations are, in general,
non-linear in the α ju’s. Finding solutions of (5.13) can be considered a fixed point
problem concerning the vector α = {α ju; j = 0,1, . . . ,N,u ∈ Tj}.
Theorem 2. For (α0,α1, . . . ,αN) satisfying (5.11) and (5.13), if each node of the

network with transition rate q
(α j)
j is quasi-reversible, then the stationary distribution

of the network is

π(x) =
N

∏
j=1

π (α j)
j (x j), x≡ (x1,x2, . . . ,xN) ∈ S. (5.14)

Proof. Define distribution π by (5.14). We apply the detailed Kelly lemma to ver-
ify that this π is indeed the stationary distribution of the network process q. For
convenience, we drop the superscript (α j). Assume that the time reversed process
corresponds to another network with a similar structure. Let

q̃D
ju(x
′
j,x j) =

π j(x j)α ju pA
ju(x j,x′j)

π j(x′j)
,

q̃I
j(x
′
j,x j) =

π j(x j)qI
j(x j,x′j)

π j(x′j)
,

p̃A
ju(x
′
j,x j) =

π j(x j)qD
ju(x j,x′j)

π j(x′j)β ju
,

r̃ ju,kv =
βkvrkv, ju

α ju
.

Note that

∑
x′j∈S j

p̃A
ju(x j,x′j) = 1,

and
N

∑
k=0

∑
v∈Tj

r̃ ju,kv = 1.
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So, we can define a transition rate q̃ for a queueing network process with arrival
probability function p̃A

ju, departure rate function q̃D
ju, internal transition rate q̃I

j and
routing probabilities r̃ ju,kv.

The detailed Kelly lemma requires the verification of two conditions. To check
the first condition, i.e.,

∑
x′

q(x,x′) = ∑
x′

q̃(x,x′),

note that the state of the network changes only when there is a departure or when
there is an internal transition. Thus

∑
x′

q̃(x,x′) =
N

∑
j=0

[
∑

u∈Tj

∑
x′j

q̃D
ju(x j,x

′
j)+∑

x′j

q̃I
j(x j,x

′
j)
]

=
N

∑
j=0

[

∑
u∈Tj

∑
x′j

π j(x′j)α ju pA
ju(x

′
j,x j)

π j(x j)
+∑

x′j

π j(x′j)q
I
j(x
′
j,x j)

π j(x j)

]

=
N

∑
j=0

1
π j(x j)

[
∑

u∈Tj

∑
x′j

π j(x′j)
(

α ju pA
ju(x
′
j,x j)+ qD

ju(x
′
j,x j)

)

+∑
x′j

π j(x
′
j)q

I
j(x
′
j,x j)− ∑

u∈Tj

β ju

]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j,x′j)+∑

x′j

qI
j(x j,x′j)+ ∑

u∈Tj

(α ju−β ju)
]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j,x

′
j)+∑

x′j

qI
j(x j,x

′
j)
]

= ∑
x′

q(x,x′),

where the third equality follows from (5.11), the fourth equality follows from the
fact that π j is the stationary distribution for q j, i.e., (5.10), and the last equality
follows from the total balance

N

∑
j=0

∑
u∈Tj

α ju =
N

∑
j=0

∑
u∈Tj

β ju, (5.15)

which is immediate from the traffic equation.
We next verify the second condition of the detailed Kelly lemma. We decom-

pose q(x,x′) and q̃(x,x′) according to the types of transitions. Let x j(x′j) be the
vector x with its j-th component x j replaced by x′j, and denote (x j(x′j))k(x′k) by
x jk(x′j,x

′
k). Note that the types of transitions out of state x under q are (x,x j(x′j)) and

(x,x jk(x′j,x
′
k)). The first represents an internal transition at node j and the second a

departure from node j, triggering an arrival at node k. In the latter, j may be equal
to k, representing a feedback. When this is the case the sequence of transitions is
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x
u→ x j(y j)

v→ x j(x′j), (5.16)

where u and v are the classes of entities that cause the corresponding transitions.
Denote the transition rate for this sequence by

q ju(y j), jv(x,x
′) =

{
qD

ju(x j,y j)r ju, jv pA
jv(y j,x j), for x′ = x j(x′j),

0, otherwise.

Similarly, for j 6= k and for the sequence of transitions

x
u→ x j(x

′
j)

v→ x jk(x
′
j ,x
′
k), (5.17)

denote the transition rate by

q ju,kv(x,x
′) =

{
qD

ju(x j,x′j)r ju,kv pA
kv(xk,x′k), for x′ = x jk(x′j,x

′
k),

0, otherwise.

We similarly define the corresponding rates in the reversed process. Let q̃ ju(y j), jv
denote the rate for the state transitions (5.16), and, for j 6= k, let q̃ ju,kv be the rate for
the state transitions (5.17). Then, we have

q(x,x′) =
N

∑
j=0

(

∑
u,v∈Tj

( N

∑
k=0

q ju,kv(x,x
′)+ ∑

y j∈S j

q ju(y j), jv(x,x
′)
)

+ qI
j(x,x

′)

)
,

q̃(x,x′) =
N

∑
j=0

(

∑
u,v∈Tj

( N

∑
k=0

q̃ ju,kv(x,x
′)+ ∑

y j∈S j

q̃ ju(y j), jv(x,x
′)
)

+ q̃I
j(x,x

′)

)
.

We now verify the second condition of the detailed Kelly lemma for each sequence
of state transitions and each internal transition. The latter is immediate from

π(x j(x
′
j))q̃

I
j(x
′
j,x j) = π(x j(x

′
j))

π j(x j)qI
j(x j,x′j)

π j(x′j)

= π(x)qI
j(x j,x′j) ,

where we have used the fact that π(x) is the product of π j(x j). Similarly,

π(x j(x′j))q̃ ju(y j), jv(x j(x′j),x) = π(x j(x′j))q̃
D
ju(x
′
j,y j)r̃ ju, jv p̃A

jv(y j,x j)

= π(x j(x
′
j))

π j(y j)α ju pA
ju(y j,x′j)

π j(x′j)
β jvr jv, ju

α ju

π j(x j)qD
jv(x j,y j)

π j(y j)β jv

= π(x j(x
′
j))

π j(x j)

π j(x′j)
qD

jv(x j,y j)r jv, ju pA
ju(y j,x

′
j)

= π(x)q jv, ju(y j)(x,x j(x
′
j)) .

A similar argument yields, for j 6= k,
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π(x jk(x
′
j,x
′
k))q̃ ju,kv(x jk(x

′
j,x
′
k),x) = π(x)qkv, ju(x,xk j(x

′
k,x
′
j)) .

Thus the second condition of Kelly lemma is also satisfied. This completes the proof
of the theorem.

In many queueing systems (5.11) holds for a range of α j . If this is the case the
queue is called uniformly quasi-reversible.

Definition 4. Node j, characterized by {pA
ju;u ∈ Tj}, {qA

ju;u ∈ Tj} and qI
j , is called

uniformly quasi-reversible if it is quasi-reversible for all α j for which the stationary

distribution π (α j)
j exists.

If node j is uniformly quasi-reversible, then the departure rate β ju is well defined

on the range of α j for which π(α j)
j exists. Thus it can be considered a function

of α j , and the determination of α j , for which the marginal distribution π(α j)
j of

node j is computed, requires the solution of the non-linear traffic equations. Thus
uniform quasi-reversibility is important in computing the stationary distribution of
the network. The remaining problem is whether the traffic equations have a solution
and how they can be determined. This is a fixed point problem as we stated before
on which there exists an extensive literature, thus we will not elaborate it further.

We refer to a network of quasi-reversible nodes as a quasi-reversible network.
Indeed, as seen from the following corollary, when the entire network is viewed as
a system, it is also quasi-reversible.

Corollary 1. In quasi-reversible queueing networks, the class u departure process
from node j to the outside is Poisson with rate β ju ∑v∈T0

r ju,0v. The network is quasi-
reversible with respect to arrivals from the outside and departures to the outside.

Proof. From the proof of Theorem 2, the time reversed network process also rep-
resents a quasi-reversible network characterized by p̃A

ju, q̃D
ju and q̃I

j, and routing
probabilities r̃ ju,kv. Hence, in the time reversed network, the class u entities arrive at
node j from the outside according to a Poisson process with rate

∑
v∈T0

α0vr̃0v, ju = ∑
v∈T0

α0v
β ju

α0v
r ju,0v

= β ju ∑
v∈T0

r ju,0v .

The corollary follows from the fact that the arrivals from the outside in the time
reversed process are the departures from the network to the outside in the original
network.

However, this does not imply that the departure and arrival processes at each
node of the network are Poisson. Actually, it can be shown that the flow on a link is
Poisson if and only if it is not part of a cycle. For instance, the flows in between any
two nodes in a feedforward network are Poisson.

Example 4. Consider a network with N single-server nodes. Each node has expo-
nentially distributed processing times and two classes of entities: regular customers
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and negative customers, i.e., the type of node discussed in Example 1. Regular as
well as negative customers arrive at node j from the outside according to indepen-
dent Poisson processes with rates λ j and λ−j . Upon a processing completion at node
j, a customer joins node k as a regular customer with probability r jc,kc and as a
negative customer with probability r jc,kc− , k = 0,1, . . . ,N. The arrival of a negative
customer removes a customer from the node. The state of the network is represented
by a vector n = (n1, . . . ,nN), where n j is the number of regular customers at node j,
n j ∈ S j = {0,1, . . .}.

Node j, characterized by (5.9), is subject to Poisson arrivals of regular and nega-
tive customers with rates α j and α−j . From Example 1, it follows that the stationary
distribution π j of node j is of a geometric form, and the node is uniformly quasi-
reversible, and the π j exists if and only if

α j < µ j +α−j . (5.18)

The departure rate from node j is

β j =
α jµ j

µ j + α−j
.

The traffic equations are

α j = λ j +
N

∑
k=1

αkµk

µk +α−k
rkc, jc , j = 1, . . . ,N ,

α−j = λ−j +
N

∑
k=1

αkµk

µk +α−k
rkc, jc− , j = 1, . . . ,N .

Thus, if the stability condition (5.18) is satisfied, then, by Theorem 2, the stationary
distribution of the network, π , is the product of the π j, i.e.,

π(n) =
N

∏
j=1

(
1− α j

µ j +α−j

)(
α j

µ j +α−j

)n j

.

This is the network first studied by Gelenbe (1991). Gelenbe (1991) introduced
the terminology of negative customer in queueing networks, while he called the
conventional customers positive customers. The reader should not mix this positive
customer with a positive signal which we will introduce later.

5.5 Networks with Signals and Triggered Movements

This section extends the results of the last section to networks with instantaneous
movements. Since instantaneous movements are triggered by signals, these net-
works are often referred to as networks with signals.
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Consider a network with N nodes. Each node is a quasi-reversible queue with
signals as described in Section 3. Let S j be the state space of node j, and let Tj be
the set of arrival and departure entity classes, j = 1,2, . . . ,N. As discussed in Section
2, we need to specify for each node the transition probability functions that describe
state changes due to arrivals, and the transition rate functions that describe depar-
tures and internal state changes. For these, we use the same notation as in last sec-
tion, i.e., pA

ju, qD
ju and qI

j . However, since there are instantaneous movements when
there is an arrival at a node, we also have to specify the probability functions for the
arrivals to induce departures, i.e., the triggering probability functions f ju,v(x j,x′j).
When a class u entity arrives at node j and the state changes from x j to x′j, it simul-
taneously induces a class v departure with triggering probability f ju,v(x j,x′j). These
probabilities satisfy

∑
v∈Tj

f ju,v(x j,x′j)≤ 1, u ∈ Tj, x j,x′j ∈ S j, j = 1,2, . . . ,N.

We allow pA
ju, f ju,v, qD

ju, and qI
j to be functions of a nonnegative vector α j =

{α ju;u ∈ Tj}, even though this dependency is made implicit for convenience. Also,
pA

ju(x j ,x j) may be positive, i.e., an arrival may, with a positive probability, cause no
change of state.

The dynamics of the network is described as follows. Class u ∈ Tj entities from
the outside, i.e., class u departures from node 0, arrive at the network according to
a Poisson process with rate β0u, and each is routed to node j as a class v entity with
probability r0u,kv. A class u departure from node j, either triggered or non-triggered,
joins node k as a class v arrival with probability r ju,kv, k = 0,1, . . . ,N, where

N

∑
k=0

∑
v∈Tk

r ju,kv = 1, j = 0,1, . . . ,N, u ∈ Tj.

Furthermore, whenever there is a class u arrival at node j, either from the outside or
from other nodes, it causes the state of the node to change from x j to x′j with prob-
ability pA

ju(x j,x′j), it also triggers a class v departure with probability f ju,v(x j,x′j),
and it triggers no departure from node j with probability

1− ∑
v∈Tj

f ju,v(x j,x′j).

In this way, we associate the departures, both regular departures and triggered
departures, from one node with the arrivals at another.

A distinctive feature of this network is that there are simultaneous arrivals
and departures. For instance, if, for nodes j1, j2, . . . , jk and classes uℓ,u′ℓ ∈ Tℓ,
ℓ = j1, j2, . . . , jk,

pA
j1u1

(x j1 ,x
′
j1) f j1u1,u′1

(x j1 ,x
′
j1)r j1u′1, j2u2

×·· ·× pA
jk−1uk−1

(x jk−1 ,x
′
jk−1

)

× f jk−1uk−1,u′k−1
(x jk−1 ,x

′
jk−1

)r jk−1u′k−1, jkuk
pA

jkuk
(x jk ,x

′
jk) > 0,
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then a class u1 arrival at node j1 will simultaneously create arrivals at nodes
j1, j2, . . . , jk, and change the states of these nodes to x′j1 ,x

′
j2
, . . . ,x′jk with a posi-

tive probability. Note that the same node may be visited several times on this route,
and as a result, the state of the node may change a number of times at one point in
time.

Let
X(t) = (X1(t),X2(t), . . . ,XN(t))

denote the state of the network at time t, with Xj(t) being the state of node j. Then
X(t) is a Markov process on the state space S.

The following technical assumption has to be made in order to avoid an infinite
number of visits at a node at one time epoch. For any sequence of nodes j1, j2, . . . , jℓ,
with arrival classes u1, . . . ,uℓ, and departure classes u′1, . . . ,u

′
ℓ, and for any sequence

of network states x,x1,x2, . . . ,xℓ,

lim
ℓ→∞

px(( j1u1,u
′
1,x1), . . . ,( jℓuℓ,xℓ)) f jℓuℓ,u′ℓ

(xℓ−1,xℓ) = 0 . (5.19)

In most applications this assumption is easily verified. For instance, if instantaneous
movements always decrease the numbers of jobs at the nodes and stop propagating
when they arrive at empty nodes, the network will be empty after a finite number of
steps, so the sequence of nodes to be visited is of finite length. On the other hand,
if each visit increases the number of jobs, then, without the assumption above, the
network will, with positive probability, explode at a single time epoch. Let q denote
the transition rate function of the Markov process X(t).

As in the earlier section, we need to first consider each individual node j with an

auxiliary transition rate q
(α j)
j to compute the stationary distribution of the network,

where

q
(α j)
j (x j ,x′j) = ∑

u∈Tj

(
α ju pA

ju(x j,x′j)+ qD
ju(x j,x′j)

)
+qI

j(x j,x′j), x j,x′j ∈ S j.(5.20)

The α j = (α ju;u ∈ Tj) are considered dummy parameters and their values are to be

determined by the traffic equations. Assume q
(α j)
j has a stationary distribution π (α j)

j ,
j = 1,2, . . . ,N. We now require that the nodes with signals be quasi-reversible. Note
that qA

ju ≡ α ju pA
ju satisfies condition (5.5) automatically. So the quasi-reversibility

is equivalent to the existence of non-negative numbers {βiu;u ∈ Tj} for all j =
1,2, . . . ,N such that

∑
x′j∈S j

π(α j)
j (x′j)

(
qD

ju(x
′
j,x j)+ ∑

v∈Tj

α jv pA
jv(x
′
j,x j) f jv,u(x′j,x j)

)
= β juπ(α j)

j (x j)

u ∈ Tj, x j ∈ S j . (5.21)

Since α ju and βiu are the arrival and departure rates of class u entities at node j,
the traffic equations
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α ju =
N

∑
k=0

∑
v∈Tk

βkvrkv, ju, j = 0,1, . . . ,N, u ∈ Tj

have to be satisfied. We need the following condition to ensure that the network
process is regular:

N

∑
j=1

∑
xj∈S j

π (α j)
j (x j) ∑

x′j∈S j

q
(α j)
i (x j)(x j,x′j) < ∞. (5.22)

A simple sufficient condition for (5.22) is

∑
u∈Tj

(
α ju + β ju + ∑

x′j∈S j

qI
j(x j)(x j ,x′j)

)
< ∞, for all j = 1, . . . ,N ,

which is satisfied by all the examples in this chapter.
The following result for networks with signals is an extension of Theorem 2 for

networks without instantaneous movements.

Theorem 3. If each node of the network is a quasi-reversible queue with signals,
i.e., equation (5.21) is satisfied, and if α j , j = 1, . . . ,N are the solutions of the traf-
fic equations (5.13), then the queueing network with signals has the product form
stationary distribution

π(x) =
N

∏
j=1

π (α j)
j (x j), x≡ (x1,x2, . . . ,xN) ∈ S. (5.23)

Proof. We use the detailed Kelly lemma. For convenience we drop the superscript
(α j). Assume that the reversed process corresponds to a similar network that is
characterized by

q̃D
ju(x
′
j,x j) =

π j(x j)α ju pA
ju(x j,x′j)

(
1−∑v f ju,v(x j,x′j)

)

π j(x′j)

q̃I
j(x
′
j,x j) =

π j(x j)qI
j(x j,x′j)

π j(x′j)
,

p̃A
ju(x
′
j,x j) =

π j(x j)
(

qD
ju(x j,x′j)+ ∑v α jv pA

ju(x j,x′j) f jv,u(x j,x′j)
)

π j(x′j)β ju

f̃ jv,u(x′j,x j) =
α jv pA

jv(x j,x′j) f jv,u(x j,x′j)

qD
ju(x j,x′j)+ ∑v α jv f jv,u(x j,x′j)

,

r̃ ju,kv =
βkvrkv, ju

α ju
.
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Because of the quasi-reversibility condition (5.21) and the traffic equations (5.13),
p̃A

ju(y j ,x j) and r̃ ju,kv are indeed probabilities. Thus they determine a queueing net-
work with instantaneous movements.

To apply the detailed Kelly lemma, we need to verify two conditions. To check
the first condition, i.e.,

∑
x′

q(x,x′) = ∑
x′

q̃(x,x′),

we first note that changes in the network state are initiated by either a departure
or an internal transition, and terminated after a finite number of transitions. The
latter is ensured by condition (5.19), which guarantees that the network process is
well defined. Thus, similar to the proof of Theorem 2, using the quasi-reversibility
condition (5.21), the global balance of each node (5.10) and the total balance (5.15),
we obtain

∑
x′

q̃(x,x′) =
N

∑
j=0

[
∑

u∈Tj

∑
x′j

q̃D
ju(x j,x′j)+∑

x′j

q̃I
j(x j,x′j)

]

=
N

∑
j=0

[

∑
u∈Tj

∑
x′j

π j(x′j)α ju pA
ju(x

′
j,x j)

(
1−∑v∈Tj

f ju,v(x′j,x j)
)

π j(x j)

+∑
x′j

π j(x′j)q
I
j(x
′
j,x j)

π j(x j)

]

=
N

∑
j=0

[ (
∑

u∈Tj

∑
x′j

π j(x
′
j)α ju pA

ju(x
′
j,x j)+ ∑

u∈Tj

∑
x′j

π j(x
′
j)q

D
ju(x

′
j,x j)

+∑
x′j

π j(x′j)q
I
j(x
′
j,x j)

)/
π j(x j)−β ju

]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j,x

′
j)+∑

x′j

qI
j(x j,x

′
j)+ α ju−β ju

]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j,x′j)+ qI

j(x j,x′j)
]

= ∑
x′

q(x,x′),

To check the second condition of the detailed Kelly lemma, we need to decom-
pose the transition functions q(x,x′) and q̃(x,x′), such that

π(x)qσ (x,x′) = π(x′)q̃σ̃ (x′,x) (5.24)

is satisfied for each decomposed transition functions qσ(x,x′) and q̃σ̃(x,x′), where
σ is the index for a sequence of simultaneous transitions, and σ̃ is the index for the
reversed sequence of σ . Clearly, a transition for this network is either an internal
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transition at a node, or a transition involving at least two nodes (possibly node 0, the
outside). A transition involving two or more nodes takes the following form: The
network starts out in state x, a class u entity departs from node j ( j = 0,1, . . . ,N)
and goes to node j1 as a class u1 entity, changes the state of the network to x1, and
triggers at the same time a class u′1 departure from node j1; it then goes to node j2
as a class u2 entity, changes the state of the network to x2, and triggers a class u′2
departure, etc. The string transition ends when a class v entity arrives at a node k
that does not trigger any instantaneous departure, and the state changes to x′. Let σ
denote this sequence. For the reversed process, σ̃ represents the reversed sequence
of σ which initiates with a class v departure at node k when its state is x′, triggering
a string of transitions, and ends with a class u arrival at node j that does not trigger
any instantaneous departure and the state of the network changes to x.

We now verify the second condition of the detailed Kelly lemma. For an internal
transition, (5.24) is easily seen to be satisfied by the definition of q̃I

j. For transitions
that involve more than one node, we consider here only the case of a string transition
that involves three nodes.

π(x)qσ (x,x′)

= π j(x j)π j1(x j1)πk(xk)q
D
iu(x j,x′j)r ju, j1u1 pA

j1u1
(x j1 ,x

′
j1) f j1u1,u′1

(x j1 ,x
′
j1)

×r j1u′1,kv pA
kv(xk,x

′
k)
(

1− ∑
w∈Tk

fkv,w(xk,x
′
k)
)

∏
ℓ 6= j, j1,k

πℓ(xℓ).

Similarly the right hand side is

π(x′)q̃σ̃ (x′,x)

= πk(x
′
k)π j1(x

′
j1)π j(x′j)q̃

D
jv(x
′
j,x j)r̃kv, j1u′1

p̃A
j1u′1

(x′j1 ,x j1) f̃ j1u′1,u1
(x′j1 ,x j1)

×r̃ j1u1, ju p̃A
ju(x
′
j,x j)

(
1− ∑

w∈Tj

f̃ ju,w(x′j,x j)
)

∏
ℓ 6= j, j1,k

πℓ(xℓ).

It is straightforward to verify that these two terms are equal. In case the string con-
tains more than 3 nodes, (5.24) can be verified in a similar way. This completes the
proof of Theorem 3.

The following example extends Example 4 by including triggered movements
throughout the network. Clearly, if r js,ks = for all j and k, then it reduces to the
model of Example 4.
Example 5. Consider a queueing network with jobs and negative signals, as de-
scribed in Example 2. When a job completes its processing at node j, it goes to
node k as a regular job with probability r jc,kc, and as a negative signal with prob-
ability r jc,ks, k = 0,1, . . . ,N. When a negative signal arrives at node j, it induces a
job, if there is one present, to depart. The job then joins node k as a regular job with
probability r js,kc, and as a negative signal with probability r js,ks, k = 0,1, . . . ,N. Let
λ j and λ−j be the exogenous arrival rates of jobs and signals at node j. The state of
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the network is given by vector n = (n1, . . . ,nN), where n j is the number of jobs at
node j.

Node j, defined by (5.20), is a queue discussed in Example 2, with service rate
µ j , job arrival rate α j , and signal arrival rate α−j . It is quasi-reversible with departure
rates of jobs and signals given by

β j =
α jµ j

µ j + α−j
, β−j =

α jα−j
µ j +α−j

.

Thus the traffic equations are

α j = λ j +
N

∑
k=1

αkµk

µk +α−k
rkc, jc +

N

∑
k=1

αkα−k
µk + α−k

rks, jc , (5.25)

j = 1,2, . . . ,N,

α−j = λ−j +
N

∑
k=1

αkµk

µk +α−k
rkc, js +

N

∑
k=1

αkα−k
µk +α−k

rks, js , (5.26)

j = 1,2, . . . ,N .

Suppose these traffic equations have positive solutions α j,α−j such that

α j

µ j +α−j
< 1 , j = 1,2, . . . ,N .

Since each node is uniformly quasi-reversible, applying Theorem 3 yields the sta-
tionary distribution

π(n) =
N

∏
j=1

(
1− α j

µ j +α−j

)(
α j

µ j +α−j

)n j

.

5.6 Networks with Positive and Negative Signals

In this section we apply Theorem 3 to a queueing network with two types of signals:
positive signals and negative signals. The first subsection considers the case of a
single class of positive signals and a single class of negative signals, and the second
subsection considers multiple classes of positive and negative signals. These models
include most networks with batch movements as special cases.
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5.6.1 Single Class of Positive and Negative Signals

Consider a network with N nodes and a single server at each node. There are
three classes of entities: jobs, positive signals, and negative signals, denoted by
T = {c,s+,s−}. Class c refers to the regular jobs; their arrivals do not trigger any
instantaneous movements. Positive and negative signals, however, represent signal-
ing mechanisms that induce immediate transitions at the nodes where they arrive.
Assume that the state of the network is n = (n1,n2, . . . ,nN), where n j is the number
of jobs at node j, j = 1,2, . . . ,N. The arrival of a positive signal at a node increases
the number of jobs at that node by 1, and then leaves immediately for another node.
The arrival of a negative signal at a node triggers a job to depart, provided the node is
not empty upon its arrival. A negative signal disappears when it arrives at an empty
node.

Assume that jobs arrive from the outside at node j according to a Poisson process
with rate λ j , and positive and negative signals arrive from the outside at node j
according to Poisson processes with rates λ+

j and λ−j . Node j, j = 1, . . . ,N, has
exponential processing times with rate µ j.

Upon a processing completion at node j, a job leaves for node k as a regular
job with probability r jc,kc, as a positive signal with probability r jc,ks+ , as a negative
signal with probability r jc,ks− , and it leaves the network with probability r jc,0, where

N

∑
k=1

(r jc,kc + r jc,ks+ + r jc,ks−)+ r jc,0 = 1, j = 1, . . . ,N.

When a positive signal arrives at node j, either from the outside or from another
node, it adds one job and then leaves immediately for node k as a regular job with
probability r js+,kc, as a positive signal with probability r js+,ks+ , as a negative signal
with probability r js+,ks− , and it leaves the network with probability r js+,0, where

N

∑
k=1

(r js+,kc + r js+,ks+ + r js+,ks−)+ r js+,0 = 1, j = 1, . . . ,N.

Finally, when a negative signal arrives at node j, either from the outside or from
another node, it triggers a job, if any, to depart. The departing job goes to node k as
a regular job with probability r js−,kc, as a positive signal with probability r js−,ks+ , as
a negative signal with probability r js−,ks− , and it leaves the network with probability
r js−,0, where again

N

∑
k=1

(r js−,kc + r js−,ks+ + r js−,ks−)+ r js−,0 = 1, j = 1, . . . ,N.

As indicated earlier, a negative signal that arrives at an empty node is assumed to be
lost. We refer to this model as a network with positive and negative signals.
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In this network there can be any number of job additions or deletions at various
nodes of the network at the same point in time. For instance, if there is a sequence
j1, j2, . . . , jk such that

r j1s+, j2s+r j2s+, j3s+ · · · r jk−1s+, jks+ > 0,

then the arrival of a positive signal at node j1 would, with positive probability, add
one job at each one of nodes j1, j2, . . . , jk. There can also be batch arrivals at node j
if r js+, js+ > 0, and the arrival of a positive signal can add a batch of random size at
a number of nodes. Unlike in networks with negative signals, in which a signal may
be interrupted on its route once it hits an empty node, a positive signal in this model
will never be interrupted. It disappears only when it is transformed into another class
of entity or when it leaves the network.

To ensure that the network is stable, i.e., it will not be overloaded, we have to
exclude the case that a positive signal from any node generates an infinite number
of jobs in the network at one point in time. Hence we make the following technical
assumption in order to ensure that the stochastic process is regular: The Markov
chain with state space {0,1, . . . ,N} and transition probabilities p·,· given by

p j,k = r js+,ks+ , j,k = 1, . . . ,N,

p j,0 = 1−
N

∑
k=1

r js+,ks+ −
N

∑
k=0

r js+,kc, j = 1, . . . ,N,

p0,0 = 1,

has only one recurrent state 0.
We are interested in the stationary probability of this network. However, it is

known that such networks do not have closed form solutions. In the following theo-
rem, we modify the network process so as to obtain a product form solution for the
network. This modification may appear artificial, and it is introduced purely to ob-
tain the uniform quasi-reversibility of each node so that Theorem 3 can be applied.
However, under some conditions the product form solution serves as a stochastic
upper bound for the original network.

Suppose the following traffic equations have a nonnegative solution {α j; j =
1, . . . ,N}, {α+

j ; j = 1, . . . ,N}, and {α−j ; j = 1, . . . ,N}:

α j = λ j +
N

∑
k=1

ρkµkrkc, jc +
N

∑
k=1

ρkα−k rks−, jc +
N

∑
k=1

ρ−1
k α+

k rks+ , jc, (5.27)

α+
j = λ+

j +
N

∑
k=1

ρkµkrkc, js+ +
N

∑
k=1

ρkα−k rks−, js+ +
N

∑
k=1

ρ−1
k α+

k rks+, js+ , (5.28)

α−j = λ−j +
N

∑
k=1

ρkµkrkc, js− +
N

∑
k=1

ρkα−k rks−, js−+
N

∑
k=1

ρ−1
k α+

k rks+, js− , (5.29)

for j = 1, . . . ,N, where
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ρ j =
α j +α+

j

µ j + α−j
.

Now modify the network with positive and negative signals such that whenever
node j is empty, a Poisson departure process of positive signals is activated with
rate ρ−1

j α+
j .

Theorem 4. If the solution of the traffic equations satisfy ρ j < 1 for j = 1, . . . ,N,
the modified network described above has the product form stationary distribution

π(n1, . . . ,nN) =
N

∏
j=1

(1−ρ j)ρn j
j . (5.30)

Proof. We use Theorem 3 to prove the result. It suffices to verify the quasi-
reversibility of each node when it is in isolation and subject to Poisson arrivals
of jobs and signals. Let a processing completion at node j be classified as a class c
departure, and departures triggered by positive and negative signals as class s+ and
s− departures, respectively. Then, node j is characterized by

pA
jc(n j,n j +1) = 1, n j ≥ 0,

pA
js+(n j,n j +1) = 1, n j ≥ 0,

pA
js−(n j,n j−1) = 1, n j ≥ 1,

pA
js−(0,0) = 1,

qD
jc(n j,n j−1) = µ j, n j ≥ 1.

The triggering probabilities are

f jc,u(n j,n
′
j) = 0, u = c,s+,s− and n j ≥ 0,

f js+,s+(n j,n j + 1) = 1, n j ≥ 0,

f js−,s−(n j + 1,n j) = 1, n j ≥ 0.

For convenience we let α j = α jc, α+
j = α js+ and α−j = α js− . Node j, characterized

by

q
(α j)
j (n j,n

′
j) = α j p

A
jc(n j,n

′
j)+ α+

j pA
js+(n j,n

′
j)+ α−j pA

js−(n j,n
′
j)+ qD

jc(n j,n
′
j),

is an M/M/1 queue with Poisson arrivals of three classes of entities, with respective
rates α j, α+

j and α−j , and with service rate µ j . As far as the stationary distribution
of the node is concerned, this queue is the same as an M/M/1 queue with arrival
rate α j +α+

j and service rate µ j + α−j . Hence its stationary distribution is

π j(n j) = (1−ρ j)ρn j
j , n j ≥ 0,

provided the stability condition
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ρ j = (α j + α+
j )/(µ +α−j ) < 1

is satisfied.
However, this node with positive and negative signals is not quasi-reversible, as

we will see below. So we modify this queue by assuming that whenever it is empty,
the node generates departures of class s+ at a constant rate. That is, we modify the
transition rate for node j such that qD

js+(0,0) > 0. In what follows we show that this
modified M/M/1 queue with positive and negative signals is quasi-reversible if and
only if

qD
js+(0,0) = ρ−1

j α+
j . (5.31)

It is easy to verify that the quasi-reversibility condition (5.21) is satisfied for
u = c,s− with

β j = ρ jµ j,

β−j (≡ β js−) = ρ jα−j .

For u = s+ and n j ≥ 1,

∑
n′j

π j(n′j)
(

qD
js+(n′j,n j)+ ∑

v=c,s+,s−
α jv pA

jv(n
′
j,n j) f jv,s+(n′j,n j)

)

= π j(n j− 1)α+
j pA

js+(n j− 1,n j)

= ρ−1
j α+

j π j(n j).

And for n j = 0,

∑
n′j

π j(n
′
j)
(

qD
js+(n′j,0)+ ∑

v=c,s+,s−
α jv pA

jv(n
′
j,0) f jv,s+(n′j,0)

)

= qD
js+(0,0)π j(0).

Thus for (5.21) to hold for u = s+ and all n j, (5.31) is necessary and sufficient.
Letting

β+
j (≡ β js+) = ρ−1

j α+
j ,

we obtain that node j is uniformly quasi-reversible for all α j,α+
j , α−j and

β j =
α j +α+

j

µ j +α−j
µ j, j = 1, . . . ,N,

β−j =
α j +α+

j

µ j +α−j
α−j , j = 1, . . . ,N,

β +
j =

µ j +α−j
α j +α+

j
α+

j , j = 1, . . . ,N,
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provided ρ j < 1 for all j. Hence, it follows from Theorem 3 that, if α j ,α+
j and α−j

are the solutions of traffic equations (5.13), which are simplified to (5.27), (5.28)
and (5.29), then the network has the geometric product form stationary distribution
(5.30). This completes the proof of Theorem 4.

Since the modified network has additional departures of positive signals, the net-
work process stochastically dominates the corresponding process without the addi-
tional departures if a positive signal cannot be transformed into a negative signal.
This can be easily proved using sample path stochastic comparison by constructing
the two processes and coupling the numbers of jobs in the two networks. Note that,
if the modified network has a stationary distribution, and if it stochastically dom-
inates the original network, then the original network must also have a stationary
distribution. Thus we obtain the following result.

Corollary 2. Let π0 be the stationary distribution of the network without the addi-
tional departure processes. If r js+,ks− = 0 and r jc,ks− = 0 for all j,k = 1, . . . ,N, then
π0 is stochastically dominated by the product form geometric distribution obtained
in Theorem 4, i.e.,

∑
k j≥n j , j=1,...,N

π0(k1, . . . ,kN)≤
N

∏
j=1

(
α j + α+

j

µ j +α−j

)n j

. (5.32)

5.6.2 Multiple Classes of Positive and Negative Signals

We extend the results of the last subsection to networks with multiple classes of
positive and negative signals. Suppose there is a single class of jobs denoted by c,
I+ classes of positive signals denoted by {u+;u = 1,2, . . . , I+}, and I− classes of
negative signals denoted by {u−;u = 1,2, . . . , I−}, where I+ and I− may be infinity.
There is a single server at node j, and the processing times at node j are exponen-
tially distributed with rate µ j . Jobs arrive at node j from the outside according to
a Poisson process with rate λ j. Class u+ positive signals, u = 1,2, . . . , I+, arrive at
node j from the outside according to a Poisson process with rate λ+

ju, and class u−

negative signals, u = 1,2, . . . , I−, arrive at node j from the outside according to a
Poisson process with rate λ−ju.

The effects of positive and negative signals at a node are the same as before. That
is, the arrival of a class u+ positive signal at node j adds one job at node j and then
departs, whereas the arrival of a class u− negative signal at node j triggers one job,
if any one is present, to depart. If a negative signal arrives at an empty node, nothing
happens and the signal disappears. Thus, node j is characterized by
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pA
jc(n j,n j +1) = 1, n j ≥ 0,

pA
ju+(n j,n j +1) = 1, n j ≥ 0,u = 1,2, . . . , I+,

pA
ju−(n j,n j−1) = 1, n j ≥ 1,u = 1,2, . . . , I−,

pA
ju−(0,0) = 1, u = 1,2, . . . , I−,

qD
jc(n j,n j−1) = µ j, n j ≥ 1.

The triggering probabilities are

f jc,w(n j,n′j) = 0, w = c,u+,v−, and n j,n′j ≥ 0,

f ju+,u+(n j,n j + 1) = 1, n j ≥ 0,u = 1,2, . . . , I+,

f ju−,u−(n j,n j− 1) = 1, n j > 0,u = 1,2, . . . , I−.

The routing probabilities are defined as follows. Upon a processing completion
at node j, a job goes to node k as a regular job with probability r jc,kc, as a class v+

positive signal with probability r jc,kv+ , as a class v− negative signal with probability
r jc,kv− , and it leaves the network with probability r jc,0, where

N

∑
k=1

(
r jc,kc +

I+

∑
v=1

r jc,kv+ +
I−

∑
v=1

r jc,kv−

)
+ r jc,0 = 1,

for j = 1, . . . ,N.

The arrival of a class u+ positive signal at node j, either from the outside or from
another node, adds one job to node j, and the signal leaves immediately for node k as
a job with probability r ju+,kc, as a class v+ positive signal with probability r ju+,kv+ ,
as a class v− negative signal with probability r ju+,kv− , and it leaves the network with
probability r ju+,0, where

N

∑
k=1

(
r ju+,kc +

I+

∑
v=1

r ju+,kv+ +
I−

∑
v=1

r ju+,kv−

)
+ r ju+,0 = 1,

for j = 1, . . . ,N, and u = 1,2, . . . , I+.

Finally, the arrival of a class u− negative signal at node j, either from the outside or
from another node, triggers one job from the node to depart, provided the queue is
not empty upon its arrival. The triggered job then goes to node k as a job with prob-
ability r ju−,kc, as a class v+ positive signal with probability r ju−,kv+ , as a class v−

negative signal with probability r ju−,kv− , and it leaves the network with probability
r ju−,0, where

N

∑
k=1

(
r ju−,kc +

I+

∑
v=1

r ju−,kv+ +
I−

∑
v=1

r ju−,kv−

)
+ r ju−,0 = 1,

for j = 1, . . . ,N, and u = 1,2, . . . , I−.
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The arrival of a negative signal at an empty node does not have any effect and
disappears.

Remark 1. The only additional feature of the network with multiple classes of
positive and negative signals is the class-dependent routing. However, the class-
dependent routing is very useful and it is general enough to include most queueing
networks with batch arrivals and batch processing as special cases. See Example 6.

Let α jc, {α+
ju; j = 1, . . . ,N,u = 1, . . . , I+}, and {α−ju; j = 1, . . . ,N,u = 1, . . . , I−}

denote the average arrival rates of jobs, positive signals, and negative signals at node
j. They are determined by traffic equation (5.13), i.e.,

α j = λ jc +
N

∑
k=1

ρkµkrkc, jc +
N

∑
k=1

I−

∑
v=1

ρkα−kvrkv−, jc +
N

∑
k=1

I+

∑
v=1

ρ−1
k α+

kvrkv+ , jc,

j = 1, . . . ,N; (5.33)

α+
ju = λ+

ju +
N

∑
k=1

ρkµkrkc, ju+ +
N

∑
k=1

I−

∑
v=1

ρkα−kvrkv− , ju+ +
N

∑
k=1

I+

∑
v=1

ρ−1
k α+

kvrkv+, ju+ ,

j = 1, . . . ,N,u = 1, . . . , I+;(5.34)

α−ju = λ−ju +
N

∑
k=1

ρkµkrkc, ju− +
N

∑
k=1

I−

∑
v=1

ρkα−kvrkv− , ju−+
N

∑
k=1

I+

∑
v=1

ρ−1
k α+

kvrkv+, ju− ,

j = 1, . . . ,N,u = 1,2, . . . , I−,(5.35)

where

ρ j =
α j + α+

j

µ j + α−j
, j = 1, . . . ,N,

and α+
j and α−j are defined as

α+
j =

I+

∑
v=1

α+
jv , j = 1, . . . ,N,

α−j =
I−

∑
v=1

α−jv , j = 1, . . . ,N.

Clearly, α j , α+
j and α−j are the average arrival rates of jobs, positive signals and

negative signals at node j. Also, the total average arrival rate of jobs, including
regular job and those added by positive signals, is α j +α+

j .

Theorem 5. Suppose the traffic equations (5.33), (5.34) and (5.35) have nonnegative
solutions such that

ρ j ≡
α j +α+

j

µ j +α−j
< 1, for all j = 1, . . . ,N.
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If the network is modified so that whenever node j is empty, there is an additional
departure process of class u+ positive signals with rate

µ j +α−j
α j +α+

j
α+

ju,

then the stationary probability of the network is

π(n) =
N

∏
j=1

(1−ρ j)ρn j
j . (5.36)

Corollary 3. Let π0 be the stationary distribution of the network without the addi-
tional departures of positive signals. If r ju+,kv− = 0 and r jc,kv− = 0 for all j,k, u and
v, then π0 is stochastically dominated by the geometric product form π of (5.36).

The following example illustrates how the multiple classes of signals can be used
to model batch movements.

Example 6. Consider a network of N single-server nodes. Jobs arrive at node j
from the outside according to a Poisson process with rate λ j , j = 1,2, . . . ,N. The
jobs are served in batches of a fixed size Kj, and the processing time of a batch is
exponentially distributed with rate µ j. Upon a processing completion at node j, the
Kj jobs coalesce into a single job, and this single job goes to node k with probability
r jk, k = 0,1, . . . ,N, where 0 is the outside world. In case there are less than Kj jobs in
node j upon a processing completion at the node, these jobs coalesce into a partial
batch and are removed from the system. When a job arrives at node j when the
number of jobs at the node is less than Kj, it joins the batch currently being served;
otherwise it waits in queue.

This model is a special case of the network with multiple classes of negative
signals. To see this, consider a network with a single class of jobs and Kj−1 classes
of negative signals at node j, denoted by u− for u = 1,2, . . . ,Kj− 1. Jobs arrive at
node j from the outside according to a Poisson process with rate λ j . The jobs are
served one at a time and the service rate at node j is µ j . The routing probabilities,
denoted by r∗, are defined as

r∗jc, j(Kj−1)− = 1, j = 1, . . . ,N,

r∗ju−, j(u−1)− = 1, u = 2,3, . . . ,Kj−1, j = 1, . . . ,N,

r∗j1−,kc = r jk, k = 0,1, . . . ,N, j = 1, . . . ,N.

That is, upon a processing completion at node j a job goes back to node j as a
class (Kj − 1)− negative signal with probability 1; the arrival of a class u− (u =
2,3, . . . ,Kj − 1) negative signal at node j removes one job and then immediately
goes to node j as a class (u− 1)− signal with probability 1; a class 1− negative
signal arrives at node j and reduces the number of jobs by 1, then goes to node k as
a regular job with probability r jk. This implies that a regular processing completion
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at node j instantaneously removes Kj jobs from node j, provided there are at least
Kj jobs present, and then goes to node k as a regular job with probability r jk. That a
negative signal that arrives at an empty queue disappears translates to the fact that,
when there are less than Kj jobs at node j upon a processing completion, the entire
batch is removed from the network. This is exactly the network under consideration.

By Theorem 5, this network has a geometric product form stationary distribution.
Since there are no positive signals, no additional departure process is required.

5.7 Necessary and Sufficient Conditions for Product Form

In the preceding sections we discussed various network models that possess prod-
uct form stationary distributions. Most of the results are obtained through quasi-
reversibility. A natural question is whether quasi-reversibility is also a necessary
condition for product form. The answer is negative. This section presents the nec-
essary and sufficient conditions for product form for the class of networks whose
transitions involve at most two nodes, i.e., there is no instantaneous triggering. Such
a characterization yields a general procedure for verifying whether a network has
a product form solution and obtaining it when it exists. Furthermore, the network
has a product form stationary distribution and is biased locally balanced if and only
if the network is quasi-reversible and certain traffic equations are satisfied. We also
consider various scenarios in which quasi-reversibility is a necessary condition for
product form.

The network consists of N nodes, indexed 1 to N, and the outside is labeled as
node 0. However, unlike the formulation earlier sections, we here assume that the
outside, i.e., node 0, has multiple states. Since departures from node 0 are arrivals
to the network, such a formulation allows the arrival process to the network from
the outside to be arbitrary. The state of the network is a vector of the states of the
individual nodes and the outside world. Its state space is

S = S0×S1×·· ·×SN.

For convenience we only consider the case of single class of transitions. Exten-
sion multiple classes of transitions is straightforward. As in earlier sections, node
j, j = 0,1, . . . ,N, is subject to three types of state transitions, referred to as arrival,
departure and internal transitions, denoted by

{pA
j (x j,y j);x j ,y j ∈ S j},

{qD
j (x j,y j);x j,y j ∈ S j},

{qI
j(x j,y j);x j ,y j ∈ S j}.

They represent, respectively, the transition probabilities due to arrivals, the transition
rate due to departures, and the internal transition rate. Thus we must have
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∑
y j∈S j

pA
j (x j,y j) = 1, x j ∈ S j.

The network process is characterized by the following system dynamics.

(i) When node j is in state x j , the departure transition rate that changes the state
from x j to y j is qD

j (x j,y j), y j ∈ S j. .
(ii) A departure from node j is transferred to node k as an arrival with probability

r jk, k = 0,1, . . . ,N (recall that node 0 represents the outside).
(iii) An arrival at node k changes its state from xk to yk with probability pA

k (xk,yk),
yk ∈ Sk.

(iv) The internal transition rate at node j is qI
j(x j,y j) when its state is x j . We here

redefine the internal transition so as to represent all transitions that do not trigger
state changes at other nodes, i.e., it includes case (ii) with j = k. Denote this new
internal transition rate by qI∗

j , i.e.,

qI∗
j (x j,y j) = qI

j(x j,y j)+∑
x′j

qD
j (x j,x

′
j)r j j p

A
j (x
′
j,y j).

The network process has the transition rates

q(x,x′) = ∑
j,k

q jk(x,x
′), x,x′ ∈ S,

where

q jk(x,x
′) =

{
qD

j (x j,x′j)r jk pA
k (xk,x′k)1[yℓ = xℓ, ℓ 6= j,k], if j 6= k,

qI∗
j (x j,x′j)1[x′ℓ = xℓ, ℓ 6= j], if j = k.

Our objective is to find the necessary and sufficient conditions for the network to
have a product form stationary distribution.

The following notation will be used in our analysis. For a probability distribution
π j on S j, define
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qD
j (x j) = ∑

y j

qD
j (x j,y j),

qI∗
j (x j) = ∑

y j

qI∗
j (x j,y j),

p̃A
j (x j) =

∑y j
π j(y j)pA

j (y j,x j)

π j(x j)
,

q̃D
j (x j) =

∑y j
π j(y j)qD

j (y j,x j)

π j(x j)
,

q̃I∗
j (x j) =

∑y j
π j(y j)qI∗

j (y j,x j)

π j(x j)
,

β j = ∑
x j

∑
y j

π j(x j)qD
j (x j,y j),

ν j = ∑
x j

∑
y j

π j(x j)q
I∗
j (x j,y j).

Notice that qD
j (x j) (qI∗

j (x j)) is different from the transition rate function qD
j (x j ,y j)

(qI∗
j (x j,y j)). They are distinguished only by their arguments. When they are used

without arguments (e.g., qD
j ), they represent the transition rate functions, e.g.,

qD
j (x j,y j). Assume that β j and ν j are finite. Keep in mind that p̃A

j (x j), q̃D
j (x j), q̃I∗

j (x j)
as well as β j,ν j are functions of π j . The following relationships can be easily veri-
fied:

∑
x j

π j(x j)q
D
j (x j) = ∑

x j

π j(x j)q̃
D
j (x j) = β j, (5.37)

∑
x j

π j(x j)q
I∗
j (x j) = ∑

x j

π j(x j)q̃
I∗
j (x j) = ν j . (5.38)

We first consider the possible forms of the marginal distributions when the net-
work process has a product form stationary distribution. Define the transition rate
q j for each node j by

q j(x j,y j) = α j pA
j (x j,y j)+ (1− r j j)q

D
j (x j,y j)+ qI∗

j (x j,y j), x j,y j ∈ S j,(5.39)

where α j is a parameter to be determined. Consider this process as node j operating
in isolation. The first term in the summation indicates that this isolated node has
Poisson arrivals with rate α j. The second and third terms are transition rates asso-
ciated respectively with departures from node j and internal transitions at node j,
where an internal transition may be a departure that returns to the same node (see
(iv)).

Theorem 6. If the network process has the product form stationary distribution

π(x) =
N

∏
j=0

π j(x j),



5 Networks with Customers, Signals, and Product Form Solutions 253

then each π j is the stationary distribution for the q j defined by (5.39) in which
coefficients α j are the solution to traffic equations

α j = ∑
k 6= j

βk(αk)rk j, j = 0,1, . . . ,N, (5.40)

where β j(α j) denotes the β j of (5.37) which depends on α j through π j. Note that
in this, as well as the next, section we have included immediate feedback as internal
transition, hence on the right hand side of the traffic equation only k 6= j is needed.

Proof. The global balance equations for the network are

π(x)∑
y

q(x,y) = ∑
y

π(y)q(y,x), x ∈ S. (5.41)

Since

π(y) =
π(x)π j(y j)πk(yk)

π j(x j)πk(xk)
, (5.42)

for y such that xℓ = yℓ for all ℓ 6= j,k, it follows from the definition of q that (5.41)
is equivalent to

π(x)∑
j

(
qI∗

j (x j)+ qD
j (x j) ∑

k 6= j

r jk

)

= π(x)∑
j

(
q̃I∗

j (x j)+ p̃A
j (x j) ∑

k 6= j

rk jq̃
D
k (xk)

)
, x ∈ S. (5.43)

For a fixed j, we sum these equations over all xℓ for ℓ 6= j. First, the left hand side
becomes

∑
xℓ:ℓ 6= j

π(x)
[
qI∗

j (x j)+ ∑
j′ 6= j

qD
j′(x j′)r j′ j + qD

j (x j) ∑
k 6= j

r jk

+ ∑
j′ 6= j

(
qI∗

j′ (x j′)+ qD
j′(x j′) ∑

k 6= j, j′
r j′k

)]

= π j(x j)
(

qI∗
j (x j)+ ∑

j′ 6= j

β j′r j′ j +(1− r j j)qD
j (x j)

)
+ ∑

j′ 6= j

(
ν j′ +β j′ ∑

k 6= j, j′
r j′k

)

= π j(x j)
(

qI∗
j (x j)+ α j +(1− r j j)q

D
j (x j)

)
+ ∑

j′ 6= j

(
ν j′ +β j′ ∑

k 6= j, j′
r j′k

)
.

A similar manipulation on the right hand side yields

π j(x j)
(

q̃I∗
j (x j)+ α j p̃

A
j (x j)+ (1− r j j)q̃

D
j (x j)

)
+ ∑

j′ 6= j

(
ν j′ + β j′ ∑

k 6= j, j′
r j′k

)
.

Thus it follows from (5.43) that
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qI∗
j (x j)+ α j +(1− r j j)qD

j (x j) = q̃I∗
j (x j)+ α j p̃A

j (x j)+ (1− r j j)q̃D
j (x j). (5.44)

These are the balance equations for q j divided by π j(x j) with α j given by (5.40).
This completes the proof of Theorem 6.

The next theorem provides the necessary and sufficient conditions for the net-
work process to have a product form distribution.

Theorem 7. The network has the product form stationary distribution

π(x) =
N

∏
j=0

π j(x j), x ∈ S

if and only if each π j is the stationary distribution of q j with coefficients α j satisfy-
ing the traffic equations (5.40) and

(q̃D
j (x j)−β j)r jk(p̃A

k (xk)−1)+ (q̃D
k (xk)−βk)rk j(p̃A

j (x j)−1) = 0, (5.45)

for all j 6= k and x j ∈ S j, xk ∈ Sk.

Proof. Assume the product form is π(x) = ∏N
j=0 π j(x j). Since the conditions of

Theorem 6 are satisfied, (5.43) holds. Dividing (5.43) by π(x), and subtracting the
summation of (5.44) over all j yields

∑
j

(
α j p̃

A
j (x j)+ (1− r j j)q̃

D
j (x j)

)
= ∑

j

(
α j + p̃A

j (x j) ∑
k 6= j

rk j q̃
D
k (xk)

)
. (5.46)

For convenience define

D jk(x j,xk) = (q̃D
j (x j)−β j)r jk(p̃A

k (xk)−1).

Since the stationary distribution is product form, it follows from Theorem 6 that α j

and β j satisfy (5.40). Hence, substituting α j of (5.40) into (5.46) gives

∑
j

∑
k 6= j

D jk(x j,xk) = 0. (5.47)

Multiplying (5.47) by ∏ℓ 6= j,k πℓ(xℓ), summing over xℓ for ℓ 6= j,k, and observing
that

∑
xℓ

πℓ(xℓ)(Dℓk(xℓ,xk)+ Dkℓ(xk,xℓ)) = 0

yields

D jk(x j,xk)+ Dk j(xk,x j) = 0 .

This is exactly (5.45).
Conversely, assume that each π j is the stationary distribution of q j and that (5.40)

and (5.45) are satisfied. Since (5.45) implies (5.47), we obtain (5.46). Similarly,
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(5.44) follows from the fact that π j is the stationary distribution of q j. Hence, from
the calculation of (5.46) we obtain (5.43). Thus the product form π satisfies the
global balance (5.41).

Clearly, the following are three sufficient conditions for (5.45), so they are suffi-
cient for the stationary distribution of the network to be product form.

(a)Both nodes j and k are quasi-reversible. Recall that node j is quasi-reversible if
q̃D

j (x j) is independent of x j; in this case it must equal to β j.
(b)Both nodes j and k are non-effective with respect to arrivals. Node j is said to be

non-effective with respect to arrivals if p̃A
j (x j) = 1 for all x j ∈ S j.

(c)Either node j or node k is quasi-reversible and non-effective with respect to ar-
rivals.

These sufficient conditions are further weakened if r jk = 0 or rk j = 0. These and
other special cases will be discussed in the next section. Note that when the outside
(node 0) is a Poisson source, then node 0 has only one state (say 0) which is non-
effective with respect to arrivals, i.e., the state of the outside source is not changed
when a job departs the network. On the other hand, the Poisson source is clearly
quasi-reversible, so it belongs to case (c). Therefore, when a network is subject to
Poisson arrivals from the outside, condition (5.45) only has to be verified for nodes
other than 0. In this case the product form stationary distribution ∏N

j=0 π j(x j) can

be written as ∏N
j=1 π j(x j).

Theorem 7 yields the following procedure for establishing the existence of a
product form stationary distribution for the network process and obtaining the dis-
tribution when it exists.

Step 1. For the dummy parameter α j compute the stationary distribution π j of
node j defined by q j of (5.39).

Step 2. Compute β j using (5.40), which is a function of α j since π j is. So write
it as β j(α j).

Step 3. Solve the traffic equations (5.40).
Step 4. Check condition (5.45) for each pair j,k and all x j,xk.

If this four-step procedure is successful, then π(x) = ∏N
j=0 π j(x j) is the stationary

distribution of the network process.

Finding vector α = (α0,α1, . . . ,αN) that satisfies the traffic equations (5.40) is a
fixed point problem whose solution is usually established by Brouwer’s fixed point
theorem. It follows from Theorem 7 that such a fixed point always exists when the
network has a product form stationary distribution.

Theorem 8. The network has a product form stationary distribution if and only if
there exists a solution to the traffic equations (5.40) and it satisfies the condition of
Step 4.

Therefore, the procedure above, in principle, applies to any queueing networks
with product solutions. If the procedure is successful it gives the product form sta-
tionary distribution of the network; otherwise, i.e., if it does not lead to a solution
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that satisfies the condition of Step 4, then the procedure concludes that the network
does not has a product form solution. For a particular application, one may be able
to construct an algorithm to compute the fixed point, e.g., an iterative algorithm.

5.8 Quasi-Reversibility Revisited

As we observed earlier, quasi-reversibility is a sufficient condition but not a neces-
sary condition for product form. This section is concerned with how much stronger
than necessary this condition is. It turns out that quasi-reversibility is equivalent to
a product form that satisfies the biased local balance equations.

A Markov chain with transition rate q is said to satisfy biased local balance
with respect to a positive probability measure π on S and real numbers γ = {γ j; j =
0,1, . . . ,N} if ∑ j γ j = 0 and

π(x)

(

∑
k

∑
y

q jk(x,y)+ γ j

)
= ∑

k
∑
y

π(y)qk j(y,x), x ∈ S, j = 0,1, . . . ,N. (5.48)

The π must be the stationary distribution for the Markov chain q since the global
balance equations are the sum of these biased local balance equations over j. Also,
we say that q is locally balanced with respect to π when all the γ j’s are 0.

Theorem 9. The following statements are equivalent.

(i) The network satisfies biased local balance with respect to a product form distri-
bution π(x) = ∏N

j=0 π j(x j) and γ = {γ j; j = 0,1, . . . ,N}.
(ii) Each node q j is quasi-reversible with respect to π j for some α j that satisfies

α j = ∑
k 6= j

βkrk j , j = 0,1, . . . ,N. (5.49)

If these statements hold, then

γ j = α j− (1− r j j)β j , j = 0,1, . . . ,N. (5.50)

Proof. Suppose (i) holds. Since π has the product form, it follows from Theorem 6
that π j is the stationary distribution of q j . Using the same argument that we derived
(5.44) from (5.42), we obtain the following equation from the biased local balance
equation (5.48):

qI∗
j (x j)+ (1− r j j)qD

j (x j)+ γ j = q̃I∗
j (x j)+ p̃A

j (x j) ∑
k 6= j

q̃D
k (xk)rk j . (5.51)

Define α j by (5.49) and fix node j. Multiplying (5.51) by π j(x j), summing over x j

and applying (5.37) and (5.38), we obtain

(1− r j j)β j + γ j = ∑
k 6= j

q̃D
k (xk)rk j.
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Fix ℓ 6= j. Multiplying this equation by ∏k 6= j,ℓ πk(xk), summing over xk for k 6= j, ℓ
and applying (5.37) and (5.49) yields

(1− r j j)β j + γ j = q̃D
ℓ (xℓ)rℓ j1(ℓ 6= j)+ ∑

k 6= j,ℓ

βkrk j

= α j +(q̃D
ℓ (xℓ)−βℓ)rℓ j1(ℓ 6= j) (5.52)

Summing over j and using (5.49) gives rise to

(q̃D
ℓ (xℓ)−βℓ) ∑

j 6=ℓ

rℓ j = 0.

This proves q̃D
ℓ (xℓ) = βℓ. Thus, each node qℓ is quasi-reversible, so (ii) is proved.

Next assume (ii) holds. Since quasi-reversibility implies (5.45), the conditions for
the product form of Theorem 7 are satisfied, and therefore (5.44) holds. Substituting
pA

j (x j) = 1 and q̃D
j (x j) = β j in (5.44), we obtain

qI∗
j (x j)+ α j +(1− r j j)qD

j (x j) = q̃I∗
j (x j)+ α j p̃A

j (x j)+ (1− r j j)β j, x j ∈ S j.

Define γ j by (5.50). Applying (5.50) to the expression above yields

qI∗
j (x j)+ (1− r j j)q

D
j (x j)+ γ j = q̃I∗

j (x j)+ α j p̃
A
j (x j), x j ∈ S j. (5.53)

From (5.49) and the fact that β j = q̃D
j (x j), it follows that

α j = ∑
k 6= j

q̃D
k (xk)rk j .

Substituting this α j into (5.53) yields (5.51), which implies (5.48). Hence q satisfies
biased local balance with respect to π and γ . This completes the proof that (ii)
implies (i).

The remaining part of this section explores scenarios under which quasi-reversibility
is also a necessary condition for product form.

Corollary 4. If in a queueing network there are no immediate turn around loop, i.e.,
r jk 6= 0 implies rk j = 0, and pA

k (xk) is not identically 1 for all xk, i.e.,

p̃A
k (xk) 6= 1, for at least one xk ∈ Sk, (5.54)

then the product form implies that node j is quasi-reversible. In particular, if the
discrete-time Markov chain on Sk with transition probability {pA

k (xk,yk);xk,yk ∈ Sk}
is transient, then (5.54) is satisfied.

Proof. Under the assumptions, equation (5.45) is reduced to

(q̃D
j (x j)−β j)r jk(p̃A

k (xk)−1) = 0 . (5.55)
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Fix an xk that satisfies (5.54). Since (5.55) holds for every x j and r jk(p̃A
k (xk)−1) 6= 0,

we conclude that q̃D
j (x j) = β j for all x j, i.e., node j is quasi-reversible.

To prove the second part, first note that p̃A
k (xk) = 1 for all xk is, by the defini-

tion of p̃A
k (xk), equivalent to πk being a positive stationary measure for the Markov

chain with transition probability {pA
k (xk,yk);xk,yk ∈ Sk}; this cannot be true if pA

k is
transient. Thus there must be at least one xk such that (5.54) is satisfied.

In job based queues with no signals, arrivals do not decrease the number of jobs
at the node, so pA

k is clearly transient. This is not true, however, in networks with
negative signals, in which the arrival of a negative signal reduces the number of
regular jobs.

Definition 5. Node j is said to be non-terminal if

1− r j j− r j0 > 0 ,

i.e., a departure from node j arrives at other nodes in the network with a positive
probability.

Feedforward networks clearly satisfy the first condition of Corollary 4 for all
nodes that are non-terminal. Thus we obtain the following result.

Corollary 5. A job based feedforward queueing network has a product form sta-
tionary distribution if and only if all the non-terminal nodes are quasi-reversible.

Of course, there are many queueing networks with feedback that satisfy the con-
ditions of Corollary 4.

Example 7. Consider the job based network with four nodes. Jobs arrive at nodes
1 and 2 according to Poisson processes. Departures from nodes 1 and 2 join node
3, and departures from node 4 either join node 1, node 2, or leave the network.
Clearly, this network satisfies the conditions of Corollary 5, so quasi-reversibility
of each node is both necessary and sufficient for the stationary distribution of the
network to be product form.

To present the next result, we need to introduce two new concepts. Node j is
called a conventional queue if it has an empty state, denoted by 0, from which there
can be no departures or internal transitions, and state 0 cannot be reached via arrival
or internal transitions. That is,

p̃A
j (0) = qD

j (0) = 0,

qI∗
j (x j,x

′
j) = 0, if either x j = 0 or x′j = 0.

Clearly, if a network has an outside Poisson source, then node 0 is not conventional.
A queueing network is called conventional if its outside source is Poisson and all
other nodes are conventional. Let α+

j denote the average arrival rate at node j in-
cluding the feedback, i.e.,
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α+
j =

N

∑
k=0

βkrk j = α j + r j jβ j .

Node j is said to be internally balanced, if α+
j = β j , i.e., the average arrival rate

equals the average departure rate.

Theorem 10. Suppose a queueing network has conventional nodes and the outside
source, i.e., node 0, is non-effective with respect to arrivals. If the network has a
product form stationary distribution, then a non-terminal node k is quasi-reversible
if and only if either one of the following two conditions holds.

(a)Node k has a path connecting it to an internally balanced node.
(b)Node k is directly connected to some node j 6= 0, but node j is not directly con-

nected to node k, i.e, rk j > 0 and r jk = 0.

In these cases, all the non-terminal nodes are internally balanced. Note that condi-
tion (b) is satisfied if the destination node k is a terminal node.

Proof. Suppose the network has a product form stationary distribution. By Theorem
6, the marginal distribution for each node satisfies the balance equation (5.44) for
the coefficients determined by the traffic equations (5.40). Substituting x j = 0 in
(5.44) yields

α j +(1− r j j)qD
j (0)+ qI∗

j (0) = α j p̃A
j (0)+ (1− r j j)q̃D

j (0)+ q̃I∗
j (0) .

Thus it follows from the condition that node j is a conventional queue that

α j = (1− r j j)q̃
D
j (0) . (5.56)

Because of the product form, we also have (5.45) of Theorem 7. Letting x j = 0 in
(5.45) and substituting (5.56), we obtain

(α+
j −β j)

r jk

1− r j j
(p̃A

k (xk)−1)− (q̃D
k (xk)−βk)rk j = 0, k 6= j, 0. (5.57)

Substituting xk = 0 in (5.57) yields

(α+
j −β j)

r jk

1− r j j
+(α+

k −βk)
rk j

1− rkk
= 0. (5.58)

Since the network process is irreducible, any non-terminal node k has an arc
directly connecting it to some other node j, i.e., rk j > 0. From (5.57) it follows that
node k is quasi-reversible if and only if

(α+
j −β j)r jk(p̃A

k (xk)− 1) = 0 .

Letting xk = 0 in this formula we conclude either α+
j −β j = 0 or r jk = 0. The latter

is exactly (b), while the former is (a) since node j is internally balanced. Thus (a)
and (b) are necessary for the quasi-reversibility of node k. Conversely, from (5.57),
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(b) clearly implies that node k is quasi-reversible; if (a) is satisfied, we need to
use induction to show that node k is quasi-reversible. First, if node k is directly
connected to node j, i.e., rk j > 0, then it follows from (5.57) that node k is quasi-
reversible. If node k is connected to j through i1, i2, . . . , iℓ, then applying (5.58) to
nodes iℓ and j shows that node iℓ is internally balanced, and applying (5.58) to nodes
iℓ−1 and iℓ shows that node iℓ−1 is internally balanced, etc. After showing that node
i1 is internally balanced, we apply (5.57) to nodes k and i1 to obtain that node k is
quasi-reversible.

To show that each non-terminal node has to be internally balanced, assume that
node j is quasi-reversible. Then, from (5.56) and q̃D

j (0) = β j it follows that

α+
j = α j + r j jβ j = α j + r j jq̃D

j (0) = q̃D
j (0) = β j .

The proof of Theorem 10 is thus complete.

From sufficient condition (c) of Section 7 for product form stationary distribu-
tion, it follows that if the outside source is Poisson, then no condition is required on
the terminal nodes for the product form to hold.

The next result follows immediately from Theorem 10.

Corollary 6. Consider a queueing network with all nodes being conventional and
all non-terminal nodes satisfy either (a) or (b) of Theorem 10. The network has a
product form stationary distribution if and only if all the non-terminal nodes are
quasi-reversible.

Considering an even more special case we obtain the following result.

Corollary 7. Consider a conventional queueing network with Poisson arrivals from
the outside and each node is internally balanced, i.e., the departure rate of each node
is equal to its arrival rate. The network has a product form stationary distribution if
and only if all non-terminal nodes are quasi-reversible. If the outside source node is
also a conventional queue, then the network has a product form stationary distribu-
tion if and only if all nodes are quasi-reversible.

Note the difference between Corollary 5 and Corollary 7. In Corollary 6 the non-
terminal nodes do not need to be conventional or internally balanced, but the topo-
logical structure of the network is restricted. On the other hand, in Corollary 7, the
network topology may be arbitrary, but each non-terminal node has to be conven-
tional and internally balanced.

5.9 Networks with Random Customer Shuffling

In this section we show that the results on product form networks can be extended
to models with random reshuffling of customer positions at both customer/signal
arrival and departure epochs. Random permutation of customers at each node has
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been studied by several authors, including Yashkov (1980), Daduna (2001), Daduna
and Schassberger (1985), Yates (1994), and Bonald and Tran (2007). The models
studied in Yashkov (1980), Daduna (2001), Daduna and Schassberger (1983) and
Yates (1994) are discrete time, while Bonald and Tran (2007) consider continuous
time model. Though most of the networks discussed earlier in this chapter can be
extended to include this additional feature of random shuffling, for simplicity in
what follows we consider the case with multiple classes of customers but only one
class of negative signals.

The network has N nodes and I classes of customers and one class of negative
signals. Class u customers arrive to node i from the outside according to a Poisson
process with rate λiu, and each class u customer requires exponentially distributed
amount of time at node i with mean 1/µiu. Let niu be the number of class u customers
at node i, and

ni = (ni1, . . . ,niI),

n = (n1, . . . ,nN).

Suppose ni is the total number of customers at node i, i.e.,

ni =
I

∑
u=1

niu.

Let eiu represent the unit vector with a 1 for class u customer at node i and 0 else-
where.

We shall refer to n = (n1, . . . ,nN) as the macro-state of the network. The micro-
state, c to be defined below, shall include information about the classes of customers
and their positions at the nodes.

Since we consider multiple classes of customers, the service disciplines at the
node is assumed to be symmetric. However, we shall assume that the service dis-
cipline at node i depends not only on the number of customers at node i but also
on the macro-state of the entire network. When the network is in macro-state n,
let γi(ℓ,n) be the proportion of service effort at node i that is directed to position
ℓ, ℓ = 1, . . . ,ni. Similarly, when a customer arrives at node i, it joins position ℓ
with probability γi(ℓ,n), and customers originally at station ℓ,ℓ+ 1, . . . ,ni move to
ℓ+1, ℓ+2, . . . ,ni +1, respectively. When a class u customer finishes service at node
i, it leaves for node j as a class v customer with probability riu, jv, it leaves for node
j as a signal with probability riu, js, and it departs the network with probability riu,0,
where

N

∑
j=1

I

∑
v=1

riu, jv +
N

∑
j=1

riu, js + riu,0 = 0, i = 1, . . . ,N,u = 1, . . . , I.

Negative signals, denoted by s, arrive at node i from the outside according to a
Poisson process with rate λ−i . When a signal arrives at node i, it heads for position
ℓ and deletes the customer in position ℓ with probability γi(ℓ,n).
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Given that there are ni customers in node i, let ci be the state of node i which is
the sequence of ni elements whose ℓ-th value ci(ℓ) is the class of the customer in
position ℓ, i.e.,

ci = (ci(1),ci(2), . . . ,ci(ni)).

Let
c = (c1, . . . ,cN)

be the state of the network, which is referred to as the micro-state.
Let αiu be the overall arrival rate of class u customers at node i, and α−i the overall

arrival rate of signals at node i. Then the following traffic equations are satisfied:

αiu = λiu +
N

∑
k=1

I

∑
v=1

αkvµkv

µkv +α−k
rkv,iu, i = 1, . . . ,N,u = 1, . . . , I,

α−i = λ−i +
N

∑
k=1

I

∑
v=1

αkvα−k
µkv +α−k

rkv,is, i = 1, . . . ,N.

The additional feature for the network is random shuffling. That is, immediately
after the arrival of a customer or a signal, and immediately after a departure from a
node, the customers at each and every node randomly permute positions within the
same node, and this happens at all nodes simultaneously. The results of this section
also hold true when the customers are assumed to randomly shuffle positions imme-
diately before the arrival of customers or signals. But in this section we shall focus
on the case that the shuffling takes place immediately after arrival and immediately
after departure.

Let P(m) denote the set of permutations of m elements, m ≥ 1, and let P(0)
denote the identity mapping on { /0}. Let

P(n) = P(n1)×P(n2)×·· ·×P(nN).

For any micro-state c and any permutation σ ∈ P(n), we let σ(c) denote the micro-
state whose i-th component is equal to σi(ci), i.e., the positions of customers in node
i are permuted according to σi ∈ Pi(ni).

For a macro-state n, let αA
iu(·,n),αA

is(·,n),αD
iu(·,n) be arbitrarily given distribu-

tions on P(n), and they are interpreted as follows: Immediately after a class u cus-
tomer arrives at node i, all customers in the network randomly shuffle positions
according distribution αA

iu(·,n), where n is the macro-state of the network after the
class u customer joins node i; immediately after a negative signal arrives at node i,
the customers in the network randomly shuffle positions according to permutation
probability αA

is(·,n), where n is the state after the arrival of the signal; and imme-
diately after a class u departs from node i, and before its arrival at the destination
node, all the customers in the network randomly shuffle according to probability
αD

iu(·,n), here again n is the macro-state after the departure of the customer but be-
fore its arrival at another node. We note here that a departure from a node causes
the customers in the network to reshuffle twice (unless the departure is heading for
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the outside of the network): the first shuffle takes place after the departure, while the
second happens after it arrives at the destination node.

The following result shows that, the introduction of the additional feature of ran-
dom shuffling does not affect the stationary distribution of the network.

Theorem 11. If the solution to traffic equations satisfy ∑I
u=1 αiu < µiu + α−i for

i = 1, . . . ,N and u = 1, . . . , I, then the stationary distribution of the network with
random shuffling is

π(c) =
N

∏
i=1

πi(ci),

π(n) =
N

∏
i=1

πi(ni),

where, for i = 1, . . . ,N,

πi(ci) =

(
1−

I

∑
u=1

αiu

µiu +α−i

)
ni

∏
ℓ=1

αici(ℓ)

µici(ℓ) + α−i
,

πi(ni) =

(
1−

I

∑
u=1

αiu

µiu +α−i

)
ni!

∏I
u=1 niu!

I

∏
u=1

(
αiu

µiu + α−i

)niu

.

Proof. We show that the stationary distribution satisfies the cross balance equa-
tions for each class of customer u in each position ℓ of the associated node i (Chao,
Miyazawa, and Pinedo (1999)). Notice that the distribution π(c) only depends on
the classes of customers at each node, and it does not depend on their relative posi-
tions at the node. This, turns out to be the key for the network distribution to be not
affected by customer shuffling within the node.

First, we introduce some notation. For any network micro-state c, let c⊕ eiu(ℓ)
be the state after a class u customer joins position ℓ of node i, and let c⊖eici(ℓ)(ℓ) be
the state of the network after the customer at position ℓ of node i leaves the system.
For convenience let ρiu = α+

iu /(µiu +α−i ).
Consider a micro-state c such that ci(ℓ) = u. The macro-state is n. The probability

flux corresponding to a departure in position ℓ from node i in micro-state c, either
due to service completion or removal by signals, causing the network state to go
across c from above, is

π(c)µiuγi(ℓ,n)+ π(c)λ−i γi(ℓ,n)

+
N

∑
j=1

n j+1

∑
ℓ=1

∑
σ∈P(n)

π(c′)µ jvγ j(ℓ,n+ e jv)r jv,isδ D
jv(σ ,n)γi(ℓ,n)

= π(c)
(

µiu +λ−i +
N

∑
j=1

I

∑
v=1

ρ jvµ jvr jv,is

)
γi(ℓ,n)

= π(c)(µiu + α−i )γi(ℓ,n),
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where c′ is such that c′i(ℓ) = v and σ(c′ ⊖ e jv(ℓ)) = c, and the last equality follows
from the traffic equation. Similarly, the probability flux corresponding to an arrival
of class u customer at position ℓ of node i, causing the state of the network to go
across state c from below, is

∑
σ∈P(n)

ni

∑
ℓ=1

π(c′)λiuδ A
iu(σ ,n)γi(ℓ,n)

+
N

∑
j=1

nj+1

∑
ℓ′=1

∑
σ ′∈P(n−eiu)

∑
σ ′′∈P(n)

π(c′′)µ jvγ j(ℓ
′,n+ e jv− eiu)r jv,iuδ D

jv(σ ′,n− eiu)δ D
iu (σ ′′,n)γ j(ℓ,n)

= π(c)
λ j +∑N

j=1 ∑I
u=1 ρ jvµ jvr jv,iu

ρiu
γi(ℓ,n)

= π(c)α+
iu/ρiuγi(ℓ,n)

= π(c)(µiu +α−i )γi(ℓ,n),

where the second equality follows from the traffic equation, and the last equality
follows from the definition of ρiu, and c′ and c′′ are such that

σ(c′ ⊕ eiu(ℓ)) = c,

σ ′′
(

σ ′(c′′ ⊖ e jv(ℓ
′))⊕ eiu(ℓ)

)
= c.

This shows that the cross balance equations is satisfied for any position ℓ of
any node i with regard to any class of customers, implying that the global balance
equations are satisfied. This proves that π(c) is the stationary distribution of the
network. The stationary probability π(n) is implied by π(c).

Remark 2. All the results in this section holds true after introducing multiple classes
of negative signals.

Remark 3. As mentioned earlier, the results remain the same when customers ran-
domly shuffle positions immediately before the arrivals of customers and/or signals.

Remark 4. Haviv (2005) considers a “one-chance random queue”, where an arrival
always joins the head of the queue, however at a service completion a customer is
randomly selected for service. The “one-chance random queue” is clearly a special
case of random shuffling of this section, since that service discipline can be ob-
tained by the LIFO service discipline followed by random reshuffling of customers
immediately after a service completion.

5.10 Conclusion

In this chapter we reviewed some latest developments on queueing networks with
tractable stationary distributions. Clearly, if possible it is always preferred to find
the closed form analytical solution for a network problem, and only when this is not
possible will one resort to approximation methods. Furthermore, we note that even
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when analytical solution is not available, the necessary and sufficient condition often
can help obtain bounds and approximations for the non-product form networks. This
is because of the fact that necessary and sufficient condition reveals the additional
conditions that need to be imposed for the network problem to yield a product form
solution. In many cases, the network after imposing additional conditions, that has
a product form solution, gives rise to a stochastic bound for the original problem.
Moreover, it is clear that, if the additional conditions only have minor impact on the
performance of the original problem, then the product form solution obtained can
be used as a good approximation for the original problem.

This chapter focused on queueing network models with exponential processing
times. For models with arbitrary processing time distributions, state-dependent tran-
sition rates (such as multi-server queues, etc.), and discrete time models, the reader
is referred to Chao, Miyazawa and Pinedo (1999) and the other papers in the refer-
ences.
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Chapter 6

Discrete Time Networks with Product Form
Steady States

Hans Daduna

Abstract We consider networks of queues in discrete time, where the steady state
distribution can be computed explicitly in closed form (product form networks):
(i) Closed cycles and open tandems of single server FCFS Bernoulli nodes with
state dependent service probabilities, where customers flow linearly, (ii) networks
of doubly stochastic and geometrical queues (which are discrete time analogues of
Kelly’s symmetric, resp. general, servers), where customers of different types move
through the network governed by a general routing mechanism and request for ser-
vice according to general, resp. geometrical, distributions, (iii) networks with batch
movements of customers and batch service, where the service and routing mecha-
nism is defined via an abstract transition scheme.
We describe recent developments of product form networks where nodes are unre-
liable, break down and are repaired. This opens the possibility to investigate perfor-
mance and availability of networks in an integrated model.

6.1 Introduction

Queueing network theory provided models, structural insights, problem solutions,
formulas, and algorithms to many application areas. Its strong development over
now around fifty years is closely connected with building a product form calculus
for queueing networks in continuous time. Breakthroughs were works of Jackson
[Jac57] and Gordon and Newell [GN67] in the Operations Research fields, Baskett,
Chandy, Muntz, and Palacios [BCMP75] in the Computer Science, and of Kelly
[Kel76]. For a survey on the state–of–the–art serve the recent books of Van Dijk
[Dij93], Serfozo [Ser99], and Chao, Miyazawa, Pinedo [CMP99], previous sources
are [Kel79], Whittle [Whi86], and Walrand [Wal88].
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Today’s growing together of production, manufacturing, transportation with in-
formation processing and communication technology results in more and more com-
plex systems which require even more elaborated models, techniques, and algo-
rithms for better understanding their performance behaviour and for predicting per-
formance and quality of service.

The classical single node queues and their networks are models living on a con-
tinuous time scale. And even if for some applications a discrete time scale might
be more appropriate, often the well established continuous time machinery served
as an approximation tool. Consequently, the survey articles [Coo90], [Wal90] from
1990 still do not review discrete time models.

But from then on an astonishing evolution of discrete time stochastic network
models can be observed. Usually it is argued that the invention of ATM (Asynchron-
uous Transfer Mode) as the protocol for high speed transmission network technol-
ogy triggered this development. Following this, special issues of Performance Eval-
uation: Discrete time models and analysis methods and Queueing Systems and Their
Applications: Advances in discrete time queues were dedicated to the subject. The
Editorial Introductions [TGBT94], [MT94] of these issues advertise for developing
further this class of models.

Several books appeared recently dedicated to theory and applications of discrete
time queueing systems and networks, [BK93], [Tak93], [Woo94], [Dad01], and in
parts [CMP99].

The center of this chapter is the presentation of a discrete time analogue to the
celebrated product form calculus of continuous time stochastic network theory. The
program behind is to build a calculus which is of comparable simplicity and general
applicability as the continuous time theory. Therefore this chapter refers in many
parts to [Woo94] (Section 6.6.2), [CMP99] (Section 6.6.1), [Dad01] (Section 6.3
and 6.4). (To a certain extent I reused parts of [Dad01].)

I consider three classes of models:
• Linear networks (closed cycles and open tandems) of single server FCFS

Bernoulli nodes.
•Networks of doubly stochastic and geometrical queues (which are discrete time

analogues of Kelly’s symmetric, resp. general, servers and of the BCMP nodes):
Customers of different types move through the network governed by a general rout-
ing mechanism and request for service according to general, resp. geometrical, dis-
tributions.
• Networks with batch movements of customers and batch service, where the

service and routing mechanism is defined via an abstract transition scheme.
I further discuss recent developments of product form networks where nodes are

unreliable, break down and are repaired. This opens the possibility to investigate
performance and availability of networks in an integrated model.

Parallel work on discrete time theory and several application areas are summa-
rized in the introduction of [Dad01].

Notation: IR denotes the real numbers, IR+ := [0,∞).
The natural numbers are IN := {0,1,2, . . .}, the strict positive natural numbers are
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IN+ := {1,2,3, . . .}, and we denote ZZ := {. . . ,−2,−1,0,1,2, . . . .}.
For any set A we denote by P(A) the set of all subsets of A.
We denote the Kronecker delta δ , resp. the complementary Kronecker delta η by

δ (a,b) =

{
1 i f a = b
0 i f a 6= b

, resp. η(a,b) =

{
1 i f a 6= b
0 i f a = b

.

ACKNOWLEDGEMENT: Parts of this Chapter were written in course of a re-
search project on STOCHASTIC NETWORKS IN DISCRETE TIME: ANALYSIS OF

PERFORMANCE AND AVAILABILITY (DA774/1-1). I thank my collaborator Chris-
tian Malchin for many helpful remarks and discussions on the subject.

I thank Richard Boucherie for reading the manuscript carefully and for his help
in the final version.

6.2 Bernoulli Servers with Different Customer Types and
state-dependent arrivals

The Bernoulli server is the analogue of the state dependent exponential single server
queue in continuous time under First–Come–First–Served (FCFS) regime. There is
a single service facility where at each time instant at most one customer may be
served. If at time t ∈ IN a customer is in service and if there are n−1≥ 0 other cus-
tomers present then this service ends in the time segment [t,t +1) with probability
p(n) ∈ (0,1) and the customer will depart at the end of this time slot; with prob-
ability q(n) = 1− p(n) this customer will stay at least one further time quantum.
The decision for a customer whether to stay or to leave is made independently of
anything else other than the queue length at time t.

All customers share the same countable type set M (“single chain” case). The
type of an arriving customer is chosen as follows: Arrival probabilities depend on
the history of the system only through the actual queue length, i.e., if at time t
there are n customers present, then a new arrival of type m appears in (t,t +1] with
probability b(n) · a(m) ∈ (0,1). With probability c(n) = 1− b(n) there will be no
arrival. Such an arrival stream will be termed henceforth state dependent Bernoulli
arrival process. (Sometimes we allow p(n) = 1 and/or b(n) = 1.)

Departures and arrivals occur conditionally independent given the actual queue
lenght. Joint arrivals and departures are scheduled according to LA-D/A regime (late
arrivals–departure before arrivals) [GH92], see Figure 6.1.

If at a customer’s arrival instant the server is free her service immediately com-
mences. Otherwise she enters the waiting room which is organized on a FCFS basis
(sometimes called FIFO: First–In–First–Out). If a customer has obtained her total
service request she immediately departs from the system. If a customer departs and
there is at least one further customer present then the customer at the head of the
waiting line enters the server, her service commences immediately, and all other
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waiting customers are shifted one place up in the line. The time needed for reorga-
nizing the queue is assumed neglectible (zero time).

The system’s development over time is described by a discrete time Markov chain
X = (X(t) : t ∈ IN). The state is recorded at times t ∈ IN just after possible departures
D(t) and arrivals A(t) have happened (Figure 6.1). A typical state of the system is

? ??

?

?

? t t+1

Xt Xt+1

Arrival A(t−1) Arrival A(t)

Departure D(t−1) Departure D(t)

Fig. 6.1: Regulation of arrivals and departures

described by a type sequence x = (x1, . . . ,xn) ∈Mn, where for n > 0 x1 is the type of
the customer in service, x2 is the type of the customer at the head of the queue,. . . , xn

is the type of the customer who arrived most recently. The empty system is denoted
by x = e. (We set for the empty system the queue length n = 0.) Let X(t) denote the
state of the node at time t ∈ IN.

X = (X(t) : t ∈ IN) is irreducible with state space S̃ := {e}∪⋃∞
n=0 Mn.

Theorem 6.2.1 (Steady state) If the Markov chain X is ergodic then the unique
equilibrium distribution of X is with norming constant H < ∞

π(x) = π(x1, . . . ,xn) x = (x1, . . . ,xn) ∈ S̃.

=

(
∏n−1

m=0 b(m)

∏n
m=0 c(m)

)(
n

∏
k=1

a(xk)

)(
∏n−1

m=1 q(m)

∏n
m=1 p(m)

)
·H−1. (6.1)

Remark 6.1 (Steady state decomposition). π shows a decomposition (separation) of
steady states into factors concerning arrival, service, and type selection probabilities.
Such separability is common to almost all product form steady states in continuous
time and occurs in discrete time queueing networks as well.

Theorem 6.2.2 (Arrival Theorem) Let X be in equilibrium and denote by
A(m,t) = {at time t a customer of type m arrives at the node}
the arrival event of interest. Then for x = (x1, . . . ,xn) ∈ S̃,

π1,m(x) := P(X(t) = (x1, . . . ,xn,m)|A(m,t)) (6.2)

=

(
∏n

m=0 b(m)

∏n+1
m=0 c(m)

)(
n

∏
k=1

a(xk)

)(
n

∏
m=1

q(m)

p(m)

)
H−1

1 .
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The norming constant H1 does not depend on the arriving customer’s type.

The interpretation of π1,m is that it describes the distribution of the other customers’
disposition in a type-m arrival instant under equilibrium conditions. Remarkable is
that this arrival distribution has not the form of the equilibrium distribution even
if the arrival process is a state independent Bernoulli process. In continuous time
it is true for state independent arrivals that time stationary and customer arrival
stationary distribution coincide. For systems with Poisson arrivals this is the PASTA
property (Poisson Arrivals See Time Averages) [Wol82].

From a general point of view the PASTA theorem and its relatives determine
the stationary and asymptotic distribution of systems when the observation points
are prescribed by an associated (embedded) point process, for a review see [BB94],
chapter 4, section 3. Palm theory in discrete time ([BB94], Chapter 1, Section 7.4)
yields similar results via elementary conditional probabilities.

In discrete time, a PASTA analogue usually does not hold, although exceptions
can be found. An early result was proved by Halfin in [Hal83]. Characterisation
theorems of the PASTA type (thereby strengthening the BASTA–results (Bernoulli
Arrivals See Time Averages) from [MMW89]) were proved by El-Taha and Stidham
[ETS92], (see also [ETS99], section 2, theorem 3.18 and corollary 3.19). Miyazawa
and Takahashi [MT92] proved ASTA in a discrete time point process setting by
using a rate conservation principle. They also observed that for some systems this
property does not hold.

Corollary 6.2.3 (End–to–end–delay) [Dad01][Theorem 2.12] Consider the
Bernoulli server with state dependent arrival rates b(n) ∈ (0,1) and state inde-
pendent service rates p(n) = p ∈ (0,1) in equilibrium with a test customer of type
m arriving at time 0 finding the other customers distributed according to π1,m, see
(6.2). Denote by Pπ1,m a probability measure which governs X under this conditions
and by Eπ1,m [·] expectations under Pπ1,m.
Denote by S the test customer’s sojourn time in system. Then with (see (6.1))

α(θ) =
∞

∑
n=0

∏n−1
m=0 b(m)

∏n
m=0 c(m)

θ m, |θ | ≤ q/p, (6.3)

Eπ1,mθ S =

(
α(

qθ
1− qθ

)−α(0)

)
·
(

α(
q
p
)−α(0)

)−1

, |θ | ≤ 1. (6.4)

Corollary 6.2.4 (Queue length process) The queue length process is a homoge-
meous Markov chain, which we denote by X as well. If X is ergodic, then its unique
stationary and limiting distribution is (with H < ∞ from (6.1))

π(n) =
∏n−1

m=0 b(m)

∏n
m=0 c(m)

· ∏n−1
m=1 q(m)

∏n
m=1 p(m)

·H−1. n ∈ IN, (6.5)

If additionally p(n) = p ∈ (0,1), and b(n) = b ∈ (0,1),n ∈ IN, then X is ergodic if
and only if b < p, and if this holds the stationary distribution of X is
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π(n) = (1− b
p
)

(
bq
cp

)n(1
q

)η(0,n)

, n ∈ IN. (6.6)

Remark 6.2 (Random walks in discrete time). The queue length of the
Bernoulli server is a random walk on IN (with reflection at 0) in discrete time
in the sense of [KSK76], p. 84, or a birth and death chain in discrete time, see
[Hun83a],(Vol. I), p. 178. Corollary 6.2.4 and the corollaries below are therefore
simple consequences of the limiting and stationary behaviour of birth and death
chains, see [Hun83b], (Vol. II), Example 7.2.2, p. 107.

Remark 6.3 (Reversibility). For state independent arrival probabilities, Hsu and
Burke [HB76] proved that in steady state the queue length process X is time re-
versible. So, in equilibrium the departure process is a Bernoulli–(b) process, and the
departure process up to t and the state at t are independent. This lead Hsu and Burke
to apply separability to tandem queues.

In [CMP99], example 12.10, and the remark below on p.354, it is shown that this
queue is quasi–reversible according to the definition 12.6 there.

The system dealt with in theorem 6.2.1 is neither reversible nor quasi–reversible.

Corollary 6.2.5 (Loss systems) Assume that in the setting of corollary 6.2.4 we
have b(n) ∈ (0,1) for n≤ L−1 > 0, and b(n) = 0 for n≥ L.
Then X is ergodic on E = {0,1, . . . ,L}, and the stationary distribution of X is

π(n) =
∏n−1

m=0 b(m)

∏n
m=0 c(m)

· ∏
n−1
m=1 q(m)

∏n
m=1 p(m)

·H−1. n ∈ E, (6.7)

For the discrete time M/M/s/∞ no simple closed form expressions for the steady
state are at hand. Usually root solving procedures for multidimensional bound-
ary equations are applied. Related problems are dealt with in [BSDP92], [DT92]
[SZ94], [BK93], section 4.1.2. For a light traffic approximation see [Dad01][example
2.10]. The no-waiting-room case is considered in [CG96]. Multiserver queues in dis-
crete time for modeling controlled ATM switches are described in [RMW94], where
a leaky–bucket control is investigated.

Pestien and Ramakrishnan [PR94b], section 3, proved that including ·/M/s/∞
into a closed cycle of queues destroys the product form equilibrium if 1 < s < ∞.

Feedback queues are models of repeated visits to a production or service facility,
and rework of an item, e.g., with production control. ATM transmission systems are
described in [STH98], where in a node with service time deterministic-(1) the feed-
back mechanism models successive transmission of cells of a message, with geo-
metrically distributed length. Feedback destroyes the FCFS structure of the systems,
which reflects real systems’ protocol behaviour. Related is Round–Robin regime ,
described e.g. in [Kle64], [LB96] (see the references there).

We consider a feedback node where customers of different types from the set
M of possible types are served, i.e., the model of section 6.2 with a queue length
dependent Bernoulli feedback. The state space is S̃, defined before theorem 6.2.1. A
customer departing from the queue leaving behind m−1 customers is fed back into
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the waiting room (to the tail of the queue) with probability r(m). If she was the only
customer present she will obtain immediately a further service, otherwise she will
join the tail of the queue. With probability 1− r(m) she will leave the system. The
decision whether to leave or to reenter is made independently of anything else. The
regulation of customer movements in case of multiple events is: Departure before
arrival for a joint arrival and departure (D/A) and feedback before arrival for a joint
feedback and arrival (F/A).

Theorem 6.2.6 (Feedback queue with customer types) If on state space S̃ the Markov
chain is ergodic, then its steady state is for (x1, . . . ,xn) ∈ S̃,

π(x1, . . . ,xn) =
∏n−1

m=0 b(m)

∏n
m=0 c(m)

·
n

∏
k=1

a(xk) ·
∏n−1

m=1(q(m)+ p(m)r(m))

∏n
m=1 p(m)(1− r(m))

·H−1.

Setting p(n) = 1,n≥ 1, r(m) = r,m∈ IN yields the round–robin scheme of [STH98],
which shows some further features not represented here. In [LB96] the number of
packets arriving per slot is an of i.i.d. sequence, service time is of phase type, and
the service mechanism is round–robin. Product form steady state occurs in [DS81].

6.3 Closed Cycles of Bernoulli Servers

In this chapter we construct closed cycles of state dependent Bernoulli servers with a
fixed number of customers cycling. We have multiple customer types as described in
section 6.2. In section 6.3.1 we determine steady state behaviour and the individual
customers’ behaviour at arrival instants at the nodes. We concentrate on the unichain
case (all customers share the same set of possible types) throughout. The multichain
case is sketched in [Dad01][Section 3.2]. In section 6.3.2 we determine a travelling
customer’s sojourn time distributions at the nodes in a cycle. We end with explicit
expressions for the generating function (z-transform) of the vector of the successive
sojourn times which can be inverted easily by direct methods. We sketch in section
6.3.3 algorithms to compute different norming constants.

The first explicit result on the steady state behaviour for closed cycles of state
independent Bernoulli servers appeared in 1994 – see [PR94b] and [PR94a]. The
parallel result for open series of such nodes is already from 1976, see [HB76]. A
shorter proof of the steady state result can be found in [Dad97c].

6.3.1 Steady State Behaviour and Arrival Theorem

Consider a closed cycle of state–dependent Bernoulli servers under FCFS queue-
ing regime with unlimited waiting room. There are J nodes in the cycle, numbered
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1,2, . . . ,J; customers leaving node j procede immediately to node j + 1. We for-
mally define for the numbering of the nodes J + 1 := 1 and 1−1 := J.

K customers cycle in the system being of types m ∈M, |M|< ∞. Customers may
change their types according to a Markovian rule when departing from a node. All
customers show the same behaviour with respect to their types.

With probability r(i;m,m′)≥ 0 a customer of type m on leaving node i becomes
a customer of type m′ ∈M when entering node i+1, i = 1, . . . ,J. Given i and m, the
selection of m′ is done independently of anything else in the past of the system. We
assume that the system of equations

η(i;m) = ∑
m′∈M

η(i− 1;m′)r(i−1;m′,m), i = 1, . . . ,J,m ∈M, (6.8)

has a unique stochastic solution η = (η(i;m) : i = 1, . . . ,J,m ∈M).
The evolution of the system is described by a multivariate Markov chain X :=

(X(t) : t ∈ IN) as follows: Let M(i) = {m ∈ M : η(i;m) > 0} denote the set of
possible types which customers may show when staying in node i, i = 1, . . . ,J.
A typical state of the system is denoted by x = (x1, . . . ,xJ), where x j = e j or
x j = (x j1, . . . ,x jn j) ∈ M( j)n j ,1 ≤ n j ≤ K, j = 1, . . . ,J, and n1 + · · ·+ nJ = K. x j

is called a local state for node j with the following meaning :
If x j = e j then node j is empty and we set n j = 0.
If x j = (x j1, . . . ,x jn j),n j > 0, then a customer of type x j1 is in service at node

j, x j2 is the type of the customer waiting at the head of the queue,. . . , and x jn j is
the type of the customer who arrived most recently at node j. The local states are
concatenated to global states in the state space

S̃(K,J) := {(x1, . . . ,xJ) : x j = (x j1, . . . ,x jn j ) ∈M( j)n j ,1≤ j ≤ J,
J

∑
j=1

n j = K}

where X = (X(t) := (X1(t), . . . ,XJ(t)) : t ∈ IN) is living on.
The nodes operate independently as follows: If at time t at node j a customer

is in service and if there are n j− 1 ≥ 0 other customers present at that node then
this service ends in the time segment [t,t + 1) with probability p j(n j) ∈ (0,1) and
the departed customer will be at the end of the queue of node j + 1 at time t + 1;
with probability q j(n j) = 1− p j(n j) this customer will stay at least one further time
quantum at node j, j = 1, . . . ,J. Whether a customer stays on or to leaves node j
is independent of the history given the local state of X at j. A customer arriving at
node j + 1 at time t + 1 either joins the end of the queue there (if other customers
are present) or immediately enters service (if at time t node j was empty or there
has been exactly one customer who obtained her last quantum of service time). If
at some node at the same epoch an arrival and a departure occur we always assume
that the departure event takes place first, D/A–rule; see Figure 6.1 and [GH92].)

The state of the system is recorded at times t ∈ IN just after possible departures
and arrivals had happened. (Due to ample waiting room the A/D–rule, arrival before
departure, yields the same steady state distribution.) The states which X will enter
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may be a subset of S̃(K,J), depending on the initial state of the process. We set the
following assumption in force.

Assumption 6.3.1 (Irreducibility) Depending on the initial state X is irreducible
on its state space. We denote the state space in any case by S̃(K,J), the meaning of
which will be clear from the context.

Theorem 6.3.2 (Steady–State Distribution) X = (X(t) : t ∈ IN) is positive recur-
rent and its unique steady state is with norming constant G(K,J)−1

πK,J(x11, . . . ,x1n1 ; . . . ;xJ1, . . . ,xJnJ ) (x11, . . . ,xJnJ ) ∈ S̃(K,J)

=
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·G(K,J)−1. (6.9)

For obvious reasons the steady state distributions πK,J are said to be of product form,
which clearly does not imply independence of the local queue lengths. n interesting
difference between (6.9) and the continuous time analogue (see e.g. [Kel79]), is
clarified when considering state independent service rates.

Corollary 6.3.3 Suppose we have p j(n j) = p j,n ∈ IN+, j = 1, . . . ,J. Then the
unique stationary distribution of X is for (x11, . . . ,xJnJ ) ∈ S̃(K,J),

πK,J(x11, . . . ,x1n1 ; . . . ;xJ1, . . . ,xJnJ ) (6.10)

=
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)(
1
q j

)η(0,n j)
(

q j

p j

)n j

·G(K,J)−1.

The extra factor
(

1
q j

)η(0,n j)
for non empty queues sets the difference. Therefore

in the homogeneous cycle (p j = p, j = 1, . . . ,J) the stationary distribution is not
uniform on S̃(K,J) as in continuous time. For consequences see [PR94a].

Corollary 6.3.3 and even the case of state dependent service probabilities can in
principle be proved by applying theorem 2.2 of [HT91] or by similar derivations as
presented in section 4 of [BD91].

Remark 6.4 (Bottleneck behaviour). Consider the closed cycle of corollary 6.3.3
with state independent service probabilities and p1 < min(p2, . . . , pM), i.e. node 1 is
the unique slowest server and will act as bottleneck of the network. This means: If
we have a cycle with large population size (K≫ J) then in equilibrium (and asymp-
totically over time) we shall see with high probability almost all customers at node
1 and node 1 acts asymptotically as a Bernoulli source.

More precisely: For fixed state (x21, . . . ,x2n2 ; . . . ;xJ1, . . . ,xJnJ ) ∈ ×J
j=2M( j) at

nodes 2, . . . ,J denote by πK,J(x21, . . . ,x2n2 ; . . . ;xJ1, . . . ,xJnJ ) the marginal proba-
bility for the coordinates 2, . . . ,J under πK,J(·) in a cycle with J nodes and K ≥
n2 + . . .nJ customers. Then we have
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lim
K→∞

πK,J(x21, . . . ,x2n2 ; . . . ;xJ1, . . . ,xJnJ ) = (6.11)

=
J

∏
j=2

(
n j

∏
k=1

η( j;x jk)

)(
1
q j

)η(0,n j)
(

p1q j

q1 p j

)n j

·
(

1− p1

p j

)
.

The limiting probability is the stationary distribution of an open tandem of nodes
2, . . . ,J with a Bernoulli arrival stream with parameter p1, see theorem 6.4.1.

Corollary 6.3.4 [DPR03] For each node j, we define the throughput T K,J
( j) at any

node j as the expected progress at node j at a given instant under πK,J:

T K,J
( j) = ∑

(x1,...,xJ)∈S̃(K,J)

πK,J(x1, . . . ,xJ) · p j(n j). (6.12)

T K,J := T K,J
( j) is independent of j.

If the service probabilities p j(m) are nondecreasing in m ∈ IN for all j, T K,J is
nondecreasing in K and nonincreasing in J.

In continuous time a consequence of the product form is the Arrival Theorem,
[LR80], [SM81], which roughly states, that in equilibrium an arriving customer at
node j observes the other customers distributed according to the equilibrium of the
system if she himself would not be there, j = 1, ...,J. So the arrival distribution has
the same structure as the equilibrium, and is independent of the node j, where the
customer arrives. This is not the case in discrete time.

Property 6.3.5 (Arrival Theorem) [Dad96] Let X = (X(t) : t ∈ ZZ) be the station-
ary continuation of X = (X(t) : t ∈ IN) under πK,J. Assume that for node i and cus-
tomer type m there exists some m′ such that r(i− 1;m′,m) > 0, i.e. m ∈ M(i), and
denote by A(i,m) the event that at time 0 an arrival of a type–m customer at node
i appeared, i ∈ {1, . . . ,J}. Then for x = (x1, . . . ,xJ) ∈ S̃(K−1,J) with Gi,m(K,J)−1

as norming constant

πK,J
i,m (x1, . . . ,xJ) (6.13)

:= P(X(0) = (x1, . . . ,xi−1,(xi,1, . . . ,xi,ni ,m),xi+1, . . . ,xJ)|A(i,m))

=

(
ni

∏
k=1

η(i;xik)

)(
∏ni

h=1 qi(h)

∏ni
h=1 pi(h)

)

·
J

∏
j=1, j 6=i

(
n j

∏
k=1

η( j;x jk)

)(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·Gi,m(K,J)−1.

A different form of an arrival theorem was proved by Henderson and Taylor
[HT91]: They computed in a general setting the disposition probability for stay–on
customers seen by a prescribed set of departing customers just before the latter enter
their destination node. These probabilities can be computed similarly to the proof
of proposition 6.3.5. And the other way round: Having the arrival probabilities of
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[HT91], Corollary 2.4, at hand, by a suitable, but lengthy, summation our result for
indistinguishable customers would follow.

6.3.2 Delay Times for Customers in a Closed Cycle

For a closed cycle of J state independent Bernoulli servers as described in section
6.3.1 and specified in corollary 6.3.3 we derive the steady state cycle time for a
customer in the system, and similar quantities. Most important is to determine the
joint distribution of successive sojourn times (waiting time + service time) of a
customer at the different nodes during such a cycle.

From the arrival theorem 6.3.5 and the type independent service times it fol-
lows that these distributions do not depend on the type of the cycling customer.
We therefore can and will restrict our attention to the case of indistinguishable cus-
tomers. The joint queue length process X = (X(t) : t ∈ IN) is Markov with state
space S(K,J) = {(x1, . . . ,xJ) ∈ INJ : x1 + . . .+ xJ = K}.

X(t) = (X1(t), . . . ,XJ(t)) = (x1, . . . ,xJ) indicates that at time t there are x j cus-
tomers present at node j, including the one in service, if any, j = 1, . . . ,J.

Consider a test customer C0 arriving at time 0 at node i finding the other cus-
tomers distributed according to πK,J

i . Denote by PπK,J
i

a probability that governs the

system with this condition, and by EπK,J
i

[·] expectations under PπK,J
i

.

Theorem 6.3.6 (Joint sojourn time distribution) [Dad97b] If C0 arrives at time
0 at node i ∈ {1, . . . ,J}, finding the other customers distributed according to πK,J

i ,

and if (S(i)
1 ,S(i)

2 , . . . ,S(i)
J ) denotes the vector of her sojourn times during her cycle

which starts at 0, then

EπK,J
i

[
J

∏
j=1

θ
S(i)

j
j

]
| θ j |≤ 1, j = 1, . . . ,J (6.14)

= ∑
(x1,...,x j)∈S(K−1,J)

Gi(K,J)−1

{
J

∏
j=1

(
p jθ j

1−q jθ j

)}

·
(

qiθi

1− qiθi

)xi J

∏
j=1, j 6=i

{(
1

q jθ j

)η(0,x j)
(

q jθ j

1− q jθ j

)x j
}

,

The joint distribution of C0’s successive sojourn times vector (S(i)
1 , . . . ,S(i)

J ) during
this cycle does not depend on the node i, where the cycle started.

The appealing interpretation of the RHS of (6.14) as a direct result of conditioning
on the arrival situation is false, with i = 1 we note:

(
p1θ1

1−q1θ1

)x1+1 J

∏
j=2

{(
p jθ j

1−q jθ j

)x j+1( 1
θ j

)η(0,x j)
}
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is not the conditional distribution L(S(1)
1 , . . . ,S(1)

J | X(0) = (x1 + 1,x2, . . . ,xJ)).
Note that in (6.14) the asymmetry of (6.13) (which is substantial there) formally

reappears, but nevertheless we have symmetry in i ∈ {1, . . . ,J}.

Remark 6.5. The proof of theorem 6.3.6 is performed by induction on the length
of the cycle and the number of customers. We consider the cycle built of an initial
node connected to a smaller residual cycle with less customers cycling, where the
induction hypothesis applies. Insofar the proof is standard, mimicing the continu-
ous time analogue [KP83]. Kelly and Pollett showed even more: Splitting of the
cycle for the induction step is possible between every pair of nodes j and j + 1,
j ∈ {1,2, . . . ,J− 1} - the induction step is always the same ! The main difficulty
that arises in the discrete time system is to justify this splitting. Directly carrying
over the arguments from [KP83] is not possible, because of the dependence of the
disposition distribution for the other customers on the node where the customer
jumps.

Remark 6.6 (End–to–end–delay). As a by-product of theorem 6.3.6 we have a result
on the distribution of cycle times ( = sum of successive sojourn times) which is
the end–to–end–delay e.g. in a transmission line under window flow control for a
system in heavy traffic (see [Rei79] and [Rei82]): Put θ j = θ , j = 1, . . . ,J. A direct
proof is given in [Dad96].

Theorem 6.3.6 allows to compute moments and covariances explicitly. Results on
partial-cycle times are given in [Dad96], section 4.

Remark 6.7 (An invariance property versus bottleneck behaviour). The discussion
of the bottleneck behaviour under p1 < min(p2, . . . , pM), i.e. when node 1 is the
bottleneck of the network, in remark 6.4 suggests that for (K ≫ J) the cycle time
will be determined almost completely by the sojourn time of the test customer at
node 1. This is made precise by Boxma [Box88] in continuous time. Boxma’s result
in the discrete time setting is for K→ ∞

EπK,J
1

[S(1)
1 + . . .+ S(1)

J ] = K p−1
1

{
1 +O

(
p1

min(p2, . . . , pM)

)K
}

, (6.15)

(even o(·) instead of O(·) can be shown) and it is also limK→∞ K−1EπK,J
1

[S(1)
1 ] = p−1

1 .

So the overwhelming part of the customer’s cycle time is her visit at the bottleneck.
Therefore the following observation is striking ([MD05] for continuous time): If we
compute the conditional joint counting densities of the successive sojourn times of
a cycling customer given her cycle time, then for all feasible values this conditional
densities are independent of K [MD04].
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6.3.3 Computational Algorithms for Closed Cycles of State
Independent Bernoulli Servers

Algorithms are developed for continuous time networks to efficiently evaluate norm-
ing constants, steady state probabilities, and further quantities derived from this.
An analysis of convolution algorithm (norming constants), Mean Value Analysis
(MVA), the more recent RECAL method, and further approximation algorithms for
product form networks as well as for non product form networks based on those con-
cepts is in [BGdT98]. For a short survey, including approximation procedures, see
[HNS99]. Algorithms for discrete time systems with finite capacity, are developed
in [SG97].

We sketch in this section the prolems occurring due to the discrete time scale.
A first observation is based on theorem 6.3.2 and proposition 6.3.5: While in con-
tinuous time models the norming constants in the steady state and in the arrival
probabilities are of the same structure, we have to apply different computational
schemes. We restrict ourself to state-independent service rates.

Property 6.3.7 (Norming constants) (a) For the steady state distribution (6.9) in
theorem 6.3.2 (with state independent service probabilities) the norming constant in
a system with K customers cycling in J nodes is

G(K,J) = ∑
(n1 ,...,nJ )∈INJ

n1+···+nJ=K

J

∏
j=1

(
q j

p j

)n j
(

1
q j

)η(0,n j)

, K ≥ 1,J ≥ 1.

(b) The norming constant for the arrival probabilities (6.13) in proposition 6.3.5
seen by a type m–customer on his arrival at node i in a system with K customers
cycling in J nodes is

Gi,m(K,J) = ∑
(n1 ,...,nJ )∈INJ

n1+···+nJ=K−1

(
qi

pi

)ni J

∏
j=1
j 6=i

(
q j

p j

)n j
(

1
q j

)η(0,n j)

, K ≥ 1,J ≥ 1.

The constants are type independent. We set Gi(K,J) := Gi,m(K,J), m ∈M.

The following is an analogue of Buzen’s algorithm ([Buz73]).

Property 6.3.8 (Buzen’s algorithm) For K ≥ 1,J ≥ 1 and p j ∈ (0,1),q j = 1−
p j, j = 1, . . . ,J, the following recursion holds for G(K,J):

G(1,J) =
J

∑
j=1

1
p j

, J ≥ 1, G(K,1) =

(
q1

p1

)K 1
q1

, K ≥ 1,

G(K,J) = G(K,J−1)+
qJ

pJ
G(K− 1,J)+ G(K−1,J− 1),

K ≥ 2,J ≥ 2. (6.16)
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Note that the computation of (6.16) depends on the prescribed numbering of the
nodes. Renumbering the nodes leads to different paths for the algorithm.

The norming constant for the arrival probabilities will be computed for any
customer arriving at node 1. It does not depend on the type of the arrival. Fur-
thermore: From [Dad01], lemma 7.2, it follows that for all j = 1, . . . ,J equality
Gi(K,J) = G1(K,J) holds.

Computing norming constants and performance indices needs an interplay of
constants of different type: from time stationary steady states and from customer
stationary steady states. Such distinction is not necessary in continuous time.

Property 6.3.9 For K ≥ 1,J ≥ 1 and p j ∈ (0,1),q j = 1− p j, j = 1, . . . ,J, the fol-
lowing recursion holds for G1(K,J):

G1(2,J) =
q1

p1
+

J

∑
j=2

1
p j

, J ≥ 1,

G1(K,J) = G(K−1,J− 1) +
qJ

pJ
G1(K−1,J), K ≥ 3,J ≥ 1.

Some elementary consequences of the above algorithms follow.

Corollary 6.3.10 For a random vector (X1, . . . ,XJ) distributed according to the
equilibrium distribution πK,J in the closed cycle (see corollary 6.3.3) holds:
(a) The probability for queue length X1 at node 1 to exceed k ∈ {0,1, . . . ,K} is

P(X1 ≥ k) =

(
q1

p1

)k 1
q1

G1(K− k,J)G(K,J)−1

(b) The mean steady state queue length E[X1] at node 1 is

E[X1] =
1
q1

G(K,J)−1
K

∑
k=1

(
q1

p1

)k

G1(K− k,J).

(c) For j = 1, . . . ,J and k ≥ 0 we have

P(Xj ≥ k) = P(X1 ≥ k)

(
p1q j

q1 p j

)k q1

q j

6.3.4 Large Cycles of State Dependent Bernoulli Servers

In the remarks 6.4 and 6.7 the number of nodes J in the cycles was fixed while the
number of customers grew unboundedly. The limiting behavour of the sequence of
networks provides information about the behaviour of the cycle when the system is
overloaded by high population sizes. A related question about approximating the be-
haviour of large networks can be studied by observing sequences of networks where



6 Discrete Time Networks with Product Form Steady States 283

the number of nodes and the number of customers grow simultaneously. Pestien and
Ramakrishnan studied the asymptotic throughput and queue lenghts in networks (in-
dexed by N) of state independent nodes, where the number of nodes fulfill J(N)→∞
and the limit of the customer/nodes ratios

α = lim
N→∞

K(N)/J(N) ∈ [0,∞]

exists, [PR94a], [PR99], In [DPR03] this is extended to the model in theorem 6.3.2
(with undistinguishable customer).

We have L types of nodes, characterized by distinct nondecreasing sequences of
success probabilities p[0], . . . , p[L−1], i.e., for each ℓ, p[ℓ](h) is the service probability
at a node of type ℓ when the queue length is h. Let the maximal service rate for type
be

p∗[ℓ] = lim
h→∞

p[ℓ](h),

and assume 0 < p∗[L−1] ≤ p∗[L−2] ≤ ·· · ≤ p∗[0] ≤ 1.

Even though we assume that the service rates p[ℓ] are distinct, we allow the pos-
sibility that p∗[ℓ] be constant in ℓ.

For each positive integer N, for each ℓ (0 ≤ ℓ ≤ L−1), assume that there are
Jℓ(N)≥ 1 nodes of type ℓ. Also suppose that for each ℓ, the proportion of nodes of
type ℓ (as N approaches ∞) has a limit, which defines a density (βℓ : ℓ = 0,1, . . . ,L−
1),

βℓ = lim
N→∞

Jℓ(N)/J(N).

Theorem 6.3.11 [DPR03] Let T (N) := T K(N),J(N) denote the throughput for the
Nth network as defined in (6.12).

Denote by mp[ℓ],b the expected queue length of a stationary single node with
steady state distribution (6.5), where b(m) = b,m ∈ IN, is a constant arrival rate
and p[ℓ] = (p[ℓ](m) : m ∈ IN) is a state dependent service rate.

Let g be the function defined by g(θ ) = ∑L−1
ℓ=0 βℓ ·mp[ℓ],θ , for θ such that 0≤ θ <

p∗[L−1]. g is continuous and strictly increasing and limθ→0 g(θ ) = 0.

The limiting throughput, limN→∞ T(N), exists, and the following cases summa-
rize the possible values of this limit:

(i) If α = 0, then limN→∞ T (N) = 0.
(ii) If 0≤ α < limθ↑p∗

[L−1]
g(θ ), then limN→∞ T (N) = g−1(α).

(iii) If α ≥ limθ↑p∗
[L−1]

g(θ), then limN→∞ T (N) = p∗[L−1].

For node type ℓ in network N denote by X(ℓ)(N) a random variable distributed like
the stationary queue length of a type ℓ node in this network.

Theorem 6.3.12 Denote by θ ∗ := limN→∞ T(N) the limiting throughput. For ℓ such
that 0≤ ℓ≤ L−1, the distribution of Xℓ(N) has the following properties:
(i) For every ℓ such that θ ∗ < p∗[ℓ], the distribution of Xℓ(N) converges in total
variation norm to π from (6.5) with constant arrival rate b(m) = θ ∗,m ∈ IN, and
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state dependent service rate p[ℓ] = (p[ℓ](m) : m ∈ IN). Also, for each positive integer
r, we have convergence of the rth moments.
(ii) For every ℓ such that θ ∗ = p∗[ℓ],

lim
N→∞

P[Xℓ(N)≥ ∆ ] = 1 for every ∆ > 0.

Moreover the expectations diverge to ∞.

In [PR02] Pestien and Ramakrishnan proved monotonicity properties of perfor-
mance measures in the cyclic queue under steady state conditions when the service
rates are state-independent. These results are utilized to refine some of their previous
results in [PR94a], [PR99].

6.4 Open Tandems of Bernoulli Servers with State Dependent
Arrivals

In this section we investigate a series of linearly ordered nodes, fed by a state depen-
dent arrival stream. Tandem networks are models e.g., for production lines, trans-
mission lines in a telecommunication network, etc. Results on steady state behaviour
for tandem systems (with state independent Bernoulli input and indistinguishable
customers) date back to [HB76]. Hsu and Burke solved the steady state problem by
proving time reversibility of a nodes’ local state process in equilibrium and then us-
ing induction. A similar procedure is not possible in case of state dependent arrival
processes.

We describe the steady state behaviour of state dependent tandems with different
customer types in section 6.4.1. In section 6.4.2 we compute end–to–end–delay dis-
tribution for a customer traversing the tandem and the distribution of this customer’s
joint sojourn times at the successive nodes of his passage.

Although series systems seem to be a rather narrow class of networks, the results
usually are considered to be of value for networks with more general topology as
well. The technique to reduce many network problems to problems which can be
solved in linear systems is called the Method of Adjusted Transfer Rates and is
described for discrete time systems in [Dad97a].

6.4.1 Steady State and Arrival Theorem

Bernoulli servers from section 6.2 are building blocks of an open tandem of J
queues. Customers of different types arrive in a state dependent Bernoulli process
at node 1, and proceed through the sequence of nodes possibly changing their types,
and after leaving node J, they depart from the system. All customers share the same
countable type set M. If a customer of type m∈M leaves node j, then this customer’s
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type is resampled according to probability matrix r( j), his new type is m′ ∈M with
probability r( j;m,m′), j = 1, . . . ,J.

Regulation of simultaneous events is according to late arrivals and departure
before arrivals, see Figure 6.1 and [GH92].

External arrival probabilities depend on the total population of the system and on
the type of the arrival, i.e., if at time t ∈ IN there are n j customers present at node
j, j = 1, . . . ,J, then a new arrival of type m appears in (t,t + 1] with probability
b(n1 + · · ·+nJ) ·a(m) ∈ (0,1).

Service times and arrivals are conditionally independent given the actual vector
of customer types at the nodes.

We use the definitions of section 6.3.1, page 276: M(i) denotes the set of possible
types which customers may show when staying in node i, i = 1, . . . ,J. Here M(1) =
{m ∈M : a(m) > 0}, while M(i), i = 2, . . . ,J, is determined by solving the equation
(6.8) for η(i; ·), i = 2, . . . ,J, in the present context and then setting M(i) = {m ∈M :
η(i;m) > 0}.

A typical state of the system is x = (x1, . . . ,xJ), where x j = e j or x j = (x j1, . . . ,x jn j)∈
M( j)n j ,1 ≤ n j, j = 1, . . . ,J. x j is called a local state for node j with the interpreta-
tion given in section 6.3, page 276. These local states allow to construct the state
space for X

S̃(J) := {(x1, . . . ,xJ) : x j = (x j1, . . . ,x jn j ) ∈M( j)n j ,n j ≥ 0, j = 1, . . . ,J}

Let Xj(t) denote the local state at node j, and X(t) = (X1(t), . . . ,XJ(t)) the joint
vector of type sequences at time t. X = (X(t) : t ∈ IN) is a discrete time irreducible
Markov chain with state space S̃(J).

Theorem 6.4.1 (Steady state) [Dad97c] If X is ergodic, then the unique equilib-
rium distribution of X is with norming constant H(J) < ∞

πJ(x1, . . . ,xJ) = πJ((x11, . . . ,x1n1); . . . ;(xJ1, . . . ,xJnJ )) = (6.17)

=

(
∏n1+···+nJ−1

h=0 b(h)

∏n1+···+nJ
h=0 c(h)

)
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·H(J)−1,

(x1, . . . ,xJ) ∈ S̃(J),where c(h) := 1− b(h),h∈ IN

Theorem 6.4.1 carries over to the case b(n) ∈ [0,1) for some n ∈ IN, which encom-
pass then loss systems as well, see [Dad97c], section 3.

Example 6.4.2 (Control of Bernoulli arrival) Consider a Bernoulli arrival stream
with constant intensity B ∈ (0,1], which feeds an open tandem of Bernoulli servers.
There is a Bernoulli switch at the entrance point of the network (before node 1): If
the total population size of the network is n then an arriving customer is admitted
with probability β (n) ∈ (0,1] and is rejected and lost with probability 1− β (n).
This system fits into the class of models of theorem 6.4.1 with b(n) = B ·β (n). If the
arrival process is sufficiently thin (1− β (n) sufficiently high) we have ergodicity.
(β (n),n ∈ IN) then is a stability control function.
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To describe a customer’s delay behaviour we again need an arrival theorem.

Theorem 6.4.3 (Arrival Theorem) For the state process X of the open tandem in
equilibrium consider the event
A(1,m) = { at time 0 a customer of type m arrives at node 1}. Then

πJ
1,m(x1, . . . ,xJ) := P(X(0) = ((x1,m),x2, . . . ,xJ|A(1,m)) (6.18)

= P(X(0) = ((x11, . . . ,x1n1),m);(x21, . . . ,x2n2); . . . ;(xJ1, . . . ,xJnJ )|A(1,m))

=

(
∏n1+···+nJ

h=0 b(h)

∏n1+···+nJ+1
h=0 c(h)

)
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)

·
(

n1

∏
h=1

q1(h)

p1(h)

)
J

∏
j=2

(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·H1(J)−1, (x1, . . . ,xJ) ∈ S̃(J),

H1(J) is the norming constant, which does not depend on the type of the arriving
customer. For i 6= 1 similar formulas apply.

The usual interpretation of πJ
i,m is that it describes the distribution of the other cus-

tomers’ disposition in an arrival instant at node i under equilibrium conditions. Re-
markable is that this distribution has not the form of the equilibrium.

Corollary 6.4.4 (Individual loss probabilities) (a) Control of Bernoulli arrival
streams (example 6.4.2): Assume that a Bernoulli arrival process with arrival prob-
ability B ∈ (0,1] is controlled by a Bernoulli switch with admission probabilities
β (n),n ∈ IN. Then the loss probability for an arriving customer of type m due to
rejection is

pl,m(J) = 1− 1
B ·H(J)

∞

∑
K=0

K

∏
h=0

b(h)

c(h)
G1(K,J),

where G(1K,J) is the norming constant for the arrival distribution at node 1 for a
customer in a closed cycle of J nodes (see section 6.3.3) with K indistinguishable
customers cycling. (See [Dad97c]; theorem 1.)

(b) Open loss system: If the control of the Bernoulli-(B) process is of the form
β (n) = 1, n < L, and β (n) = 0, n ≥ L. Then the loss probability for an arriving
customer of type m due to overflow is pL,m(J) = G1(L,J)/H(J).

The results are similar to computing loss probabilities at a single station with finite
buffer, single deterministic-(1)-server, and Markovian arrivals [IT99].

Theorem 6.4.5 (Throughput of the tandem) In equilibrium the throughput of the
tandem is T h(J) = HJ(J) ·H(J)−1, the throughput of type m customers is a(m) ·
T h(J).

This result seems curious: Inspection of the Hj(J) in theorem 6.4.3 leads to the
conjecture that the value of the throughput depends on the node where it is evaluated,
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because the Hj(J) would appear. But it can be shown, that Hj(J) is independent of
j, [Dad01], lemma 7.2.

Example 6.4.6 (Re–entrant lines) Re–entrant lines are models for complex manu-
facturing systems with items (parts) flowing through the line which possibly request
for different kind of (repeated) service and different amount of work. For modeling
re–entrant lines via queueing networks see [Kum93], and the references there. If the
actions on all stages are synchronized, then the production line is suitably modeled
by a discrete time network of queues, for more details see examples 12.1 and 12.37
of [CMP99]. A fundamental building block of re–entrant lines is the feedback queue
described in theorem 6.2.6. Building open tandems and closed cycles of such queues
with different customer types is possible with obtaining explicit product form steady
states, see section 4.4 in [Dad01].

6.4.2 Delay Times for Customers in an Open Tandem

We consider a test customer of type m arriving at time 0 at node 1 who finds the other
customers distributed according to πJ

1,m. We denote by PπJ
1,m

a probability which gov-

erns the system with this initial condition, and by EπJ
1,m

[·] expectations under PπJ
1,m

.

The following theorem states that the joint distribution of the successive sojourn
times of a customer in equilibrium is distributed like a mixture of multivariate dis-
tributions with independent negative binomial marginals.

denote the vector of the test customer’s successive sojourn times (= waiting time +
service time) at the nodes during her passage through the tandem. The joint distri-
bution of (S1,S2, . . . ,SJ) is given by

EπJ
1,m

[
J

∏
j=1

θ S j
j

]
| θ j |≤ 1, j = 1,2, . . . ,J, (6.19)

= ∑
(n1,...,nJ)∈INJ

·
(

∏n1+···+nJ
h=0 b(h)

∏n1+···+nJ+1
h=0 c(h)

)(
q1

p1

)n1 J

∏
j=2

(
1
q j

)η(0,n j)
(

q j

p j

)n j

·
(

p1θ1

1−q1θ1

)n1+1 J

∏
j=2

{(
p jθ j

1−q jθ j

)n j+1( 1
θ j

)η(0,n j)
}
·H1(J)−1.

Warning: The following tempting conjecture is false

1 2 JTheorem 6.4.7 (Joint sojourn time distribution in a tandem) [Dad97c] Let (S ,S ,...,S )
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EπJ
1,m

[
J

∏
j=1

θ S j
j |X(0) = ((x1,m),x2, . . . ,xJ)

]

=

(
p1θ1

1−q1θ1

)n1+1 J

∏
j=2

{(
p jθ j

1−q jθ j

)n j+1( 1
θ j

)η(0,n j)
}

.

For state independent arrivals (6.19) boils down to simple expressions.

Corollary 6.4.8 (Independent sojourn times) [Dad97b] For Bernoulli arrivals with
constant rate b the generating function of (S1,S2, . . . ,SJ) is

EπJ
1,m

[
J

∏
j=1

θ S j
j

]
=

J

∏
j=1

(
p j−b

c

)
θ j

1−
(

1− p j−b
c

)
θ j

, | θ j |≤ 1, j = 1,2, . . . ,J. (6.20)

Sojourn times are independent, geometrically distributed with parameter
pj−b

c .

(6.20) is the analogue of Burke’s and Reich’s results on the independence of a
customer’s sojourn times in an open tandem (for a review see [BD90b]).

An adhoc approximation procedure to solve complex discrete time network prob-
lems is described by Bruneel and Kim [BK93], chapter 4.1.6: The end–to–end delay
of a cell on its transmission through an ATM network is computed by assuming that
the successive single node delays behave statistically independent. This results in
convolution formulas for the end–to–end delay distribution approximation. The re-
sult on the end–to–end delay in corollary 6.4.8 is therefore: In case of linear series
of state independent Bernoulli servers the assumption holds and the convolution for-
mula is exact. Clearly, compared with the decomposition approximation of Bruneel
and Kim, formula (6.20) suffers from the fact that the class of networks dealt with
is much more narrow.
The approach of Bruneel and Kim can be viewed as typical for dealing with more
general cases. Corollary 6.4.8 contributes to the discussion in that we have identified
some fundamental networks where their approximation is exact.

6.4.3 Open Tandems of Unreliable Bernoulli Servers

Consider the open tandem from section 6.4.1 and assume for simplicity that cus-
tomers are indistinguishable. Then the joint queue length process X = (X(t) : t ∈ IN)
is Markov with state space INJ .

The servers are assumed to be unreliable in the following sense: if at time t node
j is in up status = 0 then α j(0,1) is the probability that in the present time slot the
node fails, i.e., turns into down status = 1 at time t +1. The node undergoes repair
and if at time t node j is in down status = 1 then α j(1,0) is the probability that in
the present time slot the node will be repaired, i.e., turns into up status = 0 at time
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t + 1. Break down and repair events are independent over the nodes and depend on
the local state of the respective node only. Customers at nodes in down status stay
on there waiting for the repair of the server, customers arriving at such nodes are
not allowed to enter but skip over failed servers to the next working node, possibly
leaving the network, if no node in up status is in front of them. For a Markovian
description of the system we supplement X and the states in NJ by a local sup-
plementary variable y j ∈ {0,1} which indicates the availability status of the node
j = 1, . . . ,J. We denote the supplemented Markov chain by (X ,Y) with state space
E = (N×{0,1})J. (X(t),Y (t)) = (X1(t),Y1(t), . . . ,XJ(t),YJ(t)) = (n1,y1, . . . ,nJ,yJ)
indicates that at time t there are n j customers present at node j and that the avail-
ability status of that node is y j .
Denote by⊕ coordinatewise addition modulo 1 in {0,1}.

Theorem 6.4.9 [MD06b] If (X ,Y) is ergodic, then with norming constant K < ∞
its unique steady state distribution is

π((n1,y1, . . . ,nJ,yJ)) (n1,y1, . . . ,nJ,yJ) ∈ E,

=
1
K

(
n1+···+nJ

∏
k=1

b(k−1)

c(k)

)(
J

∏
j=1

n j

∏
k=1

q j(k−1)

p j(k)

)(
J

∏
j=1

α j(y j⊕1,y j)

)
.

6.5 Networks with Doubly Stochastic and Geometrical Servers

The doubly stochastic server (section 6.5.2) was introduced by Schassberger [Sch81]
as a discrete time analogue of Kelly’s symmetric server [Kel79], which is a general-
ization of the nodes in the BCMP networks in continuous time [BCMP75]: Nodes
with processor sharing or Last–Come–First–Served–preemptive resume discipline
or infinite servers. Exponential servers under FCFS are further building blocks of
BCMP networks, generalized by Kelly to general exponential nodes. The discrete
time analogue of these nodes are geometrical nodes (section 6.5.3).

For Kelly’s networks of general exponential and symmetric servers steady state
probabilities can be explicitly given in simple terms as in the BCMP case and main
performance quantities can be computed. An appealing property is that first order
mean values of relevant performance measures are insensitive: They remain invari-
ant under variation of the service time distribution at symmetric servers as long as
the mean service time remains invariant. Similar properties will be proved for the
discrete time counterparts, see section 6.5.4.
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6.5.1 Common Properties of Doubly Stochastic and Geometrical
Server

Prerequisits for construction of doubly stochastic and geometrical servers are as
follows: The server (node) consists of an unlimited sequence of service and waiting
positions 1,2,3,. . . , which is controlled according to the shift–protocol. Whenever
there are n customers present, n≥ 1, they occupy positions 1, . . . ,n. If the customer
in position i ∈ {1, . . . ,n} departs then the gap is closed by shifting the customers
from positions i + 1, . . . ,n one step down into positions i, . . . ,n− 1, leaving their
order invariant. If an additional customer is inserted into position i ∈ {1, . . . ,n},
the customers previously on positions i, . . . ,n are shifted one step up into positions
i+1, . . . ,n +1, leaving their order invariant.

If n > 0 customers are present at the node service is provided to customers staying
on positions 1, . . . ,C(n), where C(n) > 0 is a node specific service parameter. We
call positions 1, . . . ,C(n) busy, while positions C(n)+ 1, . . . ,n are said to be idle.
We set C(0) := 0.

If at time t ∈ IN there are n customers present then there will be no arrival with
probability c(n) = (1− b(n)) – or there is exactly one arrival which is of type m
with probability b(n) ·a(m) > 0, m ∈M, such that ∑m∈M a(m) = 1 holds, M being a
countable set of types.

Occurrence of arrivals depends on the history of the system only through the ac-
tual total population size in system, type selections are independent of the system’s
history. We assume late arrivals and for multiple events we assume the D/A rule in
force (departure before arrival), see Figure 6.1. The state of the system is recorded
at times t ∈ IN, just after possible departures and arrivals have happened.

6.5.2 The Doubly Stochastic Server

The amount of service a customer requests for depends deterministically on the
customer’s type. A customer of type m ∈ M will request for an amount of K(m)
time units of service time, K(m) ∈ IN+. For a discussion of this assumption and the
modeling principles behind, see section 6.5.4, page 297. To exclude trivialities we
assume that there exists at least one customer type who requests for more than one
time unit of service time.

The state space S of the doubly stochastic server contains states x as follows:
x := e for the empty node, and sequences
x := [m(n),k(n); . . . ;m(1),k(1)], n≥ 1

where n is the number of customers present at the node (queue length), m(i) is the
type of the customer on position i, and k(i) his residual request for service time
(residual work).

The service discipline is now described in a three-step procedure, where through-
out x := [m(n),k(n); . . . ;m(1),k(1)] or x = e is a generic state. In (I) we describe
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arrivals and service mechanisms and handling of multiple events in general. In (II)
we add the feature of rearranging customers in the course of a one-step transition
of the network, and in (III) we put some constraints on the rearrangements and de-
scribe how these rearrangements constraints resemble properties of doubly stochas-
tic Markov transition matrices.

Definition 6.5.1 (Doubly stochastic discipline)
(I) General rules:

(1) A customer present at time t in a busy position i ∈ {1, . . . ,C(n)} obtains
exactly one unit of service time until time t +1.
If k(i) > 1 then at time (t + 1)− this residual workload is diminished to k(i)−1.
If k(i) = 1 then this customer departs from the node at time (t + 1)−. (Unless the
restriction on the departure rules below in (3) are in force.)

(2) Assume a customer of type m observes just before his entrance (which will
happen between t− and t) the node in state x.
If x = e, then the state changes to [m,K(m)];
else if x := [m(n),k(n); . . . ;m(1),k(1)] is the state of the system after at time t− all
residual service times of customers on busy positions are decreased, then with prob-
ability 1/C(n + 1) the state changes to
x := [m(n),k(n); . . . ;m(i+1),k(i+ 1);m,K(m);m(i−1),k(i−1); . . .;m(1),k(1)],
for some i ∈ {1, . . . ,C(n+1)}. A new arrival is inserted randomly into a busy posi-
tion and has immediate access to service.

(3) The rule to handle these multiple events composed of arrivals and/or sev-
eral departures resembles rejection blocking or repetitive service in multiple access
transmission systems with limited buffer capacity [Per90], p. 455, i.e., not all of the
requested transitions are allowed:

Customers wishing jointly to depart due to their service completions have to stay
at their present position for obtaining another service (retrial of transmission). This
request for service time is identical to the previous service there. The only exception
is:

If (several) services expire jointly and at the same time instant an arrival occurs
then from the departure candidates we select randomly one who departs and is
substituted at his position by the new arrival.

Therefore one single external arrival and at most one departure from the node
can be observed. Especially no access conflicts can happen.

(4) Assume that according to (1) or (2) one arrival or service completion or ac-
cording to (3) a multiple event appeared and is handled. Then all the stay–on cus-
tomers, i.e., those customers staying before on idle positions and customers on busy
positions whose service did not expire, are permuted on their positions according to
some probability law. This law may depend on what has happened in (1),(2),(3) and
on the state of the node, in a way to be described now in detail.

(II) Detailed rules:
In the following for state x∈ S we shall call customers to be stay–on customers if

they either occupy an idle position or if they are on a busy position i≤C(n) showing
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a residual work of k(i) > 1. A customer is a departure candidate if she is in a busy
position i with residual work k(i) = 1. A customer on position i is called a fresh
customer if she shows her total service request k(i) = K(m(i)) as residual work.
Recall: n is the queue length.

(A) If the state at time t is x 6= e, and if there is no departure candidate and no
arrival occurs at time t +1−, then the set A(x) of possible successor states at time
t +1 of x is obtained as follows:

Decrease the residual work of customers in busy positions by one and then per-
mute the positions of the customers according to any permutation resulting in state
y ∈ A(x). This happens with probability

c(n)d(x,y)≥ 0, ∑
y∈A(x)

d(x,y) = 1.

(B) If the state at time t is x, and there is no departure candidate, and an arrival
of type m∈M occurs at time t +1−, then the set Am,i(x) of possible successor states
of x with the new arrival inserted in position i, i ∈ 1, . . . ,C(n + 1), at time t + 1 is
obtained as follows:

Decrease the residual work of customers in busy positions by one, insert the new
arrival in position i and then permute the stay–on customers on positions 1, . . . , i−
1, i + 1, . . . ,n + 1 according to any permutation resulting in state y ∈ Am,i(x). This
happens with probability

b(n)a(m)C(n +1)−1d+(x,y)≥ 0, ∑
y∈Am,i(x)

d+(x,y) = 1.

(C) If the state at time t is x 6= e, and if there is exactly one departure candidate
and no arrival occurs at time t +1−, then the set A(x) of possible successor states
at time t +1 of x is obtained as follows:

Decrease the residual work of customers in busy positions by one, delete the de-
parture candidate and then permute on positions 1, . . . ,n−1 the stay–on customers
according to any permutation resulting in state y ∈ A(x). This happens with proba-
bility

c(n)d−(x,y)≥ 0, ∑
y∈A(x)

d−(x,y) = 1.

(D) If the state at time t is x 6= e, and if there are k ≥ 1 departure candidates on
positions i1, . . . , ik, and an arrival of type m ∈M occurs at time t +1−, then the set
Am,i(x) of possible successor states of x at time t +1 with the new arrival staying in
i, i ∈ 1, . . . ,C(n)+ 1, is obtained as follows:

Decrease the residual work of customers in busy positions by one, select at ran-
dom one of the departure candidates who is allowed to depart and the new arrival
is inserted in his previous position i. All other departure candidates stay on their
positions and become fresh jobs again requesting for a further service of K(m(il))
time units, l ∈ {1, . . . ,k}−{i}. Then permute the stay–on customers on positions
{1, . . . ,n}−{i1, . . . , ik} according to any permutation resulting in state y ∈ Am,i(x).
This happens with probability
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b(n)a(m)k−1d+(x,y)≥ 0, ∑
y∈Am,i(x)

d+(x,y) = 1.

(E) If the state at time t is x 6= e, and if there are k ≥ 2 departure candidates
occupying positions i1, . . . , ik, and no arrival occurs at time t + 1−, then the set
A(x) of possible successor states at time t +1 of x is obtained as follows:

Decrease the residual work of stay–on customers in busy positions by one, con-
vert the departure candidates into fresh jobs staying on their previous positions and
requesting for a further service of K(m(il)) time units, l = 1, . . . ,k. Then permute
the stay–on customers on positions {1, . . . , . . . ,n}− {i1, . . . , ik} according to any
permutation resulting in state y ∈ A(x). This happens with probability

c(n)d(x,y)≥ 0, ∑
y∈A(x)

d(x,y) = 1 .

(III) The doubly stochastic property
The doubly stochastic property refers to the transition density matrices d,d+,d−

introduced in (II) as we shall roughly explain the principle in case of d. In the sit-
uation described in (A) d can be considered as a transition matrix from the set of
all states x other than e which do not show a departure candidate, into the union of
all set of successor states A(x). This matrix, described in (A) is row-stochastic. In
general it is not a square matrix.
In (i) below we require that this matrix is column-stochastic as well.
In a similar way the other cases can be interpreted.

Assume that state x shows no fresh jobs, i.e., k(i) < K(m(i)) for all i.
(i) One type of predecessor states y∈A0(x) are those states which are obtained from
x by rearranging the customers on positions 1, . . . ,n and increasing the residual
work by one for those customers staying now on the busy positions.
For d(y,x) from (A) must hold ∑y∈A0(x) d(y,x) = 1.

(ii) The second type of predecessor states y ∈ A0
ri(x) of x are those states which

are obtained from x by inserting a fresh customer of type r ∈ M in position i, i ∈
{1, . . . ,C(n + 1)}, according to the shift protocol and then arbitrarily rearranging
the customers on positions 1, . . . , i−1, i+ 1, . . . ,n and increasing the residual work
by one for those customers staying now on the busy positions.
For d−(y,x) from (C) must hold ∑y∈A0

ri(x)
d−(y,x) = 1.

Next consider a state x = [m(n),k(n); . . . ;m(1),k(1)] with exactly one fresh
job which is of type r in position i, i.e., m(i) = r and k(i) = K(r), and for all other
positions j 6= i we have k( j) < K(m( j)).
(iii) One type of predecessor states y ∈ A0(x) are those states which are obtained
from x by deleting the fresh customer and rearranging the other customers on po-
sitions 1, . . . ,n− 1 and increasing the residual work by one for those customers
staying now on the busy positions.
For d+(y,x) from (B) must hold ∑y∈A0(x) d+(y,x) = 1.

(iv) The second type of predecessor states y ∈ A0
r′i(x) of x are those states which are
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obtained from x by deleting the fresh customer of type r on position i and substi-
tuting him by a departure candidate of type r′ ∈M and then rearranging the other
customers on positions 1, . . . , i−1, i+1, . . . ,n, increasing the residual work by one
for those customers staying now on the busy positions.
For d+(y,x) from (D) must hold ∑y∈A0

r′ i(x)
d+(y,x) = 1.

The remaining states are of the form x = [m(n),k(n); . . . ;m(1),k(1)] with
exactly k ≥ 2 fresh customers in positions i1, . . . , ik, being of type m(il) in po-
sition il with k(il) = K(m(il)), and for all other positions j 6= i1, . . . , ik we have
k( j) < K(m( j)).
(v) One type of predecessor states y ∈ A0(x) are those states which are obtained
from x by fixing the fresh customers on their positions with maximum residual work
and rearranging the other customers on positions {1, . . . ,n}−{i1, . . . , ik}, increas-
ing the residual work by one for those customers staying now on the busy positions.
For d(y,x) from (E) must hold ∑y∈A0(x) d(y,x) = 1.

(vi) The second type of predecessor states y ∈ A0
r′il

(x) of x are those states which
are obtained from x by deleting the fresh customer of type m(il) on position il and
substituting him by a departure candidate of type r′ ∈M, fixing the residual fresh
customers on their positions with maximal residual work and then rearranging the
other customers on positions {1, . . . ,n}−{i1, . . . , ik}, increasing the residual work
by one for customers staying now on the busy positions.
For d+(y,x) from (D) must hold ∑y∈A0

r′ il
(x) d+(y,x) = 1.

Example 6.5.2 (Doubly stochastic disciplines) The class of doubly stochastic
nodes comprises especially nodes with the following queueing disciplines: Last–
Come–First–Served (preemptive resume), infinite server, random service allocation,
round–robin with a preemptive modification for new arrivals [DS81]. These disci-
plines are prototypes for so called permutation queues, where service is provided
on a time shared basis, for a more in depth description see [Yat94] and [Yat90].
Permutations are special cases of the doubly stochastic reorganization rules.

First–Come–First–Served is not included because immediate service must be
guaranteed for a doubly stochastic node [Sch81].

The permutations in the doubly stochastic disciplines are in general not considered
as a rule for physically moving stay–on customers. The interpretation is that service
capacity of the node is redistributed to the customers. E.g., applying a suitable per-
mutation rule would guarantee fairness of service. This was discussed for the case
of processor sharing by Kleinrock [Kle76], pp. 166–172. Processor sharing is fair
without applying a permutation rule.

Permutation rules for general symmetric servers were introduced by Yashkov
[Yas80] and open the possibility to control the service nearly continuously.

The queueing discipline and the stochastic assumptions put on the systems ensure
that the system can be described by a Markov chain X = (X(t) : t ∈ IN) with state
space S. Its steady state is of product form.
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Theorem 6.5.3 (Steady state) A steady state π of X exists if and only if A =

∑∞
n=0 π̂(n) < ∞ holds, where π̂(0) = c(0)−1 and for n > 0

π̂(n) =

(
∏n−1

h=0 b(h)

∏n
h=0 c(h)

)
· (µ− 1)n−C(n) · µC(n) ·

n

∏
i=1

C(i)−1.

µ = ∑m∈M a(m)K(m) is the mean service request of an average (typical) customer.
If A < ∞ then the steady state of the doubly stochastic node is

π([m(n),k(n); . . . ;m(1),k(1)]) =
∏n−1

h=0 b(h)

∏n
h=0 c(h)

n

∏
h=1

a(m(h))

C(h)
A−1, (6.21)

[m(n),k(n); . . . ;m(1),k(1)] ∈ S.

The equilibrium queue length distribution is π(n) = π̂(n) ·A−1 on IN and is insen-
sitive under perturbations of the service time distributions as long as their mean is
fixed.

6.5.3 The Geometrical Server

The amount of service a customer requests for is geometrically distributed with pa-
rameter p ∈ (0,1) for all customers. Service times are independent and independent
from the arrival process.

The state space S for the geometric node consists of elements x as follows:
x := e for the empty node, and sequences
x := [m(n); . . . ;m(1)], n≥ 1

where n is the number of customers present at the node (queue length of the node),
m(i) is the type of the customer on position i.

Definition 6.5.4 (Geometrical discipline) (1) A customer present at time t in a
busy position i ∈ {1, . . . ,C(n)} obtains exactly one unit of service time until time
t + 1. With probability p her service ends at the end of [t,t + 1), and she departs
from the node. (Unless the restrictions on departure rules in (3) and (4) are in force.)
With probability q = 1− p she requests for at least one more service quantum.

(2) An arriving customer observing n other customers present enters position
n + 1,n≥ 0. (Unless the restrictions on departure rules in (3) and (4) are in force.)
Applying the shift–protocol after the departure from a busy position then leads to a
FCFS–based service.

(3) If more than one customer complete their service at the same time instant
they are not allowed to depart jointly. They have to stay at their present position for
obtaining just another service (retrial of transmission).

(4) If an arrival occurs and at one or more services expire jointly at the same time
instant then the departure candidates stay for another service on their positions and
the arrival candidate is rejected and lost.
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Therefore either one single external arrival or at most one service completion with
a subsequent departure from the node can be observed. The time evolution of the
system is described by a Markov chain X = (X(t) : t ∈ IN) with state space S. Its
steady state π is of product form.

Theorem 6.5.5 (Steady state) A steady state π of X exists if and only if A =

∑∞
n=0 π̂(n) < ∞ holds, where π̂ j(0) = c(0)−1 and for n > 0

π̂(n) =

(
∏n−1

h=0 b(h)

∏n
h=0 c(h)

)n n

∏
i=1

C(i)−1
(

q
p

)n(1
q

)C(n)

.

If A < ∞ holds then the steady state of X is

π([m(n); . . . ;m(1)]) =
∏n−1

h=0 b(h)

∏n
h=0 c(h)

n

∏
h=1

a(m(h))

C(h)

(
q
p

)n(1
q

)C(n)

A−1

[m(n); . . . ;m(1)] ∈ S. (6.22)

The equilibrium queue length distribution is π(n) = π̂(n) ·A−1, n ∈ IN.

Remark 6.8 (Slotted Aloha–type protocol). The rules to regulate simultaneous events
in geometrical nodes occurred first in models of transmission stations in a slotted
Aloha–type communication system, [Kle76], section 5.11, [Woo94], section 6.2. If
there are C(n) active sources of traffic (stations), and if the end of a service in posi-
tion i ∈ {1, . . . ,C(n)} indicates that a message has to be transmitted over the shared
medium, then this is possible if and only if exactly one service ends. If more than
one service ends, and more than one message is tried to be send at the same time
instant, all those transmission trials are not successful and have to be repeated. A
common regime to resolve the conflicts is that the sources retry at random to repeat
sending. This is just what is going on in a geometrical server according to (3) in
definition 6.5.4.
Due to the memoryless property of the geometrical service time distribution the
blocking mechanism according to repititive service is equivalent to what is known
as communication blocking, [Per90], p.455.

6.5.4 Networks of Doubly Stochastic and Geometrical Nodes

The networks in this section are constructed along the lines of the BCMP networks
[BCMP75] and Kelly’s networks [Kel79]. These networks are now widely accepted
as a versatile class of queueing networks, which simulate the behaviour of many
complex systems. We substitute the symmetric and exponential servers of Kelly’s
networks by doubly stochastic and geometrical servers. We concentrate on open
networks.
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The network consists of J nodes and is fed by a Bernoulli arrival stream of cus-
tomers which are of different types m ∈M, M a countable set.

At any time t ∈ IN there is either no arrival, with probability c = 1−b, or there is
exactly one arrival, being of type m with probability b · a(m) > 0, m ∈M, such that
∑m∈M a(m) = 1 holds. The successive arrival and type decisions are an independent
sequence, independent of the previous history.

The type m of an arriving customers specifies the route of this customer through
the network: W (m) = (W (m,1),W (m,2), . . . ,W (m,S(m))), where node W (m, i) is
the ith stage of m on her itinerary, and 1 ≤ S(m) < ∞ is the length of his route. We
assume for simplicity of presentation that W (m, i) 6=W (m, i+1),1≤ i < S(m). (For
how to remove this restriction see [DS83].)

Nodes 1, . . . ,J′,0 ≤ J′ ≤ J, are doubly stochastic (section 6.5.2). Nodes J′ +
1, . . . ,J are geometrical nodes (section 6.5.3).

If n j > 0 customers are present at node j service is provided to those customers
staying on positions 1, . . . ,C( j,n j), where C( j,n j) > 0 is a node specific service
parameter. We call positions 1, . . . ,C( j,n j) busy, while positions C( j,n j)+ 1, . . . ,n
are said to be idle. (C( j,0) := 0,1≤ j ≤ J.)

The amount of service time a customer requests for at a geometrical node j is
geometrically distributed on IN+ = {1,2, . . .}. A customer requests with probability
p j(1− p j)

k−1, p j ∈ (0,1], for exactly k time units of service at node j, k ∈ IN+.
These geometrical service times are drawn independently and independent of any-
thing else in the history of the network.

If a customer of type m ∈M, enters stage s, 1 ≤ s ≤ S(m), of her route, which
is a doubly stochastic node W(m,s) ∈ {1, . . . ,J}, she will request for an amount
of K(m,s) units of service time, K(m,s) ∈ IN+. We assume that for every doubly
stochastic node there exists at least one customer type who requests at this node for
more than one unit of service time.

The requirement of having deterministic service times at doubly stochastic nodes
is not a restriction but widens considerably the possibility of modeling the proba-
bilistic behaviour of customers on their itinerary at doubly stochastic nodes. The key
is the introduction of different customer types and of the type and stage dependent
behaviour: The random decision for the amount of the successive service requests
at doubly stochastic nodes on a customer’s route is done by selecting the customer’s
type when entering the network.

To be more specific: Let us assume that we have a set of customers with dif-
ferent (physical) customer types requesting for service according to general (type–
and stage–dependent) distributions at the doubly stochastic nodes of their route. We
can discriminate between different sampled sequences of requests for a specific cus-
tomer type by introducing ficticious customer types. Each ficticious customer type
carries information about the physical type of that customer, her routing, and her ex-
act successive amounts of requested service at her successive stages on her itinerary.
This concept even allows for using stochastically dependent service requests at the
successive doubly stochastic nodes.

The local state space S j for a doubly stochastic node j, j ∈ {1, . . . ,J′} consists of
elements x j as follows:
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x j := e j for the empty node, and sequences
x j := [m( j,n j),s( j,n j),k( j,n j); . . . ;m( j,1),s( j,1),k( j,1)], n j ≥ 1

where n j is the number of customers present at node j (queue length at node j),
m( j, i) is the type of the customer on position i, s( j, i) is the stage number of this
customer on his actual route, and k( j, i) is his residual request for service time (his
residual work), 1≤ i≤ n j .

The local state space S j for a geometrical node j, j ∈ {J′+ 1, . . . ,J} consists of
elements x j as follows:

x j := e j for the empty node, and sequences
x j := [m( j,n j),s( j,n j); . . . ;m( j,1),s( j,1), ], n j ≥ 1

where n j is the number of customers present at node j (queue length at node j),
m( j, i) is the type of the customer on position i, and s( j, i) is the stage number of
this customer on his actual route, 1≤ i≤ n j.

Global states of the network are composed of these local states. The state space
of the network is S := S1×S2×·· ·× SJ or a subset thereof.

In case of a network with general topology we have to impose some further rules
which regulate the network’s behaviour at instances of simultaneous events.

Definition 6.5.6 (Queueing disciplines in the network) The customers’ behaviour
in the network is governed by a two-step regime. First: the arrival decision is made
and at any node the customers are served individually. Second: multiple events
are regulated according to the Aloha-type protocol (Remark 6.8, repetitive ser-
vice/rejection blocking) in multiple access transmission systems, none of the re-
quested multiple transitions is allowed:

Customers on arrival from the outside source are lost; customers wishing to de-
part from the network due to a service completion at node W (·,S(·)), or wishing
to enter the next stage of their route due to service completion on the present stage
have to stay at their present node on their present position for obtaining just another
service (retrial of transmission) .

This request for retrial service time is distributed according to the node specific
geometrical distribution, if the node is geometrical. Otherwise, if the node is doubly
stochastic, then the additional service request is deterministically selected and iden-
tical to the previous service there. (The additional service at the node is therefore
not counted as an additional stage for the customer’s passage.)

The restriction for either a single arrival or a single departure from exactly one node
according to the blocking protocol (repetitive service/rejection blocking) resembles
the departure protocol applied in [Miy96] for batch service disciplines in discrete
time networks. At every time epoch at most one node is selected to release a batch
of customers being served to be distributed over the network or partially to leave
the network. As Miyazawa puts it, this model is motivated not only by the fact that
it is important for discrete time queueing networks, but also by its tractability for
analysis.

The network’s state process X = (Xt : t ∈ IN) is a Markov chain on state space
S = S1× ·· · × SJ. S is not minimal, e.g., a customer of type m ∈ M at a doubly
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stochastic node W (m,s) ≤ J′, can show a residual work of K(m,s) time units if
and only if she is on a busy position of W(m,s). We assume henceforth that S and
S j,1 ≤ j ≤ J are restricted to states with feasible workloads for the customers. A
detailed description of the transition laws is given in [DS83].

We define local measures π̂ j = (π̂ j(x j) : x j ∈ S j) for the nodes as follows:
π̂ j(e j) = 1, and if j is doubly stochastic then

π̂ j([m( j,n j),s( j,n j),k( j,n j); . . . ;m( j,1),s( j,1),k( j,1)]) =

(
b
c

)n j n j

∏
i=1

a(m( j, i))
C( j, i)

and if j is a geometric then

π̂ j([m( j,n j),s( j,n j); . . . ;m( j,1),s( j,1)]) =

(
bq j

cp j

)n j
(

1
q j

)C( j,n j) n j

∏
i=1

a(m( j, i))
C( j, i)

Let b j = ∑(m,s):W (m,s)= j b ·a(m), 1≤ j≤ J, denote the total arrival rate at node j, and
µ j the mean service request of a typical customer at node j: For a geometrical node j
µ j = p−1

j and for a doubly stochastic node j µ j = ∑(m,s):W(m,s)= j ba(m)b−1
j K(m,s).

Theorem 6.5.7 (Steady state) The Markov chain X = (Xt : t ∈ IN) describing the
network’s evolution has a steady state if and only if A j := ∑∞

n=0 π̂ j(n) < ∞ holds for
all j, where π̂ j(0) = 1 and for n > 0

π̂ j(n) =

(
b j(µ j−1)

c

)n

·
(

µ j

µ j− 1

)C( j,n)

·
n

∏
i=1

C( j, i)−1 .

The steady state distribution is

π(x) =
J

∏
j=1

π̂ j(x j) ·A−1
j , i f x = (x1, . . . ,xJ) ∈ S. (6.23)

A proof can be found in [DS83] as well as computation of performance indices.

Remark 6.9 (Related models and parallel developments).
1. Closed networks The theory for closed networks of doubly stochastic and geo-
metrical servers is developed by Krüger [Krü83], for a summarizing description see
[Dad01][section 5.6].
2. Open tandems The case of open tandems of doubly stochastic and geometrical
servers allows a more detailed analysis without the restriction put on the multiple
events handling, see [Sch81] or [Dad01][section 5.7]. The idea behind is a discrete
time analogue of Burke’s theorem [Bur56], [HB76].
3. Networks of unreliable geometrical nodes A network of geometrical nodes with
a state dependent arrival stream, where the arrival probabilities depend on the total
population size of the network and the arriving customer’s type similar to section
6.4.1, page 285, is investigated in [MD06a]. It turns out that the steady state distri-
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bution of theorem 6.5.7 is changed similarly to the expression for the arrival term in
(6.17) of theorem 6.4.1.

The model is further refined in that the nodes can break down and undergo suc-
cessive repair similar to the mechanisms described in Section 6.4.3. The steady state
is then supplemented with a term similar to the factor concerning the breakdown and
repair probabilities in theorem 6.4.9.

6.6 Batch Service and Movements Networks

Over around thirty years a set of different network models has been developed as
generalization of (continuous time) product form networks with the additional fea-
tures that customers are served in batches and proceed partly in different batches
to other nodes or leave the network. The aim was to define the arrival, service, and
routing mechanism in a way that functional descriptions of these data lead to explicit
functional expressions for the steady state distributions. This was often connected
with partial balance structures inside the describing Markov process and some sort
of insensitivity theory. We describe in this section some prototypes of classical re-
sults to let the reader get an impression of the ideas underlying these models and
some recent progress in extending the area of such models.

6.6.1 The General Network Model

The description of a rather general network model with batch services and batch
movements follows Henderson and Taylor [HT90], [HT91], Miyazawa [Miy94],
[Miy95], and Osawa [Osa94]. More detailed structural properties of these models
can be found in [CHPT97]. (This paper contains references for further applications
of the models, e.g., to Petri nets.) Parallel results are presented by Boucherie and
van Dijk [BD91], [Bou92], with additional features, e.g., state dependent routing.

Consider an open network of queues with nodes numbered 1,2, . . . ,J. Customers
enter the system from the outside (which is termed node 0), procede according to
some routing regime through the network and eventually leave the system. The cus-
tomers may be of different types which they may randomly change when entering a
new node. The set M of customer types is finite.

The system evolves in discrete time IN according to a Markovian transition law,
the state process is denoted by X = (Xt : t ∈ IN), with state space S which is (IN|M|)J

or a subset thereof. X carries the following information:
X = (Xt : t ∈ IN) = ((Xt( j,m) : j = 1, . . . ,J,m ∈ M) : t ∈ IN), where Xt( j,m) =

n( j,m) indicates that at time t there are n( j,m) customers of type m at node j. X is
governed by sequences of release vectors D = (Dt : t ∈ IN) and transformed vectors
A = (At : t ∈ IN), where for t ∈ IN we have
• release vector Dt = (Dt(0),Dt( j,m),1 ≤ j ≤ J,m ∈M), and
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• transformed vector At = (At(0),At( j,m),1≤ j ≤ J,m ∈M).
The construction of the network process is as follows:

Assume at time t the network is in state Xt = n. Then at time (t + 1)− from the
source (node 0) Dt(0) = a(0) customers are released for being transformed into the
network. From node j there are Dt( j,m) = a( j,m) customers of type m released
to be transformed to other nodes or to the sink (node 0). Immediately thereafter
(between time (t + 1)− and time t + 1) the released customers are transformed –
possibly changing their types – to their destination nodes: At(0) = a′(0) customers
depart from the network, At( j,m) = a′( j,m) customers of type m enter node j, 1≤
j ≤ J,m ∈ M. Updating the state of the network according to this movements and
changes we obtain Xt+1. Formally: For

a = (a(0),a( j,m),1≤ j ≤ J,m ∈M) let a+ = (a( j,m),1≤ j ≤ J,m ∈M),

and similarly let A+
t and D+

t be obtained from At and Dt by deleting the external
components At(0) and Dt(0). Then

Xt+1 = Xt −D+
t +A+

t , t ∈ IN, (6.24)

and Xt ≥ D+
t , Xt+1 ≥ A+

t , (6.25)

where the inequalities are to be read coordinatewise. Having now

Xt+1 = n′,Xt = n,Dt = a,At = a′ then n′ = n−a+ +a′+.

Because new customers arrive only from the outside and vanishing customers must
depart to the sink (node 0) we have the balance equation

Dt(0)+
J

∑
j=1

∑
m∈M

Dt( j,m) = At(0)+
J

∑
j=1

∑
m∈M

At( j,m). (6.26)

The sequences A and D therefore take values from a commom state space denoted
by A⊆ IN× INJ·|M|. But the images of A and D need not be identical.

The following probabilistic assumption on A and D imply that X as given by
(6.24) is a Markov chain with stationary transition probabilities:

Dt depends on the history of the system up to time t only through Xt and

P(Dt = a|Xt = n,Xs = ns,Ds = as,As = a′s,0≤ s < t) (6.27)

= P(Dt = a|Xt = n) = q(n,a), n ∈ S,a ∈A, with (6.25),

At depends on the history of the system up to (t + 1)− only through Dt and

P(At = a′|Dt = aXs = ns,Ds = as,As = a′s,0 ≤ s < t) (6.28)

= P(At = a′|Dt = a) = r(a,a′), a,a′ ∈A, with (6.26).

The sequence of transformations of released vectors into transformed vectors gov-
erned by (6.28) are called routing process. Transition probabilities of X are
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P(Xt+1 = n′|Xt = n) = ∑
a,a′∈A

n−a++a′+=n′

q(n,a)r(a,a′), n,n′ ∈ S.

From (6.26) it follows that a Markov chain on A determined by the routing matrix
R = (r(a,a′) : a,a′ ∈A) is not irreducible. Vectors a and a′ connected by (6.26) are
assumed to be reachable vice versa via R. We assume

Assumption 6.6.1 For transition matrix R = (r(a,a′) : a,a′ ∈ A) on A denote by
Ak ⊆A the set of states in A which contain exactly k customers, k ∈ IN. The sets Ak
are finite and we assume that R restricted to each Ak is irreducible.

Essential for successful analysis are the following assumptions. These or similar
ones can be found in almost all papers on the subject.

Assumption 6.6.2 There exist functions Φ : S −→ (0,∞), Θ : A −→ [0,∞), and
Ψ : S×A−→ [0,∞), such that for all n ∈ S,k ∈ IN the partial functions

Ψ(n, ·) : Ak −→ [0,∞), a→Ψ(n,a)

are constants, and

q(n,a) =
Ψ (n−a+,a) ·Θ(a)

Φ(n)
, n ∈ S, a ∈A. (6.29)

Assumption 6.6.3 There exist functions f : A−→ (0,∞),g : S−→ (0,∞), such that
f solves the following traffic equations for batch movement systems

Θ(a) f (a) = ∑
a′∈A

Θ(a′) f (a′)r(a′,a), a ∈A, (6.30)

and there is a representation

g(n)

g(n−a+ +a′+)
=

f (a)

f (a′)
∀n ∈ S,a,a′ ∈A with q(n,a)r(a,a′) > 0. (6.31)

Theorem 6.6.4 (Steady state) Suppose that assumptions 6.6.1, 6.6.2, 6.6.3 hold.
Then the state process X of the network has invariant measure

π̂(n) = Φ(n)g(n), n ∈ S. (6.32)

If C = ∑n∈S Φ(n)g(n) < ∞ then π̂ can be normalized to an invariant probability

π(n) = C−1Φ(n)g(n), n ∈ S. (6.33)

The proof is via time reversion, see [HT90], [Miy95].
To evaluate π in (6.33) we need an explicit expression for g(n),n ∈ S, which is

easier accessible than the representation (6.31).
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For the case that in state n ∈ S a transition to n′ = n−a+ + a′+ is possible such
that a+−a′+ > 0 holds, (6.31) suggests a recursion step of the form

g(n) = g(n−a+ +a′+) · f (a)

f (a′)
, (6.34)

and provided this iteration can be continued we may hope to end eventually by
g(ñ), for some base state ñ, which in open networks usually can be chosen ñ = 0,
the empty network. Provided further, that this iteration for all states can be done in
a well defined way, we would be able to compute the network’s equilibrium. Well
defined means that the result obtained by the iterative procedure (6.34) does not
depend on the path from the base state ñ to other states n.

As Miyazawa [Miy94] noticed, almost all examples of open batch movement
networks in the literature, where a product form equilibrium is known, show the
following structure: The base state is the empty state, ñ = 0. Let e0 ∈ A denote
the unit vector having 1 in the 0th coordinate and other coordinates 0, and ei,m ∈
A the unit vector having 1 in the (i,m)th coordinate and other coordinates 0. If
q(n,e0)r(e0,ei,m) > 0 then (6.31) and (6.34) imply

g(n + e+
i,m) = g(n) · f (ei,m)

f (e0)
.

Denoting
f (ei,m)

f (e0)
=: αi,m, i = 1, . . . ,J,m ∈M,

we obtain

g(n) = g(0)
J

∏
j=1

∏
m∈M

αn( j,m)
j,m , n ∈ S, f (a) = f (e0)

J

∏
j=1

∏
m∈M

αa( j,m)
j,m , a ∈A.

For properties of functions obeying such a representation see [Ser93], p.149, 155.

Remark 6.10. In [HT90] and [Miy94] and the references there, a stronger condition
than assumption 6.6.2 is required: Ψ : S×A −→ [0,∞), is a function of S only,
independent of the second coordinate A. In [Miy95] it was remarked that (6.6.2)
suffices to prove the theorem. The interpretation is:

For a,b ∈A we write a ⇋ b if and only if a,b are members of the same commu-
nicating class with respect to transition matrix R of the routing process. Then Ψ(·, ·)
depends in its second coordinate only through equivalence classes of ⇋. So Ψ can
be written as (n,a)−→Ψ (n,a) := Ψ̃(n,a/ ⇋), where

Ψ̃ : S× (A/ ⇋)−→ [0,∞)

is a function defined in its second coordinate on the equivalence classes of A/ ⇋.
The introduction of the additional dependency of Ψ on a second coordinate with

respect to A is assumed to broaden the applicability of the concept.
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Remark 6.11. In definition (6.29) of the service allocation function q(·, ·) the func-
tions Ψ ,Φ,θ cannot be chosen arbitrarily, because for any n the function q(n, ·) is a
density on A. Φ(n) is therefore the norming constant of q(n, ·). In continuous time
this restriction is not necessary because q(·, ·) is a rate.

The form of q(·, ·) allows a versatile modeling of service features. E.g., the total
number of customers moving in one time step can be bounded by setting Θ(a) = 0
if a(0)+ ∑J

j=1 ∑m∈M a( j,m) > B for a prescribed bound B.

6.6.2 Walrand’s S–Queues and Networks

Walrand [Wal83] introduced S-queues and their networks. He proved that driven by
an arrival sequence of independent Poisson–distributed customer batches the iso-
lated S-queues are quasi–reversible. From this it follows that these nodes can be
used as building blocks of networks with product form equilibrium. Because of their
structural simplicity these models were used as a versatile tool in modeling infor-
mation networks and investigating their performance analysis [Woo94]. For further
detailed investigation of S-queues see [CMP99]. Walrand’s networks of S–queues
are standard examples in the literature on service systems with batch arrivals and
batch services, see [Bou92], [BD90a], and [BD91].

Our presentation of the S-queue deviates from the original one in that observation
instants are slightly shifted to fit it into the framework of Section 6.6.1.

Theorem 6.6.5 [Wal83] Let A = (At : t ∈ IN) be an IN–valued i.i.d. arrival sequence
of Poisson–λ variables (the transformed variables) and D = (Dt : t ∈ IN) an IN–
valued sequence of release variables (to the outside). With a suitable initial value
X0 the queue length sequence

Xt+1 = Xt −Dt +At , t ∈ IN,

defines an S–queue if for 0≤ u≤ v

P(Dt = u|Xs,s≤ t;Ds,s < t;As,s≥ 0,Xt + At = v) = S(v,u),

holds for all t ∈ IN. If for all v≥ 0

S(v,0) = c(v), and for u≥ 0

S(v,u) =
c(v)
u!

α(v)α(v−1) · · ·α(v−u + 1), 0 < u≤ v, (6.35)

where α(0) = 1 and α(u) > 0 for u > 0, and c(v) is such that S(v, ·) is a density on
{0,1, . . . ,v}, then X = (Xt : t ∈ IN) has invariant measure

π̂(v) = c
λ v

α(0) · · ·α(v)
, v≥ 0.
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If π̂ can be normalized to a probability law π , then in steady state the departure
sequence D = (Dt : t ∈ IN) is an i.i.d. sequence of Poisson–λ variables, and for all
t is (Ds : s≤ t−1) independent of Xt . (Quasi–reversibility for the S–queue.)

To prove product form equilibria for networks of S–queues by quasi–reversibility
the network is observed at time instances when customers are released from the
nodes and from the outside but are not yet deposited at the destination nodes, see
lemma 12.8 in [CMP99]. But, as Henderson and Taylor remarked (see [HT90], sec-
tion 3.3), these networks fit into the formalism of section 6.6.1.

This is because Walrand assumed independent Poisson–γ j arrival sequences, j =
1, . . . ,J, (γ = ∑J

j=1 γ j), Markovian routing, and because the functions S(·, ·) can be
suitably reproduced. Taking Walrand’s routing probabilities (r(i, j) : 1 ≤ i, j ≤ J)
and additionally (r(0, j) = γ j/γ : 1≤ j ≤ J) we define

Φ(n) =
J

∏
i=1

c(ni)
−1

ni

∏
h=1

αi(h)−1, n ∈ INJ ,

Ψ(n−a+) =
J

∏
i=1

ni−ai

∏
h=1

αi(h)−1, n ∈ INJ,a ∈A,n− a≥ 0,

Θ(a) =
eγ γa(0)

∏J
i=1 a(i)!

, a ∈A,

and obtain for a stable system an equilibrium probability

π(n) = CΦ(n)
J

∏
i=1

η(i)ni , n ∈ INJ , (6.36)

where C is the normalizing constant and (η( j) : 1 ≤ j ≤ J) is the solution of the
standard traffic equation.

The steady state probabilities (6.36) are obtained in ([HT90]) and differ from that
obtained by Walrand, due to different observation time points.

Closely related are the networks investigated by Woodward in [Woo96], [Woo00].
In this work emphasis is put on applying the results to modeling of ATM networks.

6.6.3 Closed Networks of Unreliable S–Queues

Generalized S–queues combine the departure rules (6.29) from assumption 6.6.2
and (6.35) of theorem 6.6.5. There are J nodes and K indistinguishable customers,
the joint queue length process X is Markov on S(K,J) = {(x1, . . . ,xJ) ∈ INJ : x1 +
· · ·+ xJ = K} with local departure probabilities

qi(ni,ai) =
Ψi(ni− ai)

(ai!)Φi(ni)
.
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where Φi : IN −→ (0,∞),Ψi : IN −→ [0,∞), are general functions similar to those in
assumption 6.6.2. Assuming independence over nodes the global departure proba-
bilities are

q(n,a) :=
J

∏
i=1

q(ni,ai) =
N

∏
i=1

Ψi(ni−ai)

(ai!)Φi(ni)
. (6.37)

Movements are independent over customers according to irreducible routing prob-
abilities (r(i, j) : 1 ≤ i, j ≤ J) with probability solution (η( j) : 1 ≤ j ≤ J) of the
standard traffic equation.

The nodes are unreliable, i.e. can break down in the course of a time slot and are
repaired after some random time. Thus, the system state has to record the availability
status of the nodes. Let Ī ⊆ {1, . . . ,J} be the set of nodes under repair. The states of
the network are of the form

(n, Ī) = ((n1, . . . ,nN), Ī) : n = (n1, . . . ,nJ) ∈ S(K,J), Ī ⊆ {1, . . . ,N}),

Changes in the state of the system occur due to
a) breakdowns of active nodes and/or repairs of inactive nodes, and
b) departures of customers from nodes and their arrival to other nodes.
Breakdowns and repairs are assumed to occur independently from the queue-lengths
at the various nodes of the network. If, at the beginning of a time slot, the nodes in
Ī ⊆ {1, . . . ,N} are inactive, the probability that, by the end of the same time slot,
the set of inactive nodes is H̄ ⊆ {1, . . . ,N}, is given by γ(Ī,H̄), γ being a reversible
transition matrix on P{1, . . . ,J}.

As long as Ī = /0, nodes are functioning and customers move as determined by
these regimes. If, however, Ī 6= /0, that is, if at least one node is inactive, either all
nodes immediately stop serving customers (”stalling”), or exactly the nodes in Ī
interrupt services and reject new arrivals. Consequently, some re-routing strategy
has to be applied, because the active nodes continue their services. In either case,
though, all customers in service at a node that breaks down have to stay there until
the node is repaired and their service time is terminated.

If the network’s service is not stalled during some nodes being under repair, a
customer trying to make a prohibited movement
• either is sent back to the node she has just left and is served there once more
(Repeated Service – Random Destination: RS-RD),
• or she makes a virtual jump to the node of her choice; having arrived there, she
immediately jumps to the next node according to r as though she had just left the
respective inactive node, and so on, until she reaches an active node (skipping).

Instead of re-routing individual customers, one can also determine whether an
arrival vector is permitted or prohibited and then, if the vector is prohibited, re-
transform it according to some global RS-RD or skipping rules, for more details see
[Tip06].

Theorem 6.6.6 [Tip06] In closed networks of generalized S-queues with departure
probabilities in the form (6.37) and with unreliable servers the joint availability and
queue length process is Markov. In case of RS-RD we assume that the routing of
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customers is reversible. The equilibrium distribution is independent of the rerouting
strategies described above

π((n1, . . . ,nN), Ī) = G̃−1
K,J π̄(Ī)

J

∏
i=1

η(i)ni Φi(ni),

with normalization G̃−1
K,J and η(·) the probability solution of the standard traffic

equation. π̄(·) is the probability solution of the availability balance equations

π̄(Ī) =
N

∑
i=1

π̄(J̄)γ(J̄, Ī)

6.6.4 Networks with Triggered Batch Movements

The networks’ description follows Henderson, Northcote, and Taylor [HNT95] who
constructed a unification of the batch movements networks of section 6.6.1 and the
recently introduced networks where events (e.g. service completions or arrivals)
may trigger other events to happen. This happens in a way, that by a triggering
event (e.g.) a sudden departure of specific customers may be enforced without those
customers having obtained the full requested service time. A related concept is that
of negative customers, see [Gel91] and [CP93]. For a discussion of further related
models and for more references see in [CMP99] the reference note 9.8, for gener-
alizations of the network of section 6.6.1 see chapters 4 through 11 there. Further
extension are by Serfozo and Yang [SY98], and Peterson [Pet00]. All these models
provide us with discrete time queueing networks by simple transformations.

Consider an open network of queues with nodes 1,2, . . . ,J. Customers are undis-
tinguishable and enter the system from the outside (node 0), procede according to
some routing regime through the network and eventually leave the system. (Differ-
ent customer types which may randomly change can be incorporated, see [HNT95]
section 4.)

The joint queue length process X = ((Xt( j) : j = 1, . . . ,J) : t ∈ IN) is Markov
with state space INJ , where Xt( j) = n j indicates that at time t there are n j customers
present at node j. The one–step transitions are as follows:

If the network’s state at time t is Xt = n = (n1, . . . ,nJ), then a batch a =
(a1, . . . ,aJ) of customers is served at nodes 1, . . . ,J resp., with probability

q(n,a) =
Ψ(n−a)Θ(a)

Φ(n)
.

With probability p(a,a′,a′′) the released batch a attempts to trigger a batch a′ =
(a′1, . . . ,a

′
J) (enforcing these customers to immediately finish their service) and to

deposit a further batch a′′= (a′′1, . . . ,a
′′
J ) to the respective nodes, ∑a′ ∑a′′ p(a,a′,a′′)=

1. a,a′,a′′ ∈A must fulfill some feasibility conditions to guarantee consistent tran-
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sitions. External arrivals are included into the deposited batch a′′, the internal transi-
tions are included in a,a′ and a′′, external departures are due to either a or a′. Batch
a′ accepts the triggering with probability Ψ(n−a−a′)/Ψ(n−a) and rejects it with
probability 1−Ψ(n− a− a′)/Ψ(n−a).

The state Xt+1 of the network at time t +1 then is n−a−a′+a′′ if the triggering
was accepted and n−a if it was rejected.

The traffic equations similarly defined to (6.30) take the form

Θ (a) f (a) a ∈A−{0} (6.38)

= ∑
a′∈A

∑
a′′∈A

Θ (a′) f (a′)[ f (a′′)p(a′,a′′,a)− f (a)p(a′,a,a′′)],

The existence of a strict positive solution of (6.38) is nontrivial [HNT95][pp132-
133], we take it as an assumption here.

Theorem 6.6.7 [HNT95] If the traffic equation (6.38) has product solution f (a) =

∏J
j=1 y

aj
j > 0, then X has invariant measure π̂(n) = Φ(n) f (n), n ∈ INJ .

Example 6.6.8 An example of a telecommunication network where customers may
trigger by their arrival additional resources is worked out in detail in [HNT95],
section 4. This network model is then solved using the result of theorem 6.6.7 .
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Chapter 7

Decomposition and Aggregation in Queueing
Networks

Tijs Huisman and Richard J. Boucherie

Abstract This chapter considers the decomposition and aggregation of multiclass
queueing networks with state-dependent routing. Combining state-dependent gen-
eralisations of quasi-reversibility and biased local balance, sufficient conditions are
obtained under which the stationary distribution of the network is of product-form.
This product-form factorises into one part that describes the nodes of the network in

shown that a decomposition holds for general nodes if the input-output behaviour of
these nodes is suitably compensated by the state-dependent routing function. When
only a subset of the nodes is of interest, it is shown that the other nodes may be ag-
gregated into nodes that only capture their global behaviour. The results both unify
and extend existing classes of product-form networks, as is illustrated by several
cases and an example of an assembly network.

7.1 Introduction

In the analysis of queueing networks, two at first sight different techniques have
been used to derive product form results: quasi-reversibility and local balance.
Quasi-reversibility is a property of the nodes of the network, roughly stating that
they should preserve input and output flows when they are considered in isolation
and fed by a Poisson process. If such nodes are coupled into a network by Markov

Tijs Huisman
ProRail, Utrecht, The Netherlands
e-mail: Tijs.Huisman@prorail.nl

Richard J. Boucherie
University of Twente, department of Applied Mathematics, Enschede, The Netherlands
e-mail: r.j.boucherie@utwente.nl

International Series in Operations Research & Management Science 154, 
DOI 10.1007/978-1-4419-6472-4_7, © Springer Science+Business Media, LLC 2011 

isolation, and one part that describes the routing and the global network state. It is

313R.J. Boucherie and N.M. van Dijk (eds.), Queueing Networks: A Fundamental Approach, 



314 Tijs Huisman and Richard J. Boucherie

routing, the stationary distribution factorises over the nodes, i.e., is of product form
(see [18, 25]). When using local balance, however, the nodes are not analysed in
isolation first. Instead, the local balance equations for the entire network are consid-
ered and shown to hold in more detailed form (usually per node) under the assumed
product form stationary distribution (see [5, 14]). This technique has the advantage
that state-dependent routing can be analysed too.

Recently, both techniques have been combined. Boucherie [3] considers a net-
work of quasi-reversible nodes linked by state-dependent routing. If the process
associated with the routing (called the global process) satisfies local balance, the
stationary distribution of the network is shown to factorise into the stationary distri-
butions of the nodes in isolation, and the stationary distribution of the global process.
Chao and Miyazawa [11] extend the definition of quasi-reversibility, allowing input
and output rates of customers to differ from each other. When nodes satisfying this
extended form of quasi-reversibility are coupled into a network by Markov routing,
the network is shown to have a product form stationary distribution. In [12] it is
demonstrated that this product form result can be proved using biased local bal-
ance. This is an extension of local balance allowing unbalance in the local balance
equations to be compensated by a constant bias term. When the nodes are quasi-
reversible with equal input and output rates, the bias terms are zero, and biased
local balance reduces to ordinary local balance.

This chapter combines and extends the results of [3] and [12] to networks with
more general nodes, and more general state-dependent routing. As in [3], we intro-
duce local processes describing the nodes in isolation, and a global process describ-
ing the routing process. For the global process the definition of biased local balance
of [12] is extended, allowing state-dependent bias terms. For the local processes,
quasi-reversibility is further generalised to include state-dependent input rates, and
a state-dependent difference between input and output rates. This difference can be
interpreted as the bias of the local process with respect to the outside of a node,
similar to the bias of the global process. If the bias of the nodes with respect to
their outside is suitably compensated by the bias of the global process, the network
allows a decomposition into the global process and the local processes. Thus, this
chapter combines state-dependent generalisations of the quasi-reversibility results
in [3] and of the biased local balance results in [12].

Decomposition
The first part of this chapter is concerned with the decomposition of queueing net-
works. A queueing network can be decomposed if its stationary distribution fac-
torises into the stationary distributions of the nodes of which the network is com-
prised; the network is then of product form. Apart from the theoretical interest,
decomposition results are also of substantial practical importance: finding the sta-
tionary distribution of an entire queueing network usually requires an enormous
computational effort, whereas the stationary distribution of a single node can be
found relatively easily.

The first, and perhaps most famous, decomposition results for queueing networks
have been reported by Jackson [17], who considered a single class queueing net-
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work of queues with exponential service times, where customers move between the
queues according to fixed routing probabilities, and arrive at the network according
to a Poisson process with rate equal to the throughputs that can be obtained from
the routing probabilities via the so-called traffic equations. Extensions of this result
include closed queueing networks, specific service disciplines for non-exponential
service times, and multiclass queueing networks, where classes differ in routing and
- again under certain service disciplines - in service times, see, for example, the
BCMP networks [2].

It was shown that these results were a consequence of local balance [26, 27], and
later that these results were also a consequence of a special input/output property of
the queues in the network, called quasi-reversibility (see, for example [18]): when
a queue is considered in isolation with Poisson arrivals, the time-reversed Process
describing this queue also has Poisson arrivals with the same rates as the original
(time-forward) process. The two worlds of local balance and quasi-reversibility have
since then moved on parallel tracks. Some product-form results, such as those for
networks with blocking [5] were developed by local balance conditions, and are
believed not to be available via quasi-reversibility. Other results, such as for net-
works with negative customers [15] were rapidly shown to be due to an extension
of local balance [7]. Later, also the concept of quasi-reversibility was extended by
allowing that customer classes depart from the nodes at a different rate from which
they entered, which allows customers to change class in the queue, and includes
negative customers, see [12]. Networks of quasi-reversible queues linked via state-
dependent routing were considered in [3]. Due to the state-dependent nature of the
routing, it is not possible to determine the throughput from the traffic equations.
Instead, the traffic equations are replaced by a stochastic process, called the global
process, that describes the number of customers in each node of the network. A
decomposition of the network into the stationary distributions of the nodes and the
stationary distribution of the global process is obtained under the condition that all
nodes are quasi-reversible with arrival rate one, and the global process - describing
the number of customers in each node, as if each node emits customers with con-
stant rate one - satisfies local balance. Via these results, the worlds of local balance
and quasi-reversibility seem to re-join the same track. This chapter provides a uni-
fied framework for quasi-reversibility and local balance.

Aggregation
The second part of this chapter is concerned with aggregation of queueing net-
works. A stochastic process is the aggregation of a queueing network with respect
to an aggregation function on the state of the network, if this process describes - in
probability, as well as in probability flow - the evolution of the aggregate state in the
network, see [9] for a general definition.

Aggregation results are commonly referred to as Norton’s theorem. Norton’s the-
orem for queueing networks states that under certain conditions on the structure of
the queueing network it is possible to replace a subset of the queueing network by
a single station such that for the feature of interest (e.g. equilibrium distribution,
throughput, average number of customers) the behaviour of the rest of the network
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remains unchanged. Norton’s theorem for queueing networks was originally intro-
duced by Chandy et al. [10] as an efficient aggregation method for queueing net-
works similar to Norton’s theorem from electrical circuit theory. They prove the ag-
gregation method to be correct for queueing networks of the BCMP-type [2] consist-
ing of two subnetworks of which the subnetwork of interest is a single station. The
results of [10] can easily be generalised to subnetworks consisting of several stations
such that customers enter the subnetwork through a single input node and leave the
subnetwork through a single output node. Balsamo and Iazeolla [1], Kritzinger et
al. [19], and Vantilborgh [23] extend Norton’s theorem to BCMP-networks con-
sisting of two arbitrary subnetworks. A further extension is given by Towsley [22],
where elementary state-dependent routing is incorporated. An additional extension
is presented in Hsiao and Lazar [16], where it is shown that Norton’s equivalent can
be seen as a conditional expectation.

The relation between quasi-reversibility and Norton’s theorem is introduced
in Walrand [24]. Walrand considers a queueing network containing two quasi-
reversible components, and shows that a quasi-reversible component may be re-
placed by an equivalent server. In Brandt [8] this result is extended to queueing
networks of multiple quasi-reversible components linked by Markov routing, that
is by state-independent routing. Pellaumail [21] shows that components of a closed
network with state-dependent routing can be replaced by equivalent servers under
a type of quasi-reversibility condition. Both the method and the construction of the
equivalent servers require the network to be a closed network. Boucherie and van
Dijk [6] discuss Norton’s theorem for queueing networks consisting of product form
components linked by state-dependent routing. All components can be aggregated
into equivalent servers independently, and for the detailed behaviour of components
it is allowed to analyse the behaviour of components as open networks in isola-
tion (not part of the queueing network). Additional results for networks consisting
of multiple components linked by state-dependent routing are reported in Van Dijk
[13], where product form results for networks in which the routing probabilities de-
pend only on the total number of customers present in the components are derived.
Boucherie [3] combines the results of Boucherie and van Dijk [6] and Brandt [8].
This gives an extension of Norton’s theorem to queueing networks comprised of
quasi-reversible components linked by state-dependent routing. This is an extension
of the results of [6] since the components in isolation are now assumed to be quasi-
reversible and of [8] since the routing process is allowed to be state-dependent, such
as most notably including blocking and alternative routing. A key difference with
other methods is that subnetworks are analysed as open networks in isolation and not
by shortcircuiting of the components. This substantially simplifies the construction
of the equivalent servers.

In this chapter we extend the aggregation result of [3] to our model: we show
that the global process is the aggregation of the network with respect to the global
state. Moreover, we show that under some additional restrictions on the arrival rates,
the local processes are also aggregations of the network with respect to the detailed
state of the nodes. To obtain the necessary arrival rates for this aggregation, an iter-
ative algorithm can be used. This algorithm appears to be similar in spirit to Marie’s
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method [20] to compute approximations for the steady-state distribution in queue-
ing networks with non-quasi-reversible nodes and fixed routing, and thus allows
development of new approximation methods, allowing global processes that do not
satisfy local balance, allowing state-dependent routing, and general global states.

Examples and outline
To make the relation with the models and assumptions of [3] and [12] more explicit,
we consider them as a special case. Somewhat surprisingly, it appears that our re-
sults reduce to those of [3] if there is only one customer class, and the global state
represents the number of customers in a node: the state-dependent arrival and depar-
ture rates do not lead to further extensions. This, however, only holds for single class
networks. By defining a trivial global state, our model and results reduce to those of
[12]. This is, in fact, almost immediate, since in this way all state-dependence is re-
duced. We then proceed with pull networks, in which a transition is initiated by the
arrival of a customer to a queue, and subsequently a customer is removed from the
originating queue [4]. Finally, we consider decomposition for assembly network.

The chapter is organised as follows. In section 7.2 the network model is de-
scribed and the definitions of the global and the local processes are given. Section
7.3 presents our decomposition results, and section 7.4 our aggregation results. Ex-
amples are included in section 7.5.

7.2 Model

Consider a network comprised of N interacting nodes, labelled n = 1,2, . . . ,N, and
an outside node, labelled node 0, in which customers of classes

⋃N
n=0{An ∪Dn}

route among the nodes, where An resp. Dn is the set of customer classes that may
arrive to resp. depart from node n, n = 0, . . . ,N. Interaction among the nodes is due
to customers routing among the nodes as well as due to the state of nodes influenc-
ing the behaviour of other nodes. This interaction is specified below. First, we will
describe the nodes. Then, the interaction between the nodes is characterised.

7.2.1 The nodes

Consider the state-space Sn, with states xn. Define the mapping Gn : Sn→ Gn(Sn),
and Xn = Gn(xn). We will refer to Xn as global state corresponding to the detailed
state xn. The global state may be seen as an aggregate state (thus containing ag-
gregate information of the node that is of interest for its performance, such as the
number of customers), but will also play a more technical role in describing the
interaction between the nodes (i.e. arrival and departure processes, and the routing
between the nodes). The set Gn(Sn) will be referred to as the global state-space of
node n.
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We distuinguish three types of state changes: due to an arrival, due to a depar-
ture, and due to an internal change, only. The behaviour of node n in isolation is
characterised as follows, see [28] for a similar characterisation.

Definition 7.1 (Local process). Consider node n. An resp. Dn is the set of customer
classes that may arrive resp. depart from node n. For each c ∈ An ∪Dn, let Ac

n :
Gn(Sn)→ Gn(Sn), and Dc

n : Gn(Sn)→ Gn(Sn) 1− 1 mappings such that Dc
n is the

inverse of Ac
n.

• In an arrival transition, upon arrival of a class c ∈ An customer at node n, the
detailed state changes from xn ∈ Sn to x′n ∈ Sn with probability ac

n(xn,x′n), and the
global state changes from Xn = Gn(xn) to Ac

n(Xn), where ac
n(xn,x′n) is an honest

probability function:

∑
x′∈Sn

ac
n(xn,x′n) = 1, xn ∈ Sn,c ∈An. (7.1)

• In a departure transition in detailed state xn a state change to state x′n causing a
departure of a class c ∈Dn customer occurs at rate dc

n(xn,x′n). This detailed state
change results in a global state change from Xn = Gn(xn) to Dc

n(Xn).
• Node n initiates internal transitions from state xn to state x′n with rate in(xn,x′n).

Internal transitions do not cause a departure or arrival and do not change the
global state, i.e., Gn(xn) = Gn(x′n).

• Consider the set of functions λn = (λ c
n : Gn(Sn)→R+

0 ;c∈An). The local process
Ln(λn) is the Markov chain with state-space Sn and transition rates qn(xn,x′n;λn)
from state xn ∈ Sn to state x′n ∈ Sn defined by

qn(xn,x′n;λn) = ∑
c∈An

λ c
n (Gn(xn))ac

n(xn,x′n)+ ∑
c∈Dn

dc
n(xn,x′n)+ in(xn,x′n). (7.2)

Observe that, upon arrival of a class c customer in state xn, the global state changes
from Xn = Gn(xn) to X ′n = Ac

n(Xn), and the detailed state may change to all x′n ∈ {x :
Gn(x) = Ac

n(Xn)}, which also implies that ac
n(xn,x′n) = 0 if Gn(x′n) 6= Ac

n(Gn(xn)).
The detailed state may represent the detailed content of a queue, and the global state
the number of customers in this queue: upon arrival of a single customer, the global
state then always changes from Xn to Xn + 1, where the detailed state change then
may reflect the position of the customer in the queue, see e.g. the (φ ,γ,δ ) protocol
introduced in [18], chapter 3, to represent queue disciplines such as FIFO, LIFO
and PS. A class c customer may also represent a batch of customers by defining
Ac

n(Xn) = Xn +bc
n, where bc

n denotes the class c batch size arriving at node n. More-
over, bc

n may be set to a negative value: the number of customers is then decreased
upon arrival of a class c customer. Such a customer may reflect a signal in a computer
network, that removes tasks at a server. In literature, such customers have also been
referred to as negative customers, see e.g. [15]. Departure transitions satisfy similar
conditions as arrival transitions. Upon a departure, the global state change is unique,
determined solely by the current global state and the class of the departing customer,
whereas the detailed state may change from xn to all x′n ∈ {x : Gn(x) = Dc

n(xn)},
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which also implies that dc
n(xn,x′n) = 0 if Gn(x′n) 6= Dc

n(Gn(xn)). Internal transitions
may correspond e.g. to completion of service phases, and - in nodes represent-
ing a subnetwork of queues - movements of customers between the queues in the
subnetwork. As internal transitions do not change the global state, it must be that
in(xn,x′n) = 0 if Gn(x′n) 6= Gn(xn).

Remark 7.1. The class of arriving customers An is not required to coincide with the
class of departing customers Dn. As a consequence, the inverse Ac

n of Dc
n needs not

be a function that corresponds to the global state change of an arriving transition,
i.e., it may be that class c customers arrive to node n, but do not depart from node n.

2

We assume that the local process Ln(λn) is ergodic. Let πn(xn;λn) denote the
stationary probability that Ln(λn) is in state xn, i.e., for all xn ∈ Sn,

∑
x′n∈Sn

{
πn(xn;λn)q(xn,x′n;λn)−πn(x′n;λn)q(x′n,xn;λn)

}
= 0,

and let
pn(Xn;λn) = ∑

{xn:Gn(xn)=Xn}
πn(xn;λn), (7.3)

denote the stationary probability that Ln(λn) is in global state Xn.
Observe that the transition rates (7.2) characterise the arrival rate of customers to

node n via the state-dependent arrival rate functions λn. The arrival processes at node
n can be described by a state-dependent Poisson process, whose rate λ c

n (Gn(xn))
is assumed to depend on the global state Xn = Gn(xn) of this node, only. For the
departure process, which - in correspondence with [18, 12] - will be described by
the arrival rate in the time-reversed process, a similar assumption is made.

Assumption 7.2.1 For the local process Ln(λn), c∈Dn, we assume that the arrival
rate of class c customers in state xn of the stationary time-reversed process of Ln(λn)
depends on xn through the global state Xn = Gn(xn), only. We will denote this rate
by µc

n(Xn;λn):

µc
n(Xn;λn) = ∑

x′n∈Sn

πn(x′n;λn)

πn(xn;λn)
dc

n(x
′
n,xn), Xn ∈ Gn(Sn). (7.4)

Quasi-reversibility plays a key-role in the theory of product form networks. Kelly
[18] calls a node quasi-reversible, if, for a constant arrival rate function, the arrival
rate of the time-reversed local process is constant, and equal to the arrival rate in the
original (time-forward) process. This, in particular, implies that both the arrival and
departure processes are Poisson processes with equal intensity, and independent of
the state of a node. Chao and Miyazawa [12] have extended this definition by allow-
ing arrival and departure rates to differ from each other: in their definition a node
is quasi-reversible, if, for constant arrival rate functions, the departure process is a
Poisson process that is independent of the state of a node. To distinguish these two
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definitions, we will call the latter form generalised quasi-reversible. We summarise
the above in the following definition.

Definition 7.2 ((Generalised) quasi-reversibility). Let λ̂n = (λ̂ c
n : Gn(Sn)→ R+

0 ;
c ∈ An) be a set of constant functions. If An = Dn, and, for c ∈Dn, µc

n(Xn; λ̂n) is
constant in Xn and equal to λ̂ c

n , then the local process Ln(λ̂n) is said to be quasi-
reversible. If, for c ∈Dn, µc

n(Xn; λ̂n) is constant in Xn, then the local process is said
to be generalised quasi-reversible.

In the analysis below, we do not require generalised quasi-reversibility. Instead,
we use the more general form of Assumption 7.2.1, and invoke a more general form
of partial balance.

7.2.2 Interaction between the nodes

Nodes are coupled via a global process. Let X = (X1, . . . ,XN) denote the global
state of the network, with Xn the global state of node n. The global state-space of
the network, Sg ⊆ G1(S1)× . . .×GN(SN), is the set of all possible global states in
the network. The global state of the network affects the interaction in three ways.
Routing of customers between the nodes may depend on the global state of the
network, arrivals to and departure from the network may depend on the global state,
and the global state of a node may cause nodes to speed up or slow down. We use
the following notation. For X ∈ Sg, T cc′

nn′ (X) denotes the vector obtained from X ,

by replacing the n-th component by Dc
n(Xn), and the n′-th component by Ac′

n′(Xn′),
n,n′ = 0, . . . ,N, where n = 0, or n′ = 0 does not result in a change of state of that
component.

Definition 7.3 (Global process). Let A0 resp. D0 denote the set of customer classes
that may leave resp. enter the network. Consider state X ∈ Sg.

• A class c∈D0 customer enters the network at rate Mc
0(X), and arrives at node n′,

n′ = 1, . . . ,N, as a class c′ ∈ An′ customer with probability Rcc′
0n′(X). The global

state changes from X to T cc′
0n′ (X).

• A class c ∈ Dn customer departing from node n leaves the network as a class
c′ ∈ A0 customer with probability Rcc′

n0 (X). The global state changes from X to
T cc′

n0 (X).
• A class c ∈Dn customer departing from node n, n = 1, . . . ,N, routes to node n′,

n′ = 1, . . . ,N, n′ 6= n, as a class c′ ∈An′ customer with probability Rcc′
nn′(X). The

global state changes from X to T cc′
nn′ (X).

• The rate of change of node n, n = 1, . . . ,N, for internal and departure transitions
is Nn(X).

• The routing probabilities Rcc′
nn′(X) are honest:
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N

∑
n′=0,n′ 6=n

∑
c′∈An′

Rcc′
nn′(X) = 1, X ∈ Sg,c ∈Dn,n = 0, . . . ,N. (7.5)

• Consider the set of functions M = (Mc
n : Gn(Sn)→ R+

0 ;c ∈ Dn,n = 1, . . . ,N).
The global process G(M) is the Markov chain with state-space Sg and transition
rates Q(X ,X ′;M) from state X ∈ Sg to state X ′ ∈ Sg defined by

Q(X ,T cc′
nn′ (X);M) =

{
Mc

0(X)Rcc′
0n′(X) n = 0,

Mc
n(Xn)Nn(X)Rcc′

nn′(X) n = 1, . . . ,N,

for n′ = 0, . . . ,N, n′ 6= n, c ∈Dn and c′ ∈An′ .

The global process describes the global state of the network, as if node n in iso-
lation (i.e. without the multiplication factor Nn(X)) emits customers at rate Mc

n(Xn).
We will call Mc

n(Xn) the nominal departure rate of class c customers from node n.
The global and local processes are closely intertwined, as will become clear later. In
the formulation of the global process, the nominal departure rates Mc

n(Xn) depend
on the local process. Furthermore, the arrival rates λ c

n (Gn(xn)) in the local processes
depend on the global process. These relations will be made explicit when we define
our network in Definition 7.4.

We assume that the global process G(M) is ergodic. Let Π(X ;M) denote the
stationary probability that G(M) is in state X , i.e., for all X ∈ G(M), c ∈ Dn, n =
0, . . . ,N,

N

∑
n,n′=0, n′ 6=n

∑
c∈An, c′∈An′

{Π(X ;M)Q(X ,T cc′
nn′ (X);M)

−Π(T cc′
nn′ (X);M)Q(T cc′

nn′ (X),X ;M)}= 0. (7.6)

Let
Pn(Xn;M) = ∑

{X ′:X ′n=Xn}
Π(X ′;M),

denote the marginal stationary probability that the global state of node n is Xn.
Our results are formulated via the nominal departure rates Mc

n(Xn), and the de-
parture rates of the time-reversed process that will be used to characterise the arrival
processes at the nodes. Let Λ c

0 (X ;M) denote the class c ∈D0 departure rate in the
time-reversed process of G(M). Then

Λ c
0(X ;M) =

N

∑
n′=1

∑
c′∈Dn′

Π(T cc′
0n′ (X);M)

Π(X ;M)
Mc′

n′(A
c′
n′(Xn′))N

c′
n′ (T

cc′
0n′ (X))Rc′c

n′0(T
cc′

0n′ (X)).

(7.7)
The nominal departure rates Mc

n(Xn) of node n depend only on the global state of
node n, n = 1, . . . ,N. We assume that this is also the case for the nominal departure
rates in the time-reversed process.
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Assumption 7.2.2 For the global process G(M), c ∈An, n = 1, . . . ,N, and X ∈ Sg,
we assume that the nominal departure rate of class c customers from node n in state
X of the stationary time-reversed process of G(M) depends on the global state Xn

only. We will denote this nominal departure rate by Λ c
n(Xn;M):

Λ c
n (Xn;M)Nn(X) = ∑

c′∈D0

Π(T cc′
n0 (X);M)

Π(X ;M)
Mc′

0 (T cc′
n0 (X))Rc′c

0n (T cc′
n0 (X))

+
N

∑
n′=1

∑
c′∈Dn′

Π(T cc′
nn′ (X);M)

Π(X ;M)
Mc′

n′(A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′

nn′ (X)). (7.8)

In general, the time-reversed departure rate (7.8) will depend on the global state
X of the network. The asssumption that this rate is equal to Λ c

n (Xn;M)Nn(X), where
Λ c

n (Xn;M) depends on X through the global state Xn of node n, only, seems to be
rather restrictive. This is not the case. Assumption 7.2.2 includes local balance, a
common assumption for queueing networks with state-dependent routing. To this
end, note that if An = Dn, and Λ c

n (Xn;M) = Mc
n(Xn), Xn ∈ Gn(Sn), c ∈ An, n =

1, . . . ,N, then, from (7.8),

Mc
n(Xn)Nn(X)Π(X ;M) = ∑

c′∈D0

Π(T cc′
n0 (X);M)Mc′

0 (T cc′
n0 (X))Rc′c

0n (T cc′
n0 (X))

+
N

∑
n′=1

∑
c′∈Dn′

Π(T cc′
nn′ (X);M)Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′

nn′ (X)),

and thus the global process satisfies local balance

N

∑
n′=0

∑
c′∈An′

{Π(X ;M)Q(X ,T cc′
nn′ (X);M)−Π(T cc′

nn′ (X);M)Q(T cc′
nn′ (X),X ;M)}= 0.

7.2.3 The network

Combining the descriptions of the nodes and their interaction, we obtain a queue-
ing network of nodes in which the detailed behaviour of the node is specified in
Definition 7.1, and the interaction among the nodes is specified in Definition 7.3.
This network allows a Markovian description with state x = (x1, . . . ,xN). Denote
G(x) = (G1(x1), . . . ,GN(xN)).

Definition 7.4 (Network). The network N is the Markov-chain with state-space S⊆
{x = (x1, . . . ,xN) : xn ∈ Sn,G(x) ∈ Sg}, and transition rates q(x,x′) from state x =
(x1, . . . ,xN) to state x′ = (x′1, . . . ,x

′
N) given by

q(x,x′) = ∑
c∈Dn, c′∈An′

dc
n(xn,x

′
n)Nn(G(x))Rcc′

nn′(G(x))ac′
n′(xn′ ,x

′
n′),
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if x′n 6= xn, x′n′ 6= xn′ , and x′k = xk, for k 6= n,n′,

q(x,x′) = in(xn,x′n)Nn(G(x))+ ∑
c∈D0

Mc
0(G(x)) ∑

c′∈An

Rcc′
0n (G(x))ac′

n (xn,x′n)

+ ∑
c∈Dn

dc
n(xn,x′n)Nn(G(x)) ∑

c′∈A0

Rcc′
n0 (G(x)),

if x′n 6= xn, and x′k = xk for k 6= n.

We assume that the network N is ergodic, and define π(x) as the stationary prob-
ability that the network is in state x.

Arrivals and departures in the global process have been characterised via assump-
tions on the nominal departure rates, Mc

n(Xn), and their time-reversed counterparts,
Λ c

n (Xn;M), that are restricted to depend on the global state Xn, only. In contrast, ar-
rivals and departures in the local processes have been characterised via assumptions
on the arrival rates λ c

n (Xn), and their time-reversed counterparts µc
n(Xn;λn). This

may seem somewhat inconvenient at first glance. However, arrivals to a node at lo-
cal level are determined by departures from nodes at global level and subsequent
routing of customers at global level. In our analysis below, we will make this rela-
tion explicit, thus characterising the relation between λ and M. Further, note that
characterisation of local processes via arrival rates in the forward and time-reversed
process provides a direct link with quasi-reversibility, whereas characterisation of
the global process via departure rates in the forward and time-reversed processes
provides a link with local balance. We may thus view our network as a network of
further generalised quasi-reversible nodes linked via a process that satisfies a gener-
alised form of local balance.

The aim of this chapter is twofold. First, we want to establish sufficient condi-
tions on the arrival rate functions λ c

n (Xn), µc
n(Xn;λn), and the nominal departure rate

functions Mc
n(Xn), Λ c

n(Xn;M) under which the network can be decomposed, i.e. the
stationary distribution π(x) of the network can be factorised into the stationary dis-
tributions πn(xn;λn) of the local processes, and the stationary distribution Π(X ;M)
of the global process. Second, our aim is to investigate when the global process and
the local processes are aggregations of the network, i.e., the distribution and the
rates of the global process describe the evolution of the global state of the network,
and the distribution and the rates of the local processes describe the evolution of
the detailed state of a node in the network. Roughly said, these aggregations require
that not only the stationary distribution of the network N can be decomposed into
the stationary distributions of the local and global processes, but also the process N

itself can be decomposed into the processes Ln(λn) and G(M).
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7.3 Decomposition

This section considers the decomposition of the stationary distribution π(x) of the
network N into the stationary distributions of the global process and the local pro-
cesses. We show that such a decomposition holds if the nominal departure rates
Mc

n(X) and the nominal time-reversed departure rates Λ c
n (X ;M) of the global pro-

cess equal the corresponding rates in the local processes, to be specified below. As
an illustration, in Section 7.5 we consider the two models that are studied in [3] and
[12]. These models fall into our class of queueing networks via specific assumptions
on the form of the global state. We will show that for both models the conditions of
our general result are satisfied if and only if the assumptions that are made in [3] and
[12] are satisfied. In addition, we will describe pull networks [4], and derive some
new decomposition results for so-called assembly networks.

The conditional probability of xn given Xn for local process Ln(λn) equals
πn(xn;λn)/pn(Xn;λn). Let M̃c

n(Xn;λn) denote the conditional expected class c ∈Dn

departure rate given state Xn of the local process Ln(λn). Then

M̃c
n(Xn;λn) = ∑

{xn:Gn(xn)=Xn}

πn(xn;λn)

pn(Xn;λn)
∑

x′n∈Sn

dc
n(xn,x′n) (7.9)

=
1

pn(Xn;λn)
∑

{x′n:Gn(x′n)=Dc
n(Xn)}

πn(x
′
n;λn)µc

n(D
c
n(Xn);λn)

=
pn(Dc

n(Xn);λn)

pn(Xn;λn)
µc

n(D
c
n(Xn);λn), (7.10)

where the second equality is obtained from the defintion of µc
n given in (7.4). Simi-

larly, let Λ̃ c
n (Xn;λn) denote the conditional expected class c ∈Dn arrrival rate given

state Xn of the local process Ln(λn). Then

Λ̃ c
n (Xn;λn) = ∑

{xn∈Sn:Gn(xn)=Xn}

πn(xn;λn)

pn(Xn;λn)
∑

x′n∈Sn

πn(x′n;λn)

πn(xn;λn)
λ c

n (Gn(x
′
n))a

c
n(x
′
n,xn)

=
pn(Dc

n(Xn);λn)

pn(Xn;λn)
λ c

n (Dc
n(Xn)), (7.11)

where the last equality is due to the restrictions on x′n due to ac
n(x
′
n,xn), i.e., x′n ∈ {x :

Gn(x) = Dc
n(Xn)}, and due to ac

n(x
′
n,xn) being honest.

It is interesting to observe that under Assumption 7.2.1 resp. Assumption 7.2.2
we obtain flow balance under time-reversal as specified below for the local pro-
cesses, resp. the global process. These observations start from the global balance
equations for the local processes, for πn(xn;λn) the stationary distribution of local
process Ln(λn),

πn(xn;λn) ∑
x′n∈Sn

(

∑
c∈An

λ c
n (Gn(xn))a

c
n(xn,x

′
n)+ ∑

c∈Dn

dc
n(xn,x

′
n)+ in(xn,x

′
n)

)
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= ∑
x′n∈Sn

πn(x′n;λn)

(

∑
c∈An

λ c
n (Gn(x′n))a

c
n(x
′
n,xn)

+ ∑
c∈Dn

dc
n(x
′
n,xn)+ in(xn,x′n)

)
, (7.12)

and the global balance equations for the global process, for Π(X ;M) the stationary
distribution of the global process G(M),

Π(X ;M)
N

∑
n=0

∑
c∈Dn

Mc
n(X)Nn(X)

=
N

∑
n=0

∑
c∈An

N

∑
n′=0

∑
c′∈Dn′

Π(T cc′
nn′ (X);M)Mc′

n′ (T
cc′

nn′ (X))Nc′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′

nn′ (X)).

(7.13)
Summing the global balance equations (7.12) for fixed Xn over all xn with Gn(xn) =
Xn, the internal transitions cancel out. The definition of µc

n(Xn;λn) in Assumption
7.2.1 then yields, noting that Gn(xn) = Xn,

∑
{xn:Gn(xn)=Xn}

πn(xn;λn) ∑
c∈An

λ c
n (Gn(xn))+ ∑

c∈Dn

∑
{x′n:Gn(x′n)=Dc

n(Xn)}
πn(x′n;λn)

×µc
n(D

c
n(Gn(xn));λn) = ∑

c∈An

∑
{x′n:Gn(x′n)=Dc

n(Xn)}
πn(x

′
n;λn)

×λ c
n (Dc

n(Gn(xn)))+ ∑
{xn:Gn(xn)=Xn}

πn(xn;λn)µc
n(Gn(xn);λn).

The definition of pn(Xn;λn) now implies that for the local process Ln(λn) the sum
of the total arrival rates and the total mean departure rates in each global state Xn

does not change under time reversal:

∑
c∈An

λ c
n (Xn)+ ∑

c∈Dn

pn(Dc
n(Xn);λn)

pn(Xn;λn)
µc

n(D
c
n(Xn);λn)

= ∑
c∈Dn

µc
n(Xn;λn)+ ∑

c∈An

pn(Dc
n(Xn);λn)

pn(Xn;λn)
λ c

n (Dc
n(Xn)) (7.14)

To obtain our decomposition result, we will assume that for the global process the
arrival rate to node n equals the departure rate to node n, as characterized via the
time-reversed process:

Mc
n(Xn) = M̃c

n(Xn;λn) (7.15)

Λ c
n (Xn;M) = Λ̃ c

n(Xn;λn). (7.16)

Invoking (7.10), (7.15), (7.11), and (7.16) we obtain



326 Tijs Huisman and Richard J. Boucherie

∑
c∈An

λ c
n (Gn(xn))− ∑

c∈An

Λ c
n (Gn(xn);M)

= ∑
c∈Dn

µc
n(Gn(Xn);λn)− ∑

c∈Dn

Mc
n(Gn(xn)), (7.17)

i.e., the net input due to the local and global processes equals the net output due to
the local and global processes.

A further consequence of (7.14) is that the pn(Xn;λn) can be computed recur-
sively:

pn(Xn;λn) =

∑c∈An pn(Dc
n(Xn);λn)λ c

n (Dc
n(Xn))−∑c∈Dn pn(Dc

n(Xn);λn)µc
n(Dc

n(Xn);λn)

∑c∈An λ c
n (Xn)−∑c∈Dn µc

n(Xn;λn)

for ∑c∈An λ c
n (Xn) 6= ∑c∈Dn µc

n(Xn;λn). For ∑c∈An λ c
n (Xn) = ∑c∈Dn µc

n(Xn;λn), we
find

pn(Xn;λn) =
∑c∈An pn(Dc

n(Xn);λn)λ c
n (Dc

n(Xn))

∑c∈Dn M̃c
n(Xn;λn)

,

which, for example, is the case for quasi-reversible nodes.
Invoking Assumption 7.2.2 on the nominal departure rates Λ c

n (X ;M) in the right-
hand side of the global balance equations (7.13) implies that for the global process
G(M), the total departure rate in each state X does not change under time-reversal:

∑
c∈D0

Mc
0(X)+

N

∑
n=1

∑
c∈Dn

Mn(X)Nn(X) =

= ∑
c∈A0

Λ c
0 (X ;M)+

N

∑
n=1

∑
c∈An

Λ c
n (X ;M)Nn(X). (7.18)

We are now ready to state the main theorem of this section.

Theorem 7.3.1 Assume that, for n = 1, . . . ,N, Xn ∈Gn(Sn),

Mc
n(Xn) = M̃c

n(Xn;λn)

Λ c
n (Xn;M) = Λ̃ c

n(Xn;λn).

Then the stationary distribution of the network N is

π(x) = Π(G(x);M)
N

∏
n=1

πn(xn;λn)

pn(Gn(xn);λn)
, x ∈ S. (7.19)

Observe that (7.15) and (7.16) place severe restrictions on the departure rates from
a node in the local processes and the global process, and thus relate the sets of
functions M = (Mc

n : Gn(Sn)→ R+
0 ;c ∈ Dn,n = 1, . . . ,N) to the sets of functions

λn = (λ c
n : Gn(Sn)→ R+

0 ;c ∈An), n = 1, . . . ,N.
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Proof of Theorem 7.3.1. It is sufficient to show that π(x) solves the balance
equations for the network, that read when inserting the proposed form (7.19), and
dividing by π(x):

∑
c∈D0

Mc
0(G(x))+

N

∑
n=1

Nn(G(x))∑
x′n

(

∑
c∈Dn

dc
n(xn,x′n)+ in(xn,x′n)

)

=
N

∑
n′=1

∑
c′∈Dn′

∑
c∈A0

Π(T cc′
0n′ (G(x));M)

Π(G(x);M)
Nc′

n′ (T
cc′

0n′ (G(x)))Rc′c
n′0(T

cc′
0n′ (G(x)))

× pn′(Gn′(xn′);λn′)

pn′(Ac′
n′(Gn′(xn′));λn′)

(

∑
x′

n′

πn′(x
′
n′ ;λn′)

πn′(xn′ ;λn′)
dc′

n′(x
′
n′ ,xn′)

)

+
N

∑
n=1

∑
c∈An

∑
x′n

πn(x′n;λn)

πn(xn;λn)
ac

n(x
′
n,xn)

pn(Gn(xn);λn)

pn(Dc
n(Gn(xn));λn)

(

∑
c′∈D0

Π(T cc′
n0 (G(x)))

Π(G(x))

×Mc′
0 (T cc′

n0 (G(x)))Rc′c
0n (T cc′

n0 (G(x)))+
N

∑
n′=1

∑
c′∈Dn′

Π(T cc′
nn′ (G(x));M)

Π(G(x);M)
Nc′

n′ (T
cc′

nn′ (G(x)))

×Rc′c
n′n(T

cc′
nn′ (G(x)))

pn′(Gn′(xn′);λn)

pn′(A
c′
n′(Gn′(xn′));λn)

(

∑
x′

n′

πn′(x
′
n′ ;λn′)

πn′(xn′ ;λn′)
dc′

n′(x
′
n′ ,xn′)

)



+
N

∑
n=1

∑
x′n

πn(x′n)
πn(xn)

Nn(G(x))in(x′n,xn).

Invoking (7.4), (7.10), and (7.15), and (7.7), the first term on the right hand side
equals ∑c∈A0

Λ c
0(G(x);M). Invoking (7.4), (7.10), (7.15), (7.8), (7.16) and (7.11),

the second and third term in the right hand side equal:

N

∑
n=1

∑
c∈An

∑
x′n

πn(x′n;λn)

πn(xn;λn)
ac

n(x
′
n,xn)λ c

n (Dc
n(Xn);M)Nn(X).

Inserting these expressions in the right hand side, and invoking global balance for
the nodes (7.12), implies that it is sufficient to show that

∑
c∈D0

Mc
0(G(x))+

N

∑
n=1

∑
c∈Dn

∑
x′n

πn(x′n)
πn(xn)

dc
n(x
′
n,xn)Nn(Gn(xn))

=
N

∑
n=1

Nn(G(x)) ∑
c∈An

λ c
n (Gn(xn))+ ∑

c∈A0

Λ c
0 (G(x);M) (7.20)

Inserting (7.17) into (7.18) yields (7.20), which completes the proof. 2
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The decomposition of Theorem 7.3.1 does not establish a complete decompo-
sition of the nodes and the global process, in the sense that the state of the nodes
and the global state of the network are independent. Equation (7.19) states that the
detailed states of the nodes are independent, conditioned on the global state of the
nodes:

π(x)
Π(X ;M)

=
N

∏
n=1

πn(xn;λn)

pn(Xn;λn)
.

The proof of Theorem 7.3.1 relies heavily on (7.14) but does not require addi-
tional properties of pn(Xn;λn). An immediate generalisation of Theorem 7.3.1 is
obtained replacing pn(Xn;λn) by any function satisfying (7.14) .

Theorem 7.3.2 Let fn : Sn→ R+
0 be a function satisfying

∑
c∈An

λ c
n (Xn)+ ∑

c∈Dn

fn(Dc
n(Xn);λn)

fn(Xn;λn)
µc

n(D
c
n(Xn);λn)

= ∑
c∈Dn

µc
n(Xn;λn)+ ∑

c∈An

fn(Dc
n(Xn);λn)

fn(Xn;λn)
λ c

n (Dc
n(Xn)), (7.21)

and assume that the following conditions are satisfied:

Mc
n(Xn) =

fn(Dc
n(Xn);λn)

fn(Xn;λn)
µc

n(D
c
n(Xn);λn), (7.22)

Λ c
n (Xn;M) =

fn(Dc
n(Xn);λn)

fn(Xn;λn)
λ c

n (Dc
n(Xn)). (7.23)

Then the stationary distribution π(x) of the network N is

π(x) = C−1Π(G(x);M)
N

∏
n=1

πn(xn;λn)

fn(Gn(xn);λn)
, x ∈ S, (7.24)

with

C = ∑
x∈S

Π(G(x);M)
N

∏
n=1

πn(xn;λn)

fn(Gn(xn);λn)
.

For generalised quasi-reversible nodes conditions (7.22), (7.23) are satisfied with
fn(Xn;λn) = 1. In this case, a complete decomposition can be obtained from Theo-
rem 7.3.2.

As a consequence of Theorem 7.3.2, we can simplify the formula for the sta-
tionary distribution in case the local processes are extended quasi-reversible: then
fn(Xn) = 1 satisfies condition (7.21), and the following Corollary follows immedi-
ately from Theorem 7.3.2.

Corollary 7.3.3 Assume that the local processes Ln(λn) are generalised quasi-
reversible, say with arrival rates λ c

n (Xn) = λ̂ c
n and time-reversed arrival rates
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µc
n(Xn;λn) = µ̂c

n . Let Mc
n(Xn) be given by

Mc
n(Xn) =

{
µ̂c

n if Dc
n(Xn) ∈Gn(Sn),

0 otherwise.

If for all Xn with Dc
n(Xn) ∈Gn(Sn), Λ c

n(Xn;M) = λ c
n , then the stationary distribution

of the network N is given by

π(x) = C−1Π(G(x))
N

∏
n=1

πn(xn;λn), x ∈ S,

with

C = ∑
x∈S

Π(G(x))
N

∏
n=1

πn(xn;λn).

Theorems 7.3.1, 7.3.2 and Corollary 7.3.3 require the values for the arrival rates
λn = (λ c

n : Gn(Sn)→ R+
0 ;c ∈ A0) that relate the local processes and the global

process. These arrival rates are the solution of the fixed point problem consisting of
the equations.

Corollary 7.3.4 (Fixed point equations for arrival rates: decomposition) The ar-
rival rates λn = (λ c

n : Gn(Sn)→R+
0 ;c ∈ A0) are a solution of the fixed point equa-

tions:
(7.12) πn = πn(λn)
(7.4) µc

n = µc
n(πn,λn)

(7.10) M̃c
n = M̃c

n(πn,µn,λn)
(7.15) M = M̃
(7.13) Π = Π(M)
(7.7) Λ c

n = Λ c
n(M,Π)

(7.16) Λ̃ = Λ
(7.11) λ = λ (Λ̃)

These equations may be solved using the following algorithm:

Step i: For n = 1, . . . ,N initialize with a starting value for λ̂n for λn.
Step ii: Use (7.12), (7.4), (7.10) to obtain M̃c

n.
Step iii: Use (7.15), (7.13), (7.7) to obtain Λ c

n .
Step iv: If Λ̃ c

n = Λ c
n for c ∈Dn, n = 1, . . . ,N then stop, and λn is obtained, else

use (7.11) to let

λ c
n (Xn) =

pn(Ac
n(Xn);λn)

pn(Xn;λn)
Λ c

n (Ac
n(Xn);M).

and go to Step ii.

Notice that existence of a fixed point is an implicit assumption that we made for
the results of Theorems 7.3.1, 7.3.2 to be valid.
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The arrival rates and time-reversed arrival rates of our network depend on the
state x through the global state G(x) only. For the network to satisfy Assumption
7.2.1 additional assumptions on the global state are required. Section 7.5 provides
examples of networks that have this structure.

7.4 Aggregation

This section considers aggregation of the nodes in our network. We first show that
under the conditions of Theorem 7.3.1, the global process is the aggregation of the
network with respect to the global state, that is, for the analysis of the global network
the detailed behaviour of the nodes is not required. We then investigate under which
conditions the local processes are the aggregation of the network with respect to the
detailed state of a single node, that is, for the analysis of the detailed behaviour of a
single node the detailed behaviour of the other nodes is not required. It appears that
this requires some extra restrictions on the arrival rates: the local arrival rates should
equal the global arrival rates. Our generalisation results in an aggregation algorithm
that generalises the method developed by Marie in [20].

The following definition is adapted from Brandwajn [9].

Definition 7.5 (Aggregation). Consider two Markov chains M1 and M2 with state
spaces S1 and S2, transition rates q1(y1,y′1), y1,y′1 ∈ S1, and q2(y2,y′2), y2,y′2 ∈ S2,
and stationary distributions π1(y1), y1 ∈ S1, and π2(y2), y2 ∈ S2. The Markov chain
M2 is said to be the aggregation of M1 with respect to a function h : S1→ S2 if the
following two conditions are satisfied:

π2(y2) = ∑
{y1∈S1:h(y1)=y2}

π(y1), y2 ∈ S2, (7.25)

π2(y2)q2(y2,y
′
2) = ∑

{y1,y′1∈S1:h(y1)=y2,h(y′1)=y′2}
π1(y1)q(y1,y

′
1), y2,y

′
2 ∈ S2. (7.26)

The definition of aggregation requires both the equilibrium distribution and the
probability flows to match. Boucherie [3] refers to this form of aggregation as first
order equivalence. The intuition for Theorem 7.4.1 is encapsulated in (7.15), (7.16)
of Theorem 7.3.1: Mc

n(Xn) = M̃c
n(Xn;λn), Λ c

n (Xn;M) = Λ̃ c
n (Xn;λn). These equations

state that for the global process the arrival rate to node n equals the departure rate to
node n, as characterized via the time-reversed process, which expresses conservation
of probability flow.

Theorem 7.4.1 (Aggregation with respect to the global state function) Assume that,
for n = 1, . . . ,N, Xn ∈ Gn(Sn),

Mc
n(Xn) = M̃c

n(Xn;λn)

Λ c
n (Xn;M) = Λ̃ c

n(Xn;λn).
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Then the global process G(M) is the aggregation of the network N with respect to
the global state function G : S→ Sg.

Proof. Condition (7.25) is almost immediate:

∑
{x:G(x)=X}

π(x) = Π(X) ∑
{x:G(x)=X}

N

∏
n=1

πn(xn;λn)

pn(Xn;λn)
= Π(X), X ∈ Sg.

For condition (7.26), we first consider a transition from global state X to T cc′
nn′ (X)

with n,n′ 6= 0, c∈Dn, and c′ ∈An′ . The aggregate probability flow for this transition
is

∑
{x,x′ : G(x) = X ,

G(x′) = T cc′
nn′ (G(x))}

Π(X ;M)
N

∏
i=1

πi(xi;λi)

pi(Xi;λi)
dc

n(xn,x
′
n)Nn(X)Rcc′

nn′(X)ac′
n′(xn′ ,x

′
n′)

= Π(X ;M)Nn(X)Rcc′
nn′(X) ∑
{xn,x′n : Gn(xn) = Xn,

Gn(x′n) = Dc
n(Xn)}

πn(xn;λn)

pn(Xn;λn)
dc

n(xn,x′n)Π(X)Nn(X)Rcc′
nn′(X)Mc

n(Xn),

which is the corresponding probability flow in the global process G(M). For tran-
sitions from state X to state T cc′

0n′ (X) and state T cc′
n0 (X), condition (7.26) is proved

analogously. 2

Let us now study conditions for the local processes to be the aggregation of the
network with respect to the detailed state of a node. The multiplication factor Nn(X)
in the transition rates for the network is not incorporated in the local processes, so
that we must set Nn(X) = Nn(Xn). We will restrict the network to

Nn(X) = 1, n = 1, . . . ,N, X ∈ Sg.

For aggregation with respect to the nodes, we need additional conditions. To this
end, observe that Theorem 7.3.1 has been obtained under the condition that the
departure and time-reversed departure rates of the local processes equal the corre-
sponding rates in the global processes. Intuitively, for the local processes to be the
aggregation of the network with respect to the nodes, it is also required that the local
arrival rates equal the corresponding rates in the global process. Let us first specify
the arrival rates in the global process that will be used in the formulation of our
aggregation result.

Let λ̃ c
n (Xn) denote the mean class c ∈ An arrival rate at node n in state Xn, n =

1, . . . ,N, of the global process G(M). Then
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λ̃ c
n (Xn) = ∑

Y :Yn=Xn

Π(Y ;M)

Pn(Xn;M)



 ∑
c′∈D0

Mc′
0 (X)Rc′c

0n (X)+
N

∑
n′=1

∑
c′∈Dn′

Mc′
n′ (Xn′)R

c′c
n′n(X)





(7.27)

=
1

Pn(Xn;M) ∑
Y :Yn=Ac

n(Xn)

(

∑
c′∈D0

Π(T cc′
n0 (Y ))Mc′

0 (T cc′
n0 (Y))Rc′c

0n (T cc′
n0 (Y))

+
N

∑
n′=1

∑
c′∈Dn′

Π(T cc′
nn′ (Y ))Mc′

n′ (A
c′
n′(Yn′))R

c′c
n′n(T

cc′
nn′ (Y ))




=
Pn(Ac

n(Xn);M)

Pn(Xn;M)
Λ c

n (Ac
n(Xn);M), (7.28)

where the term

∑
c′∈D0

Mc′
0 (X)Rc′c

0n (X)+
N

∑
n′=1

∑
c′∈Dn′

Mc′
n′(Xn′)R

c′c
n′n(X)

in the first line (7.27) is the class c arrival rate at node n in state X of the global pro-
cess, and the last equality follows from the definitions of Λ c

n (Xn;M) and Pn(Xn;M).
Under the conditions (7.15), (7.16) of Theorem 7.3.1 the local class c∈An arrival

rate λ c
n (Xn) is related to Λ c

n (Xn;M) by

λ c
n (Xn) =

pn(Ac
n(Xn);λn)

pn(Xn;λn)
Λ c

n (Ac
n(Xn);M).

The following theorem shows that if this rate equals the corresponding rate λ̃ c
n (Xn)

as specified in (7.28) for the global process, the local processes are the aggrega-
tion of the network with respect to the nodes. Note that this further implies that
the aggregate probability pn(Xn;λn) that the local process is in state Xn equals the
corresponding probability Pn(Xn;M) for the global process.

Theorem 7.4.2 (Aggregation with respect to the detailed state of the nodes) Assume
that Nn(X) = 1 for all n and X, and that, for n = 1, . . . ,N, Xn ∈ Gn(Sn),

Mc
n(Xn) = M̃c

n(Xn;λn)

Λ c
n (Xn;M) = Λ̃ c

n(Xn;λn).

Further assume that for n = 1, . . . ,N, Xn ∈ Gn(Sn),

λ̃ c
n (Xn) = λ c

n (Xn). (7.29)

Then, for n = 1, . . . ,N, Xn ∈Gn(Sn),

Pn(Xn;M) = pn(Xn;λn) (7.30)
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and the local process Ln is the aggregation of N with respect to the aggregation
function h(x) = xn.

Proof. First observe that condition (7.29) implies that

pn(Ac
n(Xn);λn)

pn(Xn;λn)
=

Pn(Ac
n(Xn);M)

Pn(Xn;M)
.

Since both pn(·) and Pn(·) are probabilities over Gn(Sn), it must be that (7.30) is
satisfied.

The aggregate probability that the state of node n in the network equals xn is
given by

∑
{y:yn=xn}

π(y) = ∑
{y:yn=xn}

Π(G(y);M)
N

∏
i=1

πi(yi;λi)

pi(Gi(yi);λi)

= ∑
{Y :Yn=Gn(xn)}

Π(Y ;M)
πn(xn;λn)

pn(Gn(xn);λn)

= Pn(Gn(xn);M)
πn(xn;λn)

pn(Gn(xn);λn)
= πn(xn;λn),

the corresponding probability in the local process. Hence, condition (7.25) is satis-
fied.

It remains to prove that condition (7.26) is satisfied. For internal transitions, note
that the probability flow of an internal transition of node n from state xn to x′n in the
network is given by

∑
{y:yn=xn}

∑
{y′:y′n=x′n}

π(y)in(yn,y
′
n) = πn(xn;λn)in(xn,x

′
n).

For departure transitions, condition (7.26) is proved similarly. Let us now consider
a class c ∈An arrival transition from state xn to state x′n. The probability flow of this
transition in the network is given by

∑
{y:yn=xn}

(

∑
c′∈D0

∑
{y′: y′n=x′n

G(y′)=T c′c
0n (G(y))}

π(y)Mc′
0 (G(y))Rc′c

0n (G(y))ac
n(yn,y

′
n)

+
N

∑
n′=1

∑
c′∈Dn′

∑
{y′: y′n=x′n

G(y′)=Tc′c
n′n (G(y))}

π(y)dc′
n′(yn′ ,y

′
n′)R

c′c
n′n(G(y))ac

n(yn,y′n)

)

= πn(xn)ac
n(xn,x′n) ∑

{Y :Gn(yn)=Gn(xn)}
Π(Y ;M)

1
pn(Yn;λn)
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(

∑
c′∈D0

Mc′
0 (Y )Rc′c

0n (Y )+
N

∑
n′=1

∑
c′∈Dn′

Mc′
n′(Yn′)R

c′c
n′n(Y)

)

= πn(xn;λn)λn(Gn(xn))ac
n(xn,x′n),

which is the corresponding rate in the local process. Note that the last equality is
obtained using (7.27) and (7.30). 2

Note that the conditions of Theorem 7.4.2 include those of Theorem 7.4.1. Thus
under the conditions of Theorem 7.4.2 both aggregations hold. Note also that the
decomposition (7.19) still holds: the stationary distribution of the network thus may
be factorised such that the local processes are aggregations of the network with
respect to the nodes, and the global process is the aggregation of the network with
respect to the global state.

Under the conditions of Theorem 7.4.2, the arrival rates λn = (λ c
n : Gn(Sn)→

R+
0 ;c ∈ A0) are a solution of a set of fixed point equations that comprises those of

Corollary 7.3.4 and in addition (7.29) and (7.30). To simplify this set of equations,
note that (7.30) implies that both (7.29): λ = λ̃ , and (7.16): Λ̃ = Λ are satisfied. We
have the following result.

Corollary 7.4.3 (Fixed point equations for arrival rates: aggregation) Under the
conditions of Theorem 7.4.2, the arrival rates λn = (λ c

n : Gn(Sn)→R+
0 ;c ∈A0) are

a solution of the fixed point equations:

(7.12) πn = πn(λn)
(7.4) µc

n = µc
n(πn,λn)

(7.10) M̃c
n = M̃c

n(πn,µn,λn)
(7.15) M = M̃
(7.13) Π = Π(M)

(7.28) λ̃ c
n = λ̃ c

n (Λ c
n )

(7.30) Pn = pn

λ c
n (Xn) = Pn(Ac

n(Xn);M)
Pn(Xn;M)

Λ c
n (Ac

n(Xn);M).

These equations may be solved using the following algorithm:

Step i: For n = 1, . . . ,N initialize with a starting value for λ̂n for λn.
Step ii: Use (7.12), (7.4), (7.10) to obtain M̃c

n.
Step iii: Use (7.15), (7.13), (7.28) to obtain λ̃ c

n .
Step iv: If Pn(Xn) = pn(Xn) for c ∈Dn, Xn ∈ Gn(Sn), n = 1, . . . ,N then stop, and
λn is obtained, else let

λ c
n (Xn) =

Pn(Ac
n(Xn);M)

Pn(Xn;M)
Λ c

n(Ac
n(Xn);M)

and go to Step ii.

Remark 7.2 (Marie’s decomposition and aggregation method). The algorithm of
Corollary 7.4.3 requires Assumptions 7.2.1 and 7.2.2. Observe, however, that the
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algorithm can also be evaluated if these assumptions do not hold by replacing for-
mula (7.10) for the mean local departure rate by (7.9), and formula (7.28) for the
mean global arrival rates by (7.27). This gives an approximation algorithm that ex-
tends Marie’s method [20] to include state-dependent routing, general global states
and to global processes that do not satisfy local balance. 2

7.5 Examples

This section provides some examples to illustrate the results of Sections 7.3 and
7.4. The first three examples relate our results to known cases from the literature
that have motivated the results of this paper. Section 7.5.1 describes a network of
quasi-reversible nodes linked via state-dependent routing as studied in [3]. Section
7.5.2 describes biased local balance and a network with negative customers and
signals as studied in [12]. The third example in Section 7.5.3 is concerned with pull
networks as studied in [4] for which the partial balance equations are different from
the standard equations for Jackson type networks. Finally, Section 7.5.4 provides
a novel example of assembly networks. We obtain novel product form results and
novel decomposition results.

7.5.1 Quasi-reversible nodes linked via state-dependent routing

Consider a network of N interacting nodes containing customers of a single class,
say An = Dn = {1} for all n = 0, . . . ,N. Let the global state Xn of node n = 1, . . . ,N
represent the total number of customers in node n. Let A1

n(Xn) = Xn +1, D1
n(Xn) =

Xn− 1, i.e. an arriving customer increases the number of customers by one, and
a departing customer decreases the number of customers by one. For simplicity,
we also assume that Gn(Sn) = {0, . . . ,M}, where M may represent infinity. This
assumption, however, is not essential for the results below.

In (7.14) we have shown that for the local process Ln(λn) the sum of the total
arrival rates and the total mean departure rates in each global state Xn does not
change under time reversal. This implies for a network containing only a single
class of customers that the local time-reversed arrival rates equal the time-forward
arrival rates:

µ1
n (Xn;λn) = λ 1

n (Xn) n = 1, . . . ,N. (7.31)

To see this, first note that for Xn = 0, the result follows since pn(−1) = 0. Now
suppose µ1

n (Xn;λn) = λ 1
n (Xn) for Xn < M. Then, again by (7.14), µ1

n (Xn +1;λn) =
λ 1

n (Xn + 1), since pn(Xn +1) > 0 by the ergodicity of the local processes.
Equation (7.31) states that the outside of the nodes in the local process should

satisfy local balance (with possibly state-dependent arrival rates). In the following
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lemma we show that this property is equivalent to quasi-reversibility (i.e., with con-
stant arrival rates).

Lemma 7.5.1 Assume that An = Dn = {1} for all n = 0, . . . ,N. Let the global state
Xn of node n = 1, . . . ,N represent the total number of customers in node n. Let
A1

n(Xn) = Xn +1, D1
n(Xn) = Xn−1. Then µ1

n (Xn;λn) = λ 1
n (Xn) if and only if node n

is quasi-reversible when the arrival rate equals one.

Proof. Suppose node n is quasi-reversible with arrival rate one, and πn(xn;1) is its
stationary distribution. By substitution in the balance equations, we obtain that

πn(xn;1)
Gn(xn)−1

∏
y=0

λ 1
n (y) (7.32)

is the stationary distribution of node n with arrival rate λ 1
n (Xn), and that µn(Xn;λn)=

λn(Xn). Similarly, if µn(Xn;λn) = λn(Xn) and node n has stationary distribution
πn(xn;λn), then

πn(xn;λn)

(
Gn(xn)−1

∏
y=0

λ 1
n (y)

)−1

is the stationary distribution of node n with arrival rate 1, and µn(Xn;1) = 1. 2

Let us now consider the implications of a single class with global state represent-
ing the number of customers in the global process. By Lemma 7.5.1 we immediately
see that

Λ c
n(Xn;M) = Mc

n(Xn),

since for (generalised) quasi-reversible nodes we may invoke Theorem 7.3.2 with
fn(Xn;λn) = 1, or Corollary 7.3.3. The global process thus must satisfy local bal-
ance. The following lemma shows that the choice of the departure rates Mc

n(Xn) does
not effect the local balance of the global process: local balance of the global process
is a property that is only determined by the coupling of the nodes, and not by the
nodes themselves.

Lemma 7.5.2 Assume that An = Dn = {1} for all n = 0, . . . ,N. Let the global state
Xn of node n = 1, . . . ,N represent the total number of customers in node n. Let
A1

n(Xn) = Xn + 1, D1
n(Xn) = Xn− 1. Then M1

n(Xn) = Λ1
n (Xn;M) if and only if the

global process satisfies local balance when Mn(Xn) = 1.

Proof. Suppose the global process satisfies local balance with Mn(Xn) = 1, and let
Π(X ;1) denote the stationary distribution when Mn(Xn) = 1. Then it is readily ver-
ified by substitution in the balance equations for the global process that

Π(X ;1)
N

∏
n=1

(
Xn

∏
y=1

Mn(y)

)−1

(7.33)
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is the stationary distribution for the global process with departure rates Mn(Xn), and
that Λn(Xn;M) = Mn(Xn). Similarly, if Π(X ;M) is the stationary distribution of the
global process with departure rates Mn(Xn), and Λn(Xn;M) = Mn(Xn), then

Π(X ;M)
N

∏
n=1

(
Xn

∏
y=1

Mn(y)

)

is the stationary distribution for the global process with departure rates equal to one,
and satisfies local balance for the global process. 2

We summarize the above results in the following theorem, that states the condi-
tions on the nodes and the local processes of [3]. We want to stress that the results
presented above need all conditions stated here. Theorem 7.5.3 generally will not
hold for multiclass queueing networks, networks with batch movements, or net-
works with negative customers.

Theorem 7.5.3 Assume that An = Dn = {1} for all n = 0, . . . ,N. Let the global
state Xn of node n = 1, . . . ,N represent the total number of customers in node n.
Let A1

n(Xn) = Xn +1, D1
n(Xn) = Xn−1. The conditions of Theorems 7.3.1 and 7.3.2,

and of Corollary 7.3.3 are satisfied if and only if the nodes are quasi-reversible with
arrival rate one, and the global process satisfies local balance with departure rates
one.

If λ 1
n (Xn) = µ1

n (Xn;λn), then any function fn satisfies (7.21). Hence, Theorem
7.3.2 allows the global process to be analysed by arbitrary departure rate functions.
From (7.32) and (7.33) we find that the stationary distribution in Theorem 7.3.2
takes the form

CΠ(G(x);1)
N

∏
n=1

(
Gn(xn)

∏
y=1

λ 1
n (y− 1)

fn(y−1)

fn(y)

)−1
πn(xn;1)

fn(Gn(xn))

Gn(xn)−1

∏
y=0

λ 1
n (y)

= C
N

∏
n=1

fn(0)Π(G(x);1)
N

∏
n=1

N

∏
n=1

πn(xn;1),

in correspondence with Corollary 7.3.3.

7.5.2 Biased local balance

For the global process, we have assumed in Assumption 7.2.2 that the nominal de-
parture rate of class c customers from node n in state X of the stationary time-
reversed process of G(M) depends on the global state Xn only, i.e.,

Λ c
n (Xn;M)Nn(X) = ∑

c′∈D0

Π(T cc′
n0 (X);M)

Π(X ;M)
Mc′

0 (T cc′
n0 (X))Rc′c

0n (T cc′
n0 (X))
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+
N

∑
n′=1

∑
c′∈Dn′

Π(T cc′
nn′ (X);M)

Π(X ;M)
Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′

nn′ (X)).

We have shown that, if An = Dn, and Λ c
n (Xn;M) = Mc

n(Xn), Xn ∈ Gn(Sn), c ∈ An,
n = 1, . . . ,N, then this assumption implies that the global process satisfies local
balance (where, for notational convenience, Nc

0(X) = 1 for all c,X )

Mc
n(Xn)Nn(X)Π(X ;M)

=
N

∑
n′=0

∑
c′∈Dn′

Π(T cc′
nn′ (X);M)Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′

nn′ (X)),

otherwise we do not have equality. Following Chao and Miyazawa [12] we introduce
biased local balance, and say that Π(X ;M) satisfies biased local balance with bias
γc

n(X ;M) if

(Mc
n(Xn)Nn(X)+Γ c

n (X ;M))Π(X ;M)

=
N

∑
n′=0

∑
c′∈Dn′

Π(T cc′
nn′ (X);M)Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′

nn′ (X)), (7.34)

Our definition of biased local balance is closely related to the concept of biased
local balance, introduced by Chao and Miyazawa [12]. However, in [12] the bias is
required to be constant, and thus the existence of the bias imposes conditions on the
global process. By allowing the bias to be state-dependent, the bias can be defined
for every global process.

Note that global balance implies that

N

∑
n=0

∑
c∈An∪Dn

Γ c
n (X ;M) = 0, X ∈ Sg. (7.35)

Further note that Assumption 7.2.2 implies that

Γ c
n (X ;M) = (Λ c

n (Xn;M)−Mc
n(Xn))Nn(X), (7.36)

i.e., we have a strict condition on the state dependence of the bias.
We now define the bias of the local process as the difference in arrival and de-

parture rates to a node. For the local processes Ln(λn), we call γc
n(xn;λn) the bias of

node n with respect to the outside and c, if for all xn ∈ Sn

πn(xn;λn)(λ c
n (Gn(xn))+ γc

n(xn;λn)) = ∑
x′n

πn(x
′
n;λn)d

c
n(x
′
n,xn). (7.37)

Similar to the bias of the global process, the bias indicates the unbalance in local
balance equations: if γc

n(xn;λn) = 0, equation (7.37) corresponds to node n being
locally balanced with respect to its outside and type u, and thus, if in addition λ c

n
is a constant function, (7.37) corresponds to node n being quasi-reversible in the
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definition of [18]. When γc
n(xn;λn) is constant, but not necessarily zero, and λ c

n is
a constant function, (7.37) states that node n is quasi-reversible according to the
generalised definition of [11]. Again, allowing the bias to be state-dependent, it can
be defined for every node n, without requiring conditions on this node. Assumption
7.2.1 implies that

γc
n(xn;λn) = µc

n(Gn(xn);λn)−λ c
n(Gn(xn)) (7.38)

From our assumptions, invoking (7.10), (7.15), (7.11), and (7.16) we have obtained
(7.17), that may be rewritten as

Nn(X)γc
n(Xn;λn) =−Γ c

n (X ;M)

i.e., the bias of the local process equals the bias of the global process. Our results
of Section 7.3 thus show that if the bias of the nodes is suitably compensated by
the bias of the global process, the network allows a decomposition of the stationary
distribution.

Chao and Miyazawa [12] introduced the concept of biased local balance to extend
the definition of quasi-reversibility allowing the input and output rate of customers
at the nodes to differ from each other. The model of [12] has no global state for the
nodes, say Gn = 0. Routing then is necessarily state-independent, and the multipli-
cation factors Nn(X) may be omitted, i.e., we may set Nn(X) = 1. Removing the
global state also implies removing the state-dependence of the arrival and departure
rates. The following theorem summarizes the product form result of [12].

Theorem 7.5.4 Assume that Xn = 0 for all n. Then the conditions of Theorems 7.3.1,
7.3.2 and Corollary 7.3.3 are satisified if and only if each node is generalised quasi-
reversible, say with λ̂ c

n and µ̂c
n, and the following traffic equations hold:

λ c
n =

N

∑
n′=0

∑
c′∈D′n

µc
nRc′c

n′n (7.39)

7.5.3 A pull network

In a Jackson network a transition is initiated by the service of a customer at a node,
and subsequently this customer is routed to its destination. This behaviour is some-
times referred to as push network: a customer is pushed from one queue to the next
queue. We now consider a pull network in which a transition is initiated by the
destination node that pulls a customer from another node.

Consider a network of N interacting nodes containing customers of a single class,
say An = Dn = {1} for all n = 0, . . . ,N. Let the global state Xn of node n = 1, . . . ,N
represent the total number of customers in node n. Let A1

n(Xn) = Xn−1, D1
n(Xn) =

Xn +1. A departure from node n increases the number of customers in node n by one,
and with probability R11

nn′(X) decreases the number of customers in node n′ by one:
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node n thus pulls a customer with probability R11
nn′(X) from node n′. For simplicity,

we also assume that Gn(Sn) = {0, . . . ,M}, where M may represent infinity. The
following results are easily proved in the same way as in Section 7.5.1.

First, we may show that µ1
n (Xn;λn)= λ 1

n (Xn) for all n = 1, . . . ,N, and µ1
n (Xn;λn)=

λ 1
n (Xn) if and only if node n is quasi-reversible when the arrival rate equals one.

Furthermore, we have that M1
n (Xn) = Λ1

n (Xn;M) if and only if the global process
satisfies local balance when Mn(Xn) = 1. Summarizing, we have the following re-
sult.

Theorem 7.5.5 Assume that An = Dn = {1} for all n = 0, . . . ,N. Let the global
state Xn of node n = 1, . . . ,N represent the total number of customers in node n. Let
A1

n(Xn) = Xn− 1, D1
n(Xn) = Xn + 1. The conditions of Theorem 7.3.1 are satisfied

if and only if the nodes are quasi-reversible with arrival rate one, and the global
process satisfies local balance with departure rates one.

Thus, the seemingly distinct formulations of the local balance equations for push
and pull networks that are described in [4] are a consequence of the same notion of
local balance.

7.5.4 An assembly network

Consider a simple assembly network consisting of three nodes. Node 1 and node 2
each represent a subnetwork, on which we make no other assumption than that they
produce units at nominal rate one. The units produced by node 1 are referred to as
class 1 units; the units that are produced by node 2 as class 2 units. Both nodes send
their units to node 3, where a class one and a class two unit are assembled into a
class 3 unit. Assembly takes an exponentially distributed time with mean β−1 < 1,
and clearly requires that both a class 1 and a class 2 unit are present at node 3.

We assume the following control mechanism in the network. If there are no class
1 units in node 3, node 2 is slowed down by a factor φ < 1. Similarly, if no class
2 units are present in node 3, node 1 is slowed down by the same factor φ . This
control mechanism thus tries to save production costs by producing less units when
these units do not directly lead to output. We will show that for a specific choice of
φ the network has a product from solution, and the time-reversed class 3 arrival rate
is constant.

Let us first consider the local processes. For node 1 and node 2 we need no
arrival transitions. We will omit the λn, n = 1,2, from the notation. The stationary
distributions π1 and π2 of the local processes for node n = 1,2 thus are the unique
distributions satisfying

πn(xn) ∑
x′n∈Sn

(
in(xn,x

′
n)+ dn

n(xn,x
′
n)
)

= ∑
x′n∈Sn

πn(x
′
n)
(
in(x

′
n,xn)+ dn

n(x
′
n,xn)

)
.

By the assumption that nodes 1 and 2 produce units at nominal rate one, we have
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∑
x′n∈Sn

πn(x′n)
πn(xn)

dn
n(x′n,xn) = 1.

Therefore, no global state for node 1 and 2 is required (note that the routing is
fixed, and the control mechanism is only influenced by node 3). As the global state
for nodes 1, 2 is not required, we may set X1 = X2 = 0, and, hence, p1(0) = 1,
p2(0) = 1.

The state of node 3 is described by x3 = (u1,u2), with un denoting the number
of class n units in node 3. Since upon arrival of a class n = 1,2 unit, the number of
class n units is increased by one, arrival transitions are given by

an
3(xn,xn + en) = 1,

with en denoting the n-th unit vector of dimension 2. Departure transitions take
place at rate β , as long as there are both type 1 and a type 2 units present in node 3.
As a class 3 departure reduces the number of class 1 and class 2 units by one, the
departure transitions are thus given by

d3
3((u1,u2),(u1− 1,u2−1)) = β , u1,u2 > 0.

Internal transitions do not occur, as the service times of node 3 are exponential. To
model the desired control mechanism, we define the global state of node 3 equal to
the detailed state. Note that this is allowed by the exponential service times, and the
unique changes of the state at arrival and service transitions. Then p3 = π3 and the
functions Ac

3(X3) and Dc
3(X3) for c = 1,2,3 are given by

Ac
3(X3) =

{
X3 + ec for c = 1,2,
X3 + e1 + e2 for c = 3,

Dc
3(X3) =

{
X3− ec for c = 1,2,
X3− e1− e2 for c = 3.

To define a local process for node 3, we need an initial guess for the arrival rates of
class 1 and class 2 units. An obvious choice is the following.

λ 1
3 ((u1,u2)) =

{
φ for u2 = 0
1 otherwise

(7.40)

λ 2
3 ((u1,u2)) =

{
φ for u1 = 0
1 otherwise

(7.41)

The stationary distribution of the resulting local process L3(λ3) is provided in the
following lemma for a specific choice of φ .

Lemma 7.5.6 Let λ3 = (λ 1
3 ,λ 2

3 ) be given by (7.40) and (7.41). For φ = 1
2 β α2, with

α =−1
2

+
1

2β
√

β 2 +8β , (7.42)
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the stationary distribution π3 of the local process L3(λ3) is given by

π3((u1,u2);λ3) = (1−α)2αu1+u2 . (7.43)

Under these conditions, the time-reversed class 3 arrival rate µ3
3 ((u1,u2);λ3) is

constant and equal to β α2.

Proof. As (7.43) sums to one, it is sufficient to prove that (7.43) satisfies the balance
equations. For u1,u2 > 0, these equations are given by

π((u1,u2);λ3)(2 +β )

= π((u1−1,u2);λ3)+ π((u1,u2− 1);λ3)+ β π((u1 +1,u2 +1);λ3).

Substitution of (7.43) and dividing by (1−α2)αu1+u2−1 results in

α(2 +β ) = 2 +β α3.

This implies that either α = 1, or

β α2 +β α−2 = 0. (7.44)

As α , as given by (7.42) solves this equation, the proposed form for π3 satisfies the
balance equations for u1,u2 > 0. For u1 = u2 = 0, the balance equations are easily
seen to be satisfied for φ = 1

2 β α2. For u2 = 0 and u1 > 0, the balance equations are
given by

π3((u1,0);λ3)(φ + 1) = π((u1 + 1,1);λ3)β +π((u1−1,0);λ3)φ .

Substituting (7.43) and dividing by (1−α)2αu1−1, we have

α(φ + 1) = α3β +φ .

As φ = 1
2 β α2, this equation is equivalent to (7.44) and thus satisfied by the form of

α. As the model is symmetric in u1 and u2, the first statement is proved.
By definition, the time-reversed arrival rate is given by

µn((u1,u2);λ3) =
π3((u1 + 1,u2 +1);λ3)

π3((u1,u2);λ3)
β .

The second statement of the Theorem now follows from (7.43). 2

Let us now consider the network and the global process. The routing functions
are obviously given by R11

13 = 1, R22
23 = 1 and R33

30 = 1. Furthermore, the control
mechanism is incorporated in the model by

N1((u1,u2)) =

{
φ for u2 = 0
1 otherwise
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N2((u1,u2)) =

{
φ for u1 = 0
1 otherwise,

and N3((u1,u2)) = 1. Note that we have defined no global state for node 1 and 2, and
thus the global state of the network is given by the global state of node 3. According
to Theorem 7.3.1, the departure rate function are given by M1

1 (0) = 1, M2
2(0) = 1,

and using Lemma 7.5.6 we find

M3
3((u1,u2)) =

π3((u1− 1,u2−1);λ3)

π3((u1,u2);λ3)
α2 =

{
β for u1,u2 > 0
0 otherwise

Constructing the rates of the global process by Definition 7.3, and using the defini-
tion of the time-reversed departure rates of the global process, we obtain the follow-
ing lemma.

Lemma 7.5.7 The global process equals the local process for node 3 and satisfies
Assumption 7.2.2 with

Λ1
3 ((u1,u2);M) =

{
φα−1 for u2 = 0,
α−1 otherwise,

Λ2
3 ((u1,u2);M) =

{
φα−1 for u1 = 0,
α−1 otherwise.

According to Theorem 7.3.1, the class 1 arrival rate of the local process for node
3 corresponding with Λ 1

3 ((u1,u2);M) should be equal to

p3((u1 +1,u2);λ3)

p3((u1,u2);λ3)
Λ1

3 ((u1,u2);M) =

{
φ for u2 = 0,
1 otherwise.

Similarly, the local class 2 arrival rate should be equal to φ for u1 = 0 and equal to
1 otherwise. Hence, our initial guess for these local arrival rates was correct, and by
Theorem 7.3.1 and Lemma 7.5.6, we have the following result.

Theorem 7.5.8 The stationary distribution of the assembly network is of product-
form: π1(x1)π2(x2)π3(x3). The time-reversed class 3 arrival rate of the network is
constant and equals β α2. 2
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Chapter 8

Stochastic Comparison of Queueing Networks

Ryszard Szekli

Abstract We recall classical queueing networks and their stochastic monotonicity
properties as a special case of a general stochastic ordering theory for Markov pro-
cesses. As a consequence of stochastic monotonicity we present stochastic bounds
in transient and stationary conditions for the queue length processes, and some de-
pendence and ordering properties for sojourn times in networks. We overview prop-
erties of throughputs in networks in connection with stochastic orderings. Finally
we concentrate on dependence orderings for queueing networks with a special at-
tention on the role of routing as a parameter influencing correlation structures in
networks. Some connections to the problem of speed of convergence to stationarity
via spectral gaps are pointed out.

8.1 Introduction

Classical network theory. A. K. Erlang developed the basic foundations of teletraf-
fic theory long before probability theory was popularized or even well developed.
He established many of principal results which we still use today. The 1920’s were
basically devoted to the application of Erlang’s results (Molina [64], Thornton Fry
[29]). Felix Pollaczek [70] did further pioneering work, followed by Khintchine [42]
and Palm [67]. It was until the mid 1930’s, when Feller introduced the birth-death
process, that queueing was recognized by the world of mathematics as an object
of serious interest. During and following World War II this theory played an impor-
tant role in the development of the new field of operations research, which seemed to

into far reaches of deep and complex mathematics. Not all of these developments
proved to be useful. The fact that one of the few tools available for analyzing the
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performance of computer network systems is queueing theory largely stimulated de-
velopment of it. Important contributions in 1950’s and 60’s are among others due to
V. E. Benes , D. G. Kendall , D. R. Lindley , S. Karlin and J. L. McGregor, R. M.
Loynes , J. F. C. Kingman, L. Takacs, R. Syski, N. U. Prabhu and J. W. Cohen. The
literature grew from ”solutions looking for a problem” rather than from ”problems
looking for a solution”, which remains true in some sense nowadays. The practical
world of queues abounds with problems that cannot be solved elegantly but which
must be analyzed. The literature on queues abounds with ”exact solutions”, ”exact
bounds”, simulation models, etc., with almost everything but little common sense
methods of ”engineering judgment”. It is very often that engineers resort to using
formulas which they know they are using incorrectly, or run to the computer even
if they need only to know something to within a factor of two. There is a need for
approximations, bounds, heuristic reasoning and crude estimates in modelling. The
present chapter is an overview of methods based on stochastic ordering which are
useful in obtaining comparisons and bounds. Early other efforts following the line of
finding estimates are formulated in Newell [66], and Gross, Harris [32] where fluid
and diffusion approximations were introduced. The theory of weak convergence has
been a strong impetus for a systematic development of limit theorems for queue-
ing processes (Whitt [99]). Point processes have played an important role in the
description of input and output processes. Palm measures and Palm-martingale cal-
culus (see e.g. Baccelli and Bremaud [4]) still play active role in stochastic network
modelling not only because they are indispensable as a tool for solving stability
questions but also because the Palm theory proved to be an appropriate tool to for-
malize arguments while proving dependence properties of queueing characteristics
and showing bounds on them, as it will be presented in this chapter. In more recent
literature, martingale calculus influences modelling of fluid flow queues but this is
another topic not touched in this chapter.

Traffic processes. Traffic is a key ingredient of queueing systems. While tra-
ditional analytical models of traffic were often devised and selected for the ana-
lytical tractability they induced in the corresponding queueing systems, this selec-
tion criterion is largely absent from recent (internet) traffic models. In particular,
queueing systems with offered traffic consisting of autoregressive type processes
or self-similar processes are difficult to solve analytically. Consequently, these are
only used to derive simulation models. On the other hand some fluid models are
analytically tractable, but only subject to considerable restrictions. Thus the most
significant traffic research problem is to solve analytically induced systems, or in
the absence of a satisfactory solution, to devise approximate traffic models which
lead to analytically tractable systems. Comparison of complex systems with simpler
ones or finding simple bounds on sojourn times or throughput seems to be important.
We shall stress this point in the present chapter.

Traditional traffic models (renewal, Markov, autoregressive, fluid) have served
well in advancing traffic engineering and understanding performance issues, pri-
marily in traditional telephony. The advent of modern high speed communications
networks results in a highly heterogeneous traffic mix. The inherent burstiness of
several important services makes more noticeable some serious modelling inade-
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quacies of traditional models, particularly in regard to temporal dependence. This
situation has brought about renewed interest in traffic modelling and has driven the
development of new models. Statisticians are now aware that ignoring long range
dependence can have drastic consequences for many statistical methods. However
traffic engineers and network managers will only be convinced of the practical rele-
vance of fractal traffic models by direct arguments, concerning the impact of fractal
properties on network performance. Thus fractal traffic (stochastic modelling, sta-
tistical inference) has been a new task for researchers. While non-fractal models
have inherently short-range dependence, it is known that adding parameters can
lead to models with approximate fractal features. A judicious choice of a traffic
model could lead to tractable models capable of approximating their intractable
counterparts (and may work for some performance aspects). Therefore there is still a
need to study traditional classical queueing network models. It is worth mentioning
that long range dependence properties of traffic processes can be basically different
when viewed under the continuous time stationary regime versus the Palm station-
ary regime therefore it is once again important to use the Palm theory.

Classical Networks. The networks described by Kelly [40], by Jackson [36] and
by Gordon-Newell [66] are classical. These networks still remain in the range of
interest of many researchers as basic tractable models, because of many interest-
ing features such as product form, insensitivity, Poisson flows: Burke’s [9], product
form for sojourn times (see Serfozo [76] where Palm measures, stochastic inten-
sities and time reversal are utilized). Large scale networks are interesting from a
topological point of view. Internet seen as a random graph has its vertex distribution
following a power law. This is a surprising fact stimulating researches to use random
graph theory, spectral graph theory and other methods to build new models, how-
ever researching classical models with ”large” parameters remains to be important.
One of the most important features of classical networks is a widespread property of
being in some sense stochastically monotone. Various monotonicity and stochastic
ordering results for queues are scattered in many books and very numerous papers
in the existing literature, see for example parts of books by Baccelli and Bremaud
[4], Chen and Yao [14], Glasserman and Yao [30], Last and Brandt [49], Müller and
Stoyan [65], Ridder [73], Shaked and Shanthikumar [77], Szekli [88], Van Doorn
[91] among others.

The number of articles on various aspects of stochastic ordering for queueing sys-
tems is so large that a task of over-viewing them does not seem to be a reasonable
one. Therefore, this chapter concentrates only on results which are essentially for
multi-node networks, excluding pure single systems results. Even with this restric-
tion this text is certainly not complete in any sense. Formal definitions of classical
networks models are recalled in order to unify notation. Networks with breakdowns
are less known and the product formula for them is rather new.

We shall use notation marked with tilde for open networks in order to avoid
misunderstanding in formulations where both open and closed networks appear. It
is useful especially for routeing matrices, since there are some subtle differences
between them for open and closed systems.
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It is very often that for simple models even elementary questions are not easy to
answer. In order to illustrate this point consider a simple example of an open queue-
ing network which is the Simon–Foley [87] network of single server queues, see Fig.
8.1. A customer traversing path (1,2,3) can be overtaken by customers proceeding
directly to node 3 when departing from node 1. This is one of the reasons why the
traffic structure in a network can be very complicated and not easy to analyze. Simon
and Foley [87] proved that the vector (ξ1,ξ2,ξ3) of the successive sojourn times for
a customer traversing path (1,2,3) has positively correlated components ξ1 and ξ3.

-

>

~
-
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µ3 -

Fig. 8.1: The Simon–Foley network with overtaking due to the network topology

While the Simon–Foley network provides us with an example where overtaking
is due to the topological structure of the network, an early example of Burke [11]
(see Fig. 8.2) shows that overtaking due to the internal node structure prevents so-
journ times on a linear path from independence as well: a three–station path (1,2,3)
with a multiserver node 2 (m2 > 1) has dependent components ξ1 and ξ3.
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Fig. 8.2: The tandem network with overtaking due to the internal node structure

The question whether on the three–station path of the Simon–Foley network the
complete sojourn time vector (ξ1,ξ2,ξ3) is associated remains unanswered. We shall
give some related results on sojourn times later in this chapter, also for closed net-
works. Before doing this we shall recall a general description of classical queueing
networks, and shall discuss in a detail the topic of stochastic monotonicity of net-
works which is a basic property connected with stochastic comparison of networks.
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8.1.1 Jackson networks

Consider a Jackson network which consists of J numbered nodes, denoted by
J = {1, . . . ,J}. Station j ∈ J, is a single server queue with infinite waiting room
under FCFS (First Come First Served) regime. Customers in the network are indis-
tinguishable. There is an external Poisson arrival stream with intensity λ > 0 and
arriving customers are sent to node j with probability r̃0 j, ∑J

j=1 r̃0 j = r ≤ 1. The
quantity r̃00 := 1− r is then the rejection probability with that customers immedi-
ately leave the network again. Customers arriving at node j from the outside or from
other nodes request a service time which is exponentially distributed with mean 1.
Service at node j is provided with intensity µ j(n j) > 0 (µ j(0) := 0), where n j is
the number of customers at node j including the one being served. All service times
and arrival processes are assumed to be independent.

A customer departing from node i immediately proceeds to node i with probabil-
ity r̃i j ≥ 0 or departs from the network with probability r̃i0. The routing is indepen-
dent of the past of the system given the momentary node where the customer is. Let
J0 := J∪{0}. We assume that R̃ := (r̃i j , i, j ∈ J0) is irreducible.

Let X̃ j(t) be the number of customers present at node j at time t ≥ 0. Then X̃(t) =
(X̃1(t), . . . , X̃J(t)) is the joint queue length vector at time instant t ≥ 0 and X̃ :=
(X̃(t),t ≥ 0) is the joint queue length process with state space (E,≺) := (NJ ,≤J)
(where≤J denotes the standard coordinate-wise ordering, N = {0,1,2, . . .}).

The following theorem is classical (Jackson [36]).

Theorem 8.1.1 Under the above assumptions the queueing process X̃ is a Markov
process with the infinitesimal operator QX̃ = (qX̃(x,y) : x,y ∈ E) given by

qX̃ (n1, . . . ,ni, . . . ,nJ;n1, . . . ,ni + 1, . . . ,nJ) = λ r̃0i

and for ni > 0

qX̃(n1, . . . ,ni, . . . ,nJ;n1, . . . ,ni−1, . . . ,nJ) = µi(ni)r̃i0,

qX̃ (n1, . . . ,ni, . . . ,n j, . . . ,nJ;n1, . . . ,ni− 1, . . . ,n j +1, . . . ,nJ) = µi(ni)r̃i j .

Furthermore

qX̃(x,x) =− ∑
y∈E\{x}

qX̃(x,y) and qX̃(x,y) = 0 otherwise.

The parameters of a Jackson network are: the arrival intensity λ , the routing ma-
trix R̃ (with its routing vector η̃), the vector of service rates µ = (µ1(·), . . . ,µJ(·)),
and the number of nodes J. We shall use (λ , R̃/µ/J) to denote such a Jackson net-
work.
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8.1.2 Gordon-Newell networks

By a Gordon-Newell network we mean a closed network with N ≥ 1 customers
cycling. The routing of the customers in this network is Markovian, governed by an
irreducible stochastic matrix R = (ri j,1 ≤ i, j ≤ J). The Gordon-Newell network
process X, denoting the numbers of customers at nodes, with state space EN =
{n = (n1, . . . ,nJ) : n j ∈ {0,1, . . .}, j = 1, . . . ,J,n1 + . . .+ nJ = N} is a generalized
migration process with the following transition rates:

qX(n,n− ei + e j) = ri jµi(ni), ni ≥ 1,

and qX(n,n′) = 0 for all other states, where e j is the j-th base vector in RJ .
We assume that every node can be reached from any other node in a finite num-

ber of steps with positive probability. This ensures that the set of routing (traffic)
equations

η j =
J

∑
i=1

ηiri j , j = 1, . . . ,J, (8.1)

has a unique probability solution which we denote by η = (η j : j = 1, . . . ,J).
If at node j ∈ {1, . . . ,J}, n j customers are present (including the one in service, if

any) the service rate is µ j(n j)≥ 0; we set µ j(0) = 0. Service and routing processes
are independent.

Let X = (X(t) : t ≥ 0) denote the vector process recording the joint queue lengths
in the network at time t. For t ∈ R+, X(t) = (X1(t), . . . ,XJ(t)) reads: at time t there
are Xj(t) customers present at node j, either in service or waiting. The assump-
tions put on the system imply that X is a strong Markov process with infinitesimal
operator QX = (qX(x,y) : x,y ∈ EN).

The parameters of a Gordon-Newell network are: the routing matrix R, the vector
of service rates µ = (µ1(·), . . . ,µJ(·)), the number of nodes J, and the number of
customers N. We shall use (R/µ/J + N) to denote such a network.

8.1.3 Ergodicity of classical networks

For Jackson networks, by the product formula for stationary distribution we mean
the next formula appearing in the following theorem.

Theorem 8.1.2 The unique invariant and limiting distribution π̃J of the Jackson
network state process X̃ is given by

π̃J(n1, . . . ,nJ) = K(J)−1
J

∏
j=1

n j

∏
k=1

η̃ j

µ j(k)
, (n1, . . . ,nJ) ∈ NJ (8.2)
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with the normalization constant K(J) = ∏J
j=1

(
1 +∑∞

n=1 ∏n
k=1

η̃ j
µ j(k)

)
, and with η̃ =

(η̃0, . . . , η̃J), the unique solution of the routing (or traffic) equation of the network
(with η̃0 = λ ):

η̃ j = r̃0 jλ +
J

∑
i=1

η̃i r̃i j , j ∈ J. (8.3)

We have therefore that π̃J(n1, . . . ,nJ) = ∏J
j=1 π̃J

j (n j), for the marginal distributions

π̃J
j (n) = π̃J

j (0)
n

∏
k=1

η̃ j

µ j(k)
,

for n≥ 1, and π̃J
j (0) =

(
1 +∑∞

n=1 ∏n
k=1

η̃ j
µ j(k)

)−1
, j = 1, . . . ,J.

η̃ is usually not a stochastic vector and we define the unique stochastic solution
of (8.3) for j ∈ J0, by

ξ = (ξ j : j = 0,1, . . . ,J). (8.4)

Regarding ergodicity of closed networks the following theorem is classical (Gor-
don, Newell [31]).

Theorem 8.1.3 The process X is ergodic and its unique steady–state and limiting
distribution is given by

π(N,J)(n) = G(N,J)−1
J

∏
j=1

n j

∏
k=1

η j

µ j(k)
, (8.5)

for n ∈ EN, (for products with upper limit n j = 0 we set value 1) where

G(N,J) = ∑
n1+...+nJ=N

J

∏
j=1

n j

∏
k=1

η j

µ j(k)

is the norming constant.

Let us define independent random variables Yj, j = 1, . . . ,J such that

Pr(Yj = 0) =

(
1 +

∞

∑
n=1

n

∏
k=1

η j

µ j(k)

)−1

, Pr(Yj = n) = Pr(Yj = 0)
n

∏
k=1

η j

µ j(k)
.

Note that we have then

π (N,J)(n) =
J

∏
j=1

Pr(Yj = n j)/Pr(Y1 + . . .+YJ = N)

= Pr(Y1 = n1, . . . ,YJ = nJ |Y1 + . . .+YJ = N).
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Therefore the stationary distribution in a closed network can be interpreted as a
conditional distribution of an open network, given the number of customers present.

A natural measure of performance for a network in stationary conditions is, for
each j, E(µ j(Xj(t))). It is well known that

E(µ j(Xj(t))) = η j Pr(Y1 + . . .+YJ = N−1)/Pr(Y1 + . . .+YJ = N)

= η jG(N− 1,J)/G(N,J).

Therefore E(µ j(Xj(t)))/η j does not depend on j and is called the throughput of
this network. We denote the throughput G(N− 1,J)/G(N,J) of a Gordon-Newell
network by

T H(R/µ/J +N).

It is interesting to compare throughput for two structured networks with different
routing and/or service properties. We shall present such results later in this chapter.

8.2 Stochastic monotonicity and related properties for classical
networks

It is remarkable that many stochastic processes possess in a natural way some
stochastic monotonicity properties. Among them, for example birth and death pro-
cesses, attractive particle systems, and many classical queueing networks, which are
in a sense similar to birth and death processes but more general because of migra-
tions (movements to non-comparable states). It is not clear how the celebrated prod-
uct form stationary distribution for networks is related to the property of stochastic
monotonicity. There are product form networks which are not stochastically mono-
tone, and there are stochastically monotone networks which are not in the class of
product form networks. However it is not surprising that stochastically monotone
networks which are at the same time product form networks possess many interest-
ing properties. These both properties allow for many interesting comparison results
and consequently also for many dependency results (for example dependency order-
ings). Stochastic monotonicity can have different forms depending on the ordering
we select in the state space, and the shape of a network (for example for tandems
we have so called partial sum monotonicity). Such properties will be the main topic
of this section. For more general networks the area of monotonicity still remains to
a large extend an open area.

8.2.1 Stochastic orders and monotonicity

From a general point of view, we shall consider probability measures on a par-
tially ordered Polish space E endowed with a closed partial order ≺, and the Borel
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σ−algebra E denoted by E along with random elements X : Ω → E. We denote
by I∗(E) (I∗+(E)) the set of all real valued increasing measurable bounded (non-
negative) functions on E ( f increasing means: for all x,y, x≺ y implies f (x)≤ f (y)),
and I(E) the set of all increasing sets (i.e. sets for which indicator functions are in-
creasing). The decreasing analogues are denoted by D∗(E), (D∗+(E)) and D(E)
, respectively. For A ⊆ E we denote A↑ := {y ∈ E : y ≻ x f or some x ∈ A}, and
A↓ := {y ∈ E : y ≺ x f or some x ∈ A}. Further, we define Ip(E) = {{x}↑ : x ∈ E}
and Dp(E) = {{x}↓ : x ∈ E}, the classes of one-point generated increasing, resp.
decreasing, sets.

For product spaces we shall use the following notation, E(n) = E1 × ...×En,
for Ei partially ordered Polish spaces (i = 1, . . . ,n). If Ei = E for all i then we
write En instead of E(n). Analogously we write E(∞) and E∞ for infinite products.
Product spaces will be considered with the product topology. Elements of E(n) will
be denoted by x(n) = (x1, . . . ,xn), of E(∞) by x(∞). For random elements we use
capital letters in this notation. We denote the coordinatewise ordering on E(n) by
≺(n).

The theory of dependence order via integral orders for finite dimensional vectors
is well established, surveys can be found in Mueller and Stoyan [65], Joe [37],
and Szekli [88]. In recent years this theory and its applications were extended to
dependence order of stochastic processes, see for examples with state spaces Rn or
subsets thereof, the work of Hu and Pan [34] and Li and Xu [55], and for a more
general approach to Markov processes in discrete and continuous time with general
partially ordered state space, Daduna and Szekli [24].

Definition 8.2.1 We say that two random elements X,Y of E are stochastically or-
dered (and write X≺st Y or Y≻st X) if E f (X)≤E f (Y) for all f ∈ I∗(E), for which
the expectations exist.

In the theory of stochastic orders and especially in specific applications a well
established procedure is to tailor suitable classes of functions, which via integrals
over these functions extract the required properties of the models under considera-
tion. The most well known example is the class of integrals over convex functions
which describes the volatility of processes and therefore the risks connected with
their evolution.

Similar ideas will guide our investigations of network processes X = (Xt : t ≥ 0)
and Y = (Yt : t ≥ 0). These are comparable in the concordance ordering, X ≺cc Y,
if for each pair (Xt1 , . . . ,Xtn) and (Yt1 , . . . ,Ytn) it holds

E

[
n

∏
i=1

fi(Xti)

]
≤ E

[
n

∏
i=1

fi(Yti)

]
, (8.6)

for all increasing functions fi, and for all decreasing functions as well (i.e. for all
comonotone functions). It is our task to identify subclasses F of functions such
that (8.6) holds for all comonotone functions which are additionally in F and that
additionally X and Y fulfill the corresponding stochastic monotonicity properties
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with respect to the integral order defined via intersecting the class of monotone
functions with F.

The set (8.6) of inequalities implies that X and Y have the same marginals and
that standard covariances cov( f (Xs),g(Xt)) ≤ cov( f (Ys),g(Yt)) are ordered for all
comonotone f ,g. If F is sufficiently rich, these properties will be maintained.

The introduced above dependence ordering can be generalized for more general
spaces. For E which is a lattice (i.e. for any x,y∈E there exist a largest lower bound
x∧ y ∈ E and a smallest upper bound x∨ y ∈ E uniquely determined) we denote by
Lsm(E) the set of all real valued bounded measurable supermodular functions on E,
i.e., functions which fulfill for all x,y ∈ E

f (x∧ y)+ f (x∨ y)≥ f (x)+ f (y).

Definition 8.2.2 We say that two random elements X,Y of E are supermodular
stochastically ordered (and write X ≺sm Y or Y ≻sm X) if E f (X) ≤ E f (Y) for all
f ∈ Lsm(E), for which the expectations exist.

A weaker than ≺sm can be defined on product spaces. A function f : E(2)→ R has
isotone differences if for x1 ≺1 x′1, x2 ≺2 x′2 we have

f (x′1,x
′
2)− f (x1,x

′
2)≥ f (x′1,x2)− f (x1,x2). (8.7)

A function f : E(n)→R has isotone differences if (8.7) is satisfied for any pair i, j of
coordinates, whereas the remaining variables are fixed. If Ei, i = 1, . . . ,n are totally
ordered then both definitions are equivalent. The class of functions with isotone
differences, defined by (8.7), we denote by Lidif(E

(n)). Note that the definition of a
function with isotone differences does not require that Ei are lattices. If, additionally,
f is taken to be increasing we shall write f ∈ Li−idif(E(n)). The following lemma is
due to Heyman and Sobel [44].

Lemma 8.2.3 (i) Let E1,E2, . . . ,En be lattices. If f is supermodular on (E(n),≺(n))
then it has also isotone differences.

(ii)Let E1, . . . ,En be totally ordered. If f has isotone differences on (E(n),≺(n)) then
it is also supermodular.

The above lemma implies that for totally ordered spaces both notions are equivalent.
This is not the case when Ei, i = 1 . . . ,n, are partially (but not linearly) ordered.

Definition 8.2.4 Let X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn) be random vectors with val-
ues in E(n).

(i) X is smaller than Y in the isotone differences ordering (X≺idi f Y) if

E [ f (X1 . . . ,Xn))]≤ E [ f (Y1, . . . ,Yn)]

for all f ∈ Lidif(E(n)).

Let us summarize some definitions which we will need later.
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8.2.1.1 Discrete time

Let X = (Xt : t ∈ ZZ) and Y = (Yt : t ∈ ZZ), Xt ,Yt : Ω→E, be discrete time, stationary,
homogeneous Markov processes. Assume that π is an invariant (stationary) one–
dimensional marginal distribution the same for both X and Y, and denote the 1–
step transition kernels for X and Y, by KX : E× E → [0,1], and KY : E× E →
[0,1], respectively. Denote the respective transition kernels for the time reversed

processes
←
X,

←
Y by

←
KX ,

←
KY . We say that a stochastic kernel K : E×E→ [0,1] is

stochastically monotone if
´

f (x)K(s,dx) is increasing in s, for each f ∈ I∗(E).
It is known (see e.g. Müller and Stoyan [65], section 5.2) that a stochastic kernel
K is stochastically monotone iff K(x, ·) ≺st K(y, ·) for all x≺ y. Another equivalent
condition for this property is that µK ≺st νK, for all µ ≺st ν , where µK denotes the
measure defined by µK(A) =

´

K(s,A)µ(ds), A ∈ E. It is worth mentioning that for
E = N, using traditional notation PX = [pX (i, j)]i, j∈N for the transition matrix of X
(that is pX (i, j) := KX(i,{ j})), stochastic monotonicity can be expressed in a very
simple form, namely (see Keilson and Kester [39]), we say that PX is stochastically
monotone iff

T−1PX T(i, j)≥ 0, i, j ∈ N, (8.8)

where T is the lower triangular matrix with zeros above the main diagonal and ones
elsewhere.

8.2.1.2 Continuous time

Let X = (Xt : t ∈R) and Y = (Yt : t ∈R), Xt ,Yt : Ω →E, be stationary homogeneous
Markov processes. Denote the corresponding families of transition kernels of X, and
Y, by IKX = (KX

t : E×E→ [0,1] : t ≥ 0), and IKY = (KY
t : E×E→ [0,1] : t ≥ 0),

respectively, and the respective transition kernels for the stationary time reversed
processes

←
X ,

←
Y by

←
IKX = (

←
KX

t : E×E→ [0,1] : t ≥ 0), and
←
IKY = (

←
KY

t : E×E→
[0,1] : t ≥ 0), respectively. Assume that π is an invariant distribution common for
both IKX and IKY , that is

´

KX
t (x,dy)π(dx) =

´

KY
t (x,dy)π(dx) = π(dy), for all

t > 0. We say that IKX (IKY ) is stochastically monotone if for each t > 0, KX
t

(KY
t ) is stochastically monotone as defined previously. If E is countable and QX =

[qX(x,y)] and QY = [qY(x,y)] denote intensity matrices ( infinitesimal generators)
of the corresponding chains X and Y then the following condition due to Massey
[60] is useful: if QX is bounded, conservative then IKX is stochastically monotone
iff

∑
y∈F

qX(x1,y)≤ ∑
y∈F

qX(x2,y),

for all F ∈ I(E), and x1 ≺ x2 such that x1 ∈ F or x2 /∈ F. An analogous condition for
arbitrary time continuous Markov jump processes (also for unbounded generators)
is given by Mu-Fa Chen [15], Theorem 5.47. It is worth mentioning that if E = N

then similarly to (8.8), we say that QX = [qX(i, j)]i, j∈N is stochastically monotone
iff T−1QXT (i, j)≥ 0 for all i 6= j.
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8.2.2 Stochastic monotonicity and networks

The fundamental property of stochastic monotonicity of classical networks is pres-
ently very well known. Massey [60], Proposition 8.1, proved this property using
analytical methods for Jackson networks with constant service rates, Daduna and
Szekli [18], Corollary 4.1, utilized a coupling argument combined with a point pro-
cesses description, admitting variable service rates and closed networks. Lindvall
[51], p. 7, used a coupling proof for Jackson networks.

Property 8.2.5 Consider X̃ := (X̃(t),t ≥ 0) the joint queue length process in a
Jackson network (λ , R̃/µ/J) as a Markov process with the partially ordered state
space (E,≺) := (NJ ,≤J), and X = (X(t) : t ≥ 0) the process recording the joint
queue lengths in the Gordon-Newell network (R/µ/J + N) as a Markov process
with state space EN, also ordered with ≤J (the standard coordinate-wise ordering).
If µ is increasing as a function of the number of customers then for both processes
the corresponding families of transition kernels are stochastically monotone with
respect to ≤J.

Remark 8.1. For a formulation of the above result in terms of marked point pro-
cesses see Last and Brandt [49], Theorem 9.3.18. For a version of the stochastic
monotonicity property for Jackson networks with infinite denumerable number of
nodes see Kelbert et al. [52]. For a refined stochastic monotonicity property, for par-
tition separated orderings, see Proposition 8.1 in Massey [60]. For generalizations
to Jackson type networks with batch movements see Economou [26] and [27].

Apart from the traditional, coordinatewise ordering on the state space it is possi-
ble and reasonable to consider other orderings and monotonicities which for exam-
ple turned out to be useful to describe special properties of tandems.

For two vectors x,y ∈Rn, x = (x1, . . . ,xn), y = (y1, . . . ,yn), we define partial sum
order by

x≤∗y if
j

∑
i=1

xi ≤
j

∑
i=1

y j, j = 1, . . . ,n.

The next property was first stated by Whitt [97], and restated using other methods
in Massey [60], Theorem 8.3, and Daduna and Szekli [18], Proposition 4.4.

Property 8.2.6 Consider X̃ := (X̃(t),t ≥ 0) the joint queue length process in Jack-
son network (λ , R̃/µ/J) as a Markov process with the partially ordered state space
(E,≺) := (NJ,≤∗). Assume that µ is increasing as a function of the number of
customers. Then the corresponding family of transition kernels of X̃ is stochasti-
cally monotone with respect to ≤∗ if and only if i, j ∈ J and r̃(i, j) > 0 implies that
j = i+ 1 or j = i−1, and r̃(i,0) > 0 iff i=J.

An interesting monotonicity property for increments of cumulative number of
customers in Jackson networks starting empty was proved by Lindvall [51] using
coupling methods.
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Property 8.2.7 Consider X̃ the joint queue length process in Jackson network
(λ , R̃/µ/J) such that at time 0 the system is empty. Assume that µ is increasing
as a function of the number of customers. Then for each ε > 0, ∑J

j=1 X̃ j(t + ε)−
∑J

j=1 X̃ j(t) is stochastically (≤st ) decreasing as a function of t.

8.2.3 Bounds in transient state

The analytical approach of Massey [58], [59] resulted in a transient bound for Jack-
son networks which was generalized then by Tsoucas and Walrand [93]. The joint
distribution of the number of customers on an upper orthant can be bounded from
above by the product of the corresponding state distributions of single systems at
any time provided they start from the same state. This is a useful upper bound on
the probability of overload in transient Jackson networks.

Property 8.2.8 Consider X̃ the joint queue length process in Jackson network
(λ , R̃/µ/J) such that µ = (µ1, . . . ,µJ) is constant as a function of the number of
customers. Independently, for each j ∈ J, denote by X∗j (t) the number of customers
in the M/M/1-FCFS classical system with the arrival rate

λ ∗j = r̃0 jλ +
J

∑
i=1

µir̃i j,

and the service rate µ j. If for the initial conditions X̃(0) = (X∗1 (0), . . . ,X∗J (0) then

P(X̃(t)≥ a)≤ P(X∗1 (t)≥ a1) · · ·P(X∗j (t)≥ a j),

for each t > 0 and a = (a1, . . . ,a j) ∈ RJ.

8.2.4 Bounds in stationary state

Bounds for time stationary evolution of networks have a different nature than tran-
sient bounds. The next property can be found in Daduna and Szekli [18], Corollary
5.1.

Property 8.2.9 Consider X̃ the joint queue length process in Jackson network
(λ , R̃/µ/J) such that µ = (µ1(·), . . . ,µJ(·)) is increasing as a function of the num-
ber of customers. Then in stationary conditions

E( f [X̃(t1), . . . , X̃(ti)]g[X̃(ti+1), . . . , X̃(tk)])

≥ E( f [X̃(t1), . . . , X̃(ti)])E(g[X̃(ti+1), . . . , X̃(tk)])
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for all non-decreasing real f ,g, and 0≤ t1 < .. . < tk, i < k, i,k ∈ N.

This inequality can be written as

Cov( f (X̃(ti), i = 1, . . . ,k),g(X̃(ti), i = k +1, . . . ,n))≥ 0, (8.9)

for all f ∈ I∗(Rk),g ∈ I∗(Rn−k),k = 1, . . . ,n− 1,t1 < .. . < tn. Note that the prop-
erty (8.9) is a rather strong positive dependence property in the time evolution of
X̃. We shall recall now some definitions from the theory of positive dependence.
A natural way to define positive dependence for a random vector (or alternatively
for a distribution on a state space) X = (X1, . . . ,Xn) is to use a dependency order-
ing in order to compare it with its iid version, i.e. with X⊥ = (X⊥1 , . . . ,X⊥n ), where
Xi =d X⊥i , and (X⊥1 , . . . ,X⊥n ) being independent. For example, if E = R, X⊥ ≤cc X
is equivalent to the fact that X is positively orthant dependent (POD) (for definitions
of this and other related concepts see e.g. Szekli [88]). POD is weaker than associ-
ation of X defined by the condition that Cov( f (X),g(X)) ≥ 0 for all f ,g ∈ I∗(Rn).
However, it is not possible to characterize association in terms of some ordering,
that is by stating that X is greater than X⊥ for some ordering. But Christofides and
Veggelatou [17] show that association implies that X⊥ ≤sm X (positive supermod-
ular dependence - PSMD). In fact they show that the weak association (defined by
Cov( f (Xi, i ∈ A),g(Xi, i∈ Ac))≥ 0 for all real, increasing f ,g of appropriate dimen-
sion, and all A ⊂ {1, . . . ,n}) implies PSMD. Rüschendorf [74] defined a weaker
than weak association positive dependence by Cov(I(Xi>t),g(Xi+1, . . . ,Xn)) ≥ 0 for
all increasing g, all t ∈ R, and all i = 1, . . . ,n− 1, which he called weak association
in sequence (WAS). He showed that WAS implies PSMD. Hu et al. [35] gave coun-
terexamples showing that the mentioned positive dependence concepts are really
different.

Note that property (8.9) implies that ( f1(X̃(t1)), . . . , fn(X̃(tn))) is weakly associ-
ated in sequence for all fi ∈ I∗+(RJ), and therefore is also PSMD, which implies pos-
sibility to compare maxima, minima and other supermodular functionals of the time
evolution of X̃, ( f1(X̃(t1)), . . . , fn(X̃(tn))) with the corresponding independent ver-
sions (separated single queue systems). This is in accordance with intuitions since
the joint time evolution of a network should generate more correlations than inde-
pendent single queue systems.

It is worth mentioning that in order to obtain a joint space and time positive de-
pendence for a Markov process X one requires additional assumptions. For example
it is known (see e.g. Liggett [50], Szekli [88], Theorem A, section 3.7.) that if IKX

is stochastically monotone, π associated on E, and (so called up-down property)
QX( f g) ≥ f QXg + gQX f , for all f ,g increasing then X is space-time associated
(i.e. Cov(φ(Xti , i = 1, . . . ,n),ψ(Xti , i = 1, . . . ,n)) ≥ 0, for all φ ,ψ increasing). Un-
fortunately networks in general do not fulfill this up-down requirement therefore the
last property needed another argument strongly based on stochastic monotonicity.

The next property is a corollary from the previous one but it is interesting to know
that it is possible to extend this property to networks of infinite channel queues
with arbitrary service time distribution, see Kanter [38], Daduna and Szekli [18],
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Corollary 5.2. In contrast to the transient case these bounds are lower bounds and
are formulated with respect to the time evolution in stationary conditions.

Property 8.2.10 Consider X̃ the joint queue length process in Jackson network
(λ , R̃/µ/J) such that µ = (µ1(·), . . . ,µJ(·)) is increasing as a function of the num-
ber of customers. Independently, for each j ∈ J, denote by X∗j (t) the number of
customers in the M/M(n)/1-FIFO classical system with the arrival rate λ ∗j = η̃ j

and the service rate µ j(·). Then for both processes in stationary conditions

P(X̃(t1)≥ (≤)a1, . . . , X̃(tk)≥ (≤)ak)≥ ∏
1≤i≤k,1≤ j≤J

P(X∗j (ti)≥ (≤)ai
j),

for each t1 < · · ·< tk, and ak = (ak
1, . . . ,a

k
j) ∈RJ, k ∈ N.

For open networks in stationary state positive correlations are prevailing. For
closed networks however it is natural to expect negative correlations for the state
in closed networks, but negative association is perhaps a bit surprising at the first
glance. The next property can be found in Daduna and Szekli [18], Proposition 5.3.

Property 8.2.11 Consider X = (X(t) : t ≥ 0) the process recording the joint queue
lengths in the Gordon-Newell network (R/µ/J +N) as a Markov process with state
space EN ordered with ≤J. If µ is increasing as a function of the number of cus-
tomers then for every t > 0, X(t) is negatively associated with respect to ≤J, i.e.

E( f (Xi(t), i ∈ I)g(Xj(t), j ∈ Ic))≤ E( f (Xi(t), i ∈ I))E(g(Xj(t), j ∈ Ic)),

for all increasing f ,g, and all I⊂ J.

For analogous result for discrete time queueing networks see Pestien and Ramakr-
ishnan [69]. Negative association can be used to obtain upper bounds on the joint
distribution of the state vector.

8.2.5 Sojourn times in networks

8.2.5.1 Dependence properties for sojourn times

A path of length M in the network (λ , R̃/µ/J) is a finite sequence of nodes
P = ( j1, j2, . . . , jM), not necessarily distinct, which a customer can visit consecu-
tively, i.e., r̃ jk , jk+1)

> 0,k = 1, . . . ,M− 1. For a customer traversing path P we de-
note by (ξ1,ξ2, . . . ,ξM) the vector of his successive sojourn times at the nodes of
the path. Strong interest is focused on determining the joint distribution of the vec-
tor ξ = (ξ1, . . . ,ξN) in equilibrium. In general this is an unsolved problem, explicit
expressions are rare.

The first results were obtained by Reich [71], [72], and Burke [9], [10]. For closed
cycles the parallel results were developed by Chow [16], Schassberger and Daduna
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[85], and Boxma, Kelly, and Konheim [8]. Clearly in this case independence was
not found due to the negative correlation of the queue lengths in the network, but
a product form structure emerged there as well. The research which followed the
mentioned early results was also concentrated on proving that similar results hold
for overtake–free paths as well. Extensions to single server overtake–free paths for
networks with general topology were obtained for the open network case by Walrand
and Varaiya [95] and Melamed [63], and for closed networks by Kelly and Pollett
[41]. The result for overtake–free paths with multiserver stations at the beginning
and the end of the path was proved by Schassberger and Daduna [86]. (For a review
see Boxma and Daduna [7].)

The most prominent example where overtaking appears is the Simon–Foley [87]
network of single server queues, see Fig. 8.1. As we have already mentioned be-
fore, the question whether on the three–station path of the Simon–Foley network
the complete sojourn time vector (ξ1,ξ2,ξ3) is associated remains unanswered. The
methods provided by the proof of Foley and Kiessler [28] seemingly do not apply to
that problem. However it is possible to prove a little bit weaker dependence results.
Probability measure used in this statement is the Palm probability with respect to
the point process of arrivals to the first station.

Property 8.2.12 Consider Jackson network (λ , R̃/µ/J) with constant µ , and a path
P consisting of three nodes which we assume to be numbered P = (1,2,3). In equi-
librium, the successive sojourn times (ξ1,ξ2,ξ3) of a customer on a three node path
of distinct nodes are positive upper orthant dependent, i.e.

P(ξ1 ≥ a1,ξ2 ≥ a2,ξ3 ≥ a3)≥ P(ξ1 ≥ a1)P(ξ2 ≥ a2)P(ξ3 ≥ a3)

.

More generally the above result holds true in open product form networks with
multi-server nodes having general service disciplines and exponentially distributed
service times or having symmetric service disciplines with generally distributed ser-
vice times. Moreover this is true also for networks with customers of different types
entering the network and possibly changing their types during their passage through
the network. Here one may allow additionally that the service time distributions at
symmetric nodes are type dependent, see Daduna and Szekli [19]. For generaliza-
tions to four step walk in Jackson networks see Daduna and Szekli [20].

8.2.5.2 Sojourn times in closed networks

Intuitively, sojourn times in closed networks should be negatively correlated, but
again negative association is a bit surprising as a property explaining this intuition.
The next property for closed cycles of queues is taken from Daduna and Szekli [21].
The expectations in this statement are taken with respect to the Palm measure de-
fined with respect to the point process of transitions between two fixed consecutive
stations.
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Property 8.2.13 Consider Gordon-Newell network (R/µ/J + N) with constant µ ,
and cyclic structure of transitions, i.e. ri(i+1) = 1 for i≤ J−1 and rJ1 = 1. In equilib-
rium, for the successive sojourn times (ξ1, . . . ,ξJ) of a customer at stations 1, . . . ,J,

E( f (ξi, i ∈ I)g(ξ j, j ∈ Ic))≤ E( f (ξi, i ∈ I))E(g(ξ j, j ∈ Ic)),

for all increasing f ,g, and all I⊂ J, i.e. ξ is negatively associated.

In a closed tandem system with fixed population size the conditional cycle time
distribution of a customer increases in the strong stochastic ordering when the ini-
tial disposition of the other customers increases in the partial sum ordering. As a
consequence of this property one obtains

Property 8.2.14 Consider Gordon-Newell network (R/µ/J + N) with constant µ ,
and cyclic structure of transitions, i.e. ri(i+1) = 1 for i≤ J−1 and rJ1 = 1. In equi-
librium, the cycling time ξ1 + · · ·+ ξJ of a customer going through stations 1, . . . ,J
is stochastically increasing in N, the number of customers cycling.

For negative association (NA) of sojourn times in the consecutive cycles made by a
customer, see Daduna and Szekli [21].

8.3 Properties of throughput in classical networks

8.3.1 Uniform conditional variability ordering, a relation between
closed and open networks

The next property is taken from Whitt [98]. Before formulating it we need some
definitions.

Definition 8.3.1 Suppose that µ , ν are probability measures which are not re-
lated by the stochastic ordering ≤st , and are absolutely continuous with respect
to Lebesque (counting) measure on R (N) with densities (mass functions) f , g re-
spectively, with supp(µ)⊂ supp(ν). We say that

1. µ is uniformly conditionally less variable than ν , and write µ ≺uv ν if f (t)/g(t)
is unimodal on t ∈ supp(ν), with the mode being the supremum.

2. µ is log-concave relative to ν , and write µ ≺lcv ν if supp(µ)⊂ supp(ν) are in-
tervals (connected sets of integers) and f (t)/g(t) is log-concave on t ∈ supp(µ).

3. µ ≺mlr ν if f (t)/g(t) is nonincreasing on t ∈ supp(µ).

We use also ≺lcv and ≺uv to relate random variables using the above definition for
their distributions.

If the number of sign changes S( f −g) = 2, and µ ≺lcv ν then µ ≺uv ν . Moreover
if µ(A),ν(B) > 0, A⊂ B, S( f − g) = 2, and µ ≺lcv ν then
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(i) if E(µA)≤ E(νB) then µA ≤icx νB

(ii)if E(µA)≥ E(νB) then µA ≤dcx νB

(iii)E(µA) = E(νB) then µA ≤cx νB,

where E(µ) denotes the expected value of µ , and µA denotes the conditional distri-
bution of µ conditioned on A.

It is known (see Whitt [98]) that for each Gordon-Newell network (R/µ/J +N)
there exist a Jackson network (λ , R̃/µ/J), such that the stationary distribution of
the network content in Gordon-Newell model is equal to the conditional stationary
distribution in this Jackson model, conditioned on the fixed number of customers,
that is π (N,J)(n) = π̃J(n | {n : ∑J

i=1 ni = N}). For each such pair of stationary net-
work processes X,X̃ it is possible to compare variability of the corresponding one
dimensional marginal distributions if for each i, µi(n) are nondecreasing functions
of n.

Property 8.3.2 In stationary conditions it holds that for all t

Xi(t)≺lcv X̃i(t), i = 1, . . . ,J.

From the above relation it follows that if E(∑J
i=1 X̃i(t)) ≤ N then for respective uti-

lizations at each node i

E(X̃i(t)∧ si)≤ E(Xi(t)∧ si),

provided µi(n) = (n∧ si)µ for some si ∈N, and µ > 0 or equivalently for through-
puts

E(µi(X̃i(t)))≤ E(µi(Xi(t))).

8.3.2 Effect of enlarging service rates in closed networks

Chen and Yao [14] showed that if in a closed network, locally in some set of nodes
the service rates will be increased then the number of customers in these nodes
will decrease, but the number of customers elsewhere will increase (in ≺mlr sense).
Moreover the overall throughput for the network will be larger.

Property 8.3.3 Suppose that we consider two Gordon-Newell networks (R/µ/J +
N) and (R/µ ′/J + N), and the corresponding stationary queue length processes
X, X′, such that for a subset A ⊂ {1, . . . ,J}, µ j ≤ µ ′j (pointwise) for j ∈ A, and
µ j = µ ′j , for j ∈ Ac. Then

X ′j(t)≺mlr Xj(t)

for j ∈ A and
Xj(t)≺mlr X ′j(t)

for j ∈ Ac. Moreover if µ j(n) are nondecreasing functions of n then
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T H(R/µ/J +N)≤ TH(R/µ ′/J + N).

From Shanthikumar and Yao [81] we have

Remark 8.2. If we change the condition that µ j ≤ µ ′j (pointwise) for j ∈ A, by a
stronger one: µ j(m)≤ µ ′j(n) for j ∈ A, and all m≤ n, m,n ∈ N then T H(R/µ/J +
N) ≤ T H(R/µ ′/J + N) holds without assuming monotonicity of service rates. We
have for example TH(R/µmin/J + N) ≤ TH(R/µ/J + N) ≤ TH(R/µmax/J + N),
whenever µmin = (minn≥1 µ1(n), . . . ,minn≥1 µJ(n))
and µmax = (maxn≥1 µ1(n), . . . ,maxn≥1 µJ(n)) are finite, positive.

8.3.3 Majorization, arrangement and proportional service rates

For two vectors x,y ∈Rn we define the relation x≺m y by

k

∑
i=1

x[i] ≤
k

∑
i=1

y[i], k < n,
n

∑
i=1

x[i] =
n

∑
i=1

y[i] ,

where x[1] ≥ . . . ≥ x[n] denotes non-increasing rearrangement of x. This relation is
the majorization.

For two vectors x,y ∈Rn such that x is a permutation of y we define the relation
x≺a y by requiring that y can be obtained from x by a sequence of transpositions
such that after transposition the two transposed elements are in decreasing order.

For the next properties in this subsection see Shanthikumar [78], and Chen and
Yao [14]. The first one exploits interplay between some special regularities of the
service rates (fulfilled for example for linear service rates) and a perturbation of
the routing in such a way that after perturbation more probable are visits to the
stations with lower numbers, which leads to a larger throughput. The second one
again assumes some special properties for the service rates (proportional to increas-
ing concave function), and non-increasing routing vector (more probable visits to
the stations with lower numbers), then a perturbation leading to more decreasingly
arranged service rates (more service for the stations with lower numbers) implies
larger throughput.

Property 8.3.4 Consider two Gordon-Newell networks (R/µ/J + N), and
(R′/µ/J +N) such that all µ j(n) are nondecreasing and concave in n, and µ j(n)−
µ j+1(n) is nondecreasing in n, for j ≤ J−1. If for the corresponding routing prob-
abilities η ≺a η ′ then

T H(R/µ/J +N)≤ TH(R′/µ/J + N).

Property 8.3.5 Consider two Gordon-Newell networks (R/µ/J + N), and
(R/µ ′/J +N) such that for all j, µ j(n) and µ ′j(n) are proportional µ j(n) = µ jc(n),
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µ ′j(n) = µ ′jc(n) to some c(n) which is nondecreasing and concave in n, and η is
non-increasing. If for the corresponding service intensities µ ≺a µ ′ then

T H(R/µ/J +N)≤ TH(R/µ ′/J + N).

Similar assumptions as above in the class of Jackson networks lead to the Schur-
convex ordering of the state vectors, which here, intuitively speaking, describes a
better performance of the network after the assumed perturbation (adjusting service
capacities to the routing structure gives a better performance).

Property 8.3.6 Consider two Jackson networks (λ , R̃/µ/J), and (λ , R̃/µ ′/J) such
that for all j, µ j(n) and µ ′j(n) are proportional µ j(n) = µ jc(n), µ ′j(n) = µ ′jc(n) to
some c(n) which is nondecreasing and concave in n, and η̃ is non-increasing. If for
the corresponding service intensities µ ≺a µ ′ then

E(ψ(X̃(t))≥ E(ψ(X̃ ′(t))

for all nondecreasing and Schur-convex functions ψ .

The next property shows that if the vector of ratios: the probability of being in
a station divided by its service intensity, has the property of being more equally
distributed over the set of stations (in the sense of majorization) then it will lead to
a larger throughput provided the service function is increasing and concave, and to
smaller one if this function is increasing and convex.

Property 8.3.7 Consider two Gordon-Newell networks (R/µ/J + N), and
(R′/µ ′/J +N) such that for all j, µ j(n) and µ ′j(n) are proportional µ j(n) = µ jc(n),
µ ′j(n) = µ ′jc(n) to some c(n) which is nondecreasing and concave (convex) in n. If

(η1/µ1, . . . ,ηJ/µJ)≺m(η ′1/µ ′1, . . . ,η
′
J/µ ′J)

then
T H(R/µ/J +N)≥ (≤)TH(R′/µ ′/J + N).

An analog of the above property can be formulated for Jackson networks.

Property 8.3.8 Consider two Jackson networks (λ ,R/µ/J), and (λ ′,R′/µ ′/J) such
that for all j, µ j(n) and µ ′j(n) are proportional µ j(n) = µ jc(n), µ ′j(n) = µ ′jc(n) to
some c(n) which is nondecreasing and concave in n. If

(η̃1/µ1, . . . , η̃J/µJ)≺m(η̃ ′1/µ ′1, . . . , η̃
′
J/µ ′J)

then, in stationary conditions,

E(ψ(X̃(t))≤ E(ψ(X̃ ′(t)),

for all nondecreasing and Schur-convex functions ψ .
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A special case where for two networks the service rates are equal shows that the
uniformly distributed routing gives the best throughput, if the service function is
increasing and concave.

Property 8.3.9 Consider two Gordon-Newell networks (R/µ/J + N), and
(R′/µ/J + N) such that for all j, µ j(n) are equal and nondecreasing and concave
in n. If η ≺m η ′ then

T H(R/µ/J +N)≥ TH(R′/µ/J + N).

8.3.4 Throughput and number of jobs

Van der Wal [92] [1] obtained the following intuitively clear property

Property 8.3.10 Suppose that for a Gordon-Newell network (R/µ/J +N) the ser-
vice rates µi(n) are positive and nondecreasing functions of n, then in the stationary
conditions E(µ1(X1(t))) is nondecreasing in N.

From Chen and Yao [14], Shanthikumar and Yao [82], we have a more involved
property.

Property 8.3.11 Suppose that for a Gordon-Newell network (R/µ/J +N) the ser-
vice rates µi(n) are positive and nondecreasing concave ( convex, starshaped, anti-
starshaped, subadditive, superadditive) functions of n, then, in stationary condi-
tions, T H(R/µ/J +N) has the same property treated as a function of N.

The above property has an application to so called open - finite networks and
blocking probabilities. Moreover Shanthikumar and Yao [83] studied monotonicity
of throughput in cyclic/finite buffer networks with respect to the convex ordering of
the service times, and of the buffer capacities.

8.4 Routing and correlations

General considerations on comparisons of Markov processes with respect to their
internal dependence structure reveal that sometimes there is a complicated inter-
play of monotonicity properties with some generalized correlation structure of ob-
served processes. Such monotonicity requirement is not unexpected if we recall that
the theory of association in time for Markovian processes is mainly developed for
monotone Markov processes, for a review see Chapter II of Liggett [50]. Associa-
tion is a powerful tool in obtaining probability bounds e.g. in the realm of interacting
processes of attractive particle systems. (A system is called attractive if it exhibits
(strong) stochastic monotonicity.)
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In the context of stochastic networks it turns out that similar connections between
monotonicity and correlation are fundamental, but - due to a more complex structure
of the processes we usually cannot hope to utilize the strong stochastic order, as
required for association, or in the development by Hu and Pan [34], and Daduna
and Szekli [24].

In this section we shall consider pairs of network processes related by some struc-
tural similarities. One can usually think of one network being obtained from the
other by some structural perturbation. The perturbations we are mainly interested
in are due to perturbing the routing of individual customers. We will always give a
precise meaning of what the perturbations are and of the resulting structural proper-
ties. Proofs of all results presented in this section can be found in Daduna and Szekli
[25].

We shall exhibit that the conditions that determine comparability of dependence,
i.e., second order properties of processes having the same first order behavior (i.e.
the same steady state), are closely connected with some further properties of the
asymptotic behavior of the processes, like the asymptotic variance of certain func-
tionals (performance measures and cost functions) of the network processes, or the
speed of convergence to stationarity via comparison of the spectral gap.

Given a prescribed network in equilibrium, our expectation is, that if we perturb
the routing process (which governs the movements of the customers after being
served at any node) in a way that makes it more dependent in a specified way, than
the joint queue length process after such a perturbation will be more dependent in
some (possibly differently) specified way.

We concentrate especially on two ways in which the routing process is perturbed.
The first way is by making routing more chaotic, which is borrowed from statistical
mechanics. There exists a well-established method to express more or less chaotic
behavior of a random walker, if his itinerary is governed by doubly stochastic rout-
ing matrices, see Alberti and Uhlmann [2]. We shall prove that if the routing is
becoming more chaotic in this sense then the joint queue length process will show
less internal dependency.

While the perturbation of the routing in this case is not connected with any order
(numbering) of the nodes of a network, the second way of perturbing the routing is
connected to some preassigned order of the nodes, which is expressed by a graph
structure. Assuming that routing of customers is compatible with this graph struc-
ture, we perturb it by shifting probability mass in the routing kernel along paths that
are determined by the graph. We shall prove that if we shift some masses in a way
that routing becomes more positive dependent then internal dependence of the joint
queue length process will increase.

We denote the Kronecker-Delta by δi, j =

{
1 if i = j

0 if i 6= j
, and for any real valued

vector ξ = (ξi : 0≤ i≤ J) we define the diagonal matrix with entries from ξ by

diag(ξ ) = (δi, j ·ξi : 0≤ i, j ≤ J).

For k = 1, . . . ,J, the kth J-dimensional unit (row) vector is ek := (δ jk : j = 1, . . . ,J).
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For α = (α1, . . . ,αJ) ∈ RJ the rank statistic R(α) = (R1(α), . . . ,RJ(α)) ∈ NJ

is defined by the enumeration of the indices of α in the decreasing order of their
associated α(·)−values, i.e.

αRi(α) ≥ αRi+1(α) i = 1, . . . ,J−1,

and ties are resolved according to the natural order of the indices.
The vector AR(α) = (AR1(α), . . . ,ARJ(α)) ∈ NJ of antiranks of α is defined by
AR j(α) = RJ+1− j(α), and so yields an enumeration of the indices of α in the in-
creasing order of their associated α(·)−values.

8.4.1 Correlation inequalities via generators

For a queue length network process X̃ with generator QX̃ and stationary distribution
π̃J we are interested in one step correlation expressions.

〈 f ,QX̃g〉π̃J (8.10)

If f = g, then (8.10) is (the negative of) a quadratic form, because −QX̃ is positive
definite. (8.10) occurs in the definition of Cheeger’s constant which is helpful to
bound the second largest eigenvalue of QX̃ (because division of (8.10) by 〈 f , f 〉π̃J

yields Rayleigh quotients), which essentially governs the (L2) speed of convergence
of X̃ to its equilibrium.

(8.10) can be utilized to determine the asymptotic variance of some selected cost
or performance measures associated with Markovian processes (network processes)
and to compare the asymptotic variances of both such related processes.

In a natural way, the one step correlations occur when comparing the dependence
structure of X̃ with that of a related process X̃′, which has the same stationary dis-
tribution π̃J , where we evaluate

〈 f ,QX̃g〉π̃J −〈 f ,QX̃′g〉π̃J , (8.11)

see e.g. (iv) and (v) in Theorem 8.4.15 below.
Because we are dealing with processes having bounded generators, properties

connected with (8.10) can be turned into properties of

〈 f , I + εQX̃g〉π̃J = Eπ̃J( f (X̃(0))g(X̃(τ))), (8.12)

where I is the identity operator, and ε > 0 is sufficiently small such that I + εQX̃ is
a stochastic matrix, and τ ∼ exp(ε) (exponentially distributed). This enables us to
apply some known discrete time methods to characterize properties of continuous
time processes in the range of problems sketched above.
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We begin with expressions which connect the differences (8.11) of covariances
for related network processes with some covariances for the corresponding routing
matrices.

Property 8.4.1 Suppose X̃ is an ergodic Jackson network process with a routing
matrix R̃ and X̃′ is a Jackson network process having the same arrival and service
intensities but having a routing matrix R̃′ = [r̃′i j ], such that the extended traffic solu-
tions η̃ of the traffic equation for R̃ and for R̃′ coincide. Then for all real functions
f ,g

〈 f ,QX̃g〉π̃J −〈 f ,QX̃′g〉π̃J =
λ
ξ0

Eπ̃J

(
tr
(
W g, f (X̃(t)) ·diag(ξ) · (R̃− R̃′)

))
,

where ξ is the probability solution of the extended traffic equation (8.3), e0 =
(0, . . . ,0), and

W g, f (n) = [g(n+ ei) f (n + e j)]i, j=0,1,...,J.

Property 8.4.2 Suppose X is an ergodic Gordon-Newell network process with a
routing matrix R and X′ is a Gordon-Newell network process having the same ser-
vice intensities but having a routing matrix R′ = [r′i j] such that the stochastic traffic
solutions η of the traffic equation for R and for R′ coincide. Then for all real func-
tions f ,g

〈 f ,QXg〉π(N,J) −〈 f ,QX′g〉π(N,J)

=
G(N−1,J)

G(N,J)
Eπ(N−1,J)

(
tr
(
W g, f (X(t)) ·diag(η) · (R−R′)

))
,

where η is the probability solution of the traffic equation (8.1), e0 = (0, . . . ,0), and

W g, f (n) = [g(n+ ei) f (n + e j)]i, j=1,...,J.

We shall reformulate the results of these properties in a form which is of
independent interest, because it immediately relates our results to methods uti-
lized in optimizing MCMC simulation. Introducing for convenience the notation
H f (n, i) := f (n+ ei) which in our framework occurs as H f (X(t), i) := f (X(t)+ ei)
(and similarly for g), we obtain

Corollary 8.4.3 (a) For Jackson network processes X̃, X̃′ as in Property 8.4.1, with
ξ the probability solution of the extended traffic equation (8.3), we have

〈 f ,QX̃g〉π̃J −〈 f ,QX̃′g〉π̃J =
λ
ξ0

Eπ̃J 〈H f (X̃(t), ·),
(
R̃− R̃′

)
Hg(X̃(t), ·)〉ξ (8.13)

(b) For Gordon-Newell network processes X,X′ as in Proposition 8.4.2, with η the
probability solution of the traffic equation, we have
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〈 f ,QXg〉π(N,J)−〈 f ,QX′g〉π(N,J) (8.14)

=
G(N−1,J)

G(N,J)
Eπ(N−1,J)〈H f (X(t), ·),

(
R−R′

)
Hg(X(t), ·)〉η

There are several appealing interpretations of the formulas (8.13) and (8.14) which
will guide some of our forthcoming arguments. We discuss the closed network case
(8.14).

The inner product

〈H f (X(t), ·),
(
R−R′

)
Hg(X(t), ·)〉η

can be evaluated path-wise for any ω , and whenever, e.g., the difference R−R′ is
positive definite, the integral Eπ I−1,J(·) (across Ω ) is over non negative functions.
Recalling that η is invariant for R and R′, we obtain

〈H f (X(t), ·),
(
R−R′

)
Hg(X(t), ·)〉η =

Eη
(
H f (X(t),V0) ·Hg(X(t),V1)

)
−Eη

(
H f (X(t),V ′0) ·Hg(X(t),V ′1)

)
,

where V = (Vn : n ∈N), and V ′ = (V ′n : n ∈N) are Markov (routing) chains with the
common stationary distribution η, and with two different transition matrices R,R′.
If we consider formally a network process X, and Markov chains V , resp. V ′ that
are independent of X, we get

〈 f ,QXg)π(N,J) − ( f ,QX′g〉π(N,J) =

G(N−1,J)
G(N,J)

·

·
(
Eπ(N−1,J) Eη

(
H f (X(t),V0) ·Hg(X(t),V1)

)
−Eπ(N−1,J) Eη

(
H f (X(t),V ′0) ·Hg(X(t),V ′1)

))
=

=
G(N−1,J)

G(N,J)
·

·
(
Eη Eπ(N−1,J)

(
H f (X(t),V0) ·Hg(X(t),V1)

)
−Eη Eπ(N−1,J)

(
H f (X(t),V ′0) ·Hg(X(t),V ′1)

))
,

the latter equality by the Fubini theorem.
Corollary 8.4.3 points out the relevance of the following orderings for transition

matrices which are well known in the theory of optimal selection of transition ker-
nels for MCMC simulation. In our investigations these orders will be utilized to
compare routing processes via their transition matrices.

Definition 8.4.4 Let R = [ri j ] and R′ = [r′i j] be transition matrices on a finite set E

such that ηR = ηR′ = η .
We say that R′ is smaller than R in the positive definite order , R′ ≺pd R, if R−R′

is positive definite on L2(E,η).
We say that R′ is smaller than R in the Peskun order, R′ ≺P R, if for all j, i ∈ E

with i 6= j, it holds r′ji ≤ r ji, see Peskun [68].

Peskun used the latter order to compare reversible transition matrices having the
same stationary distribution, and to compare their asymptotic variance. Tierney [89]
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proved that the main property used in the proof of Peskun, namely that R ≺P R′

implies R′ ≺pd R, holds without reversibility assumptions.

Comparison of asymptotic variance

Peskun and Tierney derived comparison theorems for the asymptotic variance of
Markov chains for application to optimal selection of MCMC transition kernels in
discrete time. These asymptotic variances occur as the variance parameters in the
limiting distribution in the central limit theorem for MCMC estimators.

In the setting of queueing networks, performance measures of interest usually
are of the form π( f ) = Eπ̃J( f (X̃(t))). The value of them can be estimated as a time
average, justified by the ergodic theorem for Markov processes, i.e. in the discrete
time we have for large n

Eπ̃J( f (X̃(t)))∼ 1
n

n

∑
k=1

f (Xk).

Under some regularity conditions on a homogeneous Markov chain with a transition

kernel K, there exists CLT of the form (weak convergence ≡ D→)

√
n(

1
n

n

∑
k=1

f (Xk)−Eπ̃J( f (X̃(t))))
D→ N(0,v( f ,K)),

where the asymptotic variance is

v( f ,K) = 〈 f , f 〉π̃J −π( f )+ 2
∞

∑
k=1

〈 f ,Kk f 〉π̃J . (8.15)

To arrange a discrete time framework for our network processes X̃ we consider
Markov chains with transition matrices of the form

K = I + εQX̃

(with ε > 0 sufficiently small) that occur in the compound Poisson representation of
the transition probabilities of the network processes.

The next properties show that perturbing the routing in network can result in a
larger asymptotic variance for the imbedded chain.

Property 8.4.5 (a) Consider two ergodic Jackson networks with the same arrival
and service intensities, and with the stationary queue length processes X̃ and X̃′.
Assume that the corresponding extended routing matrices R̃ and R̃′ are reversible
with respect to ξ .

If R̃′ ≺P R̃ then for any real function f we have

v( f , I + εQX̃′)≥ v( f , I + εQX̃). (8.16)
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(b) Consider two ergodic Gordon-Newell networks with the same service intensi-
ties, and with the stationary queue length processes X and X′. Assume that the
corresponding routing matrices R and R′ are reversible with respect to η .

If R′ ≺P R, then for any real function f we have

v( f , I + εQX′)≥ v( f , I + εQX). (8.17)

Comparison of spectral gaps

Let X be a continuous time homogeneous ergodic Markov process with stationary
probability π , and generator QX. The spectral gap of X, resp. QX is

Gap(QX) = inf{〈 f ,−QX f 〉π : f ∈ L2(E,π),π( f ) = 0, 〈 f , f 〉π = 1}. (8.18)

The spectral gap of X determines for X(t) the distance to equilibrium π in L2(E,π)-
norm ‖·‖π : Gap(QX) is the largest number ∆ such that for the transition semigroup
P = (Pt : t ≥ 0) of X it holds

‖Pt f −π( f )‖π ≤ e−∆t‖ f −π( f )‖π ∀ f ∈ L2(E,π).

For Gordon-Newell networks their spectral gap is always greater than zero, while
for Jackson networks the situation is more delicate: zero gap and non zero gap can
occur. Iscoe and McDonald [45], [46], and Lorek [56] proved, under some natural
assumptions, necessary and sufficient conditions for the existence of the non-zero
spectral gap of Jackson networks. The case of positive gap is proved by using an
auxiliary vector of independent birth-death processes, used to bound the gap away
from zero.

It is interesting that for some classes of Jackson networks it is possible to strictly
bound the gap of the queue length network process X̃ from below by the gap of
some multidimensional birth-death process, which will play in the next statement
the role of the network process X̃′. Because we focus on the intuitive, but rather
strong Peskun ordering of the routing matrices, we need some additional assump-
tions on the routing. The assumption constitutes a detailed balance which determines
an additional internal structure of a Markov chain and its global balance equation (=
equilibrium equation). Such detailed balance equations are prevalent in many net-
works with (nearly) product form steady states, and often open a way to solve the
global balance equation for the steady state. (8.19) equalizes the routing flow from
any node into the (inner) network to the flow out of the (inner) network to that node.

Property 8.4.6 Consider an ergodic Jackson network process X̃ with λi > 0, for i =
1, . . . ,J. Assume that the corresponding extended routing matrix R̃ = [r̃i j]i, j=0,1,...,J
has strict positive departure probabilities r̃i0 > 0 from every node i = 1, . . . ,J.

Assume further that the routing of X̃ fulfills the following overall balance for all
network nodes with respect to the solution η̃i, i = 1, . . . ,J, of the traffic equation
(8.3):
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η̃ j

J

∑
i=1

r̃ j,i =
J

∑
i=1

η̃ir̃i, j , ∀ j = 1, . . . ,J. (8.19)

Then for the vector valued process X∗ consisting of the independent birth-death
processes, for which the nodes have the same service intensities as the Jackson
nodes and the external arrival rates λ ∗i = λi it holds

Gap(QX̃)≥ Gap(QX∗).

So, we can immediately conclude for some networks that Gap(QX̃)≥Gap(QX∗)
holds. A consequence which elaborates on the implication Peskun yields positive
definiteness is, that if we perturb routing of customers in the networks by shifting
mass from non diagonal entries to the diagonal (leaving the routing equilibrium
fixed) and obtaining that way the Peskun order of routing, then the speed of conver-
gence of the perturbed process can only decrease. This is just what in optimization
of MCMC was intended, and Peskun gave conditions for this. Similarly we see

Property 8.4.7 (a) Consider two ergodic Jackson networks with the same arrival
and service intensities, and with the state processes X̃ and X̃′. Assume that for the
extended routing matrices R̃ and R̃′, the stochastic solutions of the traffic equations
coincide (being ξ ). If R̃≺pd R̃′ then for any real function f we have

〈 f ,QX̃′ f 〉π̃J ≥ 〈 f ,QX̃ f 〉π̃J , and Gap(QX̃′) ≤Gap(QX̃). (8.20)

(b) Consider ergodic Gordon-Newell networks with the same service intensities,
and with the state processes X and X′. Assume that for the corresponding routing
matrices R and R′ the stochastic solutions of the traffic equations coincide. If R≺pd
R′ then for any real function f we have

〈 f ,QX′ f 〉π(N,J) ≥ 〈 f ,QX f 〉π(N,J) , and Gap(QX′) ≤Gap(QX). (8.21)

Comparison of dependencies

The expression (8.10) for continuous time Markov processes is transformed via the
embedded uniformization chain (8.12) to a covariance value and via (8.11) to a
comparison statement for covariance functionals for two Markov processes (and
their Poissonian embedded chains), i.e., with τ ∼ exp(η), we obtain

Eπ̃J( f (X̃0)g(X̃τ)) = 〈 f ,(I +ηQX̃)g〉π̃J ≤ 〈 f ,(I + ηQX̃′ 〉g〉π̃J = Eπ̃J ( f (X̃ ′0)g(X̃ ′τ)).

A procedure of transforming this property into analogous statements for the contin-
uous time evolution (over many time points) will need in general some additional
monotonicity properties of the processes under consideration. It turns out that some
form of stochastic monotonicity is in some cases a direct substitute for the strong
reversibility assumption which is needed to prove Peskun’s theorem.
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8.4.2 Doubly stochastic routing

In this section the perturbation of a network process will be due to the fact that
the routing of the customers will become more chaotic. In statistical physics there
is a well-established method to express being more or less chaotic for a random
walker, if his itinerary is governed by a doubly stochastic routing matrix. Alberti
and Uhlmann provide an in-depth study of Stochasticity and Partial Order that
elaborates on such methods [2]. Following their ideas, we shall consider (mainly)
Gordon-Newell networks with doubly stochastic routing matrix.

Consider an arbitrary row r(i) := (ri j : j = 1,2, . . . ,J) of the Gordon-Newell net-
work’s routing matrix R and a doubly stochastic matrix T = [ti j]i, j=1,...,J . Then the
i-th row vector of the product (R ·T ) is smaller than r(i) in the sense of the ma-
jorization ordering, see Marshall and Olkin [57], p.18. This means that the proba-
bility mass is more equally distributed in each row after multiplication. The routing
scheme is then more equally distributed too. Nevertheless, the solution of the traffic
equation for R ·T and therefore the steady state of the network under the R ·T regime
is the same as under R, namely, the normalized solution of the traffic equation (8.1)
is in both cases the uniform distribution on {1,2, . . . ,J}.

A more chaotic routing leads to less internal dependencies over time of the in-
dividual routing chains of the customers and will therefore lead to less internal de-
pendence over time of the joint queue length process. Let

L = { f : EN →R+ : f (n1, . . . ,nJ) = a +
J

∑
i=1

αi ·ni,αi ∈R, i = 1, . . . ,J,a ∈R+},

be the convex cone of nonnegative affine-linear functions on EN .

Theorem 8.4.8 (Linear service rates) Consider two ergodic Gordon-Newell net-
work processes with common stationary distribution π (N,J): X with a doubly stochas-
tic routing matrix R and X′ with the routing matrix R′ = [r′i j] = R ·T, for a doubly
stochastic matrix T . All other parameters of the networks are assumed to be the
same.

Consider pairs of nonnegative affine-linear functions

f : EN → R+ : f (n1, . . . ,nJ) = a +
J

∑
i=1

αi ·ni ∈ L, and

g : EN → R+ : g(n1, . . . ,nJ) = b +
J

∑
i=1

βi ·ni ∈ L, with

R(α1, . . . ,αJ) = R(β1, . . . ,βJ).

Then for all such pairs of functions with f ,g ∈ I∗+(NJ)∩L, and f ,g ∈D∗+(NJ)∩L,
holds

〈 f ,QX′g〉π(N,J) ≤ 〈 f ,QXg〉π(N,J) .
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In Theorem 8.4.8, for f = g, the rank condition is trivially fulfilled. This yields

Corollary 8.4.9 Under the assumptions of Theorem 8.4.8, for all f ∈ I∗+(NJ)∩L,
and f ∈D∗+(NJ)∩L, it holds

〈 f ,QX′ f 〉π(N,J) ≤ 〈 f ,QX f 〉π(N,J) .

Note, that for f = g, R(I−T) is nonnegative definite.

8.4.3 Robin-Hood transforms

If the node set J is equipped with a partial order, which is relevant for the customers’
migration, then it is tempting to consider perturbations of the routing processes that
are in line with this order. To be more precise: We have an up-down relation between
the nodes and the question is how the steady state performance reacts on routing
being more up, resp. down.

The construction of Corollary 2.1 and Example 3.1 in Daduna and Szekli [24],
which is sometimes called ROBIN-HOOD TRANSFORM - since in a certain sense
it equalizes the frequencies of the random walker to visit different nodes, yields a
change of the routing pattern in networks. The construction is as follows:

Consider a homogeneous Markov chain (Xi) on a finite partially ordered state
space (E,≺) with a transition matrix [p(i, j)]i, j∈E, and the corresponding stationary
distribution π .

Assume that for a,b,c,d ∈ E, we have a ≺ c and b ≺ d such that (a,d) ∈ E2

and (c,b) ∈ E2 are not comparable with respect to the product order, and that
P(X0,X1)(a,d)≥ α,P(X0,X1)(c,b)≥ α .

Construct the distribution P(Y0,Y1) of a random vector (Y0,Y1) from P(X0,X1) by

P(Y0,Y1)(a,b) = P(X0,X1)(a,b)+ α , P(Y0,Y1)(c,d) = P(X0,X1)(c,d)+ α , and
P(Y0,Y1)(a,d) = P(X0,X1)(a,d)−α , P(Y0,Y1)(c,b) = P(X0,X1)(c,b)−α, and

P(Y0,Y1)(u,v) = P(X0,X1)(u,v) for all other (u,v) ∈ E2.

(This is the Robin-Hood transform.)
The one-dimensional marginals of both (X0,X1) and (Y0,Y1) are π and condi-

tional distribution P(Y1 = w | Y0 = v) =: q(v,w), for v,w ∈ E, is obtained from
[p(i, j)] as follows:

q(a,d) = p(a,d)− α
π(a)

, q(c,b) = p(c,b)− α
π(c) , (8.22)

q(a,b) = p(a,b)+
α

π(a)
, q(c,d) = p(c,d)+ α

π(c) , q(u,v) = p(u,v) otherwise.

Consider now a homogeneous Markov chain (Yi) with the so defined transition
matrix q, and consider (Xi) and (Yi) as routing chains of a network process, where
(Yi) is obtained from (Xi) by a perturbation through the Robin-Hood transformation.
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Then according to Corollary 2.1 and Theorem 3.1 in Daduna and Szekli [24] the
routing governed by (Yi) is more concordant than the routing governed by (Xi).

Definition 8.4.10 Let (E,≺) be a finite partially ordered set. The generalized par-
tial sum order ≺∗ on NE is defined for x = (xi : i ∈ E),y = (yi : i ∈ E) ∈NE by

x≺∗ y :⇐⇒∀ decreasing K ⊆ E holds ∑
k∈K

xk ≤ ∑
k∈K

yk. (8.23)

Consider now a Jackson network X̃ where the node set J = {1, . . . ,J} is a partially
ordered set (J,≺) and the customers flow in line with the directions prescribed by
this partial order, i.e. for the routing matrix R̃ it holds (see Harris [33]):

r̃i j > 0 =⇒ (i≺ j∨ j ≺ i) . (8.24)

Then the Jackson network process X̃ has the up-down property with respect to ≺∗,
which means that for the generator QX̃

qX̃(x,y) > 0 =⇒ (x≺∗ y∨ y≺∗ x) . (8.25)

Lemma 8.4.11 Consider an ergodic Jackson network with an extended routing ma-
trix R̃, and the corresponding queue length process X̃. We assume that the node set
J = {1, . . . ,J} is a partially ordered set. For some nodes a,b,c,d ∈ J (not necessarily
distinct) let a≺ c and b≺ d, and for some α > 0 let

r̃ad ≥ α/ξa and r̃cb ≥ α/ξc. (8.26)

Define a new Jackson network with its queue length process X̃′ as follows: the
nodes’ structure, and the external arrival processes are the same as in the origi-
nal network. The routing matrix R̃′ is computed by the Robin-Hood transformation
(8.22) with the fixed a,b,c,d.
Consider a pair of comonotone functions f ,g (either both increasing or both de-
creasing) such that for all n ∈ NJ it holds ( f (n + ec)− f (n + ea)) · (g(n + ed)−
g(n + eb))≥ 0. Then

〈 f ,QX̃g〉π̃J ≤ 〈 f ,QX̃′g〉π̃J . (8.27)

Immediately from this lemma we get

Theorem 8.4.12 Consider an ergodic Jackson network with an extended routing
matrix R̃, and with the corresponding queue length process X̃. We assume that the
node set is partially ordered (J,≺).

Define a new Jackson network with its queue length process X̃′ as follows: the
nodes’ structure, and the external arrival processes are the same as in the original
network. The routing matrix R̃′ is computed by a sequence of n≥ 1 feasible Robin-
Hood transformations according to (8.22) for a sequence of nodes.

Then for any pair of comonotone functions f ,g : NJ → R+ with respect to the
generalized partial sum order ≺∗ (either both increasing or both decreasing) it
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holds
〈 f ,QX̃g〉π̃J ≤ 〈 f ,QX̃′g〉π̃J .

8.4.4 Dependence orderings and monotonicity

We shall now generalize the concordance ordering.

Definition 8.4.13 (a) Random elements X,Y of En are called concordant stochasti-
cally ordered with respect to F (written as X≺n

F−cc Y or Y≻n
F−cc X, often shortly:

X≺F−cc Y, resp., Y≻F−cc X,) if

E

[
n

∏
i=1

fi(Xi)

]
≤ E

[
n

∏
i=1

fi(Yi)

]
, (8.28)

for all fi ∈ I∗+(E)∩F and for all fi ∈D∗+(E)∩F, i = 1, . . . ,n.
(b) Let T ⊆ R be an index set for stochastic processes X = (Xt : t ∈ T) and Y =

(Yt : t ∈ T), Xt ,Yt : Ω→E, t ∈ T . We say that X and Y are concordant stochastically
ordered with respect to a class F of functions on E (and write X≺F−cc Y) if for all
n≥ 2 and all t1 < t2 < .. . tn, we have on En

(Xt1 , . . . ,Xtn)≺F−cc (Yt1 , . . . ,Ytn).

The setting of (b) will be applied to Markovian processes.
Taking in (a) for F the space of all measurable functions M on E we obtain

the usual concordance ordering as in Daduna and Szekli [24]. It is easy to see that
the two-dimensional marginals of the Markov chains related by the Robin-Hood
construction in (8.22) fulfill

(X0,X1)≤M−cc (Y0,Y1).

For example, if F contains the indicator functions of point-generated increasing
and decreasing sets, {i}↑= { j ∈ E : i≺ j} and {i}↓= { j ∈E : j≺ i}, for concordant
stochastically ordered processes X and Y (with respect to F) we can compare the
probability of extreme events like

P(inf(Xt1 , . . . ,Xtn)≻ t)≤ P(inf(Yt1 , . . . ,Ytn)≻ t),

and
P(sup(Xt1 , . . . ,Xtn)≺ s)≤ P(sup(Yt1 , . . . ,Ytn)≺ s),

for fixed t and s. We mention, that in most cases F will be a convex cone of functions
which is often additionally closed under the point-wise convergence.
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Discrete time.

Let X = (Xt : t ∈ ZZ) and Y = (Yt : t ∈ ZZ), Xt ,Yt : Ω → E, be discrete time, station-
ary, homogeneous Markov processes. Assume that π is the corresponding unique
invariant (stationary) one–dimensional marginal distribution, the same for both X
and Y, and denote the 1–step transition kernels for X and Y, by KX : E×E→ [0,1],
and KY : E×E→ [0,1], respectively. Denote the respective transition kernels for

the time reversed processes
←
X,

←
Y by

←
KX ,

←
KY . We say that a stochastic kernel K :

E×E→ [0,1] is F-monotone if
´

f (x)K(s,dx) ∈ I∗+(E)∩F for each f ∈ I∗+(E)∩F.
The following property proved to be useful in comparing some second order

properties of Markov processes, see Hu and Pan [34], Daduna and Szekli [23],
Baeuerle and Rolski [5], Daduna and Szekli [24]. It will be convenient to impose
this condition here as well. A pair X and Y of discrete time Markov processes hav-
ing the same invariant probability measure fulfils
F-symmetric monotonicity if : Either KY and

←
KX are F-monotone, or KX and

←
KY

are F- monotone.

The following theorem is an analog of Theorem 3.1 in Daduna and Szekli [24].

Theorem 8.4.14 (concordance ordering under F- symmetric monotonicity) For
two stationary Markov processes X,Y defined above, having the common unique
invariant distribution π , and fulfilling F-symmetric monotonicity, the following re-
lations are equivalent

(i) X≺F−cc Y
(ii) (X0,X1)≺2

F−cc (Y0,Y1)

(iii) 〈 f ,KX g〉π ≤ 〈 f ,KY g〉π for all f ,g ∈ I∗+(E)∩F, and for all f ,g ∈D∗+(E)∩F

(iv) 〈 f ,
←
KX g〉π ≤ 〈 f ,

←
KY g〉π for all f ,g ∈ I∗+(E)∩F, and for all f ,g ∈D∗+(E)∩F

Continuous time.

Let X = (Xt : t ∈R) and Y = (Yt : t ∈R), Xt ,Yt : Ω →E, be stationary homogeneous
Markov processes with countable state spaces. Denote the corresponding families
of transition kernels of X, and Y, by IKX = (KX

t : E×E→ [0,1] : t ≥ 0), and IKY =
(KY

t : E×E→ [0,1] : t ≥ 0), respectively, and the respective transition kernels for the

stationary time reversed processes
←
X,

←
Y by

←
IKX = (

←
KX

t : E×E→ [0,1] : t ≥ 0), and
←
IKY = (

←
KY

t : E×E→ [0,1] : t ≥ 0), respectively. Assume that π is the corresponding
invariant distribution, common for both IKX and IKY , that is

´

KX
t (x,dy)π(dx) =

´

KY
t (x,dy)π(dx) = π(dy), for all t > 0.

For the time reversed processes we use the corresponding notation
←
QX and

←
QY .

We say that IKX = (KX
t : E×E→ [0,1] : t ≥ 0) is F-time monotone if for each t ≥ 0,

KX
t is F- monotone.
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Analogously to the discrete case, we define: A pair X and Y of continuous time
Markov processes having the same invariant probability measure fulfills

F-time symmetric monotonicity if : Either IKY and
←
IKX are F-time monotone,

or IKX and
←
IKY are F- time monotone.

Using similar arguments as in Theorem 3.3 in Daduna and Szekli [24] we have

Theorem 8.4.15 Suppose that E is countable and the above defined stationary
chains X and Y have bounded intensity matrices QX and QY , respectively. Then
under F-time symmetric monotonicity the following properties are equivalent

(i) X≺F−cc Y
(ii) (X0,Xt)≺2

F−cc (Y0,Yt) ∀t > 0,
(iii) 〈 f ,T X

t g〉π ≤ 〈 f ,TY
t g〉π for all f ,g ∈ I∗+(E)∩F, and for all f ,g ∈D∗+(E)∩

F,∀t > 0
(iv) 〈 f ,QX g〉π ≤ 〈 f ,QY g〉π for all f ,g ∈ I∗+(E)∩F, and for all f ,g ∈D∗+(E)∩F

(v) 〈 f ,
←
QX g〉π ≤ 〈 f ,

←
QY g〉π for all f ,g ∈ I∗+(E)∩F, and for all f ,g ∈D∗+(E)∩F

Reducing the class of functions from M to some smaller class F makes this theorem
much more versatile for applications, as we shall demonstrate below.

From Theorem 8.4.15, we conclude that problem of comparing correlations for
stochastic network processes in continuous time is an interplay of two tasks:
• proving monotonicity, the form of which we identified as F- time symmetric
monotonicity, and
• additionally proving generator inequalities.

Generator inequalities have been presented in the previous paragraphs. We shall
continue with presenting the concept of time symmetric monotonicity for network
processes.

From a recent literature on dependence structure of Markovian processes with
one dimensional (linearly ordered) discrete state spaces it is visible that F-time sym-
metric monotonicity (in continuous time) and F symmetric monotonicity (in discrete
time) play an important role, see e.g., Hu and Pan [34]. This property occurred inde-
pendently in the literature several times, see e.g., Baeuerle and Rolski [5], Daduna
and Szekli [23][Lemma 3.2].

So - in general, we cannot hope to dispense from these assumptions when prov-
ing dependence properties in a more complex network setting. Nevertheless, the
necessity of these assumptions is still an unsolved problem. Some counterexam-
ples, where dependence structures of Markovian processes over a finite time horizon
are proved without F symmetric monotonicity, are provided in Daduna and Szekli
[24][Section 3.3].

On the other hand, a need for some monotonicity is emphasized further by the re-
lated theory of association in time for Markov processes, which relies on the strong
stochastic monotonicity of these processes, see for a review Liggett [50][chapter II],
and Daduna and Szekli [23].
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For stochastic networks, which are in general not reversible, the property of time
symmetric monotonicity seems to ba a natural property: Every Jackson network pro-
cess X with service rates that are at all nodes nondecreasing functions of the local
queue length [Daduna and Szekli [23],Corollary 4.1] is stochastically monotone
with respect to stochastic ordering on the set of all probability measures on (NJ,≤).
Because the time reversed process of a Jackson network process is equal in distri-
bution to a process of a suitably defined Jackson network with the same properties
for the service rates, any pair of Jackson network processes with the same stationary
distribution fulfills F-time symmetric monotonicity, where F = I∗(NJ,≤).

We only mention that by a similar observation F-time symmetric monotonicity
holds for Gordon-Newell networks.

In many papers F is the class of all (bounded) increasing functions with respect
to the natural linear order. The weaker concept of F-(time) symmetric monotonicity
for smaller classes of functions seems to be natural in the context of the theory of in-
tegral orders, see Mueller and Stoyan [65] or Li and Shaked [54]. However we shall
need a closure property, which will guarantee that F-functions are transformed into
F-functions, or at least into the maximal generator of the respective order, Mueller
and Stoyan [65][Definition 2.3.3] or Li and Shaked [54] (Definition 3.2).

The balance between having a small class of F-functions and the necessity of
obtaining such a closure property is demonstrated next. The first example is in the
spirit of the classical Gordon-Newell networks but with a smaller set F. Recall that
L is the set of nonnegative affine-linear functions on EN .

Property 8.4.16 (Linear service rates) Consider two Gordon-Newell network pro-
cesses X,X′ on EN ⊆NJ, equipped with the coordinate-wise order≤, both with the
corresponding stationary distribution πN,J . Assume that the service rates in both
networks at all nodes are linear functions of the local queue lengths.

Then the pair X,X′ of Gordon-Newell network processes is L-time symmetric
monotone.

Property 8.4.17 (Generalized tandem network) Consider an open tandem net-
work process X̃ on the state space NJ equipped with the partial sum order ≤∗ with
stationary distribution π̃J. The routing for X̃ is linear as follows:

• customers enter the network only through node 1: λ1 > 0,λ j = 0, j = 2, . . . ,J,
• customers depart from the network only from node J: r̃J0 > 0,r j0 = 0, j =

1, . . . ,J− 1,
• customers move only stepwise: r̃ j( j+1) > 0, j = 1, . . . ,J− 1, and r̃ j( j−1)≥ 0, j =

2, . . . ,J,
and r̃ j j ≥ 0, j = 1, . . . ,J, and r̃ ji = 0 in any other case.

Let X̃′ be another generalized tandem network process with the same stationary
distribution π̃J, and with its routing subject to the same restriction as described for
X̃.

Assume that the arrival rates and the (nondecreasing) service rates in both net-
works are equal and bounded.

Then the pair X̃, X̃′ is I∗(RJ ,≤∗)∪D∗(RJ,≤∗)-time symmetric monotone.
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Property 8.4.18 (Functions of the total population size) Consider two Jackson
networks with equal linear service rates, which have the same stationary distri-
bution. Assume further that inside both networks the effective departure rates from
all nodes are the same, i.e., µ j · r j0 is constant for all j = 1, . . . ,J, (and therefore
> 0). Let

F = { f : NJ →R+ : f (n1, . . . ,nJ) = f ∗(n1 + · · ·+nJ) for some f ∗ : R→ R+}

be the set of real valued functions on NJ, which depend on the sum of the arguments
only.
Then the state processes in these networks constitute a F−time symmetric monotone
pair.

Let ρ = (ρ1, . . . ,ρJ) be a permutation of {1,2, . . . ,J} which will serve as a rank
vector for the linear factors of functions in

L(ρ) = { f : S(I,J)→ R+ : f (n1, . . . ,nJ) (8.29)

= a +
J

∑
i=1

αi ·ni,αi ∈ R, i = 1, . . . ,J,a ∈R+,R(α1, . . . ,αJ) = ρ} ⊆ L.

Theorem 8.4.19 Consider two ergodic Gordon-Newell network processes with com-
mon stationary distribution π(N,J): X with a doubly stochastic routing matrix
R = [ri j] and X′ with the routing matrix R′ = R · T , for a doubly stochastic ma-
trix T = [ti j : i, j = 1, . . . ,J]. The service rates µ j(n j) = µ j ·n j are in both networks
the same.

Let AR(µ) = ρ = (ρ1, . . . ,ρJ) denote the antirank vector of the service rate vec-
tor µ = (µ1, . . . ,µJ). Then

X≥ L(ρ)−cc X′. (8.30)

Example 8.4.20 In many applications the functions in F serve as cost or reward
functions connected with the network’s performance. A typical cost function is as
follows:

Per customer at node j and per time unit a cost of amount α j occurs, so
f j(Xj(t)) = α j ·Xj(t) is the cost at node j. Incorporating a fixed constant cost a
then in state (n1, . . . ,nJ) the total cost per time unit is f (n1, . . . ,nJ) = a+∑J

i=1 αi ·ni.
When we put the natural assumption that the costs increase when the service speed
decreases, this situation is covered by the preceding theorem.

Our next theorem is in the class of generalized tandem networks as described
in Proposition 8.4.17. Robin-Hood transforms under this graph structure are of the
following form: Shift (probability) mass α > 0 from arcs r j, j+1 and r j+1, j to arcs
r j, j and r j+1, j+1. This has the following consequences.

Theorem 8.4.21 (General tandem) Consider Jackson network processes X̃,X̃′ on
state space NJ equipped with the partial sum order ≤∗, having the same stationary
distribution π̃J.
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Assume further that for some fixed j ∈ {1, . . . ,J−1} and α > 0 it holds r̃ j( j+1) >

α and r̃( j+1) j ≥ α , and that the routing for X̃′ is obtained by the Robin-Hood trans-
formation according to (8.22), where a = b = j and c = d = j +1.

Then with PS := I∗(RJ ,≤∗)∪D∗(RJ,≤∗) we have

X̃≤PS−cc X̃′. (8.31)

It is worth mentioning that a Robin-Hood transformation applied to the tandem
routing yields the Peskun ordering between the routing matrices (see Definition
8.4.4) but we do not need reversibility in the above theorem, it is substituted by
the time symmetric monotonicity.

8.5 Jackson networks with breakdowns

The class of Jackson networks can be reasonably extended. Assume the servers at
the nodes in a Jackson network to be unreliable, i.e., the nodes may break down.
The breakdown event may occur in different ways. Nodes may break down as an
isolated event or in groups simultaneously, and the repair of the nodes may end
for each node individually or in groups as well. It is not required that those nodes
which stopped service simultaneously return to service at the same time instant. To
describe the system’s evolution we have to enlarge the state space for the network
process as will be described below. For a more detailed description see Sauer and
Daduna [75].

8.5.1 Product formula

Control of breakdowns and repairs is as follows:
Let I⊂ J be the set of nodes in down status and H ⊂ J\I,H 6= /0, be some subset

of nodes in up status. Then the nodes of H break down with intensity α(I, I∪H).
Nodes in down status neither accept new customers nor continue serving the old

customers which will wait for the server’s return. (At nodes i under repair the service
intensities µi(ni) are set to 0). Therefore, the routing matrix has to be changed so
that customers attending to join a node in down status are rerouted to nodes in up
status or to the outside. We describe three possible rerouting schemes below.

Assume the nodes in I are under repair, I ⊂ J, I 6= /0. Then if H ⊂ I,H 6= /0, the
nodes of H return from repair as a batch group with intensity β (I, I \H) and im-
mediately resume their services. Routing then has to be updated again as will be
described below.

The intensities for occurrence of breakdowns and repairs have to be set under
constraints. A rather general versatile class is defined as follows.
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Definition 8.5.1 Let I be the set of nodes in down status. The intensities for break-
downs, resp. repairs for H 6= /0 are defined by

α(I, I∪H) :=
a(I∪H)

a(I)
, resp. β (I, I\H) :=

b(I)
b(I\H)

, (8.32)

where a and b are any functions, a,b : P(J)→ [0,∞) whereas 0
0 := 0.

The above intensities are assumed henceforth to be finite.

The rerouting matrices of interest are as follows.

Definition 8.5.2 (BLOCKING) Assume that the routing matrix of the original pro-
cess is reversible. Assume the nodes in I are the nodes of the Jackson network
presently under repair. Then the routing probabilities are redefined on J0\I accord-
ing to

r̃I
i j =

{
r̃i j , i, j ∈ J0\I, i 6= j,
r̃ii +∑k∈I r̃ik, i ∈ J0\I, i = j.

(8.33)

Note that even in case of r̃00 = 0, external arrivals may be now rejected with positive
probability to an immediate departure, because arrivals to nodes under repair are
rerouted:

r̃I
00 = r̃00 + ∑

k∈I

r̃0k ≥ 0.

Definition 8.5.3 (STALLING) If there is any breakdown of either a single node or a
group of nodes, then all arrival streams to the network and all service processes at
the nodes in up status are completely interrupted and resumed only when all nodes
are repaired again.

Definition 8.5.4 (SKIPPING) Assume that the nodes in I are the nodes presently
under repair. Then the routing matrix is redefined on J0 \ I according to:

r̃I
jk = r̃ jk +∑i∈I r̃ jir̃I

ik, k, j ∈ J0\I,

r̃I
ik = r̃ik +∑l∈I r̃il r̃I

lk, i ∈ I,k ∈ J0\I.

For describing the breakdown of nodes in Jackson networks we have to attach to the
state spaces E = NJ of the corresponding network processes an additional compo-
nent which carries information of the reliability behavior of the system described by
a process Y. We introduce states of the form

(I; n1,n2, . . . ,nJ) ∈ P(J)×NJ .

The meaning of such a prototype state is:
I is the set of nodes under repair. For j ∈ J\I, the numbers n j ∈N indicate that at

nodes j which work in a normal up status, there are n j customers present; for i ∈ I
the numbers ni ∈ N indicate that at each node i which is in down status there are ni
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customers that wait at node i for the return of the repaired server. Collecting these
states we define for the networks new Markov processes Z̃ = (Y,X̃) on

Ẽ = P(J)×NJ . (8.34)

For such general models with breakdowns and repairs and with the above rerouting
principles it was shown in Sauer and Daduna [75] that on the state space Ẽ the steady
state distribution for Z̃ is of a product form. Note that the breakdown/repair process
Y is Markovian on the state space P(J) of all subsets of J, but that the network
process component X̃ is in this setting not a Markov process.

Theorem 8.5.5 The process Z̃ with breakdown and repair intensities given by Eq.
(8.32) and rerouting according to either BLOCKING or STALLING, or SKIPPING has
a stationary distribution of product form given by:

π̃Y,J(I; n1,n2, . . . ,nJ) = πY (I) π̃J(n1,n2, . . . ,nJ)

with

πY (I) =


1+ ∑

K⊂J
K6= /0

a(K)

b(K)



−1

a(I)
b(I)

for I⊂ J

and π̃J(n1,n2, . . . ,nJ) the equilibrium distribution in the standard Jackson network.

Note that time evolution of the queueing process X̃ is different in all cases (stan-
dard Jackson, BLOCKING, STALLING, SKIPPING). At the same time, it is possible to
change the breakdown/repair intensities in such a way that the stationary distribution
for the joint process Z̃ remains unchanged.

8.5.2 Bounds via dependence ordering for networks with
breakdowns

8.5.2.1 Dependence ordering of Jackson networks with breakdowns

Consider Markov processes Z̃ = (Y, X̃) on Ẽ = P(J)×NJ describing the state of the
Jackson network with breakdowns. For a given set K denote by {K}↑, {K}↓, {K}≺
the sets of its ancestors, descendants and relatives, respectively, i.e.

{K}↑ := {I⊆ J : K⊂ I,K 6= I} ,
{K}↓ := {I⊆ J : I⊂ K,K 6= I} ,
{K}≺ := {K}↓ ∪{K}↑ .

Recall that Y = (Y (t),t ≥ 0) is a cadlag Markov process on the state space P(J)
which describes availability of the network’s components over time, i.e. Y(t) = K,
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K∈P(J), means that at time t the set K consists of the nodes which are under repair.
We have

qY (K,H) =





α(K,H) =
a(H)
a(K) , if H ∈ {K}↑+ ,

β (K,H) = b(K)
b(H)

, if H ∈ {K}↓ ,
−∑I∈{K}↑

a(I)
a(K)
−∑I∈{K}↓

b(K)
b(I) , if H = K,

0, otherwise.

(8.35)

We define for fixed I1 ⊂ I2, J1 ⊂ J2 new intensities by

qY ε
(K,H) =






qY (K,H)+ ε
πY (K)

, if (K = I1,H = J1) or (K = I2,H = J2) ,

qY (K,H)− ε
πY (K)

, if (K = I1,H = J2) or (K = I2,H = J1) ,

qY (K,H), otherwise .

(8.36)

Consider the processes Y, Yε on state space (P(J),⊆) and two processes Z̃ =
(Y,X̃), Z̃ε = (Yε ,X̃ε ) which have the same routing matrices and service intensi-
ties but different breakdown/repair processes Y and Yε .

The following property is taken from Daduna et al [22]. Note that both processes,
before and after modification, have the same product form invariant distribution, but
they are different in their time evolution. The modification results in a higher rate
to change sets under repair to ”similar” ones. Of course such a transformation can
be iterated, which leads to eliminate transitions between not ordered sets. Note that
processes under comparison are not Markovian (the ”big” process Z is Markovian,
but X̃ usually not).

Property 8.5.6 (Enlarging dependence in time via structure of breakdowns)
Assume that two Jackson networks have the same arrival intensities, the same
rerouting matrices according to either BLOCKING or STALLING or SKIPPING and
breakdown/repair intensity matrices are given by (8.35) and (8.36). Assume also
that breakdown/repair intensity matrices and its time-reversal counterparts are
stochastically monotone. Then in equilibrium, for all n≥ 2 and t1 ≤ ·· · ≤ tn,

E
[

f
(
X̃(t1), . . . , X̃(tn)

)]
≤ E

[
f
(
X̃ ε(t1), . . . , X̃

ε(tn)
)]

,

for all functions f with isotone differences on (Ẽn,(≤J)n).

8.6 General networks

Consider an open network of J, k j-server, FCFS nodes, j ∈ J = {1, . . . ,J}. We set
k = (k1, . . . ,kJ). Denote by N0 = (N1, . . . ,NJ) the vector of counting processes of
arrivals from outside to the nodes, by S = (S1, . . . ,SJ) the vector of service time
sequences S j = (S j

1, . . .), where S j
n denotes the service time received by the n-th

initiated job at station j. Denote by V = (V 1, . . . ,V J) the vector of destination se-
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quences V j = (V j
1 , . . .), where V j

n denotes the number of the node visited by the
job that is the n-th departing from the node j or V j

n = 0 if the job leaves the net-
work. Let X̃ = (X̃(t) : t ≥ 0) denote the vector process recording the joint queue
lengths in the network for time t. For t ∈ R+, X̃(t) = (X̃1(t), . . . , X̃J(t)) means that
at time t there are X̃ j(t) customers present at node j, either in service or waiting.
Given an initial content X̃(0) = (X̃1(0), . . . , X̃J(0)), such a general network is deter-
mined by the arrival, service and routing variables and will be denoted therefore by
(N0,V )/S,k/J. The corresponding closed network, which starts with N customers
and does not admit arrivals from outside will be denoted by V/S,k/J + N. Denote
by Nd = (N1,·, . . . ,NJ,·) the vector of point processes of departures from the nodes,
and by Na = (N·,1, . . . ,N·,J) the vector of all arrivals to the nodes. The limits (if they
exist) limt→∞ N j,·(t)/t, which are the throughputs of the consecutive nodes will be
denoted by T Hj(V/S,k/J +N), j ∈ J.

For an open network of J, k j-server, FCFS nodes, with finite waiting rooms of
sizes B1, . . . ,BJ we introduce additional parameter B = (B1, . . . ,B j) and use notation
(N0,V )/S,k,B/J for open networks, and V/S,k,B/J + N for closed networks. An
arriving job from outside that finds the selected node full is lost. A job that completes
service in node j proceeds to the next node according to V j unless the latter is full.
In this case we consider manufacturing blocking: the job has to wait until there is
an empty space in the selected node, i.e. the server at node j is idle (blocked); or we
consider communication blocking: if a job completes service at j and finds the next
node full, it has to repeat service at j.

An alternative description of a J-variate arrival process is the one given by a
sequence

Φ ≡ {(T 1
n , . . . ,T J

n )}∞
n=−∞

of random variables defined on a probability space (Ω ,F,P), such that T i
0 ≤ 0 < T i

1,
T i

n < T i
n+1, i = 1, . . . ,J, n ∈ ZZ and limn→±∞ T i

n = ±∞ (Φ is nonexplosive). Denote
by {Xi

n}∞
n=−∞ a sequence of inter-point distances, i.e. Xi

n = T i
n −T i

n−1 (the interval
Xi

1 contains 0). Then a J-variate point process Φ can be seen as a random element
assuming its values in (R∞

+)J .
Let N be a set of locally finite integer valued measures on R. Equivalently,

we view Φ as a random measure Φ : Ω → Nk with the coordinate functions
Φ = (Φ1, . . . ,Φk), Φ i : Ω → N. Then for all Borel sets B, Ni

Φ(B) := Φ i(B) is the
corresponding counting variable. However, if it is clear which point process do we
mean we shall write shortly Ni instead of Ni

Φ . The corresponding counting processes
(Ni(t),t ≥ 0), i = 1, . . . ,J are given by Ni(t) := Ni((0,t]).

It will be convenient to have notation for another point process Ψ with the corre-
sponding points {(T1

n , . . . ,Tk
n)}n≥1, k ≤∞ and inter-point distances Ui

n = Ti
n−Ti

n−1,
i = 1, . . . ,k.

In the case k = 1 we shall write Tn (Xn, N, λ ) and Tn (Un) instead of writing these
quantities with the superscript 1.

We denote by Lst (Lcx, Licx) the class of increasing (convex, increasing and
convex) functions f : R→ R.
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Define for 1 ≤ l ≤ m, ε > 0 and arbitrary function ϕ : Rm → R the difference
operator ∆ ε

l by

∆ ε
l ϕ(u1, . . . ,um) = ϕ(u1, . . . ,ul−1,ul + ε,ul+1, . . . ,um)−ϕ (u1, . . . ,um)

for given u1, . . . ,um.
We denote arbitrary m-dimensional intervals by J ⊆ Rm, i.e. J = I1× ·· · × Im,

where I j is a (possibly infinite ended) interval on R for j = 1, . . . ,m. Recall that a
function ϕ : Rm → R is supermodular on J if for all 1 ≤ l < j ≤ m, εl ,ε j > 0 and
u = (u1, . . . ,um) ∈ J such that (u1, . . . ,ul−1,ul + εl ,ul+1, . . . ,um) ∈ J we have

∆ εl
l ∆ ε j

j ϕ(u)≥ 0 .

A function ϕ : Rm→ R is directionally convex on J if it is supermodular on J and
convex w.r.t. each coordinate on I j , j = 1, . . . ,m or, equivalently

∆ εl
l ∆ ε j

j ϕ(u)≥ 0

for all 1≤ l ≤ j ≤m. We denote by Lsm(J) (Ldcx(J)) the class of all supermodular
(directionally convex) functions on J. Moreover, we denote the class of increasing
directionally convex functions on J by Lidcx(J) and symmetric supermodular func-
tions on J by Lssm(J). We skip J in this notation if J = Rm.

For arbitrary random vectors (Y1, . . . ,Yn), (Ỹ1, . . . ,Ỹn) defined on probability
spaces (Ω ,F,P) and (Ω̃ , F̃, P̃) respectively, we write

(Y1, . . . ,Yn) <a (Ỹ1, . . . ,Ỹn)

if
E[ϕ(Y1, . . . ,Yn)]≤ E[ϕ(Ỹ1, . . . ,Ỹn)],

for all ϕ : Rn→R such that ϕ ∈La, where La denotes one of the classes Lsm, Ldcx,
Lidcx. Similarly, for random sequences {Yn}n≥1 and {Ỹn}n≥1 we write {Yn}<a {Ỹn}
if for all n≥ 1, (Y1, . . . ,Yn) <a (Ỹ1, . . . ,Ỹn).

Let Ψ (Ψ̃ ) be a J-variate stationary point process with the corresponding inter-
point distances {Ui

n} ({Ũ i
n}), i = 1, . . . ,k. We write

• Ψ <m−a−∞ Ψ̃ if ({U1
n }, . . . ,{UJ

n}) <a ({Ũ1
n }, . . . ,{ŨJ

n }), i.e. if for all n≥ 1, ,
(
(U1

1 , . . . ,U1
n ), . . . ,(UJ

1 , . . . ,UJ
n )
)

<a
((

Ũ1
1 , . . . ,Ũ1

n

)
, . . . ,

(
ŨJ

1 , . . . ,ŨJ
n

))
.

Let Φ (Φ̃) be a J-variate point process with the corresponding counting measures
Ni (Ñi), i = 1, . . . ,J. We write

• Φ <m−a−D Φ̃ if for all 0≤ t1 < t2 < · · ·< tr, r ≥ 1,

(Ni(t1), . . . ,N
i(tr), i = 1, . . . ,J) <a (Ñi(t1), . . . , Ñ

i(tr), i = 1, . . . ,J) .

Let I = {In}n≥1 be a partition of R+ such that Ir, r ≥ 1 have the same length. We
write
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• Φ <m−a−N Φ̃ if for all (I1, . . . , Ir), r ≥ 1,

(Ni(I1), . . . ,N
i(Ir), i = 1, . . . ,J) <a (Ñi(I1), . . . , Ñ

i(Ir), i = 1, . . . ,J) .

Here <··∞ (<··N, <··D) stands for the comparison of point processes considered
as random elements of (R∞

+)J, (Nk, (D([0,∞)))kJ), where D([0,∞)) is the space of
right-hand-side continuous functions with left-hand-side limits.
For 1-variate point processes (J = 1) we shall omit subscript 1, and write <a−D,
<a−N, <a−∞ coincides with orderings defined in Kwieciński and Szekli [48].

8.6.1 Dependence and variability in input

The next property proved by Meester and Shanthikumar [62] is a general result
connected with so called Ross’s conjecture, which still receives some attention in
the context of single queues.

Property 8.6.1 Consider two open networks with finite waiting rooms
(N0,V )/S,1,B/J, and (N′0,V )/S,1,B/J which operate according to the manufac-
turing blocking (1 denotes the vector with 1 on each coordinate). Assume that in
N0, and N′0 only the first coordinates are non-trivial, and V j = ( j + 1, j + 1, . . .),
i.e. these networks are open tandems. If S is a vector of independent sequences of
independent exponential random variables with rates µ j(k) when there are k jobs at
station j which are increasing and concave functions in k then N0,1 <idcx−N N′0,1

implies that

(Nl(t),Nl(t)+ X̃1(t), . . . ,N
l(t)+ X̃1(t)+ · · ·+ X̃J(t)) <idcx

(N′l(t),N ′l(t)+ X̃ ′1(t), . . . ,N
′l(t)+ X̃ ′1(t)+ · · ·+ X̃ ′J(t),

where Nl denotes the point process of lost jobs.

Chang et al. [13] considered a special case where the authors assumed infinite
buffers, and doubly stochastic Poisson input point process N1, obtaining this result
only for the number of jobs. Moreover for finite buffers they obtained the result for
the number of lost jobs. For a more recent research of this type, where the arrival
stream consists of multiple on-off sources, see Koole and Liu [43].

8.6.2 Comparison of workloads

Assume that for the routing vector V = (V 1, . . . ,V J), we have V j
n = 0 for all j ∈ J,

and n ∈ N. That is the arrivals are routed to one of the J queues with infinite waiting
room and after receiving service depart from the system. Arrivals are characterized
by N0 = (N1, . . . ,NJ) which can be seen as a marked point process (τn,Zn), where
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τn denotes the epoch of the nth arrival and Zn denotes the number of the station this
arrival is routed to. Consider a parallel system with resequencing synchronization,
which means that the nth customer departs from the system provided that all the cus-
tomers that arrived earlier have been served. Denote by W (t) = (W 1(t), . . . ,W J(t))
the amount of work in the queues at time t. The next property comes from Chang
Cheng-Shang [12].

Property 8.6.2 Suppose that in a parallel system described above, (Zn) is a sta-
tionary Markov chain independent of (τn) and S, with the transition probabilities
P(Zn+1 = j | Zn = i) = (1−σ)/J, i 6= j, and P(Zn+1 = i | Zn = i) = σ +(1−σ)/J,
for some parameter σ ∈ [0,1]. Then for each t, E( f (W (t))) is increasing as a func-
tion of σ , provided f is coordinate-wise increasing, symmetric, submodular, and
convex in each variable.

8.6.2.1 Workload in parallel queues

Consider a queueing system of J parallel G/G/1 FIFO queues. The input is gen-
erated by kJ-variate point processes Φ (interarrival times) and Ψ (service times),
independent of Φ . For t ≥ 0 and I = (a,b] define

Mi(t) =
Ni(t)

∑
n=1

Ui
n, i = 1, . . . ,J

and

Mi(I) =
Ni(b)

∑
n=Ni(a)+1

Ui
n, i = 1, . . . ,J .

Call Mi, i = 1, . . . ,k cumulative processes. Denote by

W(t)≡ (W 1(t), . . . ,W J(t))

the vector of transient workloads, which is known to fulfill

W i(t) = max
0≤u≤t

(0,Mi(t)−Mi(u)− (t−u))

(Borovkov [6, p. 23]). Similarly, for J-variate point processes Φ ′, Ψ ′ define

M′i(t) =
N′i(t)

∑
n=1

U ′in, i = 1, . . . ,J

and as above M′i(I) and W′(t). The following property is taken from Kulik and
Szekli [47].
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Property 8.6.3 (i) Assume that Φ <m−idcx−N Φ ′, Ψ = Ψ ′ and Ψ consists of mu-
tually independent iid sequences. Then for all 0 < t1 < · · ·< tr,

(W(t1), . . . ,W(tr)) <idcx (W′(t1), . . . ,W
′(tr)) .

(ii) Assume that Ψ <m−idcx−∞ Ψ ′, Φ = Φ ′. Then for all 0 < t1 < · · ·< tr,

(W(t1), . . . ,W(tr)) <idcx (W′(t1), . . . ,W′(tr)) .

8.6.2.2 Workload in batch queues

Consider a queueing system of J parallel G/GI/1 FIFO queues. The input is gener-
ated by J-variate point processes Φ (arrival times) and Ψ (batch sizes), independent
of Φ . For t ≥ 0 and I = (a,b] define

Ki(t) =
Ni(t)

∑
n=1

Ui
n, i = 1, . . . ,J ,

and

Ki(I) =
Ni(b)

∑
n=Ni(a)+1

Ui
n, i = 1, . . . ,kJ .

Here, Ki(t) represents the number of jobs brought to a queue i up to time t. For
{Si

n}n≥1, i = 1, . . . ,J, iid mutually independent service times, independent of Φ and
Ψ define cumulative processes

Mi(t) =
Ki(t)

∑
n=1

Si
n, i = 1, . . . ,J ,

and

Mi(I) =
Ki(b)

∑
n=Ki(a)+1

Si
n, i = 1, . . . ,J .

Then the transient workload is given by

W i(t) = max
0≤u≤t

(0,Mi(t)−Mi(u)− (t−u)) .

Denote by
W(t)≡ (W 1(t), . . . ,W J(t))

the vector of transient workload. Similarly, having arrival process Φ ′ = Φ , batch
size process Ψ ′ and the same service times, we define K′i(t), K′i(I), M′i(t), M′ i(I),
W ′i(t) and W′(t).

From Kulik and Szekli [47] we have
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Property 8.6.4 Assume that {(U1
n , . . . ,UJ

n )}n≥1, {(U ′1n, . . . ,U ′Jn)}n≥1 are sequences
of independent random variables such that for all n ≥ 1,
(U1

n , . . . ,UJ
n ) <sm (U ′1n, . . . ,U

′J
n). Then for all 0 < t1 < · · ·< tr,

(W(t1), . . . ,W(tr)) <idcx (W′(t1), . . . ,W′(tr)) .

The assumptions in the above properties can be described in a more detailed way.
Let Φ , Φ ′ be J-variate arrival processes with interarrival times Xi

n, X ′in, i = 1, . . . ,J.
If {X1

n , . . . ,XJ
n }n≥1 and {X ′1n, . . . ,X ′Jn}n≥1 are sequences of independent random vec-

tors and for all n≥ 1,

(X1
n , . . . ,XJ

n ) <sm (X ′1n, . . . ,X
′J
n),

then Φ <m−sm−N Φ ′ (Li and Xu [53]). Assume that Xn =d Xi
n =d X j

n , i, j = 1, . . . ,J,
n ≥ 1. From Lorentz inequality one obtains that (X1

n , . . . ,XJ
n ) <sm (Xn, . . . ,Xn).

Therefore, synchronization give the upper bound (in <sm and hence in <idcx-order)
for arrival processes and hence, using previous results, for workload in parallel
queues.

8.6.3 Throughput in general networks

For general networks results about throughput were obtained by Shanthikumar and
Yao [84], and by Tsoucas and Walrand [94]. Since the formulations of the following
properties are self-explaining we shall skip comments on them.

Property 8.6.5 Consider two general closed networks V/S,k/J + N with an inde-
pendent initial content X(0) and V/S,k/J +N′ with an independent initial content
X ′(0) such that X(0)≤st X ′(0). Then Na <st-D N′a, Nd <st-D N′d, and

T Hj(V/S,k/J + N)≤ T Hj(V/S,k/J +N′), j ∈ J.

Property 8.6.6 Consider two general closed networks V/S,k/J + N with an ini-
tial content X(0) and V/S′,k/J + N with equal initial content such that service
time sequences are independent of the initial content and of V , and S ≥st S′. Then
Na <st-D N ′a, Nd <st-D N ′d, and

T Hj(V/S,k/J + N)≤ T Hj(V/S′,k/J + N), j ∈ J.

Property 8.6.7 Consider two general closed networks V/S,k/J +N with an initial
content X(0) and V/S,k′/J + N with equal initial content such that k ≥ k′. Then
Na <st-D N ′a, Nd <st-D N ′d, and

T Hj(V/S,k/J + N)≤ T Hj(V/S,k′/J + N), j ∈ J.

From Tsoucas and Walrand [94] we have
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Property 8.6.8 Consider two open networks with finite waiting rooms
(N0,V )/S,k,B/J, and (N0,V )/S,k′,B′/J which operate according to the manu-
facturing blocking. Assume that in N0 only the first coordinate is non-trivial, and
V j = ( j +1, j +1, . . .), i.e. these networks are open tandems. If N0 and S are inde-
pendent and k ≤ k′ and B≤ B′ then

Nacc <st-D N′acc,

where Nacc denotes the point process of accepted jobs to the tandem.

From Meester and Shanthikumar [61], also Anantharam, Tsoucas [3] we have

Property 8.6.9 Consider open network with finite waiting rooms (N0,V )/S,1,B/J,
which operates according to the manufacturing blocking (1 denotes the vector with
1 on each coordinate). Assume that in N0 only the first coordinate is non-trivial,
and V j = ( j +1, j +1, . . .), i.e. these network is an open tandem. If S is a vector of
independent sequences of iid exponential random variables, and B1 = ∞ then the
throughput of this tandem is increasing and concave as a function of B.
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5. Bäuerle, N. and Rolski, T. A monotonicity result for the workload in Markov-modulated
queues. Journal of Applied Probability, 35:741–747, 1998.

6. Borovkov, A. A.. Stochastic Processes in Queueing Theory, Wiley, 1976.
7. Boxma, O.J. and Daduna, H. Sojourn times in queueing networks. Stochastic Analysis

of Computer and Communication Systems, Takagi, H. ed., pp. 401–450, North–Holland,
Amsterdam, 1990.

8. Boxma, O J., Kelly, F. P. and Konheim, A. G. The product form for sojourn time distri-
butions in cyclic exponential queues. JACM, 31: 128–133, 1984.

9. Burke, P.J. The output of a queueing system. Operations Research, 4: 699–704, 1956.
10. Burke, P.J. The output process of a stationary M/M/s queueing system. Annals of Math-

ematical Statistics, 39: 1144–1152, 1968.
11. Burke, P.J. The dependence of sojourn times in tandem M/M/s queues. Operations

Research, 17: 754–755, 1969.
12. Chang, Cheng-Shang. A new ordering for stochastic majorization: theory and applica-

tions. Advances in Applied Probability, 24: 604-634,1992.
13. Chang, Cheng-Shang, Chao, Xiuli amd Pinedo, M. Monotonicity results for queues with

doubly stochastic Poisson arrivals: Rosss conjecture. Advances in Applied Probability,
23: 210-228, 1991.



392 Ryszard Szekli

14. Chen, Hong and Yao, D. D. Fundamentals of Queueing Networks. Performance, Asymp-
totics, and Optimization. Springer-Verlag, New York, 2001.

15. Chen, Mu-Fa. From Markov Chains to Non-equilibrium Particle Systems. World Sci-
etific, Singapore, 2004.

16. Chow, Wee - Min. The cycle time distribution of exponential cyclic queues. JACM, 27:
281–286, 1980.

17. Christofides, T. C. and Vaggelatou, E. A connection between supermodular ordering and
positive/negative association. Journal of Multivariate Analysis, 88: 138–151, 2004.

18. Daduna, H., and Szekli, R. Dependencies in Markovian networks. Advances in Applied
Probability, 27: 226–254, 1995.

19. Daduna, H. and Szekli, R. On the correlation of sojourn times in open networks of
exponential multiserver queues. Queueing Systems Theory Appl., 34: 169-181, 2000.

20. Daduna, H. and Szekli, R. Dependence structure of sojourn times via partition separated
ordering. Operations Research Letters, 31: 462-472, 2003.

21. Daduna, H. and Szekli, R. On the correlation structure of closed queueing networks.
Stochastic Models, 20: 1-29, 2004.

22. Daduna, H., Kulik, R., Sauer, C. and Szekli, R. Dependence ordering for queuing net-
works with breakdown and repair. Probability in the Engineering and Informational
Sciences, 20: 575-594, 2006.

23. Daduna, H. and Szekli, R. Dependencies in Markovian networks. Advances in Applied
Probability, 27:226–254, 1995.

24. Daduna, H. and Szekli, R. Dependence ordering for Markov processes on partially
ordered spaces. Journal of Applied Probability, 43:793–814, 2006.

25. Daduna, H. and Szekli, R. Impact of routeing on correlation strength in stationary queue-
ing network processes, Journal of Applied Probability, 45: 846-878, 2008.

26. Economou, A. Necessary and sufficient conditions for the stochastic comparison of Jack-
son networks. Probability in the Engineering and Informational Sciences, 17: 143–151,
2003.

27. Economou, A. On the stochastic domination for batch-arrival, batch-service and
assemble-transfer queueing networks. Journal of Applied Probability, 40: 1103-1120,
2003.

28. Foley, R. D. and Kiessler, P. C. Positve correlations in a three–node Jackson queueing
network. Advances of Applied Probability, 21: 241–242, 1989.

29. Fry, T.C. Probability and Its Engineering Uses. Princeton, N. Y.: Van Nostrand, 1928.
30. Glasserman, P. and Yao, D. D. Monotone structure in discrete-event systems. Wiley

Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John
Wiley and Sons, New York, 1994.

31. Gordon, W.J. and Newell, G.F. Closed queueing networks with exponential servers.
Operations Research, 15:254–265, 1967.

32. Gross, D. and Harris, C.M. Fundamentals of Queueing Theory. New York: John Wiley
and Sons, 1974.

33. Harris, T. G. A correlation inequality for Markov processes in partially ordered spaces.
Annals of Probability, 5:451–454, 1977.

34. Hu, T. and Pan, X. Comparisons of dependence for stationary Markov processes. Prob-
ability in the Engineering and Informational Sciences, 14: 299–315, 2000.

35. Hu, T. , Müller, A. and Scarsini, M. Some counterexamples in positive dependence.
Journal of Statistical Planning and Inference, 124: 153 – 158, 2004.

36. Jackson, J. R. Networks of waiting lines. Operations Research, 4: 518–521, 1957.
37. Joe, H. Mulivariate Models and Dependence Concepts. Chapman and Hall, London,

1997.
38. Kanter, M. Lower bounds for the probability of overload in certain queueing networks.

Journal of Applied Probability, 22: 429–436, 1985.
39. Keilson, J. and Kester, A. Monotone matrices and monotone Markov processes. Stochas-

tic Processes and Their Applications, 5: 231–241, 1977.



8 Stochastic Comparison of Queueing Networks 393

40. Kelly, F. P. Reversibility and Stochastic Networks. New York: Wiley, 1979.
41. Kelly, F. and Pollett, P. Sojourn times in closed queueing networks. Advances in Applied

Probability, 15: 638–653, 1983.
42. Khintchine A. Y. Mathematical theory of a stationary queue. Mat. Sbornik 39, 73-84,

1932.
43. Ger Koole, Zhen Liu. Stochastic Bounds for Queueing Systems with Multiple On-Off

Sources. Probability in the Engineering and Informational Sciences, 12: 25–48, 1998.
44. Heyman, D. P. and Sobel, M. J. Stochastic models in operations research, Vol. II.
45. Iscoe, I. and McDonald, D.I. Asymptotics of exit times for Markov jump processes I.

Annals of Applied Probability, 22:372–397, 1994.
46. Iscoe, I. and McDonald, D. Asymptotics of exit times for Markov jump processes II:

Applications to Jackson networks. Annals of Applied Probability, 22:2168–2182, 1994.
47. Kulik, R. and Szekli, R. Dependence orderings for some functionals of multivariate

point processes. Journal of Multivariate Analysis, 92: 145–173, 2005.
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Chapter 9

Error Bounds and Comparison Results:
The Markov Reward Approach
For Queueing Networks

Nico M. Van Dijk

Abstract This chapter presents an approach to compare two Queueing Networks.
Here one may typically think of one network to be a solvable modification of an-
other únsolvable one of practical interest.

sures by a cumulative reward structure and strongly relies upon the analytical es-
timation of so-called bias-terms. This approach, referred to as Markov Reward ap-
proach:

• may lead to (analytic) error bounds for the discrepancy
• may still apply while stochastic comparison fails

The chapter will be divided in two parts:

A General results: which contains motivation and general results.
B Applications: which illustrates the results and the technical verification

by an instructive example and two motivational applications.

In A also the various advantages (as well as disadvantages) of the approach over
standard stochastic comparison will be reviewed. In B the combination of both will
be made fruitful for the truncation of Finite Jackson Networks. Some possible ex-
tensions and open questions will be addressed briefly.
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The approach is essentially based upon evaluating steady state performance mea-
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A: General results

9.1 Motivation

9.1.1 A first example

9.1.1.1 Applications and solvability

As extension of standard one-dimensional multi-server queues Queueing Networks
are widely known as a most powerful modeling tool for a variety of application such
as in:

• Telephony (circuit switch networks)
• Computer networking (package switch networks)
• Manufacturing (for assembly lines or material handling systems)

but also present-day applications of rapidly growing interest as:

• Service networks (such as supply chains, call centers and hospitals)
• Mobile and ad-hoc communication networks
• and last but not least: internet

Exponential structure and solvability. Standard multi-server queueing systems,
such as M|G|c|N type systems, have intensively been studied under a variety of
both exponential and non-exponential situations. Networks of queues, in contrast,
are usually described under exponential arrival and service assumptions, as analytic
results or approximations for the non-exponential case are hardly available. (Except
for product form networks under special so-called insensitive service disciplines,
such as pure multiserver or processor sharing disciplines.)

A queueing network (QN) model thus usually relies upon an underlying exponential
structure and as such can be regarded as a continuous-time Markov chain (CTMC).
The typical measures of practical interest are steady state performance measures as

• a throughput

• a mean delay

• a mean queue length

• a mean workload or efficiency

• a blocking, loss or congestion probability

Unfortunately, even for the exponential case and with the rather exclusive exception
of product form type networks, closed form solutions for the steady state distribution
and corresponding associated performance measures of interest as mentioned, are
generally not available. These closed form, most notably product form, solutions are
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usually destroyed by practical features such as finite capacities, overflow, dynamic
routing, breakdowns, prioritizations, synchronizations or resource contentions.

As a consequence, numerical or approximate computations will have to take place.
As these are computationally expensive if not prohibitive, a number of different
questions may arise. To illustrate this in more concrete form, let us first consider a
simple, but yet unsolvable and instructive example.

9.1.1.2 Instructive breakdown example

Consider a simple M|M|1|N-system with Poisson arrival rate λ , exponential service
parameter µ and a finite capacity for at most N jobs. Let n be the total number of
jobs present (the job in service included). When the system is congested (i.e., n = N)
an arrival is rejected and lost. In addition, the system is subject to breakdowns. More
precisely, when the system is operative (θ = 1) the system (server) can break down
at an exponential rate γ1, regardless of the number of jobs present. When the system
is down (θ = 0) it can become operative again, that is be repaired, at an exponential
repair rate γ0. The system status of either up (θ = 1) or down (θ = 0) thus follows
an alternating renewal process. Let τ be the fraction of time that the system is down,
i.e. τ = γ1/(γ0 + γ1). When the system is down arrivals still take place.

λ µ

θ

γ0γ1

Server

Fig. 9.1: Breakdown system.

As a first glance, this system might be seen as a most simple standard type one-
dimensional queueing system. However, as both the number of jobs and the up or
down status of the system is to be kept track of, it can, if not is to, be regarded as a
simple network with the up-down status governed by a separate station as in figure
9.1. In fact, as simple as the system may seem, it has no simple closed form steady
state distribution π(n) for the number of jobs n present at an arbitrary instant. (Its
generating function can be obtained as in Jaiswal 1968 for priority queues and recur-
rent relations for π(n) can be derived). As primary measure of interest let us focus on
the loss probability B = π(n = N) or directly relate the throughput F = λ (1−B).
As the system has no simple analytic expression in terms of (λ ,µ ,τ), numerical
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computation is required to compute the value of B. The following questions might
therefore come up:

(i)(Sensitivity error) What is the effect of an imprecision, such as due to a data
estimation error, or perturbation in one of the parameters (λ ,µ ,τ). Can we quan-
tify this effect analytically rather than by numerical computation.

(ii)(Approximation-Error bound) As τ must typically be thought of as being
small, say in the order of a few %, wouldn’t the simple M|M|1|N-loss proba-
bility, that is by assuming that breakdowns do not take place, lead to a reason-
able approximation. Again, without numerical computation or simulation can we
quantify its accuracy by an analytic error bound?

(iii)(Truncation-Error bound) As N might be quite large while B can be thought
of as being of order ρN , for numerical reduction purposes, one might suggest to
reduce the number N to a number L << N. Can we provide an a priori analytic
quantification of the effect of this state space truncation, so as to determine a
reasonable number L?

(iv)(Monotonicity-comparison result) For each of the parameters λ ,µ ,N,γ1
and γ0 separately its increasing or decreasing effect on B seems obvious. But
as a finite system is involved one has to be careful. At sample path basis coun-
terintuitive examples can be constructed (e.g. see the counterintuitive example in
section 9.4). Formal monotonicity proofs might thus be required. How can this
be established?

(v)(Lower an upper bound-comparison result) The approximation under (ii),
that is by assuming that τ = 0, can intuitively be expected to give a lower bound
BL. However, to guarantee a sufficiently small loss probability B (or sufficiently
large throughput F), such as by adjusting N, an upper bound would be of more
interest. To this end, modify the system by also rejecting arrivals when the sys-
tem is down. With (n,θ) representing that n jobs are present and that the system
is up (θ = 1) or down (θ = 0), and with 1(A) the indicator function of an event A,
under this modification the global balance equation in state (n,θ) becomes:





π(n,θ )λ1(n<N)1(θ=1)

π(n,θ )µ1(n>0)1(θ=1)

π(n,θ )γ11(θ=1)

π(n,θ )γ01(θ=0)





(9.1.1.1)
(9.1.1.2)
(9.1.1.3)
(9.1.1.4)

=



π(n +1,θ )µ1(n<N)1(θ=1)

π(n−1,θ )λ1(n>0)1(θ=1)

π(n,0)γ01(θ=1)

π(n,1)γ11(θ=0)





(9.1.1.1)′

(9.1.1.2)′

(9.1.1.3)′

(9.1.1.4)′

(9.1.1)

This equation is directly verified by equating each of its four detailed equations
(1.1.i)=(1.1.i)′ for i = 1,2,3,4 separately, by substituting the product form, with
c a normalizing constant,
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π(n,θ ) = c[γθ ]−1
[

λ
µ

]n

(n≤ N) (9.1.2)

Intuitively, we can now expect to obtain an upper bound
BU = π(n = N,θ = 1)+ π(θ = 0). Hence, it seems appealing to conclude that

BL ≤ B≤ BU (9.1.3)

Here BL would be obtained by the standard M|M|1|N-loss probability by assum-
ing that the system never breaks down (i.e.: τ = 0). The inequalities (9.1.3) as
well as their practical usefulness are also supported numerically in table 9.1 be-
low.

Table 9.1: Lower and upper bounds for the loss fraction B

N ρ τ BL BU

20 20 0.1 0.16 0.24
0.05 0.16 0.20
0.02 0.16 0.18

30 25 0.05 0.052 0.098
0.01 0.052 0.062

Nevertheless, as shown in section 9.4, at sample path basis one can provide
counterintuitive examples by which an ordering as in (9.1.3) seems violated. It
thus seems of both practical an theoretical interest to formally prove the bounds
(9.1.3).

9.1.1.3 Two questions

In essence, each of the questions for the instructive example comes down to the
comparison of two systems. One which can be regarded as an original system and
one as a modified one, say as due to:

• a perturbation of an input parameter,
• a system modification,
• or a state space truncation

Particulary the situation of a system modification can be of considerable practical
interest so as to justify a computational simplification, by either:

• an analytic error bound for its accuracy, or
• a secure bound for the performance measure of interest.
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Here one may typically (but not necessarily) think of system modifications that will
lead to a product form computation. Accordingly, the two major questions of interest
when comparing two related systems, say an original and a modified one, become:

Q1: How to obtain comparison or ordering results, that is with ≥ or ≤ sign, so
as to guarantee bounds.

Q2: How to obtain analytic error bounds on the discrepancy of the two systems,
for some specific performance measure.

Here the order of the two questions is interchanged from its practical motivation as
the first seems more standard and easier to handle first (as will also appear later on).

Before stepping into more detail of the objective and the approach of how to address
these two questions, let us give two more motivating network examples for each of
these two questions, which are of practical interest by itself. Also these examples
will be dealt with later on.

9.1.2 Two more examples

9.1.2.1 Finite Tandem Queues

N1 N2

Loss Blocked

Fig. 9.2: Tandem system.

Consider a two-station tandem system with capacity constraints for at most N1 jobs
at station 1 and N2 jobs at station 2. When station 1 is saturated, arrivals are re-
jected and lost. When station 2 is saturated, the servicing at station 1 is stopped. This
system can be regarded as representative for a variety of applications in manufactur-
ing (assembly lines) and computer performance evaluation (multi-stage processing).
Due to the finite constraints, however, it has no product-form expression. Various
numerical and approximation techniques have therefore been developed (e.g. [36],
[7], [10], [30]). These, however, still require restrictive service specifications (such
as exponential), are computationally expensive, ánd last but not least, do nót provide
any guarantee or error bound.

In order to enforce a product form expression, the following two modifications can
now be suggested.
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Modification 1:

Never stop station 1. Reject arrivals only when n1 + n2 = N1 +N2.

Modification 2:

•When the second station is saturated also reject arrivals at station 1.
•When the first station is saturated also stop (the servicing at) station 2.

Let λ be the arrival rate and µi the exponential service parameter, assuming a single
server, at station i = 1,2. Then indeed, with ni the number of jobs at station i, i = 1,2,
for modification 2 one easily verifies the global balance equation (9.1.4) by equating
each of the detailed equation (1.4.i)=(1.4.i)′ for i = 1,2,3.






π(n1,n2)λ1(n1<N1)1(n2<N2)

π(n1,n2)µ11(n1>0)1(n2<N2)

π(n1,n2)µ21(n2>0)1(n1<N1)






(9.1.4.1)
(9.1.4.2)
(9.1.4.3)

=



π(n1,n2 +1)µ21(n1<N1)1(n2<N2)

π(n1−1,n2)λ 1(n1>0)1(n2<N2)

π(n1 +1,n2− 1)µ11(n2>0)1(n1<N1)





(9.1.4.1)′

(9.1.4.2)′

(9.1.4.3)′

(9.1.4)

by substituting the product form:

π(n1,n2) = c

(
λ
µ1

)n1
(

λ
µ2

)n2

, 0≤ n1 ≤ N1 ; 0≤ n2 ≤ N2 ;

n1 +n2 6= N1 +N2 .

In a similar fashion the same product form is also verified under modification 1 but
for all states with n1 + n2 ≤ N1 + N2. Now suppose again, that we are interested in
the blocking probability B for the original tandem queue.

Intuitively, modification 1 will lead to a lower bound BL and modification 2 to an
upper bound BU . That is, inequality (9.1.3) can again be expected intuitively. This
is also supported by some numerical results in table 9.2. These results also indicate
a practical usefulness. Nevertheless, again one can construct counterintuitive exam-
ples at sample path basis that seem to conflict with (9.1.3). Given the generic nature
of this example, particularly in this case a formal proof for the bounds in (9.1.3)
would thus be of both theoretical and considerable practical interest.

9.1.2.2 Finite Jackson Networks

The famous class of so-called Jackson networks, named after the pioneering paper
by Jackson in 1957, refers to networks which allow a random routing of jobs from
one service station to another with fixed probabilities. This subclass forms a rich
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Table 9.2: Comparison of Bounds and Numerical Results

N1 N2 λ µ1 µ2 BL B BU

10 10 1 1 1 0.090 0.124 0.167
20 20 1 1 1 0.047 0.064 0.091
40 20 1 1 1 0.003 0.003 0.070

class for practical applications. The steady state distribution of the standard Jack-
son network, that is with infinite capacities, is well known to exhibit an appealing
product form. By this product form expression performance measures of interest,
such as mean delays, mean queue lengths or throughputs of service stations can be
computed directly.

In practice, however, also finite capacity constraints on the numbers of jobs at these
service stations are most natural, say for at most Ni jobs at station i = 1, . . . ,J with J
the number of stations. Unfortunately, these finite constraints generally violate the
product form (or any closed form) expression. Next to approximate methods and
simulation, a numerical computation of system performance measures thus becomes
of practical interest.

However, due to the multi-dimensional structure of the queueing network, the size
of the corresponding state space can be large if not astronomic. The computational
effort therefore will rapidly become expensive if not prohibitive. A reduction of the
state space by reducing the numbers Ni to Li ≤ Ni might thus become appealing. In-
tuitively, as networks are developed such that congestion probabilities are small, the
effect of these truncations can still be small. Clearly, such state space reductions will
have been applied frequently in practice. Nevertheless, formal theoretical support in
terms of error bounds, either at computational basis itself or in analytic form, seems
to be lacking. Alternatively, one might wish to expand the numbers Ni to Ni = ∞ so
as to regain a product form. For either case, a truncation or an expansion, an analytic
error bound for the effect of the modification will thus be of interest.

Fig. 9.3: Jackson network.
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9.1.3 Objectives

As motivated by sections 9.1.1 and 9.1.2, the objectives of this chapter are:

(i) To show that the two questions of interest: Q1 and Q2 from
section 9.1.1.3, can be addressed in a unified manner.

(ii) To provide a separate comparison, error bound and truncation result.

(iii) To illustrate the conditions required, the verification of these
conditions and the different type of comparison and error
bounds results that can be obtained.

9.1.4 Approach

To this end, in contrast with the standard stochastic comparison approach, a Markov
reward approach will be presented. This approach is based upon a discrete-time
transformation and one-step Markov reward or dynamic programming steps.

In essence, in its discrete-time formulation, this approach is strongly related to the
policy improvement step in classical stochastic dynamic programming (e.g. [52],
[50]) and as such could be regarded as well-known. Nevertheless, for the two ques-
tions Q1 and Q2 mentioned, to the best of knowledge, the approach has been pro-
posed and been applied first in [19] for question Q1 and [23] for question Q2.

More detailed, the essential ingredients of this approach are:

• To analyze steady state performance measures as by expected average rewards.

• To use a discrete-time Markov transition structure and to compare the difference
of the two systems in its one-step transition structure.

• To use inductive arguments to estimate or bound so-called bias (or relative gain)
terms for one of the two systems.

For comparison results (that is, question Q1) the ingredients of the MRA will lead to
both some disadvantages and some advantages as opposed to the standard stochastic
comparison approach, as developed most elegantly in the book by [61] and related
references thereafter (e.g. [43], [47], [57], [63]). (Advantages and disadvantages of
the MRA will be listed in more detail in section 9.3.5). As a major disadvantage the
MRA requires a Markovian and thus exponential Queueing Network structure (al-
though possible extensions to non-exponential situations will be mentioned briefly
later on). As an advantage, however, the MRA might work for some specific per-
formance measure while stochastic comparison might not. (As will be illustrated in
sections 9.2.2 and 9.5).
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9.1.5 Outline

First, in section 9.2, some notation and preliminary results will be presented to trans-
form an exponential queueing in a discrete time Markov Chain. Next, a basic result
for stochastic comparison of two systems is presented but also shown to be limited
for specific applications such as the comparison for the finite tandem queue from
section 9.1.2.1.

Next, in section 9.3 therefore, the Markov reward approach (MRA) is introduced to
overcome this limitation as well as to provide analytic error bounds for the dis-
crepancy of two systems. The entire section is set up in the general context of
continuous-time Markov chains, with queueing networks as a special but primary
motivational application in mind.

In section 9.3.1 the necessary framework of a one-step reward structure will be set
up. Next, in section 9.3.2 the application of the Markov reward approach for the
comparison of two systems is presented (result 9.3.2). In section 9.3.3, as a main
result of the approach, an error bound result is developed (result 9.3.10). In section
9.3.4 the error bound result is also made more explicit for a state space truncation of
a Markov chain, such as a queueing network. Though the results in sections 9.3.2,
9.3.3 and 9.3.4 are strongly related in form, proofs and technical verification of
its conditions, the results are given separately to contrast more explicitly with the
stochastic comparison approach as well as to highlight the specific aspects for the
different type of applications. Finally, in section 9.3.5, the major advantages as well
as disadvantages of the Markov reward approach as opposed to stochastic compari-
son approach are briefly mentioned.

The application of these general results to queueing networks the verification of the
conditions and the possible concrete results will then be illustrated in sections 9.4,
9.5 and 9.6.

• In section 9.4 for the instructive breakdown example of section 9.1.1.2.

• In section 9.5 for the finite tandem queue bounds from section 9.1.2.1.

• In section 9.6 for the finite Jackson network of section 9.1.2.2.

First, in section 9.4 the instructive breakdown example from section 9.1.1.2 will
be dealt with to illustrate the verification of the conditions and the results from
section 9.3. Particularly, it will be shown how the crucial step (the bounding of so-
called bias-terms) can be achieved in an analytic and unifying manner for different
performance measures. This step will be worked out in detail so that the equations
that come along can also be understood more easily in more complex situations, as
in sections 9.5 and 9.6. Next, in section 9.5, the motivational example of a finite
tandem queue will be considered to prove a simple lower and upper performance
bound.

Finally, in section 9.6, the truncation is investigated of Finite Jackson Networks
for computational simplification. Both a computational and analytic error bound
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are derived. For the example of a cellular mobile network an analytic relative error
bound is established as based upon standard infinite server queues.

A brief discussion and evaluation in section 9.7 concludes the chapter. This includes
possible extensions to non-exponential queueing networks, to the case of transient
measures, to discrete-time queueing networks or more general continuous-time sys-
tems governed by nonnegative matrices, as well as open questions for further re-
search and some other recent applications of the approach.

9.2 Stochastic Comparison.

9.2.1 Preliminaries

As we will restrict to exponential queueing networks, throughout section 9.2 and
9.3 we will consider continuous-time Markov chains (CTMC) with countable state
space S and transition rate matrix Q = q(i, j), with q(i, j) the transition rate for a
change from state i into state j 6= i and q(i, i) =−∑ j 6=i q(i, j). For convenience, this
chain is assumed to be uniformizable. That is, for some finite constant H < ∞ and
all i ∈ S,

∑
j 6=i

q(i, j)≤ H (9.2.1)

Let Pt(i, j) denote the transition probability for a transition from state i into state j
over time t and define expectation operators {Tt | t ≥ 0} on the set B of real-valued
functions f defined on S by

(Tt f )(i) = ∑
j

Pt(i, j) f ( j). (9.2.2)

In words that is, (Tt f )(i) represents the expected value of function f at time t of
the CTMC when starting in state i at time 0. By virtue of the boundedness (uni-
formization) assumption (9.2.1), it is then well known (e.g. [24], [31], [33]) that
the continuous-time Markov chain can also be evaluated as a discrete-time Markov
chain (DTMC) with one-step transition matrix P with h = H−1:

P = I+hQ,

hence, with one-step transition probabilities:

P(i, j) =

{
hq(i, j) ( j 6= i),

1−h∑ j 6=i q(i, j) ( j = i).
(9.2.3)

Intuitively speaking, one may regard this matrix as a transition matrix over a time
interval of length h = H−1. In contrast with the CTMC, however, it ignores pos-
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sible multiple changes in this time interval. Nevertheless it can be shown that the
stochastic behavior of the CTMC, more precisely, the transition mechanisms and
corresponding expectation over any time t, can stochastically be obtained as if at
exponential times with parameter H, thus on average per time interval of length
h = H−1, a change may take place as according to the one-step transition matrix P.
Let Tk for the DTMC represent (similar to Tt for the CTMC) the expectation oper-
ator over k steps (here Pk denotes the k-th matrix power of P and I is the identity
operator), i.e.:






T0 f (i) := f (i)

T f (i) := ∑ j P(i, j) f ( j)

Tk f (i) := ∑ j Pk(i, j) f ( j) = T(Tk−1 f )(i) (k > 0, for all f ∈ B).

(9.2.4)

Then, under natural ergodicity and irreducibility conditions we may conclude that
for the steady-state performance measure of interest G and independent of i ∈ S:

G = lim
t→∞

Tt r(i) and G
C
= lim

k→∞
Tkr(i) = lim

N→∞

1
N

N−1

∑
k=0

Tkr(i) (9.2.5)

(where for the discrete-time case the Cesaro limit is used to cover aperiodicity), for
some appropriate reward rate r. G is thus be regarded as a scalar which represents
the expected average reward per unit time in steady state situation. For example,
with the CTMC representing an M|M|1|N queue: and n the number of jobs present

G =





Mean queue length for r(n) = n
Loss probability for r(n) = 1(n=N)

Throughput for r(n) = µ1(n>0)

(9.2.6)

9.2.2 Stochastic comparison

Now suppose that we like to compare a performance measure
{

G for an original CTMC with transition rates q(i, j) with
Ḡ for a modified CTMC with transition rates q̄(i, j)

say at one and the same state space S = S̄, for both of which the uniformization
condition (9.2.1) holds with same constant H, and where G and Ḡ are the average
expected rewards for one the same reward rate r.

Let Tt and T̄t , T and T̄ as well as Tk and T̄k be the corresponding uniformized one-
step transition operators as defined by (9.2.2), (9.2.3) and (9.2.4). Then by virtue of
the uniformization, that is (9.2.5), we can use
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G
C
= limk→∞ Tkr(i) , for any i ∈ S

Ḡ
C
= limk→∞ T̄kr(i) , for any i ∈ S

(9.2.7)

The following (strong) stochastic monotonicity or comparison result can now be
concluded directly for comparing G and Ḡ. Herein, for two functions f and g we
write f ≥ g iff f (i) ≥ g(i) for all i ∈ S. Furthermore, the function 0 represents the
null function, i.e. 0(i) = 0 for any i ∈ S.

Result 9.2.1 (Stochastic monotonicity) Let M represent a set of real-valued (mono-
tonicity) functions which is closed under T, i.e.

T f ∈M for any f ∈M (9.2.8)

If

T̄ f ≥ T f ( f ∈M) (9.2.9)

and

r ∈M (9.2.10)

then
Ḡ≥G (9.2.11)

Proof. By (9.2.4) for arbitrary f , any state i and k > 0, we can write:

(T̄k f −Tk f )(i) =

(T̄T̄k−1 f −TTk−1 f )(i) =

(T̄−T)Tk−1 f (i)+ T̄(T̄k−1−Tk−1) f (i) =
k−1

∑
t=0

T̄t
[
(T̄−T)Tk−t−1 f

]
(i)+ T̄k

[
(T̄0−T0) f

]
(i)

(9.2.12)

First note that (T̄0−T0) f ( j) = f ( j)− f ( j) = 0 for any j. The last term in (9.2.12)
can thus be deleted. Next, note that by repetition of condition (9.2.8):

Ts f ∈M for any f ∈M and s = k− t−1≥ 0 (9.2.13)

Hence, by condition (9.2.9), for any t ≤ k− 1 and any f ∈M:

(T̄−T)Tk−t−1 f ≥ 0 (9.2.14)

By also noting that T̄t is a (probability) transition (and thus a non-negative) operator
so that for any function g ≥ 0 (in componentwise sense) T̄tg ≥ 0, the right hand
side of (9.2.12) can be estimated from below by 0. Condition (9.2.10) and relation
(9.2.7) complete the proof. ⊓⊔
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Remark 9.2.2 Clearly, result 9.2.1 remains identical with reversed signs ≤. Result
9.2.1 is strong as it secures an ordering (a comparison) of the performance measure
for all possible reward rate functions r ∈M. In addition, as shown in various refer-
ences as [9], [10], [43], [38], [39], [51], [47], [61], [63], [68], [69], relaxations
and extensions of this form of monotonicity results can be provided, most notably
among which to non-exponential situations. In this respect it also mentioned that
these stochastic comparison results also relate to the approach of stochastic (or
weak) coupling and sample path comparison, by which exponentiality assumptions
can be disregarded directly. But in essence, also under these relaxations and exten-
sions, and despite its elegancy and non-exponential advantage, stochastic compari-
son, as reflected by result 9.2.1, can be insufficient in two ways:

(i) The ordering (9.2.11) holds for any r ∈ M. But as a price to pay also the
conditions (9.2.8) and (9.2.9) should be satisfied for any f ∈ M. At this point
the monotonicity class M is not specified. In fact, no such class may exist that
also covers condition (9.2.10) for the performance measure and thus reward rate
of interest: r. Differently said, the specific performance measure of interest and
transition structure may require monotonicity that is nót preserved under T. This
will be illustrated below in section 9.2.3 for the tandem example from section
9.1.2.1. Nevertheless, for (some or) a specific reward rate(s) r one might still
expect an ordering result as in (9.2.11) but not for a complete closed class of
functions M. This is thus to be proved by a different type of approach. For the
same tandem example, this will be shown in section 9.5.

(ii) The comparison result nor its proof seem to lead to a quantification of the
discrepancy (i.e.: an error bound) between the two systems, say as due to a per-
turbation or modification. For example, as a natural perturbation, assume that

‖(T̄−T) f‖ ≤ ε‖ f‖ ,( f ∈M)

in usual supremum norms for some small ε > 0. Since T̄ is a probability oper-
ator: ‖T̄kg‖ ≤ ‖g‖ for any function g. As a consequence, by expansion (9.2.12)
(or alternatively its one step recursion relation (9.2.4) and induction) we easily
prove:

‖T̄k f −Tk f‖ ≤ εk‖ f‖
However, due to the limits in (9.2.7) there is nó such result for:

|Ḡ−G|

.
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9.2.3 Stochastic comparison failure

The stochastic comparison approach has shown to be most appealing and useful for
M|G|c-type systems and variations thereupon ([27], [59], [60], [61]); roughly speak-
ing that is, for one-dimensional systems with a single service station or, as in [43]
multi-component reliability systems, which in essence can be regarded as a machine
repair or Engset type queueing system. With multiple service stations, however, as
in queueing networks, its application seems less common. Some exceptions here are
found in [1], [2], [53], [66], [70]. These, however, generally concern Jackson type
networks without capacity constraints or other conflicting features by which service
stations become directly dependent. To get more insight in the complications that
arise for stochastic comparison, let us reconsider the finite tandem example from
section 9.1.2.

Finite tandem example (section 9.1.2) revisited. Consider the original finite tan-
dem queue as well as the modified model under modification 2, as described in
section 9.1.2. Let P and P̄ be the corresponding one-step transition matrices for the
uniformized DTMC, where condition (9.2.1) is guaranteed by H = [λ + µ1 + µ2],
as by (9.2.3) and (9.2.4) with a state i identified as a state (n1,n2) for the number
of jobs ni at station i = 1,2. More precisely, for the original finite tandem queue the
uniformized transition matrix P becomes:

P
(
(n1,n2),(n1,n2)

′)=






(n1,n2)
′

1−hλ1(n1<N1)− hµ11(n2<N2) (n1,n2)
hλ 1(n1<N1) (n1 +1,n2)
hµ11(n2<N2)1(n1>0) (n1−1,n2 + 1)
hµ21(n2>0) (n1,n2− 1)

(9.2.15)

and similarly for the modified system. In order to prove that the modified (product
form) system leads to an upper bound for the loss probability B, we would like to
apply result 9.2.1. However, the loss probability will also require a different reward
rate r and r̄ for the two systems, which is not allowed by result 9.2.1. To avoid this
minor complication we can also analyze the throughput by:

F = λ (1−B) and r(n1,n2) = µ21(n2>0).

Note that r is nondecreasing in n2 (as well as in n1). By comparing the transition
structures for the original and modified (under modification 2) tandem queue, for
arbitrary function f we conclude

(T̄−T) f (n1,n2) =

hλ 1(n1 < N1,n2 = N2)[ f (n1,N2)− f (n1 +1,N2)]+

hµ21(n2 > 0,n1 = N1)[ f (N1,n2)− f (N1,n2−1)]

(9.2.16)
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In order to estimate this expression from above by 0 (note that the throughput of the
original should be proven to be larger than for the modified system, i.e. F̄≤ F), the
monotonicity class M should thus be of the form:

M = { f : S→R | f (n1 +1,n2)− f (n1,n2)≥ 0;

f (n1,n2 + 1)− f (n1,n2)≤ 0, all (n1,n2)} (9.2.17)

But then we directly observe that condition (9.2.10) fails as r /∈ M. In fact, also
condition (9.2.8) is violated.

More precisely, to satisfy (9.2.8), these monotonicities should also apply for the
function (T f ) for any such f . However, by (9.2.15) for any state (n1,n2) and (n1 +
1,n2) with n1 + 1≤ N1:

(T f )(n1 +1,n2)− (T f )(n1,n2)

= hλ1(n1+1<N1)[ f (n1 +2,n2)− f (n1 +1,n2)]

+ hλ1(n1+1=N1)[ f (n1 +1,n2)− f (n1 +1,n2)]

+ hµ11(n1>0)1(n2<N2)[ f (n1,n2 + 1)− f (n1− 1,n2 +1)]

+ hµ11(n1=0)1(n2<N2)[ f (n1,n2 + 1)− f (n1,n2)]

+ hµ21(n2>0)[ f (n1 +1,n2−1)− f (n1,n2−1)]

+ [1−hλ1(n1+1<N1)−hλ 1(n1+1=N1)− hµ11(n2<N2)−hµ21(n2>0)]

[ f (n1 +1,n2)− f (n1,n2)]

(9.2.18)

To conclude that this expression is larger than or equal to 0 we can use the mono-
tonicity of f in n1 in the first, (the second is equal to 0 itself), third, fifth and sixth
term in the right hand side. However, in a state with n1 = 0 and n2 < N2, there is a
serious conflict in the fourth term as f (n1,n2 +1)− f (n1,n2)≤ 0, as by (9.2.17). In
other words, with M as by (9.2.17) condition (9.2.8) fails.

Would we have defined M with functions that are nondecreasing in both compo-
nents, i.e.

M = { f : S→R | f (n1 +1,n2)≥ f (n1,n2);

f (n1,n2 +1)≥ f (n1,n2), all (n1,n2)} (9.2.19)

(9.2.18) could indeed be estimated from below by 0. And also for the second com-
ponent, as by
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(T f )(n1,n2 +1)− (T f )(n1,n2)

= hλ 1(n1<N1)[ f (n1 + 1,n2 +1)− f (n1 +1,n2)]

+ hµ11(n1>0)1(n2+1<N2)[ f (n1− 1,n2 +2)− f (n1−1,n2 +1)]

+ hµ11(n1>0)1(n2+1=N2)[ f (n1,n2 + 1)− f (n1− 1,n2 +1)]

+ hµ21(n2>0)[ f (n1,n2)− f (n1,n2−1)]

+ hµ21(n2=0)[ f (n1,n2)− f (n1,n2)]

+ [1−hλ 1(n1<N1)− hµ11(n1>0)− hµ2][ f (n1,n2 + 1)− f (n1,n2)]

(9.2.20)

we can conclude that the monotonicity is preserved. In other words, with M as by

(9.2.20) condition (9.2.8) is satisfied. In addition, we also have:

r ∈M

However, while (9.2.8) and (9.2.10) are now satisfied, to apply result 9.2.1, the or-
dering condition (9.2.9) will necessarily fail, as due to (9.2.16).

Conclusion. In other words, there seems no way to apply the stochastic compar-
ison result 9.2.1 to prove the upper bound BU in section 9.1.2.1 (or, by similar
counter arguments, the lower bound BL).

This is nót to say that stochastic comparison results cannot be obtained for the finite
tandem queue (as argued above, it will apply for monotone functions of the form
(9.2.17), but nót for the specific performance measure and system to be compared
with, as of interest by its motivation in section 9.1.2.1.

9.3 Markov reward approach

9.3.1 Preliminaries

As argued in remark 9.2.2(ii), despite the fact that an average performance measure
can be regarded as an expectation at an arbitrary instant, it seems impossible to con-
clude an error bound by just analyzing the effect on expectations at finite instants.
We will therefore use a cumulative reward structure.

Consider some given reward rate function r(i) that incurs a reward r(i) per unit of
time whenever the system is in state i. The expected cumulative reward over a period
of length t and given the initial state i at time 0 is then given by

Vt(i) =

ˆ t

0
Tsr(i)ds. (9.3.1)



414 Nico M. Van Dijk

Then, as in (9.2.5), under natural ergodicity conditions this expected cumulative
reward averaged over time will converge to the expected average reward, or in the
current setting, the performance measure G, independently of the initial state i, as:

G = lim
t→∞

1
t

Vt(i) (for any i ∈ S) (9.3.2)

By virtue of the uniformization technique again, we can also evaluate G by means
of the expected cumulative reward for the uniformized discrete time Markov chain
as:

G = lim
k→∞

H
k

Vk(i) (for any i ∈ S) (9.3.3)

Here Vk(i) represents the expected cumulative reward for the uniformized DTMC
over k steps, each of length h = H−1, with one-step rewards hr( j) per step whenever
the system is in state j and when starting in state i at time 0. More precisely, for any
i ∈ S

Vk(i) =
k−1

∑
s=0

hTsr(i), (k = 1,2, . . .), V0(i) = 0 (i ∈ S) (9.3.4)

The factor H in (9.3.3) is required as the time average of Vk/k ensures an average
reward per step of mean length h = H−1 instead of per unit of time.

The major advantage of this discrete setup is that it enables one to use inductive
arguments by exploiting the reward (or dynamic programming) relation:

Vk+1(i) = hr(i)+∑
j

P(i, j)Vk( j) (k = 0,1,2, . . .),(i ∈ S) (9.3.5)

Remark 9.3.1 (Scaling factors) Clearly, the time scaling factors h and H in (9.3.3),
(9.3.4) and (9.3.5) could be deleted. However, they are left in for their natural in-
terpretation accordingly to the uniformization, as will also appear to be convenient
for the probabilistic interpretation of the so-called bias-terms equations as will be
derived later on (in sections 9.4, 9.5, 9.6).

9.3.2 Comparison Result

Consider a CTMC, which will be referred to as original model, as described in sec-
tion 9.2.1, with transition rates q(i, j), reward rate r(i) and state space S. We briefly
denote this parametrization by (S,q,r). Now consider a second CTMC, described
similarly, which will be thought of and be referred to as a modified model of the
first, (S̄, q̄, r̄). In short, we aim to compare these two systems:
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{
(S,q,r)

(S̄, q̄, r̄)
under the condition S̄⊆ S. (9.3.6)

Here both models are assumed to be unifomizable with same constant H as by
(9.2.1). Throughout, we use the overbar symbol for an expression concerning the
modified model. We aim to compare the performance measures, that is the expected
reward per unit time in steady state, G and Ḡ.

Result 9.3.2 Suppose that for Vk defined by (9.3.5), all i ∈ S̄ and k ≥ 0:

[r̄− r](i)+∑
j
[q̄(i, j)−q(i, j)][Vk( j)−Vk(i)]≥ 0 (9.3.7)

Then,
Ḡ≥ G. (9.3.8)

Proof. By virtue of (9.3.5), we have

Vk+1(i) = hr(i)+ TVk(i),

V̄k+1
(i) = hr̄(i)+ T̄V̄k

(i),
(9.3.9)

As the transition probabilities P̄(·, ·) remain restricted to S̄ ⊆ S, for arbitrary l ∈ S
we may thus write

(V̄k−Vk)(l)

= h(r̄− r)(l)+ (T̄V̄k−1−TVk−1)(l)

= h(r̄− r)(l)+ (T̄−T)Vk−1(l)+ T̄(V̄k−1−Vk−1)(l)

= ∑k−1
s=0

{
T̄sh[r̄− r](l)+ T̄s

[
(T̄−T)Vk−s−1)

]
(l)
}

+ T̄k
(V̄0−V0)(l),

(9.3.10)
where the last step followed by iteration. First note that the last term in the right
hand side of (9.3.10) is equal to 0 as V̄0

(·) = V0(·) = 0. Furthermore, by (9.2.3) and
(9.2.4), we can also write

(T̄−T)Vs(i)

= ∑
j 6=i

h[q̄(i, j)−q(i, j)]Vs( j)−∑
j 6=i

h[q̄(i, j)−q(i, j)]Vs(i)

= ∑
j 6=i

h[q̄(i, j)−q(i, j)][Vs( j)−Vs(i)].

(9.3.11)

By substituting (9.3.11) in (9.3.10) and noting that T̄s is a monotone operator for all
s (i.e. T̄s f ≤ T̄s f if f ≤ g componentwise), from (9.3.10) and by using (9.3.7) we
obtain:
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(V̄k−Vk)(l) =
k−1

∑
s=0

T̄s
{
[r̄− r]+ (T̄−T)Vk−s−1

}
(l)≥ 0. (9.3.12)

The proof is completed by applying (9.3.3). ⊓⊔

Remark 9.3.3 (Essential difference to the stochastic comparison method) As shown
in section 9.2.2, with the stochastic comparison method or related sample path ap-
proach, as intensively studied in the literature, one requires that the one-change
transition structure or rather the transition rate matrices Q and Q̄ are stochastically
ordered as Q̄ ≥ (≤)Q in some appropriate ordering sense. This would essentially
imply condition (9.3.7) without the reward term [r̄− r].

Such a strict ordering does seem quite natural in ’standard’ type one-dimensional
systems. However, for multi-dimensional queueing structures a strict ordering of
purely the transition structure will be less natural and may not be satisfied. More
precisely, the necessary ordering for the specific performance measure of interest
might not be covered by the transition itself, as shown in section 9.2.3. By result
9.3.2, however, an ordering for that measure might still be provable by using the
extra reward term [r̄− r] in condition (9.3.7). For the tandem example of section
9.2.3 this will be shown in section 9.5.

Remark 9.3.4 (Bias-terms) The essential step to apply result 9.3.2 is to verify con-
dition (9.3.7). This in turn will generally require to bound the so-called bias terms
Vk( j)−Vk(i) from below (or above) by 0. This bounding can be quite technical.
But in general it can be performed in an inductive manner by exploiting the recur-
sive relation (9.3.5). As these bias-terms will also play a crucial role to obtain error
bounds, a more detailed discussion on these bias terms can be found in the next
section.

9.3.3 Error bound Result

Reconsider the setting of section 9.3.2 with
{

an original Markov reward chain (S,q,r),
an approximate Markov reward chain (S̄, q̄, r̄),

where both are assumed to be uniformizable with some constant H and where S⊆ S.
Let π and π̄ denote their steady-state distributions. The following theorem can be
given in various versions. The present form, however, is most practical in the natural
situation that the steady-state distribution of one of the two models, typically the
modified one, is known as easily computable. For convenience, we write

π̄ f = ∑
i

π̄(i) f (i)
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Result 9.3.5 (Error bound) Suppose that for some nonnegative function γ(·) at S̄,
all i ∈ S̄ and k ≥ 0:

∣∣∣[r̄− r](i)+∑
j
[q̄(i, j)− q(i, j)][Vk( j)−Vk(i)]

∣∣∣≤ γ(i). (9.3.13)

Then ∣∣Ḡ−G
∣∣≤∑

i
π̄(i)γ(i) = π̄γ . (9.3.14)

Proof. Recall the derivation (9.3.10) for fixed l ∈ S̄ with the last term in the right
hand side vanished as it is equal to 0. (as in the left hand side of (9.3.12)). Then by
multiplication by π(l) and summing over all l, we obtain

(π̄V̄k− π̄Vk) = ∑
l

π̄(l)[(V̄k−Vk)(l)]

= ∑
l

π̄(l)
k−1

∑
s=0

{
h[r̄− r](l)+ [(T̄−T)Vk−s−1(l)]

} (9.3.15)

Now note that since π̄ (as steady state distribution) is invariable under T̄. For any
function g:

π̄(Tg) = ∑
l

π̄(l)∑
j

P̄(l. j)g( j)

= ∑
j

[

∑
l

π̄(l)P̄(l, j)

]
g( j) = ∑

j
π̄( j)g( j) = π̄g

so that for any s:

π̄T̄sg = π̄T̄(T̄s−1g) = π̄(T̄s−1g) = . . . = π̄g (s > 0) (9.3.16)

As a consequence, by also taking absolute values
∣∣∣π̄V̄k− π̄Vk

∣∣∣ =
∣∣∣∑k−1

s=0 π̄
{

h[r̄− r]+ [T̄−T]Vk−s−1
}∣∣∣

≤ k∑i π̄(i)
∣∣∣h[r̄− r](i)+ [T̄−T]Vk−s−1(i)

∣∣∣
(9.3.17)

Substitution of (9.3.17) into (9.3.15) and using condition (9.3.13) thus gives
∣∣∣π̄V̄k− π̄Vk

∣∣∣≤ kh∑
i

π̄(i)γ(i) = kh[π̄γ] (9.3.18)

By recaling the steady-state convergence (9.3.3) to be independent of the initial
state, the proof is thus completed by
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H
k ∑

i
π̄(i)V̄k

(i)→ Ḡ (k→ ∞)

H
k ∑

i
π̄(i)Vk(i)→ G (k→ ∞)

⊓⊔

Remark 9.3.6 (Application of result 9.3.5) Note that result 9.3.5 may lead to small
error bounds in either of two ways:

• When either the difference between the transition rates q and q̄ is small, uniformly
in all states, say ‖Q̄−Q‖ ≤ ε for some small ε. Here one may typically think of
small perturbations or inaccuracies in system parameters such as an arrival rate
λ . (Examples of this form for M|M|c-systems can be found in [23]).

• When the transition rates q and q̄ may differ quite strongly in specific states i, but
where the likelihood π̄(i) of being in such states is rather small. Here, one could
typically think of a system modification or truncation. In section 9.4 a situation
(an error bound for a modification) is illustrated for the instructive example from
section 9.1.1.2. Below (in section 9.3.4) the specific case of a truncation will be
made more explicit. In section 9.6 a truncation error bound will be obtained for
finite Jackson networks.

Remark 9.3.7 (Bounded bias-terms) A crucial step to apply results 9.3.5 (as well
as result 9.3.2) is to bound the difference terms (in stochastic dynamic programming
also known as relative gain or bias-terms) of the form:

[Vk( j)−Vk(i)] (9.3.19)

Clearly, Vt will generally grow linearly in t and thus be unbounded. However, the
difference term (9.3.19) for fixed i, j will generally be bounded regardless of t.

More precisely, when r is bounded, say ‖r‖ < M, by simple Markov reward argu-
ments (cf. [23]) one proves

|Vk( j)−Vk(i)| ≤ 2M min[Ri j,R ji] (9.3.20)

where Ri j is the expected number of steps (mean first passage time; see [42] to reach
state j out of i. A similar though more technical result in terms of these times can
be given also for unbounded rewards (cf. [12]). Most essentially, however, closed-
form expressions or simple bounds for mean first passage times seem to be limited
to simple one-dimensional random walks (cf. [42]). In the next sections, however,
we will demonstrate how bounds for bias terms can be established in an analytic
manner by inductive Markov reward arguments or more precisely by employing the
dynamic reward relation (9.3.5).

Remark 9.3.8 (Bounds for bias-terms) For result 9.3.2 only lower (≥ 0) or upper
estimates (≤ 0) by zero for the bias-terms are needed. However, as might turn out
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in more complicated situations, also absolute bounds might be required to prove
these 0-estimates. This will appear and be illustrated for the finite tandem example
in section 9.5.

For result 9.3.5 these bounds will be used in the absolute errors γ(i) (conversely
also the 0-lower or upper estimates might still be required in the inductive proofs to
compensate for the extra reward terms).

Conveniently, by condition (9.3.7) in result 9.3.2 and (9.3.13) in result 9.3.5, bounds
for (9.3.19) are only required for ’neighboring’ states for which

|q̄(i, j)−q(i, j)| > 0. (9.3.21)

For example in a birth-death queueing system, only for states j = i−1 or j = i+1.

For standard type queueing networks (that is, without batch movements) only for
states of the form:

{
i = n
j = n + ep− eq with n = (n1, . . . ,nJ)

(9.3.22)

representing the population numbers ns at each stations to indicate that only one job
has moved form one station p to another station q. This natural queueing network
’property’ of one job-shift at a time can often be exploited to provide analytic bounds
for (9.3.19), as will be illustrated in sections 9.4, 9.5 and 9.6.

Remark 9.3.9 (S̄ = S) Note that the role of the original and modified system can
nót be interchanged when the state spaces are not equal, i.e. S̄ ( S. However, for
S̄ = S and by using that

∑
i

π(i)(T̄s f )(i)
C→∑

j
π̄( j) f ( j)

in combination with limiting arguments, in the proof of the theorem we can also
replace the steady state distribution π̄ by the steady state distribution π . Hence, in
that case (9.3.14) can be read either with π̄ or with π̄ replaced by π . Alternatively,
by reversing the roles, when S̄ = S, we may also read result 9.3.5 with (9.3.13)
replaced by

∣∣∣[r̄− r](i)+∑[q̄(i, j)−q(i, j)][V̄k
( j)− V̄k

(i)]
∣∣∣ ≤ γ(i) (9.3.23)

while keeping (9.3.14) as it stands. This alternative condition provides more flexibil-
ity to use the more appropriate system, either the original or modified one, in order
to establish bounds for the bias-terms. (This will appear to be convenient later on
for an application in section 9.4.3)
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9.3.4 Truncation Error Bound

As a special case, as of interest by itself, in this section consider the situation of a
truncation such as to jusitfy:

• a reduction of numerical effort, or conversely,

• the approximation of a finite model by a solvable infinite model.

To this end, let




S̄⊆ S

r̄ = r and

q̄(i, j) =

{
0 ( j /∈ S̄)
q(i, j)+∑k/∈S̄ 1{t[i,k]= j}q(i,k) ( j ∈ S̄)

(9.3.24)

In words that is, a transition from i to k by which S̄ would be left is transformed into
a transition into a special truncation state t[i,k] ∈ S̄. The notation and quantities as
defined before are adopted with an upper bar for the truncated model.

The following truncation result 9.3.10 now follows almost directly from result 9.3.5.
This result roughly states that the effect of a state space truncation can be expressed
by a steady state weight of the one step effect of the truncation on the bias-terms.
If the probability mass for states in which the truncation does have a direct effect is
small, also the error bound can be expected to be small.

Result 9.3.10 Suppose that for some function γ at S̄, all k ≥ 0 and any state i ∈ S̄:
∣∣∣∑

j/∈S̄

q(i, j)
[
Vk( j)−Vk(t[i, j])

]∣∣∣≤ γ(i) . (9.3.25)

Then ∣∣Ḡ−G
∣∣≤∑

i∈S̄

π̄(i)γ(i) = π̄γ . (9.3.26)

Proof. For i ∈ S̄ we have:

[q̄(i, j)− q(i, j)][Vk( j)−Vk(i)] =

{ − q(i, j)[Vk( j)−Vk(i)] ,( j /∈ S̄) .[
∑{k/∈S̄ |t[i,k]= j} q(i,k)

]
[Vk( j)−Vk(i)] ,( j ∈ S̄) .

(9.3.27)

with r̄ = r, condition (9.3.13) thus reduces to

∑
j
[q̄(i, j)− q(i, j)][Vk( j)−Vk(i)] = ∑

l∈S/S̄

q(i, l)[Vk(t[i, l])−Vk(l)]

Result 9.3.5 completes the proof. ⊓⊔
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Remark 9.3.11 (≥ 0 or ≤ 0) Clearly, depending on the reward rate (performance
measure of interest), as in result 9.3.5 also in (9.3.25) an inequality sign ≥ 0 (or
≤ 0) can be included, so as to conclude (or similarly with G and Ḡ interchanged)

0≤G− Ḡ≤∑
i∈S̄

π̄(i)γ(i), (9.3.28)

Remark 9.3.12 (Infinite expansion) As a special case, the q-model might also rep-
resent an infinite model. Particularly, thinking of a queueing network application,
the q-model may correspond to an infinite product form approximation for a finite
non-product form system. This will be used in section 9.6.

Remark 9.3.13 (Computational error bound) Note that the error bound in (9.3.26)
necessarily requires the steady state distribution π̄ for the system with the smallest
state space S ⊆ S (as essentially used in the proof of result 9.3.5). This distribution
may typically be thought of as only obtainable by numerical computation.

Remark 9.3.14 (Analytic error bound) The computational error bound in (9.3.26),
in turn, might be estimated form above by an analytic expression of the form

∑
i

π̄(i)γ(i) ≤∑
i

¯̄π(i)γ(i) (9.3.29)

by using an analytic approximation ¯̄π and the stochastic comparison result 9.2.1. In
this form, the stochastic comparison and Markov reward approach might become
mutually beneficial.

Particularly, for queueing network applications an analytic error bound of the form
(9.3.29) can be thought of as by a product form modification or infinite expansion.
In section 9.6.3 this will be established for finite Jackson networks.

9.3.5 Comparison of MRA and SC

Clearly both approaches of the Markov reward approach (MRA), as presented in
this section, and of stochastic comparison (SC), as briefly presented in section 9.2.1
(which in turn is directly related to sample path comparison) and which has been
studied intensively in the literature, have a common starting point and objective of:

Comparing the performance of two related stochastic systems

As such, a comparison of the two approaches is in place on a number of aspects
each of which might lead to an advantage (or preference) or just the opposite: a
disadvantage (or limitation) for either of the two approaches.
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1. Objective: ordering and error bound. First of all, the MRA might lead to
both an ordering and a quantification by means of an error bound for the dis-
crepancy of the two systems. SC only establishes ordering results (clearly, in
specific applications, as shown and discussed for an M|G|1-application in [20],
ordering results in combination with analytic expressions for bounding models
might indirectly also lead to an error bound).

These error bounds in turn might typically be thought of as being small, where
one system is a modification of the other, for either of two reasons:

• when the modification itself is small

• when the likelihood for the modification to take place is small

In principle, the error bounds do not (need to) rely upon ordering results. Never-
theless, in applications usually also ordering results are included as side results.

(As an example, in [22], for a non-exponential extension of the MRA, error
bounds are obtained for GI|G|c-systems with different service hazard rates, de-
spite the fact that these hazard rates themselves are not ordered, as illustrated in
figure 9.4.)

Fig. 9.4: Nón-ordered hazard rates for two M|G|c systems.

In fact, the opposite applied here, by the error bound also an ordering result for
the systems could be concluded.)

2. Exponential case: essential technical difference. For the exponential case, in
essence, as shown in section 9.2.1, by SC one shows that the one-step transition
matrices P and P̄ (or rather the generators Q and Q̄) are ordered. By the MRA, in
contrast, an ordering (as well as quantification) is required (see relation (9.3.7)
or (9.3.13)) for the combination of the one-step transition matrix (or generator)
and the one-step reward function r as by

[r + PVk] and [r̄ + P̄V̄k
]

This technical difference by itself will imply a number of differences in favour
of one of the two approaches as will be mentioned below.
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3. ’Stronger’ comparison result (1) SC thus leads to ordering results that hold
for all possible reward functions (and related performance measures) from a,
generally wide, monotonicity class M (as in section 9.2.2, whereas the MRA
only deals with one specific reward rate (performance measure). In this sense,
SC can be regarded as being stronger.

However, as a price to pay, also the implicit conditions for the system to satisfy
a stochastic comparison ordering will generally be stronger!

Particularly, stochastic comparison results have been reported widely for multi-
server type queues, which can be seen as one-dimensional systems. For more
complicated, say multi-dimensional, queueing systems, however, such as queue-
ing networks, stochastic comparison results are far more limited but can still be
obtained as in [63] and the chapter by Szekli (also see remark 9.6.5).

More concrete, as shown in section 9.2.1, to establish an ordering result for a
specific performance measure, SC might fail, while the MRA, as will be shown
in section 9.5, might still work, based upon the specific reward function r of
interest. In this respect, also the MRA might be referred to as ’stronger’.

4. ’Stronger’ comparison result (2). Somewhat relatedly, SC or the related sam-
ple path comparison approach does in fact lead to ordering results that even apply
at sample path basis (with probability 1). The MRA in principle only provides a
comparison at expected steady state basis (see section 9.7 for an extension to the
transient case). Again, as such SC can be regarded as ’stronger’.

However, as can be shown easily by ’counterintuitive’ examples (such as in sec-
tions 9.4.1 and section 9.6.2, ordering results might fail at sample path basis but
still be expected and be proven by the MRA at expected steady state basis. This
will be shown in sections 9.4 and 9.6.

(Another illustration can be found in [64] which shows an ordering result for an
availability measure at expected steady state basis while the underlying systems
are not, neither in strong nor weak sense, stochastically ordered).

In this respect, also the MRA might again be referred to as ’stronger’.

5. ’Proofs’. The proofs for stochastic comparison or ordering results, as often
given by sample path comparison and weak coupling arguments, are generally
most elegant. The technical verifications for the MRA, in contrast, in particular
for the estimation of the bias-terms (9.3.19), are generally more complicated and
technical. On the other hand, these verifications are often also more structured.
As a consequence and in line with 3, in more complex situations the MRA might
be favourable if not necessary.

6. (Non)exponentiality. The exponentiality requirement of the MRA is a strong
limitation for practical applications. SC or rather the approach by sample path
comparison, in contrast, in general works, if it applies, for queueing systems
with arbitrary service and arrival distributions.

Various non-exponential extensions of the MRA for specific applications have
meanwhile been developed in the literature, by using phase-type distributions
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(e.g. see [22]). Nevertheless, the technicalities become far more complicated. In
this respect, SC remains to be highly favourable.

7. Combination of both. In fact, it might also be beneficial to combine the MRA
and SC so as to eventually obtain a simple analytic expression for an error bound.
This will be illustrated in section 9.6.3 for the truncation and expansion of finite
Jackson networks.

Table 9.3: Overview.

A somewhat ’imprecise’ and merely ’global’ overview of these reflections is listed in ta-
ble 9.3. The letters A and D indicate whether this aspect should generally be seen as an
advantage or a disadvantage.

Markov Reward Approach Stochastic Comparison

Error Bound Results (A) -

Comparison results Comparison results

More complex systems (A) Strong system conditions (D)

Queueing networks (A) ’Simple’ queueing systems (D)

Might still work (A) Might not apply (D)

Only one measure (D) Class of measures (A)

Only at expectation basis (D) Sample path results (A)

Exponential requirements (D) No exponentiality required (A)

Technical analytic proofs (D) Elegant sample path proofs (A)

Comparison as extra (A)

Combination
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B: Applications

9.4 Application 1: Instructive Breakdown Example

This section aims to illustrate the Markov reward approach and the results from
section 9.3 in an instructive manner. More precisely, it will illustrate:

1. How the bias-terms (9.3.19) for different performance measures can be
estimated analytically.

2. How the conditions (9.3.7) and (9.3.13) or (9.3.25) can be verified.

3. The type of results that can be obtained.

To this end, reconsider the instructive breakdown example from section 9.1.1.2.
As argued in remarks 9.3.4 and 9.3.7, a crucial step to apply the Markov reward
approach is to estimate the bias-terms (9.3.19) for the measure of interest. In section
9.4.1, therefore, we first show how this can be achieved in an analytic manner using
the reward relation (9.3.5).

Next, in sections 9.4.2 and 9.4.3, a comparison and two error bound applications are
given to show how the results from section 9.3 can be used, once bounds for these
bias-terms have been established.

9.4.1 Analytic bounds for the bias-terms

Typical performance measures of interest are:

• a throughput
• a mean queue length
• or directly related measures as a loss probability or a delay

In this section it will be shown how comparison and error bound results as in section
9.3 can be investigated for different measures in an analytic and more or less unified
manner . The common first step is the derivation of a recursive relation for the bias-
terms by using the reward relation (9.3.5) and comparing the possible transitions in
two neighboring states. More precisely, with (n,θ) as in section 9.1.1.2, with n≤N
the number of jobs and θ = 1,0 the status of the server being up (θ = 1) or down
(θ = 0), we aim to obtain an analytic expression for

[Vk(n+ 1,θ)−Vk(n,θ )]

This expression can be obtained in an analytic manner by subtracting the reward
expression (9.3.5) in the state (n,θ) from the reward expression (9.3.5) in state
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(n +1,θ ). However, the derivation of these bias-term expressions are generally un-
derstood more easily in a stochastic manner by comparing each of the transitions,
which can take place in either of the two states, pairwise. This will be illustrated in
more detail below for the breakdown example from section 9.1.1.2. Let r(·) be the
reward rate for the performance measure of interest (such as by (9.2.6)) and consider
a fixed k. Let

H = [λ + µ + γ0 + γ1]

Expression for [V(n+ 1,θ)−V(n,θ)].

By substituting the transition rates q((n,θ),(n,θ )′) and with h = H−1, the uni-
formized transition matrix P as by (9.2.3) becomes:

P((n,θ),(n,θ )′) =





(n,θ )′

hλ 1(n<N) ,(n+ 1,θ)

hλ 1(n>0)1(θ=1) ,(n− 1,1)

hγ11(θ=1) +hγ01(θ=0) ,(n, [θ +1](mod2))
[
1−hλ1(n<N)−hµ1(n>0)1(θ=1)−hγθ

]
,(n,θ )(n≤ N,θ = 0,1)

(9.4.1)

By the reward relation (9.3.5) in state i = (n,θ ), for k +1, we then obtain:

Vk+1(n,θ) = hr(n,θ )

+ hλ1(n<N)V
k(n +1,θ )

+ hµ1(n>0)1(θ=1)V
k(n−1,1)

+ hγ11(θ=1)V
k(n,0)+ hγ01(θ=0)V

k(n,1)

+ [1−hλ1(n<N)− hµ1(n>0)1(θ=1)−hγθ ]Vk(n,θ )

(9.4.2)

Similarly, in state (n +1,θ) with n +1≤ N and for k + 1, we obtain:

Vk+1(n +1,θ) = hr(n+ 1,θ)

+ hλ1(n+1<N)V
k(n +2,θ )

+ hµ1(θ=1)V
k(n,1)

+ hγ11(θ=1)V
k(n +1,0)+ hγ01(θ=0)V

k(n +1,1)

+ [1− hλ 1(n+1<N)− hµ1(n>0)1(θ=1)− hγθ ]

Vk(n +1,θ )

(9.4.3)

Now, in order to subtract (9.4.2) from (9.4.3) in states with n+1≤ N, hence n < N,
and to compare the transitions in a pairwise manner, in the right hand side of (9.4.2),
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rewrite:

hλ1(n<N)V
k(n +1,θ)

= hλ1(n+1<N)V
k(n +1,θ )

+hλ1(n+1=N)V
k+1(n +1,θ )

as well as (artificially add and subtract) include the extra term (which is equal to 0):

hµ1(n=0)1(θ=1)V
k(n,1)−hµ1(n=0)1(θ=1)V

k(n,1)

This 0-term is included as if in state (n,θ) with n = 0 there is also a ’dummy tran-
sition’ with probability hµ1(θ=1), by which the state remains unchanged, as there
is a transition with this probability in (9.4.3) for state (n + 1,θ). Conversely, for a
similar reason, in state (n + 1,θ ) with n + 1 = N, in the right hand side of (9.4.3),
we (artificially add and subtract) include the extra term (which is equal to 0):

hλ1(n+1=N)V
k+1(n+ 1,θ)−hλ1(n+1=N)V

k+1(n+ 1,θ)

Then, after these substitutions have been made and by subtracting (9.4.2) from
(9.4.3), for any state (n,θ ) with n +1≤ N and θ = 0,1, we find

[
Vk+1(n +1,θ)−Vk+1(n,θ )

]

= h [r(n +1,θ )− r(n,θ)] (4.4.1)

+ hλ1(n+1<N)

[
Vk(n +2,θ )−Vk(n +1,θ )

]
(4.4.2)

+hλ1(n+1=N)

[
Vk(N,θ)−Vk(N,θ)

]
(4.4.3)

+hµ1(n>0)1(θ=1)

[
Vk(n,θ )−Vk(n−1,θ )

]
(4.4.4)

+ hµ1(n=0)1(θ=1)

[
Vk(0,1)−Vk(0,1)

]
(4.4.5)

+hγ11(θ=1)

[
Vk(n +1,0)−Vk(n,0)

]
(4.4.6)

+hγ01(θ=0)

[
Vk(n +1,1)−Vk(n,1)

]
(4.4.7)

+
[
1−hλ −hµ1(θ=1)− hγθ

][
Vk(n+ 1,θ)−Vk(n,θ )

]
(4.4.8)

(9.4.4)

Here indeed, the terms (4.4.3) and (4.4.5) in the right hand side of (9.4.4) are equal
to 0 but left in for clarity of the derivation as well as an argument that will follow
below in the proof of lemma 9.4.1. The relation (9.4.4) can now be used to obtain
an analytic lower and upper bound for this bias-terms.

Lemma 9.4.1 (Throughput) Let r(n) = µ1(n>0)1(θ=1). Then for all k ≥ 0, n < N
and θ = 0,1:

0≤ ∆Vk(n,θ ) =
[
Vk(n +1,θ )−Vk(n,θ)

]
≤ 1 (9.4.5)
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Proof. This will follow by induction in k. Clearly, (9.4.5) holds for k = 0. Assume
that (9.4.5) is satisfied for all k≤ l. Then by (9.4.4) (keeping in the fourth term from
the right hand side, which is equal to 0) and substituting r(n) = µ1(n>0)1(θ=1) for
k = l + 1 we obtain:

∆Vl+1(n,θ )

= hµ1(n=0)1(θ=1)

+ hλ1(n+1<N)∆Vl(n +1,θ )

+ hµ1(n>0)1(θ=1)∆Vl(n− 1,1)

+hµ1(n=0)1(θ=1)

[
Vl(0,1)−Vl(0,1)

]

+hγ11(θ=1)∆Vl(n,0)hγ01(θ=0)∆Vl(n,1)

+
[
1−hλ −hµ1(θ=1)− hγθ

]
∆Vl(n,θ )

(9.4.6)

By substituting the induction hypothesis ∆Vl(n,θ) ≥ 0 for all (n,θ ), we can es-
timate the right hand side of (9.4.6) from below by 0 and directly conclude:
Vl(n,θ)≥ 0. To estimate the right hand side of (9.4.6) from above, now first observe
that the first additional term hµ1(n>0)1(θ=1) is equal to the (probability) coefficient
of the fourth term which is equal to 0. Furthermore, note that all the coefficients rep-
resent transition probabilities that do not add up to more than 1. As a consequence,
by substituting the induction hypothesis: ∆Vl(n,θ)≤ 1 for all (n,θ ) and adding up
all these coefficients, we can estimate the right hand side of (9.4.6) from above and
conclude: ∆Vl+1(n,θ )≤ 1 for all (n,θ ). We have thus proven (9.4.6) for k = l +1.
The induction completes the proof. ⊓⊔

For the comparison and truncation application in sections 9.4.2 and 9.4.3 the
throughput is the measure of first interest. Lemma 9.4.1 can then be applied. For
the error bound applications in section 9.4.3, it is also of particular interest to con-
sider a mean queue length. In this case, it appears to be more convenient to reverse
the roles of the original and modified system. That is, we investigate the bias-terms
of the modified breakdown system as described under (v) in section 9.1.1.2, that is
with arrivals also rejected when the system is down. This will be used in lemma
9.4.2 below.

Lemma 9.4.2 (Mean queue length) Let r(n,θ ) = n. Then with arrival rejection
when the system is down, for all k ≥ 0, n < N and θ = 0,1:

0≤ ∆Vk(n,θ)≤ [n+ 1]

[µ−λ ]
(9.4.7)

Proof. As for lemma 9.4.1 this will follow by induction in k. Clearly, (9.4.7) holds
for k = 0 Assume that (9.4.7) holds for k ≤ l. Then by (9.4.4) (with the addition of
arrivals rejected when the system is down and again with the fifth term, which is
equal to 0, kept in), and by substituting r(n) = n, we find:
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∆Vl+1(n,θ )

= h

+ hλ1(n+1<N)λ1(θ=1)∆Vl(n +1,θ )

+ hµ1(n>0)1(θ=1)∆Vl(n−1,θ )

+hµ1(n=0)1(θ=1)

[
Vl(0,1)−Vl(0,1)

]

+hγ11(θ=1)∆Vl(n,0)hγ01(θ=0)∆Vl(n,1)

+
[
1−hλ1(n+1<N)1(θ=1)−hµ1(θ=1)− hγ1−hγ0

]
∆Vl(n,θ )

(9.4.8)

Again, by substituting the lower estimates 0 by the induction hypothesis (9.4.7) for
k = l, by (9.4.8) one directly verifies Vl+1(n,θ) ≥ 0. To estimate the right hand
side of (9.4.8) from above, substitute ∆Vl(n,θ ) ≤ [n + 1]C in order to prove that
∆Vl+1(n,θ )≤ [n +1]C. We then require that

h
[
1 +λ1(n+1<N)1(θ=1)[n+ 2]C+ hµ1(θ=1)nC + γθ nC

]

≤
[
1−λ1(n+1<N)1(θ=1)−hµ1(θ=1)−hγθ

]
[n +1]C

≤ [n +1]C

This in turn, is satisfied by
1 +λC− µC ≤ 0

Hence, by choosing C = 1/(µ − λ ) we have also proven that ∆Vl+1(n,θ ) ≤ [n +
1]/[µ−λ ]. The induction completes the proof. ⊓⊔

In fact, lemma 9.4.2 and its proof can directly be reread in the more general form
of:

Lemma 9.4.3 (General bounded case) Let r(n) be such that 0 ≤ [r(n + 1,θ )−
r(n,θ)]≤ R for some constant R. Then, for the system as in lemma 9.4.2, all k ≥ 0,
n < N and θ = 0,1:

0≤ ∆Vk(n,θ )≤ R
[n +1]

[µ−λ ]

Remark 9.4.4 (Other performance measures) For specific applications bounds
for the corresponding bias-terms have also been established in the literature for
other measures such as for tail probabilities of tandem queues in [21] and for the
availability (number of up components) of performability models in [64].

9.4.2 Comparison Result

Consider the loss probability B = π(n,1)+ π(n,0). As there is no analytic solution
for B, as argued in section 9.1.1.2, one might suggest to use
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BL ≤ B≤ BU (9.4.9)

with

BL: the loss probability for the system without breakdowns (or equivalently the
system that continues to work also when the system is down) (called lower
bound system).

BU : the loss probability for the system in which arrivals are rejected when the
system is down (called upper bound system) as by the product form
expression (9.1.2).

As indicated by the numerical results in table 2.1 (Chapter 1) and as can be expected,
these bounds can even be reasonably accurate for τ reasonably small, with

τ : the fraction of time that the system is down

Intuitively, the inequalities (9.4.9) seem trivial. Nevertheless, one has to be careful
as shown by the following example. A formal comparison proof for (9.4.9) will thus
be of interest. This will be established by result 9.4.6 below.

Example 9.4.5 Let N = 2 and consider a processor sharing service discipline.
Hence, with 2 jobs present each receives a service capacity 1

2 . (Note that this doesn’t
effect the total service rate µ as the service times are exponential).

Let a realization of inter-arrival times and service requirements be given by:

Job 1 2 3 4 5

Arrival time 3 7 11 11.5 22

Service time 5 3 1 2 6

while the up and down times are:

Up Down Up Down

6 2 7 3

The realizations in the original model (OM) and the upper bound model (UM) under
which arrivals were rejected when the system is down are depicted in figure 9.5 by:

⊚ : arrival
⊗ : rejection
� : completion
Di : departure of ith accepted job

We observe that the second arrival is accepted in the original model but rejected in
the upper-bound model. This, however, leads to rejections later on for the original
model at times 11 and 11.5 while in the upper-bound model the jobs are accepted as
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0 51 62 43 97 8 10 11 12 13 14 15

Up UpDown Down

D1 D2 D3

D1 D2

Fig. 9.5: Network Example

the system has become empty. During the time interval 0-15 the upper-bound model
thus appears to have a better performance (smaller number of losses and larger
number of completions) in contrast with the intuition that it will perform less.

Result 9.4.6
BL ≤ B≤ BU (9.4.10)

Proof. By virtue of the relationship for the throughput F = λ (1−B), and similarly
for the lower and upper bound system, it suffices to prove that FL ≥ F≥ FU . Let us
restrict to the upper bound system. We will apply result 9.3.2 and lemma 9.4.1.

Let q̄ correspond to the upper bound system and q to the original one. To verify
condition (9.3.7), first note that r = r̄. Furthermore, note that

∑
(n,θ)′

[
q̄
(
(n,θ),(n,θ )′

)
− q
(
(n,θ ),(n,θ )′

)][
Vk ((n,θ )′

)
−Vk ((n,θ))

]

=−λ1(n<N)1(θ=0)

[
Vk(n +1,0)−Vk(n,0)

] (9.4.11)

By lemma 4.1, the right hand side of (9.4.11) can be estimated from above by 0.
By result 9.3.2 (with the signs reversed), we thus conclude FU ≤ F. (The proof for
the lower bound BL follows similarly if we let q̄ correspond to the system without
breakdowns or equivalently the system that always continues to work, also when the
system is down.) ⊓⊔

9.4.3 Error Bounds

Despite the fact the lower and upper bound systems have explicit product form ex-
pressions, let us also investigate whether we can quantify their inaccuracy by an-
alytic error bounds. Again, we will restrict to the upper bound system in which
arrivals are rejected when the system is down. Let
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F : λ (1−B) the throughput.
Q : the mean queue length (or total number of jobs present).

and similarly with subscript U for the upper bound system. The first result, for the
throughput (or loss probability), is intuitively obvious and can also be derived ana-
lytically by using the comparison (9.4.10) and the product form expression (9.1.2)
for the upper bound system. However, it is included to illustrate how result 9.3.5
works out.

The second one is of more practical interest as it is not obvious a priori how much the
breakdowns will effect the queue length and how the queue length can be estimated.
(Note here that both the lower and upper bound model can intuitively be expected
to provide a lower bound for the queue length of the original system).

Result 9.4.7 (Throughput) With FSt = FL = λ (1−BSt), with BSt the standard loss
probability of an M|M|1|N-queue with traffic load ρ = [λ/µ ], and τ the fraction of
time that the system is down:

|F−FU | ≤ τFSt =

τρN [1−ρ][1−ρN+1]−1

Proof. To apply result 9.3.5, as in the proof of result 9.4.6 let q̄ correspond to the
upper bound model. By r̄(n,θ) ≡ r(n,θ ) = µ1(n>0)1(θ=1), equation (9.4.11) and
lemma 9.4.1, condition (9.3.13) is satisfied with

γ(n,θ) = λ1(n<N)1(θ=0)

By result 9.3.5 and (9.3.14), we thus find

|F−FU | ≤ ∑
(n,θ)

π̄(n,θ )λ1(n<N)1(θ=0)

Filling in the product form expression (9.1.2) for π̄(n,θ ) as according to the upper
bound model, and using its factorizing form in π(n) and π(θ) completes the proof.

⊓⊔

Result 9.4.8 (Queue length) With QSt the mean queue length of a standard
M|M|1|N-queue with traffic load ρ = [λ/µ ]:

∣∣Q− Q̄U

∣∣≤ τQSt

[
µ

µ−λ

]
= τ

[
µ

µ−λ

][
∑N

k=0 kρk
][

∑N
k=0 ρk

]−1

Proof. Again, let the q̄-system correspond to the upper bound model and q to the
original. We need to apply result 9.3.5 and lemma 9.4.2. To this end, first observe
that the state spaces of the original and upper bound system are identical. As a
consequence, with reference to remark 9.3.9, in order to apply result 9.3.5, we can
use condition (9.3.23) instead of condition (9.3.13).
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As a consequence, we can reuse (9.4.11) with the bias-terms[
Vk+1(n +1,θ )−Vk(n,θ)

]
substituted by those from lemma 9.4.2, that is for the

upper bound system. Then, by nothing again that r̄(n,θ) ≡ r(n,θ) = n to evaluate
the mean queue length, by equation (9.4.11) and by lemma 9.4.2, we can verify
condition (9.3.23) with

γ(n,θ ) = λ 1(n<N)1(θ=0)
[1+ n]

[µ−λ ]

By result 9.3.5 (with remark 9.3.9 taken in his account), (9.3.14) and by filling in
the product form expression (9.1.2) for π̄(n,θ ) in (9.3.14), as according to the upper
bound model, we find:

|Q−QU | ≤ ∑(n,θ)
λ1(n<N)1(θ=0)[1 +n]π(n,θ )

[
1

µ−λ

]

= λ τ
[

1
µ−λ

]
∑N−1

n=0 (1 +n)ρn
[
∑N

k=0 ρk
]−1

= λ τ
[

1
µ−λ

]
1
ρ

[
∑N

k=0 kρk
][

∑N
k=0 ρk

]−1

= τQSt

[
µ

µ−λ

]

⊓⊔

9.5 Application 2: Finite Tandem Queue

9.5.1 Problem Motivation

Reconsider the unsolvable finite tandem queue with blocking as described in sec-
tion 9.1.2.1, with the single server assumption generalized to service rates µi(ni) at
station i when ni jobs are present at that station, i = 1,2. Here the natural assump-
tion is made that µi(ni) is nondecreasing, for both i = 1,2. Let µi(0) = 0, i = 1,2.
Recall the modifications 1 and 2 as described in section 9.1.1.2. We refer to the
corresponding systems as:

”lower bound model” (under modification 1) and

”upper bound model” (under modification 2)

as we expect and intend to show:

BL ≤ B≤ BU (9.5.1)

with
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B the loss probability

BL the loss probability under modification 1

BU the loss probability under modification 2

As illustrated already by table 9.2 for the single server case, this ordering result
would be of practical interest as the lower and upper bound model exhibit an ap-
pealing product form. Indeed, also in this more general case, similar to the detailed
(station) balance equations (1.4.1)-(1.4.3) as for the single server case with µi(ni)
substituted when ni jobs are present, for the upper bound model one directly verifies
the product form:

πU (n1,n2) = cUλ n1+n2

[
n1

∏
k=1

µ1(k)

]−1[ n2

∏
k=1

µ2(k)

]−1

(9.5.2)

with cU the normalizing constant at the set of admissible states:

SU = {(n1,n2) | 0≤ n1 ≤ N1 ; 0≤ n2 ≤ N2 ; n1 +n2 6= N1 + N2}

And similarly, the right hand side of expression (9.5.2) also applies to the steady
state distribution πL(n1,n2) of the lower bound model, except that cU has to be
replaced by a normalizing constant cL at

SL = {(n1,n2) | n1 ≥ 0; n2 ≤ 0; n1 +n2 ≤ N1 + N2}

The loss probabilities BL and BU are thus easily computed by:

BL = πL(n1 +n2 = N1 +N2) and

BU = πU(n1 = N1 or n2 = N2)

Table 9.4 below gives some more numerical support for the pure multi-server case
with Ni servers at station i, i = 1,2, and ρ1 = ρ2 = λ/µ1 = λ/µ2 with µi the expo-
nential service parameters at station i. A formal proof for (9.5.1) is thus of interest.

Unfortunately, as shown and concluded in section 9.2.3, the technique of ”stochastic
comparison” by ordering properties of the one-step transition operators necessarily
fails for proving the ordering as required for (9.5.1)

In section 9.5.2, therefore, we aim to prove (9.5.1) by the Markov reward approach,
that is by result 9.3.2, as based upon technical lemma’s for bounding the bias-terms,
which are presented in section 9.5.3.

Remark 9.5.1 (Insensitive bounds) For the pure multi-server case with N1 and N2

servers, or for specific disciplines such as a Last-in-First-out preemptive or proces-
sor sharing discipline for the single server case, the product form expression (9.5.2)
is also insensitive, i.e. the exponentiality assumptions are not required. As a con-
sequence, in these cases one may also expect that the values BL and BU provide
’insensitive’ bounds, i.e. also apply as bounds for arbitrary service distributions.
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Table 9.4: Loss bounds for pure multi-server-case

ρ1 ρ2 N1 N2 BL BU

1 1 4 4 0.001 0.030
10 10 10 10 0.199 0.353
10 10 13 13 0.051 0.156
10 10 15 15 0.012 0.070
10 10 20 20 0.000 0.004

For the pure multi-server case this is indeed proven in [11] in a more technical
manner than in this section.

9.5.2 Comparison Result (Bounds)

By virtue of the throughput (F) relation F = λ (1−B), and similarly for the lower
and upper bound model, it suffices to show that

FU ≤ F≤ FL (9.5.3)

Here the values F, FL and FU represent the throughputs of the original, lower bound
and upper nound model respectively. Furthermore, note that

SU ⊆ S⊆ SL (9.5.4)

with SU 6= S 6= SL and S the state space of the original model:

S = {(n1,n2) | 0≤ n1 ≤ N1;0≤ n2 ≤ N2} (9.5.5)

Let q, qL and qU be the transition rates and Vk, Vk
L and Vk

U the corresponding cumu-
lative reward functions with reward rates r, rL and rU as according to the notation
in sections 9.2.1 and 9.3.1 for the original, lower and upper bound tandem model
respectively. To prove (9.5.3) we can choose:

{
r(n1,n2) = rL(n1,n2) = µ2(n2)

rU (n1,n2) = µ2(n2)1n1<N1

(9.5.6)

In order to apply result 9.3.2 for the upper bound model, with (...) and (9.5.5) taken
into account, we need to investigate condition (9.3.7) with r̄ = rU and q̄ = qU , for
any (n1,n2) ∈ SU . Condition (9.3.7) then leads to the expression:
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[rU (n1,n2)− r(n1,n2)]+

∑(n1,n2)′
[
qU

(
(n1,n2),(n1,n2)

′)−q
(
(n1,n2),(n1,n2)

′)] ·
[
Vk ((n1,n2)

′)−Vk ((n1,n2))
]

=

− µ2(n2)1(n2=N2)

+λ1(n2=N2)1(n1+1≤N1)

[
Vk ((n1,n2))−Vk ((n1 + 1,n2))

]

+ µ2(n2)1(n1=N1)1(n2>0)

[
Vk ((n1,n2))−Vk ((n1,n2−1))

]

(9.5.7)

By lemma 9.5.2 below, the bias-terms in the second and third term in the right hand
side of (9.5.7) are nón-positive, so that this right hand side can be estimated from
above by:≤ 0. By result 9.3.2 (with≤ sign), Ḡ = FU and G = F, this proves FU ≤F.

In order to apply result 9.3.2 for the lower bound model, as S ⊆ SL, we need to let
q̄ have the role of the (smaller) original model and q of the lower bound model. For
any (n1,n2) ∈ S̄ and with r = rL, condition (9.3.7) then leads to:

[r(n1,n2)− rL(n1,n2)]+

∑(n1,n2)′
[
q
(
(n1,n2),(n1,n2)

′)−qL

(
(n1,n2),(n1,n2)

′)] ·
[
Vk

L ((n1,n2)
′)−Vk

L ((n1,n2))
]

=

λ1(n1=N1)

[
Vk

L ((n1,n2))−Vk
L ((n1 + 1,n2))

]
+

µ1(n1)1(n2=N2)1(n1>0)

[
Vk

L ((n1,n2))−Vk
L ((n1−1,n2 +1))

]

(9.5.8)

By lemma 9.5.4 below, the bias-terms in the right hand side of (9.5.8) are nón-
positive, so that the right hand side can be estimated from above by: ≤ 0. By result
9.3.2 (with ≤ sign), Ḡ = F and G = FL this proves F ≤ FL. The proof of (9.5.1) is
hereby completed.

9.5.3 Technical verification of Bias-Terms

Lemma 9.5.2 (Bias-terms for original model) For all k ≥ 0, all (n1,n2) ∈ S and
with (n1 +1,n2) ∈ S in (9.5.9), (n1,n2 +1) ∈ S in (9.5.10) and (n1−1,n2 + 1) ∈ S
in (9.5.11):

0≤ ∆1Vk(n1,n2) = Vk(n1 + 1,n2)−Vk(n1,n2)≤ 1 (9.5.9)

0≤ ∆2Vk(n1,n2) = Vk(n1,n2 +1)−Vk(n1,n2)≤ 1 (9.5.10)

0≤ ∆3Vk(n1,n2) = Vk(n1− 1,n2 +1)−Vk(n1,n2)≤ 1 (9.5.11)
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Proof. As in the proof of lemma 9.4.1, the proof will be given by induction in k.
(9.5.9)-(9.5.11) hold for k = 0 as V0(·, ·)≡ 0. Suppose that (9.5.9)-(9.5.11) hold for
k ≤ m. We will separately prove (9.5.9), (9.5.10) and (9.5.11) for k = m +1.

Before doing so, it is stated that the bias-term equations (9.5.12), (9.5.13) and
(9.5.14) can be derived by similar steps as for the derivation of (9.4.4) in section
9.4, either analytically by writing out the reward relations (9.3.5) and collecting
terms after substraction, or by probabilistic interpretation by comparing each (pos-
sibly after also adding a ’dummy’ transition) transition, that can take place in either
of the two states, in a pairwise manner. In these equations also terms do appear that
are equal to 0 but left in for charity of its (probabilistic) derivation and a possible
compensation argument later on (see proof of (9.5.10) for k = m +1).

Proof of (9.5.9) for k=m+1. By comparing the reward relation (9.3.5) in states
(n1 +1,n2) and (n1,n2) with n1 < N1 and noting that r(n1 +1,n2) = r(n1,n2), as in
(9.4.4) we derive:

∆1Vm+1(n1,n2)

= hλ1(n1+1<N1)∆1Vm(n1 +1,n2)

+ hλ1(n1+1=N1) [V
m(N1,n2)−Vm(N1,n2)]

+ hµ1(n1)1(n1>0)1(n2<N2)∆1Vm(n1−1,n2 +1)

+ hµ2(n2)1(n2>0)∆1Vm(n1,n2− 1)

+ h[µ1(n1 +1)− µ1(n1)]1(n2<N2) [V
m(n1,n2 + 1)−Vm(n1,n2)]

+
[
1−hλ− hµ1(n1 +1)1(n2<N2)−hµ2(n2)

]
∆1Vm(n1,n2)

(9.5.12)

where we note that the second term in the right hand side is equal to 0 while the
bias-term in the fifth can be transformed into ∆2Vm(n1,n2). By substituting the in-
duction hypotheses ∆1Vm(·, ·)≥ 0 and ∆2Vm(·, ·)≥ 0 and noting that µ1(·) is non-
decreasing, by (9.5.12) we directly verify
∆1Vm+1(n1,n2)≥ 0.

By substituting the induction hypotheses ∆1Vm(·, ·)≤ 1 and ∆2Vm(·, ·)≤ 1, leaving
out the 0-term and noting that all coefficients, which all represent probabilities, add
up to 1, we can estimate the right hand side from above by 1, i.e.: ∆ m+1

1 (n1,n2)≤ 1.
We have thus shown that (9.5.9) also holds for k = m +1.

Proof of (9.5.10) for k=m+1. Similarly, with n2 < N2 and by noting that
r(n1,n2 + 1)− r(n1,n2) = µ2(n2 +1)− µ2(n2), we find:
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∆2Vm+1(n1,n2 +1)

= h[µ2(n2 + 1)− µ2(n2)]

+ hλ1(n1<N1)∆2Vm(n1 + 1,n2)

+ hµ1(n1)1(n1>0)1(n2+1<N2)∆2Vm(n1− 1,n2 +1)

+ hµ1(n1)1(n1>0)1(n2+1=N2) [V
m(n1,n2 +1)−Vm(n1−1,n2 + 1)]

+ hµ2(n2)1(n2>0)∆2Vm(n1,n2− 1)

+ h[µ2(n2 +1)− µ2(n2)] [Vm(n1,n2)−Vm(n1,n2)]

+
[
1−hλ 1(n1<N1)− hµ1(n1)− hµ2(n2 +1)

]
∆2Vm(n1,n2)

(9.5.13)

where we note that the sixth term in the right hand side of (9.5.13) is equal to 0 while
the bias-term in the fourth can be transformed into ∆1Vm(n1−1,n2 +1). Clearly, by
using that µ2(·) is non-decreasing and substituting ∆2Vm(·, ·)≥ 0 and ∆1Vm(·, ·)≥ 0
as by hypotheses, by (9.5.13) we directly verify ∆2Vm+1(n1,n2)≥ 0.

To estimate the right hand side of (9.5.13) from above, now we can use that its
fifth term is equal to 0, which coefficient equals the additional first reward term
h[µ2(n2 +1)− µ2(n2)]. As a result, by using again that all coefficients sum up to 1
and substituting the induction hypotheses ∆2Vm(·, ·)≤ 1 and ∆1Vm(·, ·)≤ 1, we can
estimate the right hand side from above by 1, i.e.: ∆2Vm+1(n1,n2)≤ 1. This proves
(9.5.10) for k = m+ 1.

Proof of (9.5.11) for k=m+1. Similarly for n1 ≤ N1 and n2 < N2 we find:

∆3Vm+1(n1,n2)

= h[µ2(n2 +1)−µ2(n2)]

+ hλ1(n1<N1)∆3Vm(n1 +1,n2)

+ hλ1(n1=N1) [∆2Vm(N1,n2)]

+ hµ1(n1−1)1(n1−1>0)∆3Vm(n1−1,n2)

+ hµ2(n2)1(n2>0)∆3Vm(n1,n2−1)

+ h[µ1(n1)−µ1(n1−1)] [Vm(n1− 1,n2 +1)−Vm(n1−1,n2 +1)]

+ h[µ2(n2 + 1)− µ2(n2)] [Vm(n1− 1,n2)−Vm(n1,n2)]

+ [1−hλ − hµ1(n1)− hµ2(n2 +1)]∆3Vm(n1,n2)
(9.5.14)

where we first note again that the sixth term in the right hand side is equal to 0. Now
note that the seventh term is equal to:

h[µ2(n2 +1)− µ2(n2)][−∆1Vm(n1−1,n2)]

and thus nón-positive. However, due to the boundedness hypothesis:
∆1Vm(n1− 1,n2) ≤ 1, the first and this seventh term together are still estimated
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from below by 0. By leaving out the 0-term and substituting ∆2Vm(·, ·) ≥ 0 and
∆3Vm(·, ·)≥ 0, by (9.5.14) we thus conclude: ∆3Vm+1(n1,n2)≥ 0.

Conversely, by substituting ∆2Vm(·, ·) ≤ 1 and ∆3Vm(·, ·) ≤ 1 and leaving out this
nón-positive seventh term to compensate for the additional first term, we can esti-
mate the right hand side of (9.5.14) from above by 1. (As could also be concluded,
alternatively, by combining the upper bound 1 from (9.5.10) with the lower bound
0 from (9.5.9) as proven already for k=m+1). We have thus proven (9.5.11) for
k = m+1.

By induction the proof of lemma 9.5.2 is now completed. ⊓⊔

Remark 9.5.3 We note that (9.5.11) is not required for substitution within (9.5.7)
so as to prove the upper bound BU. The same remark also applies to the ≤ 1 in-
equalities in (9.5.9)-(9.5.11). However, for instructiveness and completeness they
are included, as these type of bias-term estimates will become necessary in lemma
9.5.4 below. In addition, the estimates could be used to also conclude an error bound
for the accuracy of the bound as by (9.5.7) and result 9.3.5. However, in this section
we aim to restrict to the comparison result (9.5.1), as of sufficient interest by itself.

Lemma 9.5.4 (Bias-term for lower bound model) Let the difference terms
∆iVk

L(n1,n2), for i = 1,2,3, be defined as in lemma 9.5.2, except that the functions
Vk are replaced by the functions Vk

L at SL as by (9.3.7) with qL substituted for q.
Then, for all k≥ 0:

0≤ ∆1Vk
L(n1,n2)≤ 1 (n1 +n2 +1≤ N1 + N2) (9.5.15)

0≤ ∆2Vk
L(n1,n2)≤ 1 (n1 +n2 +1≤ N1 + N2) (9.5.16)

0≤ ∆3Vk
L(n1,n2)≤ 1 (n1 +n2 ≤ N1 + N2) (9.5.17)

Proof. This will follow similarly to that of lemma 9.5.2 by induction in k. Never-
theless, as the technicalities will appear to be slightly but also essentially different
(also see remark 9.5.5 below), the relations still have to be written out in detail be-
low. (Herein, only one 0-term is left in (the sixth in the right hand side of (9.5.19)
as it is required for a compensation argument to compensate the reward term).

∆1Vm+1
L (n1,n2)

= hλ 1(n1+n2+1<N1+N2)∆1Vm
L (n1,n2)

+ hµ1(n1)1(n1>0)∆1Vm
L (n1−1,n2 +1)

+ hµ2(n2)1(n2>0)∆1Vm
L (n1,n2−1)

+ h[µ1(n1 +1)−µ1(n1)]∆2Vm
L (n1,n2)

+ [1−hλ − hµ1(n1 +1)]∆1Vm
L (n1,n2)

(9.5.18)
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∆2Vm+1
L (n1,n2)

= h[µ2(n2 + 1)− µ2(n2)]

+ hλ1(n1+n2+1<N1+N2)∆2Vm
L (n1 +1,n2)

+ hλ1(n1+n2+1=N1+N2)∆3Vm
L (n1 +1,n2)

+ hµ1(n1)1(n1>0)∆2Vm
L (n1−1,n2)

+ hµ2(n2)1(n2>0)∆2Vm
L (n1,n2− 1)

+ h[µ2(n2 +1)− µ2(n2)] [Vm
L (n1,n2)−Vm

L (n1,n2)]

+ [1−hλ −hµ1(n1)−hµ2(n2 + 1)]∆2Vm
L (n1,n2)

(9.5.19)

and
∆3Vm+1

L (n1,n2)

= h[µ2(n2 +1)−µ2(n2)]

+ hλ1(n1+n2+1<N1+N2)∆3Vm
L (n1 + 1,n2)

+ hµ1(n1−1)1(n1−1>0)∆3Vm
L (n1−1,n2)

+ hµ2(n2)1(n2>0)∆3Vm
L (n1,n2−1)

+ h[µ2(n2 + 1)− µ2(n2)] [−∆1Vm
L (n1−1,n2)]

+ [1−hλ −hµ1(n1)−hµ2(n2 +1)]∆3Vm
L (n1,n2)

(9.5.20)

By induction and the detailed arguments similar to those for (9.5.12)-(9.5.14) in the
proof of lemma 9.5.2, the inequalities (9.5.15)-(9.5.17) can now be proven. ⊓⊔

Remark 9.5.5 (Necessity of upper estimates and all bias-terms) In contrast with
lemma 9.5.2 for proving the upper bound BU , now note that the inequality esti-
mate ∆3Vm

L ≥ 0 is required for proving the lower bound BL, as by (9.5.18). By
relation (9.5.20) in turn, and the compensation argument for the nón-positive fifth
term in the right hand side of (9.5.20), this necessarily requires an upper estimate
∆1Vm

L (·, ·) ≤ 1. By (9.5.18) in turn this also requires (both a lower and) an upper
estimate for ∆2Vm

L (·, ·) and by (9.5.19) for ∆3Vm
L (·, ·).

9.6 Application 3: Truncation of Finite Jackson Network

In this section we will apply result 9.3.10 to derive error bound expressions for the
truncation of a Finite Jackson Network. A first crucial step is to find bounds for the
bias-terms [Vk( j)−Vk(i)] for q(i, j) > 0, uniformly in all k.

As before, this will be established by inductively exploiting the dynamic reward re-
lation (9.3.5) and the appealing transition structure of queueing networks of the form
(9.3.19), as shown in section 9.6.2. First, in section 9.6.1 a more precise description
of the FJN of interest will be provided.
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9.6.1 Description and motivation.

Consider an open Jackson network with J service stations, numbered 1, . . . ,J and
Poisson arrival rates λi at station i. Let λ = λ1 + . . . + λJ and p0i = λi/λ . Upon
service completion at station i a job routes to station j with probability pi j or leaves
the system with probability pi0 = [1− (pi1 + . . .+ piJ)] The natural assumption is
made that the routing matrix, node 0 included, is irreducible.

Station i has an exponential service rate µi(ni) when ni jobs are present. The natural
assumption is made that µi(ni) is non-decreasing. (This will be used in the proof of
lemma 9.6.3). Station i has a capacity constraint for no more than Ni jobs. When
station i is saturated (ni = Ni), a job requesting service at station i (arriving from
outside or from another node) is lost (i.e. it clears the system) (loss protocol). This
loss protocol is motivated by the following application of present day interest.

Special motivation: Mobile Communication Networks

In simplest form, an exponential mobile communication network can be described
as follows:

Calls arrive in a cell j at some arrival rate λ j (fresh calls). A call duration is assumed to be
exponential with parameter µ . A call residing in cell j will move to (another) neighbouring
cell k at a rate λ jk (a so called handover call). Within a cell a call requires a frequency
channel that is not used by another call within that cell (a free channel). Each cell has a
finite number of frequency channels, say Ni in cell i, i = 1, . . . ,J. Neighbouring cells cannot
have the same frequency channels. When a fresh call cannot find a free channel it is lost.
When a handover call cannot find a free new channel in the cell that it is moving to, it is
broken off and also lost.

The exponential mobile communication network can directly be reformulated as a Finite
Jackson Network by identifying cells with stations and setting:





µi(ni) = niµi with µi = [µ +∑ j λi j] (holding or service rate in cell i)
pi j = λi j/µi (handover probability from i to j)
pi0 = µ/µi (call completion probability at call i)

Remark 9.6.1 (Blocking protocol) For this application the loss protocol is the nat-
ural protocol. As another ‘blocking’ protocol, blocked jobs could be recycled to their
originating node.

Under fairly general conditions this recycling (or repeat) protocol as well as the
’production’ protocol can be shown to be equivalent to the ‘loss’ protocol (also
known as communication protocol). (e.g. [48]). Similar results as obtained in sec-
tion 9.6.3 can also be expected for these protocols.

The finite Jackson network under investigation is generally intractable except in
other special cases such as with a reversible routing (e.g. [40], [37]), or with special
service or special routing protocols ([15], [37]).
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As numerical computations may therefore be executed (either on an exact or ap-
proximate basis) (e.g. [36], [32], [60]), a truncation of the state space becomes of
interest to limit the computational effort.

9.6.2 Truncation

Let us consider the truncation by restricting the queue lengths to Li ≤ Ni for each
station i and assume that the truncated model also operates under the loss protocol.
We aim to investigate the consequence of this truncation for the total throughput. In-
tuitively, at least it seems obvious that the throughput will be reduced by truncation.
Nevertheless, as in section 9.4.2, at sample path basis, one can provide counterintu-
itive examples, as shown by example 9.6.2.

Even a comparison result therefore is still of interest. In fact, in this section we will
focus on an error bound, which provides a comparison result at the same time.

Loss Loss

1

2

Fig. 9.6: Network Example

Example 9.6.2 (Counterintuitive comparison example) Consider the example
of an original system in figure 9.6 with N = 2, N1 = 2, two severs at station 1, N2 = 1 and
one server at station 2, p10 = 1/2 and p12 = 1/2 and its truncated version with N1 reduced
to L1 = 1. One may intuitively expect that the throughput of the truncated system will be
smaller. Consider a sequence of arrivals at station 1 and 2, as shown in figure 9.7, where
the second job at station 1 routes to station 2 after its service completion at station 1.

As shown by figure 9.7, the throughput (accepted number of jobs or successful number of
completions) of the truncated system, in this sample path example, appears to be larger.

To apply the results from section 9.3.3, we identify a state i with the queue
length vector n = (n1,n2, . . . ,nJ) denoting the number of jobs ni at each sta-
tion i = 1,2, . . . ,J. All notation from sections 9.2 and 9.3 is adopted accord-
ingly. By ei we denote the unit vector with the ith component equal to 1, i.e.:
ei = (0, . . . ,0,1,0, . . . ,0).

Hence by n− ei + e j we denote the state with one more job at station j and one less
at station i. Similarly we use the notation n + ei and n− ei. With this notation, the
truncation is specified by,
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Fig. 9.7: Comparison of original and truncated system

{
S = SN = {n |ni ≤ Ni i = 1, . . . ,J}
S̄ = SL = {n |ni ≤ Li ≤ Ni i = 1, . . . ,J}

and for all (i, j = 1, . . . ,J):
{

t[n,n + e j] = n for n j = Lj and n ∈ S̄

t[n,n− ei + e j] = n− ei for n j = Lj and n ∈ S̄
(9.6.1)

To apply result 9.3.2, for the left hand side of inequality (9.3.25) we obtain:

∑n′ /∈SL
q(n,n′)

[
Vk(n′)−Vk (t[n,n′]

)]
=

∑ j=1,...,J 1(n j=L j)λ j

[
Vk(n + e j)−Vk(n)

]
+

∑k=1,...,J µk(nk)pk j1(n j=Lj)

[
Vk(n− ek + e j)−Vk(n− ek)

]
(9.6.2)

In order to estimate this expression from above and below it thus suffices to estimate
bias-terms of the form

[
Vk(n + ei)−Vk(n)

]
. This will be established in lemma 9.6.3

below. Herein, we use the shorthand notation: ∆i f (n) = f (n + ei)− f (n). As mea-
sure of interest we consider the system throughput F by:

F = ∑
n∈S

π(n)r(n)
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with
r(n) = ∑

p
λp1(np<Np)

Lemma 9.6.3 For all states n ∈ S, any station l such that n + el ∈ S and all k ≥ 0:

0≥ ∆lV
k(n) = Vk(n + el)−Vk(n)≥−1 (9.6.3)

Proof. The proof will follow by induction in k. Clearly (9.6.3) holds for k = 0. Let
(9.6.3) hold for k = t and all {n,n + el} ∈ SN . We need to verify (9.6.3) for k = t +1.
To this end by writing out (9.3.5) in state n, we find:

Vt+1(n)

= h∑p λp1(np<Np)

+ h∑ j λ j1(n j<Nj)V
t(n + e j)

+ h∑ j λ j1(n j=Nj)V
t(n)

+ h∑i µi(ni)1(ni>0)pi0V′(n− ei)

+ h∑i µi(ni)1(ni>0)∑ j pi j1(n j<Nj)V
t(n− ei + e j)

+ h∑i µi(ni)1(ni>0)∑ j pi j1(n j=Nj)V
t(n− ei)

+
[
1−h∑ j λ j− h∑i µi(ni)

]
Vt(n)

(9.6.4)

and similarly in state n+ el :
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Vt+1(n+ ei)

= h∑p 6=l λp1(np<Np) + hλl1(nl+1<N1)

+ ∑ j 6=l hλ j

{
1(n j<Nj)V

t(n + el + e j)+ 1(n j=Nj)V
t(n + el)

}

+ hλl1(nl+1<Nl)V
t(n + el + el)+ hλl1(nl + 1 = NlVt(n+ el))

+ h∑i6=l µi(ni)pi0V′(n + el− ei)

+ h∑i6=l µi(ni)∑ j 6=l pi j1(n j<Nj)V
t(n + el + e j− ei)

+ h∑i6=l µi(ni)∑ j 6=l pi j1(n j=Nj)V
t(n + el− ei)

+ h∑i6=l µi(ni)pil1(nl+1<Nl)V
t(n + el + el− ei)

+ h∑i6=l µi(ni)pil1(nl+1=Nl)V
t(n + el− ei)

+ hµl(nl)pl0Vt(n)+ hµl(nl)pllVt(n + el)

+ hµl(nl)h∑i6=l

{
1(n j<Nj)V

t(n+ e j)+ 1(n j=Nj)V
t(n)

}

+ h[µl(nl + 1)− µl(nl)]pl0Vt(n)

+ h[µl(nl + 1)− µl(nl)]pllVt(n+ el)

+ h[µl(nl + 1)− µl(nl)]∑i6=l pl j

{
1(n j<Nj)V

t(n+ e j)+ 1(n j=Nj)V
t(n)

}

+
{

1− h∑ j λ j−h∑i6=l µi(ni)−hµl(nl +1)
}

Vt(n+ el)

(9.6.5)
To subtract (9.6.4) from (9.6.5) and to compare transitions pairwise, make the fol-
lowing modifications in (9.6.4):

• Rewrite the summation for all j in a summation for all j 6= l and its separate
expression j = l.

• Note that since nl +1≤ Nl also nl < Nl and rewrite:
[
hλl + h∑i6=l µi(ni)pil

]
Vt(n + el) =[

hλl + h∑i6=l µi(ni)pil

][
1(nl+1<Nl)V

t(n + el)+ 1(nl+1=Nl)V
t(n+ el)

]

• Artificially add and subtract a departure from station l at a rate
[µl(nl +1)−µl(nl)] that leaves the state unchanged, that is; artificially add and
subtract the expression:

h [µl(nl +1)−µl(nl)] pl0Vt(n)+

h [µl(nl +1)−µl(nl)] pllVt(n)+

∑ j 6=l pl j

[
1(n j<Nj)V

t(n)+ 1(n j<Nj)V
t(n)

]

Then, subtracting (9.6.4) from (9.6.5) finally leads to the following difference ex-
pression. Again, some terms will in fact be equal to 0 but left in for clarity of deriva-
tion.



446 Nico M. Van Dijk

Vt+1(n+ ei)

= h1(nl+1=Nl)[−λl]

+ h∑ j 6=l λ j1(n j<Nj)∆lV
t(n + e j)

+ h∑ j 6=l λ j1(n j=Nj)∆lV
t(n)

+ hλ j1(n j+1<Nj)∆lVt(n+ el)

+ hλ j1(n j+1=Nj) [V
t(n+ el)−Vt(n + el)]

+ h∑i 6=l µi(ni)pi0∆lV
t(n− ei)

+ h∑i 6=l µi(ni)∑ j 6=l pi j1(n j<Nj)∆lV
t(n + e j− ei)

+ h∑i 6=l µi(ni)∑ j 6=l pi j1(n j=Nj)∆lV
t(n− ei)

+ h∑i 6=l µi(ni)pil1(nl+1<Nl)∆lV
t(n + e j− ei)

+ h∑i 6=l µi(ni)pil1(nl+1=Nl)

[
Vt(n + el− ei)−Vt(n+ el− ei)

]

+ hµl(nl)pl0∆lVt(n− el)+ hµl(nl)pll∆lVt(n)

+ h[µl(nl +1)− µl(nl)]pl0 [Vt(n)−Vt(n)]

+ h[µl(nl +1)− µl(nl)]pll∆lVt(n)

+ hµl(nl)∑ j 6=l pl j

[
1(n j<Nj)∆lV

t(n + e j− el)+ 1(n j=Nj)∆lV
t(n− el)

]

+ h[µl(nl +1)− µl(nl)]∑i6=l pl j1(n j<Nj)∆lV
t(n)

+ h[µl(nl +1)− µl(nl)]∑i6=l pl j1(n j=Nj)

[
Vt(n)−Vt(n)

]

+
{

1−h∑ j λ j− h∑i6=l µi(ni)− hµl(nl +1)
}

∆lVt(n)

(9.6.6)
By substituting the induction hypothesis: ∆lVt(n)≤ 0 and ∆ jVt(n)≤ 0 for all j, and
deleting the 0 terms in the right hand side of (9.6.6), from (9.6.6) we now directly
conclude:

∆lV
t+1(n)≤ 0

To estimate the right hand side of (9.6.6) from below, now substitute the induction
hypothesis ∆lVt(n) ≥ −1 and ∆ jVt(n) ≥ −1 for all j. Furthermore, note that the
term with coefficient hλl1(nl+1=Nl) is equal to 0, which compensates for the first
extra negative term

h1(nl+1=Nl) [−λl ]

By also noting that all coefficients (which in fact represent transition probabilities)
sum up to 1, now conclude

∆lV
t+1(n)≥−1

The induction completes the proof. ⊓⊔

By lemma 9.6.3 we can now apply the general truncation result 9.3.10. By com-
bining result 9.3.10, lemma 9.6.3 and expression (9.6.2), this leads to the following
result.
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Result 9.6.4 (Computational Error Bound) Consider a FJN with capacity con-
straints Ni at station i, i = 1, . . . ,J and its truncation with capacity constraints
Li≤Ni at station i, i = 1, . . . ,J. Let FN and FL be the corresponding system through-
puts and {πL(n) | n ∈ SL} the steady state distribution of the truncated FJN. Then:

0≤ FN−FL ≤∑n πL(n)∑J
j=1 1(n j=Lj)

[
λ j +∑k µk(nk)pk j

]
(9.6.7)

Remark 9.6.5 (Comparison and monotonicity results: literature) Comparison or
monotonicity results have been reported explicitly for Jackson Networks but but only
under special conditions, as a product form, single servers or infinite capacities, as
in [1], [2], [53], [65]. The results in these references rely upon sample path com-
parison.

However, as has been shown in example 9.6.2, for finite queueing systems a sample
path comparison can be violated (also see [20], [27], [58], [62], [59]). Neverthe-
less, as shown by result 9.6.4, a comparison result at expectation basis can still be
established. This result seems to be new.

Remark 9.6.6 (Computational error bound) Result 9.6.4 enables one to provide
a secure bounding interval:

FL ≤ FN ≤ FL +δL (9.6.8)

where δL is the upper estimate from (9.6.7), once we have computed the distribution
{πL(n)} for the truncated system. It could therefore be referred to as a computa-
tional error bound.

9.6.3 Analytic Error bound

As the error bound in (9.6.7), that is δL in (9.6.8), might still be computationally
complicated it is more appealing to replace δL by an analytic expression. As will
be shown below, this can be established by comparing the truncated system with
an infinite system that exhibits a product form. This will lead to an analytic bound
δL ≤ δ∞.

Consider the infinite Jackson network which allows an infinite queue length at sta-
tion i with service rate:

si(ni) =

{
µi(ni) (ni ≤ Li)

max [µi(Li),niµi] (ni > Li)

i = 1, . . . ,J. As justified by a natural irreducibility assumption, let
{νi ; i = 1, . . . ,J} be the unique solution of the traffic equations:

νi = λi +∑k νk pki (i = 1, . . . ,J)
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The corresponding steady state distribution, denoted by π∞(n) at
S∞ = {n | ni ≥ 0, i = 1, . . . ,J} then exhibits the product form:

π∞(n) =
J

∏
i=1

{
ciνni

i

[
∏ni

k=1 si(k)
]−1
}

(n ∈ S∞) (9.6.9)

with ci a normalizing constant for each station i. Let β (n) represent the infinite
expansion of the boundary (state) as occurring in (9.6.7). More precisely, that is:

β (n) = ∑J
j=1 1(n j≥Lj)

[
λ j +∑k µk(nk)pk j

]
(9.6.10)

Result 9.6.7 (Analytic Error Bound) With FN and FL as in result 9.6.4 and π∞(n)
by (9.6.9):

FL ≤ FN ≤ FL + δ∞

with
δ∞ = ∑n π∞(n)β (n) (9.6.11)

Proof. The proof follows as immediate consequence of result 9.6.8 once we have
shown that the steady-state probabilities πL(n) in (9.6.7) at boundary states can be
bounded from above by π∞(n) ’tail’ probabilities beyond these boundaries. To this
end we can use the comparison results from section 9.2.2, more precisely result
9.2.1. To apply result 9.2.1, in the setting of section 9.2.1, let the infinite Jackson
network represent the original and the truncated Jackson network the modified sys-
tem.

Let PL and P∞ be the uniformized transition matrices for the truncation and infi-
nite Jackson network as according to their definition (9.2.3). Let TL and T∞ be the
corresponding expectation operators.

Let M represent the class of component-wise monotone functions as defined by

M = { f : S∞→ R | f (n+ el)− f (n)≥ 0 ; n ∈ S∞ ; l = 1, . . . ,J} (9.6.12)

Now let us first show that the infinite system preserves this monotonicity. That is,
condition (9.2.8) as:

T∞ f ∈M for any f ∈M (9.6.13)

Let f ∈M. Then similarly to the derivation of (9.6.6) by writing out all transition
probabilities in state (n + el) and state n where we can make the simplifications
that Nj = ∞ for all j, and by comparing the transitions in these two states pairwise,
along the lines of (9.6.4) and (9.6.5) and after the appropriate substitutions as used
for (9.6.6), we obtain:
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(T∞ f )(n + el)−T∞ f (n)

= h∑ j λ j [ f (n + e j− f (n)]

+ h∑i µi(ni)∑ j pi j [ f (n + el− ei + e j)− f (n− ei + e j)]

+ h [µl(nl + 1)− µl(nl)]∑ j pl j [ f (n,+e j)− f (n)]

+ h∑i µi(ni)pi0 [ f (n+ el− ei)− f (n)]

+ h [µl(nl + 1)− µl(nl)] pl0 [ f (n)− f (n)]

+
[
h−∑ j λ j− h∑i6=l µi(ni)−hµl(nl +1)

]
[ f (n+ el)− f (n)]

(9.6.14)

(Here the one but last term is indeed equal to 0 but kept for its clarity of derivation).
By using that f ∈M, so that we can substitute: f (n+e j)− f (n)≥ 0 for all n and j,
the right hand side of (9.6.14) is directly estimated from below by 0, for arbitrary n
and l. This proves (9.6.13), that is, (9.2.8) from section 9.2.2.

Next, as second step, we need to verify condition (9.2.9) for any f ∈M. This how-
ever follows directly as for any f ∈M and n ∈ SL:

(TL−T∞) f (n) =

∑J
j=1 1(n j=Lj)λ j [ f (n)− f (n+ e j)]+

∑J
k=1 µk(nk)∑J

j=1 pk j1(n j=Lj) [ f (n− ek)− f (n+ e j− ek)]≤ 0

(9.6.15)

As third step, to verify condition (9.2.11), now note that for β as defined by (9.6.10)
and M as defined by (9.6.12):

β ∈M (9.6.16)

By combining (9.6.13), (9.6.15) and (9.6.16) and applying result 9.2.1, we may now
conclude:

GL = ∑n πL(n)β (n) = δL ≤
G∞ = ∑n π∞(n)β (n) = δ∞

(9.6.17)

The proof of result 9.6.7 is now completed by applying result 9.6.4 and estimating
the right hand side of (9.6.17) from above by:

δL ≤ δ∞

⊓⊔
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9.6.4 Application: Cellular Mobile Network Application

For the special application of a cellular mobile network as in figure 9.8, we can set
µi(ni) = niµi.

Fig. 9.8: Cellular mobile network (J = 7)

In this case the infinite extension and its product form become:

π∞(n) =
J

∏
k=1

{
e−ρk

1
nk!

[ρk]
nk

}
(n ∈ S∞) with πk(t) = e−ρk

1
t!

[ρk]
t (t ≥ 0)

(9.6.18)
Based upon the decomposability of this expression in individual stations as if they
are independent and the traffic equations for {νi}, we derive:

δ∞ = ∑n π∞(n)g(n) = ∑n π∞(n)∑J
j=1 1(n j>Lj)

{
λ j +∑J

k=1 nkµk pk j

}

= ∑J
j=1

[
∞

∑
n j=Lj

π j(n j)

]{
λ j +

J

∑
k 6= j

[
∞

∑
nk=0

πk(nk)nkµk

]
pk j

}

= ∑J
j=1

{
λ j +∑J

k 6= j ∑
∞
t=0 e−νk/µk

t
t!

[
νk

µk

]t

µk pk j

}
∑∞

n j=Lj
π j(n j)

= ∑J
j=1

{
λ j +∑J

k=1 νk pk j

}
∑∞

n j=L j
π j(n j)

= ∑J
j=1 ν je−ρ j ∑∞

t=Lj

1
t!

[ρ j]
t

(9.6.19)

Furthermore, in order to provide a relative error bound (FN −FL)/FN rather than
just an absolute error (FN−FL) as based upon (9.6.11), by (9.6.17) with L replaced
by N and with f (n) = 1(n j≥Nj), we can conclude that:

πN(n j = Nj)≤ π∞(n j ≥ Nj)

so that
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FN = ∑S
j=1 λ jπN(n j < Nj)≥∑J

j=1 λ jπ∞(n j < Nj) =

∑J
j=1 λ j

{
1− e−ρ j ∑∞

t=Nj

1
t!

[ρ j]
t
}

(9.6.20)

As a consequence, by result 9.6.4, (9.6.19) and (9.6.20), the following relative error
bound can now be concluded directly for a channel reduction to Lj channels for cell
j, j = 1, . . . ,J.

Result 9.6.8 Let ρ j = [ν j/µ j] and

B j(s) = e−ρ j ∑∞
k=s

1
k!

[ρ j]
k (9.6.21)

Then

∆ =

[
FN−FL

FN

]
≤ ∑ j B j(Lj)

∑ j λ j [1−B j(Lj)]
(9.6.22)

Remark 9.6.9 Usually, the number of channels in cell j is determined such that a
service level of S j · 100% is guaranteed where S j = 1−B j with B j Erlang’s loss
probability of a multi-server M|M|Nj |Nj loss system with Nj servers and traffic
intensity ρ j = [ν j/µ j], as if in isolation. Such first order approximations have been
used to establish fixed point approximations (e.g. [41], [49]).

Note that the analytic error bound results 9.6.7 and 9.6.8 are essentially based on
the error bound result 9.6.4, and thus the general error bound result 9.3.10 and
9.3.5, as well as the stochastic comparison result 9.2.1. Also the combination of
the two approaches, the Markov reward approach and stochastic comparison, thus
appears to be fruitful.

9.7 Evaluation

In this chapter the Markov reward approach has been discussed in order to com-
pare two related queueing networks, where one may typically be thought of as a
modification of the other for computational simplification. This approach has both
advantages and disadvantages as opposed to the more standard stochastic compari-
son approach, most notably among which, as advantages:

• It may also lead to (analytic) error bounds for the discrepancy

• It may still apply while stochastic comparison fails,

while as disadvantages:

Remark 9.6.10 (Markov Reward Approach and stochastic comparison combination)
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• It requires exponentiality assumptions

• It can technically be more complicated.

Also a combination of both approaches might become useful to secure simpler ana-
lytic bounds for the error bounds. A number of extensions as well as questions are
still open for further research.

9.7.1 Extensions

1. Non-exponentiality. In principle non-exponential queueing networks can be
covered by the MRA by using phase-type distributions, possibly in combination
with weak convergence arguments, to approximate ’arbritary’ non-exponential
service and interarrival distributions. However, the notational extensions and
technical verifications of the necessary conditions, in particular the estimation
of the corresponding bias-terms, will become substantially more complex.

Nevertheless, results in this direction have been established for specific applica-
tions. For example, in [11] and [13], formal proofs have so been esthablished
for ’insensitive’ product form bounds for finite multi-server tandem queues and
queues with overflow respectively. Particulary, in [22] a general framework has
been set up to apply the MRA to stochastic service networks under the assump-
tion of continuous service distributions with bounded hazard rates. This frame-
work was used to obtain analytic error bounds as well as ordering results for
comparing various (also nón-ordered) GI|G|c queueing systems.

2. Transient situations. As the (proof) steps in section 9.3 and following rely
upon the recurrent (or dynamic programming) reward relation (9.3.5), similar
comparison and error bound results are implicity covered for any finite number
of steps, that is finite time horizon of periods each of exponential length with
parameter H = h−1, hence of average duration h.

As shown in VDK, by retransforming the time-uniformization (using the Poisson-
Gamma relation), in principle these results in turn can also be transformed into
comparison and error bound results for any fixed time horizon, say of length T ,
or to stochastic periods up to exiting or leaving some set of states B (first passage
times). Nevertheless, in the latter more practical case, the verification (bounding)
step for the bias-terms will generally become harder as different starting states
will also have different first passage times.

3. Non-negative dynamic systems. In line with the former transient case, as
shown in [24], the MRA can also be extended to dynamic systems of the form:

d
dt

Wt = AWt
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where A is some arbitrary nonnegative generator rather than a stochastic infinites-
imal generator Q, such as naturally arising for instance in economic input-output
models.

9.7.2 Further Research

1. A more general verification technique for the bias-terms. The verification of
the bias-terms condition, such as in sections 9.4, 9.5 and 9.6, still appears to be
strongly dependent on both the application and its combination with the per-
formance measure (reward function) of interest. A more general ’verification’
technique such as for a class of network configurations or a class of performance
measures is still lacking.

2. Nonexponential queueing networks. Despite the phase-type approach men-
tioned and the specific references given above, a simpler and more common
extension, such as in line with the sample path comparison approach, to cover
non-exponential networks more easily, is sought for.

3. Discrete-time queueing networks. Due to digitization the interest in discrete-
time rather than continuous-time queueing networks remains growing. Again, in
principle the MRA can be set up just as well. However, the appealing property of
single moments at a time, as for continuous-time networks might disappear. This
will highly complicate the verification of the bias-terms required. In addition,
appropriate modifications to guarantee analytic expressions, say of product form
type, (such as in [4], [8], [35]) for simplified computations or bounds, will be-
come more difficult to be recognized. In line with practical developments further
research in these directions is of substantial interest.

4. State dependent routing and servicing (call centers/internet).
Practical queueing systems can have more complicated state dependent routing
or servicing mechanisms than just determined by blocking upon congestion by
finite capacity constraints, as used in this chapter.

As one practical example of interest, in present-day highly developed call centers
an incoming call might be routed (so called skill based routing) to the ’best suited
(skilled)’ agent group available (by searching through a skill preference list).
Conversely, an agent that becomes available might search for the most preferable
or suited call waiting.

A second example that receives considerable interest within present-day queue-
ing (performance evaluation) literature is that of the internet. In this case tandem
(packet switch) type structures are used in which service capacity is shared over
multiple stations. As a consequence, the service capacity at one station depends
on the current loads at other stations. As analytic solutions for these systems are
highly limited, the application of the MRA seems of considerable interest. How-
ever, due to the state dependent mechanisms the essential step of analytically
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bounding the corresponding bias-terms will include various complications that
are still open.

5. Mobile server networks (mobile communications, ad-hoc networks, am-
bulance services). Another ’class’ of unsolvable service (queueing) networks for
which the MRA might be useful are service networks in which the users and/or
servers themselves are stochastically changing position (moving).

One example, as already looked at in its simplest form of fixed channels in section
9.6.4, is that of cellular mobile networks in which the users (calling persons) can
move during their service (the call) to another service station (a cell) at which
they need another service (frequency channel).

Another present-day example for technical development is that of so-called ad-
hoc networks in which transmitters, in a temporarily set up network configura-
tion, highly interact (transmission contentions and loss). In addition, these trans-
mitters may stochastically vary their location (and consequently, interactions).

As a last example, for modeling ambulance services, with a limited number of
servers (the ambulances), both the service times (trip durations), and the avail-
ability and the locations (different collection points and hospitals) are subject to
stochasticity. A similar remark and appeal for future research of a MRA applica-
tion also applies here.

9.7.3 Other applications.

All three applications (in sections 9.4, 9.5, 9.6) were based upon the combination of

(i) a modification of an original unsolvable system of practical interest
into a solvable (product form) system, and

(ii) the Markov reward approach to show that this modification leads
to secure bounds or to an error bound for the discrepancy.

This combination has proven to be fruitful in a number of situations. To conclude
this chapter below three more applications will be described briefly to illustrate the
practical diversity of this combination.

Overflow queues (e.g. Call Centers). In present-day call centers complex skill
based routing can be applied. Under skill based routing in its simplest form,
incoming calls might be rerouted to a second or higher level agent skill group if
a primary access group is not available.

But even in this most simple situation a closed form queueing expression doesn’t
seem to be available. To be more concrete, consider a standard Erlang loss sys-
tem with c1 primary servers without waiting facility (M|M|c1|c1-queue) in which
calls are rerouted to a second finite server group with c2 (overflow) servers and
also no waiting facility (M|M|c2|c2-queue) if all primary c1 servers are occupied.
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c1

c2

Fig. 9.9: Overflow system.

If also these c2 servers are busy an incoming call is lost. In addition, assume
that a call at one of these c2 servers remains to be serviced by this server also
if meanwhile one of the primary servers becomes idle. In this case, no analytic
expression for the loss probability of incoming calls seems to be available. Var-
ious approximations have therefore been developed, most notably among them,
as based upon the ERM (Equivalent Random Method). However, other than by
numerical investigation no accuracy for these approximations has been reported
nor can it be secured whether they provide lower or upper bounds.

In [25] (also see chapter 1, section 2.2) a product form modification has therefore
been suggested (as by the well-known call packing principle). By the Markov re-
ward approach it was shown that this modification leads to secure (and in fact,
quite accurate) upper bounds for the loss probability (as of natural practical in-
terest for dimensioning purposes).

Cellular Mobile Communication Systems. As already described in section 9.6.1,
even in its simple form of cells with a fixed number of Ni frequency channels in
cell i, due to handover calls from one cell into another, cellular mobile commu-
nication system do not exhibit a product form expression (see [5] for a more
general and non-exponential description).

In [6] therefore, different product form modifications have been suggested(such
as by a redial mechanism). Again, by the Markov reward approach it was shown
that these also lead to upper bounds for the various (fresh call and handover)
loss probabilities. In this case, however, an intermediate system (other than the
original and modified system) had to be used to establish the proofs.

Intensive Care Modeling in Hospitals. The number of intensive care beds is a
high cost but also high quality factor for hospitals as it may put lives at risk.
This number thus has to be dimensioned carefully. An intensive care bed can be
required for either external emergency patients or elective patients that have be-
come critical (±60%) or patients for postoperative care after a ’heavy’ operation
(±40%).

A coupling between the operating rooms (operating theater - OT) and the in-
tensive care unit (ICU) is thus intrinsically involved. Due to this coupling, an
ICU cannot simply be regarded as an Erlang loss system (M|M|c|c-queue) so as
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to compute the availability (or rejection rate), nor can the OT-ICU be seen as a
finite tandem queue as dealt with in section 9.5.

Nevertheless, as outlined in chapter 1, section 8, by the same steps of product
form modifications and the Markov reward proof technique (with the techni-
cal verification of the bias-terms being quite complicated) in [18] it was shown
that the ICU-rejection probability can be approximated reasonably well by an
M|M|c|c-queue and be bounded from above by an M|M|c− 1|c− 1-queue as of
practical interest.
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Chapter 10

Stability of Join-the-Shortest-Queue networks:
Analysis by Fluid Limits

J. G. Dai, John J. Hasenbein and Bara Kim

Abstract The standard fluid model tool is employed to investigate stability behav-
ior in a variant of a generalized Jackson queueing network. In the network, some
customers use a join-the-shortest-queue policy when entering the network or mov-
ing to the next station. Furthermore, we allow interarrival and service times to have
general distributions. For networks with two stations, necessary and sufficient con-
ditions are given for positive Harris recurrence of the network process. These condi-

are provided to show that more information on distributions and tie-breaking proba-
bilities is needed for networks with more than two stations, in order to characterize
the stability of such systems. However, if the routing probabilities in the network
satisfy a certain homogeneity condition, then it is proved that the stability behavior
can be explicitly determined, again using the mean value parameters of the network.

10.1 Join-the-shortest-queue networks

We consider a variant of the classical Jackson queueing network [9, 10]. The main
added feature is that an arriving customer may have several routes to choose from
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at its arrival time. We assume that the customer always chooses to join the short-
est queue among a set of allowed queues. In addition, we allow the interarrival and
service times to have general distributions, rather than being restricted to the expo-
nential case.

The queueing network model of this chapter is assumed to have J ≥ 1 stations,
with each station consisting of a single server. Each station has a dedicated queue or
buffer that holds customers waiting to be served by the station. Let J = {1, · · · ,J}
be the set of stations. For each station i ∈ J, let ηi(n) be the service time of the
nth customer to be served by station i. We assume that each station is non-idling,
that customers within a buffer are served on a first-in–first-out basis, and that no
service is preempted. To describe the external arrival processes, let P be the class of
nonempty subsets of J. For each subset C ∈ P of queues, there is an associated ex-
ogenous arrival process with interarrival times {ξC(n) : n≥ 1}. We call this arrival
process a type-C external arrival process. Upon arriving to the network, each type-C
customer joins the shortest queue among all the queues in C, using a tie-breaking
rule to be specified shortly. After being served by station i, i ∈ J, a customer leaves
the system with probability 1− p∗i , and becomes a type-C customer with probability
piC, independent of the customer’s entire history, where ∑C∈P piC = p∗i . When mul-
tiple queues are tied for the shortest queue, a tie-breaking rule is needed. We assume
that for each subset B∈P of queues, there is a distribution γB = {γB, j : j ∈ B}. When
a customer is to join a shortest queue that is tied by a set B of queues, the customer
joins queue j with probability γB, j independently of its history. This type of routing
behavior on the part of arriving customers is called Join-the-Shortest-Queue (JSQ)
in the literature.

We allow ξC(n) = ∞ for all n for some C. In this case, the type-C-external arrival
process is null. Let

E = {C ∈ P : the type-C-external arrival process is non-null}.

For each C ∈ E, we assume that ξC = {ξC(n) : n ≥ 1} is an independent and
identically distributed (i.i.d.) sequence with mean 1/λC, and for each station i,
ηi = {ηi(n) : n ≥ 1} is an i.i.d. sequence with mean 1/µi. We further assume that
the interarrival time sequences, service time sequences, feedback decisions, and tie-
breaking decisions are all independent. Additional distributional assumptions on the
interarrival times will be specified in Section 10.2. We call λC the arrival rates, µi

the service rates, piC the feedback probabilities, and γB, j the tie-breaking probabil-
ities of the network. From now on, for purposes of discussion, and stating results,
we will refer to the network described above as a JSQ Network.

The dynamics of the JSQ network can be described by a continuous time
Markov process X = {X(t) : t ≥ 0}, as long as the state space is chosen ap-
propriately. When the interarrival and service time distributions are exponential,
Z = {(Z1(t), . . . ,ZJ(t)) : t ≥ 0} is such a process, where Zi(t) is the total number of
customers that are either waiting in queue i or being served by station i at time t.
This chapter is primarily concerned with the stability of the queueing network. The
network is said to be stable if the Markov process X is positive Harris recurrent.
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When λC = 0 and pi,C = 0 for all C ∈ P with more than one element, i.e., customers
are never offered a choice of queues to join, the corresponding network is called a
generalized Jackson network. Under some minor conditions on the interarrival time
distributions, it is known that such a network is stable if and only if the traffic inten-
sity at each station is less than one (see, for example, Dai [2]). The traffic intensity
is defined through the first order data of the network, i.e., arrival rates, service rates
and feedback probabilities. In particular, the stability of a generalized Jackson net-
work does not depend on the distributions of interarrival and service times. One
might hope that for the model of this chapter, the positive Harris recurrence can
again be determined by the arrival rates, service rates and the feedback probabili-
ties. Theorem 10.3.1 in Section 10.3 shows that this assertion is indeed true when
J = 2 by describing explicit recurrence conditions in terms of arrival rates, service
rates and feedback probabilities. In particular, the stability of a 2-station network
does not depend on the distributions of interarrival and service times, nor does it
depend on the tie-breaking probabilities. Unfortunately, when J ≥ 3, an analogous
result does not hold. Specifically, two counterexamples in Section 10.4 demonstrate
that Theorem 10.3.1 cannot be generalized to larger networks. In the first example
with J = 3, we show that the positive Harris recurrence of the process depends on
the tie-breaking probabilities γB,i. In the second example, again with J = 3, we show
that the positive Harris recurrence of the process depends on the distributions of the
service times. However if all the stations have homogeneous feedback probabili-
ties, i.e., if piC does not depend on queue i, the positive Harris recurrence is again
determined by the arrival rates, services and feedback probabilities, and not on the
distributions of the interarrival and service times or the tie-breaking probabilities.
In this case, Theorem 10.5.2 in Section 10.5 gives explicit recurrence conditions in
terms of arrival rates, service rates and feedback probabilities.

Queueing systems with JSQ type routing have a long history in the literature.
We only mention the papers in which there is stability analysis of JSQ networks.
Kurkova [11] treated a special system when J = 2, the interarrival and service times
distributions are exponential, and a fair coin is flipped to break a tie. She represented
the system as a continuous time Markov chain with a countable state space and
obtained an explicit recurrence condition for the Markov chain by using Lyapunov
functions. Stability of JSQ networks, when there is no feedback, was studied by
Foss and Chernova [8] and Foley and McDonald [7]. A quite general JSQ network
with feedback was treated by Suhov and Vvedenskaya [14]. However, their stability
analysis was limited to a few special cases.

Queueing networks with alternate routes arise in many telecommunication and
service systems. A customer call center is an example of such a service system. The
myopic join-the-shortest-queue routing decision is often employed in practice. The
stability of these networks is essential to the capacity planning of these systems.

We employ the standard fluid model tool in our stability analysis. Whenever ap-
propriate, we do not go through every detail of using the tool; readers may consult,
for example, Dai [4] for additional details. Fluid models are commonly used to prove
the positive recurrence of queueing networks and/or the transience of such systems,
but here we are also able to use the fluid model approach to prove non-positive re-
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currence. As such we are able to identify the stability behavior on the boundary of
the stability region. The behavior on the boundary is often left as an open question
in stability analysis via fluid models, and the method employed in this chapter is
quite a new technique to use fluid models to prove the non-positive recurrence of a
queueing network.

The chapter is organized as follows: In Section 10.2, we first provide the Markov
process characterization of the network. A fluid model for the system is then defined
and criteria for stability and instability of the system are given. Section 10.3 gives
the necessary and sufficient conditions for stability in terms of arrival rates, service
rates and feedback probabilities for systems with two stations (J = 2). In Section
10.4, two examples with three stations (J = 3) are given, the first of which shows
that the stability depends on the tie-breaking probabilities, and the second of which
shows that the stability depends on not only the first order data but also the distribu-
tions of the service times. In Section 10.5, for systems with more than two stations
(J ≥ 3) that satisfies an additional assumption that all stations have homogeneous
feedback probability, we give the necessary and sufficient conditions for stability in
terms of arrival rates, service rates and feedback probabilities for systems with two
stations Further study on the stability of JSQ networks is described in Section 10.6.

Now we collect some mathematical notation used in the rest of the chapter. For
a set C, |C| indicates the cardinality of C. However, for x ∈RN , we use |x| to denote
the l1-norm. For random variables X and Y , X ≥st Y indicates that X is stochastically
larger than Y . When a probability operator appears with a subscript π , this indicates
the probability is the one generated by initial distribution π (this may include a
degenerate initial distribution consisting of only one state).

10.2 The network process and the fluid model

We use

X(t) = (Z(t),U(t),V (t)) (10.1)

to denote the state of our queueing network at time t. The first component Z(t) =
(Z1(t), · · · ,ZJ(t)) is J-dimensional, where, as before, Zi(t) is the total number of
customers that are either waiting in queue i or being served by station i at time
t. The second component U(t) = (UC(t) : C ∈ E) is |E|-dimensional, where UC(t)
is the remaining interarrival time of the type-C external arrival process at time t.
The last component V (t) = (V1(t), · · · ,VJ(t)) is J-dimensional, where Vi(t) is the
remaining service time of the customer who is in service at station i at time t. (Vi(t)
is set to be zero if there is no customer in service at station i at time t.) The process
X = {X(t) : t ≥ 0} is taken to be right continuous with left limits. It follows from
Dai [2] that X is a strong Markov process whose state space S is a subset of R2J+|E|.

The Markov process X is said to be positive Harris recurrent if it possesses a
unique stationary distribution. To apply the fluid limit technique to the stability
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analysis, we make the following additional assumptions on interarrival times. We
assume that, for any C ∈ E, the distribution of ξC(1) is unbounded, i.e.,

P(ξC(1)≥ x) > 0, for any x > 0. (10.2)

We also assume that, for any C ∈ E, the distribution of ξC(1) is spread out, i.e., there
exists an integer nC > 0 and a function qC(x) ≥ 0 on (0,∞) with

´ ∞
0 qC(x)dx > 0,

such that

P(a≤ ξC(1)+ · · ·+ ξC(nC)≤ b)≥
ˆ b

a
qC(x)dx, for any 0≤ a < b.

We now introduce the queueing and fluid dynamical equations, and provide re-
sults which relate the queueing model and fluid models defined by these equations.
This framework allows us to use fluid model techniques to prove the results on sta-
bility of the JSQ networks in subsequent sections.

We define a number of processes related to the queueing network:

E(t) = {EC(t) : C ∈ E},t ≥ 0, where EC(t) is the number of customers which arrive
during [0,t] due to the type-C external arrival process.

A(t) = {Ai(t) : i ∈ J},t ≥ 0, where Ai(t) is the number of arrivals to buffer i during
[0,t] (including exogenous arrivals and feedback arrivals).

D(t) = {Di(t) : i∈ J},t ≥ 0, where Di(t) is the number of customers which complete
service at station i during [0,t].

S(t) = {Si(t) : i ∈ J},t ≥ 0, where Si(t) is the number of customers station i com-
pletes if it spends t units of time working on such customers.

Φ(n){ΦiC(n) : i ∈ J,C ∈ P},n = 0,1,2, · · · , where ΦiC(n) is the number of cus-
tomers, among the first n who depart station i, which become type-C customers.

T (t) = {Ti(t) : i ∈ J},t ≥ 0, where Ti(t) is the amount of time spent working on
customers at station i during [0,t].

I(t) = {Ii(t) : i ∈ J},t ≥ 0, where Ii(t) is the amount of time station i idles during
[0,t].

Then, the following equations define the dynamics of a JSQ network: For i ∈ J

and 0≤ s≤ t,

Zi(t) = Zi(0)+ Ai(t)−Di(t), (10.3)

Zi(t)≥ 0, (10.4)

Ti(·) and Ii(·) are nondecreasing, (10.5)

Ti(t)+ Ii(t) = t, (10.6)

If Zi(u) > 0 for u ∈ (s,t), then Ii(s) = Ii(t). (10.7)

Di(t) = Si(Ti(t)). (10.8)
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For C ∈ P and 0≤ s≤ t,

∑
i∈C

(Ai(t)−Ai(s))

≥ ∑
B:B⊆C

{
(EB(t)−EB(s))+ ∑

i∈J

(ΦiB(Di(t))−ΦiB(Di(s)))

}
. (10.9)

For C ∈ P and 0≤ s≤ t, if Zi(u) > Zj(u) for all i ∈C, j ∈ J−C and u ∈ (s,t), then

∑
i∈C

(Ai(t)−Ai(s))

= ∑
B:B⊆C

{
(EB(t)−EB(s))+ ∑

i∈J

(ΦiB(Di(t))−ΦiB(Di(s)))

}
. (10.10)

Equations (10.3)-(10.8) are standard equations for generalized Jackson networks
operating under an arbitrary non-idling policy. The last two equations however, are
new, and they enforce the JSQ routing behavior of the customers.

Using the dynamical equations (10.3)-(10.10) we derive the corresponding fluid
model equations. Our methodology closely follows a now standard procedure and
we only outline the general steps. By the strong law of large numbers, for almost all
sample paths ω , we have

lim
n→∞

1
n

n

∑
k=1

ξC(k,ω) = λ−1
C , C ∈ E, (10.11)

lim
n→∞

1
n

n

∑
k=1

ηi(k,ω) = µ−1
i , i ∈ J, (10.12)

lim
n→∞

1
n

ΦiC(n,ω) = piC, i ∈ J,C ∈ P. (10.13)

Let X≡ {(A(t),T(t), I(t),Z(t)),t ≥ 0} be a network process governed by (10.3)-
(10.10), and Xx be such a process with initial state x = (z,u,v). By taking C = J in
(10.10), one has for each station k and each 0≤ s < t that

Ak(t)−Ak(s)

≤∑
i∈J

(Ai(t)−Ai(s))

= ∑
B:B⊆J

{
(EB(t)−EB(s))+ ∑

i∈J

(ΦiB(Di(t))−ΦiB(Di(s)))

}
.

It follows from the same argument as in Dai [2] that for every sample path ω
satisfying (10.11)-(10.13) and every collection {xr : r > 0} of initial states such
that {|xr|/r : r > 0} is bounded, there exists a subsequence rn → ∞ such that
1
rn

Xxrn
(rn·,ω) converges uniformly on any compact subset of [0,∞) to some limit

say X̄ = (Ā(·), T̄ (·), Ī(·), Z̄(·)). Each such limit X̄ is called a fluid limit. In the special
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case where the sequence of initial states {xr : r > 0} is independent of r, we call the
limit a fluid limit with fixed initial state. Both types of fluid limits are used in our
subsequent stability analysis of the process X.

As shown in Bramson [1], in the analysis of stability via fluid limits, it is suffi-
cient to consider the so-called undelayed fluid limit, i.e. when

lim
r→∞

1
r
(|ur|+ |vr|) = 0, (10.14)

where ur and vr are subvectors of the initial state xr = (zr,ur,vr). Thus, from now
on we only consider undelayed fluid limits.

Now, let X̄ be a fluid limit obtained from a sequence of initial states {xr} satisfy-
ing (10.14). It is readily seen that all of Āi(·), T̄i(·), Īi(·) and Z̄i(·), i∈ J, are Lipschitz
continuous. Hence they are absolutely continuous and thus differentiable almost ev-
erywhere with respect to the Lebesgue measure. We say that t is a regular point of
X̄ if all components of X̄ are differentiable at t. From now on, we implicitly assume
that t is a regular point whenever the derivative of a component of X̄ is involved.
Applying fluid limits to (10.3)-(10.14), we obtain the equations: For i ∈ J and t ≥ 0,

Z̄i(t) = Z̄i(0)+ Āi(t)− µiT̄i(t), (10.15)

Z̄i(t)≥ 0, (10.16)

T̄i(·) and Īi(·) are nondecreasing, (10.17)

T̄i(t)+ Īi(t) = t, (10.18)

If Z̄i(t) > 0, then ˙̄Ii(t) = 0. (10.19)

For C ∈ P and t ≥ 0,

∑
i∈C

˙̄Ai(t)≥ΛC + ∑
i∈J

PiCµi
˙̄Ti(t). (10.20)

For C ∈ P and t ≥ 0, if Zi(t) > Zj(t) for all i ∈C and j ∈ J\C, then

∑
i∈C

˙̄Ai(t) = ΛC + ∑
i∈J

PiCµi
˙̄Ti(t). (10.21)

where

ΛC ≡ ∑
B:φ 6=B⊂C

λB and PiC ≡ ∑
B:φ 6=B⊂C

piB.

We call the equations (10.15)-(10.21) the fluid model equations and call a solu-
tion X̄ = {(Ā(t), T̄ (t), Ī(t), Z̄(t)),t ≥ 0}, of the fluid model equations a fluid model
solution. Note that any fluid limit with fixed initial state necessarily has Z̄(0) = 0.
Thus these fluid limits form a subset of fluid solutions with Z̄(0) = 0. The following
definitions and lemmas indicate the usefulness of different types of fluid limits.
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Definition 10.2.1 (i) The fluid model is stable if there exists a δ > 0 such that for
each fluid model solution X̄, with |Z̄(0)| ≤ 1, Z̄(t) = 0 for t ≥ δ .

(ii) The fluid model is weakly unstable if there exists a δ > 0 such that for each
fluid model solution X̄, with Z̄(0) = 0, Z̄(δ ) 6= 0.

The same reasoning used in Dai [2, 3], can be applied to the class of networks we
consider here to give the following criteria.

Lemma 10.2.2 (Dai [2]) If the fluid model is stable, then the Markov process X is
positive Harris recurrent.

Lemma 10.2.3 (Dai [3]) If the fluid model is weakly unstable, then the process X
is unstable in the sense that, for each fixed initial state x, |Z(t)| → ∞ as t→ ∞ with
probability 1.

If we assume a priori that the process X is positive recurrent, then any fluid limit
with fixed initial state must obey an extra dynamical equation, which augments the
fluid model equations presented in (10.15)-(10.21). It turns out that the augmented
set of equations will be quite useful for proving non-positive recurrence using fluid
model analysis.

So, suppose that X is positive Harris recurrent and let π be its stationary distri-
bution. Since every station is nonidling, for each fixed initial state x,

lim
t→∞

Ti(t)
t

= lim
t→∞

1
t

ˆ t

0
1{Zi(s)>0}ds

= π ({(z,u,v) ∈ S : zi > 0}) Px-a.s., i ∈ J.

Therefore,

T̄i(t) = t π ({(z,u,v) ∈ S : zi > 0}) , t ≥ 0, i ∈ J, (10.22)

for every fluid limit X̄, which is a limit of scaled sample paths with a fixed initial
state. Choose a compact set K ⊂ S such that π(K) > 0. By (10.2), there exists a
t0 > 0 such that for each (z,u,v) ∈K,

P(z,u,v)(|Z(t0)|= 0) > 0.

Therefore

π({(z,u,v) ∈ S : |z| = 0}) = Pπ(|Z(0)|= 0)

= Pπ(|Z(t0)|= 0)

=

ˆ

S

P(z,u,v)(|Z(t0)| = 0)dπ(z,u,v)

≥
ˆ

K

P(z,u,v)(|Z(t0)|= 0)dπ(z,u,v)

> 0.
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Combining this with (10.22) yields

˙̄Ti(t) < 1, i ∈ J, (10.23)

for every fluid limit X̄, which is a limit of scaled sample paths with fixed initial state.
We call the equations (10.15)-(10.21) plus (10.23) the augmented fluid model

equations and call a solution X̄, to these equations an augmented fluid model solu-
tion.

Definition 10.2.4 The augmented fluid model is weakly unstable if there exists a
δ > 0 such that for each augmented fluid model solution X̄, with Z̄(0) = 0, Z̄(δ ) 6= 0.

Suppose that the augmented fluid model is weakly unstable but the Markov pro-
cess X is positive Harris recurrent. Since the augmented fluid model equations are
satisfied by every fluid limit which is a limit of scaled sample paths with fixed ini-
tial state, the argument in Dai [3] implies that the process is unstable in the sense
that, |Z(t)| →∞ as t→∞ with probability 1, which is a contradiction. Therefore we
obtain the following instability criterion.

Lemma 10.2.5 If the augmented fluid model is weakly unstable, then the Markov
process {X(t) : t ≥ 0} is not positive Harris recurrent.

10.3 JSQ networks with two stations

For simplicity of notation we use λ1, λ2 and λ instead of λ{1}, λ{2} and λ{1,2},
respectively, in the two station case. We also use pi j instead of pi{ j}, i, j = 1,2. To
avoid trivial cases, we assume that p11 < 1, p22 < 1 and at least one of p∗1 and p∗2 is
less than 1. However, we make no assumptions on pi,{1,2}, i = 1,2.

The following theorem provides a necessary and sufficient condition for the
Markov process X to be positive Harris recurrent.

Theorem 10.3.1 Consider a JSQ network with J = 2. The Markov process X is
positive Harris recurrent if and only if the following three conditions hold:

(i) λ1 +λ2 +λ +(p∗1−1)µ1 +(p∗2− 1)µ2 < 0;
(ii) if p∗2 < 1, then

p21(λ1 +λ2 +λ + µ1 p∗1− µ1)+ (1− p∗2)(λ1 + µ1 p11−µ1) < 0;
(iii) if p∗1 < 1, then

p12(λ1 +λ2 + λ + µ2 p∗2− µ2)+ (1− p∗1)(λ2 + µ2 p22− µ2) < 0.

Kurkova [11] obtained a necessary and sufficient condition that is equivalent to
ours (see Appendix 2 of Dai, Hasenbein and Kim [6]). Her paper examines the
special case when the exogenous arrival processes are Poisson, all service times
have an exponential distribution with mean 1, and γ{1,2}, j = 1

2 , j = 1,2.
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Before we prove Theorem 10.3.1, we provide an interpretation of the conditions
in Theorem 10.3.1. The first condition is the most straightforward. First, partition the
state space of the number of customers in the system, say (z1,z2) into two regions.
Let region I be {(z1,z2) : z1 < z2} and region II be {(z1,z2) : z1 > z2} (we ignore the
boundary set for now). In region I all type-{1,2} customers join the queue at station
1. Then, if station 1 is busy the net rate at which it eliminates jobs from the system
is

r1 ≡ µ1 + µ1 p12− µ1 p∗1 + µ2 p22− µ2p∗2−λ1−λ .

Similarly, in region I the net rate at which station 2 eliminates customers from the
system is

r2 ≡ µ2− µ1 p12−µ2p22−λ2.

Notice that the left-hand side of condition (i) is simply−(r1 + r2), i.e. condition (i)
implies that the total net rate at which customers are eliminated must be positive.
One can check that the left-hand side of (i) also corresponds to the net customer
elimination rate in region II. On the boundary between the two regions, the elimina-
tion rate seemingly should depend on the tie-breaking probability. However, since
the rates are the same in either region, we see that the tie-breaking probability is
immaterial to this rate condition.

Condition (i) is a type of drift condition on the interior of the state space. The
other two conditions are drift rate conditions on the boundaries. To see this suppose
z1 = 0, i.e. station 1 is idle. In this case, the net drift rate of the number of jobs is
given by

(s1,s2)≡ (λ1 +λ + µ2(p∗2− p22),λ2 + µ2p22− µ2).

Then condition (iii) is equivalent to (−r2,r1) · (s1,s2) < 0, i.e. the normal to the
interior drift and the reflection vector must form an acute angle. This is the usual
stability condition for a process with (constant) oblique reflection at the boundaries.
Condition (ii) has an analogous interpretation for the boundary defined by z2 = 0.

Proof of Theorem 10.3.1.

Sufficiency: Suppose that X̄ is a fluid model solution. Let f (t) = |Z̄(t)|. It is readily
seen that the fluid model is stable if there exists an ε > 0 such that

ḟ (t)≤−ε if f (t) > 0. (10.1)

Hence, by Lemma 10.2.2, X is positive Harris recurrent if there exists an ε > 0
satisfying (10.1). By (10.15), ḟ (t) can be written as

ḟ (t) = ˙̄A1(t)+ ˙̄A2(t)−µ1
˙̄T1(t)− µ2

˙̄T2(t).

Employing (10.21) with C = {1,2} we obtain,

ḟ (t) = λ1 + λ2 +λ +(p∗1−1)µ1
˙̄T1(t)+ (p∗2−1)µ2

˙̄T2(t). (10.2)
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Now we show that (10.1) holds for some ε > 0 by considering three cases sepa-
rately.

Case 1. Suppose Z̄1(t) > 0 and Z̄2(t) > 0. Then by (10.18) and (10.19), ˙̄Ti = 1,
i = 1,2. So (10.2) becomes

ḟ (t) = λ1 +λ2 + λ +(p∗1− 1)µ1 +(p∗2−1)µ2,

which is negative by (i).

Case 2. Z̄1(t) > 0 and Z̄2(t) = 0.

By (10.18) and (10.19),

˙̄T1(t) = 1. (10.3)

Substituting (10.3) into (10.2) gives,

ḟ (t) = λ1 +λ2 +λ +(p∗1−1)µ1 +(p∗2− 1)µ2
˙̄T2(t). (10.4)

Next, evaluating (10.21) with C = {1,2} and using (10.3) yields

˙̄A1(t)+ ˙̄A2(t) = λ1 +λ2 + λ + p∗1µ1 + p∗2µ2
˙̄T2(t). (10.5)

Similarly, evaluating (10.21) with C = {1}, along with (10.3) yields

˙̄A1(t) = λ1 + p11µ1 + p21µ2
˙̄T2(t). (10.6)

We subtract (10.6) from (10.5) to obtain

˙̄A2(t) = λ2 + λ +(p∗1− p11)µ1 +(p∗2− p21)µ2
˙̄T2(t). (10.7)

By assumption Z̄2(t) = 0 which implies ˙̄Z2(t) = 0. Hence by (10.15),

˙̄A2(t) = µ2
˙̄T2(t). (10.8)

Therefore, substituting (10.8) into (10.7) gives

µ2(1− p∗2 + p21)
˙̄T2(t) = λ2 +λ +(p∗1− p11)µ1. (10.9)

Now, if 1− p∗2 + p21 = 0 then p∗2 = 1 and so, by (10.4),

ḟ (t) = λ1 + λ2 +λ +(p∗1− 1)µ1,

which is negative by (i).
Otherwise, suppose 1− p∗2 + p21 > 0. Then, by (10.9),

˙̄T2(t) =
λ2 +λ +(p∗1− p11)µ1

µ2(1− p∗2 + p21)
. (10.10)
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In this case, (10.10) and (10.4) imply

ḟ (t) =
p21[λ1 +λ2 + λ + µ1(p∗1− 1)]+ (1− p∗2)[λ1 + µ1(p11− 1)]

1− p∗2 + p21
,

which by (i) is negative when p∗2 = 1 and by (ii) is negative when p∗2 < 1.

Case 3. Z̄1(t) = 0 and Z̄2(t) > 0. The argument in this case is analogous to that of
case 2.

Necessity: Lemma 10.2.5 implies that we need only show that the augmented fluid
model is weakly unstable if any of (i)-(iii) of Theorem 10.3.1 does not hold. By
symmetry, it is sufficient to analyze the three cases examined below. Let X̄ be an
augmented fluid model solution with Z̄(0) = 0 and let

f (t) = |Z̄(t)|, t ≥ 0.

Considering three cases separately, we show that ḟ (t) > 0 for all regular t > 0, which
completes the proof.

Case 1. Suppose (i) does not hold. By (10.2) and (10.23),

ḟ (t) > λ1 +λ2 + λ +(p∗1−1)µ1 +(p∗2− 1)µ2 ≥ 0,

which proves the result for this case.

Case 2. Suppose (i) holds and (ii) does not hold. If Z̄2(t) > 0, then by (10.18) and
(10.19), ˙̄T2(t) = 1, which contradicts (10.23). Hence Z̄2(t) = 0 and ˙̄Z2(t) = 0. As
before, by (10.15),

˙̄A2(t) = µ2
˙̄T2(t). (10.11)

By subtracting (10.20) evaluated at C = {1} from (10.21) evaluated at C = {1,2},
we have

˙̄A2(t) ≤ λ2 +λ +(p∗1− p11)µ1
˙̄T1(t)+ (p∗2− p21)µ2

˙̄T2(t).

Hence by (10.23) and (10.11),

˙̄T2(t) <
λ2 +λ +(p∗1− p11)µ1

µ2(1− p∗2 + p21)
. (10.12)

Substituting (10.12) into (10.2) and applying ˙̄T1(t) < 1 lead to

ḟ (t) >
p21(λ1 + λ2 +λ + µ1 p∗1− µ1)+ (1− p∗2)(λ1 + µ1 p11− µ1)

1− p∗2 + p21
.

The numerator above is nonnegative by the negation of (ii), thus ḟ (t) > 0. ⊓⊔
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The following theorem provides a sufficient condition for the Markov process X
to be unstable in the sense that |Z(t)| → ∞ as t→ ∞ with probability 1.

Theorem 10.3.2 Consider a JSQ network with J = 2. The process X is unstable in
the sense that |Z(t)| →∞ as t→ ∞ with probability 1 if

λ1 +λ2 +λ +(p∗1−1)µ1 +(p∗2− 1)µ2 > 0, (10.13)

or p21(λ1 + λ2 +λ + µ1 p∗1− µ1)+ (1− p∗2)(λ1 + µ1 p11− µ1) > 0,(10.14)

or p12(λ1 + λ2 +λ + µ2 p∗2− µ2)+ (1− p∗1)(λ2 + µ2 p22− µ2) > 0.(10.15)

Proof. Suppose that X̄ is a fluid model solution with Z̄(0) = 0, t ≥ 0. Let f (t) =
|Z̄(t)|. By Lemma 10.2.3, it suffices to show that ḟ (t) > 0 for all t > 0. We show
this by considering three cases separately.

Case 1. Suppose (10.13) holds.
Since ˙̄T1(t)≤ 1 and ˙̄T2(t)≤ 1, by (10.2),

ḟ (t)≥ λ1 +λ2 +λ +(p∗1−1)µ1 +(p∗2− 1)µ2 > 0,

for all t > 0.

Case 2. Suppose (10.13) does not hold and (10.14) holds.
If p∗2 = 1, then ḟ (t)≥ λ1 +λ2 + λ +(p∗1−1)µ1 > 0 by (10.2) and (10.14). Now

suppose that p∗2 < 1. First we show that

Z̄2(t) = 0, t ≥ 0. (10.16)

To prove (10.16), it suffices to show that ˙̄Z2(t)≤ 0 if Z̄2(t) > 0. Suppose Z̄2(t) > 0.
Then by (10.18) and (10.19), ˙̄T2(t) = 1. By (10.15),

˙̄A2(t) = ˙̄Z2(t)+ µ2. (10.17)

By subtracting (10.20) evaluated at C = {1} from (10.21) evaluated at C = {1,2},
we have

˙̄A2(t) ≤ λ2 + λ +(p∗1− p11)µ1
˙̄T1(t)+ (p∗2− p21)µ2. (10.18)

Substituting (10.17) into (10.18) and applying ˙̄T1(t)≤ 1 lead to

˙̄Z2(t) ≤ λ2 + λ +(p∗1− p11)µ1 +(p∗2− p21−1)µ2. (10.19)

Since by assumption,(10.13) does not hold,

µ2 ≥
λ1 +λ2 +λ + µ1(p∗1−1)

1− p∗2
. (10.20)

Finally, by (10.19) and (10.20),
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˙̄Z2(t) ≤ −
p21(λ1 +λ2 +λ + µ1 p∗1− µ1)+ (1− p∗2)(λ1 + µ1 p11−µ1)

1− p∗2
.

Hence, ˙̄Z2(t) < 0 by (10.14). Thus (10.16) holds.
Next, subtracting (10.20) evaluated at C = {1} from (10.21) evaluated at C =

{1,2}, we obtain

˙̄A2(t) ≤ λ2 +λ +(p∗1− p11)µ1
˙̄T1(t)+ (p∗2− p21)µ2

˙̄T2(t)

≤ λ2 +λ +(p∗1− p11)µ1 +(p∗2− p21)µ2
˙̄T2(t). (10.21)

By (10.16), ˙̄Z2(t) = 0 and so ˙̄A2(t) = µ2
˙̄T2(t) by (10.15). Hence, employing (10.21),

we have

˙̄T2(t) ≤
λ2 +λ +(p∗1− p11)µ1

µ2(1− p∗2 + p21)
. (10.22)

Substituting (10.22) into (10.2) and applying ˙̄T1(t)≤ 1 lead to

ḟ (t) ≥ p21(λ1 + λ2 +λ + µ1 p∗1− µ1)+ (1− p∗2)(λ1 + µ1 p11− µ1)

1− p∗2 + p21
.

Thus (10.14) now implies ḟ (t) > 0.

Case 3. Suppose (10.13) does not hold and (10.15) holds. By symmetry this case
is completely analogous to Case 2. ⊓⊔

10.4 Two examples with three stations

In this section, we consider the case J = 3 and give two examples which show
that λC, µi and piC, i ∈ J,C ∈ P, are not sufficient to determine the stability of the
system. The first example shows that the stability of the system may depend on the
tie-breaking rule γC,i, C ∈P, i∈ J. The second example shows that the stability of the
system may depend not only on the mean service times but also on the distributions
of the service times.

Both examples fit into a class of networks, whose structure is pictured in Fig-
ure 10.1.

The network has three stations, each represented by a circle. Each station serves
customers in its queue, which is represented by an open rectangle. In each example,
there are potentially four types of exogenous arrival processes, which are assumed
to be four independent Poisson processes. The first three processes correspond to
arrivals which are dedicated to queues 1, 2, and 3 respectively. The fourth Poisson
process corresponds to arrivals which join the shorter of the two queues 1 and 2.
If the queue lengths are equal at the time of an arrival, the customer breaks the tie
using a Bernoulli(r) random variable which is independent of all the other primi-
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Fig. 10.1: A JSQ network

tive processes, with a success indicating that the customer joins queue 1. The four
Poisson processes have rates λi, i = 1,2,3,4.

The service times at stations 2 and 3 are assumed to be i.i.d. exponential ran-
dom variables with rates µ2 and µ3, respectively. The service times at station 1
are assumed to be i.i.d. random variables which are hyperexponential. We assume
that the hyperexponential is generated by mixing independent exponential(a) and
exponential(b) random variables, with the first component being chosen with prob-
ability ν . With these assumptions, the natural definition of the rate of service at
station 1 is then:

µ1 = (νa−1 +(1−ν)b−1)−1.

Now, in such a network let

Y (t) =





0, if no job is in service at station 1 ;

1, if the current job in service at station 1
is assigned an exponential(a) service;

2, if the current job in service at station 1
is assigned an exponential(b) service.

Then, for this class of networks both {(Z1(t),Z2(t),Y (t)) : t ≥ 0} and
{(Z1(t),Z2(t),Z3(t),Y (t)),t ≥ 0} are irreducible continuous time Markov chains
(CTMCs). When

λ1 < µ1, λ2 < µ2 and λ1 + λ2 +λ4 < µ1 + µ2, (10.1)

it follows from Theorem 10.3.1 that the continuous time Markov chain {(Z1(t),
Z2(t),Y (t)) : t ≥ 0} is positive recurrent. We use P{(Z1(∞),Z2(∞)) ∈ ·} to denote
the stationary distribution of {(Z1(t),Z2(t)) : t ≥ 0}. Recall that A1(t) is the num-
ber of customers that have entered either the queue or service at station 1 in [0,t],



476 J. G. Dai, John J. Hasenbein and Bara Kim

and that D1(t) is the number of service completions by station 1 in [0,t]. Note that
A1(t)/t and D1(t)/t are the arrival rate at station 1 the departure rate from station
1, respectively, in [0,t]. For a fixed time t, both of these rates are random. Our next
proposition shows that, when (10.1) is satisfied, these rates converge to constants as
t→ ∞.

Property 10.4.1 Assume that condition (10.1) holds.

(a) Set d1 = µ1P{Z1(∞) > 0}. For each initial state x,

Px

{
lim
t→∞

D1(t)/t = d1

}
= 1. (10.2)

(b) Set a1 = λ1 + λ4

(
P{Z1(∞) < Z2(∞)}+ rP{Z1(∞) = Z2(∞)}

)
. For each initial

state x,
Px

{
lim
t→∞

A1(t)/t = a1

}
= 1. (10.3)

(c) a1 = d1.

Proof. The proofs of both (a) and (b) follow by applying standard sample path ver-
sions of PASTA as in Wolff [15] Chapter 5, Theorem 6 and Example 5-23. We
outline the proof for (a), the proof for (b) uses similar arguments. All arguments
hold for the probability measure generated by a fixed, but arbitrary initial state x.

Let {N(t),t ≥ 0} be a Poisson process with rate µ1. This process generates de-
partures from station 1 whenever there is a job present at the station, otherwise an
event in N(·) is ignored. Recall that D1(t) is the number of departures from station
1 in [0,t]. Then sample path PASTA and standard results for ergodic CTMC’s yield:

lim
t→∞

D1(t)
N(t)

= P{Z1(∞) > 0} a.s.

The strong law of large numbers for renewal processes gives:

lim
t→∞

N(t)
t

= µ1 a.s.

Thus

lim
t→∞

D1(t)
t

=
D1(t)
N(t)

N(t)
t

= µ1P{Z1(∞) > 0} a.s.

To prove (c), we note that from the proof of Theorem 10.3.1, the fluid model of
the network consisting of the first two queues is stable. Thus, the network is rate
stable, see for example, Dai [4]. Rate stability implies that d1 = a1, proving part (c).

When condition (10.1) holds, Proposition 10.4.1 asserts that the long-run departure
rate from station 1 exists and is equal to d1, a component of our next proposition.
Note that Z(t) = (Z1(t),Z2(t),Z3(t)) for the 3-station network of this section.
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Property 10.4.2 For the network in Figure 10.1, the Markov chain {(Z(t),Y (t)) :
t ≥ 0} is positive recurrent iff

λ1 < µ1, λ2 < µ2, λ1 + λ2 +λ4 < µ1 + µ2 and λ3 +d1 < µ3.

To prove Proposition 10.4.2, we first state and prove the following lemma, as
applied to the network in Figure 10.1. Clearly, the lemma can be extended to a
general setting like multiclass queueing networks with general distributions as in
Dai [2] or stochastic processing networks as in Dai and Lin [5].

Lemma 10.4.3 Assume that the continuous time Markov chain {(Z(t),Y (t)) : t ≥ 0}
is positive recurrent with stationary distribution π = {πi1,i2,i3,i4 : (i1, i2, i3, i4)∈Z4

+}.
Let the initial state (Z(0),Y (0)) = x be fixed. Then, Px-a.s., for each fluid limit
((T̄1, T̄2, T̄3),(Z̄1, Z̄2, Z̄3)),

T̄j(t) =


1− ∑

(i1,i2,i3,i4)∈B j

π(i1,i2,i3,i4)


 t (10.4)

for each j = 1,2,3 and each t ≥ 0, where B j = {(i1, i2, i3, i4) ∈ Z4
+ : i j = 0}.

Proof. For notational convenience, we prove the case for j = 1. The proofs for other
cases are identical.

Since a nonidling service policy is assumed, we have for each s≥ 0

T1(s)
s

=
1
s

ˆ s

0
1{Z1(u)>0}du = 1− 1

s

ˆ s

0
1{Z1(u)=0}du.

By the positive recurrence of the Markov chain, we have

Px

{
lim
s→∞

T1(s)
s

= 1− lim
s→∞

1
s

ˆ s

0
1{Z1(u)=0} du

= 1− ∑
(i1,i2,i3,i4)∈B1

π(i1,i2,i3,i4)

}
= 1. (10.5)

For each sample path in the event set of (10.5) and for each t ≥ 0,

T̄1(t) = lim
n→∞

T1(nt)
n

= t lim
s→∞

T1(s)
s

= t

(
1− ∑

(i1,i2,i3,i4)∈B1

π(i1,i2,i3,i4)

)
,

thus proving the lemma. ⊓⊔
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Proof of Proposition 10.4.2 Recall that the 3-dimensional process {(Z1(t),Z2(t),
Y (t)) : t ≥ 0} is an irreducible CTMC. If λ1 ≥ µ1 or λ2 ≥ µ2 or λ1 + λ2 + λ4 ≥
µ1 +µ2, then by Theorem 10.3.1, the 3-dimensional CTMC is not positive recurrent,
and so neither is the 4-dimensional CTMC {(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0}. This
establishes the necessity of the first three conditions in Proposition 10.4.2.

Thus, we assume that λ1 < µ1, λ2 < µ2 and λ1 +λ2 +λ4 < µ1 + µ2 throughout
the remainder of this proof. Let {κi jk(r) : i, j,k} be the stationary distribution of
the 3-dimensional Markov chain {(Z1(t),Z2(t),Y (t)) : t ≥ 0}. We now show that
{(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0} is positive recurrent if and only if

λ3 + µ1

(
1−

∞

∑
j=0

2

∑
k=0

κ0 jk(r)

)
< µ3. (10.6)

Fix an initial state (Z(0),Y (0)), say, (Z(0),Y (0)) = (0,0,0,0). Let
((T̄1, T̄2, T̄3),(Z̄1, Z̄2, Z̄3)) be a fluid limit. It follows that it satisfies the following
fluid model equation (see, e.g., Dai [2])

Z̄3(t) = λ3t + µ1T̄1(t)−µ3T̄3(t). t ≥ 0,

Applying Lemma 10.4.3 to the 3-dimensional Markov chain, we have

Z̄3(t) =

[
λ3 + µ1

(
1−∑

j,k

κ0 jk(r)
)]

t− µ3T̄3(t), t ≥ 0. (10.7)

Assume that {(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0} is positive recurrent with sta-
tionary distribution π = {π(i1,i2,i3,i4)}, but that condition (10.6) does not hold.
Since ∑(i1,i2,i4)∈Z3

+
π(i1,i2,0,i4) > 0, it follows from Lemma 10.4.3 and (10.7) that

Z̄3(t) > 0 for each fluid limit and each time t > 0. Therefore, the fluid limit
model is weakly unstable as defined in [3]. It follows from Theorem 4.2 of [3]
that {(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0} is transient, and hence not positive recur-
rent, contradicting the assumption that {(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0} is positive
recurrent. Thus we have proved that {(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is positive
recurrent only if (10.6) holds.

Now suppose that (10.6) holds. For each fluid limit ((T̄1, T̄2, T̄3),(Z̄1, Z̄2, Z̄3)), we
have Z̄3(t)≥ 0 for each t ≥ 0. Thus, (10.7) implies that

T̄3(t)≤
λ3 + µ1(1−∑ j,k κ0 jk(r))

µ3
· t = (1− ε)t, (10.8)

where

ε = 1− 1
µ3

(
λ3 + µ1

(
1−∑

j,k

κ0 jk(r)

))
> 0.

Since (10.8) holds for every fluid limit, we have, Px-a.s.,
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limsup
t→∞

1
t

T3(t) ≤ 1− ε.

Therefore, Px-a.s.,

liminf
t→∞

1
t

ˆ t

0
1{Z3(u)=0}du ≥ ε. (10.9)

Let B be a finite set such that

∑
(i, j,k)/∈B

κi jk(r) < ε. (10.10)

Now, define B̃≡ {(i, j,0,k) : (i, j,k) ∈ B}. By (10.9) and (10.10), Px-a.s.,

liminf
t→∞

1
t

ˆ t

0
1{(Z1(u),Z2(u),Z3(u),Y (u))∈B̃}du

≥ liminf
t→∞

1
t

ˆ t

0
1{Z3(u)=0}du− lim

t→∞

1
t

ˆ t

0
1{(Z1(u),Z2(u),Y(u))/∈B}du

= liminf
t→∞

1
t

ˆ t

0
1{Z3(u)=0}du− ∑

(i, j,k)/∈B

κi jk(r)

≥ ε− ∑
(i, j,k)/∈B

κi jk(r) > 0.

By Fatou’s lemma and Fubini’s theorem,

liminf
t→∞

1
t

ˆ t

0
Px

{
(Z1(u),Z2(u),Z3(u),Y(u)) ∈ B̃

}
du

≥ ε− ∑
(i, j,k)/∈B

κi jk(r) > 0. (10.11)

Since B̃ is a finite set, (10.11) implies that the Markov chain {(Z1(t),Z2(t),Z3(t),
Y (t)) : t ≥ 0} is positive recurrent. ⊓⊔

We are now ready to analyze a set of examples which give further insight into the
stability behavior of JSQ networks.

Example 1. We now consider a special case of three station network introduced
above. Let λ1 = λ2 = 0 and let λ3 and λ4 be arbitrary. Furthermore, assume ν = 1

2
and µ1 := a = b = µ2. Thus, there are exponential service times at all stations,
with stations 1 and 2 having the same service rates. The 3-dimensional process
{(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is a Markov process. Further it is positive recurrent
if and only the 4-dimensional Markov process {(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0} is
positive recurrent.

We now argue that the positive recurrence of {(Z1(t),Z2(t),Z3(t)) : t ≥ 0} de-
pends on the tie-breaking parameter r. The first three conditions in Proposition
10.4.2 reduces to λ4 < 2µ1. Under this condition, by Theorem 10.3.1, the process
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{(Z1(t),Z2(t)) : t ≥ 0} is positive recurrent. Let {κi j(r) : i, j ≥ 0} be the station-
ary distribution of this process. Then applying Proposition 10.4.2 we immediately
obtain:

Claim. If λ4 ≥ 2µ1 then the Markov chain {(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is not pos-
itive recurrent. If λ4 < 2µ1, then {(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is positive recurrent
if and only if

λ3 + µ1

(
1−

∞

∑
j=0

κ0 j(r)

)
< µ3. (10.12)

By Lemma 7 in Dia, Hasenbein and Kim [6], it is seen that ∑∞
j=0 κ0 j(r) decreases

strictly as r increases. Thus it is clear that one can choose fixed parameters λ3,λ4,µ1,
and µ3 for which the stability conditions will hold for some r and not hold for
another choice of r. In particular, the necessary and sufficient conditions for the
positive recurrence of X depend on the tie-breaking parameter r.

Example 2. Consider now another special case of the network depicted in Fig-
ure 10.1. In particular let λ1 = λ2 = 0.8, λ3 = 0.17, λ4 = 0.1, r = 1/2 and
µ1 = µ2 = µ3 = 1, where station 1’s service time distribution remains to be cho-
sen. We now argue that the positive recurrence of {(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0}
depends on the distribution of the service times for station 1 even if the mean is
fixed.

First suppose ν = 1
2 and a = b = 1. Thus, all service times for station 1 are

exponentially distributed with mean 1. For this case, we have the following claim:

Claim. If the service times for station 1 are exponentially distributed with mean 1
then the process {(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is not positive recurrent.

Proof of Claim 10.4 For the set of parameters under consideration, condition (10.1)
holds and we can apply Proposition 10.4.1, which implies that the departure rate
from station 1 (and station 2) exists with probability 1. As argued earlier, from
Theorem 10.3.1, condition (10.1) also implies that the fluid model of the network
consisting of the first two queues is stable, and so the network itself is rate stable.
Hence, so the total departure rate from the first two queues must equal the total
arrival rate of 1.7. Furthermore, by symmetry, the departures rates from station 1
and station 2 must be equal. Thus, d1 = 0.85 and applying Proposition 10.4.2, we
infer that {(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is not positive recurrent. ⊓⊔

Now suppose we alter the distribution, but not the mean service time, at station
1. In particular, let 0 < ν < 1 and a = ν

1−ν+ν2 and b = 1/ν . Then services at station
1 are hyperexponential with the following c.d.f.: For 0≤ x < ∞,

F(x) = ν
(

1− exp

( −νx
1−ν +ν2

))
+(1−ν)

(
1− exp(− x

ν
)
)

. (10.13)

Note that for any 0 < ν < 1 the mean service time is 1.
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Claim. If the service times for station 1 are hyperexponential as described above
and if ν is sufficiently small, then the process {(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0} is
positive recurrent.

Proof of Claim 10.4 In this case, Proposition 10.4.1 gives:

d1 = 0.8+ 0.1 [P{Z1(∞) < Z2(∞)}+0.5P{Z1(∞) = Z2(∞)}] . (10.14)

Then, by Proposition 10.4.2, X is positive recurrent iff

0.17 +0.8 +0.1P{Z1(∞) < Z2(∞)}+0.05P{Z1(∞) = Z2(∞)}< 1,

or equivalently

10P{Z1(∞) < Z2(∞)}+5P{Z1(∞) = Z2(∞)}< 3.

A sufficient condition for the inequality above to hold is

g(ν) ≡ P{Z1(∞)≤ Z2(∞)} < 0.3. (10.15)

We will show that this is true for ν sufficiently small. Observe that

Z1(∞) ≥st Zν
M/G/1 and Z2(∞) ≤st ZM/M/1, (10.16)

where Zν
M/G/1 denotes a random variable whose distribution is the stationary distri-

bution of the number of customers in an ordinary M/G/1 queue with arrival rate
0.8 and service time distribution function F given by (10.13), and ZM/M/1 denotes
a random variable whose distribution is the stationary distribution of the number of
customers in an ordinary M/M/1 queue with arrival rate 0.9 and service rate 1.

Since the Laplace-Stieltjes transform (LST) of service times in the M/G/1 queue
is

ˆ ∞

0
e−sxdF(x) =

ν2

(1−ν +ν2)s+ν
+

1−ν
sν +1

, Re(s) > 0,

the Pollaczek-Khintchine (see, e.g., p. 260 in [12]) formula yields

e[zZν
M/G/1 ] =

(4−3ν +8ν2)− 4(1−2ν +2ν2)z
5(4−3ν + 8ν2)−4(5−ν +6ν2 +4ν3)z+ 16ν(1−ν +ν2)z2 ,

which is the probability generating function for the number of customers in the
M/G/1 queue, in stationarity. Therefore

lim
ν→0+

e[z
Zν

M/G/1 ] = 0.2 |z| < 1.

Now applying the continuity theorem for probability generating functions (c.f. The-
orem 1.5.1 in [13]) we have

lim
ν→0+

P(Zν
M/G/1 ≤ x) = 0.2 for all 0 < x < ∞. (10.17)
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By (10.16),

g(ν) = 1−P{Z1(∞) > Z2(∞)}
≤ 1−P{Z1(∞) > x > Z2(∞)}
= 1−P({Z2(∞) < x}−{Z1(∞)≤ x})
≤ 1−P{Z2(∞) < x}+P{Z1(∞)≤ x}
≤ 1−P(ZM/M/1 < x)+P(Zν

M/G/1 ≤ x),

for any 0 < x < ∞. Hence, by (10.17),

limsup
ν→0+

g(ν)≤ 1.2−P(ZM/M/1 < x).

Letting x→ ∞ leads to

limsup
ν→0+

g(ν)≤ 0.2.

Therefore (10.15) holds for sufficiently small ν . Hence, for sufficiently small ν ,
{(Z1(t),Z2(t),Z3(t),Y (t)) : t ≥ 0} is positive recurrent when the service times for
station 1 have the hyperexponential distribution function (10.13). ⊓⊔

Claims 2 and 3, taken together, show that the positive Harris recurrence of X
depends on more than just the mean values of the primitive distributions in the net-
work.

10.5 JSQ networks with homogeneous feedback

As we see in Section 10.3 the stability of a 2-station network does not depend on
the distributions of interarrival and service times or the tie-breaking probabilities.
Unfortunately, when J ≥ 3, the analogous result does not hold as we see in Section
10.4. However, for such networks we can identify stability conditions in terms of
λC, µC and piC, i ∈ J,C ∈ P, under an additional assumption on network structure.

Assumption 10.5.1 For any C ∈ P, piC does not depend on i ∈ J. Namely, all sta-
tions have the same feedback probabilities. For C ∈ P, let

ΛC ≡ ∑
B:φ 6=B⊆C

λB, PC ≡ ∑
B:φ 6=B⊆C

piB and µC ≡∑
i∈C

µi.

Let λ ∗ ≡ΛJ be the total external arrival rate to the network and p∗ ≡ p∗i , which is
independent of station i ∈ J. To avoid triviality, further assume that p∗ < 1.

Under this assumption, the stability of larger networks can be determined directly
from the first-order network parameters, as the following result demonstrates.
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Theorem 10.5.2 Consider a JSQ network with J ≥ 3 whose parameters are in con-
cordance with Assumption 1. The Markov process {X(t) : t ≥ 0} is positive Harris
recurrent if and only if

ΛC +
λ ∗

1− p∗
PC < µC, for all C ∈ P. (10.1)

To prove the theorem, we first need to prove the following lemma.

Lemma 10.5.3 Let X̄ be a fluid model solution. Consider a fixed regular t > 0 and
let C ≡C(t) = {i ∈ J : Z̄i(t) > 0}. Then

∑
i∈C

˙̄Zi(t) =
1− p∗

1− p∗+PC

(
ΛC +

λ ∗

1− p∗
PC− µC

)
. (10.2)

Proof. Using (10.21), we have

∑
i∈J

˙̄Ai(t) = λ ∗+ p∗∑
i∈J

µi
˙̄Ti(t) (10.3)

and

∑
i∈C

˙̄Ai(t) = ΛC + PC ∑
i∈J

µi
˙̄Ti(t). (10.4)

Subtracting (10.4) from (10.3), yields

∑
i∈J−C

˙̄Ai(t) = λ ∗ −ΛC +(p∗ −PC) ∑
i∈J

µi
˙̄Ti(t). (10.5)

Since Z̄i(t) = 0 for i ∈ J−C, ˙̄Zi(t) = 0 for i ∈ J−C. Hence, by (10.15),

˙̄Ai(t) = µi
˙̄Ti(t), i ∈ J−C. (10.6)

Then (10.5) and (10.6) give

∑
i∈J−C

µi
˙̄Ti(t) =

λ ∗ −ΛC +(p∗ −PC)∑i∈C µi
˙̄Ti(t)

1− p∗+ PC
. (10.7)

Since Z̄i(t) > 0, (10.18) and (10.19) imply

˙̄Ti(t) = 1, i ∈C. (10.8)

Substituting (10.7) and (10.8) into (10.4) leads to

∑
i∈C

˙̄Ai(t) =
(1− p∗)ΛC + λ ∗PC + µCPC

1− p∗+ PC
. (10.9)
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Next, (10.15) and (10.8) give us

∑
i∈C

˙̄Zi(t) = ∑
i∈C

˙̄Ai(t)− µC. (10.10)

Finally, substituting (10.9) into (10.10) yields (10.2).

Proof of Sufficiency of Theorem 10.5.2 Suppose X̄ is a fluid model solution. Let
f (t) = |Z̄(t)|. Consider a fixed regular t > 0 with f (t) > 0 and again let C = {i ∈ J :
Z̄i(t) > 0}, t ≥ 0. Since ˙̄Zi(t) = 0 for i ∈ J−C, ḟ (t) = ∑i∈C

˙̄Zi(t). Hence, by Lemma
10.5.3,

ḟ (t)≤−ε, (10.11)

for any such t, where

ε = min
B∈P

1− p∗

1− p∗+ PB

(
µB−ΛB−

λ ∗

1− p∗
PB

)
> 0.

From (10.11), it is readily seen that the fluid model is stable. The proof is now
completed by applying Lemma 10.2.2. ⊓⊔

Proof of Necessity of Theorem 10.5.2: By Lemma 10.2.5, it suffices to show that the
augmented fluid model is weakly unstable if (10.1) does not hold for some C ∈ P.
Suppose then that (10.1) does not hold for some C ∈P. Let X̄ be an augmented fluid
model solution with Z̄(0) = 0. In light of (10.15) and (10.20) we have

∑
i∈C

˙̄Zi(t) ≥ ΛC +PC ∑
i∈J

µi
˙̄Ti(t)−∑

i∈C
µi

˙̄Ti(t). (10.12)

Next, using (10.15) and (10.21), ∑i∈J
˙̄Zi(t) = λ ∗+(p∗ −1)∑i∈J µi

˙̄Ti(t), which can
be rewritten as

∑
i∈J

µi
˙̄Ti(t) =

λ ∗

1− p∗
− 1

1− p∗ ∑
i∈J

˙̄Zi(t). (10.13)

Substituting (10.13) into (10.12) yields

∑
i∈C

˙̄Zi(t) ≥ ΛC +
λ ∗

1− p∗
PC−

PC

1− p∗ ∑
i∈J

˙̄Zi(t)−∑
i∈C

µi
˙̄Ti(t).

Equation (10.23) then implies that

1− p∗+PC

1− p∗ ∑
i∈C

˙̄Zi(t)+
PC

1− p∗ ∑
i∈J−C

˙̄Zi(t) > ΛC +
λ ∗

1− p∗
PC− µC. (10.14)

Now, let
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f (t) =
1− p∗+PC

1− p∗ ∑
i∈C

Z̄i(t)+
PC

1− p∗ ∑
i∈J−C

Z̄i(t).

Then by (10.14) and the negation of (10.1), ḟ (t) > 0 for all t > 0, which proves that
the augmented fluid model is weakly unstable. ⊓⊔

The following theorem provides a sufficient condition for the Markov process X
to be unstable in the sense that |Z(t)| → ∞ as t→ ∞ with probability 1.

Theorem 10.5.4 Consider a JSQ network with J ≥ 3 whose parameters are in con-
cordance with Assumption 1. The process X is unstable in the sense that |Z(t)| →∞
as t→ ∞ with probability 1 if there exists a C ∈ P such that

ΛC +
λ ∗

1− p∗
PC > µC. (10.15)

To prove the theorem, we first need the following lemma.

Lemma 10.5.5 Let X̄ be a fluid model solution. Then, for any C ∈ P,

1− p∗+PC

1− p∗ ∑
i∈C

˙̄Zi(t)+
PC

1− p∗ ∑
i∈J−C

˙̄Zi(t) ≥ ΛC +
λ ∗

1− p∗
PC− µC. (10.16)

Proof. Equations (10.15) and (10.20) imply,

∑
i∈C

˙̄Zi(t) ≥ ΛC +PC ∑
i∈J

µi
˙̄Ti(t)−∑

i∈C

µi
˙̄Ti(t). (10.17)

Now (10.15) and (10.21) give ∑i∈J
˙̄Zi(t) = λ ∗+(p∗−1)∑i∈J µi

˙̄Ti(t), which can be
rewritten as

∑
i∈J

µi
˙̄Ti(t) =

λ ∗

1− p∗
− 1

1− p∗ ∑
i∈J

˙̄Zi(t). (10.18)

By substituting (10.18) into (10.17), we get

∑
i∈C

˙̄Zi(t) ≥ ΛC +
λ ∗

1− p∗
PC−

PC

1− p∗ ∑
i∈J

˙̄Zi(t)−∑
i∈C

µi
˙̄Ti(t).

Since ˙̄Ti(t)≤ 1, i ∈C, (10.16) is obtained. ⊓⊔

Proof of Theorem 10.5.4: Suppose X̄ is a fluid model solution with Z̄(0) = 0, and
let C ∈ P be such that it satisfies (10.15). Let

f (t) =
1− p∗+PC

1− p∗ ∑
i∈C

Z̄i(t)+
PC

1− p∗ ∑
i∈J−C

Z̄i(t).
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By Lemma 10.5.5, ḟ (t) > 0 for all t > 0. Thus f (t) > 0 and so |Z̄(t)|> 0 for all t > 0.
Hence the fluid model is weakly unstable and the proof is completed by applying
Lemma 10.2.3. ⊓⊔

10.6 Further study

In this section, we briefly mention some further research topics. A direct extension
of the JSQ network studied in this chapter is a multiserver JSQ network. In such a
network each station has one or more identical servers, each with a dedicated buffer
for waiting customers. When customers enter the system, or complete processing at
a station, they choose some subset of stations, and buffers, in the network and join
the shortest queue. The techniques used in this chapter can be readily extended to
multiserver JSQ networks. Stability results for such networks are of particular inter-
est due to intriguing conjectures put forth by Suhov and Vvedenskaya [14]. In fact,
these conjectures can be extended, and resolved (positively) using the techniques in
this chapter.

Another extension to the framework of this chapter is a JSQ network with state
dependent service rates. In this network the service rate of each server may depend
on the states (e.g., busy or idle) of the other servers in the network. Such a network
has been of interest due to applications in wireless networks and there has been some
progress in obtaining stability conditions for single station networks of this type. It
is likely that the techniques in this chapter can also be extended to JSQ networks
with state dependent service rates.
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Chapter 11

Methods in Diffusion Approximation for
Multi-Server Systems: Sandwich, Uniform
Attraction and State-Space Collapse

Hong Chen and Heng-Qing Ye

Abstract In this chapter, we demonstrate through simple queueing models some of
the methods that have been developed for the diffusion approximation. Specifically,
we first show how the sandwich method is used to establish the diffusion approx-
imation for a multi-server queue, and next show how the uniform attraction and
the state-space collapse method is used to establish the diffusion approximation for

use all of the above methods to establish the diffusion approximation for a system
with multi-channel queues to which the jobs are routed based on a join-the-shortest-
queue (JSQ) routing control.

11.1 Introduction

There has been substantial literature on the diffusion approximation for a queue-
ing system ever since the pioneer work of Kingman [13] and Iglehart and Whitt
[10, 11]. The applications can be found to the modeling and analysis of manufactur-
ing system, service system and and telecommunication networks. This chapter can
be considered as a supplement to the book by Chen and Yao [4], from which the
reader can find more references in the fluid and the diffusion approximations. The
fluid and the diffusion approximations considered in Chen and Yao [4] are limited
to the single server networks including the generalized Jackson networks, the feed-
forward multiclass networks and some general multiclass networks. In this chapter,
we consider the fluid and the diffusion approximations for multi-server queues. In
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addition, we use different methodologies such as the sandwich method and the uni-
form attraction in establishing these approximations. In considering the fluid and the
diffusion approximations, we assume that the number of servers remains constant
in taking the limit. In contrast, there has been substantial research motivated from
the study of call centers that considers the number of the servers growing to infinity
in the limiting process. Readers are referred to the survey paper by Gans, et al. [9]
and the references in Itay and Whitt [12] for this literature.

To the stochastic processes under consideration, the fluid approximation and the
diffusion approximation resemble the strong law-of-large-numbers (SLLNs) and the
central limit theorem (CLT) to the random sequences. Consider, for example, the
summation, X(n), of n independent and identically distributed random variables.
The strong law-of-large-numbers suggests that X(n)/n converge almost surely to a
constant m (which is the common mean of the random variables), and the central
limit theorem suggests that

√
n[X(n)−m] converge weakly (or in distribution) to a

normal distribution. Among others, these limiting results are fundamental to many
applications; for example, SLLNs is fundamental to the point estimate and CLT is
fundamental to the confidence interval in statistics. In studying the queueing sys-
tems, we are concerned with the dynamic evolution of the related processes (such
as the queue length process and the workload process). With the above summation
example, the fluid approximation is about the convergence of the fluid-scaled pro-
cesses, X̄ n(t) := X(⌊nt⌋)/n, as n→ ∞; when exists, its limit, denoted as X̄(t), is
referred to as the fluid limit. The diffusion approximation (also referred to as the
functional central limit theorem) is about the convergence of the diffusion-scaled
processes, X̂ n(t) :=

√
n[X̄n(t)− X̄(t)] (sometimes n2 is used in place of n on the

right-hand-side), as n→ ∞; when exists, its limit, denoted as X̂(t), is referred to as
the diffusion limit.1 The Fluid limit is usually a deterministic process (included as
the special cases are a linear process or a piecewise linear process) and the diffusion
limit is usually a diffusion process (included as the special cases are the Brownian
motion and the reflected Brownian motion). Both of these limits are much easier to
characterize and to analyze than the original processes. Hence, they play the same
role in studying the stochastic processes as the role that SLLNs and CLT play in
statistics.

The standard procedure in establishing the diffusion approximation for a single
class single server queueing system is through the use of the reflection mapping.
The reflection mapping is used to uniquely characterize the dynamics of the queue
length or the workload process and the cumulative idle time process. One of the
key conditions in the reflection mapping is the dynamic complementarity condition.
In the single class single server queue, this condition amounts to the non-idling
service discipline; namely, the server never gets idle when there is at least one job
in the system. This condition would fail; for example, in a multi-server queue, at
least one of these servers will be idle when the number of jobs in the system is less
than the number of the servers. However, when the number of jobs in the system is

1 The convergence in the fluid approximation is usually the almost sure convergence, and the
convergence in the diffusion approximation is usually the weak convergence for the stochastic
process. More precise definitions of these modes of the convergence will be given in Section 2.
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larger than the number of the servers, none of the servers will be idle. In this sense,
the dynamic complementarity condition holds approximately. In particular, with the
space scaling, the diffusion limit is expected to satisfy the dynamic complementarity
condition and hence to be able to described by the reflected Brownian motion.

The reflection mapping may also fail to describe the dynamics of a multi-class
queue or a system where one stream of jobs is routed to multiple queues upon ar-
rivals. In this case, neither the queue length process nor the workload process can
be uniquely described by the reflection mapping. However, under the appropriate
condition, the total workload in the diffusion scale can be shown to converge to
a reflected Brownian motion (which is described by the reflection mapping). The
queue length process for each job class (in a multi-class queue) or for each queue
(in a multiple queue system) in the diffusion limit is a constant multiple of the re-
flected Brownian motion. This phenomenon is known as the state-space collapse,
in the sense that the queue length process, which is originally multi-dimensional,
is reduced to a one-dimensional process in the diffusion limit (all proportional to a
single reflected Brownian motion). A general framework for establishing the state-
space collapse property is first to establish a uniform attraction property of the fluid
limit. The uniform attraction means that given any fluid limit with a bounded initial
state the fluid state will converge to a fixed point state as the time approaches infinity
(very often in finite time). The key step to transform the uniform attraction property
to the state-space collapse property involves a rescaling technique. Suppose now in
the diffusion scaling of the concerned processes (such as the queue length process
or the workload process), time is scaled by n2 and space by n. By this technique, the
order O(n2)-long time interval of the diffusion-scaled process is broken down into
O(n) pieces of O(n)-long time intervals, and thereafter the diffusion-scaled process
is converted to O(n) pieces of fluid scaled processes. Now the properties developed
for the fluid scaled process, in particular the uniform attraction property, can be ap-
plied to investigate the structure of the diffusion-scaled process and establish the
state-space collapse property.

All of the methods mentioned above have appeared in the literature. To avoid the
interruption to the flow of the reading, we usually do not cite the existing literature
unless it is necessary for the understanding of the content. A short literature review
is included in Section 11.6. The purpose of this chapter is to provide a simple expo-
sition that illustrates the use of these methods. To this end, we choose to start with
simple models and sometimes with more restrictive assumptions. Section 2 includes
some elementary results so that the chapter is as self-contained as possible. Read-
ers unfamiliar with the fluid approximation and the diffusion approximation may
find it helpful to first read Chapters 5 and 6 of Chen and Yao [4]. In Section 3, we
introduce the sandwich method through deriving the fluid and the diffusion approx-
imations for a multi-server queue. In Section 4, we introduce the methods of the
uniform attraction and the state-space collapse through the study of a multi-class
(single-server) queue under the first-in-first-out (FIFO) service discipline. In Sec-
tion 5, we study a multi-channel system, where each channel has a single server and
its own queue. A single stream of arriving jobs are routed to these channels under
the join-the-shortest-queue (JSQ) discipline. In deriving the diffusion approxima-
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tion for this system, we illustrate the use of all of the three methods: the sandwich,
the uniform attraction and the state-space collapse.

11.2 Preliminaries

Let DK denote the space of the K-dimensional RCLL (Right Continuous with Left
Limits) functions on [0,∞), endowed with the uniform norm. Let DK

0 = {x ∈DK :
x(0) ≥ 0}. A sequence of the processes xn in DK converges to a process x under
the uniform norm is the same as that xn converges to x on any compact set in t ≥
0, which we will denote by xn → x, u.o.c. (“u.o.c.” is short for “uniform on any
compact set”). That the sequence of the stochastic processes Xn converges to X
weakly as n→ ∞ is denoted by Xn ⇒ X as n → ∞. Throughout the chapter, we
use the Skorohod Representation Theorem (see, for example, Theorem 5.1 in Chen
and Yao [4]) to convert weak convergence into almost sure convergence. So we
often assume (without explicitly mentioning) that the processes have been defined
on some common probability space that the convergence is almost sure converge.

Let {ξi, i ≥ 1} be a sequence of nonnegative i.i.d. random variables; whenever
exist, we denote the mean and the standard deviation of ξ1 by m and σ ; let µ = 1/m.
Let

X(t) =
⌊t⌋
∑
i=1

ξi and Y (t) = sup{n≥ 0 : X(n)≤ t}, for t ≥ 0.

Define the following scaled processes:

X̄ n(t) =
1
n

X(nt),

Ȳ n(t) =
1
n

Y (nt),

X̂ n(t) =
√

n[X̄ n(t)−mt]≡ X(nt)−mnt√
n

, and

Ŷ n(t) =
√

n[Ȳ n(t)−µt]≡ Y (nt)− µnt√
n

.

We summarize some classical limit results in the following lemma

Lemma 11.2.1 (a) (Functional Strong Law of Large Numbers (FSLLN)) Suppose
that ξ1 has a finite mean m > 0. Then, as n→ ∞,

(X̄ n,Ȳ n) → (X̄ ,Ȳ ) u.o.c.

almost surely, where X̄(t) = mt and Ȳ(t) = µt.
(b) (Functional Central Limit Theorem (FCLT)) Suppose that ξ1 has a finite vari-

ance σ 2. Then, as n→ ∞,
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(X̂n,Ŷ n) ⇒ (X̂ ,Ŷ )

in distribution, where X̂(t) = σW (t), Ŷ (t) = −µX̂(µt), and W is a Wiener process
(i.e., a one-dimensional standard Brownian motion).

(c) (Uniform Bound for FSLLN) Suppose in addition that the variable ξ1 has a
finite (2 + δ )-moment for some δ > 0. Let t∗ > 0 and u∗ > 0 be any given time
lengths. Then, the following convergence holds with probability one: as n→ ∞,

sup
0≤t≤nt∗

sup
0≤u≤u∗

|(X̄ n(t +u)− X̄ n(t))−mu| → 0,

sup
0≤t≤nt∗

sup
0≤u≤u∗

|(Ȳ n(t +u)− Ȳn(t))− µu| → 0.

The functional strong law of large numbers and the functional central limit theo-
rem in the lemma can be found, for example, from Theorem 5.10 and 5.11 in Chen
and Yao [4]; and the uniform bound on FSLLN (with a weaker assumption on the
distribution of ξ1) is from Appendix A.2 in Stolyar [17], which is based on the weak
law estimate in Bramson [1].

The next two lemmas describe the reflection mapping and its least element char-
acterization, which can be found from Chapter 6 in Chen and Yao [4] and section 2
in Chen and Shanthikumar [3], respectively.

Lemma 11.2.2 Suppose x ∈ D0. Then there is a unique pair of y ∈ D and z ∈ D

such that the following relations hold for all t ≥ 0:

z(t) = x(t)+ y(t)≥ 0; (11.1)

y(t) is non-decreasing in t, with y(0) = 0; (11.2)
ˆ ∞

0
z(t)dy(t) = 0. (11.3)

In fact, the unique pair can be written as follows,

y(t) = sup
0≤s≤t

[−x(s)]+,

z(t) = x(t)+ sup
0≤s≤t

[−x(s)]+.

Denote y =Ψ(x) and z = Φ(x). Then, the mappings Φ and Ψ are Lipschitz contin-
uous on D0.

In the above lemma, when x is a Brownian motion, z = Φ(x) is called a reflected
Brownian motion (RBM), and y = Ψ (x) is the associated regulator.

Lemma 11.2.3 (a) (The Least Element Property) Suppose that x ∈ D0. If a pair
of y and z satisfy the conditions (11.1) and (11.2) for all t ≥ 0, then the following
inequalities hold:

z(t)≥Φ(x)(t) and y(t)≥Ψ (x)(t), for all t ≥ 0.
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(b) (Relaxed Dynamic Complementarity Property) Suppose that x ∈D0. For any
fixed ε > 0, if a pair of y and z satisfy, in addition to the condition (11.1), the
following condition for all t ≥ 0,

y(t) does not increase at t if z(t) > ε, or equivalently (11.4)

(z(t)− ε)dy(t)≤ 0.

Then, the following inequalities hold:

y(t)≤Ψ (x− ε)(t) and z(t)− ε ≤Φ(x− ε)(t). (11.5)

11.3 Multi-Server Queue: Sandwich Method

Consider a queueing system with K servers, indexed by k = 1, ...,K. The jobs arrive
at the system following a counting process A = {A(t),t ≥ 0}, where A(t) counts the
number of jobs arrived (exogenously) during [0,t]. Upon arrival, the job receives the
service immediately if it finds at least one server being idle, otherwise, the job joins
the queue with a first-come-first-served discipline. When more than one servers are
available upon the arrival of a job, we assume that the job is served by the available
server with the smallest index. Let S = (Sk) whose kth component Sk = {Sk(t),t ≥ 0}
denote the service process for server k, where Sk(t) counts the number of services
completed by server k during the first t units of busy time.

We assume that both the arrival process A and the service process S are renewal
processes with their interarrival times having finite variances. By Lemma 11.2.1, we
have (by invoking the Skorohod Representation Theorem) the following almost sure
convergence, as n→ ∞,

1
n
(A(n2t)−λn2t)→ Â(t) and

1
n
(S(n2t)−µn2t)→ Ŝ(t), u.o.c. in t ≥ 0,(11.1)

where λ is a nonnegative constant interpreted as the arrival rate, µk, the kth compo-
nent of µ , is a constant interpreted as the service rate of server k, and Â = {Â(t),t ≥
0} and Ŝ = {Ŝk(t),t ≥ 0} are driftless Brownian motions. The above convergence re-
sults imply (which can also be obtained directly from Lemma 11.2.1): almost surely
as n→ ∞,

1
n2 A(n2t)→ λ t and

1
n2 S(n2t)→ µt, u.o.c. in t ≥ 0. (11.2)

In addition, we assume that the arrival process and service processes are independent
and that the heavy traffic condition holds, i.e.,

λ =
K

∑
k=1

µk.
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Let Bk(t) denote the total busy time of server k (i.e., the total amount of time
that server k has been in service) during [0,t]; hence, Sk(Bk(t)) equals the number
of service completions by server k during [0,t]. Then, the queue length, the number
of jobs in the system, at time t, is given by the following balance equation:

Q(t) = Q(0)+ A(t)−
K

∑
k=1

Sk(Bk(t))≥ 0. (11.3)

In addition, the busy time process B = {B(t),t ≥ 0} with B(t) = (Bk(t)) and the
queue length process Q = {Q(t),t ≥ 0} must satisfy the following dynamic rela-
tions:

0≤ Bk(t)−Bk(s)≤ t− s for t ≥ s≥ 0, k = 1, ...,K, (11.4)

Ḃk(t) = 1 if Q(t)≥ K, k = 1, ...,K. (11.5)

(For any process x = {x(t),t ≥ 0}, ẋ(t) denotes the derivative of x at t provided the
derivative exists.) The relation (11.4) has a very clear interpretation that during any
time interval [s,t], the total amount of busy time of server k must neither be negative
nor exceed the length of the duration (t − s). The relation (11.5) specifies that all
of the servers must be busy when the number of jobs in the system is more than
K (the number of the servers). We note that the relations (11.3)-(11.5) do not fully
characterize the queue length process Q and the busy time process B. To provide a
full characterization, we need to consider how an arriving job is assigned to a server
when the job finds more than one servers idle. Such a complete characterization is
not essential for our analysis here and hence is omitted. Interested readers can find
a complete construction in the appendix of Chen and Shanthikumar [3].

As a standard procedure in the diffusion approximation, we rewrite the above
relations by centering: for all t ≥ 0,

Q(t) = X(t)+Y(t)≥ 0, (11.6)

Y (·) is non-decreasing with Y (0) = 0, (11.7)

Y (t) does not increase at time t when Q(t)≥ K. (11.8)

where

X(t) = Q(0)+ (A(t)−λ t)−
K

∑
k=1

(Sk(Bk(t))− µkBk(t)) , (11.9)

Y (t) =
K

∑
k=1

µk [t−Bk(t)] . (11.10)

In rewriting (11.6), we used the heavy traffic condition, and in deriving the relation
(11.8), we used the relation (11.5).

In a single server queue (where K = 1), the relation (11.8) is equivalent to
´ ∞

t=0 Q(t)dY(t) = 0 and is known as the dynamic complementarity condition. Then,
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the relations (11.6)-(11.8) relate the processes X , Y and Q through the reflection
mapping (Lemma 11.2.2), i.e., Q = Φ(X) and Y = Ψ (X). In this case, since the
mappings Φ and Ψ are continuous, the standard approach to establish a limit result
for (the scaled version of) Q and Y is through establishing a limit result for (the
corresponding scaled version of) X ; the latter is usually much easier.

In the general case of the multi-server queue, the relations (11.6)-(11.8) do not
uniquely characterize Y and Q for a given X . This should not be surprising since
these relations are derived from the relations (11.3)-(11.5), which as we commented
before do not fully characterize the queue length process Q and the busy time pro-
cess B. Fortunately, by Lemma 11.2.3, we have the following lower and upper
bounds: for all t ≥ 0,

Ψ (X)(t)≤ Y (t)≤Ψ(X −K)(t), (11.11)

Φ(X)(t)≤ Q(t)≤Φ(X −K)(t)+ K. (11.12)

When the processes X , Y and Q are taken to the fluid scale or the diffusion scale;
these bounds take similar forms. In each of the fluid scale and the diffusion scale,
we can show that both the upper and the lower bounds in (11.11) of the scaled Y
process converge to the same limit; hence, the scaled Y process must converge to
this limit. Similarly, by the inequalities in (11.12), this approach can be applied to
the scaled Q process as well.2 Therefore, the bounds in (11.11), which sandwiches
the process Y , are the key in our approach in establishing the fluid approximation
and the diffusion approximation for the multi-server queue.

As a first step, we establish the fluid approximation result. To this end, we intro-
duce the following fluid scaling of the processes:

(Q̄n(t), X̄ n(t),Ȳ n(t), B̄n(t)) =

(
1
n2 Q(n2t),

1
n2 X(n2t),

1
n2 Y(n2t),

1
n2 B(n2t)

)
,

where the index n is a sequence of positive integers that increase to infinity. (In
general, we could introduce a sequence of queueing systems, where the initial queue
length, the arrival process and the service processes may vary with n. We choose not
to, in order to avoid distraction from our central purpose of introducing the sandwich
method.) Then,

Lemma 11.3.1 (Fluid Approximation): Suppose that the arrival process and the ser-
vice processes satisfy the fluid scale convergence (11.2). Then,

(Q̄n,Ȳ n, B̄n)→ (Q̄,Ȳ , B̄) as n→ ∞, u.o.c.,

2 On the other hand, given the convergence of the scaled X process and the scaled Y process, we
can establish the convergence of the scaled Q process directly from a scaled version of the equation
(11.6). In a network of multi-server queues, the corresponding inequality (11.12) does not hold,
while the corresponding inequality (11.11) does hold (referring to Chen and Shanthikumar [3]). In
this case, a version of the equation (11.6) is used to obtain the convergence of the scaled Q process.
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where Q̄(t) = 0, X̄(t) = 0, Ȳ (t) = 0 and the kth component of B̄(t), B̄k(t) = t, k =
1, ...,K, for all t ≥ 0.

Proof. First, the process X̄ n can be written as

X̄ n(t) =
1
n2 Q(0)+

[
1
n2 A(n2t)−λ t

]
−

K

∑
k=1

[
1
n2 Sk(n

2B̄n
k(t))− µkB̄n

k(t)

]
;(11.13)

then it follows from the convergence (11.2) and the fact that 0≤ B̄n
k(t)≤ t,

X̄ n→ 0 as n→ ∞, u.o.c. (11.14)

Next, it follows from (11.11) and (11.12) that

Ψ(X̄)n(t)≤ Ȳ n(t)≤Ψ(X̄ n−K/n2)(t),

Φ(X̄)n(t)≤ Q̄n(t)≤Φ(X̄ n−K/n2)(t)+ K/n2.

With the convergence (11.14), the above bounds imply

Ȳ n→Ψ (0)≡ 0 and Q̄n→Φ(0)≡ 0 as n→ ∞, u.o.c.

Finally, it follows from (11.10),

Ȳ n(t) =
K

∑
k=1

µk [t− B̄n
k(t)] ;

since [t− B̄n
k(t)] is nonnegative for all t ≥ 0 and k = 1, ...,K, the convergence of Ȳ n

to zero implies that B̄n
k(t)→ t as n→ ∞, u.o.c. in t ≥ 0, k = 1, ...,K. �

The diffusion approximation is concerned with the following scaled processes:

(Q̂n(t), X̂ n(t),Ŷ n(t)) =
1
n
(Q(n2t),X(n2t),Y(n2t)).

Theorem 11.3.2 (Diffusion Approximation): Suppose that the arrival process and
the service processes satisfy the diffusion scale convergence (11.1). Then for almost
all sample paths,

(Ŷ n, Q̂n)⇒ (Ŷ , Q̂), as n→ ∞, (11.15)

where Q̂ = Φ(X̂) and Ŷ = Ψ (X̂) are respectively the one-dimensional reflected
Brownian motion and the associate regulator, where the Brownian motion X̂ =
{X̂(t),t ≥ 0}, given by

X̂(t) = Â(t)−
K

∑
k=1

Ŝk(t), (11.16)

is a driftless Brownian motion.
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Proof. First, for the diffusion scaled processes, the inequalities (11.11) and (11.12)
take the form,

Ψ(X̂)n(t)≤ Ŷ n(t)≤Ψ (X̂ n−K/n)(t),

Φ(X̂)n(t)≤ Q̂n(t)≤Φ(X̂ n−K/n)(t)+ K/n,

where X̂ n = {X̂n(t),t ≥ 0} takes the form,

X̂ n(t) =
1
n

Q(0)+
1
n

[
A(n2t)−n2λ t

]
− 1

n

K

∑
k=1

[
Sk(n

2B̄n
k(t))− µkn2B̄n

k(t)
]
.

It follows from the above inequalities and the continuity of the mappings Φ and Ψ
(Lemma 11.2.2) that it is sufficient to show that for almost all sample paths,

X̂ n→ X̂ as n→ ∞, u.o.c.

The latter convergence, with the limit given by (11.16), follows from the assumption
(11.1), the random time-change theorem (cf. Chen and Yao [4], Chapter 5) and the
convergence, B̄n

k(t)→ t as n→ ∞, u.o.c. in t ≥ 0 (which is from Lemma 11.3.1). �

11.4 A Multi-Class Queue under FIFO Service Discipline:
Uniform Attraction and State-Space Collapse

Consider a single server system serving K classes of jobs. Jobs of all classes arrive
exogenously, wait for service, and after service completion leave the system. Jobs
are served under first-in-first-out (FIFO) discipline. Let A = {A(t),t ≥ 0} denote
the arrival process, whose kth component evaluated at t, Ak(t), indicates the number
of arrivals of class k jobs during the time interval [0,t]. We assume that Ak is a
renewal process whose interarrival times have a mean of 1/λk and variance a2

k; the
quantity λk is called the arrival rate of class k jobs. Let {vk,ℓ, ℓ = 1,2, . . .} be a
nonnegative i.i.d. sequence, where vk,ℓ denotes the service time of the ℓth job of
class k, k = 1,2, . . . ,K. Let 1/µk and b2

k denote the mean and the variance of vk,ℓ

respectively, k = 1, . . . ,K. Let

Vk(ℓ) =
ℓ

∑
ℓ′=1

vk,ℓ′

denote the total service time of the first ℓ jobs of class k, k = 1, . . . ,K. For con-
venience, we assume that the renewal processes Ak, k = 1, . . . ,K, and the service
time sequences {Vk(ℓ), ℓ = 1,2, . . .}, k = 1, . . . ,K, are all mutually independent. Let
Qk(0) denote the number of class k jobs initially in the system, k = 1, ...,K, and
let W (0) denote the total work (measured in service time required of the server)
initially in the system.
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We start with a description of some performance measures of this queueing
model. Let W = {W (t),t ≥ 0} be the workload process, where W (t) is the total
workload (measured in service time) for the server at time t, and let Q = {Q(t),t ≥
0} be the queue length process, whose kth component evaluated at t, Qk(t), denotes
the number of class k jobs in the system at time t, k = 1, . . . ,K. Let B = {B(t),t ≥ 0}
be the K-dimensional vector busy time process, whose kth component evaluated at
t, Bk(t), indicates the total service time that the server has served class k jobs during
[0,t], k = 1, . . . ,K. Let

Y(t) = t−
K

∑
k=1

Bk(t);

and we call Y = {Y(t),t ≥ 0} the idle time process. Let D = {D(t),t ≥ 0} be the
departure process, whose kth component evaluated at t, Dk(t), denote the number
of class k jobs that have completed service and hence departed from the system by
time t, k = 1, . . . ,K. Then, the queueing system must satisfy the following dynamic
relations: for all time t ≥ 0,

W (t) = W (0)+
K

∑
k=1

Vk(Ak(t))− t +Y(t), (11.1)

Y (t) =

ˆ t

0
1{W(s)=0}ds, (11.2)

Dk(t +W(t)) = Qk(0)+ Ak(t), (11.3)

Qk(t) = Qk(0)+ Ak(t)−Dk(t). (11.4)

The relation (11.1) is the work balance relation: the workload (measured in time)
at time t equals the workload initially in the system plus the work arrived and sub-
tract the work done (which is given by [t−Y(t)]). The relation (11.2) is the work-
conserving condition: that is, the server can be idle only when there is no work in
the system; hence,

Y (t) is non-decreasing in t ≥ 0; and Y (0) = 0, and (11.5)
ˆ ∞

0
W (t)dY (t) = 0. (11.6)

The relation (11.3) reflects the FIFO service discipline: for each class k, all the
jobs arrived before time t (including those initially in the system) have departed the
system by the time, t +W (t), when all the work in the system at time t is served.
The last relation (11.4) is the work balance in terms of counting the jobs arriving
and departing the system.

In addition, given the FIFO service discipline, only those jobs that are initially
in the system could have been served and departed from the system during the time
period [0,W (0)]; therefore, the following condition holds:

K

∑
k=1

Vk(Dk(t))≤ t <
K

∑
k=1

Vk(Dk(t)+ 1) for t ≤W (0). (11.7)
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To see the above, recall that Vk(Dk(t)) is the amount of service time for the first
Dk(t) class-k jobs that have completed service on or before time t. Hence, the above
first inequality means the total service time for all jobs that have attained service
before time t must not exceed the time t, and the second inequality has a similar
interpretation for any time t before all the initial jobs are served.

We close this section by introducing a sequence of systems indexed by n. Each
of the networks is like the one introduced in the above, but may differ in their arrival
rates and service rates (which are also indexed by n). We assume, as n→ ∞,

λ n
k → λk, µn

k → µk, and consequently β n
k → βk, (11.8)

where β n
k = λ n

k /µn
k and βk = λk/µk. Denote ρn = ∑K

k=1 β n
k and ρ = ∑K

k=1 βk. Specif-
ically, for the nth system, its arrival process of class k jobs is given by An

k(t) =
Ak(λ n

k t/λk) and its service time of ℓth class k job is given by µkvk,ℓ/µn
k , ℓ = 1,2, . . .,

k = 1, . . . ,K.

11.4.1 Fluid Approximation and Uniform Attraction

We apply the standard fluid scaling to the processes associated with the sequence of
systems described above:

(
Ān(t), B̄n(t),D̄n(t), Q̄n(t),W̄ n(t),Ȳ n(t)

)

=
1
n

(An(nt),Bn(nt),Dn(nt),Qn(nt),W n(nt),Y n(nt)) . (11.9)

Lemma 11.4.1 Let M be a given positive constant, and suppose |Q̄n(0)|
:= ∑K

k=1 Q̄n
k(0)≤M for sufficiently large n. Then, the following conclusions hold.

(a) (Fluid limit) For any subsequence of fluid scaled processes in (11.9), there exists
a further subsequence, denoted by N, such that, along N,

(
W̄ n,Q̄n, D̄n,Ȳ n)→

(
W̄ ,Q̄,D̄,Ȳ

)
u.o.c. (11.10)

for some Lipschitz continuous process (W̄ ,Q̄,D̄,Ȳ), which is referred to as the fluid
limit and satisfies the following:

W̄ (t) = W̄ (0)+ (ρ−1)t + Ȳ(t)≥ 0, for t ≥ 0; (11.11)

Ȳ(t) is non-decreasing in t ≥ 0, and Ȳ(0) = 0; (11.12)

D̄k(t +W̄(t)) = Q̄k(0)+ λkt, for t ≥ 0; (11.13)

Q̄k(t) = Q̄k(0)+ λkt− D̄k(t), for t ≥ 0; (11.14)
K

∑
k=1

µ−1
k D̄k(t) = t, for t ≤ W̄ (0). (11.15)

(b) (Uniform attraction) Furthermore, under the heavy traffic assumption ρ = 1, the
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fluid limit satisfies the following properties:

W̄ (t) = W̄ (0) ≤M
K

∑
k=1

µ−1
k , for all t ≥ 0;

Q̄k(t) = λkW̄ (t) = λkW̄ (0), for all t ≥ W̄ (0). (11.16)

Remark. Let w = W̄(0) denote the initial workload and define the K-dimensional
vector function Q∗(w) = λw whose kth component, Q∗k(w) = λkw. Then the prop-
erty in (11.16) means that when t ≥ w, the fluid limit of the queue length, Q̄(t) =
Q∗(w)= λw. Recall that the (fluid scaled) queue length process Q̄ is a K-dimensional
process, but for large t (larger than w), it lives in a one-dimensional line (λw). As we
will see in the diffusion limit (where the time is scaled by n2 instead of n in the fluid
limit), such a phenomenon happens for all time t ≥ 0, and this property is known as
the state-space collapse.

Proof. Part (a). Introduce the service renewal process Sn = {Sn(t),t ≥ 0} whose kth
component evaluated at t is given by

Sn
k(t) = sup{ℓ≥ 0 : V n

k (ℓ)≤ t}.

First, it follows from the functional strong law of large numbers for the i.i.d. sum-
mation and the renewal process (Lemma 11.2.1) that as n→ ∞,

(Ān(t),V̄ n(t), S̄n(t))≡ 1
n
(An(nt),V n(⌊nt⌋),Sn(nt))→ (λ t,(1/µ)t,µt),(11.17)

u.o.c. in t ≥ 0, where 1/µ = (1/µk)
K
k=1. By its definition, 0≤ B̄n

k(t)− B̄n
k(s)≤ t− s

for all t ≥ s and all n ≥ 1, k = 1, . . . ,K; also note that |Q̄n(0)| is bounded. Hence,
for any subsequence of fluid scaled processes in (11.9), there exists a further subse-
quence, denoted by N, such that, along N,

Q̄n(0)→ Q̄(0), and B̄n→ B̄ u.o.c., (11.18)

for some constant vector Q̄(0) and Lipschitz continuous process B̄ = {B̄(t),t ≥ 0}.
We show that along this same subsequence, the convergence (11.10) holds and its
limit satisfies (11.11)-(11.15).

Also by their definitions,

Ȳ n(t) = t−
K

∑
k=1

B̄n(t);

the convergence of B̄n clearly implies the convergence of Ȳ n along the same sub-
sequence, and in addition, it is clear that the limit, Ȳ , of Ȳ n satisfies (11.12) and is
Lipschitz continuous.

Letting t = 0 in the equation (11.3) and t = W n(0) in the inequality (11.7) (for
the nth system), we derive the following inequality,
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K

∑
k=1

V n
k (Qn

k(0))≤W n(0) <
K

∑
k=1

V n
k (Qn

k(0)+ 1),

which in fluid scale takes the form,

K

∑
k=1

V̄ n
k (Q̄n

k(0))≤ W̄ n(0) <
K

∑
k=1

V̄ n
k (Q̄n

k(0)+ 1/n),

Then, the convergence of V̄ n in (11.17) and the convergence of Q̄n
k(0) along N in

(11.18) imply that along N,

W̄ n(0)→ W̄ (0)≡
K

∑
k=1

1
µ k

Q̄k(0)).

Rewriting the balance equation (11.1) for the scaled nth system, we have

W̄ n(t) = W̄ n(0)+
K

∑
k=1

V̄ n
k (Ān

k(t))− t + Ȳ n(t);

then, in view of (11.17) and the convergence of W̄ n(0) and Ȳ n, we have the con-
vergence of W̄ n along N to the limit W̄ as given by the equality (11.11), and the
Lipschitz continuity of W̄ follows from the same equality.

Next, by their definitions,

D̄n
k(t) = S̄n

k(B̄
n
k(t)) for all t ≥ 0,

k = 1, . . . ,K. Then in view of (11.17)-(11.18), we have along the sequence N,

D̄n
k(t)→ D̄k(t)≡ µkB̄k(t) u.o.c. in t ≥ 0,

and clearly D̄k is Lipschitz continuous, k = 1, . . . ,K. Now, rewriting a scaled version
of (11.3) for the nth network, we have

D̄n
k(t +W̄ n(t)) = Q̄n

k(0)+ Ān
k(t);

letting n go to infinity along the subsequence N obtains the relation (11.13).
Similarly, rewriting a scaled version of (11.4) for the nth network proves the

convergence of Q̄n along N and establishes (11.14); and rewriting a scaled version
of (11.7) for the nth network and letting n go to infinity along N establishes (11.15).
The equation (11.14) also establishes the Lipschitz continuity of Q̄.

Part (b). Under the heavy traffic condition (ρ = 1), the equality (11.11) becomes

W̄ (t) = W̄ (0)+ Ȳ(t)≥ 0;

this together with the condition (11.12) concludes that W̄ (t) =W̄ (0) for t ≥ 0 (which
can also be seen from the reflection mapping theorem). Letting t = W̄ (0) in (11.15)
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and t = 0 in (11.13) respectively, we have

W̄ (0) =
K

∑
k=1

µ−1
k D̄k(W̄ (0)), and

D̄k(W̄ (0)) = Q̄k(0).

The above two give the following:

W̄ (0) =
K

∑
k=1

µ−1
k Q̄k(0)≤M

K

∑
k=1

µ−1
k .

Replacing t in (11.14) by W̄ (0)+t, and then substituting (11.13) into the resulting
equality, we obtain

Q̄k(t +W̄(0)) = λkW̄(0) for all t ≥ 0.

�

11.4.2 Diffusion Approximation

As in Section 11.4.1, we consider the same sequence of the network but replacing
the assumption (11.8) with the stronger assumption that as n→ ∞:

n(ρn−ρ)→ θ (11.19)

In addition, we assume that the heavy traffic condition ρ = 1 holds. For ease of ex-
position, we assume that Qn(0) = 0, i.e., initially there are no jobs in the system. We
note that with the specific construction of the nth network, the limit of the standard
deviations for the interarrival times and service times exist: as n→ ∞,

an
k → ak and bn

k → bk, k = 1, . . . ,K. (11.20)

We apply the standard diffusion scaling (along with centering) to the key primi-
tive and derived processes:

Ân
k(t) :=

1
n

[
An

k(n
2t)−λ n

k n2t
]
, V̂ n

k (t) =
1
n

[
V n

k (⌊n2t⌋)− (1/µn
k )n2t

]

Q̂n
k(t) :=

1
n

Qn
k(n

2t), Ŷ n(t) :=
1
n

Y n(n2t), Ŵ n(t) :=
1
n

W n(n2t). (11.21)

The main theorem follows:

Theorem 11.4.2 (Diffusion Limit) Suppose that the heavy-traffic condition ρ = 1
holds. Then the following weak convergence holds when n→ ∞:
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(
Ŵ n,Ŷ n, Q̂n)⇒

(
Ŵ ,Ŷ ,Q̂

)
.

The limits Ŵ = Φ(X̂) and Ŷ =Ψ(X̂) are respectively the one-dimensional reflected
Brownian motion and the associated regulator, where the Brownian motion X̂ starts
at the origin with its drift and variance respectively given by

θ and
K

∑
k=1

(
λ 3a2/µ2

k +λkb2
k

)
.

The limit Q̂ = Q∗(Ŵ ), i.e., Q̂k(t) = λkŴ (t) for all t ≥ 0, k = 1, . . ..

Remark. The fact that the K-dimensional queue length diffusion limit vector Q̂ is
linearly related to the one-dimensional workload diffusion limit Ŵ has been known
as the state-space collapse.

Proof. First, we re-express the workload balance relation (11.1) for the nth network
as follows:

W n(t) =
K

∑
k=1

[V n(An
k(t))−

1
µn

k
An

k(t)]+
K

∑
k=1

1
µn

k
[An

k(t)−λ n
k t]+ (ρn− 1)t +Y n(t),

where we note W n(0) = 0 is assumed. Applying the diffusion scaling to both sides
of the above equation, we have

Ŵ n(t) = X̂ n(t)+ Ŷ n(t), (11.22)

where

X̂ n(t) =
K

∑
k=1

V̂ n
k (Ãn

k(t))+
K

∑
k=1

1
µn

k
Ân

k(t)+ n(ρn−1)t; (11.23)

and Ãn
k(t) := An

k(n
2t)/n2 is a variation of the fluid-scaled process Ān

k . Following
(11.5) and (11.6), we also have, for each n,

Ŷ n(t) is non-decreasing in t ≥ 0, and Ŷ n(0) = 0, (11.24)
ˆ ∞

0
W n(t)dY n(t) = 0. (11.25)

In the remaining of the proof, we adopt the standard sample path approach based
on the Skorohod Representation Theorem, i.e., we assume that all of the primitive
processes are defined in a probability space such that the weak convergence becomes
the almost sure u.o.c. convergence. Then it follows from Lemma 11.2.1 and the
random time-change theorem (see, for example, Theorem 5.3 in Chen and Yao [4])
that almost surely, as n→ ∞,

(Ân(t),V̂ n(Ãn(t))→ (Â(t),V̂ (λ t)), u.o.c. in t ≥ 0, (11.26)
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where Â = (Ak) and V̂ (λ ·) are two independent K-dimensional driftless Brownian
motions, both with independent coordinates; and the kth coordinate of Â, Âk, has
variance λ 3

k a2
k , and the kth coordinate of V̂ (λ ·), V̂k(λk·), has variance λkb2

k respec-
tively. The above convergence clearly implies that almost surely, as n→ ∞,

X̂n(t)→ X̂(t)≡
K

∑
k=1

V̂k(λkt)+
K

∑
k=1

1
µk

Âk(t)+ θ t, u.o.c. in t ≥ 0, (11.27)

where X̂ is clearly a Brownian motion with the drift and the variance as given in the
theorem.

In view of (11.22) and (11.24)-(11.25), we have Ŵ n = Φ(X̂n) and Ŷ n = Ψ(X̂ n).
Then, the convergence (11.27) and the continuity of the reflection mapping imply
that almost surely, as n→ ∞,

(Ŵ n,Ŷ n) → (Ŵ ,Ŷ ), u.o.c.,

where Ŵ = Φ(X̂) and Ŷ =Ψ(X̂).
The proof is completed by establishing a bound between Qn and Q∗(W n), which

is the key lemma for the state-space collapse, Lemma 11.4.3 below; refer to the
remark immediately following the lemma. �

11.4.2.1 From Uniform Attraction to State-Space Collapse

Consider a fixed time interval [τ,τ +δ ], where τ ≥ 0 and δ > 0. Let T > 0 be a fixed
time of a certain magnitude to be specified later. Let the index n be a large integer.
Divide the time interval [τ,τ +δ ] into a total of ⌈nδ/T⌉ segments with equal length
T/n, where ⌈·⌉ denotes the integer ceiling. The jth segment, j = 0, ...,⌈nδ/T⌉−1,
covers the time interval [τ + jT/n,τ +( j +1)T/n]. Note that the last interval (with
j= ⌈nδ/T⌉−1) covers a negligible piece of time beyond the right end of [τ,τ + δ ]
if nδ/T is not an integer. For notational simplicity, below we shall assume nδ/T
to be an integer (i.e., omit the ceiling notation). Then, for any t ∈ [τ,τ + δ ], we can
write it as t = τ +( jT + u)/n for some j = 0, · · · ,nδ/T and u ∈ [0,T ]. Therefore,
we write

Ŵ n(t) = Ŵ n(τ +
jT +u

n
) = W̄ n((nτ + jT)+ u) := W̄ n, j(u), (11.28)

for some real number u∈ [0,T ] and integer j ∈ [0,nδ/T ]. That is, for each time point
t, we will study the behavior of Ŵ n(t) through the fluid scaled process, W̄ n, j(u), over
the time interval u ∈ [0,T ]. Similarly define Q̄n, j

k (u) and Ȳ n, j(u)[= Ȳ n((nτ + jT )+

u)− Ȳ n(nτ + jT )] as the fluid “magnifiers” of Q̂n
k(t) and Ŷ n(t).

The above rescaling of Ŵ n(t) is illustrated in Figure 11.1. This rescaling tech-
nique enables us to investigate the structure of diffusion-scaled processes (e.g.,
Ŵ n(t)) using the available results concerning the fluid-scaled processes (e.g.,W̄ n(t)).
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Let ε > 0 be any given (small) number. Then, there exists a sufficiently large T such
that, for sufficiently large n, the following results hold for all non-negative integers
j < nδ/T :

(a)(State-space collapse)

|Q̄n, j(u)−Q∗(W̄ n, j(u))| ≤ ε, for all u ∈ [0,T ]; (11.30)

(b)(Boundedness)

W̄ n, j(u)≤MW := C + 2ε and |Q̄n, j(u)| ≤MQ :=
K

∑
k=1

λkMW + ε, for all u ∈ [0,T ].

i.e., W̄ n, j(u) and Q̄n, j(u) is uniformly bounded.

Remark. Part (a) of the lemma implies the convergence of Q̂n and the state-space
collapse property, Q̂(t) = Q∗(Ŵ(t)), in Theorem 11.4.2. To see this, we use the defi-
nition of the fluid scaling in (11.28) to rewrite the bound (11.30) as: given arbitrarily
(small) number ε > 0, the following holds for sufficiently large index n,

|Q̂n(t)−Q∗(Ŵ n(t))| ≤ ε for t ∈ [0,δ ].

Part (b) of the lemma is an auxiliary result, which is required in Lemma 11.4.4
below in order to prove part (a).

Before proving Lemma 11.4.3, we present a variation of the results in Lemma
11.4.1 regarding fluid scaled processes, which will be used repeatedly.

Lemma 11.4.4 Let M be a given positive constant. Suppose |Q̄n, jn(0)|
= ∑K

k=1 Q̄n, jn
k (0)≤M for sufficiently large n, where jn is some integer in [0,nδ/T ].

Then, for any subsequence of integers {n}, there exists a further subsequence, de-
noted by N, such that, along N, the process (Q̄n, jn ,W̄ n, jn ,D̄n, jn ,Ȳ n, jn) converge
u.o.c. to the fluid limit (Q̄,W̄ , D̄,Ȳ ) that satisfies all the properties described in
Lemma 11.4.1.

Note that the u.o.c convergence of the primitive processes, Ān, jn
k and V̄ n, jn

k can
be seen from Lemma 11.2.1 (c). Then, the proof of Lemma 11.4.4 simply replicates
those of Lemma 11.4.1; hence, it is omitted.

Proof of Lemma 11.4.3. We specify the time length T (as stated in the lemma) as
follows:

T ≥ MQ

K

∑
k=1

µ−1
k .

Later, we will see that T is long enough so that in the fluid limit, the fluid state Q̄(t),
starting from any initial state bounded by MQ, will approach the fixed-point state.
Below, we finish the proof in two steps.
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Step 1. Here we prove the lemma for j = 0. Note that by way of the construction,
we have

(W̄ n,0(0),Q̄n,0(0)) = (Ŵ n(0), Q̂n(0))→ (0,0), as n→ ∞,

where we note our assumption Q(0) = 0. Then, from Lemma 11.4.1, we have, as
n→ ∞,

(W̄ n,0, Q̄n,0)→ (W̄ , Q̄) u.o.c.,

with W̄ (u) = 0 and Q̄(u) = 0 for all u≥ 0. (Note that the convergence here is along
the whole sequence of n rather than a subsequence since the limit is unique.) This
immediately implies that both (a) and (b) in the lemma hold when j = 0 for suffi-
ciently large n.

Step 2. We now extend the above to j = 1, . . . ,nδ/T . Suppose, to the contrary,
there exists a subsequence N1 of {n} such that, for any n ∈ N1, at least one of the
properties in (a) and (b) in the lemma do not hold for some integers j ∈ [1,nδ/T ].
Consequently, for any n ∈ N1, there exists a smallest integer, denoted as jn, in the
interval [1,nδ/T ] such that at least one of the properties in (a) and (b) do not hold.
To reach a contradiction, it suffices to construct an infinite subsequence N2 ⊂ N1,
such that the desired properties in (a) and (b) hold for j = jn for sufficiently large
n ∈N2.

From the proof in Step 1, we assume that the properties in (a) and (b) hold for
j = 0, ..., jn−1, n ∈N1. Specifically, for j = jn−1, we have

|Q̄n, jn−1(0)| ≤MQ, for all k ∈N1.

Then, by Lemma 11.4.4 (cf. Lemma 11.4.1), there exists a further subsequence N2⊂
N1 such that

(W̄ n, jn−1,Q̄n, jn−1)→ (W̄ , Q̄) u.o.c. as n→ ∞ along N2, (11.31)

with |Q̄(0)| ≤MQ. Then, we have

|Q̄n, jn−1(u)−Q∗(W̄ n, jn−1(u))|
≤ |Q̄n, jn−1(u)− Q̄(u)|+ |Q̄(u)−Q∗(W̄ (u))|+ |Q∗(W̄ (u))−Q∗(W̄ n, jn−1(u))|
→ |Q̄(u)−Q∗(W̄(u))| u.o.c. in u≥ 0, as n→ ∞ along N2.

Moreover, taking into account the choice of T and Lemma 11.4.1(b), we have

Q̄(u) = Q∗(W̄ (u)) for all u≥ T.

Therefore, for sufficiently large n ∈N2, we have, for u ∈ [0,T ],

|Q̄n, jn(u)−Q∗(W̄ n, jn(u))|= |Q̄n, jn−1(T +u)−Q∗(W̄ n, jn−1(T +u))|
≤ |Q̄(T + u)−Q∗(W̄(T +u))|+ ε = ε. (11.32)
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That is, (a) holds with j = jn for sufficiently large n ∈N2 (⊂N1).
Next, we estimate the upper bounds for W̄ n, jn(u) and Q̄n, jn(u), for u ∈ [0,T ].

Denote t1 = jnT/n + u/n; by definition, we have W̄ n, jn(u) = Ŵ n(t1). Let t2 be the
minimal time in [0,t1] such that Ŵ n(t) > 0 for all t ∈ (t2,t1]. From this definition,
we know that the server will not be idle during the interval (t2,t1], and hence

Ŷ n(t1)− Ŷ n(t2) = 0. (11.33)

Observe that Ŵ n(t2) = 0, taking into account the initial condition that Q̂n(0) = 0.
Then, under the assumption (11.29), we estimate the upper bounds for W̄ n, jn(u), for
u ∈ [0,T ] and sufficiently large n ∈N2, as follows,

W̄ n, jn(u) = Ŵ n(t1) = Ŵ n(t2)+
(
X̂ n(t1)− X̂n(t2)

)
+
(
Ŷ n(t1)− Ŷ n(t2)

)

= X̂n(t1)− X̂ n(t2)≤C + ε = MW .

Furthermore, for the queue length process, we have

|Q̄n, jn(u)| ≤ |Q∗(W̄ n, jn(u))|+ ε =
K

∑
k=1

λkW̄
n, jn(u)+ ε ≤

K

∑
k=1

λkMW + ε = MQ.

The above two bounds imply that (b) holds with j = jn for sufficiently large n ∈N2.
�

11.5 Multi-Channel Queues under JSQ Routing Control

The system consists of K (K ≥ 2) servers, indexed by k ∈ K := {1, . . . ,K}. Each
server has a queue with infinite waiting room. Jobs arrive at the system following
a renewal process with arrival rate λ . Upon arrival, each job is routed to one of the
queues to attain service.

Let A = {A(t),t ≥ 0} denote the interarrival process, where A(t) indicates the
number of arrivals during the time interval [0,t]. We assume that A is a renewal
process whose interarrival times have a mean of 1/λ and variance a2. Let {vk,ℓ, ℓ =
1,2, . . .} be a nonnegative i.i.d. sequence, where vk,ℓ denotes the time for server k to
process its ℓth job, k ∈K. Let 1/µ and b2

k denote the mean and the variance of vk,ℓ
respectively. The service rate of each server and the whole system are therefore µ
and Kµ , respectively. Let

Vk(ℓ) =
ℓ

∑
ℓ′=1

vk,ℓ′

denote the total service time of the first ℓ jobs of server k, k = 1, . . . ,K. Assume that
the renewal processes Ak and the service time sequences {Vk(ℓ), ℓ = 1,2, . . .}, k∈K,
are all mutually independent. Let Sk = {Sk(t),t ≥ 0} denote the service process for
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server k, where Sk(t) indicates the number of service completions by server k after
serving for a total of t units of time. Clearly, the process Sk is a renewal process
satisfying

Sk(t) = sup{ℓ : Vk(ℓ)≤ t};
and its interarrival times have a mean of 1/µ and variance b2

k . The processes A and
Sk are all mutually independent too.

We study the join-the-shortest-queue (JSQ) routing control. By JSQ, each job is
routed to the shortest queue upon arrival. If there are more than one shortest queues,
the tie can be broken arbitrarily; for concreteness, we assume that the job is routed to
any one of the shortest queues with equal probability. Let Ak(t) indicate the number
of arrivals routed to server k during [0,t]; clearly we have,

∑
k∈K

Ak(t) = A(t). (11.1)

Let Qk(t) be the number of jobs in queue k at time t. Let Bk(t) be the total amount of
time that server k has served jobs by time t. We call the processes, Qk = {Qk(t),t ≥
0} and Bk = {Bk(t),t ≥ 0}, k ∈ K, the queue length process and the busy time
process respectively. Then, the following dynamic relations hold,

Qk(t) = Qk(0)+ Ak(t)− Sk(Bk(t))≥ 0, (11.2)

Bk(t) =

ˆ t

0
1{Qk(s)>0}ds. (11.3)

The first equation is a balance equation, where Qk(0) is the initial queue length,
k ∈ K. The second equation specifies a work-conserving condition, i.e., the server
must work at its full capacity unless there are no jobs in its queue.

For convenience, we introduce the average workload process W = {W(t),t ≥
0}, the server idling process Ik = {Ik(t),t ≥ 0} and the average idling process Y =
{Y(t),t ≥ 0} as follows,

W (t) =
1
K ∑

k∈K

(Vk(Qk(0)+ Ak(t))−Bk(t)), (11.4)

Ik(t) = t−Bk(t) =

ˆ t

0
1{Qk(s)=0}ds, (11.5)

Y (t) =
1
K ∑

k∈K
Ik(t) = t− 1

K ∑
k∈K

Bk(t). (11.6)

It is easy to observe from the above expressions that

Ik(t), Y(t) are non-decreasing in t ≥ 0; and Ik(0), Y(0) = 0. (11.7)

Note that each item in the summation of (11.4) measures the workload for each
individual server, and dividing it by K gives the average workload for the system
(consisting K servers).



11 Methods in Diffusion Approximation for Multi-Server Systems 511

We close this section by introducing a sequence of networks indexed by n. Each
of the networks is like the one introduced in the last section, but may differ in their
arrival rates and mean service times (which are also indexed by n). We assume, as
n→ ∞,

λ n→ λ , µn→ µ , and consequently ρn→ ρ, (11.8)

where ρn = λ n/Kµn and ρ = λ/Kµ . Specifically, for the nth network, its arrival
process is given by A(λ nt/λ ) and its service process of server k by Sk(µnt/µ).

11.5.1 Fluid Approximation and Uniform Attraction

We apply the fluid scaling to the processes associated with the sequence of networks:
(
Q̄n

k(t), Ā
n(t), Ān

k(t),V̄
n
k (t), S̄n

k(t), B̄
n
k(t),W̄

n(t), Īn
k (t),Ȳ n(t)

)

=
1
n

(Qn
k(nt),An(nt),An

k(nt),V(⌊nt⌋),Sn
k(nt),Bn

k(nt),W n(nt), In
k (nt),Y n(nt)) .(11.9)

We first establish the fluid approximation under the following assumptions: as
n→ ∞,

Q̄n
k(0)→ Q̄k(0), k ∈K, (11.10)(
Ān(t),V̄ n

k (t), S̄n
k(t)
)
→ (λ t,µ−1t,µt), u.o.c. in t ≥ 0, (11.11)

where Q̄1(0) = Q̄2(0) = · · · = Q̄K(0). Let |Q̄(0)| = ∑k∈K Q̄k(0). The equality,
Q̄k(0) = |Q̄(0)|/K, is to assume that the initial queue lengths at different servers
are asymptotically the same (at the fluid scale). Intuitively, if the routing follows
the join-the-shortest-queue, then even if the initial queue lengths are not asymptot-
ically the same, they should become the same after some finite time; this will be
established as the uniform attraction. The fluid approximation theorem follows.

Theorem 11.5.1 (FSLLN) Suppose that the sequence of the networks satisfies
(11.10) and (11.11) with Q̄k(0) = |Q̄(0)|/K, k ∈K. Then, as n→ ∞,

(
Q̄n

k , Ā
n
k , B̄

n
k

)
→
(
Q̄k, Āk, B̄k

)
, u.o.c., (11.12)

where, for k = 1, . . . ,K,
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Q̄k(t) = |Q̄(t)|/K,

|Q̄(t)|=
[
|Q̄(0)|+(λ −Kµ)t

]+;

Āk(t) = (λ/K)t;

B̄k(t) =

{
t t ≤ t0 := |Q̄(0)|

Kµ−λ
t0 +ρ(t− t0) t > t0

, if λ < Kµ ;

B̄k(t) = ρt, if λ ≥ Kµ .

Remark: The convergence in (11.12) still holds without assuming that the initial
queue lengths are asymptotically the same at all servers, i.e., Q̄k(0) = |Q̄(0)|/K for
all k ∈K. The only added complication is in describing the limit processes.

The proof of this theorem is in the following steps. First, we show that any sub-
sequence of the scaled processes has a further subsequence that converges u.o.c. to
some Lipschitz continuous process (Lemma 11.5.2). Then we characterize the limit
process in Proposition 11.5.3, which implies the characteristics of the limit in the
above theorem. The fluid approximation theorem is established by showing that the
limit process characterized in Proposition 11.5.3 is unique under the assumption that
Q̄1(0) = Q̄2(0) = · · · = Q̄K(0).

In the theorems and lemmas in the rest of this section, we will characterize the so-
called fluid limit of the derived processes under fluid scaling. These results will be
used to establish the heavy traffic theorem later, and are of independent theoretical
interest as well.

Lemma 11.5.2 (Fluid limit) Let M be a given positive constant, and suppose
|Q̄n(0)| = ∑k∈K Q̄n

k(0) ≤ M for sufficiently large n. Then, for any subsequence of
fluid scaled processes in (11.9), there exists a further subsequence, denoted by N,
such that, as n→ ∞ along N,

(
Q̄n

k , Ā
n
k , B̄

n
k ,W̄

n, Īn
k ,Ȳ n) →

(
Q̄k, Āk, B̄k,W̄ , Īk,Ȳ

)
u.o.c. (11.13)

for some Lipschitz continuous process (Q̄k, Āk, B̄k,W̄ , Īk,Ȳ ) (which will be referred
to as the fluid limit). Furthermore, the fluid limit satisfies the following properties:
for all t ≥ 0,
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Q̄k(t) = Q̄k(0)+ Āk(t)− µB̄k(t)≥ 0, for k = 1, . . . ,K, (11.14)

∑
k∈K

Āk(t) = λ t, (11.15)

Īk(t) = t− B̄k(t) is increasing with Īk(0) = 0, for k = 1, . . . ,K, (11.16)
ˆ ∞

0
Q̄k(t)dĪk(t) = 0, for k = 1, . . . ,K, (11.17)

Ȳ (t) =
1
K ∑

k∈K
Īk(t) = t− 1

K ∑
k∈K

B̄k(t), (11.18)

W̄ (t) = ∑
k∈K

(Kµ)−1Q̄k(t) = W̄(0)+ (ρ− 1)t + Ȳ(t). (11.19)

Since the limit processes in the above theorem are all Lipschitz continuous, they
are differentiable at almost all time t ≥ 0. Below, when we write the derivative of
such processes with respect to time t, we assume by default that such a time is
regular, i.e, all the related processes are differentiable at this time t.

Proposition 11.5.3 The fluid limit in Lemma 11.5.2 satisfies, in addition to (11.14)-
(11.19), the following properties:

(a)Let t > 0 be a regular time. If mink∈K Q̄k(t) > 0, then,

˙̄Qk(t) =

{
λ

Kt
min
− µ k ∈Kt

min,

−µ k ∈K\Kt
min.

If mink∈K Q̄k(t) = 0, then,

˙̄Qk(t) =

{
0 k ∈Kt

min,
−µ k ∈K\Kt

min.

Here, Kt
min = argmink∈KQ̄k(t) is the set of servers with the lowest fluid level at

time t, and Kt
min the number of queues in the set Kt

min.
Consequently, Q̄1(t) = · · ·= Q̄K(t) for all t ≥ Q̄(0)/min(λ/K,µ).

If, in addition, the heavy traffic condition (ρ = 1) holds, then, the following proper-
ties also hold:

(b)If W̄ (0) > 0, then Q̄k(t) > 0 for t > 0 and k ∈K.
(c)For all t > 0, the followings hold:

W̄ (t) = W̄ (0), and B̄k(t) = t for k ∈K. (11.20)

Theorem 11.5.4 (Uniform attraction) Consider the fluid limit derived in Lemma
11.5.2, with the initial state also bounded by M. Assume that the heavy traffic con-
dition ρ = 1 holds. Then, there exists a time TM > 0 such that all the queues have
the same length after the time TM and the queue lengths are fixed afterward:

Q̄k(t) = µW̄ (t)(= µW̄ (0)) for t ≥ TM, k ∈K. (11.21)
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The above theorem follows simply from Property 11.5.3(a,c) and the time TM

can be specified as TM = M/µ . The uniform attraction of the fluid limit is a key
property used to establish the heavy traffic limit later. The attraction state (in this
section, the state with all queue lengths equal) is called a fixed point in literature
(e.g., Mandelbaum and Stolyar [14], Stolyar [17] and Ye and Yao [22]). For ease
of presentation, we denote the fixed point state with a corresponding workload w as
Q∗(w) = {Q∗k(w)}k∈K, where Q∗k(w) = µw for k ∈K.

Remark: It is interesting to note that the above result can be generalized to the case
ρ 6= 1. From Property 4(a), it can be seen that all queue lengths become equal within
a finite time, and remain equal afterward. If ρ < 1, the common queue length will
fall to 0, also within a finite time, and then stay unchanged at 0. If ρ > 1, the common
queue length will then increase linearly. We leave the technical details to interested
readers. Nevertheless, the above theorem, with the assumption ρ = 1, is sufficient
for the purpose of carrying out the heavy traffic analysis in the next section.

11.5.2 Diffusion Approximation

As in Section 11.5.1, we consider the same sequence of the network but replacing
the assumption (11.8) with the following stronger assumption: as n→ ∞:

n(ρn−ρ)→ θ . (11.22)

In addition, we assume that the heavy traffic condition ρ = 1 holds. Moreover, we
also assume the existence of the limits of the standard deviations of the inter-arrival
times and service times: as n→ ∞,

an→ a and bn
k → bk, k ∈K. (11.23)

Assume, for ease of exposition,

Qn
k(0) = 0, for all k ∈K and all n≥ 1. (11.24)

We apply the diffusion scaling (along with centering) to the associated processes:

Ân(t) :=
1
n

[
An(n2t)−λ nn2t

]
, V̂ n

k (t) :=
1
n

[
V n

k (⌊n2t⌋)− 1
µn n2t

]
,

(Q̂n
k(t),Ŵ

n(t),Ŷ n(t), În
k (t)) :=

1
n
(Qn

k(n
2t),W n(n2t),Y n(n2t), In

k (n2t)).

Theorem 11.5.5 (Diffusion Limit) Suppose the heavy-traffic condition ρ = 1 hold.
The following weak convergence holds as n→ ∞:

(
Ŵ n(t),Ŷ n(t),Q̂n(t))

)
⇒
(
Ŵ (t),Ŷ(t), Q̂(t)

)
.
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The limits Ŵ = Φ(X̂) and Ŷ = Ψ(X̂) are the one-dimensional reflected Brownian
motion and the regulator of the Brownian motion, where the Brownian motion X̂
starts at the origin with its drift and variance respectively given by

θ and λ (a2 + ∑
k∈K

b2
k/K3).

The limit Q̂ = Q∗(Ŵ ), i.e., Q̂k(t) = µŴ (t) for all t ≥ 0, k ∈K.

Remark: If the variances of service time, b2
k , are uniformly bounded and the number

of servers, K, is large, the variance of the limiting reflected Brownian motion in the
above theorem becomes approximately λa2. Hence, in such a situation, the system
operates like a G/D/1 system in the limit, where the performance mainly driven by
the job arrival rate, service rate and the variance of job interarrival time while the
variance of service time does not matter.

Proof. First, we re-express the unscaled workload process for the nth network as
follows:

W n(t) =
1
K ∑

k∈K

(
V n

k (An
k(t))−

1
µn An

k(t)

)
+

1
Kµn (An(t)−λ nt)

+(ρn− 1)t + t− 1
K ∑

k∈K
Bn

k(t),

where we note that we assume Qn
k(0) = 0. Applying the diffusion scaling to both

sides of the above equation, we have

Ŵ n(t) = X̂ n(t)+ Ŷ n(t), (11.25)

where

X̂ n(t) :=
1
K ∑

k∈K
V̂ n

k (Ãn
k(t))+

1
Kµn Ân(t)+ n(ρn−1)t, (11.26)

Ŷ n(t) := n

(
t− 1

K ∑
k∈K

B̃n
k(t)

)
; (11.27)

and (Ãn
k(t), B̃

n
k(t)) := (An

k(n
2t)/n2,Bn

k(n
2t)/n2) is a variation of the fluid-scaled pro-

cess (Ān
k , B̄

n
k). Similar to (11.7), we also have, for each n,

Ŷ n(t) is non-decreasing in t ≥ 0, and Ŷ n(0) = 0. (11.28)

As in the proof of Theorem 11.4.2, we adopt the standard sample-path approach,
and assume the following u.o.c. convergence: with probability one,

(Ân,V̂ n
k )→ (Â,V̂k) u.o.c.,
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where Â is a Brownian motion with zero mean and variance λ 3a2; V̂k is a Brownian
motion with zero mean and variance b2

k . Below, we focus on any sample-path that
satisfies the above u.o.c. convergence. Note that the results developed for the fluid
limit in the last section apply to the variations like (Ãn

k(t), B̃
n
k(t)) too. Then, under

the JSQ routing control, we have, according to Property 11.5.3(c),

Ãn
k(t)→ Āk(t), and B̃n

k(t)→ B̄k(t) = t, u.o.c. in t ≥ 0. (11.29)

Given the assumption Qn
k(0) = 0 and thus Q̄k(0) = 0, it can be observed from Prop-

erty 11.5.3(c) and the relation (11.14) that Āk(t) = λ t/K(= µt). Hence, under the
JSQ,

V̂ n
k (Ãn

k(t))→ V̂k(λ t/K) and X̂ n→ X̂ u.o.c. (in t ≥ 0), (11.30)

where

X̂(t) :=
1
K ∑

k∈K

V̂k(λ t/K)+
1

Kµ
Â(t)+ θ t (11.31)

is a Brownian motion with drift and variance as given in the theorem.
Next, we apply the sandwich method to the diffusion scaled processes. From the

least element characterization of the reflection mapping in Lemma 11.2.3, we have,

Ŷ n(t)≥Ψ(X̂n)(t) and Ŵ n(t)≥Φ(X̂ n)(t). (11.32)

On the other hand, under JSQ, we would expect that no servers should be idle when
the workload in the system is sufficiently large. Specifically, if we can show that for
any ε > 0,

Ŷ n(·) does not increase at t if Ŵ n(t) > ε, or (11.33)

(Ŵ n(t)− ε)dŶn(t)≤ 0,

then by Lemma 11.2.3(b), we have

Ŷ n(t)≤Ψ (X̂ n− ε)(t) and Ŵ n(t)− ε ≤Φ(X̂n− ε)(t). (11.34)

In view of (11.32) and (11.34), letting n→ ∞ and then ε → 0, we have

(Ŷ n,Ŵ n)→ (Ŷ ,Ŵ ) u.o.c. (11.35)

To see that the relaxed complementarity condition (11.33) holds, we note that
the scaled workload Ŵ n(t) > ε (which is equivalent to W n(n2t) > nε) implies the
workload is sufficiently large and no servers are idle for sufficiently large n. This is
indeed the case, which is summarized in a key lemma, Lemma 11.5.6 in the next
subsection. In that lemma (part (a)), we also establish a bound between the scaled
workload process and the scaled queue length process, which allows us to conclude
the convergence of Q̂n(t)→ Q̂(t) := Q∗(Ŵ (t)).
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11.5.2.1 Complementarity and State-Space Collapse

Similar to Section 11.4.2.1, we consider a fixed time interval [τ,τ +δ ], where τ ≥ 0
and δ > 0; let T > 0 be a fixed time of a certain magnitude to be specified later;
and study the diffusion scaled process Q̂n

k (resp. Ŵ n, Ŷ n and În
k , etc.) through the

⌈nδ/T⌉-pieces of fluid scaled processes Q̄n, j
k (resp. W̄ n, j, Ȳ n, j and Īn, j

k , etc.), j =
0, ...,⌈nδ/T⌉−1.

Lemma 11.5.6 Consider the time interval [τ,τ + δ ], with τ ≥ 0 and δ > 0; pick a
constant C > 0 such that

sup
t′ ,t′′∈[τ ,τ+δ ]

|X̂(t ′)− X̂(t ′′)| ≤C; (11.36)

and suppose

lim
n→∞

Ŵ n(τ) = χ , and lim
n→∞

Q̂n(τ) = Q∗(χ), (11.37)

for some constant χ ≥ 0. Let ε > 0 be any given (small) number. Then, there exists
a sufficiently large T such that, for sufficiently large n, the following results hold for
all non-negative integers j < nδ/T :

(a)(State-space collapse)

|Q̄n, j(u)−Q∗(W̄ n, j(u))| ≤ ε, for all u ∈ [0,T ];

(b)(Boundedness)

W̄ n, j(u)≤ χ +C +3ε, for all u ∈ [0,T ],

i.e., W̄ n, j(u) is uniformly bounded; and hence, so is Q̄n, j(u);
(c)(Complementarity) if W̄ n, j(u) > ε for all u ∈ [0,T ], then

Ȳ n, j(u)− Ȳ n, j(0) = 0, for all u ∈ [0,T ].

The proof of this lemma follows the same idea as the proof for Lemma 11.4.3,
though extra effort is required to establish the boundedness and complementarity
properties simultaneously. Here we explain the idea behind the proof of the lemma.
The detailed proof can be found in Appendix 11.7.3.

We will prove the lemma in two steps. In step 1, we show that when n is suffi-
ciently large, the properties (a)-(c) hold for j = 0. First, from the condition (11.37),
we know that the initial states of the processes (W̄ n,0(u), Q̄n,0(u)) converge to a fixed
point state, (χ ,Q∗(χ)), as n→∞. Then, the whole processes (W̄ n,0(u), Q̄n,0(u)) will
also converge to the fixed point state within the interval u ∈ [0,T ] and stay on that
state afterward, according to a fluid limit theorem (a variation of Lemma 11.5.2)
and the uniform attraction theorem. Moreover, the fixed point process Q∗(W̄ n,0(u))
is close to the state Q∗(χ) for u ∈ [0,T ] too, since W̄ n,0(u) is close to χ . Conse-
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quently, both processes Q∗(W̄ n,0(u)) and Q̄n,0(u) are close the Q∗(χ), which justi-
fies the property (a) for j = 0. As the workload W̄ n,0(u) is close to a constant χ , the
boundedness property (b) becomes obvious. Finally, we note that each queue length
Q̄n,0

k (u) is close to µχ . Thus all queue lengths can not be empty if χ > ε , which
implies that all servers are busy and hence the property (c).

In step 2, we extend the above to j = 1, · · · ,nδ/T through induction. To this
end, one may be tempted to carry out the induction in a conventional way, which
we describe as follows. Assuming for sufficiently large n, the properties (a)-(c) hold
for j = 0, · · · , jn− 1, show that they also hold for j = jn for sufficiently large n.
Consider the sequence of processes (W̄ n, jn−1(u),Q̄n, jn−1(u)). Since the initial states
are bounded (the property (b) for jn− 1), the fluid limit theorem can be applied to
show that the sequence of processes converges to a fluid limit (W̄ (u), Q̄(u)). (Rig-
orously speaking, the convergence is along some subsequence of the network se-
quence.) Applying the uniform attraction theorem to the limit, we know that the
fluid state Q̄(u) is close to the fixed point Q∗(W̄ (u)) for u ∈ [T,2T ], given that the
time length T is long enough. Combining the above, we know that for sufficient
large n, the process Q̄n, jn−1(u) is close to the fixed point Q∗(W̄ n, jn−1(u)) in the time
interval [T,2T ]. This implies the property (a) immediately, noting that the process
(W̄ n, jn−1(u), Q̄n, jn−1(u)), u ∈ [T,2T ], is identical to (W̄ n, jn(u),Q̄n, jn(u)), u ∈ [0,T ].
Similar to step 1, all the queue lengths, Q̄n, jn

k (u) for k ∈K, will be positive in the in-
terval [0,T ] if the condition W̄ n, jn(u) > ε , u∈ [0,T ], is satisfied, and hence the prop-
erty (c) follows. Lastly, we estimate the bound for W̄ n, jn(u) to prove the property
(b). we trace the workload processes W̄ n, j(u), with the index j running backward
from jn till it hits 0 or the workload hits the level ε . Denote as j0

n the index at which
the tracing procedure stops. Then, before the tracing stops at j = j0

n , the system
idling process, Ȳ n, j(u), does not vary, since the workload W̄ n, j(u) stay above ε and
thus the property (c) applies. Hence, the range within which the workload processes
W̄ n, j(u) vary is determined by the free processes X̄ n, j(u) for j running from jn back
to j0

n . From the condition (11.36), the range is (roughly) bounded by C. On the other
hand, when the tracing stops, the workload is close to either χ or ε . Summarizing
the above, the workload W̄ n, jn(u) is (roughly) bounded by either χ +C or ε +C.

Clearly, the above inductive argument does not yield a satisfactory proof, as it
does not guarantee the existence of a sufficiently large n′ such that, for all networks
with larger index n (n ≥ n′), the properties (a)-(c) hold for all j = 0, · · · ,nδ/T . To
overcome this difficulty, the inductive argument is carried out by way of contradic-
tion in the detailed proof; readers are referred to the appendix for details.

11.6 Notes

The readers are referred to Chen and Yao [4] and the references in their book for the
fluid and the diffusion approximations to the queueing networks such as the gener-
alized Jackson networks, the feedforward multiclass networks and some multiclass
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queueing networks but all with single servers. Whitt [20] provides a comprehensive
reference on the stochastic-process limits.

The diffusion approximation for the multi-server queue was first obtained by
Iglehart and Whitt [10, 11]. In Chen and Shanthikumar [3], the diffusion approx-
imation is shown for the multi-server queues of generalized open and irreducible
closed Jackson networks using the sandwich method. The current presentation in
Section 3 follows Chen and Shanthikumar [3].

The diffusion approximation for a single server queue with multi-class jobs under
a FIFO service discipline was first obtained by Peterson [15], where he established
the diffusion approximation for feedforward networks of multiclass jobs under FIFO
and priority service discipline. His method of the proof is different from what is
presented here. That method has also been used to establish the diffusion approx-
imation for the non-feedforward networks of multiclass queues; see, for example,
Chen and Zhang [7]. The rescaling method presented in Section 4 in establishing
the state-space collapse through the uniform attraction was first explicitly formu-
lated by Bramson [1]; see also Stolyar [17, 18], Mandelbaum and Stolyar [14] and
Ye and Yao [22]. The presentation of this technique here is based on Ye and Yao
[22]. The state-space collapse result was probably first observed by Reiman [16].
This phenomena are exhibited in the studies of the diffusion approximation for mul-
ticlass queueing networks; e.g., Bramson [1], Bramson and Dai [2], Chen and Zhang
[6, 7, 8], Chen and Ye [5], Mandelbaum and Stolyar [14], Whitt [19] and Williams
[21].

The diffusion approximation for multi-channel queues to which jobs are routed
based on the join-the-shortest-queue routing control was first studied in Reiman
[16] and then generalized by Zhang, et al. [23]. The other related work includes the
diffusion approximation for the flexible servers system in Mandelbaum and Stolyar
[14].

11.7 Appendix

11.7.1 Proof of Lemma 11.5.2

Let N1 be any given subsequence of n. As the sequence of initial states Q̄n(0) are
bounded by the constant B, we can find a subsequence N2 of N1, such that,

Q̄n(0)→ Q̄(0) as n→ ∞ along N2. (11.1)

As the processes Ān
k and B̄n

k are RCLL and non-decreasing, we can find a further
subsequence of N2, denoted N, such that, as n→ ∞ along N,

Ān
k(t)→ Āk(t) and B̄n

k(t)→ B̄k(t) (11.2)
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at any time t ≥ 0, where the limit processes Āk and B̄k are also RCLL and non-
decreasing.

Now consider any time interval [t1,t2], with t1 < t2. From the equation (11.3)
(with superscript n appended properly), we have,

B̄n
k(t2)− B̄n

k(t1) =
1
n

ˆ nt2

nt1

1{Qn
k(s)>0}ds≤ t2− t1, (11.3)

which implies

B̄k(t2)− B̄k(t1)≤ t2− t1. (11.4)

Hence, the process B̄k is Lipschitz continuous. Next, pick any constant c > 1, and
any time interval [t ′1,t

′
2] such that (a) [t ′1,t

′
2] ⊃ [t1,t2], (b) t ′2− t ′1 ≤ c(t2− t1), and

(c) Āk(t) is continuous at times t ′1 and t ′2. The fact that Āk(t) is non-decreasing and
therefore continuous for almost all time t ensures the existence of the times t ′1 and
t ′2. Then, due to the condition (c), the convergence of Ān

k(t) holds at times t ′1 and t ′2.
Therefore, we have

Āk(t2)− Āk(t1) ≤ Āk(t
′
2)− Āk(t

′
1) = lim

n→∞
Ān

k(t
′
2)− Ān

k(t
′
1)

= lim
n→∞

Ān(t ′2)− Ān(t ′1) = λ (t ′2− t ′1)≤ λc(t2− t1), (11.5)

where the first inequality is due to the non-decreasing property of the process Āk,
and the convergence involved is along the subsequence N. The above implies that
the process Āk is also Lipschitz continuous.

Due to the Lipschitz continuity of the limit processes B̄k and Āk, the convergence
in (11.2) is u.o.c. of t ≥ 0. Finally, the u.o.c. convergence of other processes in
(11.13) and the Lipschitz continuity of their limits can be seen from the equations
(11.2), (11.4)-(11.6) and (11.11) (also with superscript n appended properly).

The relationships in (11.14)-(11.16) and (11.18), follow simply from the rela-
tionships (11.1), (11.2), (11.5)-(11.7) and (11.11) (with the superscript n appended)
by taking the limit as n goes to infinity.

To prove (11.17), it is sufficient to show that, given any interval [t1,t2], if Q̄k(t) >
0 in the interval, then Īk(t2)− Īk(t1) = 0. Note that Q̄n

k(t) > 0 also holds for t ∈ [t1,t2]
(or Qn

k(t) > 0 for t ∈ [nt1,nt2]) when n is sufficiently large, since Q̄n
k converge to Q̄k

u.o.c. Therefore, we have,

Īn
k (t2)− Īn

k (t1) =
1
n

ˆ nt2

nt1

1{Qn
k(s)=0}ds = 0.

Letting n→ ∞ yields Īk(t2)− Īk(t1) = 0.
Rewriting the balance equation (11.4) for the scaled nth system, we have

W̄ n(t) =
1
K ∑

k∈K
V̄ n

k (Q̄n
k(0)+ Ān

k(t))− t + Ȳ n(t);
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then, in view of the convergence in (11.11), the convergence of Q̄n
k(0) and Ȳ n, and

the relations (11.14)-(11.15), we have the convergence of W̄ n along N to the limit
W̄ as given by (11.19).

11.7.2 Proof of Proposition 11.5.3

Prove (a). Consider the first case, mink∈K Q̄k(t) > 0. Pick any constant ∆ > 0
such that mink∈K\Kt

min
Q̄k(t)−mink∈K Q̄k(t) ≥ ∆ and mink∈K Q̄k(t) ≥ ∆ . Since

Q̄(t) is Lipschitz continuous, we can find any small time interval [t1,t2] satis-
fying 0 ≤ t1 < t < t2, such that mink∈K\Kt

min
Q̄k(s)−mink∈K Q̄k(s) ≥ ∆/2 and

mink∈K Q̄k(s)≥ ∆/2 for all time s in the interval. Consider the subsequence of net-
work, also denoted as {n} that yields the fluid limit. Since the scaled queue length
processes Q̄n converge (u.o.c.) to the fluid limit Q̄ as n→∞, we have, for sufficiently
large n, the following inequalities hold for all s ∈ [t1,t2],

min
k∈K\Kt

min

Q̄n
k(s)−min

k∈K
Q̄n

k(s)≥
∆
4

and min
k∈K

Q̄n
k(s)≥

∆
4

. (11.6)

By “un-scaling”, the first inequality above implies that, during the interval (nt1,nt2],
the shortest queue(s) should fall within the set Kt

min and therefore all arrivals are
routed to one of the queues in the set Kt

min. Hence,

∑
k∈Kt

min

(An
k(nt2)−An

k(nt1)) = An(nt2)−An(nt1).

Divided both side by n and let n→ ∞, the above yields

∑
k∈Kt

min

(Āk(t2)− Āk(t1)) = λ (t2− t1),

which implies

∑
k∈Kt

min

˙̄Ak(t) = λ . (11.7)

Similarly, since no job is routed to queues that are not in the set Kt
min during the

time interval (nt1,nt2], we can show that

˙̄Ak(t) = 0 (11.8)

for k ∈ K \Kt
min. Moreover, from the second inequality in (11.6), we see that all

servers are busy during the time interval (nt1,nt2], and therefore

˙̄Bk(t) = 1 (11.9)
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for k ∈K. From equalities (11.7) and (11.9), we have

∑
k∈Kt

min

˙̄Qk(t) = ∑
k∈Kt

min

(
˙̄Ak(t)− µ ˙̄Bk(t)

)
= λ −Kt

minµ . (11.10)

Next, we show that, for all k ∈Kt
min,

˙̄Qk(t) = ˙̄Qmin(t). (11.11)

Here, we denote Q̄min(t) = mink∈K Q̄k(t). Keeping in mind that Q̄k(t) = Q̄min(t) for
k ∈Kt

min, we have the followings,

˙̄Qk(t−) = lim
δ→0+

1
δ

(Q̄k(t)− Q̄k(t− δ ))≤ lim
δ→0+

1
δ

(Q̄min(t)− Q̄min(t−δ )) = ˙̄Qmin(t),

and similarly,

˙̄Qk(t+) = lim
δ→0+

1
δ

(Q̄k(t +δ )− Q̄k(t))≥ lim
δ→0+

1
δ

(Q̄min(t +δ )− Q̄min(t)) = ˙̄Qmin(t).

At the given regular time t, we have ˙̄Qk(t) = ˙̄Qk(t−) = ˙̄Qk(t+), and hence the above
implies the conclusion (11.11).

Now, the equalities (11.8)-(11.11) implies the first property in (a).
Consider the second case, mink∈K Q̄k(t) = 0. For k ∈Kt

min, the queue attains the
minimum length of zero, hence, ˙̄Qk(t) = 0. For k ∈K\Kt

min, the proof follows the
same lines of the first case and hence is omitted.

From the above two cases, we have, if Q̄k(t) > mink′∈K Q̄k′(t), then,

d
dt

(
Q̄k(t)− min

k′∈K
Q̄k′(t)

)
≤−min(λ/K,µ).

The above implies the last conclusion in property (a).
Prove (b). From the property (a) and taking into account the heavy traffic condi-

tion λ = Kµ , we have

˙̄Qmin(t)≥ 0, (11.12)

and, for some constant σ > 0,

˙̄Qmin(t)≥ σ if Kt
min 6= K. (11.13)

If Q̄min(0) > 0, we have, according to the conclusion (11.12), Q̄min(t)≥ Q̄min(0)>
0 for all t > 0.

Suppose now Q̄min(0) = 0. This implies that K0
min 6= K, since W̄ (0) > 0. Hence,

we have Kt
min 6= K for t ∈ [0,δ ], where the positive number δ is chosen small

enough. Then, from the conclusion in (11.13), we have
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˙̄Qmin(t)≥ σ > 0 for regular time t ∈ [0,δ ],

and therefore,
Q̄min(t)≥ σt > 0 for t ∈ [0,δ ].

Using the conclusion (11.12) again, we have

Q̄min(t)≥ Q̄min(δ )≥ σδ > 0 for t ≥ δ .

Since δ can be arbitrarily small, the above implies

Q̄min(t) > 0 for t > 0.

To prove that W̄ (t) = W̄ (0) in the property (c), we consider two cases. Case 1,
W̄ (0) > 0. Then, from the property (b), we have Q̄k(t) > 0 for t > 0 and k ∈K. From
the reflection property (11.17) of the fluid limit, the above implies B̄k(t) = t. Then,
the property that W̄ (t) = W̄ (0) follows keeping in mind the heavy traffic condition
ρ = 1.

Case 2, W̄ (0) = 0. Suppose the conclusion were not true. Then, there exists a time
t1 > 0 such that W̄ (t1) > 0. Since W̄ (t) is continuous, we can find a time t2 ∈ (0,t1)
such that

0 = W̄ (0) < W̄ (t2) < W̄(t1).

However, following the argument in case 1, we can show that W̄ (t) = W̄(t2) for all
t ≥ t2, which implies W̄ (t1) = W̄ (t2) and contradicts to the above inequality.

The first equality in this property (i.e., W̄ (t) = W̄ (0) for all t ≥ 0), along with the
property in (11.19), implies that Ȳ (t) = 0 and hence Īk(t) = 0 (k ∈K) for all t ≥ 0.
The latter is equivalent to the second equality in the property (c).

11.7.3 Proof of Lemma 11.5.6

Preparations

We first present a variation of the results in Lemma 11.5.2 regarding fluid scaled
processes, which will be used repeatedly.

Lemma 11.7.1 Let M be a given positive constant. Suppose |Q̄n, jn(0)|
= ∑k∈K Q̄n, jn

k (0)≤M for sufficiently large n, where jn is some integer in [0,nδ/T ].

Then, for any subsequence of the processes
(

Q̄n, jn
k , Ān, jn

k , B̄n, jn
k ,W̄ n, jn , Īn, jn

k ,Ȳ n, jn
)

,

there exists a further subsequence, denoted N, such that, along N, the sequence
converge u.o.c. to the fluid limit

(
Q̄k, Āk, B̄k,W̄ , Īk,Ȳ

)
that has all the properties de-

scribed in Lemma 11.5.2, Proposition 11.5.3 and Theorem 11.5.4.

Note that the u.o.c convergence of the primitive processes, Ān, jn and S̄n, jn
k , the coun-

terpart of (11.11), can be seen from Lemma 11.2.1. Then, the proof of Lemma 11.7.1
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simply replicates those of Lemma 11.5.2, Proposition 11.5.3(c) and Theorem 11.5.4;
hence, it is omitted.

Next, define the following constants,

MW,1 = 2ε, MQ,1 = KµMW,1 + ε;

MW,2 = max{MW,1,χ + ε}+(C+ ε), MQ,2 = KµMW,2 + ε.

where the numbers, ε, χ and C, are specified in the statement of the lemma under
proof. The constants defined above will be used to bound processes Q̂n(t) and Ŵ n(t)
for t ∈ [τ,τ +δ ] and sufficiently large n. We specify the time length T (stated in the
lemma under proof) as follows:

T ≥ Tmax{MQ,1,MQ,2} , (11.14)

where the term on the right hand side is specified in Theorem 11.5.4. Note that T
is long enough so that in the fluid limit, the fluid state Q̄(t) will approach to the
fixed-point state, from an initial state Q̄(0) that is bounded by max{MQ,1,MQ,2}.

With the quantities specified above, we state what we want to prove, in terms
of parts (b) and (c) of the lemma, in the following stronger form (part (a) remains
the same): For sufficiently large n, the following results hold for all non-negative
integers j ≤ nδ/T :

(a) |Q̄n, j(u)−Q∗(W̄ n, j(u))| ≤ ε, for all u ∈ [0,T ];
(b1)if W̄ n, j(u)≤ ε(< C) for some u ∈ [0,T ], then, for all u ∈ [0,T ],

W̄ n, j(u)≤MW,1, |Q̄n, j(u)| ≤MQ,1; (11.15)

(b2)if W̄ n, j(u) > ε for all u ∈ [0,T ], then, for all u ∈ [0,T ],

W̄ n, j(u)≤MW,2(≤ χ +C + 3ε), |Q̄n, j(u)| ≤MQ,2, (11.16)

and

Ȳ n, j(u)− Ȳ n, j(0) = 0. (11.17)

Step 1 of the Proof

Here we prove the three parts of the lemma, (a, b1, b2), for j = 0. Note that by way
of the construction, we have

(W̄ n,0(0), Q̄n,0(0)) = (Ŵ n(τ),Q̂n(τ)),

and hence,

(W̄ n,0(0),Q̄n,0(0))→ (χ ,Q∗(χ)), as n→ ∞,
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following (11.37). Then, from Lemma 11.7.1 and Theorem 11.5.4 (with W̄(0) and
Q̄(0) replaced by χ and Q∗(χ) respectively), we have, as n→ ∞,

(W̄ n,0, Q̄n,0)→ (W̄ , Q̄) u.o.c.,

with (W̄ , Q̄) satisfying (W̄(u), Q̄(u)) = (χ ,Q∗(χ)) for u≥ 0. (Note that the conver-
gence here is along the whole sequence of n rather than a subsequence since the
limit is unique.) Let n be sufficiently large such that

|W̄ n,0(u)− χ| ≤min

{
ε

2Kµ
,

ε
4K

,

}
, and |Q̄n,0(u)−Q∗(χ)| ≤min

{ε
2
,

µε
4

}

for all u ∈ [0,T ]. Then, we have,

|Q̄n,0(u)−Q∗(W̄ n,0(u))| ≤ |Q̄n,0(u)−Q∗(χ)|+ |Q∗(W̄ n,0(u))−Q∗(χ)|

≤ min
{ε

2
,

µε
4

}
+Kµ | W̄ n,0(u)− χ |≤min

{ε
2
,

µε
4

}
+ Kµ min

{
ε

2Kµ
,

ε
4K

}

≤ min
{

ε,
µε
2

}
(11.18)

for all u ∈ [0,T ]. That is, (a) holds when j = 0 for sufficiently large n.
We now verify (b1, b2). First, from the established result in (a), we know that

W̄ n,0(u) is arbitrarily close to χ for all u ∈ [0,T ] when n is sufficiently large. This
fact directly leads to the inequalities in (b1, b2) for j = 0. Next, we show the com-
plementarity in (11.17) of (b2), for j = 0. Note that from the conclusion in (11.18),
we have

|Q̄n,0
k (u)− µW̄n,0(u)| ≤ |Q̄n,0(u)−Q∗(W̄ n,0(u))| ≤ µ

2
ε.

and then,

Q̄n,0
k (u)≥ µW̄ n,0(u)− µ

2
ε ≥ µ

2
ε > 0, (11.19)

where the second inequality is due to the condition in property (b2). Finally, we
have, for any u ∈ [0,T ],

Īn,0
k (u)− Īn,0

k (0) =

ˆ u

0
1{Q̄n,0

k (u)=0}ds = 0,

where the first equality follows from the definitions of the processes Īn, j
k (u) and

În
k (t), along with (11.5); and the second equality from the conclusion in (11.19).

The above equality implies (11.17).
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Step 2 of the Proof

We now extend the above to j = 1, . . . ,nδ/T . Suppose, to the contrary, there ex-
ists a subsequence N1 of n such that, for any n ∈ N1, at least one of the properties
(a, b1, b2) does not hold for some integers j ∈ [1,nδ/T ]. Consequently, for any
n ∈ N1, there exists a smallest integer, denoted as jn, in the interval [1,nδ/T ] such
that at least one of the properties (a, b1, b2) does not hold. To reach a contradic-
tion, it suffices to construct an infinite subsequence N′2 ⊂ N1, such that the desired
properties in (a, b1, b2) hold for j = jn for sufficiently large n ∈ N′2. To construct
such a sequence, we will first find a subsequence N2 ⊂ N1 such that the property
(a) holds for j = jn for sufficiently large n ∈ N2. Next, we partition N2 into two
further subsequences, N2 = N3∪N4; and show that the conclusion of (b1) holds for
sufficiently large n ∈N′3 ⊂N3, and that the conclusion of (b2) holds for sufficiently
large n ∈N4. Finally, the subsequence N′2 = N′3 ∪N4 is what we need.

From the proof in Step 1, under what is assumed above, properties (a, b1, b2)
hold for j = 0, ..., jn−1, n ∈N1. Specifically, for j = jn−1, we have

|Q̄n, jn−1(0)| ≤max{MQ,1,MQ,2}, for all k ∈N1.

Therefore, the sequence {Q̄n, jn−1(0),n ∈N1} has a convergent subsequence. Then,
by Lemma 11.7.1 and Lemma 11.5.2, there exists a further subsequence N2 ⊂ N1
such that

(W̄ n, jn−1,Q̄n, jn−1)→ (W̄ , Q̄) u.o.c. as n→ ∞ along N2, (11.20)

with |Q̄(0)| ≤max{MQ,1,MQ,2}. Then, we have

|Q̄n, jn−1(u)−Q∗(W̄ n, jn−1(u))|
≤ |Q̄n, jn−1(u)− Q̄(u)|+ |Q̄(u)−Q∗(W̄ (u))|+ |Q∗(W̄ (u))−Q∗(W̄ n, jn−1(u))|
→ |Q̄(u)−Q∗(W̄(u))| u.o.c. of u≥ 0, as n→ ∞ along N2.

Moreover, since T ≥ Tmax{MQ,1,MQ,2} and taking into account Theorem 11.5.4, we
have

Q̄(u) = Q∗(W̄ (u)) for all u≥ T.

Therefore, for sufficiently large n ∈N2, we have, for u ∈ [0,T ],

|Q̄n, jn(u)−Q∗(W̄ n, jn(u))|= |Q̄n, jn−1(T + u)−Q∗(W̄ n, jn−1(T +u))|< ε. (11.21)

That is, (a) holds with j = jn for sufficiently large n ∈N2 (⊂N1).
Next, we partition N2 into N3∪N4 according to the conditions given in (b1, b2),

i.e.,

N3 = {n ∈N2 : W̄ n, jn(u)≤ ε for some u ∈ [0,T ]},
N4 = {n ∈N2 : W̄ n, jn(u) > ε for all u ∈ [0,T ]}.
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Note that at least one of the two sequences N3 and N4 must be infinite.
Suppose N3 is infinite. Then, for each n ∈ N3, there exists a fixed un ∈ [0,T ]

satisfying

W̄ n, jn(un)≤ ε. (11.22)

Furthermore, we can choose a subsequence N′3 ⊂N3 such that, for some u′ ∈ [0,T ],

un→ u′ as n→ ∞ along N′3.

Note that the convergence in (11.20) is valid for the subsequence N′3 (⊂ N2) too.
Then, we have, for all u≥ 0,

W̄ (u) = W̄ (T +u′) = lim
n→∞

W̄ n, jn−1(T + un) = lim
n→∞

W̄ n, jn(un)≤ ε,

where the first equality follows from the property (11.20) in Proposition 11.5.3;
the second follows from (11.20); and the inequality follows from (11.22). Now, for
sufficiently large n ∈N′3, we have, for all u ∈ [0,T ],

W̄ n, jn(u) = W̄ n, jn−1(T + u)≤ W̄ (T +u)+ ε ≤ 2ε = MW,1 (11.23)

|Q̄n, jn(u)| ≤ |Q̄(T +u)|+ ε = KµW̄ (T + u)+ ε ≤ KµMW,1 + ε = MQ,1, (11.24)

where the first inequality in (11.23) follows from (11.20), and so is the first inequal-
ity in (11.24). The two inequalities in (11.23) and (11.24) together imply that (b1)
holds for j = jn for sufficiently large n ∈N′3.

Next, suppose N4 is infinite. The convergence in (11.20) is valid for the subse-
quence N4 (⊂ N2) too. Similar to (11.21), we can show that for sufficiently large
n ∈N4, the following holds: for all u ∈ [0,T ],

|Q̄n, jn(u)−Q∗(W̄ n, jn(u))| ≤ µε
2

,

and hence,

Q̄n, jn
k (u)≥ Q∗k(W̄

n, jn(u))− µε
2
≥ µW̄ n, jn(u)− µε

2
≥ µε

2
> 0.

Similar to the argument following (11.19), the above inequality leads to the follow-
ing,

Ȳ n, jn(u)− Ȳ n, jn(0) = 0 for all u ∈ [0,T ], (11.25)

for sufficiently large n ∈N4.
Using the complementarity property just established, we estimate the upper

bounds for W̄ n, jn(u) and Q̄n, jn(u), for u ∈ [0,T ]. For a given (sufficiently large)
n ∈N4, there are two mutually exclusive cases: (i) the condition (as well as the con-
clusions) in (b2) holds for all j = 0, ..., jn; (ii) the condition in (b1) holds for some
j = 0≤ j ≤ jn− 1.
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In the first case, the process Ȳ n, j(u) does not increase in u ∈ [0,T ], for j =
0, ..., jn−1. Thus, we have, for sufficiently large n ∈N4,

W̄ n, jn(u) = W̄ n,0(0)+
jn−1

∑
j=0

(
W̄ n, j(T)−W̄ n, j(0)

)
+
(
W̄ n, jn(u)−W̄n, jn(0)

)

= W̄ n,0(0)+
jn−1

∑
j=0

(
X̄n, j(T )− X̄ n, j(0)

)
+
(
X̄ n, jn(u)− X̄n, jn(0)

)

+
jn−1

∑
j=0

(
Ȳ n, j(T )− Ȳ n, j(0)

)
+
(
Ȳ n, jn(u)− Ȳ n, jn(0)

)

= W̄ n,0(0)+
jn−1

∑
j=0

(
X̄n, j(T )− X̄ n, j(0)

)
+
(
X̄ n, jn(u)− X̄n, jn(0)

)

= Ŵ n(τ)+
(
X̂ n(τ + jnT/n +u/n)− X̂ n(τ)

)

≤ (χ + ε)+
(
X̂(τ + jnT/n +u/n)− X̂(τ)+ ε

)

≤ (χ + ε)+ (C+ ε),

where the first inequality follows from the convergence in (11.37) and (11.30), and
the second from (11.36).

Under the case (ii), let j0
n be the largest integer such that the condition in (b1)

holds. Thus, for all j = j0
n + 1≤ j ≤ jn, the condition and results in (b2) hold, and

hence Ȳ n, j(u) does not increase in u ∈ [0,T ]. Then, similar to case (i), we have, for
sufficiently large n ∈N4,

W̄ n, jn(u) = W̄ n, j0n (T )+
jn−1

∑
j= j0n+1

(
W̄ n, j(T )−W̄n, j(0)

)
+
(
W̄ n, jn(u)−W̄n, jn(0)

)

= W̄ n, j0n (T )+
(
X̂ n(τ + jnT/n +u/n)− X̂ n(τ + j0

nT/n+ T/n)
)

≤ MW,1 +(C + ε).

where the inequality is due to the bound (11.15) in (b1) with j = j0
n and the definition

of the constant C in (11.36). Then, synthesizing the bounds in the two cases, we
have, for sufficiently large n ∈N4 and for all u ∈ [0,T ],

W̄ n, jn(u)≤max{(χ + ε)+ (C+ ε),MW,1 +(C + ε)}= MW,2;

and furthermore

|Q̄n, jn(u)| ≤ |Q∗(W̄ n, jn(u))|+ ε
= KµW̄ n, jn(u)+ ε ≤ KµMW,2 + ε = MQ,2.

The above two bounds, together with the complementarity property in (11.25), im-
ply that (b2) holds with j = jn for sufficiently large n ∈N4.
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Finally, let N′2 = N′3∪N4 (⊂N2 ⊂ N1). Then, the properties in (a, b1, b2) with
j = jn hold for sufficiently large n ∈N′2 (⊂N1). �
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Chapter 12

Queueing Networks with Gaussian Inputs

Michel Mandjes

Abstract This chapter analyzes queueing systems fed by Gaussian inputs. The anal-
ysis is of an asymptotic nature, in that the number of sources is assumed large, where
link bandwidth and buffer space are scaled accordingly. Relying on powerful large-
deviation techniques (in particular Schilder’s theorem), we identify the exponential
decay rate of the overflow for the single queue. In addition we establish a number
of appealing results (duality between decay rate and variance function; convexity of
buffer/bandwidth trade-off curve). Then we extend the result to the tandem setting;
a lower bound on the decay rate is found, which is proven to be ‘tight’ under specific

part of the chapter is devoted to priority systems.

12.1 Introduction

Over the past two decades, a significant research effort has been devoted to the
large-deviations analysis of queues. It has culminated in a wealth of valuable con-
tributions to the understanding of the occurrence of rare events (such as buffer over-
flow) in queues. Exact computation of the overflow probability is usually a demand-
ing task, thus motivating the search for accurate approximations and asymptotics.
Large-deviations analysis usually provides a rough (logarithmic) characterization of
the overflow probability (in terms of an exponential decay rate), but also insight into
the system’s ‘path’ from ‘average behavior’ to the rare event.

In particular, the celebrated many-sources scaling, introduced in a seminal paper
by Weiss [25], has provided a rich framework for obtaining large-deviations results.
In a many-sources setting, one considers a queueing system fed by the superposition
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of n i.i.d. traffic sources, with the service rates and buffer thresholds scaled with n as
well. When considering single queues, it is, under very mild conditions on the source
behavior, possible to calculate the exponential decay of the probability pn(b,c) that
the queue (fed by n sources, and emptied at a deterministic rate nc) exceeds level
nb, see, e.g., [4, 5].

Beyond the single FIFO queue. Although single queues serve as a useful base-
line model and provide valuable insight, they clearly have serious limitations. First
of all, traffic streams usually traverse concatenations of hops (rather than just a sin-
gle node). Secondly, networks increasingly support a wide variety of traffic types,
with each of them having its own specific (stochastic) characteristics and Quality-of-
Service requirements in terms of packet delay, loss, and throughput metrics. In order
to deal with the heterogeneity in traffic types, networks will typically rely on dis-
criminatory scheduling mechanisms to distinguish between streams of the various
classes, such as priority scheduling mechanisms. Thus, a fundamental understand-
ing of the large-deviations behavior of stochastic networks with non-FIFO schedul-
ing is expected to play a crucial role in providing end-to-end Quality-of-Service
in multi-class networks. However, only few large-deviations results are known for
these more complex buffer architectures.

Gaussian traffic. As indicated above, each type of traffic has its own stochastic
properties, often summarized in terms of a covariance function. One commonly dis-
tinguishes between short-range dependent input (with just a mild correlation) and
long-range dependent input (in which correlations decay relatively slowly). Tradi-
tionally mainly short-range dependent models were used for analyzing the perfor-
mance of communication networks. Network measurements, performed over the
past decade, however, suggested that long-range dependent models are more appro-
priate [12, 22]. Evidently, ideally, one should build a theory around a class of traffic
models that covers both. This explains why the Gaussian traffic model is considered
to be particularly appropriate: with a specific choice of the parameters, the model
corresponds to a short-range dependent process (for instance an integrated Ornstein-
Uhlenbeck process), while with other choices one obtains a long-range dependent
model (for instance fractional Brownian motion). It is argued in [10] that the use of
Gaussian traffic models is justified as long as the aggregation is sufficiently large
(both in time and number of flows), due to Central-Limit type of arguments; the
limitations, in both dimensions, are further specified in [24].

Literature. A full treatment of large deviations of Gaussian queues and their ap-
plications is given in [14]. Background on large deviations can be found in [6],
whereas [9] is a nice textbook on large deviations for queues. Adler [2] is a standard
reference on Gaussian processes. Parts of this chapter treat material presented in
[11, 13, 18].

Organization. This chapter focuses on the analysis of tandem networks fed by
Gaussian inputs under the many-sources scaling. To analyze tandems, it turns out
necessary to first present a number of powerful results on Gaussian processes, in
particular (the generalized version of) Schilder’s theorem (Section 2). To demon-
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strate how this (rather abstract) machinery works, we first focus in Section 3 on the
single queue, and derive a number of structural results. We then shift in Section 4
our attention to tandem networks. Again, by applying Schilder’s theorem, we ana-
lyze the exponential decay rate of the buffer content exceeding a predefined level;
the results are bound and approximations of the decay rate, and, in a number of
special cases, its exact value. Section 5 focuses on priority systems, which can be
treated analogously to tandem queues. Section 6 contains a number of concluding
remarks.

12.2 Preliminaries on Gaussian processes

In this section we present a number of standard results on Gaussian processes; in
particular, Schilder’s theorem is stated.

In general, an arrival process is an infinitely-dimensional object (A(t),t ∈ R),
where A(t) denotes the amount of traffic generated in time interval [0,t), for t > 0;
(A(t),t ∈ R) is sometimes referred to as the cumulative work process. It is noted
that A(−t) is to be interpreted as the negative of the amount of traffic generated in
(−t,0]. We also define, for s < t, the work arrived in time window [s,t) as A(s,t) (so
that A(s,t) = A(t)−A(s)).

12.2.1 Gaussian sources

In this section we first introduce our versatile class of input processes, to which
we will refer as Gaussian sources. For a Gaussian source, the entire probabilistic
behavior of the cumulative work process can be expressed in terms of a mean traffic
rate and a variance function. The mean traffic rate µ is such that EA(s,t) = µ ·(t−s),
i.e., the amount of traffic generated is proportional to the length of the interval. The
variance function v(·) is such that VarA(s,t) = v(t − s); in particular VarA(t) =
v(t). Let N(µ ,σ 2) denote a Normally distributed random variable with mean µ and
variance σ2.

Definition 12.2.1 — Gaussian source. A(·) is a Gaussian process with stationary
increments, if for all s < t,

A(s,t) =d N(µ · (t− s),v(t− s)).

We say that A(·) is a Gaussian source. We call a Gaussian source centered if, in
addition, µ = 0.

The fact that the sources introduced in Definition 12.2.1 have stationary incre-
ments, is an immediate consequence of the fact that the distribution of A(s,t) just
depends on the length of the time window (i.e., t− s), and not on its position.
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The variance function v(·) fully determines the correlation structure of the Gaus-
sian source. This can be seen as follows. First notice, assuming for ease 0 < s < t,
that Cov(A(s),A(t)) = VarA(s) + Cov(A(0,s),A(s,t)). Then, using the standard
property that

VarA(0,t) = VarA(0,s)+ 2 Cov(A(0,s),A(s,t))+VarA(s,t),

we find the useful relation

Γ (s,t) := Cov(A(s),A(t)) =
1
2
(v(t)+ v(s)− v(t− s)).

Indeed, knowing the variance function, we can compute all covariances. In par-
ticular, the vector (A(s1), . . . ,A(sd))T is distributed d-variate Normal, with mean
(µs1, . . . ,µsd)

T and covariance matrix Σ , whose (i, j)-th entry reads

Σi j = Γ (si,s j), i, j = 1, . . . ,d.

The class of Gaussian sources with stationary increments is extremely rich, and
this intrinsic richness is best illustrated by the multitude of possible choices for the
variance function v(·). In fact, one could choose any function v(·) that gives rise to
a positive semi-definite covariance function:

∑
s,t∈S

αsCov(A(s),A(t))αt ≥ 0,

for all S⊆ R, and αs ∈ R for all s ∈ S.

12.2.2 Classifications

We now highlight two basic classifications of Gaussian sources. These classifica-
tions can be illustrated by means of two generic types of Gaussian sources, that we
also introduce in this section.

Definition 12.2.2 — fractional Brownian motion (or fBm). A fractional Brow-
nian motion source has variance function v(·) characterized by v(t) = t2H, for an
H ∈ (0,1). We call H the Hurst parameter.

The case with H = 1/2 is known as (ordinary) Brownian motion; then the incre-
ments are independent.

Definition 12.2.3 — integrated Ornstein Uhlenbeck (or iOU). An integrated
Ornstein-Uhlenbeck source has variance function v(·) characterized by v(t) =
t− 1+ e−t .
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Long-range dependence. The first way of classifying Gaussian sources relates to
the correlation structure on long timescales: we are going to distinguish between
short-range dependent sources and long-range dependent sources.

To this end, we first introduce the notion of correlation on timescale t, for inter-
vals of length ε. With t≫ ε > 0, it is easily seen that

C(t,ε) := Cov(A(0,ε),A(t,t + ε)) =
1
2
(v(t + ε)− 2v(t)+ v(t− ε)).

For ε small, and v(·) twice differentiable, this looks like ε2v′′(t)/2. This argument
shows that the ‘intensity of the correlation’ is expressed by the second derivative of
v(·): ‘the more convex (concave, respectively) v(·) at time-scale t, the stronger the
positive (negative) dependence between traffic sent ‘around time 0’ and traffic sent
‘around time t’.

The above observations can be illustrated by using the generic processes fBm
and iOU. As v′′(t) = (2H)(2H − 1)t2H−2, we see that for fBm the correlation is
positive when H > 1

2 (the higher H, the stronger this correlation; the larger t, the
weaker this correlation), and negative when H < 1

2 (the lower H, the stronger this
correlation; the larger t, the weaker this correlation). It is readily checked that for
iOU v′′(t) = e−t . In other words: the correlation is positive, and decreasing in t.

Several processes could exhibit positive correlation, but the intensity of this cor-
relation can vary dramatically; compare the (fast!) exponential decay of v′′(t) for
iOU traffic with the (slow!) polynomial decay of v′′(t) for fBm traffic. The follow-
ing definition gives a classification.

Definition 12.2.4 — long-range dependence. We call a traffic source long-range
dependent (lrd), when the covariances C(k,1) are non-summable:

∞

∑
k=1

C(k,1) = ∞,

and short-range dependent (srd) when this sum is finite.

Turning back to the case of fBm, with variance function given by v(t) = t2H , it is
easily checked that

lim
k→∞

C(k,1)

k2H−2 =
1
2
· lim

k→∞

(1 +1/k)2H− 2 +(1−1/k)2H

1/k2 =
1
2
· v′′(1).

This entails that we have to check whether k2H−2 is summable or not. We conclude
that Gaussian sources with this variance function are lrd iff 2H > 1, i.e., whenever
they belong to the positively correlated case. It is easily verified that, according to
Definition 12.2.4, iOU is short-range dependent.

Smoothness. A second criterion to classify Gaussian processes is based on the
level of smoothness of the sample paths. We coin the following definition.
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Definition 12.2.5 — smoothness. We call a Gaussian source smooth if, for any
t > 0,

lim
ε↓0

Cov(A(0,ε),A(t,t + ε))√
Var(A(0,ε))Var(A(t,t + ε))

= lim
ε↓0

C(t,ε)

v(ε)
6= 0,

and non-smooth otherwise.

An fBm source is non-smooth, as is readily verified:

lim
ε↓0

C(t,ε)

v(ε)
= lim

ε↓0
1
2

ε2−2Hv′′(t) = 0,

for any t > 0 and H ∈ (0,1). On the other hand, the iOU source is smooth, as, for
any t > 0, applying that 2v(ε)/ε2→ 1 as ε ↓ 0,

lim
ε↓0

C(t,ε)

v(ε)
= v′′(t) = e−t > 0.

Popularly speaking, one could say that Gaussian sources are smooth if there is a
notion of a traffic rate.

12.2.3 Schilder’s theorem

This subsection introduces (the generalized version of) Schilder’s theorem. ‘Schilder’
considers the large deviations of the sample mean of Gaussian processes (i.e.,
infinitely-dimensional objects), as follows. Let A1(·),A2(·), . . . be a sequence of
i.i.d. Gaussian processes. Then consider the ‘sample mean path’ n−1 ∑n

i=1 Ai(·). For
n large, it is clear that n−1 ∑n

i=1 Ai(t)→ µt, if µ is the mean rate of the Gaussian
processes. ‘Schilder’ describes the probability of deviations from this ‘mean path’:
it characterizes the exponential decay rate of the sample mean path n−1 ∑n

i=1 Ai(·)
being in a remote set. Informally, a functional I(·) is identified, such that

P

(
1
n

n

∑
i=1

Ai(t)≈ f (t), t ∈ R

)
≈ e−nI( f ). (12.1)

Here f : R→ R is a given function (or ‘path’; it is a function of time); we are won-
dering what the probability is of n−1 ∑n

i=1 Ai(·) remaining ‘close to’ f (·). Evidently,
I(·) should be such that I( fµ) = 0, where fµ(t) = µt. Schilder’s theorem says that,
in a logarithmic sense, (12.1) is indeed true.

More formally, ‘Schilder’ gives an expression for the probability of the sample
mean of n i.i.d. Gaussian processes (recall that this sample mean is now a path)
being in some set S:
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pn[S] := P

(
1
n

n

∑
i=1

Ai(·) ∈ S

)
≈ exp

(
−n inf

f∈S
I( f )

)
.

Here the set S represents a collection of paths; later in this chapter we give a number
of examples of such sets. An intrinsic difficulty of ‘Schilder’ is that I( f ) can be given
explicitly only if f is a mixture of covariance functions, as we will see below.

From the above it is concluded that, in general, finding the minimum of I( f )
over all f ∈ S is a hard variational problem: the optimization should be done over
all paths in S (which are infinitely-dimensional objects), and the objective function
I( f ) is only explicitly given if f is a mixture of covariance functions. However, if
we succeed in finding such a minimizing f ⋆(·) in S, then this path has an appealing
interpretation. Conditional on the sample-mean path being in the set S, with over-
whelming probability this happens via a path that is ‘close to’ f ⋆(·). We call f ⋆ the
most likely path in the set S. Put differently: the decay rate of pn[S] is fully dom-
inated by the likelihood of the most likely element in S: as n→ ∞, we have that
n−1 log pn[S]→−I( f ⋆). Knowledge of the most likely path gives often insight into
the dynamics of the problem.

After having described Schilder’s theorem in a heuristic manner above, we now
proceed with a formal treatment of the result. It requires the introduction of a num-
ber of concepts: (i) a path space Ω , (ii) a reproducing kernel Hilbert space R, (iii) an
inner product 〈·, ·〉R, and (iv) finally a norm || · ||R. This norm turns out to be inti-
mately related to the ‘rate functional’ I(·). Having defined these notions, we are able
to state Schilder’s theorem, which we do in Theorem 12.2.7.

The framework of Schilder’s theorem is formulated as follows. Consider a se-
quence of i.i.d. processes A1(·),A2(·), . . ., distributed as a Gaussian process with
variance function v(·). We assume for the moment that the processes are centered,
but it is clear that the results for centered processes can be translated immediately
into results for noncentered processes; we return to this issue in more detail in Re-
mark 12.3.2. Define the path space Ω as

Ω :=

{
ω : R→ R, continuous, ω(0) = 0, lim

t→∞

ω(t)
1 + |t| = lim

t→−∞

ω(t)
1 + |t| = 0

}
,

which is a separable Banach space by imposing the norm

||ω ||Ω := sup
t∈R

|ω(t)|
1 + |t| .

In [1] it is pointed out that Ai(·) can be realized on Ω under the following assump-
tion, which is supposed to be in force throughout the remainder of this chapter.

Assumption 12.2.6 There is an α < 2 such that

lim
t→∞

v(t)
tα = 0.
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Next we introduce and define the reproducing kernel Hilbert space R ⊆ Ω –
see [2] for a more detailed account – with the property that its elements are roughly
as smooth as the covariance function Γ (s, ·). We start from a ‘smaller’ space R⋆,
defined by linear combinations of covariance functions:

R⋆ :=

{
ω : R→ R, ω(·) =

n

∑
i=1

aiΓ (si, ·), ai,si ∈ R,n ∈ N

}
.

The inner product on this space R⋆ is, for ωa,ωb ∈ R⋆, defined as

〈ωa,ωb〉R :=

〈
n

∑
i=1

aiΓ (si, ·),
n

∑
j=1

b jΓ (s j, ·)
〉

R

=
n

∑
i=1

n

∑
j=1

aib jΓ (si,s j); (12.2)

notice that this implies 〈Γ (s, ·),Γ (·,t)〉R = Γ (s,t). This inner product has the fol-
lowing useful property, which we refer to as the reproducing kernel property,

ω(t) =
n

∑
i=1

aiΓ (si,t) =

〈
n

∑
i=1

aiΓ (si, ·),Γ (t, ·)
〉

R

= 〈ω(·),Γ (t, ·)〉R. (12.3)

From this we introduce the norm ||ω ||R :=
√
〈ω,ω〉R. The closure of R⋆ under this

norm is defined as the space R.

Having introduced the norm || · ||R, we can now define the rate function that will
apply in Schilder’s theorem:

I(ω) :=

{
1
2 ||ω ||2R if ω ∈ R;

∞ otherwise.
(12.4)

Remark that for f that can be written as a linear combination of covariance functions
(i.e., f ∈ R⋆), Equations (12.2) and (12.4) yield an explicit expression for I( f ).

Theorem 12.2.7 — (Generalized) Schilder. Let Ai(·) ∈Ω be i.i.d. centered Gaus-
sian processes, with variance function v(·). Then A1(·),A2(·), . . . obeys the large
deviations principle with rate function I(·), i.e.,

(a)For any closed set F ⊂Ω ,

limsup
n→∞

1
n

logP

(
1
n

n

∑
i=1

Ai(·) ∈ F

)
≤− inf

f∈F
I( f );

(b)For any open set G⊂Ω ,

liminf
n→∞

1
n

logP

(
1
n

n

∑
i=1

Ai(·) ∈ G

)
≥− inf

f∈G
I( f ).

Recall that this theorem, informally, states that
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pn[S] := P

(
1
n

n

∑
i=1

Ai(·) ∈ S

)

≈ exp
(
−n inf

f∈S
I( f )

)
= exp

(
−n

2
inf
f∈S
|| f ||2R

)
.

In other words, if we can write the probability of our interest as pn[S] for some set
of paths S, then ‘Schilder’ provides us (at least in principle) with the corresponding
decay rate.

12.3 Single queues

In this section we apply Schilder’s theorem to the single queue. Before doing that,
we first review Reich’s theorem, describing the relation between the input process
and the steady-state queue length. We then derive the logarithmic many-sources
asymptotics, which enable us to establish a number of insightful structural properties
(duality between decay rate and variance function; convexity of buffer/bandwidth
trade-off curve).

12.3.1 Steady-state queue length

We first present a useful relation between the steady-state queue length Q and the
arrival process A(·), which plays a central role in the remainder of this chapter. This
fundamental distributional identity is often attributed to Reich [23].

Theorem 12.3.1 — Reich. Consider an infinite-buffer queueing system, fed by an
arrival process A(·, ·) with stationary increments and mean input rate µ , that served
at rate C. Suppose the system is stable, i.e., µ < C. Then the following distributional
identity holds:

Q=d sup
t≥0

(A(−t,0)−Ct),

where Q is the steady-state buffer content. If the arrival process is time-reversible,
we have in addition

Q=d sup
t≥0

(A(t)−Ct).

Remark 12.3.2 Let A(·) be a Gaussian process with mean rate µ and variance func-
tion v(·). Consider the ‘centered version’ Ā(·) of A(·), i.e., the Gaussian process with
mean rate 0 and variance function v(·). With the stability condition µ < C in force,
it is trivial that

P

(
sup
t≥0

(A(t)−Ct)≥ B

)
= P

(
sup
t≥0

(Ā(t)− (C− µ)t)≥ B

)
.
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As a consequence, when we have reduced the service rate C by the mean rate µ of
the input process, we can restrict ourselves, without loss of generality, to considering
just centered sources. ♦

12.3.2 Logarithmic asymptotics

We now study the logarithmic asymptotics of the probability that the buffer content
under the many-sources scaling, defined as Qn, exceeds nb: applying ‘Reich’,

pn(b,c) := P(Qn ≥ nb) = P

(
sup
t≥0

(
n

∑
i=1

Ai(−t,0)−nct

)
≥ nb

)

= P

(
sup
t≥0

(
1
n

n

∑
i=1

Ai(−t,0)− ct

)
≥ b

)
.

To use ‘Schilder’ we have to define a set of ‘overflow paths’:

S(f) := { f ∈Ω : ∃t ≥ 0 : − f (−t)≥ b + ct}.

Here we use the superscript (f) as a mnemonic for FIFO, since we consider sin-
gle work-conserving queues here, of which the FIFO queue is the most promi-
nent example. Clearly, the observation that A(−t,0) ≡ −A(−t) shows that indeed
pn(b,c) = pn[S

(f)]. This entails that we can apply Schilder’s theorem to obtain

lim
n→∞

1
n

log pn(b,c) =− inf
f∈S(f)

I( f ).

We obtain the following result [1]; with Remark 12.3.2 in mind, we restrict ourselves
without loss of generality to centered sources.

Theorem 12.3.3 — Logarithmic asymptotics. For any b,c > 0,

I(f)
c (b) :=− lim

n→∞

1
n

log pn(b,c) = inf
t≥0

(b + ct)2

2v(t)
. (12.1)

Proof. Define S
(f)
t := { f ∈ Ω : − f (−t)≥ b + ct}, so that S(f) is the union over

the S
(f)
t . Observe that

pn[S
(f)
t ] = P

(
1
n

n

∑
i=1

Ai(−t,0)≥ a+ νt

)
.

Cramér’s theorem [6] now entails that



12 Queueing Networks with Gaussian Inputs 541

lim
n→∞

1
n

log pn[S
(f)
t ] =−sup

θ

(
θ (b + ct)− logEeθA(−t,0)

)
=

(b + ct)2

2v(t)
.

Using that S(f) = ∪t≥0S
(f)
t , application of ‘Schilder’ yields that

lim
n→∞

1
n

log pn[S
(f)] =− inf

f∈S(f)
I( f ) =− inf

t≥0

(
inf

f∈S(f)
t

I( f )

)
.

This implies the stated. 2

We call the decay rate I(f)
c (b), seen as a function of the buffer size b, and with

c held fixed, the loss curve. In this chapter the impact of b on the optimizing t in
(12.1) plays a crucial rôle; we therefore use the notation t(b). The path f ⋆ ∈ S(f) that
optimizes I( f ) is

f ⋆(r) := E(A(r) | A(−t(b),0) = b + ct(b))

=
Γ (r,−t(b))

v(t(b))
(b+ ct(b)); (12.2)

we call this the most likely path to overflow. Here −t(b) can be interpreted as the
most likely time at which the buffer starts to build up in order to exceed level nb at
time 0; we therefore call t(b) the most likely timescale of overflow.

Example 12.3.4 We consider a Gaussian queue with fBm input, and show that the
loss curve is concave for H > 1

2 , and convex for H < 1
2 .

Take v(t) = t2H , for some H ∈ (0,1). If we perform the optimization in the right-
hand side of (12.1), we obtain, for b > 0,

t(b) =
b
c

H
1−H

, I(f)
c (b) =

1
2

(
b

1−H

)2−2H ( c
H

)2H
. (12.3)

We see that the loss curve I(f)
c (·) is convex (concave) when the Hurst parameter is

smaller (larger) than 1
2 . ♦

12.3.3 The shape of the loss curve

We now study the relationship between the correlation structure of the sources and
the shape of the curve I(f)

c (·). Our main result is that there is a neat connection be-
tween positive (negative) correlations and concavity (convexity) of the loss curve.
First we describe, on an intuitive level, what convexity and concavity of the loss
curve mean. Evidently, I(f)

c (·) is increasing. It is important to notice that, clearly, the

steeper I(f)
c (·) at some buffer size b, the higher the marginal benefits of an additional

unit of buffering (where ‘benefits’ are in terms of reducing the overflow probability).
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If I(f)
c (·) is convex, then adding buffering capacity is getting more and more benefi-

cial; if I(f)
c (·) is concave, then the benefit of buffering becomes smaller and smaller.

This motivates the examination of the characteristics of the shape of the loss curve
I(f)
c (·).

In more detail, the main result of this subsection is that we show that the curve
I(f)
c (·) is convex (concave) in b, if and only if the Gaussian input exhibits negative

(positive) correlations on the time-scale t(b) (defined earlier in this section). All
proofs are elementary, and add insight into the marginal benefits of buffering, i.e.,
the nature of I(f)

c (·) (in terms of its derivative and second derivative with respect to
the buffer size b). We impose the following (mild) technical assumption on v(·) that
guarantees uniqueness of t⋆(b) for all b. Define the standard deviation function by
ς(t) :=

√
v(t).

Assumption 12.3.5 The following two assumptions are imposed on the variance
function: (i) v(·) ∈C2([0,∞)), (ii) ς(·) is strictly increasing and strictly concave.

Lemma 12.3.6 Assumption 12.3.5 entails that, for any b, minimization (12.1) has
a unique minimizer t(b). In fact, t(b) is the unique solution to

F(b,t) := 2cv(t)− (b+ ct)v′(t) = 0, or b = c

(
2

v(t)
v′(t)

− t

)
. (12.4)

Proof. First rewrite the minimization (12.1) as

inf
t≥0

m2(t)
2

, with m(t) :=
b + ct
ς(t)

.

Define φ(t) := ς(t)/ς ′(t)− t. Since

m′(t) =
cς(t)− (b + ct)ς ′(t)

ς2(t)
,

and because of element (ii) of Assumption 12.3.5, it suffices to prove that (i) for
each b > 0 and c > 0

φ(t) =
b
c

(12.5)

has a root t(b), and (ii) φ(·) is strictly increasing.
Due to v(t)/tα → 0 for some α < 2, it follows that limt→∞ m(t) = ∞ for each

b,c > 0. Moreover, since ς(0) = 0, it follows that limt→0 m(t) = ∞ for each b,c > 0.
As a consequence, Equation (12.5) has at least one solution. Moreover

φ ′(t) =
(ς ′(t))2− ς(t)ς ′′(t)

(ς ′(t))2 − 1 =−ς(t)ς ′′(t)
(ς ′(t))2 > 0,

since ς ′′(t) < 0 due to the strict concavity of ς(·), cf. element (ii) of Assump-
tion 12.3.5. Thus φ(·) is strictly increasing. This completes the proof. 2
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Our main result on the relation between the shape of the decay rate function
I(f)
c (·), and the correlation structure of the Gaussian sources, is stated in Theorem

12.3.9. We first prove two lemmas.

The first lemma says that the most likely epoch of overflow t(b) is an increasing
function of the buffer size b.

Lemma 12.3.7 t(·) ∈C1([0,∞)), and is strictly increasing.

Proof. Recall the fact that t(b) is the unique solution to (12.4). In conjunction
with v(·) ∈ C2([0,∞)) and v′(·) > 0 (Assumption 12.3.5), we conclude that t(·) is
continuous. From (12.4), we see that

t ′(b) =−∂F/∂ b
∂F/∂ t

=
v′(t(b))

cv′(t(b))− (b + ct(b))v′′(t(b))
(12.6)

=
1
c
·
(

1− 2
v(t(b))v′′(t(b))

v′(t(b))2

)−1

,

such that the continuity of t(·), together with v(·) ∈ C2([0,∞)), implies that t ′(·) is
continuous, too.

Assumption 12.3.5 states that, for all t ≥ 0,

d2

dt2

√
v(t) < 0 ⇐⇒ 2

v(t)v′′(t)
v′(t)2 < 1,

thus proving the lemma. 2

As we have seen in the proof of Thm. 12.3.3, I(f)
c (b) can be written as the varia-

tional problem

I(f)
c (b) = inf

t≥0
sup

θ

(
θ(b + ct)− logEeθA(t)

)
. (12.7)

The optimizing θ reads

θt(b) :=
b + ct
v(t)

. (12.8)

The second lemma states a relation between the derivative of the loss curve and
the tilting parameter of the Fenchel-Legendre transform in (12.7). Here we use the
shorthand notation θ(b)≡ θt(b)(b).

Lemma 12.3.8 For all b > 0, it holds that (I(f)
c )′(b) = θ (b).

Proof. Recalling that t(b) is the optimizing t, differentiating (12.1) with respect
to b yields

(I(f)
c )′(b) =

(
b + ct(b)

v(t(b))

)
−t ′(b)

(
b+ ct(b)

2v2(t(b))

)(
(b+ ct(b))v′(t(b))− 2cv(t(b))

)
.

Now note that this equals θ (b), due to (12.4) and (12.8). 2
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The main result of this section can be proven now [13]. It describes the duality
relation between the shape of I(f)

c (·) and the correlation structure (which is uniquely

determined by v(·)). More specifically, it is shown that the curve I(f)
c (·) is convex at

some buffer size b if and only if there are negative correlations on the timescale t(b)
on which the overflow most likely takes place.

Theorem 12.3.9 For all b > 0,

(I(f)
c )′′(b)≥ 0 ⇐⇒ v′′(t(b))≤ 0.

Proof. Due to Lemma 12.3.8, (I(f)
c )′′(b) = θ ′(b). Trivial calculus yields

θ ′(b) =
v(t(b))(1 + ct ′(b))−2ct ′(b)v(t(b))

v2(t(b))
=

1− ct ′(b)

v(t(b))
,

where the last equality is due to (12.4). As v(t) is nonnegative for any t > 0, conclude

that (I(f)
c )′′(b)≥ 0 is equivalent to ct ′(b)≤ 1. So we are left to prove that ct ′(b)≤ 1

is equivalent to v′′(t(b))≤ 0.
To show this equivalence, note that relation (12.6) yields

t ′(b) =
1
c

(
1−
(

t(b)+
b
c

)
v′′(t(b))

v′(t(b))

)−1

.

Now recall that t(b) ≥ 0, t ′(b) ≥ 0 (due to Lemma 12.3.7) and v′(t(b)) ≥ 0. Con-
clude that ct ′(b)≤ 1 is equivalent to v′′(t(b))≤ 0. 2

Obviously, for all b and t, it holds that I(f)
c (b) ≤ (b + ct)2/(2v(t)). Noticing that

both v(·) and I(f)
c (·) are nonnegative, this results in the following interesting corol-

lary.

Corollary 12.3.10 For all t > 0, it holds that

v(t)≤ inf
b>0

(b+ ct)2

2I(f)
c (b)

. (12.9)

As described in [17], the inequality in (12.9) is, under mild conditions on v(·),
actually an equality. This means that an interesting duality holds: when knowing the
loss curve, one can retrieve the variance of the input process.

Example 12.3.11 – iOU. First verify that v(t) = t − 1 + e−t satisfies Assumption
12.3.5. It is easy to see that v(·) is convex, so we will have ‘decreasing marginal

buffering benefits’, i.e., I(f)
c (·) is concave due to Theorem 12.3.9. This example

shows the relation between the ‘level of positive correlation’ and the shape of I(f)
c (·).

The strong convexity for small t indicates strong positive correlation on short time-
scale, whereas this positive correlation becomes weaker and weaker as the time-
scale increases (reflected by the asymptotically linear shape of v(·) for t large).
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First we concentrate on small b. Straightforward calculations reveal that I(f)
c (b) =

c2 + 2
3

√
6bc3 +O(b), where t(b)≈

√
6b/c. So I(f)

c (·) is highly concave for b small
(i.e., behaving as a square root), expressing the strong positive correlations on a
short timescale.

For large b, we find that I(f)
c (b)−2c(b+c)→ 0, with t(b)≈ b/c+2. Apparently,

for large b, I(f)
c (·) becomes nearly linear, as expected by the weak correlation on

long timescales. ♦

Example 12.3.12 – fBm. For H < 1
2 this function is (uniformly) concave, indicat-

ing negative correlations, whereas H > 1
2 entails that v(·) is convex corresponding

to positive correlations — for H = 1
2 , the increments are independent. Assumption

12.3.5 is fulfilled; notice that
√

v(t) = tH , which is concave. The results of Exam-

ple 12.3.4 show that I(f)
c (·) is indeed convex (concave) when the Hurst parameter is

smaller (larger) than 1
2 , as could be expected on the basis of Theorem 12.3.9. ♦

12.3.4 The buffer-bandwidth curve is convex

A network provider has essentially two types of resources that he can deploy to meet
the customers’ performance requirements. When he chooses to increase the amount
of buffer available in the network element, this clearly has a positive impact on the
loss probability (albeit at the expense of incurring additional delay); the alternative
is to increase the queue’s service capacity (which reduces both the loss probability
and the delay).

In other words: to achieve a certain predefined loss probability, say ε , the provider
has to choose with which buffer size and link capacity this target is achieved. It is
clear that the two types of resources trade off, and the goal of this section is to
further analyze the corresponding buffer-bandwidth curve.

As before, we rely on the many-sources framework introduced earlier in this
chapter: we have n sources sharing a network element with service rate nc and buffer
threshold nb, with the performance objective pn(b,c) ≤ ε. Relying on the (very

crude) approximation pn(b,c)≈ exp(−nI(f)
c (b)), our objective becomes I(f)

c (b)≥ δ ,
where the identification e−nδ = ε is used (such that δ > 0). In other words: all values
b,c such that

inf
t≥0

(b+ ct)2

2v(t)
≥ δ

satisfy the performance requirement.
Interestingly, the many-sources framework allows us to find the minimally re-

quired link capacity c for a given buffer b and loss constraint δ , as follows. By
definition

cb(δ )≡ cb := inf
{

c | inf
t≥0

(b + ct)2

2v(t)
≥ δ

}
.
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It is clear, however, that if the infimum of a function f (t) over t is larger than (or
equal to) δ , then for all t it should hold that f (t)≥ δ . In other words:

cb = inf

{
c | ∀t ≥ 0 :

(b + ct)2

2v(t)
≥ δ

}
.

Isolating the c, this further reduces to

cb = inf

{
c | ∀t ≥ 0 : c≥

√
2δv(t)− b

t

}

= inf

{
c | c≥ sup

t≥0

√
2δv(t)− b

t

}
= sup

t≥0

√
2δv(t)− b

t
. (12.10)

Similarly, the minimally required b (for given c,δ ) can be computed:

bc = sup
t≥0

(√
2δv(t)− ct

)
.

Interestingly, it now follows that the resources trade off in a convex way, in the sense
that, for given δ , cb is a convex function of b [11].

Proposition 12.3.13 The required link capacity cb(δ ) ≡ cb for given buffer b and
decay rate δ , as given by (12.10), is a convex function.

Proof. Evidently, the objective function in (12.10), i.e.,
√

2δ v(t)/t−b/t, is lin-
ear in b. The maximum of linear functions is convex. 2

Example 12.3.14 We now compute cb and bc for fBm. Applying the results above,
we have that cb = inft≥0 f (t), with

f (t) :=
√

2δ tH−1− b
t
.

It is clear that f (t)→−∞ as t ↓ 0; also f (t)→ 0 as t→ ∞. At the same time it can
be verified that f ′(·) has one zero, and f ′′(·) changes sign just once. In other words:
we find the unique maximum by solving f ′(t) = 0. This yields

t =

(
b√

2δ (1−H)

)1/H

.

Inserting this in the objective function yields

cb = H(2δ )1/2H
(

b
1−H

)1−1/H

.

We see that c and b trade off ‘hyperbolically’. Similarly,
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bc = (1−H)(2δ )−1/(2H−2)
( c

H

)H/(H−1)
.

The above calculations reveal that, along the trade-off curve, b1−HcH remains con-
stant (where this constant depends on H and δ ). ♦

Example 12.3.15 We again consider fBm traffic, and require that the decay rate of
the loss probability is at least δ . We impose the following cost structure: the cost
per unit buffer is κb, and the cost per unit capacity is κc. The optimal buffer size b⋆

and capacity c⋆ are determined as follows.
We saw that, to obtain a decay rate δ , the resources b and c are such that b1−HcH

is constant; this constant, say ϕ , depends on H and δ . Consequently, the problem
we have to solve is:

min
b≥0,c≥0

κbb + κcc subject to b1−HcH = ϕ.

Due to the convex form of the constraint, this can be solved immediately through
Lagrangian optimization. It is easily verified that

c⋆ =

(
κb

κc
· H

1−H

)1−H

, b⋆ =

(
κc

κb
· 1−H

H

)H

.

In fact, also for a general function cb(δ ) the solution can be characterized. Ele-
mentary convex analysis yields that we have to find the b for which the derivative of
cb(δ ) is κb/κc, i.e., b⋆ is solved from

κb

κc
=−

(
∂

∂b
cb(δ )

)
;

c⋆ then equals cb⋆(δ ). ♦

12.4 Tandem networks

Having focused on the single queue in the previous section, we now consider a two-
queue tandem model, with (deterministic) service rate nc1 for the first queue and nc2

for the second queue. We assume that c1 > c2, in order to exclude the trivial case
where the buffer of the second queue cannot build up.

12.4.1 Alternative formulation

In line with the previous section, we consider n i.i.d. Gaussian sources that feed
into the first queue. Traffic of these sources that has been served at the first queue
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immediately flows into the second queue — we assume no additional sources to
feed the second queue. We are interested in the steady-state probability of the buffer
content of the second queue Q2,n exceeding a certain threshold nb, b > 0, when the
number of sources gets large, or, more specifically, its logarithmic asymptotics:

I(t)
c (b) := − lim

n→∞

1
n

logP(Q2,n > nb), (12.1)

where c denotes the vector (c1,c2)
T. Note that we assume the buffer sizes of both

queues to be infinite.

We first show that the probability of our interest can be written in terms of the
‘empirical mean process’ n−1 ∑n

i=1 Ai(·). The following lemma exploits the fact that
we know both a representation of the first queue Q1,n (in steady-state) and a repre-
sentation of the total queue Q1,n + Q2,n (in steady-state). Let t0 := b/(c1− c2).

Lemma 12.4.1 P(Q2,n > nb) equals

P

(
∃t > t0 : ∀s ∈ (0,t) :

1
n

n

∑
i=1

Ai(−t,−s) > b + c2t− c1s

)
.

Proof. Notice that a ‘reduction principle’ applies: the total queue length is un-
changed when the tandem network is replaced by its slowest queue, see e.g. [3, 8].
More formally: Q1,n + Q2,n = supt>0(∑n

i=1 Ai(−t,0)− nc2t). Consequently we can
rewrite the buffer content of the downstream queue as

Q2,n = (Q1,n + Q2,n) − Q1,n

=d sup
t>0

(
n

∑
i=1

Ai(−t,0)−nc2t

)
− sup

s>0

(
n

∑
i=1

Ai(−s,0)− nc1s

)
. (12.2)

It was shown, see [23, Lemma 5.1], that the negative of the optimizing t in (12.2)
corresponds to the start of the last busy period of the total queue in which time 0
is contained; similarly, the optimizing s is the start of the last busy period of the
first queue in which time 0 is contained. Notice that a positive first queue induces
a positive total queue, which immediately implies that we can restrict ourselves to
s ∈ (0,t). Hence P(Q2,n > nb) equals

P

(
∃t > 0 : ∀s ∈ (0,t) :

1
n

n

∑
i=1

Ai(−t,−s) > b + c2t− c1s

)
.

Because for s ↑ t the requirement

1
n

n

∑
i=1

Ai(−t,−s) > b + c2t− c1s
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6

-
s

0

b+ c2t0

b+ c2τ1

b+ c2τ2

t0 τ1 τ2b+(c2− c1)τ1

b+(c2− c1)τ2

Fig. 12.1: Graphical representation of the overflow set. For different values of t, the
curve b + c2t− c1(t− s) has been drawn. Overflow occurs if there is a t > t0 such
that the empirical mean process lies, for s ∈ (0,t), above the corresponding curve.

reads 0 > b +(c2− c1)t, we can restrict ourselves to t > t0. We can interpret t0 as
the minimum time it takes to cause overflow in the second queue (notice that the
maximum net input rate of the second queue in a tandem system is c1− c2). 2

The crucial implication of the above lemma is that for analyzing P(Q2,n ≥ nb),
we only have to focus on the behavior of the empirical mean process. More con-
cretely,

P(Q2,n > nb) = pn[S
(t)] = P

(
1
n

n

∑
i=1

Ai(·) ∈ S(t)

)
, (12.3)

where the set of ‘overflow paths’ S(t) is given by

S(t) := { f ∈Ω : ∃t > t0,∀s ∈ (0,t) : f (−s)− f (−t) > b + c2t− c1s}.

Remark 12.4.2 A straightforward time-shift shows that the probability that the em-
pirical mean process is in S(t) coincides with the probability that it is in T, with

T := { f ∈Ω : ∃t > t0,∀s ∈ (0,t) : f (s) > b + c2t− c1(t− s)}. (12.4)

However, the set T is somewhat easier to interpret, see Figure 12.1. For different
values of t (i.e., τ2 > τ1 > t0 = b/(c1− c2)), the line b + c2t − c1(t − s) has been
drawn. The empirical mean process n−1 ∑n

i=1 Ai(·) is in T if there is a t > t0 such that
for all s ∈ (0,t) it stays above the line b + c2t− c1(t− s). Notice that T resembles
the set corresponding to the probability of long busy periods in a single queue, as
studied in [21]. ♦

Remark 12.4.3 As indicated above, our results are for centered sources, but, as
before, they can be translated easily into results for non-centered sources, cf. Re-
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mark 12.3.2. Then the traffic generated by Gaussian source i in the interval [s,t)
is A(s,t)+ µ(t− s), where A(s,t) corresponds to a centered source; here 0 < µ <
min{c1,c2} and s < t. Let q(µ ,c1,c2) be the probability that the second queue ex-
ceeds nb, given that input rate µ and service rates c1 and c2 are in force. From (12.2)
it follows immediately that

q(µ ,c1,c2) = q(0,c1−µ ,c2− µ),

and hence we can restrict ourselves to centered sources. ♦

12.4.2 Lower bound

In this section we start analyzing the logarithmic asymptotics of P(Q2,n > nb). More
specifically, we use ‘Schilder’ (Theorem 12.2.7) to formulate the decay rate as a
variational problem, and then we find a lower bound on this decay rate.

Decay rate as a variational problem. We now consider the decay rate (12.1) of
P(Q2,n > nb). We already saw in Equation (12.3) that P(Q2,n > nb) can be rewritten
as the probability that the empirical mean process is in S(t) (which is an open subset
of Ω ). The existence of the decay rate is now a consequence of Schilder’s theorem,
by showing (the plausible fact) that S(t) is an I-continuity set, i.e., that the infima of
I(·) over S(t) and its closure, say S(t), match. This proof of S(t) being an I-continuity
set is beyond the scope of this chapter, and can be found in Appendix A of [18].

Theorem 12.4.4
I(t)
c (b) = inf

f∈S(t)
I( f ) = inf

f∈S(t)
I( f ).

Lower bound on the decay rate. Our next goal is to derive a tractable lower bound
on I(t)

c (b). This is presented in Theorem 12.4.5.
Observe that

S(t) =
⋃

t>t0

⋂

s∈(0,t)

S
(t)
s,t with S

(t)
s,t := { f ∈Ω : f (−s)− f (−t) > b + c2t− c1s}.

Hence we are interested in the decay rate of the union of intersections. The decay
rate of a union of events is simply the minimum of the decay rates of the individual
events, as we have seen several times before. The decay rate of an intersection,
however, is not standard. In the next theorem we find a straightforward lower bound
on this decay rate. Define

Us,t := { f ∈Ω :− f (−t)≥ b + c2t; f (−s)− f (−t)≥ b + c2t− c1s}.

Theorem 12.4.5 The following lower bound applies:
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I(t)
c (b)≥ inf

t>t0
sup

s∈(0,t)
inf

f∈Us,t
I( f ). (12.5)

Proof. Clearly,

I(t)
c (b) = inf

t>t0
inf

f∈ ⋂

s∈(0,t)
S

(t)
s,t

I( f ).

Now fix t and consider the inner infimum. If f (−s)− f (−t) > b + c2t− c1s for all
s ∈ (0,t), then also ( f is continuous) f (−s)− f (−t)≥ b+c2t−c1s for all s ∈ [0,t].
Hence, ⋂

s∈(0,t)

S
(t)
s,t ⊆

⋂

s∈[0,t]

Us,t ⊆ Ur,t

for all r ∈ (0,t), and consequently

inf
f∈ ⋂

s∈(0,t)
S

(t)
s,t

I( f )≥ inf
f∈Ur,t

I( f ).

Now take the supremum over r in the right-hand side. 2

Theorem 12.4.5 contains an infimum over f ∈ Us,t . In the next lemma we show
how this infimum can be computed.

Before stating this lemma, we first introduce some additional notation. Recalling
‘bivariate Cramér’ [6], the bivariate large-deviations rate function of

(
n

∑
i=1

Ai(−t,0)

n
,

n

∑
i=1

Ai(−t,−s)
n

)

is, for y,z ∈ R and t > 0, s ∈ (0,t), given by Λ(y,z) := 1
2 (y,z) Σ(t − s,t)−1(y,z)T,

with

Σ(s,t) :=

(
v(t) Γ (s,t)

Γ (s,t) v(s)

)
.

We also define the following quantity, which plays a key rôle in our analysis:

k(s,t) := E(A(−s,0) | A(−t,0) = b + c2t)

= E(A(s) | A(t) = b + c2t) =
Γ (s,t)

v(t)
(b+ c2t). (12.6)

Recall Assumption 12.3.5: the standard deviation function was supposed to be
C2([0,∞)) and strictly increasing and strictly concave.

Lemma 12.4.6 Under Assumption 12.3.5, for t > t0 and s ∈ (0,t),

inf
f∈Us,t

I( f ) = ϒ (s,t) :=
{

Λ(b + c2t,b+ c2t− c1s), if k(s,t) > c1s;
(b + c2t)2/2v(t), if k(s,t)≤ c1s.
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Proof. Observe that

pn[Us,t ] ≡ P

(
n

∑
i=1

Ai(·)
n
∈ Us,t

)

= P

(
n

∑
i=1

Ai(−t,0)

n
≥ b + c2t;

n

∑
i=1

Ai(−t,−s)
n

≥ b + c2t− c1s

)
. (12.7)

We conclude that we can use ‘bivariate Cramér’ [6] to find the decay rate of pn[Us,t ].
We obtain

inf
f∈Us,t

I( f ) = infΛ(y,z),

where the last infimum is over y≥ b+c2t and z≥ b+c2t−c1s. Using that Λ(·, ·) is
convex, this problem can be solved in the standard manner. It is easily verified that
the contour of Λ that touches the line y = b + c2t does so at z-value

z⋆ :=
Γ (t− s,t)

v(t)
(b + c2t);

also, the contour that touches z = b + c2t− c1s does so at y-value

y⋆ :=
Γ (t− s,t)

v(t− s)
(b + c2t− c1s).

We first show that it cannot be that y⋆ > b + c2t, as follows. If y⋆ > b + c2t, then
the optimum would be attained at (y⋆,b+ c2t− c1s). Straightforward computations,
however, show that y⋆ > b + c2t would imply that (use Γ (t,t− s)≤

√
v(t)v(t− s) )

(√
v(t)−

√
v(t− s)

)
(b + c2t) >

√
v(t)c1s. (12.8)

This inequality is not fulfilled for s = 0 (0 6> 0) nor for s = t (b+c2t 6> c1t for t > t0).
As the left hand side of (12.8) is convex (in s) due to Assumption 12.3.5, whereas
the right hand is linear (in s), there is no s ∈ (0,t) for which the inequality holds.
Conclude that y⋆ > b + c2t can be ruled out.

Two cases are left:

A) Suppose z⋆ > b + c2t − c1s, or, equivalently, k(s,t) ≤ c1s. Then (b + c2t,z⋆) is
optimal, with rate function (b + c2t)2/2v(t), independent of s.

B) In the remaining case (where y⋆ ≤ b + c2t and z⋆ ≤ b + c2t− c1s) the optimum
is attained at the (b + c2t,b + c2t − c1s), i.e., the ‘corner point’. This happens if
k(s,t) > c1s, and gives the desired decay rate.

This proves the stated. As an aside we mention that if k(s,t) = c1s, then both regimes
coincide: Λ(b + c2t,b + c2t− c1s) = (b+ c2t)2/2v(t). 2

Summarizing, we have shown that, under Assumption 12.3.5, the following
lower bound applies:
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I(t)
c (b)≥ inf

t>t0
sup

s∈(0,t)
ϒ (s,t). (12.9)

12.4.3 Tightness; two regimes

For large values of c1 one would expect that the traffic characteristics are hardly
changed by traversing the first queue. Define

Lc(t) :=
(b + ct)2

2v(t)
,

and let tc denote a t for which Lc(t) is minimized. Then [18] shows that there is a
critical link rate

c⋆
1 := sup

s∈(0,tc2 )

k(s,tc2 )

s
,

above which the tandem system essentially behaves as a single queue, as formalized
in the following result.

Theorem 12.4.7 Under Assumption 12.3.5, if c1 ≥ c⋆
1, then

I(t)
c (b) = inf

t>t0
sup

s∈(0,t)
ϒ (s,t) = Lc2(tc2).

Remark 12.4.8 The approach we follow in this section to analyze the two-node
tandem network, can be easily adapted to the setting of an m-node tandem network,
with strictly decreasing service rates, i.e., c1 > .. . > cm — nodes i for which ci ≤
ci+1 can be ignored, cf. [3]. Note that ∑k

i=1 Qi,n is equivalent to the single queue in
which the sources feed into a buffer that is emptied at rate ck. This means that we
have the characteristics of both ∑m−1

i=1 Qi,n and ∑m
i=1 Qi,n, which enables the analysis

of Qm,n, just as in the two-node tandem case. ♦
As shown in [15, 18], for iOU input the lower bound (12.9) is actually tight (and

c1 ≤ c⋆
1), but this is not the case for fBm. The difficulty when looking for the most

likely path is that, for fixed t, we have to deal with an infinite intersection of events,
indexed by s ∈ (0,t). We found a lower bound on the decay rate of the intersection,
which corresponded to the least likely event in the intersection. As remarked earlier,
the lower bound is tight if this least likely event essentially implies the other events
in the intersection. Apparently, for iOU this is the case (and is the most likely path
equivalent to the weighted sum of two covariance functions), but for fBm it is not.

The question remained what the most likely path should be for fBm. To investi-
gate this issue, [16] studied first at a more elementary case. Consider the decay rate
of pn[V], with
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V :=
⋂

t∈(0,1)

Vt with Vt := { f ∈Ω : f (t)≥ t},

which could be interpreted as the event of having a busy period of length at least 1,
in a queue drained at unit rate. Norros [21] already provided several bounds on this
decay rate:

- as Vt ⊆ V, we have

− lim
n→∞

1
n

log pn[V]≥ sup
t∈(0,1)

t2

2t2H =
1
2

;

- as the norm of any feasible path is an upper bound, we have

− lim
n→∞

1
n

log pn[V]≤ I(χ) =: ϑ(H),

where χ(t) = t, for t ∈ (0,1).

The function ϑ (·) could be evaluated explicitly, and numerical investigations indi-
cated that there was still a modest gap between the lower bound (i.e., 1

2 ) and the
upper bound. In [16] the exact value for the decay rate was found. Notably, the
most likely path f ⋆ is for H ∈ ( 1

2 ,1) such that f ⋆(t) = t for t ∈ [0,τ]∪{1} (where
τ < 1

2 ), and that f ⋆(t) > t for t ∈ (τ,1); similarly, in the regime H ∈ (0, 1
2 ), we have

that f ⋆(t) = t for t ∈ {0}∪ [τ,1]. Interestingly, the most likely path is now a linear
combination of uncountably many covariance functions. The analysis is substan-
tially more involved than that of this chapter, but a number of concepts could be
still used; more specifically, the concept of least likely events turned out to be very
useful. The results of [16] also show that the ‘smoothness’ of the Gaussian process
under consideration plays an important rôle here, which also explains why for iOU
the lower bound (12.9) was tight, but for fBm not.

The above analysis for busy periods can be extended to tandem networks fed by
fBm, as is done in [15]. For c1 < c⋆

1, a part of the most likely path is linear (just as
for the busy-period problem described above).

12.4.4 Approximation

Interestingly, along the lines of Mannersalo and Norros [19, 20] also the following
approximation can be proposed:

I(t)
c (b)≈ inf

t≥t0

(b + c2t)2

2v(t)
; (12.10)

in [19, 20] this is called a (rough) full link approximation. The idea behind this
approximation is the following. If tc2 ≥ t0, and traffic has been generated at a more
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or less constant rate in [−tc2 ,0], then no (or hardly) traffic is left in the first queue
at time 0, and the approximation seems reasonably accurate. If on the other hand
tc2 < t0, then there will be traffic left in the first queue at time 0, so the input rate
needs to be pushed down; therefore t = t0 has to be chosen, such that the sources
are forced to transmit at about rate c1, and the first queue remains (nearly) empty.
Numerical experiments have indicated that this approximation is quite accurate, see
[15].

Example 12.4.9 – fBm. Choosing v(t) = t2H gives

tc2 =
b
c2

H
1−H

.

By Theorem 12.4.7,

I(t)
c (b) =

1
2

(
b

1−H

)2−2H (c2

H

)2H

for all c1 ≥ c⋆
1. Unfortunately, for general H there does not exist a closed-form

expression for c⋆
1. Straightforward calculus yields that

c⋆
1 =

c2

2H

(
sup

α∈(0,1)

1 +α2H− (1−α)2H

α

)
;

observe that in this case c⋆
1 does not depend on b. It can be verified that c⋆

1 is close
to (i.e., slightly larger than) c2/H.

Now turn to the case c1 < c⋆
1. It is readily verified that tc < t0 corresponds to

c1 < c2/H. We obtain

I(t)
c (b)≈ 1

2

(
b

c1− c2

)2−2H

c2
1,

based on the rough fill link approximation. ♦

12.5 Priority queues

In the previous section we analyzed overflow in the second queue of a tandem sys-
tem. This analysis was enabled by the fact that we had explicit knowledge of both
the first queue and the total queue. In the present section we use the same type of
arguments to solve the (two-queue) priority system.
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12.5.1 Lower bound

We consider a priority system with a link of capacity nc, fed by traffic of two classes,
each with its own queue. Traffic of class 1 does not ‘see’ class 2 at all, and conse-
quently we know how the high-priority queue Qh,n behaves. Also, due to the work-
conserving property of the system, the total queue length Qh,n +Qℓ,n can be charac-
terized. Now we are able, applying the same arguments as for the tandem queue, to
analyze the decay rate of the probability of exceeding some buffer threshold in the
low-priority queue. This similarity between tandem and priority systems has been
observed before, see for instance [7].

We let the system be fed by n i.i.d. high-priority (hp) sources, and an equal num-
ber of i.i.d. low-priority (lp) sources; both classes are independent. We assume that
both hp and lp sources are Gaussian. Define the means by µh and µℓ, and the vari-
ance functions by vh(·) and vℓ(·), respectively; also µ := µh +µℓ (where µ < c) and
v(·) := vh(·)+vℓ(·). We note that in this priority setting we cannot restrict ourselves
to centered processes. We denote the amount of traffic from the i-th hp source in
(s,t], with s < t, by Ah,i(s,t); we define Aℓ,i(s,t) analogously. Also Γh(s,t),Γℓ(s,t)
and Rh,Rℓ are defined as before.

Remark 12.5.1 Notice that this setting also covers the case that the number of
sources of both classes are not equal. Assume for instance that there are nα lp
sources. Multiplying µℓ and vℓ(·) by α and applying the fact that the Normal distri-
bution is infinitely divisible, we arrive at n i.i.d. sources. ♦

In the tandem situation we could, without loss of generality, center the Gaussian
sources. It can be checked easily that such a reduction property does not hold in the
priority setting, since there is no counterpart of Remark 12.4.3. Hence we cannot
assume without loss of generality that µh = µℓ = 0.

Analogously to Lemma 12.4.1, we obtain that P(Qℓ,n > nb) equals

P

(
∃t > 0 : ∀s > 0 :

1
n

n

∑
i=1

Ah,i(−t,−s)+
1
n

n

∑
i=1

Aℓ,i(−t,0) > b + c(t− s)

)
.

Let I(p)
c (b) be the exponential decay rate of P(Qℓ,n > nb); analogously to Theo-

rem 12.4.4 it can be shown that this decay rate exists. Similarly to the tandem case,
with f (·)≡ ( fh(·), fℓ(·)),

S
(p)
s,t := { f ∈Ω ×Ω : fh(−s)− fh(−t)− fℓ(−t) > b+ c(t− s)};

U
(p)
s,t :=

{
f ∈Ω ×Ω :

− fh(−t)− fℓ(−t)≥ b+ ct;
fh(−s)− fh(−t)− fℓ(−t)≥ b + c(t− s)

}
; (12.1)

P(Qℓ,n > nb) = P

((
1
n

n

∑
i=1

Ah,i(·);
1
n

n

∑
i=1

Aℓ,i(·)
)
∈
⋃

t>0

⋂

s>0

S
(p)
s,t

)
.



12 Queueing Networks with Gaussian Inputs 557

Theorem 12.5.2 The following lower bound applies:

I(p)
c (b)≥ inf

t>0
sup
s>0

inf
f∈U(p)

s,t

I( f ), (12.2)

with f̄h(t) := fh(t)− µht, f̄ℓ(t) := fℓ(t)− µℓt, and

I( f ) :=
1
2
|| f̄h||2Rh

+
1
2
|| f̄ℓ||2Rℓ

.

12.5.2 Tightness; two regimes

The infimum over f ∈ U
(p)
s,t can be computed explicitly, as in Lemma 12.4.6. As the

analysis is analogous to the tandem case, but the expressions are more complicated,
we only sketch the procedure. Again there is a regime in which one of the two
constraints is redundant. Define

kp(s,t) := E(Ah(s) | Ah(t)+ Aℓ(t) = b+ ct).

Using the convexity of the large-deviations rate function, it can be shown that, if

E(Ah(t− s)+ Aℓ(t) | Ah(t)+ Aℓ(t) = b + ct) > b + c(t− s),

only the first constraint in (12.1) is tightly met; it is equivalent to require that
kp(s,t) < cs. (If kp(s,t) ≥ cs either both constraints in (12.1) are met with equal-
ity, or only the second constraint is met with equality; exact conditions for these
two cases are easy to derive, but these are not relevant in this discussion.) As before,
under kp(s,t) < cs, we obtain the decay rate

inf
f∈U

(p)
s,t

I( f ) =
(b +(c− µ)t)2

2v(t)
, (12.3)

cf. the single queue with link rate nc; in the other cases the expressions are somewhat
more involved. Denote (in this section) by tc the value of t > 0 that minimizes the
right hand side of (12.3).

Similarly to the tandem case, there is a regime (i.e., a set of values of the link rate
c) in which I(p)

c (b) coincides with the decay rate of a single queue. In this regime,
which we call regime (A), conditional on a large value of the total queue length, it
is likely that the hp queue is empty, such that all traffic that is still in the system is
in the lp queue. Hence, for all c in

{c | ∀s > 0 : kp(s,tc) < cs} (12.4)

we conclude
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I(p)
c (b) =

(b +(c− µ)tc)2

2v(tc)
.

If c is not in the set (12.4), a condition can be found [18] under which the lower
bound of Theorem 12.5.2 is tight; we call this regime (B).

In the tandem case, we found that the single-queue result holds for c1 ≥ c⋆
1,

whereas it does not hold for c1 < c⋆
1; the threshold value c⋆

1 was found explicitly in
Section 12.4.2. In the priority setting there is not such a clear dichotomy. Consider
for instance the situation in which both types of sources correspond to Brownian
motions; vh(t)≡ λht, vℓ(t)≡ λℓt, and λ := λh +λℓ. Define

Ξ :=

√

µ2
ℓ +

λℓ

λh
(c− µh)2.

Then straightforward calculus yields that for (λh− λℓ)c ≤ λh(µh + 2µℓ)− λℓµh,
regime (A) applies (i.e., the single-queue result holds):

I(p)
c (b) =

2b(c− µ)

λ
,

whereas otherwise we are in regime (B):

I(p)
c (b) =

b(Ξ − µℓ)

λℓ
;

this is shown by verifying that the lower bound of Theorem 12.5.2 is tight for the
specific case of Brownian motion input. Using µh + µℓ < c, it can be verified easily
that this implies that for λh ≤ λℓ the single-queue solution applies, whereas for
λh > λℓ only for

c≤ λh(µh +2µℓ)−λℓµh

λh−λℓ
,

the single-queue solution applies.

12.5.3 Approximation

Our lower bound reads

I(p)
c,I (b) := inf

t>0
sup
s>0

ϒp(s,t), with ϒp(s,t) := inf
f∈U(p)

s,t

I( f ).

Just as we did above, Mannersalo and Norros [19] identify two cases. The same
solution is obtained for our regime (A), i.e., the situation in which, given a long
total queue length, the hp queue is relatively short. In regime (B) the hp queue
tends to be large, given that the total queue is long. To prevent this from happening,
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[19] proposes a heuristic (in line with the rough full link approximation that we
introduced for the tandem case) that minimizes I( f ) over

{ f ∈Ω ×Ω : ∃t > 0 :− fh(−t)− fℓ(−t)≥ b+ ct;− fh(−t)≤ ct}. (12.5)

Because regime (B) applies, the optimum paths in the set (12.5) are such that the
constraints on f are tightly met; consequently (12.5) is a subset of U

(p)
t,t . Hence the

resulting decay rate, which we denote by I(p)
c,II(b), yields a lower bound, but our lower

bound will be closer to the real decay rate:

I(p)
c,II(b) := inf

t>0
ϒp(t,t)≤ inf

t>0
sup
s>0

ϒp(s,t) = I(p)
c,I (b).

Remark 12.5.3 In the simulation experiments performed in [19], it was found that

the lower bound I(p)
c,II(b) is usually close to the exact value. Our numerical experi-

ments show that the hp buffer usually starts to fill shortly after the total queue starts
its busy period. This means that in many cases the error made by taking s = t is
relatively small. It explains why the heuristic based on set (12.5) performs well. ♦

12.6 Concluding remarks

In this chapter we have described a family of results on queueing networks with
Gaussian inputs. Under the many-sources scaling we have characterized the decay
rate of exceeding a predefined threshold. The type of networks is still rather limited;
future work may focus on a broad classes of networks (tree networks, tandem net-
works with exogenous input in the downstream queue, etc.); the structural results of
[26, 27] could be useful here.
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Chapter 13

Mean Values Techniques

Ivo Adan, Jan van der Wal

13.1 Introduction

This chapter presents the technique to determine mean performance characteris-
tics of queueing models, generally known as mean value analysis (MVA). The term
MVA is usually associated with queueing networks (QNs). However, the MVA tech-
nique is also very powerful when studying single-station queueing models. The
merits of MVA are in its intrinsic simplicity and its intuitively appealing derivation
based on probabilistic arguments. The intuition of MVA can also be used to develop

We would like to emphasize that this chapter is not intended as an exhaustive
survey of MVA. The main goal is to demonstrate the elegance and power of MVA for
a collection of queueing problems and, so as to speak, to whet the reader’s appetite
to apply MVA to new problems.

MVA ideas for single stations must have been around for a long time, although
it is hard to locate the exact origin. One of the reasons might be that the analysis
of single-server stations is usually based on transform techniques, yielding mean
values as a byproduct. MVA for QNs originated in the late seventies. The first MVA
ideas were independently invented by Schweitzer [11] and Bard [2] and were ap-
proximate in nature. Shortly after the first approximate MVA techniques (AMVA)
were developed, Lavenberg and Reiser [8, 9] discovered exact MVA. The advan-
tages of exact and approximate MVA were recognized soon thereafter and the MVA
literature for QNs grew rapidly.

The principle of MVA for single stations with Poisson arrivals is essentially based
on two key properties: Little’s law and the property that an arriving Poisson job finds
the system in equilibrium. The latter property is commonly referred to as the PASTA
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property: Poisson Arrivals See Time Averages. In product-form (PF) networks the
situation is similar. In open PF networks one again has these properties, although
the PASTA property formally does not hold, as there need not be Poisson processes
inside the network, but it is replaced by the equally powerful ASTA (Arrivals See
Time Averages) property or so-called Arrival Theorem. In closed PF networks the
arrival theorem is different: a job moving from one station to another does not find
the system in equilibrium, but finds it in the equilibrium as if this job has never been
in the system.

In the following sections we prefer to start with MVA ideas for single station sys-
tems. We will illustrate these ideas with a number of different applications demon-
strating the ease and power of this way of thinking. It should be pointed out that a
disadvantage of MVA for single stations (and in general) is that it provides mean
values only, so no second or higher moments, let be distributions.

13.2 PASTA property and Little’s law

The first key property that allows for a mean value approach is the fact that there is a
close relation between the distribution of the state of the system at an arrival moment
and the time average distribution of the system state. For Poisson arrivals this rela-
tion is the so-called PASTA property which is the acronym for: Poisson Arrivals See
the state of the system as the Time Average. It can be intuitively explained by the
memoryless property of the exponential inter-arrival times, as will be demonstrated
below (see, e.g., Kleinrock [15], pp. 118-119; for a rigorous proof see Wolff [14]).

Let X(t) denote the state of the system at time t; for example, X(t) may indicate
the number of jobs in the queue at time t. Further, let A be a subset of states. Then
the probability that an arriving Poisson job in (t,t + ∆) finds the system in subset A
is equal to

Pr[X(t) ∈ A|Arrival in(t,t + ∆t)] =
Pr[X(t) ∈ A,Arrival in(t,t + ∆t)]

Pr[Arrival in(t,t +∆ t)]

=
Pr[X(t) ∈ A]Pr[Arrival in(t,t + ∆ t)|X(t) ∈ A]

Pr[Arrival in(t,t +∆ t)]
.

Since Poisson arrivals are memoryless, we have

Pr[Arrival in(t,t + ∆t)|X(t) ∈ A] = Pr[Arrival in(t,t +∆ t)] ,

so that
Pr[X(t) ∈ A|Arrival in(t,t +∆ t)] = Pr[X(t) ∈ A].

In the sequel this property will be used when the system is in equilibrium, thus as
t → ∞. There is considerable freedom in the definition of the state of the system.
For example, if it is defined as the number of jobs in the queue, then this property,
applied to A = {0,1, . . . ,n}, yields that the queue length distribution on arrival is
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equal to the equilibrium queue length distribution. Alternatively, if the state indi-
cates the status of the server (1 whenever busy and 0 otherwise), then by applying
this property to A = {1}, we obtain that the probability the server is busy on arrival
is equal to the long-run fraction of time the server is busy.

The other key property is Little’s law [16, 13] stating that

L = λS,

where L is the mean number of jobs in the system, λ the arrival rate and S the mean
sojourn time. Again, one can exploit the freedom in the definition of the system to
obtain various relations. For example, in a station with a single queue and a single
server, the system can be defined as the queue (so without the server), yielding the
following relation between the mean queue length Q and the mean waiting time W ,

Q = λW. (13.1)

But, when the system is defined as the server, we obtain a relation between the
utilization ρ (i.e., fraction of time the server is busy) and the mean service time b,

ρ = λb. (13.2)

In the sequel, when writing down expressions on an arrival instant, we could
write, for example, ρ (a) or Q(a) with a indicating the arrival, but because of the
PASTA property these quantities are equal to the equilibrium quantities. Therefore
we will not do this.

13.3 MVA for single-station systems

Below we present a couple of examples of single-station systems for which the MVA
approach works; that is, for which performance characteristics, though their mean
values only, can be obtained using PASTA and Little’s law.

13.3.1 M|M|1

The simplest example of this principle is seen in the MVA approach for the M|M|1
queue with arrival rate λ and service rate µ , and in which jobs are served FCFS. For
stability we assume that λ < µ . Let Q denote the mean number of jobs in the queue
and ρ the probability that the server is busy (in equilibrium as well as on arrival).
The mean waiting time is W . Then we get

W = ρ
1
µ

+ Q
1
µ

. (13.1)
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Note that, by the memoryless property of exponentials, the mean residual service
time of the job in service upon arrival is also 1/µ . Relation (13.1) is usually referred
to as the arrival relation. Together with Little’s law (13.1), this results in

W =
ρ

1−ρ
1
µ

,

where ρ = λ/µ by virtue of (13.2).

13.3.2 M|G|1

This approach can be easily extended to jobs requiring general service times with
mean b and second moment b(2). For stability we require λb < 1. Then, for the mean
waiting time, we get

W = ρR+ Qb, (13.2)

where R is the mean residual service time on arrival. Now we cannot conclude that
R is equal to the mean service time b, as in the exponential case. According to the
PASTA property R is equal to the (time) average residual service time R given by
(see, e.g., Ross [17], pp. 424-425)

R =
b(2)

2b
=

b
2
(1 + c2), (13.3)

where c2 = (b(2)− b2)/b2 denotes the squared coefficient of variation of the ser-
vice time. Together with Little’s law (13.1) this immediately yields the Pollackzek-
Khinchin formula,

W =
ρR

1−ρ
. (13.4)

Note that W can also be interpreted as the mean amount of work in the system.

13.3.3 M|G|1 with priorities

Let us now consider a single server treating C classes of jobs, labeled 1, . . . ,C. Class
i jobs arrive according to a Poisson process at rate λi and require service times with
mean bi and second moment b(2)

i . The class i utilization is ρi = λibi. Jobs are served
according to non-preemptive priorities, i.e., class i has priority over all classes j
with j > i, but service interruptions are not allowed. Per class the service discipline
is assumed to be FCFS. For stability we require ρ1 + · · ·+ρC < 1.

Let Wi denote the mean waiting time of class i jobs and Qi the mean number of
class i jobs waiting in the queue. Then the arrival relation for class i is
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Wi = ∑
j≤i

Q jb j +∑
j

ρ jR j +Wi ∑
j<i

λ jb j , (13.5)

where R j is the mean residual service time of class j, so R j = b(2)
j /2b j .

On the right-hand side of (13.5), the first term is the mean waiting time due to the
higher or same priority jobs in the queue upon arrival. The second term is the mean
amount of residual work in service and the third term captures the higher priority
jobs that are expected to arrive and overtake the class-i job during its waiting time.

Using Little’s law,
Qj = λ jWj

and ρ j = λ jb j , equation (13.5) can be rewritten as

Wi = ∑
j≤i

ρ jWj +∑
j

ρ jR j +Wi ∑
j<i

ρ j ,

or
Wi(1−∑

j≤i
ρ j) = ∑

j<i
ρ jWj +∑

j
ρ jR j. (13.6)

For class 1 (for which there is no overtaking) this immediately results in

W1 =
∑ j ρ jR j

1−ρ1
. (13.7)

Note that for i > 1 the right hand side of (13.6) can be written as

ρi−1Wi−1 + ∑
j<i−1

ρ jWj +∑
j

ρ jR j = ρi−1Wi−1 +Wi−1(1− ∑
j≤i−1

ρ j), (13.8)

where, for the second and third term on the left, equation (13.6) is used with i re-
placed by i−1. This leads to the recursion

Wi(1−∑
j≤i

ρi) = Wi−1(1− ∑
j<i−1

ρ j), i = 2, . . . ,C,

from which one easily gets

Wi =
∑ j ρ jR j

(1−∑ j≤i ρ j)(1−∑ j<i ρ j)
, i = 1,2, . . . ,C. (13.9)

Note that (13.9) is indeed valid for i = 1, by virtue of (13.7).

13.3.4 M|G|1 with least attained service

In this section we consider a dynamic priority rule, the so-called Least Attained
Service (LAS) policy: the server gives priority to the job that has received the least
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amount of service. Now we obviously allow service interruptions; e.g., an arriving
job will immediately enter service, interrupting the one currently in service and
whose service will resume at the point where it was interrupted as soon as it is
the one again that has received the least amount of service. If the service time has
a decreasing hazard rate, the LAS policy is known to minimize the mean waiting
time among all policies which do not use information about the job sizes (see, e.g.,
Yashkov [19]).

For a job of size x, only jobs that have an attained service less or equal to x are
visible. Hence, it experiences a single server treating jobs according to LAS with a
truncated service time distribution

Fx(y) =

{
F(y) if y < x,
1 if y≥ x,

where F(·) is the (original) service time distribution. Let bx and b(2)
x denote the first

two moments of the truncated service time distribution,

bx =

ˆ x

0
(1−F(y))dy, b(2)

x =

ˆ x

0
2y(1−F(y))dy,

and ρx = λbx. The amount of work in this system does not depend on the order
in which jobs are served, and thus it is the same as in the FCFS version. Thus, by
(13.4), the mean amount of work is equal to

Wx =
ρxRx

1−ρx
,

where Rx = b(2)
x /2bx. Note that, by the PASTA property, Wx is also the mean amount

of work which an arriving job of size x finds in the system and which has to be served
before that job leaves the system. Hence, for the mean sojourn time Sx of a job of
size x we obtain, similar to (13.5),

Sx = x +Wx + λSxbx,

where the last term is the mean amount of work that arrives during the sojourn time
of the job of size x and which has to be served before that job leaves the system.
Thus,

Sx =
x +Wx

1−ρx
,

and by unconditioning on the job size x, we get that the mean sojourn time S of an
arbitrary job satisfies

S =

ˆ ∞

0
SxdF(x).
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13.3.5 Server vacations

There are many models for server vacations. A simple one is the following. When
the queue is empty after a service completion, the server takes a vacation. If upon
return of the server the queue is still empty, the server immediately takes another
vacation and otherwise the server starts servicing the queue.

Upon arrival the server is on vacation (i.e., not at work) with probability 1−ρ , in
which case the job has to wait for a residual vacation time. Let Rv denote the mean
residual vacation time. Then the arrival relation is

W = (1−ρ)Rv + Qb +ρR.

So, with Little’s law, Q = λW , one gets

W =
ρR

1−ρ
+Rv. (13.10)

Another simple vacation model is the following. When the server finishes the
service of the last customer in a busy period he takes a vacation until the K-th new
customer arrives. For example, the server could be an oven that is switched off partly
if there is no work left. Note that in this case the duration of the vacation depends
on the arrival times.

Clearly 1−ρ is the probability that a customer arrives during a server vacation. If
so, the customer is with equal probability the first, second or K-th customer in that
vacation period, so the residual duration of the vacation expressed in inter-arrival
times, is with equal probability K− 1, K− 2, or 0, so an average (K− 1)/2. This
results in

W = (1−ρ)
K−1

2
1
λ

+Qb +ρR.

With Little’s law one obtains

W =
ρR

1−ρ
+

K−1
2

1
λ

. (13.11)

Note that the first term in both (13.10) and (13.11) is equal to the mean waiting time
in the “ordinary” M|G|1 queue; see (13.4).

13.3.6 M|M|c

So far we considered single-server stations. Let us now consider an exponential
multi-server queue, the M|M|c with arrival rate λ and service rate µ . For stability
we assume λ < cµ .

If not all servers are busy on arrival, the waiting time is zero. If all servers are
busy, the job has to wait until the first departure and then continues to wait for as
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many departures as there were jobs waiting upon arrival. An inter-departure time is
the minimum of c exponentials with rate µ , and thus it is exponential with rate cµ .
The probability that all servers are busy (on arrival) is denoted by B (for busy say)
and it is easily computed as

B =
(cρ)c

c!

(
(1−ρ)

c−1

∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

, (13.12)

where ρ = λ/cµ denotes the server utilization. Hence, for the mean waiting time
W , we obtain

W = B
1

cµ
+Q

1
cµ

. (13.13)

Together with Little’s law (13.1) this leads to

W =
B

1−ρ
1

cµ
.

13.3.7 M|M|c with priorities

An extension of the previous model is the M|M|c priority system, say without pre-
emption, treating C classes of jobs. The classes are labeled 1, . . . ,C. All jobs are
statistically equal, i.e., all of them are exponential with the same mean 1/µ .

The waiting time of a class i job is determined by the number of jobs of the
various classes found waiting upon arrival and also depends on whether upon arrival
all servers are busy or not. The latter probability does not depend on the order in
which the jobs are served, so it is equal to the probability B in case of the FCFS
service discipline; see (13.12). This results in

Wi = B
1

cµ
+ ∑

j≤i
Q j

1
cµ

+ ∑
j<i

λ jWi
1

cµ
.

This expression is the same as (13.5) for the M|G|1 priority model, with b j replaced
by 1/(cµ) and the term ∑ j ρ jR j replaced by B/cµ . Thus also result (13.9) is the
same:

Wi =
B

(1−∑ j≤i ρ j)(1−∑ j<i ρ j)

1
cµ

, i = 1, . . . ,C.

In the models discussed sofar the MVA approach was rather straightforward, as
only the arrival relation and Little’s formula were used. In the next two sections we
consider models for which a somewhat different reasoning is needed.
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13.3.8 Retrials

There are many models where jobs finding a busy server on arrival leave imme-
diately and retry later, see Artalejo [1]; think of, e.g., call centers. A basic retrial
model is the following. Jobs arrive according to a Poisson process with rate λ at a
single server. If the server is busy on arrival, the job immediately leaves and goes
“in orbit” to return after an exponential time with mean 1/γ , and if the server is still
or again busy it goes back into orbit and so on.

The total time that a job is spending in orbit can be divided into two parts: time
during which the server is working and time during which the server is idle and
waiting for a new arrival, either one in orbit or one from the outside. During the orbit
time the server completes on average 1 + D services, where the first “1” is the job
found in service upon arrival, which requires a residual service time R, and D is the
(unknown) number of jobs that enter the server while the job under consideration is
in orbit. During the server’s idle time the job competes for the server; there are also
attempts to find the server idle while the server is busy, but these can be ignored. So
the retrial time is only counted when the server is idle and thus, by the memoryless
property of exponentials, the retrial time during idle time is again exponential with
mean 1/γ . Hence, the mean sojourn time S (retrial time plus service time) satisfies

S = (1−ρ) ·0 +ρ · (R +Db + 1/γ)+ b. (13.14)

Further, in any queueing system with jobs arriving one by one and are leaving
one by one, the number of jobs in the system just before an arrival and just after a
departure is equally distributed. Hence, in equilibrium, the mean number of arrivals
during the sojourn time is equal to the mean number of service completions during
the sojourn time, so

λ S = (1−ρ) ·0 + ρ · (1 +D). (13.15)

Solving the equations (13.14) and (13.15) yields

S =
ρR

1−ρ
+b +

ρ
1−ρ

1
γ

Again note that the first two terms are the mean sojourn time in the M|G|1 queue.

13.3.9 Polling

Another more complex model is the following polling model with a single server
for N queues, labeled 1, . . . ,N. Class i jobs arrive in queue i according to a Poisson
process at rate λi and require service times with mean bi and mean residual Ri.
The queues are served exhaustively in the order 1,2, . . . ,N,1, . . . and so on. When
switching to queue i there is a switch-over time with mean si and mean residual Rsi ;
the total switch-over time s = ∑ s j is assumed to be positive. The fraction of time
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the server is busy with queue i is ρi = λibi, where, for stability, it is assumed that
the total utilization ρ = ∑i ρi < 1. The cycle length of queue i is the time between
successive arrivals of the server to this queue. Its mean C is independent of i and
satisfies C = ρC + s, whence C = s/(1−ρ). The visit time to queue i is defined as
the switch-over time to queue i plus the time spent at queue i. Hence, the mean visit
time Vi is equal to si +ρiC for i = 1, . . . ,N. We will present the MVA approach for
the case of two queues. The generalization to N queues is straightforward, but the
notations become involved. Let us consider a job of class 1. Upon its arrival the job
has to wait for all Q1 jobs. Further we distinguish three arrival situations. The job
arrives (1) during the switch-over time to queue 1, (2) during the service time of a
class 1 job or (3) during a visit to queue 2. The probability for case (1) is si/C, for
case (2) ρ1 and for case (3) V2/C. This results in

W1 = Q1b1 +ρ1R1 +
s1

C
Rs1 +

V2

C
(RV2 + si) , (13.16)

where RV2 denotes the mean residual visit time to queue 2. Substituting Little’s law,
Q1 = λ1W1, we get

Q1 =
λ1

1−ρ1

(
ρ1R1 +

s1

C
Rs1 +

V2

C
(RV2 + si)

)
. (13.17)

In here there are still two unknowns, namely Q1 and RV2 . In order to obtain more
equations we first condition Q1 on the visit time. With Qi, j the mean number of class
i jobs during a visit to queue j, we have

Q1 =
V1

C
Q1,1 +

V2

C
Q1,2 . (13.18)

Note that, because of the exhaustive discipline, there are no class 1 jobs left at the
start of the visit to queue 2. So Q1,2 is just the mean number of class 1 jobs that
arrived during the visit to queue 2. Since the mean age of the visit to queue 2 is
equal to the mean residual visit time to queue 2, it follows

Q1,2 = λ1RV2 . (13.19)

Finally, we observe that, because of the exhaustive discipline,

RV2 = Q2,2
b2

1−ρ2
+

s2

V2

Rs2

1−ρ2
+

ρ2C
V2

R2

1−ρ2
. (13.20)

Similarly, starting from a class 2 arrival, one gets another set of equations. From
the equations (13.17)-(13.20) and the corresponding ones for a class 2 arrival, the
unknowns Qi, j , the two Qi and the two RVi can be readily solved. So we see that,
although the reasoning has been a little bit less standard, still only MVA arguments
are needed to obtain the mean waiting times for this polling model.



13 Mean Values Techniques 571

13.4 AMVA for single-station systems

When an exact analysis is intractable, the ideas of MVA may also be applied heuris-
tically to obtain approximations; this is demonstrated below for some single-station
systems.

13.4.1 M|G|c

In the M|G|c system, no exact results are available for the mean waiting time W , but
the MVA approach can be used heuristically to derive an excellent approximation.
Let λ be the arrival rate, b the mean service time and R the mean residual service
time, such that ρ = λb/c < 1 (to guarantee stability). If all servers are busy on
arrival, the job first has to wait until the first departure and then continues to wait
for as many departures as there were jobs waiting upon arrival. By assuming, as an
approximation, that departures occur c times faster with c servers than with a single
server, we get (cf. (13.13))

W = B
R
c

+Q
b
c
, (13.1)

where B is the probability that all servers are busy. Although this probability is not
known exactly, it appears to be fairly insensitive to the service time distribution.
Hence, it can be well approximated by (13.12), the probability that all servers are
busy in the M|M|c with the same arrival rate and same mean service times. Another
heuristic derivation of (13.1) is the following. Conditioning on the event that all
servers are busy on arrival, and assuming that R is the mean residual service time
of each server, the mean total amount of work just before the arrival is cR + Q+b,
where Q+ is the mean conditional queue length. By assuming that the mean residual
service times are also R when the job goes into service, the mean total amount of
work just before the arrival is also equal to (c−1)R+ cW+, where W+ is the mean
conditional waiting time. Hence,

cR +Q+b = (c−1)R + cW+.

Multiplying with B, and using BQ+ = Q and BW+ = W , this equation reduces to
(13.1). From (13.1), together with Little’s law (13.1), we obtain the approximation

W =
B

1−ρ
R
c
,

where B is given by (13.12).
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13.4.2 M|G|c with priorities

The approximation for the mean waiting of the previous model can be readily ex-
tended to the M|G|c non-preemptive priority system treating C classes of jobs, all
with statistically equal service times. Again by assuming, as an approximation, that
departures occur c times faster with c servers than with a single server, we get, sim-
ilar to (13.5) in the single-server case,

Wi = B
R
c

+ ∑
j≤i

Q j
b
c

+ ∑
j<i

λ jWi
b
c

(13.2)

and thus also, similar to (13.9),

Wi =
B

(1−∑ j≤i ρ j)(1−∑ j<i ρ j)

R
c
, i = 1, . . . ,C.

13.5 ASTA property in PF networks

We now move our attention from single station systems to networks of stations. For
ease of presentation we will restrict our attention to multi-server stations servicing
jobs according to the FCFS discipline. The basic tools of MVA for single station
systems are the PASTA property and Little’s law. Clearly, the latter is also applicable
to networks of stations, but the PASTA property does not hold any longer, as there
need not be Poisson processes inside the network. Hence, in this section, we will
establish an extension of PASTA to PF networks, i.e., the so-called ASTA property
or Arrival Theorem.

13.5.1 Open single-class PF networks

We first consider an open single-class network consisting of M multi-server stations,
numbered m = 1,2, . . . ,M, and each with cm exponential servers with service rate
µm. Jobs arrive at the network according to a Poisson process at rate λ and enter the
network in station m with probability qm. The routing of jobs through the network
is Markovian: after visiting station m, a job moves to station n with probability pmn

or leaves the system (with probability pm0 (so ∑M
n=0 pmn = 1). Let P be the matrix of

routing probabilities pmn, m,n = 1, . . . ,M. We assume that Pn tends to 0 as n tends to
infinity, which means that each job will eventually leave the network. Let Λm denote
the total (external and internal) arrival rate at station m. These rates are the unique
solution of the so-called traffic equations,
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Λm = λqm +
M

∑
n=1

Λn pnm, m = 1, . . . ,M. (13.1)

For stability it is now assumed that Λm < cmµm for m = 1, . . . ,M. Due to the as-
sumptions of exponential interarrival and service times and Markovian routing, the
state of the network is fully described by the vector k = (k1, . . . ,kM), where km(≥ 0)
denotes the number of jobs in station m. It is well-known (cf. Jackson [7]) that the
equilibrium probability p(k) has a product form, i.e.,

p(k) =
1
G

p1(k1)p2(k2) · · · pM(kM) , (13.2)

where G is the normalization constant and pm(km) are (up to a constant) identical to
the queue length probabilities of the M|M|cm with arrival rate Λm and service rate
µm. So, writing vm(l) = min(cm, l),

pm(km) =
km

∏
l=1

1
vm(l)

(
Λm

µm

)km

, km ≥ 0 . (13.3)

For this network the arrival theorem is more or less a copy of the PASTA prop-
erty: If a job enters the network in station m, jumps from station m to n or leaves
the network in station m, it always sees the rest of the system in equilibrium. The
proof heavily relies on the PF equations (13.2)-(13.3). We demonstrate this for a
job jumping from station m to n. The probability that this job sees the rest of the
network in state k is equal to the number of times per time unit that a job jumps
from m to n and sees k divided by the total number of jumps per time unit from m
to n. By (13.2), the numerator is equal to

p(k + em)vm(km +1)µmpmn = p(k)Λm pmn,

where em denotes the unit vector with a one at position m. Since the denominator is
equal to Λm pmn, it follows that the probability that the network is seen in state k is
p(k), which proves the arrival theorem.

13.5.2 Open multi-class PF networks

Let us consider a network servicing C different job classes. Class i jobs arrive ac-
cording to a Poisson process at rate λi, i = 1, . . . ,C. Per class the routing is again
Markovian: class i jobs enter the network in station m with probability qim, and after
visiting station m, they move to station n with probability pimn or leave the sys-
tem with probability pim0. The service rate of each of the cm servers in station m is
the same µm for all job classes. For stability it is needed that ∑C

i=1 Λim < cmµm for
m = 1, . . . ,M, where Λim is the total arrival rate of class i at station m. These rates
can be determined from traffic equations analogous to (13.1). The global state of
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the network can be described by the vector k = (k1, . . . ,kM), where km is again a
vector, i.e., km = (k1m, . . . ,kCm) where kim denotes the number of class i jobs in sta-
tion m. The total number of jobs in station m is denoted by km. Note that this global
description does not lead to a Markov process. To obtain a Markov process, though,
a detailed state description is required by including the order in which the jobs are
waiting in the queue. In terms of the global states, the equilibrium probability p(k)
assumes the form

p(k) =
1
G

p1(k1)p2(k2) · · · pM(kM) , (13.4)

where

pm(km) = pm(k1m,k2m, . . . ,kCm) =

(
km

k1m, . . . ,kCm

) km

∏
l=1

1
vm(l)

C

∏
i=1

(
Λim

µm

)kim

.

(13.5)
The multinomial coefficient reflects the (remarkable!) property that, in terms of the
detailed state description, all queue orders are equally likely. Based on the above PF,
it can be shown, along the same lines as in the previous section, that a job arriving
at a station sees the network in equilibrium.

13.5.3 Closed multi-class PF networks

In this section we consider a closed multi-class network. The number of class i jobs
circulating in the network is Ki, i = 1, . . . ,C, where Ki is referred to as the population
of class i and K = (K1, . . . ,KC) is the population vector. After visiting station m,
class i jobs move to station n with probability pimn, where ∑M

n=1 pimn = 1, so jobs
cannot escape from the network. Let fim denote the relative arrival rate or visiting
frequency of class i at station m. These rates satisfy the following traffic equations
(cf. (13.1)),

fim =
M

∑
n=1

fin pinm, m = 1, . . . ,M.

Note that the ‘real’ arrival rates Λim(K), which now depend on the population K, are
more difficult to obtain (see section 13.7), but they clearly satisfy

Λim(K)

Λin(K)
=

fim

fin
. (13.6)

The equilibrium probability p(k) satisfies the same PF equations (13.4)-(13.5) as
the open system, the only difference being that Λim is now replaced by fim and the
normalization constant G is computed as

G = G(K) = ∑
k∈S(K)

p1(k1)p2(k2) · · · pM(kM) ,
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where S(K) is the set of all global states in a network with population K. The ar-
rival theorem for a closed network with population K states that if, after completing
service, a class i job jumps from station m to n, it sees the rest of the network in
the equilibrium that corresponds to a population K− ei, i.e., with one job of its own
class less. This is a remarkable result: although the job we are looking at has al-
ways been in the system and thus has influenced the process in the past, when we
look at the system at a jump moment, the rest of the system looks as if the job has
never been there. The proof is based on the PF (13.4)-(13.5). The probability that
a class i job jumping from station m to n sees the rest of the network in state k (in
S(K− ei)) is equal to the number of class i jumps per time unit from m to n seeing
state k divided by the total number of class i jumps per time unit from m to n. By
(13.4)-(13.5), the numerator is equal to

p(k1, . . . ,km + ei, . . . ,kM)
kim +1
km + 1

vm(km + 1)µmpimn

=
1

G(K)
p1(k1) · · · pm(km) · · · pM(kM) fim pimn ,

where we use that any order of jobs in station m is equally likely, and thus the proba-
bility that a departure from m is of class i is equal to (kim +1)/(km+1). Accordingly,
the denominator can be rewritten as

∑
l∈S(K−ei)

p(l1, . . . , lm + ei, . . . , lM)
lim +1
lm + 1

vm(lm + 1)µmpimn

=
1

G(K) ∑
l∈S(K−ei)

p1(l1) · · · pM(lM) fim pimn =
G(K− ei)

G(K)
fim pimn .

Hence, the probability that the network is seen in state k is equal to

1
G(K− ei)

p1(k1) · · · pM(kM) ,

which is the equilibrium probability for the network with population K−ei of being
in state k, and thus proves the arrival theorem. Finally, it is worthwhile to mention
that the product-form solution, and thus also the arrival theorem for open and closed
networks remain valid for fixed routing. Thus, for example, a closed network in
which class 1 jobs cyclically visit stations 1, 2, 1, 3, 1, 2, ... (so f11 = 2, f12 = f13 =
1), also is of product form. Now we are equipped with the right tools, ASTA and
Little’s law, to apply MVA to networks of queues.
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13.6 MVA for open PF networks

In this section we consider the open multi-class PF network introduced in Section
13.5.2. Let Wim denote the mean waiting time of class i jobs in station m and Qim the
mean number of class i jobs waiting in the queue. Further, Bm is the probability that
all servers in station m are occupied, or by ASTA, the probability that an arriving
job has to wait. Then, by ASTA, we get for the waiting time of an arriving class i
job (cf. (13.13))

Wim = Bm
1

cmµm
+

C

∑
j=1

Q jm
1

cmµm
.

Clearly, the waiting time in station m does not depend on the class. Hence, together
with Little’s law, Q jm = Λ jmWjm = Λ jmWim, this immediately yields

Wim =
Bm

1−ρm

1
cmµm

, (13.1)

where ρm denotes the server utilization, given by

ρm =
∑C

j=1 Λ jm

cmµm
.

To determine Bm, note that from (13.4)-(13.5) one may easily show that the marginal
distribution of the total number of jobs in station m is identical to the distribution of
the number of jobs in the M|M|cm with arrival rate ∑C

j=1 Λ jm and service rate µm.
Hence, Bm is equal to (cf. (13.12))

Bm =
(cmρm)cm

cm!

(
(1−ρm)

cm−1

∑
n=0

(cmρm)n

n!
+

(cmρm)c

c!

)−1

. (13.2)

13.7 MVA for closed single-class PF networks

The analysis of closed PF networks appears to be slightly more complicated than
for open networks. It will be first demonstrated for the simplest case, namely:

Single class, single servers

Let us consider a closed single-class PF network with single server stations (cm = 1
for all m) and population K. By ASTA, the mean waiting time Wm(K) of an arriving
job in station m satisfies
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Wm(K) = ρm(K− 1)
1

µm
+ Qm(K−1)

1
µ

. (13.1)

Further we have Little’s law,

Qm(K) = Λm(K)Wm(K) , (13.2)

and

ρm(K) = Λm(K)
1

µm
, (13.3)

The first difference with open networks is that equation (13.1) is recursive in the
population size, and the second difference is that the arrival rate (or throughput)
Λm(K) is not known. Fortunately the rates Λm(K) can be computed once the waiting
times Wm(K) are known. To see this, we add the equations (13.2)-(13.3) over all
stations and use (13.6) to obtain

K =
M

∑
n=1

(Qn(K)+ ρn(K)) =
M

∑
n=1

Λn(K)

(
Wn(K)+

1
µn

)

=
Λm(K)

fm

M

∑
n=1

fn

(
Wn(K)+

1
µn

)
.

Hence,

Λm(K) = K
fm

C(K)
, (13.4)

where

C(K) =
M

∑
n=1

fn

(
Wn(K)+

1
µn

)
.

Note that C(K) is the mean duration of a (generalized) cycle in which station n is
visited fn times, n = 1, . . . ,N. An appealing interpretation of (13.4) is the following.
In each cycle, station m is visited fm times, and thus fm/C(K) is the mean number
of times per time unit that a (tagged) job is visiting station m. So, multiplication of
fm/C(K) by the total number of circulating jobs obviously yields the throughput of
station m. The relations (13.1)-(13.4) can be used to recursively calculate Wm(k),
Λm(k), Qm(k) and ρm(k) for populations starting from k = 0 up to k = K, where
initially Qm(0) = ρm(0) = 0 for all m.

Single class, multi servers

Let us now consider a network with multi-server stations. Then we only need to
adapt the relation for Wm(K), while (13.2) and (13.4) remain valid. In the multi-
server case we have
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Wm(K) = Bm(K−1)
1

cmµm
+Qm(K− 1)

1
cmµm

, (13.5)

where Bm(K) denotes the probability that all servers in station m are occupied. Let
pm(k;K) denote the probability of k jobs in station m, then

Bm(K) =
K

∑
k=cm

pm(k;K) .

Thus, to compute Bm(K), we need the marginal queue length probabilities of station
m. These probabilities can be found by balancing the number of transitions per time
unit between states k−1 and k: the rate from k to k−1 is pm(k;K)vm(k)µm and, by
ASTA, the rate from k−1 to k is Λm(K)pm(k−1;K−1). Hence,

pm(k;K) =
Λm(K)

vm(k)µm
pm(k−1;K− 1) , k = 1, . . . ,K, (13.6)

where pm(0;K) follows from the normalization,

pm(0;K) = 1−
K

∑
k=1

pm(k;K) . (13.7)

The relations (13.2) and (13.4)-(13.7) form an algorithm to recursively calculate
Wm(k), Λm(k), Qm(k) and pm(·;k) for populations starting from k = 0 up to k = K,
where initially Qm(0) = 0 and pm(0;0) = 1 for all m. We remark that the “1−” in
(13.7) may cause numerical problems in bottleneck stations (i.e., stations with an
extremely high load). A numerically stable (but more involved) solution, though, is
presented in Casale [4].

Single class, queue-dependent servers

This algorithm can be readily extended to networks with queue-dependent servers;
see Reiser [10]. The amount of work of each job in station m is assumed to be
exponentially distributed with mean 1/µm and the (single!) server works at rate
vm(k) when k jobs are present in station m. Note that in the special case vm(k) =
min(cm,k), station m reduces to an ‘ordinary’ multi-server station with cm servers.
For this network, relation (13.5) needs to be adapted, since the waiting time and
actually, the whole sojourn time of an arriving job is not only determined by the
situation encountered on arrival, but also by arrivals after the one of the tagged job.
To obtain a relation for the mean sojourn time, we apply Little’s law to station m,
yielding

Λm(K)Sm(K) = Lm(K) =
K

∑
k=1

kpm(k;K) .
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Dividing both sides of the above equation by Λm(K) and using (13.6), we obtain

Sm(K) =
K

∑
k=1

k
vm(k)µm

pm(k−1;K− 1) .

Together with Little’s law, Lm(K) = Λm(K)Sm(K), the equation for the throughput

Λm(K) = K
fm

∑M
n=1 fnSn(K)

,

and the equations (13.6)-(13.7), we can again recursively calculate Sm(k), Λm(k),
Lm(k) and pm(·;k) for all populations k = 0 up to K.

13.8 MVA for closed multi-class PF networks

The extension to closed multi-class networks with multi-server stations is straight-
forward. The mean waiting time Wim(K) of an arriving class i job in station m satis-
fies

Wim(K) = Bm(K− ei)
1

cmµm
+

C

∑
j=1

Q jm(K− ei)
1

cmµm
. (13.1)

Note that, as opposed to open multi-class networks, the mean waiting time does
depend on the class. Further, we have

Λim(K) = Ki
fim

∑M
n=1 fin

(
Win(K)+ 1

µn

) . (13.2)

and by Little’s law,
Qim(K) = Λim(K)Wm(K) . (13.3)

The probability Bm(K) of cm busy servers in station m is equal to

Bm(K) =
K1+···+KC

∑
k=cm

pm(k;K) ,

where the queue length probabilities pm(k;K) satisfy

pm(k;K) =
C

∑
j=1

Λ jm(K)

vm(k)µm
pm(k−1;K− e j) , k = 1, . . . ,K1 + · · ·+KC, (13.4)

and pm(0;K) follows again from the normalization equation. Together, relations
(13.1)-(13.4) form a recursive algorithm for the calculation of the mean waiting
times in a closed network. Note that this algorithm suffers from the curse of di-
mensionality: the complexity of the algorithm is determined by the number of steps
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needed to go through all ∏C
i=1(Ki + 1) sub-populations of K, and thus, already for

a moderate number of classes and number of jobs per class, the number of steps
becomes so large that it is no longer feasible to execute this algorithm. Fortunately,
as we will see in section 13.12, there exist good approximations.

13.9 AMVA for open networks

Exact analysis of open networks with generally distributed service times is ex-
tremely difficult and in most cases intractable. For large randomly routed networks,
however, it is reasonable to expect that heuristic application of MVA might pro-
duce fairly accurate predictions for mean waiting times (see also chapters 5 and 6 in
Buzacott and Shanthikumar [3]). To illustrate this, we consider an open multi-class
network with multi-server stations, and denote by bim and Rim the mean service
time and mean residual service time, respectively, of class i jobs in station m. Then
the mean service time bm and mean residual service time Rm of an arbitrary job in
station m are

bm =
C

∑
i=1

Λim

Λm
bim , Rm =

C

∑
i=1

ρim

ρm
Rim ,

where Λm = ∑C
i=1 Λim, ρim = Λimbim/cm and ρm = ∑C

i=1 ρim. Then for all classes the
mean waiting time in station m approximately satisfies (cf. (13.1))

Wm = Bm
Rm

cm
+ Qm

bm

cm
,

where Bm is approximated by (13.2). Together with Little’s law, Qm = ΛmWm, this
immediately yields the approximation

Wm =
Bm

1−ρm

Rm

cm
.

The mean sojourn time in station m does depend on the class; for a class i job we
have Sim = Wm + bim. The above approximation may work well for large randomly
routed networks, but in other cases it might be better to resort to decomposition
approaches that approximate each station by a G|G|c queue with an appropriate
arrival process, see e.g. Whitt [18].

13.10 AMVA for closed single-server networks

In this section we consider closed single-server networks. The case of multi-server
networks is briefly discussed in the next section. So far we only considered PF
networks. Now we want to relax some of the conditions required for the existence
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of a PF. The first one concerns the requirement of the same exponential service times
for all job classes. The second one is the FCFS service discipline. Relaxing these
conditions leads to non-PF networks, and thus we have to look for approximations.

13.10.1 Class-dependent general service times

Let us assume that the service time requirement of a class i job in station m follows
a general distribution with mean bim and let Rim denote the mean residual service
time. Heuristic application of ASTA leads to

Wim(K) =
C

∑
j=1

(ρ jm(K− ei)R jm +Q jm(K− ei)b jm) , (13.1)

where ρ jm(K) is the utilization of station m by class j jobs, i.e., ρ jm(K)=Λ jm(K)b jm.
The relation for the throughput Λim(K) is given by (cf. (13.2))

Λim(K) = Ki
fim

∑M
n=1 fin (Win(K)+ bin)

.

and by Little’s law, the mean number in the queue satisfies Qim(K)=Λim(K)Wim(K).

The above relations provide an MVA algorithm for the calculation of mean wait-
ing times. However, the errors can be significant when the variability of the service
times is large. To easily see this, consider the single-class case and write (see (13.3)),

Rm =
bm

2
(1 + c2

m),

where c2
m is the squared coefficient of variation of the service time. Then (13.1)

simplifies to

Wm(K) = ρm(K−1)
bm

2
(1+ c2

m)+ Qm(K−1)bm .

Multiplication of both sides by Λm(K), yields

Qm(K) = ρm(K− 1)
ρm(K)

2
(1 + c2

m)+ Qm(K−1)ρm(K) .

Clearly, the left-hand side is bounded by K, while the right-hand side can get arbi-
trarily large as c2

m tends to infinity. Hence, in using AMVA relations such as (13.1),
one should be careful when the variability of the service times is very large.
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13.10.2 Priorities

Now consider the case jobs in station m are no longer treated FCFS, but according
to non-preemptive priorities, where class 1 has the highest and class C the lowest
priority. Then, by heuristic application of ASTA, relation (13.1) should be adapted
as

Wim(K) =
C

∑
j=1

ρ jm(K− ei)R jm + ∑
j≤i

Q jm(K− ei)b jm +Wim(K)∑
j<i

Λ jm(K− ei)b jm

=
C

∑
j=1

ρ jm(K− ei)R jm + ∑
j≤i

Q jm(K− ei)b jm +Wim(K)∑
j<i

ρ jm(K− ei). (13.2)

The relations for Λim(K) and Qim(K) remain the same.

13.10.3 Multiple visits to a station

Consider a network where each class of jobs can make several visits to a station
during a cycle, each visit involving a different exponential service requirement. This
is again not a PF, but it may be modeled by AMVA as follows. Let nim denote the
number of distinct types of service that a class i job receives at station m and let
1/µimk denote the mean service requirement for a type k service. Further, let fimk
denote the mean number visits to station m during a cycle requiring a type k service.
Then the mean sojourn time of a class i job in station m receiving a type k service is
(approximately) equal to

Simk(K) =
C

∑
j=1

n jm

∑
l=1

Ljml(K− ei)
1

µ jml
+

1
µimk

,

where Ljml(K) is the mean number of class j jobs in station m for a type l service.
By Little’s law,

Limk(K) = Λimk(K)Simk(K),

and the throughput Λimk(K) satisfies

Λimk(K) = Ki
fimk

∑M
n=1 ∑nin

l=1 finlSinl(K)
.

The above set of equations leads again to a recursive algorithm to compute mean
sojourn times and mean cycle times.
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13.11 AMVA for closed multi-server networks

In this section we briefly discuss AMVA for multi-server networks. For ease of
presentation we assume that the distribution of the service requirement in station m
is the same for each class, with mean bm. Let Rm denote the mean residual service
requirement. AMVA yields (cf. (13.1))

Wim(K) = Bm(K− ei)
Rm

cm
+

C

∑
j=1

Q jm(K− ei)
bm

cm
.

Further,

Λim(K) = Ki
fim

∑M
n=1 fin (Win(K)+ bn)

.

and by Little’s law, Qim(K) = Λim(K)Wim(K).
To estimate Bm(K) we may avoid the calculation of queue length probabilities

by approximating Bm(K) by the probability of cm busy severs in the corresponding
M|M|cm queue with arrival rate ∑C

j=1 Λ jm(K) and mean service time bm,

Bm(K) =
(cmρm(K))cm

cm!

(
(1−ρm(K))

cm−1

∑
n=0

(cmρm(K))n

n!
+

(cmρm(K))c

c!

)−1

,

where ρm(K) = ∑C
j=1 Λ jm(K)bm/cm. This completes again the set of equations that

can be used to recursively calculate the mean waiting times. The extension from
FCFS to priorities is straightforward. If jobs in station m are served according to
non-preemptive priorities, with class 1 given the highest priority, then the relation
for the mean waiting time becomes (cf. (13.2) and (13.2))

Wim(K) = Bm(K− ei)
Rm

cm
+ ∑

j≤i
Q jm(K− ei)

bm

cm
+Wim(K)∑

j<i
Λ jm(K− ei)

bm

cm

= Bm(K− ei)
Rm

cm
+ ∑

j≤i
Q jm(K− ei)

bm

cm
+Wim(K)∑

j<i
ρ jm(K− ei) ,

where ρ jm(K) = Λ jm(K)bm/cm.

13.12 The Schweitzer-Bard approximation

The MVA algorithm for closed multi-class networks suffers from the curse of di-
mensionality. To illustrate the problem and one of its solutions, we consider a multi-
class PF network with single-server FCFS stations and class-independent exponen-
tial service times. The mean sojourn time Sim(K) of a class i job in station m satisfies



584 Ivo Adan, Jan van der Wal

Sim(K) =
C

∑
j=1

Ljm(K− ei)
1

µm
+

1
µm

, (13.1)

where by Little’s law, the mean number of jobs Lim(K) in station m is given by

Lim(K) = Λim(K)Sim(K) , (13.2)

and the class i throughput of station m follows from

Λim(K) = Ki
fim

∑M
n=1 finSin(K)

. (13.3)

The set of equations (13.1)-(13.3) forms a recursive algorithm to compute the 3CM
mean values Sim(K), Lim(K) and Λim(K). However, the number of sub-populations
of K one needs to go through is ∏C

i=1(Ki +1). Hence, already for a moderate number
of classes and number of jobs per class, the number of sub-populations becomes
too large. Then we need an approximation. One such an approximation is due to
Schweitzer [11] and Bard [2]. The idea is to break the recursion in (13.1) by adopting
the following approximation assumption: an arriving type i job sees the system in
equilibrium with a population K instead of K− ei. Thus the mean number of jobs
seen on arrival is the mean number in a network including himself. But, of course,
the arriving class i job does not have to wait for himself. Therefore, to avoid self
queueing, the mean number Lim(K) is multiplied by the factor (Ki− 1)/Ki (which
vanishes when Ki = 1; see also [12]). Hence, it is assumed that, approximately,

Ljm(K− ei) = Ljm(K), j 6= i, (13.4)

and

Lim(K− ei) =
Ki− 1

Ki
Lim(K). (13.5)

Substitution of (13.4)-(13.5) in (13.1) results in

Sim(K) = ∑
j 6=i

L jm(K)
1

µm
+

Ki−1
Ki

Lim(K)+
1

µm
. (13.6)

Hence, the recursive set of equations (13.1)-(13.3) is turned into a set of fixed point
equations (13.2), (13.3) and (13.6) for 3CM unknowns, namely Sim(K), Lim(K) and
Λim(K). Its solution can be found by successive substitutions. In practice, successive
substitutions converges quickly. In theory, however, convergence and uniqueness of
the solution of the set of equations (13.2), (13.3) and (13.6) is still an open problem.
Typically, the result of the Schweitzer-Bard approximation is within 5−10% of the
exact values for the throughputs Λim(K) and within 15−30% of the exact values for
the mean values Sim(K) and Lim(K).
There are quite a few ways in which one can approximately solve the MVA equa-
tions. In [5] several of these approaches are formulated in a unifying framework.
A simple improvement on this fixed point scheme is to combine MVA and the
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Schweitzer-Bard approximation as follows; see, e.g., Chapter 4 in Van Doremalen
[6]. First use the Schweitzer-Bard fixed point scheme to approximate the per-
formance characteristics for all possible population vectors with one job less, so
K− e1, . . . ,K− eC. Then compute the performance characteristics for the popula-
tion K in one MVA step. This approach is known as first order depth improvement.
It reduces the errors to 1% with an occasional error of 5%. A further improvement
is that the Schweitzer-Bard fixed point scheme is used for all populations with two
jobs less and MVA thereafter. Then the errors become negligible.
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Chapter 14

Response Time Distributions in Networks of
Queues

Michael Grottke, Varsha Apte, Kishor S. Trivedi, and Steve Woolet

Abstract This chapter addresses the issue of determining the response time distri-
bution in networks of queues. Four different techniques are described and demon-
strated. A two-step numerical approach to compute the response time distribution
for closed Markovian networks with general connectivity, a technique for determin-
ing the approximate (exact under certain conditions) response time distribution of a

time Markov chain (CTMC) “response time blocks,” an expansion of “response time
blocks” to open Markovian networks with general phase-type (PH) service time dis-
tributions, and an approach for handling non-Markovian networks having M/G/1
priority and PH/G/1 queues. These techniques are shown to give accurate results
with much smaller CTMCs or semi-Markov processes than exact analysis.

14.1 Introduction

The problem of computing the response (sojourn) time distribution in queuing net-
works has been researched extensively during the past few decades. (For a some-
what dated survey see [6].) In case of open queuing networks, a considerable

Michael Grottke
Department of Statistics & Econometrics, University of Erlangen-Nuremberg, Germany, e-mail:
Michael.Grottke@wiso.uni-erlangen.de
Varsha Apte
Department of Computer Science, IIT Bombay, India
e-mail: varsha@cse.iitb.ac.in
Kishor S. Trivedi
Department of Electrical & Computer Engineering, Duke University, Durham, USA
e-mail: kst@ee.duke.edu
Steve Woolet
IBM Systems & Technology Group, IBM Corporation, Durham, USA
e-mail: steve_woolet@us.ibm.com

International Series in Operations Research & Management Science 154, 
587

defined subset of open M/M/c/b Markovian networks using predefined continuous-

DOI 10.1007/978-1-4419-6472-4_14, © Springer Science+Business Media, LLC 2011 

R.J. Boucherie and N.M. van Dijk (eds.), Queueing Networks: A Fundamental Approach, 



588 Michael Grottke, Varsha Apte, Kishor S. Trivedi, and Steve Woolet

amount of work has been done in computing the response time distribution in
the domain of Jackson networks. Closed form solutions have been derived for the
(Laplace-Stieltjes transform of) response time distributions through a particular path
in product-form queuing networks [38].

Furthermore, many results exist for response time distributions in networks with
a specific topological structure such as tandem, central server, single queue with
feedback and so on. The communications literature also shows a focus on end-to-
end packet delay in tandem-type queuing networks, with characteristics specific to
communication systems. However, it is very difficult to derive exact closed form
solutions for networks with even slightly non-restrictive topology as well as service
and arrival characteristics. In the face of such difficulties, the two approaches taken
are: (1) numerical solution and (2) approximate solution.

In case of closed Markovian queuing networks, the tagged customer approach
[30] may be used to numerically compute the response time distribution of a network
with a general topology. However, this technique consists of generating the state
space of the queuing network and may result in a very large state space. Section 14.2
will describe this numerical approach. Methods for efficiently analyzing response
time densities in very large Markov and semi-Markov models have recently been
shown in [7] and [12].

In case of open queuing networks with unlimited capacity queues, the tagged
customer approach is not feasible at all. Thus, a lot of research has been devoted to
finding approximations to response time distribution which are space and time effi-
cient. Abate et al. [1] consider approximations for G/GI/1 queue sojourn time tail
probabilities. Au-Yeng et al. [2] present a technique using generalized lambda dis-
tributions for approximating response time densities in Markov and semi-Markov
models. Van Houdt and Blondia [44] approximate waiting time distributions by
steady-state analysis of reset Markov chains. Van Velthoven et al. [45] present meth-
ods for calculating the response time distribution of impatient customers in discrete-
time queues.

One class of approximations which address the response time distribution prob-
lem have been termed “independent flow time approximation” (IFTA) by Boxma
and Daduna [6]. This approximation states that “arrival state distributions seen by a
test customer on the arrival at successive network stations are independent of each
other and equal the stationary arrival state distributions at these stations as seen by
an arbitrary customer” [6]. It has been applied by Harrison [14], as well as Shan-
thikumar and Buzacott [40].

In the approach suggested by Harrison [14], decomposition of queues is used
to compute the response time distribution. The basic idea is to find arrival rates to
each queue and then analyze each queue in isolation. If we know the response time
distribution of a job at each of the queues in the network, then the response time
of a job through a particular path in the queuing network can be computed as the
convolution of the response time distributions at each queue in the path.

A response time computation technique that builds on Harrison’s method was
presented in its nascent form by Woolet [48]. The key idea there was as follows:
Assume that the response time distribution at each queue in the queuing network is



14 Response Time Distributions in Networks of Queues 589

phase-type, i.e., it corresponds to the absorption time distribution of a continuous-
time Markov chain (CTMC). Then if we construct the CTMCs corresponding to
all queues, “glue” them together according to the topology of the network, and
add an absorbing state representing departure from the network, we have another
CTMC. The absorption time distribution of this CTMC approximates the response
time distribution in the same way as Harrison’s method does. The advantage of this
method is that it (1) provides a clear representation, in the form of a CTMC, for
the approximate computation technique, (2) maps the problem to a well-explored
problem of transient solution of CTMCs and (3) allows us to extend the original
technique to more general topologies and service time distributions, by taking ad-
vantage of this CTMC representation. This method also maintains the advantage of
space and time efficiency that Harrison’s method has. It must be noted that though
we do use CTMCs in this method, they do not represent the state space of the queu-
ing network. In fact, the size of the CTMC is linear in the number of queues in the
network. In [48], this method was presented with some examples for a network of
M/M/c/b ≤ ∞ queues with no loss of customers. Section 14.3 will describe this
application to open queuing networks. We extend this method in Sect. 14.4 to cover
queues in which the service time follows a phase-type distribution.

Two approaches that can be adopted if the response time distribution at each
queue is not phase-type are described in Sect. 14.5. First, we can fit a phase-type
distribution to the response time distribution and again map the problem to a CTMC
transient solution problem. Most of the results in the literature provide the response
time distribution at a queue only in the form of its Laplace-Stieltjes transform (LST).
This poses the additional problem of matching two distributions, given only their
LSTs. We explore this problem and present our observations and suggestions.

Another approach is to leave the CTMC domain altogether and map the queuing
network to a semi-Markov process as was done by Mainkar [28]. Since the response
time distribution at each queue and the routing probabilities are available, the same
idea of “gluing” together states which represent response time distributions will re-
sult in a semi-Markov process whose kernel, holding times in states, and embedded
discrete-time Markov chain (DTMC) are known. Again, we approximate the re-
sponse time distribution of the queuing network by the absorption time distribution
of the semi-Markov process. The number of states of this semi-Markov process is
linear in the number of queues in the queuing network.

In this chapter, these basic ideas are used to develop approximations of response
time distributions for a variety of queuing networks.

14.2 Closed Markovian networks

As stated previously, closed form solutions for the response time distributions of
queuing networks are obtainable only for simple queuing system models. Methods
for computing the Laplace transforms of the response time distribution in queuing
networks satisfying the non-overtaking condition are proposed by Lemoine [24]
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as well as Walrand and Varaiya [46]. Melamed and Yadin [31] have shown that
numerical computation of the response time distribution is possible, although this
requires the construction and solution of large Markov models.

14.2.1 Tagged customer approach

The tagged customer approach is one method of numerical computation of the
response time distribution for queuing networks with general interconnectivity.
Melamed and Yadin [31] present this approach for evaluating the response time
distribution in a discrete state Markovian queuing network. An arbitrary customer
is picked as the tagged customer and its passage is tracked through the network.
The response time distribution, conditioned on the state of the queuing network at
the time of arrival of the tagged customer, is computed. Deriving this conditional
response time distribution of the tagged customer is transformed into a problem of
solving for the distribution of the time to absorption of a finite-state CTMC. For
closed product form queuing networks, an arriving customer will see the network
in equilibrium with one less customer and we can establish the distribution of the
other customers in the network at the instant of arrival of the tagged customer; see
the arrival theorem of Sevcik and Mitrani [39] or Lavenberg and Reiser [23]. All
the states in which the tagged customer may find the queuing network upon arrival
(i.e., how the remaining jobs are distributed among the queues in the network) must
be determined to make possible the computation of the unconditional response time
distribution. Computing the response time distribution using the tagged customer
approach is therefore a two-step process.

14.2.2 Example: Central server model

Figure 14.1 shows a closed queuing network model of a computer system, a central
server model (CSM), that will be used to describe the tagged customer approach.
Customers first join the CPU queue. The CPU, Disk 1 and Disk 2 are assumed
to have exponentially distributed service times with parameters µC, µD1 and µD2,
respectively. The service discipline at all the queuing centers is assumed to be first
come, first served (FCFS). This closed system contains n customers. A customer
will request access to Disk 1 with probability p1 and Disk 2 with probability p2

after receiving a burst of service at the CPU; the customer rejoins the CPU queue
for another burst of service after completing access to the disks. With probability
p0 = 1− (p1 + p2) the customer may complete execution, after which it is replaced
by a statistically identical customer newly arriving to the system.
As mentioned earlier, finding the response time distribution of a queuing network
is transformed into solving for the absorption time distribution of a CTMC. Fig-
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Fig. 14.1: Central server model of a computer system

ure 14.2 shows the CTMC whose absorption time distribution needs to be computed
for the case of the CSM with only n = 2 customers.
It is interesting to note that a rather complex CTMC is obtained even for a system
with only two customers. In Fig. 14.2, the number of customers at the CPU, Disk1,
and Disk2, respectively, are indicated by the first three components of the state label.
The position of the tagged customer is indicated by the next two components; the
index of the queue in which the tagged customer resides corresponds to the first
component, the position of the tagged customer in the queue corresponds to the
second. The queues are numbered as follows: 1 (CPU), 2 (Disk1), and 3 (Disk2).
The state 00 is used to indicate that the tagged customer has departed from the
system, i.e., has reached the absorbing state of the CTMC. States (10000),(01000),
and (00100) are the three absorbing states in the Markov chain, and are explicitly
identified in the figure by the squares enclosed within the circles.

The three states explicitly identified in this figure by double circles are those
states in which the tagged customer may arrive into the queuing system. These are
states (20012),(11011), and (10111), which correspond to the other job being at
the CPU, Disk1, and Disk2, respectively. We can compute the absorption time dis-
tribution of the CTMC assuming that we start with any of these arrival states as the
initial state. Each absorption time distribution represents the conditional response
time distribution of the tagged customer, conditioned on a specific position of the
other customer at the instant of arrival of the tagged customer into the queuing sys-
tem.

Let I be the set of all states in the CTMC whose solution yields the response time
distribution. The set of absorbing states in the CTMC is represented by A (⊆ I), and
the set of states in which the tagged customer will find the network at the instant of
arrival is represented by S (⊆ I). S is the set of all possible states of the network with
one less customer for a closed queuing network. The random variable representing
the response time for an arbitrary customer arriving when the queuing network is in
state i, where i ∈ S, is Ri. Define pi j(t) as the transient probability of being in state
j at time t given that the initial state of the CTMC in Fig. 14.2 is i. Then
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Fig. 14.2: CTMC model of the CSM for computing the response time distribution

P(Ri ≤ t) = ∑
j∈A

pi j(t).

To compute the unconditional response time distribution, we require the (steady-
state) probabilities πi(n−1) that the tagged customer will see the network with the
other n− 1 customers in state i (i ∈ S) at the instant of arrival. These probabilities
are computed based on a further CTMC.
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In Fig. 14.3, this CTMC is shown for the case of n = 2 customers. It has three
states corresponding to the non-tagged customer being present at the CPU, Disk1,
and Disk2, respectively.

p1

µ
010001

µ D µC2

100

C
p

2
µD1

State label : (i j k)
i: No. of jobs in CPU
j: No. of jobs in Disk1
k: No. of jobs in Disk2

Fig. 14.3: CTMC model for computing the steady-state probabilities of the non-
tagged customer

Let the random variable representing the unconditional response time be R. Then a
general expression for the unconditional response time distribution is

P(R≤ t) = ∑
i∈S

πi(n−1)P(Ri ≤ t) = ∑
i∈S

πi(n−1) ∑
j∈A

pi j(t)

= ∑
j∈A

∑
i∈S

πi(n−1)pi j(t) = ∑
j∈A

p j(t),

where p j(t) represents the unconditional transient probability of being in state j. For
n = 2 customers, these probabilities are obtained by solving the CTMC in Fig. 14.2
for its transient probability vector at time t, given the initial probability of the state
i (∀i ∈ S) of the CTMC is πi(n−1) and the initial probabilities of all the other states
(i ∈ I− S) are zero. The unconditional response time distribution is thus directly
computed by assigning the initial probabilities for the CTMC and carrying out the
transient analysis only once.

For this example, we set µC = 50.0,µD1 = 30.0,µD2 = 20.0, p1 = 0.45, and p2 =
0.3. Figure 14.4 shows the response time distributions of the CSM for different
numbers of customers n (5,10 and 15). Note that when there are fewer customers
competing for resources (i.e., the number of customers is smaller), a customer has a
higher probability of completing by a given time t.

For a general method of constructing the two CTMCs for computing the response
time distribution see [33], and for automated construction and solution of such mod-
els using stochastic Petri nets see [32]. See [7] and [12] for methods for efficiently
analyzing response time densities in very large Markov and semi-Markov models.
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Fig. 14.4: Response time distribution of the CSM for different number of customers

14.3 Open Markovian networks of M/M/c/b≤ ∞ queues

As we have seen in the previous section, even for a rather simple closed system in
which only few jobs are present, the total number of states that the system can take
may be high. For open Markovian networks, in which the number of jobs in the
system is not fixed, computing the response time distribution via the tagged cus-
tomer approach basically involves an infinite number of states. However, there are
methods of approximating the distribution that can give good results with much less
effort. One such method uses the original network and knowledge of the response
time distribution of its nodes to construct a CTMC for which the distribution of the
time to reach the absorbing state can be solved to find the approximate response
time distribution of the queuing network. In its simplest form, this method requires
that the response times at the individual queues can be represented by the time until
absorption in a CTMC. Fortunately, this is the case for many types of queues.

For five fairly simple types of queues, we present the CTMCs corresponding
to their response time distributions in Sect. 14.3.1. These “response time blocks”
can then be used to build the CTMC for the entire queuing network via the pro-
cedure laid out in Sect. 14.3.2. The approach is illustrated with three examples in
Sect. 14.3.3.
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14.3.1 Response time blocks

Throughout this section, we assume that all nodes use FCFS scheduling. Let λ and
µ denote the arrival rate to the node and the service rate of each server of the node,
respectively. To maintain stability, we assume that λ < cµ , where c is the number
of servers in the node. This is equivalent to the condition that the traffic intensity at
the node, ρ = λ

cµ , is smaller than one.

14.3.1.1 M/M/1

For an M/M/1, FCFS server with arrival rate λ and service rate µ , the response
time distribution is given by Gross et al. [13] as

F(t) = 1− exp(−(µ−λ )t),

assuming that λ < µ . The response time block is shown in Fig. 14.5. State “In”
indicates the starting state of the piece of the CTMC model representing the M/M/1
queue in the corresponding network model. The “Out” state will be either an “In”
state for another network model node or the absorbing state representing the job
leaving the network model. If the output of the queuing node can proceed on more
than one path, then the “Out” state shown would actually be multiple states and the
incoming arcs to these states would be weighted with the appropriate probabilities.

In Out

µ − λ

Fig. 14.5: The M/M/1 response time block

14.3.1.2 M/M/∞

The M/M/∞ server is the simplest node for which to find the response time distri-
bution. Since there are always enough servers for any customer, the response time
distribution is the same as the service time distribution,

F(t) = 1− exp(−µt).

Figure 14.6 shows the response time block for this distribution. It is very similar
to Fig. 14.5, except that for the M/M/∞ case the rate of leaving the “In” node is
simply µ .
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µ

In Out

Fig. 14.6: The M/M/∞ response time block

14.3.1.3 M/M/c

If there are assumed to be some finite number, c, of servers each having the same ser-
vice rate, µ , and an infinite queue, we have an M/M/c, FCFS queue. The M/M/c,
FCFS response time distribution given by Gross et al. [13] as

F(t) = Wc(1− exp(−µt)) (14.1)

+(1−Wc)

[
cµ −λ

(c− 1)µ−λ
[1− exp(−µt)]− µ

(c−1)µ−λ
[1− exp(−(cµ −λ )t)]

]
,

where

Wc = 1−
[
(cρ)c

c!
· 1

1−ρ

]
·
[

c−1

∑
k=0

(cρ)k

k!
+

(cρ)c

c!
· 1

1−ρ

]−1

is the steady-state probability that a newly arriving job finds less than c jobs present
in the node and therefore does not have to queue for service.

The distribution in Eq. (14.1) is a mixture of Wc fraction following an expo-
nential distribution with parameter µ and (1−Wc) fraction following a two-stage
hypoexponential distribution with parameters µ and cµ−λ . It can be described by
the building block shown in Fig. 14.7. The upper path represents the exponentially
distributed portion and the lower path is the hypoexponentially distributed portion.
State T is strictly a transient state that is required to obtain the hypoexponential
distribution.

(1 − W )

µWc

ccµ µ − λ

In

T

Out

Fig. 14.7: The M/M/c, FCFS response time block
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14.3.1.4 M/M/c/b

If we limit the previous case to a finite queue length (or buffer size) of b (where the
queue includes the customer being serviced), we have the M/M/c/b, FCFS queue.
The distribution given here is for an open network, assuming the job is accepted for
service. In [43], the distribution for this case has been given as

F(t) =
c−1

∑
n=0

qn(1− exp(−µt))

+
b−1

∑
n=c

qn

{(
c

c−1

)n−c+1

(1− exp(−µt))

−
n−c

∑
i=0

(
c

c− 1

)n−c−i+1 1
c

[
1−

i

∑
j=0

(µct) j

j!
exp(−µct)

]}
,

where

qn =





(cρ)n

n!
·
[

c−1

∑
k=0

(cρ)k

k!
+

cc

c!

b−1

∑
k=c

ρk

]−1

if n = 0,1, ...,c− 1,

ccρn

c!
·
[

c−1

∑
k=0

(cρ)k

k!
+

cc

c!

b−1

∑
k=c

ρk

]−1

if n = c,c + 1, ...,b− 1

(14.2)

represents the conditional steady-state probability that a newly arriving job which is
not blocked by the node due to a full buffer finds n other jobs present at the node.

This distribution is a mixture of an exponential distribution with parameter µ
and b− c hypoexponential distributions. Each hypoexponential distribution has a
different number of phases. More specifically, the ith hypoexponential distribution
(i = 1, . . . ,b−c) consists of i+1 phases; one phase has parameter µ , and the remain-
ing i phases have parameter cµ . Figure 14.8 shows the response time block repre-
sentation of the distribution. Similar to the M/M/c block, the states T2, · · · ,Tb−c+1
are strictly transient states required to obtain the hypoexponential distributions. The
probabilities Vj that appear in the transition rates are given by

Vj =





c−1

∑
n=0

qn if j = 1,

qc+ j−2

∑b−1
n=c+ j−2 qn

if j = 2, ...,b− c + 1.
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Fig. 14.8: The M/M/c/b response time block

14.3.1.5 M/M/1/b

By limiting the M/M/c/b case to a single server, we have an M/M/1/b, FCFS
queue. The distribution given in this section has the same assumptions and qual-
ifications as that in the M/M/c/b section. The response time distribution for the
M/M/1/b, FCFS case is given by Gross et al. [13] as

F(t) =
1−ρ
1−ρb

b−1

∑
n=0

ρn

(
1−

n

∑
k=0

(µt)k exp(−µt)
k!

)
.

Note that this distribution is a mixture of Erlang distributions where each has pa-
rameter µ and the number of phases varies from 1 to b. Setting c = 1 and

Vj =
1−ρ

1−ρb− j+1 if 1≤ j ≤ b,

we can again use Fig. 14.8 to represent the M/M/1/b response time block; see [48].

14.3.2 Building the Markov chain from a queuing network

With the building blocks for five types of queues described in Sect. 14.3.1, we can
now outline a procedure for automatically mapping a queuing network to a response
time CTMC.

Consider a network consisting of m queues 1,2, . . . ,m, where each queue is of
one of the types described in Sect. 14.3.1. Let λ0i be the external arrival rate to node
i in the queuing network. Suppose ri0 is the probability that a customer exits the
network after receiving service at node i. Let rii′ be the probability that a customer
proceeds to node i′ after receiving service at node i. If queue i′ is a finite capacity
queue and it is full to its capacity, then we consider the following possibilities [36]:
(1) The customer waits at queue i and is retried. (We call this policy WAIT.) (2) The
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customer is lost. (This policy is termed LOSS.) Suppose the probability of loss at
queue i′ is pbi′ . (Thus pbi′ = 0 for infinite capacity queues.) Then the procedure for
building the overall CTMC is described as follows:

Step 1: Calculate effective arrival rates to each node of the queuing network. The
effective arrival rate λi′ to node i′ is given by [15]

λi′ = λ0i′ +
m

∑
i=1

λi(1− pbi)rii′ for i′ = 1,2, ...,m. (14.3)

If all queues in the network are either infinite capacity queues or finite capacity
queues with WAIT policy, i.e., if pbi = 0 ∀i, then (14.3) is a simple linear system
of equations. However, things are more complicated if customers can get lost in
the system. Let queue i of the network be an M/M/c/b queue with LOSS policy
and the same service rate µi for each of the c servers. Assuming that the arrivals
to this queue are Poisson, the expression for pbi is

pbi =
ccρb

i

c!
·
[

c−1

∑
k=0

(cρi)
k

k!
+

cc

c!

b

∑
k=c

ρk
i

]−1

.

Since ρi = λi
cµi

, substituting this expression into Eq. (14.3) results in a system
of equations that may need to be solved using fixed-point iteration to yield the
effective arrival rates. The buffer-full probabilities can then be calculated based
on these values of the arrival rates. The effective arrival rates as well as the buffer-
full probabilities may be approximate because we assume that the arrivals to all
queues are Poisson, which is not necessarily the case.

Step 2: Create a CTMC with a state S f . S f is the state which denotes exit out of
the queuing network. If the full buffer policy at any queue is LOSS then a state
Sl is also created which denotes loss due to encountering full buffers.
For each queue i, create a set of states Si = {Si1,Si2, . . . ,Sini}, consisting of all
the states but the “Out” state contained in the response time block representation
of this queue (see Sect. 14.3.1). Therefore,

ni =





1 if queue i is M/M/∞ or M/M/1,
2 if queue i is M/M/c,
b if queue i is M/M/1/b,

b− c +1 if queue i is M/M/c/b.

Then the state space of the CTMC is given by S = (
⋃m

i=1 Si)
⋃{S f ,Sl}. Let d =

max{ni | i = 1,2, . . . ,m}. Since

m < |S| ≤ dm +2,

the total number of states |S| is linear in m.
Step 3: The response time distribution of the types of queues considered above

are phase-type [42] and hence, in general, can be represented as follows: Let the



600 Michael Grottke, Varsha Apte, Kishor S. Trivedi, and Steve Woolet

sojourn time in the response time block state j of queue i follow an exponential
distribution with rate µi j and let the probability of exiting the queue from that
state be Vi j. Assume we define probability pbi for all queues, i.e., it is zero for
infinite capacity queues. Then the generator matrix Q of the CTMC defined in
Step 2 is constructed based on the following principles.
The progress within the response time block of queue i, from state j to j +1, is
preserved as in the block:

QSi j ,Si( j+1)
= µi j(1−Vi j).

To represent routing from node i to i′,

QSi j ,Si′1 = µi jVi jrii′(1− pbi′).

For denoting exit from the network,

QSi j ,S f = µi jVi jri0.

If there is any queue with LOSS policy in the queuing network, then we also
have, in addition to the above,

QSi j ,Sl = µi jVi j ∑
i′ 6=i

rii′ pbi′ .

Note that in case of WAIT, we assume that the time until retry is the same as the
time to exit queue i starting from the state from which exit was attempted. We
also assume that on retry the queue to which the job is routed is sampled again.
The rest of the entries of Q are zeros except for the diagonal entries, which are

QSi,Si =− ∑
Si′∈S,Si′ 6=Si

QSi,Si′ .

Step 4: If we define λ = ∑m
i=1 λ0i, then λ0i/λ is the probability that an external

customer arrives at queue i. Then the initial state probability is set to λ0i/λ for
state Si1 and to 0 for all other states.
The cumulative distribution function of the response time R of the network can
now be found by computing PS f (t), the probability of being in state S f at time t.
Since S f is an absorbing state, this probability is equal to the probability of exit-
ing the network before time t, given that the customer entered it at time 0. Note
that if we have LOSS, this distribution will be defective, i.e., limt→∞ P(R≤ t)
= limt→∞ PS f (t) < 1. This is because there is a non-zero probability that the cus-
tomer will never reach the state S f .

Let us assume

• that successive service times are independent (Kleinrock’s independence as-
sumption),

• that the independent flow time approximation as described in Sect. 14.1 holds,
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• that external arrivals are Poisson,
• that all queues are single server with exponentially distributed service time and

FCFS queuing discipline,
• that all queues are infinite capacity queues,
• that the network is feed-forward, and
• that all the paths in the network are overtake-free [6].

If the above conditions are met, arrivals at all queues are Poisson, and further, suc-
cessive sojourn times in a path are independent. In that case, PS f (t) as computed by
the above algorithm gives the exact distribution of sojourn time. When any of the
above conditions are violated, the absorption time distribution is an approximation.
The successive sojourn times in queues in a path with overtaking or feedback are
correlated [6], thus violating the implicit independence assumption in our method.

14.3.3 Examples

We will now illustrate the approach developed above using a computer system ex-
ample and a distributed system example. We also show how this methodology can
be used to find the distribution of the sample average of response times.

14.3.3.1 Computer system

Consider the simple model of a computer system (Fig. 14.9), which is comprised of
two M/M/1 queues.

p

p
1

0

1CPU I/O

µ2

λ

µ

01

Fig. 14.9: Model I, an open network with feedback

Defining the effective arrival rates to the CPU queue and the I/O queue to be λ1 and
λ2, respectively, we follow Step 1 and formulate the equation system

λ1 = λ01 +λ2,

λ2 = λ1 p1.

This system of equations can easily be solved for the effective arrival rates,
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λ1 =
λ01

1− p1
=

λ01

p0
and

λ2 =
p1λ01

p0
.

We now build the CTMC from the queuing network according to Steps 2 and 3. The
state space S consists of the “In” nodes of the two M/M/1 response time blocks,
denoted by S11 and S21, respectively, as well as the exit node S f . Since both queues
have infinite capacity, pb1 = pb2 = 0. The rate of leaving the “In” state of an M/M/1
response time block is calculated as the service rate minus the arrival rate; conse-
quently, we have µi1 = (µi−λi) for i = 1,2. Moreover, the probabilities of leaving
the current node is equal to one for the states S11 and S21, i.e., V11 =V21 = 1. Accord-
ing to the model, a job leaving the CPU can either exit the network with probability
r10 = p0 or progress to the I/O queue with probability r12 = p1; all jobs finished at
the I/O queue return to the CPU queue; i.e., r21 = 1 and r20 = 0. Therefore, the only
off-diagonal entries of Q that are not equal to zero are

QS11,S21 = (µ1−λ1)p1,
QS11,S f = (µ1−λ1)p0,

QS21,S11 = µ2−λ2.

The corresponding CTMC is depicted in Fig. 14.10.

S

S11 S21

µ − λ )(

µ )( 1

− λ  2

− λ1

1 1 0p

1p

f

µ2         

Fig. 14.10: CTMC corresponding to the response time distribution of model I

It can be shown that the expected response time in this queuing model is given by
[42, p. 561]

E(R) =
1

p0µ1−λ01
+

1
p0µ2

p1
−λ01

.

Obviously, the same expected response time is obtained in the simple network with-
out feedback shown in Fig. 14.11. However, as we will see, the cumulative distribu-
tion function of the response time in this “equivalent” model II is different from the
one in the original model I.
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p p

p 2µ

"CPU" "I/O"

µ1

λ01

0

0

1

Fig. 14.11: Model II, an “equivalent” network without feedback

The response time CTMC for queuing network model II is built from two M/M/1
response time blocks with µ11 = p0µ1−λ01 and µ21 = p0µ2

p1
−λ01. As before, pbi = 0

and Vi1 = 1 for i = 1,2. Since all jobs proceed from queue 1 to queue 2 and then
leave the network, r12 = r20 = 1. The non-zero off-diagonal elements of Q are thus

QS11,S21 = p0µ1−λ01,

QS21,S f =
p0µ2

p1
−λ01.

The CTMC is shown in Fig. 14.12.
For a specific example, we assume that the arrival rate from outside the system is

λ01 = 1 job per second and that a job leaves the system with a probability of p0 = 0.2
after being processed at the CPU. We further assume that the CPU can process jobs
at a rate of µ1 = 10 jobs per second and the I/O can process jobs at a rate of µ2 = 5
jobs per second.

S11 S

µ1

S21

01λ− − λ01
2µ0p

1
p0p

f

Fig. 14.12: CTMC corresponding to the response time distribution of model II

The CTMCs of model I and model II were solved using the SHARPE [37] tool
to obtain the distributions of time to absorption in state S f . For comparison, the
queuing network models were also implemented and the response time distribution
found using the simulation tool HyPerformix Workbench1.

The CTMC solutions as well as the simulations found the expected response time
to be 5 seconds for both network models. All response time distributions obtained
are plotted in Fig. 14.13. Note that for the model I (Fig. 14.9) the CTMC approxima-
tion shows the distribution to be slightly lower than the resultant distribution of the
simulation for values of t < 12, and slightly higher for the remaining values of t. For
model II (Fig. 14.11), the results from the CTMC approximation and the simulation
model are in agreement for all t. This can be explained by the fact that the CTMC

1 Registered trademark of HyPerformix, Inc.



604 Michael Grottke, Varsha Apte, Kishor S. Trivedi, and Steve Woolet

approach gives exact results when the queuing network is an open Jacksonian feed-
forward network with overtake-free conditions [29]. However, comparing the results
from the “equivalent” network to the original, we see quite a bit of difference in the
response time distributions.
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t
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=

t)

Model I simulation
Model I approximation
Model II simulation and approximation

Fig. 14.13: Response time distribution for the networks of Figs. 14.9 and 14.11

14.3.3.2 Distributed system

Consider a distributed system (Fig. 14.14) in which users send requests from termi-
nals (T ) at the rate λ . A job first obtains service from a front-end server (F) and may
exit the system with probability p0 after completion of service. With probability p1,
it proceeds to the communications server (C). After completion of service it may go
back to the front-end server with probability p2, or proceed to a database server (D)
with probability p3 or to a general-purpose server (P) with probability p4.
The terminals (T ) are assumed to be M/M/∞ servers having service rate µT . F
is an M/M/cF server with each of the cF servers having service rate µF . C is as-
sumed to be a single server (M/M/1) having service rate µC. D is assumed to be
a single server device having a finite capacity (M/M/1/bD). The service rate for
the database server is µD. P is assumed to be a multi-server having a finite capacity
(M/M/cP/bP). The service rate of each server is assumed to be µP. We shall eval-
uate this system first assuming the WAIT policy at both finite capacity queues and
then assuming the LOSS policy at both finite capacity queues.
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Fig. 14.14: Distributed system queuing network

WAIT

We first describe the results under the WAIT policy. For this network, WAIT policy
means that jobs that cannot go to the D or P queues due to lack of buffer availability
will remain at the communications server to be retried. With this assumption, on
solving Eq. (14.3), we obtain the following values for effective arrival rates λi to
each of the queues i = F,C,D,P [48]:

λF =
λ
p0

, λC =
p1

p0 p2
·λ ,

λD =
p1 p3

p0 p2
·λ , λP =

p1 p4

p0 p2
·λ .

Figure 14.15 shows the CTMC corresponding to the response time distribution of
this queuing network when the capacity at each of the queues D and P is 4, and
cP = 2.
State T , matching the “In” state of the M/M/∞ response time block (Fig. 14.6),
is the starting state of this CTMC. Likewise, states F1 and F2 correspond to the
“In” and T states, respectively, of the building block shown in Fig. 14.7, while
states D1, D2, D3 and D4 are related to the “In” and Tj states for j = 2,3,4 of
the M/M/c/b response time block of Fig. 14.8. The other states can be similarly
identified. State “Done” corresponds to the state S f described in Sect. 14.3.2. The
probabilities pbD and pbP are the buffer full probabilities of queues D and P, re-
spectively. Finally, ρD denotes the utilization in the database server node, while the
variables qn (n = 0,1,2,3) denote the conditional probabilities that a job arriving
and not being blocked at the general-purpose server finds n other jobs at this node,
as defined in Eq. (14.2).

For µT = 0.2, µF = 1.5/4, µC = 1, µD = 0.2, µP = 0.05, cF = 4, cP = 2, p0 = 0.5,
p1 = 0.5, p2 = 0.46, p3 = 0.33 and p4 = 0.21, the distribution of the response time
in this network is shown in Fig. 14.16(a). The figure compares these results with
the simulation using RESQ, the queuing network modeling environment developed
at IBM [27]. The simulation was done using the regenerative method and provided
99% confidence intervals with maximum width 0.008.
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Fig. 14.15: CTMC corresponding to response time distribution for WAIT

(Since the confidence intervals obtained are very small, we have used the midpoint
of the intervals to plot the response time distribution.)

Figure 14.16(b) compares the response time distribution of this system for vari-
ous arrival rates.

LOSS

Under the LOSS policy we have to take into account the buffer-full probabilities
pbD and pbP when setting up equation system (14.3). Therefore, the effective arrival
rates are different from the ones in the WAIT policy case:

λF =
p0 p2 + p1p2 + pbDp3 + p4 pbP

p0 p2 + p3 pbD + p4 pbP
·λ , λC =

p1

p0 p2 + p3 pbD + p4pbP
·λ ,

λD =
p1 p3

p0 p2 + p3pbD + p4pbP
·λ , λP =

p1 p4

p0 p2 + p3 pbD + p4 pbP
·λ .



14 Response Time Distributions in Networks of Queues 607

0.0 100.0 200.0 300.0 400.0 500.0

t

0.0

0.5

1.0
P

(R
 <

=
 t)

(a)

Simulation 
Building Block Method

0.0 100.0 200.0 300.0

t

0.0

1.0

P
(R

 <
=

 t)

(b)

λ = 1/30
λ = 1/3
λ = 1/2.5

λ = 1/2.5

Fig. 14.16: (a) Response time distribution of distributed system: comparison with
simulation (b) Response time distribution for various values of λ

Since jobs leaving node C can get lost at node D or node P, the CTMC constructed
for the WAIT policy has to be extended by a state “Lost”, corresponding to the state
Sl described in Sect. 14.3.2, and a transition from state C1 to this “Lost” state. The
resulting CTMC corresponding to the response time distribution under the LOSS
policy is shown in Fig. 14.17.

Figure 14.18(a) shows a comparison of the response time distribution obtained by
solving the Markov model with the one obtained by RESQ simulation. In the LOSS
case deriving confidence intervals using RESQ would have taken prohibitively long
time, hence the plot shows point estimates. Notice that the distribution in this case
is defective, and thus limt→∞ P(R≤ t) < 1.

Figure 14.18(b) shows how the response time distribution improves with increase
in buffer size, since fewer jobs get lost. Note that the conditional response time,
given that the job does not get lost, will degrade with larger buffer space, since the
length of the queue will increase.

14.3.3.3 Distribution of the response time sample mean

In some applications, we are not only interested in the distribution of the response
times, but in the distribution of the sample mean calculated from n observed re-
sponse times. For example, in [3] we examined a multi-tier e-commerce applica-
tion consisting of 16 CPUs; the normal system behavior could be represented by
an M/M/c queue with c = 16. However, due to garbage collection events and ker-
nel overhead, the system sometimes showed severe performance degradation. The
only remedy in such a situation was to “rejuvenate” the system by terminating all
threads in execution, which freed the resources held by these threads. In [3], we
developed several algorithms triggering rejuvenation based on recent observations
of response times. Since the rejuvenation of the system incurs costs (e.g., lost trans-
actions), the challenge was to distinguish the sustained performance deterioration
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Fig. 14.17: CTMC corresponding to response time distribution for LOSS

from short-term increases in the observed response times. One of the algorithms
studied employed the sample means of n subsequently observed response times in
order to smooth out sporadically occurring large values of the response time.

Assuming that the observable response times Ri are independently and identically
distributed (e.g., because the time lag between the collection of two response times
via probing is sufficiently large), then the sample mean R̄n = 1

n ∑n
i=1 Ri = ∑n

i=1
Ri
n

follows a phase-type distribution. Obviously, each individual summand Ri
n is the

response time of a job in an M/M/c, FCFS queue with arrival rate nλ and ser-
vice rate nµ . Its distribution can then be represented by an adapted version of the
M/M/c building block (see Fig. 14.7), in which all transition rates are multiplied by
n. Therefore, R̄n corresponds to the time until reaching the absorbing state S f in a
simple network of n such M/M/c, FCFS queues, in which a job upon leaving queue
i < n proceeds to queue i+1. Note that, unlike in the previous examples, there is no
physical queuing network corresponding to this network of queues.
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Fig. 14.18: (a) Response time distribution of distributed system: comparison with
simulation (b) Response time distribution for various values of bD,bP

Due to the linear structure (ri,i+1 = 1 for i = 1, ...,n−1) and the fact that no jobs
are lost (pbi = 0 for i = 1, ...,n), the effective arrival rates are identical for all queues:
λi = nλ . The sojourn time in states Si1 (corresponding to the “In” state in the re-
sponse time block of queue i) and Si2 (corresponding to T state in the response time
block of queue i) are exponential with parameters µi1 = nµ and µi2 = n(cµ−λ ),
respectively. The probability of leaving the queue from state Si1 is Vi1 = Wc, while
all jobs leave the queue from state Si2, i.e., Vi2 = 1. Upon leaving queue n, a job
is routed to the absorbing state S f , i.e., rn0 = 1. The CTMC corresponding to the
distribution of the average response time thus consists of 2n + 1 states and has a
generator matrix Q with non-zero off-diagonal elements

QSi1,Si+1,1 = nµWc for i = 1, ...,n− 1,
QSi1,Si2 = nµ(1−Wc) for i = 1, ...,n,
QSi2,Si+1,1 = n(cµ−λ ) for i = 1, ...,n− 1,
QSn1,S f = nµWc,

QSn2,S f = n(cµ−λ ).

It is shown in Fig. 14.19.

Fig. 14.19: CTMC corresponding to the distribution of the average response time
R̄n = 1

n ∑n
i=1 Ri
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Solving this CTMC with the SHARPE [37] tool, we can obtain the cumulative dis-
tribution function of the sample mean, FR̄n

(t) = P(R̄n ≤ t). Due to the relationship

fR̄n
(t) = pn1(t) ·nµWc + pn2(t) ·n(cµ−λ ),

with pi j(t) denoting the probability that the process is in state Si j at time t, we can
derive the probability density function fR̄n

(t) by assigning the reward rates nµWc

and n(cµ−λ ) to the states Sn1 and Sn2, respectively.
For different values of n, Fig. 14.20 shows this probability density function, based

on a server with c = 16 CPUs, an arrival rate of λ = 1.6 jobs per second and a service
rate of µ = 0.2 jobs per second.
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Fig. 14.20: Probability density function of average response time R̄n for n =
1,5,15,30 and corresponding approximating normal densities fN(t; µR̄n

,σ 2
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); λ =
1.6,µ = 0.2

As a dashed line, each plot includes the probability density function of the cor-
responding normal distribution, with the same expected value and variance as the
respective sample mean. The figures show how the sample mean converges against
the normal distribution, as stated by the central limit theorem.
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14.4 Open Markovian networks of queues with general PH
service time distributions

The approach for deriving a CTMC for the response time distribution described
in Sect. 14.3.2 can be employed if each of the nodes is of one of the five types
presented in Sect. 14.3.1. However, there are additional types of queues for which
the response time distribution can be represented by a CTMC. Important examples
are M/PH/1 and M/PH/∞ queues, in which the service time follows a phase-type
(PH) distribution. This kind of distribution as well as the two types of queues will
be discussed in the following section.

14.4.1 Building blocks with general PH service time distributions

We begin be reviewing the definition of the phase-type distribution [34]. Consider a
CTMC on the states {1, . . . ,n +1} with infinitesimal generator

Q =

[
T τ ′
0 0

]
,

where the n×n matrix T satisfies Tii < 0, for 1≤ i≤ n and Ti j ≥ 0 for i 6= j. Further,
Te′+ τ ′ = 0′. Here and in the following, all vectors are by default row vectors, and
column vectors are expressed as transposed vectors. For example, τ ′ is a column
vector of length n, while e represents a row vector of n ones. The initial probability
vector of the CTMC with infinitesimal generator matrix Q is given by (α,1−αe′),
where α is a row vector of length n and 1−αe′ represents the probability for the
CTMC to start out in the absorbing state n +1. It is assumed that the states 1, . . . ,n
are all transient so that the process will always eventually reach the absorbing state.
A necessary and sufficient condition for this is that the matrix T be non-singular.
As defined by Neuts [34, p. 45], a probability distribution F(.) on [0,∞) is a PH
distribution if and only if it is the distribution of time until absorption in a finite
CTMC of the type defined above. The pair (α,T) is called a representation of F(.).

In the context of queuing networks, PH distributions are of relevance, because
the queues M/PH/∞ and M/PH/1, in which the arrival process is Poisson and the
service time follows a phase-type distribution, have a phase-type response time dis-
tribution. This means that (like for the five types of queues discussed in Sect. 14.3.1)
the response time distributions of M/PH/∞ and M/PH/1 queues can be repre-
sented by CTMCs. We thus add these queues to our list of building blocks.

The case of an M/PH/∞ queue is very simple: The Markov submodel for its
response time is simply that one corresponding to the phase-type service time dis-
tribution.

The derivation of the Markov submodel is more complicated for an M/PH/1
queue. Suppose that the service time distribution of the queue has representation
(α ,T). According to Neuts [34, p. 57], the stationary waiting time distribution is
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then phase-type with representation

β = ρθ , L = T+ ρτ ′θ ,

where θ = (θ1, . . . ,θn) is the stationary probability vector of the CTMC with in-
finitesimal generator matrix T + τ ′α . This means that the stationary waiting time
distribution is the time until absorption in the CTMC with infinitesimal generator
matrix

Q∗ =

[
L δ ′
0 0

]

and initial probability vector (β ,1−βe′), where Le′+δ ′ = 0′. From this represen-
tation a Markov submodel can be built.

14.4.2 Building the Markov chain

If nodes of the open queuing network are M/PH/1 or M/PH/∞ type queues, we
must slightly change the mapping procedure described in Sect. 14.3.2.

If queue i in the network is M/PH/∞ with (α (i),T(i)) denoting the phase-type
representation of its service time, then create a set of states {Si1, . . . ,Sini}, where ni

is the number of rows (or columns) of the matrix T(i).
If queue i is an M/PH/1 queue, then create the states {Wi1, . . . ,Wini} related

to the PH waiting time distribution with representation (β (i),L(i)), and the states
{Si1, . . . ,Sini} related to the PH service time distribution with representation
(α (i),T(i)). These states must be added to the total state space S in Step 2 of the
mapping procedure (Sect. 14.3.2). In the following, we assume that α (i)e′ = 1; i.e.,
the service time of a queue cannot be zero.

When deriving the generator matrix Q in Step 3 of the procedure, rates for tran-
sitions involving M/PH/1 or M/PH/∞ type queues are calculated as follows:

• Let queue i be an M/PH/1 queue. The transitions within the Markov submodel
remain unchanged; i.e., each transition rate is given by the respective off-diagonal
element in the matrix L(i) or T(i):

QWi j ,Wi j′ = L(i)
j, j′ j 6= j′,

QSi j ,Si j′ = T (i)
j, j′ j 6= j′. (14.1)

To denote service after waiting,

QWi j ,Si j′ = δ (i)
j (α(i)

j′ )′.

Now we consider the following cases for representing progress to the next queue
i′:

– If queue i′ is M/M/c/b≤ ∞,
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QSi j ,Si′1 = τ(i)
j rii′(1− pbi′). (14.2)

– If queue i′ is M/PH/∞,

QSi j ,Si′ j′ = τ(i)
j rii′α

(i′)
j′ . (14.3)

– If queue i′ is also M/PH/1, then the job may either have to wait at this queue,

QSi j ,Wi′ j′ = τ(i)
j rii′β

(i′)
j′ , (14.4)

or it may directly proceed to one of the states related to the service time dis-
tribution,

QSi j ,Si′ j′ = τ(i)
j rii′(1−β (i′)e′)α(i′)

j′ . (14.5)

– If there are finite capacity queues with LOSS policy in the queuing network,

QSi j ,Sl = τ(i)
j ∑

i′ 6=i

rii′ pbi′ . (14.6)

• If queue i is M/PH/∞, Eq. (14.1) remains valid. For representing progress to the
next queue, Eqs. (14.2)–(14.6) remain valid.

• If queue i is M/M/c/b, then there are two cases involving queues with PH service
time distributions:

– If queue i′ is M/PH/∞,

QSi j ,Si′ j′ = µi jVi jrii′α
(i′)
j′ .

– If queue i′ is M/PH/1, then the job may proceed either to one of the states
related to the waiting time distribution,

QSi j ,Wi′ j′ = µi jVi jrii′β
(i′)
j′ ,

or to one of the states related to the service time distribution,

QSi j ,Si′ j′ = µi jVi jrii′(1−β (i′)e′)α(i′)
j′ .

• The initial distribution of the CTMC also needs modification: If queue i is
M/PH/∞, then the probability of starting in state Si j is λ0iα

(i)
j /λ . If queue i

is M/PH/1, then the probability of starting in state Wi j is λ0iβ
(i)
j /λ and the

probability of starting in state Si j is λ0i(1−β (i)e′)α(i)
j .
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14.4.3 Example: CPU and disk queuing system

Consider a CPU and disk system as depicted in Fig. 14.21(a). Suppose the service
time distribution at the CPU is hyperexponential with two stages (Fig. 14.21(b)).
Suppose the service time at the disk is branching Erlang (Fig. 14.21(c)). Let the
arrival process to the system be Poisson with rate λ . The response time distribution
for this queuing network can be computed approximately with the CTMC approach.

First, the effective arrival rates to the CPU and disk are given by λC = λ/(1− pd)
and λD = pdλ/(1− pd). The phase-type representation (αC,TC) for the hyperex-
ponential distribution is αC = (αC1,αC2) and

TC =

[
−µ1 0

0 −µ2

]
.

Using Neuts’ theorem, we can derive the phase-type representation of the waiting
time distribution of a customer at the CPU as

βC =

(
λCαC1

µ1
,

λCαC2

µ2

)
, LC =



−µ1 + λCαC1

λCµ1αC2

µ2
λCµ2αC1

µ1
−µ2 +λCαC2


 .

The phase-type representation of the service time at the disk is αD = (1,0) and

TD =

[
−µ3 µ3(1− p)

0 −µ4

]
.

The phase-type waiting time at the disk is given by

β D =

(
λD

µ3
,

λD(1− p)

µ4

)
, TD =



−µ3 +λDp µ3(1− p)

(
1 +

λD p
µ4

)

λDµ4

µ3
−µ4 + λD(1− p)


 .

The CTMC corresponding to the response time distribution of the CPU and disk
queuing system is depicted in Fig. 14.21(d). The response time distribution in this
queuing network is approximated by computing the distribution of time to absorp-
tion, i.e., of reaching state SF .
For the parameters λ = 1, pd = 0.7, αC1 = 0.3, αC2 = 0.7, µC1 = 6.67, µC2 = 10 and
for different disk service rates, Fig. 14.22 compares the response time distributions
derived via the CTMC method with simulations. The vertical bars next to the solid
lines denote 95% confidence intervals.
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Fig. 14.21: (a) CPU-disk queuing system (b) Service time distribution at the CPU
(c) Service time distribution at the disk (d) CTMC corresponding to the response
time distribution

14.5 Non-Markovian networks

Approximating response time distributions for Markovian networks using the tech-
niques previously described has been shown to give accurate results with much less
computational effort than required for exact analysis. In this section, we apply sim-
ilar paradigms in computing approximations to the response time distribution of
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Fig. 14.22: Response time distribution in the CPU and disk queuing system

open queuing networks in which the service times and arrival processes are non-
Markovian [28]. For doing so, we make use of several existing results on the re-
sponse time distribution at a single queue. Using these, a queuing network is trans-
lated into a Markov or semi-Markov chain, whose absorption time distribution ap-
proximates the response time distribution of the queuing network.

In Sect. 14.5.1, we consider the approximation of the response time distribution
of a network of queues containing M/G/1 priority queues. The approach is extended
to PH/G/1 queues in Sect. 14.5.2.

14.5.1 Approximating non-PH distributions

In the previous sections we dealt with queues whose response time distribution could
be expressed as the absorption time distribution of a CTMC; or in other words, their
response time distribution was phase-type. However, this is true for only few types
of queues. We shall now extend our approach to queues whose waiting (or response)
time distribution is not phase-type. We consider a multiple class queuing network
of M/M/1 queues with the priority service discipline. We start with first reviewing
some results on the response time distribution of the M/G/1 priority queue.

14.5.1.1 The response time distribution at an M/G/1 priority queue

The Laplace-Stieltjes transform of the waiting time distribution at an M/G/1 pri-
ority queue has been derived by Takács [41]. It is assumed that the priorities of the
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arriving jobs are independent, identically distributed random variables, independent
of the arrival times, and a job having a smaller priority number has preference over
a job with a greater priority number. Some required notation is described in Table
14.1.

Symbol Description Definition
λ Arrival rate of jobs
H Discrete random variable indicating the job

priority
ph Probability that arriving job has priority h P(H = h)

(h = 1,2, ...)
FH(h) Probability that arriving job has priority ≤ h P(H ≤ h) = ∑h

i=1 pi
λ[1,h] Arrival rate of jobs with priority ≤ h λ FH(h)
B Random variable indicating the job service

time
FB(t) Service time distribution P(B ≤ t)
β Mean service time E(B) =

´ ∞
0 t dFB(t)

FB|H(t | H = h) Conditional service time distribution for jobs
with priority h

f ∗B|H(s | H = h) LST of conditional service time distribution
´ ∞

0 exp(−st)dFB|H(t | H = h)

for jobs with priority h

FB|H(t | H ≤ h) Conditional service time distribution for jobs
∑h

i=1 FB|H (t |H=i)·pi

FH (h)

with priority ≤ h
f ∗B|H(s | H ≤ h) LST of conditional service time distribution

´ ∞
0 exp(−st)dFB|H(t | H ≤ h)

for jobs with priority ≤ h
β[1,h] Conditional mean service time for jobs with E(B | H ≤ h)

priority ≤ h =
´ ∞

0 t dFB|H(t | H ≤ h)

q q =

{
∞ if λ[1,h]β[1,h] < 1 ∀h,
min{h : λ[1,h]β[1,h] ≥ 1} otherwise

λ(h,q) Arrival rate for jobs with priority ∈ (h,q) λ (FH(q−1)−FH(h))

FB|H(t|h<H<q) Conditional service time distribution for
∑q−1

i=h+1 FB|H (t|H=i)·pi

FH (q−1)−FH (h)

jobs with priority ∈ (h,q)
f ∗B|H(s|h<H<q) LST of conditional service time distribution

´ ∞
0 exp(−st)dFB|H(t|h<H<q)

for jobs with priority ∈ (h,q)
W Random variable indicating the job wait time
FW |H(t | H = h) Conditional wait time distribution for jobs

with priority h
f ∗W |H(s | H = h) LST of conditional wait time distribution

´ ∞
0 exp(−st)dFW |H(t | H = h)

for jobs with priority h

FW |H(t | H ≤ h) Conditional wait time distribution for jobs
∑h

i=1 FW |H (t |H=i)·pi

FH (h)

with priority ≤ h
f ∗W |H(s | H ≤ h) LST of conditional wait time distribution for

´ ∞
0 exp(−st)dFW |H(t | H ≤ h)

jobs with priority ≤ h

Table 14.1: Notation for LST of priority queues
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If λ[1,h]β[1,h] < 1, the LST of the waiting time distribution for a priority h job [41]
is given by

f ∗W |H(s | H = h) = f ∗W |H(s+ λ[1,h−1](1−δh(s)) | H ≤ h), (14.1)

where δh(s) is the root with the smallest absolute value in z of the equation

z = f ∗B|H(s+λ[1,h−1](1− z) |H ≤ h− 1).

For the case of preemptive-resume priority,

f ∗W |H(s | H ≤ h) =
1−λ[1,h]β[1,h]

1−λ[1,h] ·
1− f ∗B|H(s|H≤h)

s

, (14.2)

and the LST of the conditional response time distribution is

f ∗R|H(s |H = h) = f ∗W |H(s |H = h) · f ∗B|H(s+λ[1,h−1](1− δh(s)) | H = h).

For the non-preemptive priority case, with the condition that λ[1,h]β[1,h] < 1 for every
h,

f ∗W |H(s | H ≤ h) =
1−λ β +λ[h,q] ·

1− f ∗B|H (s|h<H<q)

s

1−λ(1,h) ·
1− f ∗B|H (s|H≤h)

s

,

and the LST of the conditional response time distribution is

f ∗R|H(s | H = h) = f ∗W |H(s |H = h) · f ∗B|H(s | H = h).

Let us consider the simplest special case of an exponential service time distri-
bution with rate µh for priority class h. Suppose there are two priority classes with
preemptive-resume priority. Then for priority 1 jobs Eqs. (14.1) and (14.2) simplify
to

f ∗W |H(s | H = 1) =
1−λ[1,1]β[1,1]

1−λ[1,1] ·
1− µ1

µ1+s

s

=
1− p1λ

µ1

1− p1λ
µ1+s

,

which is the LST of the M/M/1, FCFS waiting time distribution, as expected.
According to Eq. (14.1), for jobs with priority 2, the LST of the waiting time

distribution is given by

f ∗W |H(s | H = 2) = f ∗W |H(s+λ[1,1](1−δ2(s)) | H ≤ 2)

= f ∗W |H(s+ p1λ (1−δ2(s)) | H ≤ 2).

Here δ2(s) is given by the absolute value of

µ1 + s+ p1λ −
√

s2 + µ2
1 +(p1λ )2 + 2µ1s+2sp1λ −2p1λ µ1

2p1λ
.
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Clearly, f ∗W |H(s |H = 2) is not rational in s and therefore does not represent a phase-
type distribution. Thus it follows that even for the exponential service time distri-
bution, the response time distribution in a multi-priority queue is not phase-type.
The CTMC approach outlined earlier therefore does not directly apply. One alter-
native approach is to fit a phase-type distribution to the response time distribution.
The advantage of this method is that the problem still reduces to computation of the
transient solution of a CTMC, a problem for which many different and numerically
stable solutions exist.

14.5.1.2 The CTMC approach

The main problem in the CTMC approach is to compute a good phase-type fit to
the response time distribution at each queue. A lot of work has been done in the
area of fitting a phase-type distribution when the first few moments of a distribution
are available. The most thorough work has been presented in a series of papers by
Johnson and Taaffe; see the list of references in [20]. In the context of our problem
we make the following remarks.

The response time distribution of the M/M/1 priority queue is available to us
only in the form of its LST. As one alternative, we could invert the LST numerically
and fit a phase-type distribution to the distribution that results from this inversion.
We do not find this alternative very prudent. This is because if we must use LST
inversion, the advantage of using the CTMC approach is lost. We could model the
response time problem simply as a semi-Markov chain (explained in detail later
in Sect. 14.5.2) and use LST inversion for its solution, without going through the
phase-type approximation. Therefore, if a matching must be done, it should be with-
out carrying out LST inversion. We would also like to point out the key difference in
other works in queuing systems based on phase-type fitting [22]: The phase-type fit
is in most cases computed for the service time distribution. The idea in that case is
to make the rest of the computations tractable. In our approach, however, we “skip”
over this step, and compute a direct fit to the waiting time distribution. Such an ap-
proach is possible only when a closed form expression exists for (the LST of) the
waiting time distribution at the queue under consideration. This approach keeps the
state space of our resulting CTMC model from getting very large.

The availability of the LST implies that not only do we have a unique repre-
sentation of the distribution in s domain but also any number of its moments are
immediately available to us. We therefore have two alternatives: (1) fit the moments
of the distribution; (2) fit the LST of a phase-type distribution to the given LST, by
function fitting procedures. We shall discuss each of these approaches next.

14.5.1.3 Moment matching

The problem of fitting phase-type distributions to a general distribution has received
a lot of attention in the past few decades. In the early 1990s, Johnson and Taaffe
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(J&T) [21, 22] and Johnson [20] proposed methods by which the first three mo-
ments of a general distribution could be matched with moments of a mixture of two
Erlang distributions. More recently, Osogami and Harchol-Balter [35] presented an
efficient closed form solution for matching the first three moments of a subset of
phase-type distributions, termed “Erlang-Coxian,” which results in a nearly mini-
mal number of phases. Horváth and Telek [16] suggested a method by which any
number of moments can be matched by those of an acyclic phase-type distribution.
There has been further work by Horváth et al. [17] in fitting interarrival distributions
with Markovian arrival processes (MAPs), including approximation of the n-lag cor-
relation of interarrival times.

The work presented here uses the methods of fitting phase type distributions pro-
posed by Johnson and Taaffe which involve matching moments. Although in [20]
it is mentioned that their software provides the option of fitting the LST directly,
there is no discussion on this issue. We therefore explore this method in some detail
in Sect. 14.5.1.4. In this section, we first develop the moment matching approach.
Without going into details, we shall mention some features of J&T’s moment match-
ing technique.

In this section, we use CTMC-like graphs describing the distributions, which
consist of nodes and edges. Labels on the edges indicate the probability of that edge
being traversed. If there is no label, the probability is assumed to be one. The node
is labeled with the rate of the exponentially distributed wait time at that node.

Johnson and Taaffe [21] have proven that a mixture of two Erlang distributions
(Fig. 14.23) can match the first three moments of any distribution for which there
exists some phase-type distribution that matches the first three moments. These au-
thors have also derived conditions under which a mixed Erlang matching can be
made.

Using the program MEMOM, supplied by Johnson [20], one can give the first
three moments as an input, and obtain the five parameters (p,λ1,λ2,n1,n2) of a
mixed Erlang distribution. The first three moments of the waiting time in a priority
queue have been derived in [41].

λ 1

λ 2

p

λ

1−p

1

λ 2

λ 1

λ 2

Fig. 14.23: The mixed Erlang distribution
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14.5.1.4 Function fitting of the LST

The phase-type distribution that we choose for fitting is the branching Erlang distri-
bution shown in Fig. 14.24.

1

λ1
1q

λ2
2q

p n

λ

0

n

p

0q q n−1

n−1p2pp

Fig. 14.24: The branching Erlang distribution

Note that the probabilities pi and qi add up to one for all i = 0,1, .... Since there is
only one edge leaving the node with value λn, pn = 1. Let M denote a random vari-
able following an n-stage branching Erlang distribution. The LST of the distribution
of M is

f ∗M(s) = p0 +
n

∑
i=1

pi

i

∏
j=1

q j−1
λ j

λ j + s
. (14.3)

The parameters of f ∗M(s) must be chosen such that it best approximates f ∗W (s). To do
this, we “discretize” the problem; i.e., we appropriately choose k points s1,s2, . . . ,sk
and minimize the function

k

∑
i=1

( f ∗M(si)− f ∗W (si))
2 (14.4)

with respect to the parameters of the branching Erlang distribution. This will give
the least squares fit of the function. The issues now are (1) to restrict the branching
Erlang, and (2) to appropriately choose the discretization points.

The branching Erlang can be restricted to the condition λ1 = λ2 = . . . = λn =: λ .
We also restrict n to 3. We have found that we obtain very good fits in most cases
under these restrictions. In case a good fit is not found, we increase the number of
stages in the branching Erlang distribution. Furthermore, one of the parameters, p0,
is already determined to be identical to lims→∞ f ∗W (s), which is the probability that
the waiting time is zero.

We can also make this a more hybrid fitting by determining one more parameter
based on matching the mean of the distribution. Suppose µ is the mean waiting time.
If we choose λ by matching the means of the two distributions, it is given by

λ =
q0 p1

µ
+

2q0q1 p2

µ
+

3q0q1q2

µ
.

The only parameters to be chosen now are p1 and p2.
The choice of the points s1,s2, . . . significantly affects the approximation error.

If we want the value of the sum in Eq. (14.4) to be ≤ kε2, then we must choose
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at least one si such that | f ∗M(si)| > ε/2 or | f ∗W (si)| > ε/2. This is because if both
| f ∗M(si)| < ε/2 and | f ∗W (si)| < ε/2 then | f ∗M(si)− f ∗W (si)| < ε , for any choice of
parameters. The least squares fit over the discretized function will therefore not
result in a good fit for the actual function. In practice, we choose points s1,s2, . . .
such that they “contribute” largely towards the error. Thus we choose evenly spaced
real values of si’s in the interval (0,sk] such that | f ∗W (sk)|> ε/2.

14.5.1.5 Example: Transaction processing system

Consider a transaction processing system maintaining information which is regu-
larly read and updated on two databases (on DISK1 and DISK2); see Fig. 14.25(a).
We would like to provide the read tasks with as up-to-date information as possi-
ble. One way to achieve this effect is to give preference to the update tasks, so that
the read tasks are executed after the latest update has been performed. Thus update
tasks are assigned higher priority than the read tasks. To avoid excessive scheduling
overhead, the system adopts non-preemptive priority at the front-end processor.
Both read and update tasks use the processor for an amount of time that follows
an exponential distribution with rate µC1. The tasks then proceed to disk D1 with
probability p1 and to another disk D2 with probability p2. The service time at disk
D1 is exponentially distribution with rate µD1, and that at disk D2 is exponentially
distributed with rate µD2, for both kinds of tasks. The response time distribution for
each of these tasks can be computed using the approach outlined above.

We fit the waiting time distribution at the CPU with a 2-stage branching Erlang
distribution by matching the LSTs of the two distributions at a finite number of real
values of s. A CTMC model, depicted in Fig. 14.25(b), is then built whose absorp-
tion time distribution approximates the response time distribution of a customer in
this queuing network. Suppose the fraction of update tasks coming to the system is
0.3 and that of read tasks is 0.7. Suppose µD1 = 1.0, µD2 = 0.7, p1 = 0.5, p2 = 0.2
and µC1 = 1.0. We show the relative percentage error between the response time dis-
tribution values computed by the CTMC method and values derived by simulation.
For simulation values, we use the midpoints of 95% confidence intervals. Figures
14.26(a)–(d) show the relative percentage error for arrival rates 0.04, 0.05, 0.06, and
0.07, for priority 1 customers.
Figures 14.27(a)–(d) show the relative percentage error for arrival rates 0.04, 0.05,
0.06, and 0.07, for priority 2 customers. The CPU utilization level varies from 22%
to 40%.

The same example can be solved by fitting a mixed Erlang distribution to the
waiting time distribution using the J&T method. That is, we fit the first three mo-
ments of a mixed Erlang distribution to the first three moments of the waiting
time distribution. Figure 14.28 shows the response time distribution for a priority
2 customer, when arrival rate is 0.07. The relative percentage error is depicted in
Fig. 14.29. This experiment suggests that the moment matching approach does not
work as well as the hybrid approach, in which the first moment is matched and the
LST is directly fitted.
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Fig. 14.25: (a) Priority queuing system (b) CTMC corresponding to the response
time distribution

It is well known that the Laplace transform inversion function is unstable; i.e.,
small perturbations in the value of the Laplace transform f ∗(s) may lead to large
changes in the time-domain function f (t) [4]. However, it has also been noted in
the literature [4] that functions that are essentially smooth are not very sensitive to
perturbations in the LST.
The response time distribution functions that we use are bound to be smooth and
“well-behaved,” in the sense that they cannot have spikes or oscillations. Our method
of approximating the LST of an unknown function with the LST of a known function
thus gives good numerical results in most cases.

However, this method is disadvantageous in case a good fit for the LST cannot
be found sufficiently fast. Our primary aim of a fast numerical solution is then not
met. In the next section, we therefore propose a new technique, in which we do not
attempt to fit a phase-type distribution. Instead, we use semi-Markov chains. This
approach also extends our technique for response time computation to a network of
PH/G/1 queues.
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Fig. 14.26: Relative percentage error for priority 1 customers, LST fitting

14.5.2 Modeling response time distributions using semi-Markov
processes

In the previous sections, we dealt exclusively with exponential and phase-type ser-
vice time distributions and Poisson arrival processes. The simplifying assumption
in our approach was that arrivals to all queues are Poisson, which is not generally
the case. This is because departures from previous queues may not be Poisson (ex-
cept for cases mentioned in Sect. 14.3). In this section, we address this problem
and relax the Poisson arrival assumption. We allow external arrivals to the queues
to be phase-type renewal processes, i.e., the time between arrivals is identically and
independently distributed and has a PH distribution.

We extend our approach to an open network of PH/G/1 queues. For dealing
with arrival processes that are renewal processes, we adopt techniques employed
by Whitt’s Queuing Network Analyzer [47], with some differences. Firstly, Whitt’s
approach does not require the arrival renewal processes to be phase-type. Secondly,
Queuing Network Analyzer does not deal with response time distributions in detail.



14 Response Time Distributions in Networks of Queues 625

0.0 20.0 40.0 60.0 80.0 100.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
R

el
at

iv
e 

P
er

ce
nt

ag
e 

E
rr

or

(a)

0.0 20.0 40.0 60.0 80.0 100.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

(b)

0.0 20.0 40.0 60.0 80.0 100.0
t

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

R
el

at
iv

e 
P

er
ce

nt
ag

e 
E

rr
or

(c)

0.0 20.0 40.0 60.0 80.0 100.0
t

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

(d)

Fig. 14.27: Relative percentage error for priority 2 customers, LST fitting

By letting the arrival processes to be restricted to phase-type renewal processes, we
can explore more accurate approximations to the response time distribution in the
queuing network. Thirdly, unlike Whitt we do not take into account multiple server
queues and the possibility of customer creation or combination.

In general, the response time distribution at a PH/G/1 queue is not phase-type,
and hence the CTMC approach developed earlier does not directly apply. The same
paradigm though can be extended to non-phase-type distributions by employing
semi-Markov processes. For the states of such a process, the holding time distribu-
tions do not necessarily follow an exponential distribution. The future may depend
on how much time has been spent in the current state. However, semi-Markov pro-
cesses do maintain the “memoryless” property to the extent that all the past can be
“forgotten” at a state transition epoch. This scenario lends itself very favorably to
modeling response times in queuing networks. Thus for each queue in the network
we create one state representing the sojourn time of a customer at that queue. Be-
cause of our independence assumptions and Markovian routing it is clear that when
a customer begins sojourn at one queue, the customer history may be “forgotten.”
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Fig. 14.28: Response time distribution for priority 2 customers, moment matching
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Fig. 14.29: Relative percentage error for priority 2 customers, moment matching

The sojourn time at one queue, however, is in general not exponentially distributed
and hence must be “remembered.” The two quantities needed for solution of a semi-
Markov process are thus readily available to us: the holding times vector and the
probability matrix of the embedded DTMC (which is the same as the network rout-
ing matrix).

The semi-Markov process method avoids the state space explosion that may be
caused by fitting a phase-type distribution to a general distribution. Fitting also in-
troduces an approximation error. In the semi-Markov approach we avoid these prob-
lems at the cost of a less efficient solution method (namely, numerical inversion of
an LST).

There are many issues to be addressed: (1) deriving the parameters of the phase-
type renewal process to each queue, (2) computing the response time distribution at
each queue, (3) computing the response time distribution in the queuing network.
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In the following subsections we shall explain the techniques that we developed or
chose from literature to address each one of these issues.

14.5.2.1 Deriving parameters of arrival processes

For using our basic approach of decomposition of queues we need to view each
queue as an isolated PH/G/1 queue. Therefore, we must derive the parameters of
the (approximated) PH renewal arrival process to each queue. For this task, we es-
sentially adopt Whitt’s approach of characterizing the renewal processes by two pa-
rameters, namely, the mean and the squared coefficient of variation of the interarrival
times. We then fit a phase-type renewal process to these two moments, and analyze
each queue as a PH/G/1 queue. A similar approach was used by Haverkort [15] to
solve a network of queues with PH service times using exact analysis. However, the
problem of response time distribution was not addressed in that work.

Consider a network of m queues, 1,2, . . . ,m. The arrival rate to each queue
is computed in exactly the same way as was done under the Poisson interarrival
assumption, see Eq. (14.3). In the following, the notation that was defined in
Sect. 14.3.2 still holds.

The coefficients of variation are computed according to equations derived by
Whitt. We reproduce them below without explanation. (For details as to how these
are derived, the reader is referred to [47].)

Let the arrival rate to queue j from queue i be

λi j = λiri j ,

and the proportion of arrivals to j that came from i, i≥ 0,

fi j = λi j/λ j.

Let c2
a j denote the squared coefficient of variation of the effective arrival process to

queue j. Let c2
0 j denote the squared coefficient of variation for the external arrival

process to queue j. Let c2
s j denote the squared coefficient of variation of the service

time distribution at queue j. Then the squared coefficient of the effective arrival
process at queue j is obtained by solving the linear system

c2
a j = a j +

m

∑
i=1

c2
aibi j, 1≤ j ≤m, (14.5)

where a j and bi j are constants computed as

a j = 1 +wj

{
( f0 jc

2
0 j−1)+

m

∑
i=1

fi j [(1− ri j)+ ri jρ2
i xi]

}

and
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bi j = wj fi jri j(1−ρ2
i ),

where ρi is the traffic intensity at queue i. Further, xi and wj are given by

xi = max{c2
si,0.2}

and
wj = [1 +4(1−ρ j)

2(ν j−1)]−1,

where

ν j =

(
m

∑
i=0

f 2
i j

)−1

.

Thus, λi and c2
ai give us the average rate and the squared coefficient of variation of

the interarrival time at queue i.
Once we have solved the two systems of linear equations, Eqs. (14.3) and (14.5),

we must fit approximate PH renewal arrival processes to these “derived” parameters.
To this end, we employ an adapted version of Whitt’s approach [47]. (Note that this
approach was used by Whitt for approximating the delay distribution at each of the
queues in the network.)

Case 1: c2
a j ≥ 1.01.

Then let the PH distribution be hyperexponential with two stages with rates γ1

and γ2, respectively, where the stage with rate γ1 is chosen with probability

p =
1+
√

(c2
a j−1)/(c2

a j +1)

2
,

and the rates are given by

γ1 = 2pλ j and γ2 = 2(1− p)λ j.

Case 2: 0.99≤ c2
a j ≤ 1.01.

Let the interarrival distribution be exponential with rate λ j.
Case 3: 0.501≤ c2

a j ≤ 0.99.
The interarrival time distribution is assumed to be hypoexponential; i.e., it is a
convolution of two exponential stages with parameters γ1 and γ2, respectively,
where

γ−1
2 =

λ−1
j +

√
2λ−2

j c2
a j−λ−2

j

2
and

γ−1
1 = λ−1

j − γ−1
2 .

Case 4: c2
a j ≤ 0.501.

Let the distribution be Erlang with k = ⌈1/c2
a j⌉ stages. The rate of each stage is

then kλ j.



14 Response Time Distributions in Networks of Queues 629

14.5.2.2 Response time distribution at a PH/G/1 queue

The expression for the LST of the waiting time distribution of a customer at a
PH/G/1 queue may be found in Cohen’s book [11]. However Cohen’s method re-
quires the computation of the n + 1 roots of a non-linear equation (where n + 1 is
the number of states in the CTMC corresponding to the PH interarrival distribution).
More recently, Lucantoni [25] developed computational algorithms for analysis of
the BMAP/G/1 queue, which resulted in simplified algorithms for several other
queues that are special cases of the BMAP/G/1 queue. Since the PH arrival process
is a special case of the batch Markovian arrival process (BMAP), we use Lucantoni’s
algorithms for our computation. In the following paragraphs we shall briefly outline
the computational algorithm developed by Lucantoni. Note that describing the “se-
mantics” of the various vectors and matrices associated with Lucantoni’s algorithm
is beyond the scope of this chapter. We shall describe the computation in a solely
mathematically complete manner. For a thorough understanding of the algorithm
please refer to [25].

Suppose the PH representation of the interarrival time to a PH/G/1 queue is
(α ,T). Then the matrix generating function [25] associated with this interarrival
time is given by D(z) = T + zτ ′α . As before, Te′+ τ ′ = 0′; i.e., τ ′ = −Te′. Also,
ρ is again the traffic intensity, and f ∗B(s) denotes the LST of the service time dis-
tribution, FB(t). Let the random variable Wv be the virtual waiting time, defined as
the waiting time of a “virtual” customer at any arbitrary instant (or, in other words,
the total “work” remaining to be done in the queue at any time), and the random
variable J be the phase that the arrival process is in. The LST of the joint den-
sity function of Wv and J is denoted by f ∗Wv ,J(s, j). Then the corresponding vector

f∗Wv
(s) =

(
f ∗Wv ,J(s,1), f ∗Wv ,J(s,2), ..., f ∗Wv ,J(s,n +1)

)
is given by

f∗Wv
(s) = s(1−ρ)g[sI+D( f ∗B(s))]−1,

where I is an identity matrix (i.e., a matrix with a diagonal of ones and off-diagonal
elements of value zero). The vector g is the stationary vector corresponding to G (a
square matrix of the same size as T), which for the PH renewal arrival process is
given by

G =

ˆ ∞

0
exp[(T + τ ′αG)t]dFB(t).

Here T + τ ′αG is an infinitesimal generator matrix of a CTMC. Letting u = αG,
we have

u =

ˆ ∞

0
α exp[(T+ τ ′u)t]dFB(t).

This matrix exponential is best computed using the uniformization [19] technique.
Thus if we define θ = maxi[−(T + τ ′u)]ii and γn =

´ ∞
0 exp(−θ t) (−θt)n

n! dFB(t), for
n≥ 0, we can write u as
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u =
∞

∑
n=0

γnα(I+θ−1(T+ τ ′u))n.

Once u is computed (to a satisfactory degree of accuracy), g is given by

g =
v

ve′
,

where v is the solution to the linear system vT = u.
The LST of FW (t), the actual waiting time distribution of an arbitrary customer

in the queue, is given by [26]

f ∗W (s) =
1

λ (1− f ∗B(s))
f∗Wv

(s)[D(1)−D( f ∗B(s))]e′,

which in the case of a PH arrival process simplifies to

f ∗W (s) =
1
λ

f∗Wv
(s)τ ′α(1− f ∗B(s))e′.

Since the response time is the sum of waiting time and service time, the LST of
the response time distribution is then given by

f ∗R(s) = f ∗W (s) · f ∗B(s). (14.6)

14.5.2.3 Transient solution of a semi-Markov process

Once we have found the response time distribution at each queue, a semi-Markov
process corresponding to the queuing network can be built. The absorption time
distribution of this semi-Markov process will approximate the response time distri-
bution in the queuing network. For this, we must carry out transient analysis of the
semi-Markov process. In this section, we describe a Laplace transform method for
transient analysis of a semi-Markov process [10].

We shall first introduce some notation regarding semi-Markov processes based
on the paper by Ciardo et al. [10]. Suppose that {X(t),t ≥ 0} is a right-continuous
semi-Markov process with state space S ⊂ N = {0,1,2, . . .}. Suppose further that
the the probability that X(t) will eventually reach an absorbing state is one. We
denote the set of absorbing states by A, and the set of non-absorbing states by N,
respectively. Let Tk be the time of the kth transition, then Tk+1−Tk is the time spent
(i.e., the holding time) in the kth visited state. Define T0 = 0. If we observe this
semi-Markov process at state-transition epochs, we have a discrete-time process, in
fact, a DTMC. Denote this process by Yk = X(Tk), the state reached after the kth
transition. Then the kernel of a semi-Markov process is defined as [10]

K(t) = [Ki, j(t)] = [P(Yk+1 = j,Tk+1−Tk ≤ t | Yk = i)].

The transition probability matrix of the embedded DTMC is defined as [10]
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E = [Ei, j] = [P(Yk+1 = j | Yk = i)] = K(∞).

The holding time vector is [10]

h(t) = [hi(t)] = [P(Tk+1−Tk ≤ t | Yk = i)] = [∑
j∈S

Ki, j(t)].

Note that each holding time is independent of the next state.
Let Vi, j(t) be the probability of being in state j at time t, given that the initial

state was i; i.e.,
Vi, j(t) = P(X(t) = j | Y0 = i).

Then Vi, j(t) is given by

Vi, j(t) = I(i= j) · (1−hi(t))+ ∑
l∈S

ˆ t

0
Vl, j(t−u)dKi,l(u),

where the indicator function I(i= j) is equal to one if i = j, and zero otherwise. Now
suppose that the semi-Markov process has only one absorbing state a. (If the set of
absorbing states should consist of more than one state, then a can be obtained by
lumping all the states in A together.) Then the conditional distribution of the time to
absorption is given by Vi,a(t). This can be found by either numerically integrating the
above equation or by the LST method. Since in our case holding times are available
in the LST form, we adopt the latter approach.

Let the LST of Ki, j(t) be denoted by K̃i, j(s) =
´ ∞

0 exp(−st)dKi, j(t). Partitioning
K(t) according to the set of non-absorbing states N and the absorbing state a, we
have

K(t) =

[
K[NN](t) K[Na](t)

0 Ka,a(t)

]
.

The LST K̃(s) may also be partitioned similarly:

K̃(s) =

[
K̃[NN](s) K̃[Na](s)

0 K̃a,a(s)

]
.

Denote by ṽa(s), the vector of LSTs of Vi,a(t). The solution for this vector is obtained
by solving the linear system [10]

(I− K̃[NN](s))ṽa(s) = K̃[Na](s). (14.7)

Thus to compute ṽa(s), we must first solve the above equation, and then apply LST
numerical inversion to obtain va(t), the vector of the Vi,a(t). For details on numerical
inversion of LSTs, refer to [4, 9, 18].
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14.5.2.4 Building the semi-Markov chain from the queuing network

In this section we shall outline a step-by-step procedure of the semi-Markov method
of computation of response time in a network of m queues without loss of customers;
i.e., pbi = 0 for all i.

Step 1: Compute the effective arrival rate λi at each queue i by solving Eq. (14.3),
setting pbi = 0 for all i.

Step 2: Compute the squared coefficient of variation c2
ai of the effective arrival

process at queue i, from Eq. (14.5).
Step 3: Follow the procedure in Sect. 14.5.2.1 to compute the parameters of the

fitted PH arrival processes.
Step 4: Given the LST of the service time distribution, f ∗Bi

(s), for each queue i of
the queuing network, use Eq. (14.6) for computing the LST of the response time
distribution, f ∗Ri

(s), for each queue i.
Step 5: Create a semi-Markov process with state space S which includes m states

S1,S2, . . . ,Sm: one corresponding to each queue i in the network. Add an addi-
tional state S f which denotes exit out of the queuing network. Thus |S|= m +1.

Step 6: Let ri j be the probability of routing from queue i to queue j in the queuing
network. Then the embedded DTMC transition probability matrix E is given by

ESi,S j = ri j ∀i, j ∈ {1,2, . . . ,m},

ESi,S f = 1−
m

∑
j=1

ri j ∀i ∈ {1,2, . . . ,m}.

Step 7: The LST of the semi-Markov kernel is defined as

K̃Si,S j (s) = f ∗Ri
(s) ·ESi,S j ∀i, j ∈ {1,2, . . . ,m},

K̃Si,S f (s) = f ∗Ri
(s) ·ESi,S f ∀i ∈ {1,2, . . . ,m}.

Step 8: For the semi-Markov process related to the response time in a queuing
network, the absorbing state a of Sect. 14.5.2.3 corresponds to state S f , while the
set of states N contains the states S1,S2, . . . ,Sm. Now Eq. (14.7) may be solved us-
ing a standard linear system solution method to compute ṽS f (s) in the s-domain,
where ṽS f (s) denotes the vector of LSTs of VSi,S f (t). Since each VSi,S f (t) is a
probability conditioned on the initial state Si, we must compute the LST of the
total unconditional probability. An incoming job joins queue i first with probabil-
ity λ0i/∑m

j=1 λ0 j . Then the LST of the (approximate) response time distribution
is given by ∑m

i=1 λ0iṼSi,S f (s)/∑m
j=1 λ0 j. This can be numerically inverted to yield

our approximation to the response time distribution in the queuing network. We
implemented the above algorithm and used an existing Laplace transform inver-
sion routine [8] for our final step.
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14.5.2.5 Example: Distributed system

Consider again the distributed system of Sect. 14.3.3.2. Assume that the arrival pro-
cess to the terminals is a four-stage Erlang renewal process. Let the delay at the
terminals be constant, and the processing time at the rest of the queues be uniformly
distributed.

We can map this queuing network to the semi-Markov process depicted in
Fig. 14.30, with starting state T . The labels on the arcs denote the entries of the
kernel matrix (not transition rates). Let the delay at the terminals (T ) be 1. More-
over, we assume that the service time is UNIFORM(1, 2) at the front-end server
(F), UNIFORM(0.5, 0.7) at the communications server (C), UNIFORM(1, 3) at the
database server (D), and UNIFORM(1, 2) at the general-purpose server (P).

T F C DPdonep0 RF (t)RT (t) p1 RF (t)p2 RC(t) p3 RC(t)p4 RC(t)
RD(t)
RP (t)

Fig. 14.30: Semi-Markov process corresponding to the response time distribution of
the distributed system

Figure 14.31 shows the plot for the response time distribution for different arrival
rates. The utilization at the front-end processor varied from 50% to 90%. The points
used for the simulation plot for the first three values of arrival rates are the midpoints
of the 99% confidence intervals, which were too narrow to be represented by vertical
bars. For this example, our method required 15.6 seconds, while simulation required
2 minutes on the same machine. For an arrival rate of 0.18, the same execution time
gave 95% confidence intervals of significant widths; hence the confidence intervals
are shown by vertical bars.
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Fig. 14.31: Response time distribution in the distributed system

14.5.2.6 End-to-end delay in a virtual circuit

The building block method described in the previous sections is not the only ap-
proach in which semi-Markov processes can be employed for deriving response
time distributions. In this section, we show a different way of applying semi-Markov
processes, in the context of studying the end-to-end delay in a virtual circuit.

With the emergence of high-speed networks, many of the principles that gov-
erned traditional networks have undergone reevaluation. One major difference is
that the propagation delay of the link is now the major contributor to the end-to-
end delay of a message and not the transmission time. This affects various design
choices, one instance of which is whether the error control should be end-to-end
or link-by-link. It has been shown in the communications literature [5] that in the
domain of high-speed networks, end-to-end error control is far superior to the link-
by-link error control, when end-to-end delays are considered. Bhargava et al. [5] de-
veloped an analytical model to compute mean end-to-end delays in a virtual circuit.
However, just the mean does not provide enough information about the message de-
lay. In this section, we compute the delay distribution of a message through a virtual
circuit of a high-speed network.

In the end-to-end error control scheme, the first node of a virtual circuit (VC)
buffers a message until it has received an ACK from the final destination node. If an
ACK is not received within a timeout period the first node retransmits the message.
The intermediate nodes only perform error detection; i.e., in case the arriving mes-
sage is erroneous the intermediate node simply discards the message. A message
arrival to an intermediate node whose buffers are full is also lost. In both cases, a
retransmission will be initiated from the first node.

The model for a four-hop virtual circuit is depicted in Fig. 14.32. Traffic from
a Poisson source of rate λVC enters a virtual circuit of m = 4 nodes. It is assumed
that all nodes except the first one are allocated b buffers. The message transmission
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Fig. 14.32: Queuing network representing virtual circuit

rate at each node is denoted by µ and represents the effective capacity as seen by
the traffic belonging to the VC under consideration. Suppose the probability of a
message getting corrupted between two nodes is p. Also let qi denote the buffer full
probability at node i. Let 1/µp denote the fixed propagation delay along link i. The
branching after link i in Fig. 14.32 represents the retransmission of the message.
Thus the message is retransmitted either if it is corrupted or if it is lost because of
full buffers. The first node starts a timeout period as soon as it finishes transmission;
the message is retransmitted if no ACK is received within the timeout period. The
first node in this queuing network is modeled as an M/M/1 queue, while the others
are modeled as M/M/1/b queues. Let λi be the message arrival rate (including
erroneous messages which will be discarded) to the node i. We shall compute the
arrival rates using the method described in [5].

The probability qi of having b messages at node i (≥ 2) is given by Gross et al.
[13] as

qi =
(1−ρi)ρb

i

1−ρb+1
i

, i = 2,3, . . . ,

where ρi = λi(1− p)/µ . The λi are computed by noting that the message throughput
rate out of the network must also be λVC, and hence the message throughput at point
Om in the figure must be λVC/(1− p) [5]. However, this should equal the message
arrival rate at point Im in the figure. Then, the following must be true [5]:

λm(1− p)(1−qm) =
λVC

1− p
.

If we substitute the value of qm in this equation, we obtain an equation in only one
unknown, λm, which can be solved numerically. Once λm is computed, λm−1 may
be computed in a similar way, and working backwards, λi and qi may be computed
for all i = 2,3, . . . ,m.

Now, suppose Nt denotes the number of times a message must be retransmitted,
before it reaches correctly to the final destination. Also let p f ail denote the proba-
bility that one transmission of the message fails. Let di denote the probability that
a message is discarded by node i. Then di = p +(1− p)qi, i = 2,3, . . . ,m. Further,
p f ail is given by [5]

p f ail =
m

∑
i=2

di

i−1

∏
j=2

(1−d j).
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Given p f ail , the probability mass function of Nt is given by [5]

P(Nt = k) = pk
f ail(1− p f ail), k = 0,1, . . .

Let Tee denote the timeout period and Ri denote the delay of the message at node i.
Now the total delay time R required to deliver the message from the source to the
final destination correctly is given by

R = Nt(R1 + Tee)+
m

∑
i=1

(Ri + 1/µp) = Rw + Rc,

where Rw := Nt(R1 +Tee) represents the time taken for all the transmissions that go
wrong and Rc := ∑m

i=1(Ri +1/µp) is the time taken by the message during its final
correct traversal through the virtual circuit. Then the LST of the distribution of R is
given by

f ∗R(s) = f ∗Rw
(s) · f ∗Rc

(s). (14.8)

Let Rw1 = R1 + Tee. Since we assume that node 1 is an M/M/1 queue with arrival
rate λ1, the LST of the delay distribution at this node is given by

f ∗R1
(s) =

µ −λ1

µ −λ1 + s
,

and f ∗Tee
(s) = exp(−Tees). Then, f ∗Rw1

(s) = f ∗R1
(s) · f ∗Tee

(s). Now, f ∗Rw
(s) is found by

conditioning on Nt and then unconditioning:

f ∗Rw
(s) =

∞

∑
k=0

( f ∗Rw1
(s))kP(Nt = k)

=
∞

∑
k=0

( f ∗Rw1
(s))k pk

f ail(1− p f ail)

= (1− p f ail)
∞

∑
k=0

( f ∗Rw1
(s)p f ail)

k

=
1− p f ail

1− f ∗Rw1
(s)p f ail

.

Rc may be represented by the absorption time distribution of a semi-Markov chain
which essentially represents a tandem network. In this example, however, the LST
of Rc, which we denote here by f ∗Rc

(s), may be derived in closed form simply as

f ∗Rc
(s) =

m

∏
i=1

(
f ∗Ri

(s)exp

(
− s

µp

))
. (14.9)

The distribution of Ri is the conditional distribution of the delay at an M/M/1/b
queue, given that the arriving job is not lost. Its LST is given by
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f ∗Ri
(s) =

b−1

∑
j=0

1−ρi

1−ρb
i

ρ j
i

(
µ

µ + s

) j+1

.

Substituting this expression into Eq. (14.9), we are able to compute f ∗Rc
(s). The

LST of the delay distribution can then be computed from Eq. (14.8). Numerical
inversion of this LST gives us an approximation to the end-to-end delay distribution
of a message in the virtual circuit.

Figures 14.33–14.35 show the delay distribution for various buffer sizes and ar-
rival rates.
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Fig. 14.33: Delay distribution in the VC, b = 20 buffers

In this example, we fixed the simulation time to be a maximum of 5 minutes, to study
the effect on the confidence intervals. For each of the plots shown the simulation ran
up to its limit of 5 minutes. The vertical bars next to the curves represent 95%
confidence intervals obtained by simulation. As can be seen, for an arrival rate of
0.8, the confidence intervals become very wide. The numerical method took 42.6
seconds on the same machine.

14.6 Conclusions

In this chapter, we described three methods for computation of the response time
distribution in open queuing networks. First, when the network is of queues whose
response time distributions are phase-type, we presented a method to directly map
the “response time building blocks” to a CTMC with absorbing states. Second, when
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Fig. 14.34: Delay distribution in the VC, b = 40 buffers
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Fig. 14.35: Delay distribution in the VC, b = 60 buffers

the network is of queues whose response times are not phase-type, we discussed two
methods of approximating the response time distributions with phase-type distribu-
tions, and then mapping the response time to the absorption time in a CTMC. Third,
again for networks with queues whose response times are not phase-type, we pre-
sented an approach where the response time was computed as the time to absorption
in a semi-Markov chain.
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After extensive experimentation and comparison with discrete-event simulation
the following general remarks can be made about the three proposed methods:

• In all cases the methods work very well for low utilization, and start degrading
in accuracy at higher levels of utilization.

• The LST fitting method holds least promise because the fitting process can take a
prohibitively large amount of time. This time is not justified for an approximate
method.

• The semi-Markov process method works very well when the service time distri-
bution does not have a very low coefficient of variation. Thus it does not work
very well for deterministic service times.

The problem of deriving the response time distribution in queuing networks has
been addressed in many different ways in the queuing network literature. For the
most part, research has focused on specific cases or on solving a simpler problem
such as response time through a single path in a queuing network. In this chapter,
we adopted a different approach; we have attempted to solve a more general prob-
lem, at the cost of making some (judicious) approximations. The motivation was to
provide a fast (but approximate) solution for a problem that otherwise can be solved
only by simulation, which at times can be tiresome. The approach taken for the solu-
tion of the problem was to make use of “building blocks” that have been developed
and putting them together with various “tools” to form one whole approximation
method. The building blocks that our method relies on are the results on the waiting
time distribution at various different kinds of queues. The tools that we used were
linear system solution, fixed point iteration, phase-type fitting, transient CTMC so-
lution and transient semi-Markov solution. Empirical studies of our method and
comparison with discrete event simulation demonstrate that our method provides
fast and fairly accurate predictions of response time distribution. The method is thus
an alternative to simulation in providing fast answers to what-if questions regarding
design issues that may affect sojourn time.

Immediate improvements possible to this method are in fitting arrival processes
which also incorporate correlation between arrivals, such as the batch Markovian
arrival process. As mentioned, the method also does not work well when service
times are deterministic; this problem needs to be addressed. The solution method
should also be extended to incorporate finite capacity queues with general arrivals
and service times.
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Chapter 15

Decomposition-Based Queueing Network
Analysis with FiFiQueues

Ramin Sadre, Boudewijn R. Haverkort

Abstract In this chapter we present an overview of decomposition-based analysis
techniques for large open queueing networks. We present a general decomposition-
based solution framework, without referring to any particular model class, and pro-
pose a general fixed-point iterative solution method for it. We concretize this frame-
work by describing the well-known QNA method, as proposed by Whitt in the early
1980s, in that context, before describing our FiFiQueues approach. FiFiQueues al-

arrival and service time distributions are of phase-type; individual queues, all with
single servers, can have bounded or unbounded buffers. Next to an extensive evalua-
tion with generally very favorable results for FiFiQueues, we also present a theorem
on the existence of a fixed-point solution for FiFiQueues.

15.1 Introduction

In this chapter we present an overview of the FiFiQueues method (and supporting
tool) to evaluate large open queueing networks with non-Poissonian traffic streams
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and non-exponential services. FiFiQueues is an example of a decomposition-based
queueing network evaluation approach, in which the overall evaluation is broken
into per-queue evaluations, thus making the method highly scalable.

The earliest work on open networks of queues has probably been reported by
Jackson [20]. The so-called Jackson queueing networks (JQNs) allow for the analy-
sis of open networks of M|M|1 queues, in which jobs are routed according to fixed
probabilities. The external arrival process forms a Poisson process; arrivals may be
spread over more than one queue. Departures from the queueing network are also
possible.

In the mid 1970s, Kühn developed an approximate evaluation approach for an
extended class of models [27], including non-Poissonian arrivals, as well as service
times that followed other than exponential distributions. As an extension of this
approach, Whitt proposed the QNA method in the early 1980s [49, 50]; QNA can be
seen as a full-fledged approach to evaluate networks of G|G|1 queues approximately.
Since our FiFiQueues approach can be regarded as an extension of QNA, and still
relies on some of the assumptions made in QNA, we concisely present QNA in
Section 15.3.

We are not the only researchers who have worked on extensions of QNA, nor are
the extensions of QNA that we describe here the only possible extensions. Schuba
et al. [46] reported on work involving the inclusion of multicast communication
using routing trees (instead of the usual routing chains). Heindl et al. proposed
decomposition-based analysis techniques taking into account correlations in the
traffic streams between the queueing nodes, e.g., by using MAPs and MMPPs as
traffic descriptors, cf. [17, 19, 20, 21]. Kim et al. [24] proposed an extension of
QNA to include correlations in the traffic streams. For two small networks that are
studied in detail (with 2 and 3 nodes resp.) better results than with standard QNA
are obtained. The question how well the method scales to larger and more complex
queueing networks remains open. Finally, in 1990 Harrison and Nguyen proposed
the QNET approach [12] which, however, appears impractical for large queueing
networks. A simplification of QNET, called ΠNET (described in the same paper)
appears more practical; however, its approach is very similar to that of (standard)
QNA.

The aim of this chapter is to present in detail the complete set of extensions we
have proposed, and that led to the approach now known as FiFiQueues. FiFiQueues
extends QNA in two ways: first, it extends the model class, and secondly, it removes
a number of approximation steps from it. In particular, we do not address general
G|G|1 queues, but allow instead for both PH|PH|1 as well as PH|PH|1|K queues.
That is, we allow for phase-type distributions as inter-arrival and service-times, but
at the same time also allow for finite- and infinite-buffer queues. This choice has
two implications. The restriction to phase-type distributions allows us to use exact
analysis algorithms for the per-queue evaluations, e.g., based on matrix-geometric
methods. Secondly, the introduction of finite queues allows us to model queueing
networks with losses, which has a severe impact on the solution of the traffic equa-
tions and forces us to follow a fixed-point iterative algorithm to solve them.
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The chapter is further organized as follows. In Section 15.3 we summarize the
QNA method. In Section 15.4 we present the FiFiQueues algorithm and its im-
plementation in an integrated tool. We then present a large number of cases to
validate both basic FiFiQueues and its extensions (against simulation results) in
Section 15.5. Finally, Section 15.6 presents some conclusions. To keep the chapter
self-contained, we added appendices on Jackson queueing networks (Section 15.7),
on Markovian arrival processes, phase-type distributions and quasi-birth-death pro-
cesses (Section 15.8), as well as a proof of the existence of a fixed point for the
models we study (Section 15.9).

We finally remark that we already worked on some further extensions on Fi-
FiQueues. We extended our approach to also deal with closed queueing networks,
as published in [44]. Furthermore, we developed extensions that deal with correla-
tions in traffic streams, as well as with higher moments [40].

15.2 The decomposition approach

Sketch of the idea

A common approach to evaluate the performance of communication systems is to
construct and analyze a large monolithic model, often via an underlying state-space-
based representation (typically a Markov chain). However, analysis methods relying
on an analysis of such a large state space usually suffer from the state space explo-
sion phenomenon: If two models A and B with a resp. b states are composed to a
new “product model” A×B, this model has potentially a ·b states (this assumes that
there are no mutually exclusive states). For large systems models, the number of
states quickly grows beyond what can be practically handled.

The decomposition approach aims to reduce the complexity of the analysis by
decomposing the system into smaller components that are analyzed more or less
independently, thus avoiding the analysis of the overall full state space. The basic
idea is the following: If we have two submodels A and B, with a resp. b possible
states, we avoid to construct and analyze the full “product model” A×B. Instead we
do the following:

1. We assume that the system has the structure B(A) instead of A×B, i.e., that in
the resulting composition the submodel B depends on A but not vice versa.

2. Based on that assumption, we analyze model A independently of B and summa-
rize its behavior in some so-called descriptor dA.

3. The descriptor dA is used to parameterize model B and we analyze the new model
B(dA) with b(dA) states instead of B(A) with a ·b states. Hence, the decomposi-
tion approach reduces the number of states to analyze from a ·b to a +b(dA).

4. Now, we know the behavior of A combined with B. The global behavior of the
system can then be derived.
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Of course, this approach only makes sense if B(dA) has fewer states than B(A). In
general, this requires that the descriptor dA is only an approximation to A and, hence,
the decomposition approach only provides an approximation to the original model.

In the context of queueing networks, the submodels are naturally equivalent to
the individual queueing stations and the descriptor represents the inter-station traffic.
For example, in a tandem queueing network with two stations A and B, the descriptor
dA is obtained by analyzing station A and actually is a description of the traffic
stream that departs from station A and arrives at station B. Hence, we will often call
dA a traffic descriptor in the following.

Open questions

The approach described above leaves several open questions:

1. What do the traffic descriptors look like?
2. How are more complex systems analyzed? Note that in the example above, the

assumed structure B(A) would basically restrict the analysis to tandem queueing
networks.

3. How are the individual stations analyzed?

These questions are addressed by various decomposition-based analysis methods
in different ways, thus leading to different model classes. When we describe the
Queueing Network Analyzer (Section 15.3), FiFiQueues (Section 15.4), and the
analysis of Jackson queueing networks (Section 15.7), we have to address these
three questions for each method separately. However, since we focus on the anal-
ysis of open queueing networks with feedback, we can already give some general
answers to question 2 and 3 which are true for all methods.

The analysis of complex networks

In an open queueing network with N queueing stations, the traffic descriptor desci, j

describes the traffic stream from queueing station i to station j, with 1 ≤ i, j ≤
N. The outside world is represented by a “virtual” station ext, hence, we denote
the traffic arriving from outside to station i as descext,i , and the traffic leaving the
network from i as desci,ext . We rely on the fixed-point iteration algorithm presented
in [14, 48] to analyze such networks:
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1 initialize all traffic descriptors desc(0)
i, j :

2 set desc(0)
i j to the null value if i 6= ext

3 set desc(0)
i j to the specified value if i = ext

4 n := 0
5 do
6 n := n+1

7 analyze each queueing station i with arrival traffic desc(n)
k,i , 1≤ k≤ N,

8 and compute departing traffic desc(n)
i, j , 1≤ j ≤ N.

9 while dist(desc(n) ,desc(n−1)) > ε
10 compute network-wide performance results

In each iteration the queueing stations are analyzed using the available descriptions
of the traffic arriving at the stations (line 7). The analysis allows to compute station-
related performance measures, such as the mean queue length, and, more important,
the description of the traffic leaving the stations (line 8). In this way, a new set of
traffic descriptors desc(n) = {desc(n)

i, j |i, j} is computed in each iteration.
When the algorithm starts only the descriptions of the traffic arriving from out-

side are known (they are part of the model specification). Hence, all other descriptors
are initially set to the null value in line 2 and have to be ignored in line 7 until a first
approximation is available.

The algorithm stops when the distance dist(desc(n−1),desc(n)) between two suc-
cessive sets of descriptors is smaller than or equal a given threshold ε (line 9). Once
all traffic descriptors are known, network-wide performance results can be com-
puted in line 10.

The analysis of individual stations

For the analysis of the single stations (in line 7 and 8 of the iteration algorithm), we
define that a station specification consists of two components:

1. a queue with finite or infinite capacity,
2. one or more service entities that serve the jobs (served jobs leave the queue),

and two policies:

1. a policy that handles incoming jobs if the queue is full (only for finite queues),
2. a scheduling policy that describes how the service stations fetch new jobs from

the queue.

Such queueing stations can be analyzed by different approaches. Since most analy-
sis methods for queueing processes require that a queueing station has exactly one
arrival traffic descriptor and one traffic departure descriptor, a traffic merging (or
traffic superpositioning) and a traffic splitting step are required. The traffic merging
step merges for a station its arrival descriptors into a single overall arrival descrip-
tor whereas the traffic splitting step splits the overall departure descriptor into the
required number of departure descriptors. Thus, every time when the fixed-point
iteration algorithm analyzes a queueing station we have to perform the following
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steps (as part of steps 7 and 8 in the algorithm above, and illustrated in Figure 15.1
below):

1. merge the incoming traffic;
2. analyze the service operation;
3. split the departure traffic.

1 3

2

Fig. 15.1: The three key operations to be performed on a traffic stream: merging,
queueing and splitting

Notice that for Jackson queueing networks (cf. Section 15.7), these three steps are
extremely simple, hence, they are not often distinguished explicitly. Furthermore,
for JQNs there appears to be no need for a fixed-point iteration. However, this is
only partly true. One can argue that an iterative method to solve the traffic equations
in JQNs (like Gauss-Seidel iterations) in fact forms a fixed-point iteration in it-
self. The distinguishing feature is then that for JQNs, no queueing analysis takes
place within the fixed-point computation (only afterwards), whereas, in general,
decomposition-based methods do require the intertwining of fixed-point iteration
steps and queueing analysis steps, as will become clear in the following sections.

15.3 Whitt’s Queueing Network Analyzer

In the early 1980s, Whitt presented the Queueing Network Analyzer (QNA) [49,
50], a software package developed at Bell Laboratories for the approximate analysis
of open queueing networks. Unlike prior approaches which were based on Marko-
vian models, QNA allows for the analysis of open queueing networks where the
external arrival processes need not be Poissonian and the service times need not be
negative exponentially distributed. Additionally, QNA is able to perform the anal-
ysis fast: due to the involved approximations and assumptions, the network traffic
analysis is, in essence, reduced to the solution of a set of linear equations, compara-
ble to those in JQNs (cf. Section 15.7).

In the following, we will give an overview of the functionality of QNA. The struc-
ture of our presentation slightly differs from Whitt’s original paper [49], however, it
follows the presentation of JQNs in Section 15.7.
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15.3.1 Model class

QNA allows for the approximate analysis of open queueing networks fed by ex-
ternal arrival processes, in which the routing takes place according to fixed proba-
bilities (like in JQNs). The nodes are GI|G|m multiserver queues without capacity
constraints and with the FCFS service discipline. The external arrival processes as
well as the service processes of the nodes are described by the first and the second
moment of the inter-arrival, resp. service time distributions. The QNA approach al-
lows for the separate analysis of the nodes, hence, QNA is well scalable to larger
networks.

QNA’s model class includes three features which we will not describe in de-
tail in the following. First, QNA is able to analyze networks with multiple classes
of customers, and secondly, networks with immediate feedback are allowed. Both
features are “implemented” by adding a pre-processing and post-processing phase
to the core QNA algorithms, that is, QNA treats multiple visits of a single job to
one queue as one longer visit, and multiple classes are treated as one class with
multimodal service times. The third feature, the customer multiplication factor of
a node, only requires small modifications in the service operation equations. Al-
though these features are interesting as such, they have not been implemented for
FiFiQueues, however, also in that context they could be added via appropriate pre-
and post-processing phases.

15.3.2 Traffic descriptors

The external arrival processes are specified by the first and second moment of the
inter-arrival times. In fact, this representation is also applied to the traffic streams
between the nodes. More specifically, QNA uses the traffic descriptor

〈
λ ,c2

〉
to

describe a traffic stream where λ is the arrival rate and c2 is the squared coefficient
of variation of the inter-arrival time.

Clearly, this allows the representation of non-Poissonian processes. However,
neither higher moments nor correlations of the arrival stream are considered, which
may influence the quality of the analysis. QNA employs fine-tuned heuristics de-
duced from simulation studies to reduce the errors introduced by this simplification.

15.3.3 Superposition of traffic streams

To merge n traffic streams specified by
〈
λ1,c2

1

〉
, . . . ,

〈
λn,c2

n

〉
into one traffic stream〈

λ ,c2
〉
, QNA first computes the total arrival rate which is simply given by
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λ =
n

∑
i=1

λi.

QNA’s efficiency is based on the fact that it computes the traffic descriptors from
linear systems of equations. The above expression for λ is clearly linear in λi. For
c2 a linear equation can be found, too, by the asymptotic approximation method
(AS):

c2
AS =

n

∑
i=1

λi

λ
c2

i .

However, the asymptotic method does not work well for a wide range of cases.
It is therefore combined with the stationary-interval method (SI), resulting in the
following hybrid approximation:

c2 = w · c2
AS +(1−w) · c2

SI.

The stationary-interval method does not provide a linear expression for c2
SI , but ex-

periments have shown that setting c2
SI to 1 (in the expression above) increases the

average error only by 1 percent, so that we obtain

c2 = w · c2
AS +(1−w).

Simulations have shown that the above approximations do impact the quality of the
analysis of a node which takes the merged traffic stream as input. To improve the
results, QNA respects the utilization ρ of the node in the computation of the factor
w. With ρ = λ/µ (where µ is the service rate of the queueing station), QNA sets

w =
[
1 +4(1−ρ)2(v−1)

]−1
with v =

(
n

∑
i=1

(
λi

λ

)2
)−1

.

15.3.4 Splitting traffic streams

When splitting, QNA assumes that the involved processes are renewal processes.
Under this assumption, an exact solution is available. For n splitting probabilities
p1, . . . , pn and the traffic stream

〈
λ ,c2

〉
, we obtain the splitted streams

〈
λ1,c

2
1

〉
, . . . ,

〈
λn,c2

n

〉
,

with
λi = pi ·λ , and c2

i = pi · c2 +(1− pi), i = 1, . . . ,n.
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15.3.5 Servicing jobs

Network nodes are analyzed as GI|G|m queues. Let
〈
λA,c2

A

〉
be the arrival traffic

descriptor of the node and m the number of service entities. The service process is
specified by the service rate µ and by the squared coefficient of variation c2

S of the
service time distribution. We require the stability of all stations, i.e., λA < µ . How
does QNA compute the departure descriptor

〈
λD,c2

D

〉
?

Since the queues are stable and have infinite capacity, no losses occur and we
clearly have λD = λA. To compute c2

D, Whitt combines Marshall’s formula [33] with
other approximations to obtain

c2
D = 1 +(1−ρ2)(c2

A− 1)+
ρ2
√

m
(c2

S−1). (15.1)

The involved approximations may lead to large errors when c2
S is small, thus QNA

uses the following extension of the above formula:

c2
D = 1+(1−ρ2)(c2

A−1)+
ρ2
√

m
(max{c2

S,0.2}−1). (15.2)

Note again the linearity of the expressions for λD and c2
D in the arrival traffic〈

λA,c2
A

〉
.

15.3.6 Node performance

QNA is able to compute results for the first and second moment of the waiting time
W and the queue length N. Due to the complexity of the involved approximations,
we limit our presentation only to the simplest one, i.e., the computation of E[W ]
in the case of single-server GI|G|1 queues. The required derivations for the other
quantities can be found in [49, Eq. (46)–(71)]. For given arrival traffic

〈
λA,c2

A

〉
,

service descriptor
〈

µ ,c2
S

〉
and utilization ρ , E[W ] is approximated as

E[W ] =
ρ

2(1−ρ)µ
(c2

A + c2
S)g(ρ ,c2

A,c2
S), (15.3)

where the function ρ is defined as

g(ρ ,c2
A,c2

S) =

{
exp
(

2(1−ρ)(1−c2
A)2

3ρ(c2
A+c2

S)

)
, c2

A < 1,

1, c2
A ≥ 1.

Note that Equation (15.3) is exact for c2
A = 1, i.e., in the case of an M|G|1 queue.

When c2
A < 1, it is equivalent to the Krämer and Langenbach-Belz approximation

[26].
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15.3.7 Network-wide performance

The results presented for network performance measures in Jackson queueing net-
works (see Section 15.7) can also be applied here, providing expressions for E[Vi],
E[Ti], E[Ttotal ] and E[Ntotal ]. Additionally, Whitt developed approximations for the
variances of the above-stated measures [49, Eq. (80)–(84)].

15.3.8 Complexity

In the above sections, we have repeatedly pointed out the linearity of the employed
equations for the three traffic operations merging, splitting, and service. In fact,
QNA exploits this linearity to efficiently evaluate the queueing network.

First, for the arrival rates of the traffic streams the system of equations derived

for JQNs is also valid for QNA. Let
〈

λA,i,c2
A,i

〉
be the traffic arriving at node i,

〈
λD,i,c2

D,i

〉
the traffic leaving this node, and

〈
λext,i,c2

ext,i

〉
the external traffic. If

Γ = (ri j) is the routing matrix, the following traffic equation holds for each node
i = 1, . . . ,n of the network:

λA,i = λext,i +
n

∑
j=1

λD, j · r ji. (15.4)

Again, QNA’s model class implies λD,i = λA,i and the traffic equations form a system
of linear equations which can be expressed in vector/matrix notation as

λA = λext(I−Γ)−1.

For the squared coefficients of variation of the traffic streams a system of equations
can be set up, too. The synthesis of the superposition and the splitting operations
yields

c2
A,i = (1−wi)+ wi

(
pext, jc2

ext,i +
n

∑
j=1

p j,i(r jic2
D, j +1− r ji)

)
,

where p j,i = λD, jr j,i/λA,i is the fraction of traffic arriving from node j to node i and
pext, j = λext,i/λA,i is the fraction of external traffic arriving to node i. Finally, if we
include the result of the service operation we obtain the following system of linear
equations

c2
A,i = (1−wi)+ wi{pext, jc2

ext,i +
n

∑
j=1

p j,i(r ji(1 +(1−ρ2
i )(c

2
A, j− 1)

+
ρ2

i√
mi

(max(c2
S,i,0.2)− 1))+ 1− r ji)}.(15.5)
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Using the equations (15.4–15.5), the traffic descriptors can easily be computed.
Thus, obviously QNA has the same time complexity as the Jackson network method.
Note that, due to the linearity of the involved equations, QNA does not require the
fixed-point iteration described in Section 15.2 (although, if an iterative solver is used
to solve the linear equations, the fixed-point iteration can be regarded as hidden in
the solver).

15.4 FiFiQueues

In the mid-1990’s Haverkort and Weerstra, cf. [13, 14, 15, 48], extended Whitt’s
QNA approach by means of replacing the core of the analysis: the service opera-
tion. Unlike QNA, their new approach, called QNAUT, does not directly use the
descriptor of the arrival traffic to compute the departure traffic descriptor, but as-
sumes that the arrival traffic descriptor can be used to construct a phase-type (PH)
renewal process (see Section 15.8.2) which approximates the “real” underlying ar-
rival process. This allows for the inclusion of finite-buffer queueing stations as well
as for the analysis of the queueing stations by matrix-geometric and general Marko-
vian techniques, instead of the approximations originally used in QNA.

At the end of the 1990s, an extended version of the original approach was pro-
posed, in which some approximate steps were removed and the model class was
slightly enhanced [41, 42, 43]. In particular, this enhanced class provides:

• exact results for the the departure process based on the results of Bocharov [5]
for PH|PH|1|K queues;

• efficient per-queue analysis;
• for each finite queueing station, a traffic stream is computed which consists of

the customers rejected at a completely filled queue. This loss traffic stream can
be used as arrival stream for other queueing stations like any other “regular”
departure traffic stream.

This approach, as well as the analysis tool developed from it, is named FiFiQueues
(for Fixpoint-based analysis of networks with Finite Queues).

15.4.1 Model class

The external arrival processes are described, as in QNA, by the first and the second
moment of the inter-arrival times. The main differences to QNA’s model class are:

• the service processes are specified as PH renewal processes;
• the queueing stations can have infinite or finite queueing capacities. The nodes are

analyzed as PH|PH|1(|K) queues with the FCFS service discipline. The customer
multiplication factor known from QNA is also supported, but not described in the
following;
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• finite queues have two output streams: the “regular” departure traffic stream and
the loss traffic stream which consists of the customers rejected by a full queue.

Seen from a single queue, customers arriving at a completely filled queue are simply
lost. This form of blocking is common in communication networks (communication
blocking) and has an important advantage: unlike other types of blocking (like back-
blocking), it still allows the independent analysis of each of the queueing stations.

Just like the regular departure traffic of a queueing station with finite capacity, the
loss traffic is not known a priori and is computed by the analysis of the station. The
“reuse” of loss traffic streams as arrival streams to other nodes requires an auxiliary
routing matrix. Its handling will not be discussed further in the following sections,
since, once the traffic descriptors of the loss streams are known, they can easily be
processed like the regular departure traffic. However, note that loss traffic streams
should only be used very carefully in feedback networks: if a loss traffic stream is
fed back directly or indirectly to the node which produced the stream, it can prevent
the iteration algorithm (see Section 15.2) to terminate because the arrival rate to the
node increases in each iteration step.

15.4.2 Traffic descriptor

As in QNA, the external arrival processes as well as the inter-node traffic streams
are described by the first and second moment of the inter-arrival times. The traffic
descriptor

〈
λ ,c2

〉
contains the arrival rate λ and the squared coefficient of variation

c2 of the inter-arrival time.

15.4.3 Superposition of traffic streams

To merge n traffic streams specified by
〈
λ1,c2

1

〉
, . . . ,

〈
λn,c2

n

〉
into one traffic stream〈

λ ,c2
〉
, we adopt the hybrid approximation of QNA, i.e.,

λ =
n

∑
i=1

λi, (15.1)

c2 = w ·
n

∑
i=1

λi

λ
c2

i +(1−w), (15.2)

with

w =
[
1 +4(1−ρ)2(v−1)

]−1
, and v =

(
n

∑
i=1

(
λi

λ

)2
)−1

,

where ρ is the utilization of the node receiving the resulting traffic stream. It should
be emphasized that these formulae were originally designed in the context of QNA’s
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model class, i.e., not for finite queues. Thus, their usage in FiFiQueues introduces
auxiliary errors to the computation, in addition to the errors inherent to the hybrid
approximation method.

One may wonder if we could obtain better results by not following QNA’s linear
approximation (c2

SI = 1) but in actually computing the correct value for c2
SI. Our

experiments have shown that nearly the same results are obtained by doing so. This
is consistent with Whitt’s observation that fixing c2

SI at 1 increases the average error
by only 1 percent.

15.4.4 Splitting traffic streams

When splitting, we assume that the involved processes are renewal processes. Under
this assumption, an exact solution is available. For n splitting probabilities p1, . . . , pn

and the traffic stream
〈
λ ,c2

〉
, we obtain the splitted streams

〈
λ1,c2

1

〉
, . . . ,

〈
λn,c2

n

〉

with
λi = pi ·λ , and c2

i = pi · c2 +(1− pi), i = 1, . . . ,n. (15.3)

15.4.5 Servicing jobs

We have already stated that the nodes are analyzed as PH|PH|1(|K) queues. Thus,
before a queueing station can be analyzed we need to find a PH distribution that
fits the two moments given in the arrival traffic descriptor. In the following we will
explain the fitting step and the actual queueing analysis procedure, thereby treating
PH|PH|1 and PH|PH|1|K queues separately. We require that the PH|PH|1 queues
are stable, i.e., the total arrival rate at a PH|PH|1 station should be smaller than its
service rate.

15.4.5.1 Phase-type representation of the arrival processes

Let
〈
λ ,c2

〉
be the arrival traffic descriptor. We write E[X ] = 1/λ for the corre-

sponding mean inter-arrival time. Clearly, having only two moments allows us some
freedom to select an appropriate PH distribution. We require that the chosen PH dis-
tribution, represented by (α ,A)

1. matches the two moments exactly (at least for a certain range; see below), and
2. is as compact as possible, i.e., has the smallest number of transient states m.

Additionally, we want that the employed fitting procedure does not consume too
much time since it has to be executed every time when a node is analyzed. In Fi-
FiQueues, we use the following approach, first presented in [14]. Two cases are
distinguished:
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• In case c2 ≤ 1, we use a hypo-exponential distribution with m =
⌈

1
c2

⌉
phases and

initial probability vector α = (1,0, · · · ,0). The matrix A is then given as

A =




−λ0 λ0

−λ1 λ1
. . .

. . .
−λm−2 λm−2

−λm−1




, (15.4)

where λi = m/E[X ], for 0≤ i < m− 2 and where

λm−1 =

2m

(
1 +
√

1
2 m(mc2− 1)

)

E[X ](m+2−m2c2)
and λm−2 =

mλm−1

2λm−1E[X ]−m
.

For small c2, PH distributions with a large number of states will be obtained. To
limit the computational requirements in the analysis process we do not allow c2

to be smaller than 1
10 . This approximation corresponds to an Erlang-10 distribu-

tion and produces generally good results, also as approximation for deterministic
distributions.

• In case c2 > 1, we take a hyper-exponential distribution with m = 2 phases. Such
a distribution has three free parameters: the choice probability p between the two
possible phases and the rates µ1 and µ2 of the two phases. Fitting the first two
moments thus leaves one degree of freedom. We resolve this by assuming so-
called “balanced means”, meaning that the ratios p/µ1 and (1− p)/µ2 should be
equal. This then yields α = (p,1− p) and

A =

(
− 2p

E[X ]
0

0 − 2(1−p)
E[X]

)
with p =

1
2

+
1
2

√
c2−1
c2 +1

.

15.4.5.2 Analysis of PH|PH|1|K queues

The underlying CTMC Let (α ,A) be the arrival PH renewal process with l states
as obtained by the fitting step and (β ,B) the service PH renewal process with m
states. Then we can describe the behavior of a node with queueing capacity K by a
QBD process [37] (see Section 15.8.4) with K +1 levels, where level 0 consists of l
states and where levels 1 through K consist of l ·m states each.

The i-th level represents the state of the system when it contains i customers. A
step from level i to level i + 1 (i < K) stands for an arrival and a step from level i
to level i−1 (i > 0) stands for a departure. The l ·m states of a level i > 0 describe
the current state of the arrival and of the service processes (level 0 contains only l
states because the queue is empty and the service process has not yet started; it only
records the state of the arrival process). This leads to the following generator matrix
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of the Markov chain:

Q =




A A0α⊗β
I⊗B0 A⊕B A0α⊗ I 0

0 I⊗B0β A⊕B A0α⊗ I
. . .

. . .
. . .

I⊗B0β (A+A0α)⊕B




,

where A0 = −A · 1, B0 = −B · 1, L⊕M = L⊗ I + I⊗M, and ⊗ is the Kronecker
product operator (also known as tensor or matrix direct product operator).

The steady-state solution v of the Markov chain with generator Q can be obtained
by solving the global balance equation (see Section 15.8.4):

v ·Q = 0 and v ·1 = 1.

The vector v is of size l + K · l ·m. In the following we write v0 for the vector
(v1, . . . ,vl) which contains the steady-state probabilities of level 0 and we write vi

for the vector (vl+1+(i−1)·l·m, . . . ,vl+i·l·m) which contains the steady-state probabili-
ties of level i = 1, . . . ,K.

The departure traffic The steady-state solution vector v now allows us to com-
pute the departure traffic descriptor

〈
λD,c2

D

〉
. To this end, we use the results of

Bocharov presented in [5] which we will briefly describe in the following.
We begin with the computation of the blocking probability π , i.e., the probability

that an arriving customer encounters a full queue and, hence, is lost. The vector vA,K

gives for this situation the state probabilities and it holds that

vA,K =
1

λA
vK(A0⊗ I),

where λA stands for the arrival rate to the node and K stands for the queueing ca-
pacity of the node. This leads to the blocking probability π :

π = vA,K ·1.

With π , we easily find the departure rate of served customers as

λD = λA(1−π). (15.5)

Higher moments of the inter-departure time can be computed using the following
consideration. If the queue is not empty after a departure took place, the distribution
of the time up to the next departure is equal to the distribution of the service time.
Otherwise, it is equal to the distribution of the sum of the time until the next cus-
tomer arrival and its service time (which are independent). The probability to leave
an empty queue at departure instant t + ε is
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vD,0 =
1

λD
v1(I⊗B0). (15.6)

This leads Bocharov to the expression for the i-th moment di of the inter-departure
time distribution:

di = bi + vD,0

i

∑
j=1

(−1) j i!
(i− j)!

A− j1bi− j, (15.7)

where bi is the i-th moment of the service time distribution. Thus, one can easily
verify that the variance σ2

D of the departure process is

σ 2
D = σ 2

S + σ2
0 , (15.8)

where σ 2
S is the variance of the service time distribution and σ2

0 equals

σ 2
0 = 2vD,0A−21− (vD,0A−11)2. (15.9)

The squared coefficient of variation is then given by c2
D = λ 2

Dσ 2
D.

The loss traffic The rate of loss λL is given by λL = λA · π, where π is the loss
probability. In oder to obtain higher moments of the inter-loss time we describe the
loss process by the MAP (L0,L1) with

L0 =




A A0α⊗β
I⊗B0 A⊕B A0α⊗ I

0 I⊗B0β A⊕B A0α⊗ I
. . .

. . .
. . .

I⊗B0β A⊕B




,L1 =




0
. . .

A0α⊗ I


 .

The underlying CTMC of this MAP is the CTMC of the QBD where arrivals in the
last level K have been marked. Naturally, it has the same steady-state probability
vector v. The i-th moment of the inter-loss time is given by

E[Li] =
i!

λD
v(−L0)

−(i−1)1, (15.10)

hence, its second moment equals

E[L2] =
2

λL
v(−L0)

−11.

15.4.5.3 Analysis of PH|PH|1 queues

The underlying CTMC Let (α ,A) be the arrival PH renewal process with l states
and (β ,B) the service PH renewal process with m states. Again, the behavior of the
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queue can be described by a QBD process with a generator matrix similar to the one
of the PH|PH|1|K; the only difference is the fact that it has repeating columns ad
infinitum:

Q =




A A0α⊗β
I⊗B0 A⊕B A0α⊗ I

0 I⊗B0β A⊕B A0α⊗ I
. . .

. . .
. . .


 ,

with the infinite steady-state probability vector v fulfilling

v ·Q = 0 and v ·1 = 1.

We refer to Section 15.8.3 for an overview of solution techniques.

The departure traffic Since infinite queues produce no loss, we have

λD = λA, (15.11)

where λA is the arrival rate to the node. The variance of the output stream is calcu-
lated using the same approach as in the case of finite-buffer queues and the equa-
tions (15.6), (15.8), and (15.9) still hold.

15.4.6 Node performance

FiFiQueues computes the first and second moment of the waiting time W and the
queue length N. Again, queues with finite and infinite buffer capacity are treated
separately.

15.4.6.1 Node performance of PH|PH|1|K queues

The j-moment E
[
N j
]

of the queue length distribution (including the job in service)
is given by

E
[
N j]=

K

∑
i=1

i jvi1. (15.12)

Hence, mean and variance of the queue length N are:

E [N] =
K

∑
i=1

i ·vi1 and Var [N] =
K

∑
i=1

i2 ·vi1−E [N]2 .

Equation (4.4) in [5] gives the Laplace-Stieltjes transform of the waiting time prob-
ability density function. From this equation, any desired moment of the waiting time
can be derived. For the mean and the variance we obtain [5, Eq. (4.5)–(4.7)]:
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E [W ] =
1

λD
(E [N]−1 +v01),

Var [W ] =
2

λD

(
µ ·q21−

(
q1
(
1⊗B−11

)))
−E [W ]2 ,

where µ is the service rate. The components of the vector q1 resp. q2 give the first,
resp. second binomial moment of the number of jobs in the queue as a function of
the system state. For j > 0, the j-th binomial moment q j is defined as [5, Eq. (3.1)]:

q j =
K

∑
i= j+1

(
i−1

j

)
vi.

15.4.6.2 Node performance of PH|PH|1 queues

In the case of infinite buffer capacity, the expressions presented for the PH|PH|1|K
queue in the previous section can still be applied, provided that the steady-state
probability vectors vi are available in a form that allows to calculate the, now infi-
nite, sums. For example, if we assume that a matrix-geometric solution method (see
Section 15.8.3) is employed to compute the steady-state probabilities, the vectors vi
have the so-called matrix geometric form

vi = v1Ri−1, R ∈ IRlm×lm, i = 1,2, . . . ,

where R is the entry-wise smallest non-negative solution of the matrix-quadratic
equation

A0α⊗β +R(A⊕B)+ R2(I⊗B0β ) = 0.

The j-th moment of the queue length distribution is then given by

E[N j] =
∞

∑
i=1

i jvi1 =
∞

∑
i=1

i jv1Ri−11, (15.13)

which yields in case j = 1:

E[N] = v1(I−R)−21.

Similarly, the other node performance measures can be obtained.

15.4.7 Network-wide performance

Many results for the network performance measures developed by Whitt for QNA
(see Section 15.3.7) can also be applied to FiFiQueues when respecting the fact that,
due to losses at finite queues, the departure rate of a node may differ from the total
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arrival rate to that node. Additionally, one has to decide how loss traffic streams
should be treated in the computation of network-wide performance results. For ex-
ample, the following question has to be answered: should the expected number of
visits E[Vi] also include rejections due to full buffers? As this is only a problem of
“interpretation” of the results, we will not discuss it further here.

15.4.8 Complexity

15.4.8.1 Traffic computation

In FiFiQueues the traffic descriptor of the outgoing traffic depends in a complex,
non-linear way on the incoming traffic. Thus, unlike the QNA method, FiFiQueues
clearly requires an iterative computation scheme to compute the descriptors of the
internal traffic streams. A deeper discussion of FiFiQueues’ iteration behavior is
given in Section 15.5. Here, we will analyze the complexity of the operations that
have to be performed for each node during each iteration.

First, we can safely neglect the traffic merging and splitting steps in our discus-
sion. They only consist of a small number of additions and multiplications. The
most time and space consuming operation is the service operation. It can be divided
into three phases:

1. fitting of the PH distribution to the arrival traffic,
2. computation of the steady-state probability vector of the underlying CTMC, and
3. computation of the departure traffic descriptor (and, if needed, of the loss traffic

descriptor).

Again, we can neglect the first phase since its time complexity is O(1). For the
second phase, we distinguish between finite and infinite queueing stations.

If the queueing capacity is finite, so is the CTMC. Let l be the size of the arrival
PH process, i.e., the number of states of its CTMC representation, m the size of
the service PH process and K the queueing capacity. Then, the generator matrix
is of size (l + lmK)× (l + lmK). This corresponds to a finite QBD with N0 = l
and N = lm (see Section 15.8.4). The latest implementation of FiFiQueues uses for
finite capacities the Cyclic Reduction method [3] which has time complexity O((l +
m)3 logK + (l + m)2K). If the descriptor of the loss traffic is required, additional
operations have to be performed to compute the product v(−L0)

−1. For unbounded
queueing capacity, the LR algorithm [28] is used.

Once the steady-state solution is known, the departure traffic descriptor can be
computed. Both for finite and infinite queueing stations, this only requires a small
number of matrix vector multiplications. Note that the moments bi of the service
process needed by Equation (15.7) are constant for a given network and hence can
be precomputed once.
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15.4.8.2 Node performance and network performance computation

Since the network performance computation is comparable to that of the QNA
method, we only discuss the complexity of the node performance computation here.

Concerning finite queueing stations, the computation of the mean and variance
of the queue length requires the summation over the lm(K−1) entries of the steady-
state probability vector. For the moments of the waiting time distribution, we have
to invert matrix B of size m×m which can be seen as a constant time operation even
for very complex PH representations of the service process (say, m = 50).

In case of infinite queueing capacity, the complexity depends on the employed
solution method. Assuming a matrix-geometric solution method, the expression
E[N] = v1(I−R)−21 we gave for the mean queue length in Section 15.4.6, requires
the vector X = v1(I−R)−2 which can be obtained by solving the linear system
X(I−R)2 = v1 of order lm.

15.4.9 The FiFiQueues network designer

The FiFiQueues approach has proven to be stable and reliable enough for end users.
In this section we present an integrated tool environment, the FiFiQueues network
designer, that allows an easy access to the underlying algorithms. The tool also
contains a simulator for the steady-state simulation of queueing networks. The Fi-
FiQueues network designer consists of a graphical user interface written in Java,
a numerical analysis module, and a simulation module. The latter two have been
written in C++.

15.4.9.1 The graphical user interface

The graphical user interface allows to construct, edit and study open and closed
queueing networks of arbitrary topology. The networks can be evaluated by numer-
ical analysis or by simulation. Figure 15.2 shows a screenshot of the main window.
The lower part of the window shows the edited network and the properties of the
currently selected node. The upper part displays the results of the numerical analysis
(left section) and the results of the simulation (middle section, including the 95%
confidence intervals) as well as a comparison of both methods (right section).

Every object in the network has properties that can be edited via the user inter-
face. Figure 15.3(a) shows the properties of a finite queueing station while the user
is selecting a service distribution. The global-properties panel (see Figure 15.3(b))
allows to control the length of the simulation and the parameters specific to closed
networks.

The user interface communicates with the numerical analyzer and the simulator
via text files. As an example, the network shown in the screenshot is translated into
the following textual description in order to evaluate it.
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Fig. 15.2: Main window of the graphical user interface

(a) Properties of a network node (b) Global properties of the network

Fig. 15.3: Property editor

# Queue mapping
# 0 CPU
# 1 NIC
# 2 Disk
network_props
1 3 1 0 100000 20 50000 0 0 0.0
source_props
90.0 1.2 0 6
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queue_props
1200.0 26.8 1 150 6 1 1 1
1401.0 26.8 1 150 6 1 1 1
64.0 26.8 1 150 6 1 1 1
counter_dest
-1
r
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.5 0.5 0.0 0.0
b
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

15.4.9.2 The numerical analysis module

The numerical analysis module is the core of the implementation. It incorporates the
FiFiQueues algorithms as discussed and the extension for closed queueing networks
as described in [44].

15.4.9.3 The simulation module

The simulation module offers the discrete-event simulation of open and closed
queueing networks. It is described in detail in [40].

15.5 Performance of FiFiQueues

In this section we evaluate the performance of the FiFiQueues algorithm with regard
to the quality of the numerical results. This evaluation consists of

• tests with the FiFiQueues algorithm on some representative queueing networks
(Section 15.5.1),

• a case study of a web server (Section 15.5.2).

The results of the numerical analysis are compared to results determined using
discrete-event simulation. The relative half-width of the 95%-confidence intervals
is smaller than 1% for all the simulation results. If not stated otherwise, arrival time
and service time distributions specified by their rate and the squared coefficient of
variation (SCV) are always mapped to PH distributions. Relative errors between
numerical analysis and simulation are always computed relative to the latter. We
conclude with Section 15.5.3.
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15.5.1 Evaluation of FiFiQueues

In this section we evaluate FiFQueues’ performance with some typical networks.
We begin with a single queue in Section 15.5.1.1, then continue with some com-
plex networks in Section 15.5.1.2. The presented tests cover a wide range of input
parameters, including (nearly) deterministic processes, and complex networks with
finite queueing capacities.

15.5.1.1 Single queues

In the case of queueing networks that consist of only one queueing station, FiFi-
Queues always produces exact results, provided that the selected arrival and service
PH renewal processes match the actual arrival and service processes of the real sys-
tem. Hence, results of single-queue systems are not very interesting. At this place,
we will only discuss the special case of deterministic distributions.

As explained, FiFiQueues limits the number of phases in hypo-exponential PH
distributions to 10, which corresponds to a minimum SCV of 0.1. As a consequence,
deterministic distributions can only be approximated. To evaluate the effect of this
restriction we have analyzed a queueing station with negative exponential services
and deterministic arrival process at different loads. Table 15.1 compares the thus
obtained mean queue lengths with results found by simulation. It shows that the
relative error between analysis and simulation increases with the load. Errors of
comparable magnitude can also be observed for other performance measures and
for hypo-exponential and hyper-exponential service distributions.

load analysis simulation rel. error
0.1 0.10 0.10 0.0%
0.2 0.20 0.20 0.0%
0.4 0.47 0.45 4.4%
0.6 0.95 0.89 6.7%
0.8 2.34 2.18 7.3%
0.95 10.60 9.26 14.4%

Table 15.1: Mean queue length for a queueing station with deterministic arrival
traffic

15.5.1.2 Queueing networks with feedback

3-node queueing network We first address three queueing nodes in series, with
a feedback from the last to the first queue, as shown in Figure 15.4. The external
Poisson source has rate 1.3 and the service times are Erlang-5 distributed with rate
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1.5; the node capacity is 10 (not including the service station) at all queues. The
feedback probability is 25%.

2 31

Fig. 15.4: 3-node queueing network with feedback

The results are shown in Table 15.2. The first two rows show the characteristics
of the traffic leaving the queueing network from node 3. The middle six rows show
the rate and SCV of the arrival traffic at each node, and the last three rows show the
expected queue length at each node.

analysis simulation rel. error
Output traffic λnetd,3 1.08 1.08 0.0%

c2
netd,3 0.41 0.41 0.0%

Arrival traffic λa,1 1.65 1.66 -0.6%
c2

a,1 0.96 0.96 0.0%
λa,2 1.47 1.47 0.0%
c2

a,2 0.23 0.23 0.0%
λa,3 1.45 1.45 0.0%
c2

a,3 0.21 0.22 -4.5%
Queue length E[N1] 6.47 6.47 0.0%

E[N2] 4.43 4.45 -0.4%
E[N3] 3.96 3.90 1.5%

Table 15.2: Results for the 3-node network with Poisson source

The good results of the analysis can be explained by the fact that the resulting
arrival traffic to node 1 (i.e., where the traffic superposition operation happens) is
near to Poisson as indicated by c2

a,1=0.96. If we replace the external source distribu-
tion by a hyper-exponential distribution with c2 = 4.0 we obtain the results shown
in Table 15.3. As expected, larger errors can be observed this time for the SCV of
the arrival traffic. Interestingly, node 2 does not seem to be affected. This is be-
cause node 2 is fed by node 1 which is overloaded and hence reduces short-range
correlations in the traffic stream.

Figure 15.5 shows the incoming traffic to node 1 as a function of the number of
iterations in the fixed-point procedure for both kind of external sources. As can be
observed, the fixed-point is reached after a very small number of iterations. This
behavior has been typical for all queueing networks we have analyzed so far.

Kühn’s nine-node network As a larger queueing network we evaluated a modi-
fied version of Kühn’s nine-node network [27], as shown in Figure 15.6 (the num-
bers at the edges specify the routing probabilities). A similar network has been ex-
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analysis simulation rel. error
Output traffic λnetd,3 0.99 0.99 0.0%

c2
netd,3 0.45 0.69 -34.8%

Arrival traffic λa,1 1.63 1.63 0.0%
c2

a,1 3.33 2.35 41.7%
λa,2 1.33 1.33 0.0%
c2

a,2 0.79 0.79 0.0%
λa,3 1.32 1.33 -0.8%
c2

a,3 0.35 0.65 -46.2%
Queue length E[N1] 5.57 5.59 -0.4%

E[N2] 3.30 3.16 4.4%
E[N3] 2.38 2.76 -13.8%

Table 15.3: Results for the 3-node network with hyper-exponential source
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Fig. 15.5: Incoming traffic (arrival rate) at node 1 as a function of the number of
iterations in the fixed-point procedure for the 3-node network

amined in [15, 48]. The external arrival rate to nodes 1–3 equals 0.8 and c2
ext = 4.0.

The service rate at each node is 1.0 (except for node 5 where µ5 = 0.5), and the
SCV of all service processes is c2

s = 0.5. All nodes have a finite queueing capac-
ity of 25. Hence, without decomposition the underlying CTMC would comprise
23 · (1+25 ·2)9 ≈ 1.86×1016 states. For all nodes, we observe excellent agreement
with the simulation results.
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Fig. 15.6: Kühn’s nine-node network

Table 15.4 shows the results obtained by FiFiQueues and by simulation for the
mean queue length and the offered load at each station. Note that the results for the
(identical) nodes 1–3 are only stated once.

node analysis simulation rel. error
1–3 E[Ni] 6.39 6.39 0.0%

offered load 0.8 0.8 0.0%
4 E[N4] 16.84 16.74 0.6%

offered load 1.09 1.09 0.0%
5 E[N5] 1.14 1.13 0.9%

offered load 0.59 0.59 0.0%
6 E[N6] 2.31 2.28 1.3%

offered load 0.77 0.76 1.3%
7 E[N7] 14.67 14.86 -1.3%

offered load 1.04 1.04 0.0%
8 E[N8] 6.36 6.63 -4.0%

offered load 0.87 0.87 0.0%
9 E[N9] 22.41 21.88 2.4%

offered load 1.28 1.27 0.8%

Table 15.4: Results for the departure rates in Kühn’s nine-node network

15.5.2 Performance evaluation of a web server

In this section we will use FiFiQueues for the performance evaluation of a web
server. The employed parameters in the models have been derived from measure-
ments made at a test system.

This section is structured as follows. First, we describe the test system in Sec-
tion 15.5.2.1. Then we present a QN model for a web server without disk access
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(cache only) in Section 15.5.2.2, followed of the model of a web server with disk
access in Section 15.5.2.3. These two models are then combined to a model of a
server group in Section 15.5.2.4. We compare the results obtained by analysis with
the results obtained by simulation, and, where available, with the data collected at
the test system.

15.5.2.1 Description of the test system

The test system consists of a computer running the Apache web server [2]. The
server load is generated by two client systems that send HTTP/1.0 GET requests to
the server in a 100 MBit Ethernet LAN. The request times as well as the sizes of
the requested files have been extracted from traces (access logs) collected at the UC
Berkeley Home IP Service [11] in 1996. For our tests we have used a part of the
original trace file: it consists of 35541 requests for static files (i.e., pictures, HTML
pages, etc.) sent over 4 hours by different users. This corresponds to a request rate of
2.468 requests per second. The SCV of the inter-request time is 1.2. The requested
files have a mean size of 8510 bytes where the smallest file has a size of 2 bytes and
the largest file a size of about 4.5 MBytes. The size distribution has a SCV as large
as 26.8.

The web server of the test system has been configured to use not more than 150
server threads. This implies that the number of requests that can be processed con-
currently is limited to 150. Since connection requests are not queued the clients will
experience a connection rejection if they try to exceed this number. In addition, the
request time-out has been set to 8 seconds. More details concerning the test system
can be found in [25]; please note that the QN models presented in the following
differ from the models discussed there.

15.5.2.2 Web server without disk access

For the first model, we assume that the server holds all requested files in the file
cache and, as a consequence, no disk access is performed. This is a typical situation
in intranets where the number of often requested files is limited. In this scenario the
performance of the web server is only limited by the CPU, the main memory, and
the network interface controller (NIC).

NICCPU

Fig. 15.7: QN model for the web server without disk access

We model the web server by two queueing stations in series as shown in Fig-
ure 15.7. Both stations have a finite queueing capacity; we comment on how the
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buffer capacity is chosen below. The first station is fed by an external source that
represents the clients sending the HTTP requests. The SCV of 1.2 for the source is
equal to the corresponding value of the trace file.

The first station models the CPU. Measurements at the test system have shown
that the CPU of the test server is able to process up to around 1200 requests per sec-
ond. We adopt this value for the service rate of the first queueing station. Concerning
the SCV of the CPU’s service time distribution, we observe that the CPU service
time is dominated by the time to handle the HTTP protocol and by the management
of the cache data structures. Since the NIC accesses the main memory via DMA
(Direct Memory Access), the CPU service time exhibits nearly no dependency on
the size of the requested file. Hence, we choose a (nearly) deterministic service time
distribution with a SCV of 0.1. The second queue represents the NIC. Measurements
have shown a network load between 90% and 95% for a response rate of 1100 re-
sponses per second. This leads to a NIC service rate of approximately 1200. For the
SCV of the NIC’s service time distribution, we assume a direct dependency of the
service time on the file size and we set the SCV to 26.8, i.e., to the SCV of the file
size distribution.

The most problematic aspect of the test system is the limitation to 150 simulta-
neously connected clients. This cannot be easily modeled by the FCFS-scheduling
used by FiFiQueues. To approximate the limit, we have first analyzed the network
at a request rate of 1500 requests per second. Using a Newton-iteration, we have
determined the queueing capacity at which the total mean number of jobs in the
network equals 150. The thus found buffer capacity of 106 has then been used for
all other request rates (we have chosen the same capacity for both queues; the jobs
are distributed evenly over both stations at high request rates).

Figure 15.8 shows the number of responses per second as a function of the num-
ber of requests sent per second as measured at the test system and as computed
by FiFiQueues. Simulation results are not shown since they are nearly identical to
the analytical results (relative error < 1%). It shows that the QN model is able to
predict the response rate quite well. The total mean response times are shown in
Figure 15.9. The results are acceptable, but we can see that the model is not able
to reproduce the sharp jump of the response time at 1000 requests/s. A model with
more complex behavior, for example non-FCFS scheduling, would be required in
order to obtain better results.

15.5.2.3 Web server with disk access

The second model assumes that all requested files have to be loaded from the disk
of the server system. Measurements have shown that the test system only achieves
a maximum response rate of 63.5 files/s at a CPU load of 9%. Clearly, the disk
transfer is the bottleneck.

We model the influence of the disk access through an additional queueing station.
Figure 15.10 shows the resulting model. The first station represents the CPU. For the
SCV of the CPU service time, we have kept the value of 0.1 of the previous model.
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Fig. 15.8: Response rate as function of the request rate for the web server without
disk access
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Fig. 15.9: Mean response time as function of the request rate for the web server
without disk access
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However, the service rate has now been set to a value of 706 (= 63.5
0.09 ) to reflect the

higher CPU demand of the single disk-based request. The service rate of the disk
station has been set to 63.5. For the SCV, we have assumed a direct dependency
of the service time on the size of the requested file measured in blocks of 4 KBytes
since this corresponds to the organization of the data on the disk. This leads to a
SCV of 16.5 instead of 26.8. The NIC in this model has the same service rate and
SCV as in the previous model.

Again, the problem of the bounded number of simultaneously connected clients
remains. Since the disk station clearly is the bottleneck, we have limited its queueing
capacity to 150 while the CPU and the NIC station now have infinite queueing
capacity. Note that, in spite of the large differences between the service rates, the
CPU and the NIC should not be removed from the model since they have a small
but measurable influence on the SCV of the traffic stream.

NICCPU DISK

Fig. 15.10: QN model for the web server with disk access

Figure 15.11 shows the number of responses per second as a function of the num-
ber of requests sent per second as measured at the test system and as computed by
FiFiQueues. Again, simulation results are not shown since their are nearly identical
to the analytical results (relative error < 1%). Again, it shows that the QN model
is able to predict the response rate quite well. The total mean response times are
shown in Figure 15.12. We observe that the QN model underestimates the response
time, especially at request rates near to the maximum response rate of the disk. Our
experiments with more complex QN models have shown that an improvement of
the results cannot be easily achieved by using the type of queueing stations offered
by FiFiQueues. For example, a more appropriate model would have to consider that
the seek time of the disk becomes a significant part of the disk’s response time at
high file reqest rates since the disk has to reposition its read/write heads more often.
Detailed models like the one presented in [39] simulate axial and rotational head
positions, seek, rotation and transfer times, and provide separate submodels for the
disk mechanism, the cache and the DMA engine.

15.5.2.4 Group of servers

In this section we evaluate a group of servers as shown in Figure 15.13. In our model,
the client requests HTML pages from the main server of a web site. An HTML file
refers to, on average, three other objects (company logo, images,. . . ) that are also
located on the main server. In addition, the HTML file refers to an object located
on one of the five data servers. We assume that the HTML file and the three re-
ferred files located on the main server are frequently requested and, hence, the main
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Fig. 15.11: Response rate as function of the request rate for the web server with disk
access
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server mainly operates on the cache. Concerning the data servers, we assume that
they store large amounts of infrequently requested files, for example files specific
to the requesting user, media files, et cetera. The client uses the HTTP/1.0 proto-
col [35], i.e., the five files that constitute the requested HTML page are sequentially
requested.

data server 5

data server 4

data server 3

data server 2

data server 1

. . .

client

client

main server

Fig. 15.13: Group of Web servers

The QN model is shown in Figure 15.14. The QN of the server without disk
access (representing the main server) is combined with five copies of the QN of the
server with disk access (representing the data servers). Jobs leaving the main server
are fed back to it with a probability of 0.75, thus resulting in four visits to the main
server in average. The jobs finally leaving the main server are distributed evenly
on the data servers. The service processes and the capacities of the stations remain
unchanged.

We have evaluated the QN model by FiFiQueues and by simulation. The results
for the response rate (for one data server) and the mean response time are shown
in Figure 15.15 and, respectively, Figure 15.16. The vertical bars in the latter show
the 95%-confidence intervals of the simulation results. FiFiQueues provides good
results for request rates smaller than 250. At larger request rates, FiFiQueues over-
estimates the losses in the main server because it ignores the correlations caused
by the feedback. As a consequence, the load of the data servers is underestimated
which leads to a smaller mean response time in comparison with the results ob-
tained by simulation. To make this very clear: the differences we observe here show
shortcomings of our analysis approach, as for both curves, the same model is being
used.

Table 15.5 shows the runtimes (in seconds) of the FiFiQueues algorithm and
of the discrete-event simulation for the evaluation of the server group model with
various request rates. For FiFiQueues, we have recorded the runtimes for two dif-
ferent implementations of the finite queue analysis. The original implementation
uses a Gauss-Seidel iteration, whereas the latest version uses the Cyclic Reduction
method [3]. As observed in [40], the runtime of the Gauss-Seidel iteration increases
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Fig. 15.14: QN model for the server group

 20

 25

 30

 35

 40

 45

 50

 55

 100  150  200  250  300

re
sp

on
se

 r
at

e 
[1

/s
]

request rate [1/s]

FiFiQueues
QN simulation

Fig. 15.15: Response rate as function of the request rate for the server group

FiFiQueues
request rate Gauss-Seidel Cyclic Red. simulation

100 7 2 11
200 15 3 11
300 19 3 11

Table 15.5: Runtimes (in seconds) for the evaluation of the server group model
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Fig. 15.16: Mean response time as function of the request rate for the server group

with the load of the stations. The Cyclic Reduction method is clearly faster than the
Gauss-Seidel iteration and the simulation.

15.5.3 Summary

In this section, we have evaluated the performance of the FiFiQueues algorithm.
Our experiments have shown that FiFiQueues provides very good results for im-
portant performance measures, like mean queue length, if the involved arrival times
in the queueing network are hypo-exponentially or nearly (negative-)exponentially
distributed. In such situations, we can generally expect relative errors less than 5%,
even if the network has a complex structure. In case of hyper-exponential arrival
processes, especially in queueing networks with feedback, relative errors up to 10%,
rarely up to 20%, have been observed.

15.6 Summary and conclusions

In this chapter we have presented an overview of decomposition-based analysis
techniques for large open queueing networks. We first presented the decomposition-
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based approach in general terms, without referring to any particular model class,
and proposed a general fixed-point iterative solution method for it. We concretized
this framework by describing the well-known QNA method, as proposed by Whitt
in the early 1980s, in that context, before describing our FiFiQueues approach. It
should be noted that the work on FiFiQueues has been performed by a group of
people over the last (almost) 15 years. To keep this chapter self-contained, we have
added appendices on various underlying building blocks. In addition to an extensive
evaluation with generally very favorable results for FiFiQueues, we also present a
theorem on the existence of a fixed-point solution for FiFiQueues (which has not
been published before).

In [40], we have also experimented with three-moment traffic descriptors, as well
as with traffic descriptors taking into account correlations in the traffic streams.
However, in our experiments, the three-moment descriptors have not significantly
improved the results for queueing networks with feedback in comparison to the
two-moment descriptors used by FiFiQueues. Since three-moment descriptors con-
siderably increase the runtime of the analysis, we currently refrain from using them.
Incorporating correlations in the traffic descriptors does hold promise, however, this
should be investigated further before it can be made into a daily practice.

15.7 Appendix: Jackson queueing networks

The simplest open queueing networks allowing feedback are the so-called Jackson
queueing networks (JQNs). Their analytical performance evaluation was developed
by J.R. Jackson [20] in the 1950s.

15.7.1 Model class

In JQNs, all nodes are assumed to be infinite-buffer M|M|1 queues with the First-
Come-First-Served (FCFS) service discipline. In many modeling applications, the
restriction to Poisson arrival and service processes cannot be justified.

15.7.2 Traffic descriptor

In JQNs, all traffic processes (including the external arrival processes) are assumed
to be Poisson, hence a sufficient traffic descriptor only contains the arrival rate λ of
the traffic stream, denoted as 〈λ 〉.
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15.7.3 Superposition of traffic streams

Merging two (possibly dependent) traffic streams does not necessarily yield a new
Poisson stream. However, it can be shown that the nodes of a JQN still can be
described by M|M|1 queues even when traffic merging occurs. Thus, to merge n
traffic streams specified by 〈λ1〉, . . . ,〈λn〉 into one traffic stream 〈λ 〉, one simply
adds the rates:

λ =
n

∑
i=1

λi.

15.7.4 Splitting traffic streams

The Markovian splitting of a Poisson stream 〈λ 〉 again results in n Poisson streams.
Let p1, . . . , pn be the splitting probabilities, then the resulting streams 〈λ1〉, . . . ,〈λn〉
are given by

λi = pi ·λ , i = 1, . . . ,n.

15.7.5 Servicing jobs

Let 〈λA〉 be the arrival traffic descriptor of the node, and µ its service rate. We
require that λA < µ , otherwise the station is not stable. Burke [7] proved that the
departure process for a stable single server M|M|1 queue is a Poisson process with
rate λA, hence, the departure process can be described as 〈λD〉 with λD = λA.

15.7.6 Node performance

Let 〈λA〉 be the arrival traffic descriptor, and µ the service rate of the node. Then,
ρ = λA/µ is the utilization of the node. Since the node is an M|M|1 queue, the
steady-state probability p j to find j customers in the queue can be easily derived
from the underlying birth-death Markov chain [16]:

p j = (1−ρ)ρ j, j = 0,1, . . .

Having computed the steady-state probabilities, quantities like the expected number
of jobs in the queueing station E[N] can be calculated as

E[N] =
∞

∑
j=0

j · p j =
ρ

1−ρ
.
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Then, Little’s law can be applied to compute the expected waiting time E[W ].
Similarly, higher moments of measures can be computed too, e.g., the variance

of the number of customers in the node:

Var[N] =
∞

∑
j=0

( j−E[N])2 · p j =
ρ

(1−ρ)2 .

15.7.7 Network-wide performance

Since no losses occur and all nodes are required to be stable, the total throughput λthr
of the network, i.e., the average number of customers passing through the network
per time unit, is simply the sum of arrival rates λext,i of the external arrival processes:

λthr =
n

∑
i=1

λext,i

where 〈λext,i〉 is the external traffic arriving at node i and n is the number of nodes.
Other performance measures may be derived from the node performance measures.
If λA,i is the total amount of traffic arriving at node i, the expected number of visits
E[Vi] of a customer at node i is given by [49, Eq. (77)]:

E[Vi] = λA,i/λthr.

The expected total sojourn time E[Ttotal ], i.e., the time a customer spends in the
network, defined as the sum of the expected sojourn times E[Ti] at each node i, thus
equals

E[Ttotal ] =
n

∑
i=1

E[Ti] =
n

∑
i=1

E[Vi]

(
1
µi

+E[Wi]

)
.

Since the total number of customers Ntotal in the network is the sum of customers
present in each queueing station, we have

E[Ntotal ] =
n

∑
i=1

E[Ni],

where E[Ni] is the expected number of jobs in node i.

15.7.8 Complexity

If Γ = (ri j) is the routing matrix, the traffic 〈λA,i〉 arriving at node i is given by the
so-called first-order traffic equation:
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λA,i = λext,i +
n

∑
j=1

λD, j · r ji.

Since λD,i = λA,i, the traffic equations form a system of linear equations which can
be expressed in vector/matrix notation as λA = λext +λA ·Γ, or, after transformation,
as

λA = λext(I−Γ)−1.

Thus, to find λA we solve the linear system

λA(I−Γ) = λext.

This system of equations can be solved by direct methods like Gaussian elimination,
resulting in a time complexity of O(n3), or by iterative methods like Gauss-Seidel.
This implies that, due to the linearity of the involved equations, the analysis of JQNs
does not require the fixed-point iteration described in Section 15.2 (although, if an
iterative solver is used to solve the linear system, the fixed-point iteration can be
regarded as hidden in the solver).

For very large networks, we can make use of the fact that the routing matrix
typically is a sparse matrix. In this way, the time complexity of an iterative solver
such as Gauss-Seidel can be reduced to about O(c ·n) where c is the average number
of outgoing connections per station.

The expressions given in Section 15.7.6 for the node performance measures can
be computed in constant time for each node. For the network performance, most
results require summation over the number of nodes in the network which yields a
time complexity of O(n).

15.8 Appendix: MAPs, PH-distributions and QBDs

In this appendix we introduce the fundamental mathematical structures and notation
used throughout this chapter. We begin with an important class of stochastic pro-
cesses, the Markovian Arrival Processes (MAP) in Section 15.8.1. Phase-type (PH)
renewal processes, which can be seen as special cases of MAPs, are introduced in
Section 15.8.2. The queueing processes that we have discussed in Section 15.4 have
underlying Markov chains that belong to the well-known class of continuous-time
Quasi-Birth-and-Death (QBD) processes. We give the formal definition of QBD
processes as well as methods to compute their steady-state solution. We first discuss
infinite QBDs in Section 15.8.3 and continue with finite QBDs in Section 15.8.4.
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15.8.1 Markovian Arrival Processes (MAPs)

15.8.1.1 Definition and notation

Markovian Arrival Processes (MAPs) [29, 30, 36] belong to the general class of
point processes and can be seen as special cases of Matrix Exponential Point Pro-
cesses (which, in turn, form a subset of the class of Semi-Markov Processes [16]).
MAPs cover many interesting processes including the Markov-Modulated Poisson
Processes (MMPPs) [10] and the phase-type (PH) renewal processes (see below).

A MAP can be described by a finite irreducible continuous-time Markov chain
(CTMC) with generator matrix Q where some transitions are “marked”. Every time
when the process passes through such a marked transition an event is triggered. The
time instants of these events form the point process. We follow the notation of [31]
and split the generator matrix into two matrices Q0 and Q1 as follows:

Q0 =




−q1 q12 . . . q1m
q21 −q2 . . . q2m

...
...

. . .
...

qm1 qm2 . . . −qm


 , Q1 =




a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

am1 am2 . . . amm


 ,

with Q0 + Q1 = Q where qi = aii + ∑m
j=1, j 6=i(qi j +ai j). The elements of the matrix

Q1 give the transition rates of the marked transitions.1 In the following, we denote
a MAP by the pair (Q0,Q1) and call m the size of the MAP.

15.8.1.2 Characteristics

Some general results of the Markov-modulated Poisson process [10] can be easily
adapted to the MAP. In order to compute the behavior of a MAP (Q0,Q1) we first
need to choose the initial probability vector p of the MAP. In analogy to phase-type
renewal processes we start the MAP at an “arbitrary” arrival epoch by choosing

p =
1

πQ11
πQ1,

where π is the steady-state probability vector of the MAP, i.e., π(Q0 + Q1) = 0.
The thus-obtained process is said to be interval-stationary. The inter-arrival time
distribution function of the interval-stationary process is given by

F(t) = 1−pexp(Q0t)1, (15.1)

1 This definition allows the following interpretation of the matrices Q0 and Q1: passing through
a transition given as entry of Q1 triggers the generation of one event. Batch Markovian Arrival
Processes (BMAPs) generalize this viewpoint by introducing matrices Qi with i > 1 whose entries
describe transitions with batch arrivals of size i.
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which leads to the following expression for the kth moment of the inter-arrival time:

E[T k] = k!p(−Q0)
−(k+1)Q11. (15.2)

Hence, the first moment of the inter-arrival time is given by

E[T ] =
1

πQ11
πQ1(−Q0)

−2Q11.

This equation can be further simplified by using the equations πQ1 = −πQ0 and
Q11 =−Q01 which follow from the definition of π , respectively, from the fact that
Q0 +Q1 is a stochastic matrix. We find that the arrival rate λ of a MAP (the inverse
of the first moment) is

λ = πQ11

which yields

E[T k] =
k!
λ

π(−Q0)
−(k−1)1.

Let Ti be the time between the ith and the (i + 1)st arrival in a MAP. Then, the
autocovariance function R(k) for T1 and Tk+1 with k ≥ 1 is given by

R(k) = E [(T1−E[T1])(Tk+1−E[Tk+1])]

= p(−Q0)
−2Q1

{[
(−Q0)

−1Q1
]k−1− 1p

}
(−Q0)

−11.

The limiting index of dispersion I of a MAP is given by [18]

I = lim
t→∞

Var[N(t)]
E[N(t)]

= 1 +2
(

λ − 1
λ

πQ1(Q0 +Q1 +1π)−1Q11
)

,

where N(t) is the counting process of the MAP.

15.8.1.3 Superposition and Markovian splitting

The class of MAPs is closed under superposition and Markovian splitting. The su-
perposition of two MAPs (A0,A1) and (B0,B1) is a new MAP (C0,C1) with

C0 = A0⊕B0, C1 = A1⊕B1,

where L⊕M = L⊗ I+ I⊗M, and⊗ is the Kronecker product operator (also known
as tensor or matrix direct product operator).

The Markovian splitting of a MAP (A0,A1) with probability r gives two MAPs
(B0,B1) and (C0,C1) with

(B0,B1) = (A0 +(1− r)A1,rA1),

(C0,C1) = (A0 + rA1,(1− r)A1).
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15.8.1.4 Markov-Modulated Poisson Processes (MMPPs)

The MMPP is the doubly stochastic Poisson process whose arrival rate depends on
the state of an irreducible Markov process. Thus, MMPPs can be seen as MAPs
where the matrix Q1 is restricted to the form




a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . amm


 .

15.8.2 Phase-type (PH) renewal processes

15.8.2.1 Definition and notation

A continuous phase-type renewal process can be seen as a special MAP (A,A0α)
where A0 is a n× 1 column vector with entries and α is a 1× n row probability
vector. Consequently, it holds A0 =−A1.

We adopt the notation of [37] and denote PH renewal processes by the pair (α,A)
which can be interpreted as follows: the n× n matrix A describes the transitions
from the n transient states of a CTMC with n + 1 states. The last state n + 1 is
an absorbing state and any transition (given by A0) from the transient state to the
absorbing state will trigger an arrival. After the arrival, the process will restart in the
transient state i with probability αi. Furthermore, PH inter-event time distributions
form a dense subset of all distributions with support on [0;∞), i.e., any distribution
can be approximated arbitrarily closely by a PH distribution [23].

15.8.2.2 Inter-event time characteristics

Obviously, the vector α of the PH renewal process (α,A) is identical to the interval-
stationary probability vector p of the corresponding MAP. Hence, expressions for
the distribution function of the inter-event time and the k-th moment directly follow
from Equations (15.1) and (15.2) and we have

F(t) = 1−α exp(At)1,

respectively
E[T k] = k!α(−A)−k1.

Note that the matrix A is nonsingular, so that all moments are finite. From this
follows that the MAP (Q0,Q1) and the PH renewal process (p,Q0) have the same
inter-event time distribution.
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15.8.2.3 Superposition and Markovian splitting

The superposition of two PH renewal processes (α,A) and (β ,B) is a MAP (C0,C1)
with

C0 = A⊕B, C1 = A0α⊕B0β .

Note that the class of PH renewal processes is not closed under superposition.
The Markovian splitting of a PH renewal processes (α,A) with probability r

gives two PH renewal processes (α,A+(1− r)A0α) and (α ,A+ rA0α).

15.8.3 Infinite QBDs

This section is based on Chapter 4 of [38]. Note that we use a simplified notation.

15.8.3.1 Definition

QBD processes [37] can be described as a generalization of the queueing process
of M|M|1 queueing stations. In the underlying Markov chain of such a queue we
can identify an infinite number of states where state i describes that i jobs are in the
system. The transition from state i to i + 1 resp. from i + 1 to i is marked by the
arrival rate resp. the service rate of the queueing station.

In QBDs, these states are replaced by so-called levels: level i still stands for i
jobs in system but in QBDs each level may consist of more than one state. Usually,
a two-dimensional addressing scheme is used for the states where (i, j) addresses
state j of level i. Note that in the QBD the number of levels is unbounded whereas
the number of states per level is required to be finite. Moreover, the levels 1,2, . . .
(the repeating levels) have to contain the same number of states N. Level 0 is called
boundary level and may contain a different number of states N0.

In QBDs, two adjacent levels i and i + 1 are not connected by one single tran-
sition. Instead, arbitrary transitions between the states of two adjacent levels and
between states of the same level are allowed. Consequently, the transition rates are
specified by matrices:

• the entry (i, j) of the N0×N matrix B0,1 gives the transition rate from state (0, i)
to state (1, j). The opposite direction (from level 1 to level 0) is given similarly
by the N×N0 matrix B1,0.

• the entry (i, j) of matrix A0 gives the transition rate from state (l, i) to state
(l +1, j) where l = 1,2, . . .. The opposite direction (from level l +1 to l) is given
by matrix A2. Both matrices are of size N×N.

• transitions inside level 0 are specified by the N0×N0 matrix B0,0. Entry (i, j)
gives the transition rate from state (0, i) to state (0, j). Correspondingly, transi-
tions inside repeating level l (with l = 1,2, . . .) are specified by the N×N matrix
A1.
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As can be seen, all repeating levels have a similar transition structure. The above
described matrices directly lead to the generator matrix of the QBD Markov chain.
If we sort the states lexicographically, i.e., in the sequence

(0,1), . . . ,(0,N0),(1,1), . . . ,(1,N),(2,1), . . .

we obtain the tri-diagonal block generator matrix Q of infinite size:

Q =




B0,0 B0,1

B1,0 A1 A0

A2 A1 A0

A2 A1 A0
. . .

. . .
. . .




. (15.3)

15.8.3.2 Steady-state solution

The infinite steady-state probability vector v of the QBD Markov chain with gener-
ator matrix Q fulfills the global balance equation

v ·Q = 0, (15.4)

and the normalization condition
v ·1 = 1. (15.5)

In the following we write v0 for the vector (v1, . . . ,vN0) which contains the steady-
state probabilities for the states of level 0 and we write vi for the vector
(vN0+1+(i−1)·N, . . . ,vN0+i·N) which contains the steady-state probabilities of level i =
1,2, . . .. With this notation we can rewrite Equations (15.4) and (15.5) as

v0B0,0 +v1B1,0 = 0, (15.6)

v0B0,1 + v1B1,1 +v2A2 = 0, (15.7)

viA0 +vi+1A1 +vi+2A2 = 0, for i = 1,2, . . . , (15.8)
∞

∑
i=0

vi1 = 1. (15.9)

The regular structure of Equation (15.8) is the key to the efficient solution of the
QBD. Two different classes of solution techniques can be distinguished: matrix-
geometric solution methods and transform methods. We will describe them briefly
in the following.
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15.8.3.3 Matrix-geometric solution methods

The main idea in this class of solution methods is that the solution vector v has a
matrix-geometric form, i.e., there exists a matrix R of size N×N with

vi = v1Ri−1, i = 1,2, . . . (15.10)

In [37], it is shown that R is the entry-wise smallest non-negative solution of the
quadratic matrix equation

A0 + RA1 +R2A2 = 0. (15.11)

The methods belonging to this class of solution methods try to solve this equation as
efficiently as possible. Once R has been determined, the complete stationary vector
v can be computed using Equations (15.6)–(15.10). Examples for such methods are
the Successive Substitution method [37], the Logarithmic Reduction method [28]
and its improvement [34].

15.8.3.4 Transform methods

Unlike the matrix-geometric solution methods the transform methods do not aim to
directly solve Equation (15.11). Instead, they first transform the problem into some
other domain in order to derive the solution of Equation (15.8). Three well known
methods belonging to this class are the Cyclic Reduction method [4], the Invariant
Subspace method [1], and the Spectral Expansion method [37, 8].

15.8.4 Finite QBDs

15.8.4.1 Definition

Similar to infinite QBDs, finite QBDs can be seen as the generalization of the queue-
ing process of a bounded M|M|1|K queue. Finite QBD processes result in QBD
Markov chains with a finite number K +1 of levels, hence two boundary levels can
be identified: the lower boundary level 0 and the upper boundary level K.

In the following we will only treat a quite restricted class of finite QBDs that is
sufficient for the queueing process discussed in this chapter: The upper boundary
level has the same number of states N as the repeating levels 1 through K−1. Addi-
tionally, the transition rates between levels K−1 and K are the same as between the
repeating levels — only one new matrix C is introduced that specifies the transition
rates inside level K. The finite generator matrix of the QBD Markov chain then has
the following form:
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Q =




B0,0 B0,1

B1,0 A1 A0
A2 A1 A0

A2 A1 A0
. . .

. . .
. . .

A2 A1 A0

A2 C




. (15.12)

15.8.4.2 Steady-state solution

We search the finite steady-state probability vector v of the QBD Markov chain with
generator matrix Q that fulfills the global balance equation

v ·Q = 0 (15.13)

and the normalization condition
v ·1 = 1. (15.14)

As in the infinite case, we partition the vector v into subvectors vi where v0 =
(v1, . . . ,vN0) and vi = (vN0+1+(i−1)·N, . . . ,vN0+i·N), for i = 1, . . . ,K. It is important
to note that the solution of Equation (15.13) is uncritical with respect to space com-
plexity. Due to the special structure of the Markov chain it is not necessary to hold
the whole matrix Q in memory but only the matrices B0,0, B1,0, B0,1, B1,1, A0, A1,
A2 and C. In terms of these matrices, Equation (15.13) becomes:

v0B0,0 + v1B1,0 = 0 (15.15)

v0B0,1 +v1B1,1 +v2A2 = 0 (15.16)

viA0 + vi+1A1 +vi+2A2 = 0, for i = 1, . . . ,K−2, (15.17)

vK−1A0 +vKC = 0 (15.18)

Since Q is of finite size, Equation (15.13) can be solved by an ordinary Gauss-
Seidel-iteration which performs very efficiently due to the band-structure of Q.
More sophisticated algorithms have been developed on the basis of the solution
methods for infinite QBDs; most of the algorithms presented in Section 15.8.3 have
been extended to the treatment of finite QBDs.

In addition to these methods some authors have developed solution methods
especially adapted to QBDs arising from PH|PH|1|K queues (see Section 15.4).
Such methods are the Bocharov-Naoumov method [6], two methods proposed by
Chakravarthy and Neuts in [9], and the Cyclic-Reduction method [3].
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15.9 Appendix: Existence of the fixed point

In general, it is not known for the fixed-point iteration algorithm described in Sec-
tion 15.2 whether the searched fixed point exists, is unique or will be reached. How-
ever, some intermediate results are available for FiFiQueues which we will present
here. In the following we give a proof that the fixed point exists for a modified
version of the original FiFiQueues algorithm.

15.9.1 Notation and Brouwer’s theorem

Given a queueing network with n stations, we define D⊂R2n where the tuple
(〈

λa,1,c
2
a,1

〉
, . . . ,

〈
λa,n,c

2
a,n

〉)
∈ D

gives for each node i ∈ {1, . . . ,n} the traffic descriptor
〈

λa,i,c2
a,i

〉
of its arrival traf-

fic. Then the operations performed by FiFiQueues during step k + 1 of the fixed-
point iteration can be expressed as a function H : D→D [47] which computes from
the traffic descriptor dk obtained from step k the new traffic descriptor dk+1, that is,

dk+1 = H(dk),

where d0 is the initial traffic descriptor used in the iteration. We use the Brouwer
fixed-point theorem [45] to prove the existence of the fixed point for the function H.
It states:
Let D⊂ Rm be a non-empty, closed, convex, and bounded set, and H : D→ D con-
tinuous. Then H has a fixed point.

A first proof of the existence of the fixed point has been discussed in [47] for spe-
cial service processes. The proof presented in the following applies to arbitrary PH
renewal service processes. We first show in Section 15.9.2 that the requirements to
the set D are met. The continuity of H is shown in Sections 15.9.3–15.9.5.

15.9.2 Properties of D

Lower and upper bounds for the arrival rate λa,i of a node i exist. It holds that

0≤ λa,i ≤ λmax,i

where the upper bound λmax,i is the maximum arrival rate that will only be reached
if all queueing stations operate with a load of 100%. It is given by

λmax = λext(I−Γ)−1,
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where Γ is the routing matrix and λext,i is the rate of the external traffic arriving
at node i. As previously explained, FiFiQueues limits the squared coefficient of
variation to 1

10 to prevent the generation of PH distributions with more than 10 states.
Originally, no upper bound is provided for the coefficients but we can safely define

c2
a,i := min(c2

max,c
2
a,i), i = 1, . . . ,n,

with c2
max = 1000 without affecting the analysis. We thus obtain that D is the non-

empty, closed and convex interval
[(〈

0, 1
10

〉
, . . . ,

〈
0, 1

10

〉)
,
(〈

λmax,1,c
2
max

〉
, . . . ,

〈
λmax,1,c

2
max

〉)]
⊂R2n,

as required.

15.9.3 Continuity of H

The function H performs for each node the following operations to compute the
traffic descriptors for the next iteration in the algorithm:

1. the service operation;
2. the traffic splitting;
3. the traffic merging.

The traffic merging step is a function of the traffic descriptors generated during
the splitting operation. The traffic splitting, in turn, is a function of the departure-
traffic descriptor as computed by the service operation. An inspection of the in-
volved terms for the traffic merging (Equation (15.1) and (15.2)), the traffic splitting
(Equation (15.3)), and the service operation (Equations (15.5), (15.8), and (15.11))
shows that the proof of continuity reduces to the question whether, for a given node,
the loss probability π (in case of a finite queue) and the variance σ 2

0 are continuous
functions of the arrival traffic

〈
λa,c2

a

〉
. Since π and σ 2

0 depend on the stationary
distribution v of the underlying CTMC we can make use of the following theorem
[32] to prove this continuity:

The stationary distribution of a CTMC as function of the transition rates λ1, . . . ,λn

of the generator matrix is continuous for all λi > 0, i = 1, . . . ,n if the CTMC has
exactly one irreducible set of states.

The underlying CTMC of a queueing station has exactly one irreducible set of states
since it is a QBD. Then, the question is, how do the transition rates of the generator
matrix depend on

〈
λa,c2

a

〉
? FiFiQueues uses the traffic descriptor to determine a PH

renewal process that represents the arrival traffic. This arrival PH process is then
combined with the service PH process of the node to construct the generator matrix.
For fixed c2

a the transition rates of the generator matrix are a continuous function
of the arrival rate λa. The theorem then yields the continuity of v as function of λa.
However, varying c2

a may cause FiFiQueues to change the size and structure of the
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PH representation. Such a change also influences the size and structure of the QBD.
As a consequence, the theorem can only be applied for values of c2

a that do not cause
such a change. We obtain:

1. v is continuous for c2
a > 1, since then the PH distribution always takes the same,

hyper-exponential, form.
2. v is continuous for c2

a ∈
(

1
m+1 , 1

m

)
, for all m ∈ {1, . . . ,9}.

The other cases, i.e., c2
a = 1

m ,m∈ {1, . . . ,10}, have to be separately discussed. In the
following we only show the continuity of π . The proof for σ 2

0 is done in a similar
way.

15.9.4 Continuity for c2
a = 1

We show that
lim

c2
aր1

π(c2
a) = π(c2

a = 1) = lim
c2

aց1
π(c2

a)

which yields the continuity of π around c2
a = 1.

15.9.4.1 Case c2
a = 1

If c2
a = 1, the arrival PH distribution is a negative-exponential distribution with rate

λa. Following the notation used in Section 15.4.5, we obtain the steady-state proba-
bility distribution v= by solving the global balance equations

v=
0 (−λa)+ v=

1 B0 = 0
v=

0 λaβ + v=
1 (−λaI+ B)+ v=

2 B0β = 0
v=

1 λaI+ v=
2 (−λaI+ B)+ v=

3 B0β = 0
. . .

v=
K−1λaI +v=

KB = 0






(15.1)

and
v= ·1 = 1,

where (β ,B) is the service PH process and K is the queueing capacity. The loss
probability π= is then given as

π= = π(c2
a = 1) =

1
λa

v=
K(λa⊗ I) ·1 = v=

K ·1.
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15.9.4.2 Case c2
aց 1

If c2
a > 1, FiFiQueues selects the PH renewal process (α,A) as representation of the

arrival traffic with

A =

(
−λ0 0

0 −λ1

)
and α = (p,1− p),

where p = 1
2 + 1

2

√
c2

a−1
c2

a+1
, λ0 = 2pλa and λ1 = 2(1− p)λa.

Let v> be the steady-state probability distribution of the resulting QBD. To ease
the following calculations we split the components v>

i , i= 0, . . . ,K, of the probabil-
ity distribution vector into two parts v>

i = (v>
i1,v

>
i2) where v>

i1 and v>
i2 are associated

with the first resp. the second state of the arrival PH process. The vector v> is then
determined by the following equations:

v>
01(−λ0)+ v>

11B0 = 0, (15.2)

v>
02(−λ1)+ v>

12B0 = 0, (15.3)

v>
01 pλ0β + v>

02 pλ1β +v>
11(−λ0I +B)+ v>

21B0β = 0, (15.4)

v>
01(1− p)λ0β +v>

02(1− p)λ1β +v>
12(−λ1I +B)+ v>

22B0β = 0, (15.5)

v>
11 pλ0I +v>

12pλ1I+v>
21(−λ0I +B)+ v>

31B0β = 0, (15.6)

v>
11(1− p)λ0I+ v>

12(1− p)λ1I+v>
22(−λ1I +B)+ v>

32B0β = 0, (15.7)

. . .

v>
K−1,1 pλ0I+ v>

K−1,2pλ1I+ v>
K1((p− 1)λ0I+ B)+ v>

K2pλ1I = 0, (15.8)

v>
K−1,1(1− p)λ0I+ v>

K−1,2(1− p)λ1I+

v>
K1(1− p)λ0I+v>

K2(−pλ1I+B) = 0, (15.9)

and
v> ·1 = 1.

The loss probability π> of the station is then given as

π> =
1
λa

v>
K(A0⊗ I) ·1 =

1
λa

(v>
K1λ0 +v>

K2λ1)I ·1. (15.10)

Summing Equations (15.2) and (15.3), (15.4) and (15.5), . . ., gives:

s0 + t1B0 = 0
−s0β + s1I+ t1B+ t2B0β = 0
−s1I + s2I+ t2B+ t3B0β = 0

. . .
−sK−1I+ tKB = 0






(15.11)

where si = v>
i1(−λ0)+v>

i2(−λ1) and ti = v>
i1 +v>

i2. For c2
aց 1 we have p→ 1

2 . From
this, it follows
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lim
c2

aց1
λ0 = lim

c2
aց1

λ1 = λa,

and
lim

c2
aց1

si =−λa lim
c2

aց1
ti, i = 0, . . . ,k.

By applying these limits to Equation (15.11) we observe their correspondence with
Equation (15.1). Hence, we obtain for c2

aց 1:

lim
c2

aց1
ti = lim

c2
aց1

(v>
i1 +v>

i2) = v=
i ,

which provides, with Equation (15.10), the desired relationship

lim
c2

aց1
π> = π=.

15.9.4.3 Case c2
aր 1

If 0.5 < c2
a < 1, the arrival PH distribution is a modified hypo-exponential distribu-

tion (α,A) as defined in Section 15.4.5 where

A =

(
−λ0 λ0

0 −λ1

)
and α = (1,0).

Let v< be the steady-state probability distribution of the resulting QBD. Again,
we split the components v<

i , i= 0, . . . ,K, of the probability distribution vector into
two parts v<

i = (v<
i1,v

<
i2), where v<

i1 and v<
i2 are associated with the first resp. the

second state of the arrival PH distribution. The vector v< is then determined by the
following equations:

v<
01(−λ0)+ v<

11B0 = 0, (15.12)

v<
01λ0 +v<

02(−λ1)+ v<
12B0 = 0, (15.13)

v<
02λ1β + v<

11(−λ0I+ B)+ v<
21B0β = 0, (15.14)

v<
11λ0I + v<

12(−λ1I+ B)+ v<
22B0β = 0, (15.15)

v<
12λ1I + v<

21(−λ0I+ B)+ v<
31B0β = 0, (15.16)

v<
21λ0I + v<

22(−λ1I+ B)+ v<
32B0β = 0, (15.17)

. . .

v<
K−1,2λ1I+ v<

K1(−λ0I+B)+ v<
K2λ1I = 0, (15.18)

v<
K1λ0I +v<

K2(−λ1I+ B) = 0, (15.19)

and
v< ·1 = 1.

The loss probability π< of the station is then given as
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π< =
1
λa

v<
K(A0⊗ I) ·1 =

1
λa

v<
K2λ1I ·1. (15.20)

From Equation (15.19) we obtain

v<
K2λ1I = v<

K1λ0I +v<
K2B,

which yields with Equation (15.20):

π< =
1
λa

(v<
K1λ0I+ v<

K2B) ·1. (15.21)

Using simple substitutions we derive from Equations (15.12)–(15.19):

v<
01(−λ0)+ v<

11B0 = 0
(v<

01λ0 +v<
12B0)β + v<

11(−λ0I+ B)+ v<
21B0β = 0

(v<
11λ0I +v<

12B +v<
22B0β )+ v<

21(−λ0I+ B)+ v<
31B0β = 0

(v<
K−1,1λ0I+v<

K−1,2B +v<
K2B0β )+ v<

K1B +v<
K2B = 0





(15.22)

For c2
aր 1 we have λ0→ λa and λ1→ ∞. Solving Equations (15.13), (15.15), . . . ,

(15.19) for v<
i2 then gives

v<
i2→ 0, i = 0, . . . ,K.

By applying these limits to Equation (15.22) we observe their correspondence with
Equation (15.1). Hence we obtain for c2

aր 1:

v<
i1→ v=

i and v<
i2→ 0, i = 0, . . . ,K,

which gives, applied to Equation (15.21):

lim
c2

aր1
π< = π=,

as required.

15.9.5 Continuity for c2
a = 1

m ,m ∈ {2, . . . ,10}

The transition rates of the hypo-exponential PH distributions for c2
a < 1 are defined

as functions of the number of phases m =
⌈

1
c2

a

⌉
. The inherent discontinuity suggests

that the steady-state distribution of the resulting QBD is discontinuous, too. To im-
prove the behavior of the arrival distribution with regard to the continuity, [47] pro-
poses to modify FiFiQueues’ PH fitting procedure for c2

a < 1 as follows. Given the
mean inter-arrival time E[X ] = 1/λa and the squared coefficient of variation c2

a, we

fit the PH distribution (α,A) with m =
⌈

1
c2

a

⌉
phases and initial probability vector
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α = (1,0, . . . ,0). The matrix A is given as

A =




−λ0 λ0

−λ1 λ1
. . .

. . .
−λm−2 λm−2

−λm−1




, (15.23)

where

λi = 1/(c2
aE[X ]), for 0≤ i < m−2,

λm−2 =
λm−1

E[X ]λm−1(1− (m−2)c2
a)−1

,

λm−1 =
1− (m−2)c2

a +
√

(c2
a)

2(2m−m2)+ 2c2
a(m−1)− 1

E[X ]((m−1)(m−2)(c2
a)

2 + c2
a(3−2m)+ 1)

As can be seen, the transition rates λi for i < m− 2 are now continuous functions
of c2

a. This causes that important statistics of this new PH renewal process, e.g., the
third moment of the inter-arrival time, are now continuous at values of c2

a where
a size change happens. Note that this is not true for the original PH distribution.
Figure 15.17 illustrates this by comparing the third moment of both PH distributions
for values of c2

a around 0.5 (i.e., when the size m changes from 3 to 2).
For c2

aր 1
m , m ∈ {1, . . . ,9}, the new PH distribution (with m +1 phases) yields

λi −→ mλa, for 0≤ i < m, (15.24)

λm −→ ∞. (15.25)

Hence, the proof of lim
c2

aր1
π(c2

a) = π(c2
a = 1) for m = 1, as given in the previous

section, is still valid and we only have to prove that

lim
c2

aր 1
m

π(c2
a) = π(c2

a =
1
m

)

for m ∈ {2, . . . ,9}. For c2
a = 1

m the arrival PH distribution (α=,A=) is an Erlang-
m distribution. Again, let v= be the steady-state probability vector of the resulting
QBD with c2

a = 1
m , m ∈ {2, . . . ,10}. We split the components v=

i , i= 0, . . . ,K, of the
probability distribution vector into m parts v=

i = (v=
i1, . . . ,v

=
im) where v=

ij is associ-
ated with the j-th state of the arrival PH distribution. The probabilities are deter-
mined by v= ·1 = 1 and by the global balance equations of the QBD. For level 0 of
the QBD, when no customers are in the queueing station, we obtain
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Fig. 15.17: Third moment of the original (Equation (15.4)) and the modified (Equa-
tion (15.23)) PH distribution as function of c2

a

v=
01(−λ=)+ v=

11B0 = 0,

v=
01λ= +v=

02(−λ=)+ v=
12B0 = 0,

. . .

v=
0,m−1λ = + v=

0m(−λ=)+ v=
1mB0 = 0,

where λ = = mλa. For level 1≤ i < K, we have

v=
i−1,mλ=β +v=

i1(−λ=I+B)+ v=
i+1,1B0β = 0,

v=
i1λ=I+v=

i2(−λ=I+B)+ v=
i+1,2B0β = 0,

. . .

v=
i,m−1λ=I + v=

im(−λ=I+ B)+ v=
i+1,mB0β = 0,

and, finally, for level K:

v=
K−1,mλ=I+ v=

K1(−λ=I + B)+ v=
Kmλm−1I = 0,

v=
K1λ=I+ v=

K2(−λ=I+ B) = 0,

. . .

v=
K,m−1λ=I+v=

Km(−λ=I+ B) = 0.

The loss probability π= of the station is given by
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π= =
1
λa

v=
K(A0

=⊗ I) ·1 =
1
λa

v=
Kmλ=I ·1.

For 1
m+1 ≤ c2

a < 1
m the resulting arrival PH process (α<,A<) has m + 1 states

and the steady-state probability vector v< of the QBD has additional components
v<

i,m+1, i = 0, . . . ,K. Let λ0,. . . ,λm+1 be the transition rates of the PH process. The
global balance equations for level 0 are

v<
01(−λ0)+ v<

11B0 = 0,

v<
01λ0 + v<

02(−λ1)+ v<
12B0 = 0,

. . .

v<
0mλm−1 + v<

0,m+1(−λm)+ v<
1,m+1B0 = 0.

For level 1≤ i < K, we have

v<
i−1,m+1λmβ + v<

i1(−λ0I+B)+ v<
i+1,1B0β = 0,

v<
i1λ0I+ v<

i2(−λ1I+B)+ v<
i+1,2B0β = 0,

. . .

v<
imλm−1I+v<

i,m+1(−λmI+ B)+ v<
i+1,m+1B0β = 0,

and for level K:

v<
K−1,m+1λmI+v<

K1(−λ0I+ B)+ v<
K,m+1λmI = 0 (15.26)

v<
K1λ0I+ v<

K2(−λ1I+B) = 0 (15.27)

. . .

v<
Kmλm−1I+v<

K,m+1(−λmI+B) = 0. (15.28)

The loss probability π< is given by

π< =
1
λa

v<
K(A0

<⊗ I) ·1 =
1
λa

v<
K,m+1λmI ·1. (15.29)

From Equation (15.28) we obtain

v<
K,m+1λmI = v<

Kmλm−1I+v<
K,m+1B,

which yields with Equation (15.29):

π< =
1
λa

(v<
Kmλm−1I+v<

K,m+1B) ·1. (15.30)

Solving the global balance equations for v<
i,m+1 and applying the limits from (15.24)

and (15.25) gives
v<

i,m+1→ 0, i = 0, . . . ,K.
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Similar to the case c2
a ր 1 of the original PH distribution (see Equation (15.22)),

transforming the global balance equations finally yields

v<
ij → v=

ij ,

v<
i,m+1 → 0, i = 0, . . . ,K and j = 1, . . . ,m,

which gives, applied to Equation (15.30):

lim
c2

aր 1
m

π< = π=,

as required.

We now have shown that the loss probability π is a continuous function of c2
a.

Together with the continuity of the variance σ 2
0 (not shown here), this yields the

continuity of the the function H, and, as consequence, the existence of the fixed
point.

Note that experiments have shown that the original FiFiQueues and the modified
version using the new hypo-exponential PH distributions compute nearly identical
results with relative errors of less than 10−4.
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Chapter 16

Loss Networks

Stan Zachary and Ilze Ziedins

Abstract This chapter reviews the theory of loss networks, in which calls of var-
ious types are accepted for service provided that this can commence immediately;
otherwise they are rejected. An accepted call remains in the network for some hold-
ing time, which is generally independent of the state of the network, and throughout
this time requires capacity simultaneously from various network resources. Both
equilibrium and dynamical behaviour are studied; for the former a new approach is
taken to the theory of uncontrolled loss networks, while the latter is the key to the
understanding of stability issues in such networks.

16.1 Introduction

In a loss network calls, or customers, of various types are accepted for service pro-
vided that this can commence immediately; otherwise they are rejected. An accepted
call remains in the network for some holding time, which is generally independent
of the state of the network, and throughout this time requires capacity simultane-
ously from various network resources.

The loss model was first introduced by Erlang as a model for the behaviour of
just a single telephone link (see Brockmeyer et al. [7]). The typical example remains
that of a communications network, in which the resources correspond to the links in
the network, and a call of any type requires, for the duration of its holding time, a
fixed allocation of capacity from each link over which it is routed (Kelly [26]). This
is the case for a traditional circuit-switched telephone network, but the model is also

Stan Zachary
Heriot-Watt University, Edinburgh, UK
e-mail: s.zachary@hw.ac.uk

Ilze Ziedins
University of Auckland, Auckland, New Zealand
e-mail: i.ziedins@auckland.ac.nz

International Series in Operations Research & Management Science 154, 
DOI 10.1007/978-1-4419-6472-4_16, © Springer Science+Business Media, LLC 2011 

701R.J. Boucherie and N.M. van Dijk (eds.), Queueing Networks: A Fundamental Approach, 



702 Stan Zachary and Ilze Ziedins

appropriate to modern computer communications networks which support stream-
ing applications with minimum bandwidth requirements (Kelly et al. [28]). There
are also other examples: for instance, in a cellular mobile network similar capacity
constraints arise from the need to avoid interference (Abdalla and Boucherie [1]).

The mathematics of such networks has been widely studied, with interest in both
equilibrium and, more recently, dynamical behaviour. Of particular importance are
questions of call acceptance and capacity allocation (for example, routing), with the
aim of ensuring good network performance which is additionally robust with respect
to variations in network parameters. Call arrival rates, in particular, may fluctuate
greatly. An excellent review of the state-of-the-art at the time of its publication is
given by Kelly [27]—see also the many papers cited therein, and the later survey by
Ross [39].

We take as our model the following. Let R denote the finite set of possible call,
or customer, types. Calls of each type r ∈ R arrive at the network as a Poisson
process with rate νr, and each such call, if accepted by the network (see below),
remains in it for a holding time which is exponentially distributed with mean µ−1

r .
We shall discuss later the extent to which these assumptions, in particular the latter,
are necessary. Calls which are rejected do not retry and are simply considered lost.
All arrival processes and holding times are independent of one another. We denote
the state of the network at time t by n(t) = (nr(t), r ∈R), where nr(t) is the number
of calls of each type r in progress at that time. The process n(·) is thus Markov. It
takes values in some state space N⊂ZR

+, where R = |R|. We assume N to be defined
by a number of resource constraints

∑
r∈R

A jrnr ≤Cj, j ∈ J, (16.1)

indexed in a finite set J, where the A jr and the Cj are nonnegative integers. Typically
we think of a call of each type r as having a simultaneous requirement, for the dura-
tion of its holding time, for A jr units of the capacity Cj of each resource j; however,
we show below that the resource constraints (16.1) can also arise in other ways. As
noted above, in applications of this model to communications networks, the network
resources usually correspond to the links in the network, and when discussing the
model in that context we shall generally find it convenient to use this terminology.
We shall also find it helpful to define, for each r ∈ R, the parameter κr = νr/µr;
many quantities of interest depend on νr and µr only through their ratio κr.

We shall say that a network is uncontrolled whenever calls are accepted subject
only to the condition that the resulting state of the network belongs to the set N.
Uncontrolled networks are particularly amenable to mathematical analysis and are
in certain senses very well-behaved. In addition, such a network has the important
insensitivity property: the stationary distribution of the process n(·) is unaffected by
the relaxation of the assumption that the call holding time distributions are expo-
nential, and depends on these holding time distributions only through their means.
This is essentially a consequence of the detailed balance property considered in
Section 16.2.1.
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However, as we shall also see, the performance of uncontrolled networks may be
far from optimal. A more general control strategy is given by requiring that a call of
type r, which arrives when the state of the network (immediately prior to its arrival)
is n, is accepted if and only if n ∈Ar for some acceptance set Ar. The sets Ar may
be chosen so as to optimise, in some appropriate sense, the network’s performance.
Such networks do not in general possess the insensitivity property described above.

Of interest in a loss network are both the stationary distribution π and the dynam-
ics of the process n(·). For the former it is usual to compute, for each r, the stationary
blocking probability Br, that a call of type r is rejected; here we shall find it slightly
easier to work with the stationary acceptance (or passing) probability Pr = 1−Br.
We note immediately that, by Little’s Theorem, the stationary expected number of
calls of each type r in the network is given by

Eπ nr = κrPr, (16.2)

where κr is as defined above. Thus acceptance probabilities may be regarded as one
of the key performance measures in the stationary regime.

It will be convenient to refer to the above model of a loss network—in which
arriving calls have fixed resource requirements and in which the only control in the
network is the ability to reject calls—as the canonical model. When considering
communications networks, it is natural to extend this model by allowing also the
possibility of alternative, or state-dependent, routing, in which calls choose their
route according to the current state of the network. Here the state space should
properly be expanded to record the number of calls of each type on each route (but
see below). We consider such models in Section 16.3.2.

In the case where we allow not only alternative routing, but also repacking of
calls already in the network, the model simplifies again, and it is once more only
necessary for the state space to record the number of calls of each type in progress.
Consider the simple example of a communications network consisting of three links
with capacities Ĉ1, Ĉ2, Ĉ3, and three call types, in which calls of each type r = 1,2,3
require either one unit of capacity from the corresponding link r or one unit of
capacity from each of the other two links (in each case the distribution of the call
holding time is assumed to be the same). If repacking is allowed, the state of the
system may be given by n = (n1,n2,n3) as usual, and it is easy to check that a call
of any type may be accepted if and only if the resulting state of the network satisfies
the constraints

nr +nr′ ≤ Ĉr + Ĉr′ , r 6= r′, r,r′ ∈ R.

This is therefore an instance of the uncontrolled network discussed above, in which
the coefficients A jr and Cj must be appropriately defined.

Exact calculations for large loss networks typically exceed the capabilities of
even large computers, and we are thus led to consider approximations. Mathemati-
cal justification for these approximations is usually based on asymptotic results for
one of two limiting schemes. In the first, which we shall refer to as the Kelly limiting
scheme (see Kelly [26]), the sets R, J, the matrix A = (A jr), and the parameters µr
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are held fixed, while the arrival rates νr and the capacities Cj are all allowed to
increase in proportion to a scale parameter N which tends to infinity. In the sec-
ond, which is known as the diverse routing limit (see Whitt [42], and Ziedins and
Kelly [47]), the capacity of each resource is held constant, while the sets R and J

(and correspondingly the size of the matrix A) are allowed to increase, and the arrival
rates for call types requiring capacity at more than one resource to decrease, in such
a way that the total traffic offered to each resource is also held constant (in particu-
lar, this requires that the arrival rate for any call type that requires capacity at more
than one resource becomes negligible in the limit). Results for the latter scheme in
particular are used to justify assumptions of independence in many approximations.

For each time t, define m(t) = (m j(t), j ∈ J), where m j(t) denotes the current
occupancy, or usage, of each resource j in a loss network. Define also π ′ to be the
stationary distribution of the process m(·). In particular, for the canonical model
defined above, for each t,

m j(t) = ∑
r∈R

A jrnr(t); (16.3)

here the process m(·) takes values in the set

M = {m ∈ ZJ
+ : 0≤m j ≤Cj, j ∈ J}, (16.4)

where we write J = |J|, and the distribution π ′ is given by

π ′(m) = ∑
n : An=m

π(n), m ∈M. (16.5)

In general the process m(·) takes values in a space of significantly lower dimension
than that of the process n(·). This is especially so in models of communications
networks which incorporate alternative routing. It is a recurrent theme in the study of
loss networks that, in general, at least approximately optimal control of a network is
obtained by basing admission decisions and, in communications networks, routing
decisions, solely on the state of the process m(·) at the arrival time of each call.
Further, in this case, a knowledge of the distribution π ′ is sufficient to determine call
acceptance probabilities. We shall also see that good estimates of π ′ are generally
given by assuming its (approximate) factorisation as

π ′(m) = ∏
j∈J

π ′j(m j), (16.6)

where each π ′j is normalised to be a probability distribution. This is a further recur-
rent theme in the study of loss networks.

In Section 16.2 we consider the stationary behaviour of uncontrolled networks,
reviewing both exact results and approximations for large networks. Our approach
is based on the use of an elegant recursion due to Kaufman [25] and to Dziong
and Roberts [12] which delivers all the classical results in regard to, for example,
stationary acceptance probabilities, with a certain simplicity.
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More general networks are studied in Section 16.3. In Section 16.3.1 we study
the problem of optimal control in a single-resource network, where a reasonably
tractable analysis of stationary behaviour is again possible, and where we show that
either exactly or approximately optimal control may be obtained with the use of
strategies based on reservation parameters. In Section 16.3.2 we consider multiple-
resource networks, allowing in particular the possibility of alternative routing. We
again derive approximations which are known to work extremely well in practice.
In Section 16.4 we consider the dynamical behaviour of large loss networks. This is
important for the study of the long-run, and hence also the equilibrium, behaviour
of networks in the case where a direct equilibrium analysis is impossible. The study
of network dynamics is also the key to understanding their stability. Finally, in Sec-
tion 16.5 we mention some wider models and discuss some open problems.

16.2 Uncontrolled loss networks: stationary behaviour

We study here the stationary behaviour of the uncontrolled network introduced
above, in which calls of any type are accepted subject only to the condition that the
resulting state n of the network belongs to the state space N defined by the capacity
constraints (16.1). In particular we shall see, in Section 16.2.3 and subsequently,
that most quantities of interest, in particular acceptance probabilities, may be cal-
culated, exactly or approximately, without the need to calculate the full stationary
distribution π of the process n(·).

16.2.1 The stationary distribution

For each r ∈R, let δ r be the vector whose rth component is 1 and whose other com-
ponents are 0. Recall that, under the assumptions introduced above, n(·) is a Markov
process. For n,n− δ r ∈ N and r ∈ R, its transition rates between n and n− δ r are
nrµr and νr. It thus follows that the stationary distribution π of the process n(·) is
given by the solution of the detailed balance equations

π(n)nrµr = π(n−δ r)νr, r ∈ R, n ∈N, (16.1)

where, here and elsewhere, we make the obvious convention that π(n− δ r) = 0
whenever nr = 0. That is,

π(n) = G−1 ∏
r∈R

κnr
r

nr!
, n ∈N, (16.2)

where the normalising constant G−1 is determined by the requirement ∑n∈N π(n) =
1. The simple product form of the stationary distribution (16.2) is a consequence of
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the fact that the equations (16.1) do have a solution, that is, it is a consequence of
the reversibility of the stationary version of the process n(·). Note also that here
the stationary distribution π depends on the parameters νr and µr only through their
ratios κr = νr/µr, r ∈R. This result is not in general true for networks with controls.

In the variation of our model in which calls of each type r have holding times
which are no longer necessarily exponential (but with unchanged mean µ−1

r ), it
is well-known that the stationary distribution π of the process n(·) continues to
satisfy the detailed balance equations (16.1) and hence also (16.2). For proofs of
this insensitivity property, see Burman et al. [8], Pechinkin [36], or Zachary [44].

The stationary probability that a call of type r is accepted, is given by

Pr = ∑
n∈Nr

π(n), (16.3)

where Nr = {n ∈N : n+δ r ∈N}. In Section 16.2.3 we give a recursion which per-
mits a reasonably efficient calculation of the probabilities Pr in networks of small
to moderate size. However, the exact calculation of acceptance probabilities is usu-
ally difficult or impossible in large networks. We shall therefore also discuss various
approximations.

16.2.2 The single resource case

Consider first the case R = {1} of a single call type. For convenience we drop un-
necessary subscripts denoting dependence on r ∈R; in particular we write κ = ν/µ .
We then have N = {n : n≤C} for some positive integer C. The stationary distribu-
tion π is a truncated Poisson distribution, and the stationary acceptance probability P
is given by Erlang’s well-known formula, that is, by P = 1−π(C) = 1−E(κ, C),
where

E(κ, C) =
κC/C!

∑C
n=0 κn/n!

. (16.4)

Note also that, from (16.2), the expected number of calls in progress under the sta-
tionary distribution π is given by κP.

While exact calculation of blocking probabilities via Erlang’s formula (16.4) is
straightforward, it nevertheless provides insight to give approximations for networks
in which C and κ are both large. Formally, we consider the Kelly limiting scheme
in which C and κ are allowed to tend to infinity in proportion to a scale parameter N
with p = C/κ held fixed. The cases p > 1, p = 1 and p < 1 correspond to the
network being, in an obvious sense, underloaded, critically loaded, and overloaded
respectively. A relatively straightforward analysis of (16.4) shows that,

P→ min(1, p) as N→ ∞. (16.5)
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For p ≥ 1 the error in the approximation P ≈ 1 may be estimated by replacing the
truncated Poisson distribution of n by a truncated normal distribution. For p > 1
the error is thus given asymptotically by κ−1/2ϕ(κ−1/2(C− κ)), where ϕ is the
standard normal density function; this decays at least exponentially fast in N. For the
critically loaded case p = 1 the error is given asymptotically by (2/πκ)1/2 which is
O(N−1/2) as N→∞. For the overloaded case p < 1 the approximation P≈ p may be
refined as follows. Observe that in this case, and since κ and C are large, it follows
from either (16.1) or (16.2) that the stationary distribution of free capacity in the
network is approximately geometric and so the stationary expected free capacity is
given by the approximation

C−Eπn≈ p
1− p

. (16.6)

Combining this with (16.2) leads to the very much more refined approximation for
the stationary acceptance probability given by

P≈ p− p
κ(1− p)

. (16.7)

It thus follows that the error in the original approximation P ≈ p is O(N−1) as
N→ ∞.

16.2.3 The Kaufman-Dziong-Roberts (KDR) recursion

For the general model of an uncontrolled network, we now take the set N to be given
by a set of capacity constraints of the form (16.1). We give here an efficient recursion
for the determination of stationary acceptance probabilities, due in the case J = {1}
to Kaufman [25] and in the general case to Dziong and Roberts [12].

Recall that π ′ is the stationary distribution of the process m(·) defined in the
Introduction. Since a call of type r arriving at time t is accepted if and only if
mj(t−)+ A jr ≤ Cj for all j such that A jr ≥ 1 (where m(t−) denotes the state of
the process m(·) immediately prior to the arrival of the call), it follows that a knowl-
edge of π ′ is sufficient to determine stationary acceptance probabilities. Typically
the size J of the set J is smaller than the size R of the set R, and so the dimension
of the space M defined by (16.4) is smaller than that of N. Thus a direct calculation
of π ′, avoiding that of π , is usually much more efficient for determining acceptance
probabilities.

For each r ∈ R, define the vector Ar = (A jr, j ∈ J). For each m ∈M and r ∈ R,
summing the detailed balance equations (16.1) over n such that An = m and using
also (16.5) yields

κrπ ′(m−Ar) = E(nr |m)π ′(m), r ∈ R, m ∈M, (16.8)

where
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E(nr |m) =
∑n : An=m nrπ(n)

∑n : An=m π(n)

is the stationary expected value of nr given An = m. Since, for each m and each j,
we have ∑r∈R A jrE(nr |m) = m j , it follows from (16.8) that

∑
r∈R

A jrκrπ ′(m−Ar) = m jπ ′(m), m ∈M, j ∈ J. (16.9)

This is the Kaufman-Dziong-Roberts (KDR) recursion on the set M, enabling
the direct determination of successive values of π ′(m) as multiples of π ′(0).
The entire distribution π ′ is then determined uniquely by the requirement that
∑m∈M π ′(m) = 1.

16.2.4 Approximations for large networks

We now suppose that κr, r ∈ R, and Cj, j ∈ J, are sufficiently large that the exact
calculation of the stationary distributions π or π ′ is impracticable. Various bounds
for the corresponding stationary acceptance probabilities Pr are given by Whitt [42],
who shows in particular that, in the case where A jr ∈ {0,1} for all j and for all r,

Pr ≥∏
j∈J

(
1−E

(
∑

r∈R
A jrκr, Cj

))A jr

, r ∈ R, (16.10)

where E is the Erlang function (16.4). However, while this bound is intuitively un-
surprising, the right side of (16.10) does not provide a very satisfactory approxima-
tion for each Pr, as it fails to take account of the fact that the total load at each re-
source j is effectively reduced by blocking at the remaining resources. We now seek
good approximations—for general A jr—for both the stationary distributions π or π ′
and the corresponding acceptance probabilities Pr, where in all cases account is at
least implicitly taken of the “reduced load” phenomenon. We discuss the analytical
accuracy of these various approximations. Numerical investigations are performed
in the papers cited below.

A simple approximation

We give first a simple approximation, due to Kelly [26], which generalises the ap-
proximation P≈min(1, p) of Section 16.2.2 for the single-resource case. To provide
asymptotic justification we again consider the Kelly limiting scheme, in which the
parameters κr and Cj are allowed to increase in proportion to a scale parameter N,
the sets R, J and the matrix A being held fixed. We assume (this is largely for sim-
plicity) that the matrix A is such that for each m ∈M there is at least one n ∈Z such
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that An = m. (This implies in particular that the matrix A is of full rank.) We outline
an argument based on the equations (16.8) and the KDR recursion (16.9).

Suppose that π ′(m) is maximised at m∗ ∈M. The distribution (16.2) of π is a
truncation of a product of independent Poisson distributions each of which has a
standard deviation which is O(N1/2) as the scale parameter N increases. From this
and from the mapping of π to π ′, it follows that all but an arbitrarily small fraction
of the distribution of π ′ is concentrated within a region M∗ ⊆M such that the com-
ponents of m ∈M∗ differ from those of m∗ by an amount which is again O(N1/2)
as N increases. Further, it is not too difficult to show from the above condition on
the matrix A that, for each r, E(nr |m) varies smoothly with m, in particular in the
sense that within M∗ we may make the approximation E(nr |m)≈ E(nr |m∗), the
error yet again being O(N1/2) as N increases. It now follows from (16.8) that within
M∗ we have

π ′(m)≈ π ′(m∗)∏
j∈J

p
m∗j−mj

j , (16.11)

where necessarily, since m∗ maximises π ′(m),

0≤ p j ≤ 1, j ∈ J, (16.12)

p j = 1, for j such that m∗j < Cj . (16.13)

Further, from (16.9),

∑
r∈R

A jrκr ∏
k∈J

pAkr
k = m∗j ≤Cj, j ∈ J. (16.14)

Thus, from (16.11), within M∗ the stationary distribution π ′ of m(·) does indeed
have the approximate factorisation (16.6), where each of the component distribu-
tions π ′j is here geometric (and where in the case p j = 1 the geometric distribution
becomes uniform). Further, for each r and each j, we have

π ′j({m j : m j ≤Cj−A jr})≈ p
A jr
j .

Thus the stationary acceptance probabilities Pr are given by the approximation

Pr ≈∏
j∈J

p
A jr
j , r ∈ R. (16.15)

Kelly [26] considered an optimisation problem from which it follows that the equa-
tions (16.12)–(16.14) determine the vectors m∗ and p = (p j, j ∈ J) uniquely. He
further showed, in an approach based on consideration of the stationary distribu-
tion π , that the approximation (16.15) becomes exact as the scale parameter N tends
to infinity.
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A refined approximation

The (multiservice) reduced load or knapsack approximation (Dziong and Roberts [12],
see also Ross [39]) is a more refined approximation than that defined above. It is
given by retaining the approximate factorisation (16.6) of the stationary distribu-
tion π ′ of m(·). However, subject to this assumed factorisation, the estimation of the
component distributions π ′j is refined.

For each j ∈ J and r ∈ R, define

p jr =
Cj−A jr

∑
mj=0

π ′j(m j); (16.16)

note that p jr = 1 if A jr = 0. For fixed j, substitution of (16.6) into the KDR recur-
sion (16.9) and summation over all mk for all k 6= j yields

∑
r∈R

A jr

(
κr ∏

k 6= j

pkr

)
π ′j(m j−A jr) = m jπ ′j(mj), 1≤ mj ≤Cj, j ∈ J (16.17)

(where, as usual, we make the convention π ′j(mj) = 0 for m j < 0). This is the one-
dimensional KDR recursion associated with a single resource constraint j, and is
readily solved to determine π ′j and hence the probabilities p jr, r ∈R, in terms of the
probabilities pkr, r ∈R, for all k 6= j. We are thus led to a set of fixed point equations
in the probabilities p jr, for which the existence—but not always the uniqueness, see
Chung and Ross [10]—of a solution is guaranteed. From (16.6), the probability that
a call of type r is accepted is then given by

Pr = ∏
j∈J

p jr. (16.18)

We remark that the recursion (16.17) corresponds to a modified network in which
there is a single resource constraint j and each arrival rate κr is reduced to κr ∏k 6= j pkr .
This reduced load approximation is of course exact in the case of a single-resource
network.

In the case where each A jr can only take the values 0 or 1 we may set p j = p jr

for r such that A jr = 1. The fixed point equations (16.16) and (16.17) then reduce to

p j = 1−E

(

∑
r∈R

κr ∏
k 6= j

pAkr
k , Cj

)
(16.19)

where E is again the Erlang function (16.4). This case is the well-known Erlang
fixed point approximation (EFPA) and has a unique solution, see Kelly [26], and
also Ross [39]. It yields acceptance probabilities which are known to be asymp-
totically exact in the Kelly limiting scheme discussed above, and also, under ap-
propriate conditions, in the diverse routing limit discussed in the Introduction—see
Whitt [42], and Ziedins and Kelly [47]. The EFPA also has an extension to the case
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of general A jr, which may be regarded as a simplified version of the reduced load
approximation. As with the latter approximation the EFPA may here have multiple
solutions.

16.3 Controlled loss networks: stationary behaviour

We now study the more general version of a loss network, in which calls are subject
to acceptance controls, and the issues are those of achieving optimal performance.

16.3.1 Single resource networks

We consider a simple model which illustrates some ideas of optimal control—in
particular those of robustness of the control strategy with respect to variations in
arrival rates (which may in practice be unknown, or vary over time).

Suppose that R = {1,2} and that as usual calls of each type r arrive at rate νr and
have holding times which are exponentially distributed with mean µ−1

r . Suppose
further that there is a single resource of capacity C and that a call of either type
requires one unit of this capacity, so that the constraints (16.1) here reduce to n1 +
n2 ≤C. We assume that calls of type 1 have greater value per unit time than those
of type 2, so that it is desirable to choose the acceptance regions Ar, r = 1,2, so as
to maximise the linear function

φ(P1,P2) := a1κ1P1 +a2κ2P2, (16.1)

for some a1 > a2 > 0 (where, again as usual, for each call type r, κr = νr/µr and Pr is
the stationary acceptance probability.) An upper bound for the expression in (16.1)
is given by the solution of the linear programming problem, in the variables P1, P2,

maximise φ(P1,P2), subject to Pr ∈ [0,1] for r = 1,2, κ1P1 +κ2P2 ≤C (16.2)

(where the latter constraint follows from (16.2)). It is easy to see that the solution of
this problem is characterised uniquely by the conditions

P1 = P2 = 1, whenever κ1P1 + κ2P2 < C, (16.3)

P2 = 0, whenever P1 < 1. (16.4)

It is clearly not possible to choose the acceptance regions A1, A2 so that the cor-
responding values of P1, P2 solve exactly the problem (16.2). However, we show
below that this solution may be achieved asymptotically as the size of the system is
allowed to increase, and further that there is an asymptotically optimal control that
is both simple and robust with respect to variations in the parameters κ1, κ2.
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We consider first the form of the optimal control in the special case µ1 = µ2.
Here since, at the arrival time t of any call, those calls already within the system
are indistinguishable with respect to type, it is clear that the optimal decision on call
admission is a function only of the arriving call type and of the total volume m(t−)=
n1(t−)+ n2(t−) of calls already in the system. A formal proof is a straightforward
exercise in Markov decision theory. Further, simple coupling arguments show that,
for an incoming call of either type arriving at time t and any 0 < m < C, if it is
advantageous to accept the call when m(t−) = m, then it is also advantageous to
accept the call when m(t−) = m− 1. It follows that the optimal acceptance regions
are of the form

A1 = {n : n1 + n2 < C} (16.5)

A2 = {n : n1 + n2 < C− k} (16.6)

for some reservation parameter k, whose optimal value depends on C, κ1 and κ2.
Consider now the general case where we do not necessarily have µ1 = µ2, and

suppose that C, ν1 and ν2 are large. More formally we again have in mind the Kelly
limiting scheme in which these parameters are allowed to increase in proportion to
some scale parameter N which tends to infinity (while µ1, µ2 are held fixed). We
further suppose that the acceptance regions are again as given by (16.5) and (16.6),
where the reservation parameter k increases slowly with N, i.e. in such a way that

k→ ∞, k/C→ 0, as N→ ∞. (16.7)

It is convenient to let P1, P2 denote the limiting acceptance probabilities. In the
case κ1 + κ2 ≤ C, it is not difficult to see that, since k/C→ 0 as N → ∞, we have
P1 = P2 = 1, so that P1, P2 solve the optimisation problem (16.2). Consider now the
case κ1 +κ2 > C. Here, again since k/C→ 0 as N→ ∞, it follows that, in the limit,
the capacity of the network is fully utilised. Further, if κ1 is sufficiently large that
P1 < 1 (informally, even for large N, calls of type 1 are being rejected in significant
numbers), then the effect of the increasing reservation parameter k is such that, again
in the limit, the network remains sufficiently close to capacity to ensure that no calls
of type 2 are accepted, and hence P2 = 0. It now follows that when κ1 +κ2 > C, the
limiting acceptance probabilities P1, P2 satisfy the conditions (16.3) and (16.4) and
so again solve the optimisation problem (16.2).

The above analysis demonstrates the asymptotic optimality of any strategy based
on the use of a reservation parameter k, provided only that, in the limiting regime, k
increases in accordance with (16.7). In practice, in a large network (here for largeC),
only a small value of k is required in order to achieve optimal performance. We also
observe that the performance of a reservation parameter strategy is indeed robust
with respect to variations in κ1, κ2.

This analysis also extends easily to the case where there are more than two call
types, and also, with a little more difficulty, to that where the capacity constraint is
of the form ∑r∈R Arnr ≤C for general positive integers Ar (see Bean et al. [4]). Here
a different reservation parameter may be used for each call type, and, in the Kelly
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limiting scheme, a complete prioritisation and optimal control are again achieved
asymptotically by allowing the differences between the reservation parameters to
increase slowly.

16.3.2 Multiple resource models

Consider now the general case of the canonical model in which there is a set of
resources J and in which state n of the network is subject to the constraints (16.1).
Suppose that it is again desirable to choose admission controls so as to maximise the
linear function φ(P) := ∑R

r=1 arκrPr of the stationary acceptance probabilities Pr,
for given constants ar, r ∈ R. As in Section 16.3.1, we may consider the linear
programming problem

maximise φ(P), subject to Pr ∈ [0,1] for r ∈ R,
R

∑
r=1

A jrκrPr ≤Cj for j ∈ J,

(16.8)
which provides an upper bound on the achievable values of the objective function φ .
It is easy to see that this value may be asymptotically achieved within the Kelly lim-
iting regime by reserving capacity A jrκrPr at each resource j solely for calls of each
type r, where here P is the solution of the problem (16.8). However this strategy is
neither optimal in networks of finite capacity, nor is it robust with respect to varia-
tions in the parameters κr. At the opposite end of the spectrum from this complete
partitioning policy is that of complete sharing. The latter can lead to unfairness if
there are asymmetric traffic patterns, with the potential for some call types to re-
ceive better service than others. In practice it is expected that good strategies will
be based on the sharing of resources and the use of reservation parameters—as was
shown to be optimal for single resource networks in Section 16.3.1. (One example
of a strategy midway between complete sharing and complete partitioning is virtual
partitioning [35] [45]).

In the case of communications networks it is natural to allow also alternative
routing, as described in the Introduction. An upper bound for the achievable per-
formance is given by supposing that repacking is possible, i.e. that calls in progress
may be rerouted as necessary. In this case, our model for the network reduces to
an instance of the canonical model (as defined in the Introduction) with appropri-
ately redefined set J, matrix A = (A jr) and capacities Cj . The upper bound on φ(P)
given by the linear programming problem (16.8) is then also an upper bound in
the more usual case in which repacking is not allowed. In the latter case practi-
cal control strategies are again based on the use of appropriate reservation parame-
ters, and there is some hope that performance close to the upper bound above may
be achieved in networks with sufficiently large capacities or sufficient diversity of
routing, even without repacking. In applications reservation parameters are gener-
ally used to prioritise different traffic streams. In networks with alternative routing
they also prevent the occurrence of network instabilities, where, for fixed parameter
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values, the network may have two or more relatively stable operating regimes—one
in which most calls are directly routed, and others in which many calls are alterna-
tively routed, with a resulting severe degradation of performance (see Gibbens [16],
Kelly [27]). By giving priority to directly routed traffic, the use of reservation pa-
rameters prevents the network from slipping into an inefficient operating state.

There have been numerous investigations of control strategies for communica-
tions networks that employ either fixed or, particularly, alternative routing. Such
strategies are often studied in the context of fully connected networks. Two of the
most commonly studied are least busy alternative (LBA) routing and dynamic al-
ternative routing (DAR). LBA routing seeks to route calls directly if possible, and
otherwise routes them via that path which minimises the maximum occupancy on
any of its links. Directly routed calls are usually “protected” with some form of
reservation parameter (Kelly [27], Marbukh [33]). Hunt and Laws [23] showed that,
for fully connected networks which permit only two-link alternative routes, LBA
routing is asymptotically optimal in the diverse routing limit (see Section 16.4.5).
This policy is robust to changes in traffic patterns, but has the difficulty that it re-
quires information on the current states of all possible alternative paths before an
alternative routing decision is made.

A much simpler routing scheme is DAR (Gibbens et al. [14], Gibbens and
Kelly [15]). In this scheme, for each pair of nodes, a record is maintained of the
current preferred alternative route, and this is the one that is used if a call cannot be
routed directly. If neither the direct route nor the current preferred alternative route
are available, then the call is rejected, and a new preferred alternative route is chosen
at random from those available. Directly routed traffic is again usually protected by
a reservation parameter. This policy is easy to implement. It does not require infor-
mation about the current state of the system to be held at any node, just a record
of the current preferred alternative route to other nodes. It is also robust to changes
in traffic patterns—alternative routes on which the load increases will be discarded
and replaced by routes on which the load is lower. Neither LBA routing nor DAR
require traffic rates to be known or estimated (except approximately, in order to set
the appropriate level of the reservation parameters).

Acceptance probabilities for controlled loss networks are usually estimated us-
ing a generalised version of the reduced load or knapsack approximation of Sec-
tion 16.2.4. As there, we make the approximation (16.6) for the stationary distribu-
tion π ′ of the resource occupancy process m(·). Each of the marginal distributions π ′j
is estimated as the stationary distribution of a Markov process on {0, . . . ,Cj} which
approximates the behaviour of the resource j considered in isolation. Let p jr be the
probability under this distribution that a call of type r is accepted, subject to the
controls of the model, with p jr = 1 if A jr = 0. In the case of the canonical model, in
which no alternative resource usage is allowed, calls of each type r are assumed to
arrive at resource j at a rate νr ∏k 6= j pkr—this is the “reduced load” for calls of type r
at this resource; further, calls of this type arriving at this resource are subject to the
acceptance controls of the model and, if accepted, depart at rate µr as usual. The
estimated stationary distribution π ′j then determines the acceptance probabilities p jr

at the resource j. Thus we are again led to a set of fixed point equations which
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determine—not always uniquely—the acceptance probabilities p jr for all r ∈R and
j ∈ J. Finally the stationary network acceptance probability Pr for calls of each
type r is again given by Pr = ∏ j∈J p jr.

In the case of a communications network where the canonical model is extended
by allowing the possibility of alternative routing, it is necessary to modify the above
approximation. Suppose, for example, that a link (resource) j forms part of the sec-
ond choice route for calls of type r. Then, in the one-dimensional process associated
with link j, the arrival rate for calls of type r is taken to be the product of the arrival
rate νr at the network, the probability that a call of this type is rejected on its first-
choice route, and (as before) the probabilities that the call can be accepted at each of
the remaining resources on the alternative route (see e.g. Gibbens and Kelly [15]).

The basis of the reduced load approximation is the approximate factorisation
of the distribution π ′ above. In the case of controlled networks, this approximation
fails to become exact under the Kelly limiting regime in which capacities and arrival
rates increase in proportion. It may, however, be expected to hold under sufficiently
diverse routing. It is known to be remarkably accurate in most applications.

16.4 Dynamical behaviour and stability

We now consider the dynamical behaviour of large networks. As well as such be-
haviour being of interest in its own right—for example in networks in which input
rates change suddenly, fixed points of network dynamics correspond to equilibrium,
or quasi-equilibrium, states of the network (see below). The identification of such
points is often the key to understanding long-term behaviour, in particular to resolv-
ing stability questions and determining stationary distributions where (as is usual)
the latter may not be directly calculated. However, we note that it is characteristic of
loss networks that, from any initial state, equilibrium is effectively achieved within
a very few call holding times, so that transient performance is of less significance
than is the case for networks which permit queueing.

16.4.1 Fluid limits for large capacity networks

We describe a theory first suggested by Kelly [27]. We yet again assume the Kelly
limiting scheme described in the Introduction, in which the network topology is
held fixed and arrival rates and capacities are allowed to increase in proportion.
More explicitly, we consider a sequence of networks satisfying our usual Markov
assumptions (though this is not strictly necessary) and indexed by a scale parame-
ter N. All members of the sequence are identical in respect of the (finite) sets R, J,
the matrix A = (A jr, j ∈ J, r ∈ R), and the departure rates µr, r ∈ R. For the Nth
member of the sequence, calls of each type r arrive at rate Nνr for some vector of
parameters ν , and the capacity of each resource j is NCj for some vector of param-
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eters C, where, for simplicity, we take each Cj to be integer-valued. As always, it is
convenient to define κr = νr/µr for each r ∈ R.

We now describe the rules whereby calls are accepted. For each N, let nN(t) =
(nN

r (t), r ∈ R), where nN
r (t) is the number of calls of type r in progress at time t.

Define also the free capacity process m̄N(·) = (m̄N
j (·), j ∈ J) where each m̄N

j (t) =

NCj −∑r∈R A jrnN
r (t) is the free capacity of resource j at time t. A call of type r

arriving at time t is accepted if and only if the free capacity m̄N(t−) of the system,
immediately prior to its arrival, belongs to some acceptance region Ār ⊂ ZJ

+. We
take the acceptance regions Ār, r ∈R, to be independent of N, although, in a refine-
ment of the theory, some dependence may be allowed. Note that, in a change from
our earlier conventions, the acceptance regions Ār are defined in terms of the free
capacity of each system.

While the above description defines instances of the canonical model of the Intro-
duction, more sophisticated controls, such as those involving the use of alternative
routing in communications networks, may be modelled by the suitable redefinition
of input streams and acceptance sets (see Hunt and Kurtz [22]).

For each N, define the normalised process xN(·) = nN(·)/N, which takes values
in the space

X = {x ∈RR
+ : ∑

r∈R
A jrxr ≤Cj for all j ∈ J}. (16.1)

Assume that, as N → ∞, the initial state xN(0) converges in distribution to some
x(0) ∈ X , which, for simplicity, we take to be deterministic. Then we might ex-
pect that the process xN(·) should similarly converge in distribution to a fluid limit
process x(·) taking values in the space X , with dynamics given by

xr(t) = xr(0)+

ˆ t

0
(νrP̃r(u)− µrxr(u))du, r ∈ R, (16.2)

where, for each t, P̃r(t) corresponds to the limiting rate at which calls of each type r
are being accepted at time t.

A rigorous convergence result is given by Hunt and Kurtz [22]. A somewhat tech-
nical condition (always likely to be satisfied in applications) is required on the ac-
ceptance sets Ār. However, the main difficulty is that in some, usually rather patho-
logical, cases the limiting acceptance rates P̃r(t) may fail to be unique.

In many cases, though, it is possible to show that, for each r, there does exist a
unique function Pr on X such that, for each t, we have P̃r(t) = Pr(x(t)). In general,
the trajectories of the limit process x(·) are then deterministic functions of their
initial positions x(0). The fixed points x̂ of the limit process x(·) are given by the
solutions of

νrPr(x̂) = µrx̂r, r ∈R. (16.3)

In the case of a single fixed point x̂, to which all trajectories of x(·) converge, it may
be shown that the stationary distribution of the original normalised process xN(·)
converges to that concentrated on the single point x̂ (see Bean et al. [5]). Then in
particular, for each r, Pr(x̂) is the limiting stationary acceptance probability for calls
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of type r. In the case of multiple fixed points, those which are locally stable corre-
spond to “quasi-stationary” distributions of the process xN(·), i.e. regimes which are
maintained over periods of time which are lengthy but finite.

16.4.2 Single resource networks

As the simplest non-trivial application of the above theory, we consider the case
J = 1 of a single resource, for which equilibrium behaviour was described in Sec-
tion 16.3.1. It is again convenient to write Ar for A1r for each r, and similarly C
for C1. The technical condition referred to above on the acceptance sets Ār ⊆ Z+,
here reduces to the requirement that, for each r, either m̄ ∈ Ār for all sufficiently
large m̄ ∈Z+ (we let R∗ denote the set of such r) or m̄ /∈ Ār for all sufficiently large
m̄ ∈ Z+.

Here the functions Pr defined above always exist (see Hunt and Kurtz [22]). To
identify them, define, for each x ∈ X , the Markov process m̄x(·) on Z+ with transi-
tion rates given by

m̄→
{

m̄−Ar at rate νrI{m̄∈Ār}
m̄+ Ar at rate µrxr,

(16.4)

Let πx be the stationary distribution of this process where it exists. Define X̄ ⊆ X by

X̄ = {x ∈ X : ∑
r∈R

Arxr = C and πx exists}. (16.5)

(The set X̄ may be thought of as consisting of those points in X for which the limiting
dynamics are “blocking”.) Then, for x ∈ X̄ , we have Pr(x) = πx(Ār) for all r; for
x∈ X \ X̄, we have Pr(x) = 1 for r ∈R∗ and Pr(x) = 0 for r /∈R∗. The fixed points x̂
of the limiting dynamics (in general there may be more than one such) are then
given by the solutions of (16.3).

Consider now the case of reservation-type controls, and suppose that the call
types are arranged in order of decreasing priority. The acceptance regions are thus
given by Ār = {m̄ : m̄ ≥ kr + Ar} for some 0 = k1 ≤ k2 ≤ ·· · ≤ kR and we have
R∗ = R. It is easy to see that, in the light traffic case given by ∑r∈R Arκr ≤ C, the
single fixed point x̂ of the limiting dynamics is given by x̂r = κr for all r, and that
all trajectories of these dynamics converge to x̂. In the heavy traffic case given by
∑r∈R Arκr > C, define X̂ ⊆ X by

X̂ = {x ∈ X : ∑
r∈R

Arxr = C and xr < κr for all r ∈ R}.

Then it is straightforward to show that X̂ ⊆ X̄ and that all fixed points of the limiting
dynamics lie within X̂ (see Bean et al. [4]). In the case where Ar = 1 for all r, it is
also straightforward to show that there is a unique fixed point. It is unclear whether
it is possible, for more general Ar, to have more than one fixed point.
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Now define r0 ≥ 0 to be the maximum value of r ∈ R such that ∑r≤r0
Arκr ≤C.

Suppose that the reservation parameters k1, . . . ,kr are allowed to increase. Further
consideration of the processes πx shows that, in the limit (formally as these reser-
vation parameters tend to infinity), the fixed point x̂ is necessarily unique and is
such that Pr(x̂) = 1 for all r ≤ r0, with, in the heavy traffic case, 0 ≤ Pr0+1(x̂)≤ 1
and Pr(x̂) = 0 for all r ≥ r0 + 2. Since the stationary distributions associated with
our sequence of networks converge to that concentrated on the unique fixed point x̂,
it follows that the reservation strategy does indeed approximate, and in the limit
achieve, the complete prioritisation of call types discussed in Section 16.3.1. As
mentioned there, and as easily verified from the above analysis, quite small values
of the reservation parameters k1, . . . ,kr are sufficient to achieve a very good approx-
imation to this prioritisation.

Even in the present single-resource case it is possible to achieve nonuniqueness
of the fixed points of the limit process x(·) by the use of more general, and suffi-
ciently perverse, controls, in particular with the use of acceptance sets of the form
Ār = {m̄ : Ar ≤ m̄ ≤ kr + Ar} for some kr ≥ 0 (see Bean et al. [5]). Thus we may
construct networks which have several (very different) regimes which are quasi-
stationary in the sense discussed above.

16.4.3 Multi-resource networks: the uncontrolled case

We now consider multi-resource networks, and again study the behaviour of the
fluid limit process x(·) associated with the Kelly limiting scheme. Here in general
a rich variety of behaviour is possible. However, in the case of the uncontrolled
networks of Section 16.2, in which calls of all types are accepted subject only to the
availability of sufficient capacity, the process x(·) is rather well-behaved. Note that
here, in terms of the available free capacity, the acceptance sets are given by, for
each r ∈R,

Ār = {m̄ : m̄ j ≥ A jr for all j}. (16.6)

Recall also that X is as given by (16.1). Define the (real-valued) concave function
f on X by

f (x) = ∑
r∈R

(xr logνr− xr log µrxr + xr) (16.7)

and let x̂ be the value of x which maximises f (x) in X . Kelly [26] shows that, as N→
∞, the stationary distribution of the process xN(·) converges to that concentrated on
the single point x̂. (Indeed this is the basis of his original derivation of the limiting
acceptance probabilities considered in Section 16.2.4.)

Assume for the moment the unique existence of the functions Pr on X introduced
above. Then, for the fluid limit process x(·), it follows from (16.2) and (16.7) that
d f (x(t))/dt = g(x(t)) where the function g on X is given by



16 Loss Networks 719

g(x) = ∑
r∈R

∂ f (x)

∂ xr

(
νrPr(x)−µrxr

)

= ∑
r∈R

(
logνr− logµrxr

)(
νrPr(x)− µrxr

)
.

Analogously to the preceding section, for each x ∈ X , the limiting acceptance
probabilities Pr(x) are given by consideration of the stationary distribution of a
“free capacity” Markov process whose transition rates depend on x. Some simple
analysis of the equilibrium equations which define this stationary distribution (see
Zachary [43]) now shows that g(x) ≥ 0 for all x ∈ X with equality if and only if
x = x̂.

Thus the dynamics of the limit process x(·) are such that, away from the point x̂,
the function f (x(·)) is always strictly increasing. It thus acts as a Lyapunov function,
ensuring that all trajectories of the process x(·) converge to the single fixed point x̂.
Indeed a rigorous application of the fluid limit theory of Hunt and Kurtz [22] (again
see Zachary [43], for details) shows this result continues to hold even if the func-
tions Pr on X are not uniquely defined (whether this can ever happen in the case of
uncontrolled networks remains an open problem). The result therefore establishes
an important stability property of uncontrolled networks, and guarantees that the
stationary distribution describes the typical behaviour of the network.

16.4.4 Multi-resource networks: the general case

For general multi-resource networks, the fluid limit process x(·) associated with the
Kelly limiting scheme may fail to be unique, and may in particular exhibit multiple
fixed points. We describe in some detail an elementary example, which is a simpli-
fication of one due to Hunt [21]. Suppose that R = 3, J = 2, and that the matrix A is
given by

A =

(
1 0 1
0 1 1

)
.

Thus in particular calls of types 1 and 2 each require capacity from a single resource,
while calls of type 3 require capacity from both resources in the network. Suppose
further that the (free capacity) acceptance sets are given by, for some k1,k2 ≥ 1,

Ā1 = {m̄ : 1≤ m̄1≤ k1}, Ā2 = {m̄ : 1≤ m̄2≤ k2}, Ā3 = {m̄ : m̄1≥ 1, m̄2≥ 1}.

(As Hunt remarks, this is not entirely unrealistic: in more complex networks, op-
erating under some form of alternative routing, certain resources may have calls of
certain types routed over them precisely when the network is in general very busy.)
Finally suppose that µr = 1 for all r and that the vectors ν and C defined in Sec-
tion 16.4.1 (each to be scaled by N for the Nth member of the sequence of networks)
are given by ν = (ν1,ν2,ν3) and C = (C,C).
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The process x(·) takes values in the space X = {x ∈R3
+ : x1 + x3 ≤C, x2 + x3 ≤

C}. Its dynamics may be determined through the fluid limit theory outlined above.
For x ∈ X0 := {x ∈ X : x1 + x3 < C, x2 + x3 < C} (corresponding to limit points
of the dynamics well away from the capacity constraints) the limiting acceptance
probabilities are well-defined and given by

P1(x) = P2(x) = 0, P3(x) = 1. (16.8)

For x∈ X1 := {x∈X : x1 +x3 =C, x2 +x3 <C} and for x∈X2 := {x∈X : x1 +x3 <
C, x2 + x3 = C} (corresponding in both cases to limit points of the dynamics such
that only one capacity constraint is relevant) the limiting acceptance probabilities
are again well-defined and given by consideration of a Markov process on Z+ as in
the single resource case considered in Section 16.4.2. (For x ∈ X1, for example, it
follows from the definition of Ā2 that the transition rates of this Markov process are
as if ν2 = 0.) For x ∈ X12 := {x ∈ X : x1 + x3 = C, x2 + x3 = C} it is necessary to
consider also a “free capacity” Markov process on Z2

+.
In the case ν3 ≤ C, these Markov processes all fail to possess stationary distri-

butions and the limiting acceptance probabilities are given by (16.8) for all x ∈ X .
Thus the limit process x(·) is as if ν1 = ν2 = 0 and all trajectories of this process
are deterministic functions of their initial values and tend to the single fixed point
x̂ = (0,0,ν3).

The case ν3 > C is more interesting. Here it is readily verified that the limit pro-
cess x(·) possesses no fixed points in X0. Within X1 consideration of the stationary
distribution of the Markov process defined in Section 16.4.2 shows that there is a
single fixed point x(1) = (a1,0,C−a1) for some a1 which is independent of ν2. Sim-
ilarly within X2 there is a single fixed point x(2) = (0,a2,C−a2) for some a2 which
is independent of ν1. However, within X12 the dynamics of the limit process x(·) are
not deterministic. It is further not difficult to show that all trajectories of x(·) which
avoid the set X12 tend deterministically to one of the two fixed points x(1), x(2) above
(depending on whether the set X1 or the set X2 is hit first). Those trajectories of x(·)
which do hit X12 may, in an appropriate probabilistic sense, tend to either x(1) or
x(2).

The interpretation of the above behaviour is the following. Suppose that N is large
and that, for example, resource 1 fills to capacity first. Then this resource remains
full and in general blocks sufficient of the type 3 calls to ensure that resource 2
remains only partially utilised, with few or no calls of type 2 being accepted. This
corresponds to a “quasi-stationary” state whose limit, as N→ ∞, is concentrated on
the fixed point x(1). Alternatively, if resource 2 fills to capacity first, the network
settles, for an extended period of time, to a quasi-stationary state whose limit is
concentrated on the fixed point x(2). While, for finite N, transitions between these
two quasi-stationary states will eventually occur, the time taken to do so can be
shown to increase exponentially in N.

We illustrate this with an example. Let C = 500, ν1 = ν2 = 200, ν3 = 600, µ1 =
µ2 = µ3 = 1, with k1 = k2 = 4. The fixed points under the Kelly limiting regime
are given by x(1) = (125,0,375) and x(2) = (0,125,375), provided k1,k2 are scaled
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appropriately. Figure 16.1 plots m̄2, the free capacity on link 2 against m̄1, the free
capacity on link 1 for two simulated sample paths of this process, both initially
started at n1 = n2 = n3 = 0. The free capacity on both links decreases rapidly as
initially only 2-link calls are accepted into the network. Once the threshold at which
1-link calls are accepted is reached, the sample paths then typically move rapidly
towards one or other of the quasi-stationary modes. In Figure 16.1 the two sample
paths illustrate both of these behaviours. Note that it is apparent that in this example
the modes do not coincide with the fixed points of the limiting regime – here k1 and
k2 are not sufficiently large to permit that. However, taking larger k1 and k2 (here
k1 = k2 = 10 appears to be sufficient), will ensure that the modes of the two quasi-
stationary distributions coincide approximately with the two fixed points x(1) and
x(2). Figure 16.2 is a similar plot for two sample paths, but for a rescaled version
of the system, with C = 1000, ν1 = ν2 = 400, ν3 = 1200, µ1 = µ2 = µ3 = 1, and
k1 = k2 = 8. The fixed points under the Kelly limiting regime are then given by
x(1) = (250,0,750) and x(2) = (0,250,750), and we see that the quasi-stationary
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Fig. 16.1: m̄2 vs. m̄1 plotted for two simulated sample paths when C = 500, ν1 =
ν2 = 200, ν3 = 600, µi = 1, i = 1,2,3 and k1 = k2 = 4, ni(0) = 0, i = 1,2,3. The
simulations have been run for 10 time units.
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distributions are now more nearly centred about these. With a further scaling to
C = 1500 (not shown here) the Kelly limiting regime fixed points give a very good
fit to the modes of the quasi-stationary distributions.

The behaviour in the above example is typical of that which may occur in more
general networks—in particular those using alternative routing strategies—which
are poorly controlled. Fluid limits may be used to study behaviour in networks with
high capacities and correspondingly high arrival rates, and to choose values of, for
example, reservation parameters so as to ensure that the network does not spend
extended periods of time in states in which it is operating inefficiently. A realistic
example here is the fully-connected network with alternative routing considered in
Section 16.3.2. Gibbens and Kelly [15] and Gibbens et al. [16] give examples of
the accuracy of this approximation, both with and without trunk reservation con-
trols, primarily for overloaded networks (where DAR would actually be in use).
In their examples the approximation performs worst when no controls are in place
(Gibbens and Kelly [15] cite an example of a network with 10% overload, where
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Fig. 16.2: m̄2 vs. m̄1 plotted for two simulated sample paths when C = 1000, ν1 =
ν2 = 400, ν3 = 1200, µi = 1, i = 1,2,3 and k1 = k2 = 8, ni(0) = 0, i = 1,2,3. The
simulations have been run for 10 time units.
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the approximation has an error of less than 10%, based on simulation results), and
correspondingly better as the trunk reservation control is increased.

As noted above, fluid limits may also be used to study equilibrium behaviour,
especially in the case where all trajectories of the limit process x(·) tend to a unique
fixed point x̂. In particular we may show that, for the Kelly limiting regime consid-
ered here, the limiting stationary distribution of the free capacity processes m̄N(·) in
general only has a product form in the case of uncontrolled networks. This product-
form assumption is the basis of the commonly used approximations considered in
Section 16.3.2. Its justification owes more to the results for the diverse routing limit
also considered there and in Section 16.4.5.

16.4.5 The diverse routing limit

In this section we consider the fluid limit obtained under the diverse routing regime
discussed in the Introduction. Although a high degree of symmetry is required in or-
der to obtain formal limits, the results obtained lend support to the commonly made
assumptions of independence of resource blocking which are used, for example, in
the construction of the approximations discussed in Section 3.2.

As outlined earlier, the diverse routing regime holds when the numbers of re-
sources and possible “routes” in the network increase, while the total capacity and
arrival rate at each resource remains constant. For this limit to exist we require a
high degree of symmetry in the network. There are two canonical examples (with
variants) that have been extensively studied. We describe both here using the termi-
nology of communications networks.

The first is the so-called star network (see, for instance, Whitt [42], Ziedins and
Kelly [47], Hunt [20]). Here there are K links, each with capacity C. The scale
parameter of the regime is then taken to be K. Assume that calls of any size r ≥ 1
require unit capacity at each of r resources and have holding times with unit mean.
Then in a symmetric network there are

(K
r

)
possible choices of the set of links for

such a call. Let the arrival rate for each such choice be νK
r = νr/

(K−1
r−1

)
, so that the

total arrival rate at each resource for calls of size r is exactly νr. For example, we
may assume that the K links are distributed around a central hub, through which
all communications must pass. Many variants of this model are possible—multiple
call sizes can coexist in the network, as can multiple capacities, provided only that
the proportion of links with any given capacity remains constant as K increases. The
network is assumed to have fixed routing and the only permissible controls are those
on admission.

Let xK(t) = (xK
j (t), j ∈ J) where xK

j (t) is the proportion of links in which j
units of capacity are in use at time t. For the network without admission controls,
Whitt [42] showed that, given the weak convergence of the initial points xK(0) to
x(0), the process xK(·) converges weakly to a deterministic limit process x(·), which
satisfies a set of first-order differential equations with a unique fixed point x̂, such
that x(t)→ x̂ as t → ∞ for all initial x(0). The limit x̂ coincides exactly with that
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given by the Erlang fixed point approximation. Recall that the latter is obtained from
the assumption that the stationary free capacity distributions on the various links of
the network are independent of each other. For the case where all calls are of size
two, Hunt [20] obtained a functional central limit theorem for the process xK(·),
with the limit an Ornstein-Uhlenbeck diffusion process (as previously conjectured
by Whitt), which was then extended to more general sizes and initial conditions by
Graham and Meleard [18]. In the case of networks with admission controls very
little has been proved. MacPhee and Ziedins [32] studied such networks and gave
a weak convergence result for the process xK(·). However, there remain many open
questions about the behaviour of this process.

The second canonical example of the diverse routing regime is that of the fully
connected network with alternative routing (Hunt and Laws [23]). Here both admis-
sion and routing controls are possible. The network has N nodes; between each pair
of these there is a link with capacity C, so that the total number of links is K =

(N
2

)
.

Here again K is the scale parameter. Calls arrive at each link at rate ν; each call has
a unit capacity requirement and holding time of mean 1. There are three possible
actions on the arrival of a call: (i) accept the call at that link, (ii) select a pair of links
that form an alternative route between that pair of nodes and route the call along
this, or (iii) reject the call. Hunt and Laws showed that an asymptotically optimal
policy, in the sense of minimising the average number of lost calls in equilibrium, is
to route a call directly if possible and otherwise to route it via an alternative route,
provided that the remaining free capacity on each link of the alternative route is at
least some reservation parameter k, where the optimal choice of k is determined by
the parameters K and ν . The optimal choice of alternative route is given by choosing
that which is least busy, i.e. which maximises the minimum of the free capacities
on the two links. The analysis of Hunt and Laws largely dispenses with the graph
structure inherent in the choice of alternative routes, an assumption justified by anal-
ogy with earlier results of Crametz and Hunt [11] in relation to the simpler model
without reservation – see also Graham and Meleard [17], who show a propagation
of chaos result for this system.

As in the example of the star network, of interest here is the process xK(·), defined
as earlier. Hunt and Laws showed weak convergence of this process to a determinis-
tic limit process. They showed that this limit process satisfies differential equations
which yield the constraints for a linear programming problem, the solution to which
gives an upper bound on the acceptance probabilities. (These constraints correspond
to the detailed balance equations that in equilibrium govern the changes in occu-
pancy of a single link.) They further showed that their policy achieves this upper
bound.

16.5 Further developments and open questions

Our discussion has of necessity omitted many topics of interest, some of which we
mention briefly here, as well as discussing some remaining open questions.
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One such topic is the application of large deviations techniques to loss networks
in order to estimate, for example, blocking probabilities in cases where it is impor-
tant to keep these very small. For an excellent introduction to this see, for instance,
Shwartz and Weiss [40]; later papers include those by Simonian et al. [41] and by
Graham and O’Connell [19].

Another important topic is that of diffusion approximations, which appear briefly
in Gibbens et al. [16], were mentioned in Section 16.4.5 and have been studied by
others, including Puhalskii and Reiman [37] and Knessl and Morrison [29]. Much
work has also been done on refinements of approximations adapted to particular
situations, computational techniques for loss networks (see e.g. Louth et al. [30]
and Choudhury et al. [9]), and bounds on blocking probabilities (Boucherie and van
Dijk [6] is a recent example of the latter).

In some models of communications networks, particularly those whose graph
structure is tree-like, the network topology may be such as to lend itself to more
accurate calculations of acceptance probabilities, involving recursions that do not
make the link independence assumption (16.6) that is such an essential feature of
the approximations presented above (see Zachary and Ziedins [46]).

We have not directly addressed here the solution of the numerous optimization
problems associated with loss networks, including network design and capacity re-
quirements and the use of pricing mechanisms for control.

Extensions of loss network models include recent work by Antunes et al. [3]
which studies a variant of the model where customers may obtain service sequen-
tially at a number of resources, each of which is a loss system. The aim here is
to model a cellular wireless system where a call in progress may move from base
station to base station. Several authors have also considered explicitly systems with
time-varying arrival rates and/or retries (see, for example, Jennings and Massey [24],
Massey and Whitt [34] and Abdalla and Boucherie [1]).

A large number of interesting and important open problems remain. The ap-
proach to most of these seems to lie in a better understanding of network dynamics.
There has been no systematic investigation of how to achieve asymptotically opti-
mal control in a general network (for example in the sense of Section 16.3.2), using
controls which are simple, decentralised, and robust with respect to variations in net-
work parameters, although, for communications networks, there is a belief that this
will usually combine some form of alternative routing with the use of reservation
parameters to guarantee stability.

A further major problem is that of the identification of instability, where the
state of a network may remain over extended periods of time in each of a num-
ber of “quasi-equilibrium” distributions, some of which may correspond to highly
inefficient performance. Instability is further closely linked to problems of phase
transition in the probabilistic models of statistical physics, and to the study of how
phenomena such as congestion propagate through a network. At present such results
as exist are mostly for very regular network topologies (see, for instance, Ramanan
et al. [38] and Luen et al. [31])—but see also Antunes et al. [2, 3] for examples of
such behaviour in heterogeneous communications networks.
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Questions related to those above concern the identification of fluid limits, and in
particular the problem of the uniqueness of their trajectories given initial conditions.
It is notable that the uniqueness question has not yet been resolved even in the case
of a general uncontrolled loss network, although it is known that here all trajectories
do tend to the same fixed point, thus guaranteeing network stability. Further, while
fixed points of fluid limits identify quasi-equilibrium states of a network, detailed
behaviour within such states, and the estimation of the time taken to pass between
them, requires a more delicate analysis based on the study of diffusion limits. Here
relatively little work has been done (see Fricker et al. [13]).

Finally we mention that loss networks may be seen as a subclass of a more gen-
eral class of stochastic models, with state space ZR

+ for some R and fairly regular
transition rates between neighbouring states. Notably their analysis has much in
common with that of processor-sharing networks in which calls again have a simul-
taneous resource requirement (see the chapter on processor-sharing networks in the
present volume). A unified treatment is still awaited.
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Chapter 17

A Queueing Analysis of Data Networks

Thomas Bonald and Alexandre Proutière

Abstract In packet-switched networks, resources are typically shared by a dynamic
set of data flows. This dynamic resource sharing can be represented by a queue-
ing network with state-dependent service rates. For a specific resource allocation
we refer to as balanced fairness, the corresponding queueing network is a Whittle
network and has an explicit stationary distribution. We give some key properties
satisfied by balanced fairness and compare the resulting throughput performance to
those obtained under the max-min fair and proportional fair allocations.

17.1 Introduction

Since Erlang’s work on telephone networks at the beginning of the 20th century,
queueing theory and communication networking have enjoyed a remarkable degree

problems for queueing theorists; the developed theory has in turn proved very useful
for the optimization of communication networks.

While the focus has long been on circuit-switched networks, the success of Eth-
ernet technology and the subsequent rapid spread of the Internet have raised new
issues specific to packet-switched networks. This is best illustrated by the decentral-
ized nature of the associated control mechanisms. For instance, the throughput of
each data flow is regulated by the congestion control algorithms of the transmission
control protocol, TCP, implemented by the end hosts. Despite considerable research
efforts, it remains unclear how these control mechanisms allocate the resources of
such a large system as the Internet.
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The most fruitful approach in that respect was proposed by Kelly (see references
in Section 17.13). It consists in representing each data flow as a fluid stream whose
rate tends to the solution of a certain optimization problem, under the assumption
that the set of active flows is constant. This assumption is reasonable provided the
convergence rate of congestion control algorithms to equilibrium is much faster than
the frequency of changes in the set of active flows. A question of interest concerns
the fairness properties of the allocation at equilibrium. While max-min fairness has
long been stated as an ideal objective, it turns out that current congestion control
algorithms realize an allocation that is closer to proportional fairness where those
flows that consume more resources tend to receive a lower bit rate.

The network dynamics that result from the evolution of the set of active flows
can be studied for various allocations like max-min fairness and proportional fair-
ness. These provide useful abstractions of the way packet-level control mechanisms
allocate resources. A first issue is that of network stability: given the traffic inten-
sity, does the number of active flows reach a finite steady state? The absence of
admission control indeed leads a packet-switched network to congestion collapse
in case of overload. In circuit-switched networks, on the other hand, the number of
calls is naturally bounded. Another key issue concerns the throughput performance
when the network is stable: what is the mean time required to transfer a document in
steady state? Again, this question is irrelevant for circuit-switched networks where
users experience quality of service through call blocking only. In packet-switched
networks, the answer provides guidelines on how resources should be provisioned
and allocated.

We shall see that queueing theory is instrumental in addressing these issues.
Specifically, throughput performance can be evaluated for an allocation we refer to
as balanced fairness, defined in such a way that the corresponding queueing network
is a so-called Whittle network. Results provide a very good approximation of those
obtained with proportional fairness. The considered fluid models of packet-switched
networks under balanced fairness may in fact be considered as the analogue of stan-
dard models of circuit-switched networks such as the Erlang model. Both share the
property that the stationary distribution of the network state is independent of all
traffic characteristics beyond the traffic intensity. This insensitivity property is very
useful in practice since it allows the development of simple engineering rules that do
not require the knowledge of fine traffic statistics. It basically explains the enduring
success of the Erlang formula, published in 1917 and still used to dimension today’s
telephone networks.

17.2 Capacity region

Consider a network that consists of L resources. Each resource may represent the
capacity of a wireline link, the frequency band or transmission power of a wireless
link, for instance. We denote by Cl the amount of resource l. A random set of data
flows compete for access to these resources. Specifically, we consider an arbitrary
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number of N flow classes such that all flows within the same class require the same
resources. There are xi class-i flows and we refer to the corresponding line vector
x as the network state. Each class-i flow requires an amount of resource l equal to
Ail units per bit/s. If resource l represents the frequency band of a wireless link for
instance, then each class-i flow requires Ail Hz per bit/s. The xi class-i flows share
evenly a total bit rate of φi bit/s. We denote by φ the corresponding line vector. The
allocation must satisfy the component-wise inequality:

φA≤C. (17.1)

We refer to the set of vectors φ that satisfy this inequality as the capacity region.
This is a convex polytope. In the following, we give a number of examples that
illustrate the rich class of wireline and wireless networks covered by such linear
capacity constraints.

Wireline networks

Consider a network that consists of L wireline links. The capacity of link l is Cl
bit/s. Let Ail = 1 if class-i flows go through link l and Ail = 0 otherwise. Figures
17.1 and 17.2 show simple examples of such networks with their capacity region,
respectively given by:

{
φ1 +φ3 ≤ 1,
φ2 +φ3 ≤ 1,

and
{

φ1 +φ2 + φ3 ≤ 2,
φ1 ≤ 1, φ2 ≤ 1, φ3 ≤ 1.

3

1 2

3

2

1

Fig. 17.1: A linear network and its capacity region.

Note that we do not specify the direction of the links. In Figure 17.1 for instance,
the directions of both links may be either identical or opposite. In the former case,
all classes represent usual point-to-point flows with a single source and a single
destination. In the latter case, class 3 may represent point-to-multipoint flows with
a single source, located between the two links, and two destinations.
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1

2

3

3

21

Fig. 17.2: A tree network and its capacity region.

Traffic splitting

The above model describes a network where each flow has a predetermined path in
the network, possibly with several destinations. More complex routing schemes may
be represented by linear capacity constraints. Assume for instance that the traffic
generated by each class can be split over a predetermined set of paths. The capacity
region is still a convex polytope, as illustrated by Figure 17.3 for N = 3 classes,
where class-2 traffic is split over two paths. If the link used by class-3 flows has
capacity 1 and the other two links have capacity 1/2, we get the capacity constraints:

φ1 ≤ 1/2, φ1 +φ2 ≤ 1, φ2 +φ3 ≤ 1.

Note that the second capacity constraint may be viewed as a virtual link of capacity
2 used by class-1 and class-2 flows.

2

3

1

3

2

1

Fig. 17.3: A wireline network with traffic splitting and its capacity region.



17 A Queueing Analysis of Data Networks 733

Wireless networks

Modeling wireless networks is generally more difficult due to the joint frequency
band and power allocation involved in the transmission. Consider the simple case of
a wireless access point that transmits data to each active mobile one at a time, us-
ing the whole frequency band and the full power. Such a time-division multiplexing
scheme is used for the downlink channel of standard third-generation cellular net-
works. Due to the short time-slot duration (typically less than 2 ms), the throughput
of each mobile in fact depends mainly on the fraction of slots it receives, and not on
the precise slot scheduling. In this setting, the capacity constraints of the system are
also linear.

For instance, assume that a set of N modulation and coding schemes can be used
by the mobiles depending on their radio conditions. We here assume that the radio
conditions experienced by each mobile do not change during the data transfer so that
each flow is transferred with a constant modulation and coding scheme. We refer to
class-i flows as those flows that use the modulation and coding scheme i. Such flows
have the bit rate ci when served, so that φi/ci is the fraction of time the access point
serves a class-i flow. The capacity constraint is then given by:

φ1

c1
+

φ2

c2
+ . . .+

φN

cN
≤ 1,

as illustrated by Figure 17.4 for N = 3 modulation and coding schemes. The capacity
region is a hyperplane.

1 2 3
21

3

Fig. 17.4: A time-shared wireless access point and its capacity region.

Figure 17.5 shows the impact of the additional constraint of a wireline link of c
bit/s, namely:

φ1 +φ2 + . . .+φN ≤ c.

More generally, the whole wireline backhaul network may be represented by ac-
counting for the corresponding capacity constraints.

In the presence of several access points, the capacity region is typically non-
convex due to interference. Consider the example of Figure 17.6 with three wireless
access points. There are N = 3 flow classes, one per access point. For simplicity,
we assume that all mobiles are co-located and thus experience the same radio con-
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1 2 3 1 2

3

Fig. 17.5: A wireless access point with wireline backhaul and its capacity region.

ditions. We denote by Pi the power received by all mobiles from access point i, for
i = 1,2,3. This received power cannot exceed a fixed value P. Let W be the avail-
able bandwidth and Nt be the thermal noise power. We use the Shannon formula as
the bit rate function of the signal-to-interference-plus-noise ratio, which yields the
following capacity region:

φi ≤W log2

(
1 +

Pi

Nt +∑ j 6=i Pj

)
, Pi ≤ P, i = 1,2,3.

1 3
2

3

2

1

Fig. 17.6: A network of three interferring wireless access points and its capacity
region.

As illustrated by Figure 17.6 for a signal-to-noise ratio P/Nt = 1.5, the capacity
region is not convex. This is because the access points transmit simultaneously with
a constant power. If the access points were transmitting at full power one at a time,
which would require some form of coordination, interference would be cancelled
and the capacity region would be the convex hull of that of Figure 17.6. Non-convex
capacity regions raise specific issues, as discussed in Section 17.12.



17 A Queueing Analysis of Data Networks 735

Ad-hoc networks

Now consider a wireless network where mobiles cooperate in the sense that each
mobile may relay the packets destined for another mobile. Figure 17.7 gives an
example of such an ad-hoc network with 11 mobiles and N = 3 routes.

1

2

3

3

21

Fig. 17.7: An ad-hoc network and its capacity region.

We assume for simplicity that mobiles are static. Packets have a common fixed
size and transmissions are synchronized. A mobile cannot send and receive at the
same time. The transmission of a packet is successful if and only if the receiver
lies in the transmission region of the sender and not in the transmission region of
another transmitting mobile. We refer to any set of sender-receiver pairs that can
be simultaneously active as a transmission profile, as illustrated by Figure 17.7 for
three such pairs. Again, the transmission profiles are assumed to be scheduled at
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a sufficiently high frequency so that the allocation depends only on the fraction of
time each transmission profile is used. The capacity region is then given by the
convex hull of those rates obtained with a particular scheduling of the transmission
profiles. For the network of Figure 17.7 for instance, the capacity constraints reduce
to:

2φ1 + 2φ2 + 3φ3 ≤ 1, 3φ1 +φ2 + 2φ3 ≤ 1, φ1 + 3φ2 + 2φ3 ≤ 1.

Note that, in practice, this capacity region is achieved by coordinating the trans-
mission of the 11 mobiles. This may be realized by decentralized control algorithms
provided some signaling information, not considered here, is exchanged by mobiles.

Flow rate limits

In addition to the global capacity constraints (17.1), flows may have individual rate
constraints due for instance to the speed of the user’s access line in wireline net-
works or the power constraint of the mobile in wireless networks. We denote by
ai > 0 the rate constraint of class-i flows in bit/s. We let ai = ∞ if class-i flows
do not have any individual rate constraint. Thus the total bit rate of class-i flows
cannot exceed xiai in the presence of xi class-i flows. Using vectorial notation, the
allocation φ must satisfy the additional component-wise inequality:

φ ≤ xa, (17.2)

where xa denotes the N-dimensional vector whose i-th component is equal to xiai.
Note that these rate constraints depend on the network state x and thus cannot be
written in the form of some additional global capacity constraints (17.1). A single
wireline link shared by N = 2 classes, with a1 < a2, is shown in Figure 17.8.

2

1

Fig. 17.8: A multirate system.
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17.3 Traffic characteristics

We are interested in the steady-state behavior of the network state x(t) that describes
the number of ongoing flows of each class at time t. This depends both on the re-
source allocation and on traffic characteristics like the flow arrival process and the
flow size distribution of each class. We assume that the vector φ of allocated bit rate
depends on the network state x only and satisfies the capacity constraints (17.1) and
(17.2) in all states. Max-min fairness, proportional fairness and balanced fairness
correspond to specific allocation functions φ(x), described in Section 17.7.

Markovian setting

Consider the simple case where class-i flows arrive as a Poisson process of intensity
λi and have i.i.d. sizes with exponential distribution of mean σi bits. The network
state x(t) then evolves as a Markov process. Specifically, let ei be the unit vector
with 1 in component i and 0 elsewhere. The transition rate from state x to state x+ei

is equal to λi. Since the total bit rate of class-i flows is φi(x) in state x, the transition
rate from state x to state x− ei is equal to φi(x)/σi for all states x such that xi > 0.
Provided φi(x) > 0 for all states such that xi > 0, which we assume in the following,
the Markov process x(t) is irreducible on NN .

Flow size distribution

The flow size distribution is typically not exponential but rather heavy-tailed in data
networks. Informally stated, most flows consist of a few packets but most traffic is
contained in a few large flows. We shall consider Cox distributions in the follow-
ing, also known as phase-type distributions, that form a dense subset of the set of
all distributions with non-negative support. This allows us to retain the Markovian
description of the network state, but on a larger state space that includes the phases
of the data transfers.

Session structure

Similarly, flows do not arrive as a Poisson process in practice. They are typically
generated within sessions, each session being composed of a succession of flows
separated by intervals of inactivity referred to as “think-times”. For instance, the
second flow of a session starts once the first flow of the session is completed, after a
think-time of random duration. The number of flows per session, the flow sizes and
the think-time durations within each session have arbitrary distributions and may be
correlated. Sessions, on the other hand, are mutually independent and are typically
generated as a Poisson process. Again, we shall consider Cox distributions in the
following so that the network state will still be described by a Markov process,
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but on a larger state space that includes all types of session and the phases of the
corresponding flows and think-times.

17.4 Stability issues

A question of primary interest concerns the stability of the stochastic process x(t)
describing the evolution of the network state. We here do not make any specific
assumption on traffic characteristics beyond stationarity and ergodicity.

Necessary condition

Let ρi be the traffic intensity of class-i flows in bit/s. This is the product of the
arrival rate λi and the mean size σi of class-i flows. Clearly, a necessary condition
for the network state x(t) to reach a finite stationary regime is that the vector ρ of
traffic intensities lies in the capacity region, that is if the following component-wise
inequality is satisfied:

ρA≤C. (17.1)

Property 17.4.1 The above inequality is a necessary condition for stability.

Proof. Assume that inequality (17.1) is violated. There exists a resource l such that:

∑
i

ρiAil > Cl . (17.2)

If l were the only resource, the system would correspond to a single server-queue
with service capacity Cl , arrival rate λ = ∑i λi and mean service requirement:

κ = ∑
i

λi

λ
σiAil .

The load λ κ of this queue is larger than 1 in view of (17.2). The queue is unstable
and, since the capacity constraints (17.1) include that of resource l, so is the original
system.

Sufficient condition

It turns out that for usual allocations like max-min fairness, proportional fairness and
balanced fairness, the necessary condition (17.1) is also sufficient, up to the critical
case where the vector ρ lies on the boundary of the capacity region. Thus in the
rest of the chapter, we assume that the following component-wise strict inequality
is satisfied:

ρA < C. (17.3)
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For max-min fairness and proportional fairness, the proof of stability is quite tech-
nical and requires some restrictive assumptions on the traffic characteristics. For
balanced fairness, it is straightforward (cf. Proposition 17.7.1 below) and, in view
of the insensitivity results derived in Section 17.8, valid for all traffic characteristics
described in the previous section.

17.5 Flow throughput

We now assume that the network state x(t) is stationary and ergodic and introduce a
throughput measure, referred to as the flow throughput, that can be derived from its
stationary distribution π . The flow throughput reflects the quality of data transfers
as experienced by users in steady state in the following two senses.

Mean flow duration

The first definition is related to the mean flow duration. Specifically, the flow
throughput is defined as the ratio of the mean flow size to the mean flow duration.
We refer to the inverse of the flow throughput, namely the ratio of the mean flow
duration to the mean flow size, as the per-bit delay (in s/bit). Let τi be the per-bit
delay of class-i flows. Since the mean size of class-i flows is σi, the mean duration
of class-i flows is equal to σiτi by definition. Denote by x̄i the average number of
class-i flows in steady state. By Little’s law, we have:

x̄i = λi×σiτi = ρiτi. (17.1)

We deduce the flow throughput of class i:

γi =
1
τi

=
ρi

x̄i
. (17.2)

Mean instantaneous rate

The second definition corresponds to the mean instantaneous rate as experienced
by users. Since the total bit rate allocated to class-i flows is evenly shared by these
flows, the bit rate of a class-i flow is equal to φi(x)/xi in any state x such that xi >
0. Now the steady state probability that a class-i flow sees the network in state
x is proportional to xiπ(x) and therefore equal to xiπ(x)/x̄i. We deduce the flow
throughput of class i:

γi = ∑
x:xi>0

xiπ(x)
x̄i
× φi(x)

xi
=

1
x̄i

∑
x:xi>0

π(x)φi(x).
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Expression (17.2) then follows from the traffic conservation equation:

ρi = ∑
x:xi>0

π(x)φi(x),

which is a consequence of the ergodicity of the process x(t).

Other throughput metrics

Clearly, a number of other performance metrics could be used to assess the quality of
the data transfers. In the presence of per-flow rate constraints for instance, a quantity
of interest is the probability that the instantaneous bit rate of some flow is less than
its rate limit. A recursive algorithm to evaluate this probability is given in Section
17.9 in the case of a single wireline link.

17.6 Queueing analysis

Evaluating the flow throughput requires the derivation of the stationary distribution
π . We first consider the Markovian setting described in Section 17.3 where flows
of each class arrive as a Poisson process and have i.i.d. sizes with exponential dis-
tribution. The sensitivity of the results to these traffic assumptions depends on the
allocation and will be discussed in Sections 17.7 and 17.8.

A queueing network

In the considered Markovian setting, the system may be viewed as a network of N
parallel queues with state-dependent service rates. Specifically, class-i flows may be
represented as customers that arrive at queue i as a Poisson process of intensity λi,
have i.i.d. service requirements with exponential distribution of mean σi and leave
the network once served. The traffic intensity at queue i is ρi = λiσi (in bit/s). The
number of customers present at queue i is xi. The service rate φi of queue i, which
corresponds to the bit rate allocated to class-i flows, depends on the network state x.
This is illustrated in Figure 17.9 for N = 2 classes. Note that the vector of service
rates φ is constrained by the capacity region (17.1) in all states x. Since the total bit
rate allocated to each class is assumed to be evenly shared by the flows of this class,
the service discipline of each queue is processor sharing.

Balance property

It turns out that the analysis of such a queueing network is intractable unless the
service rates satisfy the following balance property:
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Fig. 17.9: A wireline network, its capacity region and the corresponding queueing
network.

∀i, j, ∀x, φi(x)φ j(x− ei) = φ j(x)φi(x− e j), (17.1)

where we use the convention that φ(x) = 0 if x 6∈NN . Note that the balance property
is equivalent to the reversibility of the Markov process x(t), whose transition rates
are given in Section 17.3. We refer to the corresponding queueing network as a
Whittle network (cf. the appendix).

Stationary distribution

In view of the balance property (17.1), one can define a positive function Φ by
Φ(0) = 1 and:

∀x 6= 0, Φ(x) =
1

φi1(x)φi2 (x− ei1) . . .φin(ein)
, (17.2)

where x,x− ei1,x− ei1 − ei2 , . . . ,ein ,0 denotes any direct path from state x to state
0. Conversely, the existence of such a function implies the balance property (17.1).
Now let π be the positive measure on NN defined (up to a multiplicative constant)
by:

∀x, π(x) = π(0)Φ(x)ρx, (17.3)

where we use the notation:
ρx ≡∏

i
ρxi

i .

The measure π satisfies the detailed balance equations associated with the Markov
process x(t):
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∀x, π(x)φi(x)σ−1
i = π(x− ei)λi,

where we use the convention that φi(x) = 0 if xi = 0 and π(x) = 0 if x 6∈ NN . Thus
x(t) is indeed reversible, of invariant measure π . It is ergodic under the stability
condition:

∑
x

Φ(x)ρx < ∞, (17.4)

in which case π is, after normalization, the stationary distribution of the network
state.

17.7 Resource allocation

The balance property (17.1) is key to evaluating the stationary distribution of the
network state and thus the flow throughput: if the resource allocation satisfies that
property, there is a closed-form expression for the stationary distribution, which is
insensitive to all traffic characterics beyond the traffic intensity (this is shown in the
next section using the insensitivity property of Whittle networks); if the resource
allocation does not satisfy the balance property, there is no closed-form expression
for the stationary distribution, which is sensitive to all traffic characteristics (the
corresponding queueing network is not a Whittle network).

Max-min fairness

The principle of max-min fairness is to allocate network resources as equally as
possible without wasting resources. Max-min fairness is uniquely defined by the
following water-filling procedure:

1. start from a bit rate equal to zero for all flows;
2. increase the bit rate of all flows at the same speed until the bit rate of some flows

is constrained by the capacity region or by their rate limit; freeze the bit rate of
these flows;

3. apply step 2 repeatedly to non-frozen flows until the bit rate of all flows is con-
strained by the capacity region or by their rate limit.

For the linear network of Figure 17.1 for instance, with equal link capacities and the
same number of flows on each route, all flows have the same bit rate.

Max-min fairness does not satisfy the balance property (17.1) except if the ca-
pacity constraints (17.1) reduce to a single resource l and if all flows have the same
resource requirement in the sense that Ail = A jl for all i, j. In the presence of addi-
tional per-flow constraints (17.2), all flows must also have the same rate limit.
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Proportional fairness

Proportional fairness is based on the notion of utility. Specifically, assume the utility
of a user for any data transfer is equal to the logarithm of his/her instantaneous bit
rate. Proportional fairness is then defined as the unique allocation that maximizes
the overall utility under the capacity constraints:

∀x 6= 0, φ(x) = arg max
ϕ :ϕA≤C,ϕ≤xa

∑
i:xi>0

xi log

(
ϕi

xi

)
.

Coming back to the linear network of Figure 17.1 with equal link capacities and
the same number of flows on each route, the bit rate of class-3 flows is half that of
class-1 flows and class-2 flows: these flows that consume more resources receive a
lower bit rate.

Proportional fairness does not satisfy the balance property in general. For linear
networks like that of Figure 17.1, proportional fairness is balanced if and only if
all links have the same capacity. For tree networks like that of Figure 17.2, propor-
tional fairness coincides with max-min fairness and is not balanced. Like max-min
fairness, proportional fairness is not balanced in the presence of additional per-flow
constraints (17.2), except if the network reduces to a single resource and all flows
have the same resource requirement and the same rate limit.

Balanced fairness

There is a unique allocation that satisfies the balance property and lies on the
boundary of the capacity region. This allocation, that coincides with max-min
fairness and proportional fairness in the particular cases where these alloca-
tions satisfy the balance property, is referred to as balanced fairness.

In view of (17.2), balanced fairness is uniquely defined by the corresponding bal-
ance function Φ as follows:

∀x 6= 0, φi(x) =
Φ(x− ei)

Φ(x)
,

with the convention that Φ(x) = 0 if x 6∈ NN . In view of the capacity constraints
(17.1), the balance function must satisfy the inequalities:

∀l, Φ(x) ≥ 1
Cl

∑
i

AilΦ(x− ei).

If the vector φ(x) lies on the boundary of the capacity set in all states x 6= 0, one
of these inequalities must be an equality. We deduce that the balance function Φ is
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recursively defined by Φ(0) = 1 and:

∀x 6= 0, Φ(x) = max
l

1
Cl

∑
i

AilΦ(x− ei). (17.1)

In the presence of per-flow rate limits (17.2), the balance function must satisfy
the additional inequalities:

∀i : xi > 0, Φ(x)≥ 1
xiai

Φ(x− ei).

The recursion becomes in this case:

Φ(x) = max

{
max

l

1
Cl

∑
i

AilΦ(x− ei), max
i:xi>0

1
xiai

Φ(x− ei)

}
. (17.2)

In both cases, the stationary distribution of the network state is given by (17.3)
under the stability condition (17.4). As mentionned in Section 17.4, this stability
condition is in fact satisfied under the usual traffic conditions (17.3):

Property 17.7.1 For balanced fairness, the network is stable if ρA < C.

Proof. Using (17.2), it may be easily verified by induction on |x| ≡ ∑i xi that Φ is
the smallest balance function that satisfies the capacity constraints in the sense that
Φ(x)≤ Φ̃(x) for all states x for any function Φ̃ such that Φ̃(0) = 1 and for all x 6= 0:

∀l, ∑
i

Ail
Φ̃(x− ei)

Φ̃(x)
≤Cl, ∀i : xi > 0,

Φ̃(x− ei)

Φ̃(x)
≤ xiai.

If ρA <C, there is some vector ρ̃ which is component-wise strictly larger than ρ
such that ρ̃A < C. In the absence of per-flow rate constraints, let Φ̃ be the positive
function defined by:

Φ̃(x) = ∏
i

1
ρ̃xi

i
.

We have Φ̃(0) = 1 and it follows from the inequality ρ̃A < C that the capacity
constraints are satisfied. We deduce that Φ(x)≤ Φ̃(x) for all states x. In particular,

∑
x

Φ(x)ρx ≤∑
x

Φ̃(x)ρx = ∑
x

∏
i

(
ρi

ρ̃i

)xi

< ∞.

The stability condition (17.4) is satisfied.
In the presence of per-flow rate constraints, the proof is similar with the balance

function Φ̃ defined as:
Φ̃(x) = ∏

i
ϕi(xi),

where for each class i and all positive integers n,
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ϕi(n) =
1

n!an
i

if nai ≤ ρ̃i, ϕi(n) =
ϕi(n− 1)

ρ̃i
otherwise.

We have Φ̃(0) = 1 and it may be easily verified that the capacity constraints are
satisfied. The proof then follows from the fact that:

∑
x

Φ(x)ρx ≤∑
x

Φ̃(x)ρx = ∑
x

∏
i

ϕi(xi)ρxi
i < ∞.

17.8 Insensitivity results

In this and the following two sections, we focus on balanced fairness, for which
analytical results can be derived. The throughput performance of max-min fairness
and proportional fairness is compared to that of balanced fairness for various net-
works in Section 17.11. We here show that the stationary distribution of the network
state under balanced fairness is independent of all traffic characteristics described in
Section 17.3 beyond the traffic intensity.

Flow size distribution

We first assume that flows of each class arrive as a Poisson process and show that the
stationary distribution (17.3) is insensitive to the flow size distribution1. We prove
in addition that the flow throughput is independent of the flow size.

Consider the simple case of a Cox distribution that consists of a mixture of two
exponential distributions. Specifically, class-i flows start with an exponential phase
of mean σi,1 bits, which is followed by an exponential phase of mean σi,2 bits with
probability pi. The mean size of class-i flows is σi = σi,1 + piσi,2. We denote by
ρi,1 = λiσi,1 the traffic intensity corresponding to the first phase, by ρi,2 = λi piσi,2

the traffic intensity corresponding to the second phase. The total traffic intensity of
class i is ρi = ρi,1 +ρi,2.

Let y = (y1,y2) where y1 and y2 are the vectors whose i-th component yi,1 and yi,2

gives the number of class-i flows in phases 1 and 2, respectively. Since the total bit
rate allocated to class-i flows is evenly shared by these flows, the bit rate allocated
to class-i flows in phases 1 and 2 is respectively given by:

φi,1(y) = φi(y1 + y2)
yi,1

yi,1 + yi,2
and φi,2(y) = φi(y1 + y2)

yi,2

yi,1 + yi,2

in all states y such that yi,1 + yi,2 > 0. The corresponding balance property (17.1) is
satisfied, so that the associated queueing network is a Whittle network (refer to the
appendix). The balance function is:

1 Recall that we restrict the analysis to Cox distributions. We refer the reader to [25] for the exten-
sion of this result to any distribution with finite mean.
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y 7→Φ(y1 + y2)∏
i

(
yi,1 + yi,2

yi,1

)
.

We deduce the stationary distribution of the number of flows of each class:

∀x 6= 0, π(x) = π(0) ∑
y:y1+y2=x

Φ(y1 + y2)∏
i

(
yi,1 + yi,2

yi,1

)
ρyi,1

i,1 ρyi,2
i,2

= π(0)Φ(x)ρx,

which coincides with (17.3). Thus the stationary distribution of the number of flows
of each class is insensitive to the chosen Cox distribution. We have the following
additional insensitivity result.

Property 17.8.1 For any class i, the flow throughput is the same for both phases of
the flow and equal to γi.

Proof. Let γi,1 and γi,2 be the flow throughput corresponding to phases 1 and 2 of
class-i flows, respectively. Denoting by ȳi,1 and ȳi,2 the mean number of class-i flows
in phases 1 and 2, respectively, we have in view of (17.2):

γi,1 =
ρi,1

ȳi,1
and γi,2 =

ρi,2

ȳi,2
.

The mean number of class-i flows in phase 1 is given by:

ȳi,1 = π(0) ∑
y:yi,1>0

yi,1Φ(y1 + y2)∏
j

(
y j,1 + y j,2

y j,1

)
ρy j,1

j,1 ρyj,2
j,2 ,

= π(0) ∑
y:yi,1>0

(yi,1 + yi,2)ρi,1Φ(y1 + y2)

(
yi,1 + yi,2− 1

yi,1−1

)
ρyi,1−1

i,1 ρyi,2
i,2

×∏
j 6=i

(
y j,1 + y j,2

y j,1

)
ρy j,1

j,1 ρy j,2
j,2 ,

from which we deduce:

ȳi,1

ρi,1
=

ȳi,2

ρi,2
= π(0)∑

y
(yi,1 + yi,2 + 1)Φ(y1 + y2 + ei)∏

j

(
y j,1 + y j,2

y j,1

)
ρy j,1

j,1 ρy j,2
j,2 .

The proof then follows from (17.2) and the equalities x̄i = ȳi,1 + ȳi,2 and ρi = ρi,1 +
ρi,2.

Decomposing the flow size distribution into an arbitrary number of phases, we
deduce similarly that the stationary distribution does not depend on the chosen Cox
distribution and that all phases have the same flow throughput. Considering the lim-
iting case where each phase is infinitely small, we conclude that the flow throughput
of a class-i flow is equal to γi independently of its size. Equivalently, the mean per-
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bit delay of a class-i flow is equal to 1/γi independently of the considered bit in this
data flow.

Sessions

We now assume that flows have i.i.d. sizes with exponential distribution but are
generated within sessions. We first consider the simple case of two-flow sessions.
Sessions of class-i flows arrive as a Poisson process of intensity λi, start with a flow
of exponential size of mean σi,1 bits, which is followed by a flow of exponential size
of mean σi,2 bits after a think-time of exponential duration. We let σi,1 + σi,2 = σi

so that the total traffic intensity generated by class-i flows is still equal to ρi.
It may again be easily verified that the associated queueing network is a Whittle

network, where think-times are represented by infinite-server queues. The stationary
distribution of the number of flows of each class is given by (17.3) under the stability
condition (17.4). It is insensitive to the choice of σi,1 and σi,2 (provided σi,1 +σi,2 =
σi) and to the mean think-time durations. It may also be shown as in Proposition
17.8.1 that the flow throughput is the same for the first flow and the second flow of
the session.

These results extend to sessions with an arbitrary number of flows and Cox dis-
tributions for the flow sizes and the think-time durations. One may in fact represent
virtually any traffic characteristics by considering as many types of sessions as nec-
essary. The sizes and durations of successive flows and think-times within the same
session may be correlated (e.g., each small flow is followed by a short think-time
and the session ends with a large flow). The stationary distribution of the number of
flows of each class is still given by (17.3) under the stability condition (17.4). More-
over, the flow throughput of a class-i flow is equal to γi independently of its size, the
type of session it belongs to and its position in the session (e.g., first, second or last
flow of the session). Equivalently, the mean per-bit delay of a class-i flow is equal
to 1/γi independently of the considered bit within the flow and the considered flow
within the session.

17.9 A single link

This section is devoted to the practically interesting case of a single link of capacity
C bit/s. Flows have different rate limits and share the link capacity according to bal-
anced fairness. In view of the above insensitivity results, we can restrict the analysis
to the Markovian setting described in Section 17.3 where flows of each class arrive
as a Poisson process and have i.i.d. sizes with exponential distribution.
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No flow rate limit

We start with the simple case where flows do not have any individual rate limit.
The model then corresponds to an M/M/1 queue of load ρ/C, where ρ denotes the
traffic intensity in bit/s. The steady state distribution is:

π(x) = π(0)
(ρ

C

)x
.

We have:
x̄ =

ρ
C−ρ

so that, in view of (17.2),
γ = C−ρ . (17.1)

Thus the flow throughput is equal to the residual capacity, defined as the difference
between link capacity and traffic intensity. This result may in fact be deduced from
the following simple argument. Each flow gets all capacity not used by other flows.
By ergodicity, the throughput of a flow of infinite size is equal to C−ρ (since the
capacity used by other flows is equal to the traffic intensity). The result (17.1) then
follows from the fact that the mean throughput of a flow is independent of its size
(cf. Section 17.8).

A common flow rate limit

Now assume that flows have a common rate limit a = C/m for some positive integer
m. The model then corresponds to an M/M/m queue of load ρ/C. The steady state
distribution is:

π(x) = π(0)
ρx

x!ax if x≤ m, π(x) = π(m)
(ρ

C

)x−m
if x > m.

As mentioned in Section 17.2, an interesting throughput performance metric is the
steady state probability that flows do not get their rate limit, a. This is the probability
S that the link is saturated, related to the Erlang C formula, which can be evaluated
by means of the following simple recursive algorithm. Denote by p(·) = π(·)/π(0)
the unnormalized invariant measure. We have:

S =
p̄

1 + p(1)+ . . .+ p(m)+ p̄

with
p̄ = ∑

x>m
p(x).

The recursive algorithm is given by:

p(0) = 1, p(x) =
ρ
xa

p(x−1) for x = 1, . . . ,m,
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and
p̄ =

ρ
C−ρ

p(m).

The flow throughput is related to the probability of saturation through the simple
expression:

γ = a
1−ρ

1−ρ +S
.

Multiple rate limits

Finally, consider the general case where class-i flows have the rate limit ai > 0. In
view of (17.2), the balance function is defined by:

Φ(x) = ∏
i

1
xi!a

xi
i

if x.a≤C,

and

Φ(x) =
1
C ∑

i
Φ(x− ei) if x.a > C.

We deduce from (17.3) the stationary distribution of the number of flows of each
class:

π(x) = π(0)∏
i

1
xi!

(
ρi

ai

)xi

if x.a≤C, (17.2)

and

π(x) =
1
C ∑

i
ρiπ(x− ei) if x.a > C. (17.3)

Probability of saturation

Assuming the link capacity and the flow rate limits are integers, the steady state
probability S that the link is saturated can again be derived through a simple recur-
sive algorithm. Let:

∀n ∈ N, p(n) = ∑
x:x.a=n

π(x)
π(0)

.

Note that:
S =

p̄
1 + p(1)+ . . .+ p(C)+ p̄

.

with
p̄ = ∑

n>C

p(n).

We denote by θ = ∑i ρi the overall traffic intensity.

Property 17.9.1 We have:
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p(0) = 1, p(n) = ∑
i

ρi

n
p(n−ai) for n = 1, . . . ,C,

with the convention that p(n) = 0 if n < 0, and

p̄ = ∑
i

ρi p̄i

C−θ
with p̄i = ∑

n:C−ai<n≤C
p(n).

Proof. The first part of the recursion follows from (17.2). We indeed have for all
n = 1, . . . ,C:

p(n) = ∑
x:x.a=n

x.a
n

π(x)
π(0)

= ∑
x:x.a=n

∑
i:xi>0

ρi

n
1

(xi− 1)!

(
ρi

ai

)xi−1

∏
j 6=i

1
x j!

(
ρ j

a j

)xj

= ∑
i

ρi

n ∑
x:(x+ei).a=n

π(x)
π(0)

= ∑
i

ρi

n
p(n− ai).

Now using (17.3) we get:

p̄ = ∑
x:x.a>C

π(x)
π(0)

= ∑
x:x.a>C

1
C ∑

i
ρi

π(x− ei)

π(0)

= ∑
i

ρi

C ∑
x:(x+ei).a>C

π(x)
π(0)

= ∑
i

ρi

C
(p̄ + p̄i).

from which the second part of the recursion easily follows.

Flow throughput

The flow throughput can be obtained by means of another recursive algorithm. De-
fine for each class i:

∀n ∈N, qi(n) = ∑
x:x.a=n

xi
π(x)
π(0)

.

In view of (17.2), the flow throughput of class i is given by:

γi = ρi
1 + p(1)+ . . .+ p(m)+ p̄

1+ qi(1)+ . . .+ qi(m)+ q̄i
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with
q̄i = ∑

n>C
qi(n).

Property 17.9.2 We have:

qi(0) = 0, qi(n) =
ρi

n
p(n−ai)+∑

j

ρ j

n
qi(n−a j) for n = 1, . . . ,C,

with the convention that qi(n) = 0 if n < 0, and

q̄i = ρi
p̄i + p̄
C−ρ

+∑
j

ρ jq̄i j

C−ρ
with q̄i j = ∑

n:C−a j<n≤C

qi(n).

Proof. The proof is similar to that of Proposition 17.9.1. We have for all n =
1, . . . ,C:

qi(n) = ∑
x:x.a=n

xi
x.a
n

π(x)
π(0)

= ∑
x:x.a=n

xi ∑
j:x j>0

ρ j

n
1

(x j−1)!

(
ρ j

a j

)x j−1

∏
k 6= j

1
xk!

(
ρk

ak

)xk

= ∑
j

ρ j

n ∑
x:(x+ej ).a=n

xi
π(x)
π(0)

=
ρi

n
p(n−ai)+∑

j

ρ j

n
qi(n−a j).

The second part of the recursion follows from (17.3):

q̄i = ∑
x:x.a>C

xi
π(x)
π(0)

= ∑
x:x.a>C

xi

C ∑
j

ρ j
π(x− e j)

π(0)

= ∑
j

ρ j

C ∑
x:(x+ej).a>C

xi
π(x)
π(0)

=
ρi

C
(p̄i + p̄)+∑

j

ρ j

C
(q̄i + q̄i j).

17.10 Performance bounds

We now provide explicit bounds on the flow throughput that prove useful for the per-
formance evaluation of networks with several resources. For convenience, we focus
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on the per-bit delay τi of class i, which is defined as the inverse of the flow through-
put γi of class i. We first assume that the capacity constraints reduce to (17.1). The
impact of individual rate limits is described at the end of the section. We shall prove
that, under balanced fairness,

max
l

Ail

Cl−θl
≤ τi ≤max

l

Ail

Cl
+∑

l

θl

Cl

Ail

Cl−θl
, (17.1)

where θ denotes the line vector ρA.

Flows with a single capacity constraint

Before proving the inequalities (17.1), we consider the case where class-i flows are
constrained by resource l only, in the sense that Air = 0 for all r 6= l. The bounds
then coincide and we have:

τi =
Ail

Cl−θl
. (17.2)

We give a direct proof of this result, which will be useful for the proof of (17.1). We
need the following preliminary result:

Property 17.10.1 Assume class-i flows are constrained by resource l only. Then
resource l is saturated in any state x such that xi > 0, that is

Φ(x) =
1
Cl

∑
j

A jlΦ(x− e j). (17.3)

Proof. The proof is by induction on the total number of flows n≡ |x|. The property
holds for n = 1 since, in view of (17.1),

Φ(ei) =
Ail

Cl
.

Now assume the property holds for n = m, for some m≥ 1. Let x be any state such
that xi > 0 and n = m+ 1. By the induction hypothesis, we have for any resource r:

∑
j

A jl

Cl
Φ(x− e j)≥∑

j,k

A jl

Cl

Akr

Cr
Φ(x− e j− ek) = ∑

k

Akr

Cr
Φ(x− ek).

Since the inequality holds for all r, it follows from (17.1) that:

Φ(x) = ∑
j

A jl

Cl
Φ(x− e j).

In view of (17.3), we get for all states x such that xi > 0:
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π(x) = ∑
j

A jl

Cl
ρ jπ(x− e j),

with the convention π(x) = 0 if x 6∈NN . Thus,

x̄i = ∑
x

xiπ(x)

= ∑
j

A jl

Cl
ρ j ∑

x
xiπ(x− e j),

= ∑
j 6=i

A jl

Cl
ρ j ∑

x
xiπ(x− e j)+

Ail

Cl
ρi ∑

x
(xi−1)π(x− ei)+

Ail

Cl
ρi ∑

x
π(x− ei),

= ∑
j 6=i

A jl

Cl
ρ j x̄i +

Ail

Cl
ρix̄i +

Ail

Cl
ρi,

=
θl

Cl
x̄i +

Ail

Cl
ρi.

Expression (17.2) then follows from (17.1).

Lower bound

The proof of the lower bound (17.1) is similar to the proof of (17.2). Replacing
(17.3) by the following inequality, valid for all resources l in view of (17.1):

Φ(x) ≤ 1
Cl

∑
j

A jlΦ(x− e j),

we obtain:

τi ≥
Ail

Cl−θl
.

Upper bound

To prove the upper bound, we add L + 1 “virtual” classes. Virtual class 0 has the
same capacity constraint as class i and for all l = 1, . . . ,L, virtual class l uses re-
source l only and has the same requirement for this resource as class i. The origi-
nal allocation vector φ and the new allocation vector φ̃ associated with the virtual
classes must satisfy the component-wise inequality:

φA + φ̃ Ã≤C,

where by definition of the virtual classes, Ã0l = Ail and Ãkl = 1k=lAil for all
k, l = 1, . . . ,L. We denote by x̃ the new network state associated with the virtual
classes. The original network state is still denoted by x. The new balance function
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Φ̃ associated with balanced fairness is recursively defined by Φ̃(0) = 1 and:

Φ̃(x, x̃) = max
l

{
Ail

Cl
Φ̃(x, x̃− e0)+

Ail

Cl
Φ̃(x, x̃− el)+∑

j

A jl

Cl
Φ̃(x− e j, x̃)

}
, (17.4)

with the convention Φ̃(x, x̃) = 0 if x 6∈ NN or x̃ 6∈NL+1.
We have the following key result:

Property 17.10.2 For any state x ∈ NN,

Φ̃(x,e0)+ (∑
l

Ail

Cl
)Φ̃(x,0)≤ (max

l

Ail

Cl
)Φ̃(x,0)+∑

l

Φ̃(x,el).

Proof. In view of Proposition 17.10.1, the inequality is equivalent to:

Φ̃(x,e0)≤ (max
l

Ail

Cl
)Φ̃(x,0)+∑

l
∑

j

A jl

Cl
Φ̃(x− e j,el).

The proof is by induction on the total number of flows n≡ |x|. The property holds
for n = 0. Assume it holds for n = m and let x be any state such that n = m+1. We
denote by r a resource that is saturated in state (x,e0):

Φ̃(x,e0) =
Air

Cr
Φ̃(x,0)+∑

k

Akr

Cr
Φ̃(x− ek,e0).

By the induction hypothesis, we have:

Φ̃(x,e0)≤
Air

Cr
Φ̃(x,0)+(max

l

Ail

Cl
)∑

k

Akr

Cr
Φ̃(x−ek,0)+∑

l
∑
j,k

Akr

Cr

A jl

Cl
Φ̃(x−e j−ek,el).

Now it follows from (17.4) that for any class j:

∀l 6= r, ∑
k

Akr

Cr
Φ̃(x− e j− ek,el)≤ Φ̃(x− e j,el),

and
Air

Cr
Φ̃(x− e j,0)+∑

k

Akr

Cr
Φ̃(x− e j− ek,er)≤ Φ̃(x− e j,er).

We deduce that:

Φ̃(x,e0) ≤
Air

Cr
Φ̃(x,0)+ (max

l

Ail

Cl
)∑

k

Akr

Cr
Φ̃(x− ek,0)

+ ∑
l

∑
j

A jl

Cl
Φ̃(x− e j,el)−∑

j

A jr

Cr

Air

Cr
Φ̃(x− e j,0).

Thus the proof will be completed if we show that:
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Air

Cr
Φ̃(x,0)+(max

l

Ail

Cl
)∑

k

Akr

Cr
Φ̃(x−ek,0)−∑

j

A jr

Cr

Air

Cr
Φ̃(x−e j,0)≤ (max

l

Ail

Cl
)Φ̃(x,0).

But this inequality may also be written:

(
max

l

Ail

Cl
− Air

Cr

)(
Φ̃(x,0)−∑

j

A jr

Cr
Φ̃(x− e j,0)

)
≥ 0,

which is satisfied in view of (17.4).

Under the stability condition (17.3), there exists an (L+1)-dimensional vector ρ̃
such that the following component-wise strict inequality is satisfied:

θ̃ ≡ ρA+ ρ̃Ã < C.

Let τ̃l be the corresponding per-bit delay of virtual class l, for all l = 0,1, . . . ,L. To
prove the upper bound, we use the fact that:

lim
ρ̃→0

τ̃0 = τi

and, in view of (17.2),

∀l = 1, . . . ,L, τ̃l =
Ail

Cl− θ̃l
.

In particular,

∀l = 1, . . . ,L, lim
ρ̃→0

τ̃l =
Ail

Cl−θl
.

Now it follows from (17.1) and (17.3) that:

∀l = 0,1, . . . ,L, lim
ρ̃→0

τ̃l =
∑x Φ̃(x,el)ρx

∑x Φ̃(x,0)ρx
.

Using Proposition 17.10.2, we obtain:

τi +∑
l

Ail

Cl
≤max

l

Ail

Cl
+∑

l

Ail

Cl−θl
,

from which the upper bound (17.1) directly follows.

Flow rate limits.

In the presence of per-flow rate constraints (17.2), the bounds become:

max
{

1
ai

,max
l

Ail

Cl −θl

}
≤ τi ≤max

{
1
ai

,max
l

Ail

Cl

}
+∑

l

θl

Cl

Ail

Cl−θl
. (17.5)
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The proof is similar and omitted here.

17.11 Examples

This section presents numerical results for the various networks introduced in Sec-
tion 17.2. The flow throughput under balanced fairness is compared with the conser-
vative bound derived in Section 17.10 and with the flow throughput under max-min
fairness and proportional fairness. The latter is obtained by simulation in the Marko-
vian setting described in Section 17.3 (except in the specific cases where these allo-
cations coincide with balanced fairness). Each simulation point corresponds to ex-
pression (17.2) where the mean number of flows is evaluated over 1,000,000 events
after a warm-up period of 100,000 events. All expressions and bounds concern im-
plicitly balanced fairness.

Wireline networks

Consider the 2-link linear network of Figure 17.1 with capacity constraints:

φ1 +φ3 ≤ 1, φ2 + φ3 ≤ 1.

The stability condition is θ1 < 1 and θ2 < 1, where θ1 = ρ1 +ρ3 and θ2 = ρ2 +ρ3

are the traffic intensities at the first and the second link. Class-1 and class-2 flows
are constrained by a single resource so that, in view of (17.2),

γ1 = 1−θ1, γ2 = 1−θ2.

For class-3 flows, it follows from (17.1) that:

γ3 ≥
(1−θ1)(1−θ2)

1−θ1θ2
.

The left-hand graph of Figure 17.10 illustrates the tightness of this bound for
equal traffic intensities ρ1 = ρ2 = ρ3. The bound is compared to the exact expres-
sion when the total traffic intensity at each link θ1 = θ2 varies from 0 to 1. As
mentioned in Section 17.7, proportional fairness coincides with balanced fairness
in this particular case. The right-hand graph of Figure 17.10 shows that max-min
fairness gives very similar results.

Now consider the tree network of Figure 17.2 with three unit capacity branches
and a common root link of capacity 2. The capacity constraints are:

φ1 +φ2 +φ3 ≤ 2, φ1 ≤ 1, φ2 ≤ 1, φ3 ≤ 1.

For equal traffic intensities, the stability condition is θ < 2 where θ = ρ1 + ρ2 +ρ3
denotes the traffic intensity at the common root link. It follows from (17.1) that:
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Fig. 17.10: Flow throughput of class 3 in the linear network of Figure 17.1.

γ1 = γ2 = γ3 ≥
2(2−θ )(3−θ )

12−3θ−θ 2 .

The results are shown in Figure 17.11 with respect to θ . Again, the throughput
performance of proportional fairness and max-min fairness is very similar to that of
balanced fairness.
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Fig. 17.11: Flow throughput in the tree network of Figure 17.2.

Traffic splitting

Consider the network of Figure 17.3 with capacity constraints:

φ1 ≤ 1/2, φ1 +φ2 ≤ 1, φ2 +φ3 ≤ 1.

The stability condition is θ1 < 1/2, θ2 < 1, θ3 < 1 with θ1 = ρ1, θ2 = ρ1 + ρ2 and
θ3 = ρ2 +ρ3. It follows from (17.1) that:
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γ1 ≥
(1/2−θ1)(1−θ2)

1−θ1θ2−θ2/2
, γ2 ≥

(1−θ2)(1−θ3)

1−θ2θ3
, γ3 = 1−θ3.

For equal traffic intensities, the stability condition reduces to θ < 3/2 where θ =
ρ1 +ρ2 +ρ3 denotes the total traffic intensity. The results are shown in Figure 17.12
with respect to θ .
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Fig. 17.12: Flow throughput in the network of Figure 17.3 (classes 1,2,3, from bot-
tom to top).

Wireless networks

Now consider the wireless access point of Figure 17.4, characterized by the unique
capacity constraint:

φ1

c1
+

φ2

c2
+

φ3

c3
≤ 1.

The stability condition is θ < 1, where θ is the system load:

θ =
ρ1

c1
+

ρ2

c2
+

ρ3

c3
.

Proportional fairness gives for each class i = 1,2,3:

∀x 6= 0, φi(x) =
xi

∑i xi
ci.

The allocation satisfies the balance property (17.1) and coincides with balanced
fairness. Under these allocations, the access point serves each flow the same fraction
of time, so that the transmission rate of each flow is proportional to its coding rate.
In view of (17.2), the flow throughput of each class i = 1,2,3 is given by:

γi = ci(1−θ ).
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Max-min fairness, on the other hand, gives for each class i = 1,2,3:

∀x 6= 0, φi(x) =
xi

∑i xi/ci
.

Thus the transmission rate is the same for all flows. This results in a discriminatory
allocation of the radio resource: the access point serves each flow a fraction of time
that is inversely proportional to its coding rate. The resulting flow throughput is
shown in Figure 17.13 for c1 = 5, c2 = 1, c3 = 1/2 and equal traffic intensities
ρ1 = ρ2 = ρ3. The stability condition θ < 1 imposes that the total traffic intensity
is less than 15/16. We observe that class-1 flows are strongly penalized by max-
min fairness. Since these flows contribute to a small fraction of the overall system
load θ , the benefit for other classes is marginal. We conclude that the radio resource
should not be allocated according to max-min fairness for this particular system.
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Fig. 17.13: Flow throughput at a wireless access point (classes 1,2,3, from top to
bottom).

Now consider the additional constraint of a wireline backhaul link of c bit/s, as
shown in Figure 17.5. The stability condition becomes θ1 < 1 and θ2 < c, where θ1

and θ2 correspond to the load of the wireless link and to the traffic intensity on the
wireline link, respectively:

θ1 =
ρ1

c1
+

ρ2

c2
+

ρ3

c3
, θ2 = ρ1 + ρ2 +ρ3.

In view of (17.1), we get for each class i = 1,2,3:

γi ≥
(

max

{
1
ci

,
1
c

}
+

θ1

ci(1−θ1)
+

θ2

c(c−θ2)

)−1

.

The results are shown in Figure 17.14 for the same parameters as above and c = 2.
The inequality θ1 < 1 is more restrictive than θ2 < 2 in this case, so that the system
is again stable if and only if the total traffic intensity is less than 15/16. We ob-
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serve that balanced fairness provides a good approximation to proportional fairness,
whose throughput performance is much better than that of max-min fairness.
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Fig. 17.14: Flow throughput at a wireless access point with wireline backhaul
(classes 1,2,3, from top to bottom).

Ad-hoc networks

The ad-hoc network of Figure 17.7 is characterized by the following capacity con-
straints:

2φ1 +2φ2 +3φ3 ≤ 1, 3φ1 +φ2 +2φ3 ≤ 1, φ1 + 3φ2 +2φ3 ≤ 1.

The stability condition is given by θ1 < 1, θ2 < 1, θ3 < 1 with

θ1 = 2ρ1 + 2ρ2 + 3ρ3, θ2 = 3ρ1 +ρ2 + 2ρ3, θ3 = ρ1 +3ρ2 +2ρ3.

It follows from (17.1) that:

γ1 ≥
(

3 +
2θ1

1−θ1
+

3θ2

1−θ2
+

θ3

1−θ3

)−1

.

Figure 17.15 shows class-1 flow throughput with respect to class-1 traffic intensity
ρ1 for equal traffic intensities. Note that the stability condition is given by ρ1 < 3/7
in this case.

Flow rate limits

Finally, we consider a wireline link of C bit/s shared by flows with N = 3 different
rate limits, a1,a2,a3 < C. The stability condition is given by θ < C where θ =
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Fig. 17.15: Class-1 flow throughput in the ad-hoc network of Figure 17.7.

ρ1 + ρ2 + ρ3 denotes the total traffic intensity. It follows from (17.5) that for each
class i = 1,2,3:

γi ≥
(

1
ai

+
θ

C(C−θ )

)−1

.

Figure 17.16 gives the corresponding results with respect to θ for C = 10, a1 = 2,
a2 = 1, a3 = 1/2 and equal traffic intensities ρ1 = ρ2 = ρ3. Proportional fairness
and max-min fairness coincide in this case.
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Fig. 17.16: Flow throughput for a wireline link with different flow rate limits (classes
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17.12 Open issues

While balanced fairness closely approximates proportional fairness in all considered
examples, there is no theoretical result that supports this evidence except for some
structural properties obtained by Massoulié [15]. It seems even more difficult to
assess the throughput performance of max-min fairness which differs significantly
from that of balanced fairness in some cases. For both proportional fair and max-min
fair allocations, deriving bounds or approximations that only depend on the capacity
region (17.1) and on the vector of traffic intensities is a very challenging task.

There has been very little work on non-convex capacity regions. First, the op-
timization problem that defines proportional fairness does not necessarily have a
unique solution. Next, the stability condition is unknown in general. In particular,
the network may be stable even though the vector of traffic intensities does not be-
long to the capacity region but to the convex hull of this capacity region.

While the focus has been on data traffic only, data transfers must often share
network resources with flows of other applications like the telephone or audio and
video streaming. These flows have packet delay constraints that require specific rate
adaptation and scheduling algorithms. The impact of this traffic and its particular
control schemes on the throughput of data flows is not very well understood. Ex-
plicit results can be obtained by the so-called quasi-stationary approach, where the
time-scale of data flows is assumed to be very different from that of other flows.
It remains to determine the conditions under which these results provide bounds or
tight approximations for the exact throughput performance.

17.13 Bibliographical notes

The modeling of data links as processor-sharing queues started with the analysis
of wireless systems by Telatar and Gallager [22] and Stamatelos and Koukoulidis
[21]. Based on the observation that the transmission control protocol, TCP, shares
resources in an approximately fair way, Heyman, Lakshman and Neidhardt [8] and
Massoulié and Roberts [16] applied similar models to wireline networks. Practical
dimensioning rules were developed on this basis by Berger and Kogan [2]. Ben Fredj
et al. observed the insensitivity of the results to detailed traffic characteristics like the
structure of user sessions [1]. Many papers proposed modified models that account
more precisely for the way bandwidth is shared by TCP, see [12] for instance.

The notion of max-min fairness was introduced for communication networks by
Bertsekas and Gallager [3]. Kelly and his coauthors [10, 17] introduced the notion
of proportional fairness and identified a class of decentralized algorithms that real-
ize this allocation. Various extensions of these results were obtained by Low and
Lapsley [14], Mo and Walrand [18], Massoulié and Roberts [17] and others.

Stability issues were addressed by De Veciana, Lee and Konstantopoulos [23],
Bonald and Massoulié [4], Ye [24] and Lin, Shroff and Srikant [13] for various al-
locations, including max-min fairness and proportional fairness. The first analytical
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performance result for networks with several links was derived by Massoulié and
Roberts [16]. The notion of balanced fairness was introduced for wireline networks
by Bonald and Proutière [6] and generalized to any network with a convex capacity
region by Bonald, Massoulié, Proutière and Virtamo [5]. These papers also char-
acterize the networks for which max-min fairness and proportional fairness satisfy
the balance property. Finally, the recursion derived by Bonald and Virtamo [7] for
multirate systems is the analogue of that derived by Kaufman [9] and Roberts [19]
for circuit-switched networks.

Appendix

We recall the definition and stationary distribution of Whittle networks. For details,
we refer the reader to the book by Serfozo [20].

Consider a network of N queues. External customer arrivals at queue i form a
Poisson process of intensity νi, with ∑i νi > 0. After service completion at queue
i, a customer is routed to queue j with probability pi j and leave the network with
probability 1−∑ j pi j. All customers eventually leave the network so that the arrival
rate λi at queue i is uniquely defined by the traffic equations:

λi = νi +∑
j

λ j p ji, i = 1, . . . ,N.

The service requirements are independent, exponentially distributed of mean σi at
queue i. We denote by ρi = λiσi the traffic intensity at queue i.

We denote by xi the number of customers present at queue i and by x the corre-
sponding line vector. The service rate of queue i is a function φi of the network state
x, with φi(x) = 0 if and only if xi = 0. We say that the network is a Whittle network
if the following balance property is satisfied:

∀i, j, ∀x, φi(x)φ j(x− ei) = φ j(x)φi(x− e j),

where we use the convention that φ(x) = 0 if x 6∈ NN . This is equivalent to the
existence of a balance function Φ such that Φ(0) = 1 and:

∀x 6= 0, Φ(x) =
1

φi1(x)φi2 (x− ei1) . . .φin(ein)
,

where x,x−ei1 ,x−ei1−ei2 , . . . ,ein ,0 denotes any direct path from state x to state 0.
The stationary distribution of the network state is then given by:

∀x, π(x) = π(0)Φ(x)ρx,

under the stability condition:
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∑
x

Φ(x)ρx < ∞,

where we use the notation:
ρx ≡∏

i
ρxi

i .
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5. T. Bonald, L. Massoulié, A. Proutière, J. Virtamo, A queueing analysis of max-min fairness,

proportional fairness and balanced fairness, Queueing Systems 53 (2006) 65–84.
6. T. Bonald and A. Proutière, Insensitive bandwidth sharing in data networks, Queueing Systems

44(1) (2003) 69–100.
7. T. Bonald and J. Virtamo, A recursive formula for multirate systems with elastic traffic, IEEE

Communications Letters 9 (2005) 753–755.
8. D.P. Heyman, T.V. Lakshman, A.L. Neidhardt, A new method for analysing feedback-based

protocols with applications to engineering Web traffic over the Internet, in: Proc. of ACM
SIGMETRICS, 1997.

9. J. S. Kaufman, Blocking in a shared resource environment, IEEE Trans. Commun. 29 (1981)
1474–1481.

10. F.P. Kelly, Charging and rate control for elastic traffic, European Transactions on Telecommu-
nications 8 (1997) 33–37.

11. F.P. Kelly, A. Maulloo and D. Tan, Rate control for communication networks: Shadow prices,
proportional fairness and stability, Journal of the Operat. Res. Society 49 (1998).

12. A. Kherani and A. Kumar, Stochastic models for throughput analysis of randomly arriving
elastic flows in the Internet, in: Proc. of IEEE INFOCOM, 2002.

13. X. Lin, N.B. Shroff, R. Srikant, On the connection-level stability of congestion-controlled
communication networks, IEEE Trans. on Information Theory 54(5) (2008) 2317–2338.

14. S.H. Low and D.E. Lapsley, Optimization flow control, I: Basic algorithm and convergence,
IEEE/ACM Trans. on Networking 7(6) (1999) 861–875.
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Chapter 18

Modeling a Hospital Queueing Network

Stefan Creemers and Marc Lambrecht

Abstract Healthcare systems differ intrinsically from manufacturing systems. As
such, they require a distinct modeling approach. In this article, we show how to
construct a queueing network of a general class of healthcare systems. In order to
analyze such networks, we use the parametric decomposition approach. Using this
approach the network is decomposed into a set of single queueing systems which

can be aggregated and general performance measures of the queueing network are
obtained. In addition, we develop new expressions to assess the impact of service
outages and use the queueing network to approximate patient flow times and to
evaluate a number of practical applications.

18.1 Introduction

Whereas the origin of queueing theory dates back from the beginning of the pre-
vious century, networks of queues have only been studied for a few decades. The
pioneering works of Jackson (1957 and 1963) showed that the stationary distribution
of the number of customers in queue at a queueing network, is a product form of the
stationary distributions at the individual workstations of the network. As a conse-
quence, a queueing network can be decomposed into separate building blocks (i.e.
the individual workstations) that can be analyzed separately to obtain the solution
to the network as a whole. This approach is referred to as the parametric decompo-
sition approach. The main advantage of the approach is that it enables the study of,
otherwise intractable, complex queueing networks.
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can be analyzed separately. Afterwards, results of these single queueing systems
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Unfortunately, the results obtained by Jackson (1957 and 1963) are only valid in
so-called “Jackson networks” (i.e. queueing networks which assume Poisson arrival
and service processes). When assuming a generalized queueing network (featuring
general service and arrival processes), the product form solution no longer holds.
As such, one requires another means to “link” the separate building blocks of the
queueing network. This link is established in the form of a “linking equation”. More
specifically, a linking equation approximates the stochastic nature of the outgoing
stream of customers at one of the workstations of the network. Using this informa-
tion, we can assess the stochastic nature of the inflow of customers at the work-
stations further down the queueing network. As such, a linking equation literally
“links” the results obtained at the separate workstations to obtain the solution of the
network as a whole. Marshall (1968) was the first to study the stochastic nature of
the outflow of customers at a queueing workstation. Ever since, a wide variety of
linking equations (applicable to a wide variety of settings) has been developed. We
refer the reader to Shanthikumar and Buzacott (1981), Buzacott and Shanthikumar
(1985), Bitran and Tirupati (1988) and Suri, Sanders and Kamath (1993) for a nice
review.

Among others, these results have been extended and implemented in Whitt’s
Queueing Network Analyzer (1983), a powerfull tool that allows the analysis of
a wide variety of complex queueing networks. Other noteworthy contributions to
the domain of parametric decomposition of queueing networks include the works of
Whitt (1994, 1995 and 1999a), Bitran and Tirupati (1988) and Lambrecht, Ivens and
Vandaele (1998). A comprehensive overview of research on queueing networks in
general and the parametric decomposition method in particular may be found with
Askin (1993) and Hopp and Spearman (2000).

Queueing networks however, have mainly been studied in a manufacturing set-
ting. Applications towards services in general and healthcare in particular are rarely
seen. One of the reasons thereof is the difficulty of implementing the peculiarities
of a service system into a methodology that is focussed on manufacturing systems.
In what follows we discuss which problems may arise when modeling complex
hospital queueing networks. Next we demonstrate how to use the parametric de-
composition approach to model such queueing networks. In addition, we develop
new expressions to assess the impact of service outages in a healthcare setting. The
queueing network is used to test a variety of practical problems. More specifically,
we demonstrate the impact on system performance resulting from the reduction of
service outages and illustrate the beneficial effects of pooling. Moreover, we develop
an optimization model that enables us to determine the optimal number of patients
to be treated during a service session (e.g. a consultation time block). Finally we
present some conclusions.



18 Modeling a Hospital Queueing Network 769

18.2 Problem Description

An important feature of healthcare processes (or services in general) is that the de-
mand for resources is to a large extent unscheduled. As a consequence, there is a
permanent mismatch between the demand for a treatment and the available capac-
ity. Moreover, timely care is very important so interrupts are common in healthcare
processes (the sense of urgency is almost always present). No wonder that healthcare
is riddled with delays. No need to come up with a convincing example, we have all
experienced that phenomenon. Delays are highly undesirable, not only from a psy-
chological point of view (patient satisfaction) but also from an economic point of
view. Government reimbursement systems are more and more based on a Justified
Length of Stay (JLoS) system. DRG’s (Diagnosis Related Groups) are character-
ized by a minimum and maximum length of stay (depending on parameters such
as severity of the illness, age of the patient, . . . ). If a patient is dismissed before the
JLoS is over, the hospital still collects a full reimbursement. On the other hand, if the
patient remains in care for a period which exceeds the limit of the JLoS, the hospital
has to pay for the extra costs involved. The JLoS of a DRG is determined in function
of a national average length of stay. The system stimulates hospitals to continuously
improve their performance. Moreover, improper scheduling and malfunctioning lo-
gistical systems cause lengths of stay that are too long. Insurance companies may
reject reimbursement of these “denied days” because the delay is not medically nec-
essary Hall, Belson, Muralli and Dessouky (2006). Delays also create a “hidden”
hospital in analogy with the hidden company. In other words, such a hospital cre-
ates wasteful overhead.

Hall (2006) coined the term patient flow. It represents the ability of the healthcare
system to serve patients quickly, reliably and efficiently as they move through stages
of care. Queue and delay analysis can produce dramatic improvements in medical
performance, patient satisfaction and cost efficiency of healthcare. Healthcare sys-
tems can be represented as a complex queueing network. The queueing models are
helpful to determine the capacity levels (and the allocation of capacity) needed to
respond to demands in a timely fashion (minimizing the delay). There is a demand
side (the patient mix and the associated variability in the arrival stream) and a sup-
ply side (the hospital resources such as surgeons, nurses, operating rooms, waiting
rooms, recovery, imaging machines, laboratories) in any healthcare process. More-
over, both demand and supply are inherently stochastic. This stochastic nature cre-
ates disturbances and outages during the process. It is the combination of capacity
analysis and variability that makes queueing theory so attractive. The major objec-
tive is to identify factors influencing the flow time of patients, to identify levers of
improvement and to analyze trade-offs. In this article we try to address some of the
issues mentioned above.

Queueing models have been applied in numerous industrial settings and service
industries. The number of applications in healthcare, however, is relatively small.
This is probably due to a number of unique healthcare related features that make
queueing problems particularly difficult to solve. In this section, we will review
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these features and where appropriate we will shortly discuss the methodological
impact.

Before we dig into this issue, let’s first discuss two important modeling issues in
healthcare: the performance measures and the issue of pooled capacity.

The performance measures in healthcare systems focus on internal and external
delays. The internal delay refers to the sojourn time of patients inside the hospital
before treatment. The external delay refers to the phenomenon of waiting lists. Man-
ufacturing systems may buffer with finished goods inventory, service systems rely
more on time buffers and capacity buffers. Another important performance mea-
sure is related to the target occupancy (utilization) levels of resources. Average oc-
cupancy targets are often preferred by government and other institutional agents.
Hereby, higher occupancy levels are preferred, but this results in longer delays. We
are often confronted with conflicting objectives. Instead of determining capacity
needs based on (target) occupancy levels, it is preferable to focus on delays. The
key issue in delay has to do with the tail probability of the waiting time. The tail
probability refers to the probability that a patient has to wait more than a speci-
fied time interval. Capacity needs (e.g. staffing) of an emergency department should
be based on an upper bound on the fraction of patients who experience a delay of
more than a specific time interval before receiving care from a physician (Green and
Soares, 2007). The second modeling issue has to do with pooling. In general, pool-
ing refers to the phenomenon that available inventory or capacity is shared among
various sources of demand (well known examples are location pooling, commonal-
ity or flexible capacity). Pooling is based on the principle of aggregation and mostly
comes down to the fact that we can handle uncertainty with less inventory or capac-
ity. In healthcare systems, resources are usually dedicated to specific patient types,
hospitals have separate units or departments by diagnostic type and bed flexibility
is almost non-existing. As a result, pooling is absent. This explains the fact that
most queueing models reported in the literature are dealing with parts of the hos-
pital. Queueing models, however, can be used to model hospital wide systems and
to evaluate the benefits of greater versus less specialization of care units or other
resources (scanners, labs, . . . ).

Let’s now turn to a number of unique healthcare related features making queueing
models in healthcare difficult to model and to solve.

Re-entry of patients and stochastic routings

During consultation, patients may be routed to different facilities. The routing of a
patient through hospital facilities is not deterministic. Instead, during the diagnosis
stage there is a probabilistic routing. Moreover, patients require in many cases sev-
eral consultations before surgery. Even after a patient is discharged from the hospital
after surgery and recovery, the patient is subjected to a number of follow-up consul-
tations. In other words, the queueing model must take care of re-entry of patients,
creating additional work on top of the new patients. In most cases, the re-entry is
correlated.
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Service sessions for consultation and surgery

In most queueing models time is considered as continuous and events are spread
out over this continuous time scale. In services in general and in healthcare more
specifically, resources are not continuously available. Instead, time is divided into
“service sessions” for consultation (e.g. twice a week) or surgery (e.g. one day per
week). Consequently we have to focus on service processes in which service takes
place during predefined service sessions. Vacation models observe the queueing be-
havior of such systems in which servers are available during certain time intervals
and are on “vacation” during the other time intervals.

Capacity related issues

Hospitals operate within strict business restrictions. Resources are usually very
scarce and consequently hospitals operate under high capacity utilization condi-
tions. The so-called heavy traffic conditions are present. Heavy traffic conditions
assume that all stations in the network are critically loaded. In such an environment,
inaccurate results have a large impact on resulting performance measures.

Modeling of absences, disturbances and interruptions

An important determinant of the flow time is variability. We distinguish two types
of variability. Natural variability is variability that is inherent to the system process.
Natural variability is much more substantial in healthcare as compared to manufac-
turing environments. Second, we have variability that can be related or assigned to
a specific external cause. This variability is caused by unplanned absences of medi-
cal staff or interruptions during service operations. It is well known that variability
induces waiting time. As a result the time available during consultation is often
exceeded. This in turn is remedied by allowing overtime. Unfortunately, overtime
modeling is a non-trivial issue in queueing.

18.3 A hospital queueing system

The features discussed in the previous section considerably complicate the model-
ing exercise. In order to demonstrate how to implement the features in a queueing
model, we use an example hospital queueing system. The example concerns a typi-
cal hospital department involving consultation, surgery and recovery. The example
we use throughout this paper is inspired by a real life case of the orthopedic depart-
ment of the Middelheim hospital (Antwerp, Belgium) (Creemers and Lambrecht,
2007). We omit in this paper all practical data collection details of the case. We now
and then provide numerical data to give the reader an idea of the problem dimen-
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sion. In our example, the department employs six surgeons. Each of the surgeons
is assigned a certain number of patients and no patient crossover between surgeons
is assumed to take place. The base case deals in other words with the non-pooled
capacity. Recovery occurs in an internal ward, an external ward or in the day hos-
pital (depending on the disorder the patient is suffering from). In each of the wards
25 beds are reserved for patients of the hospital department under study. The ca-
pacity structure of the department is illustrated in Figure 18.1. Notwithstanding the
fact that every patient is unique, we impose some general assumptions regarding the
treatment process of a patient visiting the department. More specifically, we assume
that every patient starts the treatment process with one or more consultations. Next,
surgery is performed and a number of follow-up consultations is initiated. Finally
the treatment process of a patient finishes and the patient leaves the hospital system.
We assume that only elective surgery takes place and that the consultation process
is appointment-based. Remark that it is possible to specify other patient routings
(e.g. patients who refuse surgery, patients that do not longer need recovery, . . . ). In
this example, however, we make use of a simple patient routing structure in order to
preserve the transparency of the model.

With respect to the performance measures, we are interested in the total flow
time of a patient at a workstation (i.e. consultation, surgery or recovery). We define
the flow time as the total waiting time plus the processing time. With respect to the
waiting time of a patient, a distinction is made between the internal waiting time
and the external waiting time (Vissers, Bertrand and De Vries (2001) and Hall et
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al. (2006)). More specifically, the internal waiting time is the time spent inside the
hospital prior to receiving service (at any of the workstations). The external waiting
time is the time between the making of an appointment and the arrival of a patient
at the hospital. The external waiting time can also be related to the ”waiting list”
phenomenon. As such, the total flow time of a patient consists of: (1) the external
waiting time; (2) the internal waiting time; (3) the processing time. In the remainder
of this text we will use E [W ] to denote the total flow time of a patient.

The data collection may be described in the following way (see also Figure 18.1).
We start with a patient population (in our case we collected data on the consultation,
surgery and recovery process of 3,300 patients) and divide it into groups of similar
DRG’s. We construct 18 DRG groups and use index k, k ∈ {1,2, . . . ,K} for further
identification (refer to Roth and Van Dierdonck (1995) and van Merode, Groothuis
and Hasman (2004) for a detailed treatment on patient classification methodology).
Next, the patients are assigned an individual surgeon (identified using index g, g ∈
{1,2, . . . ,G}). Surgeons as well as recovery wards may be considered as hospital
resources. We use index i, i ∈ {1,2, . . . , I} to identify these resources. The surgeons
perform both consultation (i ∈ {1,2, . . . ,6}) as well as surgery (i ∈ {7,8, . . . ,12})
tasks. Recovery takes place at the day hospital (i = 13), the internal ward (i = 14)
or the external ward (i = 15).

In what follows we develop the queueing model. First we provide the mathemat-
ical derivations required to obtain the arrival and natural process times. Next, we
adapt the model to include the effects of service outages, the availability of work-
stations and the characteristics of the aggregate arrival process.

18.3.1 Modeling arrival rate and natural service times

The queueing model of the hospital department may be presented as a network of 12
G/G/1 workstations (six surgeons performing both consultation and surgery) and 3
G/G/m workstations (the recovery wards). The network is an open re-entry network
with stochastic routings and is modeled using the principles of the parametric de-
composition approach. While other approaches are available (e.g. Brownian motion
queueing models), a previous study has shown that the parametric decomposition
approach works best when modeling complex hospital systems (Creemers et al.,
2007).

The queue discipline adhered to at each of the stations is FCFS. Any variation
in the arrival of patients (e.g. the early, late, unannounced or not showing up of pa-
tients) is presumed to be absorbed in the variance of the arrival process. The model
assumes infinite buffers to exist in front of every queue. Realizing that the buffers
in front of the consultation and surgery workstation correspond to their respective
waiting lists, it would be incorrect to restrain them in size. In real life, if patients
contact the hospital to make an appointment for a consultation or a surgery, they
will be issued an appointment date no matter how far ahead in time this date might
be (i.e. we assume patients not to display any balking- or reneging-behavior when
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arriving or abiding at the queue). Hence buffer capacities are virtually unlimited.
With respect to the recovery wards, one might argue that queue capacity is in fact
limited. However, there are several reasons that are able to question this assertion.
Next to rendering the model highly intractable, finite buffers do not necessarily cor-
respond to reality since shortages of bed capacity at the wards are solved at the local
level and in general do not prolong the sojourn time of a patient (this of course pre-
sumes the presence of unoccupied beds somewhere in the hospital). Therefore we
will assume infinite buffers at all stages of the treatment process. Considering the
multiclass re-entry environment of the queueing network, aggregation of the arrival
and service process is required in order to perform a decomposition-based queueing
analysis.

More formally, let i (i ∈ {1, . . . , I}) denote the workstation in the network, let k
(k∈ {1, . . . ,K}) denote the DRG group a patient belongs to and let g (g∈ {1, . . . ,G})
denote the surgeon a patient is assigned to. As such, we have KG classes of patients
visiting a set of I workstations. Let the pair (k,g) denote the class of a patient (i.e. a
patient of class (k,g) is assigned a surgeon g and belongs to DRG group k). Patients
belonging to different classes are allowed to differ in terms of interarrival times, ser-
vice times and routing. Assume interarrival times and service times of patients to be
i.i.d. if they belong to one and the same class and assume them to be independently
(but not necessarily identically) distributed otherwise. Let ηi(k,g) denote the external
arrival rate of a class (k,g) patient at workstation i (remark that external arrivals are
only assumed to take place at the consultation workstations). The aggregate external
arrival rate at a workstation i equals:

ηi =
K

∑
k=1

G

∑
g=1

ηi(k,g). (18.1)

Note that expression 18.1 is a general expression, most of the time a workstation will
be uniquely assigned to a single surgeon, making the summation over g redundant.

We assume that the interarrival times of the external arrivals are exponentially
distributed. Such an assumption poses only a slight restriction on the accuracy of
the model while it has been shown by Palm (1943) and Khinchin (1960) that the
sum of a large numbers of independent renewal processes (i.e. the arrival processes
of the different classes of patients) will tend to a Poisson process. Considering the
multitude of classes of patients, the approximation of the aggregate external arrival
process by means of a Poisson process should be accurate. In addition, Lariviere and
Van Mieghem (2004) showed that the assumption of exponential interarrival times
is reasonable in many service systems.

Let γi(k,g) denote the expected number of visits a class (k,g) patient will make
to workstation i (remark that only the consultation workstations are assumed to be
visited more than once). The aggregate arrival rate of patients at the consultation
level equals:

λi =
K

∑
k=1

G

∑
g=1

ηi(k,g)γi(k,g), ∀i ∈ {1,2, . . . ,6} . (18.2)
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Note that in contrast to the aggregate external arrival rate, which was assumed to
be Poisson-distributed, the aggregate arrival rate (at each of the workstations) is al-
lowed to follow a general distribution. Further define the routing matrix R in which
the elements ri j indicate the probability of a patient to travel from station i to station
j after service completion at station i. Adhering to standard conventions, we estab-
lish a node (of index i = 0) from which external arrivals originate and which also
serves as a sink for patients leaving the hospital system. Let ri0 indicate the proba-
bility of leaving the system when departing from station i. Conversely r0i implies the
probability of an external arrival occurring at station i. The probabilities ri j can be
expressed as the the proportion of the arrivals at station i that travel towards station
j. When assuming the stability of the queueing network, the law of conservation of
flows (what comes in, must go out) dictates:

ri0 = r0i =
ηi

λi
∀i ∈ {1,2, . . . ,6} . (18.3)

With respect to the surgery workstations, each patient visiting the hospital depart-
ment is subjected to surgery exactly once. As such, one can infer that:

λi = ηi, ∀i ∈ {7,8, . . . ,12} . (18.4)

Hence the probability of transition from the consultation to the surgery level may be
defined as:

ri j =
ηi

λi
, ∀i ∈ {1,2, . . . ,6} , j = i+6. (18.5)

Finally, at the consultation level, the probability of re-entry equals:

rii = 1− (ri0 + ri j) = 1− 2ηi

λi
, ∀i ∈ {1,2, . . . ,6} , j = i+6. (18.6)

The routing probabilities of transferring from a surgery workstation i, i∈{7,8, . . . ,12}
towards a recovery ward j, j ∈ {13,14,15} is obtained as follows:

ri j =
λ (i)

j

λi
, ∀i ∈ {7,8, . . . ,12} , ∀ j ∈ {13,14,15}, (18.7)

where λ (i)
j is the empirically observed arrival rate of patients at recovery workstation

j, j ∈ {13,14,15} originating from surgery workstation i, i ∈ {7,8, . . . ,12}. As
such, the arrival rates at recovery equal:

λ j =
12

∑
i=7

λ (i)
j , ∀ j ∈ {13,14,15}. (18.8)

From this we obtain:

ri j =
λ ( j+6)

i

λi
, ∀i ∈ {13,14,15}, ∀ j ∈ {1,2, . . . ,6} . (18.9)
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All other routing probabilities stem directly from the structure of the model. A
schematic summary of the routing matrix R is presented in Table 18.1. Note that

Table 18.1: Schematic summary of the routing matrix R

i / j 0 1-6 7-12 13-15

0 0
η j
λ j

0 0

1-6 ηi
λi

δi j

(
1− 2ηi

λi

)
δi j

(
ηi
λi

)
0

7-12 0 0 0
λ (i)

j
λi

13-15 0
λ ( j+6)

i
λi

0 0

(δi j = 1) if at least one of the patient classes travels from station i to station j and
(δi j = 0) otherwise.

Remark that other routing structures give rise to other routing probabilities. The
routing structure and corresponding equations discussed in this section are only
valid under the previously imposed assumptions concerning patient flow.

With respect to the service times, let fi(k,g) (x) denote the natural service time
probability density function of a class (k,g) patient visiting workstation i. Have

1
νi(k,g)

and σ 2
νi(k,g)

represent the average natural service time for a class (k,g) patient

at workstation i and its variance respectively. The natural process time excludes ran-
dom interruptions, absences and any other external influence. Assume service times
of different classes to be independent but not necessarily identically distributed. The
probability that a randomly picked unit in front of the workstation is of class (k,g)

is given by
λi(k,g)

λi
, where λi(k,g) is the total arrival rate of class (k,g) patients at work-

station i. Define the probability function of the aggregate natural service times at
station i as follows:

fi (x) =
K

∑
k=1

G

∑
g=1

λi(k,g)

λi
fi(k,g) (x) . (18.10)

As a result the average natural service time requirement of a unit in front of the
workstation amounts to:

1
νi

=
K

∑
k=1

G

∑
g=1

λi(k,g)

λi

1
νi(k,g)

. (18.11)

When observing the variance of the aggregate natural service process, one can de-
duce that:

σ 2
νi

=
K
∑

k=1

G
∑

g=1

λi(k,g)

λi

´

(
x− 1

νi

)2
fi(k,g) (x)dx,

= − 1
ν2

i
+

K
∑

k=1

G
∑

g=1

λi(k,g)

λi

(
σ 2

νi(k,g)
+ 1

ν2
i(k,g)

)
.

(18.12)
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We refer to σ 2
νi

as a measure of the natural variability of the aggregate process times
at workstation i. The same result was obtained by Whitt (1983) and has widely
been adopted in literature (Whitt (1999b) and Haskose, Kingsman and Worthington
(2002)).

18.3.2 Variability from preemptive and nonpreemptive outages

With respect to service outages in healthcare, a large body of literature exists. Out-
ages in a hospital setting have been the subject of discussion in Babes and Sarma
(1991), Liu and Liu (1998a), Chisholm, Collison, Nelson and Cordell (2000) and
Chisholm, Dornfeld, Nelson and Cordell (2001) among others. There is a consensus
on the harmful effects of outages on patient flow times as well as on the quality
of service. Outages result in congestion, unstable schedules and most importantly
in overtime for staff members. We refer to Easton and Goodale (2005) for an ex-
cellent treatment of this issue. In this section, we focus on unplanned absences of
medical staff and interruptions during service operations. Unplanned absences and
interruptions during service activities have a major impact on flow times. Doctors
and medical staff face various obligations which they have to attend to (making
morning rounds, answering phones, patient check-ups, daily management, . . . ). In
addition doctors often combine a hospital job and private consultation. These phe-
nomena may cause a variable arrival pattern at the hospital (Liu et al., 1998a) and
may lead to interruptions during the treatment process (Chisholm et al. (2000 and
2001) and Easton et al. (2005)). It is clear that hospital environments are charac-
terized by substantial amounts of variability. As is argued in the literature (Hopp et
al., 2000), variability induces waiting times. While in service industries variability
cannot be countered by means of inventory in the traditional sense, patients will
have to wait until capacity becomes available (Vissers et al. (2001), Vandaele and
De Boeck (2003a) and Sethuraman and Tirupati (2005)). Besides the time buffer,
hospitals often have to rely on a capacity buffer to mitigate the impact of variability
and to maintain required service levels. In order to model service processes liable to
outages, queueing theory proves to be an ideal tool. With respect to service outages
and server unreliability, we face a vast amount of queueing literature. Surveys on
the machine interference problem and server unreliability may be found in Stecke
and Aronson (1985) and Haque and Armstrong (2007). Unreliable servers are of-
ten modeled using vacation models. Over the past decades, queueing systems with
server vacations have received a lot of attention in the queueing literature. Vaca-
tion models observe the queueing behavior of systems in which the server begins a
vacation (i.e. becomes unavailable) when certain conditions are met. For instance,
imagine a doctor’s office that has opening hours on Tuesday afternoons and on Fri-
day evenings. On Tuesday, after service completion of the last patient, the doctor
leaves on a “vacation” until Friday evening at which time service is resumed. At the
end of service on Friday, a vacation is initiated until next Tuesday afternoon. We
illustrate this process in Figure 18.2. Next to the modeling of planned absences (e.g.
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a working schedule), vacation models may also be used to model unplanned server
interruptions (e.g. a doctor who is called away for an emergency). A wide variety
of vacation models exists. For a general overview, we refer to Doshi (1986), Takagi
(1988) and Tian and Zhang (2006). In this work, however, we do not focus on vaca-
tion models. Instead, we consider an alternative, more intuitive approach to model
service outages. This approach was first suggested by Hopp and Spearman (2000).
In their work, Hopp and Spearman propose a transformation of the service process
times to account for service outages. The results of Hopp and Spearman are widely
accepted in the literature. In this work, we develop new expressions to model the im-
pact of service outages that are peculiar to healthcare systems. In what follows, we
first discuss the difference between preemptive and nonpreemptive outages. Next,
we provide the means to model them.

18.3.2.1 Outages, classification and impact

As was indicated previously, the service process of a patient may be interrupted or
postponed. These outages will increase the natural service times. We call these in-
creased, adjusted service times, effective processing times. It is the total time “seen”
or “experienced” by a patient at a workstation. The effective process time random
variable is of primary interest to determine flow times.

We distinguish between preemptive and nonpreemptive outages. Preemptive and
nonpreemptive outages will impact the service process and will give rise to in-
creased levels of traffic intensity (resulting in the so-called effective utilization rate
or effective traffic intensity).

Let us first discuss the nonpreemptive outages. Nonpreemptive outages typically
occur between jobs, rather than during jobs. They occur at the beginning of each
service session (i.e. at the start of a consultation work shift) whenever a doctor or
another member of the medical staff is absent (e.g. due to late arrival). We may refer
to such an outage as unplanned absences and define the mean and variance of the
amount of time absent as 1

µs
and σ 2

s respectively (i.e. absence times are allowed
to follow a general distribution). Furthermore we assume an average number of
patients (represented by n) to arrive in between two consecutive absences. This is
an important feature of the model. Indeed, n may be considered as the number of
patients in a service session (e.g. a consultation work shift). Each start of a service

Vacation

Service

Vacation

Monday Tuesday Wednesday Thursday

Vacation

Saturday SundayFriday Monday Tuesday

Fig. 18.2: Illustration of a vacation model
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session may induce a delay due to an absence. In other words, the number of patients
in a service session is a decision variable and is comparable to a lot sizing decision.
Evaluating different service session sizes (i.e. different values of n) may provide key
managerial insights. We will address this issue in an upcoming section.

Next to nonpreemptive outages, we also allow for preemptive outages to take
place. Preemptive outages occur whenever a doctor is interrupted during a consul-
tation activity. These interruptions will be modeled in an approach which builds on
the tradition set by Hopp and Spearman (2000). They are characterized by a Mean
Time To Interrupt (τ f ) and a Mean Time To Resolve (τr). The model presented in
Hopp and Spearman (2000) presumes interrupts to occur only during actual service
time. However, in a hospital setting it is not inconceivable that interrupts take place
during the resolve time induced by a previous interrupt as well. For instance, if the
service process of a patient is interrupted by a phone call, it is still possible for a
doctor to be called away for an emergency, to receive another call, . . . .

In what follows, we present the main results on nonpreemptive as well as pre-
emptive outages. In a final subsection, we present results on the joint occurrence
of nonpreemptive and preemptive outages. In order to maintain transparency of the
model and of notation, we impose the following assumptions: (1) service outages
only occur at the consultation level (i.e. only workstations i, i ∈ {1,2, . . . ,6} are af-
fected); (2) for each of the surgeons, the impact of outages is identical (i.e. 1

µs
, σ 2

s ,
n, τ f and τr remain the same for each of the workstations at the consultation level).

18.3.2.2 Nonpreemptive outages

We define a nonpreemptive outage to occur whenever the succession of two events
is based on the number of services performed in between (hence, setups, rework,
maintenance, . . . are all extensions that are able to capitalize on the technique dis-
cussed in this section). Applied to our setting, we have that n patients are treated (on
average) in between two consecutive absence possibilities. Assume that the length
of services and absence times does not depend on the service history (i.e. they are
independent of prior services and absence times). The absence times themselves are
distributed following a probability density function fs (x). The average absence time
and its variance are represented by 1

µs
and σ 2

s . The service time of the nth patient

includes part service time, part absent time. We refer to the service time of the nth

patient as the combined service time. We illustrate these concepts in Figure 18.3.
One can consider the services that are preceded by an absent period as a separate

class of patients that has a probability 1
n of randomly being picked in front of the

workstation. The other services as a whole have a probability
(

(n−1)
n

)
of randomly

being picked. Therefore, we can define the mean aggregate service times including
the effect of absence times as follows:
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1
υi

=

[
(

n−1
n

) K
∑

k=1

G
∑

g=1

λi(k,g)

λi

´

fi(k,g) (x)xdx

]
+

[
1
n

K
∑

k=1

G
∑

g=1

λi(k,g)

λi

˜

fi(k,g) (x) fs (y)(x + y)dydx

]
,

= 1
νi

+ 1
nµs

.

(18.13)

With respect to the variance of the aggregate service time (including absence times)
at the consultation workstations we develop the following expression:

σ 2
υi

=

[
(

n−1
n

) K
∑

k=1

G
∑

g=1

λi(k,g)

λi

´

fi(k,g) (x)
(

x− 1
υi

)2
dx

]
+

[
1
n

K
∑
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G
∑

g=1

λi(k,g)

λi

˜

fi(k,g) (x) fs (y)
(

x + y− 1
υi

)2
dydx

]
,

= σ 2
νi

+
σ 2

s
n + 1

µ2
s

(
n−1
n2

)
.

(18.14)

The above expression is equivalent to that of Hopp and Spearman (2000) and is valid
under the assumption that the combined service times as well as ordinary service
times are independently distributed.

18.3.2.3 Preemptive outages

We refer to service interruptions as preemptive outages. Doctors being called away
on emergencies, answering phone calls, . . . are typical examples. The average time
between two consecutive interrupts is defined as τ f whereas τr refers to the average
time it takes to resolve an interruption. Preemptive outages prove to be more diffi-
cult to model while they occur after the elapsing of a variable amount of time (i.e.
a mean time to interrupt τ f ), rather than after a number of patients being processed.
Under the assumption that the time between two consecutive interrupts is expo-
nentially distributed, expressions for mean and variance have been obtained. With
respect to preemptive outages, we make a distinction between two different scenar-
ios. On the one hand, one might presume preemptive outages to occur only during

Natural service time patient

Nonpreemptive outage time every nth patient

Combined service time patient

Natural service time

Nonpreemptive outage time

... ... Patient nPatient 2Patient 1 ...

Fig. 18.3: The combined service time
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actual service time. As such preemptive outages do not take place during the resolve
times induced by previous outages. Remark that this does not imply that the service
process of a single patient cannot be interrupted more than once. On the other hand,
one might assume preemptive outages to occur during resolve times as well (e.g. as
indicated previously, doctors may be be interrupted when already engaged in resolv-
ing a previous interrupt). While this latter instance can be seen as an extension of
the former, we will first discuss outages occurring exclusively during actual service
time. Define τr0 j

as the resolve time of the jth preemptive outage that occurred dur-
ing the service process of one and the same patient. The mean and variance of the
resolve times are given by τr and σ 2

r . In addition, resolve times of different outages
are assumed to be i.i.d.. The service process of a patient thus faces the probability of
encompassing several interrupts that prolong its service duration. The service time
of a patient (including interrupts) at a workstation i can be expressed as:

1
ωi

=
1
νi

+
J0

∑
j=1

τr0 j
. (18.15)

As such, the random variable 1
ωi

incorporates both the natural service time 1
νi

as well
as the resolve times of interrupts that occurred during service. Moreover, J0 denotes
the number of preemptive outages that occurred during the service process of a unit.
J0 is a random variable that follows a Poisson distribution (i.e. we assume the time
between two consecutive interrupts to be exponentially distributed) and its mean

and variance both equal
(

1
(νiτ f )

)
. We face a sum of random variables (the resolve

times τr0 j
) in which the number of random variables (the number of interrupts J0),

is a random variable itself. Assume that J0 and τr0 j
(∀ j ∈N) are i.i.d. variables. In

addition assume the mean as well as the variance of τr0 j
to be equal for all j ∈N.

Therefore, the mean and variance of the sum of Ji0 random variables τr0 j
can be

expressed as (Dudewicz and Mishra, 1988):

E [S0] = E [J0]E
[
τr0 j

]
, (18.16)

σ 2
S0

= E [J0]σ 2
r + E

[
τr0 j

]2
σ 2

J0
, (18.17)

where S0 is the random variable representing the sum of J0 resolve times τr0 j
. In

other words we have that:

S0 =
J0

∑
j=1

τr0 j
. (18.18)

The mean and variance of the sum of resolve times can be defined as:

E [S0] =
1
νi

τr

τ f
, (18.19)
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σ 2
S0

=
1
νi

σ2
r + τ2

r

τ f
. (18.20)

The mean aggregate service time including the effect of interrupts may be expressed
as:

E

[
1
ωi

]
=

1
νi

τ f + τr

τ f
. (18.21)

This corresponds to the expression presented in Hopp and Spearman (2000) in
which the natural service time is divided by an availability factor in order to in-
corporate the effect of interrupts. Next we have a look at the variance of the service
times including the effect of preemptive outages during service time. We start with
the approximation of the second moment:

E

[(
1
ωi

)2
]

=

(
σ2

νi
+

1
ν2

i

)(
1 +

τr

τ f

)2

+σ 2
S0

. (18.22)

Using the expression for the second moment we obtain the variance of the service
times including the effect of interrupts:

σ 2
ωi

= σ2
νi

(
1 +

τr

τ f

)2

+σ 2
S0

. (18.23)

This expression once more matches the formula derived in Hopp and Spearman
(2000). The above expressions hold if and only if the Poisson-distributed preemptive
outages take place during service itself. In what follows, we relax this assumption
and allow for interrupts to take place during the resolve times induced by previous
interrupts.

In order to approach this problem, we divide the interrupts into different sets.
Let l (l ∈N) denote the set index. We define τrl j

to be the resolve time of the jth

interrupt belonging to the set of index l (i.e. the interrupt is said to be of order l).
Without loss of generality assume that interrupts of order 0 occurred during actual
service, interrupts of order 1 occurred during the resolve times of interrupts of order
0, . . . . In general, interrupts of order l took place during the resolving of interrupts
of order (l− 1). Figure 18.4 provides further insight. In addition define Sl as the
sum of resolve times corresponding to interrupts of order l. We have that:

Sl =
Jl

∑
j=0

τrl j
, (18.24)

where Jl is the number of interrupts belonging to the set of index l. Jl follows a
Poisson distribution and its mean and variance equal:

E [Jl ] = σ2
Jl

=
1

νiτ f

(
τr

τ f

)l

. (18.25)
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One can infer that:

E [Sl ] =
τr

νiτ f

(
τr

τ f

)l

, (18.26)

σ 2
Sl

=
1

νiτ f

(
τr

τ f

)l (
σ2

r + τ2
r

)
. (18.27)

Using the same reasoning applied previously, one can express the mean aggregate
service time including the effect of all order interrupts as follows:

E

[
1
ωi

]
=

1
νi

τ f

τ f − τr
. (18.28)

Using these parameters, the second moment is expressed as:

E

[(
1
ωi

)2
]

=

(
σ2

νi
+

1
ν2

i

)[
1 +2

τr

τ f − τr
+

(
τr

τ f − τr

)2
]

+
1
νi

σ2
r + τ2

r

τ f − τr
. (18.29)

As a result, the variance of the service time at a workstation i (including the impact
of all order interrupts) is given by:

σ 2
ωi

=
τ2

f σ 2
νi

+ 1
νi

(
τ f − τr

)(
σ2

r + τ2
r

)

(
τ f − τr

)2 . (18.30)

18.3.2.4 Combining preemptive and nonpreemptive outages

In many hospital settings, both preemptive and nonpreemptive outages may surface.
While it is impossible to interrupt the service process in the instance of a nonpre-
emptive outage (e.g. a doctor who arrives late), we only consider the case in which
both types of outages cannot occur simultaneously. The average service time incor-
porating this combined effect at a workstation i can be expressed as:

Actual (natural) service (l = 0)

First order interrupt (l = 1)

Second order interrupt (l = 2)

Third order interrupt (l = 3)

Interrupt 5

Service completion

Interrupt 4Interrupt 3

Interrupt 2

Interrupt 1

Start of actual service

Fig. 18.4: Interrupted service process of a single patient
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where fi f (k,g)
(x) is the probability density function of consultation service times of

a class (k,g) patient at a workstation i including the effect of all order interrupts.

Its mean and variance are given by E
[

1
ωi

]
and σ 2

ωi
respectively. We refer to 1

ψi
as

the effective service time while it equals the service time experienced by the patient
(and as such includes the impact of outages). The variance of the effective service
times at a workstation i may be expressed as:
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(18.32)

These results allow us to take service outages into account when assessing hospital
performance measures.

18.3.2.5 Including the time availability of workstations

It is well known that many services do not operate continuously over time. Consul-
tation and surgery typically operate during certain time intervals (service sessions)
which means that only a proportion of the total available time can be used effec-
tively. Vacation models are often applied to solve this problem. Another way to
handle the problem is to rescale all service processing times so that they fit a preset
uniform time scale. In this study we agreed on a 24 hours per day, 7 days per week
time scale (basically because this is the appropriate time scale for recovery pro-
cesses). Let Ai denote the availability of workstation i; Ai represents the available
time in proportion to the preset uniform time scale. For instance, if a workstation
operates only 6 hours per day, then the availability equals 25%.

When rescaling the service times established in the previous sections, we obtain
the total effective service times:
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1
µi

=
1

Aiψi
,∀i ∈ {1,2, . . . ,6} , (18.33)

1
µi

=
1

Aiνi
∀i ∈ {7,8, . . . ,15} , (18.34)

σ 2
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σ 2
ψi

A2
i

,∀i ∈ {1,2, . . . ,6} , (18.35)

σ 2
i =

σ 2
νi

A2
i
∀i ∈ {7,8, . . . ,15} . (18.36)

The above procedure results in the total effective service times including natural
process time, the effect of outages and the impact of availability of workstations.
The mean total effective service time and its variance can now be used to compute
the squared coefficient of variation of the service times:

C2
si

= σ 2
i µ2

i . (18.37)

18.3.2.6 Squared coefficient of variation of the aggregate arrival process

In order to approximate the parameters of the aggregate arrival process, some more
challenging arithmetics are needed. It was pointed out by Albin (1984) that if at
least one of the interarrival time distributions, constituting the arrival process, does
not stem from a Poisson process, the resulting aggregate interarrival times do no
longer hold the property of independence. As a result the analytical analysis of the
aggregate arrival process becomes highly intractable. Therefore approximations will
be adopted to assess the variance and, more important, the squared coefficient of
variation of the aggregate arrival process. The squared coefficients of variation of the
aggregate arrivals at the different workstations will be extracted using a technique
which was pioneered by Shanthikumar and Buzacott (1981). This technique implies
the use of a set of linear equations which has to be solved in order to obtain the
squared coefficients of variation of the arrivals. This approach is widely adopted in
literature (Askin, 1993) and was later generalized by Lambrecht et al. (1998). Using
the technique that was outlined in Lambrecht et al. (1998), we are given a set of I
equations:

−
I

∑
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λir
2
i j(1−ρ2

i )C
2
ai

+λ jC
2
a j

=
I

∑
i=1

λiri j(ri jρ2
i C2

si
+1− ri j)+ η jC

2
aη j

, (18.38)

where η j and C2
aη j

denote the rate and squared coefficient of variation of the aggre-

gate external arrival process at station j respectively. In addition, ρi represents the
effective traffic intensity at workstation i and equals λi

µi
. While all elements except

the I squared coefficients of variation are known, we are presented with a system
of I equations yielding I unknowns. Solving this set of linear equations provides us
with the I unknown squared coefficients of variation (i.e. C2

ai
;∀i ∈ {1, . . . , I}).
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With all model parameters firmly defined, we now have a solid base to carry
out the performance evaluation of the hospital department. In the upcoming section
we discuss a numerical example of the model presented above and provide some
practical applications.

18.4 Applications

In this section, we discuss a numerical example using the queueing model described
in the previous section. Next, we illustrate the devastating impact of service inter-
ruptions on patient flow times. Subsequently, we show the potential gains obtained
by pooling hospital resources. Finally, we present an optimization model to deter-
mine the optimal number of patients to be treated during a service session.

18.4.1 Numerical example

The numerical example presented in this section builds on data gathered at the or-
thopedic department of the Middelheim hospital in Antwerpen (Belgium). Using
these empirical data as inputs, the flow time of patients at the hospital department
may be assessed using so-called flow time expressions. A variety of flow time ex-
pressions are available in the queueing literature. A previous study has shown the
Kingman equation to yield accurate results when assessing the flow times of patients
in complex hospital systems (Creemers et al., 2007). As such, in the remainder of
this article, we will use the Kingman equation to determine patient flow times. With
respect to the Kingman equation, one can define the expected flow time of a patient
at workstation i as follows (Hopp et al., 2000):

E [Wi] =

(
C2

ai
+C2

si

2

)
ρ
√

2(mi+1)−1
i

mi (1−ρi)


 1

µi
+

1
µi

, (18.1)

where mi denotes the number of parallel servers at workstation i (mi = 25 ∀i ∈
{13,14,15}). If only a single server is present (i.e. at workstations i, i∈{1,2, . . . ,12}),
no pooling is assumed to take place and the formula reduces to (Kingman, 1962):

E [Wi] =

(
C2

ai
+C2

si

2

)(
ρi

1−ρi

)
1
µi

+
1
µi

. (18.2)

Using the empirical data, resulting flow times at each of the workstations are ob-
tained. The results are presented in Table 18.2 and Table 18.3 (all results are ex-
pressed in minutes unless indicated otherwise). While no waiting occurs at the wards
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(i.e. the process of recovery takes place immediately after surgery) the performance
measures of workstations 13 to 15 are not included here.

Table 18.2: Summary Table of the model results (workstations 1 to 6)

i 1 2 3 4 5 6

1
ψi

24.85 24.85 24.85 24.85 24.85 24.85
1
µi

310.7 690.4 310.7 167.9 155.3 248.5
C2

si
1.334 1.334 1.334 1.334 1.334 1.334

1
λi

329.8 741.5 317.0 174.5 167.5 268.8
C2

ai
1.026 1.418 1.051 0.759 0.752 0.952

Ai 0.080 0.036 0.080 0.148 0.160 0.100
ρi 0.942 0.931 0.980 0.962 0.927 0.925
E [Wi] (days) 4.360 9.402 12.90 3.219 1.547 2.593

Table 18.3: Summary Table of the model results (workstations 7 to 12)

i 7 8 9 10 11 12

1
νi

110.0 96.20 89.17 57.50 56.35 93.18
1
µi

1048 2004 1351 845.7 593.2 1035
C2

si
0.266 0.406 0.203 0.171 0.165 0.274

1
λi

1,111 2,111 1,380 883.4 620.5 1,073
C2

ai
1.089 1.121 1.074 1.058 1.068 1.070

Ai 0.105 0.048 0.066 0.068 0.095 0.090
ρi 0.943 0.950 0.979 0.957 0.956 0.965
E [Wi] (days) 8.907 21.38 29.42 8.674 5.918 14.14

With respect to consultation, no distinction was made between the different sur-
geons. One can observe that the effective service time (including the effect of inter-
rupts and absences) amounts to 24.85 minutes (the natural service time amounting
to 15 minutes). The coefficient of variation equals 1.334 (the natural coefficient
of variation amounting to 0.6386). Arrival rates and their variances depend on the
number of patients visiting each surgeon. The utilization rates of the surgeons are
all very high, which translates into significant patient flow times varying from 1.5
days to 12.9 days.

Similar observations may be made with respect to surgery. Here we allow sur-
geons to have different processing times depending on the type of surgery they per-
form. In addition, observe the significantly longer waiting times for patients at the
surgery level.
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18.4.2 The impact of interrupts

The impact of interrupts on medical practice has been observed by Harvey, Jarrett
and Peltekian (1994), Lehaney, Clarke and Paul (1999), Chisholm et al. (2001),
France, Levin, Hemphill, Chen, Rickard, Makowski, Jones and Aronsky (2005),
Volpp and Grande (2006), Tucker and Spear (2006) and Gabow, Karkhanis, Knight,
Dixon, Eiser and Albert (2006) among others. All agree on the detrimental effects
of interrupts on patient flow time. In order to demonstrate these detrimental effects,
we present a number of scenarios in which we gradually reduce the impact of inter-
rupts. We build on the setting of the hospital department discussed previously. To
maintain transparency, we focus on a single consultation workstation (i.e. the only
workstations that are susceptible to interrupts during the service process). We adjust
the mean time to interrupt (i.e. τ f ) at this workstation to assess the varying impact
of interrupts (all other model parameters remain unchanged). The results are given
in Table 18.4. Note that we used the third workstation to study the impact of var-
ious degrees of interrupts (the results corresponding to the numerical example are
indicated in bold). Figure 18.5 illustrates the phenomenon graphically.

Table 18.4: Impact of interrupts (expressed in minutes) on patient flow time (ex-
pressed in days) at a single workstation

τ f E [W ] ρ τ f E [W ] ρ τ f E [W ] ρ

10.4 183.2 0.998 11.6 16.24 0.984 18 4.433 0.943
10.5 93.58 0.997 11.8 14.35 0.982 20 3.393 0.936
10.6 63.28 0.995 12.0 12.90 0.980 25 3.288 0.924
10.7 48.05 0.994 12.5 10.43 0.975 30 2.968 0.916
10.8 38.88 0.993 13.0 8.880 0.971 40 2.652 0.907
10.9 32.76 0.992 14.0 7.029 0.963 60 2.401 0.897
11.0 28.38 0.990 15.0 5.966 0.957 80 2.294 0.893
11.2 22.54 0.988 16.0 5.276 0.952
11.4 18.82 0.986 17.0 4.791 0.947

It is clear that heavy traffic systems (i.e. systems which operate under high work-
load) benefit greatly from even a small reduction in utilization rate. Unfortunately,
only limited means are available to achieve such a reduction in utilization rate. A
variety of options arise:

• The most obvious way to reduce the effective utilization is process improvement.
Continuous improvement and six sigma programs are very beneficial. Reducing
the frequency of interrupts can be classified in this category.

• Expand capacity; hospital resources such as operating theatres, scanners and
other equipment are often operating at maximum capacity. Expanding capacity
would be an effective means to reduce hospital workload. However, expanding
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capacity is often very expensive or is simply impossible (e.g. due to legal con-
straints).

• Limit patient volumes; a reduction in hospital workload might also be achieved
by limiting the amount of patients receiving treatment. Pursuing this option how-
ever, results in loss of hospital income and a reduced level of service.

In the literature, valuable insights are provided that offer guidance in the quest to
reduce the impact of interrupts. For instance, Harvey et al. (1994) suggest the pool-
ing of paging of doctors (next to telephone calls, paging calls are one of the largest
sources of interrupts) in order to decrease variability in individual paging patterns.
France et al. (2005) propose the use of information systems (e.g. an electronic white-
board) and team training to enhance performance. Tucker et al. (2006) suggest the
redesign of treatment processes (e.g. outsourcing of administrative tasks) in order
to make service more robust against preemptive outages. In addition Tucker et al.
(2006) and Volpp et al. (2006) propose the filtering of non-urgent communication
towards medical staff. These and other practical guidelines enable hospital decision
makers to minimize the impact of interrupts on the service process.

18.4.3 The impact of pooling

Pooling refers to the aggregation (consolidation) of the demand from multiple items
into one, such that the consolidated demand can be satisfied from a single buffer.
More specifically, capacity pooling refers to the idea of sharing available capacity
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Fig. 18.5: Varying impact of interrupts (expressed in minutes) and the effect on
patient waiting times (expressed in days)
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among various sources of demand (e.g. patient classes). In a hospital setting this
refers to the sharing of expensive diagnostic equipment, wards or labs. In a non-
pooling environment, each resource fulfills its own demand, relying solely on its
own capacity. In a pooled environment, demand is aggregated and fulfilled from a
single shared facility. A rich literature on pooling in queueing systems exists. For an
excellent overview, we refer to Benjaafar and Cooper (2005) and Yu and Benjaafar
(2006).

It has long been known that pooling is beneficial to system performance. More
specifically, pooling allows to maintain a specified level of service quality (e.g. pa-
tient flow times) with less capacity requirements. The beneficial effect of pooling
stems from the increased ability of the system to cope with variability. For instance,
in pooled systems, it is much less likely for the queue to be empty. As such, the im-
pact of variability in the arrival pattern of patients (patients may arrive early, late or
may even fail to show up at all) or in the service process of surgeons is minimized.

In this section, we demonstrate the impact of server pooling by means of a small
experiment. We build on the setting of the hospital department discussed in the
previous sections. In the experiment the servers at the consultation and surgery level
are pooled. The following assumptions are imposed:

• Patients are treated by the first surgeon available for service, even if the patient
does not belong to the patient population corresponding to that surgeon.

• Surgeon working schedules are identical and no structural constraints are im-
posed (i.e. it should be possible to service 6 patients simultaneously).

Returning to our example setting, the six consultation and the six surgery worksta-
tions are replaced by a single consultation and a single surgery workstation respec-
tively. Each of these workstations has six parallel servers in operation. The resulting
queueing network contains five workstations i, i ∈ {1,2, . . . ,5}. Let station 1 to 5
represent consultation, surgery, day hospital, internal ward and external ward re-
spectively. When retaining all other characteristics of the setting discussed in the
previous sections, one can use the multiserver Kingman equation to obtain patient
flow times. The resulting performance measures are presented in Table 18.5 (the
non-pooled flow times are the weighted average of the flow times observed at the
consultation and surgery workstations presented in section 18.4.1).

The benefits of pooling are clear. Without increasing capacity or altering any of
the other system characteristics (except of course the pooling of capacity) we are
able to reduce patient flow times at the consultation and surgery level by a factor of
8.73 and 7.74 respectively.

Unfortunately, it is often impossible to achieve such a high degree of pooling in
a real life hospital system. One quickly runs into a number of limitations:

• Unique relation between patient and surgeon; patients will often refuse to consult
another surgeon.

• Limited flexibility of resources; each surgeon has his own specialization. It is
often impossible, even for surgeons at the same department, to pass on jobs. In
other words, the flexibility of surgeons is limited.



18 Modeling a Hospital Queueing Network 791

Table 18.5: Summary table of the model results after pooling (consultation and
surgery workstations)

i 1 2

1
µi

246.90 995.87
C2

si
1.334 0.224

1
λi

43.56 173.2
C2

ai
0.996 1.075

Ai 0.101 0.079
ρi 0.944 0.958
E [Wi] (pooled) 0.518 1.612
E [Wi] (non-pooled) 4.523 12.47

• Resources often operate at different time instances; for pooling to take place
surgeons need to operate at the same time instance. Due to busy schedules and
other limitations, this is not always possible.

• Structural characteristics may further limit the practical applicability of pooling.
For instance, if only two operating theatres are available, it is impossible to pool
the capacity of the six surgeons at the surgery level. In other words, the bottleneck
has shifted from the surgeons onto the number of available operating theatres.

Notwithstanding these constraints, it should be clear that even a small amount of
pooling may yield significant reductions in patient flow time. Therefore the pooling
of hospital resources is a worthwhile matter for further investigation.

18.4.4 Finding the optimal number of patients in a service session

The impact of absences at the start of a consultation or surgery session is discussed
in Babes et al. (1991), Liu et al. (1998a), Liu and Liu (1998b) and Easton et al.
(2005). There is a general agreement on the disruptive effect of absences on patient
flow time. Easton et al. (2005) identify robust staffing, scheduling and recovery
practices to minimize the effects of absences. Liu et al. (1998b) acknowledge the
importance of consultation and surgery block size (i.e. the number of patients treated
during a consultation session) and propose a what-if simulation approach in order
to determine the best block size.

In fact, the relationship between block size and patient flow time is akin to the
relationship between batch size and waiting time (in the presence of setups be-
tween batches in a manufacturing setting). As such the convex relationship first
described by Karmarkar (1987) may also be observed here. In this view, Vandaele,
Van Nieuwenhuyse and Cupers (2003b) determine the optimal size of patient groups
queueing in front of a nuclear resonance scanner. We build on the model of Lam-
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brecht and Vandaele (1996) in order to determine the optimal number of patients
that receive treatment during a service session.

Two conflicting effects may be observed:

• The grouping effect; referring to the time required to assemble a batch of size n.
The larger the batch size, the longer patients will have to wait before receiving
service.

• The saturation effect; the smaller the batch size, the more service sessions are
initiated, the larger the probability of having an absence of medical staff at the
start of a service session.

We illustrate these effects in Figure 18.6. The combination of both effects results in
a convex relationship, which implies that there is an optimal group size minimizing
average patient lead time. In what follows, we develop the mathematical model to
address the batch size decision problem. The objective is to determine the batch size
that minimizes the average patient lead time.

In this section we build on the third workstation discussed in the base case (other
workstations at the consultation and surgery level may also be analyzed in a similar
fashion). To maintain the transparency of the model, we omit the index i referring
to the original workstation used in this experiment. Other than the batching of pa-
tients, the dynamics of the workstation remain unchanged (as compared to previous
sections).

Batch size

Average patient flow time

Grouping effect

Saturation effect

Average patient flow time

Fig. 18.6: Convex relationship between average patient flow time and batch size
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Once sufficient patients are available, a batch (i.e. the equivalent of a service ses-
sion workload) is created and is introduced into a queue (it is clear that this group-
ing does not imply that patients have to wait physically in the hospital). Whenever
the server is idle, the batch as a whole receives service. After service, the batch is
separated and patients resume their individual routings. A batch of patients is char-
acterized by:

• a batch size n,
• a batch arrival rate λb,
• a coefficient of variation of the interarrival times of the batches C2

ab
.

• a batch service rate µb,
• a coefficient of variation of the service times of the batches C2

sb
,

where

λb = nλ , (18.3)

C2
ab

=
C2

a

n
, (18.4)

µb = nµ , (18.5)

C2
sb

=
C2

s

n
(18.6)

and λ , C2
a , µ , C2

s are the respective arrival rate, the squared coefficient of variation
of the interarrival times, the service rate and the squared coefficient of variation of
the service times of the individual patients visiting the third workstation.

The flow time of a patient in this system contains the following elements:

• The collection time; the time required until sufficient patients have arrived and a
batch may be processed. The larger the batch size, the longer it takes to gather
sufficient patients in order to perform a batch service.

• The waiting time of the batch itself; other batches (i.e. service sessions) may have
to be serviced first.

• The absence time; prior to the service of a batch of patients, there exists a proba-
bility that the surgeon (or another crucial hospital resource) is absent. The batch
of patients has to wait for the surgeon in order to receive service. This absence
time can be considered as a setup time for the batch.

• The actual processing of individual patients in the batch.

We visualize the flow time of a patient in Figure 18.7. The expected flow time of a
single patient in the system can be expressed as (Lambrecht and Vandaele, 1996):

E [W ] =
n− 1
2λ

+E [Wq]+
1
µs

+
n + 1
2µ

. (18.7)

This flow time clearly consists of four building blocks. The first term corresponds to
the average time a patient will have to wait until a group of size n has been formed
(i.e. the collection time). The term E [Wq] stands for the average time that a batch
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of patients spends waiting in queue until the server becomes idle. We approximate
E [Wq] by means of the Kingman equation and obtain:

E [Wq] =

(
C2

ab
+C2

sb

2

)(
ρ

1−ρ

)
1
µb

, (18.8)

where ρ is the effective utilization rate at the third workstation and is given by
(Lambrecht et al., 1996):

ρ =
nλ

nµ + µs
. (18.9)

The third term corresponds to the absence time that is incurred at the start of a
service session in which a batch of patients receives treatment. Both the second and
third term are the same for all patients in the batch. The last term indicates how
much time a patient spends on processing itself. At this point the model is complete
and we can formally state our optimization problem:

Minimize E [W ] , E [W ] = n−1
2λ + E [Wq]+

1
µs

+ n+1
2µ ,

s.t. ρ < 1,
n≥ 1.

When using the setting of the hospital department outlined in the previous sec-
tions, we are able to provide a numerical example. To maintain transparency, we
select a single consultation workstation and assess different values of n in order
to obtain the optimal number of patients to be treated during a service session. A
summary of the resulting figures is presented in Table 18.6.

An illustration is provided in Figure 18.8. One can deduce that, for this particular
workstation, the optimum is reached when treating 8 patients during each service
session. More precisely, given a set of input parameters (absence probability, service

Collection time
Batch waiting time

Absence
Processing time

Flow time of the first patient

Processing time of the first patient

Waiting time first patient prior to batch is created

Batch created

Fig. 18.7: Visualization of the different phases of the batch flow time
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Table 18.6: Summary table of the model results featuring different batch sizes

n 1
µb

C2
sb

ρ E [W ]

3 82.063 0.2276 1.0787 NA
4 99.418 0.1707 0.9802 27.460
5 116.77 0.1365 0.9210 8.2226
6 134.13 0.1138 0.8815 6.3769
7 151.48 0.0975 0.8534 5.8782
8 168.84 0.0853 0.8322 5.7761
9 186.19 0.0758 0.8162 5.8441
10 203.54 0.0683 0.8027 6.0004
11 220.90 0.0621 0.7919 6.2086
12 238.25 0.0569 0.7830 6.4497
13 255.61 0.0525 0.7754 6.7132
14 272.96 0.0488 0.7689 6.9924
15 290.32 0.0455 0.7632 7.2831
16 307.67 0.0427 0.7583 7.5826
17 325.03 0.0402 0.7540 7.8888
18 342.38 0.0379 0.7501 8.2004
19 359.73 0.0359 0.7466 8.5162
20 377.09 0.0341 0.7435 8.8355

and interarrival times, . . . ) we are able to determine the optimal number of patients
to be treated during a service session.
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E[W]

n

Fig. 18.8: Finding the optimal number of patients
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18.5 Conclusion

In this article we discuss some of the features that differ when modeling healthcare
queueing models on the one hand and traditional manufacturing models on the other
hand. We show how to implement these features in a hospital queueing network. We
used the parametric decomposition approach to assess performance measures at the
hospital queueing network. In addition, we develop new expressions to model ser-
vice outages that are typical in services in general and in healthcare in particular.
The resulting queueing network is used to construct a numerical example and to
illustrate a number of practical applications. First we demonstrate the detrimental
effect of service interrupts on patient flow times. Next, the beneficial effect of pool-
ing hospital resources is illustrated. Finally, we develop an optimization model that
is able to determine the optimal number of patients treated during a single service
session.

Notwithstanding these accomplishments, there is still room for improvement.
More specifically, improvements may be made with respect to the modeling of
time in queueing systems. Open problems include the modeling of time-dependent
demand rates, increasing workload as waiting times increase (patients need to be
monitored, receive care, . . . ), . . . . Moreover, given the inherent high degree of vari-
ability in service times, hospitals often use flexible working schedules that allow
for overtime, variable server capacity and other deviations from the standard queue-
ing model topology. Such deviations add to the complexity of the problem, making
“time” a major modeling issue.

References

1. Askin RG (1993) Modeling and analysis of manufacturing systems. Wiley, New York
2. Albin SL (1984) Approximating a point process by a renewal process, II: superposition arrival

processes to queues. Operations Research 32:1133–1162
3. Babes M, Sarma GV (1991) Out-patient queues at the Ibn-Rochd health center. Journal of the

Operational Research Society 42:845–855
4. Benjaafar S, Cooper WL (2005) On the benefits of pooling in production-inventory systems.

Management Science 51:548–565
5. Bitran GR, Tirupati D (1988) Multiproduct queueing networks with deterministic routing:

decomposition approach and the notion of interference. Management Science 34:75–100
6. Buzacott JA, Shanthikumar JG (1985) Queueing Models of Dynamic Job Shops. Management

Science 31:870–887
7. Chisholm CD, Collison EK, Nelson DR, Cordell WH (2000) Emergency department work-

place interruptions: are emergency physicians “interrupt-driven” and “multitasking”. Aca-
demic Emergency Medicine 7:1239–1243

8. Chisholm CD, Dornfeld AM, Nelson DR, Cordell WH (2001) Work interrupted: a comparison
of workplace interruptions in emergency departments and primary care offices. Annals of
Emergency Medicine 38:146–151

9. Creemers S, Lambrecht MR (2007) Modeling a healthcare system as a queueing network: the
case of a Belgian hospital. In: FBE publications: Research Reports and Discussion papers.
Department of Decision Sciences & Information Management, Research Center for Opera-



18 Modeling a Hospital Queueing Network 797

tions Management, Catholic University Leuven. Available via KULeuven.
http://bib.kuleuven.be/ebib/wp.htm.Cited1Aug2008

10. Doshi BT (1986) Queueing systems with vacations - a survey. Queueing Systems 1:29–66
11. Dudewicz EJ, Mishra SN (1988) Modern mathematical statistics. John Wiley Sons, New York
12. Easton FF, Goodale JC (2005) Schedule recovery: unplanned absences in service operations.

Decision Sciences 36:459–488
13. France DK, Levin S, Hemphill R, Chen K, Rickard D, Makowski R, Jones I, Aronsky D

(2005) Emergency physicians’ behaviors and workload in the precense of an electronic white-
board. International Journal of Medical Informatics 74:827–837

14. Gabow PA, Karkhanis A, Knight A, Dixon P, Eiser S, Albert RK (2006) Observations of
residents’ work activities for 24 consecutive hours: implications for workflow redesign. Aca-
demic Medecine 81:766–775

15. Green LV, Soares J (2007) Computing Time-Dependent Waiting Time Probabilities in
M(t)/M/s(t) Queueing Systems. M&SOM Manufacturing & Service Operations Management
9:54–61

16. Hall RW (2006) Patient Flow: The New Queueing Theory for healthcare. OR/MS Today
23:36–40

17. Hall RW, Belson D, Muralli P, Dessouky M (2006) Modeling patient flows through the health-
care system. In: Hall RW (ed) Patient flow: reducing delay in healthcare delivery, Springer
Science, New York

18. Haskose A, Kingsman BG, Worthington D (2002) Modelling flow and jobbing shops as
a queueing network for workload control. International Journal of Production Economics
78:271–285

19. Haque L, Armstrong MJ (2007) A survey of the machine interference problem. European
Journal of Operational Research 179:469–482

20. Harvey R, Jarrett PG, Peltekian KM (1994) Patterns of paging medical interns during night
calls at two teaching hospitals. Canadian Medical Association Journal 151:307–311

21. Hopp WJ, Spearman L (2000) Factory Physics. McGraw-Hill Higher Education, New York
22. Jackson JR (1957) Network of waiting lines. Operations Research 5:518–521
23. Jackson JR (1963) Jobshop-like queueing systems. Management Science 10:131–142
24. Karmarkar US (1987) Lot sizes, lead times and in-process inventories. Management Science

33:409–418
25. Khinchin AJ (1960) Mathematical Methods in the Theory of Queueing. Hafner, New York
26. Kingman JFC (1962) On queues in heavy traffic. Journal of the Royal Statistical Society.

Series B (Methodological) 24:383–392
27. Lambrecht MR, Vandaele NJ (1996) A general approximation for the single product lot sizing

model with queuing delays. European Journal of Operational Research 95:73–88
28. Lambrecht MR, Ivens PL, Vandaele NJ (1998) ACLIPS: a capacity and lead time integrated

procedure for scheduling. Management Science 44:1548–1561
29. Lariviere MA, Van Mieghem JA (2004) Strategically seeking service: how competititon can

generate Poisson arrivals. Manufacturing & Service Operations Management 6:23–40
30. Lehaney B, Clarke SA, Paul RJ (1999) A case of intervention in an outpatient department.

Journal of the Operational Research Society 50:877–891
31. Liu L, Liu X (1998a) Block appointment systems for outpatient clinics with multiple doctors.

The Journal of the Operational Research Society 49:1254–1259
32. Liu L, Liu X (1998b) Dynamic and static job allocation for multi-server systems. IIE Trans-

actions 30:845–854
33. Marshall KT (1968) Some inequalities in queuing. Operations Research 16:651–668
34. Palm C (1943) Intensittsschwankungen im Fernsprechverkehr. Ericsson Technics 44:1–89
35. Roth A, Van Dierdonck R (1995) Hospital resource planning: concepts, feasibility and frame-

work. Production and Operations Meanagement 4:2–29
36. Shanthikumar JG, Buzacott JA (1981) Open queueing network models of dynamic job shops.

International Journal of Production Research 19:255–266



798 Stefan Creemers and Marc Lambrecht

37. Sethuraman K, Tirupati D (2005) Evidence of bullwhip effect in healthcare sector: causes,
consequences and cures. International Journal of Services and Operations Management
1:372–394

38. Stecke KE, Aronson JE (1985) Review of operator/machine interference models. Journal of
Production Research 23:129–151

39. Suri R, Sanders JL, Kamath M (1993) Performance evaluation of production networks. In:
Graves SC et al. (ed) Handbooks in Operations Research and Management Science, Vol. 4:
Logistics of Production and Inventory, Elsevier Science Publishers, New York

40. Takagi H (1988) Queueing analysis of polling models. ACM Computing Surveys 20:5–28
41. Tian N, Zhang ZG (2006) Vacation queueing models. Springer Science, New York
42. Tucker AL, Spear SJ (2006) Operational failures and interruptions in hospital nursing. Health

Services Research 41:643–662
43. van Merode GG, Groothuis S, Hasman A (2004) Enterprise resource planning for hospitals.

International Journal of Medical Informatics 73:493–501
44. Vandaele N, De Boeck L (2003a) Advanced resource planning. Robotics and Computer Inte-

grated Manufacturing 19:211–218
45. Vandaele N, Van Nieuwenhuyse I, Cupers S (2003b) Optimal grouping for a nuclear magnetic

resonance scanner by means of an open queueing model. European Journal of Operational
Research 151:181–192

46. Vissers JMH, Bertrand JWM, De Vries G (2001) A framework for production control in
health care organizations. Production Planning & Control 12:591–604

47. Volpp KGM, Grande D (2006) Residents’ suggestions for reducing errors in teaching hospi-
tals. The New England Journal of Medicine 348:851–855

48. Whitt W (1983) The queueing network analyzer. The Bell System Technical Journal 62:2779–
2815

49. Whitt W (1994) Towards better multi-class parametric-decomposition approximations for
open queueing networks. Annals of Operations Research 48:221–248

50. Whitt W (1995) Variability functions for parametric-decomposition approximations of queue-
ing networks. Management science 41:1704–1715

51. Whitt W (1999a) Decomposition approximations for time-dependent Markovian queueing
networks. Operations Research Letters 24:97–103

52. Whitt W (1999b) Partitioning Customers into Service Groups. Management Science
45:1579–1592

53. Yu Y, Benjaafar S, Gerchak Y (2006) On service capacity pooling and cost sharing among
independent firms. Department of Mechanical Engineering, University of Minnesota.
Available via University of Minnesota.
http://www.ie.umn.edu/faculty/faculty/pdf/ybg06.pdf.
Cited1Aug2008


	Cover
	International Series in OperationsResearch & Management ScienceVolume 154
	Queueing Networks
	ISBN 9781441964717
	Preface
	Part 1. Exact analytical results, chapters 1–7
	Part 2. Monotonicity and comparison results, chapters 8–9
	Part 3. Diffusion and fluid results, chapters 10–12
	Part 4. Computational and approximate results, chapters 13–15
	Part 5. Selected applications, chapters 16–18
	Acknowledgments

	Contents
	List of Contributors


	Chapter 1 On Practical Product Form Characterizations
	A: Product Forms: Single Station Hierarchy
	1.1 Introduction
	1.2 Product Forms: Three Balances
	1.2.1 Station Balance: B-D or Erlang-Engset systems
	1.2.2 Class balance: Coordinate convex property (CCP)
	1.2.2.1 Two class coordinate convex case
	1.2.2.2 Class Balance and Product Form
	1.2.2.3 More examples

	1.2.3 Job Local Balance: Necessity
	1.2.3.1 Introduction: single server system
	1.2.3.2 Instructive FCFS case
	1.2.3.3 LCFS-pre case

	1.2.4 LCFS-pre case: Nonexponential
	1.2.5 Symmetric Disciplines and Job-Local-balance (JLB)

	1.3 Invariant Disciplines and JLB
	1.3.1 Invariance Condition
	1.3.2 Service invariant examples
	1.3.3 A generalized symmetric insensitivity result

	1.4 An application, literature discussion and hierarchy review
	1.4.1 An M|G|c|c+m application
	1.4.2 Literature discussion
	1.4.3 A hierarchy review


	B: Product Forms: Tandem and Cluster Structures
	1.5 Tandem Queues
	1.5.1 Introduction
	1.5.2 Product Form Tandem Queues
	1.5.3 Service examples
	1.5.4 Blocking examples
	1.5.5 Mixed examples

	1.6 Jacksonian clusters
	1.6.1 A Jackson cluster
	1.6.2 A restricted Jackson cluster
	1.6.3 A conservative product form protocol

	1.7 Product form bounds for networks of restricted clusters
	1.7.1 Instructive tandem extension
	1.7.2 A Jackson Tandem
	1.7.3 A nested case
	1.7.4 Further illustrative examples
	1.7.4.1 A ClusterWith Parallel Stations
	1.7.4.2 An Overflow Example
	1.7.4.3 A breakdownModel

	1.7.5 An Optimal Design Application

	1.8 A hospital application
	1.8.1 Motivation
	1.8.2 Model formulation
	1.8.3 Bounds and application

	1.9 Evaluation
	1.9.1 Literature
	1.9.2 Review Part B
	1.9.3 Some remaining questions


	Acknowledgements
	References

	Chapter 2 Order Independent Queues
	2.1 Introduction
	2.2 The OI Queue
	2.2.1 The Definition of an OI Queue
	2.2.2 The Implications of the OI Conditions
	2.2.3 The Stationary Distribution
	2.2.4 Models Covered by the OI Class
	2.2.4.1 BCMP Models in the OI Class
	2.2.4.2 The MSCCC and MSHCC Queues


	2.3 Numerical Techniques for the OI Queue
	2.3.1 Aggregating the State Space
	2.3.2 The Performance Measures: the MSCCC Queue
	2.3.2.1 InvariantMeasures over Special Sets
	2.3.2.2 The Expected Queue Length


	2.4 The OI Loss Queue
	2.4.1 The Stationary Distribution
	2.4.2 The Performance Measures: the MSCCC Loss Queue
	2.4.2.1 InvariantMeasures over Special Sets
	2.4.2.2 The Expected Queue Length

	2.4.3 OI Loss Networks

	2.5 OI Applications
	2.5.1 Multiported Memory
	2.5.2 A Messaging Card
	2.5.3 Multilayer Window Flow Control
	2.5.4 Machine Scheduling Model
	2.5.5 Blocked Calls Cleared
	2.5.6 Blocked Calls Queued
	2.5.7 Blocked Calls Queued with Source Rejection
	2.5.8 Local and Long Distance Calls
	2.5.9 Local and Transit Calls
	2.5.10 Hierarchical Tree Networks
	2.5.11 Local and External Networks
	2.5.12 Transit Calls among Networks

	2.6 An Algorithm to Compute the Performance Measures of the MSCCC
	References

	Chapter 3 Insensitivity in Stochastic Models
	3.1 Introduction
	3.2 The Erlang Loss System as a Symmetric Queue
	3.3 The Erlang Loss System as a GSMP
	3.4 Insensitive Queueing Networks
	3.5 Non-Standard Insensitive Models
	3.6 Conclusion
	Acknowledgement
	References

	Chapter 4 Palm Calculus, Reallocatable GSMP and Insensitivity Structure
	4.1 Introduction
	4.2 Shift operator group
	4.3 Point processes
	4.4 Palm distribution
	4.5 Inversion formula
	4.6 Detailed Palm distribution
	4.7 Time and event averages
	4.8 Rate conservation law
	4.9 PASTA: a proof by the rate conservation law
	4.10 Relationship among the queueing length processes observed at different points in time
	4.11 An extension of the rate conservation law
	4.12 Piece-wise deterministic Markov process (PDMP)
	4.13 Exponentially distributed lifetime
	4.14 GSMP and RGSMP
	4.15 Exponential and non-exponential clocks in RGSMP
	4.16 Product form decomposability
	4.17 Applications to queues and their networks
	4.18 Further insensitivity structure in RGSMP
	4.19 Bibliographic notes
	References

	Chapter 5 Networks with Customers, Signals, and Product Form Solutions
	5.1 Introduction
	5.2 Quasi-Reversibility of Queues
	5.3 Quasi-Reversibility of Queues with Triggered Departures
	5.4 Networks of Quasi-Reversible Nodes
	5.5 Networks with Signals and Triggered Movements
	5.6 Networks with Positive and Negative Signals
	5.6.1 Single Class of Positive and Negative Signals
	5.6.2 Multiple Classes of Positive and Negative Signals

	5.7 Necessary and Sufficient Conditions for Product Form
	5.8 Quasi-Reversibility Revisited
	5.9 Networks with Random Customer Shuffling
	5.10 Conclusion
	References

	Chapter 6 Discrete Time Networks with Product Form Steady States
	6.1 Introduction
	6.2 Bernoulli Servers with Different Customer Types and state-dependent arrivals
	6.3 Closed Cycles of Bernoulli Servers
	6.3.1 Steady State Behaviour and Arrival Theorem
	6.3.2 Delay Times for Customers in a Closed Cycle
	6.3.3 Computational Algorithms for Closed Cycles of State Independent Bernoulli Servers
	6.3.4 Large Cycles of State Dependent Bernoulli Servers

	6.4 Open Tandems of Bernoulli Servers with State Dependent Arrivals
	6.4.1 Steady State and Arrival Theorem
	6.4.2 Delay Times for Customers in an Open Tandem
	6.4.3 Open Tandems of Unreliable Bernoulli Servers

	6.5 Networks with Doubly Stochastic and Geometrical Servers
	6.5.1 Common Properties of Doubly Stochastic and Geometrical Server
	6.5.2 The Doubly Stochastic Server
	6.5.3 The Geometrical Server
	6.5.4 Networks of Doubly Stochastic and Geometrical Nodes

	6.6 Batch Service and Movements Networks
	6.6.1 The General Network Model
	6.6.2 Walrand’s S–Queues and Networks
	6.6.3 Closed Networks of Unreliable S–Queues
	6.6.4 Networks with Triggered Batch Movements

	References

	Chapter 7 Decomposition and Aggregation in Queueing Networks
	7.1 Introduction
	Decomposition
	Aggregation
	Examples and outline

	7.2 Model
	7.2.1 The nodes
	7.2.2 Interaction between the nodes
	7.2.3 The network

	7.3 Decomposition
	7.4 Aggregation
	7.5 Examples
	7.5.1 Quasi-reversible nodes linked via state-dependent routing
	7.5.2 Biased local balance
	7.5.3 A pull network
	7.5.4 An assembly network

	References

	Chapter 8 Stochastic Comparison of Queueing Networks
	8.1 Introduction
	8.1.1 Jackson networks
	8.1.2 Gordon-Newell networks
	8.1.3 Ergodicity of classical networks

	8.2 Stochastic monotonicity and related properties for classical networks
	8.2.1 Stochastic orders and monotonicity
	8.2.1.1 Discrete time
	8.2.1.2 Continuous time

	8.2.2 Stochastic monotonicity and networks
	8.2.3 Bounds in transient state
	8.2.4 Bounds in stationary state
	8.2.5 Sojourn times in networks
	8.2.5.1 Dependence properties for sojourn times
	8.2.5.2 Sojourn times in closed networks


	8.3 Properties of throughput in classical networks
	8.3.1 Uniform conditional variability ordering, a relation between closed and open networks
	8.3.2 Effect of enlarging service rates in closed networks
	8.3.3 Majorization, arrangement and proportional service rates
	8.3.4 Throughput and number of jobs

	8.4 Routing and correlations
	8.4.1 Correlation inequalities via generators
	8.4.2 Doubly stochastic routing
	8.4.3 Robin-Hood transforms
	8.4.4 Dependence orderings and monotonicity

	8.5 Jackson networks with breakdowns
	8.5.1 Product formula
	8.5.2 Bounds via dependence ordering for networks with breakdowns
	8.5.2.1 Dependence ordering of Jackson networks with breakdowns


	8.6 General networks
	8.6.1 Dependence and variability in input
	8.6.2 Comparison of workloads
	8.6.2.1 Workload in parallel queues
	8.6.2.2 Workload in batch queues

	8.6.3 Throughput in general networks

	References

	Chapter 9 Error Bounds and Comparison Results: The Markov Reward Approach For Queueing Networks
	A: General results
	9.1 Motivation
	9.1.1 A first example
	9.1.1.1 Applications and solvability
	9.1.1.2 Instructive breakdown example
	9.1.1.3 Two questions

	9.1.2 Two more examples
	9.1.2.1 Finite Tandem Queues
	9.1.2.2 Finite Jackson Networks

	9.1.3 Objectives
	9.1.4 Approach
	9.1.5 Outline

	9.2 Stochastic Comparison.
	9.2.1 Preliminaries
	9.2.2 Stochastic comparison
	9.2.3 Stochastic comparison failure

	9.3 Markov reward approach
	9.3.1 Preliminaries
	9.3.2 Comparison Result
	9.3.3 Error bound Result
	9.3.4 Truncation Error Bound
	9.3.5 Comparison of MRA and SC


	B: Applications
	9.4 Application 1: Instructive Breakdown Example
	9.4.1 Analytic bounds for the bias-terms
	9.4.2 Comparison Result
	9.4.3 Error Bounds

	9.5 Application 2: Finite Tandem Queue
	9.5.1 Problem Motivation
	9.5.2 Comparison Result (Bounds)
	9.5.3 Technical verification of Bias-Terms

	9.6 Application 3: Truncation of Finite Jackson Network
	9.6.1 Description and motivation.
	9.6.2 Truncation
	9.6.3 Analytic Error bound
	9.6.4 Application: Cellular Mobile Network Application

	9.7 Evaluation
	9.7.1 Extensions
	9.7.2 Further Research
	9.7.3 Other applications.


	Acknowledgements
	References

	Chapter 10 Stability of Join-the-Shortest-Queue networks: Analysis by Fluid Limits
	10.1 Join-the-shortest-queue networks
	10.2 The network process and the fluid model
	10.3 JSQ networks with two stations
	10.4 Two examples with three stations
	10.5 JSQ networks with homogeneous feedback
	10.6 Further study
	References

	Chapter 11 Methods in Diffusion Approximation for Multi-Server Systems: Sandwich, Uniform Attraction and State-Space Collapse
	11.1 Introduction
	11.2 Preliminaries
	11.3 Multi-Server Queue: Sandwich Method
	11.4 A Multi-Class Queue under FIFO Service Discipline: Uniform Attraction and State-Space Collapse
	11.4.1 Fluid Approximation and Uniform Attraction
	11.4.2.1 From Uniform Attraction to State-Space Collapse
	11.4.2 Diffusion Approximation


	11.5 Multi-Channel Queues under JSQ Routing Control
	11.5.1 Fluid Approximation and Uniform Attraction
	11.5.2 Diffusion Approximation
	11.5.2.1 Complementarity and State-Space Collapse


	11.6 Notes
	11.7 Appendix
	11.7.1 Proof of Lemma 11.5.2
	11.7.2 Proof of Proposition 11.5.3
	11.7.3 Proof of Lemma 11.5.6

	References

	Chapter 12 Queueing Networks with Gaussian Inputs
	12.1 Introduction
	12.2 Preliminaries on Gaussian processes
	12.2.1 Gaussian sources
	12.2.2 Classifications
	12.2.3 Schilder’s theorem

	12.3 Single queues
	12.3.1 Steady-state queue length
	12.3.2 Logarithmic asymptotics
	12.3.3 The shape of the loss curve
	12.3.4 The buffer-bandwidth curve is convex

	12.4 Tandem networks
	12.4.1 Alternative formulation
	12.4.2 Lower bound
	12.4.3 Tightness; two regimes
	12.4.4 Approximation

	12.5 Priority queues
	12.5.1 Lower bound
	12.5.2 Tightness; two regimes
	12.5.3 Approximation

	12.6 Concluding remarks
	References

	Chapter 13 Mean Values Techniques
	13.1 Introduction
	13.2 PASTA property and Little’s law
	13.3 MVA for single-station systems
	13.3.1 M|M|1
	13.3.2 M|G|1
	13.3.3 M|G|1 with priorities
	13.3.4 M|G|1 with least attained service
	13.3.5 Server vacations
	13.3.6 M|M|c
	13.3.7 M|M|c with priorities
	13.3.8 Retrials
	13.3.9 Polling

	13.4 AMVA for single-station systems
	13.4.1 M|G|c
	13.4.2 M|G|c with priorities

	13.5 ASTA property in PF networks
	13.5.1 Open single-class PF networks
	13.5.2 Open multi-class PF networks
	13.5.3 Closed multi-class PF networks

	13.6 MVA for open PF networks
	13.7 MVA for closed single-class PF networks
	Single class, single servers
	Single class, multi servers
	Single class, queue-dependent servers

	13.8 MVA for closed multi-class PF networks
	13.9 AMVA for open networks
	13.10 AMVA for closed single-server networks
	13.10.1 Class-dependent general service times
	13.10.2 Priorities
	13.10.3 Multiple visits to a station

	13.11 AMVA for closed multi-server networks
	13.12 The Schweitzer-Bard approximation
	Acknowledgement
	References

	Chapter 14 Response Time Distributions in Networks of Queues
	14.1 Introduction
	14.2 Closed Markovian networks
	14.2.1 Tagged customer approach
	14.2.2 Example: Central server model

	14.3 Open Markovian networks of M/M/c/b ≤ ∞ queues
	14.3.1 Response time blocks
	14.3.1.1 M/M/1
	14.3.1.2 M/M/∞
	14.3.1.3 M/M/c
	14.3.1.4 M/M/c/b
	14.3.1.5 M/M/1/b

	14.3.2 Building the Markov chain from a queuing network
	14.3.3 Examples
	14.3.3.1 Computer system
	14.3.3.2 Distributed system
	14.3.3.3 Distribution of the response time sample mean


	14.4 Open Markovian networks of queues with general PH service time distributions
	14.4.1 Building blocks with general PH service time distributions
	14.4.2 Building the Markov chain
	14.4.3 Example: CPU and disk queuing system

	14.5 Non-Markovian networks
	14.5.1 Approximating non-PH distributions
	14.5.1.1 The response time distribution at an M/G/1 priority queue
	14.5.1.2 The CTMC approach
	14.5.1.3 Moment matching
	14.5.1.4 Function fitting of the LST
	14.5.1.5 Example: Transaction processing system

	14.5.2 Modeling response time distributions using semi-Markov processes
	14.5.2.1 Deriving parameters of arrival processes
	14.5.2.2 Response time distribution at a PH/G/1 queue
	14.5.2.3 Transient solution of a semi-Markov process
	14.5.2.4 Building the semi-Markov chain from the queuing network
	14.5.2.5 Example: Distributed system
	14.5.2.6 End-to-end delay in a virtual circuit


	14.6 Conclusions
	References

	Chapter 15 Decomposition-Based Queueing Network Analysis with FiFiQueues
	15.1 Introduction
	15.2 The decomposition approach
	Sketch of the idea
	Open questions
	The analysis of complex networks
	The analysis of individual stations

	15.3 Whitt’s Queueing Network Analyzer
	15.3.1 Model class
	15.3.2 Traffic descriptors
	15.3.3 Superposition of traffic streams
	15.3.4 Splitting traffic streams
	15.3.5 Servicing jobs
	15.3.6 Node performance
	15.3.7 Network-wide performance
	15.3.8 Complexity

	15.4 FiFiQueues
	15.4.1 Model class
	15.4.2 Traffic descriptor
	15.4.3 Superposition of traffic streams
	15.4.4 Splitting traffic streams
	15.4.5 Servicing jobs
	15.4.5.1 Phase-type representation of the arrival processes
	15.4.5.2 Analysis of PH|PH|1|K queues
	15.4.5.3 Analysis of PH|PH|1 queues

	15.4.6 Node performance
	15.4.6.1 Node performance of PH|PH|1|K queues
	15.4.6.2 Node performance of PH|PH|1 queues

	15.4.7 Network-wide performance
	15.4.8 Complexity
	15.4.8.1 Traffic computation
	15.4.8.2 Node performance and network performance computation

	15.4.9 The FiFiQueues network designer
	15.4.9.1 The graphical user interface
	15.4.9.2 The numerical analysis module
	15.4.9.3 The simulation module


	15.5 Performance of FiFiQueues
	15.5.1 Evaluation of FiFiQueues
	15.5.1.1 Single queues
	15.5.1.2 Queueing networks with feedback

	15.5.2 Performance evaluation of a web server
	15.5.2.1 Description of the test system
	15.5.2.2 Web server without disk access
	15.5.2.3 Web server with disk access
	15.5.2.4 Group of servers

	15.5.3 Summary

	15.6 Summary and conclusions
	15.7 Appendix: Jackson queueing networks
	15.7.1 Model class
	15.7.2 Traffic descriptor
	15.7.3 Superposition of traffic streams
	15.7.4 Splitting traffic streams
	15.7.5 Servicing jobs
	15.7.6 Node performance
	15.7.7 Network-wide performance
	15.7.8 Complexity

	15.8 Appendix: MAPs, PH-distributions and QBDs
	15.8.1 Markovian Arrival Processes (MAPs)
	15.8.1.1 Definition and notation
	15.8.1.2 Characteristics
	15.8.1.3 Superposition and Markovian splitting
	15.8.1.4 Markov-Modulated Poisson Processes (MMPPs)

	15.8.2 Phase-type (PH) renewal processes
	15.8.2.1 Definition and notation
	15.8.2.2 Inter-event time characteristics
	15.8.2.3 Superposition and Markovian splitting

	15.8.3 Infinite QBDs
	15.8.3.1 Definition
	15.8.3.2 Steady-state solution
	15.8.3.3 Matrix-geometric solution methods
	15.8.3.4 Transform methods

	15.8.4 Finite QBDs
	15.8.4.1 Definition
	15.8.4.2 Steady-state solution


	15.9 Appendix: Existence of the fixed point
	15.9.1 Notation and Brouwer’s theorem
	15.9.2 Properties of D
	15.9.3 Continuity of H
	15.9.4 Continuity for c²a= 1
	15.9.4.1 Case c²a= 1
	15.9.4.2 Case c²a\1
	15.9.4.3 Case c²a ∕ 1

	15.9.5 Continuity for c²a= 1/m,m ∈ {2, . . . ,10}

	References

	Chapter 16 Loss Networks
	16.1 Introduction
	16.2 Uncontrolled loss networks: stationary behaviour
	16.2.1 The stationary distribution
	16.2.2 The single resource case
	16.2.3 The Kaufman-Dziong-Roberts (KDR) recursion
	16.2.4 Approximations for large networks
	A simple approximation
	A refined approximation


	16.3 Controlled loss networks: stationary behaviour
	16.3.1 Single resource networks
	16.3.2 Multiple resource models

	16.4 Dynamical behaviour and stability
	16.4.1 Fluid limits for large capacity networks
	16.4.2 Single resource networks
	16.4.3 Multi-resource networks: the uncontrolled case
	16.4.4 Multi-resource networks: the general case
	16.4.5 The diverse routing limit

	16.5 Further developments and open questions
	References

	Chapter 17 A Queueing Analysis of Data Networks
	17.1 Introduction
	17.2 Capacity region
	Wireline networks
	Traffic splitting
	Wireless networks
	Ad-hoc networks
	Flow rate limits

	17.3 Traffic characteristics
	Markovian setting
	Flow size distribution
	Session structure

	17.4 Stability issues
	Necessary condition
	Sufficient condition

	17.5 Flow throughput
	Mean flow duration
	Mean instantaneous rate
	Other throughput metrics

	17.6 Queueing analysis
	A queueing network
	Balance property
	Stationary distribution

	17.7 Resource allocation
	Max-min fairness
	Proportional fairness
	Balanced fairness

	17.8 Insensitivity results
	Flow size distribution
	Sessions

	17.9 A single link
	No flow rate limit
	A common flow rate limit
	Multiple rate limits
	Probability of saturation
	Flow throughput

	17.10 Performance bounds
	Flows with a single capacity constraint
	Lower bound
	Upper bound

	17.11 Examples
	Wireline networks
	Traffic splitting
	Wireless networks
	Ad-hoc networks
	Flow rate limits

	17.12 Open issues
	17.13 Bibliographical notes
	Appendix
	References

	Chapter 18 Modeling a Hospital Queueing Network
	18.1 Introduction
	18.2 Problem Description
	Re-entry of patients and stochastic routings
	Service sessions for consultation and surgery
	Capacity related issues
	Modeling of absences, disturbances and interruptions

	18.3 A hospital queueing system
	18.3.1 Modeling arrival rate and natural service times
	18.3.2 Variability from preemptive and nonpreemptive outages
	18.3.2.1 Outages, classification and impact
	18.3.2.2 Nonpreemptive outages
	18.3.2.3 Preemptive outages
	18.3.2.4 Combining preemptive and nonpreemptive outages
	18.3.2.5 Including the time availability of workstations
	18.3.2.6 Squared coefficient of variation of the aggregate arrival process


	18.4 Applications
	18.4.1 Numerical example
	18.4.2 The impact of interrupts
	18.4.3 The impact of pooling
	18.4.4 Finding the optimal number of patients in a service session

	18.5 Conclusion
	References


