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Preface

Why This Book?

This book is motivated by the following convictions:

1) Quantitative risk assessment (QRA) can be a powerful discipline for improving
risk management decisions and policies.

2) Poorly conducted QRAs can produce results and recommendations that are
worse than useless.

3) Sound risk assessment methods provide the benefits of QRA modeling – being
able to predict and compare the probable consequences of alternative actions,
interventions, or policies and being able to identify those that make preferred
consequences more probable – while avoiding the pitfalls.

This book develops and illustrates QRA methods for complex and uncertain bio-
logical, engineering, and social systems. These systems have behaviors that are too
complex or uncertain to be modeled accurately in detail with high confidence. Prac-
tical applications include assessing and managing risks from chemical carcinogens,
antibiotic resistance, mad cow disease, terrorist attacks, and accidental or deliberate
failures in telecommunications network infrastructure.

For Whom Is It Meant?

This book is intended primarily for practitioners who want to use rational quanti-
tative risk analysis to support and improve risk management decisions in important
health, safety, environmental, reliability, and security applications, but who have
been frustrated in trying to apply traditional quantitative modeling methods by the
high uncertainty and/or complexity of the systems involved. We emphasize methods
and strategies for modeling causal relations in complex and uncertain systems well
enough to make effective risk management decisions. The book is written for practi-
tioners from multiple disciplines – decision and risk analysts, operations researchers
and management scientists, quantitative policy analysts, economists, health and
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viii Preface

safety risk assessors, engineers, and modelers – who need practical ways to predict
and manage risks in complex and uncertain systems.

What’s in It?

Three introductory chapters describe QRA and compare it to less formal alterna-
tives, such as taking prompt action to address current concerns, even if the con-
sequences caused by the recommended action are unknown (Chapter 1). These
chapters survey QRA methods for engineering risks (Chapter 2) and health risks
(Chapter 3). Brief examples of applications such as flood control, software failures,
chemical releases, and food safety illustrate the scope and capabilities of QRA for
complex and uncertain systems.

Chapter 1 discusses a concept of concern-driven risk management, in which
qualitative expert judgments about whether concerns warrant specified risk man-
agement interventions are used in preference to QRA to guide risk management de-
cisions. Where QRA emphasizes the formal quantitative assessment and comparison
of the probable consequences caused by recommended actions to the probable con-
sequences of alternatives, including the status quo, concern-driven risk management
instead emphasizes the perceived urgency or severity of the situation motivating rec-
ommended interventions. In many instances, especially those involving applications
of a “Precautionary Principle” (popular in much European legislation), no formal
quantification or comparison of probable consequences for alternative decisions is
seen as being necessary (or, perhaps, possible or desirable) before implementing
risk management measures that are intended to prevent serious or irreversible harm,
even if the causal relations between the recommended measures and their probable
consequences are unclear. Such concern-driven risk management has been recom-
mended by critics of QRA in several areas of applied risk management.

Based on case studies and psychological literature on the empirical performance
of judgment-based decision making under risk and uncertainty, we conclude that,
although concern-driven risk management has several important potential political
and psychological advantages over QRA, it often performs less well than QRA in
identifying risk management interventions that successfully protect human health or
achieve other desired consequences. Therefore, those who advocate replacing QRA
with concern-driven alternatives, such as expert judgment and consensus decision
processes, should assess whether their recommended alternatives truly outperform
QRA, by the criterion of producing preferred consequences, before rejecting the
QRA paradigm for practical applications.

Chapter 2 introduces methods of probabilistic risk assessment (PRA) for predict-
ing and managing risks in complex engineered systems. It surveys methods for PRA
and decision making in engineered systems, emphasizing progress in methods for
dealing with uncertainties, communicating results effectively, and using the results
to guide improved decision making by multiple parties. For systems operating under
threats from intelligent adversaries, novel methods and game-theoretic ideas can
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help to identify effective risk reduction strategies and resource allocations. In hard
decision problems, where the best course of action is unclear and data are sparse,
ambiguous, or conflicting, state-of-the-art methodology can be critical for good risk
management. This chapter discusses some of the most useful PRA methods and
possible extensions and improvements.

Chapter 3 introduces methods of quantitative risk assessment (QRA) for pub-
lic health risks. These arise from the operation of complex engineering, economic,
medical, and social systems, ranging from food supply networks to industrial plants
to administration of school vaccination programs and hospital infection control pro-
grams. The decisions and behaviors of multiple economic agents (e.g., the produc-
ers, distributors, retailers, and consumers of a product) or other decision makers
(e.g., parents, physicians, and schools involved in vaccination programs) affect risks
that, in turn, typically affect many other people. Health risks are commonly different
for different subpopulations (e.g., infants, the elderly, and the immunocompromised,
for a microbial hazard; or customers, employees, and neighbors of a production
process). Thus, public health risk analysis often falls in the intersection of politics,
business, law, economics, ethics, science, and technology, with different participants
and stakeholders favoring different risk management alternatives. In this politicized
context, QRA seeks to clarify the probable consequences of different risk manage-
ment decisions.

Chapters 4 and 5 (as well as Chapter 15, which deals specifically with terrorism
risk assessment) emphasize that sound risk assessment requires developing sound
risk models in enough detail to represent correctly the (often probabilistic) causal re-
lations between a system’s controllable inputs and the outputs or consequences that
decision makers care about. “Sound” does not imply completely accurate, certain,
or detailed. Imperfect and high-level risk models, or sets of alternative risk models
that are contingent on explicitly stated assumptions, can still be sound and useful
for improving decision making. But a sound model must describe causal relations
correctly, even if not in great detail, and even if contingent on stated assumptions.
Incorrect causal models, or models with hidden false assumptions about cause and
effect, can lead to poor risk management recommendations and decisions.

Chapters 4 and 5 warn against popular shortcut methods of risk analysis that
try to avoid the work required to develop and validate sound risk models. These
include replacing empirically estimated and validated causal risk models (e.g., sim-
ulation models) with much simpler ratings of risky prospects using terms such as
high, medium, and low for attributes such as the frequency and severity of adverse
consequences. Other shortcut methods use highly aggregate risk models or scoring
formulas (such as “risk = potency × exposure,” or “risk = threat × vulnerability ×
consequence”) in place of more detailed causal models. Many professional con-
sultants, risk assessors, and regulatory agencies use such methods today. However,
these attempted shortcuts do not work well in general. As discussed in Chapters 4
and 5, they can produce results, recommendations, and priorities that are worse than
useless: they are even less effective, on average, than making decisions randomly!
Poor risk management decisions, based on false predictions and assumptions, result
from these shortcut methods.
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Fortunately, it is possible to do much better. Building and validating sound causal
risk models leads to QRA models and analyses that can greatly improve risk man-
agement decisions. Chapters 6 through 16 explain how. They introduce and illus-
trate techniques for testing causal hypotheses and for identifying potential causal
relations from data (Chapters 6 and 7), for developing (and empirically testing and
validating) risk models to predict the responses of complex, uncertain, and nonlinear
systems to changes in controllable inputs (Chapters 8-13), and for making more
effective risk management decisions, despite uncertainties and complexities (Chap-
ters 14-16). These chapters pose a variety of important risk analysis challenges for
complex and uncertain systems, and propose and illustrate methods for solving them
in important real-world applications.

Key challenges, methods and applications in Chapters 6 through 16 include the
following:

� Information-theory and data-mining algorithms. Chapter 6 shows how to detect
initially unknown, possibly nonlinear (including u-shaped) causal relations in
epidemiological data sets, using food poisoning data as an example. A combi-
nation of information theory and nonparametric modeling methods (especially,
classification tree algorithms) provide constructive ways to identify potential
causal relations (including nonlinear and multivariate ones with high-order in-
teractions) in multivariate epidemiological data sets.

� Testing causal hypotheses and discovering causal relations. Chapter 7, building
on the methods in Chapter 6, discusses how to test causal hypotheses using data,
how to discover new causal relations directly from data without any a priori
hypotheses, and how to use data mining and other statistical methods to avoid
imposing one’s own prior beliefs on the interpretation of data – a perennial chal-
lenge in risk assessment and other quantitative modeling disciplines. An appli-
cation to antibiotic-resistant bacterial infections illustrates these techniques.

� Use of new molecular-biological and “-omics” information in risk assessment.
Chapter 8 shows how to use detailed biological data (arising from advances in
genomics, proteomics, metabolomics, and other low-level biological data) to pre-
dict the fraction of illnesses, diseases, or other unwanted effects in a population
that could be prevented by removing specific hazards or sources of exposure.
This challenge is addressed by using conditional probability formulas and con-
servative upper bounds on the observed occurrence and co-occurrence rates of
events in a causal network to obtain useful upper bounds on unknown causal
fractions. Bounding calculations are illustrated by quantifying the preventable
fraction of smoking-associated lung cancers in smokers caused by – and pre-
ventable by blocking – a particular causal pathway (involving polycyclic aro-
matic hydrocarbons forming adducts with DNA in a critical tumor suppressor
gene) that has attracted great recent interest.

� Upper-bounding methods. Chapters 8 through 12 consider how to use available
knowledge and information about causal pathways in complex systems, even
if very imperfect and incomplete (e.g., biomarker data for complex diseases),
to estimate upper bounds on the preventable fractions of disease that could be
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eliminated by removing specific hazardous exposures. (Analogous strategies for
using partial information to bound the preventable risks of adverse outcomes can
be used for other complex systems.) The applications in these chapters focus on
antibiotic-resistant bacterial infections and on smoking-related lung cancers as
examples of partly understood complex systems with large and important knowl-
edge and data gaps, but with enough available knowledge about causal pathways
to be useful.

� Identification of a discrete set of possible risks. Using dose-response relations for
lung cancer risk as an extended example, Chapters 10 and 11 show how to quan-
tify several different input-output relations for a complex system that are con-
sistent with available knowledge and data about uncertain causal mechanisms.
Chapter 10 addresses how to identify promising leads for R&D on designing a
less hazardous cigarette. It uses a portfolio of causal mechanisms to identify re-
moving cadmium as a promising (but uncertain) way to reduce total risk, despite
the complexity of the mixture of chemicals to which smokers are exposed, the
complex and uncertain biological pathways by which these chemicals affect lung
cancer risk, and the many scientific uncertainties that remain. Chapter 11 shows
that sometimes the response of a complex system to a change in inputs can be
identified as one of a small number of equally probable alternatives, all of which
are consistent with past data.

� Systems dynamics analysis and simulation. Chapters 10 through 13 illustrate how
to predict input-output relations of dynamic systems using simulation modeling
and mathematical analysis (solution of systems of ordinary differential equations
and algebraic equations), derived from empirical data and knowledge of the
causal processes being simulated. Systems dynamics models can benefit from
other techniques demonstrated in these chapters, including modeling only the
steady-state levels of subprocesses that adjust relatively quickly and that affect
slower processes primarily through time-averaged values (so that hard-to-model
but brief, bounded transients can safely be ignored) and using Markov’s inequal-
ity to relate deterministic simulations of mean values to bounds on probable
values of underlying stochastic processes.

� Comparative statics analysis and reduction of complex models. Chapter 13 dis-
cusses how to reduce large dynamic models, represented by networks of interact-
ing dynamic processes, to much smaller ones that predict the same equilibrium
behaviors in response to changes in inputs.

� Decision tree, sequential decision optimization, and value of information (VOI)
analysis. Chapter 14 estimates the economic value of information from tracking
country-of-origin information for cattle imported into the United States from
Canada (or other countries with “mad cow” disease). Deliberately using worse-
than-realistic probability distributions for scenarios yields a lower bound on the
economic value of information (VOI) from tracking. [The author has long be-
lieved that the USDA’s policy of allowing Canadian cattle – especially, older
cattle – into the United States is inconsistent with the policy goal of keeping mad
cow disease (bovine spongiform encephalitis, BSE) out of the United States; he
has served as an expert in litigation intended to force the USDA to reconsider and
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revise this policy.] Assuming that the USDA continues to allow these imports,
Chapter 14 considers how to manage the resulting economic risks to the United
States created by the increased probability that another case of BSE in an animal
imported from Canada will be discovered. The analytic methods demonstrated
in Chapter 14 are also useful for many other public risk management and policy
optimization applications in which future events and decisions affect the eventual
outcomes of present decisions.

� Game-theory and hierarchical optimization models. Modeling the behaviors of
intelligent attackers and intelligent defenders of a facility (or other target) and
optimizing the allocation of defensive resources, taking into account how attack-
ers may respond, are crucial topics in terrorism risk analysis. Methods currently
in widespread use for these challenges have serious limitations, and improved
methods are urgently needed. Chapter 15 considers both the limitations and ways
to improve upon current methods of terrorism risk analysis.

� Mathematical optimization and phase-transition modeling. Chapter 16 surveys
methods for predicting the resilience of complex systems (e.g., telecommunica-
tions networks) to deliberate attacks, and for designing systems to make them
resilient to attack. One of the key ideas in this chapter is that the dynamic behav-
iors of large networks can be extremely simple. For example, simple statistical
(“scale-free”) models of telecommunications networks predict almost complete
resilience to attacks that are limited to knocking out at most a small number of
nodes (or links) simultaneously, provided that each node has “enough” (at least
a certain critical percentage) of surplus routing capacity to handle the displaced
traffic. (Here, “resilient” means that at most only a small fraction of traffic be-
tween other nodes, approaching zero percent in large networks, will be made
unroutable by such an attack.) At the same time, these simple models predict
that networks may be highly vulnerable to such attacks (meaning that most of
the traffic in the network will become unroutable after the initial attacks cause
node overloads and failures to cascade through the network) if each node has
less than the critical amount of surplus capacity. Such a “phase transition” (with
a transition threshold determined by the critical amount of surplus capacity)
from resilient to vulnerable is characteristic of many highly idealized models of
scale-free networks. Assuming that real networks have similar phase-transition
behavior – which is currently an important unknown – individual network owners
and operators may still lack incentives to invest in increasing resilience, even if
doing so would benefit them collectively.

Some Specific Risk Models and Applications
for Interested Specialists

In addition to general risk modeling methods, several chapters present specific risk
models and results that may be of independent interest to scientists and researchers
in cancer risk analysis, bioinformatics and toxicology, microbial and antimicrobial
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risk assessment, food safety, and terrorism risk analysis. For example, Chapters 11
and 12 develop and apply a new model of lung carcinogenesis. Exposure-related
carcinogenesis is often modeled by assuming that cells progress between successive
stages – possibly undergoing proliferation at some of them – at rates that depend
(usually linearly) on biologically effective doses. Biologically effective doses, in
turn, may depend nonlinearly on administered doses, due to pharmacokinetic non-
linearities. Chapter 11 provides a mathematical analysis of the expected number
of cells in the last (“malignant”) stage of a “multistage clonal expansion” (MSCE)
model as a function of dose rate and age. The solution displays symmetries such that
several distinct sets of parameter values fit past epidemiological data equally well.
These different possible sets of parameter values make identical predictions about
how changing exposure levels or timing would affect risk. Yet they make signifi-
cantly different predictions about how changing the composition of exposure would
affect risk. Biological data, revealing which rate parameters describe which specific
stages, are required to yield unambiguous predictions. From epidemiological data
alone, only a set of equally likely alternative predictions can be made for the effects
on risk of such interventions.

Chapter 12 asks the following question: If a specific biological mechanism could
be discovered by which a carcinogen increases lung cancer risk, how might this
knowledge be used to improve risk assessment? For example, suppose that arsenic
in cigarette smoke increases lung cancer risk by hypermethylating the promoter
region of a specific gene (p16INK4a), leading to more rapid entry of altered (initi-
ated) cells into a clonal expansion phase. How could the potential impact on lung
cancer of removing arsenic be quantified in light of such knowledge (assuming,
for purposes of illustration, that this proposed mechanism is correct)? Chapter 12
provides an answer, using a three-stage version of the MSCE model from Chapter
11. [This refines a more usual two-stage clonal expansion (TSCE) model of car-
cinogenesis by resolving its intermediate or “initiated” cell compartment into two
subcompartments, representing experimentally observed “patch” and “field” cells.
This refinement allows p16 methylation effects to be represented as speeding transi-
tions of cells from the patch state to the clonally expanding field state.] Given these
assumptions, removing arsenic might greatly reduce the number of non-small cell
lung cancer cells produced in smokers, by up to two thirds, depending on the fraction
(between 0 and 1) of the smoking-induced increase in the patch-to-field transition
rate prevented if arsenic were removed. At present, this fraction is unknown (and
could be as low as zero), but the possibility that it could be high (close to 1) cannot
be ruled out without further data.

Chapter 13 presents a dynamic disease model for chronic obstructive pulmonary
disease (COPD), a family of smoking-associated diseases having complex causes
and consequences. It shows how improved understanding of interactions among bio-
logical processes, and of how exposures (in this case, to cigarette smoke) affect these
processes and their interactions, can be used to better predict health risks caused
by exposures. COPD, although the fourth-leading cause of death worldwide, has a
puzzling etiology. It is a smoking-associated disease, but only a minority of smokers
develop it. Moreover, in people (but not in animals), unresolved inflammation of the
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lung and destruction of lung tissue, once started, continue even after smoking ceases.
Chapter 13 proposes a biologically based risk assessment model of COPD that offers
a possible explanation of these and other features of the disease. COPD causation is
modeled as resulting from a dynamic imbalance between protein-digesting enzymes
(proteases) and the antiproteases that inhibit them in the lung. This leads to ongoing
proteolysis (digestion) of lung tissue by excess proteases. The model is formulated
as a system of seven ordinary differential equations (ODEs) with 18 parameters to
describe the network of interacting homeostatic processes regulating the levels of
key proteases and antiproteases. Mathematical analysis shows that this system can
be simplified to a single quadratic equation to predict the equilibrium behavior of
the entire network. There are two possible equilibrium behaviors: a unique stable
“normal” (healthy) equilibrium, or a “COPD” equilibrium with elevated levels of
lung macrophages and neutrophils (and their elastases) and reduced levels of an-
tiproteases. The COPD equilibrium is induced only if cigarette smoking increases
the average production of macrophage elastase (MMP-12) per alveolar macrophage
above a certain threshold. Following smoking cessation, the COPD equilibrium lev-
els of MMP-12 and other disease markers decline but do not return to their original
(presmoking) levels. These and other predictions of the model are consistent with
limited available human data.

Chapters 14, 15, and 16 present risk models for systems in which the future
decisions of multiple participants affect the final consequences of current decisions.
These chapters present several example models and results for “mad cow” disease
(BSE) risk management, terrorist risk analysis, and risk analysis of telecommunica-
tions network infrastructure.

Why Do These Models and Methods Matter?

The main purpose of the specific models and applications in the later chapters, as
well as of the general QRA methods in earlier chapters, is to show how QRA can
be carried out successfully for uncertain, complex, and nonlinear systems of great
practical importance. Some skeptics have argued that QRA modeling is impractical
and/or too laden with uncertain assumptions to give useful and trustworthy results
in practice (see Chapter 1). This book seeks to show, both through general modeling
principles and by means of constructive examples, how QRA can successfully be
carried out and used today to improve risk management in a variety of important
real-world applications.
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Chapter 1
Quantitative Risk Assessment Goals
and Challenges

The Quantitative Risk Assessment (QRA) Paradigm

How should societies, organizations, and individuals manage risks from activities
with unknown or uncertain consequences? Many regulators and scientists advo-
cate quantitative risk assessment (QRA) as providing both a logical framework
and a systematic procedure for organizing and applying scientific and engineering
knowledge to improve “rational” (consequence-driven) decision making when the
consequences of alternative decisions are uncertain. It seeks to do so by using pre-
dictive models to identify and recommend choices (typically, among alternative risk
management interventions, policies, or plans) that are predicted to make preferred
consequences more likely. This typically involves clarifying the following:

• The probable consequences of alternative decisions. QRA models typically
present results by showing the conditional probabilities of different consequences
occurring if each decision alternative is adopted, given specified current infor-
mation and a probabilistic risk model incorporating uncertainty and variability in
outcomes.

• Preferences for consequences. These include value trade-offs among different
consequences. For financial risk analyses, engineering reliability risk analyses,
and health risk analyses, preferences are often simple: Larger profits, higher reli-
ability, and fewer illnesses are preferred to smaller profits, lower reliability, and
more illnesses, respectively. Choices that require trading off such desirable out-
comes against each other are more difficult, but QRA can help to identify the
necessary trade-offs and structure deliberation, by identifying questions of pref-
erence and clearly distinguishing them from questions of fact about causes and
probable effects.

• The set of undominated choices. These choices have the desirable property that
no other choices are clearly superior (e.g., always yielding preferred outcomes,
no matter how current uncertainties are resolved). The best choice, no matter how
value trade-offs are made, should be one of the subset of undominated choices.

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 1, C© Springer Science+Business Media, LLC 2009
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4 1 Quantitative Risk Assessment Goals and Challenges

• How current uncertainties about probable consequences might change as more
information is gathered. The potential for further information to change the cur-
rently best decision (based in what is known now) is usually represented via value
of information (VOI) calculations (Chapter 14).

QRAs usually use explicit (documented and often published) predictive risk
models to predict the probable consequences of alternative actions and to help iden-
tify undominated actions. These risk models allow different users and stakeholders
to trace how changing input assumptions and data affects the outputs predicted by
the models.

Example: A Simple QRA Risk Assessment Model

The following formula for sporadic exposure-related illnesses in a population is an
example of a simple risk assessment model:

change in expected excess illnesses per year caused by exposure to hazard X
if action A is taken = (change in units of exposure to hazard X received per year
if action A is taken)× (expected excess illnesses per incremental unit
of exposure to hazard X).

This may be abbreviated as

Δrisk = Δexposure × (dose-response slope f actor ),

where Δexposure is the change in exposure that would be caused by the intervention
being evaluated, and dose-response slope factor is the expected number of additional
illnesses per year caused by an additional unit of exposure. (When interindividual
heterogeneities and/or dose-response nonlinearities are important, the data-mining
techniques in Chapters 6 and 7 can be used to extend this simple formula. Even if
the dose-response slope factor varies significantly with the current level of exposure
to which the increment Δexposure is added and with covariates such as sex and
age, this formula can be summed over relatively homogeneous subpopulations of
individuals, having similar values of Δexposure and dose-response slope factor,
to estimate the change in total expected illnesses per year for each alternative risk
management action being evaluated.)

The process of quantitative risk assessment for such health risk assessment mod-
els, discussed in Chapter 3, is usually described as consisting of the following four
steps:

1. Hazard identification. This identifies potential causal relations between expo-
sures to hazards (i.e., sources of risk) and resulting increases in risk (the fre-
quency or severity of adverse consequences). Using a combination of statistical
tests for potential causation, such as conditional independence tests (see Chapters
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6 and 7), and insights from biological mechanisms and molecular epidemiologi-
cal data (see Chapters 7–12), QRA focuses on identifying and quantifying causal
relations, rather than only statistical associations, among actions, exposures, and
their health consequences. This emphasis on causality reflects a pragmatic con-
cern with identifying actions that will increase the probabilities of desired out-
comes and reduce the probabilities of undesired ones.

2. Exposure assessment, such as quantification of Δexposure in the above exam-
ple. This predicts the change in exposures that would be caused by each risk
management act being evaluated.

3. Dose-response modeling estimates the dose-response slope factors for these
changes. These factors quantify the changes in the frequency and severity
of illnesses (or other adverse consequences) caused by changes in exposure.
Chapters 9–13 discuss and illustrate methods for estimating useful bounds on
slope factors and for quantifying dose-response relations.

4. Risk characterization describes the change in aggregate population risk caused
by changes in exposures, as well as the interindividual variability or frequency
distributions of changes in individual risks in the population [e.g., the frequency
distribution of the product Δexposure× (dose-response slope factor) in the pop-
ulation]. Uncertainty and sensitivity analyses are used to show where additional
information could reduce uncertainty about population and individual risks and
where more information might change the current best decision. These concepts
are discussed further in Chapter 3.

Advocates of QRA claim that using explicitly documented assumptions, knowl-
edge, facts, and data (encapsulated in risk models) to assess the predicted changes in
risks caused by alternative risk management interventions has many potential ben-
efits in improving societal risk management decisions. Among these are correcting
misperceptions about the sizes of different risks (Emmons et al., 2004) and about
the relative contributions of different preventable causes (e.g., environmental vs. diet
and exercise) to adverse health effects, such as cancers (Wold et al., 2005); focusing
resources and priorities where they are likely to be most productive in improving
outcomes (Allio et al., 2005; Gerrard, 2000); anticipating and managing the oth-
erwise unforeseen consequences of current and proposed policies; and bringing a
valuable “rational” perspective to concerns and anxieties over risks and to delibera-
tions and politicized debates over risk management policies.

As a political process, in this view, QRA invites and empowers a participatory
“democracy of science” by enabling stakeholders to calculate for themselves (and
others) the probable consequences of alternative risk management decisions, using
the best science and data sources that they can find, together with explicitly stated
models, calculations, and input assumptions that are open to public inspection. This
may give stakeholders who wish to change current risk management policies both
the incentive to produce improved scientific information and the means to use it
effectively to change policy (if the new information shows that a different policy
dominates the current one). Decision-analytic calculations of the potential “value
of information” (VOI) for new data in improving current and future decisions can
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provide insights on when it is worth collecting more information before taking
action, when the cost of waiting further is expected to outweigh the benefits, and
what risk management actions or interventions should be taken when it is time to
act (see Chapter 14).

Example: Explicit QRA Reasoning Can Be Checked and Debated

In 2005, the U.S. Food and Drug Administration (FDA) withdrew approval for an
antibiotic used in chickens (enrofloxacin, a member of the fluoroquinolone family
of antibiotics). Following the logic used by the FDA Center for Veterinary Medicine
(FDA-CVM, 2001) to justify its decision, a QRA calculation estimated that contin-
ued enrofloxacin use in poultry could compromise response to antibiotics in over
24,000 persons per year (made sick by fluoroquinolone-resistant Campylobacter
bacteria) in the United States (Collignon, 2005). Because all assumptions and cal-
culations supporting this number were explicitly stated, those who disagree with the
assessment and its resulting decision recommendation can identify exactly where
they believe different data values should have been used and where updated data
and corrections are needed. For example, one set of proposed corrections (Cox,
2006c) indicates that

• Not attributing resistance from foreign travel and human ciprofloxacin use to
the domestic use of enrofloxacin in poultry reduces the estimated risk by about
1/3 (from 19% assumed in the calculation based on all cases to about 6.4% for
domestically acquired cases) (Cox, 2006b).

• Updating the estimated fraction of human foodborne Campylobacter infections
caused by poultry to reflect declines in microbial loads on chicken carcasses since
1992 reduces the estimated risk by a factor of about 1/10 (Stern and Robach,
2003).

• Replacing an assumption that 10% of infected persons would benefit from
antimicrobial drug therapy with a value of 0.6% based on the fraction of hospi-
talized cases (Buzby et al., 1996) that are most likely to be ill enough to warrant
antibiotic treatment reduces the estimated risk by a factor of 0.6/10 = 0.06.

• Replacing an assumption that all affected patients receiving antibiotic treat-
ment are prescribed fluoroquinolones (rather than, say, erythromycin) by a more
realistic value of perhaps 50% of patients being prescribed fluoroquinolones
(FDA-CVM, 2001) reduces the estimated risk by a factor of 1/2.

• Replacing an assumption that all such cases lead to compromised responses with a
more data-driven estimate that perhaps about 17% of patients have compromised
responses (Sanders et al., 2002) reduces the estimated risk by a factor of 1/6.

Together, such changes could easily reduce the estimated risk by a factor of as
much as (1/3)∗(1/10)∗(0.6/10)∗(1/2)∗(1/6) = 0.00017, or by more than 99.9%, to
about four cases per year. (Multiplication is justified, in principle, if the value of
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each factor is conditioned on all of its predecessors. The numerical values in this
example are intended to be realistic but are not expected to be completely accu-
rate.) Whether or not these suggested corrections are accepted – after all, someone
else might produce further improved data and estimates for some of these factors –
explicitly documenting all assumptions and calculations makes it possible to iden-
tify specific areas of disagreement and to either resolve them or note how different
input assumptions affect the results of the risk assessment.

QRA encourages a particular view of the roles of agencies, experts, and the pub-
lic. The public determines preferences for consequences, such as reducing the num-
ber of fatalities [or illness-days, quality-adjusted life-years (QALYs lost, etc.)] per
year caused by a preventable exposure to a hazard. The agency tries to take actions
to achieve these preferred consequences. To this end, it draws on experts with spe-
cialized knowledge and techniques to help identify actions that are likely to bring
about preferred consequences. The experts use risk assessment models to predict the
probabilities of different consequences if alternative actions are taken. They present
this information to agencies and other stakeholders, who consider it via a structured
and documented analytic-deliberative process and make a final choice of action.
The agency implements the selected actions (e.g., by publishing and enforcing new
regulatory requirements), monitors the results, and feeds new information back into
the decision process to improve risk assessments and risk management decisions.
The agency is ultimately accountable to the public for taking actions that achieve
preferred consequences, and the technical experts are accountable to the agency for
identifying effective risk management actions and policies.

Against QRA: Toward Concern-Driven Risk Management

Dissatisfactions with QRA

Many scholars, activists, members of the public, and authoritative public health and
regulatory agencies have expressed skepticism, disillusionment, distrust, and dissat-
isfaction with the QRA paradigm (e.g., Healy, 2001; Ball, 2002; Frewer, 2004), arous-
ing concern among professional risk analysts who perceive a great potential practical
value in QRA (Thompson et al., 2005). Common criticisms of QRA are that it omits
key social, cultural, and political realities (Martuzzi, 2005); that it neglects emotional
responses that importantly affect perceptions, judgments, and behaviors in response
to real or perceived risks (Slovic et al., 2004); that it cannot or does not deal ade-
quately with realistic uncertainties, complexities, and value judgments (Klinke and
Renn, 2002; WHO, 2003); that it is too easily made a political tool for furthering hid-
den agendas (Ball, 2002); and that simpler and more popular techniques such as the
Precautionary Principle should be used instead of or in addition to QRA to arrive at
realistic decisions (e.g., Klinke and Renn, 2002; Hayes, 2005).

Observers untrained (or mistrained) in QRA methods also sometimes object that
it requires unrealistically perfect knowledge of inputs and/or produces spuriously
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precise, hence meaningless, numerical outputs. In reality, QRA can work with
highly uncertain inputs (e.g., via conditioning, bounding, Bayesian model averag-
ing, and sensitivity analyses, as explained in detail in Chapters 7–9) and usually
produces interval estimates or probability distributions as outputs (Chapters 2–3);
hence, such objections are not addressed further here.

QRA proponents believe that many of the preceding criticisms and concerns
about QRA reflect deep misunderstandings of the nature of QRA (Thompson et al.,
2005). They point out that QRA methods have been developed specifically to help
achieve preferred consequences in situations with high uncertainty and complex-
ity (typically represented via statistical models or stochastic simulation models that
model interactions among multiple factors). QRA has also proved useful in many
real-world cases that require a combination of value-focused thinking (Arvai et al.,
2001) with well-documented, open, explicit processes and rationales, all supported
by the effective (informed and informative) participation of community members
and other stakeholders (Jardine et al., 2003; Arvai, 2003).

However, even the idea that societal decisions should be made primarily by
“appealing to facts” and to technical calculations and models for predicting probable
consequences, rather than by more inclusive political processes that base risk man-
agement actions and policies more on understanding and respect for the perceptions,
concerns, value judgments, and participation of interested community members, has
provoked a powerful backlash (Healy, 2001). Increasingly, opponents of QRA por-
tray it as part of the problem, and even as an instrument by which a technocratic
elite uses the language of science to justify unjustifiable actions, rather than as a
promising way to make more effective societal decisions in the presence of risk,
uncertainty, and complexity. These doubts are sharpened if different risk assessors
(e.g., funded by industry vs. regulators) reach vastly different conclusions (Ruden,
2005), especially if their risk assessments appear to be driven by assumptions or cal-
culations that lack objective validity but tend to promote particular political agendas
or points of view.

Example: Use of Incorrect Modeling Assumptions in Antimicrobial
Risk Assessment

In the preceding example of a QRA for enrofloxacin, the original calculation of
24,000 cases of compromised responses to antibiotics per year assumed that the
fraction of patients with fluoroquinolone-resistant infections (estimated as 19%)
times the fraction of infections caused by eating poultry (estimated as 72%) gives
the fraction of patients with a compromised response caused by eating poultry (due
to fluoroquinolone use in poultry): 0.19 × 0.72 = 0.137. This crucial assumption is
not valid (Cox, 2005b). As a simple counterexample, suppose that the fraction of all
infections caused by poultry were indeed 72%, with the rest caused by something
else (e.g., contaminated water), and that all and only the 28% of infections caused
by the latter source are resistant. Then this procedure would misestimate the fraction
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of resistant infections caused by eating poultry as (72% of infections caused by eat-
ing poultry) × (28% of infections resistant) = 20% of resistant infections caused
by eating poultry. But, by hypothesis, the correct value for the fraction of resistant
infections caused by eating poultry is zero, not 20%. The key formula assumed in
this risk assessment is mistaken.

Clearly, risk assessments that use such incorrect formulas to calculate risks
should engender distrust among those who receive the results (or who are forced to
live by them, such as farmers denied the continued use of enrofloxacin). The field of
risk analysis currently has no professional license or other mechanisms for assuring
the competence and validity of QRA calculations. Risk assessments are sometimes
performed by self-styled experts lacking training or competence in risk analysis, or
by experts in other disciplines who attempt to calculate risks using formulas of their
own devising (such as the one above). Therefore, skepticism and critical thinking
are crucial in evaluating and deciding whether to use QRA results.

A second key assumption in this example is that reducing enrofloxacin use
would necessarily reduce the fluoroquinolone resistance in bacteria (Campylobac-
ter) from food animals, thus benefiting human health. This assumption is contra-
dicted by practical experience (e.g., DANMAP, 2004), which shows that reducing
enrofloxacin use has not reduced fluoroquinolone resistance in Campylobacter iso-
lates from pigs or human patients. Clearly, QRA estimates and methods will and
should lose credibility if they promise benefits that are not actually achieved when
their prescriptions are followed.

These and other difficulties (e.g., the use of hypothetical numbers as if they were
data, conflation of guesses with facts, and so forth) are not unique to QRA, but also
plague other areas of quantitative analysis intended to inform and improve policy
making (Best, 2001). Perhaps the best defense is to make sure that all risk assess-
ment calculations are explicit, transparent, well documented, and open to public
inspection, so that errors can be detected and corrected and new information can
be introduced as it becomes available. Unfortunately, some popular alternatives to
QRA, including those that use qualitative judgments and consensus in place of
explicit calculations, replace transparent calculations with judgments and guesses
that cannot necessarily be checked and independently reproduced, removing the
opportunity to identify and correct errors or conduct sensitivity analyses.

Example: Use of Unvalidated Assumptions in a QRA for BSE
(“Mad Cow” Disease)

In December of 2002, the Canadian Food Inspection Agency (CFIA) issued a doc-
ument entitled Risk Assessment on Bovine Spongiform Encephalopathy in Cattle
in Canada. (As of this writing in mid-2008, this document is available online
at www.inspection.gc.ca/english/sci/ahra/bseris/bserise.shtml.) This QRA estimated
the fractions of at-risk cattle, previously imported from countries with BSE, that
might have arrived infected with BSE, been slaughtered, rendered, entered the
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cattle feed chain, and resulted in infection of other cattle. The executive summary
explained the motivation and results of this QRA as follows:

In order to evaluate the risk for BSE [bovine spongiform encephalitis, or “mad cow dis-
ease”] in Canada, the Canadian Food Inspection Agency (CFIA) has carried out a risk
assessment on BSE in cattle in Canada. . . . The Government of Canada is committed to
safeguarding the Canadian food supply and preventing the entry and establishment of for-
eign diseases such as BSE, and Canada has committed significant resources to this end. . . .
One case of BSE was diagnosed in Canada in 1993, in a cow imported from the United
Kingdom. . . . The estimated probability of at least one infection of BSE occurring prior to
1997 was 7.3 × 10 –3 and therefore the likelihood of establishment of BSE in Canada was
negligible. The risk was even further reduced by the mitigating measures in place since
1997. . . . In conclusion, the measures applied prior to the 1997 Feed Ban (import policies,
disease control measures, detection system on-farm and at slaughter plants) combined with
Canadian feed production and feeding practices, were effective in preventing the entry of
BSE and its subsequent amplification through the feed system. (Emphases added)

Supported by these comforting calculations, the CFIA decided that there was no
need for Canadian meat processors to undertake the unpopular and expensive step of
removing especially risky material (tissue and organs) from cattle prior to rendering:
“Given the controls in place for BSE (e.g. import policies, the Feed Ban) and the
lack of evidence that BSE is present in native Canadian cattle, the CFIA does not
exclude specific risk material from rendering.”

The following year, a new case of BSE was found in Alberta. A second
BSE-infected cow, imported from Alberta into the United States, was found
in the state of Washington. From 2003 to 2008, more than 12 cases of BSE
were confirmed in Canadian cattle, mostly from Alberta; these included cattle
born in 2000, well after the 1997 Feed Ban was supposed to have taken effect
(www.cdc.gov/ncidod/dvrd/bse/). Clearly, the CFIA’s QRA had been overly opti-
mistic in reassuring policy makers that “the measures applied prior to the 1997 Feed
Ban (import policies, disease control measures, detection system on-farm and at
slaughter plants) combined with Canadian feed production and feeding practices,
were effective in preventing the entry of BSE and its subsequent amplification
through the feed system.”

What went wrong? Arguably, QRA in this case led to overly optimistic conclu-
sions and policy recommendations (as became clear after the fact) due to a com-
bination of (a) the use of unvalidated risk modeling assumptions by CFIA’s risk
assessors, (b) the presentation of results in ways that did not emphasize their con-
tingent nature or uncertainty about the validity of their premises (as in the strong
statement “The estimated probability of at least one infection of BSE occurring
prior to 1997 was 7.3 × 10–3 and therefore the likelihood of establishment of BSE
in Canada was negligible”), and (c) the willingness of policy makers to embrace
reassuring conclusions based on these unvalidated modeling assumptions. Insisting
on empirical evidence of the model’s predictive validity (such as a demonstration
that it could successfully explain surveillance results in multiple countries) before
accepting its conclusions as a guide to risk management policy might have helped
to prevent the overreliance on results whose validity was contingent on that of a
largely unproved and hypothetical model. (Ironically, as of 2008, the United States
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continues to import cattle at risk of BSE from Canada, arguing that the BSE risk
to the United States from doing so is “negligible.” Perhaps, when and if this pol-
icy leads to a sustained outbreak of BSE in the United States, similar to the one in
Alberta – as it seems to this author that it well might do – then U.S. policy makers
will again learn that speculative risk models are only speculative.) Chapter 3 dis-
cusses further how to conduct QRAs and present results and uncertainties in ways
that help to avoid unsound and misleading conclusions. Chapter 7 offers some tech-
nical recommendations for avoiding confirmation biases in risk modeling.

Such examples illustrate untrustworthy QRAs. Their results have been used to
support risk management policies (e.g., banning beneficial animal antibiotics, or
treating the risk of BSE in Canada as negligible) different from those that might
have been based on more realistic QRAs. Initial skepticism about QRA models
and results is well justified in such cases. Failures of QRA-based predictions teach
that critical thinking about QRA models and results is essential before they are
accepted and trusted for use in risk management decisions. Unvalidated risk model-
ing assumptions should not be used as a basis for policy making.

Yet the fact that QRA has sometimes been done badly does not mean that it can-
not be done well. Chapters 2 and 3 of this book present basic principles of QRA
that can help to avoid the types of errors in the preceding examples. Chapters 4 and
5 present easy but wrong methods to avoid. Chapters 6–13 develop and illustrate
methods for using available data and knowledge, with all their gaps and imper-
fections, to improve QRAs for traditionally hard-to-model systems – especially,
systems with unknown or uncertain causal mechanisms (Chapters 7–11), com-
plex interactions among many variables (Chapters 6 and 13), delayed and dynamic
responses to exposures (Chapters 11–13), and initially unknown and possibly non-
linear or stochastic relations between inputs (such as exposures or actions) and out-
puts (the probable consequences of the inputs) (Chapters 6–9). A motivating theme
for these chapters is that QRA can greatly improve risk management decisions, even
for such challenging applications, provided that appropriate methods are used.

Reconciling or choosing between the very different perspectives held by QRA
advocates and opponents may be impossible on the basis of a priori arguments alone.
QRA advocates are apt to resort to the conceptual tools and frameworks of QRA
itself to justify its value. Those already skeptical of such methods are not likely to
be persuaded by them. However, a useful common ground from which to evalu-
ate QRA, compared to alternatives such as expert judgment-based decision making
or direct application of the Precautionary Principle without formal risk assessment
modeling, may be an examination of the real-world performance of QRA compared
to that of proposed alternatives.

Toward Less Analytic, More Pluralistic Risk Management

Much of traditional decision analysis and QRA is based on a clear separation of facts
or beliefs about the consequences of actions from values assigned to different conse-
quences as well as on a clear distinction between preferences for consequences and
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preferences for actions. Each component is analyzed separately, with beliefs about
and preferences for consequences ultimately determining the preferences for actions
(e.g., via expected utility calculations). Decision analysis is admittedly very artifi-
cial and cognitive; most people do not naturally draw such clear distinctions and
follow such a rigid discipline in evaluating and choosing among decision options in
their daily lives (Loewenstein et al., 2008). Yet it can be well worth doing so when
decisions have momentous consequences, such as when public health, safety, the
environment, or well-being are at risk. Important decisions in engineering and busi-
ness can often benefit tremendously from careful analysis (Russo and Schoemaker,
1989), although visceral decision making (“gut feel”) may be easier and more satis-
factory for many routine decisions, and decision aids may be inadequate to clarify
some personally momentous decisions.

Rather than embracing these distinctions and separate analyses of these compo-
nents, critics of QRA often encourage community members and other stakeholders
to express holistic preferences directly for actions (e.g., banning animal antibiotics,
GMOs, industrial emissions, use of DDT, and so forth). From this perspective, a key
role of the public is seen as being to express concerns and demand specific actions,
rather than simply expressing clear preferences for consequences and trusting and
empowering regulators, aided by technical experts (and motivated by appropriate
accountability and incentives), to figure out how best to achieve them. Instead of
holding regulators accountable for results, the public is invited to hold them account-
able for taking specific actions, with a minimal delay to assess likely consequences
and to compare them to those from alternative actions often being seen as a virtue
rather than as folly, no matter what a value of information (VOI) calculation might
show.

In this view, risk assessors, technical experts, and scientists are just some of the
many stakeholders in an essentially political decision process, rather than being seen
as holding privileged information based on objective truths (“facts and data”) about
the probable consequences of alternative actions. The traditional concept of rational
choice as the choice that is most consistent with achieving desired consequences
is replaced by a more pluralistic concept in which different groups (e.g., scientists,
policy makers, and the public) are seen as having different, yet equally legitimate,
“forms of rationality” (Garvin et al., 2001). Even asking whether a form of ratio-
nality has legitimacy (a social and political construct), rather than whether it works
well, reflects a shift away from an instrumental view of rationality in risk analysis
(i.e., one that asks, “Is it successful in bringing about desired ends?”). Rather than
being driven by a narrow focus on outcomes, marked by questions such as “Will
this action achieve its stated goals with high confidence?” and “Is there a more
effective way to achieve these goals?”, this more pluralistic perspective typically
focuses more on process and asks questions such as “Can the different stakeholders
trust each other?” and “Can new types of knowledge brokering help different groups
to work together?” (e.g., Choi et al., 2005). (An anonymous reviewer noted that, in
some areas, “The trend towards concern-driven decision making has gone beyond
the use of expert judgment as an alternative to QRA, to the use of public judgment
as a replacement for both, with expert knowledge being used only ′on demand′ [to
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support particular points of view]. There are examples in Europe of where this kind
of ′relativism′ has taken hold, including the current decision process over what to
do with Britain′s nuclear waste. The high moral ground has been captured by the
concern-driven lobby.”)

Still, a valuable role remains for techniques that focus on achieving desired
results. The traditional concept of rationality, focusing on identifying actions that
tend to yield preferred consequences, delivers insights that often significantly
improve upon unguided individual decision making (Shafir and LeBoeuf, 2002),
even though it may not easily extend to situations where social interactions are the
main determinants of outcomes (Colman, 2003).

Alternatives to QRA in Recent Policy Making: Some Practical
Examples

Misgivings such as those outlined above have led to some noteworthy recent depar-
tures from QRA in important recent public policy decisions potentially affecting
human health and safety. For example,

• In 2005, the U.S. Department of Agriculture (USDA) decided to immediately
resume imports of cattle from Canada despite the unknown prevalence of BSE-
infected cattle in Alberta. The USDA argued that its qualitative judgments that
the risk to the United States was “very low” and that existing overlapping safe-
guards effectively “precluded” BSE from entering the United States (recent his-
tory to the contrary notwithstanding) should suffice for such a risk management
decision, with no need or obligation to define “very low” in quantitative terms
or to further address the quantitative risks created by resuming imports. [Later,
however, the USDA did apply quantitative risk models and calculations similar
to those that led the CFIA in 2002 to conclude that the BSE risk in Canada was
“negligible.” In a news release dated September 14, 2007 (USDA Release No.
0247.07), the USDA, too, concluded that “The assessment found that the risk of
BSE establishment in the United States as a result of the imports [of cattle from
Canada] announced today and those announced in January 2005 is negligible.” In
light of this conclusion, the USDA decided to allow the riskiest cattle (those over
30 months old) to be imported into the United States from Canada. However,
other countries, such as South Korea, and the World Organisation for Animal
Health (OIE), did not agree with the “negligible risk” designation. They assigned
the United States the same BSE risk level as Canada (“controlled,” but not “neg-
ligible”) – the same as many other BSE-affected countries, including the United
Kingdom (www.evira.fi/portal/en/animals and health/current issues/?id=1084;
www.thebeefsite.com/news/23227/uk-steps-up-to-controlled-bse-risk-status).]

• In 2003, a World Health Organization report (WHO, 2003) stated that tradi-
tional QRA, as developed for chemical and microbial hazards, is “inadequate”
for assessing the biological risks associated with animal antibiotics and the
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emergence of resistance, largely because of the inherent complexity and adaptive
nature of bacterial systems (as opposed, presumably, to the inherent complexity
and adaptive nature of other biological systems treated in traditional risk assess-
ment modeling for chemical carcinogens and environmental hazards). WHO
advocated relying instead on qualitative, precautionary judgments and on expert
perceptions about the relative “importance” of antibiotics in human medicine –
ideally, reached through expert consultations and consensus processes – as the
primary bases for risk assessment and risk management.

• Similarly, in 2004, the U.S. Food and Drug Administration’s Center for
Veterinary Medicine (CVM) finalized a Guidance Document describing a quali-
tative risk-rating procedure as an alternative to QRA for assessing animal antibi-
otics as objects of regulatory concern (FDA-CVM, 2003). This guidance sheds
many of the restrictive logical coherence requirements important in QRA. It does
not assess or compare the human health effects of alternative risk management
actions, does not prevent arbitrarily small or zero risk from being assigned the
highest possible qualitative risk rating if subjective concerns call for it, avoids
potentially burdensome data requirements (e.g., considering correlations among
uncertain inputs) needed to reach correct quantitative conclusions, and does not
insist that its qualitative ratings accurately reflect the true relative sizes of risks
(Cox, 2006b). Rather, it bases its results and recommendations solely on the
qualitatively expressed extent of concerns (e.g., High, Medium, or Low) about
the release and exposure potentials for antibiotic-resistant bacteria and about the
perceived “importance” of relevant antibiotics in human medicine. The guidance
emphasizes pragmatic ease of use and flexibility in expressing and document-
ing concerns specifically about resistance. (Larger impacts on health risks that
are not of current regulatory concern, such as the effects of removing antibiotics
on increasing bacteria that are not antibiotic-resistant, are not considered.) The
question of how the resulting risk management recommendations will change the
frequency and severity of human health effects – the sine qua non for QRA – is
not addressed.

• More generally, as discussed in Chapter 4, simple qualitative rating and rank-
ing methods (typically organized as “risk matrices”) have been developed and
applied to the risk management of a wide range of important hazards. Risk
matrices have been applied to terrorism risks, highway construction project risks,
bridge and airport safety, office building risk analysis, climate change risk man-
agement, and enterprise risk management (ERM). National and international
standards have stimulated the adoption of risk matrices by many organizations
and risk consultants. Unfortunately, these methods can lead to very poor risk
management decisions and ineffective resource allocations, as discussed further
in Chapter 4.

• Activists, regulators, and scientists have advanced various versions of “Precau-
tionary Principles” to justify intervening (or, sometimes, to justify maintaining
the status quo) when the probable consequences caused by alternative available
actions are uncertain. These principles are usually invoked in the presence of
uncertainty to support the conclusion that a particular action should (or should
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not) be taken, without the need for further causal analysis or quantification of the
risks from following (or rejecting) this recommendation. For example, as Klinke
and Renn (2002) state,

If uncertainty plays a large role, in particular, indeterminacy or lack of knowledge, the
risk-based approach becomes counterproductive. Judging the relative severity of risks on
the basis of uncertain parameters does not make much sense. Under these circumstances,
management strategies belonging to the precautionary management style are required. The
precautionary approach has been the basis for much of the European environmental and
health protection legislation and regulation.

An advocate of QRA would presumably challenge whether “judging the relative
severity of risks on the basis of uncertain parameters does not make much sense,”
arguing that much of decision and risk analysis has been developed to do exactly
that, enabling effective choices (tending to produce preferred outcomes) even – or
especially – among prospects posing uncertain risks. In addition, he or she might
point out that QRA is fully consistent with taking precautions in the absence of
complete information, but that the real question is how to use available information
to determine which actions truly are “precautionary,” or at least undominated. Oth-
erwise, the consequences produced by actions intended as “precautionary” may turn
out to be unexpectedly adverse (Pugh, 2002).

Concern-Driven Risk Management

A common theme in the preceding examples is the principle that risk management
interventions should be based on the qualitative levels of concern felt by responsi-
ble regulatory authorities, exercising their expert judgment, and not necessarily be
based on quantitative analyses of their likely human health consequences (i.e., on
the outcome of a risk assessment). In this view, regulatory agencies should be ade-
quately sensitive to the concerns of their constituents and stakeholders, so that public
concerns are translated quickly and effectively into corresponding agency concerns
and regulatory actions. This leads to advice such as “Awareness and understanding
of public concerns must be the basis of an effective risk management strategy” –
whether or not these concerns align with calculations or actuarial reality (Frewer,
2004).

According to this principle, which we call the principle of concern-driven risk
management, if a regulatory agency is sufficiently concerned about risks from cur-
rent human behaviors (e.g., a particular animal antibiotic use), then it should be able
to ban or restrict those behaviors without having to quantify the probable effects
of doing so and without having to compare them to the probable effects of alterna-
tive actions. A strong version of concern-driven risk management is that the agency
should be allowed – and perhaps encouraged – to take prompt actions based on its
concerns, even if they have no transparent or objective basis in data and calculations
and even if the actions taken will not necessarily produce beneficial consequences
(or even if they cause severe adverse human health consequences that the agency
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is not concerned about, e.g., by increasing the quantity of antibiotic-susceptible
pathogens reaching consumers in meat). The rationale is that the regulatory con-
cerns motivating interventions, rather than the likely human health consequences of
regulatory actions (and of other available alternatives), should drive regulatory risk
management actions.

Conversely, if a responsible agency (e.g., the USDA) and its major stakehold-
ers and experts do not feel much concern about a hazard (such as BSE risks from
imported cattle), perhaps believing that existing regulations are sufficient to assure
that “it can’t happen here,” then the principle of concern-driven decision making
implies that the agency should be allowed to take actions (such as authorizing
resumed imports of cattle from BSE-positive countries) without any need to quan-
tify the risks of doing so. Again, it is the level of concern felt, rather than the likely
quantitative health consequences of different actions, that is taken as the most appro-
priate guide to risk management action.

Potential Political Advantages of Concern-Driven Regulatory
Risk Management

Concern-driven decision making has proved politically and legally viable for several
important regulatory risk management problems in recent years in Europe and the
United States, as evidenced by the above examples. Why? What about it allows it
to successfully compete with – or even outcompete – QRA? QRA’s main strength
is that it offers to help identify actions that will cause the most desirable probable
consequences, from among the available alternatives being evaluated. What does
concern-driven risk management offer to rival this claim?

The study of human choice behavior and decision making reveals that real people
care about much more than just the probable consequences of actions, as posited by
idealized models of rational decision making (homo economicus). Most people also
care about the intent behind an action, the perceived fairness of decisions, the per-
ceived equity of opportunities and outcomes embedded in a decision process and its
results, and whether the selected act respects norms of reciprocity and fairness in its
allocation of gains and losses (Ohmura and Yamagishi, 2005; Sanchez and Cuesta,
2005; Camerer and Fehr, 2006). Many people would rather select, trust, support,
and follow leaders or public servants who conspicuously share their concerns and
plainly intend to address them, rather than to entrust the management of life, health,
and safety issues to dispassionate calculators of theoretically “optimal” courses of
action.

Concern-driven risk management has the potential advantages that it is often
easy to explain (by listing the concerns that it intends to address), simple, action-
able, and addressed specifically to topics that worry and upset constituents. Rather
than engaging in complex and assumption-laden hypothetical calculations about
alternative potential futures, the concern-driven risk manager can simply say, “This
threat looks serious to me. I think we should do something about it now, and here
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is what I think we should do.” Such a conspicuously responsive, action-oriented,
well-intended approach may be far more politically attractive than the careful fact-
gathering, analysis, and deliberation associated with QRA. It mirrors the physi-
ological reflex response to an unpleasant stimulus – no higher-level cognition is
needed!

Less benignly, concern-driven risk management may encourage taking politi-
cally popular actions that feel right, even if they do not further the achievement of
explicitly stated outcomes, such as reducing illness rates. For example, recent brain
imaging studies (Fehr and Rockenbach, 2004) show that people derive psycholog-
ical satisfaction from punishing others whom they perceive to have violated social
norms – so much so, indeed, that they are often willing to incur some cost or harm to
themselves in order to punish such others (Knoch et al., 2006). Theoretical models
in evolutionary biology help to explain how such altruistic punishment might arise
and persist (Bowles and Gintis, 2004). Concern-driven risk management is com-
monly applied in situations where its recommended actions are seen as punishing
or harming parties, especially, large corporations or organizations, whose actions
or existence are perceived or portrayed as violating social norms. For example, the
“Polluter Pays” catchphrase is often deployed in the same contexts as the “Pre-
cautionary Principle” (Hayes, 2005), viz., when cause-and-effect relations have not
actually been established but action is being urged anyway. In such settings, requir-
ing companies to address the expressed concerns of members of the public through
expensive actions may feel like the right thing to do, even if those actions are truly
not likely to produce health benefits or risk reductions. Although punishment is sel-
dom offered as an explicit rationale for risk management decisions, concern-driven
risk management permits it, as well as other emotional and psychological motives
(drivers of concern) distinct from quantified cause-and-effect relations and the pur-
suit of explicitly stated goals.

Concerns about real or perceived risks are not uniformly distributed among
demographic and political groups. Demographic attributes (e.g., sex and race) are
significantly associated with the extent of concerns about health risks from envi-
ronmental hazards (e.g., Johnson, 2002). For example, in many studies, women are
significantly less likely than men (especially, white men) to express high trust in
public health experts and more likely to be concerned about environmental haz-
ards (Flynn et al., 1994), except in neighborhoods that truly are affected by mul-
tiple environmental stresses (Greenberg and Schneider, 1995). They are also more
likely to believe that apparently random cancer clusters are not truly due to chance
(Siegrist et al., 2001). Low trust in science and technology to protect public health,
as well as low trust in neighborhood (e.g., local) officials to do so, is more com-
mon among younger people who have spent relatively little time in their current
neighborhoods (and, ironically, who do not engage in many personal public health
practices) (Greenberg and Williams, 1999). These and other systematic differences
between the groups in society who are most and least concerned about suggested
hazards provide a possible basis for a “politics of concern” that addresses itself pri-
marily to those groups that are most likely to feel concern, even if other members of
society do not.



18 1 Quantitative Risk Assessment Goals and Challenges

In summary, a strong form of concern-driven risk management that maps lev-
els of concern directly to specific recommended actions to address those concerns,
without quantitative analyses of likely consequences or comparisons to alternatives,
may have several emotional and political advantages over QRA. These include the
advantages of clarity, responsiveness, and emotional satisfaction that worries are
being promptly addressed. Those who articulate and implement concern-driven risk
management policies may thereby display desirable leadership characteristics such
as good intent, responsiveness to constituent concerns, and willingness to take action
that attract political support. If the recommended actions are coupled to perceptions
that those who bear the costs of addressing concerns are those who ought to do so,
then the concern-driven actions may feel right and become popular even if their
effectiveness is uncertain or unlikely. Such factors may help to explain the growing
popularity of concern-driven risk management as an alternative to QRA. However,
its effectiveness in producing desired results remains to be assessed.

How Effective Is Judgment-Based Risk Management?

Concern-driven risk management usually relies on the judgments of those in posi-
tions of power, responsibility, or authority (e.g., expert committees or staff teams
appointed by regulatory agencies and public health organizations, sometimes with
members of the public) to decide on appropriate risk management actions based
on levels of concern (usually qualitatively expressed), thus obviating the need for
formal QRA. These judgments may be informed by technical analyses and by the
advice of subject matter experts, some of whom may apply QRA or other quan-
titative models and methods to help form their opinions. But ultimately, the risk
management decision taken depends on the informed judgments of those in charge.

Example: Expert Judgment vs. QRA for Animal Antibiotics

Not infrequently, the results of expert consultations and expert judgment conflict
directly with the results of simple QRA models. For example, WHO (2003) used
expert judgment to conclude that

Therefore, the expert workshop recommends that an expert clinical medical group
appointed by WHO defines which antimicrobials are considered critically important [poten-
tially subject to maximally restricted use] in humans. . . . [A] list of critically impor-
tant classes of antimicrobials should include: the fluoroquinolones and 3rd generation
cephalosporins for Salmonella spp. and other Enterobacteriaceae; the fluoroquinolones and
macrolides for Campylobacter spp. ; and glycopeptides, oxazolidinones and streptogramins
for Gram positive bacteria such as Enterococcus spp.

By contrast, QRA models suggest that fluoroquinolones and macrolides for
Campylobacter spp. and streptogramins for Enterococcus spp. pose at most only
minimal quantitative risk to human health: less than 1 quality-adjusted life-year
(QALY) lost per year for the entire population of the United States; and less than
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0.001 QALYs lost per year from the use of the streptogramin drug virginiamycin
(Cox, 2006b). A draft QRA for virginiamycin completed by the FDA-CVM (2004)
likewise suggests that quantitative human health risks are at most relatively small,
even under some worst-case assumptions. Thus, expert judgment may yield quite
different results from QRA models, making it important to decide how to choose
between them when they differ.

This raises the following key empirical question: How good are human judg-
ments, including expert judgments, as guides to effective risk management actions?
If the proposed alternative to formal quantitative QRA calculations is less formal
and less quantitative expert judgment – as explicitly recommended by WHO/FAO
(2003) and FDA-CVM (2003), for example – then it is important to understand how
well such judgment performs in identifying risk management actions that produce
desired consequences. Similar critical evaluations have already been conducted for
stakeholder-based decisions, with generally reassuring results (e.g., Beierle, 2002),
but not yet for concern-driven risk management decisions implemented through
expert judgment and consensus.

Performance of Individual Judgment vs. Simple Quantitative
Models

The performance of human judgment on a variety of prediction and choice tasks
under uncertainty has been studied extensively for several decades, leading to
some striking, but very well-supported, conclusions. In general, the performance of
individual judgments and judgment-based decisions compares poorly to the perfor-
mance of even very simple (e.g., linear) quantitative models on a variety of predic-
tion and decision tasks, including identifying causal explanations or diagnoses for
observations (Ceci and Bjork, 2000), predicting what will probably happen next in
many situations, and predicting the probable consequences of alternative actions or
interventions. Hundreds of studies have confirmed this pattern, not only in contrived
psychological experiments, but also for real judgments and decisions with important
consequences in business (Russo and Schoemaker, 1989), medicine (Bornstein and
Emler, 2001), social work, academics, and other fields (Plous, 1993; Meehl, 1954,
1993). In almost all cases, human judgment performs relatively poorly, compared
to even simple quantitative models. Indeed, this effect is so strong that just fitting a
simple quantitative model to one’s own judgments typically yields predictions that
outperform them (Russo and Schoemaker, 1989)!

In psychology, the situation has been described as follows:

The accuracy of judgments made in a methodical way from just a few relevant pieces of
information is usually equal or superior to those of experts who combine a wide array of
information using unaided human judgment. . . . Indeed, to date there is no replicable coun-
terexample to this empirical generalization. This superiority of SPRs [statistical prediction
rules] over clinical judgment has been attributed to two complementary sources: the desir-
able mathematical properties of SPRs and the cognitive limitations and biases of human
judgment. . . . We are also strongly biased in favor of our prior beliefs and are adept at
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constructing post hoc explanations (Ruscio, 1998b) that sacrifice historical truth for narra-
tive truth. All of these biases, as well as many others . . . can contribute to a poor use of
information, especially relative to SPRs. Available evidence suggests that unaided human
judgment cannot compete with a more mechanical process that involves a comparatively
simple combination of a small handful of relevant variables (Swets et al., 2000). This con-
clusion has been supported in a tremendous number of disciplines. . . . When provided with
identical information, SPRs tend to achieve greater empirical accuracy than do profession-
als. This remains true when one provides professionals with information not available to the
SPR, and even when one provides the results of the SPR itself, in which case professionals
identify too many ”exceptions” to the rule. . . . Meehl (1986) attributed what he refers to
as irrational adherence to an inferior decision-making procedure to several sources. Many
individuals′ unwavering belief in the efficacy of their own judgment or in the importance
of their preferred theoretical identification (as contrasted, for example, with an atheoretical
SPR) is a potent stumbling block. . . . It is noteworthy that clinical judgments – and even less
so holistic claims – are rarely tolerated when large sums of money are at stake. For exam-
ple, when making decisions involving loans, insurance rates, or gambling odds, actuarial
decision making is the norm. (Ruscio, 2003)

Much of the explanation for the relatively poor performance of nonquantitative
and judgment-based methods can be grouped into the following three areas:

1. Individual judgments are sensitive to logically irrelevant details of how infor-
mation is presented. For example, decisions may be affected by whether infor-
mation is presented in rows vs. in columns, in bar charts vs. in pie charts,
and in graphs vs. in tables (e.g., Elting et al., 1999); by giving probabilities of
“survival” instead of logically equivalent probabilities of “mortality”; by pre-
senting cost information before vs. after other information (Jenkins-Smith and
Kunreuther, 2001); by disaggregating columns within a table or sequences of
repeated choices; and by including vs. excluding information on inferior alter-
natives that will not be selected but that may change the relative salience of
attributes for other, better alternatives (Stewart et al., 2003; Schwartz and Chap-
man, 1999, for medical decisions). In some circumstances, individuals seek out
and use logically irrelevant information to make decisions (Bastardi and Shafir,
1998). Many human judgments tend to overemphasize the importance of human
actions, compared to other events and conditions, in bringing about undesirable
consequences (Morris et al., 1999). Such preoccupation with whom to blame
for adverse consequences, rather than how best to prevent or mitigate them,
may have served well in furthering the evolution of cooperation in small hunter-
gatherer societies (Bowles and Gintis, 2004) yet has limited value in improving
current risk management decisions.

2. Individual judgments are often insufficiently sensitive to relevant information.
This can be due to confirmation bias, in which information is sought to sup-
port or confirm already formed opinions, while disconfirming evidence is not
sought and is disregarded or underweighted when presented (Russo and Schoe-
maker, 1989; Plous, 1993). It also arises when decision makers pay attention
to only a few attributes of a complex decision problem in deciding what to
do, even though these factors do not suffice to predict outcomes or to dis-
tinguish between good and bad choices for achieving desired ends (ibid.) (In



Performance of Individual Judgment vs. Simple Quantitative Models 21

the examples previously discussed, considering only antibiotic-resistant bacteria
while neglecting antibiotic-susceptible bacteria may illustrate such overly nar-
row framing, leading to importantly incomplete assessments of how risk man-
agement actions affect human health.) Human judgments also often suffer from
overconfidence, with uncertainty around best judgments or guesses being sys-
tematically underestimated (Hammond et al., 1999).

3. Information is often combined and used ineffectively. For example, some
information may be overweighted (e.g., based on vividness), while other infor-
mation that could be more valuable in improving predictions and decisions is
disregarded or underweighted (Russo and Schoemaker, 1989). Decision mak-
ers often consider components of portfolios independently (sometimes called
narrow framing), neglecting the portfolio in which they are embedded. Simi-
larly, they may inappropriately evaluate in isolation choices made within sequen-
tial plans, repeated choices, or sequences of opportunities (Benartzi and Thaler,
1999). Decisions based on the presentation of information can differ signifi-
cantly from decisions based on information acquired through direct experience
(Hertwig et al., 2004).

Table 1.1 summarizes some well-studied cognitive heuristics and biases (in the
famous term of Tversky and Kahneman, 1974) that can strongly affect how infor-
mation is processed and used in human judgment and decision making (Plous, 1993;
Russo and Schoemaker, 1989; Hammond et al., 1999). These heuristics and biases
affect real decisions having important (e.g., medical) consequences (Bornstein and
Emler, 2001). Formal quantitative risk assessment and decision analysis can help
to identify and overcome such heuristics and biases in situations where they might
otherwise adversely affect decision making. (As usual in this book, poor choices are
defined as ones that are dominated by other available choices that were not made.
Heuristics and biases can lead to poor choices in this sense. Formal analysis can
promote better choices, in many practical situations, as documented at length in the
preceding references.)

Table 1.2 presents glimpses from the young field of neuroeconomics, which
offers some possible biological explanations for why we make risky choices as
we do. In brief, neuroeconomics suggests that the brain integrates results from
multiple “modules” (brain processes and structures) in making decisions involving
risk. Both cognitive (slow, deliberate, conscious, controlled) and affective-emotional
(quick, reflexive, unconscious, uncontrolled) reactions are crucial for the effective
evaluation of risky options and decision making in risky situations. Decisions with
different characteristics (e.g., immediate vs. delayed outcomes, known vs. unknown
probabilities, fair vs. unfair offers, isolated vs. social decisions, anticipated vs. sur-
prising outcomes, and so forth) activate different brain systems differently, thus
leading to choices that are inconsistent with standard models of coherent deci-
sion making. Similarly, reframing decisions in logically equivalent ways that trigger
these subsystems to different extents can lead to different decisions. Such insights
can potentially explain many of the well-documented ways in which real decisions
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under risk depart from the prescriptions of normative models of rational decision
making (Loewenstein et al., 2008).

Psychologists have also discovered that many lay and expert judgments about
causality and risk are strongly biased by prior beliefs (White et al., 1995; Hagmayer
and Waldmann, 2002) and by envisioned causal mechanisms (Ahn and Bailenson,
1996; Tangen and Allan, 2004). These biases can lead to severe underweighting
of empirical evidence and excessive resistance to new evidence and data (Plous,
1993), unawareness of the sources of beliefs and the influence of preconceptions
(Fugelsang and Thompson, 2003), and maladaptive causal inferences and ineffective
decisions (Elstein, 1999, for individuals; Jones and Roelofsma, 2000, for teams).
Again, even relatively simple quantitative models often provide more useful and
reliable insights and conclusions (e.g., more accurate predictions on a variety of
tasks) than judgment (Grove et al., 2000).

Performance of Consensus Judgments vs. Simple Quantitative
Models

Critics of QRA who call for judgment-based processes usually propose that teams
of experts (usually selected or appointed by the relevant agency or authority) should
make the required judgments. Thus, the question arises of how well these team-
based expert decision processes can be expected to perform.

Group decision processes have been studied extensively over the past several
decades. Like individuals, groups (including teams of highly trained experts) tend
to consider too few alternatives and to collect and use too little information (Plous,
1993; Russo and Schoemaker, 1989), due in large part to confirmation bias (Jonas
et al., 2005; Schulz-Hardt et al., 2000) but also to poor sharing and use of individual
information within the group (Jones and Roelofsma, 2000; Lam and Schaubroeck,
2000). Unlike individuals, groups can also be subject to the strategic misrepresen-
tation of knowledge and beliefs by group members (Steinel and De Dreu, 2004).
Empirically, groups often make suboptimal judgments and decisions that are then
strongly defended against conflicting information and divergent points of view
(most notoriously, in “group think”), especially when group norms encourage con-
sensus (Postmes et al., 2001).

Example: Resistance of Expert Judgments to Contradictory Data

In 1997, building on three decades of concerns and speculations, but without
firm empirical evidence (NAS, 1999), Danish researchers warned that “A general
increase in antimicrobial resistance among pathogenic bacteria is causing concern
worldwide that the widespread use of antimicrobial agents in animal production may
promote the development of resistant bacteria or resistance genes that can be trans-
ferred to bacteria that cause disease in humans” (Wegener et al., 1997). In 1998,
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these concerns were addressed via an application of the Precautionary Principle:
Five animal antibiotics used as feed additives were banned in Denmark and the
European Union. No QRA showing that this was likely to produce desirable human
health consequences was used or considered necessary (Pugh, 2002).

Immediately after the ban, animal illness and mortality rates surged. Although
some animal illnesses (e.g., necrotic enteritis in chickens) were brought back under
control over the next five years by the increased use of therapeutic antibiotics and
other countermeasures (VLA, 2004), other changes have persisted. As of 2005, pig
mortality rates in Denmark remained significantly elevated (by about 25%) and pro-
ductivity remained significantly depressed. Human illness rates for foodborne ill-
nesses such as campylobacteriosis also continued to increase in parts of Europe,
including Denmark (Patrick et al., 2004; see also ElAmin, 2006), although they fell
significantly over the same time period in the United States. Resistance rates to
antibiotics such as erythromycin and streptomycin among human isolates sharply
increased (by several hundred percent between 1997 and 1999), while pig illness
and production costs also increased (Hayes and Jensen, 2003). Outside observers
reported that many of these problems persisted in Denmark as of 2005. Simple QRA
models predict and explain these observed outcomes if withdrawing animal antibi-
otics increases rates of animal illnesses (Cox, 2006). Although inferences about
causality are complex and uncertain, and a full understanding of the historical record
would admittedly require more extensive analysis and discussion, in part because
comprehensive programs to reduce foodborne illnesses were being implemented
in parts of Europe at the same time as the bans (e.g., Wegener et al., 2003), the
belief that the bans would have human health benefits is not well supported by the
data.

Yet, despite this poor empirical record for human (and animal) health, many of
the experts who advocated the bans continue to see them as desirable and success-
ful. Instead of focusing on the increased rates of animal mortality, animal and human
illnesses, and human resistance, they have emphasized statistics (such as decreas-
ing the prevalence of resistance in isolates from healthy animals and people) that
do not measure the deterioration in animal and human health, but that are more
consonant with the original belief that the bans should be implemented. As late
as 2003 and 2004, original advocates of animal antibiotic bans were still writing
that “The data shows that although the levels of resistance in animals and food,
and consequently in humans, has been markedly reduced after the termination of
use, the effects on animal health and productivity have been very minor” (Wegener,
2003) and that “Several European countries have demonstrated that restricting the
use of antimicrobial agents in food animals can be followed by a decrease in antimi-
crobial resistance in humans without compromising animal health or significantly
increasing the cost of production” (Angulo et al., 2004). Although such beliefs con-
trast with historical data showing sharply increased resistance rates in isolates from
humans and severely compromised animal health and increased animal mortality
and productions costs (e.g., Hayes and Jensen, 2003), they help to defend and rein-
force the original beliefs of the expert groups involved in this concern-driven risk
management intervention (e.g., WHO, 2003).
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Example: Ignoring Disconfirming Data About BSE Prevalence

In 2005, the Canadian Food Inspection Agency (CFIA, 2005) explained the policy
context for its BSE risk assessments as follows:

As North American Free Trade Agreement (NAFTA) partners, Canada, the U.S. and Mexico
have applied independent but harmonized transmissible spongiform encephalopathy (TSE)
risk-management strategies that are aligned with the OIE. . . . The continuing goal is that of
a unified position on TSE issues in North America.

They urged that Canada and the United States should be classified as having the
same BSE risks: “[T]he structure of the cattle industries in both the U.S. and Canada
are virtually identical and share the same BSE risk factors” and

Internationally, Canada and the U.S. are also viewed as having the same BSE risk, both before
and after the detection of BSE in 2003. . . . The equivalency of risk status between Canada
and the U.S. is . . . [a]lso the basis of the U.S. BSE risk analysis, “Evaluation of the Potential
for Bovine Spongiform Encephalopathy in the United States” and Canada′s BSE risk analysis
“Risk Assessment on Bovine Spongiform Encephalopathy in Cattle in Canada.”

(These were risk assessments used by the CFIA and USDA before the onset of
BSE cases in 2003 to argue that Canada’s BSE risks were “negligible.”) Fortifying
its position against possible further disconfirming data (which soon materialized),
the CFIA emphasized that “It is important to note that the detection of some addi-
tional BSE-positive animals does not change the risk profile for either Canada or the
U.S.” – a curious proposition from a QRA perspective, since risk estimates are typ-
ically sensitive to new occurrences, especially when the initial number of observed
occurrences is small. This enabled the CFIA to leave its policy position unchanged
as additional cases of BSE were found in Canada, including cases among cattle born
long after the 1997 feed ban. Indeed, as of 2008, the United States and Canada were
assigned the same risk category (“controlled,” but not “negligible”) by the OIE. The
policy goal of identical risk classifications for the United States and Canada was
achieved.

What is striking about these qualitative arguments is that they ignore quanti-
tative data showing that Canada has a BSE prevalence rate many times greater
than that in the United States. By 2008, Canada had confirmed over a dozen BSE
cases (mostly of the typical type found in the U.K.) among about 200,000 high-risk
Canadian-born cattle inspected. The United States had confirmed only two cases of
BSE (both atypical H-strain, possibly spontaneous and probably of noninfectious
origin) among about 800,000 U.S.-born cattle inspected. Thus, a crude calculation
suggests that the prevalence rate of all BSE types in Canadian cattle might be about
(12/200,000)/(2/800,000) = 24 times higher than in the United States. [In 2008, the
U.S. Centers for Disease Control and Prevention (CDC) posted results of a refined
calculation that accounted for additional relevant details, such as age-specific risks.
It concluded that “the true prevalence of BSE in Canada is 90% likely to be between
18-fold and 48-fold higher than the previously published best estimate of the preva-
lence of BSE in the United States.”] Moreover, the CDC noted, “The BSE strain
responsible for most of the BSE cases in Canada is the same classic or typical strain
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linked to the outbreak in the United Kingdom. This typical strain has not yet been
identified in any U.S.-born cattle” (www.cdc.gov/ncidod/dvrd/bse/).

In summary, the available quantitative data have long revealed that Canada has
a much higher prevalence rate of BSE cases than the United States (which, as of
early 2008, had found no typical BSE in U.S.-born cattle). Policy statements to the
contrary simply ignore this large difference.

In general, group decision making and judgment often converge prematurely to
incorrect or suboptimal consensus judgments, and participants then waste substan-
tial time and effort talking themselves into increased confidence and support for
their conclusions, even though such confidence-boosting does not lead to improved
decisions (Russo and Shoemaker, 1989). Although various techniques have been
developed to avoid premature consensus and to improve group decisions (ibid.; Lam
and Schaubroech, 2000), many groups (including groups of experts) perform no bet-
ter than – and sometimes considerably worse than – their individual members in a
variety of prediction, judgment, and decision tasks (Plous, 1993).

Group dynamics, strategic, and psychological explanations have often been
advanced for the limitations of group decision making. However, there are also math-
ematical reasons to expect that group consensus decisions will often be poorer than
decisions based on QRA models. For example, consider a group decision process in
which (a) individuals are first invited to express their individual opinions or judg-
ments, (b) these are aggregated somehow (e.g., by averaging, majority rule, or some
other group decision rule) to create a proposed group judgment, and (c) the individual
members of the group are repeatedly invited to either agree with or propose changes
to the group’s current judgment (e.g., a best estimate of an uncertain quantity, or a rec-
ommendation for what action to take) and/or to modify their own judgments. Suppose
that we wish group decisions to satisfy the following two properties:

Unanimity implies consensus: If each member of the group agrees with the
group’s current judgment, the adjustment process terminates, with the unanimously
agreed-to judgment becoming the group’s final judgment. In other words, unani-
mous agreement ends discussion and produces a consensus judgment.

Effective information pooling: If the group reaches a consensus judgment, then
it is consistent with the facts known by the individuals (i.e., the consensus judgment
should not be contradicted by the information of the individual members).

A basic limitation of many group decision processes and consensus judgment is
that these two conditions are not necessarily compatible. If a group decision process
stops when consensus is reached, then it may make poor use of individual information.

Example: Consensus Decision Making Can Waste Valuable
Individual Information

Suppose that each of three experts, A, B, and C, offers an opinion about whether an
animal antibiotic poses a high risk to human health. Before gathering any specific
information, the experts agree that human health risk should be called “high” if and
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only if at least one of the following three conditions is satisfied: (1) use results in
the release of resistant organisms; (2) these resistant organisms can cause exposures
and resistant infections in human patients; and (3) such resistant infections lead
to compromised treatments or treatment failures for human patients. The experts
agree that an uncertain risk should be considered “high” if the probability that it is
high exceeds 50%. Before collecting any specific data, all experts agree that each of
conditions (1)–(3) independently has a prior probability of 0.5. Now, suppose that
expert A collects information that reveals that (1) does not hold; expert B discovers
that (2) does not hold; and expert C learns that (3) does not hold. No expert knows
what specific information the others have collected, and no expert has any other
relevant information (other than these prior statistics and collected information).
Then each individual expert must assess the probability that the true risk is “high”
as (1 – 0.5 × 0.5) = 75% (i.e., it is high unless both conditions that the expert has
not collected information on fail to hold). Hence, each expert concludes that the
uncertain risk should be treated as “high” (specifically, 75%). They agree on this
unanimously. If each expert announces this conclusion, then the process will termi-
nate with the consensus judgment that the risk from this antibiotic use is 75%, or
“high” (depending on whether a quantitative or qualitative expression of judgments
is used), even though this is inconsistent with the facts known to the individual
experts: that none of (1)–(3) holds, so the true risk is zero. Therefore, in this exam-
ple, consensus has not led to the effective pooling of individual information.

As this example illustrates, consensus-driven decision-making procedures that
examine only whether experts agree, or what number they agree on, but not why
(by using an explicit model of how the different facts known to individual mem-
bers interconnect) may waste valuable individual information – even if there is no
deliberate intent to hold back or to distort individual information. Processes such as
Delphi and modified Delphi procedures, which share reasons and knowledge, rather
than only numbers and conclusions, can help to avoid such limitations.

Other simple mathematical models of group decision making reach similar con-
clusions. For example, Berend and Sapir (2002) consider the probability that a group
of decision makers can choose correctly between two alternatives, based on the
advice of its members and partial information about their relative expertise (mod-
eled as the probability of being correct). The probabilities of the individual decision
makers being correct are modeled as independent random variables, with only their
relative ranks being (at least partly) known to the group. The main result is that, for
any member of a broad family of distributions of expertise, the “expert rule” that
accepts the advice of the best expert, disregarding all others, “is far more likely to
be optimal than the majority rule, especially as the deciding body becomes larger.”
Of course, such simple models and results are artificial, but they do suggest that the
performance of group vs. individual (or subgroup) decisions may be worth studying
and validating empirically before assuming that more inclusive decision processes
are necessarily better.

In summary, a substantial body of empirical research, as well as theoretical mod-
eling, indicates that judgments arrived at by expert groups do not necessarily out-
perform individual judgments – and, a fortiori, often perform less well than explicit
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quantitative models. In light of these findings, proposals to replace quantitative risk
modeling with group decision processes for making judgments about risks and deci-
sions about risk management face a significant burden of proof to show that the
recommended group processes perform better than (or as well as) more quantitative
modeling.

How Effective Can QRA Be?

That some common alternatives to QRA do not always perform well provides no
guarantee that QRA will be useful (or better than alternatives) in any particular
application. Indeed, after several decades of enthusiastic development and applica-
tion, a mix of QRA methods has been proposed; not all methods are equally good.
As discussed in Chapters 4 and 5, some methods now in widespread use for both
qualitative and quantitative risk assessment can be worse than useless, meaning that
they can recommend decisions that are, on average, inferior to those that would
result from simply making decisions at random. Opponents and skeptics of quanti-
tative modeling methods also suspect that they are most speculative and least trust-
worthy precisely when they are most needed: in situations with uncertain, complex,
and nonlinear relations between controllable inputs and resulting outputs or conse-
quences. Most of this book is about QRA methods for such situations.

It is fair to challenge QRA advocates to explain exactly how their methods can
be applied in these challenging situations and why the results should be believed.
Responding constructively to this challenge is the main purpose of the rest of this
book. Chapters 2 and 3 introduce QRA methods widely used in engineering and
health risk analysis, respectively. Chapters 4 and 5 warn against popular methods of
qualitative and quantitative risk analysis, respectively, that do not necessarily con-
tribute to improved risk management decisions (and that may be worse than useless).
Chapters 6 through 11 explain and illustrate several practical methods for quantify-
ing risks in uncertain, nonlinear, and complex systems. Two traditionally challeng-
ing application areas, antimicrobial risk assessment and cancer risk assessment, are
used to illustrate many of the ideas and methods.

Chapter 6 discusses how to use information theory and data mining to discover
and quantify nonlinear causal relations in large data sets with many variables, some
of which may be causally irrelevant or may confound true cause-and-effect relations.
Chapter 7 proposes that these and other statistical methods can help to overcome
preconception and confirmation biases. Chapters 8 and 9 show how to use avail-
able (but realistically incomplete and imperfect) data to bound uncertainties about
predicted risks. Chapters 10 and 11 consider QRA when several alternative sets of
assumptions are consistent with available data. They consider how to use resulting
sets of risk estimates to support inferences and decisions.

Chapters 12 through 16 present several applications and case studies, rang-
ing from risk modeling for complex diseases [lung cancer and chronic obstruc-
tive pulmonary disease (COPD)] to systems in which complexity arises from the
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interactions of multiple decision makers. These include evaluating the risk man-
agement options for reducing economic risks resulting from “mad cow” disease in
imported cattle, efforts to improve upon terrorist risk assessments by incorporating
optimization models of attacker behavior, and techniques for making telecommuni-
cations networks resilient to deliberate attacks.

Summary and Conclusions

This chapter has discussed the goals and some limitations of quantitative risk assess-
ment (QRA). It has introduced one of the chief competitors to QRA in the ecology
of competing ideas that shape current national risk management policies: a concept
of concern-driven risk management that generalizes and extends features of the Pre-
cautionary Principle. It is typified by the use of expert judgment and consensus deci-
sion making or group decision making, rather than QRA, to decide when concerns
about a perceived risk should be considered great enough to warrant specified risk
management interventions, even if cause-and-effect relations between these actions
and human health consequences are not yet well understood and quantified. Such
decisions are made without relying on QRA or a formal quantitative assessment of
the probable consequences that will be caused by the recommended actions com-
pared to alternatives, including the status quo.

Concern-driven risk management has recently been recommended by many crit-
ics of QRA (e.g., WHO, 2003). It has been implemented in bans of animal antibi-
otics in Europe (Pugh, 2002) and in the USDA’s 2007 decision to allow older cattle
(those over 30 months old, which have the greatest risk of BSE) to be imported into
the United States. It may have several potential political and psychological advan-
tages over QRA. However, it is not clear that concern-driven risk management per-
forms better than (or as well as) QRA in identifying risk management interventions
that successfully protect human health or achieve other desired consequences. To the
contrary, there are strong empirical and theoretical reasons to expect that judgment-
based risk management in response to concerns, conducted without formal QRA,
may lead to worse decisions and outcomes than would more quantitative models
and methods. Therefore, those who advocate replacing QRA with alternatives, such
as group deliberation and decision processes not driven by quantitative modeling,
face a substantial burden of proof to show that their recommended alternatives truly
outperform QRA.

Concerns are important and should be addressed in applied risk analysis. Indeed,
the main business of risk analysis is to provide trustworthy answers to questions
such as “How bad is it?”, “What might go wrong?”, “What are the consequences
if something does go wrong?”, and “What should we do about it?” However, con-
cern over a current situation, while perhaps motivating a formal quantitative risk
assessment, should not substitute for it for purposes of assessing the probable con-
sequences of alternative risk management interventions. The leap from “This situa-
tion raises concerns” to “Let’s address them by taking some specific action, X” can
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be improved upon by QRA. QRA replaces “Let’s take action X” with “Let’s assess
the probable consequences of alternative possible actions or interventions, and then
implement the one(s) with the most desirable probable consequences.”

QRA documents facts and assumptions, clearly articulates value judgments, and
causally links current actions to desired consequences. Not following these steps
risks taking actions that will not produce intended results and makes it more difficult
to diagnose failures and to learn from experience. The following chapters consider
methods for achieving the QRA ideals – rational action based on well-articulated,
explicit analyses of probable consequences – in managing the risks of complex (pos-
sibly nonlinear) and uncertain systems.



Chapter 2
Introduction to Engineering Risk Analysis

Overview of Risk Analysis for Engineered Systems

Can contemporary organizations and societies design, build, and operate complex
engineering systems safely and reliably for long periods? Being able to do so is
crucial if nuclear power is to be a viable option, if infrastructure such as advanced
transportation systems and energy distribution networks is to be trustworthy, if min-
erals and petroleum are to be discovered and extracted safely, and if hazardous man-
ufacturing and chemical storage facilities are to be located in convenient proximity
to transportation hubs and population centers. This chapter, which is an update and
extension of Bier and Cox (2007), discusses methods for quantifying the extent to
which complex engineering systems can be designed and operated safely.

Opinions about the answer are divided. One school of thought, sometimes called
Normal Accident Theory after the book that articulated it (Perrow, 1984), holds that
engineered systems with high “interactive complexity” (presenting unexpected and
surprising sequences of events that are difficult to detect or comprehend at first)
and “tight coupling” of interdependent components or subsystems (so that changes
propagate quickly among them) are inherently unpredictable and uncontrollable
by human operators. Resulting accidents and catastrophic failures in such high-
risk technological systems are seen as inevitable and unavoidable: in this sense,
they are “normal.” In this pessimistic view, adding redundancy to complex systems
to reduce accidents makes them even more complex and prone to unpredictable
failures. Case studies of accidents and near-accidents at chemical plants, nuclear
reactors, airports, and other complex industrial facilities well illustrate Normal
Accident Theory.

A different view, popularized in the catchphrase “Failure is not an option” (made
famous by Oscar-nominated actor Ed Harris playing NASA Flight Director Gene
Kranz in the movie Apollo 13), is that complex engineering systems can be built
and operated safety by sufficiently disciplined, creative, well-organized, and well-
trained teams and organizations. Sociologists, psychologists, and other researchers
have sought common features of “high-reliability organizations” (HROs), mean-
ing organizations with significantly fewer accidents and failures than normally
expected. They have proposed lists such as preoccupation with failure, reluctance
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to (over-)simplify interpretations or to prematurely reject unexpected interpreta-
tions of observations, sensitivity to operations, commitment to resilience, and appro-
priate deference to expertise (as opposed to rank, seniority, or power) (Weick and
Sutcliffe, 2001). Such habits can help to create the vigilant “mindfulness” needed to
operate safely and to catch and correct potential problems before they cascade out
of control. Routinely safe operations on aircraft carriers and in other high-stress,
risky, and complex environments vividly illustrate that well-trained teams in well-
designed organizations and environments can manage risks successfully. Similar
principles might be applied in different settings, such as operating rooms and inten-
sive care units. Eliminating “mindlessness” (e.g., blind rule following or deference)
in the implementation of federally and locally funded programs to reduce infant
mortality and preterm birth has been proposed as a way to reduce the frequency and
severity of poor outcomes (Issel and Narasimha, 2007).

Probabilistic risk assessment (PRA) of engineered systems gives engineers and
risk managers practical tools to understand, predict, and manage risks for a variety of
complex engineered systems. It identifies how systems might fail, the likely (and not-
so-likely) potential adverse consequences of failures, and how best to prevent failures
and mitigate adverse consequences while meeting other goals, such as the continued
productive operation of a hazardous facility. PRA methods include probability model-
ing techniques (both analytic and simulation-based) for quantifying engineering risks,
typically expressed as the probabilities of adverse events and as the frequencies and
severitiesof theiradverseconsequencesoverastatedperiodof time.PRAalso includes
optimization methods from operations research and safety and reliability engineering
that can identify cost-effective ways to improve safety and reliability while satisfying
other constraints (e.g., on system cost, weight, or performance).

Examples of complex engineering systems to which PRA has been successfully
applied include nuclear power plants (beginning with the Reactor Safety Study in
1975, and continuing to the present day); the space shuttle (both before and espe-
cially after the Challenger disaster); dam and reservoir planning and operations;
highway, bridge, and transportation infrastructure; emergency planning; liquefied
natural gas (LNG) terminals and storage facilities; other hazardous chemical plants
and operations; and electric power generation and distribution planning. The com-
mon elements in such systems is that they all involve (1) a designed system intended
to withstand different levels of stress, with the option of incorporating different lev-
els of backup and fail-safe design, (2) a system operator/risk manager faced with
decisions about how to inspect, maintain, and use the system (e.g., when to launch,
when to shut down, and generally what level of precaution to adopt), and (3) an
uncertain environment that generates stresses and adverse conditions that the sys-
tem should ideally be able to withstand. Uncertainties from the environment may
involve random events, such as equipment failures or unexpectedly high or stressful
transient loads (as in the case of the Tacoma Narrows bridge collapse); natural dis-
asters such as earthquakes, floods, or hurricanes; terrorist attacks; or operator errors,
perhaps arising from miscommunication, miscoordination, or misunderstanding of
systems behavior among those running it. Unexpected behaviors of interacting
software modules or other subsystems may also cause a system to fail, even if each
component performs as it was designed to (Leveson, 2004).
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Example: Unreliable Communication with Reliable Components

Setting: Suppose that two people call each other on their cell phones at the same
time, so that each receives a busy signal. If each caller can reattempt a call at the
beginning of each new time period (say, every 20 seconds), then what retry strategy
minimizes the average time to connect?

Solution: If each caller tries to call with probability p at the start of a period,
then the probability that they conflict again is p2, the probability that neither calls is
(1 – p)2, and the probability that they connect is 2p(1 – p), which is maximized for
p = 0.5. Thus, each should call with probability 0.5 at the start of each period, until
they connect. The probability of connecting at the start of a period is then 2∗(0.5)∗

(1 – 0.5) = 0.5 and the expected number of periods until connection is established
is therefore 1/0.5 = 2. Thus, even if all parts of the system work perfectly and the
two callers behave optimally (given what they know), the effective availability of a
connection to the callers is less than 100%. This illustrates a coordination failure
in the use of the system. Of course, such coordination failures are usually only
minor annoyances. . . unless the safety of a system depends on being able to establish
contact promptly when something goes wrong!

A system’s designer and its operator/risk manager usually both want to make
decisions so that the system operates as planned, given engineering and cost con-
straints and the uncertain environment. Of course, the decisions and trade-offs faced
by the operator/risk manager typically reflect the decisions made by the system
designer. PRA can help to quantify the trade-offs between cost and safety at the
design stage and can help to identify policies and schedules for cost-effective inspec-
tion and testing, preventive maintenance, spare parts provisioning, redundancy allo-
cation, and replacement of working parts to keep complex systems operating as
intended throughout their design lives.

Example: Optimal Number of Redundant Components

Setting: Suppose that an airplane can have one, two, or four engines. Each engine
independently has a probability 1 – p of failing during the course of a mission.
(Equivalently, it has probability p of surviving). A plane fails (crashes) if more than
half of its engines fail.

Problem: What number of engines should a plane have, to maximize the proba-
bility of completing its mission?

Solution: A plane with one engine has success probability p. A plane with two
engines has success probability 1 – (1 – p)2, the probability that both engines do not
fail. Since 1 – (1 – p)2 = 1 – (1 – 2p + p2) = p(2 – p), this success probability is
greater than p if and only if 2 – p > 1 and p > 0; in other words, for 0 < p < 1. Thus,
a twin-engine plane is at least as likely to survive as a single-engine plane, with
equality only if p= 1 or p= 0. For a four-engine plane, the probability of success is
one minus the probability of losing more than two engines: 1 – [Pr(lose 4 engines)
+ Pr(lose 3 engines)] = 1 – [(1 – p)4 + 3p(1 – p)3] = 1 – (1 – p)3 [(1 – p) + 3p].
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This is greater than the success probability for two engines if and only if the follow-
ing inequalities hold:

1− (1− p)3[(1− p)+ 3p] > 1− (1− p)2,

(1− p)2 > (1− p)3[(1− p)+ 3p],

1 > (1− p)[(1− p)+ 3p],

1 > (1− p)(1+ 2p),

1 > 1+ p − 2p2,

2p2 > p,

2p > 1,

p > 0.5.

Thus, a four-engine plane is more likely to survive than a two-engine plane if
and only if the individual engines are more likely than not to survive the mission
(p > 0.5).

Example: Optimal Scheduling of Risky Inspections

Setting: Suppose that, in the absence of intervention, a component (perhaps an
engine in the previous example) of age t has probability 1 – e–ht of a defect that
will increase the risk of failure when the component is next used. h is called the
hazard rate for occurrence of the defect, and ht is the cumulative hazard accumu-
lated by age t in the absence of intervention. At any time, an expensive inspection
may be performed, and, if a defect is present, it will be found and repaired, effec-
tively setting the age of the component back to 0. However, careless inspection may
itself introduce an uncorrected defect that would not otherwise have occurred. The
probability of this is p ≥ 0 for each inspection.

Problem: What time between inspections minimizes the expected number of
uncorrected defects per unit time?

Solution: If inspections take place every T time units, then each inspection
removes hT expected defects and adds p expected defects. The optimal time between
inspections makes the marginal “cost” (here meaning loss of reliability) from an
inspection – that is, the expected new defects created, p – equal to its marginal
benefit (that is, the expected effects removed, hT). Thus, the optimal time between
inspections, denoted by T∗, satisfies hT∗ = p, and so T∗ = p/h (for h > 0). More
frequent inspections than this, with T < T∗, are expected to create more problems
than they solve (p > hT). Less frequent inspections, with T > T∗, let the expected
costs of not intervening sooner exceed the costs of doing so (hT > p).

PRA is usually applied to rare and catastrophic events for which it may be dif-
ficult to estimate risks directly due to the lack of empirical data, the possibility
of unobserved changes (e.g., deterioration) in the system, and changes in the sys-
tem’s environment or use. Risk assessment can also be applied to predict routine
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(e.g., occupational accident) risks, although in such cases it may be possible to rely
primarily on empirical data, reducing the need for modeling. In general, PRA is used
to estimate, predict, and find ways to reduce the risks to facility or system own-
ers, employees, and the public. This chapter focuses on methodological advances
in engineering risk analysis, with selected applications (including some applica-
tions of PRA methods and insights to fields other than engineering) to illustrate the
methodology.

Using Risk Analysis to Improve Decisions

Risk analysis can help to inform design decisions (e.g., trade-offs among safety and
performance, cost, etc.) as well as operational decisions (e.g., when to shut down a
facility). It can be useful regardless of who makes the decisions – for example, facil-
ity owners and operators, regulators, or multiple stakeholders interacting through a
participatory risk management and conflict-resolution process. Key technical chal-
lenges that PRA must address include: how to predict the probable performance
and quantify the behaviors – both probable and improbable – of a complex system,
given a design and the operator’s decisions, in the face of inadequate data; how
to optimize the joint decisions faced by the system designer and owner/operator
(which can involve NP-hard combinatorial optimization problems, as well as prob-
lems of coordination and communication between different organizations); how to
most effectively model interdependencies and uncertainties about the system’s cur-
rent state; the development of cost-effective “screening”-type methods for address-
ing the myriad possible risks in “open” systems (such as the risk of terrorist attack);
and scale-up problems for extremely complex systems, such as infrastructure net-
works. Also, there is still room to benefit more fully from adaptation of methods
developed in other fields, including decision analysis and related fields (such as
Bayesian statistics).

Hazard Identification: What Should We Worry About?

Probabilistic risk assessment typically begins by defining a system to be analyzed
and identifying undesired outcomes that might occur when it is operated. Hazard
identification methods have been developed to identify the potential adverse conse-
quences of system operation. Structured qualitative techniques include hazard and
operability (HAZOP) studies and failure modes and effects analysis (FMEA), which
describes potential failure modes, causes, effects, safeguards, and recommendations
for reducing risks.

Fault trees and event trees can be used in a qualitative mode for hazard iden-
tification but can also be quantified to estimate the likelihood of adverse events.
Fault tree analysis (Barlow, 1998) begins with an undesired outcome, called the “top
event,” and reasons backward to identify which combinations of more basic events
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(e.g., component failures) could bring about the top event (e.g., failure of the sys-
tem). The result is a tree that represents those sets of basic events that would be
sufficient to cause the top event using “AND” and “OR” logic (and possibly more
complicated logic gates as well). The tree generally goes down to the level of basic
events whose probabilities can be reliably estimated from experience, judgment,
and.or data.

Example: Fault Tree Calculations for Car Accidents
at an Intersection

Setting: Suppose that a car accident (the top event) occurs at an intersection if and
only if (two cars approach the intersection at the same time from different directions)
AND (both cars proceed). The event “both cars proceed” can be further decomposed
into a logical subtree, as follows: (both cars proceed) if and only if [(the signal is
broken AND both cars proceed) OR (the signal is not broken AND both cars pro-
ceed)]. Reliable statistics show that the first event (sometimes called the imitating
event), namely, “Two cars approach the intersection at the same time from different
directions,” occurs with an average annual frequency of 100 times per year. The
signal is broken on 0.1% of these occasions (independently of traffic) and the con-
ditional probability that both cars will proceed, following the initiating event, is 0.1
if the signal is broken and 0.01 if it is not broken.

Problem: (a) What is the average annual frequency of accidents at the intersec-
tion, given these numbers? (b) What fraction of accidents would be prevented if the
signal never failed?

Solution: (a) The conditional probability of an accident, given the initiating
event, is Pr(signal is broken)∗Pr(both cars proceed | signal is broken) + Pr(signal
is not broken)∗Pr(both cars proceed | signal is not broken) = (0.1%)∗(0.1) + (1 –
0.1%)∗(0.01) = 0.0001 + 0.9999∗0.01 = 0.0101 (to four significant digits). (Here
“|” is read as “given” or “conditioned on.”) The average annual frequency of acci-
dents is this conditional probability times the average annual frequency of initi-
ating events: 0.0101∗100 = 1.01 accidents per year. (b) The contribution of acci-
dents with a broken signal to the total average annual frequency of accidents is only
(0.1%)∗(0.1)∗100 = 0.01 accidents per year. If the signal were never broken, then
the average frequency of accidents per year would still be 100∗0.01 = 1 accident
per year.

Comments: (a) Dominant contributors. In this example, accidents with the traf-
fic signal working constitute a dominant contributor to the average annual accident
frequency. This means that ignoring other, rarer events (namely, accidents with the
signal broken) yields the same calculated risk number (about one expected acci-
dent per year), to one significant digit. One way to simplify fault tree calcula-
tions is to focus on dominant contributors, neglecting events that are rare enough
that they do not change the numerical answer (within some desired level of pre-
cision, such as one or two significant digits). (b) Poisson probabilities. The calcu-
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lated risk of about one accident per year can be viewed as the mean of a rare-event
(approximately Poisson) process. This allows the probabilities for any number of
accidents per year (under current conditions) to be estimated: It is Pr(x accidents in
a year) = λexp(–λ)/x! for x = 0, 1, 2, . . . , where λ is the mean number of accidents
per year (approximately 1, in this example). For example, the probability of zero
accidents at this intersection in a year, if the accident process is Poisson with mean
1 accident per year, is e–1 = 1/2.718 = 0.368. (c) Obtaining probabilities for basic
events. If reliable statistics were not available for the probabilities that both cars
proceed when the signal is working and when it is broken, they might be estimated
from experiments (e.g., using driving simulator results), models of driver behavior,
or expert judgment. Uncertainty and sensitivity analyses would then typically be
used to determine by how much the calculated risk might change if different plausi-
ble estimates or better future information about these inputs were to be used in the
analysis. (d) Recursive deepening of a tree. Each event in a model, such as “both
cars proceed,” can potentially be expressed as a subtree consisting of a logical com-
bination of more refined event descriptions, e.g., “(both cars proceed and weather
is good) or (both cars proceed and weather is not good).” Infinite recursion is pre-
vented by stopping further decomposition when the current description allows basic
event probabilities to be quantified accurately enough to support risk management
decisions.

Event tree analysis begins with an “initiating event” and works forward to iden-
tify its potential consequences. In essence, an event tree is a decision tree without
decision nodes. It shows potential sequences of events, with the probability of each
branch leaving an event node (representing the possible resolution of an uncertainty,
often modeled as a possible value of a random variable) being conditionally inde-
pendent of earlier information, given that the branch point (i.e., that event node)
has been reached. The frequency of a given event sequence is then just the product
of the conditional branch probabilities along that path multiplied by the frequency
of the initiating event. Both fault trees and event trees can be represented as logi-
cally equivalent influence diagrams. They can be solved by more general-purpose
influence diagram algorithms (Barlow, 1998; Bobbio et al., 2001).

Structuring Risk Quantification and Displaying Results: Models
for Accident Probabilities and Consequences

A quantitative risk model typically consists of a formal mathematical and or sim-
ulation model of the system of interest, together with one or more consequence
attributes of interest and one or more alternative risk management decisions to be
evaluated or decision variables to be optimized. The model is used to predict the
probable consequences of alternative decisions. Preferred decisions are those that
yield preferred probability distributions (or, more generally, preferred stochastic
processes) for the consequences of interest.
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Risk modeling typically involves some or all of the following components.

• System representation (Barlow, 1998; Smith, 2005). An engineered system is
often represented mathematically in one of the following forms: (a) A “black-
box” statistical model (e.g., a lifetime hazard function quantifying the condi-
tional failure rate of a system for different ages or elapsed times, given that it
has not failed so far): (b) component failure rates combined via a coherent struc-
ture function (such as a fault tree or an event tree) mapping the states of system
components to the states of the system. (A coherent structure function must be
monotonically increasing, going from a system failure probability of zero if all
components work to a system failure probability of one if all components fail.);
(c) a stochastic state-transition model (e.g., a Markov or semi-Markov model
for transitions among working and failed components, representing component
failure and repair rates); (d) a discrete-event simulation model (Smith, 2005).

• Environment representation. Like a system model, a model of the environment
may be a statistical black-box model (e.g., a function describing the frequency
and intensity of stresses to the system’s components), a stochastic process, or a
simulation model. Plausible worst-case or bounding scenario analyses are some-
times used when probabilistic descriptions of uncertainty are unavailable or are
difficult to obtain. The model of the environment is often incorporated directly
into the system model, as with traffic levels and weather conditions in a traffic
accident model.

• Decision-rule representation. A decision rule for managing an engineered sys-
tem maps observed information about the system into a resulting action or
intervention. For example, a component may be replaced based on the observed
history of failures and repairs for its components. Optimization methods, includ-
ing recently developed simulation-optimization techniques (see, for example,
Ólafsson and Kim, 2002), can help to identify “good” or “best” decision rules,
given a system model, an objective function (e.g., a multiattribute utility func-
tion), and a model of the environment. Of course, many decisions in the real
world (even when informed by PRA) are made without a formal decision rule,
either because the PRA results themselves make the best decision clear or
because of the need to address the concerns of multiple stakeholders.

Example: Bug-Counting Models of Software Reliability

An example of a simple black-box risk model for software reliability is a “bug-
counting” model in which the (unknown) initial number of bugs in a piece of code
is represented by a random variable N with a prior distribution. As the code is tested
and debugged, the remaining number of bugs presumably decreases, and the ran-
dom times between successive bug discoveries stochastically increase. (Relatively
sophisticated models also allow for the possibilities that detection and repair are
imperfect processes and that debugging activities may introduce new bugs.) The
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empirical record of bug discoveries can be used to trigger a decision rule such as
“If no bugs have been discovered within M tester-hours, then release the software.”
Simulation optimization can then be used to numerically optimize the parameter
M. For analytic alternatives, see Singpurwalla and Wilson (1999) and Wilson and
Samaniego (2002).

Example: Risk Management Decision Rules for Dams
and Reservoirs

Wurbs (2005) describes the use of decision rules to manage water releases for dams
and reservoirs as follows:

Release decisions depend upon whether or not the flood control storage capacity is exceeded
. . . federal reservoirs are typically sized to contain at least a 50-year recurrence interval . . .

flood and, for many projects, design floods greater than the 100-year flood . . . , perhaps
much greater. A specified set of rules, based on downstream flow rates, are followed as long
as sufficient storage capacity is available to handle the flood without having to deal with the
water surface rising above the top of the flood control pool. . . . For extreme flood events
which would exceed the reservoir storage capacity, moderately high damaging discharge
rates beginning before the flood control pool is full are considered preferable to waiting
until a full reservoir necessitates much higher release rates.

The outputs from quantitative risk models are often summarized as F–N curves
(also sometimes called exceedance probability curves, or complementary cumula-
tive frequency distributions), showing the expected annual frequency F of fatalities
or damages exceeding any given level, N, for N > 0. (Technically, as discussed in
Chapter 5, such diagrams make sense only for compound Poisson processes, not for
more general renewal processes. However, F–N curves are often used to summarize
the results of PRA calculations, which typically use compound-Poisson approxima-
tions to risk in any case.) F–N curves are not perfect summaries of the distribution of
risk within a population, however – largely because they do not describe individual
risks, which may differ substantially. Other risk displays show how risk varies by
location, over time, and with other covariates. For example, it is common practice
to plot “risk contours” showing risks to individuals at different locations around a
potentially hazardous installation or transportation route.

Example: Different Individual Risks for the Same Exceedance
Probability Curve

Suppose that three people, 1, 2, and 3, live near two hazardous facilities, A and B.
Facility A can have any of three accidents: A small accident that kills individual 1
only; a medium-sized accident that kills individuals 1 and 2; or a large accident that
kills individuals 1, 2, and 3. If an accident occurs at facility A, it is equally likely to
be small, medium, or large. By contrast, an accident at facility B is equally likely to
kill individual 3 only, kill individuals 1 and 2, or kill all three. Accidents at facilities
A and B are equally frequent. Then A and B have identical F-N curves, since each
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accident (at either facility) has probability 1/3 of causing one fatality, 1/3 of causing
two fatalities, and 1/3 of causing three fatalities. But the individual risks from the
two facilities are very different. An accident at facility A has a 100% probability of
killing individual 1, a 2/3 probability of killing individual 2, and only a 1/3 probabil-
ity of killing individual 3; but an accident at facility B has a 2/3 probability of killing
each individual. This difference in the distribution of individual risks is not captured
in an F-N curve, but could be shown in a risk contour plot if the three individuals
are positioned at different locations.

Major technical challenges for developing PRA results include

1. Constructing and validating models of the system and its environment. Statistical
analysis of accident precursors uses data on “near-misses” to validate and refine
model-based predictions (Yi and Bier, 1998; Borgonovo et al., 2000; Phimister
et al., 2004). Powerful model-building and model-checking methods have also
been developed in the areas of system identification, which attempts to identify
dynamic system descriptions of input-output relations from observed time course
data (see Chapter 11), and data mining and machine learning, which seek to
learn correct models (or at least subsets of especially plausible models) directly
from data (see Chapters 6 and 7).

2. Calculating, simulating, or estimating probabilities of rare events. Methods for
addressing this challenge, such as importance sampling, adaptive importance
sampling, cross-entropy, and Markov chain Monte Carlo (MCMC) methods with
carefully designed transition kernels, have advanced significantly in recent years
(e.g., Bucklew, 2004; Rubinstein et al., 2004).

3. Treatment of dependencies among failure events and system components. Meth-
ods for treatment of dependencies presently include common-cause failure anal-
ysis (to show dependence in the failure rates of similar components due to a
common underlying cause), dependency matrices and event trees (to show the
dependence of some systems on “support” systems such as electric power), and
external-events analysis (to capture the fact that events such as earthquakes, fires,
and floods can affect multiple components of a system).

Quantifying Model Components and Inputs

A model typically expresses risk (e.g., the probability of failure by a certain time)
as a function of the performance of model components and or input parameters.
These must be quantified from available data, perhaps using a combination of expert
judgment and Bayesian statistics (due to the sparseness of directly relevant data). In
Bayesian statistics, a prior distribution is updated by conditioning on observed data
to yield a posterior probability distribution for the quantities of interest (Lee, 2004).
Such methods include hierarchical Bayesian methods (in which partially relevant
data are used to help construct the prior distribution) as well as empirical Bayesian
methods (in which the actual data for the problem at hand are used to help construct
the prior distribution); see Carlin and Louis (2000).
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Although Bayesian approaches to quantifying risk models are frequently applied
in practice, advances are still being made in numerous areas. These include design-
ing more flexible and tractable models for treating probabilistic dependence in risk
models, alternatives to relying on subjective prior distributions (which can be prob-
lematic if plausible differences in subjective priors significantly affect risk results),
and treatment of model uncertainty.

Modeling Interdependent Inputs and Events

If the state of a system is described by a coherent structure function, and each com-
ponent independently undergoes stochastic transitions over time (e.g., from “work-
ing” to “failed” to “repaired” or “replaced”), then the probability distribution for
the system’s state (i.e., the probability that it will be working rather than failed at
any time) can be obtained relatively easily. Stochastic simulation of the behaviors
of the components, or the routine application of combinatorial reliability models
and algorithms, such as fault tree analysis or event tree analysis, is practical even
for large systems. However, if component behaviors are interdependent (e.g., if each
component failure increases the stress on those components that have not yet failed),
then it becomes more complex to calculate the risk that the system will have failed
by any given time. Simulating interdependent behaviors may be straightforward in
principle, but, in practice, it requires specifying how events depend on each other –
a potential combinatorial nightmare.

Dependence can also be a problem for uncertainty analysis. In particular, the fail-
ure rates (or probabilities) of the various components can be uncertain and statisti-
cally dependent on each other, even if their behaviors are conditionally independent
given their failure rates. For example, learning that one component had a higher
failure rate than expected may cause one to increase estimates of the failure rates
of other similar components. The failure to take such dependence into account can
result in substantial underestimation of the uncertainty about the overall system fail-
ure rate (or probability), and in some cases also underestimation of the mean failure
probability of the system (e.g., if the components whose failure probabilities are
dependent are functionally in parallel with each other); see Apostolakis and Kaplan
(1981), Burmaster and Anderson (1994), and Kraan and Cooke (1997).

Historically, for reasons of computational tractability (among others), depen-
dencies among random variables have often been either ignored, or else treated
using unrealistic and simplistic assumptions such as perfect correlation. Fortu-
nately, substantial progress is being made in modeling dependencies among com-
ponents (and/or in the information about components). Two techniques, copulas
and Bayesian networks, have become popular for specifying dependency relations.
Bayesian networks are directed acyclic graphs (influence diagrams without deci-
sion nodes) in which nodes represent events and directed arcs (“arrows”) between
nodes show probabilistic dependencies. Each node’s value has a conditional prob-
ability distribution that depends only on the values of the variables that point into
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it. (Equally important, absent arrows indicate the conditional independence of each
variable from those that do not point into it, given the values of those that do.) Sam-
pling from the conditional distribution of each variable in turn, given the sampled
values of its predecessors (after sorting the variables so that each appears only after
those that point into it, if any), and repeating many times provides a way to sample
from the joint distribution of the variables without having to explicitly specify it.
[Such “Gibbs sampling” is a simple form of Markov chain Monte Carlo (MCMC)
sampling that is well suited for Bayesian networks. In effect, the joint distribution
is factored as a product of marginal distributions (for the input variables, mean-
ing those with no predecessors) and conditional distributions (for all other nodes),
thus allowing the potentially large size of a full joint distribution to be tamed by
the relative sparseness of significant dependencies among variables in most real-
world systems.] Free Windows software for Bayesian inference using Gibbs sam-
pling (“WinBUGS”), called from the free statistical computing environment R, can
be obtained by Googling on R2WinBUGS.

The use of copulas (functions that link a multivariate cumulative distribution to
its one-dimensional cumulative marginal distributions; see, for example, Nelsen,
1999) has also become increasingly common in both financial and engineering
risk analysis. Copulas have been applied, for example, to model dependencies
between opinions from different experts (Jouini and Clemen, 1996; Lacke, 1998)
and between system failure rates during normal and accident conditions (Yi and
Bier, 1998). They are used extensively in financial risk analysis (e.g., in the Gaus-
sian CreditMetrics or Basel II model) to describe correlated credit portfolio risks
and interdependent risks of default (Frey et al., 2001).

Of course, copulas are not always the most convenient way to represent depen-
dencies; see Joe (1997) for a compendium of multivariate distributions. Recently,
Merrick et al. (2005) used an inverted Wishart distribution to model uncertainty
about the dependencies among experts in assessing risks to the Washington State
Ferries system while allowing the analyst to “learn about the dependencies between
the experts from their responses.” This is achieved by asking the experts to provide
multiple different assessments of maritime risk under differing circumstances.

Cooke and colleagues (Bedford and Cooke, 2001; Kurowicka and Cooke, 2004)
developed a practical method for specifying a joint distribution over n contin-
uous random variables with specified rank correlations, using only n(n – 1))2
assessments of conditional correlations. Kurowicka and Cooke (2004) point out that
use of continuous multivariate distributions for a Bayesian belief net (a Bayesian
network) allows for more tractable Bayesian updating than the commonly used dis-
crete distributions (Lauritzen and Spiegelhalter, 1998).

Example: Analysis of Accident Precursors

Consider a risk analyst attempting to estimate the failure probabilities of critical
safety systems in a nuclear power plant in the event of an accident. Fortunately,
few if any accidents will have been observed on plants of that type, suggesting the
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analyst may use data regarding failure probabilities of those systems during routine
testing. However, this data will clearly be only partially relevant to the probabilities
to be assessed; for example, one might expect that many systems will have higher
failure probabilities under accident conditions than during routine testing.

Yi and Bier (1998) show how copulas can be used to represent dependency
between the system failure probabilities under normal versus accident conditions.
This makes it possible to perform a Bayesian update showing the effect of data col-
lected under normal conditions on the system failure probabilities under accident
conditions. Thus, for example, if routine testing showed a particular system to be
much less reliable than was previously believed, this information could be used to
update the expected failure probability of the system in the event of an accident.
However, Yi and Bier’s model is not sufficiently general to account for all relevant
prior assumptions about dependencies. Thus, further work is needed to enhance
ability to model dependencies.

Example: Flight-Crew Alertness

A challenge in modeling flight-crew alertness (Roelen et al., 2003) is that various
predictive variables are correlated not only with crew alertness, but also with each
other. For example, the crew’s workload on a given flight is likely to be a function
of both the length of the flight (with longer flights having higher total workload) and
how much the crew members rest during the flight (with more rest being associated
with a lower workload). However, assessing the combined impact of these variables
on crew alertness may be difficult if longer flights also allow more rest time during
flight.

Kurowicka and Cooke (2004) develop a continuous Bayesian belief net for this
situation to allow airline managers to identify ways to compensate for known causes
of poor alertness (such as long flights, or insufficient sleep prior to flight time).
By allowing the variables in their model to have continuous distributions (rather
than discrete distributions, which are more common in applications of Bayesian
belief nets), they were able to achieve a highly parsimonious model requiring the
assessment of only eight conditional rank correlations, compared to the many more
assessments that would have been required for a discrete model.

Some Alternatives to Subjective Prior Distributions

Unlike classical statistical procedures, Bayesian analysis can be used in situations
of sparse data, because subjective judgments and other nonstatistical types of evi-
dence can be used in Bayesian estimation, inference, and decision processes. How-
ever, with sparse data, the results of Bayesian analyses are often sensitive to the
analyst’s choice of prior probabilities for models and parameters. Hence, Bayesian
methods can be more subjective and less readily accepted when data are sparse.



48 2 Introduction to Engineering Risk Analysis

Maximum-entropy distributions have sometimes been proposed to help solve this
problem. They use whatever information is available about the uncertain quantity
of interest (e.g., mean, median, or mean and variance) to constrain the assumed
distribution for that quantity but presuppose as little additional information as pos-
sible beyond that, to avoid inadvertently assuming more than is actually known. A
maximum-entropy distribution is defined to be the least informative distribution (in
a precise technical sense) that satisfies the specified constraints (Jaynes, 2003). The
resulting distribution can then be used either as a prior distribution for Bayesian
analysis (if additional data become available) or as a partially informative distribu-
tion without updating. For example, Meeuwissen and Bedford (1997) use maximum
entropy to identify the minimally informative distribution with a given set of rank
correlation coefficients, using a piecewise constant numerical approximation (a so-
called chessboard distribution).

However, maximum entropy and related approaches (such as “noninformative
prior” distributions) lead to significant problems even in some relatively simple
examples. For example, if all we know about a random variable X is that it is
bounded by 0 and 1, then a maximum-entropy distribution for it would be uniform
between these limits. Of course, exactly the same reasoning presumably applies to
X2, but X and X2 cannot both be uniformly distributed between 0 and 1. Such lack of
invariance to transformations of variables (e.g., from half-life to decay rate) means
that maximum-entropy distributions may depend on essentially arbitrary choices of
scale, or of how to represent the same physical situation. In addition, the maximum-
entropy distribution can be difficult to compute in some cases (especially when quite
a bit is known about the quantity of interest, so that the maximum-entropy distribu-
tion must satisfy numerous constraints).

Such limitations have raised interest in “robust” Bayesian methods and other
bounding approaches. Robust Bayesian methods (Rios Insua and Ruggeri, 2000)
update an entire class, family, or set (usually convex) of prior distributions with
observed data, rather than just a single prior distribution. If the class is chosen
carefully, the computational effort required to update all distributions in the class
need not be substantially greater than for a single distribution. If all (or most) prior
distributions in a suitably broad class give similar results, this can lead to greatly
improved confidence in the results of the analysis.

In a similar spirit, probability bounds analysis (Ferson and Donald, 1998) propa-
gates uncertainties (rather than choosing a prior distribution for Bayesian updating).
The analyst specifies bounds on the cumulative distribution functions of the various
input parameters to a model, rather than selecting specific cumulative distributions.
These bounds are then propagated through the model. The uncertainty propagation
process, which again can be quite computationally efficient, yields valid bounds on
the cumulative distribution function for the final result of the model (e.g., a risk
level). This approach can take into account not only uncertainty about the proba-
bility distributions of the model inputs, but also uncertainty about their correlations
and dependence structure. This is valuable, because correlations will often be more
difficult to assess accurately than marginal distributions, and correlations of 1 or –1
among the input variables do not necessarily produce the most extreme possible
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distributions for the output variable(s) of interest; see, for example, Ferson and
Hajagos (2006).

Example: Effects of Exposure to Contaminated Soil

Ecological and environmental risk models frequently involve a high degree of uncer-
tainty, because some important parameters in the model may not be readily measur-
able.Consider theproblemofattempting toestimate theeffectof soil contaminationon
predator species (Hope, 1999), which may be exposed to contamination both directly
(through ingestion of soil) and indirectly (by ingestion of a variety of prey species).
Estimating the exposure to the predator species requires estimating the concentration
of the contaminant in the flesh of all prey species, some of which may themselves be
predators. This requires estimating the overall food and water intake and diet compo-
sition for each relevant species, as well as the uptake of the contaminant. Good data
or expert opinion may be available for some parameters, but for others (such as the
fraction of a particular predator’s diet made up of a particular prey species), experts
may feel uncomfortable assessing an informative probability distribution and may
prefer simply to state, for example, that the fraction must be between 0 and 1. Stan-
dard practice would either press the experts to provide informative distributions, or
simply assume a uniform distribution between 0 and 1, but this may not always con-
form to the experts’ judgments. Correlations between the fractions of the diet made
up of differing foods can also obviously be difficult to estimate reliably.

Regan et al. (2002) compare a traditional two-dimensional Monte Carlo anal-
ysis of this problem to the results obtained using probability bounds. Even using
bounds of 0 and 1 for some parameters, the qualitative conclusions of the analysis
(e.g., that the predator species of interest was “potentially at risk” from exposure to
soil contamination) remained essentially unchanged between the two-dimensional
Monte Carlo analysis and the probability bounds analysis. Thus, bounding analy-
sis can help support a particular decision if it shows that the qualitative results and
recommendations resulting from the analysis are not highly sensitive to the specific
choices of probability distributions used in the simulation.

The use of subjective prior probabilities and judgment-based probability models
can also be simplified or avoided in many situations where probability theory pro-
vides the required forms of distributions and/or useful bounds on the probable values
of uncertain quantities. Table 2.1 summarizes some important classes of situations
where probability theory prescribes distributions and bounds. [Table 2.1 assumes
familiarity with the various distributions mentioned, such as Poisson, Weibull, expo-
nential, gamma, Gumbel, normal, and lognormal. See Ross (1996) and the hyper-
links in the table for technical details of these distributions and topics. Googling
on the distribution names and italicized topics in Table 2.1 will provide a host
of web resources and authoritative references, even if these specific links become
obsolete.]

Many of these results can be applied even when the correct probability distribu-
tions are unknown or are only partly known, perhaps from statistical sampling or
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simulation modeling that provides estimates of means and variances. For example,
the sums, maxima, and minima of repeated random samples from most distribu-
tions encountered in practice have asymptotic distributions (as the number of sam-
ples becomes large) that do not depend on the specific distribution being sampled.
Thus, it is unnecessary to know the underlying “parent distribution” to quantify the
distribution of these statistics, all of which are of interest in various risk analysis
applications. Similarly, a variety of inequalities quantify how unlikely it is that a
value sampled from a distribution will fall far from its expected value. Again, these
bounds do not require detailed knowledge of the parent distribution. As a result,
empirical data that give only limited information about a risky process may still be
adequate to obtain useful quantitative bounds on risks of interest.

Example: The “Rule of Three” for Negative Evidence

Setting: People sometimes worry about events that might happen in theory, even
though they have not (yet) happened in practice. How reassuring should one con-
sider such “negative evidence” (i.e., the absence of occurrences of a feared event,
despite past opportunities for occurrence), bearing in mind the adage that “Absence
of proof [of a hazard] is not proof of absence”? This can be an important topic
when new technologies or poorly understood systems are involved, ranging from
the Large Hadron Collider particle accelerator at CERN, which some feared might
destroy the world by producing micro black holes, to the systems of interlocking
safeguards that countries establish to try to protect against diseases such as bovine
spongiform encephalitis (BSE, or “mad cow” disease). We will use the latter exam-
ple to illustrate how negative evidence (i.e., the observation that a feared event has
not yet been observed) can be used to bound risk.

Problem: Supposed that a country concerned about the possibility that its domes-
tic cattle might be infected with BSE tests 1,000,000 randomly selected cattle and
finds no cases. How confident can one be, based on this data, that the true preva-
lence proportion of BSE in the sampled population is not large? Assume that how
BSE originates and spreads among cattle is not understood well enough to simulate
or model with high confidence and that the effectiveness of any safeguards against
BSE is not yet known. Thus, we want an upper-bound risk estimate based on the
empirical “negative evidence” of no observed cases among a million animals tested,
since calculations based on a well-validated understanding of the BSE disease pro-
cess are not available.

Solution: A useful nonparametric confidence bound is based on the following
“rule of 3” (Chen and McGee, 2008): If an event that has the same probability p
(which may be unknown) of occurring on each trial has not occurred in any of N
independent trials (e.g., in a simple random sample of size N), then, with at least
95% confidence, its occurrence probability on each trial satisfies p ≤ 3/N. Thus,
the unknown prevalence proportion of detectable BSE in this example would satisfy
p ≤ 3/1,000,000 = 0.000003. This bound does not require or assume any specific
prior distribution for p, or any knowledge of the (probably complex) processes by
which BSE might enter the country and spread domestically.
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Example: A Sharp Transition in a Symmetric Multistage
Model of Carcinogenesis

Setting: This example illustrates how probability laws can be used to model complex
processes such as cancer, even if the molecular-level details of causal pathways are
unknown. As a simplified illustration, consider the following symmetric multistage
model of carcinogenesis. A cell line gradually accumulates transformations (e.g.,
somatically heritable mutations) from a set of K possible transformations. Transfor-
mations occur randomly and independently over time. The K transformations arrive
according to independent Poisson processes, with (at least approximately) equal
intensities, given by λ average occurrences per unit time. (Transformations with
occurrence rates much less than this common value are not rate-limiting and thus
may be disregarded.) Once any of the K transformations has occurred, we assume
that it is permanent and irreversible. If a specific transformation occurs more than
once, the occurrences after the first one are wasted, i.e., the cell genotype has already
acquired that transformation and does not reach malignancy any faster if it occurs
again. The cell line survives for a finite lifetime of duration T. If all K distinct trans-
formations occur before time T, then the cell line becomes malignant.

Problem: Under these conditions, what is the probability that the cell line will
become malignant before death at time T? If it does become malignant before time
T, then what can be said about the (random) time at which the first malignant cell is
formed?

Solution: The somewhat surprising answer is that, for sufficiently large K, there
is a “sharp transition” time such that the first malignant cell is very unlikely to be
formed much sooner or much later than that time. In other words, a nearly determin-
istic occurrence time for the first malignant cell emerges simply as a consequence
of there being many stages in this simple stochastic transition model.

Result: In this completely symmetric multistage model, there is a “sharp tran-
sition” time T∗ ≈ (1/λ)[(ln(K) + γ], where λ is the expected number of transfor-
mations events per unit time, i.e., their average occurrence rate, and γ = Euler’s
constant = 0.57721. . . . In particular, the expected time until the first malignant cell
is formed is T∗; moreover, the coefficient of variation of the actual (random) time
of formation of the first malignant cell (i.e., the ratio of its standard deviation to T∗)
approaches 0 for large K.

Proof: The expected number of transformation occurrences, including wasted
(i.e., repeated) ones, until a malignant cell is formed (i.e., until all K transformations
have occurred at least once) is given by the harmonic sum: E(n∗) = K(1 + 1/2 +
1/3+ . . .+ 1/K)≈ K[(ln(K)+ γ], where n∗ denotes the random number of the trans-
formation occurrence event at which all K transformations are first completed and γ

is Euler’s constant, γ= 0.57721. . . . This follows from previously known results for
the “Coupon Collector’s Problem” with equal probabilities (e.g., Ross, 1996, p. 414;
Motwani and Raghavan, 1995) or for the maximum of K independent exponential
random variables (e.g., Nelson, 1995, p. 173). [Intuitively, this result is motivated
by the fact that any of the K transformations can occur first and be nonredundant,
after which the probability that the next transformation is nonredundant drops to
(K – 1)/K, then to (K – 2)/K, . . . , and finally, for the last transformation, to 1/K.] The
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expected time until a malignant cell is formed is therefore T∗ = E(t∗) = E(n∗)/(Kλ)
≈ (1/λ)[(ln(K) + γ], where T∗ denotes the random time at which all K transforma-
tions are first completed, and Kλ is the rate at which transformation events arrive
(since each of the K types independently arrives at rate λ). This proves part (a) of
the theorem. The fact that the probability distribution of n∗ has a sharp concentra-
tion around E(n∗) is proved in Motwani and Raghavan (1995). Given this key result,
hold n∗ fixed. The time until n∗ transformations (including redundant ones) have
occurred has a gamma distribution with mean n∗/(Kλ) and variance n∗/(K2λ2), by
standard results for waiting times in Poisson arrival processes and for the mean and
variance of the gamma distribution (e.g., Ross, 1996, p. 18). The ratio of the stan-

dard deviation to the mean of this waiting time is therefore (n∗)–1/2 ≈ [K((ln(K) +
γ)]–1/2, which goes to 0 as K increases.

Discussion: An interesting, and perhaps unexpected, aspect of this result is that
it establishes a form of nearly deterministic behavior for a stochastic system: If
the sharp transition time T∗ is smaller than the death time T, then formation of
a malignant cell by time T is almost certain; otherwise, it is very unlikely. (This
qualitative behavior is typical of what is sometimes called a 0–1 law in stochastic
processes.)

If K is not large enough to guarantee a sharp transition at time T∗, then the qual-
itative behavior can be generalized as follows: For any ε > 0, no matter how small,
there is an interval of times [T–, T+] such that the probability of a malignant cell
being formed before T– or after T+ is less than ε. The cumulative probability distri-
bution for the occurrence time of the first malignant cell increases from almost 0 to
almost 1 over this interval. As K increases, the width of this interval shrinks toward
zero, with T– and T+ approaching a common value, T∗.

Realistic models of carcinogenesis are more complex than this example (see, for
example, Chapters 11 and 12), but this simplified illustration shows that sometimes
the behaviors of complex stochastic systems can be described well by phase tran-
sitions and probability laws, even if the details of the systems (such as which spe-
cific events occur along different causal pathways leading to cancer) are unknown.
(Chapter 16 describes a similar phase-transition result for the ability of telecom-
munications networks to recover from deliberate coordinated attacks at multiple
locations.)

Dealing with Model Uncertainty: Bayesian Model Averaging
(BMA) and Alternatives

Copulas and maximum-entropy methods are mainly used to deal with uncertain-
ties about the parameters and input distributions for particular models. However,
model uncertainties about (a) which variables to include in a model when many
potential predictors (including some possibly irrelevant ones) have been measured
and (b) the most appropriate functional form for a model – or, more generally, how
to calculate or predict a model’s outputs from its inputs – are even more impor-
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tant in practice than input and parameter uncertainties, in applications ranging from
dose-response models in toxicology to the reliability modeling of complex systems.
Some researchers have suggested assessing a probability distribution over multi-
ple plausible models by evaluating the consistency of the various models with the
observed data (in much the same way as the likelihood function in Bayesian updat-
ing evaluates the consistency of various parameter values with observed data) and
determining how much weight to put on each model based on its consistency with
the data. Failing to consider model uncertainties can lead to spuriously narrow statis-
tical confidence intervals for parameter estimates and to spuriously high confidence
in model-based predictions (Hoeting et al., 1999).

However, it is frequently not reasonable to attempt to estimate the probability
that a given model is “correct,” because, as Box (1979) pointed out, “All mod-
els are wrong, some models are useful.” For example, it seems highly implausi-
ble that any of the current models for estimating the probability of human error
on a given task is close to being “correct” (because all are gross oversimplifica-
tions of the real world), nor can the current models be considered a collectively
exhaustive set of possible models of human error. Bayesian updating of probabil-
ity distributions over such partial subspaces of possible models may not always
work well in practice. Some models may be intentionally conservative (e.g., for
regulatory and/or screening purposes) or intentionally simplified (e.g., for computa-
tional tractability, or to yield qualitative insights). That such models may be incon-
sistent with observed data does not necessarily invalidate their use for their intended
purposes.

Finally, of course, more complex models, with larger numbers of parameters,
will often fit the observed data well in many situations (subject to the possible lim-
itations of overfitting), but may not always be preferable, if only for reasons of
parsimony and/or generalizability. Thus, standard approaches for dealing with
uncertainty probabilistically are often not well suited for handling model uncer-
tainty. Bayesian model averaging (BMA) (see Chapter 7) was motivated largely by
these challenges. BMA avoids basing all of one’s conclusions on any single model
if multiple models are about equally plausible. It avoids giving high weight to mod-
els that are excessively complex if simpler ones give comparably good (or better)
descriptions of the data, as measured by the likelihood of the data given a model.
BMA generally performs reasonably well in practice, e.g., as evaluated by its abil-
ity to give well-calibrated uncertainty interval estimates for uncertain outputs, taking
into account model uncertainty (Hoeting et al., 1999; Raftery and Zheng, 2003).

An alternative that avoids assigning probabilities to individual models, “compre-
hensive uncertainty evaluation” (Brown, 1999), involves subjectively adjusting the
probability distributions resulting from a particular model to try to take into account
known weaknesses of the model (such as conservatisms, or risks that are not ade-
quately modeled). This is consistent with subjective utility theory and avoids some
of the theoretical conundrums associated with assigning probabilities to models.
Brown has applied this method (for example, to support regulatory decision making
for nuclear power plants), but it has not yet seen widespread application by other
analysts in practice.
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In many applications of Bayesian analysis to situations involving model uncer-
tainties, the input parameters are assumed to be known, and the model results are
used to update the prior distribution over model outputs (see, for example, Chick,
1997). However, observing the output of a model could also cause one to revise the
prior distribution over model inputs if the true values of the model outputs were
known reasonably well (e.g., from empirical data). Thus, for example, Bayesian
analysis could be used to estimate which values for the rate of disease progres-
sion are most consistent with the observed data on disease prevalence and severity
(Andradóttir and Bier, 2000).

Risk Characterization

The output of a PRA to support risk management decision making is a characteriza-
tion of the risk for each decision option being evaluated. Occasionally, the decision
task is to identify an optimal risk management policy from a large set of possi-
bilities, rather than to explicitly characterize the risks for each of a small number
of alternatives. Then, simulation-optimization algorithms or special-purpose tech-
niques such as Markov decision processes or stochastic optimal control theory may
be required (see Tables 2.2 and 2.3). However, explicit comparison of risks from a
few options is more usual, and is the main focus of this section.

“Risk” is usually defined in engineering risk assessments and PRA as the fre-
quency and severity of losses arising from operation of the designed system in its
uncertain environment, including a specification of losses (i.e., which adverse conse-
quences matter, and to whom). An effective display of risk shows how it is affected
by different actions (e.g., different risk management decisions) and allows “drill-
down” to view the risks to particular subpopulations, as well as the contributions of
various different causes to the overall level of risk. For example, seeing how risk
curves shift when risk-reducing measures are implemented would help managers
identify the most effective measures. Uncertainty and sensitivity analysis are also
essential to risk characterization, because they support estimates of the value of
information.

Engineering vs. Financial Characterizations of “Risk”: Why Risk
Is Not Variance

The variance (or standard deviation) of the return on investment is widely used as a
measure of risk in financial risk analysis, where mean-variance analysis is applied
to calculate “efficient” frontiers and undominated portfolios, defined as those hav-
ing maximum expected return for a given variance. Why, then, do health, safety,
environmental, and reliability risk analysts insist on defining risk more flexibly, as
being determined by probabilities and consequences, rather than simply by vari-
ances (or, for that matter, semivariances, value-at-risk, or modern coherent risk mea-
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Table 2.3 Selected literature on decision optimization frameworks and algorithms

• Decision trees:
◦ Game Trees for Decision Analysis – Shenoy (1996),

http://citeseer.ist.psu.edu/shenoy96game.html
• Influence diagrams and Bayesian networks:

◦ Sampling Methods for Action Selection in Influence Diagrams – Ortiz, Kaelbling
(2000), http://citeseer.ist.psu.edu/ortiz00sampling.html

◦ A Forward Monte Carlo Method for Solving Influence Diagrams. – Charnes, Shenoy
(2000), http://citeseer.ist.psu.edu/charnes00forward.html

◦ A Simple Method to Evaluate Influence Diagrams – Xiang, Ye (2001),
http://citeseer.ist.psu.edu/ye01simple.html

◦ Learning Bayesian Networks with R, http://www.ci.tuwien.ac.at/Conferences/DSC-
2003/Proceedings/BottcherDethlefsen.pdf;
see also http://www.cs.ubc.ca/∼murphyk/Software/bnsoft.html

• Markov decision processes (MDPs) and partially observable MDPs (POMDPs):
◦ Reinforcement Learning for Factored Markov Decision Processes – Sallans (2002),

http://citeseer.ist.psu.edu/sallans02reinforcement.html
◦ Symbolic Dynamic Programming for First-Order MDPs – Boutilier, Reiter, Price

(2001), http://citeseer.ist.psu.edu/boutilier01symbolic.html
◦ Speeding Up the Convergence of Value Iteration in POMDPs – Zhang, Zhang (2001),

http://citeseer.ist.psu.edu/zhang01speeding.html
◦ Solving POMDP by On-Policy Linear Approximate Learning Algorithm – He (1999),

http://citeseer.ist.psu.edu/335710.html
• Optimal and robust control and reinforcement learning for uncertain and nonlinear systems:

◦ Feedback Control Methodologies for Nonlinear Systems – Beeler, Tran, Banks (2000),
http://citeseer.ist.psu.edu/Beeler 00feedback.html (for deterministic nonlinear systems)

◦ An Overview of Industrial Model Predictive Control Technology – Qin,
Badgwell (1997), http://citeseer.ist.psu.edu/qin97overview.html

◦ http://citeseer.ist.psu.edu/kaelbling96reinforcement.html
◦ http://citeseer.ist.psu.edu/sutton98reinforcement.html
◦ http://www.princeton.edu/∼noahw/palgrave2.pdf (introduces robust control)

• Simulation-optimization:
◦ A Survey of Simulation Optimization Techniques and Procedures – Swisher, Jacobson

et al. (2000), http://citeseer.ist.psu.edu/517471.html
◦ Simulation Optimization of Stochastic Systems with Integer Variables by Sequential

Linearization – Abspoel et al. (2000), http://citeseer.ist.psu.edu/516176.html
◦ Simulation Optimization: Methods and Applications – Carson, Maria (1997),

http://citeseer.ist.psu.edu/carson97simulation.html
◦ http://opttek.com/simulation.html (overview and link to commercial software)

• Minimal-regret, online, and adaptive learning algorithms:
◦Minimizing Regret: The General Case – Rustichini (1999),

http://citeseer.ist.psu.edu/rustichini98minimizing.html
◦ Adaptive Strategies and Regret Minimization in Arbitrarily Varying Markov

Environments – Mannor, Shimkin (2001), http://citeseer.ist.psu.edu/467490.html
◦ Nearly Optimal Exploration-Exploitation Decision Thresholds – Dimitrakakis (2006),

http://citeseer.ist.psu.edu/dimitrakakis06nearly.html
◦ Combinatorial Online Optimization in Real Time – Grötschel, Krumke,

Rambau (2001), http://citeseer.ist.psu.edu/448491.html; see also
http://citeseer.ist.psu.edu/foster97regret.html
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sures developed in financial risk theory)? This section suggests a partial answer by
providing a simple proof that mean-variance decision making violates the princi-
ple that a rational decision maker should prefer higher to lower probabilities of
receiving a fixed gain, all else being equal. Indeed, simply hypothesizing a contin-
uous increasing indifference curve for mean-variance combinations at the origin is
enough to imply that a decision maker must find unacceptable some prospects that
offer a positive probability of gain and zero probability of loss. Unlike some pre-
vious analyses of the limitations of variance as a risk metric, this section does not
require the additional framework of von Neumann-Morgenstern utility theory.

Incompatibility of Two Suggested Principles for Financial Risk
Analysis

Two plausible principles for managing financial investment risks are the following:

1. Rule 1: Make dominating choices. Other things being equal, given a choice
between a smaller probability of gain and a larger probability of gain, a deci-
sion maker should always choose the larger probability of gain. For example,
given a choice between winning $100 with probability 0.1 and winning $100
with probability 0.2, rational decision makers who prefer more dollars to fewer
should choose the option that gives a 0.2 probability of winning the $100.

2. Rule 2: Seek mean-variance efficiency (higher variance requires higher mean
return). Given a choice among risky prospects, an investor should require more
expected return to accept a prospect with more variance than to accept a prospect
with less variance. For example, a 0.2 chance of winning $100 (else nothing) has
a higher variance than a 0.1 chance of winning $100, but it also has a higher
mean.

Rule 1 is implied by the decision-analytic principle of first-order stochastic dom-
inance (Sheldon and Sproule, 1997): Prospects that give higher probabilities of
preferred outcomes (and lower probabilities of less preferred outcomes) should
be preferred. Rule 2 provides the basis for many current efficient portfolio
and mathematical optimization (e.g., quadratic programming) approaches to opti-
mal investment (http://en.wikipedia.org/wiki/Modern portfolio theory). Although
theorists have noted that some risk-averse decision makers may prefer some
mean-preserving increases in variance (ibid.), the idea that volatility in returns, as
measured by variance or standard deviation, is generally undesirable to risk-averse
investors, and that it should be avoided or compensated by higher expected returns,
is still widely taught and practiced.

However, Rules 1 and 2 are incompatible in general. Simply hypothesizing that
a decision maker has continuous upward-sloping indifference curves for mean-
variance combinations (so that increasing the variance in the random return from
an investment prospect or portfolio requires increasing its mean return in order to
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leave the investor equally well off) violates Rule 1 for some simple prospects, as
demonstrated next.

Following the literature on mean-variance decision making, suppose that a deci-
sion maker has positively sloped continuous indifference curves in mean-variance
space (e.g., Wong, 2006). To any mean-variance pair (m, v) (a point in the mean-
variance space) there corresponds a certainty equivalent: namely, the point at which
the indifference curve through (m, v) reaches the horizontal (mean) axis. The indif-
ference curve through the origin (0, 0) separates acceptable risks (those with pos-
itive certainty equivalents, lying below and to the right of the curve, if return is
desirable) from unacceptable risks (those with negative certainty equivalents, lying
above and to the left of it). To make an unacceptable risk acceptable in this frame-
work, one must either increase its mean return or reduce its variance. (A risk-neutral
decision maker who cares only about means and not about variances would have
vertical indifference curves, but we will focus on the case, implied by Rule 2, of
positively sloped indifference curves.)

The hypothesis that upward-sloping mean-variance indifference curves exist has
some surprising consequences.

Theorem 1 If the indifference curve through the origin slopes upward, then the
decision maker finds unacceptable some prospects with positive expected values
and no possibility of loss.

Proof The proof is constructive. Let the slope of the indifference curve through
the origin be s at the origin. By hypothesis, 0 < s ∞. Now, consider a Bernoulli
random variable X(p) that gives a positive return of 2s with probability p (the “win
probability”) and no return ($0) with probability (1 – p). For a given value of p
between 0 and 1, inclusive, X(p) has mean 2ps and variance 4s2p(1 – p) (since it is a
scaled version of a Bernoulli random variable). Therefore, as p ranges from 0 to 1,
X(p) traces out a parabola in mean-variance space, with variance = 0 at p = 0 and
at p = 1, and with a positive maximum variance of s2 at p = 0.5 (see Fig. 2.1). A
line from (0, 0) to the point on this parabola corresponding to a particular value of p
has slope 4s2p(1 – p)/2ps = 2s(1 – p). As p approaches 0, this slope approaches 2s.
Hence, the parabola traced out by X(p) as p ranges from 0 to 1 starts above and to the
left of the indifference curve through the origin (since it is constructed in such a way
as to have twice the slope of the indifference curve at the origin), but it ends below
and to the right of the indifference curve [since it is constructed to pass through the
point (2s, 0) when p = 1]. Therefore, the parabola must intersect the indifference
curve somewhere above and to the right of the origin (since it starts above it and ends
below it). Let p∗ denote the value of the win probability for this intersection point.
Then the decision maker prefers (0, 0) to all prospects X(p) with p < p∗ since, by
construction, these are unacceptable (i.e., above and to the left of the indifference
curve through the origin). Hence, the decision maker finds unacceptable all such
prospects giving probability p of 2s (else $0) for p < p∗ even though he or she has
positive win probabilities and even though none of them offers the possibility of a
loss.
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Variance σ2

Mean 
μ

upward-sloping 
indifference curve 
through origin (0, 0) 

p = 0,
mean = 0,
variance = 0

p = 0.5,
mean = s,
variance = s2

p = 1,
mean = 2s,
variance = 0

Curve of mean-variance combinations, 
 (2ps, 4s2p(1 – p)), for X(p), 0 ≤ p ≤ 1.  (All  
should be preferred to (0, 0) based on Rule 1.) 

s2
“acceptable” risks 
(preferred to (0, 0) based 
on mean-variance, Rule 2) 

“unacceptable” risks 
(dispreferred to (0, 0) 
based on Rule 2) 

Points with 
positive win 
probability but in 
“unacceptable” 
region 

slope at origin = s

slope at origin = 2s

Fig. 2.1 Geometry of inconsistency between Rules 1 and 2

The proof of Theorem 1 implies that if the indifference curve through the origin
has positive slope, then the decision maker prefers some prospects that give zero
probability of winning a positive amount (namely, 2s) to other prospects that give a
positive probability of winning the positive amount (and otherwise nothing). Such
a decision maker prefers the status quo or “nothing ventured, nothing gained” point
(0, 0) to the possibility of winning a positive amount without any possibility of a
loss, violating Rule 1. In this sense, Rules 1 and 2 are incompatible.

More generally, other parabolas can easily be constructed that intersect indif-
ference curves twice, once for the ascending (positively sloped) portion of the
parabola and once for its descending (negatively sloped) portion (Borch, 1969). In
any such construction, the rightmost intersection represents a stochastically dom-
inant prospect (which should be preferred, by Rule 1) compared to the leftmost
intersection. That both points lie on the same indifference curve violates Rule 1.

In summary, although students of elementary finance are often taught that “risk”
should be characterized by the variance or standard deviation of returns around an
expected value, students of health, safety, environmental, and reliability risk analysis
are usually taught instead that “risk” is determined by the probabilities of different
consequences. Theorem 1 shows why the second approach (considering different
specific consequences, such as $0 and $2s, and their probabilities) can be preferable
to considering only means and variances.

The finding that variance is problematic as a measure of risk has a history at least
several decades old in the financial and decision sciences literatures. A common cri-
tique in the theoretical decision analysis and financial economics literatures is that
mean-variance analysis is compatible with von Neumann-Morgenstern expected
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utility theory only under restrictive conditions (e.g., if all risky prospects have
normal or location-scale distributions and utility functions are quadratic, implying
that less money is preferred to more, for some amounts) (Markowitz, 1959; Baron,
1977). Mean-variance dominance and stochastic dominance relations for location-
scale distributions do not coincide in general (Wong, 2006). Indeed, expected utility
theory is inconsistent with all possible moment-based preference models (in which
preferences are determined by mean, variance, skewness, kurtosis, etc.) for many
utility functions (Brockett and Kahane, 1992). Variance is also inconsistent with
proposed normative axioms for “coherent” financial risk measures (nonnegativity;
homogeneity and subadditivity, which together imply that deterministic outcomes
have zero risk; and shift-invariance, which implies that adding a constant to a ran-
dom variable does not change its risk) (Pedersen and Satchell, 1999). Empirical
studies since the 1960s have demonstrated that real decision makers pay attention
to more than mean and variance in their choices among risky prospects (Jia et al.,
1999).

Thus, Theorem 1 is consistent with a long line of previous research. However, in
contrast to much previous work, it demonstrates a conflict between Rules 1 and 2
making only minimal assumptions (in particular, not requiring the framework of von
Neumann-Morgenstern expected utility theory or other sets of normative axioms for
risk measures) and using only elementary mathematics. It may therefore be useful
for understanding why specifying the variances and expected returns from alterna-
tive investment choices (or other actions) does not adequately characterize risk or
identify the choice with the most desirable probability distribution of consequences.

In fairness, it should be noted that financial risk analysts have developed much
more sophisticated and satisfactory measures of risk than variance and that charac-
terizing risk by frequency and severity is not problem-free (see Chapter 5). A recent
triumph of financial risk theory has been the definition and analysis of coherent
risk measures (Artzner et al., 1999). These provide formulas for assigning numbers
to risky prospects so that normative axioms are satisfied, such as that risk remains
unchanged if the same predictable constant is added to or subtracted from all pos-
sible consequences of a prospect; and that comparisons of risk should be logically
consistent with each other over time. Financial risk theorists have shown that vari-
ous sets of normative axioms imply intuitively pleasing quantitative representations
of risk, such as that the “risk” of a financial prospect is its minimum (worst-case)
expected net present value (ENPV), when ENPVs are calculated for each of a set of
mutually consistent probability measures (Riedel, 2004). Older proposed measures
of financial risk, including variance and Value-at-Risk (VaR), which reflects the
probability of losing at least a specified amount, do not satisfy these axioms (Artzner
et al., 1999; Pedersen and Satchell, 1999). Although coherent risk measures provide
a substantial advance in methodologies for characterizing financial risks, they do not
apply to other risks that cannot be traded, valued, or diversified away via financial
markets. The characterization of health, safety, environmental, and reliability risks
in terms of probabilities or frequencies of different consequences, having different
magnitudes or severities, is still the norm. Chapter 5 discusses further the use and
limitations of frequency in risk characterization.
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Challenges in Communicating the Results of PRAs

Risk communication (including both presenting the results of risk analyses to stake-
holders, decision makers, and other audiences, and listening to and actively eliciting
their concerns so that they can be addressed in the risk analyses in the first place)
facilitates the effective participation and interaction of technical experts, stakehold-
ers, and decision makers in risk management decisions and deliberations. There is
an extensive body of literature on risk communication (including guidelines, survey
results, experiments, and web resources on risk communication).

Even more than PRA, risk communication is still an art rather than a science, but
one that can be informed and improved by theory, experience, and experiments. Cur-
rent challenges in risk communication include dealing with framing effects, com-
municating highly technical results to decision makers who may not be intimately
familiar with some of the methods used in the risk analysis, and building trust among
affected stakeholders and members of the public more generally. Adding to the dif-
ficulty is the fact that the communication and presentation styles that are most effec-
tive in accurately expressing the technical content of risk assessment findings may
not always be those that invite and elicit public understanding, participation, and
interaction.

Cullen and Frey (1999) discuss the distinctions between state-of-knowledge
uncertainty and population variability (sometimes referred to simply as uncertainty
and variability, respectively). State-of-knowledge uncertainty typically reflects
uncertainties that affect all of the units being studied (e.g., can certain standardized
industrial systems fail in a particular way? Can a certain chemical cause particu-
lar health effects?). These uncertainties could be reduced through further research.
Variability refers to variations among the elements being studied (often assumed to
be due to randomness in production processes, phenotypes, etc.). For example, dif-
ferences in how different individuals in the population would respond to a chemical
being studied, or strengths of different samples of a material, would reflect variabil-
ity. Variability is often taken to be essentially irreducible through further study.

With the development and increased popularity of so-called second-order Monte
Carlo analysis for quantifying uncertainty about risks, it is now common practice
to distinguish between uncertainty and variability. This increases the value of the
risk analysis for decision making, because different policy options may be appropri-
ate for dealing with uncertainty rather than variability. For example, in situations of
high population variability but low state-of-knowledge uncertainty, such as airbag
effectiveness (Thompson, 2002), it may make sense to target risk-reducing efforts
at those facilities or members of the population with the highest estimated risks (in
this case, children and small adults). By contrast, situations of low variability but
high uncertainty would tend to suggest that further research may be desirable before
undertaking costly risk reduction actions. However, the widespread use of second-
order Monte Carlo simulation does increase the challenges of effectively commu-
nicating ever more sophisticated and sometimes abstruse risk analysis methods and
results to decision makers and members of the public in a way that clearly supports
improved decision making (Bier, 2001a).
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Of course, technically accurate risk communication by itself is not sufficient to
achieve other key goals of risk communication, such as changing people’s behavior
(Blaine and Powell, 2001), gaining their trust in the results of the analysis, or even
giving them the information they need to make improved decisions. Rather, effec-
tive and persuasive communication about risks generally requires a concerted effort
to build trust, gain and maintain credibility and legitimacy, and summarize relevant
information simply and clearly (Bier, 2001b). Brevity, clarity, focus, candor, the use
of cogent examples, and avoiding negative stereotypes of risk communicators may
be crucial for communicating technical risks to nonspecialist audiences in a way that
ensures the message is heard and absorbed rather than tuned out or dismissed (e.g.,
Byrd and Cothern, 2000). As discussed in Chapter 1, audience members generally
respond not only (and sometimes not primarily) to technical information about risks,
but also to message framing, the source of the information, and the emotional style
and assumed motives of the presenter in assessing the credibility of risk communi-
cation messages (Chartier and Gabler, 2001).

Methods for Risk Management Decision Making

Formal methods of decision analysis and optimization for uncertain systems have
been extensively developed in operations research and systems engineering and
applied to both the design and the operation of complex engineering and indus-
trial systems. Table 2.2 sketches some of the best-known frameworks for decision
making when a decision maker’s choice of act is related only probabilistically to
resulting consequences.

Although some of the methods and algorithms mentioned in Table 2.1 are quite
sophisticated, most share a simple common structure. The risk manager must choose
from a set of feasible controllable inputs that influence a system’s behavior. There
are other facts and inputs (sometimes thought of as being selected by “Nature” or
“Chance,” and referred to as the state of the world) that cannot be directly selected
by the risk manager but that also influence the system’s behavior. The risk man-
ager’s acts and the state of the world together determine probabilities for different
consequences (and for the system’s next state, in systems dynamics and optimal con-
trol formulations of decision problems). Finally, a utility function represents pref-
erences for different consequences (or time streams of consequences) produced by
the system.

Various optimization algorithms and heuristics can be used to identify optimal
(i.e., expected utility-maximizing) or approximately optimal acts (i.e., values of
controllable inputs), given available information, or to identify optimal or approxi-
mately optimal decision rules (also called policies) that prescribe what acts to take
based on the information available when decisions are made. Optimization algo-
rithms for solving decision problems are constantly being refined and improved
by ongoing research. Thus, it is worth Googling the topics and solution meth-
ods in Table 2.2 (leftmost and rightmost columns, respectively) before selecting a
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framework and solution methods for a particular problem. As of this writing (in
2008), the links in Table 2.3 provide points of entry to the technical literature and
solution algorithms.

An important principle that cuts across many solution techniques for complex
decision models is that adaptive random sampling of potential solutions is compu-
tationally tractable and finds “good” (optimal or nearly optimal) solutions to many
problems that are too hard (e.g., too computationally complex) to solve using exact
methods. Monte Carlo methods and related meta-heuristics (such as genetic algo-
rithms, simulated annealing, Tabu Search, or particle swarm optimization) can esti-
mate and optimize the expected utility of different acts or decision rules even for
large and complex stochastic systems. Much as the mean value of a variable in a
population can be estimated accurately from a random sample, regardless of the
uncertainties and complexities of processes that created the population distribution
of the variable, so the expected utility of a decision rule, policy, or act (followed by
future optimized acts, in dynamic settings) can often be estimated accurately using
optimization algorithms that incorporate random sampling and adaptive improve-
ment components.

Example: A Bounded-Regret Strategy for Replacing
Unreliable Equipment

Setting: Suppose that a piece of machinery (such as a crane) that is being used in
a major construction project breaks down frequently. The construction project must
continue for 1,000 more days in order to meet a key deadline; after 1,000 more days,
all activity (and further costs) on this effort will stop. Use of the current unreliable
equipment costs $1,000 per day in maintenance, repair, insurance, and overtime
costs. The unreliable equipment will eventually break down completely; if this hap-
pens before the end of the project, it must then be replaced. The cost of replacement
is $1,200,000, and a new machine is highly reliable, costing $0 per day, after it has
been purchased, for the remaining duration of the project. Suppose that the current
machine will last for an unknown number, T, of additional days before breaking
down completely, where T is an unknown integer. Assume that not enough is known
about the machine’s remaining lifetime (e.g., from historical experience, accelerated
life testing, reliability modeling, etc.) to assess a credible, well-calibrated probabil-
ity distribution for T.

Problem: Assuming that the probability distribution for the remaining lifetime T
is unknown, devise a decision rule for when to replace the machine (if at all) that
is guaranteed to cost no more than twice as much as the least cost that could be
achieved if T were known. (For simplicity, ignore discounting.)

Solution: If the lifetime T of the current machine were known, then the total
cost of replacing the machine after t < T days would be $1,000t + $1,200,000 if
T < 1,000 days, in which case the optimal decision would be to replace the current
machine immediately (set t = 0) and the minimized cost would be $1,200,000;
otherwise, if T > 1,000 days, then the unreliable machine should be used for the rest
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of the project’s duration, for a total cost of $1,000,000. Now consider the following
myopic decision rule: Wait until the machine fails completely, and then replace it.
The worst (most expensive) case is that the machine fails on day T = 999, in which
case the total cost is $999,000 + $1,200,000 = $2,199,000. This is less than twice
the optimal cost if T were known, $1,200,000 (for immediate replacement). If T ≥
1,000 days, then the myopic decision rule yields the same optimal decision as if T
were known. If T < 1,000 days, then the myopic rule has less than twice the cost of
the optimal decision if T were known.

Discussion: Although this example is trivial, it illustrates that analysis of decision
rules is possible for some problems, even if uncertain quantities cannot be character-
ized by probability distributions. A number of nontrivial results on “online” decision
and optimization procedures show that, in many sequential decision problems, it is
possible to do almost as well on average, over the long run, using cleverly designed
decision rules, as if the uncertain quantities (such as T in this example) were known.

Despite these advances in methods for decision analysis and optimization under
uncertainty, in practice, formal decision analysis is seldom applied directly to make
important risk management decisions. In part, this is because different participants
may have different utility functions (which may be their own private information),
different trade-offs among goals (e.g., minimizing average risk versus reducing
inequities in the distribution of risks), and different tolerances for risk. In such cases,
consensus utilities may not exist, and risk management decision making requires not
only analysis and deliberation (Stern and Fineberg, 1996), but also negotiation and
compromise.

Even when decision analysis is not directly applied, however, its conceptual
framework is still useful for organizing analysis and deliberation (Apostolakis and
Pickett, 1998), separating beliefs from preferences, and identifying and resolving
relevant conflicts and/or uncertainties about facts and values. Byrd and Cothern
(2000) and Cox (2001) further discuss individual and group decision-making pro-
cesses and frameworks for risk management decision making.

Methods of Risk Management to Avoid

Well-informed and effective risk management (i.e., risk management that is likely
to produce the desired consequences) requires considering all of the most impor-
tant impacts – good and bad – that an intervention is likely to create. Unfortunately,
many risk assessments exhibit a form of tunnel vision, focusing on one or a few nar-
rowly defined issues (such as quantifying the reduction in risk that would be caused
by contemplated actions) while ignoring other, possibly more important, ones, such
as the risks that proposed risk management interventions might inadvertently create
(Dowell and Hendershot, 1997; Bier, 1997). This represents a breakdown in sound
risk assessment and risk management. Rational risk management requires consider-
ing and comparing the total consequences of the risk management decision options
being evaluated. Risk characterization should therefore provide risk managers with
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a balanced accounting of the adverse effects that a risk management intervention
might cause, as well as of those that it might prevent.

Risk management recommendations that are based primarily on protecting the sta-
tus quo or on beliefs about what might constitute “precautionary” actions should also
be avoided if they do not explicitly identify and compare the probable consequences of
alternative decision options. Decision analysis teaches that it is more effective to use
quantitative information about the probable consequences of alternative interventions
to eliminate dominated options, and to choose the best among those that remain. Heal
and Kriström (2002) have argued on theoretical grounds that precautionary measures
might make sense in situations where harm is irreversible, but their argument is based
on, and consistent with, utility theory and real options theory.

Game-Theory Models for Risk Management Decision Making

Game theory has long been viewed by risk analysts as being of little relevance
for practical risk management decision making. Several recent developments have
started to change that view. These include not only increased interest in terrorism,
homeland security, and critical infrastructure protection (which can be viewed as
games between an attacker and a defender), but also increased interest in risk-
informed regulation (which can be viewed as a game between a regulator and a regu-
lated firm). As a result of such developments, game theory is becoming an important
research tool in a variety of application areas related to risk.

Hausken (2002) has applied game theory to study the allocation of resources
to ensuring component (and hence system) reliability in situations where different
agents are responsible for the reliability of different components. In this situation,
system reliability is viewed as a “public good.” For example, agents responsible for
the reliability of a component in a parallel system or subsystem might “free-ride” on
investments in the reliability of other components in that system – e.g., postponing
needed reliability enhancements in the hopes that some other agent will implement
such improvements instead.

Recent work on reliability optimization (e.g., Levitin et al., 2001; Levitin and
Lisnianski, 2003) attempts to identify cost-effective risk reduction strategies; for
example, by optimizing physical separation of components that are functionally in
parallel with each other, or by allocating physical protection to various hierarchies of
a system (e.g., whether to harden the system as a whole, or individual components).
However, the “threat” against which systems are to be hardened is generally taken
to be static in this work.

Game-Theory Models for Security and Infrastructure Protection

Following September 11, 2001, there has been increasing interest in security, includ-
ing the protection of public and commercial buildings, water supply systems, and
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computer systems and software. Numerous researchers and practitioners have pro-
posed the use of risk analysis in one form or another for homeland security (e.g.,
Paté-Cornell and Guikema, 2002; Garrick et al., 2004), especially for critical infras-
tructure (Haimes et al., 1998; Ezell et al., 2001; Apostolakis and Lemon, 2005).
Most of this work is not formally game-theoretic. For instance, Paté-Cornell and
Guikema discuss the need for periodic updating of the model and its input to account
for the dynamic nature of counterterrorism but do not attempt to anticipate the
effects of defensive investments on attacker strategies. Protection from intentional
sabotage or terrorism differs from many other areas of risk management, because
sabotage protection involves an intelligent adversary that can adapt in response to
protective measures. Thus, reducing the vulnerability of some systems may cause
adversaries to shift their attacks to other systems that have not yet been “hardened”
to the same degree. Risk management in this context can be modeled as a game
against an adversary or, conversely, as a game between defenders, because security
investment by one defender can have either positive or negative externalities on the
threats faced by other defenders (Kunreuther and Heal, 2003).

There is a large body of work on applications of game theory to security, much
of it by economists (e.g., Frey and Luechinger, 2003; Arce et al., 2001; Enders
and Sandler, 2004; Keohane and Zeckhauser, 2003; Lakdawalla and Zanjani, 2005).
Much of this work is intended to inform policy-level decisions, e.g., by clarify-
ing the relative merits of public versus private funding of defensive investments, or
deterrence versus other protective measures. Recently, efforts have begun to focus
more on operational risk management decisions, such as deciding how much defen-
sive investment to allocate to particular assets (e.g., O’Hanlon et al., 2002), and
have more of a risk analysis flavor (e.g., taking the success probabilities of potential
attacks into account); see, for example, Bier et al. (2005) and Woo (2002).

Game-Theory Models of Risk-Informed Regulation

In health, safety, and environmental regulation, regulated parties often know more
than regulators about the operations and risks of facilities. As a result, regulators
may wish to provide incentives to encourage regulated parties to accurately dis-
close unfavorable information about their risks. Such situations can be modeled as
games of asymmetric information between regulators and regulated parties. More
widespread use of risk analysis results in regulatory decision making has the poten-
tial to both reduce risk and decrease compliance cost, by increasing management
flexibility in determining how to achieve acceptable levels of safety (Bier and
Jang, 1999). However, this approach has been slow to be adopted in practice, in
part because of the inability of regulators to directly and accurately measure risk
(Chinander et al., 1998) and because companies may have incentives not to disclose
unfavorable risk information to regulators and or not to collect such information in
the first place (Wagner, 1997).

Game-theoretic work in environmental economics to date (e.g., Heyes, 2000;
Livernois and McKenna, 1999) has emphasized applications such as pollution



72 2 Introduction to Engineering Risk Analysis

monitoring, in which a regulator can (with some effort) determine a firm’s level
of performance essentially with certainty, and firm performance can reasonably be
modeled as binary (e.g., compliant with pollution-control regulations or not). Lin
(2004) considers risk-informed regulation, in which regulators may not be certain
to detect high risk levels even with substantial effort, and continuous risk levels may
be more relevant than binary compliance status. Lin shows conditions under which
it is still optimal (more efficient than traditional direct-monitoring regulation) for
regulators to offer a loosened standard to firms that voluntarily disclose their risk
levels.

Conclusions

This chapter has surveyed methods and concepts for PRA and decision making in
engineered systems. Although the modeling of uncertain systems has been tremen-
dously enabled by recent advances (such as Bayesian belief networks, with depen-
dencies among inputs expressed via copulas), PRA still poses many challenges.
Technical challenges remain in how best to construct useful (and at least approxi-
mately valid) models of systems and their environments from engineering knowl-
edge and data, and in identifying optimal or near-optimal risk management policies.
Communicating the results effectively and using them to guide improved decision
making by multiple parties (e.g., teams of stakeholders) also poses practical ques-
tions that go beyond the framework of single-person decision theory. If the environ-
ment in which a system operates includes intelligent adversaries, then insights from
novel methods (e.g., game-theoretic principles) may be needed to ensure that risk
reduction strategies are effective and cost-effective (see Chapters 14 and 16). These
challenges are likely to stimulate further advances in both the theory and practice of
decision sciences for engineering risk analysis.



Chapter 3
Introduction to Health Risk Analysis

Introduction

This chapter, which is an update of Cox (2007), introduces methods of
quantitative risk assessment (QRA) for public health risks. As noted in the Pref-
ace, public health risk analysis often falls in the intersection of politics, business,
law, economics, and science and technology, as stakeholders with different interests
seek to use QRA for their own ends. Public health risk analysis deals with deci-
sions about which potential risk management interventions (usually including the
status quo or “do-nothing” option) should be implemented to maintain or increase
the safety of complex social, economic, and technological systems, such as the food
supply network or industrial emissions control systems. The best course of action
is often hotly disputed. For example, should emissions of gases or particles from a
facility be further restricted even if permitting the current levels has unquestioned
benefits in industry or agriculture? Should cell phone use in cars be banned? (“Pub-
lic health” is often extended to include such issues of public safety.) Should cattle
be imported from countries that have low levels of diseases such as BSE? Should
antibiotics used in human medicine be prohibited from uses in food animals, even if
doing so will lead to more sick animals (and perhaps more sick people), in order to
preserve the effectiveness of the antibiotics in treating human patients? QRA seeks
to inform policy-making deliberation and debate in such controversial cases by clar-
ifying the probable consequences of alternative decisions.

Health risk analysis consists of a set of methods, principles, and high-level pro-
cedures for using scientific data (e.g., biological and epidemiological knowledge)
to assess and compare the probable human health consequences of different expo-
sures to hazards (i.e., sources of risk); to assess the likely changes in exposures
and risks arising from alternative risk management interventions; and to evalu-
ate and choose among alternative risk management interventions based on their
probable health consequences. The goal is usually to identify and select actions or
interventions that will cause relatively desirable (e.g., stochastically undominated)
probability distributions of human health consequences in the affected population.
Health risk analysis is often divided into the overlapping stages of risk assess-
ment, risk management, and risk communication, organized as an iterative process.
Table 3.1 summarizes several traditionally defined steps in this process.

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
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Table 3.1 Traditional steps in health risk analysis

Step Purpose and description
Relevant information and
techniques

Hazard iden-
tification

Identify potential sources of harm or loss.
These sources are called
hazards.Hazard identification identifies
the possible adverse health effects of
activities or exposures and the possible
causes of the observed adverse effects.

• Human data: epidemiology,
clinical, and public health
statistics; surveillance data.

• Animal tests and bioassays.
• In vitro tests.
• Structure-activity patterns,

molecular modeling, pattern
recognition, and statistical
classification techniques.

Exposure
assessment

Quantify the number of people receiving
various levels or intensities of exposure
to a hazard over time. Relevant
exposure metrics may depend on
dose-response relations.

• Environmental fate and
transport models, possibly
summed over multiple media
(paths) and sources.

• Studies of human activity
patterns

• Biological monitoring of
exposed individuals and
receptors.

Quantitative
exposure-
response
and dose-
response
modeling

Quantify the magnitude of risk created by
exposure of a target to a hazard.
Characterize the probable frequency
and severity of adverse health
outcomes or losses caused by exposure
to the hazard.

A quantitative risk assessment
(QRA) runs multiple exposure
scenarios through
dose-responsemodels to predict
likely health impacts.
Statistical, simulation, or
biomathematical models of
biological processes are used to
quantify dose-response
relations.

Risk charac-
terization
and uncer-
tainty
analysis

Combine estimated probabilities and
severities of adverse consequences
(harm), with indications of uncertainty
or confidence, to create an overall
summary and presentation of risk.

Monte Carlo simulation calculates
risks by sampling many
scenarios. Risk profiles,
probability distributions, and
trade-off and sensitivity
analyses display risk,
uncertainty, and variability.

Risk commu-
nication

Deals with how to present risk
information to stakeholders. Considers
how different types of recipients
perceive risks and internalize/act on
messages about them, in deciding what
messages to send via what media.

Psychological theories and models
and behavioral/experimental
findings on risk perception and
effective risk communication.

Risk manage-
ment
decision
making

Decide what actions to take to control
risks and hazards – i.e., accept, ban,
abate, monitor, further research,
reduce, transfer, share, mitigate, or
compensate.

Risk-cost-benefit analysis, formal
decision analysis for groups and
individuals, risk quantification
and comparison.
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The hazard identification step deals with how to establish cause-and-effect rela-
tions from data. Exposure assessment quantifies the changes in exposures caused
by alternative interventions, while dose-response modeling (or exposure-response
modeling) quantifies the causal relation between changes in exposures and the prob-
able resulting changes in adverse consequences. Finally, risk characterization inte-
grates the preceding components to predict the probable changes in health caused
by risk management actions that change exposures.

Health risk assessment uses available facts, data, and models to estimate the
health risks to individuals, to an entire population, and to selected subpopulations
(e.g., infants, the elderly, immunocompromised patients, and so forth) caused by
hazardous exposures, and the decisions and activities that create those exposures.
The health risks of sporadic illnesses due to exposure to chemicals, radiation, bac-
teria, or other hazards are measured quantitatively by the changes in the frequencies
and severities of adverse health effects caused by the exposures.

Quantitative Definition of Health Risk

For sporadic illnesses (as opposed to epidemics), individual and population health
risks can be defined as follows:

• The individual risk of sporadic illnesses (or accidents, injuries, or other adverse
outcomes) caused by an exposure can be represented by the frequency and sever-
ity of additional adverse health effects per capita-year caused by that exposure.
It can often be tabulated or plotted as the expected number of cases per capita-
year in each severity category – e.g., mild, moderate, severe, or fatal, as defined
in Buzby et al. (1996) based on illness-days and mortality. To avoid having to
carefully define, describe, and compare the severities of different illnesses, one
can simply use days of illness per year for each category of illness (e.g., mild,
moderate, or severe) to summarize morbidity impacts, perhaps broken down by
different age groups or other population subgroups. Alternatively, the loss due to
increased mortality and morbidity can be expressed in terms of quality-adjusted
life-years (QALYs), which can serve as a single summary measure of severity if
the required preference-independence conditions justifying QALYs are accepted
(Hazen, 2003; Miyamoto, 1999). Individual risk is then given by the joint prob-
ability distribution of the number of cases per capita per year and the associated
severities (i.e., QALYs lost per case).

• Population risks are the sum of individual risks over all person-years in the pop-
ulation. They can be expressed as numbers of additional adverse health effects
per year (of each type or severity category) occurring in the population. Popu-
lation risks can also be further characterized by identifying subpopulations with
especially high individual risks.

Technical note: Use of expected values. Using the expected number of events per
year to quantify risk is justified for sporadic illnesses that occur independently,
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or with only weak statistical dependence, in large populations, when the Poisson
approximation (Janson, 1994) or the compound Poisson approximation (Barbour
et al., 1995) holds. The expected number of cases per year then determines the full
probability distribution of the number of illnesses per year, to a close approximation
(made precise in the above references). Moreover, the Poisson probability distribu-
tion is stochastically increasing in its mean; thus, larger numbers of expected cases
correspond to less preferred distributions for all decision makers who prefer fewer
cases per year to more. The formulas individual risk = expected number of addi-
tional illnesses per year × expected QALYs lost per illness and population risk =
sum of individual risks are useful for sporadic illnesses, although they must be gen-
eralized for other types of risks, e.g., to allow for risk aversion (Cox, 2001).

The main goals of risk assessment are to produce information to improve risk
management decisions by identifying and quantifying valid cause-effect relations-
between alternative risk management decisions and their probable total human
health consequences, and by identifying decisions that make preferred outcomes
more likely. Health risk assessments typically use explicit – and, if possible, vali-
dated – analytic models (e.g., statistical, biomathematical, or simulation models) of
causal relations between actions and their probable health effects. In general, quan-
titative risk assessment applies specialized models and methods to quantify likely
exposures and the frequencies and severities of their resulting consequences.

Example: Statistical and Causal Risk Relations
May Have Opposite Signs

As illustrated by the following (perhaps counterintuitive) example, there is no nec-
essary relation between statistical exposure-risk associations and the change in risk
that would be caused by changing exposure. As a simple counterexample, consider a
hypothetical population in which 100% of men and 0% of women are exposed (i.e.,
exposure = 1 for men, exposure = 0 for women). (Perhaps thinking of exposure as
drinking beer while eating fried chicken and watching Monday night football will
aid intuition.) Suppose that risk = 0 for all women, risk = 100% for unexposed
men, and risk= 10% for exposed men. In this example, exposure reduces risk, yet
the statistical association between them is positive. The statistical relation between
exposure and risk in this population is

risk = 0.1× exposure.

That is, when exposure = 1, risk = 10% (for exposed men), and when exposure=
0, risk = 0 (for unexposed women). Yet the causal effect of reducing exposure is to
increase risk in the population, by shifting men from the lower-risk exposed group
to the higher-risk unexposed group. The causal relation between exposure and risk
in this population is thus

risk = 1− 0.9× exposure for men; risk = 0 for women.
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Thus, the statistical and causal relationships between exposure and risk have oppo-
site signs.

As discussed further in Chapter 5, fitting a simple reduced-form statistical model
(such as risk = 0.1exposure) to data does not in general allow one to correctly pre-
dict the effects of changing the independent variables on resulting changes in the
dependent variable (Shipley, 2000; Freedman, 2004). [This example is motivated by
empirical relations found in a real data set collected by the CDC (Friedman et al.,
2000) for the foodborne bacterial pathogen Campylobacter. Men do appear to have
greater susceptibility to campylobacteriosis than women; they do appear to have
greater exposure to risk factors such as eating undercooked meat in restaurants and
swimming in untreated water; and exposure to chicken (e.g., buying and handling
raw chicken, preparing and eating chicken at home, etc.) does appear to reduce the
risk of campylobacteriosis, for both sexes. The above counterexample exaggerates
these empirical patterns to extremes to provide a simple illustration of the discon-
nect between statistical and causal relations.]

A Bayesian Network Framework for Health Risk Assessment

To support effective risk management decisions, human health risk assessments
must characterize known or suspected potential causal relations between risk man-
agement actions (including the status quo or “do-nothing” option), on the one
hand, and probable resulting human health consequences on the other. Actions typ-
ically affect exposures to sources of risk (i.e., hazards), while consequences typi-
cally include changes in the frequency or severity of resulting illnesses or deaths
in affected populations. Hazard identification identifies causal relations (possibly
including causal paths) leading from risk management actions to their human health
consequences. Hazard identification often precedes any plan to develop a risk man-
agement strategy, as effective risk management is often impossible if causal rela-
tions are not understood.

Figure 3.1 outlines a causal graph (Shipley, 2000; Greenland and Brumback,
2002; Ellis and Wong, 2008) for assessing risks to humans from changes in expo-
sures to hazards. In this template, risk management actions can change exposures
of individuals to potentially harmful agents (the hazards). Changes in exposures,
in turn, change expected illness rates and hence adverse health consequences (e.g.,
illness-days or early deaths per capita-year) in susceptible members of the exposed
population. If desired, different human health consequences can be aggregated
into a single summary measure, such as quality-adjusted life-years (QALYs) if
the required preference conditions hold (Hazen, 2003), but this is optional. The
effects of such changes on the number of QALYs lost per year in the population can
be mediated by individual behaviors or attributes (e.g., immune status, age, gen-
der, diet, and other covariates that affect susceptibility to infections). These covari-
ates may also influence each other (indicated by the brackets [] around them in
Fig. 3.1. For example, an AIDS patient may have food consumption and
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Act →→ Δ Exposure  → Δ Illnesses → ΔConsequences →ΔQALYs 

↑ ↑ ↑
[Behavior Susceptibility Treatment] = type of case 

Fig. 3.1 A causal graph for
health risk analysis

preparation behaviors and medical treatments that differ from those of a non-
AIDS patient. Risk assessment helps to identify risk management options (acts)
that decrease adverse health consequences, taking into account the distribution of
covariates in the population.

Technical note: Influence diagram interpretation. Figure 3.1 can be interpreted
as a Bayesian belief network or causal graph model (Greenland and Brumback,
2002; Chang and Tian, 2002). In this framework, each variable to which arrows
point is interpreted as a random variable with a conditional probability distribu-
tion that is completely determined by the values of the variables that point into it.
Because this diagram has a decision node (“act”) and a value node (“ΔQALYs”),
it is an example of an influence diagram (Owens et al., 1997). Important details
are represented only implicitly, by conditional probability distributions. Algorithms
to identify possible causal graph structures from data (and hence to test whether
hypothesized causal theories are consistent with data) have been developed (e.g.,
Tsamardinos et al., 2003; Wood 2006; Silander and Myllymäki, 2006; Ellis and
Wong, 2008) but are not yet routinely applied in risk assessment. Such causal graph
models are useful because effective algorithms have been created to (a) quantify the
conditional probability distributions of any subset of their variables, given observed
values of the rest; and (b) solve for the act that maximizes expected utility (once
a utility function has been defined for outcomes such as ΔQALYs) (see Crowley,
2004, www.cs.ubc.ca/∼crowley/academia/papers/aiproj.pdf).

Each choice of a risk management act in Fig. 3.1 generates a corresponding ran-
dom number of incremental illness cases (“responses”) caused or prevented each
year in each severity class of consequences (e.g., mild, moderate, severe, fatal) in
the population (and in each subpopulation, if there are several). The expected health
consequences of this change can be calculated from the following three submodels,
which are common to most risk assessments:

• An exposure model (the “act→ Δexposure” link in Fig. 3.1) that quantifies the
units of exposure received per unit time for individual risks.

• A dose-response or exposure-response model (the “Δexposure → Δillnesses”
link in Fig. 3.1) that quantifies the probability of illness, or the expected number
of cases, at each given severity level, per unit of exposure. In general, this relation
may depend on the individual’s “type” (i.e., on the combination of covariate
values that influence risk for that individual), as well as on the dose (units of
exposure) received.

• A health consequence model (the “Δillnesses → Δconsequence” link in Fig.
3.1) quantifying the conditional probabilities of different health outcomes (e.g.,
survival vs. fatality, or number of QALYs lost) from each case. These outcome
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probabilities may depend on factors such as physician prescription behavior or
hospital infection-control standards, for example.

These three submodels determine the expected illnesses and QALYs lost per
year in each severity class for each act. Multiple exposure pathways and at-risk
populations (perhaps including groups receiving different medical treatments) can
be included to quantify the total human health impact of different acts. Summing
health impacts over all distinct combinations of hazards, exposure routes, and target
populations (each corresponding to an instance of Fig. 3.1) gives the total probable
change in human health consequences for the act.

Technical note: Monte Carlo simulation. If there are too many combinations of
hazards, exposure routes, and target populations for explicit summation over all of
them to be practical, then Monte Carlo simulation can be used to obtain accurate
numerical approximations of the average risk (and the distribution of health effects).
For example, suppose that risk is given by f(x1,x2,. . ., xn) = f(x) and that one can
sample from the joint probability density function (PDF) of the xi, Pr(x1,x2,. . ., xn)
= Pr(x1)Pr(x2| x1). . . Pr(xn| x1, . . ., xn–1). Then Markov chain Monte Carlo (MCMC)
simulation techniques such as Gibbs sampling (Andrieu et al., 2003; Lange, 2003)
can be used to generate random samples from the joint PDF of x. Taking a sim-
ple arithmetic average of the values of f(x) obtained for a sufficiently large ran-
dom sample of x values will give an accurate estimate of the true average risk
EPr(x)[f(x)] implied by f(x) and Pr(x). Commercial risk analysis software tools such
as AnalyticaTM, @RISKTM, and Crystal BallTM include Monte Carlo simulation
routines that can generate estimated means, confidence bands, and entire estimated
probability distributions for f(x). Vose (2000) provides a basic introduction to Monte
Carlo simulation in spreadsheet models for microbial risk assessment, and Cassin
et al. (1998) discuss how to use Monte Carlo simulation for tasks such as priority
setting and risk management.

The conceptual framework in Fig. 3.1 can be implemented with greater or lesser
degrees of sophistication. Perhaps the simplest approach is to generate point esti-
mates for each risk management act and exposure pathway for each of the follow-
ing:

• Exposure factor = units of exposure received per capita per year;
• Dose-response factor = expected cases of illness per unit of exposure;
• Health consequence factor= expected QALYs lost (or illness-days created, etc.)

per case of illness. (Alternatively, a vector of expected numbers of different
health outcomes can be estimated; e.g., mild, moderate, severe, and fatal out-
comes per case.)

In this case, each submodel (corresponding to a horizontal arrow in Fig. 3.1) is
represented by a single number. One can then multiply these numbers together, and
multiply by the number of people affected, for each causal path and each risk man-
agement action. (Note that causal paths need not be restricted to different exposure
paths, but may encompass all three links.) Summing the results over all causal paths
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provides an estimate of the total human health impact per year for each action.
A more refined calculation can be made by considering how these factors might
change over time and then summing over time periods (perhaps with discounting).

At the other end of the spectrum, Fig. 3.1 can be applied to risk estimation using
conditional probability algorithms developed for Bayesian networks and causal
graphs (Chang and Tian, 2002). In this case, hazard identification can be thought
of as identifying instances of Fig. 3.1 that are consistent with available data. Statis-
tical methods are available to test whether specified causal graph models are indeed
consistent with data (Greenland and Brumback, 2002; Shipley, 2000), and practi-
cal algorithms have been developed to identify potential causal graph models from
multivariate data (Aliferis et al., 2003; Tsamardinos et al., 2003; Wood, 2006; Silan-
der and Myllymäki, 2006; Ellis and Wong, 2008). The remaining steps in the risk
assessment process can then be interpreted as quantifying and applying the resulting
Bayesian network. Multiplying exposure, dose-response, and consequence factors
generalizes to combining arbitrary probability distributions for inputs, and condi-
tional probability relations, via Monte Carlo simulation (Andrieu et al., 2003) to
derive joint probability distributions of outputs.

Bayesian network methods, combined with objective statistical tests for potential
causality, such as conditional independence tests (Shipley, 2000; Greenland and
Brumback, 2002), appear promising for providing more effective, data-driven risk
assessments while also allowing for the use of expert judgment when necessary.

Hazard Identification

Risk assessment begins with hazard identification, the process of specifying the
scope of the assessment and summarizing the available empirical evidence that
exposure to a specific “hazard” causes specified adverse health effects in exposed
individuals or populations. Thus, hazard identification can serve to

1. Rapidly screen potential hazards by identifying whether available data support
the hypothesis that the hazard might cause specific adverse health effects (possi-
bly using formal statistical methods of causal analysis; e.g., Shipley, 2000, Ellis
and Wong, 2008) .

2. Identify causal relations between specific hazards and specific adverse human
health effects.

3. Identify risk factors, behaviors, and exposure conditions that increase risks to
specific exposed populations (e.g., the old, the young, the immunocompromised,
etc.).

4. Summarize empirical evidence both for and against the hypothesis that exposures
to specific hazards cause specific adverse human health effects (Patton, 1993) .

In reality, of course, joint causation is common; i.e., observed adverse conse-
quences are often due to a combination of a hazardous agent, activities resulting in
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exposures to that agent, failure to undertake protective actions, and possibly other
confounding factors (such as decreased immunity in a subpopulation). In general,
any event or condition that hastens the occurrence of an adverse effect or increases
its likelihood can be viewed as a contributing “cause” of the effect; for more on
the philosophical definition and ambiguities of “causation,” see Williamson (2005).
Thus, “the cause” of an adverse health effect is often not uniquely defined. Nonethe-
less, for purposes of risk management, it is often adequate to predict the effects of
alternative risk management interventions on the rates of adverse events of differ-
ent severities. Hazard identification helps to identify such interventions (typically,
reductions in exposure).

Table 3.2 outlines steps for forming and testing causal hypotheses about
exposure-response relations using epidemiological data. As more of these steps
are completed, the empirical support increases for a causal relation between expo-
sure and risk. Most statistical methods in epidemiological risk analysis focus on
steps 1–3, i.e., identifying nonrandom associations, and then eliminating poten-
tial biases and confounders as likely explanations. These steps can often be
carried out using observational data without experimental controls using the refu-
tationist approach (Maclure, 1990, 1991), namely, by systematically enumerat-
ing possible competing explanations for the observed data, and eliminating each
of those potential explanations (if possible) using statistical tests on the available
data.

Many epidemiologists have recognized that, to draw valid causal inferences, it is
necessary to refute competing (noncausal) hypothesized explanations for observed
exposure-response associations (Maclure, 1990, 1991). Table 3.3 summarizes com-
mon competing explanations (mainly, confounding and/or sampling, information,
or modeling biases) and some suggested statistical methods to refute them (Cox,
2001, Chapter 3).

Table 3.2 Steps to establish a causal exposure-risk relation

a. Identify a statistically significant exposure-response association, e.g., using case-control,
prospective cohort, or other cross-sectional or longitudinal epidemiological data.

b. Eliminate confounding as a possible explanation of the association by accounting for factors
such as lifestyle, age, or exposure to other hazards, e.g., using conditional independence
tests (Grimes and Shulz, 2002; Feldman, 1998; Greenland and Morgenstern, 2001).

c. Eliminate biases in sampling, information collection, and modeling choices as possible
explanations for the association (Choi and Noseworthy, 1992; Deeks et al., 2003).

d. Test and confirm hypothesized causal and conditional independence relations, for example,
by showing that the response is not conditionally independent of the hypothesized exposure
that causes it, given other variables (Shipley, 2000; Friedman and Goldszmidt, 2006; Frey
et al., 2003).

e. Confirm the efficacy of interventions, e.g., by experimental manipulations (Ellis and Wong,
2008) and/or intervention and change point analyses of time-series data (e.g., Swanson
et al., 2001; Green, 1995).

f. Identify and elucidate causal mechanism(s), identified from experimental data and/or from
generally accepted principles.



82 3 Introduction to Health Risk Analysis

Table 3.3 Potential noncausal explanations for associations and some statistical methods to over-
come them

Potential noncausal explanations

Statistical methods to refute potential noncausal
explanations (See http://cran.r-project.org/ for
more on statistical methods and R software.)

Modeling biases

Variable selection bias (includes
selection of covariates in model)

Bootstrap variable selection, Bayesian model
averaging (BMA), and cross-validation for
variable selection (Wang et al., 2004).

Omitted explanatory variables
(including omitted confounders)

Include potential confounders in an explicit
Bayesian network or causal graph model; test for
unobserved latent confounders.

Variable coding bias (Coding of
variables may affect risk
estimates. See Streiner, 2002;
Brenner and Loomis, 1994.)

Don’t unnecessarily discretize continuous variables
(Royston et al.,2005; Gustafson and Le, 2002;
Ragland, 1992). Use automated variable-coding
methods such as classification trees (see
Chapter 6).

Aggregation bias/Simpson’s paradox Test hypothesized causal relations at multiple levels
of aggregation, down to individual-level data.

Multiple testing/comparisons bias Adjust p-values (Romano and Wolf, 2005).

Choice of exposure and dose
metrics.

Use multiple exposure indicators as explanatory
variables (e.g., concentration and time. Don’t
combine them.).

Choice of response/effect metrics Use survival functions and transition rates among
health states.

Model form selection bias;
uncertainty about correct model

Use flexible nonparametric models (e.g., kernel
smoothers, wavelets) and BMA for multiple
models. Report model diagnostics and
sensitivities of results to model forms (Greenland,
1989).

Missing data (Little and Rubin,
1987; Horton and Kleinman,
2007)

Use data augmentation, EM, multiple imputation
(Harrell, 2007), or Markov chain Monte Carlo
(MCMC) algorithms (Schafer, 1997).

Measurement and misclassification
errors in explanatory variables

Use Bayesian measurement error models; treat
unknown true values as missing data (Schafer,
1997; Ibrahim et al., 2005); use bias-correction
formulas, regression-calibration, instrumental
variables, simulation-extrapolation (SIMEX)
corrections (Carroll et al., 2006), or Bayesian
smoothing and regression splines (Berry et al.,
2002).

Unmodeled heterogeneity in
individual response parameters

Use latent variable models, finite mixture
distribution models, or frailty models of
interindividual variability
(http://cran.r-project.org/).

Biases in interpreting and reporting
results

Report results (e.g., posterior PDFs) conditioned on
data, models, and statistical methods. Show
sensitivities.
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Table 3.3 (continued)

Potential noncausal explanations

Statistical methods to refute potential noncausal
explanations (See http://cran.r-project.org/ for
more on statistical methods and R software.)

Sample selection biases

Sample selection (sample does not
represent population)

Randomly sample all cohort members if possible.

Data set selection bias (i.e., selection
of studies may affect results)

Conduct meta-analysis of sensitivity of conclusions
to studies. Use causal graph models to integrate
diverse data sets.

Health status confounding, hospital
admission/referral bias

If possible, use prospective cohort design and
population-based cases and controls (Choi and
Noseworthy, 1992).

Selective attrition/survival (e.g., if
exposure affects attrition rates)

Differential follow-up loss

Use a well-specified cohort. “Include non-surviving
subjects in the study through proxy interviews”
(Choi and Noseworthy, 1992). Compare
counterfactual survival curves.

Detection/surveillance bias Match cases to controls (or exposed to unexposed
subjects) based on cause of admission.

Membership bias (e.g., lifestyle bias,
socioeconomic history)

• In cohort studies, use multiple comparison
cohorts.

• Hard to control in case-control studies.

Self-selection bias;
response/volunteer bias

Achieve a response rate of at least 80% by repeated
efforts. Compare respondents with sample of
nonrespondents.

Information collection biases

Intra-interviewer bias Blind interviewers to study hypotheses, subject
classifications.

Interinterviewer bias Use same interviewer for study and comparison
groups.

Questionnaire bias Mask study goals with dummy questions; avoid
leading questions/response options.

Diagnostic suspicion bias
Exposure suspicion bias

Hard to prevent in case-control studies. In cohort
studies, make diagnosis and exposure
assessments blind to each other.

Example: Some Traditional Criteria for Causality Fail to Refute
Other Explanations

Several traditional criteria (most often identified with Sir Austin Bradford Hill) that
are now widely used in epidemiology to evaluate evidence for causality actually
are not necessary, are not sufficient, and are not always useful as indicators of a
possible causal relation. To illustrate how traditional criteria can be irrelevant to
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establishing evidence of causation, suppose that an analyst tries to use them to assess
the evidence for this hypothesis:

A→ B,

interpreted as “A causes B,” or as ”increasing A will increase B,” where A and B
represent the exposure and response variables, respectively, in a large population.
Suppose that the correct causal relations (unknown to the analyst) are

A← C → B,

meaning “changes in C cause changes in A, and changes in C also cause changes in
B, but directly changing either of A or B does not change the other.” Finally, suppose
that changes in C propagate quickly to change A, and more slowly to change B. Then
the observed association between A and B (due to confounder C) can satisfy all of
the following traditional criteria:

• Strength of association (For example, there may be up to 100% correlation
between levels of A and levels of B, if both are directly proportional to C.)

• Consistency (Different observers using different methods in different places can
observe that A is positively associated with B.)

• Specificity (High levels of B may be found only in cases with high levels of A.
If C is not known or understood by the investigator, hence not considered as
an explanation, then such specificity may be misconstrued as supporting the
hypothesis that high levels of response B are specifically caused by high levels of
exposure A.)

• Temporality (Changes in B follow changes in A.)
• Biological gradient (if both A and B are increasing functions of C, and hence B

is an increasing function of A)
• Plausibility (if the investigator thinks that A→ B is a plausible hypothesis)
• Coherence, experiment, and analogy (if the investigator thinks that A→ B is a

plausible hypothesis because of an analogy with some other – as it turns out,
irrelevant – in vitro results)

In other words, all of these traditional criteria for concluding that there is evi-
dence that “A causes B” can be thoroughly satisfied, even if A, in fact, does not
cause B.

This example used just one competing explanation (a hidden confounder, C) that
explains away all of the “evidence” for causation between A and B considered by
these criteria. Other competing explanations (e.g., model misspecification bias or
multiple testing bias) can also explain away such “evidence,” even if there are no
confounders. Hence, better methods are needed for identifying potential valid causal
exposure-response relations from epidemiological data. Chapters 6 and 8 discuss
more recent methods that are far more useful than traditional criteria for identifying
possible causal relations.
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As stated by Savitz et al. (1990), “Biases that challenge a causal interpretation
can always be hypothesized . . . . It is essential to go beyond enumerating scenar-
ios of bias by clearly distinguishing the improbable from the probable and the
important from the unimportant.” Fortunately, well-developed statistical methods
and algorithms are now available to identify significant statistical associations from
data on the spatial and temporal associations between exposures and health effects
(Mather et al., 2004) and to screen them for potential causality based on the above
criteria.

Technical note: Statistical tests for assessing potential causality. Over the past 40
years, intuitive criteria for causality used in epidemiology (such as the Bradford Hill
considerations, emphasizing the strength, consistency, biological gradient, coher-
ence, etc. of an association) have been improved upon by more objective statistical
approaches. For example, an approach based on information theory (see Chapter 6)
proposes that, roughly speaking, a data set provides evidence that exposure variable
X is a potential cause of response variable Y if and only if X is (a) INFORMATIVE
about Y, i.e., the mutual information between X and Y, denoted by I(X; Y) and mea-
sured in bits (see Chapter 6), is positive in the data set (this allows for nonlinear
and even nonmonotonic relations); (b) UNCONFOUNDED: X provides informa-
tion about Y that cannot be removed by conditioning on other variables, i.e., I(X; Y
| Z) > 0 for all subsets of variables Z; (c) PREDICTIVE: Past values of X are infor-
mative about future values of Y, even after conditioning on past values of Y. (This
generalizes the concept of Granger causality for time series, e.g., Guatama and Van
Hulle, 2003.) (d) CAUSALLY ORDERED: Y is conditionally independent of the
parents of X, given X, i.e., I(P ; Y | X) = 0, for any parent or ancestor P of X (Ellis
and Wong, 2008). These criteria yield practical algorithms (e.g., Bayesian LabTM,
Tsamardinos et al., 2003; Wood et al., 2006; Silander and Myllymäki, 2006) for
detecting potential causation in cohort, case-control, and time-series data sets, even
if the functional relations involved are nonmonotonic. (Causation may be present
even if these conditions are not satisfied, but then the data do not provide evidence
of it.) Formal tests for statistically significant associations between the timing of
one event (e.g., introduction or cessation of exposures) and subsequent changes in
a series of measurements (e.g., human illness rates in a surveillance program) can
be based on intervention analysis and change point analyses (Green, 1995) for time
series. These methods for testing for potential causality are entering common bio-
statistical and risk analysis practice only slowly, but appear to be very promising
(Shipley, 2000).

Exposure Assessment

For environmental risk assessment, U.S. EPA experts have stated that “Questions
raised in the exposure analysis concern the likely sources of the pollutant . . . its
concentration at the source, its pathways (air, water, food) from the source to
target populations, and actual levels impacting target organisms” (Patton, 1993).
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Similarly, the U.S. FDA has defined exposure assessment as “a component of a risk
assessment that characterizes the source and magnitude of human exposure to the
pathogen.” The magnitude of human exposure, also called the dose, is defined as
“the amount or number of a pathogen that is ingested or interacts with an organism
(host)” (http://www.foodsafety.gov/∼dms/lmriskgl.html).

Exposure assessment seeks to identify exposed subpopulations at risk from expo-
sures to hazards, and to identify conditions leading to high-risk exposures. It also
describes the extent of exposures (frequency and magnitude of individual expo-
sure in the population in relation to susceptibility and covariates) and uses models
to predict how risk management decision options will probably affect exposures.
A successful exposure assessment should describe the frequency distribution of
exposures received by members of exposed populations and subpopulations, and
should show how these distributions change for different risk management deci-
sions. The descriptions should contain enough detail to discriminate among different
exposure distributions that would cause significantly different health outcomes.
This information is used, together with dose-response information, in risk
characterization.

The shape of the frequency distribution of exposures relative to the dose-response
relation (e.g., how frequent are exposures that are likely to cause illness?) drives
quantitative risk. It is common for exposures to be very uncertain, especially if they
depend on unmeasured and/or highly variable processes. The exposure assessment
influence diagram may then look like this:

Act → exposures→ illnesses← individual covariates

↓
measured exposure surrogates.

For example, available data may consist of surrogate measurements (e.g., con-
taminant levels in exposure pathways) rather than direct measurements at the point
of exposure. True exposures then play the role of latent variables in causal mod-
eling, i.e., they affect observed outcomes but are not observed themselves. Appro-
priate statistical techniques for causal diagrams with latent variables (e.g., Shipley,
2000, for linear models; Pearl, 2002, and Hartemink et al., 2001, for more general
Bayesian network models) can be applied to the above diagram with surrogate mea-
surements of exposure for data. Software such as WinBUGS helps to automate the
required computations for inference with missing data and unobserved or surrogate
variables.

Exposure models describe the transport and distribution of hazardous materials
through different media and pathways (e.g., air, foods, drinking water) leading from
their source(s) to members of the exposed population. In addition, exposure mod-
els may consider the distribution over time of human populations among locations
and activities that result in exposures. Simulation models of transport and behav-
ioral processes, often developed using discrete-event simulation software, are used
to estimate frequency distributions of population exposures from assumptions about,
or submodels of, the more detailed microprocesses involved.
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Example: Simulation of Exposures to Pathogens in Chicken Meat

The World Health Organisation (WHO) has described a process simulation model
of human exposures to the foodborne pathogen Salmonella as follows:

The exposure assessment of Salmonella in broiler chickens mimics the movement of
Salmonella-contaminated chickens through the food chain, commencing at the point of
completion of the slaughter process. For each iteration of the model, a chicken carcass
was randomly allocated an infection status and those carcasses identified as contaminated
were randomly assigned a number of Salmonella organisms. From this point until con-
sumption, changes in the size of the Salmonella population on each contaminated chicken
were modeled using equations for growth and death. The growth of Salmonella was pre-
dicted using random inputs for storage time at retail stores, transport time, storage time
in homes, and the temperatures the carcass was exposed to during each of these periods.
Death of Salmonella during cooking was predicted using random inputs describing the
probability that a carcass was not adequately cooked, the proportion of Salmonella organ-
isms attached to areas of the carcass that were protected from heat, the temperature of
exposure of protected bacteria, and the time for which such exposure occurs. The number
of Salmonella consumed were then derived using a random input defining the weight of
chicken meat consumed, and the numbers of Salmonella cells in meat as defined from the
various growth and death processes. Finally, in the risk characterization, the probability of
illness was derived by combining the number of organisms ingested (from the exposure
assessment) with information on the dose-response relationship (hazard characterization).
(www.who.int/foodsafety/publications/micro/Salmonella/en/)

The results of the Monte Carlo simulation exposure modeling are presented as
(a) an estimated 2% prevalence of contaminated chicken servings, and (b) the fol-
lowing conditional frequency distribution for the dose (CFUs) per serving from con-
taminated servings:

Source: http://www.who.int/foodsafety/publications/micro/Salmonella/en/
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This frequency distribution shows how large an exposure a person is likely to
receive from a serving of contaminated, undercooked broiler chicken. This is the
main output of the exposure assessment and the main input to the dose-response
model for calculating illness risk per serving.

Example: Mixture Distributions and Unknown Dose-Response
Models

Exposure-response relations in a population can often be estimated even when
the shapes of dose-response relations are unknown, by decomposing the risk as
follows:

Pr(illness|exposure = x) = Σr Pr(illness|exposure = x

& response type = r )∗ Pr(response type = r ),

where “response type” is an unobserved (latent) variable summarizing all of the
missing information needed to predict the probability of illness from a known level
of exposure. (For example, if each individual has an unknown threshold number of
bacteria that must be ingested in one meal to cause illness, then r would be that
threshold number. If there is a continuum of response “types,” the above sum is
replaced by an integral.) An important development in mathematical statistics is the
recognition that the uncertain quantities Pr(response type = r) can be interpreted as
statistical coefficients to be estimated directly from data on the aggregate number of
responses observed in populations for different exposure conditions, while the con-
ditional response probabilities that are paired with these coefficients, Pr(illness |
exposure = x, type = r), can be estimated simultaneously from the same data
(provided that technical identifiability conditions are met. These are automatically
satisfied by many large families of distributions.). The required statistical technol-
ogy is that of finite mixture distribution models if the number of types is finite, or
continuous mixture models if types are continuous. Well-developed computational
Bayesian algorithms can be applied to estimate the number of components in the
mixture (i.e., the number of statistically significantly different “types”) and the cor-
responding coefficients and conditional response probabilities (see, e.g., Richardson
and Green, 1997). Note that in this construction, the definition of the exposure vari-
able x can be any measured quantity that can be paired with corresponding illness
rates. All unobserved details of subsequent processing, handling, preparation, etc.
are then absorbed into the latent “type” variable, r. Missing values and errors in mea-
sured values of x can also be handled within the computational Bayesian framework
(e.g., using the data augmentation algorithm; Schafer, 1997) to allow the conditional
distributions of outputs given observed data to be quantified, even when other data
are missing. There is thus great flexibility to use all available data (via conditioning)
but without requiring the use of unavailable data.



Dose-Response Modeling 89

Dose-Response Modeling

Dose-response models quantify the conditional probability of illness caused by
each level of exposure; thus, the term exposure-response model is also appropriate.
Figure 3.2 shows an example of a dose-response model developed for Listeriamono-
cytogenes in ready-to-eat foods. A specific parametric dose-response model was
assumed (an exponential model) and fit to epidemiological data for immunocom-
promised (“High risk”) and non-immunocompromised (“Normal”) subpopulations.
The dark solid curve in Fig. 3.2 is the estimated dose-response model for the “Nor-
mal risk” subpopulation. The dashed line above and to the left of it is the dose-
response model for the “High risk” subpopulation. The lighter gray curves indicate
estimated statistical confidence bands around these best-estimate curves – an upper
confidence band for each (corresponding to the upper end of the 95% confidence
interval estimated for the parameter of the exponential dose-response model), and a
lower 95% confidence band for the rightmost (Normal) dose-response model.

As in Fig. 3.2, it is often necessary to fit separate dose-response models to “nor-
mal” and “susceptible” subpopulations within the general population to account for
interindividual variability in dose-response relations. While more than two grada-
tions of susceptibility can potentially be modeled using finite mixture distributions,
distinguishing between only two levels or response “types” in the population, i.e.,
susceptible and normal, often suffices to explain most of the variability in the data. If
different degrees or severities of illness are distinguished, ranging from mild through
severe to fatal (Buzby et al., 1996), then a health consequence model describing the
conditional probabilities of different levels or severities of health outcomes, given

Fig. 3.2 Example dose-response function for Listeriamonocytogenes
Source: FAO/WHO, 2001. http://www.who.int/foodsafety/publications/micro/en/may2001.pdf
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that illness occurs, is needed to augment the conditional probability of illness as a
function of exposure. In general, risk characterization requires describing the sever-
ities as well as the frequencies of adverse health outcomes caused by exposures.

In practice, biologically motivated parametric dose-response models are the most
common, and usually the best justified, models in widespread use. They are typically
fit to data by a combination of maximum-likelihood estimation (MLE) for point
estimates and computationally intensive resampling techniques (e.g., bootstrapping
algorithms) for confidence intervals, simultaneous confidence bands around the
dose-response curve, and joint confidence regions for model parameters (e.g., Haas
et al., 1999, Chapter 7, cf. p. 293).

Example: Apparent Thresholds in Cancer Dose-Response Data

Table 3.4 illustrates some of the challenges of selecting useful exposure or dose met-
rics and dose-response models for predicting cancer risks. It shows several apparent
carcinogenic thresholds in experimental data for mice exposed via inhalation to iso-
prene. Liver and lung adenomas and carcinomas are only significantly elevated at
concentrations of 140 ppm and above. Similarly, histiosarcomas exhibit an apparent
response threshold between 140 and 280 ppm. These thresholds are specific to con-
centration, rather than to cumulative exposure. For example, doubling concentration
(from 70 to 140 ppm between exposure groups 3 and 5) increases liver adenomas
from 0.29 to 0.44, whereas doubling weeks of exposure (from 40 to 80 between
exposure groups 3 and 4) does not increase the risk significantly at any site, and
even appears to reduce it. Similarly, quadrupling exposure concentration from 70 to
280 ppm while quartering exposure duration from 80 to 20 weeks unambiguously

Table 3.4 Results of a stop-exposure experiment for isoprene in male B6C3F1 mice

Hr/ Liver Lung Other Liver Lung Histio-
Group ppm Weeks day adenomas adenomas adenomas carcinomas carcinomas sarcomas

1 0 0 8 0.22 0.22 0.14 0.18 0 0
2 10 80 8 0.24 0.32 0.12 0.12 0.02 0.04
3 70 40 8 0.29 0.16 0.30∗ 0.22 0 0.04
4 70 80 8 0.30 0.08 0.18 0.18 0.04 0.04
5 140 40 8 0.44∗ 0.20 0.28∗ 0.20 0.02 0.02
6 280 20 8 0.36 0.32 0.36∗ 0.24 0.06 0.16∗

7 2,200 80 4 0.42∗ 0.30 0.56∗ 0.30 0.06 0.14∗

8 2,200 40 8 0.57∗ 0.59∗ 0.65∗ 0.37∗ 0.06 0.14∗

Explanation: Columns 2–4 summarize the exposures defining each dose group. The remaining
columns show the fraction of animals in each dose group that were found to have each tumor type
at necropsy.
Source: Cox LA Jr, Bird MG, Griffis L. Isoprene cancer risk and the time pattern of dose adminis-
tration. Toxicology. 1996 Oct 28;113(1–3):263–72.
∗ Tumor incidence rates in bold and marked with an asterisk are significantly greater than in the
control group (p < 0.05 by Fisher′s Exact Test).
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increases tumor risk (compare exposure groups 4 and 6), even though cumulative
exposures are identical.

Apparent carcinogenic thresholds or threshold-like nonlinearities can also exist
for components of the exposure’s duration. For example, at higher concentrations,
doubling the hours per day of exposure while halving the weeks of exposure
increases the risk of adenomas and liver carcinomas (compare exposure groups 10
and 11), even though the cumulative exposures remain identical.

Such threshold-like behavior for exposure concentrations and durations occurs
for many chemical carcinogens. It requires explanations that go beyond the usual
multistage stochastic transition dose-response models with linear-in-dose transition
rates (see Chapter 11), since such models predict that risk changes smoothly with the
concentration and duration of internal doses received by target tissues or cell popu-
lations. Physiologically based pharmacokinetic (PBPK) modeling shows that these
internal dose attributes, in turn, are typically smooth (and, at low doses, approxi-
mately linear) functions of the concentration and duration of administered dose over
the range of experimental data, even though the induction, depletion, or saturation
of enzyme-mediated processes can introduce important nonlinearities at very high
administered doses.

Chapter 2 introduced the concept of phase transitions with sharp transition thresh-
olds as one possibility for how threshold-like nonlinearities can occur at low doses
(even without nonlinearities in the PBPK component). Smooth, possibly linear no-
threshold dose-response relations at the level of individual cells can, in princi-
ple, lead to the types of sharp transitions and threshold-type behaviors observed in
some empirical dose-response relations, such as those in Table 3.4. Better under-
standing the apparent thresholds and other nonlinearities in pharmacodynamics –
the study of how doses of agents affect cell populations and other physiological
systems – is one of the current grand challenges of quantitative dose-response
modeling.

Example: Best-Fitting Parametric Models May Not Fit Adequately

Figure 3.3 for Salmonella feeding trial data shows that even the best-fitting model
in a certain class of parametric models (here, the approximate Beta-Poisson dose-
response family, widely used in microbial risk assessment) may not adequately
describe the observed data. The parametric family of models is then said to be mis-
specified for the data, i.e., it is not appropriate for describing the empirical relation.
In this example, the approximate Beta-Poisson model family is inappropriate for
the data because even the best-fitting curve in the family dramatically underpredicts
low-dose risks.

If the correct dose-response model is unknown and several models all provide
adequate fits to the available data, multiple plausible models may be used to carry
out the rest of the assessment. In this case, the analysis can be organized and pre-
sented as a model uncertainty decision tree in which different modeling choices cor-
respond to different branches in the tree. The results of the risk analysis at the end
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Fig. 3.3 The best-fitting Beta-Poisson model underpredicts low-dose risks
Source: WHO/FAO, 2002 (Naı̈ve BP = approximate Binomial Poisson)

of each branch are contingent on the assumptions and modeling choices that lead
to it. Different branches may be weighted by the relative strength of the evidence
supporting them (Kang et al., 2000). Bayesian model averaging provides a similar
way to combine predictions from multiple models (Viallefont et al., 2001; Keiding
and Budtz-Jorgensen, 2004). Model uncertainty decision trees can also be used to
present and analyze uncertainties due to choices of dose metrics, response defini-
tions, and other modeling decisions, as well as choices of particular dose-response
models.

Uncertainty about the illness probabilities caused by a given dose is often dom-
inated by uncertainty about the most appropriate dose-response model (sometimes
called structural uncertainty). A decision tree presentation of alternative modeling
choices and the resulting predicted risks (or even a simple plot of different plausible
dose-response curves) can express much of the relevant uncertainty with a minimal
amount of statistical sophistication. Other important computational methods and
algorithms for uncertainty analysis include

• Monte Carlo uncertainty analysis using commercial software products such as
AnalyticaTM, @RISKTM, Crystal BallTM (Vose, 2000). For more on uncertainty
and sensitivity analysis software, see the descriptions at the product web sites.

• Bayesian uncertainty analysis for model parameters and predictions (e.g., based
on the WinBUGS software for inference with missing data).

• Bootstrapping and other resampling techniques for estimating joint confidence
regions for model parameters and predictions.
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• Model cross-validation techniques for estimating the accuracy and prediction
error characteristics of model predictions from performance on multiple subsets
of data.

These methods are discussed in general computational statistics texts and for
dose-response modeling in risk analysis texts such as Haas et al. (1999), Vose
(2000), Cox (2001).

Risk and Uncertainty Characterization for Risk Management

Risk characterization is the ultimate output of a risk assessment. It integrates hazard
identification, exposure assessment, and dose-response information to determine the
probable frequency and severity of adverse health effects in a population caused by
exposures to a hazard. Characterizing the change in risk for different risk manage-
ment interventions helps decision makers choose among them. Risk characterization
also includes the characterization of current uncertainty about risk. This allows the
value of gathering additional information to be assessed as part of risk management
deliberation and decision making, based on the potential value of such information
(VOI) in enabling risk managers to make choices that are more likely to result in
desired consequences (Yokota and Thompson, 2004).

Given the results from

(a) Exposure assessment (i.e., the conditional probability distribution of exposures,
for each act),

(b) Exposure-response or dose-response modeling (i.e., the conditional probability
of illness for each exposure pattern), and

(c) Consequence modeling (the conditional probability distribution of adverse con-
sequences given illness),

the risk characterization step calculates, for each act being assessed, the resulting
probability distributions for adverse consequences. This can be done by summing
or integrating expressions such as Pr(consequence= c | illness)Pr(illness | exposure
= x)Pr(exposure = x | act) over all exposure levels x, to obtain the probability for
each consequence, c.

Example: Risk Characterization Outputs

Figure 3.4 shows one of the risk characterization outputs from a risk assessment
of Listeria monocytogenes (FAO/WHO, 2001). The solid curve shows the median
estimate of the mortalities per year caused among the elderly subpopulation by L.
monocytogenes in deli meats, for different maximum allowed storage times. The
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Fig. 3.4 Predicted annual mortality in the elderly subpopulation attributable to deli meats as a
function of maximum storage time
Source: FAO/WHO, 2001, http://www.cfsan.fda.gov/∼dms/lmr2-6.html

dotted curves represent the 5th and 95th percentiles of the uncertainty distribution,
as assessed by Monte Carlo uncertainty analysis.

This display shows how predicted risks in this subpopulation vary with the effects
of different potential interventions that would limit the maximum storage times
allowed for deli meats. Similar curves can be shown for the effects of such inter-
ventions for other foods or groups of foods (e.g., dairy products, produce, seafood
products, etc.) and for other subpopulations and the U.S. population as a whole.

Risk management is often viewed as a decision process that takes scientific
information obtained from risk assessment as an input, along with value judg-
ments and policy goals and constraints, and that recommends choices of risk man-
agement actions as its output. Risk management options typically include risk
acceptance, prevention or avoidance (e.g., by reduction of exposures), mitigation
of consequences (e.g., by appropriate clinical screening, diagnosis, and prescription
procedures), transfer (e.g., health insurance), or compensation.

A successful risk analysis shows the estimated changes in the frequencies and
magnitudes of adverse human heath consequences resulting from different risk man-
agement decision options. (Of course, if hazard identification and risk management
reveal that the risk from the status quo is so small that no risk management action is
needed, risk analysis may stop there. A full risk analysis is usually carried out only
when a risk management intervention is being contemplated.) Risk analysis uses
probability distributions, confidence intervals, and other displays to show uncer-
tainties about the human health consequences of different decisions. It identifies
a subset of one or more decision options leading to preferred (e.g., stochastically
undominated) probability distributions of health risks and other outcomes.
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A successfully completed risk analysis should allow a risk manager to answer the
following questions for each risk management decision alternative being evaluated
or compared:

• What probable change in human health risk would result from each risk man-
agement intervention? If the risk management decision option or action being
assessed is implemented, how will the probable adverse human health effects
[e.g., the expected numbers of mild, moderate, severe, and fatal illnesses per year;
the expected numbers of illness-days and, if desired, quality-adjusted life-years
(QALYs) lost per year] change in the whole population and in subpopulations
with distinct risks?

• How certain is the change in human health risk that would be caused by each
risk management action? Instead of a single value, i.e., a “point estimate” of risk,
uncertain risks are characterized by intervals or probability distributions indicat-
ing how closely the change in human health risk caused by a proposed risk man-
agement intervention can be predicted. There are several technical options for
expressing uncertainty around point estimates (e.g., plausible upper and lower
bounds, confidence limits, coefficients of variation, tolerance intervals, predic-
tion intervals, Bayesian posterior probability intervals and distributions, etc.) The
essential information to provide about uncertainty in any risk assessment is how
large or how small the true risks might be, consistent with the data and with the
specified assumptions of the risk assessment. Point estimates that are “best” with
respect to various technical statistical criteria will typically fall between these
extremes.

Technical note: Statistical point estimates and interval estimates. Many criteria
have been used to define and identify the “best” point estimates in risk models,
e.g., maximum-likelihood estimates (MLE), maximum a posteriori (MAP) Bayesian
estimates, maximum entropy, minimum description length, least squares, minimum
absolute deviation, and minimum expected loss (for various loss functions) (see
Cox, 2001, for a survey of methods for risk analysts). While these criteria have led
to useful theory and algorithms for estimating the parameters of risk models, none
of them is satisfactory as the sole output from a risk assessment. It is essential to
provide intervals or probability distributions around any point estimate of risk to
inform the users of a risk assessment about the full range of risks that might be
caused by a risk management intervention. This principle applies to qualitative and
fuzzy risk ratings as well. If a point estimate of a risk is “High,” then some indication
must be given of how certain this value is and of how compatible the frequency and
severity components of the risk are with other qualitative labels, such as “Low.” A
risk assessment that produces a single overall value for risk with no indication of
uncertainty should be avoided.

• What are the key drivers of risks and uncertainties for each option? The analy-
sis should make clear to the user the main reasons why the estimated risk from
each decision option is as high or low as it is. Are the results driven mainly by
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predicted exposure levels, by the responses of sensitive subpopulations, by
genetic or epidemiological data that establish tight constraints on the plausible
values, or by other factors? Sensitivity analyses that plot how estimated risks
would change as input assumptions and estimates vary within plausible ranges
(e.g., within a few standard deviations of their median values) can help to identify
the combinations of input values that drive the main conclusions and the extent
to which these could be changed without changing the comparison of different
risk management interventions.

• Which risk management interventions are undominated? One risk management
intervention dominates another if it produces smaller probabilities of exceeding
any specified level of adverse consequences per year. For example, if two dif-
ferent interventions lead to different expected numbers of sporadic salmonellosis
cases per year (with the actual number being a Poisson random variable), and if
the probable health consequences per case (e.g., the distribution of the number of
days of illness of given severity) is the same for each intervention, then the one
giving the smaller expected number of illnesses per year dominates the other.
Scientific risk assessment can, at most, identify undominated risk management
alternatives for risk managers to further assess and choose among.

Conclusions

This chapter has discussed how quantitative risk assessment (QRA) can collect,
organize, and present information to support improved risk management decision
making about public health risks. A successful risk analysis estimates the causal
relations between decisions and probable resulting exposures, and between expo-
sures and their probable total human health consequences. To guide rational deci-
sion making, a risk analysis should yield evaluations and comparisons of proposed
risk management actions and interventions, not simply descriptions of the current
situation. It should show the estimated changes in frequencies and magnitudes (and
uncertainties) of human heath consequences resulting from different proposed risk
management decisions. It is important to identify an adequate range of risk man-
agement options to assure that dominant alternatives are not overlooked. For each
option, the total health consequences are found by summing the impacts of proposed
actions on human exposures over all relevant pathways that contribute significantly
to the outcome. Applying an exposure-response model to the changed exposures for
different decisions then yields the estimated risks associated with them.

A well-conducted risk analysis enables its recipients to participate more effec-
tively in risk management deliberations and to communicate questions and concerns
more clearly and concisely than would otherwise be possible. It does so by providing
them with the relevant information needed to determine the probable consequences
of proposed actions and by showing how sensitive these predicted consequences are
to specific remaining uncertainties.
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However, not all risk analyses are well conducted. Unsound risk analysis tech-
niques that do not necessarily identify valid causal relations or recommend undom-
inated actions are in common use. Their use is still increasing, stimulated in part
by regulatory requirements and enthusiastic consultants, together with widespread
desire and demand for the benefits of QRA that are not always tightly tied to a clear
understanding of the methods needed to achieve them. Chapters 4 and 5 consider in
more detail approaches to risk analysis that may do more harm than good, degrad-
ing rather than improving the effectiveness of risk management decisions. The cur-
rent popularity of such methods poses a potential threat to the long-term reputation
and value of the field of risk analysis. To overcome this threat, better methods of
risk analysis must be used. Possibilities for doing better are explored in detail after
Chapters 4 and 5.



Chapter 4
Limitations of Risk Assessment
Using Risk Matrices

This chapter focuses on the use and abuse of risk matrices – tables mapping
“frequency” and “severity” ratings to corresponding risk priority levels. Such matri-
ces have become very popular in applications as diverse as terrorism risk analy-
sis, highway construction project management, office building risk analysis, climate
change risk management, and enterprise risk management (ERM). Their use is now
so widespread in important applications that it is worth devoting an entire chapter to
understanding the main concepts – and limitations – of risk matrices as a framework
for practical risk analysis.

National and international standards (e.g., Military Standard 882C and AS/NZS
4360:1999) have stimulated the adoption of risk matrices by many organizations and
risk consultants. However, little research rigorously validates their performance in
actually improving risk management decisions. This chapter examines some mathe-
matical properties of risk matrices and shows that they have the following limitations:

• Poor resolution. Typical risk matrices can correctly and unambiguously compare
only a small fraction (e.g., less than 10%) of randomly selected pairs of hazards.
They can assign identical ratings to quantitatively very different risks (“range com-
pression”).

• Errors in comparative rankings. Risk matrices can mistakenly assign higher qual-
itative ratings to quantitatively smaller risks. For risks with negatively correlated
frequencies and severities, they can be “worse than useless,” leading to worse-
than-random decisions.

• Suboptimal resource allocation. The effective allocation of resources to risk-
reducing countermeasures cannot, in general, be based on the categories provided
by risk matrices.

• Ambiguous inputs and outputs. Categorizations of relative severity cannot neces-
sarily be made objectively – independent of subjective risk attitudes – for uncertain
consequences. Inputs to risk matrices (e.g., frequency and severity categorizations)
and resulting outputs (i.e., risk ratings) require subjective interpretations, and dif-
ferent users may obtain opposite ratings of the same quantitative risks. These lim-
itations suggest that risk matrices should be used with caution, if at all, and only
with careful explanations of embedded judgments.

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 4, C© Springer Science+Business Media, LLC 2009
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These limitations of risk matrices illustrate some important pitfalls of attempt-
ing to do risk analysis without using appropriate QRA concepts and techniques.
The QRA frameworks and methods discussed in previous chapters can avoid these
limitations, although they, too, can be misapplied and can lead to poor decision rec-
ommendations if they are used carelessly (see Chapter 5).

Introductory Concepts and Examples

A risk matrix is a table that has several categories of “probability,” “likelihood,” or
“frequency” for its rows (or columns) and several categories of “severity,” “impact,”
or “consequences” for its columns (or rows, respectively). It associates a recom-
mended level of risk, urgency, priority, or management action with each row-column
pair, i.e., with each cell. Table 4.1 shows an example of a standard 5× 5 risk matrix
developed by the Federal Highway Administration for assessing risks and setting
priorities in addressing issues as diverse as unexpected geotechnical problems at
bridge piers and the unwillingness of land owners to sell land near critical road
junctions.

The green, yellow, and red cells indicate low, medium, and high or urgent risk
levels based on ratings of probability (vertical axis) and impact (horizontal axis)
ranging from “VL” (very low) to “VH” (very high).

Table 4.2 shows a similar example of a 5 × 5 risk matrix from a 2007 Federal
Aviation Administration (FAA) Advisory Circular (AC) introducing the concept of
a safety management system for airport operators. The accompanying explanation
states that “hazards are ranked according to the severity and the likelihood of their
risk, which is illustrated by where they fall on the risk matrix. Hazards with high
risk receive higher priority for treatment and mitigation.” Many similar examples
can be found for regulatory agencies, regulated industries, and public- and private-
sector organizations. Training courses and software tools, such as MITRE’s Risk
Matrix tool for program risk management (MITRE, 1999–2007), help to automate
risk matrix creation, application, and documentation.

Table 4.1 Standard 5 × 5 risk matrix for the Federal Highway Administration

Probability\impact VL L M H VH

VH Green Yellow Red Red Red
H Green Yellow Red Red Red
M Green Green Yellow Red Red
L Green Green Yellow Red Red
VL Green Green Green Yellow Red

Source: Federal Highway Administration, 2006, http://international.fhwa.dot.gov/
riskassess/images/figure 12.htm.
For color version, please see the online version at www.springerlink.com
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Table 4.2 Example of a predictive risk matrix for the Federal Aviation Administration

       Severity

Likelihood

No Safety 
Effect

Minor Major Hazardous Catastrophic

Frequent

Probable

Remote

Extremely 
Remote

Extremely 
Improbable

HIGH RISK
MEDIUM RISK

LOW RISK

Source: Federal Aviation Administration, 2007, www.faa.gov/airports airtraffic/
airports/resources/advisory circulars/media/150-5200-37/150 5200 37.doc.
For color version, please see the online version at www.springerlink.com

As mentioned above, the use of such risk matrices to set priorities and guide
resource allocations has also been recommended in national and international stan-
dards. It has spread through many areas of applied risk management consulting and
practice, including enterprise risk management (ERM) and corporate governance
(partly under the influence of the Sarbane Oxley Act and international standards
such as AUS/NZ 4360:1999), highway construction project risk management (Table
4.1), airport safety (Table 4.2), homeland security, and risk assessment of potential
threats to office buildings, ranging from hurricanes to terrorist attacks (Renfroe and
Smith, 2007).

Risk matrices have been widely praised and adopted as simple, effective
approaches to risk management. They provide a clear framework for the systematic
review of individual risks and portfolios of risks; convenient documentation for the
rationale of risk rankings and priority setting; relatively simple-appearing inputs and
outputs, often with attractively colored grids; opportunities for many stakeholders to
participate in customizing category definitions and action levels; and opportunities
for consultants to train different parts of organizations on “risk culture” concepts
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at different levels of detail, from simply positioning different hazards within a pre-
defined matrix to helping thought leaders try to define risk categories and express
“risk appetite” preferences in the color-coding of the cells. As many risk matrix
practitioners and advocates have pointed out, constructing, using, and socializing
risk matrices within an organization requires no special expertise in quantitative
risk assessment methods or data analysis.

Yet despite these advantages and their wide acceptance and use, there has been
very little rigorous empirical or theoretical study of how well risk matrices suc-
ceed in actually leading to improved risk management decisions. Very little prior
technical literature specifically addresses the logical and mathematical limitations
of risk matrices (but see Cox et al., 2005). Risk matrices are different enough from
other topics (such as multivariate classification, clustering, and learning with cor-
rect classes provided as training data) to require separate investigation of their
properties, in part because “risk” is not a measured attribute, but is derived from
frequency and severity inputs through a priori specified formulas such as risk =
frequency∗severity. This chapter explores fundamental mathematical and logical
limitations of risk matrices as sources of information for risk management decision
making and priority setting.

A Normative Decision-Analytic Framework

Many decision makers and consultants believe that while risk matrices may be only
rough approximate tools for risk analysis, they are very useful for distinguishing
qualitatively between the most urgent and least urgent risks in many settings and
are certainly much better than nothing, e.g., than purely random decision mak-
ing. This section examines these beliefs from the standpoint of optimal statistical
decision making in a simple framework for which it is possible to obtain exact
results.

The simplest possible risk matrix is a 2× 2 table that results from dichotomizing
each of the two axes, referred to here as “probability” and “consequence.” (Many
other axes such as “frequency” and “severity” or “likelihood” and “magnitude” are
also used, but changing the names does not affect the logic.) Table 4.3 shows such
a matrix. Now, consider using it to categorize quantitative risks. For simplicity, sup-
pose that the two attributes, probability and consequence, have quantitative values
between 0 and 1, inclusive (where 0 = minimal or zero adverse consequence and
1 = maximum adverse consequence). Define the quantitative risk for any (proba-
bility, consequence) pair to be their product, risk = probability × consequence, as
advocated in many risk matrix methodology documents. The risk matrix designer
can choose where to draw the boundaries between Low and High values on each
axis. Let the boundary between Low and High consequence correspond to a numeri-
cal value x between 0 and 1; and let the boundary between Low and High probability
correspond to a value y between 0 and 1.
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Table 4.3 A 2 × 2 risk matrix

Consequence Probability Low High

High Medium High
Low Low Medium

For color version, please see the online version at www.
springerlink.com

To assess the performance of the risk matrix in supporting effective risk man-
agement decisions, consider the following specific decision problem. The decision
maker must choose which of two risks, A and B, to eliminate. (She can only afford
to eliminate one of them.) The quantitative values of probability and consequence
are a priori independently and uniformly distributed between 0 and 1 for each of
A and B. The only information that the decision maker has is knowledge of which
cell of the risk matrix each risk falls in. (Thus, the risk matrix provides statistical
information about the true but unknown quantitative risk; it is a lossy information
channel.) How well can the information provided by the risk matrix be used to iden-
tify the quantitatively greater risk? Equivalently, how well can the categorizations
of quantitative risks provided by the matrix be used to identify the decision that
maximizes expected utility (minimizes expected loss)?

The answer depends on how the risk matrix is designed and on the joint proba-
bility distribution of probability and consequence values. In general, the two risks
can be ranked with no error if one risk falls in the High (red) cell in the upper right
of Table 4.1 and the other falls in the Low (green) cell in the lower left (since every
risk in the High cell is quantitatively as well as qualitatively greater than any risk
in the Low cell). The probability of this event is 2∗(1 – x)(1 – y)xy. This symmetric
function is maximized by choosing x = y = 0.5. (Otherwise, if the two risks have
the same qualitative rating, then there is no way to choose among them based on
the risk matrix, and we can assume that there is a fifty-fifty chance of making the
right choice, i.e., a 50% error probability. If one of the two ratings is Medium and
the other is not, then the error probability from choosing the risk with the higher
rating is positive, since some points in the cell with the higher qualitative rating
have smaller quantitative risk values than some points in the cell with the lower
qualitative rating; see Lemma 1 in the next section.)

The probability that two risks can be unambiguously ranked (i.e., with zero error
probability) using the risk matrix with x = y = 0.5 is (1/2)∗(1/4) = 0.125 (i.e., it
is the probability that one of them falls in one cell of the “High/Low” diagonal and
the other falls in the other cell of that diagonal). The probability that the two risks
cannot be compared using the matrix with better than random accuracy (50% error
probability) is the probability that both risks receive the same qualitative rating; this
is 0.375= (1/4)∗[(1/2) + (1/4) + (1/2) + (1/4)] (considering the four cells clockwise,
starting with the upper left). The probability that the two risks can be compared
using the matrix with error probability greater than zero but less than 50% is 1 –
0.125 – 0.375 = 0.5.



106 4 Limitations of Risk Assessment Using Risk Matrices

Next, suppose that the risk matrix is constructed with x = y = 0.5 but that it is
applied in decision settings where the joint probability distribution of probability
and consequence is uncertain. Now, how well the matrix can identify which of two
risks is greater depends completely on the joint probability distribution of the (prob-
ability, consequence) pairs. For example, if the probability and consequence values
are uniformly distributed along the diagonal from (0, 0) to (1, 1), then there is a
50% probability that the two risks can be classified with zero error probability (if
one of them is in the High cell and the other is in the Low cell); otherwise, the error
probability is 50% (if both are in the same cell). Thus, under these very favorable
conditions of perfect positive correlation, the error probability is 0.5∗0.5 = 0.25.
Conversely, if the probability and consequence values are perfectly negatively cor-
related and are concentrated along the diagonal from (0, 1) to (1, 0), then all risks
will be assigned a risk rating of “Medium” (although their numerical values range
from 0 at the ends of the upper left to lower right diagonal to 0.25 in the middle),
and the risk matrix will provide no useful information for discriminating between
greater and lesser risks. Under these less favorable conditions, the decision maker
using the risk matrix can do no better than random decision making, and the error
probability increases to 50%.

Finally, if the probability and consequence values are negatively correlated and
concentrated along the line probability= 0.75 – consequence (for consequence val-
ues between 0 and 0.75), then all points on this line in the Medium cells (i.e., for
consequence values between 0 and 0.25 or between 0.5 and 0.75) have smaller quan-
titative risks than any points in the Low cell (i.e., for consequence values between
0.25 and 0.5). For example, the pair (0.1, 0.65) would be classified as a Medium
risk (although its quantitative risk value is 0.1∗0.65 = 0.065), while the pair (0.37,
0.38) would be classified as a Low risk, even though its quantitative risk value is
more than twice as great, 0.37∗0.38 ≈ 0.14. (More generally, such counterexamples
can be constructed by noting that each iso-risk contour probability∗consequence =
constant is convex, so that a straight line passing through the two points where such
a contour intersects the edges of a cell of the matrix will lie above the contour within
the cell but below it outside the cell.)

For this unfavorable joint distribution of (probability, consequence) pairs, the
information provided by the risk matrix is worse than useless (Cox and Popken,
2007) in the sense that whenever it discriminates between two risks (by labeling
one Medium and the other Low), it reverses the correct (quantitative) risk ranking
by assigning the higher qualitative risk category to the quantitatively smaller risk.
Thus, a decision maker who uses the risk matrix to make decisions would have a
lower expected utility in this case than one who ignores the risk matrix information
and makes decisions randomly, e.g., by tossing a fair coin. [Similar examples can be
constructed for the High risk cell in the upper right corner of Table 4.3. For example,
the (probability, consequence) pair (0.6, 0.6) is rated as High and the pair (0.48, 1)
is rated as Medium, even though the latter has a higher quantitative risk (0.48) than
the former (0.36).]

The question of how risk matrices ideally should be constructed to improve
risk management decisions has no simple answer, both because risk matrices are
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typically used as only one component in informing eventual risk management deci-
sions and also because their performance depends on the joint distribution of the two
attributes probability and consequence, as illustrated in the above examples. Since
risk matrices are commonly used when quantitative data are limited or unavailable,
this joint distribution is typically unknown or very uncertain. This knowledge gap
implies that the actual performance of a risk matrix, and whether it is helpful, no
better than random, or worse than useless, may be unknown. It also prevents the
easy application of traditional decision-analytic, statistical, artificial intelligence,
and engineering methods for similar problems (e.g., for optimal classification and
for discretization of multivariate relations) that require the joint distribution of the
attributes as an input.

However, the simplest case of a 2 × 2 risk matrix does suggest two important
related conclusions. First, it is not necessarily true that risk matrices provide quali-
tatively useful information for setting risk priorities and for identifying risks that are
high enough to worry about and risks that are low enough to be neglected or post-
poned. (As just discussed, the information they provide can be worse than useless
when probability and consequence are negatively correlated.) Second, the use of a
risk matrix to categorize risks is not always better than – or even as good as – purely
random decision making. Thus, the common assumption that risk matrices, although
imprecise, do some good in helping to focus attention on the most serious problems
and in screening out less serious problems is not necessarily justified. Although risk
matrices can indeed be very useful if the probability and consequence values are
positively correlated, they can be worse than useless when these values are nega-
tively correlated. Unfortunately, negative correlation may be common in practice,
e.g., when the risks of concern include a mix of low-probability, high-consequence
and high-probability, low-consequence events.

Although this section has been restricted to 2 × 2 risk matrices, the nature of the
counterexamples in which the optimal statistical decision is to ignore risk matrix
information (e.g., examples with joint distributions of probability-consequence pairs
concentrated on negatively sloped lines that intersect with convex iso-risk contours
where they cross cell boundaries) implies that simply changing the position or num-
ber of grid lines cannot eliminate the problem. A similar construction can be carried
out no matter how many cells a matrix has and no matter where the cell bound-
aries are located. Generalizing the decision problem to that of selecting a subset of
risks to remediate, from among a larger set of many risks (rather than only deciding
which of two risks is greater), also does not change the main conclusion. For some
joint distributions of probability and consequence values, normative decision theory
would require not using the qualitative risk rating information provided by a risk
matrix, as it reverses the correct (quantitative) risk ratings that would be obtained
using perfect information.

What can be salvaged? Several directions for advancing the research on risk
matrices appear promising. One is to consider applications in which there are suf-
ficient data to draw some inferences about the statistical distribution of (probabil-
ity, consequence) pairs. If data are sufficiently plentiful, then statistical and arti-
ficial intelligence tools such as classification trees (Chen et al., 2006), rough sets
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(Dreiseitl et al., 1999), and vector quantization (Lloyd et al., 2007) can potentially
be applied to help design risk matrices that give efficient or optimal (according to
various criteria) discrete approximations to the quantitative distribution of risks. In
such data-rich settings, it might be possible to use risk matrices when they are useful
(e.g., if probability and consequence are strongly positively correlated) and to avoid
them when they are not (e.g., if probability and consequence are strongly negatively
correlated).

A different approach is to consider normative properties or axioms that risk
matrix designers might ideally want their matrices to satisfy, and then to identify
whether such matrices exist (and, if so, whether they are unique). This normative
axiomatic approach, explored in the following section, can be used even when suf-
ficient data are not available to estimate the joint distribution of probability and
consequence values.

Logical Compatibility of Risk Matrices with Quantitative Risks

What does a risk matrix mean? One natural intuitive interpretation is that it pro-
vides a rough discrete (ordered categorical) approximation to a more detailed – but
not readily available – underlying quantitative relation. At least in principle, the
underlying relation is described by a risk formula such as one of the following:

risk = probability× consequence [or frequency× severity or likelihood

× impact or threat× (vulnerability× consequence), etc.].

(We will use “frequency” or “probability” and “severity” or “consequence” as
the default names of the two axes, and “risk” as the name for their product, but
the analysis applies to any similar mathematical structure, regardless of the names.)
For example, it might be supposed that the division of the probability axis into five
ordered qualitative categories (e.g., from very rare to almost certain) corresponds
roughly to a partitioning of a quantitative probability axis into the intervals [0, 0.2),
[0.2, 0.4), [04, 0.6), [0.6, 0.8), and [0.8, 1] (where square brackets indicate that
the corresponding endpoint is included in an interval and parentheses indicate that
it is not). Similarly, the five ordered categories for the severity axis might natu-
rally be interpreted as corresponding to numerical intervals, [0, 0.2), [0.2, 0.4), [04,
0.6), [0.6, 0.8), and [0.8, 1], on a quantitative value scale (e.g., a von Neumann-
Morgenstern utility scale) normalized to run from 0 to 1, where 0 = no adverse
impact, 1 = worst possible adverse outcome considered, and values between 0 and
1 represent adverse impacts or consequences with values intermediate between no
adverse impact and worst possible adverse impact.

However, such an intuitive interpretation of the risk matrix as an approximation
to an underlying quantitative model can only be sustained if the risk matrix sat-
isfies certain constraints. To be most useful, a risk matrix should, at a minimum,
discriminate reliably between very high and very low risks, so that it can be used as
an effective screening tool to focus risk management attention and resources. This
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requirement can be expressed more formally as the following principle of weak con-
sistency between the ordered categorization of risks provided by the matrix and the
ranking of risks by an underlying quantitative formula, such as one of those above.

Definition of Weak Consistency

A risk matrix with more than one “color” (level of risk priority) for its cells satis-
fies weak consistency with a quantitative risk interpretation if points in its top risk
category represent higher quantitative risks than points in its bottom category.

Here “quantitative risk” is defined as the product of a point’s coordinates when
the axes are interpreted quantitatively, e.g., frequency × severity. If weak consis-
tency holds, then all risks in the top qualitative category are quantitatively larger
than all risks in the lowest qualitative category. In this case, the risk matrix can
discriminate reliably between at least some risks, even though it does not require
quantifying the probability and consequence attributes. It may then serve as a use-
ful screening tool, which is one of the main practical uses of risk matrices. But if
weak consistency does not hold, then risks that are screened out as being relatively
small according to the matrix may, in fact, be larger than some of those that the
matrix classifies as top priority, thus leading to a misallocation of risk management
resources. It is therefore desirable to construct risk matrices that satisfy weak con-
sistency, if possible.

Weak consistency is not an arbitrary axiom. It is implied by the hypothesis that
some quantitative interpretation of the risk categories in a matrix exists, at least in
principle (i.e., that there is some underlying quantitative risk scale such that the con-
secutive ordinal risk categories of the matrix correspond, at least approximately, to
consecutive intervals on the quantitative scale), even if this scale is unknown, impre-
cise, or undefined in practice. If it does not hold, then a risk matrix does not mean
what many users might expect it to mean, i.e., that risks rated in the top category
(red) are larger than those rated in the bottom category (green). Thus, transparency
of interpretation provides another incentive for designing risk matrices to satisfy
weak consistency.

Discussion of Weak Consistency

More generally, a risk matrix partitions alternatives (typically representing differ-
ent threats, hazards, risk reduction or investment opportunities, risk management
actions, etc.) into distinct categories corresponding to the different priority levels or
“colors” of the matrix cells. Weak consistency implies that this partitioning assigns
the highest qualitative level (e.g., red) to the alternatives that actually do have higher
quantitative risk values than those assigned the lowest qualitative level (e.g., green).
If weak consistency holds, the qualitative classification given by the matrix is, in this
sense, at least roughly consistent with what a quantitative analysis would show. Red
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Table 4.4 A 5 × 5 matrix compatible with risk = probability × consequence

Prob\Consequence 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

0.8–1 Green Green Yellow Red Red
0.6–0.8 Green Green Yellow Yellow Red
0.4–0.6 Green Green Green Yellow Yellow
0.2–0.4 Green Green Green Green Green
0–0.2 Green Green Green Green Green

For color version, please see the online version at www.springerlink.com

cells do represent unambiguously higher risks than green cells, where we use “red”
to denote the highest urgency level (that of the upper rightmost cell, if the matrix
axes are oriented to represent increasing probability or frequency on one axis and
increasing severity of consequences on the other) and we use “green” to denote the
lowest urgency level (that of the lowest leftmost cell in such a table). This provides a
logical basis for screening risks into “larger” (red) and “smaller” (green) categories.

Table 4.4 shows an assignment of risk levels that satisfies weak consistency for
a 5 × 5 matrix in which the rows and columns are interpreted as equal partitions
of two numerical scales, each normalized to run from 0 to 1. Any point in a red
cell has a quantitative value (calculated as the product of the horizontal and vertical
coordinates) of at least 0.48, while no point in any green cell has a value greater
than 0.40.

Logical Implications of Weak Consistency

Weak consistency is more restrictive than might be expected. For example, neither
of the colorings in Tables 4.1 and 4.2 satisfies weak consistency (see Lemma 2).
Indeed, weak consistency implies some important constraints on possible colorings
of risk matrices.

Lemma 1. If a risk matrix satisfies weak consistency, then no red cell can share an
edge with a green cell.

Proof. Suppose that, to the contrary, a red cell and a green cell do share an edge.
The iso-risk contour (i.e., the locus of all frequency-severity combinations having
the same value of the product frequency × severity) passing through the midpoint
of the common edge is a curve with negative slope. (It is a segment of a rectangular
hyperbola, running from northwest to southeast.) Thus, it divides both cells into
regions above and below this contour curve. Points that lie above this contour in
the green cell have higher quantitative risk values than points lying below it in the
red cell, contradicting weak consistency. Therefore, in a risk matrix satisfying weak
consistency, red and green cells cannot share an edge. QED.

Comment: It is sufficient for this proof that iso-risk contours exist and have neg-
ative slopes. Thus, risk could be any smooth increasing function of frequency and
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severity (or whatever attributes the two axes of the matrix represent), not necessarily
their product. However, the product of the coordinates is often used in practice in
discussions of the concept of quantitative risk that accompany risk matrices, and we
will use it as the default definition for quantitative risk in numerical examples.

Lemma 2. If a risk matrix satisfies weak consistency and has at least two colors
(“green” in the lower left cell and “red” in the upper right cell, and if the axes are
oriented to show increasing frequency and severity), then no red cell can occur in
the left column or in the bottom row of the risk matrix.

Proof. Contours for all sufficiently small risk values (namely, values of all risk
contours below and to the left of the one passing through the upper right corner
of the lower leftmost cell) pass through all cells in the leftmost column and in the
bottom row of a risk matrix. If any of these cells is red, then all points below one
of these contours in the red cell will have lower quantitative risk levels than points
above it in the green lower leftmost cell of the table. This would contradict weak
consistency; thus, no such red cell can exist. QED.

An implication of Lemmas 1 and 2 is that any risk matrix that satisfies weak
consistency and that does not assign identical priorities to all cells must have at
least three colors: e.g., red for the upper rightmost cell; green for the lower leftmost
cell; and at least one other color (i.e., priority rating), which we will call yellow, to
separate the red and green cells.

The Betweenness Axiom: Motivation and Implications

The hypothesis that a risk matrix provides an approximate qualitative representa-
tion of underlying quantitative risks also implies that arbitrarily small increases in
frequency and severity should not create discontinuous jumps in risk categoriza-
tion from lowest priority (“green”) to top priority (“red”) without going through any
intermediate levels (“yellow”). (Notice that this condition is violated in Tables 4.1,
4.2, and 4.3 but holds in Table 4.4.) Indeed, if the successive risk categories in a
risk matrix represent (at least approximately) successive intervals on some under-
lying quantitative risk scale, then continuously increasing quantitative risk from 0
to 1 should cause the corresponding qualitative rating to pass through increasingly
severe categorical values. A weaker condition is that the qualitative risk should pass
through at least one intermediate value between green and red as the quantitative
risk increases continuously from 0 to 1. Otherwise, a risk matrix does not mean
what users might intuitively expect: that intermediate risk categories describe risks
between the highest (red) and lowest (green) ones. These considerations motivate
the following axiom.

Definition of betweenness. A risk matrix satisfies the axiom of betweenness if
every positively sloped line segment that lies in a green cell at its lower (left) end
and in a red cell at its upper (right) end passes through at least one intermediate
cell (meaning one that is neither green nor red) between them.
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Comment: Tables 4.1 and 4.2 both have red cells in row 2 and violate between-
ness, i.e., in each an arbitrarily small increase in frequency and severity can cause
a risk to be reclassified as red instead of green, without going through yellow. A
2 × 2 table such as Table 4.3 lacks sufficient resolution to allow betweenness, since
there are no cells between the green lower left cell and the red upper right cell. Thus,
betweenness can only be required for 3 × 3 and larger risk matrices.

Only some risk matrices satisfy both weak consistency and betweenness. Among
all 3× 3 matrices having more than one color, only one coloring of the cells satisfies
both axioms. Using our conventional coloring scheme (green for lowest risk, red for
highest risk, yellow for intermediate risk), this is the matrix with red in the upper
right cell, green throughout the left column and bottom row, and yellow in all other
cells.

Consistent Coloring

The final normative axiom considered in this chapter is motivated by the idea that
equal quantitative risks should ideally have the same qualitative risk rating (color).
Although this condition is impossible to achieve exactly in a discrete risk matrix,
for the reason shown in the proof of Lemma 1 (essentially, horizontal and vertical
grid lines cannot reproduce negatively sloped iso-risk contours), one rough approx-
imation might be to enforce it for at least the two most extreme risk categories, red
and green, while accepting some inconsistencies for intermediate colors. Accord-
ingly, we will consider a requirement that all cells that contain red contours (mean-
ing iso-risk contours that pass through other red cells) should themselves be red,
unless the low resolution of the risk matrix causes them also to contain green con-
tours. (A cell that contains both red and green contours has insufficient resolution
to separate top-priority and bottom-priority risks and will not be required a pri-
ori to have either color.) Conversely, cells that contain green contours but no red
ones should themselves be green. This motivates the following axiom of consistent
coloring.

Definition of Consistent Coloring. 1. A cell is red if it contains points with quan-
titative risks at least as high as those in other red cells (and does not contain points
with quantitative risk as small as those in any green cell). 2. A cell is colored green
if it contains some points with risks at least as small as those in other green cells
(and does not contain points with quantitative risks as high as those in any red cell).
3. A cell is colored an intermediate color (neither red nor green) only if either (a)
it lies between a red cell and a green cell or (b) it contains points with quantita-
tive risks higher than those in some red cells and also points with quantitative risks
lower than those in some green cells.

Intuitively, one might think of an iso-risk contour as being colored green if it
passes through one or more green cells but not through any red cells, as being
colored red if it passes through one or more red cells but not through any green
cells, and as being colored yellow (or some other intermediate color) if it passes
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through both red and green cells (or through neither red nor green cells). Then the
consistent coloring principle implies that any cell that contains green contours but
no red contours must itself be green, while any cell that contains red contours but
no green ones must itself be red. This is admittedly only one possibility for trying to
capture the intuitive idea that all sufficiently high risks should have the same color
(“red”) and all sufficiently low risks should have the same color (“green”). Other
normative axioms could perhaps be formulated, but this chapter will only use the
three already defined.

Implications of the Three Axioms

Theorem 1. In a risk matrix satisfying weak consistency, betweenness, and consis-
tent coloring: (a) All cells in the leftmost column and in the bottom row are green
(lowest-priority); and (b) all cells in the second column from the left and in the
second row from the bottom are non-red.

Proof. Appendix A.

Corollary. A 3 × 3 or a 4 × 4 risk matrix satisfying weak consistency, between-
ness, and consistent coloring (and having more than one color) has a unique color-
ing, as follows. The left column and bottom row are green, the top right cell (for a
3 × 3 matrix) or the four top right cells (for a 4 × 4 matrix) are red, and all other
cells are yellow.

Proof. Theorem 1 implies that the left column and bottom row are green. Assuming
that the upper right cell is red (since there is more than one color and this is the most
severe cell), consistent coloring implies that the two cells in a 4 × 4 matrix that
share edges with it must also be red and that the cell that both of these share edges
with (diagonally below and to the left of the upper right cell) must also be red.
Betweenness then implies that all other cells in a 3 × 3 or 4 × 4 matrix must be
yellow. QED.

This result shows that it is possible to construct 3 × 3 and 4 × 4 matrices
(although not 2 × 2 matrices) satisfying all three of the normative axioms proposed
in this section. There is only one way to do so, however: Any other colorings vio-
late one or more of the axioms. For larger matrices, there is greater flexibility, as
illustrated next.

Example: The Two Possible Colorings of a Standard
5 × 5 Risk Matrix

Table 4.5 shows two possible colorings of a 5 × 5 risk matrix that are consistent
with the axioms of weak consistency, betweenness, and consistent coloring and also
with a fully quantitative interpretation of the two axes, whose product gives a quan-
titative measure of risk (e.g., risk= frequency× severity, expected utility= success
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Table 4.5 The two possible colorings of a standard 5 × 5 risk matrix

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

0.8–1 0.18, 1 0.21, 0.86 Yellow Red Red
0.6–0.8 Green 0.24, 0.75 Yellow Yellow Red
0.4–0.6 Green 0.36, 0.5 0.42, 0.42 Yellow Yellow
0.2–0.4 Green Green 0.5, 0.36 0.75, 0.24 0.86, 0.21
0–0.2 Green Green Green Green 1, 0.18

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

0.8–1 0.18, 1 0.21, 0.86 Green Yellow Red
0.6–0.8 Green 0.24, 0.75 Green Yellow Yellow
0.4–0.6 Green 0.36, 0.5 0.42, 0.42 Green Green
0.2–0.4 Green Green 0.5, 0.36 0.75, 0.24 0.86, 0.21
0–0.2 Green Green Green Green 1, 0.18

For color version, please see the online version at www.springerlink.com

probability× utility of success, reduction in perceived risk= perceived reduction in
expected annual frequency of adverse events× perceived average severity per event,
and so forth). The axes are normalized to run from (0, 0) at the lower left corner of
the matrix to (1, 1) at the upper right corner, and the grid lines partition the axes into
equal quantitative intervals.

In these tables, a “green contour” (with numerical value of 0.18) extends from
the upper left cell to the lower right cell of the matrix (both of which are green, by
Theorem 1), passing through a total of nine cells. (The table shows pairs of numbers
in these cells that have 0.18 as their product. All cells containing this contour are
green, as are all cells below and to the left of it, by consistent coloring.) The upper
right cell is defined to be red (top risk priority). The cell to its left and the cell
below it each contain points with higher quantitative risks than those of points in this
top-priority cell’s lower left corner; therefore, they must also be red (by consistent
coloring) unless adjacent green cells make them yellow. The other yellow cells are
implied by betweenness.

Risk Matrices with Too Many Colors Give Spurious Resolution

The foregoing analysis implies that for a 5 × 5 risk matrix to be consistent with
a fully quantitative interpretation, as in Table 4.5, it must have exactly three col-
ors. This is violated in many practical applications. For example, Table 4.6 shows
a default risk matrix used in some commercial risk management software tools
designed to help support risk analysis standards and recommendations. Such a four-
color matrix is inconsistent with the assumption that the colors represent relative
sizes of underlying quantitative risks as in Table 4.5. For example, if the horizon-
tal and vertical axes of Table 4.6 are interpreted quantitatively as in Table 4.5, then



Risk Matrices with Too Many Colors Give Spurious Resolution 115

Table 4.6 Default 5 × 5 risk matrix used in a risk management software system

Likelihood\Consequence Insignificant Minor Moderate Major Catastrophic

Almost certain Blue Orange Red Red Red
Likely Light Green Blue Orange Red Red
Possible Light Green Blue Blue Orange Red
Unlikely Green Light Green Blue Blue Orange
Rare Green Green Light Green Light Green Blue

Source: Adapted from www.incom.com.au/risk.asp?ID=471.
For color version, please see the online version at www.springerlink.com

Table 4.6 assigns a higher rating to (0.81, 0.21) than to (0.79, 0.39), even though the
former has a product of 0.17 and the latter a product of 0.31.

Example: A 4 × 4 Matrix for Project Risk Analysis

The use of risk matrices for risk analysis of projects has been described as follows
by the California Division of the Federal Highway Administration:

Risk is computed as the probability of occurrence multiplied by the consequence of the
outcome. Probability is between 0 [minimal] and 1 [certain]. Consequence is expressed in
terms of dollars, features, or schedule. Multiplying probability of occurrence and conse-
quence [impact analysis] together gives a risk assessment value between 0 [no risk] and 1
[definite and catastrophic]. . . . Below is an example of the matrix used for such an evalua-
tion. The numbers are the order in which the risks are to be considered. Anything that is in
the box labeled “1” is the highest priority.

Likely Probable Improbable Impossible
0.7–1.0 0.4 to 0.7 0.0 to 0.4 0

Catastrophic 0.9 to 1.0 1 3 6
Critical 0.7 to 0.9 2 4 8
Marginal 0.4 to 0.7 5 7 10
Negligible 0 to 0.4 9 11 12

Source: California Department of Transportation, 2007, www.fhwa.dot.gov/cadiv/segb/views/
document/Sections/Section3/3 9 4.htm.

Table 4.7 presents this risk matrix with its horizontal and vertical axes exchanged
and oriented to be increasing, consistent with the conventions in previous examples.

The matrix has 13 priority levels as possible outputs, far greater than the three
levels needed for a quantitative risk interpretation consistent with our axioms. The
excess levels make it inconsistent with a coherent quantitative interpretation. For
example, it assigns a priority rating of 8 to a quantitative risk of 0.42 (from a prob-
ability = 0.65 of a loss of relative severity 0.65 on a scale from 0 = no loss to
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Table 4.7 Example risk matrix for airport projects

Probability
Negligible Marginal Critical Catastrophic

Consequence 0 to 0.4 0.4 to 0.7 0.7 to 0.9 0.9 to 1.0

Likely 0.7–1.0 9 5 2 1
Probable 0.4 to 0.7 11 8 4 3
Improbable 0.0 to 0.4 12 10 7 6
Impossible 0

1 = worst catastrophic loss considered), but it assigns a much higher priority rat-
ing of 3 to a lower quantitative risk of 0.37 (probability = 0.41, consequence =
0.91). (Recall that outputs levels in the cells are numbered so that 1 = top prior-
ity.) Similarly, a loss of 0.6 with probability 1 receives a lower priority level than a
quantitative loss of 0.8 with probability 0.5 (5 vs. 4), even though the former has a
quantitative risk greater than the latter (0.6 vs. 0.4). A priority level of 12 is assigned
to a probability 0.33 of consequence 0.33, but a priority level of only 6 is assigned
to a numerically identical risk consisting of a probability 0.11 of consequence 0.99.
Thus, as expected, the priority ratings implied by the 13 distinct priority levels in
this matrix do not successfully represent the relative sizes of these quantitative risks.
(That the qualitative ratings reverse the quantitative ratings in such examples can-
not be justified by risk aversion, since the consequence axis is explicitly assumed to
have been already transformed, scaled, or defined in such a way that the product of
the two coordinate axes, probability and consequence, is the measure of quantitative
risk that the qualitative matrix attempts to represent.)

The upper left cell of the risk matrix in Table 4.7 illustrates range compression:
Discrete categorization lumps together very dissimilar risks, such as an adverse con-
sequence of severity 0 occurring with probability 1 and an adverse consequence of
severity 0.39 occurring with probability 1.

The two possible 5 × 5 risk matrices in Table 4.5 have very limited resolu-
tion. They assign a green rating to all risks less than 0.24, and a red rating to all
risks greater than 0.64 (on a scale normalized to run from 0 to 1). Attempts to use
more colors or risk-rating levels to improve resolution, as in the preceding exam-
ple, necessarily create more ranking-reversal errors, in which quantitatively smaller
risks are assigned qualitatively higher rating levels than some quantitatively larger
risks.

As a rough measure of the degree to which these limitations might affect prac-
tical work, suppose that the cases being classified by a risk matrix have their two
components independently and uniformly distributed between 0 and 1. Then the
probability that a randomly selected pair of points can be correctly and unambigu-
ously rank-ordered by a matrix such as the one in Table 4.4 (i.e., the probability that
one point falls in a red cell and the other in a green cell) would be only (3/25 red
fraction)∗(17/25 green fraction)= 8.2%. Thus, over 90% of the time, the matrix will
not be able to rank-order the two points correctly with certainty.
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Risk Ratings Do Not Necessarily Support Good Resource
Allocation Decisions

How well can the information provided by a risk matrix guide risk management
resource allocation decisions? This section examines some limitations that hold even
if the risk matrix provides qualitative ratings that perfectly represent the underlying
quantitative risks.

Example: Priorities Based on Risk Matrices Violate
Translation Invariance

Suppose that a risk manager can afford to eliminate all but one of the following three
risks: (A) Lose $95 with certainty. (B) Lose $75 with certainty. (C) Lose $95 with
probability 50% (else lose nothing). Which one should she keep to minimize risk
(here defined as expected loss)? According to the priority ranking in Table 4.7 (and
interpreting the normalized consequence axis running from 0 to 1 as corresponding
dollar losses running from $0 to $100), the answer is C. (This has the lowest rating,
3, compared to ratings of 1 for A and 2 for B. Recall that in Table 4.7, lower numbers
in the cell indicate higher priority.)

Now suppose that all potential losses are reduced by $15, so that the new alter-
natives are as follows: (A′) Lose $80 with certainty. (B′) Lose $60 with certainty.
(C′) Lose $80 with probability 50% (else lose nothing). According to Table 4.7,
one should now choose to keep B′ (rating = 5, compared to ratings of 2 and
4 for A′ and B′, respectively). Thus, simply reducing the potential loss by the
same amount for all three risks changes the prescribed priority ordering among
them. This violates the principle of translation invariance for coherent risk mea-
sures (Artzner et al., 1999). Moreover, keeping B′ instead of C′ is inconsistent
with minimizing risk (defined as expected loss in this example). Thus, the risk
matrix in Table 4.7 does not necessarily support effective risk management decision
making.

Similarly in Table 4.6, if a risk manager can eliminate exactly two out of four
risks, corresponding the four lower left cells in the table, and if ties are broken
at random, then the probability that the risk in the second column and the bottom
row will be eliminated is 1/3 (since the risk in the higher-rated cell to its northeast
will certainly be selected, followed by any one of the remaining three tied risks).
Translating all consequences one cell to the right (by adding the same incremental
consequence value to each of them) increases the probability to 1/2 (since this alter-
native will now tie with one other for second place). But a second translation by one
step to the right reduces the selection probability to zero (since now the two blue
cells in the second row dominate the two cells in the first row). Finally, one more
rightward shift of the four alternatives increases the probability that this one will be
selected to 1/2 again.

In Table 4.5, if only one of four risks in the four upper left cells [e.g., with
respective (probability, consequence) values of (0.9, 0.1), (0.9, 0.3), (0.7, 0.1), and
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(0.7, 0.3)] can be selected to eliminate, and if ties are broken at random, then the
probability that the numerically greatest of these risks, namely, (0.9, 0.3), would
be selected for elimination is only 1/4. Translating all four consequences rightward
by the same amount, 0.4, would increase this selection probability to 1. Translating
them further rightward by an additional 0.2 would reduce the selection probabil-
ity to 1/3 (since the three red cells would then be tied). Thus, the probability of
assigning top priority to the numerically greatest risk does not satisfy translation
invariance. (This same pattern also occurs for successive rightward translations of
the four lower left cells in Table 4.1.)

Example: Priority Ranking Does Not Necessarily Support
Good Decisions

Setting: A risk manager has identified the following three risk reduction
opportunities:

• Act A reduces risk from 100 to 80. It costs $30.
• Act B reduces risk from 50 to 10. It costs $40.
• Act C reduces risk from 25 to 0. It costs $20.

(This example can also be constructed so that all three acts start from the same base
level of risk, say 50, and A, B, and C reduce risk by 20, 40, and 25, respectively.
Using different base levels allows for the possibility that the different options A, B,
and C being compared protect different subpopulations.) The risk manager’s goal is
to purchase the largest possible total risk reduction for the available budget.

To assist risk management decision making, suppose that a risk matrix is used to
categorize opportunities A, B, and C. Resources will then be allocated first to the
top-rated alternatives, working down the priority order provided by the risk matrix
until no further opportunities can be funded.

Problem: How should a risk matrix categorize A, B, and C to support the goal of
achieving the largest risk reduction from the allocation of limited funds?

Solution: The answer depends on the budget. For a budget of $40, the largest
feasible risk reduction is achieved by funding B, so the best priority order puts B
first. If the budget is $50, then funding A and C achieves the greatest risk reduction,
so B should be ranked last. At $60, the best investment is to fund B and C, so now
A should be ranked last. In short, no categorization or rank ordering of A, B, and C
optimizes resource allocation independent of the budget. No possible priority order
(or partial order, if some ratings are tied) is optimal for budgets of both $49 and $50.
This illustrates a limitation on the type of output information – ordered categorical
classification – provided to decision makers by risk matrices. In general, such infor-
mation is not sufficient to support the effective allocation of risk-reducing resources,
because solutions to such resource allocation optimization problems cannot gener-
ally be expressed as priority lists or categories that should be funded from the top
down until no further items can be afforded (Bertsimas and Nino-Mora, 1996).
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Thus, the input information going into a risk matrix (ordinal ratings of event
frequencies and severities) is simply not sufficient to optimize risk management
resource allocations, or even to avoid very poor allocations, as in the above exam-
ple. Calculating optimal risk management resource allocations requires quantitative
information beyond what a risk matrix provides, e.g., about budget constraints and
about interactions among countermeasures. In general, risk rankings calculated from
frequency and severity do not suffice to guide effective risk management resource
allocation decisions.

Categorization of Uncertain Consequences Is Inherently Subjective

To use a risk matrix, it is necessary to be able to categorize the alternatives being
compared in the cells of the matrix. However, decision analysis principles imply
that there is no objective way to categorize severity ratings for events with uncertain
consequences. Subjective risk attitudes play an essential (but seldom articulated)
role in categorizing severity for such events. Thus, the information in a risk matrix
represents a mixture of factual (probability and consequence) information about
the risk and (usually unstated) psychological information about the risk attitude of
the person or people performing the risk categorization. Since the risk attitudes of
the builders are seldom documented, it can be impossible to determine how conse-
quence severity classifications should be changed when someone else views or uses
the matrix.

Example: Severity Ratings Depend on Subjective Risk Attitudes

For a decision maker with an exponential utility function, the certainty-equivalent
(CE) value of a prospect with normally distributed consequences is CE(X)= E(X) –
k∗Var(X), where k is a parameter reflecting subjective risk aversion (k = 2 × coef-
ficient of risk aversion), E(X) is the mean of prospect X, Var(X) is its variance, and
CE(X) is its certainty-equivalent value (i.e., the deterministic value that is consid-
ered equivalent in value to the uncertain prospect) (Infanger, 2006, p. 208). Con-
sider three prospects, A, B, and C, with identical probabilities or frequencies and
normally distributed consequences (on some outcome scale) with respective means
of 1, 2, and 3 and respective variances of 0, 1, and 2. Their certainty equivalents are

CE(A) =1,

CE(B) =2− k,

CE(C) =3− 2 k.

For a risk-neutral decision maker (for whom k = 0), the ordering of the prospects
from largest to smallest certainty-equivalent value is therefore C > B > A. For a
risk-averse decision maker with k = 1, all three prospects have the same certainty-
equivalent value of 1. For a more risk-averse decision maker with k= 2, the ordering
of the prospects is A > B > C. Thus, the certainty equivalents of the severities of
the prospects are oppositely ordered by decision makers with different degrees of
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risk aversion. There is no objectively correct ordering of prospect severity certainty
equivalents independent of subjective attitudes toward risk. But risk matrices typi-
cally do not specify or record the risk attitudes of those who use them. Users with
different risk attitudes might have opposite orderings, as in this example. Neither is
objectively (independent of subjective risk attitude) more correct than the other. As
a result, there is no objective way to classify the relative severities of such prospects
with uncertain consequences.

Example: Pragmatic Limitations of Guidance from Standards

In practice, various standards provide written guidance on how to classify sever-
ities for use in risk matrices. For example, Table 4.8 shows the severity ratings
suggested in a 1998 General Accounting Office report on Combating Terrorism,
based on the widely cited Military Standard 882C (https://crc.army.mil/guidance/
system safety/882C.pdf). As that standard notes,

These hazard severity categories provide guidance to a wide variety of programs. However,
adaptation to a particular program is generally required to provide a mutual understanding
. . . as to the meaning of the terms used in the category definitions. The adaptation must
define what constitutes system loss, major or minor system or environmental damage, and
severe and minor injury and occupational illness.

Even with these caveats, the guidance in Table 4.8 does not resolve the type of
ambiguity in the previous example. For example, it offers no guidance on how to rate
a consequence that is zero with probability 90% but catastrophic otherwise (perhaps
depending on wind direction or crowding of a facility or of evacuation routes at the
time of a terrorist attack). Moreover, it introduces other ambiguities. For example,
how should one rate the severity of a consequence that consists of one death and one
severe injury compared to that of a consequence of 0 deaths but 50 severe injuries?
The answer is not obvious from Table 4.8.

The discrete qualitative categories provided in guidance such as Table 4.8 are also
inconsistent with the continuous quantitative nature of many physical hazards. For
example, should a condition that causes “negligible” environmental damage on each
occurrence (e.g., leaking 1 ounce of jet fuel per occurrence) but that causes a high
frequency of these small events (e.g., averaging 5 events per hour) truly have a lower

Table 4.8 Severity levels of undesired event consequences for combating terrorism

Severity level Characteristics

I Catastrophic Death, system loss, or severe environmental damage
II Critical Severe injury, severe occupational illness, major system or environmental

damage
III Marginal Minor injury, minor occupational illness, or minor system or environmental

damage
IV Negligible Less than minor injury, occupational illness, or less than minor system or

environmental damage

Source: GAO, 1998.
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severity rating than a second condition that causes more damage per occurrence
(e.g., leaking 10 pounds of jet fuel per occurrence) but that causes less frequent
occurrences (e.g., once per week)? (Both would be assigned the highest-possible
frequency rating by Military Standard 882C.) If so, then the risk matrix analysis
could give a lower priority to eliminating a threat of leaking 52.5 pounds per week
(= 5 ounces per hour× 24 hours/day× 7 days per week) than to eliminating a threat
of leaking only 10 pounds per week, due to the greater “severity” of 10 pounds
than 1 ounce and the equal “frequency” rating of common events (an example of
range compression). In such cases, the idea of rating severity independently from
frequency appears flawed.

Focusing on applying qualitative rating criteria, rather than on more quantitative
comparisons of risks, can create irrational risk management priorities. The following
example illustrates how the uncritical application of risk matrix guidance might
promote misperceptions and misrankings of the relative risks of different strategic
investment opportunities.

Example: Inappropriate Risk Ratings in Enterprise Risk
Management (ERM)

Suppose that a company must choose between the following two risky invest-
ment strategies for responding to major and pervasive uncertainties, such as climate
change risks:

• Strategy A has probability 0.001 of leading to a small growth rate that barely
meets shareholder expectations; otherwise (probability 99.9%), shareholder
value and growth will increase by a negligible amount (e.g., <0.00001%), disap-
pointing shareholders and failing to meet their expectations.

• Strategy B has probability 50% of causing rapid and sustained growth that greatly
exceeds growth shareholder expectations; otherwise (e.g., if the outcome of a
crucial R&D project is unsuccessful), shareholder value and growth will not grow
(growth rate = 0%).

Which strategy, A or B, better matches a responsible company’s preferences (or
“risk appetite”) for risky strategic investments?

Common sense might suggest that Strategy B is obviously better than Strategy
A, as it offers a 50% probability of greatly exceeding expectations instead of a 0.1%
probability of barely meeting them, with no significant difference in the downside
risk. However, the uncritical application of risk matrices suggested as examples for
enterprise risk management (ERM) systems could rate B as riskier than A. For
example, Australia published a risk management “guide for business and govern-
ment . . . [that] is consistent with the Australian and New Zealand Standard for Risk
Management, AS/NZS 4360:2004, which is widely used in the public and private
sectors to guide strategic, operational and other forms of risk management. The
Guide describes how the routine application of the Standard can be extended to
include the risks generated by climate change impacts” (Australian Government,
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2006). The illustrative risk matrix and category definitions for a commercial
business (Tables 10–12 of the Guide) could be used to assign a “Medium” risk prior-
ity to Strategy A but a “High” risk to Strategy B, making B appear to be less attrac-
tive than A. [For A, the likelihood of the adverse consequence, 99.9%, is classified as
“almost certain.” The consequence is described as “Growth would be achieved but it
would fail to meet expectations,” which is classified as a “minor” consequence. The
risk matrix example in Fig. 12 of the Guide categorizes the likelihood-consequence
pair (almost certain, minor consequence) as a “Medium” risk. For B, the likelihood
of the adverse consequence is classified as “likely,” the consequence is described
as “There would be no growth,” and this is classified as a “moderate” consequence.
The combination (likely, moderate consequence) is categorized as a “High” risk.]
Thus, a tight focus on implementing the discrete categorization criteria in the guid-
ance could distract attention from the fact that most shareholders would gladly trade
a negligible increase in adverse consequences for a large increase in the probability
of a much better outcome. In the terminology of multicriteria decision making, the
discrete categorization of consequences and probabilities inherent in risk matrices
can produce noncompensatory decision rules that do not reflect the risk trade-off
preferences of real decision makers and stakeholders.

Quantitative risk assessment was developed in part to help prevent the types of
paradoxes illustrated in these examples. Even if the quantities in the fuel-leaking
example were quite uncertain (e.g., an average of 1–10 ounces every few minutes
in the first case and 0–100 pounds every few months in the second), a rough quan-
titative calculation would reveal that the first threat is much more severe than the
second. Similarly, even a rough quantitative comparison of Strategies A and B in
the enterprise risk management example would show that B is much more attrac-
tive than A. By contrast, qualitative or semiquantitative risk assessments based on
ordered categories do not necessarily prevent rating reversals and misallocations of
resources, as in these examples – and may even unintentionally encourage them, by
directing the risk management effort and attention away from the key quantitative
comparisons involved and toward the (often inherently subjective) task of catego-
rizing frequency and severity components.

Discussion and Conclusions

This chapter has shown that quantitative and semiquantitative risk matrices have
limited ability to correctly reproduce the risk ratings implied by quantitative models,
especially if the two components of risk (e.g., frequency and severity) are negatively
correlated with each other. Moreover, effective risk management decisions cannot,
in general, be based on any scheme for mapping categorical (or ordered-categorical)
ratings of frequency and severity into recommended risk management decisions or
priorities. Instead, optimal resource allocation typically depends crucially on other
quantitative information, such as the costs of different countermeasures, the risk
reductions that they achieve, budget constraints, and possible interactions among
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risks or countermeasures (such as when fixing a leak protects against multiple sub-
sequent adverse events).

Categorizing severity may require inherently subjective judgments (e.g., reflect-
ing the rater’s personal degree of risk aversion, if severity is modeled as a random
variable) and/or arbitrary decisions about how far to aggregate multiple small and
frequent events into fewer and less frequent but more severe events. The need for
such judgments, and the potential for inconsistencies in how they are made by dif-
ferent people, implies that there may be no objectively correct way to fill out a risk
matrix.

Conversely, the meaning of a risk matrix may be far from transparent, despite its
simple appearance. In general, there is no unique way to interpret the comparisons
in a risk matrix that does not require explanations – seldom or never provided in
practice – about the risk attitude and subjective judgments used by those who con-
structed it. In particular, if some consequence severities are random variables with
sufficiently large variances, then there may be no guarantee that risks that receive
higher risk ratings in a risk matrix are actually greater than risks that receive lower
ratings.

In summary, the results and examples in this chapter show that risk matrices
do not necessarily support good (e.g., better-than-random) risk management deci-
sions and effective allocations of limited management attention and resources. Yet
the use of risk matrices appears to be too widespread (and convenient) to make
cessation of use an attractive option. Therefore, research is urgently needed to
better characterize conditions under which they are most likely to be helpful or
harmful in risk management decision making (e.g., when frequencies and severi-
ties are positively or negatively correlated, respectively) and that develops methods
for designing them to maximize potential decision benefits and limit potential harm
from using them. One promising research direction may be to focus on placing
the grid lines in a risk matrix to minimize the maximum loss from misclassified
risks.

Most of the difficulties identified in this chapter do not apply to quantitative risk
assessment (QRA) methods that treat frequency and severity as continuous, rather
than categorical, variables. However, even using continuous quantitative descrip-
tors of risk and of its components – namely, conditional probabilities of expo-
sures given actions, and of frequencies and severities of adverse consequences given
exposures – does not guarantee that QRA results will be sound, coherent, or useful.
The following chapter examines some limitations of quantitative risk concepts and
ways to overcome them.

Appendix A: Proof of Theorem 1

By definition, the lower left cell is green. Consistent coloring implies that any
contour must be green if it lies below and to the left of the one passing through
the upper right corner of this lower left cell [i.e., the contour through the points
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(0.04, 1), (0.2, 0.2), (1 0.04) in the numerical example in Table 4.5], since (a) it
passes through the lower left cell (which is green by definition) and (b) none of the
cells it passes through is red (by Lemma 2). By construction, such a green contour
passes through all cells in the leftmost column and in the bottom row.

Now, consider the cell directly above the lower left cell [i.e., the cell containing
the point (0.1, 0.3) in Table 4.5]. Suppose that, contrary to the claimed result, this
cell is not green. It cannot be red, by Lemma 2. For it to be an intermediate color
(not green), it must contain at least one red contour (by color consistency and the
fact that a green contour passes through it. This cell cannot be “between” red and
green cells, since it is on an edge of the matrix, so it cannot acquire an intermediate
color that way.). This red color cannot come from the cell above it in the leftmost
column (which is non-red, by Lemma 2), nor from any cell in the bottom row (again
by Lemma 2). Since contours are downward-sloping, the only remaining possibility
is that the cell to its right [the cell containing (0.3, 0.3) in Table 4.5] must be red.
But this would violate betweenness [at the point (0.2, 0.2) in Table 4.5]. Therefore,
the assumption that the cell directly above the lower left cell is not green leads to a
contradiction. Hence, it must be green. By a symmetrical argument, the cell directly
to the right of the lower left cell [the cell containing (0.3, 0.1) in Table 4.5] must
also be green.

Next, suppose that the third cell in the leftmost column [the one containing (0.1,
0.5) in Table 4.5] is not green. Since green contours pass through it (as it is in the
leftmost column), it can only be non-green if some red contour also passes through
it (by color consistency and the fact that it is an edge cell). This red contour could
not come from a red cell below it in the leftmost column, or in the bottom row
(by Lemma 2), nor from the cell directly to its southeast [containing (0.3, 0.3) in
Table 4.5] (since if that were red, it would violate Lemma 1 and betweenness for
the cells so far proved to be green). The only remaining possibility is that the cell
to its right [the one containing (0.3, 0.5) in Table 4.5] is red. But this would violate
betweenness [with the second cell in the leftmost column, the cell containing (0.1,
0.3) in Table 4.5, which we have proved above must be green]. Hence, the assump-
tion that the third cell in the leftmost column is not green implies a contradiction.
So, it must be green. Symmetrically, the third cell in the bottom row must be green.
This construction (showing that a cell directly above a green cell in the first column,
with only non-red cells to its southeast, must itself be green) can be iterated for all
remaining cells in the leftmost column, thus establishing that they all must be green;
symmetrically, all remaining cells in the bottom row must be green. This proves part
(a). Part (b) is then an immediate consequence of part (a) and Lemma 2. QED.

Comment: This proof does not depend on the number of rows or columns in the
table. Therefore, its conclusion (that the leftmost column and bottom row consist
entirely of green cells) holds for risk matrices of any size, under the stated conditions
of weak consistency, betweenness, and consistent coloring.



Chapter 5
Limitations of Quantitative Risk Assessment
Using Aggregate Exposure and Risk Models

Chapter 4 showed that risk matrices can assign small risks to high-risk categories
and larger risks to lower-risk categories, defeating the intent of the classification sys-
tem. Do other methods necessarily do better? This chapter shows that careless use of
quantitative risk assessment concepts can also lead to worse-than-useless risk com-
parisons and recommendations. This happens if causal drivers of risk (such as age-
specific failure rates, detailed exposures, or individual dose-response relations) are
ignored in favor of potentially meaningless aggregate quantities (such as “average
annual frequency,” “aggregate exposure,” or “population exposure-response ratio,”
respectively). A lesson from Chapter 4 was that risk matrices cannot correctly com-
pare some risks. The main lesson from this chapter is milder. Care must be taken
in using quantitative risk concepts to make sure that they correctly represent causal
relations among actions, exposures, and probable consequences. Otherwise, they
may give rise to meaningless or misleading numbers and predictions.

This chapter develops the following main ideas:

• “Frequencies” of adverse events are not well defined when the times between
them have any of a number of common probability distributions. When frequency
is not well defined, other, more sophisticated probability methods and models
(such as point-process descriptions of failure processes) should be used instead.

• “Exposure” cannot be summarized adequately by a single number if it has multi-
ple constituents that affect risk in different ways. Trying to use a single aggregate
exposure metric to summarize a list of different exposures may lead to nonsen-
sical, or worse-than-useless, results. This is no surprise: It simply states that one
cannot, in general, avoid the need to consider relevant details in quantifying risks.

• Causal relations among explanatory variables (such as exposures) and their prob-
able adverse consequences (such as illnesses or system failures) cannot, in gen-
eral, be estimated or described by aggregate statistical relations (e.g., regression
equations) linking observed levels of explanatory variables to observed levels of
effect variables. Causal relations are not the same as statistical relations.

• Risk scores or priority ratings are inconsistent with effective risk management
in many real-world applications with correlated uncertainties about the effects of
alternative risk management actions.

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 5, C© Springer Science+Business Media, LLC 2009
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The common theme in all these cases is that for quantitative risk assessment
(QRA) methods to work well, it is essential not to try to short-circuit the QRA
process by ignoring essential details. Random times between events may have to be
described by probability distributions, not single frequency numbers. Exposures to
complex mixtures may have to be described in terms of the different components
in the mixture, rather than by using a single aggregate number that ignores this
complexity. Causal relations may have to be quantified by considering how changing
some variables (e.g., inputs to a system) will change others (e.g., outputs from the
system; see Chapters 2 and 3), not simply by fitting aggregate statistical relations
to observed input-output pairs. Effective risk management often requires optimizing
decisions, and the results cannot be expressed by priority rankings.

In short, a certain amount of detailed work is usually required to quantify valid
causal relations between controllable inputs or decisions and resulting probable out-
puts or consequences. This work must be done to obtain sound and useful risk mod-
els. Attempting to build risk models without doing it – that is, without identifying,
quantifying, and validating these essential causal relations – is a recipe for produc-
ing meaningless results and, in some cases, worse-than-useless recommendations.
Chapters 6–11 address practical methods for developing the required causal models
from data. This chapter focuses on the limitations of methods that try to quantify
risk without doing the required detailed modeling.

What Is Frequency?

As explained in Chapter 2, frequency is one of the concepts often used to sim-
plify and explain risk, using visual aids such as F-N or “exceedance probability”
curves, showing magnitudes of loss (or other adverse consequences) on the horizon-
tal axis and the average annual frequency of exceeding each loss level on the vertical
axis. Students of risk analysis are often taught that “Risk is frequency times conse-
quence,” or, more generally, that risk is determined by the frequency and severity
(magnitude of loss) of adverse consequences. But is it? This section reviews the
concepts of frequency as the average annual occurrence rate and as the reciprocal of
mean time-to-failure (MTTF) or mean time between failures (MTBF) in a renewal
process. It points out that if two risks [represented as two (frequency, severity) pairs
for adverse consequences] have identical values for severity but different values of
frequency, then it is not necessarily true that the one with the smaller value of fre-
quency is preferable – and this is true no matter how frequency is defined.

In general, there is not necessarily an increasing relation between the recipro-
cal of the mean time until an event occurs, its long-run average occurrences per
year, and other criteria, such as the probability or expected number of times that
it will happen over a specific interval of interest, such as the design life of a sys-
tem. Risk depends on more than the frequency and severity of consequences. It
also depends on other information about the probability distribution for the time
of a risk event that can become lost in simple measures of event “frequency.” More
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flexible descriptions of risky processes, such as point-process models of hazardous
processes, can avoid these limitations.

An Example: Comparing Two Risks

Which of the following two risks is preferable?

• Risk A: frequency of risk event = 0.01 expected occurrences per year; severity
of adverse consequences per occurrence = 1 (on some consequence scale, e.g.,
1 occupational fatality per occurrence or 1 QALY lost per occurrence)

• Risk B: frequency of risk event= 0.02 expected occurrences per year; severity=
1 (the same as for A)

Many engineering risk analyses assume that such questions are meaningful and
that the correct answer for this example is that Risk A is (obviously) preferable
to Risk B, since A has a smaller frequency and the same adverse consequences
per occurrence as B. However, the truth is that descriptions of risk in terms of the
frequency and severity of adverse consequences, as in descriptions A and B above,
do not contain enough information to enable a clear decision.

Event Frequencies in Renewal Processes

For simplicity, consider a renewal process in which a specified risk event is of inter-
est (e.g., burn-out of a light bulb, loss of coolant accident at a nuclear power plant,
etc.). We will refer to the risk event generically as a failure. The process starts in a
good or operating state and eventually the specified risk event (failure) may occur.
We care about how long it takes for this to happen. It is usual to model the time until
failure occurs either as a random variable with some probability distribution func-
tion, or as an average annual occurrence frequency, measured in units of expected
failures per year.

To define frequency in this setting, we can envision the process as immediately
starting over from its original state as soon as a failure occurs. Thus, the light bulb is
imagined to be replaced immediately with a new one (having the same failure time
distribution as the original) as soon as it burns out, or the plant is promptly brought
back to its initial operating state as soon as a failure occurs, and so forth. While
such immediate renewals may not occur in physical reality, they define a conceptual
renewal process in which the long-run average number of failures (and renewals)
per unit time is the reciprocal of the mean time between failures (MTBF) (Ross,
1996, Proposition 3.3.1, p. 102). This provides one definition of the “frequency” of
failures.

It is common practice in engineering risk assessment to identify the frequencies
of different events, along with the severities of their consequences, and to prepare
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curves showing the cumulative average annual frequencies of events exceeding cer-
tain magnitudes. Such curves have often been suggested as useful for defining, dis-
playing, and comparing the risks of various systems (e.g., Kaplan and Garrick, 1981;
Thompson, 1988).

Example: Average Annual Frequency for Exponentially
Distributed Lifetimes

Problem: Suppose that the random times between successive renewals (i.e., fail-
ures) have an exponential distribution with mean μ = 66.67 years. (a) What is the
average annual frequency of the renewal event? (b) How many renewal failures are
expected to occur in 50 years, if that is the design life of the system? (c) What is the
probability of no failures within 50 years?

Solution: (a) The average annual frequency is 1/μ = 1/(66.67 years) = 0.015
expected occurrences per year. (b) The expected number of failures in 50 years is
0.015∗50 = 0.75 expected failures. (c) The probability of no failures in 50 years is
given by the survivor function: exp(–50/μ) = 0.47.

Exponentially distributed interoccurrence times imply that the actual (random)
number of failures in any interval [0, t] is Poisson distributed with mean (and vari-
ance) μt. The expected failure frequency is simply μ expected failures per unit
time. The Poisson distributions are stochastically increasing in μt (Ross, 1996,
Chapter 9); therefore, a decision maker who prefers fewer failures by any given
time should also prefer smaller frequencies.

The “Frequency” Concept for Nonexponential Failure Times

If interoccurrence times are not exponentially distributed, then the expected number
of failures per unit time depends on the length of the time window used to com-
pute the average. In general, different failure time distributions cannot be ranked
usefully for decision-making purposes according to the reciprocals of their means
(assuming that these exist); i.e., this definition of frequency is no longer adequate
for comparing processes.

Example: Average Annual Frequency for Uniformly
Distributed Lifetimes

Problem: Suppose that the random times between successive renewals (i.e., failures)
have a uniform distribution with mean μ= 50 years. (a) What is the average annual
frequency of the renewal event? (b) How many renewal events are expected to occur
in 50 years, if that is the design life of the system?
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Solution: (a) The average annual frequency is 1/μ= 1/(50 years)= 0.02 expected
occurrences per year. (b) The expected number of occurrences in the interval [0, t]
for 0 ≤ t ≤ 1 if the interoccurrence time is U[0, 1], denoted by M(t), may be found
from the renewal equation (stating that the expected number of occurrences in [0,
t], if the first occurrence is at time s, is 1 + M(t – s), i.e., it is 1 + expected number
after the first one):

M(t) =
∫

0≤s≤t

[1+ M(t − s)]ds = t + F(t),

where F(t)= ∫
0 ≤ s ≤ tM(t – s)ds=∫

0 ≤ s ≤ tM(s)ds. Using the initial condition F(0)=
0 yields F(t) = exp(t) – t – 1, whence M(t) = dF(t)/dt = exp(t) – 1 for any 0 ≤ t ≤ 1
(Ross, 1996, Exercise 3.7). Rescaling the time axis to run from 0 to 100 years gives
the solution:

M(t) = e0.01t − 1 for 0 ≤ t ≤ 100 years.

For t = 50, M(t) = exp(0.5) – 1 ≈ 0.65 occurrences in 50 years.

Conflicts Among Different Criteria for Comparing Failure
Time Distributions

Table 5.1 compares the average annual frequencies and the cumulative expected
numbers of failures at different time points (1 year, 50 years, and 100 years) for
three different processes. The first two have the exponential and uniform failure
time distributions, respectively, discussed in the two preceding examples. The third
has a discrete failure time distribution with equal probabilities of immediate failure
(probability 0.5) or no failure for 100 years (0.5 probability). (These two probability
masses may be positioned at some very small number greater than zero and another
number slightly greater than 100 to avoid ambiguities about the timing of failures
compared to the start and end of the system’s design life.) The expected number
of immediate failures, denoted by N, before the process exits to its long-duration

Table 5.1 Comparison of three processes with different failure time distributions

Exponential time
to failure, μ =
66.67 years

Uniform time to
failure, U[0, 100]
μ = 50 years

Bernoulli time to
failure, 0 or 100,
μ = 50 years

Average annual frequency 0.015 0.02 0.02
Expected accidents by 1 year 0.015 0.01 1
Expected accidents by 50 years 0.750 0.65 1
Expected accidents by 100 years 1.500 1.73 1
Probability of ≥1 accident in

50 years
0.530 0.50 0.50

Probability of≥1 accident in 1 year 0.015 0.01 0.50
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(100-year) failure-free state can be calculated from the following equation, which
says that there is a probability 0.5 of proceeding immediately to the 100-year failure-
free lifetime (0 immediate failures) and a complementary probability of 0.5 of suf-
fering an immediate failure and starting the process over:

N = 0.5∗0+ 0.5∗(1+ N ).

Solving reveals that N = 1, as shown in Table 5.1.
The entries in Table 5.1 illustrate that there is not necessarily an increasing rela-

tion between event frequencies and the expected number of failures. Processes with
lower frequencies of failure do not necessarily have smaller expected numbers of
failure (or smaller probabilities of failure) over any time interval of interest, such
as the design life of a system. For example, the exponential failure time process
with μ = 66.67 years has the smallest average annual frequency of failures (0.015
compared to 0.02) but has a higher expected number of failures by both 1 year and
50 years than the process with the uniformly distributed U[0, 100] failure time. For
longer design lives, however, the exponential failure time process eventually has
fewer expected failures than the uniform failure time process, and the Bernoulli
failure time process has the lowest expected number of failures (one).

More generally, there is not necessarily an increasing relation between the long-
run average frequency of a failure event and the expected number of failures over
the design life of a system. For example, a Bernoulli process that puts probability p
on immediate failure and probability (1 – p) on a greater number T of years prior to
failure has the following frequency (still defined as the reciprocal of the mean time
between failures):

frequency = 1/[p∗0+ (1− p)T ] = 1/[(1− p)T ].

The expected number of immediate failures is given by

N = (1− p)∗0+ p∗(1+ N ), implying that N = p/(1− p).

Since the frequency involves T and the formula for N depends only on p, we can
adjust them independently. For example, with T= 1,000 and p= 0.9, the frequency
would be 1/[(1 – 0.9)∗1,000]= 0.01 and the expected number of immediate failures
would be N = 0.9/0.1 = 9. Clearly, the lower frequency of 0.01 does not imply a
lower expected number of failures over the life of the system (or over any shorter
interval starting at t = 0) than the distributions in Table 5.1.

Do These Distinctions Really Matter?

It is natural to wonder whether the conflicts among different criteria illustrated
in Table 5.1 arise in real systems. The Bernoulli and uniform distributions of
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failure times are admittedly contrived examples, not common in real systems. The
Bernoulli distribution of failure times with point masses at times 0 and T > 0 is a
highly idealized simplification of more realistic “bathtub-shaped” hazard functions
for which high risks (hazard rates) of failure occur only early or late in the life of
a system. The uniform distribution over a finite interval is a simplification of “hill-
shaped” lifetime distributions (e.g., approximately normal or lognormal) in which
most of the risk of failure is concentrated in an interval around the mean failure
time, with failure risks sufficiently far from the mean being negligible by compari-
son. Would less idealized examples produce similar results? The answer is yes. We
show next that no satisfactory definition of “frequency” is possible for a very wide
variety of hazard functions, including realistic ones.

The most general concept of “frequency” that we will consider is that it provides
a formula or algorithm for assigning numbers (i.e., frequencies) to probability dis-
tributions for time-to-failure so that each probability distribution receives a unique
corresponding frequency number. [Probability distributions for failure times can be
represented in multiple mutually equivalent ways, such as by cumulative distribution
functions, decumulative distribution functions, survivor functions, hazard functions,
cumulative hazard functions, mean residual life functions, and so forth. These dif-
ferent representations contain the same information, and it is easy to convert among
them (Thompson, 1988; Cox, 2001). Hence, we will simply refer to “probability
distributions” or “lifetime distributions,” without caring about which specific rep-
resentation is used. A specific definition of frequency maps all of these mutually
equivalent representations in any case to the same single number, the frequency
of failure.] The reciprocal of mean time-to-failure (when it exists) is an example
of one possible definition of frequency. Expected-failures-per-unit time is another.
Still others might be devised. Table 5.1 suggests that different definitions rank at
least some probability distributions differently.

Suppose that a risk manager prefers one lifetime distribution to another if a sys-
tem is more likely to survive to complete its mission when its lifetime (or time-to-
failure) has the preferred distribution instead of the other one. Call a particular def-
inition of frequency satisfactory (for purposes of comparing lifetime distributions
and choosing among them) if it always assigns smaller numbers (i.e., lower “fre-
quencies” of failure) to preferred lifetime distributions. That is, a satisfactory def-
inition of frequency assigns numbers to lifetime distributions so that preferred dis-
tributions always receive smaller numbers than dispreferred distributions. We now
show that no definition of frequency that depends only on lifetime distributions (and
not on broader knowledge about the risk management decision problems that require
choosing between lifetime distributions) can possibly be satisfactory in general.

Theorem 1 No satisfactory definition of “frequency” exists for comparing or
choosing among lifetime distributions.

Proof The proof is by contradiction. Suppose that, to the contrary, a satisfactory
definition of “frequency” does exist. Consider two different lifetime distributions,
F and G, such that F is positive on the interval [4, 8] (else 0) and G is positive
on the interval [2, 10] (else 0). [It may aid intuition to think of F and G as being
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uniform (or Bernoulli, if the condition of being nonzero throughout the interval is
dropped) distributions with these endpoints, but no such restriction is required: F
and G may be quite arbitrary distributions within their respective intervals.] Now,
a decision maker who requires a system to survive for three time units to complete
its mission will always prefer F to G, since F guarantees success and G does not.
Thus, a satisfactory definition of frequency must assign F a lower frequency than G
in order to give this decision maker the comparative information needed to choose
correctly between them. Now consider a second decision maker who requires a sys-
tem to survive for nine time units to complete its mission. The second decision
maker will always prefer G to F, since G gives a higher success probability than F.
Thus, a satisfactory definition of frequency should assign G a lower frequency than
F in order to give this decision maker the information needed to choose correctly
between them. But this contradicts the requirement for the first case. Therefore, no
definition of frequency can exist that correctly orders F and G in both cases.

More generally, many common parametric families of lifetime distributions –
including the Weibull, gamma, log-gamma, extreme value, and lognormal families
that are often encountered in practical applications – contain members that cannot be
compared by stochastic dominance or hazard rate orderings (Ross, 1996). The hazard
functions for a pair of such noncomparable distributions intersect, so that one is pre-
ferred for some situations (e.g., for some specific required length of a mission) but not
for others. This is more often the rule than the exception. Only in very special cases can
the possibility of intersecting hazard functions be completely avoided. For example,
the family of exponential distributions – that is, of distributions with constant hazard
rates – is completely ordered by first-order stochastic dominance (ibid.), and for this
family, the reciprocal of mean time-to-failure is a satisfactory definition of frequency.

The limitation in Theorem 1 is also relevant to qualitative risk-rating systems and
risk matrices that require users to categorize “frequency” using ordered categorical
scales such as High, Medium, and Low. As shown in the proof, the correct ordi-
nal ranking of lifetime distributions to be used in choosing among them cannot, in
general, be determined solely from the lifetime distributions themselves.

Summary of Limitations of the “Frequency” Concept

This section has illustrated two main points. The first is that for a given severity of
adverse consequences, a lower frequency of a risk event is not necessarily preferable
to a higher frequency. The reason is that a frequency number does not address how
risk changes over time. Therefore, frequency-severity diagrams with axes such as
“severity” (horizontal axis) and “average annual frequency” (or, for the more com-
mon cumulative format, “average annual exceedance frequency”) (vertical axis) are
not necessarily adequate for summarizing and comparing event rates.

The second point is that there is, in general, no way to define frequency that is
satisfactory, in the sense that all risk managers who prefer longer to shorter survival
times (or longer to shorter times between failures, in the renewal process setting)
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should necessarily prefer distributions with lower frequencies of failure to distribu-
tions with higher frequencies of failure. No possible definition of “frequency” can
have this property in general, or even in the cases most often encountered in prac-
tice (e.g., for the families of Weibull or lognormal lifetime distributions). Intuitively,
the reason is that which of two distributions should be preferred depends in general
on system requirements (e.g., how long the system must function to accomplish its
mission) other than the lifetime distribution itself. Thus, in general, any definition
of frequency that is derived solely from the lifetime distribution – as all common
definitions are, including those illustrated in Table 5.1 – does not provide sufficient
information to determine which of two lifetime distributions is preferable. There are
exceptions, such as when all distributions being compared are exponential (or, more
generally, when all distributions belong to a one-parameter family totally ordered
by first-order stochastic dominance). But when more general and realistic models
are considered that allow for bathtub-shaped, hill-shaped, or other realistic hazard
functions, then no satisfactory definition of frequency is possible.

To experts in probability and quantitative risk modeling, these caveats will, of
course, not come as a surprise. Excellent texts and monographs (e.g., Thompson,
1988) have developed renewal process models and other point-process models for
reliability and risk analysis that fully address the timing issues that are missing
from simple frequency-severity descriptions. Probability theorists have rigorously
extended the intuitive idea of frequency as the mean number of events per unit
time to allow for time-varying intensities (Korolyook’s theorem), and have also
extended stochastic ordering relations for random variables (such as one decumu-
lative frequency-severity curve or F-N curve lying above/to the right of another) to
allow comparisons of renewal processes (Ross, op cit., p. 412). Thus, models and
tools for describing time-varying risks are available and the somewhat ambiguous
concept of frequency need not be used.

Nonetheless, many students are still introduced to quantitative risk assessment
with sayings such as “Risk is probability times consequence,” “Risk is proba-
bility and consequence,” “Risk is likelihood and severity of consequences,” or
“Risk is frequency times consequence.” Students who press for details – asking,
“Probability (or likelihood or frequency) over what time interval?” – may be told
about frequency-severity diagrams and average annual frequencies of consequences
exceeding given severity levels. The caveats in this section may then prove useful.

Limitations of Aggregate Exposure Metrics

This section turns from the quantification of risk using “frequency” to the quantifica-
tion of exposure using aggregate exposure metrics. These are numerical summaries
of exposures to complex mixtures that are based on sums or weighted averages of
component exposures. They are widely used in risk assessments of complex mix-
tures such as asbestos-associated dusts and fibers. Allowed exposure levels based on
total particle or fiber counts and estimated ambient concentrations of such mixtures
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may be used to make costly risk management decisions intended to protect human
health and to remediate hazardous environments. However, in general, aggregate
exposure information alone may be inherently unable to guide rational risk manage-
ment decisions when the components of the mixture differ significantly in potency
and when the percentage compositions of the mixture’s exposures differ signif-
icantly across locations. Under these conditions, which are common in practice,
aggregate exposure metrics may be “worse than useless,” meaning that risk man-
agement decisions based on them are less effective than decisions that ignore the
aggregate exposure information and select risk management actions at random.

The potential practical significance of these results is illustrated by a practi-
cal example where applying an aggregate unit risk factor (from the EPA’s IRIS
database) to aggregate exposure metrics produces average risk estimates about 25
times greater – and of uncertain predictive validity – compared to risk estimates
based on specific components of the mixture that have been hypothesized to pose
risks of human lung cancer and mesothelioma.

Use of Aggregate Exposure Metrics in Risk Assessment

Many regulatory risk assessments for known and suspected carcinogens use linear
nonthreshold exposure-response models of the form

excess risk caused by exposure = K × exposure,

where K is the potency of exposure, i.e., the increase in risk per unit of exposure, for an
adverse human health effect. Typical units for expressing excess risk are excess num-
bers of illnesses, deaths, QALYs lost, etc. per person-year in an exposed population.
In symbols, the linear model is r = Kx, where x = exposure and r is the excess risk
(e.g., in units of additional illnesses per person-year) when the exposure level is x.

When the exposure variable x represents a mixture of components with different
potencies, fitting the simple linear model to data consisting of (x, r) pairs raises
the possibility of aggregation errors in risk estimation, arising from the fact that
the same value of the exposure metric, x, can represent different mixtures having
different corresponding risks. It is important to consider how such aggregation errors
can affect the quality of risk management decisions.

Aggregate Exposure Information May Not Support
Improved Decisions

Suppose that there are n types or categories of particles in a mixture, having different
potencies. If exposure is summarized by some aggregate exposure metric, consist-
ing of a sum or weighted sum of the n components, then it may be impossible to
use this aggregate exposure information to approximate the risk management deci-
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sions that would be made if the components were known. In other words, aggregate
metrics summarizing exposures may not provide enough information to make good
decisions. Even the best risk management decision based on a sum or weighted
sum of components may be much less effective than the best decision based on dis-
aggregated information. Indeed, when used with simple intuitive risk management
decision rules such as “Clean up sites having sufficiently high exposures” (where
“sufficiently high” refers to an action threshold set by regulators or other decision
makers), aggregate exposure estimates may lead to decisions that are less effective
than simply choosing actions at random.

Example: How Aggregate Exposure Information Can Be Worse
Than Useless

Suppose that each of several geographic sites has its own mixture of two types of
hazardous dust particles in its air. Type 1 particles have relative potency 1; type 2
particles have relative potency 8; and thus the risk from exposure to a mixture (x1,
x2) of particles of types 1 and 2, respectively, at any site is r = x1 + 8x2. A risk
manager measures the sum of type 1 and type 2 particles at each site (their sum, x=
x1 + x2, is called “exposure”). She decides which sites to clean by giving priority
to those with the highest levels of exposure. We will call the aggregate exposure
measure, x, worse than useless if using it leads to worse decisions (e.g., less risk
removed) than ignoring it and randomly selecting which sites to clean up.

For example, suppose that the characteristics of four sites are as follows:

Table 5.2 Higher aggregate exposures have lower risks

Site x1 = exposure to
type 1 particles

x2 = exposure to
type 2 particles

Aggregate expo-
sure x = x1 + x2

Risk = x1 + 8x2

A 0 3 3 24
B 2 2 4 18
C 4 1 5 12
D 6 0 6 6

In this hypothetical example, higher aggregate exposures correspond to lower
risks. Thus, any decision rule of the form “Clean up a site if and only if its aggregate
exposure level is sufficiently high” or “Clean up the sites with the highest aggregate
exposure levels” will clean up lower-risk sites instead of higher-risk sites. Indeed,
if we can afford to clean only one site, then picking one at random results in an
expected risk removed of (24 + 18 + 12 + 6)/4= 15, but using aggregate exposure to
pick the site with the highest aggregate exposure (i.e., site D) to clean removes a risk
of only 6. Thus, using the aggregate exposure data to allocate resources using any
decision rule that assigns higher priority to sites with greater aggregate exposures is
“worse than useless.”
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In this example, the aggregate exposure information x could be used to manage
risks effectively by changing the decision rule to give priority to sites with the lowest
aggregate exposure levels. But such rules perform poorly if the risk function is r =
x1 + 0.08x2 instead of r = x1 + 8x2.

In general, as shown next, an effective decision rule using aggregate exposure
data can be designed only by using information about the joint distribution of disag-
gregate exposures [such as (x1, x2) instead of only x = x1 + x2 in the above exam-
ple]. But this takes away much of the point of using aggregate exposure data, such
as total particle counts, when more detailed disaggregated exposure data are judged
to be too expensive or otherwise impractical to obtain. Information about disaggre-
gated exposure data may be essential to making use of aggregate exposure data to
improve risk management decision making.

Theorem 2 (Aggregate exposure information alone is inadequate for risk man-
agement decision making.). From aggregate exposure information alone (if the
aggregation is nontrivial, meaning that different detailed exposure patterns creating
different risks may have the same value for aggregate exposure), it is impossible to
determine which of two sites has the higher risk.

Proof To avoid nontriviality, there must be at least two components of an exposure
vector x having different potencies (i.e., risk coefficients k1 and k2 with k1 �= k2);
thus, we will prove the result for the simplest case of two dimensions. Consider two
exposure components, x1 and x2, with exposure-related risks given by r = k1x1 +
k2x2 = kx, k1 �= k2. Here, k = (k1, k2) is a vector of component potencies. Let a be
a vector of positive aggregation weights (to avoid triviality), with x = ax = a1x1 +
a2x2 being the aggregate exposure metric for exposure vector x = (x1, x2). Consider
two sites with aggregate exposures x and y, respectively, where x > y. Then two
possible values of x that are consistent with x are x1 = (0, x/a2), corresponding to
risk level k2x/a2, and x2 = (x/a1, 0), corresponding to risk level k1x/a1. (Superscripts
here indicate different values of the x vector, not exponents.) Similarly, two possible
values of y that are consistent with y are y1 = (0, y/a2), corresponding to risk level
k2y/a2, and y2 = (x/a1, 0), corresponding to risk level k1y/a1. Now, choose k = (0,
1); then x1 has risk level x/a2 > 0 and x2 has risk level 0, while y1 has risk level y/a2

> 0 and y2 has risk level 0. Thus, the site with aggregate exposure x has a risk level
higher than that of the site with aggregate exposure y if the detailed exposure vectors
are x1 and y2, but this risk ranking is reversed if the detailed exposure vectors are x2

and y1. Since either choice is compatible with the aggregate exposure levels of x and
y, it is impossible to determine from these aggregate exposure levels alone which
site has the higher risk. QED.

Note: Although choosing k = (0, 1) simplifies the proof, a similar argument can
be constructed by choosing k= (1, 0), or any other k �= a. Geometrically, if the lines
kx = constant have a different slope from the lines ax = constant, as must be true
when k �= a, then there will always exist vectors x and y for which ax > ay but kx
< ky; this holds for any number of dimensions ≥ 2. By varying the choice of k ≥ 0,
the risk rankings of the extreme points x1, x2, y1, and y2 can be reversed according
to the pattern shown above for the special case k = (0, 1).
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More generally, let A denote a set of alternative possible actions (e.g., A= {clean,
do not clean}) and let d be a decision rule that maps available information for a site
where a decision must be made into a corresponding decision (i.e., a choice from A).
Thus, if the information available about a site is denoted by I, then d(I) ∈ A denotes
the action in A specified for that site by decision rule d. We may define information
I provided to decision rule d to be worse than useless if d(I) is dominated (in the
sense of first-order stochastic dominance) by a random choice rule that ignores I
and randomly selects an action from A.

Theorem 3 (Worse-than-useless decisions based on aggregate exposure metrics).
Let d(x) be a decision rule that determines which sites to clean up based on their
levels of aggregate exposures, x, where x is a sum or weighted sum (with nonnegative
weights) of the individual components. Assume that d(x) is a nondecreasing function
of x, with d(x) = 1 (clean up) for all sufficiently large values of x and d(x) = 0 (do
not clean up) for all smaller values of x. If the purpose of risk management is to
clean up sites that currently have the largest levels of risk, then d(x) is worse than
useless for some distributions of detailed exposures among sites.

Proof Let t be a threshold such that d(x)= 1 if x≥ t, else d(x)= 0. The hyperplane
ax= t separates sites that will be cleaned [d(x)= 1] from those that won’t [d(x)= 0]
according to decision rule d(x). In two dimensions, two extreme points on this sep-
arating hyperplane are x1 = (t/a1, 0) and x2 = (0, t/a2), corresponding to aggregate
exposure level t and to risk levels r1= k1t/a1 and r2= k2t/a2, respectively. (For mixture
exposures with more than two exposures, set all but two components equal to zero for
purposes of this proof.) Since (k1, k2) �= (a1, a2), one of r1 and r2 exceeds the other;
without loss of generality, number the components so that r2 > r1. Now construct the
two additional exposure vectors x4 = (r2/k1, 0) with risk level r2 and exposure level
(a1k2t)/(a2k1) and x3 = (0, r1/k2) with risk level r1 and exposure level (a2k1t)/(a1k2).
Since x1 and x2 both have aggregate exposure x= t, both will be cleaned by decision
rule d(x). If (a2k1)/(a1k2) > 1, then x3 will also be cleaned [since its aggregate expo-
sure (a2k1t)/(a1k2) will exceed t] and x4 will not [since its aggregate exposure level
(a1k2t)/(a2k1) will be less than t], even though the risk level for x4 exceeds the risk
level for x3. So, if the goal is to clean sites with the largest risk levels, then either it is a
mistake to clean sites with exposure vector x3 or it is a mistake not to clean sites with
exposure vector x4. On the other hand, if (a2k1)/(a1k2) < 1, then x3 will not be cleaned,
even though it has the same risk level, r1, as x1, which is cleaned. Again, it is either a
mistake (with respect to the goal of cleaning sites with the highest risks) to clean x1,
or a mistake not to clean x3. By nontriviality, (a2k1)/(a1k2) �= 1; thus, one of the two
preceding cases must hold. In either case, giving a sufficiently large majority of sites
(e.g., all of them) exposure vectors for which d(x) produces mistaken decisions makes
d(x) worse than useless. QED.

Multicollinearity and Aggregate Exposure Data

It is well known that strong correlations among the components of an exposure
vector can make it difficult or impossible to draw valid conclusions about the effects
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of the individual components on risk. They can also make it impossible to estimate
parameters from one set of studies with similar mixtures and apply them to predict
risk correctly for a very different mixture of the same components.

Example: Multicollinearity Can Prevent Effective Extrapolation
of Risk

The data in Table 5.3 are perfectly described by each of the following risk-vs.-
exposure regression models: (1) r = x = 0.1(x1 + x2); (2) r = 0.2x1; (3) r = 0.2x2.

If the aggregate exposure-response model r = Kx = K(x1 + x2) is fit to these
data, it will give a perfect fit (R2 = 1) with K = 0.1. However, if this same model,
r = 0.1x, is then applied to predict risks for a new set of exposure data with x1 =
0 and x2 having values of 2, 4, 6, and 8, it may give perfect predictions (if the
true exposure-response relation is r = 0.1x) or completely false predictions (e.g.,
if the true exposure-response relation is r = 0.2x1). There is no way to determine
in advance whether the model r = 0.1x has predictive validity for new situations,
although it clearly has descriptive validity for the data in Table 5.3.

Table 5.3 Multicollinearity can prevent valid risk predictions from aggregate exposure data

Site x1 = exposure to
type 1 particles

x2 = exposure to
type 2 particles

Aggregate expo-
sure x = x1 + x2

Risk r = 0.1x =
0.2x1= 0.2x2

A 1 1 2 0.2
B 2 2 4 0.4
C 3 3 6 0.6
D 4 4 8 0.8

A Practical Example: Different Predictions of Asbestos Risks at El
Dorado Hills, CA

The theoretical limitations of the aggregate exposure metrics for managing and pre-
dicting risks discussed so far can have important real-world consequences for risk
assessments of heterogeneous mixtures such as asbestos-associated dusts. Cox and
Popken (2007) examine alternative risk estimates for 27 dust exposure scenarios
studied by EPA Region IX in the El Dorado Hills region of California (Ladd, 2005).
The different assessments were based on alternative assumptions about which com-
ponents of the dust mixtures pose risks of lung cancer and mesothelioma, and their
potencies. The scenario-specific risks were not significantly different from zero for
most scenarios under one set of assumptions [the Berman and Crump, 2003 (BC)
assumption set], but were unacceptably high (e.g., >1E-6) in many cases under the
EPA assumption set (EPA).
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The EPA exposure index is concerned with the airborne concentration of
phase contrast microscopy equivalent (PCME) Fibers, defined as asbestos fibers
with dimensions length > 5 μm, 0.25 μm ≤ width ≤ 3 μm, and aspect ratio
(length/width) > 3 (similar to the definition for PCME fibers provided in ISO, 1995).
In contrast, the BC exposure index is concerned only with the airborne concentra-
tion of Long Protocol Structures, defined as asbestos fibers with dimensions length
> 10 μm, width < 0.40 μm. Let

• x1 = concentration (fibers/ml) of asbestos particles that are PCME Fibers, but
not Long Protocol Structures,

• x2 = concentration (fibers/ml) of asbestos particles that are both Long Protocol
Structures and PCME Fibers.

(Particles that are neither PCME Fibers nor Long Protocol Structures are not of
interest, since neither set of assumptions considers exposures to such particles to
pose a risk to human health. The other logical possibility, particles that are Long
Protocol Structures, but not PCME Fibers, can occur in principle for Long Protocol
Structures having width < 0.25 μm. However, in practice, these particles are seldom
detected. Although phase contrast light microscopy may not resolve fibers below 0.2
microns in width, these very thin fibers are counted in the Berman Crump model.
The asbestos exposures associated with epidemiological studies are typically indices
of exposure, rather than absolute counts, because of this limit of resolution of the
light microscope.)

The EPA exposure index (in units of fibers per milliliter) can then be written as

EEPA = x1+x2 (aggregate exposure metric with component weights a1 = a2 = 1),

while the BC exposure index is

EBC = x2 (a1 = 0, a2 = 1).

Both models assume that the risk of mortality due to asbestos exposure is of the
form

risk = unit risk factor× lifetime average daily exposure,

where lifetime average daily exposure reflects the proportion of a lifetime that an
individual is exposed to asbestos, as defined by the given exposure index. The unit
risk factor is computed as a function f(KL, KM) with inputs KL and KM being dose-
response coefficients for lung cancer and mesothelioma, respectively. This function
is based on a Life Table analysis that accounts for competing risks of mortality at
different ages (Berman and Crump, 2003, Appendix E). It assumes a linear function
for lung cancer mortality risk as a function of cumulative exposure, a cubic function
for mesothelioma mortality risk as a function of cumulative exposure (fibers per
milliliter × years), and a 10-year lag for both types of risk.
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The EPA assumptions provide much higher risk estimates than the BC assump-
tions: overall, the BC risks average only 4.1% of the EPA risks, based on simulations
detailed in Cox and Popken (2007). In other geographic regions, however, the BC
assumptions do not necessarily provide lower risks than the EPA’s. For example,
Berman (2006) provide risk computations for four asbestos studies, including El
Dorado Hills. Risks were computed using both the BC and EPA assumptions. In
each case except El Dorado Hills, the BC assumptions produced higher risks. The
computed risk ratio for El Dorado Hills using BC vs. EPA exposure indices was
0.04, very similar to the simulation-based results (0.041).

The very different risk estimates obtained using the BC and EPA exposure met-
rics reflect the fact that the particle size distribution at El Dorado Hills (unlike other
sites) contains very few Long Protocol Structures. This difference explains why the
BC assumptions give approximately 25-fold lower risk estimates (corresponding to
the estimated factor of 0.04) than the EPA risk estimates. Thus, in some practical
applications, as well as in mathematical theory, simply applying unit risk factors
estimated for one set of mixtures to a new, very different, mixture of the same com-
ponents may produce risk estimates that are not known to have predictive validity
and that may differ significantly from risk estimates based more specifically on the
new mixture. In such cases, it may be essential, as Theorems 2 and 3 suggest, to
use disaggregate exposure information and unit risk factors to obtain reliable risk
estimates for the new mixture.

Summary of Limitations of Risk Assessments Based on Aggregate
Exposure Metrics

Total exposures (e.g., particle or fiber counts, in our example) and other aggregate
exposure metrics may not provide any useful information about where risks are
highest and where remediation money should be spent when some of the compo-
nents included in the total are irrelevant to human health risk, or, more generally,
when different types of particles have very different potencies. Indeed, total expo-
sures (or other aggregate exposure metrics) may be “worse than useless” (meaning,
worse than random selection) for purposes of guiding effective risk management
decisions. The only way to determine whether this is the case is to use disaggregate
(component-specific) exposure and potency information. Doing so may reveal very
different risks from those estimated using aggregate exposure data and aggregate
potency estimates.

In practice, the differences among risk estimates obtained using different expo-
sure metrics suggest that the discrepancy between risk estimates based on aggregate
vs. disaggregate data can be quantitatively significant (e.g., an average of about
25-fold in the El Dorado Hills asbestos duct example). This phenomenon applies
well beyond the example context of counting particles or fibers. It holds in contexts
as diverse as risk assessment of mixtures of volatile organic compounds (VOCs)
and/or particulate matter in air or drinking water; mixtures of different hazardous
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substances at hazardous waste sites; and mixtures of bacteria in antimicrobial risk
assessments. For example, the following section criticizes use of the aggregate linear
exposure-response model

Risk = K × exposure

for the human health effects of animal antibiotics, in part because the exposure met-
rics consider only resistant bacteria in food servings, whereas most health effects are
caused by susceptible bacteria. This may be viewed as a special case of the frame-
work discussed in this section, with x = (resistant bacteria per serving, susceptible
bacteria per serving), a = (1, 0), and k proportional to (1, 1). The aggregate expo-
sure metric can drive risk management decisions that harm human health (e.g., by
reducing resistant bacteria but increasing susceptible bacteria, thus increasing aver-
age illness-days per capita-year and per serving ingested in exposed populations).
This is a consequence of Theorem 2, with available risk management actions rein-
terpreted as A = {ban animal antibiotics, do not ban animal antibiotics} and the
decision rule d(x) reinterpreted as: ban animal antibiotics if exposure to resistant
bacteria in foods is sufficiently high. Theorem 3 implies that such decision rules
can be worse than useless, resulting in increased rather than reduced harm to human
health, because of the risk-relevant information lost in passing from detailed expo-
sures to aggregate exposures.

Limitations of Aggregate Exposure-Response Models: An
Antimicrobial Risk Assessment Case Study

Bartholomew et al. (2005) propose a framework for antimicrobial risk assess-
ment that “is based on a linear relationship between the pounds of chicken con-
sumed containing fluoroquinolone-resistant Campylobacter and the annual num-
ber of fluoroquinolone-resistant cases of campylobacteriosis in the U.S. population
resulting from poultry.” This relationship can be expressed in symbols as

risk = K × exposure, (5.1)

where

• risk refers to the expected number of cases of resistant campylobacteriosis per
year in the United States caused by eating chicken (or, more generally, “resulting
from poultry”),

• exposure refers to the pounds of chicken consumed containing fluoroquinolone-
resistant Campylobacter, and

• K is interpreted by Bartholomew et al. as “the population-based dose-response
parameter linking the two.”
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This framework provides an instructive example of key conceptual errors and
pitfalls that can lead QRA practitioners to produce meaningless numbers and incor-
rect inferences if they attempt to use aggregate statistical relations and ratios instead
of developing valid causal models (see Chapters 6 and 7). This section uses Equa-
tion (5.1) and its application to foodborne risks by the FDA Center for Veterinary
Medicine (CVM), described by Bartholomew et al., as a case study of important
errors that practitioners of QRA should avoid.

For practical applications, the authors state that “The linear relationship of the
CVM risk assessment allows one to predict the effect of reduction in the prevalence
of resistance among Campylobacter-contaminated chicken carcasses on the number
of human cases of resistant campylobacteriosis.” They assert that “Confirmation of
the algebraically derived linear relationship as a surrogate for a complete farm-to-
fork model came from the Danish researchers, Rosenquist et al.” and conclude that
“From this relationship, it is clear that regulating the prevalence of resistance in
Campylobacter in poultry will control the prevalence of resistant human cases from
poultry. Furthermore, CVM believes that this same basic linear relationship may be
sufficiently general to model other pathogens responsible for food-borne illness.”

However, as illustrated next, the framework (5.1) incorrectly treats a descriptive
statistical equation as if it were a predictive causal one. Hence, it is not a valid frame-
work for supporting risk management decision making that is intended to cause
desired outcomes. In particular, while it is certainly possible to fit simple linear
regression models such as (5.1) to (exposure, risk) data points, doing so does not in
general produce a relationship that correctly predicts how changes in exposure will
change risk – the question of greatest interest for risk management.

Statistical vs. Causal Relations

The following thought experiments reveal several potential limitations of the linear
model (5.1) for predicting how changes in exposure will change risk.

Example: Significant Positive K for Statistically Independent Risk
and Exposure

First, consider the performance of model (5.1) under the null hypothesis that the
exposure and risk variables are unrelated. To be concrete, suppose we generate 1,000
pairs of statistically independent values for exposure and risk, each value being sam-
pled independently from the unit uniform distribution U[0, 1]. Then fitting the pro-
posed linear model risk = K × exposure to these data will produce a highly sta-
tistically “significant” positive K (with a value of K greater than 0.7), even though,
by construction, the risk and exposure values are statistically independent. This is
because the linear model is misspecified when the null hypothesis is true. The cor-
rect statistical regression relation is: E(risk | exposure) = 0.5 + 0 × exposure. But
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since model (5.1) has no intercept term, it is unable to provide a correct fit, instead
indicating a significant positive relation where none exists. More generally, with-
out postulating anything about the statistical dependence (or lack of it) between the
exposure and risk variables, it is clear that model (5.1) implies a positive K whenever
exposure and risk are positive random variables – even if their values are actually
unrelated or are negatively related. [As a practical matter, real-world data often do
exhibit a significant negative relationship between exposure to chicken and risk of
campylobacteriosis (e.g., Friedman et al., 2000; Table 1 of Effler et al., 2001; Table
2 of Phillips et al., 2004). Model (5.1) is intrinsically unable to describe such rela-
tionships.]

Example: A Positive K Does Not Imply That Risk Increases
with Exposure

The most actionable, policy-relevant implication of model (5.1) is that the value
of K shows how much a unit reduction in exposure will reduce risk. That is the
interpretation that Bartholomew et al. suggest by stating that “From this relationship,
it is clear that regulating the prevalence of resistance in Campylobacter in poultry
will control the prevalence of resistant human cases from poultry.” But this causal
interpretation of a merely statistical relationship is unjustified. Recall from the first
example in Chapter 3 that there is no necessary relation between the value of K in
a statistical model (e.g., 0.1 in the example) and the change in risk that would be
caused by changing exposure. The statistical relation between exposure and risk in
a population can be positive (e.g., risk= 0.1× exposure) even if the causal effect of
exposure is to reduce risk in the population (e.g., by shifting men from a higher-risk
unexposed group to a lower-risk exposed group).

In statistical terminology, model (5.1) is a reduced-form equation, not a struc-
tural (i.e., causal) equation (Shipley, 2000). The belief that “The linear relationship
of the CVM risk assessment allows one to predict the effect of reduction in the
prevalence of resistance among Campylobacter-contaminated chicken carcasses on
the number of human cases of resistant campylobacteriosis” reflects this confusion
between structural and reduced-form models. In general, fitting a simple reduced-
form model to data does not allow one to correctly predict the effects of changing
the independent variables on resulting changes in the dependent variable (Shipley,
2000; Freedman, 2004).

Example: Statistical Relations Do Not Predict Effects of Changes

To show why Equation (5.1) does not allow one to predict the effects on risk of
changing exposure, consider the following system of structural equations:

risk = age − exposure, (5.1a)
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exposure = (1/3)× age. (5.1b)

These are explicitly intended as structural equations representing causal rela-
tions. Risk increases in proportion to increases in age, decreases in proportion to
exposure, and exposure increases in proportion to age. Rewriting (5.1b) as the (non-
causal, although algebraically equivalent) equation age = 3 × exposure and substi-
tuting it into (5.a) gives the reduced-form model

risk = (3× exposure)− exposure = 2× exposure. (5.1c)

The reduced-form model (5.1c) is of the form risk = K × exposure, with K =
2. However, this is only a statistical relation. It would be perfectly valid for statis-
tical inference applications such as predicting the magnitude of risk in a population
from measured values of exposure, but it is not valid for predicting how a change in
exposure will affect risk – namely, in this case, by decreasing it in direct proportion
to the increase in exposure, as shown in Equation (5.1a). In short, while the statis-
tical value of K based on measured historical levels of risk and exposure would be
(risk/exposure)= 2, the corresponding causal value should be (Δrisk/Δexposure)=
–1. In this sense, the descriptive statistical ratio K = 2 has no relevance for
the predictive causal ratio (Δrisk/Δexposure) = –1. They do not even have the
sane sign.

These examples illustrate the crucial distinction between aggregate statistical
models for a population and causal models for predicting how changes in exposures
will change risks in the population. In general, the interpretation of the parameter K
in the reduced-form statistical equation (5.1a) as “a population-based dose-response
parameter” is not valid. Rather, K is simply a ratio of two historical aggregate quan-
tities, interpreted by Bartholomew et al. as exposure and risk, but this ratio does not
necessarily reflect (or predict) anything about how future changes in exposure (e.g.,
due to a ban on enrofloxacin) will affect future values of risk. Yet this is what risk
managers need to know.

Prevalence vs. Microbial Load as Exposure Metrics

Equation (5.1) uses the prevalence of fluoroquinolone-resistant Campylobacter
(“pounds of chicken consumed containing fluoroquinolone-resistant Campylobac-
ter”) as a surrogate for exposure. But prevalence (i.e., whether contamination is
present) is, in general, not an adequate exposure surrogate for predicting risks that
depend on how much contamination is present. To take an extreme counterexample
for simplicity, multiplying all microbial loads of Campylobacter on chicken serv-
ings by 1,000,000 would presumably greatly increase risk but would leave preva-
lence completely unchanged.

Bartholomew et al. state that “Confirmation of the algebraically derived lin-
ear relationship as a surrogate for a complete farm-to-fork model came from the
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Danish researchers, Rosenquist et al.” However, a fuller reading reveals that the
Rosenquist et al. paper refutes, rather than confirms, the assumption of a linear
relationship between relevant exposures and risk. Rosenquist et al. (and common
sense) predict that if one doubles the proportion of contaminated birds while leav-
ing microbial load per bird constant, then one would double the expected num-
ber of illnesses caused by eating contaminated chicken servings. Bartholomew et
al. cite and quote this result without the italicized caveat. But Rosenquist et al.
also show that if microbial load per bird changes, then risk is no longer propor-
tional to prevalence, and prevalence does not predict risk accurately. For exam-
ple, they state that “The incidence of campylobacteriosis related to consumption
of chicken was reduced significantly by reducing the number of Campylobacter on
the carcasses, even though such a reduction had almost no influence on the frac-
tion of positive chickens.” Rosenquist et al. also note that this finding “demon-
strates the need for quantitative detection methods” (e.g., estimating changes in
microbial loads) and that “qualitative” surrogates (e.g., prevalence) are not ade-
quate for predicting risk when microbial loads change. It is this conclusion that
is relevant to a ban on enrofloxacin that affects microbial loads, for example, by
increasing airsacculitis-positive flocks (Cox and Popken, 2006b; Russell, 2003).
It is a conclusion widely accepted in the field of microbial risk assessment. For
example, WHO (2002) noted in its Salmonella risk assessment that “Unlike a
change in prevalence, a change in concentration of the pathogen does not nec-
essarily have a linear relationship with the risk outcome.” It gives an example in
which an intervention that reduces risk by 62% has no effect on the prevalence of
contamination.

Attribution vs. Causation

The framework proposed by Bartholomew et al. estimates K by taking the ratio of
two estimated quantities, as in the following formula:

Kres = (the number of fluoroquinolone-resistant campylobacteriosis cases

attributable to poultry)/(the pounds of fluoroquinolone-resistant

Campylobacter-contaminated poultry produced).

In this equation, the phrase “attributable to poultry” plays a special role. It reflects
a policy decision about how many cases to blame on eating chicken, which may
be unrelated to the number of cases caused by eating chicken. Modelers or policy
makers may use a wide range of values for “attributable” numbers with varying
rationales, depending on their interests. For example, Bartholomew et al. state that
“The estimate of the proportion of all cases due to chicken (57.4%) was taken from
two case-control studies.” But neither study quantified the proportion of all cases
“due to” (i.e., caused by eating) chicken, or provided data from which this pro-
portion could be calculated. Rather, they provided estimated population attributable
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fractions (PAFs) for special populations (e.g., young male college students). PAFs
are epidemiological measures based on statistical associations (uncorrected for key
confounders) having no necessary relation to causality. For example, PAFs may be
large and positive even for protective factors, for reasons similar to those illustrated
above.

Both studies selected by Bartholomew et al. used data from the early 1980s,
prior to a historical reduction in Campylobacter loads for broilers in the United
States of perhaps 90% or more (e.g., Stern and Robach, 2003). Thus, if the PAFs
in these studies were about 57.4% then, they might be closer to 6% now. More-
over, multiple recent studies show that the runoff of human-use antibiotics (includ-
ing fluoroquinolones) in sewage and water is probably a more important source
of resistant Campylobacter than was recognized in the early 1980s (e.g., Renew
and Huang, 2004; Miao et al., 2004). This presumably should reduce the frac-
tion of cases attributed to poultry (since runoff was ignored in the early studies).
Bartholomew et al.’s decision instead to attribute the contributions to risk from
these and all other unidentified sources to enrofloxacin used in poultry, even though
poultry-use-specific antibiotics explicitly do not make any detectable contribution
to runoff (ibid.), amounts to a policy decision to allocate cases to a source targeted
for regulatory action, even if other unrelated sources actually caused the cases in
question.

Similarly, larger and more recent case-control studies that show much smaller or
zero (or negative) PAFs for campylobacteriosis and chicken (e.g., Friedman et al.,
2004, which reports PAF values of less than 25% for restaurant-prepared chicken,
similar to other restaurant-prepared meats, based on data that also show a negative
PAF for home-prepared chicken) were passed over in favor of the two smaller, ear-
lier studies that gave much higher PAF estimates. Finally, some of the risk attribution
calculations cited by Bartholomew et al. appear to be based on nonstandard formulas
that do not necessarily give correct results. For example, the quantity “probability
that a resistant case of campylobacteriosis is attributable to chicken” was estimated
as the product of “probability a case of campylobacteriosis is attributable to chicken”
× “probability that a case is resistant.” But this formula is incorrect in general.
For example, it implies that if all campylobacteriosis cases are caused by chicken
(so that “probability a case of campylobacteriosis is attributable to chicken” =
“probability that a resistant case of campylobacteriosis is attributable to chicken” =
100%) and if 10% of cases are resistant (so that “probability that a case is resistant”
= 10%), then 100% = 100% × 10%, which is incorrect. In short, the number of
cases (both resistant and total) that are deemed to be “attributable to poultry” in
the framework presented by Bartholomew et al. appears not to have been derived
from data or from generally valid scientific formulas in any clear, objective way
that shows that the resulting numbers of cases are actually caused by chicken con-
sumption. Rather, they appear to reflect a policy decision about how to allocate
illness cases to sources in the context of preparing to regulate an animal antibi-
otic that has not been shown in this risk assessment to cause any adverse effects in
humans.
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Human Harm from Resistant vs. Susceptible Illnesses

The risk management framework (5.1) proposes to quantify risk without consider-
ing either the frequency or the magnitude of adverse consequences – traditionally
considered the sine qua non components of quantitative risk assessment. Indeed,
Bartholomew et al. define risk as “the expected number of cases of resistant campy-
lobacteriosis per year in the United States caused by eating chicken,” which makes
no reference to any incremental harm caused by resistance. Bartholomew et al.
state that “CVM assumed that susceptible and resistant Campylobacter were equally
likely to survive and equally likely to cause illness. Given no survival or virulence
differential between susceptible and resistant Campylobacter, a similar linear rela-
tionship also holds between the . . . number of cases with Campylobacter illnesses,
susceptible and resistant combined, and the total number of pounds of chicken V
contaminated with Campylobacter produced in a year.” Yet, if susceptible and resis-
tant Campylobacter are approximately equally virulent and pose similar or identical
human health risks, then a ban on enrofloxacin that increases microbial loads of
susceptible Campylobacter while reducing the microbial loads of resistant Campy-
lobacter could presumably be either good or bad for human health, depending on
which effect is larger.

In light of these possibilities, one key issue is whether resistance causes harm
that would not have occurred without it. A current clinical perspective suggests that
the answer is usually probably not (Ang and Nacham, 2003). But this question is not
addressed at all in the linear modeling framework (5.1). Therefore, the framework
does not quantify human health risk in the usual sense of quantifying changes in the
frequency or severity of adverse human health effects caused by exposures. Without
such information, rational risk management decisions cannot be made based on their
probable human health consequences.

A second key question is whether banning enrofloxacin is likely to create more
or less human health harm than it prevents. To answer this question, it is helpful to
generalize model (5.1) as follows:

risk = K1 × (exposure to susceptible campylobacter per chicken serving)

+ K2 × (exposure to resistant campylobacter per chicken serving)
(5.2)

and to estimate K1 and K2 as the average number of illness-days (or QALYs lost,
etc.) per “susceptible” case and per “resistant” case, respectively (if this dichotomy
is preserved). The exposure variables now refer to microbial loads [measured in
colony forming units (CFUs) ingested per serving] rather than to prevalence. If the
effects of an enrofloxacin ban are (a) to eliminate all resistant Campylobacter CFUs,
replacing them with susceptible CFUs, and (b) to increase by 1% the proportion of
airsacculitis-positive flocks (having an average risk-per-serving estimated as at least
10 times greater than for airsacculitis-negative flocks; see Cox and Popken, 2005,
and Russell, 2003), then the relative number of cases per year from chicken will
increase by a factor of 0.99 × 1 + 0.01 × 10 = 1.09, i.e., by 9%. The number of
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illness-days per case will decrease if K1 < K2. Although clinical experience sug-
gests that K1 and K2 may be nearly identical (Ang and Nacham, 2003), if a conser-
vative assumption is made instead that (K1/K2)= 0.75, then it can be calculated that
a ban on enrofloxacin is expected to cause hundreds or thousands of illness-days
(from increased susceptible cases) for each illness-day that it might prevent. (See
Cox and Popken, 2005, for details, data, and sensitivity analyses.) [Since a straight
line from the origin to a point on any convex dose-response curve provides a linear
approximation that overestimates the risk reduction due to reductions in exposure
and underestimates the increase in risk due to an increase in exposure, this conclu-
sion from the linear model (5.2) remains valid if the true but unknown dose-response
relation is nonlinear and convex.]

In summary, while Bartholomew et al. assert that “From this relationship [the
linear model (5.1)], it is clear that regulating the prevalence of resistance in Campy-
lobacter in poultry will control the prevalence of resistant human cases from poul-
try,” the extended model (5.2) shows that even decreasing the prevalence of resis-
tance in poultry to zero by a change (such as banning enrofloxacin) that increases
susceptible cases may greatly increase human health risks from chicken consump-
tion, by several orders of magnitude. Continued surveillance and dynamic modeling
of experiences in regions or countries where the use of enrofloxacin in poultry is
minimal are likely to prove essential in validating and/or improving default model-
ing assumptions, especially where the true causal relations involved are uncertain.
Bartholomew et al. conclude that “Furthermore, CVM believes that this same basic
linear relationship may be sufficiently general to model other pathogens responsi-
ble for food-borne illness.” We suggest that Equation (5.2) provides a useful further
generalization that may be important when the total human health impact of regula-
tions that affect both susceptible and resistant bacteria is of interest.

Summary of Limitations of Aggregate Exposure-Response Model,
Risk = K × Exposure

The linear model risk = K × exposure has sometimes been proposed as a useful
framework for using aggregate data on exposure and risk levels to estimate how
changes in exposure will change risk. It is not. Risk assessors who try to use such
aggregate statistical relations as causal models are deluded.

The FDA Center for Veterinary Medicine (CVM) and Bartholomew et al. (2005)
suggest that once K has been estimated from historical data, it can be used to predict
how limiting future exposure will reduce future risk. This interpretation is unjusti-
fied. (As a counterexample, suppose that one were to estimate the ratio of car acci-
dents in the United States to quarts of orange juice consumed in the United States,
for each of several past years. Although this ratio would be positive, it would not
justify a causal inference that restricting orange juice consumption would reduce
car accidents!) Despite its appealing simplicity, this proposal confuses a possibly
meaningless descriptive statistical ratio with a valid predictive causal relation. The
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historical ratio K= (risk/exposure) does not necessarily predict how (if at all) chang-
ing future exposures will affect future risks. Hence, it is not an appropriate guide to
current risk management actions.

This section has identified several limitations of the proposed framework, includ-
ing the omission of the frequency and severity of human health harm in quantifying
risk and the omission of the microbial load from exposure. Moreover, an extended
linear model that considers impacts of changing animal antibiotic use on suscepti-
ble, as well as on resistant, bacteria indicates that reducing exposure might greatly
increase risk!

Some Limitations of Risk Priority-Scoring Methods

This section examines some intrinsic limitations in the performance of all pos-
sible priority-setting rules, evaluated as guides to rational action. Most of the
results are well known in decision analysis and financial risk analysis and/or are
mathematically straightforward. However, they are of great practical importance
for understanding the limitations of risk-scoring methods and for improving risk
management. In general, risk-scoring methods are not appropriate for correlated
risks. Indeed, as we will demonstrate, they are not necessarily better than (or
even as good as) the purely random selection of which risk management activities
to fund.

More constructively, when risk-reducing opportunities have correlated conse-
quences due to uncertainties about common elements (such as the potencies of
chemicals or the effectiveness of interventions), then optimization methods can
achieve greater risk reduction benefits for resources spent than can priority-scoring
rules. In general, the best choice of a subset of risk-reducing activities cannot
be expressed by priority scores. Instead, optimization techniques that consider
interdependencies among the consequences of different risk-reducing activities are
essential. Fortunately, such methods are easy to develop and implement. They
can substantially improve the risk reduction return on investments in risk-reducing
activities.

Motivating Examples

Many organizations currently rate, rank, or score different hazards (sources of risk)
or risk-reducing opportunities at least once a year to identify the currently top-
ranked opportunities that will be addressed in the current budget cycle. The use
of priority-scoring and rating systems is widespread and is becoming even more
prevalent as they are incorporated into national and international standards and reg-
ulations. Examples of important applications include the following.
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Example: Scoring Information Technology Vulnerabilities

The Common Vulnerability Scoring System (CVSS) for rating information technol-
ogy (IT) system vulnerabilities uses scoring formulas such as the following to help
organizations set priorities for investing in security risk reductions:

BaseScore = (0.6∗Impact + 0.4∗Exploitability-1.5)∗f(Impact),
Impact = 10.41∗(1-(1-ConfImpact)(1-IntegImpact)∗(1-AvailImpact)),
Exploitability = 20∗AccessComplexity∗Authentication∗AccessVector,
f(Impact) = 0 if Impact = 0; 1.176 otherwise,

AccessComplexity = case AccessComplexity of
high: 0.35,
medium: 0.61,
low: 0.71,

Authentication = case Authentication of
Requires no authentication: 0.704,
Requires single instance of authentication: 0.56,
Requires multiple instances of authentication: 0.45,

AccessVector = case AccessVector of
Requires local access: 0.395,
Local Network accessible: 0.646,
Network accessible: 1

(Source: NIST, 2008).

Such a rule base, no matter how complex, can be viewed as an algorithm that maps cate-
gorized judgments and descriptions (such as that access complexity is “high” and that local
access is required) into corresponding numbers on a standard scale. Higher numbers indi-
cate greater vulnerability and the need for remedial action. Proponents envision that, “As
a part of the U.S. government’s SCAP (Security Content Automation Protocol) CVSS v2
will be used in standardizing and automating vulnerability management for many millions
of computers, eventually rising to hundreds of millions” (http://www.first.org/cvss/).

Example: Scoring Consumer Credit Risks

The practice of rank-ordering consumers based on credit scores is ubiquitous in
business today. A recent description states that

FICO R© risk scores rank-order consumers according to the likelihood that their credit obli-
gations will be paid as expected. The recognized industry standard in consumer credit risk
assessment, FICO R© risk scores play a pivotal role in billions of business decisions each
year. . . . [They] are widely regarded as essential building blocks for devising successful,
precisely targeted marketing, origination and customer management strategies by credit
grantors, insurance providers and telecommunications companies.

Examples include BEACON R© at Equifax US and Canada, FICO R© Risk Score,
Classic at TransUnion US, and Experian/Fair Isaac Risk Model at Experian (source:
www.fairisaac.com/fic/en/product-service/product-index/fico-score/).
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Example: Scoring Superfund Sites to Determine Funding Priorities

The State of Connecticut (www.ct.gov/dep/lib/dep/regulations/22a/22a-133f-1.pdf)
published a Superfund Priority Score method, to be used in determining funding
priorities for remediation of Superfund sites. Users must score each of many factors
(reflecting exposure potential; groundwater impact; surface water impact; toxicity,
persistence, mobility, and quantity of hazardous substances; impact to the environ-
ment, including Species of Special Concern; and potential air release and fire haz-
ards) using ordered categories. Each category carries a certain number of points.
For example, an area that contains a “rare” species gets a score of 4 on this factor.
If it has a “declining or infrequent” species, the score is 3; for a “habitat-limited
species,” the score is 2. If this factor (species of concern) is not applicable, the score
for this factor is zero. The scores for all factors are summed. The resulting total
score determines “the priority for funding of remedial action at sites on the SPL”
[the State of Connecticut Superfund Priority List].

Example: Priority Scoring of Bioterrorism Agents

MacIntyre et al. (2006) propose a risk priority-scoring system for bioterrorism
agents. They describe their approach as follows:

“Disease impact criteria were as follows: infectivity of the agent (person-to-person trans-
mission potential), case fatality rate, stability in the environment and ease of decontamina-
tion, incidence of disease per 100,000 exposed persons in the worst-case release scenario,
and reports of genetic modification of the agent for increased virulence.

• Probability of attack criteria was [sic] designated as: global availability and ease of
procurement of the agent, ease of weaponization, and historical examples of use of the
agent for an attack.

• Prevention/intervention criteria were categorized as: lack of preventability of the disease
(such as by vaccination) and lack of treatability of the disease (such as by antibiotics).

• For each of the scoring categories, a score of 0 to 2 was assigned for each category A
agent as follows: 0 = no, 1 = some/low, and 2 = yes/high. The sum of these scores (of
a total possible score of 20) was used to rank priority.”

This is similar to the Superfund scoring system, in that categorical ratings for
various factors are assigned numerical scores, and the sum of the scores is used
to set priorities. In neither case did the authors verify whether additive indepen-
dence conditions hold, which are required in multiattribute value and utility theory
to justify additive representations of preferences (Keeney and Raiffa, 1976). For
example, an agent with a score of 2 for “lack of preventability of disease” and 0
for “lack of treatability” would have the same sum for these two factors (2 + 0 =
2) as an agent with “lack of preventability of disease” = 0 and “lack of treatabil-
ity” = 2, or as an agent with “lack of preventability of disease” = 1 and “lack of
treatability” = 1. Yet risk managers who can completely prevent a disease (“lack of
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preventability of disease” = 0) might not care as much about whether it is treatable
as they would if the disease could not be prevented. Likewise, in Superfund site scor-
ing, many decision makers might care less about the presence of a declining species
near a site that creates no exposure than near a site that creates a large, toxic expo-
sure. Such interactions among factor scores are ignored in purely additive scoring
systems.

Example: Threat-Vulnerability-Consequence (TVC) Risk Scores
and Risk Matrices

Many organizations use numerical priority-scoring formulas such as risk = threat
× vulnerability × consequence or risk = threat × vulnerability × criticality or
risk = threat × vulnerability × impact. The Department of Homeland Security, the
Department of Defense, and the armed services prioritize antiterrorism risk reduction
efforts using such formulas (Jones and Edmonds, 2008; Mitchell and Decker, 2004;
http://www.ncjrs.gov/pdffiles1/bja/210680.pdf). The formula risk= threat× vulner-
ability × consequence also provides the conceptual and mathematical basis for the
RAMCAPTM (Risk Analysis and Management for Critical Asset Protection) standard
and related compliance training and software (www.ramcapplus.com/). Chapter 15
discusses RAMCAPTM in greater detail. Law enforcement officers have been trained
to use risk= threat× vulnerability× impact scoring systems to set priorities for man-
aging security risks at major special events. Unfortunately, when the components on
the right-hand side (e.g., threat, vulnerability, and consequence) are correlated ran-
dom variables – for example, because attackers are more likely to attack facilities with
high vulnerability and consequence, or because larger storage facilities have higher
vulnerability and consequence than small ones – then the product of their means dif-
fers from the mean of their product, and it is not clear what either one has to do with
risk. Correct expressions require additional terms to adjust for nonzero covariances,
as discussed further in Chapter 15. Similar comments apply to risk matrices.

Priorities for Known Risk Reductions

To enable formal analysis in a reasonably general framework, we define a priority-
setting process as consisting of the following elements:

1. A set of items to be ranked or scored. The items may be hazards, threats, interven-
tions, assets, frequency-severity pairs, threat-vulnerability-consequence triples,
threat-vulnerability-consequence-remediation cost quadruples, Superfund sites,
construction projects, or other objects. We will refer to them generically as
“items,” “hazards,” “prospects,” or “opportunities.”

2. An ordered set of priority scores that are used to compare hazards. These may be
ordered categorical grades, such as “High,” “Medium,” and “Low”; nonnegative
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integers indicating relative priority or ranking; or nonnegative real numbers,
representing values of a quantitative priority index such as risk = threat ×
vulnerability × consequence, or priority index = expected benefit of remedia-
tion/expected cost of remediation, where the italicized variables are nonnegative
numbers.

3. A priority-scoring rule. A scoring rule is a mathematical function (or a procedure
or algorithm implementing it) that assigns to each hazard a unique correspond-
ing priority score. (This implies that any two hazards having identical attribute
values, or identical joint distributions of attribute values, must have the same
priority score.)

The priority-scoring rule determines a priority order in which hazards are to be
addressed (possibly with some ties). Addressing a hazard is assumed to reduce risk,
and hence to be valuable to the decision maker: It increases expected utility. For
example, it may stochastically reduce the flow of illnesses, injuries, or fatalities
resulting from a hazardous process, activity, or environment.

Although items might have multiple attributes, and value trade-offs might make
preferences among them difficult to define clearly in practice, we will assume that
the decision maker has perfectly clear, consistent preferences for the consequences
of addressing different hazards. For example, suppose that addressing hazard j
reduces loss of quality-adjusted life-years (QALYs) by an amount, xj, defined as
the difference between the number of QALYs lost if hazard j is left unaddressed
and the number of QALYs lost if hazard j is addressed. Suppose that all QALYs
are considered equally intrinsically valuable, with twice as many being worth twice
as much to the decision maker. More generally, we assume that addressing haz-
ards creates gains on a measurable value scale satisfying standard axioms (Dyer
and Sarin, 1979) that allow preferences for changes in or differences between sit-
uations, from before a hazard is addressed to after it is addressed, to be coherently
ranked and compared. Let xj be the measurable value from addressing hazard j. We
assume that the value of addressing a hazard, expressed on such a measurable value
scale, depends only on its attributes, and we work directly with the measurable val-
ues, rather than the underlying attributes. (The value scale need not be measured in
QALYs, but thinking of such a concrete example may aid intuition.) If it costs the
same amount to address any hazard, and if the resulting increases in value are known
with certainty, then, for any budget, total benefits are maximized by addressing the
hazards in order of their decreasing values, xj. This provides one useful model for
priority-based risk management decision making.

Priorities for Independent, Normally Distributed Risk Reductions

Next, suppose that the value achieved by addressing hazard j is uncertain. This might
happen, for example, if the quantities or potencies of hazardous chemicals stored
at different waste sites are uncertain, or if the sizes of exposed populations and
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their susceptibilities to exposure are not known, or if the effectiveness of interven-
tions in reducing risks is in doubt. To model priority-based risk management deci-
sions with uncertainty about the sizes of risk reduction opportunities, we assume
that their values are random variables and that the decision maker is risk-averse.
For a risk-averse decision maker with a smooth (twice-differentiable) increasing
von Neumann-Morgenstern utility function for the value attribute, the conditions in
Table 5.4 are all mutually equivalent, and all imply that the utility function is expo-
nential. If one or more of these conditions is considered normatively compelling,
then an exponential utility function should be used to choose among prospects with
uncertain values.

Assuming an exponential utility function for the value attribute, the expected
utility of any random variable corresponds to its moment-generating function. For
example, let Xj represent the uncertain measurable value of addressing hazard j,
modeled as a random variable on the value axis. Let CE(Xj) denote the certainty
equivalent of Xj, i.e., the value (such as QALYs saved) received with certainty that
would have the same expected utility as (or be indifferent to) random variable Xj.
Then if Xj is normally distributed with mean E(Xj) and variance Var(Xj), it follows
(from inspection of the moment-generating function for normal distributions) that
its certainty equivalent is

Table 5.4 Equivalent characterizations of exponential utility functions

Let X and Y be any two risky prospects (random variables) measured on the intrinsic value scale.
They represent the uncertain values (e.g., QALYs saved) by addressing two different hazards.
• Strong risk independence: Adding the same constant to both X and Y leaves their preference

ordering unchanged. Thus, if X + w is preferred to Y + w for some value of the constant w,
then X is preferred to Y for all values of w.

• Risk premium independence: The decision maker’srisk premium (the amount she is willing
to pay to replace a prospect with its expected value) for any risky prospect depends only on
the prospect. (Thus, it is independent of background levels of the value attribute.)

• Certainty-equivalent independence: If a constant, w, is added to every possible outcome of a
prospect X, then thecertainty equivalent of the new prospect thus formed is CE(X) + w,
where CE(X) denotes the certainty equivalent (or “selling price” on the intrinsic value scale)
of prospect X. (This is sometimes called the “delta property,” due to Pfanzagl, 1959.) Thus,
for any constant, w, CE(w + X) = CE(X) + w.

• Equal buying and selling prices: For any prospect X and any constant w, the decision maker
is indifferent between w + CE(X) – X and w + X – CE(X).

• No buying-price/selling-price reversals: The ranking of prospects based on theircertainty
equivalents (i.e., “selling prices,” e.g., how many QALYs would have to be saved with
certainty to offset the loss from abandoning the opportunity to save X QALYs) never
disagrees with their ranking based on “buying prices” (e.g., how many QALYs a decision
maker would give up with certainty to save X QALYs). [This assumes the decision maker
isrisk-averse; otherwise, the linearrisk-neutral utility function u(x) = x would also work.]

• Exponential utility: u(x) = 1 – e–kx.

References: Dyer and Jia (1998); Hazen and Sounderpandian (1999).
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CE(Xj ) = E(Xj )− (dk/2)Var(Xj ),

where k is the coefficient of risk aversion in the exponential utility function
(Infanger, 2006, p. 208).

A set of equally costly risk-reducing measures with independent, normally dis-
tributed values can be prioritized in order of decreasing CE(Xj) values. For any bud-
get, the total expected utility is maximized by funding risk reduction opportunities
in order of decreasing priority until no more can be purchased. Moreover, even if
the risk-reducing measures do not have identical costs, an optimal (expected utility-
maximizing, given the budget) policy maximizes the sum of certainty equivalents,
subject to the budget constraint. (This follows from the additivity of means and of
variances for independent risks. Finding an optimal subset in this case is a well-studied
combinatorial optimization problem, the knapsack problem.) Thus, for any two fea-
sible portfolios of risk-reducing measures, the one with the greater sum of certainty
equivalents is preferred. Certainty equivalents therefore serve as satisfactory priority
indices for identifying optimal risk-reducing investments in this case.

Priority Ratings Yield Poor Risk Management Strategies
for Correlated Risks

Priority-based risk management successfully maximizes the risk reduction value
(expected utility or certainty-equivalent value of risk-reducing activities) of defen-
sive investments in the special cases discussed in the preceding two sections. How-
ever, it fails to do so more generally. Selecting a best portfolio of hazards to address
(or of risk-reducing measures to implement) cannot, in general, be accomplished by
priority setting if uncertainties about the sizes of risks (or of risk reduction opportu-
nities) are correlated (O’Brien and Sculpher, 2000). Unfortunately, this is the case
in many applications of practical interest. No priority rule can recommend the best
portfolio (subset) of risk-reducing opportunities when the optimal strategy requires
diversifying risk-reducing investments across two or more types of opportunities,
or when it requires coordinating correlated risk reductions from opportunities of
different types (having different priority scores).

Example: Priority Rules Overlook Opportunities
for Risk-Free Gains

A priority-setting rule that rates each uncertain hazard based on its own attributes
only, as all the real priority-scoring systems discussed above do, will be unable, in
general, to recommend an optimal subset of correlated risk-reducing opportunities.
For example, any risk-averse decision maker prefers a single random draw from a
normal distribution with mean 1 and variance 1, denoted N(1, 1), to a single draw
from normal distribution N(1, 2), having mean 1 but variance 2. Therefore, a scoring
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rule would assign a higher priority to draws from N(1, 1) than to draws from N(1,
2). But suppose that X and Y are two N(1, 2) random variables that are perfectly
negatively correlated, with Y = 2 – X. (This might happen, for example, if effects
depend only on the sum of X and Y, which has a known value of 2, but the relative
contributions of X and Y to their sum are uncertain.) Then, drawing once from X and
once from Y [each of which is N(1, 2)] would yield a sure gain of 2. Any risk-averse
decision maker prefers this sure gain to two draws from N(1, 1). Unfortunately, any
priority rule that ignores correlations among opportunities would miss this possibil-
ity of constructing a risk-free gain by putting X and Y in the same portfolio, as it
would always assign draws from N(1, 1) higher priority than draws from N(1, 2).

This example shows that priority-setting rules can recommend dominated portfo-
lios, such as allocating all resources to risk reductions drawn from N(1, 1) instead of
pairing negatively correlated N(1, 2) risk reductions, because they cannot describe
optimal portfolios that depend on correlations among risk-reducing opportunities,
rather than on the attributes of the individual opportunities. The next example shows
that priority rules can, in principle, not only recommend dominated decisions, but
in some cases can even recommend the worst possible decisions.

Example: Priority Setting Can Recommend the Worst Possible
Resource Allocation

Setting: Suppose that an environmental risk manager must decide how to allocate
scarce resources to remediate a large number of potentially hazardous sites. There
are two main types of sites. Hazards at type A sites arise primarily from relatively
long, thin chrysotile asbestos fibers. Hazards at type B sites arise from somewhat
shorter and thicker amphibole asbestos fibers. The risk manager is uncertain about
their relative potencies but knows that removing mixtures of approximately equal
parts of the chrysotile and amphibole fibers significantly reduces the risks of lung
cancer and mesothelioma in surrounding populations. She believes that the follow-
ing two hypotheses are plausible, but she is uncertain about their respective proba-
bilities. (This is intended for purposes of a simple illustration only, not as a realistic
risk model.)

• H1: The relative risk from a type A site is 0 and the relative risk from a type B
site is 2 (compared to the risk from a hypothetical site with equal mixtures of
chrysotile and amphibole fibers, which we define as 1). This hypothesis implies
that all risk is from amphibole fibers.

• H2: The relative risk from a type A site is 2 and the relative risk from a type B
site is 0. This hypothesis implies that all risk is from the chrysotile fibers.

For purposes of illustration only, we assume that only these two hypotheses are
considered plausible, although clearly others (especially, that the two types of fiber
are equally potent) would be considered in reality.
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Problem: If the risk manager can afford to clean N = 10 sites, then how should
she allocate them between type A and type B sites? Assume that she is risk-averse
and that more than 10 sites of each type are available.

Solution: If the risk manager cleans x type A sites and (N – x) type B sites,
then the total expected utility from cleaned sites is pu(N – x) + (1 – p)u(x). Here,
p denotes the probability that hypothesis H1 is correct, 1 – p is the probability that
H2 is correct, N = 10 is the total number of sites that can be cleaned, and u(x) is the
utility of cleaning x sites with relative risk of 2 per site cleaned. For any risk-averse
(concave) utility function u(x), and for any value of p between 0 and 1, Jensen’s
inequality implies that expected utility is maximized for some x strictly between 0
and N. For example, if u(x) = x0.5 and p = 0.5, then x = 5 maximizes expected
utility. The worst possible decision (minimizing expected utility) is to allocate all
resources to only one type of site (either type A or type B). Yet this is precisely
what a priority system that assigns one type a higher priority than the other must
recommend. Hence, in this case, any possible priority order (either giving type A
sites precedence over type B sites or vice versa, perhaps depending on whether p
< 0.5) will recommend a subset of sites yielding lower expected utility than even a
randomly selected subset of sites. The best subset (e.g., 5 type A sites and 5 type B
sites, if p= 0.5) can easily be constructed by optimization if p is known. But even if
both p and u(x) are unknown, it is clear that a priority order recommends the worst
possible decision.

Example: Priority Setting Ignores Opportunities for Coordinated
Defenses

Setting: Suppose that an information security risk manager can purchase either
of two types of security upgrades for each of 100 web servers. Type A prevents
undetected unauthorized access to a web server, and type B prevents the unautho-
rized execution of arbitrary code with the privileges of the web server, even if the
web server is accessed. (For examples of real-world historical vulnerabilities in an
Apache web server, see http://www.first.org/cvss/cvss-guide.html#i1.2.) For sim-
plicity, suppose that installing a type A upgrade reduces the annual incidence of
successful attacks via web servers from 0.03 to 0.02 per web-server-year and that
installing a type B upgrade reduces it from 0.03 to 0.025. Installing both reduces the
average annual rate of successful attacks via these machines from 0.03 to 0.

Problem: If the security risk manager can afford 100 security upgrades (of either
type), what investment strategy for reducing the average annual frequency of suc-
cessful attacks would be recommended based on (a) priority ranking of options
A and B and (b) minimization of remaining risk? (Assume that the frequency of
attempted attacks remains constant, as hackers only discover the defenses of a web
server when they attempt to compromise it.)

Solution: (a) A vulnerability-scoring system could assign top priority to installing
a type A upgrade on each of the 100 web servers, since a type A upgrade achieves a
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larger reduction in the vulnerability score of each server than a type B upgrade. Fol-
lowing this recommendation would leave a residual risk of 0.02∗100 = 2 expected
successful attacks per year. (b) By contrast, a risk-minimizing budget allocation
installs both A and B upgrades on each of 50 machines, leaving 50 machines unpro-
tected. The residual risk is then 0.03∗50 = 1.5 expected successful attacks per year,
less than that from giving A priority over B.

Comment: In this example, a scoring system that considered the interaction
between different vulnerability-reducing activities could give “install A & B” a
higher priority for each server than either “install A” or “install B.” But most
deployed scoring systems do not encourage considering interactions among vulner-
abilities or among vulnerability-reducing countermeasures. In many applications,
doing so could lead to combinatorial explosion. (For example, the guidance
for Common Vulnerability Scoring System 2.0 offers this advice: “SCORING
TIP #1: Vulnerability scoring should not take into account any interaction with
other vulnerabilities. That is, each vulnerability should be scored independently.”
http://www.first.org/cvss/cvss-guide.html#i1.2.)

Priority Rules Ignore Aversion to Large-Scale Uncertainties

Setting: A bioterrorism risk manager must choose which of two defensive programs
to implement this year: (a) a prevention program (e.g., vaccination) that, if it works,
will reduce the risk of fatal infection from 10% to 0% for each affected person in the
event of a bioterrorism attack with a certain agent; or (b) a treatment program (e.g.,
stockpiling an antibiotic) that will reduce the risk of mortality from 10% to 5% for
each affected individual in the event of such an attack. For simplicity, suppose that
program A will prevent either N expected deaths (if it works) or none (if it does not)
following an attack and that its success probability is p. Program B prevents 0.5N
expected deaths with certainty, leaving 0.5N remaining expected deaths in the event
of an attack.

Problem: (a) For a risk-averse decision maker with utility function u(x) =
1 – e–kx, where x is the number of expected deaths prevented, which risk reduction
measure, A or B, is preferable? (Express the answer as a function of p, k, and N.) (b)
How does this compare to the results of a priority ranking system, for p = 0.8 and
k = 1?

Solution: (a) The expected utility of risk reduction is pu(N) = p(1 – e–kN) for
program A and u(0.5N) = 1 – e–0.5kN for program B. Program A is preferable to
program B if and only if p(1 – e–kN) > 1 – e–0.5kN, or, equivalently, p > (1 – e–0.5kN)/
(1 – e–kN). For example, if kN = 1, then p must be at least 62.2% to make A prefer-
able to B. If kN = 10, then p must be at least 99.3% to make A preferable to B.
(b) If the probability that program A will work is p = 0.8 and the coefficient of
absolute risk aversion is k = 1, then A is preferred to B for N = 1 or 2, and B is
preferred to A for N ≥ 3. In this case, diversification is not an issue (i.e., either A
or B is definitely preferable, depending on the value of N). However, no priority
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ranking of interventions A and B is best for both N = 2 and N = 3. The reason is
that a risk-averse decision maker who prefers A to B for small N prefers B to A
for larger N. Any priority-scoring system that ranks one of A or B above the other,
and that is not sensitive to N, will recommend the less valuable decision for some
values of N. In practice, most scoring systems use qualitative or ordered categorical
descriptions that are not sensitive to quantitative details such as N. (For example,
the Common Vulnerability Scoring System rates “Collateral Damage Potential,”
which scores “potential for loss of life, physical assets, productivity or revenue,” as
high if “A successful exploit of this vulnerability may result in catastrophic phys-
ical or property damage and loss. Or, there may be a catastrophic loss of revenue
or productivity.” http://www.first.org/cvss/cvss-guide.html#i1.2. Such a qualitative
description does not discriminate between N = 2 and N = 3.)

Discussion: Precisely analogous examples hold for information security and
homeland security applications. Suppose that intervention A reduces the average
rate of successful attacks per target (e.g., secure facility or web server) per year
from 10% to 0% if it works, while intervention B reduces the rate from 10% to 5%
with certainty. The probability that A will work (i.e., that an attacker cannot cir-
cumvent it) is p. If the choice between A and B affects N similar targets, then, by
analogy to the above example, a risk-averse risk manager should prefer A to B for
sufficiently small N and B to A for larger values of N. Any priority system that is
applied to a small number of targets at a time (possibly only 1, by the target’s owner,
operator, or security manager) will then consistently recommend A, even though B
should be preferred when the complete set of N targets is considered. That scoring
systems are blind to the total number of similar targets that they are applied to (i.e.,
to the scale of application) can lead to excessively high-risk exposures arising from
large-scale application of priorities that hold for small numbers of targets but that
should be reversed for larger numbers of targets.

Discussion and Conclusions on Risk Priority-Scoring Systems

Applied risk analysis is in a curious state today. Highly effective optimization meth-
ods for selecting subsets of risk-reducing investments to maximize the value of risk
reductions achieved for a given budget are readily available. They can draw on a
rich and deep set of technical methods developed in financial investment risk analy-
sis over the past half-century. Yet these methods are having little or no impact on the
management of some of the world’s most critical risks. Instead, extremely simplis-
tic priority-setting rules and scoring systems are being widely used to set priorities
and allocate resources in important practical risk management applications. Scoring
systems are being used in important real-world applications as diverse as Superfund
site cleanups, computer and IT security vulnerability assessment, counterterrorism
and military asset protection, and risk matrix systems (used in everything from
designing and defending federal buildings and facilities, to managing construction
project and infrastructure risks, to regulating risks of financial and business enter-
prises). Yet these risk-scoring systems can perform extremely poorly compared to
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optimization methods, allocating resources so that much less value-of-risk reduction
is achieved than could easily be obtained by other methods (including randomized
decision making, in extreme cases).

The requirements that scoring systems must meet before being adopted and rec-
ommended in standards are evidently not very stringent. In the applications examined
in this chapter, there appears to be no requirement that risk-scoring systems should
produce effective risk management decisions (or even that they should not produce the
lowest-value decisions possible) before they are standardized for widespread use. In
all of the applications mentioned, common elements found in multiple risky systems
createcorrelatedvulnerabilities, criticalities, consequences,or threats.Priority listsdo
not generally produce effective risk management decisions in such settings. Applying
investment portfolio optimization principles (such as optimal diversification, consid-
eration of risk aversion, and exploitation of correlations among risk reductions from
different activities) can create better portfolios of risk-reducing activities in these sit-
uations than any that can be expressed by priority scores.

In summary, risk priority-scoring systems, although widely used (and even
required in many current regulations and standards), ignore essential information
about correlations among risks. This information typically consists of noting com-
mon elements across multiple targets (e.g., common vulnerabilities). These com-
mon features induce common, or strongly positively correlated, uncertainties about
the effectiveness of different risk-reducing measures. It is easy to use this informa-
tion, in conjunction with well-known decision analysis and optimization techniques,
to develop more valuable risk reduction strategies, for any given risk management
budget, than can be expressed by a priority list. Thus, there appears to be abundant
opportunity to improve the productivity of current risk-reducing efforts in many
important applications using already well-understood optimization methods.

Nothing in this section is intended to be new or surprising to experts in deci-
sion and risk analysis. Techniques for optimizing investments in risk-reducing
(and/or benefit-producing) interventions have been extensively developed in opera-
tions research and management science for decades. What is perhaps startling is that
these methods are so little exploited in current risk assessment and risk management
systems. Risk priority scores can never do better (and often do much worse) than
optimization methods in identifying valuable risk-reducing strategies. Perhaps it is
time to stop using risk priority scores to manage correlated risks, recognizing that
they often produce simple but wrong answers. Optimization techniques that con-
sider dependencies among risk-reducing interventions for multiple targets should
be used instead.

Conclusions

This chapter has illustrated several ways in which QRA can go awry if practitioners
use summaries of exposure or risk that neglect essential information (usually due
to excessive aggregation). The mathematical results presented (Theorems 1–3) are
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elementary, but their practical implications are important: Representing risky
prospects by summary measures (such as frequency, aggregate exposure, or an
aggregate ratio of risk per unit of exposure) can lead to incorrect comparisons and
poor risk management decisions. The reason is that such summaries omit relevant
information about the causal relations between actions (including choices among
alternative risky prospects) and the probable consequences that decision makers
care about (such as completing or failing to complete a mission, reducing larger
vs. reducing smaller risks from exposures to complex mixtures of carcinogens, or
reducing vs. increasing human health hazards from foodborne pathogens). As a
result, prospects that create importantly different risks are assigned identical sum-
mary representations, making an informed choice among them, on the basis of these
summaries, impossible. (As explained in Chapter 2, F-N curves suffer from a simi-
lar limitation, insofar as they ignore information about the distribution of individual
risks.)

The key to avoiding these limitations is to make sure that risk models describe
the causal relations between alternative risk management acts and the probable con-
sequences that the decision maker cares about. This invites the questions of (a) what
specific information should a risk model include? and (b) how can it be used to
predict the probable consequences of alternative risk management actions? The fol-
lowing chapters address these questions.



Chapter 6
Identifying Nonlinear Causal Relations in Large
Data Sets

This chapter discusses data-mining methods for identifying potential causal
relations in large data sets, such as clinical, epidemiological, or engineering reli-
ability data sets. The causal relations to be discovered may be completely unknown
initially; thus, successfully identifying them from data is sometimes called knowl-
edge discovery. This is usually more challenging than merely estimating the param-
eters of a statistical model that is known or specified a priori. The causal relations
may be complex and impossible to summarize using only a few parameters. For
example, they may contain nonmonotonic (such as n-shaped or u-shaped) or
threshold-like exposure-response relations, or more complicated nonlinearities, that
render ineffective traditional statistical data analysis techniques (including factor
analysis, principal components analysis, discriminant analysis, multiple linear or
logistic regression, and so forth) based on linear and generalized linear modeling.

The possibility of nonlinearities in individual dose-response relations under-
mines traditional epidemiological criteria and tests for causal relations between
exposure and response variables. Nonmonotonic exposure-response relations in a
large population may lack aggregate consistency, strength, biological gradient, and
other traditional hallmarks of causal relations. For example, a u-shaped or n-shaped
curve may exhibit zero correlation between dose and response. Thus, possible non-
linearity requires new ways to detect potentially causal exposure-response relations.
Conversely, traditional epidemiological criteria for causality may be satisfied even
in the absence of a true causal relation, e.g., due to model misspecification (as dis-
cussed in Chapter 5 for “risk = K × exposure”) or omitted confounders (discussed
further in Chapter 7).

Fortunately, information-theoretic criteria provide a unifying framework for sev-
eral powerful data-mining techniques – including classification trees, conditional
independence tests for potential causal relations, and techniques for learning causal
graphs (or Bayesian networks) from data – that lead to practical algorithms for
detecting potential causal relations in large data sets. Such techniques, explained
in this chapter, can be applied to data from large epidemiological studies, including
cohort, case-control, cross-sectional, and time-series data. (Throughout this chap-
ter, we repeatedly use the term “causal graph” rather than “Bayesian network” to
emphasize that the main challenge is how to identify causal relations from data,
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rather than how to draw inferences from a prespecified network of such relations
and a collection of data – the usual emphasis in many applications of Bayesian net-
works in risk analysis.)

In addition to introducing data mining and causal modeling for epidemiological
data, this chapter follows up on the case study at the end of Chapter 5 by show-
ing how to use information-theoretic criteria and data-mining methods to identify
nonlinear, potentially causal relations between explanatory variables and campy-
lobacteriosis in a case-control data set. [Recall that campylobacteriosis is a food-
borne infectious diarrheal illness that typically lasts several days. In most cases
(over 99%), it then spontaneously resolves itself without the need for treatment.]
In this data set, hundreds of potential explanatory variables and response variables
were recorded for each of over a thousand infected people (“cases”) and over a thou-
sand uninfected people (“controls”). The risk assessment challenge is to use these
data to identify differences in explanatory variables between cases and controls that
explain, predict, or cause the differences in health outcomes, i.e., infection vs. non-
infection.

In contrast to previous analyses, the methods in this chapter identify a highly
statistically significant nonlinear (u-shaped) relation between recent fast food con-
sumption and women’s risk of campylobacteriosis. The information-theoretic cri-
teria can also be used to resolve ambiguities and apparent contradictions in causal
interpretations due to confounding and redundancy or overlap among variables in
data sets. This use is discussed in detail in Chapter 7.

Nonlinear Exposure-Response Relations

The existence of a monotonic exposure-response relation has traditionally been
regarded as one indication that a statistical association may be causal (Weed and
Gorelic, 1996). However, there is no reason that causal exposure-response relations
must necessarily be monotonic, and considerable evidence (e.g., on the reality of
hormesis, or u-shaped exposure-response relations) in many systems suggests that
sometimes they are not. Hence, methods are needed to detect and quantify non-
monotonic (e.g., u-shaped, n-shaped, N-shaped, or more complicated) relations in
epidemiological data. This statistical challenge is exacerbated by the fact that some
nonlinear effects may be relatively small over much of the range of available data,
or may involve interactions among multiple variables, so that identifying them in
complex data sets requires detecting relatively weak signals among a huge number
of possibilities.

As an example, Fig. 6.1 shows a u-shaped exposure-response relation identified
in data from a food safety case-control study of the common foodborne bacterial
illness campylobacteriosis (Friedman et al., 2004). The data were collected by the
Centers for Disease Control and Prevention (CDC) as part of a study of risk factors
for sporadic cases of campylobacteriosis. As described by Friedman et al. (2000):
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Fig. 6.1 u-Shaped relation between fast food consumption and risk of foodborne illness (Campy-
lobacteriosis)

We enrolled patients with culture-confirmed Campylobacter infections from Foodborne
Diseases Active Surveillance Network (FoodNet) sites in California, Georgia, Maryland,
Minnesota, New York and Oregon. Information about demographics, clinical illness, and
exposures occurring within 7 days before diarrhea onset was collected using a standardized
questionnaire. By using random-digit dialing, we interviewed one age-group matched, site-
matched community control for each patient. . . . From January 1, 1998, to March 1, 1999,
1,463 patients and 1,317 controls were enrolled in the study.

The data set contains one record (with over 800 variables covering demographics,
medical information, and recent self-reported food consumption and cooking habits
information) for each case and each control. It has previously been analyzed by the
CDC and public health researchers (e.g., Kassenborg et al., 2004). The data set was
provided to the author as an Excel file by the CDC upon request.

In the classification tree notation of Fig. 6.1 (Lemon et al., 2003), each node in
the tree (i.e., each box) indicates the percentages of cases (upper percentage) and
controls (lower percentage) for the subpopulation described by that box.

The integer at the bottom of each box indicates the total number of subjects
described by it. Among 1,444 subjects, 59.5% were confirmed campylobacterio-
sis cases and 40.5% were matched controls, as shown in the top node of Fig. 6.1.
The variable FAST FOOD PER WEEK indicates the number of times that subjects
reported eating at a fast food restaurant in the seven days prior to the onset of campy-
lobacteriosis illness. Thus, this small tree displays basic cross-tab information for
case status vs. fast food consumption frequency. (“???” denotes missing data and
“77” at the right of the tree is a don’t know/no answer code.) The methods used to
identify the relation in Fig. 6.1 are discussed in the next section.

The classification tree program used to generate Fig. 6.1 (KnowledgeSeekerTM,
marketed by Angoss Software, 2005) automatically partitions the ordinal variable
FAST FOOD PER WEEK into the discrete categories shown (i.e., the branches),
to create conditional distributions that are statistically significantly different after
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adjusting for multiple testing bias due to repeated testing with multiple boundary
locations. The notation [x, y) on a branch for FAST FOOD PER WEEK indicates the
interval x≤ FAST FOOD PER WEEK < y; thus, the branch labeled [0, 1), for exam-
ple, denotes people who reported eating at fast food restaurants no times in the week
prior to illness. These people are at significantly higher risk than people who ate one
or two meals at fast food restaurants (55.8% vs. 43.4%), but risk then increases for
more frequent exposures to fast food, reaching a case rate of 69.3% among subjects
reporting five or more fast food meals per week. The KnowledgeSeekerTM program
is well suited to this type of analysis as it works with both continuous and discrete
variables (including binary and ordered categorical variables) to create highly pre-
dictive risk classes without making any specific parametric modeling assumptions
(Biggs et al., 1991).

The data display a typical u-shaped (or moderately J-shaped) relation. Such pat-
terns often are not discovered in standard parametric multivariate modeling (e.g.,
linear or logistic regression with automatic backward or forward stepwise variable
selection) even when they exist, since the u shape cannot be expressed by the coef-
ficients in a regression model. (If dummy variables are used to break the domain
of the independent variables into downward-sloping and upward-sloping compo-
nents, then regression methods can be applied successfully, but this requires know-
ing the correct answer in advance.) The problem is worse when there are hundreds
of variables (as in this data set, which has over 800) and many possible interac-
tions: Even highly predictive u-shaped relations may be impossible to discover by
standard methods in the sea of possible relations.

The following sections propose a solution to the problems of (a) identifying non-
linear relations in large data sets and (b) testing them for potential causality. They
illustrate an application to the campylobacteriosis data set, building in part on ideas
from classification tree analysis, which is designed to detect high-order interactions
in models that need not be linear or monotonic (Lemon et al., 2003). Chapter 7 dis-
cusses how classification tree analysis can be used to empirically test hypothesized
causal relations, as well as to discover previously unknown ones.

Entropy, Mutual Information, and Conditional Independence

Traditional epidemiology often begins by seeking nonrandom associations between
potential explanatory variables and response variables of interest, e.g., by using
logistic regression modeling to screen for statistically significant predictors of
increased risks of adverse health effects (e.g., Lemon et al., 2003). Fully automated
variable selection is a notoriously challenging problem, however. On the one hand,
“data dredging” (e.g., using automated variable-selection criteria such as the AIC,
BIC, or Mallows criteria included in many standard commercial regression software
packages) can easily produce false positives (e.g., Raftery et al., 1997). On the other
hand, nonmonotonic relations for predictors having both positive and negative rela-
tions with risk over different ranges can easily escape detection by these methods,



Entropy, Mutual Information, and Conditional Independence 169

thus producing false negatives. To help overcome these problems, it is useful to
replace more traditional measures of statistical association between variables, such
as correlation coefficients or t-tests of regression coefficients, with mutual informa-
tion – a measure that also works for arbitrary nonmonotonic relations and that is
nonparametric, or “model-free,” thus reducing the problems of multiple testing bias
and model selection bias.

Let X and Y be two discrete random variables, e.g., X = level of exposure, Y =
level of response. (The following methods can also apply to continuous variables, as
in Cover and Thomas, 1991. However, we focus on the discrete case, as this is most
useful in conjunction with classification trees.) Uncertainty about any discrete ran-
dom variable X taking values xi with corresponding probabilities pi can be quantified
by its entropy, defined as

H (X ) = entropy of X = −Σi pi log2 pi = E[log2(1/pi )] bits.

H(X) may be interpreted as the average amount of information gained when the
value of X is learned. [It is also the expected minimum number of binary yes-no
questions with equally likely answers, i.e., Pr(yes) = Pr(no) = 0.5, that one would
need to have answered about the value of X to uniquely identify its value.]

The mutual information between any two random variables X and Y, denoted by
I(Y; X), is defined as

I (Y ; X ) = H (Y )− H (Y |X ),

where H(Y | X) = ΣXPr(X = x)H(Y | X = x) = EX[H(Y | X)] is the conditional
entropy of Y given X. For any specific observed value of X, say, x, the conditional
entropy of Y given that value of X is

H (Y |X = x) = −Σi Pr(Y = yi |X = x) log2 Pr(Y = yi |X = x).

Some intuitively appealing properties of entropy, H, and mutual information, I,
include

(a) I(X ; Y) = I(Y ; X), i.e., X and Y provide the same amount of information, or
uncertainty reduction, about each other.

(b) H(Y | X)≤H(Y), i.e., conditioning on (or learning the value of) X never increases
the expected uncertainty about Y but is expected to decrease it unless they are
statistically independent.

(c) H(X, Y) = H(X) + H(Y | X), i.e., the entropy of the joint distribution of X and Y,
is the entropy of X plus the conditional entropy of Y given X.

(d) I(X ; Y) > 0 if Pr(Y | X = xi) depends on xi. For example, if the probability
distribution of response variable Y depends on the value of exposure variable
X, then the mutual information between them is positive. This allows mutual
information to be used in screening for possible exposure-response relations.
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(e) Let the “causal graph” (also called “Bayesian network”) notation Z→ X→ Y
indicate that the probability distribution of Y depends on the value of X and that
the probability distribution of X depends on the value of Z, but the conditional
probability distribution of Y given any specific value of X does not depend on
the value of Z. In other words, Y is conditionally independent of Z given X.
(However, Y is not unconditionally independent of Z, since Z affects Y through
X.) Then I(Y ; X)≥ I(Y : Z), with equality if and only if X is a deterministic, one-
to-one function of Z. More generally, in a causal graph, more remote ancestors
of a node can never be more informative about it than its direct parents. (In
a causal graph, nodes represent variables, and an arrow directed from X to Y
indicates that the probability distribution of Y depends on the value of X. Such
graphs are required to be acyclic. Each node is conditionally independent of its
more remote ancestors, given the values of its parents, i.e., of nodes with arrows
pointing into it.)

(f) In a causal graph model X – Y – Z (with the arcs oriented in any directions),
more remote ancestors can never be more informative that direct parents. Thus,
I(X ; Z) ≤ I(X ; Y). Moreover, I(X ; Z | Y) = 0 (i.e., X and Z are conditionally
independent given Y) unless both X and Z point into Y.

For these and other aspects of information theory, see Cover and Thomas (1991).

Classification Trees and Causal Graphs via Information Theory

The above properties suggest that mutual information can be used to help search
for potential dose-response relations or exposure-response relations and to identify
direct parents of responses in large, multivariate data sets. Two main families of
practical data analysis algorithms have exploited this potential: classification tree
algorithms and causal graph “learning” algorithms.

A classification tree analysis begins with a specific dependent variable of inter-
est, such as a health response variable in a population, and repeatedly conditions
on the “most informative” variables in the data set to calculate its conditional prob-
ability distribution, given their values. At any stage in the construction of a tree,
each leaf represents a set of values of the variables that have been conditioned on
so far. There is a conditional distribution of the values of the dependent variable
at each node, given the values of the conditioned-on variables leading to it. At
each leaf, the myopically “most informative” variable to condition on next is the
one having the highest mutual information with the conditional distribution of the
response variable at that leaf. (Less myopic, more CPU-intensive procedures seek
the subsets of variables that jointly give the greatest reduction in the entropy of the
dependent variable, and then condition on combinations of their values. Continuous
variables can be discretized into contiguous ranges as part of this search process by
taking either the maximum reduction in the entropy of the dependent variable or
the maximal increase in the mutual information of all directly related variables as
the goal; see Friedman and Goldsmitz, 1996a.) When further conditioning provides
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no additional useful information about the dependent variable (e.g., as assessed by
cross-validation estimation of the true error rate resulting from using the conditional
distributions at the current leaf nodes to make predictions about the dependent vari-
able), tree growing stops.

Like classification trees, causal graphs store conditional distributions at each
node. However, the conditional distribution at a node is for the variable represented
by that node, rather than for some other dependent variable. Instead of there being
a single dependent variable, there is usually a set of variables related by statisti-
cal dependence and conditional independence relations that are expressed by the
directed arcs (“arrows”) among the variables (nodes). Moreover, the conditional
distribution at any node is conditioned only on the values of its parents, i.e., the
variables that point into it. This information may be stored in a conditional prob-
ability table (CPT) specifying the different conditional probability distributions of
that node’s variable, for each combination of values of its parents. (Combinations of
parent values that lead to the same conditional distribution can be aggregated, e.g.,
by using ranges of values of the variables to create distinct rows in the CPT.) Sev-
eral computationally practical algorithms for fitting classification trees and causal
graphs to large, multivariate data sets are now available (Murphy, 2001; Wood et al.,
2006; Silander and Myllymäki, 2006; Ellis and Wong, 2008).

Classification trees and causal graphs are closely related, as follows. Consider an
ideal classification tree algorithm, in which X appears in the tree for Y if I(X ; Y) >
0 [and I(X ; Y | C) > 0 even after conditioning on the other variables, C, in the tree].
For any data set with enough observations, with adequate variability in the values of
its variables, and with redundant variables eliminated [e.g., by replacing any cluster
of redundant variables A = B = . . . = C with any one of them, or more generally
by pruning all variables Z satisfying I(X ; Z) = H(X) for some remaining X], the
following properties hold (e.g., Frey et al., 2003):

1. All of the parents of a node appear in any mutual information-based classification
tree having that node variable as its dependent variable. (This is because, by
definition, the conditional distribution of the node depends on the values of its
parents.)

2. Once a node’s parents (and children, if any) have been included in a classification
tree, i.e., conditioned on, no more remote ancestors (or descendants) will enter its
classification tree. (By definition, the node’s value is conditionally independent
of its more remote ancestors, given the values of its parents.)

3. In the causal graph X← Z→ Y, the variable Z is called a confounder of the statis-
tical relation between X and Y. It explains away an apparent association between
them. Including the parents of a health response variable in its classification tree
(i.e., conditioning on them) eliminates all variables that are statistically associ-
ated with the response variable only due to confounding. [More generally, X is
a parent of Y only if there is no subset of variables C such that I(X ; Y | C) = 0,
i.e., only if X provides information about Y that cannot be fully removed by
conditioning on any other subset of variables. In the example X← Z→ Y, the
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tree for Y will include Z but not X. The confounded relation between X and Y is
eliminated when the tree conditions on Z.]

4. When a classification tree is grown for a particular node variable, using only
its parents as conditioning variables, the leaves of the resulting tree contain the
conditional probability table (CPT) information for that node. (The empirical
CPT based on the raw data is a maximum-likelihood estimate of the true CPT.
It can be used together with a multivariate Dirichlet prior to develop Bayesian
posterior estimates of the CPT for purposes of uncertainty analysis; see e.g.,
Friedman and Goldszmidt, 1996b, and Murphy, 2001.)

By property 1, an automated tree-growing procedure based on conditioning on
variables having the highest estimated mutual information with the dependent vari-
able tends to create a tree containing the node’s parents. In theory, if the dependent
variable is a response variable with no children in the data set, the classification tree
should consist only of the parents of that node in a causal graph. In practice, it may also
include more remote ancestors (and children and descendants, if there are any) since
the empirical joint distribution of the variables among the observed cases may con-
tain sampling variability that causes it to differ from the underlying joint distribution
determined by the data-generating process. Property 2 can then be used to prune more
remote ancestors (and descendants) by testing whether some variables drop out of the
tree when others are conditioned on first. In principle, those that cannot be eliminated
in this way are the parents and children of a node. To distinguish among parents and
children (which are mutually conditionally independent, given the value of the node
variable) for variables that have both, it is necessary to orient the arcs.

Health responses are often known a priori to be possible children of
exposure-related variables, but not possible parents. Moreover, earlier observations
can usually be causes (parents) of later ones but not consequences (children). These
properties help to orient the arrows near exposure and response variables in a causal
graph. [More generally, if time-series information is available on variables, as in
many longitudinal epidemiological studies, then X is a potential cause of Y only if
the history of X up to and including each time t is informative about the future of Y
after t, even after conditioning on the past of Y, i.e.,

I(X –(t);Y +(t) | Y –(t)) > 0, where X –(t) denotes the set of X values at times
≤ t, Y –(t) the set of Y values at times ≤ t, and Y +(t) the set of Y values after t.
This provides an information-theoretic generalization of the concept of Granger
causality for multiple time series (e.g., Guatama and Van Hulle, 2003).]

Property (f) above, which shows that mutual information with a variable Y
increases along chains of variables leading to it, helps to orient the remaining arcs.
The following PC algorithm (Glymour and Cooper, 1999, modified here to use
classification trees and mutual information) orients arcs even without such domain-
specific knowledge:

1. Grow a classification tree for each node. Create an undirected arc between each
node and every node that appears in its tree (and that cannot be forced to drop
out after conditioning on other variables).
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2. Orient any triple of nodes X – Y – Z as X→ Y← Z if and only if I(X ; Z | Y) > 0,
i.e., if and only if X and Z are dependent when conditioned on Y.

3. Orient any remaining triple X→ Y – Z as X→ Y→ Z.
4. Orient any pair X – Y with a directed path through X to Y as X→ Y. [For example,

if X – Y→ Z and I(Z; Y) > I(Z ; X) > 0 and I(Z ; X | Y) = 0, then create X→ Y.]
5. Repeat steps 3–5 until no more arc directions can be assigned.

A variety of other algorithms are now available for fitting causal graph models
even to very large multivariate data sets (Murphy, 2001; Tsamardinos et al., 2003;
Wood et al., 2006; Silander and Myllymäki, 2006; Ellis and Wong, 2008).

We can summarize our proposed methodology for identifying potential causal
exposure-response relations in large data sets, even if the relations are nonmono-
tonic, as follows. First, preprocess the data to remove any redundant variables and
to eliminate any variables that occur after the response of interest or that are other-
wise known not to be candidates for potential causal variables. (Redundant variables
appear as the only nodes in each other’s classification trees.) Next, identify parents
of the response variable in the causal graph for that node. Finally, fit a nonparametric
model, such as a classification tree, a nonparametric regression model, or simply the
relevant conditional probability table (CPT) (possibly smoothed or approximated
by simple regression functions), to the reduced data set consisting of the response
variable – which is the dependent variable – and its parents. These steps can be
implemented using commercially available classification tree and Bayesian net-
work learning software products, such as KnowledgeSeekerTM and BayesiaLabTM,
respectively.

Current classification tree and Bayesian network-learning algorithms involve
considerable sophistication and intensive computation. Many create multiple ran-
dom subsets of training data and then use these subsamples to “vote” for the most
informative predictors, thus reducing errors due to overtraining on a single data set
and improving the robustness of model predictions. Another popular technique is
to assess performance on multiple subsets of test data (“model cross-validation”)
to avoid overfitting models and underestimating prediction error rates. Although
such algorithmic refinements increase the computational burden, they can signifi-
cantly reduce the error rates in model predictions (Bauer and Kohavi, 1999). The
techniques in this chapter and in Chapter 7 treat such computational statistics algo-
rithms as black boxes; thus, further improvements in the algorithms for learning
classification trees and causal graphs from data will not change how they are used
in risk assessment.

Illustration for the Campylobacteriosis Case Control Data

The cross-tab information in Fig. 6.1 illustrates a single “split” (i.e., conditioning
the dependent variable, CASE STATUS, on a single variable, FAST FOOD PER
WEEK). But this is only one of many statistically significant splits, each having
positive mutual information with the dependent variable. Figure 6.2 shows a more
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fully developed classification tree. All of the variables in this tree are parents of
CASE STATUS, in that none can be eliminated by conditioning on other variables.
(Potential children and descendants of CASE STATUS, mainly describing the dura-
tion and treatment of diarrhea, were pruned in the preprocessing step. Throughout
the tree, variables are coded so that 1 = Yes, 2 = No, 7 and 77 = don’t know/no
answer/refused to answer. The KnowledgeSeekerTM algorithm is computationally
efficient, taking on the order of 10 seconds to develop each “split” in the tree when
run on a laptop.)

In this tree, all potential confounding by other variables in the data set has auto-
matically been eliminated, as discussed above. Thus, the statistically significant (but
nonmonotonic) relation between FAST FOOD PER WEEK and risk (i.e., CASE STA-
TUS) is potentially causal: It cannot be explained away by confounding with other
variables in the data set. For example, consider the hypothesis that men, who intrin-
sically have greater susceptibility to campylobacteriosis than women, also eat at fast
food restaurants more frequently, and that this explains the association between fast
food dining and risk of campylobacteriosis. This hypothesis can be diagrammed
as FAST FOOD PER WEEK← SEX→ CASE STATUS. It is directly falsified by
the classification tree in Fig. 6.2, since the CASE STATUS varies significantly with
FAST FOOD PER WEEK even after conditioning on SEX = F, thus proving that
I(CASE STATUS ; FAST FOOD PER WEEK | SEX) > 0. Other confounding-based
explanations for the parents of CASE STATUS shown in Fig. 6.2 are similarly pre-
cluded by the data. (A few other variables, including drinking untreated water and
having health insurance, were also identified as parents of CASE STATUS for small
subpopulations but were pruned from the bottom of Fig. 6.2, leaving the tree shown.
This was done to save space and because they affected only small fractions of the
sample and did not appear in multiple parts of the tree, indicating that they had at
most only very limited impacts.)

Also interesting is the set of variables that do not appear in the full classification
tree for CASE STATUS. For example, it is well known that drinking raw milk is
a risk factor for campylobacteriosis. Indeed, the tree-growing program lists it as a
significant split, i.e., a variable having significant mutual information (and positive
association, by any measure) with CASE STATUS. However, conditioning on VISIT
FARM eliminates drinking raw milk as an additional parent of CASE STATUS: they
belong to the same cluster of closely associated, partly redundant variables. Simi-
larly, although CHIKSOAP, which records whether subjects reported using soap to
wash after handling raw chicken in the kitchen, is a parent of CASE STATUS, buying,
handling, thawing, and cooking raw chicken and eating chicken at home all belong
to a cluster of tightly interrelated variables that are all associated with a reduced
risk of being a case. (This cluster of variables is represented by THAWCHICK
and THAWCK2 in Fig. 6.2, referring to thawing chicken in any manner and thaw-
ing chicken in the refrigerator at home, respectively.) Thus, CHIKSOAP may be a
marker for kitchen hygiene in general, rather than specifically for chicken-associated
risk.

Figure 6.3 displays the u-shaped exposure-response relation identified in Fig. 6.2
for FAST FOOD PER WEEK and CASE STATUS in a more conventional (interaction
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Fig. 6.3 A u-shaped exposure-response relation for campylobacteriosis in women

plot) format. CASE STATUS has been recoded in Fig. 6.3 so that 1 = case, 0 =
control, as this is more usual than the 1 vs. 2 coding used in the original Centers for
Disease Control data file. Table 6.1 summarizes the sizes of the different groups.

The reduction in risk between the group exposed to zero fast food meals per
week and the group exposed to fast food once or twice per week is statistically
significant (p < 0.05) by all standard tests. Although beyond the scope of the data,
it is tempting to speculate that people with low exposures to fast food may have less
acquired immunity to common pathogens such as Campylobacter, as previously
noted for outbreaks associated with raw milk consumption (Blaser et al., 1987).

Table 6.1 Data for Fig. 6.3

Fraction of exposed women that
Fast food meals in prior week are campylobacteriosis cases N

0 0.51 276
1 0.33 160
2 0.31 104
3 0.37 54
4 0.37 19
5 0.64 22
All groups 0.42 650
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Conclusions

This chapter has proposed and illustrated information-theoretic methods for detect-
ing potential causal nonlinear exposure-response relations in large data sets, by com-
bining ideas from causal graph (or Bayesian network) modeling and classification
tree analysis. Applied to a recent food safety case control data set, classification tree
analysis successfully discovered a potentially causal (significantly informative, not
confounded) u-shaped relation between the consumption of fast food by women and
the resulting risk of campylobacteriosis. This sex-specific nonmonotonic relation
has not previously been identified in analyses of this data using logistic regression
modeling (e.g., Friedman et al., 2004).

In principle, classification trees can find arbitrarily shaped causal relations in
other large data sets. The essential steps are

(a) Identify informative variables that help to predict the dependent variable (e.g.,
illness risk) of interest. This can be accomplished via classification tree analysis
(even for nonmonotonic relations).

(b) Eliminate variables (e.g., confounders, redundant variables, variables that fol-
low the effect of interest in time) whose mutual information with the dependent
variable is fully explained away by the information contained in other variables,
or that are inconsistent with the hypothesis of causality. This can be accom-
plished by conditional independence tests, e.g., using Bayesian network algo-
rithms (including classification tree analysis of individual nodes in a Bayesian
network).

(c) Quantify the remaining relation between the dependent variable and its par-
ents using nonparametric methods (e.g., classification trees and conditional
probability tables with nonparametric smoothing). The final relation, even if
nonmonotonic, reveals the shape of potential causal relations between the
dependent variable and a minimal set of predictors (its “parents” in a causal
graph).

In practice, current classification tree algorithms and Bayesian network learning
algorithms are practical even for data sets with thousands of records and variables,
as run times are on the order of a few minutes on current laptop or desktop machines.
Thus, these methods appear to be practical for identifying nonlinear relations even
in large epidemiological data sets.

The methods discussed in this chapter show what information should be included
in a risk model: information about the causal antecedents of the health effects (or
other responses or consequences of interest) that the decision maker seeks to con-
trol by making decisions about controllable variables (e.g., preventable exposures).
For example, if the total preventable campylobacteriosis risk depends primarily on
fast food consumption by women, but is reduced by the preparation and consump-
tion of home-cooked chicken, then risk management strategies intended to reduce
campylobacteriosis rates should focus on reducing the risks from fast food con-
sumption by women, rather than on reducing the risks from home-cooked chicken.
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A risk model should then include gender, fast food consumption, and home-cooked
chicken preparation and consumption as explanatory variables. Such information is
crucial for avoiding the construction of causally irrelevant risk models such as the
“risk = K × exposure” model in the counterexamples in Chapter 5.

In summary, causal information provided by data-mining and causal modeling
techniques can be invaluable in constructing and validating risk assessment models
that show how risks will change when relevant causal drivers are changed – a pri-
mary goal of risk modeling. Chapter 7 focuses on how to use such data to test causal
hypotheses and validate or replace causal assumptions in risk models.



Chapter 7
Overcoming Preconceptions and Confirmation
Biases Using Data Mining

Data-mining methods such as classification tree analysis, conditional independence
tests, and causal graphs can be used to discover possible causal relations in data sets,
even if the relations are unknown a priori and involve nonlinearities and high-order
interactions. Chapter 6 showed that information theory provided one possible com-
mon framework and set of principles for applying these methods to support causal
inferences. This chapter examines how to apply these methods and related statisti-
cal techniques (such as Bayesian model averaging) to empirically test preexisting
causal hypotheses, either supporting them by showing that they are consistent with
data, or refuting them by showing that they are not. In the latter case, data-mining
and modeling methods can also suggest improved causal hypotheses.

A powerful motivation for developing and using data-mining and causal mod-
eling methods in risk assessment is that doing so can help to reveal unanticipated
relations and identify conceptual blind spots in the initial understanding of risk.
These methods encourage and support learning from data. They can help to over-
come the common human tendency to impose one’s a priori beliefs on the inter-
pretation of data, discussed in Chapter 1. To recapitulate, most people – including
scientists, risk analysts, and policy makers – make mistakes and exhibit powerful
biases in reasoning about causation, if-then relations, and evidence. Common pat-
terns include drawing decision-related conclusions and prematurely accepting spe-
cific causal hypotheses or explanations for observations, often based on narrative
plausibility rather than on sound inference from factual evidence. There is also a
strong and well-documented tendency to emphasize evidence that appears to con-
firm preexisting beliefs and causal judgments, while ignoring or discounting discon-
firming evidence.

This chapter proposes that data-mining, statistical analysis, and causal modeling
methods can help to overcome these tendencies. They can reveal unexpected truths
about causal relations in data. To illustrate these methods, we consider a recently
reported positive relation between a particular preventable exposure [of food ani-
mals to the streptogramin antibiotic virginiamycin (VM), used in poultry] and a
particular health effect risk [resistance to VM-like (streptogramin) antibiotics in
humans]. This reported association has been used to argue that poultry consump-
tion causes increased resistance risks, that serious health impacts may result, and
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that, therefore, the use of VM in poultry should be restricted. However, the origi-
nal study compared healthy vegetarians to hospitalized poultry consumers, raising
the possibility that perhaps other, nonpoultry-related differences between healthy
vegetarians and hospitalized patients might explain the observed differences in their
resistance outcomes. Data mining and causal modeling can be used to explore this
logical possibility.

Confirmation Bias in Causal Inferences

Recall from Chapters 1–3 that quantitative risk assessment (QRA) is largely about
identifying and quantifying probabilistic causal relations between exposures and
adverse consequences. Risk managers typically want to know how much of an effect
(if any) reducing preventable exposures would have on reducing adverse human
health consequences such as deaths or illnesses per year. QRA offers methods to
help answer such questions.

Although causal relations are crucial to effective risk management, experimental
psychology and neuropsychological studies demonstrate that, without using formal
quantitative methods such as QRA, most people (including scientists) are prone to
flawed and biased intuitive reasoning about causality and the relevance of evidence
(Fugelsang and Dunbar, 2005). A common pattern, sometimes called “premature
closure,” is that individuals and groups tend to adopt prematurely causal hypotheses
and conclusions to explain observations, based on inadequate information (Borrell-
Carrio and Epstein, 2004). They then tend to seek confirming evidence and to ignore
or underweight disconfirming evidence for the favored causal hypothesis – the phe-
nomenon of confirmation bias (Fugelsang et al., 2004; Jonas et al., 2001). Experi-
mental psychologists have also found that real-world reasoning about conditionals
(if-then relations) and causality often differs from the prescriptions of formal logical
analysis and modeling (Evans et al., 2007; Over et al., 2007; Oberauer, 2006).

If risk analysts fall into such “decision traps,” they may end up publishing con-
clusions and advocating risk management actions that are not objectively justified
and that then fail to achieve their stated objectives for reducing risks.

Example: The Wason Selection Task

A famous experiment investigates how people reason about conditionals and evi-
dence, by showing subjects four cards with letters and numbers on them, such as A,
4, 7, D (Staller et al., 2000). Subjects are told that each card has a letter on one side
and a number on the other. They are asked to identify the smallest subset of cards
that must be turned over (revealing what is printed on their other sides) in order to
decide whether the following hypothesis is correct:

H: “Any card that has a vowel on one side has an even number on its other side.”
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After some thought, most subjects correctly identify that it is necessary to turn
over card A, in order to confirm whether the prediction from H is true (i.e., whether
this card has an even number on its other side). But relatively few subjects spon-
taneously recognize that it is also necessary to turn over card 7, to verify that
hypothesis H is not disconfirmed by the appearance of a vowel on its other
side. (Many subjects also fail to recognize that turning over cards 4 or D
would be irrelevant, because nothing that appears on their reverse sides can dis-
confirm hypothesis H.) Thus, even in this logically simple situation, it is dif-
ficult for most people to pinpoint the evidence needed to decide whether a
simple stated hypothesis is true. (Performance improves when abstract logical
problems are replaced by concrete problems involving social situations, such
as detecting violations of an agreement to abide by an if-then rule. But risk
analysis often deals with abstract, logical descriptions. For more on how per-
formance on the Wason selection task varies across application domains, see
www.psych.ucsb.edu/research/cep/socex/wason.htm#descriptive%20rule.)

The tendencies to seek confirming evidence, neglect disconfirming evidence, and
overinterpret confirming evidence as support for a prior causal hypothesis are not
confined to contrived abstract psychological experiments such as the Wason selec-
tion task. They also occur in important real-world decisions with significant finan-
cial or health consequences, as discussed in Chapter 1.

Example: Attributing Antibiotic Resistance to Specific Causes

A recently published study (Unicomb et al., 2006) noted that “The Australian gov-
ernment has prohibited the use of fluoroquinolones in food-producing animals” and
“Among locally acquired infections, only 2% of isolates (range, 0%–8% in dif-
ferent states) were resistant to ciprofloxacin [a fluoroquinolone].” This is lower
than the estimated corresponding average resistance rates for locally acquired infec-
tions in countries that have used fluoroquinolones for animal health (e.g., 6.4% in
the United States) (Cox and Popken, 2006b). The authors interpret this difference
causally: “The very low level of ciprofloxacin resistance in C. jejuni isolates likely
reflects the success of Australia’s policy of restricting use of fluoroquinolones in
food-producing animals.”

The presented evidence is certainly consistent with this causal hypothesis, much
as turning over card A and finding an even number, or turning over card 4 and finding
a vowel, would be consistent with hypothesis H in the Wason selection task. But
more than such consistency is needed to support a causal hypothesis. For example,
the same evidence may be consistent with different causal hypotheses. To support
a unique causal interpretation of the data, other equally plausible or more plausible
competing explanations should be eliminated (Grimes and Schulz, 2002). Formal
mathematical models of causality (Greenland and Brumback, 2002) point out that
if one variable [such as fluoroquinolone (FQ) use in animals] truly causes another
(such as FQ resistance in human patients), then the association between them should
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not be explained away by any third variable. That is, conditioning on a third variable
should not eliminate the association. Yet this particular study did not correct for
the fact that, historically, “Australia prescribes proportionally less fluoroquinolones
than other developed countries due to prescribing restrictions” (Baird, 1997). It did
not address whether this low human use, rather than (or in addition to) low animal
use, might explain the lower rate of FQ resistance in human patients in Australia.
The suggested causal interpretation has therefore not been established by the data
presented, even though it is consistent with it.

More generally, current widespread suspicion and concern that the use of ani-
mal antibiotics increases the frequency of antibiotic-resistant illnesses in humans
provides a point of departure for many published interpretations of data and discus-
sions of risk associated with particular “bug-drug” pairs. Yet authors seem not to be
always mindful of the potential for confirmation bias and for invalid causal infer-
ences in such settings, nor of the importance of investigating potential disconfirming
evidence and plausible alternative explanations before drawing causal conclusions
based on data that are consistent with alternative causal hypotheses (Shipley, 2000;
Cox, 2001).

This chapter considers how current statistical models and methods can help to
avoid potential confirmation biases (without introducing opposite preconceptions
and biases) in interpreting animal antibiotic use and human health data causally. As
a case study, we focus on a recent report by Kieke et al. (2006) that announced a
positive relation between the use of virginiamycin (VM) (a member of the strep-
togramin class of antimicrobials) in poultry and resistance determinants or readily
“inducible resistance” (discussed below) to VM-like (streptogramin) antibiotics in
humans. The study concluded that “The results of the present investigation sug-
gest that virginiamycin use in poultry contributes to human carriage of E. faecium
that contains streptogramin resistance genes with readily inducible resistance.” This
appears to be a causal conclusion: that virginiamycin use in animals contributes to
carriage of E. faecium with antibiotic resistance potential in humans. Based on this
causal interpretation, an accompanying editorial (Frimodt-Moller and Hammerum,
2006) called for reduced use of virginiamycin use in food animals.

The following sections examine the evidence on which this suggested causal
interpretation is based. They show that the data the authors analyzed do not justify
this causal interpretation over others. Indeed, we shall see that conditional inde-
pendence relations in the data (see Chapters 3 and 6) suggest a different causal
explanation: that the “readily inducible resistance” defined and reported by Kieke et
al. results from selection pressures associated with the hospital environment, rather
than with food animals.

The existence of alternative plausible causal interpretations for the same data
raises the central challenge addressed in this chapter: To what extent can current sta-
tistical methods objectively determine which of several competing causal hypothe-
ses is best supported by observed data, and how (if at all) can such data be used to
identify and eliminate incorrect or unsupported explanations? QRA methods typi-
cally seek to constrain as tightly as possible the set of causal interpretations that are
consistent with or implied by available data, in part by using the data to identify and
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eliminate incorrect explanations where possible. Yet any claim to have done so using
objective data analysis invites skepticism from those who favor the discarded causal
theories. This gives particular value to methods of analysis that can produce valid
conclusions using generally accepted statistical methods that can be independently
replicated and verified by all parties.

The following sections seek to identify and illustrate such methods for VM and
human streptogramin resistance. We first make some qualitative observations about
the study design, and then we turn to quantitative risk modeling. Although we focus
on the specific example of virginiamycin and streptogramin resistance, we believe
that data analysis and modeling methods that avoid confirmation bias in causal attri-
bution for antibiotic resistance are crucial for sound antimicrobial risk assessment
and deserve wider development and application.

Study Design: Hospitalization Might Explain
Observed Resistance Data

E. faecium is a commensal bacterium commonly found in human, bird, and animal
intestines. It is not normally harmful and has been used as a probiotic dietary sup-
plement for both humans and poultry. However, E. faecium can threaten seriously
ill human patients, typically in intensive care units (ICU) of hospitals, via oppor-
tunistic infections. ICU patients with immune systems weakened by chemotherapy,
organ transplants, AIDS, leukemia, or other conditions, or with surgical wounds or
invasive medical devices, are at the greatest risk of opportunistic E. faecium infec-
tions. E. faecium bacteria have a high level of intrinsic and acquired resistance to
some antibiotics, such as penicillin and vancomycin. Vancomycin-resistant E. fae-
cium (VREF) have become prevalent in hospitals on several continents, and other
drugs such as linezolid or the streptogramin combination Synercid R© (quinupristin-
dalfopristin) may be used to treat these VREF cases (Cox and Popken, 2006). This
development has focused attention on the ongoing use of the streptogramin virgini-
amycin in food-producing animals.

Kieke et al. (2006) compared newly admitted (36 hours or less) hospitalized
patients who ate poultry (and other meats) to healthy vegetarians in four com-
munities. They concluded that human exposure to poultry was associated with
the presence of quinupristin-dalfopristin (QD) resistance genes and experimen-
tally inducible QD resistance in human fecal E. faecium. No actually QD-resistant
E. faecium were found. QD is a streptogramin combination used in the human
drug Synercid R©, and resistance to the animal-use streptogramin drug virginiamycin
confers cross-resistance to Synercid R© in E. faecium (Donabedian et al., 2006).
“Inducible QD resistance” is not (yet) a standard outcome measure and has no
widely accepted definition (although it is well recognized that some resistance genes
in some species of bacteria must be switched on by external stimuli, i.e., induced,
in order to be expressed). Inducible QD resistance has not been shown to be a
valid surrogate for clinically relevant QD resistance. The investigators generously
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provided us with their data (Belongia, 2007), enabling us to attempt to replicate and
validate their results.

The study design, comparing hospitalized exposed cases to healthy controls,
clearly creates a potential for uncontrolled confounding and noncausal statistical
associations. As noted by Kieke et al., “[C]onfounding may have occurred, and
other factors associated with vegetarian status may have contributed to the observed
associations.” Qualitatively, it seems plausible that frequently hospitalized patients
may be exposed to nosocomial E. faecium and other hospital-associated conditions
that healthy patients, including the vegetarians in this study, are not exposed to.

This study design suggests the following possible alternative explanation for the
reported associations between resistance-related outcomes and exposure to poultry:

Resistance←Nosocomial exposures←Hospitalized patients→Poultry exposure.

This causal graph highlights that the subjects who self-reported exposure to poul-
try meat (namely, the hospitalized patients) are also the ones exposed to nosocomial
infections. Since nosocomial vancomycin-resistant E. faecium (VRE) infections are
known to be associated with various types of resistance (Rice, 2006), it is unsurpris-
ing that poultry exposure may be associated with resistance in this study (because
poultry eaters are hospitalized patients), even if poultry exposure does not necessar-
ily cause increased resistance. Indeed, as noted by Kieke et al., “All PFGE patterns
from humans and retail poultry were distinct, and no common clones were iden-
tified in both sources.” This is consistent with the results of other recent studies.
For example, Donabedian et al. (2006) concluded that “[Quinupristin-dalfopristin-
resistant E. faecium] from humans did not have PFGE patterns similar to those from
animal sources.” Of course, the lack of a match might only indicate that the bac-
teria isolated from humans in these specific studies differed from the bacteria in
these specific retail poultry samples. But, in general, no studies have demonstrated
the transfer of quinupristin-dalfopristin resistant E. faecium from food animals to
human patients; to date, studies that have searched for such a relation have not
found it.

Kieke et al. (op cit.) reported that among participants without recent antibiotic
use, “Carriage of E. faecium with vatE [a streptogramin resistance gene] was sig-
nificantly associated with both touching raw poultry and higher poultry consump-
tion in the combined hospital patient and vegetarian group.” But this could simply
reflect that hospitalized patients (many of whom had more than five physician visits
in the previous year) have higher proportions of bacteria with resistance determi-
nants than healthy subjects (i.e., vegetarians, in this study – who, of course, had
little or no exposure to poultry). Interpreting the reported association as reflecting
exposure to poultry rather than exposure to the hospital environment, or as a reason
to “raise additional concerns regarding the continued use of virginiamycin in food
animals” (Kieke et al., 2006), is unjustified if hospitalization, rather than transfer
from poultry, explains the observed association between poultry exposure and car-
riage of E. faecium with vatE. Thus, a challenge for QRA is to determine which
causal hypothesis is most consistent with the data.
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Choice of Endpoints

As might be expected, the QD resistance prevalence is significantly higher for iso-
lates from conventional retail poultry (56% prevalence) compared to antibiotic-free
retail poultry (13%). Fortunately, resistance in poultry isolates was not observed to
transfer to resistance in human isolates: “None of the human E. faecium isolates had
constitutive resistance to quinupristin-dalfopristin” (Kieke et al., 2006). Antibiotic
use on farms was also associated with significantly reduced E. faecium prevalence
in retail poultry (48% for conventional retail poultry samples compared to 88% for
antibiotic-free poultry samples).

A striking feature of the data is that E. faecium was isolated from 65% of vegetar-
ians (65 out of 100) but from less than 19% of patients (the group that consumed and
handled poultry) (105 out of 567). Moreover, the fraction of “susceptible” isolates is
significantly higher for hospital patients than for vegetarians (24% vs. 12%). Thus, a
randomly selected member of the poultry-exposed group (i.e., hospital patients) has
probability (105/567) × (1 – 24%) = 14% of having reduced (“intermediate”) QD
susceptibility of E. faecium, compared to a much higher probability of (65/100) ×
(1 – 12%)= 57% for a randomly selected member of the nonpoultry-exposed group
(i.e., vegetarians). Such calculations might be interpreted as suggesting that chicken
eaters have less risk than vegetarians of carrying intermediate QD-susceptible
E. faecium. These data refer to constitutive resistance and susceptibility (i.e., exhib-
ited with no preexposure to virginiamycin). Also, most, but not quite all, hospital
patients were self-reported consumers of chicken and other meats.

These calculations show how the same data set might be interpreted to support
different conclusions about the human health effects of exposure to poultry, depend-
ing on the modeler’s choice of outcome measures and comparisons to perform.
Clearly, more objective methods of causal analysis and interpretation are desirable.

Quantitative Statistical Methods and Analysis

This section considers statistical models that can potentially help to resolve ambigu-
ities and select among rival causal interpretations using relatively objective methods
(especially, conditional independence tests).

Table 3.3 of Chapter 3 provides a checklist of potential threats to valid causal
interpretations of the observed statistical association (left column) and some sta-
tistical methods developed to help avoid or eliminate these threats (right column).
A “threat” to valid causal interpretation of an association is a potential noncausal
explanation for it. Many of the statistical techniques in the right column have exten-
sive technical literatures that have been previously surveyed, as well as implemen-
tation algorithms that are now widely available and included in standard statistical
packages. In this chapter, therefore, we only briefly describe the main methods and
software packages used to address selected threats relevant for this case study.

Applying this checklist to the case study identifies several potential statistical
concerns. Table 7.1 lists these concerns and statistical methods to address them.
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Table 7.1 Potential statistical problems and solutions

Potential problem Solution approaches illustrated in this chapter

Model form selection • Use nonparametric techniques (classification trees)
• Use multiple model forms; test sensitivity of conclusions to

model form

Variable selection
(for exposure, responses,
confounders, covariates)

• Bayesian model averaging (BMA) (Hoeting et al., 1999)
• Classification tree analysis (see Chapter 6)

Coding of variables • Use automatic quantization and partitioning techniques
(e.g., classification trees) to set category boundaries

• Do not discretize continuous variables

Missing data for explanatory
variables

Use Bayesian multiple imputation

Selections of exposure and/or
response metrics

Use multiple metrics; test sensitivity of conclusions to choice
of metrics

Multiple testing/sample
selection bias

Use all data, not just selected subsets

Sample Self-Selection Bias

Fewer than 40% of invited hospitalized subjects agreed to participate in the study.
Study participants might differ systematically from those who did not agree to par-
ticipate. We could not address this potential limitation, as the data had already been
collected.

Bayesian Model Averaging (BMA) Avoids Variable Selection Bias

The conclusions in the case study (Kieke et al., 2006) are contingent on the validity
of a regression model that selects a specific subset of predictors (including EAT-
POULTRY; see Table 2 of the study) while excluding others (such as concurrent
hospitalization status). It is now well known that, in such settings, model selec-
tion bias can exaggerate estimated effects and significance levels by ignoring model
uncertainty about which variables to include as predictors, implicitly assuming that
the selected model has the correct predictors (Hoeting et al., 1999). We examined
this issue using Bayesian model averaging (BMA) software (Raftery et al., 2008)
for the R statistical computing environment (R Development Core Team, 2008) to
account for uncertainty about variable selection.

BMA assigns a posterior probability to each model in a set of plausible models
(subsets of candidate variables), each with coefficients determined through stan-
dard regression procedures. It computes the posterior mean model coefficients for
each variable and their standard errors. We used this information to compute pos-
terior odds ratios and confidence intervals for each variable that account for model
uncertainty. A key output of the algorithm, probne0 (probability not equal to zero,
shown in Tables 7.3, 7.4, and 7.5), gives the probability that each variable appears
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Table 7.2 Counts of missing data in the Marshfield case study data set

Variable Meaning Missing data count

TouchBeef Subject touched beef 3
TouchPork Subject touched pork 4
BEEFTOT MO Times ate beef in prior month 4
PORKTOT MO Times ate pork in prior month 2
EATPOULTRY Subject self-reported eating poultry 3
POULTRYTOT MO Times ate poultry in prior month 6
COOKOWN MO Times cooked own meal in prior month 3
TOUCHPOULTRY Subject self-reported touching poultry 4
GRADE2 Highest grade or year of school 1
HOSP GT1 Had >1 hospitalization in prior 12 mo 1
ICU Was admitted to ICU in past 12 mo 1
LIVEBIRDEXP Exposure to live turkey or chickens 2

Total 34

(i.e., has a coefficient significantly different from zero) in a randomly selected plau-
sible model. We also computed conditional odds ratios, i.e., odds ratios conditioned
on the variable appearing in a model.

Using Continuous Variables Avoids Dichotimization/Variable Coding
Bias for Exposure

Kieke et al. dichotomized a continuous variable (POULTRYTOT MO), describing
the number of times per month that poultry is consumed, to obtain a binary indicator
of the frequency of poultry consumption. Cases with poultry consumption above the
median level were assigned a value of “high,” while cases below the median level
were assigned a value of “low.” Vegetarians were a separate category.

Such a dichotomization of a continuous predictor can bias effects estimates
(Streiner, 2002; Brenner and Loomis, 1994; Gustafson and Le, 2002; Royston
et al., 2005; Ragland, 1992). At a minimum, alternative cut points should be used
and the results presented (Brenner and Loomis, 1994). Royston et al. (2005) state
that “dichotomization of continuous data is unnecessary for statistical analysis, and in
particular, should not be applied to explanatory variables in regression models.” We
therefore reanalyzed the data keeping POULTYTOT MO as a continuous variable.

Using Multiple Response Variable Definitions Avoids Results That Depend
on Any Single Response Definition

The “median relative percentage of growth in the exposed group divided by that
in the unexposed group” for cultured E. faecium under the experimental condi-
tions of the case study, interpreted by Kieke et al. as a “measure of association
for the inducible resistance models,” has no known clinical relevance. We therefore
considered several possible definitions of the response variable (see Appendix A) to
determine whether the reported associations are robust to variations in definitions.
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Table 7.3 BMA Output for full data set with the presence of vatE (VATE) as the response variable
and without hospitalization status indicator included as a predictor (See text for discussion of the
meanings of column headings)

Probne0 =
probability
(%) that Lower 95% Upper 95% Conditional
variable is a Posterior Odds confidence confidence posterior

Variable name predictor mean ratio limit limit mean

Intercept 100 –4.7348 NA NA NA –4.7348
Hospital1 0
Hospital2 0
Hospital3 0
Hospital4 0
GENDER E 0
AGE 100 0.0486 1.0498 1.0253 1.0782 0.0486
Alcohol 0
Dr Visits2 0
Dr Visits3 0
Dr Visits4 0
TouchBeef 0
TouchPork 0
CM INDEX
(a comorbidity
index)

0

ANYAB BY29 57.2 0.9117 2.4886 1.5821 4.0140 1.5940
BEEFTOT MO 27.5 0.0121 1.0122 1.0038 1.0217 0.0441
PORKTOT MO 0
EATPOULTRY 8.4 0.1776 1.1944 1.0760 1.3728 2.1266
POULTRYTOT MO 0
COOKOWN MO 3.6 –0.0003 0.9997 0.9993 1.0001 –0.0083
TOUCHPOULTRY 0
GRADE22 3.4 0.0445 1.0455 1.0176 1.0748 1.3158
GRADE23 0
GRADE24 0
WORK 0
HOSP GT1 0
ICU 0
LIVEBIRDEXP
(indicates exposure
to live birds)

0

STATE WI 0
RACE2 0
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Table 7.4 BMA output for full data set with the presence of vatE (VATE) as the response variable
and with hospitalization status indicator (HOSPITALIZED) included as a predictor

Probne0 =
probability
(%) that Lower 95% Upper 95% Conditional
variable is a Posterior Odds confidence confidence posterior

Variable name predictor mean ration limit limit mean

Intercept 100 –5.4665 NA NA NA –5.4665
HOSPITALIZED 48.8 1.8606 6.43 2.33 68.93 3.8157
AGE 100 0.0376 1.04 1.01 1.07 0.0376
ANYAB BY29 47.5 0.7000 2.01 1.37 3.02 1.4743
GRADE22 39.7 0.4442 1.56 1.12 2.19 1.1194

Nonparametric Methods and Multiple Alternative Regression Models Avoid
Regression Model Form Selection/Misspecification Bias

The case study did not provide regression diagnostics or model validation results to
indicate whether the reported associations are artifacts of regression model misspec-
ification. We therefore reanalyzed the data using nonparametric (classification tree)
methods, as well as some alternative parametric (regression) models, as follows.

• Logistic regression analysis of vatE resistance gene data (VATE variable)
We modified the bic.glm (BMA for generalized linear modeling) function in
R to use a specialized logistic regression algorithm, logistf (Heinz, 2008) that
addresses bias and separation. Separation occurs in fitting a logistic regression
model if the likelihood converges to a finite value while at least one parameter
estimate diverges to (plus or minus) infinity. This can occur in small or sparse
samples with highly predictive covariates. Without logistf, we found that vari-
ables such as EATPOULTRY did exhibit separation. EATPOULTRY has a value
of 1 (or Yes, coded as Y in other analyses) for all but one patient in the subset of
45 E. faecium-colonized hospital patients without antibiotic use during the pre-
ceding month; for that patient, VATE= 0 (N or No). Thus, without correction, an
inordinately large model weight is placed on EATPOULTRY as a predictor that
separates that one VATE patient from others, but it also has an extremely large
standard error.

• Linear regression analysis of induced resistance values (REP V S P)
With induced resistance (REP V S P) as the response variable, we used BMA
for multivariate linear regression to develop posterior mean regression coeffi-
cients for different variables, computed by the BMA bicreg R function for lin-
ear regression analysis, as inputs to a linear predictive model for the reponse
REP V S P. From these, we computed “adjusted ratios,” similar to those in
Table 4 of Kieke et al. (2006), using the methodology in Appendix A. We also
provided the univariate “unadjusted ratios.” (We extended the ratio concept to
continuous nonindicator variables by using the conditions {> 0; = 0} rather
than {Yes; No}.)
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• Classification tree analysis of VATE and REP V S P
We used the nonparametric classification tree algorithm rpart (Recursive Parti-
tioning and Regression Trees) in the R statistical software to recursively “split”
response variables (VATE or REP V S P) on the values of explanatory vari-
ables (or on ranges of values, for continuous and ordered-categorical variables)
to “best” separate the conditional distributions of the response variables obtained
by conditioning on the splits (using built-in criteria including mutual information
between explanatory and response variables, and F-tests). Each leaf of a classi-
fication tree has a set of corresponding cases that match the description leading
to that tip of the tree. These cases have an empirical joint frequency distribution
of values for all variables. Classification trees are similar to regression models
in that they have a single response variable and multiple explanatory variables.
However, they can complement regression models by discovering nonlinear pat-
terns, high-order interactions, and conditional independence relations in multivari-
ate data (see Chapter 6). The rpart algorithm closely follows Breiman et al. (1984).
To check our results with a different implementation, we also used the commercial
KnowledgeSeekerTM classification tree software discussed in Chapter 6.

Bayesian Multiple Imputation Overcomes Biases from Missing Data

Table 7.2 summarizes missing data values in the case study data set (the “Marsh-
field” data set of Kieke et al., 2006; Belongia, 2007). A total of 14 records out of
170 (one record per subject) had at least one missing value, leaving 156 complete
records. The set of 110 subjects who reported no prior use of antibiotics had six
records with at least one missing value, leaving 104 complete records. The subset
of 45 hospitalized patients with no prior use of antibiotics had five records with at
least one missing value, leaving 40 complete records.

Many standard statistics packages have a default that simply deletes cases with
missing data values. But this can introduce bias and reduce statistical power (Little
and Rubin, 1987; Horton and Kleinman, 2007). Therefore, we used the aregImpute
function of the Hmisc software package (Harrell, 2007) for the R open-source statis-
tical language and environment. This function performs multiple imputation (using
additive regression bootstrapping and predictive mean matching) to approximate
drawing predicted values from a full Bayesian predictive distribution. We used the
procedure on the full set of 170 records, and also for the two subsets of 110 with
no reported prior antibiotic use and 45 hospitalized patients. [The SAS 9.1 software
cited by Kieke et al. (2006) also includes multiple imputation functions, MIANA-
LYZE and MI, but the article does not indicate whether they were used.]

Using All Data Avoids Multiple Testing/Multiple Comparisons/Subset
Selection Bias

Kieke et al. (2006) analyzed a subset of subjects – those with no recent recorded
antibiotic use. While this is common practice and common sense (since recent
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antibiotic consumption could select for antibiotic-resistant E. faecium), it does raise
a statistical issue. The selection was made only after looking at the data and deter-
mining that, unlike other patients, “hospital patients without recent antibiotic use
had an increased risk of carrying E. faecium isolates with vatE if they had touched
raw poultry. . . . On the basis of these findings, results are reported for participants
without recent antibiotic use.” Deciding to report results on a subset of subjects
because it has been found to support one’s hypothesis clearly invalidates the use
and interpretation of standard p-values and significance tests. It risks a strong form
of confirmation bias. (Had the desired association held only in patients who had
reported recent antibiotic use, the authors could have selected that subset instead.)
To address this issue, we reanalyzed the data considering all subjects as well as the
different subsets.

In summary, the statistical methods outlined here attempt to prevent confirmation
bias from entering the analysis via any of the following routes:

• Selecting variables to support specific hypotheses, while excluding other vari-
ables (e.g., by including chicken-related variables but excluding hospital-related
ones, when the two are correlated).

• Selecting or constructing a specific response definition (e.g., for “inducible resis-
tance”) that supports a specific hypothesis, while ignoring other response defini-
tions (e.g., fraction of susceptible isolates) that do not support it.

• Selecting a subset of subjects to analyze (e.g., patients with no self-reported
recent antibiotic use) that supports a specific hypothesis (e.g., that poultry expo-
sure is associated with a QD resistance gene).

• Selecting a single parametric model form (e.g., logistic regression with some
continuous variables such as POULTRYTOT MO dichotomized), when differ-
ent forms or nonparametric methods might give different conclusions.

We also attempted to avoid other potential biases (not necessarily resulting from
choices made by the modeler, and hence not as subject to confirmation bias), by
using multiple imputation for missing data and keeping POULTRYTOT MO as a
continuous variable.

Conditional Independence Tests Can Objectively Choose Among
Rival Causal Models

The preceding measures may help to limit the potential influence of confirmation
bias, but they cannot necessarily discriminate among rival causal models or hypothe-
ses for explaining any associations that still persist in the absence of confirmation
bias. Fortunately, as illustrated in the next section, classification tree analysis can
also be used to test for conditional independence relations among variables, and
these relations, in turn, can be used to test and discriminate among rival causal
hypotheses.
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Consider, for example, the following two alternative causal models:

Model 1 : Nosocomial exposures← Hospitali zed ← Poultry exposure→ Resistance,

Model 2 : Resistance← Nosocomial exposures← Hospitali zed → Poultry exposure.

In these models, the arrows indicate that each variable is statistically indepen-
dent of its more remote ancestors, given the value of its parent (see Chapter 6).
These alternative causal models make different, statistically testable, predictions
about conditional independence relations among variables. Suppose that the vari-
able Resistance is some measure or indicator of actual or potential QD resistance
in E. faecium. (For example, it might be defined as a binary variable indicating the
presence or absence of resistance genes, or as a continuous variable measuring the
level of resistance in a specified test, etc.) Suppose that Poultry exposure is a vari-
able summarizing self-reported exposure to poultry (e.g., as a binary indicator, a
times-per-month measure of frequency, etc.). Finally, let Hospitalized be a binary
indicator variable showing whether the respondent was hospitalized when the study
questionnaire was administered, and let Nosocomial exposures be a variable indi-
cating whether an isolate is of hospital origin.

According to both Model 1 and Model 2, any pair of these variables may be cor-
related. However, according to Model 1 (which may be loosely interpreted as imply-
ing that “Poultry exposure causes resistance”), but not according to Model 2 (loosely
interpreted as “Hospitalization causes resistance”), Resistance should be condition-
ally independent of Hospitalized, given the value of Poultry exposure. Conversely,
in Model 2, but not in Model 1, Resistance should be conditionally independent of
Poultry exposure, given the value of Hospitalized. Thus, these models have quite
different implications for conditional independence relations, and hence statistical
methods for testing conditional independence relations can reveal which model (if
either) is consistent with the data.

Although this example has considered using conditional independence tests to
choose between two prespecified causal models, classification tree analysis can also
be used to determine conditional independence relations in the absence of any pre-
specified hypothesis. Assuming that the data set is large and diverse enough to
correctly reveal these relations, it is then possible to mathematically identify the
possible causal graph models that are consistent with these empirically determined
relations (see Chapters 3 and 6). This supports generating empirically driven causal
theories, without any need to formulate an a priori hypothesis that can then be sub-
ject to confirmation bias.

Results of Quantitative Risk Assessment Modeling for vatE
Resistance Determinant

Table 7.3 shows the main results of the BMA logistic regression analysis for the
presence of the vatE resistance determinant (variable VATE), for the full set of 170
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subjects with E. faecium isolates. The predictors that appear most often among
the different plausible models are AGE, ANYAB BY29 (an indicator of recent
antibiotic use), and BEEFTOT MO (the number of times beef is eaten per month).
Less frequent are EATPOULTRY (self-reported poultry consumption; this verifies
the association reported by Kieke et al.), COOKOWN MO (the number of times
cooked own meal per month, which has a mild protective effect), and GRADE22
(high school graduates). The most significant odds ratio is for the prior use of antibi-
otics (ANYAB BY29). Of the others, all but COOKOWN MO have significant
odds ratios (confidence intervals do not include 1.0), but only slightly so. No indi-
vidual hospital has a significant effect. (Hospital1-Hospital4 are binary indicator
variables for the four hospitals that provided data for this study.)

As previously discussed, poultry consumption is strongly positively correlated
with hospitalization: All but a few hospitalized cases ate poultry, while all nonhos-
pitalized cases, being vegetarians, did not. We therefore created a single summary
indicator variable, “HOSPITALIZED” with a value of 1 for hospitalized cases, and
0 otherwise. Table 7.4 shows the results of a BMA analysis when this hospitaliza-
tion status variable is included as a predictor. (To save space, only the variables
with nonzero inclusion probabilities are shown.) Now, COOKOWN MO and EAT-
POULTRY (see Table 7.2 for variable definitions) drop out. Only HOSPITALIZED
and ANYAB BY29 have highly significant odds ratios. Thus, when both expo-
sure to poultry (EATPOULTRY) and hospitalization status (HOSPITALIZED) are
allowed as candidate predictors, automated variable selection via BMA identifies
HOSPITALIZED, but not EATPOULTRY, as a significant predictor of the presence
of the vatE resistance determinant (VATE). This is consistent with VATE being con-
ditionally independent of EATPOULTRY, given HOSPITALIZED (i.e., with Model
2, but not Model 1, in the previous section).

To check this possibility without assuming any particular parametric regression
model form (thus risking model misspecification biases), we also analyzed the full
data by classification tree analysis. When HOSPITALIZED is excluded, then, sim-
ilar to the BMA analysis, ANYAB BY29, BEEFTOT MO, and AGE are iden-
tified as significant predictors. Once prior antibiotic use (ANYAB29), AGE, and
BEEFTOT MO are accounted for (i.e., conditioned on), no poultry-related variable
appears as a predictor of VATE. In other words, resistance (VATE) is conditionally
independent of poultry consumption, given AGE, BEEFTOT MO, and ANYAB29.

Importantly, the converse is not true: VATE is not conditionally independent of
BEEFTOT MO or ANYAB29, given poultry variables. For example, even after
forming a tree by splitting first on EATPOULTRY and POULTRYTOT (the two
poultry variables that are significantly associated with the response variable VATE),
it is still the case that ANYAB29 (and BEEFTOT MO missing, meaning that a
patient did not provide data about prior beef consumption) still enters the tree as an
additional split. This asymmetry has strong implications for possible causal models.
It implies that EATPOULTRY cannot be a direct parent of VATE in a causal graph,
because its effects are fully “explained away” by the other variables with which it is
correlated (BEEFTOT MO, AGE, and ANYAB29).
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When HOSPITALIZED is included in the data set, it becomes the most important
predictor (first split). Figure 7.1 shows the resulting tree, generated by the commer-
cial software KnowledgeSeekerTM. This tree is read as follows. Each node contains
three numbers. The bottommost number (e.g., 170 in the top node of the tree) shows
the total number of cases described by that node. The middle number (e.g., 23.5%)
is the percent of cases in the node that have VATE = Y (yes, the vatE streptogramin
resistance gene was detected), and the top number (e.g., 76.5) is the percent of cases
with VATE = N (no, it was not detected). These two percentages total to 100% at
each node. The set of splits between the top node and any other node describe the
cases at that node. For example, “HOSPITALIZED = N” is the description for the
65 cases with 0% having VATE = Y and 100% having VATE = N. “HOSPITAL-
IZED= Y and BEEFTOT MO= Y” is the description of the node with four cases,
all of which have VATE = Y.

Classification trees are most often used to identify descriptions (i.e., conjunctions
of variable values or ranges of values) that are highly predictive of or informative
about the response variable (Breiman et al., 1984). However, they can also be used
to reveal which variables (namely, those not in the tree) the response variable does
not significantly depend on, given (i.e., after conditioning on) the subset of variables
that are in the tree. This provides a statistical test for conditional independence rela-
tions in multivariate data sets – a staple of modern causal modeling (see Chapter 6).
The response variable is conditionally independent (at least within the power of the
classification tree algorithm to discover) of the variables not in the tree, conditioned
on the ones that are in the tree. As discussed in Chapter 6, explanatory variables that
cannot be forced out of a tree by conditioning on other variables (or, more generally,
explanatory variables that the response variable cannot be made statistically inde-
pendent of by conditioning on other variables) are candidates for having a potential
direct causal relation with the response variable.

Figure 7.1 shows that poultry consumption variables are not significant predic-
tors of vatE risk after conditioning on hospitalization. In other words, condition-
ing on hospitalization makes VATE conditionally independent of poultry variables.
However, importantly, the converse is not true. If one splits (i.e., conditions) on EAT-
POULTRY first, then HOSPITALIZED (and BEEFTOT MO) still enter the tree as
significant predictors (Fig. 7.2). Thus, their effects are not explained away by corre-
lation with EATPOULTRY. This asymmetry shows that poultry variables appeared
to be significant predictors in the case study only because they acted as surrogates
for hospitalization: Including HOSPITALIZED directly as a predictor eliminates
the poultry consumption variables as significant predictors. This goes well beyond
simply stating that hospitalization and poultry consumption are strongly associated
or multicollinear with each other (so that either could act as a surrogate for the
other, e.g., in multiple regression modeling with stepwise variable selection). It sug-
gests that hospitalization is more fundamental than poultry consumption as a pre-
dictor of resistance, since including hospitalization as a predictor makes poultry
variables redundant, but including poultry variables does not make hospitalization
redundant.
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Fig. 7.1
KnowledgeSeekerTM

classification tree for full data
set of 170 subjects with E.
faecium isolates

The pattern of conditional independence relations revealed by these classification
tree analyses is consistent with the causal graph in Fig. 7.3. It is inconsistent with
any causal graph (or causal hypothesis or interpretation) in which EATPOULTRY
is a parent (potential direct cause) of VATE. (“NONVEG” is a mnemonic variable
introduced here to stand for “nonvegetarian.” By the study design, it is the same as
HOSPITALIZED.)
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Results for Inducible Resistance

Table 7.5 shows the BMA linear regression results and ratios with induced resis-
tance (REP V S P) as the response variable. Again, HOSPITALIZED and EAT-
POULTRY enter the model with highly significant adjusted ratios. The sum of their
inclusion probabilities is close to 100% in this table, implying that they are substi-
tutes for each other. Classification tree analysis showed that REP V S P is also
conditionally independent of all poultry variables after conditioning on nonpoul-
try variables. (See Fig. 7.4, which is a tree for a continuous response variable. The

BEEFTOT_MO_missing ← VATE ← AGE 

EATPOULTRY ← NONVEG/HOSPITALIZED → ANYAB_BY29

←

Fig. 7.3 A causal graph model that is consistent with conditional independence relations revealed
by classification tree analysis
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upper number in each node is a conditional mean value for REP V S P.) Again,
however, HOSPITALIZED still enters as an explanatory variable even after condi-
tioning on poultry variables. This empirical finding is inconsistent with any a priori
causal hypothesis that poultry consumption increases the risk of inducible resis-
tance.

Discussion and Implications for Previous Conclusions

The conditional independence relations identified in the case study data do not sup-
port a causal hypothesis that poultry consumption increases resistance risks. There
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was no significant relation between poultry exposure and VATE or inducible resis-
tance after accounting for nonpoultry variables. Poultry-exposed subjects also had
lower risks than other subjects for both E. faecium carriage and intermediate QD
susceptibility.

The case study does not provide resistance results specifically for patients who
might be harmed by QD resistance, i.e., vanA VREF patients (Cox and Popken,
2004b), so its clinical relevance is unclear. Its conclusion (Kieke et al., 2006)
that “The results of the present study suggest that the FDA [draft risk assessment,
FDA-CVM, 2004] model may underestimate the true risk of foodborne acquisition,
because streptogramin resistance genes are commonly found in human fecal E. fae-
cium” appears to be unwarranted by the data. The data do not show that foodborne
resistance occurred, or that any nonzero resistance risk or clinical harm occurred.
To the contrary, they support previous risk assessment modeling predictions that
antibiotic-treated poultry might have lower levels of susceptible E. faecium than
other poultry (Cox, 2005a), while finding no evidence of QD resistance in isolates
from human patients.

Similarly, the case study data do not support the stated conclusion (Kieke
et al., 2006) that “The presence of vatE and inducible streptogramin resistance in
the endogenous fecal flora of newly hospitalized patients creates a genetic reservoir
for the emergence of streptogramin-resistant, vancomycin-resistant E. faecium in the
hospital environment.” First, the study did not specifically examine streptogramin-
resistant, vancomycin-resistant E. faecium, so it cannot support this conclusion. Sec-
ond, many of the “newly hospitalized” patients had a record of many prior visits to
physicians in the past year (and an unknown amount of prior exposure to hospi-
tal bacteria). The data do not suggest that these patients are reservoirs from which
resistant bacteria enter the hospital environment. To the contrary, these patients may
acquire resistant bacteria from the hospital environment, perhaps selected by the
use of antibiotics in hospitals. Because the patients were newly admitted, resistance
might not have been acquired yet on the current visit. Whether it might instead have
resulted from previous exposures depends on details of hospitalization and exposure
histories, transient colonization, and clearance that are not available in the current
study. We do not seek to explain further why or how hospitalization fully accounts
for resistance previously attributed to poultry in this case study; we simply empha-
size that it does so (Figs. 7.1, 7.2, 7.3, and 7.4). Third, vatE has not been shown
to be relevant to resistance in human patients. For example, it was found in none
of 167 tested isolates of E. faecalis and E. faecium from bacteremia patients (Jones
and Deshpande, 2004).

The speculation that future increased use of QD (i.e., SynercidTM) combined
with the presence of resistance genes “might facilitate the rapid emergence of strep-
togramin resistance” (Kieke et al., 2006) is likewise not supported by the study
data, which showed zero QD resistance despite years of QD use in hospitals. It is
also contradicted by a quantitative risk model for the emergence of resistance (Cox
and Popken, 2004a).

Our analysis shows that many nonpoultry variables also have significant unex-
plained associations with induced resistance, including hospital location, age, beef
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consumption, pork consumption, higher education, and alcohol (the latter two with
protective effects). In the 45-case subset of hospitalized patients, the only signifi-
cant adjusted ratio occurred for the indicator variable for college graduates. Thus,
“induced resistance” ratios may not be very meaningful (e.g., they do not indicate
that poultry consumption is any more of a risk factor than educational status or
other nonpoultry variables) and may reflect correlations to hospitalization status
more than anything else.

In summary, although several strong causal conclusions and interpretations of
the case study data have previously been presented that suggest increased human
health risk from virginiamycin use in poultry (Kieke et al, 2006; Frimodt-Moller
and Hammerum, 2006), statistical methods that seek to minimize confirmation bias
and dependence on a priori causal hypotheses do not confirm those conclusions, but
instead support an alternative causal interpretation in which hospitalized patients
have increased resistance risks. Extending the Marshfield study to include healthy
poultry eaters and hospitalized nonpoultry eaters (categories currently of size 0 and
4, respectively) would provide a better basis for the analysis of resistance element
transfers (if any) from poultry to humans.

Summary and Conclusions

When adequate data are available, as in this case study, achieving the goal of objec-
tive causal inference may be helped by the techniques illustrated in this chapter,
such as BMA, classification tree analysis, and conditional independence testing of
causal assumptions and interpretations. The case study in this chapter illustrates
that a risk assessor’s choice of which predictive variables to include in a model
can drive the risk attributed to specific variables, such as poultry consumption. It
can make otherwise nonsignificant associations (e.g., between EATPOULTRY and
VATE) appear significant, by excluding correlated variables (such as HOSPITAL-
IZED) that explain them away.

To avoid such potential biases and dependencies on modeling choices, we have
illustrated how techniques such as BMA, classification trees, and conditional inde-
pendence tests can be used to bypass the human selection of variables, model forms,
responses, subsets of subjects, and a priori causal hypotheses to test. Eliminating
these human choices can reduce the opportunity for confirmation biases and increase
the role and value of empirical data in revealing unexpected findings and causal rela-
tions.

In our analysis of the case study data, poultry consumption turned out to be a
proxy for hospitalization. Rather than confirming prior causal interpretations that the
study data “raise additional concerns regarding the continued use of virginiamycin
in food animals” (Kieke et al., 2006), we found that the use of antibiotics is associ-
ated with a reduced prevalence of bacteria in retail meats. People who eat such meats
have a lower prevalence of E. faecium and a higher proportion of QD-susceptible
E. faecium than people who do not. The study data did not suggest that resistant
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bacteria or resistance determinants were transferred from poultry to human patients.
The data are consistent with the causal hypothesis that hospitalization causes resis-
tance (e.g., vatE presence) but are inconsistent with the alternative causal hypothesis
that poultry consumption causes resistance.

Examining the data using conditional independence tests for potential causality
revealed that poultry consumption acted as a surrogate for hospitalization in this
study. After accounting for current hospitalization status, no evidence remains for a
causal relationship between poultry consumption and increased streptogramin resis-
tance. This example emphasizes both the importance and the practical possibility
of analyzing and presenting quantitative risk information using data analysis tech-
niques (such as Bayesian model averaging and conditional independence tests) that
are as free as possible from potential selection, confirmation, and modeling biases.

The ability to use relatively objective and widely available modern statistical
methods to test alternative causal models has the potential to revolutionize causal
interpretations of risk assessment data. Perhaps the further development and use
of such methods will eventually help to suppress confirmation bias and increase
the value of empirical data in informing understanding of the causes of antibiotic
resistance and other risks.

Appendix A: Computing Adjusted Ratios of Medians and Their
Confidence Limits

Given the vector of posterior mean regression coefficients, β̂ (from the BMA anal-
ysis), we calculate the vector of mean response values (for induced resistance
REP V S P) as

estimated mean response: ŷ = X β̂, (7.1)

where X =

⎧⎪⎪⎨
⎪⎪⎩

1 X11 . . . X1p

1 X21 . . . X2p

: X31 . . . X3p

1 X41 . . . Xnp

⎫⎪⎪⎬
⎪⎪⎭

.

The Xij are the values in the data matrix, after the adjustments described in the
text, for each collection of n observations and p variables that were analyzed. As
in Kieke et al. (2006), we have taken the natural logarithmic transform of y =
ln(REP V S P). For a given variable, j, j = 1, 2, 3, . . . , p, we can partition
the response vector ŷ into {ŷpj , ŷ0 j }, where ŷpj is a vector of the responses, yi, i =
1,2,3,. . . , n, for Xij positive (>0) and ŷ0 j is a vector of the responses, yi, where
Xij was equal to 0. This is a generalization of the criteria where Xij is either “Yes”
(1) or “No” (0), allowing the methodology to be applied to continuous variables as
well. The “adjusted ratio” as defined in Kieke et al. and further generalized for all
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variables, j= 1, 2, . . ., p, is then

adjusted ratio j = median(exp(ŷpj ))/median(exp(ŷ0 j )). (7.2)

To estimate varibility on the mean responses ŷi , we note that the standard formula
for confidence intervals on the mean response is

CI(ŷi ) = Xi .β̂± tα/2,n−k−1
∗σ̂∗

√
Xi .(X T X )−1 X T

i , (7.3)

where

• Xi. is a row, i, of the data matrix, X,
• tα/2,n−k−1 is the t-statistic at confidence level (1–α) with n–k–1 degrees of free-

dom, where n is the number of observations in the data set and k is the number
of variables with nonzero posterior mean coefficients,

• σ̂ is the standard error of the regression estimate =
√∑

(yi−ŷi )2

n−k−1 , where yi=
ln(REP V S P),

• (XTX)–1 is the variance-covariance matrix,
• σ̂ ∗

√
Xi (X T X )−1 X T

i is the standard deviation of the mean response for observa-
tion i.

To compute confidence limits on the adjusted ratios, we used simulation. Each
iteration of the simulation generates a response vector, with each vector element,
i, drawn from a t-distribution (tn–k–1) with mean equal to the mean response, ŷi ,
and standard deviation equal to the standard deviation of the mean response for ŷi

as provided above. From each simulated response vector, we compute an adjusted
ratio for each variable1 as in Equation (7.2) above. We ran the simulation for 10,000
iterations to generate a large distribution for each variable’s ratio. The lower confi-
dence limit we report corresponds to the 0.025 quantile of the sample distribution,
while the upper confidence limit corresponds to the 0.975 quantile of the sample
distribution. The distributions appear to be approximately lognormal, but we have
chosen to use the sample quantiles rather than quantiles of a fitted lognormal dis-
tribution, as this requires making fewer assumptions and we have a large sample to
work with.

1Except for AGE, which has no 0 values.



Chapter 8
Estimating the Fraction of Disease Caused by
One Component of a Complex Mixture: Bounds
for Lung Cancer

Lung cancer illustrates many of the challenges of modeling cause and effect in
very complex systems having only poorly understood causal mechanisms. When
not enough is known to develop useful marginal and conditional probability dis-
tributions for uncertain quantities, it may be practical instead to develop bounds
on uncertain quantities and causal relations. This chapter illustrates bounding for
lung cancer risks. Other areas of quantitative modeling and operations research,
from robust optimization to constraint logic programming, apply a similar insight:
It is often practical to use limited available data to develop bounds on the likely
consequences of actions, even if the data are not adequate to estimate informative,
well-calibrated, probabilities for consequences. This chapter and Chapter 9 discuss
risk bounds for uncertain complex systems. To illustrate how to develop bounds
from data, we quantify bounds on preventable disease risks for two very different
illnesses – lung cancer and penicillin-resistant bacterial infections, respectively.

Motivation: Estimating Fractions of Illnesses Preventable by
Removing Specific Exposures

A current grand challenge for health risk analysis is how best to use “-omics” infor-
mation – that is, mechanistic information and insights emerging from genomics,
proteomics, transcriptomics, metabolomics, and so forth – to improve quantitative
risk assessments (Aardema and MacGregor, 2002; Leighton, 2005). A better under-
standing of metabolic, cell signaling, and molecular-level pathways leading from
exposures to biological effects does not necessarily translate easily to improved risk
assessments and dose-response models. Nor does it always generate large data sets
that allow data mining and empirical causal modeling (Chapters 6 and 7) to learn
about causality and risks directly from data. Other approaches are needed to apply
insights from the improved biological understanding of complex disease processes
and systems to achieve improved health risk models. Analogous challenges arise
for other complex systems: a better understanding of how a system works does not
automatically imply a better ability to predict quantitatively how changing inputs
will change probable outputs. Yet this is a key question for risk managers.

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 8, C© Springer Science+Business Media, LLC 2009

203



204 8 Estimating the Fraction of Disease Caused by One Component of a Complex Mixture

This chapter therefore considers how to adapt and apply probabilistic risk anal-
ysis (PRA) (Chapter 2) to molecular biological information about causal pathways,
to obtain quantitative bounds on the fractions of health risks that can be prevented
by removing specific exposures. We call these the preventable fractions of illness
caused by those specific exposures. Motivating applications include estimating the
fraction of occupational illnesses preventable by removing specific constituents of
exposure (e.g., arsenic, cadmium, etc.) from a workplace and estimating the fraction
of smoking-induced lung cancers that could be prevented by removing specific con-
stituents or groups of constituents [e.g., polycyclic aromatic hydrocarbons (PAHs)]
from the complex mixture of chemicals found in cigarette smoke. A special case of
this latter problem – estimating the fraction of smoking-induced lung cancers that
could be prevented by removing the contribution from a particularly well-studied
PAH-related pathway – serves as a case study.

Why Not Use Population Attributable Fractions?

The population attributable fractions (PAFs) and attributable risks (ARs) discussed
in most epidemiology textbooks are association-based. They do not necessarily
address the causal question of how much illness would be prevented by remov-
ing particular exposures (although they are sometimes misinterpreted as doing so).
The following two counterexamples illustrate the well-known limitations of this tra-
ditional epidemiological concept of attributable risk.

Example: Attribution of Risk to Consequences Instead of Causes

Let X, Y, Z, and RISK be four binary 0-1 indicator variables, with the relations
among them described by the following causal graph (Greenland and Brumback,
2002; Shipley, 2000):

Z ← Y ← X → RI SK .

The intended interpretation is that exposure X directly causes RISK and also
biomarker Y. Y, in turn, causes biomarker Z. For simplicity, “causes” is given a clear
meaning in this example, specified by the following structural equations model:

E(RI SK ) = 0.1X,

Y = X,

Z = Y.

Changing any right-hand-side variable causes its corresponding left-hand-side
variable to change to restore equality; thus, if exposure changes from X = 1
(exposed) to X = 0 (unexposed), then E(RISK) = Pr(RISK = 1) will change from
0.1 to 0 (and Y and Z will also change from 1 to 0). In this sense, the exogenous
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variable X directly causes RISK. On the other hand, exogenously changing Z (or Y)
will have no such effect on RISK: they are consequences, rather than causes, of X,
and are not causes of RISK. Yet attributable risk calculations necessarily assign X,
Y, and Z identical attributable risks (of 100% each), since they have identical val-
ues. Intuitively, what one wants is not a method that assigns X, Y, and Z identical
attributable risks, but rather one that assigns the preventable fractions as follows:
100% for X and 0% for Y and Z, reflecting their asymmetric roles in causing RISK.

Example: Positive Attributable Risk is Compatible with Negative
Causation

The following table shows hypothetical risks to people exposed to four logically
possible combinations of two binary factors, A and B. Each factor has only two
levels, present and absent.

Factor B absent Factor B present

Factor A absent 0 0.2
Factor A present 0.1 0.7

In this table, the attributable risk for factor A is positive, since A is positively
associated with risk at each level of B. A traditional calculation based on the dif-
ference in risks with and without a factor present would attribute (0.7 – 0.1)/0.7 =
86% of the risk for someone exposed to both A and B to factor B; and (0.7 – 0.2)/0.7
= 71% to factor A. (However, removing both factors would not eliminate 86% +
71% = 157% of the total risk.) That A has a positive “attributable risk” and a posi-
tive association with risk at each level of B (and overall) does not necessarily imply
that removing A would reduce risk; thus, these fractions do not answer the practical
question of how much (or what fraction of) risk would be prevented by removing
each exposure. Indeed, risk might increase if A were removed.

For example, suppose that people who are not exposed to A are more likely to
become exposed to B; then reducing exposure to A might increase exposure to B,
and hence risk. As a less trivial example, suppose that factor A is “takes baby aspirin
each day,” that factor B is “has dangerous levels of C-reactive protein (CRP),” and
that the risk in question is the risk of myocardial infarction (MI). While it may be
true that only the subset of people with both factors present (A = B = 1) are at
maximum risk of a heart attack (since people diagnosed as being at greatest risk
may start taking baby aspirin), this does not imply that taking baby aspirin each day
increases the risk of MI. Indeed, it may reduce the risk (the causal effect is protec-
tive), e.g., from 0.9 to 0.7, yet still be associated with increased risk (attributable risk
is positive), simply because only maximum-risk people self-select to take aspirin. In
this example, “being at maximum risk” is a hidden or latent variable, not included
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in the table, that both explains the simultaneous presence of factors A and B and
also causes the high risk of heart attack. The 0.9 for maximum-risk people who
do not take aspirin will never be observed if all maximum-risk people do, in fact,
take aspirin; thus, the table does not include the information needed to identify the
causal impact of taking aspirin. (Hidden variables need not be as blatant as the inten-
tional self-selection of exposures to reduce risks. A genetic polymorphism such as
a CYP450 alteration that makes people both more likely to consume a product and
more likely to suffer an ill effect, whether or not they consume the product, can
induce a positive association and attributable risk for exposure to the product, even if
consumption of the product leaves risk unchanged or reduces it.) Thus, attributable-
risk calculations do not, in general, answer the question that risk managers care
most about: How would risks change if specific exposures were removed? A differ-
ent approach, more grounded in the understanding of causal mechanisms, is needed
to answer this question.

Theory: Paths, Event Probabilities, Bounds on Causation

One of the most useful informal ideas in health risk analysis is that of a causal
path, i.e., a sequence of events, each of which is enabled (and perhaps hastened)
when its predecessors have been completed, and the conjunction of which suf-
fices to create an undesired health effect. This concept is related both to the suffi-
cient causes framework in epidemiology (Rothman and Greenland, 2005; Hoffman
et al., 2005) and also to path sets in systems reliability theory and fault tree analysis
(Chang et al., 2004; Wreathall and Nemeth, 2004), as well as to Horn clauses in
expert systems for reasoning about which events will occur (Martins and Mendes,
2001). In each framework, a conjunction of events (the “path set”) suffices to cause
a particular “top event” of concern (e.g., a heart attack or a lung tumor – the top
event is denoted generically by the 0-1 indicator variable RISK in the preceding
examples).

Any fault tree (or more general Boolean logical system) for determining whether
the RISK top event occurs, based on the occurrences of its predecessors, can be
expressed in a standard “disjunctive normal form” (Brafman, 2004), i.e., as a set of
alternative path sets, any of which suffices to cause the top event. The probability of
the top event, E(RISK), can then be calculated (or closely approximated) from the
probabilities of events in its path sets via well-developed combinatorial reliability
algorithms; and the change in this probability [i.e., in E(RISK)] when a particular
event (e.g., indicating a specific exposure) is prevented from happening can be used
to quantify various measures of the “importance” of that event in causing the top
event (e.g., Chang et al., 2004). Moving from these concepts to a measure of the
reduction in E(RISK) (i.e., a reduction in the expected fraction of cases in which
RISK will equal 1 instead of 0) when a particular event or path set is blocked or
removed might seem to be a small step and a useful contribution to defining and
quantifying preventable fractions.
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However, using this seemingly simple intuitive idea in health risk analysis con-
fronts formidable practical and conceptual challenges. A complete path set (i.e., a set
of events whose conjunction genuinely suffices to cause the top event) may not be
known; the set of all such path sets is also often unknown; crucial events may not be
observable with available data; the “occurrence” of key events (such as adduct for-
mation or cell proliferation) is often a matter of degree, rather than a simple binary
event; events may be transient (e.g., damage to a cell may be repaired); and the
exact meaning of “cause” is notoriously hard to define satisfactorily. Despite these
difficulties, useful progress can be made – and many philosophical pitfalls about the
meaning of causation can be avoided – by using observed co-occurrence frequen-
cies of specific biological events and conditions to estimate upper bounds on the
increase in probability of a top event created by a specific component of exposure.

The main idea is to apply logical inequality constraints, such as the following,
to individual-level molecular epidemiological data to obtain solid upper bounds on
incremental probabilities of causation:

Pr(X caused Y) ≤ Pr(X preceded Y) ≤ Pr(X and Y both occurred). (8.1)

Here, X and Y represent events or conditions that can be observed in individuals.
(These inequality rules are written in the past tense because we envision applying
them to a data set recording what has happened in each of many individuals. How-
ever, tense is really irrelevant insofar as the same rules apply to past, present, and
future samples from the data set.) Pr(X and Y both occurred) refers to the joint prob-
ability that both X and Y occur in a randomly sampled individual.

It is tempting to give Pr(X caused Y) a specific interpretation, e.g., as the (coun-
terfactual) probability that, in a randomly selected individual, both X and Y have
occurred, but Y would not have occurred had X not occurred (i.e., “but for” X, in
legal parlance). However, a key point is that it is not necessary to specify a unique
definition of “caused” to apply these inequalities, since, for example, the probabil-
ity that X caused Y (in any individual) cannot be greater than the probability that
X and Y both occurred in that individual, for any of various possible definitions of
“caused.” In practical applications, it is often possible to estimate the right-hand-
side term, Pr(X and Y both occurred), for a randomly selected individual in a pop-
ulation from data on the frequency of co-occurrences of X and Y in individuals in
the study population. When multiple events form a causal chain or pathway, the
preceding inequalities can be extended in obvious ways such as the following:

Pr((X causes Y) & (Y causes Z ) in an individual)

≤ Pr(X & Y & Z all occur in that individual).

The traditional definition of “attributable fraction” as the relative difference
between the occurrence probabilities of a top event when exposure is present
vs. when it is absent has the following counterpart as an inequality for causal
statements:
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Pr(X caused Y |Y occurred) ≤ [Pr(Y |X )− Pr(Y |not X )]/ Pr(Y |X ) (8.2)

[assuming that the right-hand side is nonnegative, i.e., that Pr(Y | X) > Pr(Y | not
X)]. The right-hand side of (8.2) is a common textbook definition of the attributable
fraction of Y due to X. It attempts to capture the intuition that the probability that X
is the cause of Y is the probability that Y occurs when X is present, but that Y would
not have “happened anyway,” without (or “but for”) the presence of X. [This inter-
pretation works well and can be made rigorous in important special cases, such as
when X is one of several competing risks, representing mutually exclusive sources,
any one of which can cause Y by itself via a single-hit mechanism (Cox, 1985).]
However, as illustrated by the baby aspirin counterexample in the section “Why Not
Use Population Attributable Fractions?,” the difference of conditional probabilities
in the numerator on the right side of (8.2) does not provide an adequate general
definition of the incremental risk of Y caused by X, since it does not allow for the
possibility of hidden causes and confounders that create an association between X
and Y even if X does not itself cause Y (and may even prevent or inhibit the occur-
rence of Y). Hence, we treat (8.2) not as a logical definition but as a potentially
useful plausible upper bound for Pr(X causes Y | Y occurs) in some applications. It
is most applicable and useful when the difference [Pr(Y | X) – Pr(Y | not X)] is, in
fact, due entirely or primarily to the causal impact of X on the occurrence proba-
bility of Y. Such situations may be easier to identify for specific biological causal
mechanisms than for organism-level responses in a population.

A Bayesian Motivation for the Attributable Fraction Formula

Here is an optional Bayesian rationale for the attributable fraction formula (8.2)
using a classical competing-risks framework (i.e., assuming that mutually exclusive
causes compete to be the first to make a detectable effect Y occur). Nothing else
depends on this interpretation and discussion, but it may be useful in motivating
(8.2) for some readers.

Bayes’ rule suggests that

Pr(X caused Y |Y occurred) = Pr(Y occurred |X caused Y )

∗Pr(X caused Y )/ Pr(Y occurred),

where Pr(Y occurred) = Pr(X caused Y to occur) + Pr(not-X caused Y to occur).
Now clearly, Pr(Y occurred | X caused Y to occur) = 1. Substituting this into the

above simplifies it to

Pr(X caused Y |Y occurred) = Pr(X caused Y )/ Pr(Y occurred)

= Pr(X causedY )/[Pr(X caused Y to occur)

+ Pr(not-X caused Y to occur)].
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We adopt the following conditional probability notation:

• Pr(Y | X) = Pr(Y is caused by something, given that X is present).
• Pr(Y | not-X) = Pr(Y is caused by something else, given that X is not present)
= Pr(not-X caused Y). (Note that this step uses the competing-risk assumption of
mutually exclusive, collectively exhaustive causes.)

Then the total probability that Y occurs when X is present = Pr(Y | X) = Pr(X
caused Y to occur) + Pr(not-X caused Y to occur) = Pr(X caused Y) + Pr(Y | not-X).
Solving gives

Pr(X caused Y ) = Pr(Y |X )− Pr(Y |not-X ).

Substituting this into the numerator of the earlier equation

Pr(X caused Y |Y occurred) = Pr(X caused Y )/ Pr(Y occurred)

= Pr(X caused Y )/[Pr(X caused Y to occur)

+ Pr(not-X caused Y to occur)]

yields

Pr(X caused Y |Y occurred) = [Pr(Y |X )− Pr(Y |not-X )]/[Pr(X caused Y to occur)

+ Pr(not-X caused Y to occur)].

The denominator here is just [Pr(X caused Y to occur) + Pr(not-X caused Y to
occur)] = Pr(Y | X) (from above). Making this substitution gives us the final result:

Pr(X caused Y |Y occurred) = [Pr(Y |X )− Pr(Y |not X )]/ Pr(Y |X ).

This is just the right side of inequality (8.2).
This derivation yields an equality, because it assumes that the difference [Pr(Y |

X) – Pr(Y | not X)] is entirely due to the difference in intensities (i.e., the expected
occurrences per unit time) of Y when X is present compared to when X is absent. In
other words, the contribution of X is assumed to be to hasten the occurrence of Y – a
causal effect. [Intuitively, imagine that N different sources shoot invisible “bullets”
or “hits” at some target. The first bullet to strike the target causes damage Y, which
can be detected. Source X generates hits with intensity h(X), measured in average
hits per unit time generated by source X. The total intensity of hits arriving at the
target is the sum of the intensities from all N sources. Under classical competing-
risks assumptions, given that the target is hit, i.e., that Y occurs, the probability that X
caused it is just the expected fraction of hits from X= (expected hits from all sources
including X – expected hits from all sources other than X)/(total expected hits from
all sources including X). This provides another, perhaps more physically intuitive,
motivation for the [Pr(Y | X) – Pr(Y | not X)]/Pr( Y | X) formula.] However, in reality,
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some of the positive association between the presence of X and the occurrence rate
of Y may come from confounding, rather than from a true causal effect (extra hits per
unit time) contributed by X. This motivates replacing the equality with an inequality,
as in (8.2).

The above derivation assumes that all possible causes are known. But if this is not
true, then the fraction of hits contributed by source X may be overstated (because of
omitted hits from unknown competing sources that should have been included in the
denominator, diluting X’s contribution). This also motivates use of the inequality.

The following section examines how bounds (8.1) and (8.2) might be applied
to molecular epidemiological data to quantify the maximum plausible contribution
to the causation of lung cancer made by one particularly well-studied causal path-
way. The problem of calculating top event probabilities in networks (or fault trees)
of multiple, overlapping path sets from probabilities of the individual events has
already been well addressed in the systems reliability literature (Chang et al., 2004).
Hence, we focus on the simplest case of a single pathway, and on the conceptual
and practical challenges of estimating quantitative bounds on its contribution to the
occurrence of lung cancer in smokers, based on co-occurrence frequencies of rele-
vant events in molecular epidemiological data.

The Smoking-PAH-BPDE-p53-Lung Cancer Causal Pathway

Figure 8.1 outlines one of the best-studied specific causal mechanisms that have been
proposed for how cigarette smoking increases human lung cancer risk (Denissenko
et al., 1996; Rojas et al., 2004). In brief, enzymes in the cytochrome P450 super-
family (especially CYP1A1) oxidize PAHs in cigarette smoke to form molecules
of highly reactive metabolites such as benzo[a]pyrene diol epoxide (BPDE). These
reactive molecules bind to DNA at specific “hot-spot” codons of the p53 tumor
suppressor gene in smokers’ lungs, forming BPDE-DNA adducts that induce char-
acteristic G:C → T:A transversions and inactivate or impair the functioning of
p53. The loss of p53 function plays multiple well-documented roles in allow-
ing cells to escape from normal cell cycle controls (Olivier et al., 2004). By
disrupting cell cycle checkpoints (leading to increased chromosomal instability
and aneuploidy) and conferring resistance to apoptosis, the inactivation of p53
contributes to the increased malignant transformation of tumor precursor cells.
Figure 8.1 summarizes this mechanistic account and shows some of the related genetic
polymorphisms that may contribute to variability in individual risks from smoking.

This mechanistic hypothesis is so well established that benzo[a]pyrene has some-
times been described as “the bullet of the ‘smoking gun’. . .[which] has been known
for a long time to be involved in the causation of lung cancer” (Alexandrov et al.,
2002). The hypothesis makes considerable intuitive sense in light of evidence on
p53 and cancer. More than half of all human cancers exhibit mutations in the p53
tumor suppressor gene, and more than three quarters of these p53 mutations involve
a missense substitution of a single incorrect amino acid (Glazko et al., 2004). In
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Fig. 8.1 A proposed mechanism of lung cancer caused by PAHs from smoking

lung cancers (but not in cancers of the skin, colon, and other organs), the most char-
acteristic p53 mutation is a G→ T transversion, and this “signature” alteration is
strongly and specifically associated with cigarette smoking (Alexandrov et al., 2002;
Denissenko et al., 1996; Rojas et al., 2004). Moreover, the spectrum of mutations
induced by BPDE in bronchial epithelial cells is similar to the spectrum of mutations
observed in p53 genes from human lung tumors (Rojas et al., 2004). In addition,
cultured peripheral lymphocytes from lung cancer patients exposed to BPDE accu-
mulate more BPDE-DNA adducts than corresponding cells from control subjects,
perhaps due to less effective DNA repair processes (Li et al., 2001a). [However,
similar findings of elevated BPDE-DNA adduct rates among peripheral lympho-
cytes from head and neck squamous cell carcinoma patients (Li et al., 2001b) and
in lymphoblasts from breast cancer patients (Motykiewicz et al., 2002) suggest that
elevated adduct levels do not necessarily reflect an early step in causing lung can-
cer, but rather may themselves be caused by underlying conditions such as decreased
DNA repair rates that also contribute to carcinogenesis.]

The hypothesis that smoking-induced p53 mutations cause smoking-induced
lung cancers is strengthened by the specificity of these mutations in the lung cancer
types that are most clearly associated with smoking. As summarized by Campling
and el-Dairey (2003),

The frequency of p53 alterations in lung cancer is highest in those subtypes of bronchial
carcinomas that are most consistently associated with smoking, especially SCLC [small
cell lung carcinomas] and squamous cell carcinomas. The frequency is lower in adenocar-
cinomas, in which the association with smoking, although present, is not as strong. The
frequency of p53 abnormalities is higher in patients with greater cumulative tobacco expo-
sure. Tobacco-specific carcinogens, in particular BPDE, cause a unique spectrum of p53
mutations, quite distinct from those found in cancers that are not associated with smok-
ing. This characteristic genetic “signature” may persist even decades following smoking
cessation.

Quantitatively, Rodin and Rodin (2002) reported “that the frequency of p53
G → T transversions in lung cancer of smokers is about three times higher than
their frequency in lung cancer of nonsmokers and in most other smoke-unrelated
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cancers.” [They also state that, “In contrast, the frequency of C→ A transversions,
the DNA-strand mirror counterpart of G → T transversions, appears to be simi-
lar in virtually all human cancers. Along with other data, this strand bias leads us
to suggest that smoking may inhibit repair of G→ T primary lesions on the non-
transcribed strand.” They conjecture that “a direct mutagenic action is not the only
smoke-associated cause of the prevalence of this class of p53 mutations in lung
cancer” (Rodin and Rodin, 2004). Others contest this view, arguing that, instead,
“the abundance and sequence specificity of G→ T transversions in lung tumors is
best explained by a direct mutagenic action of PAH compounds present in cigarette
smoke” (Pfeifer and Hainaut, 2003). We will attempt to estimate plausible upper
bounds on the size of the contribution of the pathway in Fig. 8.1 to smoker lung
cancer risk, independent of the contested details (e.g., direct mutation vs. inhibited
repair) of the mechanisms involved.]

Applying the Theory: Quantifying the Contribution of the
Smoking-PAH-BPDE-p53 Pathway to Lung Cancer Risk

A Simple Theoretical Calculation Using Causal Fractions

Intuitively, one might seek to estimate the fraction of smoker lung cancers caused by
the mechanism in Fig. 8.1 by multiplying together the following three components:
(1) the fraction of smokers’ lung cancers that are caused by damage of p53, as shown
near the bottom of Fig. 8.1 (since, without such p53 damage, the mechanism in Fig.
8.1 cannot apply); (2) the fraction of these lung cancers in which the inactivation of
p53 is caused specifically by BPDE-DNA adducts at p53 codons; (3) the fraction
of these BPDE-DNA adducts that, in turn, are caused by inhalation of PAHs in
cigarette smoke. This can be expressed as follows:

Preventable fractionPAH-BPDE-P53 = fp53 × fBPDE-p53 × fsmoking-BPDE, (8.3)

where

• Preventable fractionPAH-BPDE-P53 = fraction of smoker lung cancers caused by
the postulated mechanism in Fig. 8.1, i.e., inhaled PAHs causing BPDE-DNA
adducts on p53 codons of target lung cells, leading to p53 inactivation,

• f p53 = fraction of smoker lung cancers caused by p53 damage,
• f BPDE-p53 = fraction of this p53 damage (in lung cancers caused by p53 inactiva-

tion) caused by BPDE-DNA adducts at p53 codons,
• f smoking-BPDE = fraction of these BPDE-DNA adducts (in lung cancers caused by

p53 damage from BPDE-DNA adducts) caused by PAHs from cigarette smoke.

Formal justification for this intuitively appealing product formula comes from the
theory of causal graphs discussed in Chapters 3, 6, and 7 (Shipley, 2000; Greenland
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and Brumback, 2002). The joint probability of any conjunction of events, say,
A, B, C, . . . , can be factored as Pr(A & B & C & . . .) = Pr(A)Pr(B | A)Pr(C |
A & B). . . . The sequence of factors on the right side of (8.3) is just such a chain of
conditional probabilities (upon identifying the fraction of cases in which a condition
holds as the probability that it holds for a randomly selected case). Each factor is
conditioned on all those that precede it. The product (8.3) represents the joint prob-
ability that (a) a lung cancer is caused by p53 inactivation and/or other p53 dam-
age associated with the G → T transversions, and (b) this p53 damage is caused
by BPDE-DNA adducts, and (c) these adducts are caused by PAHs from smoking.
These three conditions are jointly necessary for PAHs to cause lung cancer via the
causal mechanism in Fig. 8.1. They may not be sufficient: there may be other nec-
essary conditions that are not represented in Equation (8.3). If so, then this formula
tends to overestimate the PAH-preventable fraction (since multiplying by further
fractions between 0 and 1, representing the conditional probabilities of other nec-
essary conditions, can only further decrease the product). But this is acceptable for
establishing a plausible upper bound on the PAH-preventable fraction. Conversely,
if PAHs cause lung cancer by paths other than the one shown in Fig. 8.1, then Equa-
tion (8.3) could underestimate the PAH-preventable fraction. Thus, Equation (8.3)
should be interpreted specifically as giving the PAH-preventable fraction for the
hypothesized causal mechanism in Fig. 8.1.

Application of the seemingly simple concept in (8.3) is frustrated by the fact that
none of the three component quantities to be multiplied is known; moreover, all
involve the term “caused by” (italicized), which has not been given any operational
definition. It may be difficult or impossible to obtain these quantities from avail-
able data, which measure observable effects rather than causes. To overcome these
obstacles, we apply the upper-bounding approach explained in the earlier section
“Theory: Paths, Event Probabilities, Bounds on Causation.” Table 8.1 summarizes
the key steps and results.

The logic and data for this calculation are as follows.

Step 1: Replace Causal Fractions with Fractions Based on
Occurrence Rates

First, each “caused by” condition in the first column is replaced by a “with” (or
“among”) condition in the second column, thereby replacing unobservable quan-
tities that refer to causation with quantities that, in principle, can be estimated
from data on observable occurrence frequencies of molecular events. Specifically,
“fp53 = fraction of smoker lung cancers caused by p53 damage (indicated by
G→ T transversions)” is replaced by “Fp53 = fraction of smoker lung cancers with
p53 G → T transversions.” Inequality (8.1) justifies this replacement: smoking-
induced p53 damage cannot cause lung cancer unless such damage actually occurs.
(The occurrence rate of all damage associated with the “signature” p53 G → T
transversions in Fig. 8.1 is an upper-bound surrogate for the occurrence rate of the
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Table 8.1 Preventable fraction calculation for the pathway in Fig. 8.1

Component/meaning Upper-bound surrogate Estimate and source

fp53 = fraction of smoker lung
cancers caused by p53 damage
(indicated by G→ T
transversions)

Fp53 = fraction of smoker lung
cancers with p53 G→ T
transversions

0.30 for smokers; 0.12 for
nonsmokers (Pfeifer
et al., 2002)

fBPDE-p53 = fraction of this p53
damage caused by BPDE-DNA
adducts

FBPDE-p53 = fraction of smoker
lung cancers with p53 G→
T transversions and
BPDE-DNA adducts

0.4 = (0.12 BPDE-DNA
fraction in smokers,
Alexandrov et al.,
2002)/(0.3 p53 G→ T
fraction, Pfeifer et al.,
2002)

fsmoking-BPDE = fraction of these
BPDE-DNA adducts caused by
PAHs from cigarette smoke

Fsmoking-BPDE =
smoking-attributable
fraction of BPDE-DNA
adducts among smokers
compared to nonsmokers

0.60 = (2.5 – 1)/2.5; 2.5
= estimated ratio of
BPDE-DNA adducts in
smokers vs.
nonsmokers (Lodovici
et al., 1998)

Preventable fractionPAH-BPDE-P53 =
f p53 × f BPDE-p53 × f smoking-BPDE

= fraction of smoker lung
cancers caused by inhaled PAHs
causing BPDE-DNA adducts at
p53 codons, causing p53
inactivation

Preventable
fractionPAH-BPDE-P53 ≤ Fp53

× F BPDE-p53 × Fsmoking-BPDE

≤ 0.30 × 0.40 × 0.60 =
0.07

specific damage that causes lung cancer in Fig. 8.1; thus, G→ T transversions may
only be markers for other types of smoking-induced p53 damage and/or may them-
selves increase cancer risk.)

Similarly, “fBPDE-p53 = fraction of this p53 damage caused by BPDE-DNA
adducts” is replaced by the upper-bound surrogate “FBPDE-p53 = fraction of smoker
lung cancers with p53 G → T transversions and BPDE-DNA adducts.” That is,
the frequency of causation of p53 damage by BPDE-DNA adducts in a population
of smokers cannot exceed the frequency of the co-occurrence of p53 damage and
BPDE-DNA adducts. [In practice, both changes are long-lasting, making observ-
ing them practicable. Lodovici et al. (1998) report BPDE-DNA adducts lasting
for decades; and Campling and el-Dairey (2003) report a similar long persistence
of mutational spectra in p53 due to BPDE-DNA adducts.] Consistent with using
upper bounding to deal with unknowns, we require only that BPDE-DNA adducts
be present in the lung, but not that they be present specifically on hot spots of the
p53 gene (as postulated in Fig. 8.1), since the probability of the latter event can be
no greater than the probability of the former, and the probability of the former is
easier to estimate from available data.

The attributable fraction inequality in Equation (8.2) motivates replacing
“fsmoking-BPDE = fraction of these BPDE-DNA adducts (i.e., of the BPDE-DNA
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adducts causing p53 damage leading to lung cancer, among smokers with such
damage) caused by PAHs from cigarette smoke” with “Fsmoking-BPDE = smoking-
attributable fraction of BPDE-DNA adducts among smokers compared to nonsmok-
ers.” This formula treats the entire excess risk of BPDE-DNA adducts observed
among smokers compared to nonsmokers as being caused by PAHs from smoking
(rather than by something else, such as hidden confounders or other associated expo-
sures) in order to obtain an upper-bound surrogate for the causal contribution from
the pathway in Fig. 8.1. (Both the smokers and the nonsmokers being compared in
this attributable fraction calculation should ideally be lung cancer patients with p53
damage caused by BPDE-DNA adducts.)

The attributable fraction formula on the right side of inequality (8.2) is theo-
retically exactly correct [and (8.2) becomes an equality] in a “competing-risks”
model (Wohlfahrt et al., 1999). In this framework: (a) BPDE-DNA adducts arise
from multiple sources of PAH exposures (e.g., smoking, background air pollution,
ETS, cooking, diesel exhaust, etc.), each generating BPDE-DNA adducts according
to a Poisson arrival process. (b) One of these adducts is ultimately considered (in
principle) to be “the” cause of the p53 damage that eventually leads to a smoker’s
lung cancer. Interpreting X as the event that “The BPDE-DNA adduct leading to
lung cancer came from smoking” and Y as the event “A BPDE-DNA adduct lead-
ing to lung cancer came from some source,” the right side of (8.2) simply gives
the fraction of adducts that come from smoking rather than other sources. This
is also the probability that the crucial cancer-causing adduct came from smoking
rather than other sources, assuming exchangeable molecules and that smokers and
nonsmokers have identical exposures except for smoking. (This may be conserva-
tive, i.e., overestimate the smoking contribution, if smoking is associated with other
increased exposures.) Of course, there is no assumption that the formation of this
critical adduct is the only event required to cause lung cancer, but it is considered
to be one necessary event among several (possibly incompletely known) events that
are jointly sufficient to cause lung cancer.

Outside the framework of the competing-risks model, Formula (8.2) can also
potentially be justified (although not necessarily interpreted as a probability) by
normative axioms for assigning fractional “shares” in causation to different sources.
Even for complex nonlinear dose-response mechanisms with interacting sources,
for which competing-risks assumptions fail, it often makes sense that the fraction of
BPDE-DNA adducts that should be considered to be caused by smoking (according
to this axiomatic framework) is just the fraction of BPDE molecules that come from
smoking instead of from other sources (Cox, 1985).

A more direct and pragmatic justification for using this fraction in preventable
risk calculations is that if all smoking-related BPDE-DNA adducts were removed
or prevented, the rate of such adducts in smoker lungs presumably would not fall
below the background rate in nonsmokers. Hence, only the difference between
the BPDE-DNA adduct rate in smokers compared to that in nonsmokers is rele-
vant for quantifying the contribution of smoking to excess lung cancer risks medi-
ated by these adducts. [We view this traditional justification for the attributable
fraction formula (8.2) not as a logical or mathematical necessity, but rather as a
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common-sense assertion about how the relevant biological processes of adduct for-
mation is thought to work. While in theory it might misestimate preventable frac-
tions, as in the baby aspirin example, this may be less likely for specific pathways
and events, such as BPDE-DNA adduct formation at p53 codons, than for overall
exposure-effect relations in population-level epidemiological data. We therefore use
inequality (8.2) to estimate Fsmoking-BPDE.]

Finally, the fraction of smoker lung cancers caused by the sequence of events in
Fig. 8.1 (i.e., that could be prevented by preventing events on this pathway, e.g., by
removing exposure to PAHs from cigarette smoke) is estimated using the product of
the upper-bound surrogates just described:

Preventable fractionPAH-BPDE-P53 ≤ Fp53 × FBPDE-p53 × Fsmoking-BPDE. (8.4)

Step 2: Quantify Occurrence Rates Using Molecular-Level Data

The next task is to use available molecular epidemiological data to quantify the three
factors Fp53, FBPDE-p53, and Fsmoking-BPDE.

For Fp53, Pfeifer et al. (2002) report that “The prevalence of G to T transversions
is 30% in smokers’ lung cancer but only 12% in lung cancers of nonsmokers. . . .

Recent studies have indicated that there is a strong coincidence of G to T transver-
sion hotspots in lung cancers and sites of preferential formation of PAH adducts
along the p53 gene.” Similarly, Rodin and Rodin (2002) state,

The high frequency of G → T transversions in the p53 gene is a distinctive feature of
lung cancer patients with a smoking history and is commonly believed to reflect the direct
mutagenic signature of polycyclic aromatic hydrocarbon (PAH) adducts along the gene.
Using the April 2000 update of the p53 mutation database of the International Agency for
Research on Cancer together with the primary literature, we confirm that the frequency of
p53 G→ T transversions in lung cancer of smokers is about three times higher than their
frequency in lung cancer of nonsmokers and in most other smoke-unrelated cancers.

Adopting the more precise absolute numbers of Pfeifer et al. (2002) for purposes
of illustration, we estimate Fp53 = 0.30 for smoker lung cancers, as compared to
only 0.12 for nonsmoker lung cancers.

Fsmoking-BPDE can be estimated from measured values of BPDE-DNA adduct rates
in smokers compared to nonsmokers. Lodovici et al. (1998) report average total
BPDE-DNA adduct levels of 4.46 per 108 bases in smokers, compared to 4.04 in ex-
smokers and 1.76 in nonsmokers. The ratio of BPDE-DNA adduct levels in smokers
and nonsmokers in this study is thus 4.46/1.76= 2.5, completely consistent with the
ratio of p53 damage (G→ T transversions) in lung cancers for smokers compared
to nonsmokers from Pfeifer et al. (2002), which was also (0.30/0.12)= 2.5. [A ratio
of 2 could have been estimated by using B(a)P measurements as a rough surro-
gate for BPDE-DNA adducts. Goldman et al. (2001) state that the “Concentration
of DNA adducts is considered the biologically effective dose of the parent PAH.
Because accumulation of parent PAH compounds in the lung tissue precedes forma-
tion of DNA adducts, it is intuitive that the lipophilic parent PAHs would be a good
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estimate of dose in the target organ. . . . Smoking increased the concentration of five
PAHs including benzo(a)pyrene, which increased approximately 2-fold.” However,
the availability of data directly on BPDE-DNA adduct rates makes it unnecessary to
use precursor PAH levels as surrogates for adduct levels. Nonetheless, it is reassur-
ing that these different approaches give roughly consonant answers.]

Using 2.5 as the estimated ratio of BPDE-DNA adducts in smokers compared to
nonsmokers and applying the attributable fraction formula (8.2) yields the follow-
ing estimated fraction of BPDE-DNA adducts preventable by removing smoking
exposure: Fsmoking-BPDE = (2.5 – 1)/2.5 = 0.6. Similarly, applying (8.2) to the p53
G → T transversion rates in lung cancers of smokers compared to nonsmokers
would yield the following estimated fraction of p53 G → T transversions pre-
ventable by removing smoking exposure: (0.30 – 0.12)/0.3 = 0.6. Again, although
such consonance does not prove the validity of the calculations, it is reassuring that
there is no obvious inconsistency that would invalidate the causal chain assump-
tions in Fig. 8.1, i.e., that PAH levels translate to BPDE-DNA adduct rates, which
in turn cause p53 damage indicated by p53 G→ T transversions. We appeal to this
consonance to support the use of 2.5 as the estimated ratio of relevant (lung-cancer
causing) BPDE-p53 adducts in smokers compared to nonsmokers, which implies
Fsmoking-BPDE = (2.5 – 1)/2.5 = 0.6.

It only remains to quantify FBPDE-p53, the fraction of smoker lung cancers with
both p53 G→ T transversions and BPDE-DNA adducts (since these are the cases
in which BPDE-DNA adducts might have caused the p53 damage indicated by the
p53 G → T transversions). We could find no data on this specific co-occurrence
frequency, but we can use upper bounding to bridge this data gap.

Table 8.1 of Alexandrov et al. (2002) summarizes data from multiple studies and
countries on the fraction of all smokers with BPDE-DNA adducts in their lungs.
For the United States, this fraction is about 31/256 = 0.12 (pooling across multiple
studies), perhaps reflecting the roles of genetic polymorphisms (such as CYP1A1
and GSTM1 genotypes) in determining individual susceptibility to the creation of
such adducts (ibid.). Although the fraction of these cases that also have p53 G→ T
transversions is unknown, a logical upper-bound estimate can be obtained by assum-
ing that this unknown fraction is 1, i.e., that all smokers with BPDE-DNA adducts
also have p53 G→ T transversions. [This extreme assumption is not ruled out by the
available data, as (0.12 for smokers with BPDE-DNA adducts) < (0.30 for smok-
ers with lung cancers and p53 G→ T transversions). Empirical justification for the
implicit assumption that the 12% BPDE-DNA adduct rate from the data surveyed
by Alexandrov et al. (2002) for all smokers can be applied to smokers with lung
cancers comes from limited available data. Gyorffy et al. (2004) report PAH-DNA
adduct levels in the range of 2.6–6.2 adducts per 108 nucleotides among smokers (as
well as nonsmokers) with lung cancer, quite consistent with the mean BPDE-DNA
adduct level of 4.46 per 108 bases reported for all smokers by Lodovici et al. (1998).
Therefore, we tentatively assume that BPDE-DNA adduct rates are similar among
all smokers and smokers with lung cancer. Because this assumption is uncertain, in
sensitivity analyses, we will consider the trivial (uninformed by data) logical upper
bound of FBPDE-p53 ≤ 1.]
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These assumptions imply an estimate of FBPDE-p53 ≤ 0.12/0.30 = 0.40, based
on the worst-case assumption that all of the estimated 12% of smokers with lung
cancer and BPDE-DNA adducts also belong to the 30% of smokers with lung cancer
who have p53 G→ T transversions. (When data become available specifically on
the co-occurrence frequency of these conditions, this upper bound may be reduced.
Rather than FBPDE-p53 ≤ 0.40, an estimate of FBPDE-p53 = 0.12× 0.30= 0.036 would
result if it were assumed that having BPDE-DNA adducts and having p53 G→ T
transversions in lung cancers are statistically independent events, rather than that the
former implies the latter. The true but unknown value for FBPDE-p53 may lie between
the values for these two extreme cases, i.e., between 0.036 and 0.4.)

Step 3: Combine Upper-Bound Surrogate Fractions
for Events in a Path Set

The final step in calculating preventable fractions combines the values of the upper-
bound surrogates for the causal events that jointly suffice to produce the health effect
of interest – here, lung cancer. For the single-path model in Fig. 8.1, as shown in
(8.4), the calculation consists of simply multiplying the estimated values of Fp53,
FBPDE-p53, and Fsmoking-BPDE. The result is

Preventable fractionPAH-BPDE-P53 ≤ Fp53 × FBPDE-p53 ≤ Fsmoking-BPDE

= 0.3× 0.4× 0.6 = 0.07.

More generally, one would multiply event probabilities – estimated from occur-
rence fractions – along causal chains or path sets, sum such results over disjoint path
sets for the same top event, and apply inclusion-exclusion approximations or other
combinatorial methods if path sets are not disjoint; see, e.g., Chang et al. (2004).
Since the model in Fig. 8.1 has only one path set, only multiplication is required in
this case.

An intuitive interpretation of this calculation is as follows. Only 30% of smokers
who develop lung cancers have p53 G→ T transversions, and 40% of these 30%
(i.e., 40% × 30% = 12%) would occur even without smoking, as evidenced by
the 12% rate of p53 G→ T transversions among nonsmoker lung cancer patients
(Pfeifer et al., 2002). Therefore, only the remaining 60% × 30% = 18% of smoker
lung cancers with p53 G→ T transversions (the specific group identified as relevant
in Fig. 8.1) could have been caused by BPDE-DNA adducts from smoking-related
PAHs. But at most 40% (= 0.12/0.30) of these cases (i.e., smokers with p53 G→
T transversions and lung cancer) are expected to have BPDE-DNA adducts [upon
combining data of Alexandrov et al. (2002) showing a 12% BPDE-DNA adduct
prevalence rate with data of Pfeifer et al. (2002) showing a 30% prevalence rate of
p53 G → T transversions among smokers with lung cancer], even assuming that
every case with BPDE-DNA adducts becomes one of the cases with resulting p53
G → T transversions leading to lung cancer. Therefore, at most 40% × 18% =
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7% of smokers might experience the conjunction of events or conditions (i.e., lung
cancer, p53 G→ T transversions, and BPDE-DNA adducts from smoking) shown
in Fig. 8.1. Even assuming that, in all of these cases, this conjunction is caused by
smoking (and would be prevented if exposure to PAHs in smoking were removed),
the preventable fraction cannot exceed the total fraction of smokers affected, i.e.,
about 7%. When data permit, the empirical conditional probability (or fraction) of
p53 G→ T transversions among smokers with lung cancer and BPDE-DNA adducts
should replace this logical upper bound of 100%, leading to a refined estimate.

Uncertainties and Sensitivities

The conclusion that the preventable fraction for the smoking-PAH-BPDE-p53-lung
cancer pathway in Fig. 8.1 is probably not more than about 7% could potentially be
refined by replacing the point estimates of Fp53, FBPDE-p53, and Fsmoking-BPDE with
probability distributions and applying Monte Carlo uncertainty analysis. However,
the main logic is sufficiently straightforward – multiplying several fractions between
0 and 1 together, even when their exact values are uncertain and not all relevant
fractions have been included, quickly yields relatively small numbers – so that it is
probably more illuminating to simply discuss the major uncertainties and sensitivi-
ties.

The largest uncertainty is about the value of FBPDE-p53, the fraction of smokers
with both BPDE-DNA adducts and p53 damage (used as an upper-bound surrogate
for the fraction of smokers in whom BPDE-DNA adducts cause p53 damage leading
to lung cancer). Although we estimated FBPDE-p53 as 0.40, this reflects an extreme
assumption that all smokers with BPDE-DNA adducts and lung cancer have p53
damage (with the G→ T transversions characteristic of smoking-induced damage),
even though only about 30% of all smokers with lung cancer have such damage
(Pfeifer et al., 2002). Thus, the 7% estimate for the preventable fraction might well
be too high, possibly by a factor of 1/0.30 = 3.3. On the other hand, even replac-
ing the estimated bound FBPDE-p53 ≤ 0.40 based on the data and assumptions docu-
mented in the preceding section with the noninformative bound FBPDE-p53 ≤ 1 would
increase the preventable fraction estimate to only 0.3× 0.6= 0.18, still representing
a minority of all smoker lung cancers.

Using upper statistical confidence limits in place of point estimates would
slightly increase the 7% estimate, but this effect is relatively small. For example, in
the data of Alexandrov et al. (2002) on the fraction of all smokers with BPDE-DNA
adducts in the United States, using a 95% binomial upper confidence limit would
only increase the estimate from 31/256 = 0.12 to 0.16. Probably a more important
limitation is that each of the estimated values for the factors Fp53, FBPDE-p53, and
Fsmoking-BPDE is based on only a limited number of studies, as documented in the pre-
ceding section and Table 8.1. Further studies might provide different estimates for
these factors. Ideally, comparison, reconciliation (if needed), and meta-analysis of
many individual studies could increase confidence in the robustness (or, conversely,
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reveal the sensitivity to selected studies) of the results presented here. Until such
additional studies become available, the results summarized in Table 8.1 should be
viewed as illustrating preventable fraction calculations for the path in Fig. 8.1 using
the limited data available now, but with the understanding that future studies may
lead to changes in these estimates.

Finally, we have assumed throughout that the mechanism in Fig. 8.1 is correct,
and we have focused entirely on quantifying the potential contribution (preventable
fraction) of smoker lung cancers from this pathway. In reality, PAHs might operate
through other (perhaps as-yet unknown) pathways. This uncertainty implies that the
estimate of a 7% preventable fraction only means that either the causal pathway in
Fig. 8.1 is not the only one (or even the main one) by which PAHs in cigarette smoke
cause an increased risk of lung cancer (i.e., other pathways remain to be discovered),
or that the contribution of PAHs to smoker lung cancer risk is fairly modest (e.g.,
not more than about 7%). In either case, it appears that the mechanism in Fig. 8.1
may not be “the bullet in the smoking gun” that it has sometimes been described as
being.

Discussion

Previous recent biochemical research that did not rely on quantitative risk assess-
ment (QRA) has strongly suggested that “The high formation of BPDE-N(2)-dG
adducts in bronchial epithelial cells and investigations showing that the profile of
mutations induced by BPDE in these cells is similar to that seen in the p53 gene
isolated from human lung tumors implicates benzo[a]pyrene as [an] important car-
cinogen in tobacco-induced lung cancer in human beings” (Rojas et al., 2004).
Preventable fraction calculations of the type illustrated in this chapter can help
to estimate how quantitatively important such a pathway is in explaining (and, if
blocked, in preventing) smokers’ lung cancer risk. The calculations summarized in
Table 8.1 suggest that removing or blocking this causal pathway would accomplish
at most only a modest (probably less than 7%) reduction in smokers’ risk of lung
cancer. This strengthens previous suggestions that mechanisms and constituents of
tobacco smoke other than the B[a]P pathway in Fig. 8.1 are important in deter-
mining lung cancer risk (Pott and Heinrich, 1990) and that mechanisms other than
genotoxic effects of PAH metabolites on DNA (marked by BPDE-DNA adducts),
especially proliferation and progression, probably dominate lung cancer causation
by smoking (Hazelton et al., 2005).

To the extent that our quantitative findings contrast with conventional wisdom
that PAHs and BPDE adducts on p53 play a dominant causal role in smoking-caused
lung cancer, it is worth asking why the difference arises and whether concordant evi-
dence supports it. A potentially useful lesson is the distinction between the strength
of evidence for a causal mechanism and the strength of the effect of that mecha-
nism on cancer risk. The evidence supporting the pathway in Fig. 8.1 is strong, but
its quantitative impact on risk appears to be quite limited, implying that more work
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remains to be done to identify constituents of cigarette smoke whose removal would
greatly reduce lung cancer risk.

Data for p53 mutations in breast cancer provide concordant evidence of a clear
but limited role for p53 mutations. For example, Conway et al. (2002) report p53
mutation levels of 36.5% in the breast tumors of smokers as compared to 23.6% in
nonsmokers. This ratio of 1.6 is comparable to the ratio of about 2.0 for PAH-DNA
adducts in the lungs of smokers compared to nonsmokers. [After adjustment for
age, race, menopausal status, clinical stage, tumor size, and family history of breast
cancer, current smokers were significantly more likely to harbor any p53 mutation
(OR = 2.11, 95% CI, 1.17–3.78), while the odds ratio for a G:C-T:A transversion
was reported to be 10.53 (95% CI, 1.77–62.55).] Yet the association of breast cancer
with smoking is at most very weak (IARC, 2004), suggesting that p53 mutations
associated with smoking are not a major cause of breast cancer, despite their clear
association.

The main result of our quantitative assessment applied to PAHs is that the pre-
ventable fraction of lung cancers among smokers for the specific mechanism in
Fig. 8.1 is probably not larger than about 7%. Since, overall, smoking may increase
the risk of lung cancer by a factor of 10 or more (e.g., Stellman et al., 2001), this
relatively modest estimated contribution suggests that other biological mechanisms
and causal pathways probably play more important roles (and hence must be con-
sidered in the rational design of significantly less risky cigarettes or other tobacco
products). Tobacco industry interest in p53 mutations need not be seen as “efforts
to challenge the science linking smoking and lung cancer” or as seeking “to cast
doubt on the link between smoking and p53 mutations” (Bitton et al., 2005). Rather,
if the p53-mediated effects of PAHs are indeed not the “bullet of the smoking gun”
(Alexandrov et al., 2002) that many researchers have hoped, then perhaps the meth-
ods of causal effect bounding illustrated here can help to identify other fruitful can-
didates for tobacco smoke constituents (or sets of constituents) that are linked to
smoking-induced lung cancer risk by stronger effects on risk as well as by strong
scientific evidence of a causal relation.

Conclusions

Current epidemiology textbooks often interpret population attributable fractions
based on 2 × 2 tables or logistic regression models of exposure-response associa-
tions as preventable fractions, i.e., as fractions of illnesses in a population that would
be prevented if exposure were removed. In general, as suggested by the counterex-
amples and case studies in Chapters 5–7, this causal interpretation is not correct.
Not only is statistical association not necessarily an indication of causation, but in
general it does not identify how much risk would be prevented by removing specific
constituents of complex exposures. This chapter has therefore illustrated how to cal-
culate useful bounds on preventable fractions, having valid causal interpretations,
from the partial molecular epidemiological and biological information that is often
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available in practice. Combining probabilistic risk assessment (PRA) concepts with
inequality constraints for the relations between event probabilities and causation
(such as that the probability that exposure X causes response Y cannot exceed the
probability that exposure X precedes response Y, or the probability that both X and
Y occur) yields quantitative bounds for the potential contribution to causation from
specific causal pathways.

We illustrated estimating an upper bound on the contribution to lung cancer risk
made by a specific, much-discussed causal pathway that links smoking to PAH
(specifically, BPDE-DNA) adducts at hot-spot codons at p53 in lung cells. The result
is a surprisingly small preventable fraction (of perhaps 7% or less) for this pathway,
suggesting that it will be important to consider other mechanisms and non-PAH con-
stituents of tobacco smoke in designing less risky tobacco-based products. Upper
bounding provides a relatively straightforward way to use molecular epidemiologi-
cal information on the occurrence rates of biological events (estimated from data) to
estimate the upper bounds on contributions to causation (i.e., preventable fractions
in the population) that are of chief interest for risk management and product design
decisions.



Chapter 9
Bounding Resistance Risks for Penicillin

Chapter 8 calculated a plausible upper bound for the fraction of disease preventable
by blocking a specific causal pathway in a complex, uncertain biological system,
using smoking-induced lung cancer as an example. This example required consider-
ing relevant biological knowledge and biomarker data in some detail. But plausible
upper bounds on preventable risks can also be developed using much less detailed
knowledge, and data that are relatively easy to obtain and understand, for many other
systems. This chapter develops bounding calculations for preventable fractions in a
very different complex uncertain system: the highly uncertain set of pathways and
mechanisms (if any) leading from the use of penicillin in food animals to resistance
to penicillin drugs in human patients. Unlike the campylobacteriosis and virgini-
amycin case studies in Chapters 6 and 7, respectively, no individual-level exposure
and response data are provided for this penicillin risk assessment. Instead, the chal-
lenge in this chapter is to estimate how much human health harm might be prevented
by removing a source of exposure – one that is not known with great confidence to
harm human health at all – using only readily available, high-level data, such as
the total number of illnesses per year and statistics on strains of bacteria found in
humans and animals. Chapter 5 has already discussed some of the pitfalls of using
high-level data carelessly (e.g., by fitting a reduced-form model such as “risk =
K × exposure” and then misinterpreting it as a predictively valid causal relation).
This chapter develops methods for drawing more useful inferences from such data,
accepting that only rough bounds, rather than precise predictions, can be supported
in the absence of more detailed data.

Background, Hazard Identification and Scope: Reducing
Ampicillin-Resistant E. faecium (AREF) Infections in ICU
Patients

Penicillin-based drugs are approved for use in food animals in the United States to
treat, control, and prevent diseases and, to a lesser extent, to improve growth rates
(FDA-CVM, 2007; Sechen, 2006; AHI, 2006). Concerns that penicillin use might
increase the risk of antibiotic resistance in human enterococcal infections from non-
human sources, thus leading to increased morbidity and mortality (WHO, 2005),
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have made approved feed usages of penicillins in food animals a controversial
topic for several decades in the United States (IOM, 1989; FDA, 2000, 2003). Peni-
cillin drugs are considered “critically important” for animal health (FAO/WHO/OIE,
2008), implying that withdrawing approvals would likely have negative conse-
quences for animal health. The following sections develop a plausible upper bound
on the potential for the continued use of penicillin drugs in food animals to harm
human health by increasing the number of antibiotic-resistant enterococcal infec-
tions in human patients. After summarizing the relevant background for the hazard
of greatest concern – infection of intensive care unit (ICU) patients with ampicillin-
resistant E. faecium (AREF) bacteria – the following sections focus on quantifying
the fraction of such resistant infections that might be prevented by discontinuing the
use of penicillin drugs in food animals.

Enterococci are commensal gram-positive bacteria found in the intestinal flora
of most healthy birds and mammals, including people. In humans, enterococci typi-
cally comprise not more than 1% of the microflora of adults (FDA-CVM, 2004) and
are normally harmless. The Enterococcus genus has 17 species, but most human
clinical isolates are either E. faecalis (74–90%) or E. faecium (5–16%) (Varman
et al., 2006). E. faecalis infections are responsible for most clinical enterococcal
infections, but penicillin (or ampicillin) resistance is rare in E. faecalis isolates from
food animals and almost nonexistent in E. faecalis isolates from retail meats (Hayes
et al., 2003, 2004; McGowan et al., 2006; NARMS, 2005). Furthermore, ampicillin
remains highly effective against clinical E. faecalis (Jones et al., 2004). Therefore,
our risk assessment focuses on the identified hazard of penicillin/ampicillin resis-
tance among human E. faecium infections.

Risk to human health arises because some strains of enterococci may become
opportunistic pathogens, potentially resistant to multiple drugs, that infect patients
who are already seriously ill (typically in ICUs) with immune systems weakened
by organ transplants, chemotherapy, AIDS, or other causes. Indeed, enterococcal
infection is the second most common hospital-acquired infection in the United
States (Varman et al., 2006). These infections can prolong illness and increase
patient mortality. Vancomycin-resistant enterococci (VRE) are of particular concern
because of their virulence and resistance to even some recently developed antibi-
otics. Vancomycin-resistant E. faecium (VREF) can cause serious and often fatal
disease in vulnerable populations, such as liver transplant patients and patients with
hematologic malignancies (Rice, 2001).

Many enterococcal infections, including VRE, resolve without antimicrobial
treatment (Varman et al., 2006; Rice, 2001). In severe cases for which antimicrobial
treatment is provided, penicillin and ampicillin are often the leading choices. Other
drugs that are also effective against human enterococcal infections include gentam-
icin, vancomycin, quinupristin-dalfopristin (Synercid R©), linezolid (Zyvox R©), tige-
cycline (Tygacil R©), and nitrofurantion. These can be used in patients with allergy
or high-level resistance to penicillin and ampicillin. Many ampicillin-resistant cases
can also be treated successfully with high doses of ampicillin, either alone or in
combination with drugs such as gentamicin or streptomycin (Varman et al., 2006;
Murray, 2000).
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Most E. faecium infections in ICU patients in the United States are now resistant
to vancomycin (Edmond et al., 1999; Jones et al., 2004). Patients with vancomycin-
resistant E. faecium (VREF) have worse outcomes than those with vancomycin-
susceptible strains – longer hospital stays and higher mortality (Webb et al., 2001).
As noted by Rice (2001), virtually all VREF cases are also ampicillin-resistant:
“More than 95% of VRE recovered in the United States are E. faecium; virtually
all are resistant to high levels of ampicillin.” Hence, our risk assessment treats
VREF as being (at least approximately) a subset of ampicillin-resistant E. faecium
(AREF). One suggested explanation is “that the close association of the vancomycin
and ampicillin resistance phenotypes, at least in VanB-type VRE, is explainable
by their inclusion within large, transferable genetic elements” (Hanrahan et al.,
2000, p. 1350). However, widespread ampicillin resistance appeared in 1982 (Fortun
et al., 2002), while vancomycin resistance appeared in the early 1990s in E. faecium
(Murray, 2000).

Since most VREF are AREF (although many AREF are not VREF), and assum-
ing that changes in animal penicillin use would not significantly affect vancomycin
resistance (consistent with historical data), we focus on human (ICU patient) infec-
tions with vancomycin-susceptible strains of ampicillin-resistant E. faecium. Pre-
sumably, this is the subpopulation that might experience decreased ampicillin resis-
tance if discontinuing animal penicillin drugs were to replace some AREF cases
with ampicillin-susceptible cases. For patients with VREF, we assume that AREF
would persist (due to the observed co-occurrence of AREF in VREF strains), so that
no benefit from reduced AREF would be achieved for these patients.

The following sections seek to quantify potentially preventable AREF cases and
the human health benefits that might be created if these AREF cases were prevented
(made ampicillin-susceptible) by discontinuing penicillin drug uses in food animals.
The quantitative risk assessment draws on recent advances in sequencing technology
that enable more precise strain groupings and epidemiological analyses than have
previously been possible.

Methods and Data: Upper Bounds for Preventable Mortalities

Recognizing that a farm-to-fork (“forward chaining”) model is not practical for
AREF, due to data and knowledge gaps in release, exposure, and dose-response rela-
tions, we instead start with more readily available human data on ICU case loads
and resistance rates, similar to the approach in Cox and Popken, 2004b. We then
work backward to estimate a plausible upper bound on the annual number of human
patient mortalities that might be prevented by discontinuing penicillin use in food
animals.

For the purposes of conservative (i.e., upper-bound) risk assessment, we define a
potentially preventable mortality to occur whenever the following conditions hold:
(1) An ICU patient dies, following (2) an E. faecium infection that (3) is resistant to
ampicillin (AREF) (and hence might have benefited had ampicillin resistance been
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prevented). The infection was (4) vancomycin-susceptible (and hence might have
also been ampicillin-susceptible, had it not been for penicillin use in food animals),
(5) not known to have been contracted from the hospital environment (and hence
might have been prevented by actions external to the hospital, such as elimination
of AREFs from food animals), (6) could have come from food animals (i.e., has a
genotype or resistance determinants of the types found in food animals). (7) The
patient tolerated penicillin (i.e., was not allergic, and hence might have benefited
from ampicillin, had it not been for resistance). We propose that the conjunction of
these seven conditions should be interpreted as necessaryfor a mortality to have been
caused (with nonnegligible probability) by resistance due to the use of penicillin in
food animals, even though it is not sufficient (e.g., the infecting strain might have
had some other origin than food animals, or the patient might have died anyway,
even if the infection had been ampicillin-susceptible). Accordingly, the following
sections estimate a plausible upper bound on annual preventable mortalities from
AREF infections based on the following product of factors:

preventable AREF mortalities per year

≤ (total number of ICU infections per year)

× (fraction caused by E. faecium)

× (fraction of ICU E. faecium infections that are AREF and exogenous, i.e., not

known to be of nosocomial origin)

× (fraction of these exogenous AREF cases that are vancomycin-susceptible)

× (fraction of vancomycin-susceptible exogenous AREF cases that

might have come from food animals)

× (fraction of these cases that are penicillin-tolerant)

× (excess mortality rate for AREF cases compared to ASEF cases).

That is, we first quantify the expected annual number of AREF cases in the
United States that might benefit from ampicillin treatment if food animal uses
of penicillin were halted (i.e., cases that are penicillin-tolerant and vancomycin-
susceptible and that might have been caused by resistance determinants from food
animals). Then we multiply this number by the excess mortality rate for resistant as
opposed to susceptible cases.

Estimated Number of ICU Infections per Year

Enterococcal infections are generally limited to already hospitalized individuals.
E. faecium infections are frequently associated with nosocomial bloodstream infec-
tions occurring within intensive care units (ICUs). A recent FDA risk assessment
for virginiamycin (FDA-CVM, 2004) provided the following two approximate
estimates:
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• N = annual number of ICU infections = 104,372.5 based on bloodstream infec-
tions,

• N = 315,000 based on septicemia cases.

The study does not weight these alternatives. To be conservative (i.e., to max-
imize estimated risks), we will use the larger estimate, N = 315,000 cases/year.
[Patients with severely complicated urinary tract infections (UTIs) are also some-
times treated with intravenous antibiotics, including combinations of gentamicin
and ampicillin, but ceftriaxone may be substituted for ampicillin if needed, and oral
antibiotics (e.g., trimethoprim, cephalosporins, nitrofurantoin, or ciprofloxacin) are
used in the vast majority of cases (http://adam.about.com/reports/000036 7.htm).
We therefore do not include UTI cases in this assessment.]

Fraction of ICU Infections Caused by E. faecium

The proportion of ICU infections that are caused by E. faecium can be estimated
with the help of the following two fractions from the same FDA-CVM study:

• Pent = 0.10 = fraction of ICU infections caused by Enterococcus. [Wisplinghoff
et al. (2004) provide an estimate of 0.09. To be conservative, we use the higher
estimate of 0.10.]

• PEF,ent = 0.25 = fraction of enterococcal infections caused by E. faecium.

The product of these two factors, fEF = Pent
∗PEF,ent = 0.025, is the estimated frac-

tion of ICU infections caused by E. faecium. An approximate value for the expected
annual rate of E. faecium infections can then be obtained via the equation

expected annual number of E. faecium infections = N ∗ fEF = N ∗P∗ent PEF,ent

≤ 315, 000∗0.025 = 7, 875 E. faecium infections/year.

Fraction of ICU E. faecium Infections That Are
Ampicillin-Resistant and Exogenous (Nonnosocomial)

Most ampicillin-resistant E. faecium infections are contracted nosocomially. Indeed,
it is possible that few or none originate in food animals. For example, as stated
by Kuhn et al. (2005), in Europe “it seems that animal-associated VRE probably
reflect the former use of avoparcin in animal production, whereas VRE in human-
associated samples may be a result of antibiotic use in hospitals.” Since nosocomial
transmission is a hospital-specific problem that can often be eliminated by rigorous
control measures, we restrict our risk assessment to exogenous (nonnosocomial)
cases that are potentially attributable to food animals. (If this restriction is dropped
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in sensitivity analysis, the effect is simply to divide the estimated annual impacts by
the nonnosocomial fraction of cases, which increases them approximately sixfold.)

Cox and Popken (2004) use data from several studies in the 1990s to estimate an
approximate mean value of 0.17 for the fraction of exogenous cases in the United
States. More recent investigations of the molecular epidemiology of drug-resistant
E. faecium infections suggest that, if anything, this proportion may have decreased
since the 1990s as a particular hospital-adapted clone of E. faecium called CC17
has spread widely in hospitals in the United States and elsewhere (Leavis et al.,
2006; Top et al., 2007). Approximately 88% of E. faecium isolates from hospital
outbreaks (n = 32) belong to Complex-17, compared to 59% of all clinical isolates
(n = 162), 23% of isolates from hospital surveillance in Australia, Europe, and
North and South America (n = 64), 5% of community isolates (n = 57), and 1% of
isolates from animal surveillance (n = 96, including bison, calves, cats and dogs,
ostriches, poultry, pigs, and rodents in Africa and Europe) (Leavis et al., 2006).
In the United States, too, Complex-17 and a closely associated clade of hospital-
associated strains dominate the epidemiology of AREF (Leavis et al., 2007; Desh-
pande et al., 2007). To be conservative, we continue to assume that the fraction of
exogenous cases is 0.17, although acknowledging that this fraction may be declining
significantly as these hospital-associated strains accounts for a higher proportion of
all E. faecium infections.

The fraction of exogenous cases that are ampicillin-resistant can be estimated
from data in Table 1 of Willems et al. (2005). Pooling all non-outbreak, non-
Complex-17 cases (where “non-outbreak” cases are the sum of clinical and hospital
surveillance isolates) gives a total of 20 ampicillin-resistant cases out of 107 total
cases, for a resistance fraction of 20/107= 0.187 ampicillin-resistant cases per non-
outbreak case. In summary, the estimated expected annual number of ampicillin-
resistant, exogenously caused (i.e., nonnosocomial) E. faecium infections in the
United States is no more than

(7, 875 E. faecium infections/year)∗(0.17 nonnosocomial fraction)∗(0.187

ampicillin-resistant fraction) = 7875∗0.17∗0.187 = 250 exogenous

ampicillin-resistant E . f aecium (AREF) infections per year.

Fraction of Vancomycin-Susceptible Cases

Assuming that almost all vancomycin-resistant strains of E. faecium in the United
States are also ampicillin-resistant (but not vice versa) (Rice, 2001), the relatively
recent data of Jones et al. (2004) show that, in the United States, about 14% of E.
faecium strains are ampicillin-resistant and vancomycin-susceptible. Specifically,
90.3% of E. faecium isolates were resistant to ampicillin and 76.3% of E. faecium
isolates were resistant to vancomycin. The difference is 0.903 – 0.763 = 0.14. This
is an estimate of the fraction of E. faecium isolates that are AREF but not VREF – in
other words, the vancomycin-susceptible AREF of interest for our risk assessment.
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Thus, 0.14/0.903 = 0.155 is the estimated fraction of AREF that are vancomycin-
susceptible. Using this point estimate yields

expected exogenous ampicillin-resistant and vancomycin-susceptible cases per year

≤ 250∗0.155 = 38.75 vancomycin-susceptible AREF infections/year.

This should be considered an upper bound. For example, research by Suppola
et al. (1999) suggests that Van A and Van B E. faecium incorporate into an endemic
vancomycin-susceptible AREF strain.

Fraction of Exogenous Cases Potentially from Food Animals

As reviewed above, genetic similarities between ampicillin-resistant strains found
in non-outbreak E. faecium infections among hospitalized patients (most of which
carry the esp virulence gene and other distinctive genes) and strains found in food
animals (most of which do not) is weak (Kuhn et al., 2005; Leavis et al., 2006,
2007). No clear empirical attribution of hospital cases to food animals can be made
based on these data.

Figure 9.1 summarizes data that suggest a possible upper-bound quantitative esti-
mate for the contribution of strains of E. faecium found in food animals to strains
found in non-outbreak (non-Complex-17) human patient isolates. The figure repre-
sents inferred patterns of evolutionary descent among multiple strains of E. faecium.
Each number represents a sequence type (ST). Lines connect sequence types that
differ in only one of seven “housekeeping genes.” The relative sizes of the circles
represent the relative prevalences of the sequence types. In the relatively few cases
where human patient and food animal (pig and poultry) clusters overlap, the strains
falling in the overlap might have come from a common environmental source (e.g.,
soil or water) or might be due to a “reverse causation” flow from humans to pigs via
surface water, flies, pets, or other paths (Guardabassi and Dalsgaard, 2004; Macovei
and Zurek, 2006; Rodrigues et al., 2002).

The Multi Locus Sequence Typing website (www.mlst.net – curator: Rob
Willems) provides a database of 490 E. faecium samples – a subset of those used
to generate Fig. 1 of Leavis et al. (2006). The data indicate 87 unique sequence
types among “Clin Isol” and “Hosp Surv” (human, non-outbreak, noncommu-
nity) clusters. (We do not consider the “Hosp Outbreaks” category, since these are
assumed to fall into the nosocomially transmitted group. We also do not consider
the “Human comm” category, as these are noninfectious strains found in healthy
individuals.) Two of these 87 sequence types (26 and 32) are shared with poultry
and four (5, 6, 18, 133) are shared with pigs. If we assume, conservatively, that
allshared types represent transmission from food animals to human patients (rather
than from people to animals, or to both from common environmental sources such
as soil, water, flies, or birds), then an estimate of the fraction of strains in human
patients that might originate in food animals is 6/87 = 0.069. Using this point esti-
mate reduces the above estimate to
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Fig. 9.1 Isolates from human hospital patients belong to a disjoint cluster from isolates in pigs
and healthy human VRE and are almost disjoint from poultry isolates
A population snapshot of 855 E. faecium isolates on the basis of MLST allelic profiles using the
eBURST algorithm (Leavis et al., 2006). This snapshot shows all clonal complexes, singletons, and
patterns of evolutionary descent. The relative size of the circles indicates their prevalence in the
MLST database (http://www.mlst.net/). Numbers correspond to the sequence types (STs), and lines
connect single locus variants: STs that differ in only one of the seven housekeeping genes. CC17,
the major subpopulation representing hospital outbreaks and clinical infections, is indicated, as
well as the source of other major subgroups. Annotations: Clin infect, isolates from clinical sites
(mainly blood) from hospitalized patients; Human comm, feces isolates from human volunteers
not connected to hospitals; Hosp outbreak, isolates from hospital outbreaks; Hosp surv, feces iso-
lates from hospitalized patients without an enterococcal infection and not associated with an ente-
rococcal hospital outbreak; VSE, vancomycin-susceptible enterococci. Source: Figure reproduced
with permission from Leavis et al. (2006)

expected exogenous vancomycin-susceptible and ampicillin-resistant cases per

year from food animals ≤ (38.75 exogenous vancomycin-susceptible and

ampicillin-resistant cases per year)× (fraction of not more than 6/87 from

food animals) ≤ 2.67 exogenous vancomycin-susceptible and ampicillin-resistant

infections per year from food animals.

Penicillin Allergies

Hospitalized patients who are allergic to penicillin cannot have their enterococ-
cal infections treated with penicillin or ampicillin. Since such patients are not
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harmed by penicillin resistance, we need to exclude them from risk calculations.
A large U.S. study of hospitalized patients requiring antimicrobials found that
15.6% reported an allergy to penicillin (Lee et al., 2000). (This exceeds the aver-
age in the general population, which is expected.) The remaining (1 – 0.156) =
0.844 of patients corresponds to

expected exogenous vancomycin-susceptible ampicillin-resistant cases

per year from food animals, in penicillin-tolerant patients ≤ 0.844× 2.67 = 2.25.

Excess Mortalities

The next step is to calculate the increase in human health harm – especially,
increased mortality – among the 2.25 expected cases per year calculated in the
previous steps. Fortun et al. (2002) report no statistically significant differences in
outcomes between ampicillin-resistant cases and ampicillin-susceptible cases. They
state that

There were no significant differences in the outcome of patients with ampicillin-resistant
and - susceptible strains. We did not find significant differences in mortality between the
two groups. Overall mortality in patients with bacteremia caused by ampicillin-resistant
and - susceptible E. faecium was 34% and 21%, respectively (OR: 2.1; 95% CI: 0.47–9.95).
Mortality attributed to bacteremia was 21% and 15%, respectively (OR: 1.5; 95% CI: 0.27–
8.85) (p. 4).

To obtain a nonzero risk estimate despite the reported absence of statistically
significant differences in mortality, we make the conservative assumption that the
numerical difference in bacteremia-attributed mortality rates between patients with
ampicillin-resistant and - susceptible strains reflects a true causal effect (i.e., that
resistance does cause a 21% – 15% = 6% increase in absolute mortality risk, per
patient per infection). In other words, we treat the statistically nonsignificant dif-
ference as a true difference caused by ampicillin resistance (but acknowledge that
this is not the original authors’ interpretation and that the true difference could be as
small as zero). This assumption provides a possible basis for calculating a nonzero
human health risk from ampicillin resistance.

With this assumption, the expected annual excess mortality risk caused by ampi-
cillin resistance becomes

expected excess mortalities per year (for the entire U.S. population) caused by

exogenous vancomycin-susceptible and ampicillin-resistant E. faecium

infections, assumed to originate from food animals, in penicillin-tolerant patients

≤ 2.25× 0.06 = 0.135 excess mortalities/year.

In reality, annual mortality risks from AREF are likely to be much smaller than
this, as patient-cultured isolates would typically be screened for resistance prior
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to treatment (standard procedure indicated for such infections) and then patients
with AREF would be treated with other drugs such as gentamicin, vancomycin,
quinupristin-dalfopristin, linezolid, daptomycin, tigecycline, or nitrofurantoin. In
addition, the above mortality estimate does not address the quality-adjusted life-
years (QALYs) lost due to potentially preventable resistance. The patients at risk
are severely ill (usually, immunocompromised) patients such as leukemia, trans-
plant, and AIDS patients. Thus, the hypothesized increased mortality risk (per
infection with ampicillin-resistant vancomycin-susceptible E. faecium) represents
fewer quality-adjusted life-years (QALYs) lost than would be the case for otherwise
healthy patients. We have therefore not attempted to quantify QALY impacts.

Results Summary, Sensitivity, and Uncertainty Analysis

Table 9.1 summarizes key parameter estimates, calculations, assumptions, and
resulting risk estimates from this study. When presenting point estimates, it is cus-
tomary to also present interval estimates to inform decision makers about the plausi-
ble range of estimated values. In the present analysis, however, the key uncertainties
have little to do with statistical sampling error, and they are not adequately charac-
terized by confidence limits. Rather, they arise from uncertainty about the validity
and conservatism of the assumptions in Table 9.1.

Qualitatively, the main uncertainty is about whether a nonzero risk to human
health exists from animal use of penicillin drugs. We have assumed that there is,
but there is no clear empirical proof that the risk is nonzero. To bridge this knowl-
edge gap, Table 9.1 incorporates several conservative qualitative assumptions that
jointly imply that the risk is nonzero. Other quantitative parameter values presented,
and their implied risk estimate of ≤0.135 excess mortalities/year, are intended to be
realistic, data-driven values (rather than extreme upper bounds or 95% upper confi-
dence limits) contingent on these conservative qualitative assumptions.

The most important conservative elements in Table 9.1 are the following qualita-
tive assumptions:

• The transfer of ampicillin resistance from food animal bacteria to bacteria
infecting human patients occurs. The assumption that ampicillin-resistant strains
and/or determinants are transferred from strains in food animals to human ICU
patients is fundamental to the assessment in Table 9.1. Such a transfer has never
been shown to occur, but may be possible, based on the similarities described
in Fig. 9.1.

• Withdrawing animal drug use would immediately and completely prevent the
problem. Table 9.1 assumes that halting penicillin use in food animals would
immediately eliminate all ampicillin resistance from the cases in Table 9.1. This
is a deliberately extreme assumption. In reality, halting use might have little or
no impact on the already very low levels of ampicillin resistance.
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• Resistance increases patient mortality. The assumption that ampicillin resistance
causes an increase in the mortality rates of the patients in Table 9.1 is made even
though, in reality, no statistically significant difference in mortality rates has been
found between resistant and nonresistant cases (Fortun et al., 2002).

With these assumptions, the calculations in Table 9.1 predict that excess mor-
talities per year in the entire U.S. population could be as high as 0.135, or about
one excess mortality expected once every seven to eight years on average, if current
conditions persist. This risk is concentrated among ICU patients already at a high
risk of such infections. With less conservative assumptions, the estimated risk falls
to about 0.04 excess mortalities per year, i.e., about one excess mortality every 25
years in the United States under current conditions. The multiplicative calculation in
Table 9.1 makes sensitivity analysis of these results to changes in the values of spe-
cific factors especially straightforward: The final risk estimate is directly propor-
tional to each factor listed.

The more conservative risk estimate of 0.135 excess mortalities per year equates
to an average individual risk rate in the most at-risk group (ICU patients) of approxi-
mately 0.135/315,000 = 4.3× 10–7 excess mortalities per ICU patient. For the U.S.
population as a whole, this corresponds to an average individual risk of approxi-
mately 0.135/300E6 = 4.5 × 10–10 excess fatalities per person-year, or a lifetime
risk of about 80 × (6 × 10–10) = 3.6 × 10–8 excess risk of mortality per lifetime
(for an assumed 80-year lifetime). This is well below the risk level of 1 × 10–6

(1 per million lifetimes) sometimes cited as a threshold for concern for carcinogens
in the environment. If the less conservative risk estimate of 0.04 excess mortali-
ties per year is used, these individual and population risks are reduced by a factor of
0.04/0.135, or more than threefold. If one or more of the key qualitative assumptions
listed above are violated, then the true risk could be as low as zero.

The most important uncertainty in this analysis is discrete: Is the preventable
fraction of risk positive or is it zero? Such uncertainty is not well characterized
by a confidence interval. Nonetheless, it may be useful to consider a rough upper
bound on how large the true risk might be. Markov’s inequality for nonnegative
random variables (see Table 2.1) gives a crude estimate if we assume that the risk
estimates in Table 9.1 represent expected values. In this case, a (possibly extreme)
upper bound on the true but unknown risk is that it has at most a 5% probabil-
ity of exceeding the point estimates (0.135 or 0.04 excess mortalities per year) by
more than 20-fold. To the extent that these point estimates are biased upward by the
assumptions listed in Table 9.1, upper bounds based on Markov’s inequality will be
even more conservative.

Summary and Conclusions

This chapter has considered the possibility that penicillin-based drugs approved for
use in food animals in the United States might increase the incidence of ampicillin-
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resistant Enterococcus faecium (AREF) of animal origin in human infections,
leading to increased hospitalization and mortality due to a reduced response to
ampicillin or penicillin. Upper bounding was used to assess the risks from the con-
tinued use of penicillin-based drugs in food animals in the United States, using
several assumptions to overcome current scientific uncertainties and data gaps. Mul-
tiplying the total at-risk population of intensive care unit patients by a series of esti-
mated factors suggests that not more than 0.037 excess mortalities per year (under
conservative assumptions) to 0.18 excess mortalities per year (under very conser-
vative assumptions) might be prevented in the whole U.S. population if the current
use of penicillin-based drugs in food animals were discontinued and if this suc-
cessfully reduced the prevalence of antibiotic-resistant E. faecium infections among
ICU patients. These calculations suggest that the current penicillin usage in food
animals in the United States presents very low (possibly zero) human health risks.
Such information may be useful to risk managers and policy makers, even though no
fully probabilistic model was developed, since adequate data to create and validate
such a model are not available.

Removing penicillin drugs from the animal drug market has long been proposed
as a risk management option by those for whom uncertain human health risks loom
larger, in the absence of quantification, than animal health benefits. But signifi-
cant baseline resistance among antibiotic-free animals (Patton et al., 2006), along
with small potential human health benefits even if removal immediately eliminated
all preventable cases of resistance in human patients (as in Table 9.1), suggests
that even complete product removal would not detectably improve human health.
Increasing the surveillance of food animal-associated enterococci and tracking their
penicillin/ampicillin resistances (NARMS, 2005), as well as complying with judi-
cious use guidelines for practitioners and producers (AVMA, 2008), may suffice
to protect human health against the current small risks without compromising the
health of food animals. Although concerns about penicillin use in food animals and
the potential transfer of resistance to humans have been debated for decades, current
knowledge and data, as analyzed in Table 9.1, suggest that ongoing penicillin use
in food animals in the United States creates at most only relatively minor risks to
human health. Quantitatively, these risks appear unlikely to exceed one potentially
preventable mortality in the U.S. population roughly every 7–25 years. The true
value could be smaller; it might be zero if one or more of the various key conserva-
tive qualitative assumptions discussed earlier are incorrect.

Knowing that an uncertain but preventable risk is either zero or relatively small
(say, on the order of one or fewer occurrence every few billion person-years, as in
this example) may provide a decision maker with enough information to make a
clear decision about what to do today – and to make the same decision as would
be made if complete information about risk were available. In this case, the addi-
tional information in a full probability distribution for consequences contains no
incremental value for improving decisions. The simpler bounding risk assessment,
with its partial characterization of risk, suffices as well as would a more elaborate,
fully probabilistic, risk model to support high-quality decision making. That the risk
might be zero or might be positive (but small) does not inhibit an optimal decision
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from being made today, if the same decision (e.g., to allow prudent uses of penicillin
drugs in food animals) is optimal in either case. Only if future information might
reveal which side of a decision boundary the uncertain risk falls on (e.g., only if it
might reveal a large enough risk to humans to justify reducing animal uses) might
it be worth acquiring additional information before making a decision. If all con-
tingencies lead to the same best decision today, then the value of information from
discovering which is correct is zero, for purposes of improving that decision.

Chapter 10 explores further how to use multiple alternative assumption sets,
when the correct one is unknown, to provide enough information to support current
decision needs, even though better information may become available later. Chapter
14 discusses the value of information (VOI) calculations further.



Chapter 10
Confronting Uncertain Causal
Mechanisms – Portfolios of Possibilities

This chapter returns to smoking and lung cancer risk as a fruitful example of a
complex system with many uncertainties (and, as discussed in Chapter 11, nonlin-
earities) in its input-output (dose-response) relations. These uncertainties, complex-
ities, and nonlinearities raise important challenges for quantitative risk assessment
(QRA) modeling. The challenge confronted in this chapter is how to estimate the
potential effects on lung cancer of removing a specific constituent, cadmium (Cd),
from cigarette smoke, given the very incomplete scientific information available
now about its possible modes of carcinogenic action. Not enough is known about
how cadmium affects lung cancer to allow useful bounds on risk to be established
using biomarkers, as in Chapter 8. A different strategy is needed for QRA.

The QRA in this chapter is based on a set of alternative effects estimates, derived
from (a) a rough mathematical model describing how different cell populations in
the lung might be affected by cadmium in cigarette smoke; and (b) alternative sets
of assumptions about how Cd in cigarette smoke might affect the model parameters,
thus increasing lung cancer risk. Rather than estimating unmeasured model param-
eters by traditional statistical curve fitting (adjusting the parameter values to match
model input-output predictions to epidemiological or animal experimental tumor
data), this chapter instead proposes rough estimates of parameter values based on
their biological interpretations and on data about lung cancer risks associated with
corresponding genetic polymorphisms. This knowledge-rich QRA modeling can
succeed if sufficient knowledge of potential causal mechanisms is available, even
if data points are lacking to support traditional statistical parameter estimation.

The resulting knowledge-driven parameter estimates are admittedly uncertain
and approximate. But they suggest a potentially useful portfolio approach to esti-
mating the impacts of removing Cd that gives robust conclusions. It views Cd as
creating a portfolio of uncertain health impacts that can be expressed as biologi-
cally independent relative risk factors having clear mechanistic interpretations. The
factors reflect the possible effects on biologically interpretable parameters such as
normal lung stem cell proliferation rate; DNA repair inhibition in normal stem cells
affected by initiating events; the proliferation, promotion, and progression of ini-
tiated (i.e., premalignant) cells; and death or sparing of initiated and malignant
cells as they are further transformed to become fully tumorigenic. (The following

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
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sections explain these parameters more fully.) Given such a portfolio of possible
causal mechanisms, and the resulting effects of Cd on lung cancer risk, it is easy
to calculate the probabilities that removing Cd will have total effects of different
sizes, starting from estimated probabilities that each individual mechanism holds.
Even if the probabilities of the individual causal mechanisms are very uncertain
(as seems realistic), approximate bounds for them, provided using expert judgment,
allow corresponding bounds to be calculated for the probability that removing Cd
would prevent at least a specified fraction of smoking-induced lung cancers, taking
into account the contributions from the whole portfolio of mechanisms. This type
of judgment-based approximate probabilistic analysis can provide a useful basis for
deciding whether to investigate further the possible health benefits of reducing Cd.
At the same time, the use of bounds on subjective probabilities indicates the sub-
stantial uncertainty about possible effects, given the current incomplete scientific
knowledge about causal mechanisms.

Background: Cadmium and Smoking Risk

In 1994, Hertz-Picciotto and Hu presented two regulatory-type risk assessments of
human lung cancer mortality risks from cadmium (Cd) in cigarette smoke. Based
on linear no-threshold statistical risk models applied to rat data and epidemiological
data, they concluded that, depending on factors such as the fraction of sidestream
smoke inhaled:

• “The epidemiologic data predicted that 1 to 18 lung cancer deaths per 10,000
smokers may be attributable to inhaled cadmium in cigarette smoke, or approxi-
mately 0.2% to 1.6% of smoking-induced lung cancer deaths. Upper 95% bounds
on these figures are 7 to 95 lung cancer deaths or 1.6% to 8.8% of smoking-
related deaths.”

• “The rodent data predicted that 80 to 416 lung cancer deaths per 10,000 smokers
(95% upper bounds: 136–707) or 13% to 47% (23–81%) of smoking-induced
lung cancer mortality may be attributable to cadmium in cigarette smoke.”

• “Linear extrapolation from human data appears to provide plausible estimates
of risk at low doses. Considering the large number of carcinogens present in
cigarette smoke, the extrapolation from rodents appears to overestimate human
risks.”

These numbers were developed from traditional statistical risk models, which
assume that risk increases smoothly with cumulative exposure. More recent epi-
demiological data suggest that this may not be an accurate assumption for cad-
mium (Jarup et al., 1998; Sorahan and Esmen, 2004), so the fractions of lung cancer
cases due to Cd estimated by Hertz-Picciotto and Hu may not be accurate either.
Nonetheless, they raise a key question for predictive risk assessment: To what extent
would reducing Cd in cigarette smoke reduce the risks of lung cancer from cigarette
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smoking? The answer depends on the exposure levels and accumulation of Cd in
target tissues as well as on the correct (but currently very uncertain) dose-response
relation for Cd in the context of other substances to which a smoker is exposed.

This chapter reconsiders the causal relation between Cd in cigarettes and the risk
of lung cancer in smokers in light of advances since 1994 in the understanding of
potential biological mechanisms by which Cd may cause lung cancer. Multiple in
vitro and ex vivo studies have suggested possible mechanisms, yet scientific under-
standing of the mechanisms of Cd-induced lung carcinogenesis remains very incom-
plete. At the same time, new and updated epidemiological studies have raised ques-
tions about some earlier reports associating Cd exposures with lung cancer, espe-
cially because of the apparent lack of a strong, consistent pattern of increasing risk
with increasing cumulative exposure (e.g., Sorahan and Esmen, 2004). We there-
fore reexamine the possible relation between Cd in cigarette smoke and human lung
cancer risk in light of current scientific knowledge and data, without making the tra-
ditional regulatory risk modeling assumptions used by Hertz-Picciotto and Hu and
without assuming that lung cancer risk association is necessarily a smooth, mono-
tonically increasing function of cumulative Cd exposure. Current scientific uncer-
tainties make it impossible to give a confident deterministic prediction of how much
difference removing Cd from cigarettes would make to lung cancer risk. Any useful
(and any honest) answer must reflect the fact that the predicted risk depends greatly
on what assumptions are made. . . and the correct set of assumptions is unknown.
Moreover, in contrast to the situation with penicillin drugs in Chapter 9, different
assumption sets do not all lead to predicted risks small enough (or large enough) to
imply the same decision. We therefore propose and illustrate methods for assessing
the extent to which removing Cd from tobacco should be expected to reduce lung
cancer risk to smokers, given the incomplete but useful scientific information now
available.

Previous Cadmium-Lung Cancer Risk Studies

Cadmium Compounds are Rat Lung Carcinogens

Sufficiently high and prolonged exposures to aerosols of cadmium (Cd) compounds
including cadmium chloride (CdCl2); cadmium oxide (CdO), particles of which are
readily solubilized in the lung, though not in water, and appear to be relatively toxic
compared to other Cd compounds (Glaser et al., 1986; Grose et al., 1987); cadmium
sulfide (CdS), which is cleared by alveolar macrophages and may be only about
10% as potent as CdO in causing inflammatory responses (Oberdorster, 1992); and
cadmium sulfate are known to increase the frequency of pulmonary adenocarcino-
mas in rats (Takenaka et al., 1983; Oberdorster, 1992; Heinreich, 1992; Waalkes,
2003). Similar increases in lung cancer risk are not observed in hamsters or mice,
even at doses that induce lung cell inflammation and cell proliferation, and even
though mice retain about twice as great a Cd dose per gram of lung as rats. The high
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susceptibility of rats may in part reflect the lower basal levels and induced expres-
sion in the lungs of the protective protein metallothionein (MT) (Oberdorster et al.,
1994; McKenna et al., 1998).

Epidemiological Data are Inconclusive

Whether cadmium exposures increase the risk of lung cancer in humans remains
uncertain. Cd has been classified as a human carcinogen (IARC, 1993), based
largely on statistical modeling of epidemiological data (e.g., Stayner et al., 1992).
However, available epidemiological data are somewhat ambiguous, with conclu-
sions about an association between Cd exposure and lung cancer risk varying greatly
depending on the data sets, statistical models, and exposure reconstruction assump-
tions used (see Table 10.1). Contemporaneous exposures to other chemicals (e.g.,
nickel and arsenic compounds) have confounded a clear causal interpretation of
past studies (Sorahan and Lancashire, 1997; Sorahan and Esmen, 2004), while the
absence of a clear relation between cumulative exposure and the risk of lung cancer
in most data sets (e.g., Jarup et al., 1998; Sorahan and Esmen, 2004) poses a puzzle
for traditional models of carcinogenesis if cadmium is indeed a human carcinogen.

Table 10.1 summarizes the conclusions from several important cadmium
epidemiology studies, illustrating the conflicting interpretations that have been
suggested. The influential studies by Stayner and co-authors that reported clear
dose-response relations did so only for estimated exposures and model-predicted
risks, using statistical models that assumed a smooth, typically monotonic, relation
between them. As shown by Stayner et al., the raw data suggest different, non-
monotonic exposure-response patterns (e.g., u-shaped for Hispanics and n-shaped
for non-Hispanics). Thus, while suggestive, the results from the statistical risk mod-
els are not necessarily valid: the reported dose-response relations may be artifacts of
questionable data aggregation and modeling assumptions, rather than true empirical
relations.

Conversely, the absence of a consistent exposure-response relation noted by other
investigators need not imply that Cd is not a human lung carcinogen. Rather, Cd may
induce lung cancer by nontraditional (e.g., nongenotoxic) mechanisms, with cancer-
increasing effects that are independent of cumulative exposure over the ranges found
in occupational studies. The following sections explain how such nontraditional
mechanisms and exposure-response relations may operate for cadmium.

Pharmacokinetic Data Show That Smoking Increases Cadmium
Levels in the Human Lung

Despite the mixed and inconclusive epidemiological evidence in Table 10.1, several
lines of biological evidence suggest that Cd in cigarette smoke may be a human lung
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Table 10.1 Selected findings from cadmium lung cancer epidemiology (emphases added)

“For lung cancer, adjusted hazard ratio was 1.70 (1.13–2.57, p =
0.011) for a doubling of 24-h urinary cadmium excretion, 4.17
(1.21–14.4, p = 0.024) for residence in the high-exposure area
versus the low-exposure area, and 1.57 (1.11–2.24, p = 0.012) for a
doubling of cadmium concentration in soil.”

Nawrot et al. (2006)

“Estimated cumulative cadmium exposures were not related to
risks of lung cancer or risks of chronic obstructive pulmonary
diseases, even when exposure histories were lagged first by 10, then
by 20 years. CONCLUSIONS: The study findings do not support
the hypotheses that cadmium compounds are human lung
carcinogens.”

Sorahan and Esmen
(2004)

“Overall, considering the results of the most recent studies does not
suggest that the effect of cadmium on lung cancer increases with
improvement of the study design but points to a lower relative risk
in the groups exposed to cadmium in the absence of arsenic and
nickel.”

Verougstraete et al.
(2003)

“There was an increased overall risk for lung cancer, but no
exposure-response relationbetween cumulative exposure to
cadmium or nickel and risk of lung cancer.”

Jarup et al. (1998)

“A statistically significant dose-response relationship was evident
in nearly all of the regression models evaluated. Based on our
analyses, the lifetime excess lung cancer risk at the current
Occupational Safety and Health Administration standard for
cadmium fumes of 100 micrograms/m3 is approximately 50–111
lung cancer deaths per 1,000 workers exposed to cadmium for 45
years.”

Stayner et al. (1992)

“The increasing risk of lung cancer associated with increasing
duration of employment could not be accounted for by cadmium
and did not appear to be restricted to any particular process or
department.”

Ades and Kazantzis
(1988)

“This new analysis suggests that long term, high level exposure to
cadmium is associated with an increased risk of cancer. The role
of concomitant exposure to nickel needs further study.”

Elinder et al. (1985)

carcinogen. For pharmacokinetics, autopsy data show that human smokers accu-
mulate about an eightfold increase in the lung concentrations of Cd compared to
nonsmokers, with the elevated Cd levels returning to nonsmoker levels only slowly,
e.g., in about 22 years after the cessation of smoking (Paakko et al., 1989). (For
comparison, in mice and rats, the increase in lung Cd in smoke-exposed animals
is about five- to sixfold; see Gairola and Wagner, 1991.) Cd levels have also been
found to be significantly higher in lung cancer tumor tissue than in lung tissue from
other lung surgery patients (Kollmeier et al., 1990) and autopsied smelter work-
ers dying with lung cancer had median lung Cd levels about fivefold greater than
the levels in workers dying from other cancers, although the causal interpretation
of such associations is not self-evident (Gerhardsson et al., 1986). While humans
and other primates have basal metallothionein (MT) levels about an order of magni-
tude higher than in rats, which could reduce the risk from Cd, they also have much
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longer retention times for Cd in the lungs (by a factor of 10 in experiments reported
by Oberdorster, 1992), and recent evidence suggests that smoking may saturate MT,
at least in alveolar macrophages, leaving the remaining Cd dose available to interact
with cells and perhaps cause carcinogenic damage (Grasseschi et al., 2003).

Considerable in vitro human and animal cell studies and some in vivo animal
data, reviewed below, suggest that many biological processes involved in carcino-
genesis may be affected by increases in Cd, especially in the context of other
smoking-induced effects on lung cell populations. Thus, the substantial (approxi-
mately eightfold) excesses of Cd that accumulate in the lungs of smokers under real
exposure conditions provide reason to further investigate how and whether Cd from
cigarette smoke might increase lung cancer rates.

Biological Mechanisms of Cadmium Lung Carcinogenesis

A Transition Model Simplifies the Description
of Cadmium-Induced Lung Carcinogenesis

Several different pharmacodynamic and biological mechanisms have been proposed
recently, each with at least some experimental support, to explain how Cd expo-
sures may increase lung cancer rates in rats, and possibly in humans. To help
organize available data on Cd-induced lung carcinogenesis, Fig. 10.1presents a con-
ceptual model of carcinogenesis. The parameters of the model, explained next, can
be affected by Cd exposures, and the resulting changes in their values summarize
how Cd affects cancer risk.

This framework is based on previous two-stage clonal expansion (TSCE) models
of lung carcinogenesis (e.g., Hazelton et al., 2005; Moolgavkar et al., 1993; Luebeck
et al., 1999). It makes the following modifications to accommodate Cd-specific data:

• A “preinitiated” compartment is inserted between the normal stem cell and ini-
tiated stem cell compartments to allow convenient modeling of exposure-related
effects on DNA repair (e.g., Potts et al., 2003). DNA damage (e.g., due to oxida-
tive damage or covalent binding of reactive metabolite molecules to DNA) may
cause a normal stem cell to undergo a transition to the preinitiated compartment.
This transition rate is denoted as a. Its units are the expected transitions per nor-
mal stem cell at risk per unit time. Like other parameters in the model, a may be
time-varying and may depend on exposure, levels of detoxifying enzymes and
protective proteins, and other factors.

r, a

⇔ ⇒ ⇒ ⇒

f c h

Normal Pre-initiated Initiated Malignant Tumor

⇓(e – g)⇓(d – b)⇓(D – B)
Fig. 10.1 A conceptual
model of carcinogenesis
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• Damaged cells in the preinitiated compartment are repaired at an average rate
of r repairs per damaged cell per unit time. However, if a damaged cell divides
before being repaired, then the DNA damage is “locked in” and the daughter
cell and its progeny belong to the initiated compartment. The probability that
somatically heritable damage is locked in before it is repaired is p = f/(f + r),
where f is the effective rate of mitogenesis (viewed as a transition that competes
with repair for a preinitiated cell). While Fig. 10.1 shows f and r as two separate
parameters, only the ratio p is needed to calculate the fraction of preinitiated cells
that become initiated.

• Separate “malignant” and “tumor” compartments. A “malignant” cell is defined
here as one that is immortal (unless killed by cytotoxic damage), but not invasive,
as for carcinoma in situ. By contrast, a fully developed “tumor” cell exhibits addi-
tional tumorigenic properties such as invasiveness and continued autonomous
growth.

• Exposure-dependent latency times: The hazard rate or hazard function h for the
random time for a malignant cell to become fully tumorigenic may depend on
exposures. Similarly, the transition rate c for converting or transforming initiated
to malignant cells may be exposure-dependent. This enables the modeling of
situations in which Cd exposures hasten or inhibit the transformation of cells
to fully tumorigenic cells. [Cd compounds can cause either of these opposite
effects in vitro, depending on relatively small changes in exposure concentration
and duration (e.g., Abshire et al., 1996; Takiguchi et al., 2003).]

• Exposure may affect the birth and death rates of the normal stem cell compart-
ment as well as of the initiated cell compartment. The net death rate per cell
per unit time in the normal stem cell compartment is denoted by (D – B), while
the net death rate in the initiated cell compartment is denoted by (d – b), where
D and d denote the absolute death (or differentiation) rates and B and b denote
the absolute birth rates of cells in these two compartments, respectively. These
parameters are needed to represent experimental evidence that Cd exposures can
affect the proliferation rates (Bajpai et al., 1999; Hart et al., 1989; Palmer et al.,
1975) and apoptosis rates (Lag et al., 2002; Shih et al., 2003; Shin et al., 2004)
of normal cells as well as of initiated cells (Fang et al., 2002; Hart et al., 2001).
Rather than modeling normal stem cell kinetics in detail, it may be simpler and
sufficiently accurate to recognize that this compartment undergoes homeostatic
self-regulation (Cox, 1992) and that the net effect of chronic exposure to Cd on
normal stem cell kinetics may be a simple percentage change in the number of
normal stem cells at risk of initiating damage.

• Malignant cells may undergo exposure-dependent cytotoxic death and/or
exposure-related selective survival and growth compared to other cells. The net
death rate per malignant cell per unit time in the normal stem cell compartment
is denoted by (e – g), i.e., the difference of (possibly dose-dependent) “exit” and
“growth” rates per malignant cell per unit time. This feature is included to facil-
itate the representation of experimental evidence that Cd exposure can inhibit
lung tumor growth and metastasis (Waalkes and Diwan, 1999), perhaps in part
by cell-specific cytotoxicity, e.g., due to a deficiency of MT in malignant cells
(Waalkes et al., 1993).
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• The effects of exposures on growth rates and transition rate parameters are not
assumed to follow any specific parametric form. Instead, the percentage change
in each parameter, considered as a function of Cd dose (or, in the context of
smoking, considered as a function of smoking intensity and duration for a given
Cd content in the tobacco), is treated as a quantity to be estimated empirically,
e.g., from animal or human smoking data and/or from relevant in vitro data and
extrapolation assumptions. This flexibility is required to represent experimen-
tal evidence from in vitro cell lines that relatively slight (e.g., 2- to 10-fold)
changes in Cd concentration can reverse the directions of Cd impacts on such
parameters as

(a) Proliferation rates, from stimulatory to inhibitory (Beyersmann and
Hechtenberg, 1997).

(b) Tumorigenic progression and transformation rates, from stimulating malig-
nant progression to inhibiting it (Abshire et al., 1996).

(c) Production of glutathione (GSH) in a lung cell line, from stimulation to
depletion (Gaubin et al., 2000), as has also been reported for lung epithelial
lining fluid GSH levels of chronic vs. acutely exposed cigarette smokers in
vivo (Rahman and MacNee, 1999).

(d) Similarly, extending the duration of Cd exposure from 1 week to 10 weeks
reverses the direction of its impacts of DNA methylation (from hypomethy-
lation to hypermethylation) and MT expression in a rat liver cell line
(Takiguchi et al., 2003).

Such reversals emphasize the need for flexibility in modeling the directions and
magnitudes of Cd exposure effects on model parameters, depending on the intensity
and duration of exposure. None of them is consistent with a linear relation between
Cd exposure and changes in transition rates.

In summary, the modifications to the standard TSCE model introduced here are
made to allow the representation of relevant data on Cd-induced lung carcinogenesis
and cell effects.

The quantitative variables N, P, I, M, and T will be used to refer to the numbers
of normal, preinitiated, initiated, malignant, and tumorigenic cells, respectively, in
Fig. 10.1. These are dynamic variables, i.e., they may change over time, at rates that
reflect the other model quantities (transition rates and birth-death rates), which in
turn may be affected by Cd exposures and other exposures.

Cadmium Can Affect Lung Carcinogenesis via Multiple
Mechanisms

In the framework of Fig. 10.1, a carcinogen acts by increasing one or more of the
following seven quantities:
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• N = number of susceptible normal stem cells available for an initiating transfor-
mation. Carcinogens may increase their birth rate, B (either directly, by upreg-
ulating growth signals or their receptors, or indirectly, by cytotoxic damage to
more mature cells that stimulates the compensating proliferation of stem cells),
or decrease the death rate, D.

• a = preinitiation rate (N to P transition rate) per susceptible normal stem cell
per unit time. A classical initiator might increase a by increasing concentrations
of reactive oxygen species (ROS) or metabolites available to bind to and damage
DNA, either by increasing their production or by slowing their detoxification and
removal.

• p = initiation probability that initiation events become locked in by mitosis
before they can be repaired. Exposure to an initiator carcinogen increases p if
it increases the effective rate of mitogenesis, f, or decreases the effective repair
rate, r, for preinitiated cells.

• I = number of initiated stem cells available for malignant transformation. A pro-
moter carcinogen can reduce the net death rate (d – b) (if d > b; or increase the
net birth rate, b – d, if b > d), leading to the increased survival and proliferation
(“promotion”) of initiated clones.

• M = number of malignant stem cells available for further tumorigenic transfor-
mation by decreasing their net death rate (e – f). This might be done by increasing
their proliferation rate, by inactivating tumor suppressor genes such as p53, or by
cytotoxic selection of malignant cells in competition with normal stem cells.

• Effective malignant transformation (or “progression”) rates c and h, i.e., the
rates of transformation from I to M (per initiated cell per unit time) and from M
to T, respectively. For example, this might occur by inactivating tumor suppressor
genes, or by cytotoxic selection of more transformed cells in competition with
less transformed cells.

Table 10.2 summarizes such effects for Cd. In this table, a symbol such as “N↑”
is interpreted to mean “N increases,” while “N → I ” is interpreted as “the flux
of cells from N to I (i.e., number of cells per unit time making this transition)
increases.” Each of the generic mechanisms of carcinogenesis just described has
a more detailed counterpart for Cd in Table 10.2. The following paragraphs summa-
rize several aspects of Cd biology that may be relevant for understanding its possible
roles in smoking-related lung cancer.

Smoking and Cd Exposures Stimulate Reactive Oxygen Species
(ROS) Production

Cd2+ itself is only weakly genotoxic. Unlike some other heavy metal carcinogens
(CuII, CrVI, NiII, CoII), Cd is not a good redox transition metal (does not accept or
donate electrons) under physiological conditions, and hence does little direct geno-
toxic damage (Waisberg et al., 2003).
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However, it can indirectly induce oxidative damage in cells and stimulate the
production of reactive oxygen species (ROS) in mouse peritoneal macrophages in
vivo (Ramirez and Gimenez, 2003) and in liver, brain, and heart cell mitochondria
(perhaps by the transfer of an electron to O2 to form superoxide) (Wang et al., 2004;
Pourahmad et al., 2003). Cd adaptation in cultured alveolar epithelial cells reduces
oxidant-induced DNA damage (but also DNA repair capability), but such oxidative
damage occurs in nonadapted cells exposed to Cd (Potts et al., 2001).

Under some conditions, Cd depletes glutathione (GSH) and protein-bound
sulfhydryl groups, thus increasing the net production of ROS such as superoxide
ion, hydroxyl radicals, and H2O2 that can damage DNA, alter gene expression,
and activate protein kinase C (PKC) cell signaling (Stohs et al., 2001). However,
Cd exposure increases GSH in rat lung cells (Shukla et al., 2000). In humans,
chronic smokers typically have increased GSH levels (Rahman and MacNee, 1999).
Enzymes with substrates in the GSH metabolic pathway have been associated with
susceptibility to lung cancer risk among smokers (Yang et al., 2004; Jourenkova-
Mironova et al., 1998). For example, it has been reported that the risk of lung cancer
increases steeply with pack-years of smoking among GSTT1-null smokers, but not
among other smokers (Hou et al., 2001). Such polymorphism data are still being
clarified and disputed, however.

ROS production and oxidative damage have been considered important in the
toxicity of both mainstream and sidestream cigarette smoke (St. Clair et al., 1994)
as well as of cadmium in vitro (Yang et al., 1997). It is not yet clear just how strong
a role such damage actually plays in lung carcinogenesis, nor how much incremen-
tal difference Cd makes to ROS production (and to related processes, such as GSH
stimulation or depletion) in the overall context of cigarette smoking. Oxidants in
cigarette smoke (probably including oxidants generated by the reactive metabolites
hydroquinone and catechol) are associated with tumor promoter activity. They can
activate PKC signaling and contribute to increased tumor cell invasion and metasta-
sis of cancer cells to mouse lungs (Gopalakrishna et al., 1994). In general, both Cd
exposure and smoking may induce proliferation in lung cells, at least in part through
oxidative damage.

Cadmium Inhibits DNA Repair and Is a Co-Carcinogen for PAHs

A common form of ROS-induced oxidative damage to DNA is the highly mutagenic
7,8-dihydro-8-oxoguanine adduct, which is commonly repaired by the base excise
repair enzyme 8-oxoguanine glycosylase I (OGG1) before the damage is locked in
by cell division. The loss of heterozygosity of the OGG1 gene is frequently observed
in lung tumors (Chevillard et al., 1998) and other cancers (Shinmura and Yokota,
2001), and genetic polymorphisms in the OGG1 gene have been associated with an
increased risk of lung cancer in several studies (see Table 10.3). In OGG1 knockout
mice, lung tumors develop spontaneously after about 18 months, at a rate five times
higher than in wild-type mice (unless another gene, mth1, whose corresponding
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enzyme is involved in hydrolyzing 8-oxo-dGTP, is also knocked out) (Sakumi et al.,
2003). Preliminary epidemiological evidence suggests that OGG1 may also mod-
ulate lung cancer risks from PAH-rich coal emissions in humans in vivo among
nonsmoking but highly exposed women in China (Lan et al., 2004).

Cd exposure inhibits OGG1-mediated DNA repair in several experimental sys-
tems. A single exposure of adult male Lewis rats to Cd aerosol has been shown to
cause a time- and dose-dependent downregulation in the pulmonary levels of OGG1
in vivo (Potts et al., 2001). In cultured alveolar epithelial cells, Cd inhibits the repair
of H2O2-induced oxidative DNA damage (Potts et al., 2001), in part by downregu-
lating OGG1 expression (Potts et al., 2003) and inhibiting the base excision repair
enzymes OGG1 and endonuclease III (Hart et al., 2001).

In vitro, noncytotoxic levels of Cd enhance the genotoxicity of direct-acting
mutagens (Beyersmann and Hechtenberg, 1997), including benzo[a]pyrene [B(a)P]
and perhaps other polycyclic aromatic hydrocarbons (PAHs) found in cigarette
smoke, by inhibiting the repair of relevant B(a)P-DNA adducts (decreasing r in Fig.
10.1). Cd may also alter p53 and p21 growth regulation and hasten the mitosis of
damaged cells, in effect, increasing f as well as decreasing r in Fig. 10.1 (Mukherjee
et al., 2004). Cd inhibits the repair of benzo[a]pyrene diol epoxide (BPDE)-DNA
adducts, which inactivate the p53 tumor suppressor gene and are the PAH adducts
most clearly associated with an increased lung cancer risk (Rojas et al., 2004; Li
et al., 2001b). Specific G to T transversion mutations at “hot spots” of the p53
gene occur commonly in smoking PAH-induced lung cancers, but relatively rarely
in other cancers (Hernandez-Boussard and Hainaut, 1998; Alexandrov et al., 2002);
they are specifically associated with BPDE damage (Lewis and Parry, 2004). BPDE-
DNA adduct and PAH levels are elevated two- to threefold in the lungs of smokers
compared to nonsmokers (Lodovici et al., 1998). Thus, by slowing the repair of
BPDE-DNA adducts (Mukherjee et al., 2004) or other DNA damage, Cd may con-
tribute to the carcinogenicity of cigarette smoke. The quantitative impact of this
mechanism has not been determined, however.

This co-carcinogenicity of Cd may help to explain why epidemiological studies
do not always find a clear relation between cumulative Cd exposure and the risk
of lung cancer. If the risk of lung cancer is driven primarily by contemporaneous
exposures to other direct-acting carcinogens, then measuring Cd exposure levels
will not provide adequate information from which to predict the increase in lung
cancer risk that it enables. In addition, Cd may have some tumor-inhibiting effects
(Waalkes and Diwan, 1999) as well as carcinogenic and co-carcinogenic effects, and
these effects may not be related in any simple way to cumulative exposure.

Quantifying Potential Cadmium Effects on Lung Cancer Risk

Table 10.2 provides qualitative information on how Cd might increase lung can-
cer risks. Such information is useful for the hazard identification component of risk
assessment. This section undertakes a more speculative quantitative calculation of
how large these risks might be, using the organizing framework in Fig. 10.1 and
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evidence from genetic polymorphism studies on the approximate magnitudes of dif-
ferent biological effects in increasing lung cancer risks.

Polymorphism Evidence on Lung Cancer Risks from Different
Mechanisms

Table 10.3 summarizes results from several studies that examine the relative risks
of lung cancer among people with various types of genetic polymorphisms. While
there are still inconsistencies among studies and some results and interpretations are
disputed, it appears likely that genotypes with (a) a relatively high metabolic acti-
vation of carcinogens [e.g., via wild-type cytochrome (CYP) and/or production of
ROS], (b) a reduced capacity to sequester or detoxify them (e.g., due to GSTT1 null
polymorphism, perhaps in combination with other glutathione-inhibiting polymor-
phisms), (c) a diminished DNA repair capacity (e.g., from OGG1 variants), and/or
(d) reduced or inactivated tumor suppression (e.g., p53) defenses, have an increased
risk of lung cancer in general and of smoking-associated lung cancer in particu-
lar. To the extent that exposures to carcinogens reproduce or mimic these effects,
the relative risks associated with various combinations of polymorphisms (the third
column in Table 10.3) may provide a useful rough indication of the risk increases to
be expected from exposures.

Other genetic polymorphisms not shown in Table 10.3, such as myeloperoxi-
dase (MPO) gene mutation, microsomal epoxide hydrolase (EH) polymorphism,
and polymorphisms in repair genes other than OGG1, have also been associated
with significant increases in lung cancer risk. The intent of Table 10.3 is not to list
all such polymorphisms, but to provide initial information (and ranges of disagree-
ment) about the approximate sizes of effects associated with changes in the key
processes of carcinogen activation, removal, and damage control (DNA repair or
tumor suppression) that are plausibly also important in Cd-induced lung carcino-
genesis. The main conclusion is that most individual effect (relative risk) estimates
are between about 1.5 and 4, although some fall outside this range.

Frequencies of the genetic polymorphisms in Table 10.3 may differ for smokers
and nonsmokers. For example, people with intact CYP2A6 alleles that make them
especially susceptible to CYP-activated carcinogens may also be disproportionately
likely to smoke [Fujieda et al., 2004; Ariyoshi et al., 2002, for male Japanese. Loriot
et al. (2001) present contrary analysis and findings for a French population.] Thus,
the carcinogenic effects of smoking, including any Cd-mediated ones, may take
place in hosts who already have one or more predisposing factors from Table 10.3
favoring the development of lung cancer.

Quasi-Steady-State Analysis

For purposes of quantitative risk assessment, it is usual to analyze TSCE mod-
els and their generalizations by focusing on the probability distribution of the
first passage times of cells through the network of compartments representing the
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model. Appendix A offers a simplified steady-state analysis of cell population
changes induced by smoking, coupled with a probabilistic analysis of the remaining,
relatively slow, changes, which are modeled as one-time shifts in corresponding
parameter values from their previous (nonsmoking) levels to new (smoking or
smoking-without-Cd) levels. This quasi-steady-state analysis is intended as a poten-
tially useful heuristic for estimating the potential contribution of Cd to a chronic
smoker’s risk of lung cancer. It assumes that smoking-induced changes in model
parameter values take place in a relatively small (negligible) fraction of the time
that smoking lasts, and then remain in effect at their new levels for the duration of
the smoker’s life. Thus, dynamics and transients arising from interruption or cessa-
tion of chronic smoking are not modeled.

When a person begins chronic smoking, several changes occur in lung cell popu-
lations, including a roughly threefold initial increase in alveolar cellularity by some
measures (Mancini et al., 1993); changes in metabolizing enzymes (CYP, GST/GSH,
MPO, EH, etc.); an eventual increase in PAH-induced genotoxic damage (e.g., BPDE-
DNA adduct formation) of perhaps two- to fourfold in lung cells (Lodovici et al.,
1998); increases in p53 inactivation (at least in a substantial proportion of smokers);
and alterations in DNA repair, apoptosis, and proliferation rates, and adaptation of
surviving cells. The sequence and timing of these changes and their implications for
cancer risk may depend on an individual’s genotype, age, and co-exposure history,
as well as on smoking intensity – and perhaps, for some of the changes, on the lev-
els of Cd in the lung. Cd levels in the lung gradually increase as smoking continues,
eventually reaching levels nearly an order of magnitude greater than in nonsmokers
(Paakko et al., 1989). As Cd levels in the lung increase, they may cause (“switch on”)
Cd concentration-dependent effects in susceptible lung cells.

Table 10.4 outlines the main effects of smoking, interpreted in terms of the model
parameters in Fig. 10.1, and suggests rough estimates of the plausible sizes of these
effects using a relative risk (RR) framework, discussed further in Appendix A.
The rightmost column uses the same relative risk framework to describe possible
reductions in the smoking-induced risks of lung cancer from eliminating Cd from
cigarette smoke. The relative risk numbers in Table 10.4 are to be interpreted as fol-
lows. The third column gives estimated increases due to smoking for the Fig. 10.1
model parameters N, a, p (and its components r and f), c, 1/(c + d – b), and 1/(h +
e – g). Increases are expressed via relative risk factors of the form RR = (1 + x).
The product of these factors is the total relative risk due to smoking. The fourth
column in Table 10.4 gives estimates of the factors by which these factors might be
reduced if Cd were removed from cigarette smoke. Multiplying them gives the total
reduction (RR < 1) in lung cancer risk for a smoker of non-Cd cigarettes compared
to a smoker of current cigarettes. For example, based on the estimated values (1, 1,
0.75, 0.9, 0.8, 0.8) for fractional reductions in [N, a, p, c, 1/(c + d – b), 1/(h + e
– g)], respectively, if Cd were removed, the total estimated reduction in smoker’s
risk would be RR = 0.75∗0.9∗0.8∗0.8 = 0.43, i.e., the production of tumorigenic
cells would be predicted to fall by more than half. (Changes in h are not included in
Table 10.4, because changes in this process can be thought of as primarily affecting
the latency period, rather than the total production of tumor cells, unless the process
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is right-censored by the host’s death.) The possibility that Cd may kill tumor cells
(Waalkes and Diwan, 1999) is noted, but the emphasis of the model is on preventing
the production of tumor cells, rather than on attempting to use Cd to kill them.

The effects estimates in the two rightmost columns of Table 10.4 are intended as
informed guesses that are perhaps more likely to underestimate than to overestimate
the health benefits of removing Cd (since, unless reducing Cd will create a signif-
icant reduction in health risks, it may be prudent to invest resources elsewhere).
Given this conservative bias, the potential effects on smoker risk of removing Cd
from tobacco products were estimated as follows:

• N: RR = 1 for Cd effects on N (i.e., no effect on number of stem cells at risk).
• a: Similarly, the value of RR = 1 for a reflects an assumption that increases in

initiation rates (e.g., due to oxidative DNA damage caused by Cd-induced ROS)
from cadmium are negligible. In vitro data (e.g., Ramirez and Gimenez, 2003)
give some reason to question this assumption, as indicated by the question mark
after it in Table 10.4. (Removing Cd might reduce a.)

• p: The in vitro evidence that Cd suppresses DNA repair is strong. This may
account for at least a twofold increase in the lung cancer RR among smokers, if
the effect is comparable to that from an OGG1 polymorphism that also inhibits
DNA repair. If Cd accounts for 25% of this total effect, then reducing Cd might
decrease p to 75% of its preremoval value (RR = 0.75) due to improved DNA
repair. In addition, the mitogenic effects of Cd on damaged cells may increase f
and hence increase p (Waisberg et al.,2003), but because of the uncertainties in
extrapolating from in vitro to in vivo settings, Table 10.4 takes no credit for this
possibility, treating f as unchanged by Cd.

• N∗a∗p: Combining the preceding three parameters, we assume that removing Cd
could decrease the production of initiated cells per unit time by 25%. Although
this effect is shown as being mediated by a 25% decrease in p, the product form
makes it unnecessary to commit to this specific hypothesis (i.e., the decrease in
N∗a∗p is all that matters, not the specific decreases in each of its three compo-
nents).

• c/(c + d – b): Under certain conditions (Appendix A), including a positive
denominator, this ratio can be interpreted as the expected number of malig-
nant cells eventually produced per initiated cell entering I. It may be interpreted
roughly as the probability that an initiated cell (or the clone descending from
it) survives and eventually becomes malignant. It has an estimated reduction
from removing Cd of 0.9∗0.8= 0.72. This reflects considerable in vitro evidence
that Cd both increases c and b and reduces d (and hence d – b). The traditional
TSCE model applied to epidemiological data also suggests that Cd exposure may
increase the proliferation and transformation of initiated cells (Stayner et al.,
1992). Thus, several lines of evidence suggest that Cd increases this parameter,
so that removing Cd may reduce it.

• 1/(h + e – g): The value of 0.8 assumed for the reduction in this ratio if Cd is
removed reflects the fact that a smaller fraction of malignant cells is expected to
become fully tumorigenic in the absence of Cd. However, this is based primar-
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ily on in vitro experimental data, and the magnitude of the effect in vivo in the
context of smoking is very uncertain at present.

In summary, the effects estimates in Table 10.4 are based on approximations and
judgments made in light of data that are, in many cases, informative but far from
conclusive. The results suggest, but do not prove, that there may be a significant
reduction in lung cancer risk by removing Cd from cigarette smoke.

A Portfolio Approach to Estimating the Preventable Fraction
of Risk for Cd

To further assess the uncertain fraction of smoker lung cancer risk that might be
prevented by removing Cd, while allowing for the possibility that some or all of
the postulated effects in Table 10.4 (especially those based on in vitro evidence
and animal data) may turn out not to hold for human smokers in vivo under real
conditions, it is useful to view the multiple effects as a portfolio of potential causal
impacts. The components of the portfolio are individually uncertain. Yet they may
collectively represent an opportunity to achieve a significant reduction in risk by
removing or reducing Cd in cigarette smoke. Using a portfolio perspective, simple
calculations can be used to bound the uncertain health impact of removing Cd.

To illustrate, suppose that removing Cd is judged to have at least a 10% subjective
probability of achieving at least a 10% reduction in each of the following five factors
[N, a, p, c/(c + d – b), h/(h + e – g)] independently (since it affects each of them, if
at all, by different biological mechanisms, as shown in Table 10.4). Given no other
assumptions, the probability that at least one of these five factors will in fact turn
out to be affected by Cd removal is

Pr(at least 10% risk reduction) = 1− Pr(no effect) = 1− (0.9)5 = 0.41.

Thus, even if we assume that there is a 90% probability that each separate factor
will turn out to be completely unaffected by removing Cd, there is still a better than
40% probability that the risk to smokers caused by the portfolio of Cd effects will
be significantly reduced (combined RR ≤ 0.9) by removing Cd.

More sophisticated probabilistic modeling (e.g., addressing the nine individual
parameters N, a, b, c, d, e, f, g, and r) could generate more detailed probabilistic
descriptions of the likelihoods of effects of different sizes. Even without such cal-
culations, however, a key point is clear: Because Cd potentially acts through many
separate parameters to increase cancer risk, it is plausible that removing Cd from
cigarette smoke could have a significant beneficial impact on reducing risk. This
conclusion holds even though there is a great deal of uncertainty about the validity
of each proposed mechanism considered in isolation. (This conclusion could fail
if other constituents of cigarette smoke acted through and saturated the same bio-
logical mechanisms as Cd, but this does not appear to be the case based on the
mechanisms in Table 10.4.)
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Discussion and Conclusions

This chapter has focused on quantifying the uncertain effects on lung cancer risk
of removing cadmium from cigarette smoke, given the incomplete scientific infor-
mation currently available about its mode(s) of action. Building on earlier stochastic
models of carcinogenesis, the QRA model proposed here represents smoking effects
on steady-state normal stem cell numbers; the inhibition of DNA repair, initiation,
and competition between mitosis and DNA repair in determining an initiated cell’s
fate; the proliferation, promotion, and progression of initiated cells; and the death
or sparing of initiated and malignant cells as they are further transformed to become
fully tumorigenic.

Rather than estimating unmeasured model parameters by fitting model-predicted
curves to epidemiological or animal tumor data, this chapter has relied on initial
rough estimates of parameters based on their biological interpretations and on the
literature describing the biological mechanisms and effects among humans and ani-
mals exposed to Cd compounds and to cigarette smoke. Genetic polymorphism data
were used to suggest plausible ranges of quantitative health impacts for particu-
lar biological mechanisms. The resulting parameter estimates are admittedly uncer-
tain and approximate. Yet they suggest that viewing Cd as creating a portfolio of
uncertain health impacts, expressed as biologically independent relative risk factors
having clear mechanistic interpretations, can provide useful estimates of the likely
impacts of removing Cd. Because Cd can act through many distinct biological mech-
anisms, it appears plausible (subjective probability greater than 40%) that removing
Cd from cigarette smoke would reduce smoker risks of lung cancer by at least 10%,
although it is possible (i.e., consistent with what is known with confidence) that the
true effect could be much larger or smaller (or zero). Conservative estimates and
assumptions made in this calculation suggest that the true impact could be greater
for some smokers.

This conclusion – that a substantial reduction in risk if Cd is removed is plau-
sible but not certain – is robust to several scientific uncertainties about cadmium
and smoking effects. It generally is consistent with earlier conclusions from the
regulatory risk assessments of Hertz-Picciotto and Hu (1994), although using very
different reasoning, data, and modeling methods. The conclusion that there is a
subjective probability of over 40% that removing Cd from cigarette smoke would
reduce smoker risks of lung cancer by at least 10% indicates both the high uncer-
tainty about the probable consequences and the fact that a significant reduction in
risk is plausible in light of current knowledge. This conclusion amounts to little
more than a quantitative expression of “Maybe!” as an answer to the question of
whether removing Cd would reduce the risk substantially (e.g., by 10% or more).
It is a relatively weak conclusion, compared to the quantitative bounds on risk pro-
vided by biomarker data and causal modeling in Chapters 8 and 9. But it may be
the strongest answer warranted by the current very incomplete knowledge, and it
may provide enough information to help decide whether it is worthwhile to inves-
tigate further the potential human health benefits of reducing cadmium in cigarette
smoke.
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Appendix A: Relative Risk Framework

Figure 10.1 corresponds to the following system of mass-balance ordinary differ-
ential equations (using deterministic equations for the means of the underlying
stochastic variables and focusing on expected values and rates of increase in model
quantities I, M, and T, rather than on first passage times):

• N = constant (with a value that may depend on smoking),
• dP/dt = a∗N – (r + f)P(t),
• dI/dt = f ∗P(t) – (c + d – b)I(t),
• dM/dt = c∗I(t) – (h + e – g)M(t),
• dT/dt = h∗M(t).

The first of these equations sets the size of the normal lung stem cell compart-
ment to a constant, N, that is assumed to be homeostatically maintained and that
may depend on smoking behavior. Thus, if transients are ignored, normal stem cell
numbers are assumed to remain steady at some level, N, during smoking (reflecting
assumed homeostasis). While there is good evidence that smoking increases lung
cellularity, it is not clear exactly how this affects the numbers of lung stem cells at
risk of carcinogenic transformations. Hence, in Table 10.4, this entry ranges from 1
(no smoking-induced amplification) to 3 [the value of an early increase in cellularity
noted by Mancini et al. (1993), although not specifically for stem cells].

The remaining equations express the identity that the rate of growth in each com-
partment at each moment is the difference between the total inflow from all sources
(typically, cell births in the compartment plus new immigrations from the preceding
compartment) and the outflows to all destinations (typically cell death, differen-
tiation, or transition to a subsequent compartment). Arguably, the rate parameter
h is excessively simplified, as the acquisition of fully tumorigenic properties may
require over 30 events (both clonal genetic alterations and epigenetic lesions such
as promoter hypermethylations) that can occur in different ways and orders and that
can lead to different specific histological types of lung cancer (Minna et al., 2002;
Wistuba et al., 2001). The simplistic final equation, dT/dt = h∗M(t), emphasizes
that the formation of such fully tumorigenic cells, however complex, is driven and
limited by the number of early-stage malignant cells from M entering the process.

Rather than solving the above dynamic system for time-varying values of P(t),
I(t), M(t), and T(t), we consider steady-state solutions for P, I, and M by setting their
time derivatives equal to zero and solving the resulting algebraic system, yielding

• P = a∗N/(r + f),
• I= [f∗P(t)/(c+ d – b)]= (p∗a∗N)/(c+ d – b) [using the definition p= f/(f+ r)],
• M = [c∗I(t)/(h + e – g)] = (c∗p∗a∗N)/[(c + d – b)∗(h + e – g)]
• = (p∗a∗N)/{[1 + (d – b)/c]∗[(h + e – g)]}.

These solutions are physically meaningful if the initiated and early malignant
cell populations do not spontaneously grow without bound (as fully tumorigenic
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cells would do) but instead tend to become extinct, i.e., if c + d > b and h + e > g.
(This differs from the assumptions of most TSCE models, in which the net birth rates
are assumed to remain positive. For lung cancer, premalignant clonal expansion and
in situ carcinoma both appear to have self-limited growth.) However, the preceding
formulas provide key components of the transient solutions even if the net birth rates
are positive (Hazelton et al., 2005). If the net birth rates are negative, so that c + d
> b and h + e > g, then the formulas are well motivated; otherwise, they provide
only a heuristic guide to the contributions of different mechanisms to cancer risks,
and a time-varying analysis is required for more accurate results. Subject to these
caveats, the expected steady-state production of new tumorigenic cells per unit time
can be written as a product:

production rate of tumorigenic cells = dT/dt = h∗M(t)

= (p∗a∗N )∗[c/(c + d − b)]∗[h/(h + e − g)]

= (p∗a∗N )/{[1+ (d − b)/c]∗[1+ (e − g)/h]}
.

An increase in any of the components p, a, N, [c/(c + d – b)], or [h/(h + e – g)]
by a factor of (1 + x) will multiply the production rate of malignant cells by the
same factor, motivating the use of relative risk factors in Table 10.4. Interpretively,
(p∗a∗N) is just the flux of new initiated cells created per unit time, while [c/(c + d –
b)]∗[h/(h + e – g)] reflects the expected fraction of tumor cells eventually exiting
the promotion-progression pipeline for each initiated cell entering it.



Chapter 11
Determining What Can Be Predicted:
Identifiability

One of the best developed ways to predict how changing inputs to a complex system
will change its probable outputs is to simulate the behavior of the system. Modern
simulation modeling software environments (such as MATLAB/SIMULINK R©, or
STELLA/ITHINK R© for continuous simulation, and SIMUL8 R© for discrete-event
simulation) make the mechanics of simulation model building and use relatively
straightforward. Stochastic simulation risk models have been developed for busi-
ness, engineering, biological, social, and economic systems. (Agent-based simula-
tion models have also been developed for complex social and economic systems,
but this chapter focuses on continuous simulation.)

Before a system can be simulated, it must be described. Systems are typically
described in simulation models as compositions of subsystems or components,
linked by input-output flows and/or information signals, with known input-output
specifications. (These may include conditional probabilities of outputs given inputs,
in stochastic models.) Even if the parameters describing the input-output relations
for model components or subsystems are not known, however, it may be possible
to identify them from input-output data for the system as a whole. Whether this can
be done – whether model parameters can be uniquely determined, even in principle,
from sufficiently large and diverse samples of observed system input-output data –
is the issue of identifiability.

This chapter examines identifiability for a stochastic dynamic model of lung
carcinogenesis. The major goal is to estimate exposure-dependent transition rates
for cells among different compartments of the model, together with net exposure-
dependent proliferation rates for premalignant cells, using a combination of
(a) biological knowledge and assumptions about the structure of the system (its
compartments and transitions among them) and (b) aggregate epidemiological data
on observed causal relations between smoking histories and increased risks of lung
cancer. The main technical challenge is how to use a combination of knowledge
and data to constrain possible parameter values, and how to answer the mathemati-
cal question of whether the constraints determine the parameter values uniquely. It
turns out that the answer is “almost”: it is not possible to identify the model parame-
ters uniquely using only high-level epidemiological data, but it is possible to narrow
down the possibilities to a few discrete possibilities (only two alternatives, in the

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 11, C© Springer Science+Business Media, LLC 2009
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lung cancer model presented here). Even a small amount of additional, lower-level
biological information then suffices to figure out which possibility is correct.

Identifiability

The problem of the identifiability of complex disease models from data is funda-
mental in biologically based risk assessment, disease modeling, and many other
areas of applied risk assessment. Identifiability deals with whether model param-
eters and corresponding input-output relations and predictions can be uniquely
determined from observations under ideal conditions of arbitrarily many, arbitrarily
accurate, observations. If the answer is no, then no amount of statistical ingenuity
can uniquely determine the values of model parameters from real data.

Example 1: A Simple Example of Nonidentifiability

Suppose that the administered dose, X, affects the internal dose, Y, and that Y in turn
affects the mutation rate Z in some population of cells, via the following structural
equations:

Y = a∗X,

Z = b∗Y.

Here, a and b are parameters to be estimated from data. If only the input X and the
output Z are measured, then it is impossible to uniquely identify the separate values
of a and b from the observed pairs of (X, Z) values. Only the reduced parameter
given by their product, c = a∗b, can be uniquely identified. (Indeed, c = a∗b can
be estimated as the regression coefficient in the least-squares regression of Z values
against X values with zero intercept.) However, this reduced parameter suffices to
predict Z values from X values via the reduced-form equation

Z = c∗X.

Thus, even though a and b cannot be uniquely identified from (X, Z) data, the input-
output relation between X and Z is uniquely identifiable from such data. This is all
that is needed for many practical purposes.

Example 2: Unique Identifiability in a Two-Stage Clonal
Expansion Model

In the following example, cells independently and randomly make transitions from a
“normal” state (“compartment”), N, into an intermediate compartment, I, and thence
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⇓ b

N ⇒ I ⇒ M

⇓ d
μ2μ1

Fig. 11.1 A two-stage clonal expansion model (TSCE) for carcinogenesis. μ1 is the transition rate
(per normal cell per unit time) from N to I; μ2 is the transition rate (per intermediate cell per unit
time) from I to M; b is the rate (per intermediate cell per unit time) at which new cells in I are born;
and d is the rate (per intermediate cell per unit time) at which cells in I die or make transitions to
other states that do not further participate in the process

to a second (“malignant”) compartment, M. They may also undergo a net prolifera-
tion in compartment I at some rate g > 0. Perhaps surprisingly, observing the time
course M(t) alone at only a few distinct times is sufficient to uniquely identify sev-
eral parameters in this model as well as to uniquely predict the future of M(t).

Figure 11.1 depicts the compartments and transitions among them.
A corresponding system of ordinary differential equations (ODEs) for the

expected sizes of compartments N, I, and M over time is

d N (t)/dt = −μ1 N (t),

d I (t)/dt = μ1 N (t)+ (b − d − μ2)I (t) = μ1 N (t)+ (g − μ2)I (t),

d M(t) = μ2 I (t),

where

• N(t) = expected number of normal stem cells at time t,
• I(t) = expected number of intermediate cells at time t,
• M(t) = expected number of malignant cells at time t.

The reduced parameter B = (b – d) – μ2 = g – μ2 (where g = b – d is the net
birth rate in compartment I) is the net growth rate per intermediate cell per unit time,
i.e., the birth rate minus the rate of losses due to death/differentiation and malignant
conversion.

Note on the use of unconditional vs. conditional expected values. The use of
unconditional expected values, rather than conditional expected values given no
tumor cells formed to date, has become fairly common for modeling purposes (e.g.,
Little, 1995), even though it may be important to use “exact” (conditional) rather
than “approximate” (unconditional) formulas in data analysis and statistical infer-
ence when fitting stochastic models of carcinogenesis to data (e.g., Hazelton et al.,
2005). Once model parameter values have been estimated from data (or exogenously
specified in theoretical models where parameter values are treated as known quanti-
ties), the resulting model can be used to predict unconditional expected sizes of cell
populations over time. Doing so allows direct comparison to some previous models
based on epidemiological data that quantify the preceding model parameters (e.g.,
Schollnberger et al., 2006). The use of the expected number of tumor cells M(t) as



264 11 Determining What Can Be Predicted

an indicator of risk is discussed further in the following section. The main results of
this chapter have also been verified via stochastic simulation modeling (using Crys-
tal BallTM) with the age-specific hazard function for time until the first malignant
cell, rather than expected number of malignant cells, as the risk variable.

The preceding system of ODEs with initial conditions (N(0), I(0), M(0)) =
(N0, 0, 0) has the time-varying solution (provided B, –μ1, and 0 have distinct
values)

N (t) = N0e−μ1t ,

I (t) = N0μ1[eBt ]− e−μ1t ]/(B + μ1),

M(t) = N0μ1μ2[e−μ1t/((B + μ1)μ1)+ eBt/((B + μ1)B)− 1/(Bμ1)].

(Exact solutions exist for the “degenerate” cases when two or more of B, –μ1, and
0 coincide. They can be obtained by taking limits of the generic solution as the
value of one variable approaches the other.) Treating the final equation as a nonlin-
ear regression model for M(t) with t as the independent variable, the parameters μ1

and B can be uniquely estimated from data consisting of (t, M(t)) pairs (since μ1

and B are distinct rate constants in a sum of exponentials plus a constant, and terms
in a sum of exponentials are linearly independent). The reduced parameter N0μ2 is
also uniquely identifiable from (t, M(t)) data, although N0 and μ2 are not separately
identifiable [since only their product affects M(t)]. From only three observed val-
ues of M(t) at different times, known with sufficient precision, one can in principle
uniquely identify the vector (μ1, B, N0μ2), and hence uniquely predict the future
time course of M(t) [as well as the time courses of the “hidden” variables N(t) and
I(t), apart from the scaling constant N0]. Similarly, if μ1, B, and N0μ2 are linear
functions of an exposure variable x (with distinct slope coefficients), then the six
coefficients (slopes and intercepts) relating these reduced parameters to x are also
uniquely identifiable from data consisting of x values and (t, M(t)) pairs [since (μ1,
B, N0μ2) is uniquely identifiable from (t, M(t)) data for each value of x].

In practice, confident estimation of the reduced parameters from a few data points
may be complicated by numerical problems (ill conditioning of the regression equa-
tions) and limited precision of measurements, but mathematical identifiability does
not preclude the possibility of estimating the entire time course of M(t) from as few
as three data points at nonzero times.

A substantial technical literature has addressed the topic of identifiability in both
linear systems (Audoly et al., 1998) and nonlinear systems (Audoly et al., 2001),
and a complete understanding of when unique identifiability is possible has been
developed for several important classes of compartmental models (ibid.) However,
in these models, the available data consist of input-output experiments in which
the experimenter adds input quantities (e.g., radioactive tracers) to some compart-
ments and observes the resulting time courses of outputs (e.g., radioactive counts) in
one or more compartments. By contrast, this chapter examines identifiability when
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inputs consist of exposures that affect the pharmacodynamic transition rates of cells
among compartments and/or cell proliferation rates within compartments. Observed
outputs consist only of malignant cells or tumors at the end of a chain of compart-
ments, M(t). There is no opportunity to directly inject exogenous inputs to any com-
partment; rather, one can only observe (or perhaps change) exposure conditions and
collect observations on M(t).

For this setting, we introduce a new identifiability result showing that effects of
exposure on transition rates and proliferation rates can be identified as belonging to
a discrete set of alternative possible combinations of values, based on the types of
(x, t, M(t)) data discussed in the preceding example. That is, the parameter vector
cannot be uniquely identified, but it can be identified as belonging to a discrete set of
possible parameter vectors, each of which is fully consistent with all preintervention
data. Unlike the innocuous cases of nonunique identifiability in Examples 1 and 2,
where the nonuniqueness does not carry over to reduced parameters or to model
predictions, these different discrete possibilities can predict significantly different
future values for M(t) following an intervention that changes the effects of exposure
on one or more transition rates. They thus create discrete uncertainty about how such
an intervention (perhaps corresponding to a change in the mixture of carcinogenic
exposures caused by a hazardous product, workplace, or environment) will affect
exposure-related cancer risks. Such discrete uncertainties (i.e., cases in which cancer
risk models can predict that one of a small finite set of quite different possible risks
will result, but with no ability to predict which one) are directly relevant to the
uncertainty characterization step of quantitative risk assessments for interventions
that affect pharmacodynamic dose-response relations.

This result implies that no amount of additional experimental or epidemiological
data on age-specific tumor rates for different exposure groups can reduce the dis-
crete uncertainty about how interventions will affect cancer risk. Rather, biological
data that reveal which and how much specific transition rates are affected by the
intervention are required to uniquely predict which member of the set of alternative
possible predictions that are consistent with past data will actually occur.

These results hold for a broad class of multistage clonal expansion (MSCE) mod-
els that generalize both the two-stage clonal expansion (TSCE) model in Fig. 11.1
and also the traditional linearized multistage (LMS) family of cancer dose-response
models (viewed as stochastic transition processes in which cells make random tran-
sitions from each stage to the next, as in Armitage and Doll, 1954; Moolgavkar,
1978; Cox, 1995; Little, 1995; Little et al., 2002; and Ritter et al., 2003; see
Fig. 11.2). This class of models is described next.

⇓g0

I1 I2 In M,

g1 g2 gn⇓ ⇓ ⇓

N ⇒ ⇒ ⇒ ⇒

μ1 μ2 μn μn+1…

…

…

Fig. 11.2 General multistage clonal expansion model with n intermediate compartments
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Multistage Clonal Expansion (MSCE) Models of Carcinogenesis

Figure 11.2 diagrams the structure of the models of carcinogenesis addressed in this
chapter. In this figure, n intermediate compartments intervene between the normal
and malignant cell populations. The case n = 1 is the TSCE model. (The normal
compartment N may also undergo net growth while an individual matures, but it is
often assumed to remain approximately constant in adulthood.)

μi is the transition rate (per cell per unit time) from the predecessor of compart-
ment Ii into compartment Ii. gi is the net birth (proliferation) rate for compartment
Ii. Proliferation may take place in one or more of these intermediate compartments.
If all gi = 0 and all μi are linear functions of dose, then Fig. 11.2 reduces to a
traditional linearized multistage (LMS) model, meaning a sequence of stages in
which the transition rates of cells from each stage to the next are assumed to consist
of a background (zero-exposure) rate plus a dose-dependent increase that is pro-
portional to the biologically effective dose at that stage (Armitage and Doll, 1954;
Moolgavkar, 1978; Cox, 1995; Little, 1995; Little et al., 2002; Ritter et al., 2003).
We will refer to the general class of compartmental models with the structure in
Fig. 11.2 as multistage clonal expansion (MSCE) models since they combine multi-
ple stages with the possibility of clonal expansion at more than one stage.

A system of ODEs corresponding to Fig. 11.2 is

d N (t)/dt = μ1 N (t),

d I1(t)/dt = μ1 N (t)+ (g1 − μ2)I1(t).

d Ik(t)/dt = μk Ik−1(t)+ (gk − μk+1)Ik(t) for k = 2, 3, . . . , n,

d M(t) = μn+1 In(t).

This system describes the dynamic evolution of the expected sizes of the cell
populations in the successive compartments, N(t), Ik(t) for each intermediate stage
k, and M(t). Only the last compartment, M, gives rise to observable tumors and
tumor-related deaths. The use of expected values is motivated as follows. First, fully
stochastic simulation (using random jump processes modeled as nonhomogeneous
Poisson processes to replace the deterministic changes in expected values) confirms
that the above system of ODEs correctly describes the evolution of the mean values
of compartment sizes in many realistic situations. Second, since all state variables
[N(t), Ik(t), M(t)] are nonnegative, Markov’s inequality holds. This implies that the
random number of malignant cells formed by any time is unlikely to be very much
larger than the expected value M(t), in the sense that, when the expected value M(t)
is small (e.g., less than 0.10), the probability that one or more malignant cells has
been formed is also small (not more than 0.10). [Conversely, if M(t) is much larger
than 1, then the probability that no malignant cells have yet been formed will be
close to zero. However, this is less relevant to lung cancer.]

The TSCE model has been notably successful in describing a wide vari-
ety of epidemiological and experimental data sets (e.g., Hazelton et al., 2005;
Schollnberger et al., 2006). Allowing for the possibility of proliferation at more
than one stage may therefore be somewhat controversial, in that it suggests a
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needless complication of the TSCE framework. Yet recent molecular biolog-
ical data (Park et al., 1999; Pan et al., 2005; Panov, 2005; Wistuba et al.,
2000; Wistuba and Gazdar, 2006) strongly suggest that multiple biologically dis-
tinct phases of premalignant clonal expansion occur in many lung cancers. Lung
cancer biologists have identified an initial “patch” phase in which premalignant
gene-level changes, such as the loss of heterozygosity at chromosome 3p (LOH3p)
and the hypermethylation of the promoter regions of some tumor suppressor genes,
occur and expand clonally at multiple locations within the lung, forming small local
patches of altered cells (Park et al., 1999; Wistuba et al., 2000; Wistuba and Gazdar,
2006). The formation of patches is followed by an additional premalignant “field
cancerization” phase in which the clonal expansion of cell populations with several
additional gene-level alterations occurs (Pan et al., 2005; Panov, 2005; Wistuba and
Gazdar, 2006). The clonally expanding field may ultimately come to be widely dis-
tributed throughout one or both lungs (e.g., Franklin et al., 1997). [For squamous
cell carcinomas, additional premalignant, local proliferation may also occur as car-
cinoma in situ, but this does not necessarily occur for other types of lung cancer,
such as adenocarcinomas (Wistuba and Gazdar, 2006).] Such “field cancerization”
now appears to be more than a speculative theory, at least for lung cancers, as dis-
tinct phases of progressive molecular changes followed by clonal expansion have
been observed using molecular biological techniques (Panov, 2005; Wistuba and
Gazdar, 2006). Thus, a mathematical model (MSCE) that allows clonal expansion
to take place at more than one stage appears to be potentially useful, at least for
describing some lung cancers.

Following Schollnberger et al. (2006) and traditional linearized multistage mod-
eling practice, we assume that the biologically effective dose, s(t), affects the
model’s pharmacodynamic parameters through linear equations:

μk(t) = bk + qk
∗s(t),

(pharmacodynamics model)

gk(t) = gk0 + g ∗
k1 s(t).

Here, bk and gk0 are the “background” (zero-exposure) values for the transition and
growth rates μk and gk, respectively, while qk and gk1 are potency or slope factors
for the increases in these rates in the presence of exposure that creates the internal
dose s(t). The internal dose s(t) is defined to make the above linear pharmacody-
namics equations hold. Nonlinear pharmacokinetic effects such as the saturation or
induction of enzymes are accounted for using an internal dose equation or model
of the form s(t) = f [x(t)], where f can be a nonlinear function of the administered
dose x(t).

The mathematical structure of the family of models investigated in this chapter
may be summarized as follows. Define the state vector

z(t) = [N (t), I1(t), . . . , In(t), M(t)]′
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and take the initial conditions to be z(0) = [1, 0, . . ., 0]′ (′ denotes transpose). In
other words, initially all cells start in the “normal” compartment and the number of
cells is scaled so that N(0) = 1. [In many models, N(t) is assumed to grow linearly
from age 0 to age 20. In this case, we will scale the population size so that N =
1 at age 20 and redefine t as years after age 20. This is appropriate if transitions out
of compartment N prior to age 20 are small enough to be neglected.] The evolution
of z(t) over later times as a function of doses is described by the following model
equations:

dz(t)/dt = A(t)z(t) with initial condition z(0) = [1, 0, . . . , 0]′.

The (n + 2) by (n + 2) transition matrix A(t) is the sum of background and
dose-dependent terms:

A(t) = B+Qs(t),

where B and Q are the following constant-parameter matrices:

B =

−b1 0 0 . . . 0
b1 (g10 − b2) 0 . . . 0
0 b2 (g20−b3 ) . . . 0
0 0 b3 . . . 0

. . .

Q =

−q1 0 0 . . . 0
q1 (g11 − q2) 0 . . . 0
0 q2 (g21−q3 ) . . . 0
0 0 q3 . . . 0

. . .

When exposure generates a constant internal dose rate s between times t0 and t1,
then z(t) for any time t between t0 and t1 is given by the exact solution

Z(t) = e(B+Qs)(t−t0) z(t0) for t0 ≤ t ≤ t1.

In this equation, e(B+Qs)(t−t0) is the matrix exponential function

eA = exp(A) = I+ A+ A2/2!+ · · · + Ak/k!+ . . .

with A= (B + Qs)(t – t0). [I denotes the unit (n+ 2) by (n+ 2) matrix.] A predictive
model for M(t), the expected number of tumor cells formed by time t when exposure
is held constant at s and the initial state is [1, 0, 0, . . ., 0]′, is found by extracting the
last component of z(t):
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M(t) = [0, 0, . . . , 1]e(B+Qs)(t−t0) [1, 0, . . . , 0]′,

which is the lower left entry in the matrix e(B+Qs)(t−t0). This is only a symbolic
solution, however, since e(B+Qs)(t−t0) remains to be evaluated. The following result
provides an explicit solution to be used for an analysis of identifiability.

Theorem 1. The solution to the system of ordinary differential equations
dz(t)/dt = Az(t)

with initial condition z(0) = [1, 0, . . ., 0]′ and a constant transition rate matrix A
defined as above is

zk(t) = wk[exp(a11t)/w1 k+ . . . + exp(akkt)/wkk],
where wk is the product of the (k – 1) off-diagonal elements aj+1,j for j = 1, 2, . . .,
(k – 1) and wkk is the product of the (k – 1) differences (ajj – aii) for all i �= j and i ≤
k, assuming that all of these differences are nonzero:

wk = a21 a32 . . . ak,k-1 for k > 1, and w1 = 1,
wjk = (ajj – a11)(ajj – a22) . . . (ajj – akk) for k > 1, and w11 = 1;

the product for wjk excludes the factor (ajj – ajj).

Proof. See Appendix A.

[Explicit formulas for any set of initial conditions can be obtained by tak-
ing linear combinations of solutions for initial conditions of the form z(0) =
[0, . . ., 0, 1, 0, . . ., 0]′ (the 1 is in the ith place), since ignoring the first i–1 rows and
columns of A allows Theorem 1 to be applied to the remaining subsystem.]

Theorem 1 implies that in an MSCE model with an r× r transition matrix A, the
population of the last compartment, denoted by M(t), is given by

M(t) = w[exp(a11t)/w1 + · · · + exp(arr t)/wr ],

where akk is the kth diagonal element of A, w is the product of the (r – 1) off-diagonal
elements ak,k–1 for k = 2, 3, . . ., r–1 and wk is the product of the r – 1 differences
akk – ajj for all j �= k. (For small to moderate r, such as r = 5, this solution can
also be obtained via a symbolic mathematics program, e.g., using the Mathematica
commands “A = {{a, 0, 0, 0, 0}, {a1, b, 0, 0, 0}, {0, b1, c, 0, 0}, {0, 0, c1, d, 0},
{0, 0, 0, d1, e}}; Simplify[MatrixExp[A t][[5,1]]].”)

This expression for M(t) has a high degree of symmetry in the parameters. To
describe this symmetry, we will now adopt the more explicit notation MA(t) to refer
to the value of M(t) implied by transition matrix A. If σ is any permutation of the
indices (1, 2, . . ., r) and (b2, b3, . . ., br) is any r–1 tuple for which b2b3. . .br = w,
then the matrix Aσ obtained by permuting the diagonal elements of A according
to σ and replacing its off-diagonal elements (a21, a32, . . ., ak,k–1) by (b2, b3, . . ., br)
gives the same input-output relation as A.

Corollary. MA(t) =MAσ (t) for all t.

Proof. In the notation of Theorem 1, wk is the same for both matrices, by construc-
tion. The effect of σ on wjk = (ajj – a11)(ajj – a22). . .(ajj – akk) is simultaneously to
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change the order of the factors and to replace each ajj by aii where i= σ(j). The result
is wik. Therefore, σ changes exp(ajjt)/wjk into exp(aiit)/wik, implying that it merely
alters the order of the summation exp(a11t)/w1k + . . . + exp(akkt)/wkk, thereby leav-
ing its value invariant. This exhibits MA(t) and MAσ (t) each as the product of wk and
the same sum, so they are equal. QED.

If flows are conserved (e.g., for transitions among compartments without pro-
liferation), then additional constraints relate the diagonal elements of A to its
off-diagonal ones, restricting the symmetries of the corollary to a subgroup that pre-
serves them. For example, in a four-compartment model (n = 2) with conservation
of flows (so that a11 + a21 = a22 + a32 = 0 and a44 = 0) and all diagonal elements
distinct, the only allowed permutations of (a11, a22, a33, a44) must fix a44 = 0 and
so may be considered to be permutations of the first three elements. Thus, MA(t)
determines the coefficients of A only up to arbitrary permutations of its first three
diagonal elements, implying that there are six distinct combinations of parameter
values (one for each permutation) that are all perfectly consistent with observed
(t, M(t)) data.

Nonunique Identifiability of Multistage Models from
Input-Output Data

The corollary implies, in the special case that A = Q∗s (so that background rates
are negligible compared to rates during exposure) or if BQ = QB (implying that
ratios of exposure-related rates are the same as ratios of background rates), that
the elements of A cannot be uniquely identified from any possible constant-dose
input-output pairs, i.e., from observations of the form (x, t, M(t)) specifying how
the expected number of malignant cells, M(t), varies with time or age, t, for different
exposure levels, x. [The condition BQ = QB includes the case where exposure is
modeled as A = Q(β + s) with β a constant.] Instead, all that can be identified from
such data is an unordered set of n + 2 diagonal elements ajj, j= 1, 2, . . ., n + 2, and
the product w of the off-diagonal elements.

Example 3: Counting 5 × 5 Matrices with Sign Restrictions

Consider a model represented by the 5 × 5 transition matrix

A =

−a 0 0 0 0
a1 −b 0 0 0
0 b1 −c 0 0
0 0 c1 d 0
0 0 0 d1 e

having n = 3 intermediate compartments, proliferation taking place only in the
penultimate compartment (d > 0), and positive flow rates between each earlier stage
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and its successor (i.e., a > 0, b > 0, and c > 0). The flow balance constraints –
a + a1 = –b + b1 = –c + c1 = e = 0 imply that e cannot be interchanged with
any of {a, b, c, d} (since e is zero and they are not), leaving only permutations of
{–a, –b, –c, d} involved in the symmetries. Since d is positive in this model (due to
proliferation) and a, b, c are not, we can distinguish d from the other parameters a
priori. The permutations must therefore preserve the partition ({a, b, c}, {d}, {e}),
yielding 3!∗1!∗1! = 6 equivalent possibilities altogether. In general, an intervention
that affects a subset of the transitions by reducing their dose-dependent components
may generate a finite set of alternative predictions, all of which are fully consistent
with past data.

These mathematical results for special cases are perhaps of limited practical
interest when the special conditions used to prove them (e.g., negligible background
rates or constant exposures) do not hold. But simulations suggest that this main
result – of a small number of significantly different predictions being equally con-
sistent with all past epidemiological data – also holds to a close approximation even
for more realistic nonnegligible background rates and time-varying exposures. More
than one model may fit all possible epidemiological data approximately equally
well, yet the different models may make significantly different predictions for the
effects of interventions that change how exposure affects stage-specific transition
rates. We leave as an open problem the further mathematical characterization of this
phenomenon, and instead illustrate it with the following simulation example.

Example 4: Two Equally Likely Effects of Reducing
a Transition Rate

Setting: Suppose that the age-specific risk for exposed individuals prior to an
exposure-reducing intervention is described by the following model. There are four
sequential stages (which may, if desired, be interpreted for lung cancers as N =
normal, P = patch, F = field, and M = malignant), with net proliferation occur-
ring in the third (F) stage. N(t) grows linearly (at a normalized rate of 5 per year)
from 0 at age 0 to a normalized value of 100 at age 20 (ignoring transitions to
P). The background (zero-exposure) transition rates among the successive pairs of
stages are bNP= 0.00006, bPF= 0.05, and bFM= 0.00008, and the background pro-
liferation rate in stage F is bF = 0.08. (For this small example, we abandon pre-
vious notations in favor of a more mnemonic notation in which bNP, for example,
denotes the background transition rate from the first stage, N, to the second stage,
P.) Exposure increases each of these rates. A maximal (response-saturating) expo-
sure increases the background level bk to an increased level (1 + Rk)∗bk = bk +
Rk
∗bk = bk + Δbk, where Δbk = Rk

∗bk is the size of the increase due to exposure.
The estimated values of these Rk parameters are as follows: RNP= 2.0, RPF= 0.2,
RFM= 2.19, and RF= 0.19 for a maximally exposed individual. For an unexposed
individual, of course, the Rk values are all 0. [These numerical parameter values
were selected to approximately reproduce the exposure-M(t) input-output relations
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of the RIVM-3 fit of the TSCE model of Schollnberger et al. (2006) describing
smoking-associated lung cancer for someone smoking three or more packs per day;
see Cox and Huber (2007) for details.] Appendix B lists the model equations for this
example. (The equations include a 0–1 variable called “Switch?” that has the effect
of interchanging μNP and μPF when it has the value 1.)

In summary, the conceptual model is determined by a 4-tuple of parameters:

[μN P , μF M − μF , μF M ] = [(1+ RN P )∗bN P , (1+ RP F )∗bP F , (1+ RF M )∗bF M

− (1+ RF )∗bF , (1+ RF M )∗bF M ].

In the notation of Example 3, with n = 2 instead of 3, we can write this 4-tuple
[μNP, μPF, μFM – μF, μFM] as [a, b, c, c1]. Their numerical values are [a, b, c,
c1] = [0.00006, 0.05, –0.07992, 0.00008] for an unexposed (never smoked) indi-
vidual, with RNP=RPF=RFM= RF= 0 and [a, b, c, c1] = [3.0∗0.00006, 1.2∗0.05,
3.19∗0.00008 – 1.9∗0.08, 3.19∗0.00008]= [0.00018, 0.06, –0.1517448, 0.0002552]
for a maximally exposed individual.

Problem Predict the effect on M(t) of an intervention that eliminates the effect of
exposure on the first transition rate μNP [in effect reducing (1 + RNP) from 3 to 1 for
a maximally exposed individual. For example, this might be the effect of removing
from a complex mixture exposure-specific constituent(s) that increase μNP from bNP

to (1 + RNP)∗bNP.].

Solution For constant lifetime exposure, the corollary allows arbitrary permuta-
tions of {a, b, c}, provided a1b1c1 = abc1 = abc(c1/c) remains constant. Thus,
whenever a permutation replaces c with a, for example, then c1 has to be replaced
by ac1/c. This implies that six possible choices of [a, b, c, c1] give identical (perfect)
fits to any exposure/M(t) input-output histories generated by the model. Prior to the
intervention, these six possible values are as follows:

• [a, b, c, c1] = [0.00018, 0.06, –0.1517448, 0.0002552],
• [a, c, b, b∗c1/c] = [0.00018, –0.1517448, 0.06, –0.0001009],
• [b, a, c, c1] = [0.06, 0.00018, –0.1517448, 0.0002552],
• [b, c, a, a∗c1/c] = [0.06, –0.1517448, 0.00018, –0.00000030272],
• [c, a, b, b∗c1/c] = [–0.1517448, 0.00018, 0.06, –0.0001009],
• [c, b, a, a∗c1/c] = [–0.1517448, 0.06, 0.00018, –0.00000030272].

Since a, b, and c1 correspond to transition rates (a = μNP, b = μPF, c1 = μFM),
they must be nonnegative. This eliminates four of the six possibilities, leaving only
these two:

[a, b, c, c1] = [0.00018, 0.06,−0.1517448, 0.0002552] ,

[b, a, c, c1] = [0.06, 0.00018, −0.1517448, 0.0002552] .
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Following the intervention, the value of the transition rate μNP is assumed to
be its background (zero-exposure) level. This is bNP = 0.00006 if μNP = 0.00018
before intervention and is bNP = 0.05 if μNP = 0.06 before intervention. Thus, two
possible sets of parameter values following the intervention are

• [a, b, c, c1] = [0.00006, 0.06, –0.1517448, 0.0002552] if a = 0.00018 before
intervention, or

• [a, b, c, c1] = [0.05, 0.00018, –0.1517448, 0.0002552] if a = 0.06 before inter-
vention.

Which of these two possibilities is the correct one makes a dramatic difference in
the risk reduction achieved by the intervention. For the first set of parameter values,
M(t) is reduced by approximately two thirds at older ages, but it is reduced by only
about one sixth at older ages if the second set of values is correct.

Simulation shows similar conclusions even if exposure is time-varying. For
example, the top curve in Fig. 11.3 gives the age-specific M(t) values before the
intervention is implemented if a= 0.00018 and b= 0.06, while the bottom curve in
Fig. 11.3 shows M(t) if these two parameter values are interchanged, b = 0.00018
and a = 0.06. In this figure, exposure starts at age 20, ends at age 60, and is large
enough so that the internal dose is 25% of its maximum possible (saturated) value.
Despite the nonnegligible background risk and time-varying exposure history, the
two predicted curves are close enough to each other so that it is plausible that epi-
demiological data cannot distinguish between them. [This is a fortiori the case in a
fully stochastic analysis, where there is substantial variability of the stochastic jump
processes for cumulative malignant cells around its mean value, M(t).]

Predicted M(t) vs. t with and without a and b interchanged
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Fig. 11.3 Predicted M(t) curves for the two permutations of parameters (a, b) are closely similar,
even for time-varying exposures. [The vertical axis shows M(t) × 100.])
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Predicted M(t) vs. t with and without intervention
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Fig. 11.4 Predicted effects of a risk-reducing intervention differ significantly for the two permu-
tations of parameters (a, b) in Fig. 11.3, even though these two permutations predict very similar
exposure-M(t) input-output relations in the absence of intervention [The vertical axis shows M(t)
× 100. The x-axis runs from 60 to 80 years to better display the effects.])

On the other hand, Fig. 11.4 shows that very different predictions arise from
the two different parameter permutations in Fig. 11.3, (a, b) = (0.00018, 0.06) and
(a, b) = (0.06, 0.00018), even though they give very similar input-output predic-
tions in the absence of interventions that change the dose-response relation. The
four curves in Fig. 11.4 show the M(t) curves (time courses) predicted by these two
models with and without an intervention that reduces parameter a= μNP to its back-
ground level, bNP. Curves 1 and 2 show the pre- and postintervention M(t) curves,
respectively, for an intervention that reduces μNP from (1 + RNP)∗bNP = 0.00018 to
bNP = 0.00006. The resulting reduction in M(t) is clear. By contrast, curves 3 and 4
show the pre- and postintervention M(t) curves, respectively, for an intervention that
reduces μNP from (1 + RNP)∗bNP = 0.06 to bNP = 0.05. Curves 3 and 4 almost coin-
cide: For this pair of parameter values, the intervention creates almost no reduction
in M(t).

In summary, this example shows that the ability to use the MSCE model to predict
the effect on M(t) of an intervention that reduces RNP from 2 to 0 is limited: The
effect can be either negligible or significant, depending on which permutation, (a,
b) = (0.00018, 0.06) or (a, b) = (0.06, 0.00018), is correct.

Prior to implementing the intervention, it is impossible to deduce from study of
the risk curves M(t) for different exposure histories which of these two alternative
effects will be caused by intervention, as both are approximately equally consistent
with all preintervention data. To predict which will occur, it is necessary to sup-
plement the observational data on exposure-response history pairs with biological
measurements that indicate whether a = 0.00018 or a = 0.06. Since these two rates
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differ by a factor of more than 300-fold, even relatively imprecise measurements
may suffice to discriminate between them.

Discussion and Conclusions

This chapter has introduced a new identifiability result for multistage clonal expan-
sion (MSCE) models of carcinogenesis, showing that such models can lead to dis-
crete sets of alternative predictions for the effects of interventions that change how
the dose affects the response at one or a few stages of the carcinogenic process.
These alternative predictions, which are all exactly or approximately equally con-
sistent with all preintervention data, arise from discrete symmetries of the dynamic
equations describing the models. The symmetries are exact in certain special cases
(e.g., for constant-lifetime exposures), but are only approximate for time-varying
exposures. However, the conclusion remains that different MSCE models related to
each other via groups of symmetries of the model parameters can be approximately
equally consistent with all past epidemiological data yet yield significantly differ-
ent predictions for the effects of interventions on risk, as indicated by M(t). This
suggests the potential importance of biological data that can help to discriminate
among the symmetric mathematical possibilities that fit the epidemiological data
equally well. Even imprecise biological measurements or comparisons of rates can
potentially identify the correct combination of parameter values if they reveal the
approximate relative magnitudes of the transition rates for different stages.

The mathematical results presented in this chapter are limited to special cases, as
stated in Theorem 1. However, simulation suggests that similar results hold under
less restrictive conditions. A worthwhile direction for further research is better math-
ematical characterization of the extent to which alternative MSCE models that fit
epidemiological data approximately equally well, and that make identical (or almost
identical) predictions for effects of changes in exposure histories, can predict very
different effects for changes that affect pharmacodynamics. To facilitate additional
investigation, Appendix B gives the ITHINKTM simulation language script used for
Example 4.

The following comments may help to clarify the interpretation of the results of
this chapter and to place them in the context of previously known results.

1. The main results (Theorem 1, its corollary, and Example 4) concern discrete
symmetries (exact or approximate) and the resulting discrete indeterminacy of
predictions for the effects of interventions that change dose-response relations. In
other words, they show that uncertainty about postintervention risks is sometimes
best characterized by a few discrete alternatives rather than by, for example, a
mean and a confidence interval.

2. These results are thus quite different from more familiar results involving con-
tinuous aspects of identifiability. In particular, they are not simply extensions
of the types of nonunique identifiability results illustrated in Examples 1 and 2
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[e.g., where only a product of factors is uniquely identified but not the separate
factors; or, more generally, where it can be determined that vectors of “reduced
parameters” belong to a smooth manifold (Audoly et al., 2001) but they cannot
be further uniquely identified from observed data].

3. All of the discrete symmetric models in Theorem 1 make identical predic-
tions (under the conditions in Theorem 1) or approximately identical predic-
tions (more generally, as in Fig. 11.3) for effects of interventions that only affect
exposure levels. (They also make the same predictions for interventions that only
affect pharmacokinetics, i.e., the biologically effective doses produced by expo-
sures.) However, they make different predictions for interventions that change
the pharmacodynamic actions of exposures (e.g., by removing from a complex
mixture one or more constituents that act on specific stages of an MSCE model).
In other words, the discrete indeterminacy results discussed in this chapter apply
specifically to interventions that change the dose-response relation by changing
pharmacodynamic parameters (the Rk). They do not apply to interventions that
only affect exposures. For such interventions, unique predictions typically are
possible, despite the discrete indeterminacy of the models, since the different
symmetric models then make the same predictions.

4. The results in this chapter do not contradict previous results for the TSCE model
(e.g., Arora et al., 1993). For the TSCE model with n = 1 intermediate stage,
the number of discrete symmetries is 1!1!1! = 1. Thus, the set of alternative
symmetric models reduces to a single one in this case. The reduced parameters
needed to make predictions can also typically be uniquely identified from data,
as in Example 2. As soon as one or more additional stages are added, however,
the discrete indeterminacy that is the subject of this chapter becomes possible,
as illustrated in Example 4.

5. The class of MSCE models discussed in this chapter does not assume or imply
linearity of dose-response relations. First, the internal doses s(t) can be nonlin-
early related to administered doses x(t) through a relation s(t) = f[x(t)]. Second,
even though we follow the literature in assuming that biologically effective doses
affect pharmacodynamic parameters linearly through the equations

μk(t) = bk + q ∗k s(t) (pharmacodynamics model),

gk(t) = gk0 + g ∗
k1 s(t),

this does not imply that the dose-response relation for the expected number of
malignant cells formed by a fixed age, such as t = 80 years, is linear. [Indeed,
for the model in Example 4, the values of M(80) for s = 0, 0.2, 0.4, 0.6, 0.8, and
1 are 0.77, 1.46, 2.70, 4.86, 8.65, and 15.24, respectively. Thus, doubling s from
0.4 to 0.8 more than doubles M(80), from 2.70 to 8.65; and less than doubling s
from 0.6 to 1 more than triples M(80), from 4.86 to 15.24.]

6. The results are not artifacts of incomplete (deterministic) analysis; i.e., fully
stochastic simulation modeling also supports Theorem 1 and its corollary. Addi-
tional stochastic simulation using Crystal BallTM also confirms in many cases
that the conclusions of Example 4 for M(t) also hold for survival and hazard func-
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tions for the random time until the first malignant cell is formed. Thus, although
this chapter has focused on the mean value M(t) of the random number of malig-
nant cells formed by age t, which can be analyzed by deterministic ODEs, it
appears a fully stochastic analysis would not qualitatively change the results.
Fully stochastic (discrete-event) simulation modeling confirms that the solutions
for M(t) provided by the ODE models studied in this chapter accurately describe
mean compartment sizes in the corresponding stochastic transition models for
many biologically realistic values of the transition rates.

7. Analytically, the expected value M(t) is closely related to the random time at
which the first malignant cell is formed, as follows. Let X(t) denote the random
number of malignant cells formed by age t. Since X(t) is nonnegative, Markov’s
inequality holds: Pr[X(t) ≥ k] ≤ E[X(t)]/k = M(t)/k. Letting k = 1 for the first
malignant cell yields Pr(at least one malignant cell is formed by time t) ≤M(t).

8. The results of this chapter do not contradict previous analyses of exact and
approximate solutions to linear multistage models (Cox, 1995; Ritter et al.,
2003). Previous analyses that conclude that exchanging the order of stages does
not affect the predicted risk for a given exposure are fully consistent with the
current results. It is only when interventions affect pharmacodynamics at one or
a few stages (thus breaking the symmetry) that the discrete indeterminacy results
in Theorem 1 and its corollary arise.

The analysis and conclusions of Theorem 1 can be extended to other multi-
stage compartmental models. These may include disease models in which patients
progress through a linear sequence or chain of stages, as well as similar “cate-
nary” models used in classical pharmacokinetics, if only concentrations in the last
stage (compartment) are observed. The main conclusion, that several alternative
sets of parameter values may be consistent with past epidemiological observations,
yet predict quite different risks for interventions that affect the pharmacodynamic
parameters of dose-response relations, implies that curve fitting and parameter esti-
mation, while undeniably useful, do not always suffice to make unique predictions
for risks in new situations. Some more detailed causal knowledge, such as knowing
which constituents affect which transition rates, may be essential for predicting how
changing the composition of exposure will change exposure-related risks.

Appendix A: Proof of Theorem 1

The following succinct proof is due to Professor William Huber (see the acknowl-
edgments at the start of the book).

For k > 1, the w’s satisfy recursive relationships

(∗) wk = ak,k–1wk–1 and
(∗∗) 1/wjk–1 + akk/wjk = ajj/wjk for all j between 1 and k–1.
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These are immediate from the definitions; (∗∗) is just a rearrangement of the
relationship (ajj – akk)wjk–1 = wjk. For k = 1, the theorem is trivial. For k > 1, we
calculate

(Az(t))k = ak,k−1zk−1(t)+ akk zk(t)

= ak,k−1wk−1[exp(a11t)/w1 k−1 + · · · + exp(ak−1,k−1t)/wk−1,k−1]

+ akkwk[exp(a11t)/w1 k + · · · + exp(akkt)/wkk].

Apply (∗) to the first term and distribute akk over the second term to obtain

wk[exp(a11t)/w1 k−1 + · · · + exp(ak−1,k−1t)/wk−1,k−1]+ wk[akk exp(a11t)/w1 k

+ · · · + akk exp(akkt)/wkk].

Finally, upon factoring out wk, collecting the coefficients for each exponen-
tial, and applying (∗∗) to the first k–1 of them, the derivative of zk(t) becomes
recognizable:

wk[(1/w1 k−1 + akk/w1 k) exp(a11t)+ · · · + (1/wk−1,k−1 + akk/wkk) exp(ak−1,k−1t)

+ (akk/w1 k) exp(akkt)] = wk[(a11/w1 k) exp(a11t)+ · · · + (akk/wkk) exp(akkt)]

= dzk(t)/dt.

This demonstrates that z(t) satisfies the system of equations. It remains to
show that it also satisfies the initial condition. For k = 1, the value is z1(0) =
1∗[exp(a11

∗0)] = 1, as desired. For larger values of k, we need to show that

0 = zk(0) = exp(a ∗
11 0)/w1 k + · · · + exp(a ∗

kk 0)/wkk

= 1/w1 k + · · · + 1/wkk .

The partial fraction expansion of 1/w1k+ . . .+ 1/wkk is a sum whose terms are in
the form uikj/(aii – ajj). By inspection, we obtain

uik j = 1/Π(aii − all)− 1/Π(a j j − all),

with the products extending over all l between 1 and k but skipping i and j. The prod-
ucts are subtracted, not added, because (aii – ajj) appears in wik while (ajj – aii) =
–(aii – ajj) appears in wjk with the opposite sign. Evidently, the limiting value of uikj

as aii and ajj become equal is zero, because the two products approach a common
finite value. Thus, (aii – ajj) is a factor of uikj, implying 1/w1k+ . . .+ 1/wkk has a
“removable singularity” on the set aii= ajj. Since i and j were arbitrary, we con-
clude that zk(0) has no singularities at all and therefore is really a polynomial. The
proof is finished by observing that zk(0) approaches zero whenever any aii becomes
arbitrarily large, which for a polynomial can occur only when it is identically zero.
QED.



Appendix B: Listing of ITHINKTM Model Equations 279

Appendix B: Listing of ITHINKTM Model Equations
for the Example in Figure 11.3

Compartment M
M(t) =M(t – dt) + (flow FM) ∗ dt
INIT M = 0
flow FM = F∗(bFM + delta FM)

Compartment F
F(t) = F(t – dt) + (flow PF + proliferation F – flow FM) ∗ dt
INIT F =
INFLOWS to Compartment F:
flow PF = P∗switch?∗(bNP + deltaNP) + P∗(1 – switch?)∗(bPF + deltaPF)
proliferation F = F∗(bF + delta bF)

Compartment P
P(t) = P(t – dt) + (flow NP – flow PF) ∗ dt
INIT P = 0
INFLOWS to Compartment P:
flow NP = N∗(1 – switch?)∗(bNP + deltaNP) + N∗switch?∗(bPF + deltaPF)
OUTFLOWS:
flow PF = P∗switch?∗(bNP + deltaNP) + P∗(1 – switch?)∗(bPF + deltaPF)

Compartment N
INFLOWS to Compartment N:
N(t) = N(t – dt) + (growth – flow NP) ∗ dt
INIT N =
growth = if (TIME < 20) then 100/20 else 0
OUTFLOWS:
flow NP = N∗(1 – switch?)∗(bNP + deltaNP) + N∗switch?∗(bPF + deltaPF)

FORMULAS AND PARAMETERS

bF = 0.08 {0.08}
bFM = 0.00008
bNP = 0.00006
bPF = 0.05
deltaNP = bNP∗RNP∗exposed?
deltaPF = bPF∗RPF∗exposed?
delta bF = bF∗RF∗exposed?
delta FM = bFM∗RFM∗exposed?
end time = 60
exposed? = if ((TIME >= start time) and (TIME <= end time)) then expo-
sure factor else 0
exposure factor = 1 {fraction of saturation exposure intternal dose}
M x 100 =M∗100
RF = 0.9
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RFM = 2.19
RNP = 2 {2}
RPF = 0.2 {0.2}
start time = 20
switch? = 0



Chapter 12
Predicting the Effects of Changes: Could
Removing Arsenic from Tobacco Smoke
Significantly Reduce Smoker Risks
of Lung Cancer?

The remainder of the book applies principles from earlier chapters to several
challenging quantitative risk assessment (QRA) problems for complex, uncertain,
and nonlinear systems. This chapter returns to the problem of predicting how remov-
ing a specific constituent (arsenic) from a complex mixture (cigarette smoke) would
affect lung cancer risks. This goes beyond the bounding and portfolio QRAs in
Chapters 8 and 10 by applying the systems dynamics model in Chapter 11 to obtain
explicit quantitative results. Rather than only estimating bounds for the probable
changes in consequences, this chapter predicts specific quantitative reductions in
risk, contingent on specified assumptions about causal mechanisms. Quantitative
sensitivity analysis shows how predicted risk reductions (under stated assumptions)
and preventable fractions of risk change as key assumptions are changed.

Biologically Based Risk Assessment Modeling

Biologically based risk assessment (BBRA) models apply systems dynamics mod-
els [represented by systems of ordinary differential equations (ODEs) and algebraic
formulas, as in Chapter 11] to predict the responses of biological systems to doses of
various agents. Such models can potentially enable risk assessors to predict biolog-
ical responses to exposures, using pharmacokinetics and pharmacodynamics data,
even before they obtain relevant epidemiological data. To deliver on this potential,
however, it is necessary to build a model linking exposures to responses. This is
challenging if detailed causal mechanisms are only partly understood.

This chapter shows how to use available (very incomplete) molecular biologi-
cal data to estimate dose-response relations and to predict the fractions of cancers
that would be prevented if a particular source or constituent of current exposure
were removed or reduced. As discussed in Chapter 8, such preventable fractions
cannot be quantified correctly in general using traditional epidemiological methods,
such as population attributable fractions, but only by using relevant causal biological
knowledge and data. This chapter focuses on how to use data on the frequencies of
molecular and gene-level changes in exposed vs. unexposed subjects, together
with knowledge of which changes occur approximately where in the carcinogenic

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 12, C© Springer Science+Business Media, LLC 2009
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process, to infer the approximate effects of exposure on the underlying rates at
which these events occur. For concreteness, we illustrate the proposed method by
predicting the fraction of smoker lung cancers that could be prevented by removing
another constituent, arsenic, from tobacco smoke.

Although available data do not allow a unique, definitive answer, quantitative risk
modeling with available information can help to answer pragmatic questions such as

1. What is the plausible range of risk reductions in lung cancer risk (consistent with
available knowledge) caused by removing arsenic from cigarette smoke?

2. How sensitive is the predicted reduction in risk to incomplete removal of arsenic?
3. What are the most important scientific uncertainties, whose resolution would

most improve the ability to quantify risk reductions from removing arsenic?

The QRA in this chapter can address such questions constructively, despite the
many scientific uncertainties that remain.

The following sections show how to construct a plausible estimate of potential
risk reductions, using available knowledge and data, and using specified assump-
tions to bridge remaining knowledge gaps. This allows currently available tox-
icological data and knowledge to help determine which constituents and modes
of action contribute most to exposure-related cancer risk, while recognizing that
improved models, mechanistic knowledge, and data may lead to better models and
narrower uncertainty intervals for answers in the future.

Arsenic as a Potential Human Lung Carcinogen

Many epidemiological and in vitro studies have suggested that arsenic exposure
may increase the risk of lung cancer in humans. The available evidence is not con-
clusive, however. Table 12.1 illustrates some contrasting conclusions from different
epidemiological studies, including reports of sublinear, linear, and superlinear rela-
tions between exposure to arsenic compounds and lung cancer risk.

The dependence of lung cancer risk on arsenic exposure and cigarette smoking
has also been investigated and speculated about for nearly 50 years (Holland et al.,
1959). A hypothesis that changes in the levels of arsenic in cigarettes might help to
explain the corresponding historical changes in lung cancer rates has been advanced
several times (e.g., Buechley, 1963) but is difficult to appraise without direct experi-
mental investigation. Recent studies have shown significant synergy between expo-
sure to arsenic in drinking water and the risk of lung cancer in smokers. For example,
for an epidemiological study in Taiwan, Chen et al. (2004) stated that “The etio-
logic fraction of lung cancer attributable to the joint exposure of ingested arsenic
and cigarette smoking ranged from 32% to 55%. The synergy indices ranged from
1.62 to 2.52, indicating a synergistic effect of ingested arsenic and cigarette smok-
ing on lung cancer.” Hazelton et al. (2001) also reported that “Tobacco and arsenic
dominate the attributable risk for lung cancer” in a population of tin miners, with
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Table 12.1 Ambiguous epidemiological evidence on arsenic and lung cancer

Exposure-response relation (emphases added) Study

“A positive dose-response relationship was found
between cumulative arsenic exposure [estimated
intensity but not duration] and lung cancer
mortality with an overall SMR of 372... .” (1989)

Jarup (1989) Swedish smelter workers.
OR = 1.07 [1.02–1.1] among smokers
(Lundstrom, 2006)

“There is compelling evidence in support of positive
associations between arsenic and risk of both
lung and bladder cancers, and between cadmium
and lung cancer risk.”

Navarro-Silvera and Rohan (2007)

“[R]espiratory cancer mortality increased linearly
with increasing cumulative exposure group,
ranging from two to nine times expected.”

Lee-Feldstein (1986), for Montana
smelter workers exposed to arsenic
trioxide

“[S]tudies with quantitative data are consistent with
a supralinear dose-response relationship” (or
with confounding by smoking, or with
mismodeled exposure errors).

Hertz-Picciotto and Smith (1993), for
Chinese miners

“The additional follow up confirms the earlier
finding that at low doses the increments in death
rates for respiratory cancer for a given increment
in dose are greater than at high doses.”

Enterline et al. (1995) for Tacoma,
Washington, copper smelters

Sublinear or Hormetic (U-shaped): “Recent
epidemiological studies have shown that the
relative risk for cancer among populations
exposed to ≤ 60 ppb As in their drinking water is
often lower than the risk for the unexposed
control population.” (Snow et al., 2005)

Snow et al. (2005)

Schoen et al. (2004) (no clear effect
in the United States for drinking water)

Lamm et al. (2006) (Taiwanese villages)

substantial joint effects. Likewise, experimental evidence in male Syrian golden
hamsters shows that aerosolized arsenic and cigarette smoke interact synergistically
in depleting glutathione and producing oxidative DNA damage in the lungs (Hays
et al., 2006).

“That alteration of DNA methylation by arsenic offers a plausible, unified
hypothesis for the carcinogenic mechanism of action of arsenic” was proposed in
the 1990s (Mass and Wang, 1997). Supporting epidemiological evidence includes a
study by Chanda et al. (2006) that found that “Significant DNA hypermethylation of
[the] promoter region of p53 gene was observed in DNA of arsenic-exposed people
compared to control subjects. This hypermethylation showed a dose-response rela-
tionship. . . . Significant hypermethylation of gene p16 was also observed in cases
of arsenicosis exposed to high level of arsenic.”

In mice, too, the hypermethylation of specific tumor suppressor genes has been
linked to arsenic-associated lung cancer risk. Cui et al. (2006) reported that

Arsenic was accumulated dose dependently in the lung tissues of iAs(V)-exposed [A/J]
mice. . . . [T]he rate of poorly differentiated lung adenocarcinoma was much higher in
iAs(V)-exposed mice than in the control. Methylation rates appeared to be higher in a
dose-related tendency in lung tumors from iAs(V)-exposed mice compared to the control.
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Lower or loss of p16INK4a and RASSF1A expression was found in lung tumors from
iAs(V)-exposed mice, compared to that in nontumor lung tissues from both control and
iAs(V)-exposed mice, and this reduced or lost expression was in accordance with hyperme-
thylation of the genes. In conclusion, iAs(V) exposure increased lung tumor incidence and
multiplicity in A/J mice. Epigenetic changes of tumor suppressor genes such as p16INK4a
and RASSF1A are involved in the iAs(V)-induced lung carcinogenesis.

Comparing gene methylation patterns specifically in human smoker lung cancer
patients to those in nonsmoker lung cancer patients suggests that some, but not all, of
the mouse findings are relevant to smoking-induced lung cancer in humans. Specif-
ically, methylation of the promoter region of RASSF1a does not appear to differ
significantly between the tumors (primarily non-small cell lung cancers, NSCLCs)
of smokers and nonsmokers (e.g., Liu et al., 2007). But hypermethylation of the
promoter region of p16INK4a (more briefly described as “p16 methylation”) does
appear to be elevated (both in frequency and in levels) in the specific types of lung
tumors that are most strongly associated with smoking: adenocarcinomas (ADCs)
with K-ras mutations.

Recent research has revealed two competing oncogenic pathways for human lung
adenocarcinomas: a K-ras mediated pathway that is associated with smoking and an
epidermal growth factor receptor (EGFR)-mediated pathway that is not (Wistuba
and Gazdar, 2006). Pack-years smoked and duration of smoking are highly signif-
icantly associated with p16INK4a methylation in NSLC tumors (p = 0.007 and
p = 0.0009, respectively), and such methylation is negatively associated with time
since smoking cessation (p = 0.03, all p-values for Wilcoxon rank sum tests) (Kim
et al., 2001). In turn, p16INK4a methylation significantly increases ADCs in the
K-ras mediated (smoking-associated) pathway (the odds ratio for a K-ras mutation
among adenocarcinomas with methylated p16INK4a is 4.93, 95% CI, 1.54–15.7)
at the cost of ADCs in the EGFR pathway (the EGFR mutation odds ratio among
adenocarcinomas with methylated p16INK4a= 0.07, 95% CI, 0.02–0.33) (Toyooka
et al., 2006). Thus, p16INK4a methylation significantly increases the probability of
the K-ras mediated pathway and significantly decreases the probability of the com-
peting EGFR pathway among human smokers.

The p16INK4a protein has been identified as a tumor suppressor [inhibiting
cyclin-dependent kinases CDK4 and CDK6 from initiating phosphorylation of the
retinoblastoma (Rb) tumor suppressor protein] that can cause damaged cells to stop
dividing, arresting them in stage G1 of the mitotic cycle and thus removing them
from the pool of proliferating cells at risk of further carcinogenic transformation
(Ohtani et al., 2004). Such oncogene-induced senescence, probably mediated by
the interactions of inflammatory cytokines (especially IL-6 and IL-8) as well as
p16INK4a protein, is an important mechanism that normally protects cells against
cancer (Kuilman et al., 2008). It is tempting to speculate that gene silencing of p16
by hypermethylation slows or prevents initiated (premalignant) cells from entering
senescence, thereby increasing the risk of further carcinogenic transformations, e.g.,
due to K-ras.

In light of this evidence, the remainder of this chapter focuses on the follow-
ing question: Assuming that arsenic in cigarette smoke increases lung cancer risk
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specifically by hypermethylating the promoter region of p16INK4a, how would
reducing or eliminating arsenic in tobacco smoke change lung cancer risks from
smoking? The larger question addressed via this example is, how can such spe-
cific molecular-biological knowledge about causal mechanisms of carcinogenesis
be used to inform and improve quantitative risk assessment?

It might at first seem that applying such mechanistic information to risk assess-
ment requires unrealistic amounts of other information before its implications for
risk can be determined. For example, if cigarette smoke contains other constituents
that play the same functional role as arsenic (namely, hypermethylating the pro-
moter region of p16INK4a, in this example) and that fully saturate this mechanism,
then removing arsenic would have no impact on risk. However, epidemiological and
experimental data indicate that inhalation exposure to arsenic increases lung cancer
rates among smokers (Hays et al., 2006; Jones et al., 2007). If this is correct, then
smoking alone does not saturate arsenic-induced lung carcinogenesis, and the chal-
lenge of figuring out how much reduction in lung cancer risk might be caused by
reducing arsenic in cigarette smoke remains. To this, we now turn.

Data, Methods, and Models

A Multistage Clonal Expansion (MSCE) Framework for Lung
Field Cancerization

The following discussion defines the fraction of smoker lung cancers “caused by”
arsenic in cigarette smoke as the fraction of smoker lung cancers that would be
prevented if arsenic (As) were removed from cigarette smoke (see Chapter 8). This
fraction will be estimated with the help of a multistage clonal expansion (MSCE)
model for lung carcinogenesis (see Chapter 11), diagrammed in Fig. 12.1.

This framework represents lung cancer as resulting from an accumulation of
gene-level damage. (See Table 12.2 for a summary of several smoking-associated
gene-level events, both genetic and epigenetic.) Accumulating damage causes three
main transitions at the tissue level, as follows.

Normal-to-patch transition: The first (N ⇒ P) transition in Fig. 12.1 assumes
that, like other epithelial tissues, normal lung tissue is organized into many rel-
atively small compartments of cells, each of which independently may undergo
transformations of its cells (Michor et al., 2003; Panov, 2005). Lung cancer biolo-
gists have identified an initial “patch” phase in which early premalignant gene-level
changes [such as loss of heterozygosity at chromosome 3p (LOH 3p) or hyperme-

⇓
N P F M⇒ ⇒ ⇒

μNP

μF

μPF μFM

Fig. 12.1 MSCE model for lung carcinogenesis



288 12 Predicting the Effects of Changes

Ta
bl

e
12

.2
Su

gg
es

te
d

st
ru

ct
ur

e
of

so
m

e
sm

ok
in

g-
re

la
te

d
ge

ne
-l

ev
el

ch
an

ge
s

in
lu

ng
ca

nc
er

C
ha

ng
e

(l
oc

at
io

n
in

pr
oc

es
s)

SC
L

C
N

SC
L

C
Sm

ok
in

g
ef

fe
ct

s
R

ef
er

en
ce

s

M
od

ul
e

1
(H

yp
er

pl
as

ia
,p

at
ch

es
,N
⇒

P
)

Te
lo

m
er

e
sh

or
te

ni
ng

Sh
or

te
ns

pe
ri

ph
er

al
bl

oo
d

ly
m

ph
oc

yt
e

te
lo

m
er

es
M

or
la

et
al

.(
20

06
)

Te
lo

m
er

as
e

de
re

gu
la

tio
n

Te
lo

m
er

as
e

ac
tiv

ity
st

ro
ng

ly
co

rr
el

at
ed

w
ith

pa
ck

-y
ea

rs
Y

im
et

al
.(

20
07

)

R
A

SS
F1

A
(3

p2
1.

3)
sm

al
ld

el
et

io
ns

3p
21

.3
de

le
tio

ns
ar

e
si

gn
ifi

ca
nt

ly
hi

gh
er

in
sm

ok
er

s
th

an
in

no
ns

m
ok

er
s

Z
ie

no
ld

di
ny

et
al

.(
20

01
)

R
A

SS
F1

A
(3

p2
1.

3)
pr

om
ot

er
hy

pe
rm

et
hy

la
tio

n
0.

9–
1

0.
30

–0
.4

0
A

ss
oc

ia
te

d
w

ith
ag

e
at

st
ar

to
f

sm
ok

in
g

(K
im

et
al

.,
20

04
)

M
eu

w
is

se
n

an
d

B
er

ns
(2

00
5)

R
A

SS
F1

A
(3

p2
1.

3)
L

O
H

3p
21

L
O

H
is

hi
gh

er
in

sm
ok

er
s

th
an

in
no

ns
m

ok
er

s
H

ir
ao

et
al

.(
20

01
)

N
eo

an
gi

og
en

es
is

N
ic

ot
in

e
ca

n
in

du
ce

in
vi

tr
o

Sm
ok

in
g

in
du

ce
s

in
vi

vo
D

as
gu

pt
a

et
al

.(
20

06
)

H
ir

os
hi

m
a

et
al

.(
20

02
)

M
od

ul
e

2
(D

ys
pl

as
ia

,fi
el

d
ex

pa
ns

io
n,

P
⇒

F
)

FH
IT

ex
pr

es
si

on
de

cr
ea

se
d

(3
p1

4.
2)

;l
os

s
of

FH
IT

pr
ot

ei
n

0.
87

SC
C

0.
57

A
D

C
0.

75
fo

r
N

SC
L

C
s

of
sm

ok
er

s
vs

.
0.

39
fo

r
no

ns
m

ok
er

s
So

zz
ie

ta
l.

(1
99

8)

•
FH

IT
m

ut
at

io
n

0.
8

0.
4

•
FH

IT
de

le
tio

ns
3p

14
.2

de
le

tio
ns

ar
e

m
or

e
fr

eq
ue

nt
am

on
g

sm
ok

er
s

Z
ie

no
ld

di
ny

et
al

.(
20

01
)

•
FH

IT
pr

om
ot

er
hy

pe
rm

et
hy

la
tio

n
Fo

r
SC

C
,0

.4
5

in
sm

ok
er

s
vs

.0
.1

3
in

no
ns

m
ok

er
s

K
im

(2
00

4)

R
A

R
β

(3
p2

4)
re

du
ce

d
ex

pr
es

si
on

0.
4

•
R

A
R

β
pr

om
ot

er
hy

pe
rm

et
hy

la
tio

n
(Z

oc
hb

au
er

-M
ul

le
r

et
al

.,
20

01
)

0.
7

0.
4

Fo
r

N
SC

L
C

:
0.

31
in

sm
ok

er
s

vs
.

0.
10

in
no

ns
m

ok
er

s
To

m
iz

aw
a

et
al

.(
20

04
)



Data, Methods, and Models 289

Ta
bl

e
12

.2
(c

on
tin

ue
d)

C
ha

ng
e

(l
oc

at
io

n
in

pr
oc

es
s)

SC
L

C
N

SC
L

C
Sm

ok
in

g
ef

fe
ct

s
R

ef
er

en
ce

s

L
ar

ge
r

3p
de

le
tio

ns
p1

6
(9

p2
1)

ex
pr

es
si

on
ab

no
rm

al
;d

is
ru

pt
io

n
of

p1
6I

N
K

4a
-C

yc
lin

D
1-

C
D

K
4-

R
B

pa
th

w
ay

0.
46

Sp
an

ak
is

et
al

.(
19

99
)

•
p1

6I
N

K
4a

m
et

hy
la

tio
n

•
p1

6I
N

K
4a

in
ac

tiv
at

ed
by

pr
om

ot
er

hy
pe

rm
et

hy
la

tio
n
=

0.
25

fo
r

N
SC

L
C

(Z
oc

hb
au

er
-M

ul
le

r,
20

01
)

0.
41

SC
C

0.
22

A
D

C
In

cr
ea

se
s

w
ith

pa
ck

-y
ea

rs
,

de
cr

ea
se

s
w

ith
tim

e
si

nc
e

qu
itt

in
g;

0.
32

in
no

ns
m

ok
er

s
vs

.
0.

63
in

sm
ok

er
s

K
im

(2
00

1)
;Y

an
ag

aw
a

et
al

.
(2

00
3)

;L
iu

et
al

.(
20

06
)

•
p1

6I
N

K
4a

m
ut

at
ed

•
p1

6
al

le
lic

lo
ss

<
0.

05
0.

2–
0.

5
4/

14
in

no
ns

m
ok

er
N

SC
L

C
s;

23
/3

3
in

sm
ok

er
s

W
is

tu
ba

an
d

G
az

da
r

(2
00

6)
Sa

nc
he

z-
C

es
pe

de
s

et
al

.(
20

01
)

•
9p

21
de

le
tio

ns
9p

21
de

le
tio

ns
ar

e
m

or
e

fr
eq

ue
nt

am
on

g
sm

ok
er

s
Z

ie
no

ld
di

ny
et

al
.(

20
01

)

•
R

B
(1

3q
14

)
ex

pr
es

si
on

co
m

pr
om

is
ed

>
0.

90
0.

15
–0

.3
0

pR
B

an
d

p1
6

ex
pr

es
si

on
ar

e
ne

ga
tiv

el
y

co
rr

el
at

ed
Pa

n
et

al
.(

20
05

);
G

er
ad

ts
et

al
.(

19
99

)
p5

3
in

ac
tiv

at
io

n
(1

7p
13

)
N

ot
e:

M
is

se
ns

e
m

ut
at

io
ns

(m
ai

nl
y

G
→

T
tr

an
sv

er
si

on
s)

at
p5

3
“h

ot
sp

ot
s”

(e
sp

ec
ia

lly
,

co
do

n
15

7)
ar

e
as

so
ci

at
ed

w
ith

sm
ok

in
g

(W
is

tu
ba

an
d

G
az

da
r,

20
06

)

“T
P5

3
m

ut
at

io
ns

w
er

e
de

te
ct

ed
in

47
.5

%
ne

ve
r,

55
.6

%
fo

rm
er

,a
nd

77
.4

%
cu

rr
en

ts
m

ok
er

s”
“G

:C
– >

T
:A

m
ut

at
io

ns
in

T
P5

3
ar

e
m

or
e

fr
eq

ue
nt

ly
ob

se
rv

ed
in

sm
ok

in
g-

as
so

ci
at

ed
lu

ng
ca

nc
er

s”

L
e

C
al

ve
z

et
al

.(
20

05
)

M
ec

ha
ni

c
et

al
.(

20
05

)

M
od

ul
e

3
(C

on
ve

rs
io

n,
P

ro
lif

er
at

io
n,

P
ro

gr
es

si
on

;
C

ar
ci

no
m

a
in

si
tu

)
•

T
P5

3
m

ut
at

io
ns

•
R

A
S

m
ut

at
io

ns
(s

m
ok

in
g-

as
so

ci
at

ed
G
→

T
tr

an
sv

er
si

on
s

at
co

do
n

12
of

K
-r

as
ar

e
th

e
m

os
tu

su
al

R
A

S
m

ut
at

io
ns

in
A

D
C

s)

<
0.

01
0.

15
–0

.2
(u

p
to

0.
5

in
A

D
C

s)

A
ss

oc
ia

te
d

w
ith

sm
ok

in
g

2/
27

in
no

ns
m

ok
er

s;
8/

27
in

sm
ok

er
s

Ta
m

et
al

.(
20

06
);

W
is

tu
ba

an
d

G
az

da
r

(2
00

6)
Sl

eb
os

et
al

.(
19

91
)



290 12 Predicting the Effects of Changes

thylation of the promoter regions of some tumor suppressor genes] lead to altered
subpopulations of cells that expand clonally within their own small compartments.
These changes can form many small local “patches” of altered cells, widely dis-
tributed in the lung (Park et al., 1999; Pan et al., 2005; Panov, 2005; Schollnberger
et al., 2006; Wistuba et al., 2000; Wistuba and Gazdar, 2006). Thus, Fig. 12.1 posits
that clonal compartments of cells within the lung epithelium make transitions from
being occupied by normal (unaltered) cells (N) to being occupied by altered cells,
forming clonal or subclonal foci called patches (P). Biologically, the patch cells
typically have genetic and/or epigenetic alterations such as LOH 3p deletion or pro-
moter hypermethylation of the RASSF1A gene at 3p21.3 (Table 12.2). For model-
ing purposes, the defining characteristic of patch cells is that they can outcompete
and replace normal cells within a local clonal compartment, but they do not spread
beyond the compartment boundaries. The transition of compartments from “normal”
(N) to “patch” (P) states is depicted graphically as N⇒ P.

Such transitions can be modeled in greater detail as Moran stochastic processes
with explicit transformation and repair rates (Michor et al., 2003; Nowak et al.,
2006). However, mathematical analysis (ibid.) shows that the outcome of such a
stochastic process is that altered cells soon come to occupy either the whole com-
partment or none of it, depending on which of these two absorbing boundaries is
reached first following the creation of the first altered cell. In this chapter, therefore,
the details of the competing transformation and repair processes are suppressed and
the whole compartment is viewed as making an irreversible transition from N to P
when its normal cells are replaced by patch cells. (Transients in which a compart-
ment is temporarily occupied by some normal and some patch cells are ignored,
since we treat the compartment transitions from normal to patch as being approx-
imately instantaneous on the time scale of years to decades most relevant for car-
cinogenesis.)

Patch-to-field transition: The formation of patches is followed by a further pre-
malignant “field cancerization” phase in which additional gene-level preneoplastic
changes lead to a clonal expanding “field” of proliferating cells that can spread
across compartment or patch boundaries, outcompeting and replacing normal cells
(and perhaps also patch cells) in adjacent compartments or patches (Pan et al., 2005;
Panov, 2005; Wistuba and Gazdar, 2006). The expanding population of field cells
may eventually come to occupy a large area in one or both lungs (e.g., Franklin
et al., 1997; Sikkink et al., 2003). Field growth is not cancerous, however: There is
no invasion of tissue, and expansion occurs by outcompeting other cells in replacing
cells that die or terminally differentiate.

Such “field cancerization” now appears to be more than a speculative theory, at
least for lung cancers, as distinct phases of progressive molecular changes followed
by clonal expansion have been observed using molecular biological techniques
(Panov, 2005; Wistuba and Gazdar, 2006). Preneoplastic changes that produce a
field could include decreased expression of the fragile histidine triad (FHIT) gene
at 3p14.2 and of the retinoic acid receptor beta (RARβ) gene at 3p24; disruption
of the p16INK4a-Cyclin D1-CDK4-RB control pathway by promoter hypermethy-
lation, deletion, loss of heterozygosity (LOH), or mutation of p16INK4a (at 9p21)
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or by compromised expression of the retinoblastoma tumor suppressor gene (TSG)
RB at 13q14; and inactivation of p53 at 17p13 (Table 12.2). Figure 12.1 depicts
the transition of compartments from “patch” (P) to “field” (F) states graphically as
P⇒ F.

Field-to-malignant transition: The final major transition in Fig. 12.1 is from field
cells to malignant cells. Malignant cells include small cell lung cancer cells (SCLC)
and non-small cell lung cancer (NSCLC) cells, which, in turn, include the adenocar-
cinoma (ADC) and squamous cell carcinoma (SCC) subtypes. The transition from
field to malignant cells may be accompanied by the activation of oncogenes (e.g.,
caused by K-ras mutations at codon 12 in ADCs) and the inactivation of additional
TSGs (e.g., due to TP53 mutations). Figure 12.1 denotes this transition as F⇒M.

A Mathematical Model of Field Carcinogenesis

In the conceptual framework of Fig. 12.1, exposures to carcinogens increase can-
cer risk by stochastically increasing the random numbers of tumor cells formed by
any given age, by hastening one or more of the three transition rates from N to P
(denoted by μNP), from P to F (denoted by μPF), or from F to M (denoted by μFM)
and/or by increasing the net growth rate (denoted by μF) of the field cell popula-
tion. Other specific effects, such as disruptions of telomerase regulation and telom-
ere length, DNA repair, proliferation rates, or apoptosis rates, are subsumed into the
transitions among these four compartments for modeling purposes. The parameter
vector μ= [μPF, μFM, μF, μFM] thus determines the expected number of lung tumor
cells formed at any particular age [and, indeed, the entire stochastic process for the
state vector (N, P, F, M) over time], with exposure affecting lung cancer risk by
affecting one or more of these parameters.

This conceptual framework can be developed into a full quantitative model for
the dose-time-response relationship between chemical exposure and lung cancer
risk, as in Chapter 11. For the reader’s convenience, we recapitulate the main model-
ing steps here. The flow balance equations corresponding to Fig. 12.1 are as follows:

dN/dt = −μNP N (t),

dP/dt = μNP N (t)− μPF P(t),

dF/dt = μPF P(t)+ (μF − μFM)F(t),

dM/dt = μFM F(t),

where N(t),P(t), and F(t) are the expected sizes of the normal, patch, and field states
at time t, respectively. This system of equations can be solved for the expected num-
ber of tumor cells formed by age t (Cox and Huber, 2007). For a constant average
daily smoking exposure starting at age 20 with approximately 100% of cells and
compartments in state N at age t= 20 years, the solution for the expected cumulative
number of tumor cells by age 20 + t years, or the dose-time-response model, is
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M(t) = (d/c)(1+ αe−at + βe−bt + γ e−ct ).

For ease of readability, the substitutions a = μNP, b = μPF, c = μFM – μF, and
d = μFM have been made and the following reduced parameters have been used:

α = bc/(a − b)(c − a); β = ac/(a − b)(b − c); γ = ab/(c − a)(b − c).

[Recall from Chapter 11 that Markov’s inequality implies that the probability that
the actual random number of malignant cells formed is much greater than this
expected value is small when M(t) is small, e.g., for M(t) < 0.1). Fully stochas-
tic (discrete-event) simulation confirms that this expected value analysis is accurate
(ibid.).] The symmetries in this solution imply that if [a, b, c, d] is any set of values
for [μNP, μPF, μFM–μF, μFM] that fits available data, then so is [b, a, c, d]. [As dis-
cussed in Chapter 11, based on Cox and Huber, 2007, six different sets of parameter
values, related to each other as members of a symmetry group, provide identical
predictions of M(t) for any smoking history s(t), but four of them can be eliminated
when μFM – μF < 0, as implying unrealistic negative values for some transition
rates.]

Following Schollnberger et al., the dose dependence of transition rates is incor-
porated into the model via the linear formulas

μk(t) = bk + qks(t) for k = N P, P F, F, and F M.

Here, s(t) (discussed next) reflects the biologically effective dose of carcinogens
acting on transition rates at time t, bk is the background (zero-exposure) rate for μk,
and qk is a potency or slope factor quantifying the increase in μk per unit increase
in s(t).

The internal dose variable s(t) is defined to make the relations between the inter-
nal doses and the transition rates linear. To reproduce the input-output relations of
the model presented by Schollnberger et al. (2006) for smoking and lung cancer,
we estimate s(t) as the following nonlinear function of x(t), the smoking intensity at
timet:

s(t) = (1− e−p∗x(t))/p = biologically effective dose at time t from x(t)

cigarettes/day,

where p = 0.1 is a saturation parameter. s(t) may be interpreted as the “effective
number” of cigarettes per day at time t, measured in terms of the resulting internal
dose that affects the transition rates. For very low levels of exposure, s(t) ≈ x(t), but
the function is concave and saturates at about two packs per day. For example, when
x(t) = 1 cigarette/day, s(t) = 0.95, but when x(t) = 2 cigarettes/day, s(t) = 1.81;
when x(t)= 10 cigarettes/day, s(t)= 6.32; and when x(t)= 30 cigarettes/day, s(t)=
9.5. For arbitrarily large values of x(t), the internal dose approaches an upper-bound
asymptote of s(t) = 10. [The estimated value p = 0.1 and the form of the saturation
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function were selected to achieve this asymptote, based on input-output relations for
the model of Schollnberger et al. (2006); see Appendix A.]

Model parameter values were estimated to provide a good visual fit (minimizing
the maximum absolute deviation) to the input-output predictions of the epidemio-
logically based TSCE model of Schollnberger et al., for a broad range of smoking
histories, including 0, 10, 15, 30, and 60 cigarettes per day smoked from ages 20, 30,
or 40 to ages 60, 70, 75, or 80, with all simulations run through age 80. Simulations
numerically solve the above system of ODEs to calculate M(t) = (d/c)(1+ αe–at+
βe–bt+γe–ct) for different ages t. Equations of the best-fit TSCE model for males
and females combined (fit RIVM3 in Table 6 of Schollnberger et al.) were used to
simulate time courses of M(t) for different smoking histories s(t). Model parameter
values were selected to closely reproduce these courses. This yielded the following
fully specified model (with all parameter values quantified):

[μNP(t), μPF(t), μF (t), μFM(t)] = [bNP, bPF, bF , bFM]

+ [qNP, qPF, qF , qFM]s(t)

= [0.05, 0.00006, 0.08, 0.00008]

+ [0.001, 0.000012, 0.0072, 0.0000176]s(t),

where s(t) = (1 – e –0.1∗x(t))/0.1.
The initial condition for the model is [N, P, F, M] = [100, 0, 0, 0] at time t = 20

years, i.e., the size of the normal compartment, N, is normalized to 100 at age 20.
Mathematical analysis (Cox and Huber, 2007) reveals that exchanging the values of
μNP(t) and μPF(t) leaves predicted input-output relations nearly unchanged, so that
an a priori equally valid set of parameter estimates (yielding identical predictions
for all constant-exposure scenarios) is

[μNP(t), μPF(t), μF (t), μFM(t)] = [bNP, bPF, bF , bFM]

+ [qNP, qPF, qF , qFM]s(t)

= [0.00006, 0.05, 0.08, 0.00008]

+ [0.000012, 0.001, 0.0072, 0.0000176]s(t).

However, we shall see below how available data on prevalence of hypermethy-
lation of the promoter region of p16INK4a can be used to identify the first set of
parameter estimates, but not the second, as being consistent with biomarker data.

Modeling the Effects on Lung Cancer Risk of Reductions
in Carcinogenic Constituents

Exposure to cigarette smoke significantly increases the frequencies of several gene-
level changes found in lung tumors, as shown by the italicized numbers in the
“Smoking Effects” column of Table 12.2. If reducing arsenic in tobacco smoke
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slows the rates of some of these events, then it might also slow the rate – and hence
reduce the lifetime risk – of developing some lung cancers. The preceding MSCE
model provides the following way to quantify this potential risk reduction in lung
cancer risk from reducing one or more constituents of cigarette smoke:

Step 1: Identify known or assumed causal mechanisms or mode(s) of action,
i.e., where in the carcinogenic process in Fig. 12.1 the constituents act. Table
12.2 postulates that p16INK4a hypermethylation, the assumed mechanism
for arsenic-induced lung cancer, increases the transition rate μPF (it is in
module 2 of Table 12.2). This corresponds to an increased rate of entry of
premalignant P cells into the clonal expansion (“field”) state F. This is gen-
erally consistent with the biological role of p16INK4a in cell cycle regula-
tion (as part of the p16INK4a-Cyclin D1-CDK4-RB control axis), and with
in vitro evidence that arsenic promotes the proliferation of human lung ade-
nocarcinoma cell lines with mutated p53 (Liao et al., 2007).

Step 2: Estimate the change in each affected transition rate that would be
caused by reducing the constituent(s) in cigarette smoke. The effect of
removing arsenic can be modeled as a reduction in the transition rate μPF

from a preremoval level of bPF + qPF s(t) to a postremoval level of bPF +
gqPF s(t), where g is a number between 0 and 1, interpreted as the fraction of
the smoking effect on increasing μPF that remains after arsenic is removed.
The maximum possible effect size is obtained by setting g= 0, implying that
removing arsenic would restore μPF to its background level.

Step 3: Estimate the reduction in risk caused by the estimated reduction in tran-
sition rates. A computer simulation model (listed in Appendix B) that numer-
ically solves the system of ODEs for the MSCE model and calculates M(t)
for t between 20 and 80 years was used to quantify the reductions in age-
specific risks if different transition rates are reduced by various amounts.
Table 12.3, prepared using this simulation model, shows how reductions in
the four transition rates μk for k = NP, PF, F, and FM map to correspond-
ing reductions in risk, as measured by a fractional reduction in M(80), the
expected number of malignant cells formed by age 80. Note that reducing
μPF or μFM reduces risk proportionally, i.e., by the same factor. Reducing
μNP produces less-than-proportional reductions in risk. For example, a 20%
reduction in μNP (i.e., multiplying it by a factor of 0.80) creates only a 14%
reduction in risk (risk reduction factor = 0.86). Reductions in μF can pro-
duce much more-than-proportional reductions in risk. For example, a 10%
reduction in μF (reduction by a factor of 0.9) creates a 40% reduction in risk
(risk reduction factor = 0.60). Most relevantly for arsenic, reductions in μPF

produce proportional reductions in risk.

The emphasized entries in Table 12.3 show the approximate maximum possi-
ble reductions in risk that can be achieved by reducing each transition rate to its
background (zero-exposure) level. For example, with bNP= 0.05 and qNP = 0.001,
the value of μNP at x = 60 cigarettes per day (for which s = 10) is μNP = bNP +
qNP

∗ 10 = 0.05 + 0.01 = 0.06. At 0 cigarettes per day, this value falls to μNP =
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Table 12.3 Risk reductions achieved by given reductions in transition rates

If transition rate is
multiplied by the factor
in this column. . .

. . . Then the lung cancer risk M (80) is multiplied by the fraction
in these columns (depending on which of these four transition rates
is reduced by the factor shown in the left column)

μNP μPF μF μFM

1 (no reduction) 1.00 1.00 1.00 1.00
0.90 0.93 0.90 0.60 0.90
0.80 0.86 0.80 0.36 0.80
0.70 0.77 0.70 0.23 0.70
0.60 0.69 0.60 0.15 0.60
0.50 0.59 0.50 0.10 0.50
0.40 0.49 0.40 0.07 0.40
0.30 0.39 0.30 0.05 0.30
0.20 0.27 0.20 0.04 0.20
0.10 0.14 0.10 0.03 0.10
0.00 0.00 0.00 0.02 0.00

Note: The base case risk is 0.15 at age 80, from 60 cigarettes/day from age 20 to 60.

bNP = 0.05, which is 5/6 = 0.83 of its maximum value; thus, the entry in the row
for 0.8 (the nearest value to 0.83 in the table) is emphasized in the column for μNP.
Because the background term accounts for a relatively small proportion of the max-
imum (saturated) value of μPF, reducing this parameter (e.g., by removing arsenic)
can potentially cause a relatively large reduction in risk, by a factor of up to 1/3.

Although this chapter focuses on a single risk-reducing mechanism (the
decreased hypermethylation of p16INK4a, assumed to reduce μPF), it is worth not-
ing that risk-reducing effects from reductions in multiple transition rates simultane-
ously combine approximately multiplicatively for a wide range of parameter values.
For example, reducing each of μPF and μFM by 10% (i.e., by a factor of 0.9 each)
reduces risk by a factor of 0.81. Reducing each of μPF and μF by 10% reduces risk
by 0.9∗0.6 = 0.54, the product of their separate effects.

In principle, steps 1–3 and Table 12.3 allow the prediction of risk reductions
obtained by reducing specific constituents in cigarette smoke. (Interventions that
affect multiple transition rates simultaneously can also be modeled, using the sim-
ulation model in Appendix B.) However, in practice, it is necessary to find data to
quantify, or at least bound, the change in transition rates caused by the proposed
reductions in constituents, such as arsenic, in our example. Biomarker data can pro-
vide the needed information, as illustrated next.

Linking Biomarker Data to Model Transition Parameters

NSCLCs constitute about 80% of lung cancers (Panov, 2005). Jarmalaite et al.
(2003) reported that methylation of p16 occurred only in NSCLCs, with a signif-
icantly higher rate in former smokers as compared to current smokers (p = 0.035).
Liu et al. (2006) reported that, in a study of NSCLCs, hypermethylation of the pro-
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moter region of p16INK4a was found in 51 of 81 lung tumors from smokers (63%).
This was nearly twice the rate found in lung tumors from never-smokers (13 of 41
lung tumors, 32%).

These data show that substantial methylation occurs even among nonsmoker
tumors, but that smoking has a highly significant (P = 0.001) association with
increased methylation. Indeed, the increase from 32 to 63% is great enough so that
the hypothesis that eliminating smoking would reduce μPF by at most a factor of 5/6
(see the discussion in step 2 above) cannot be maintained, at least if methylation of
p16INK4a is assumed to account for a substantial proportion of smoking-associated
increases in μPF. On the other hand, it is compatible with a maximum reduction in μPF

by a factor of 1/3. Hence, we tentatively assume that the correct model is as follows:
MSCE Model 1

[μNP(t), μPF(t), μF (t), μFM(t)]

= [bNP, bPF, bF , bFM]

+[qNP, qPF, qF , qFM]s(t)

= [0.05, 0.00006, 0.08, 0.00008]

+[0.001, 0.000012, 0.0072, 0.0000176]s(t),

s(t) = (1− e−0.1∗x(t))/0.1

To complete the model specification and match the input-output relations of the
model of Schollnberger et al. (2006), we also assume that the normal compartment
grows linearly between ages 0 and 20 years, to reflect growth from child to adult
(Cox and Huber, 2007), with carcinogenic transitions assumed to be negligible,
μNP (t) ≈ 0, for ages 0–10. Appendices A and B list the full sets of model equa-
tions for the TSCE model and the MSCE model of field carcinogenesis, respectively.
Table 12.3 was prepared using this MSCE model, implemented in the ITHINKTM

7.0 modeling environment.

Results

The data of Liu et al. (2006) can be used to help quantify the effect of arsenic
exposure on increasing μPF, with the help of the following simplifying assumptions:

• Attribute all of the reported increase in p16INK4a methylation prevalence in
tumors of smokers compared to nonsmokers to arsenic in cigarette smoke (a
deliberate worst-case assumption).

• Assume that arsenic increases the rate of p16INK4a methylation by enough to
explain the entire increase in observed methylation prevalence from 32 to 63%.

• Obviously, p16INK4a methylation is not always necessary for causation of
NSCLC tumors, since many NSCLC tumors do not have this transforma-
tion. Therefore, we adopt a simple competing-risks model in which either
(a) p16INK4a methylation or (b) some other cause(s) (unspecified, but that
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accomplishes a similar role, making p16INK4a methylation unnecessary) con-
tributes to the formation of NSCLCs.

• Let B denote the background rate at which p16INK4a methylation takes place
in the absence of smoking, and let A denote the rate of the alternative compet-
ing cause(s). Then the probability that p16INK4a methylation contributes to a
randomly selected NSCLC in a never-smoker (i.e., that p16INK4a methylation
occurs before the competing risk in a cell line that eventually becomes NSCLC)
is, from competing-risks theory, B/(A + B). Equating this to 0.32 based on the
data of Liu et al. yields

B/(A + B) = 0.32→ B = 0.32A + 0.32B → 0.68B = 0.32A→
A/B = 0.68/0.32 = 2.125.

• If exposure to arsenic in cigarette smoke increases the background p16INK4a
methylation rate B by a factor of K that, in turn, increases the methylation prob-
ability for NSCLCs from B/(A + B) = 0.32 to KB/(A + KB) = 0.63, in keeping
with the data of Liu et al., then the value of K can be determined from the data,
as follows:

K B/(A + K B) = 0.63→ K B(1− 0.63) = 0.63A

→ K = 0.63(A/B)/0.37 = (0.63∗2.125)/0.37 = 3.62

• Based on this competing-risks model, assume that arsenic in cigarette smoke (at
the levels experienced by the smokers in the study of Liu et al., 2006) increases
the p16INK4a methylation rate in NSCLCs by a factor of K = 3.62. Further
assuming that it leaves the competing-risks rate A unchanged and that one or
the other of these two competing pathways accounts for the transition rate μPF,
the net impact on μPF is to increase it from a background rate of A + B = bPF

= 0.00006 to a smoking-exposed level of A + KB = A + 3.62B = bPF + qPF

s = 0.00006 + 0.000012s, where s reflects the smoking level. (This calcula-
tion assumes that the smoking model parameters apply specifically to NSCLCs.
Since NSCLCs constitute a large majority – about 80% – of all lung cancers, this
assumption is likely to be at least roughly correct.)

• Now we have enough data to solve for the remaining unknowns (subject to the
assumptions and approximations already discussed). Combining A/B = 2.125
with the model constraint A + B = bPF = 0.00006 leads to the solution A + B
= 2.125B + B = 3.125B = 0.00006, so B = 0.00006/3.125 = 1.92E-5 and A =
0.00006 – B= 0.00006 – 0.0000192 = 4E-5. The smoking-exposed level of μPF

= A + KB = A + 3.62 B = 4E-5 + 3.62∗1.92E-5 = 0.00011 corresponds to a
smoking level such that bPF + qPF s= 0.00006 + 0.000012 s= 0.00011, i.e., s=
(0.00011 – 0.00006)/0.000012 ≈ 4. Inverting the formula s = (1 – e–0.1∗x)/0.1 to
obtain x= –10 ln(1 – 0.1s) and substituting s= 4 gives a corresponding smoking
level of x≈ 5 cigarettes per day – a number that, reassuringly, is of the right order
of magnitude to be plausible.
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In summary, these calculations suggest that MSCE Model 1, with qPF interpreted
as reflecting the potency of arsenic in increasing μPF (t) via hypermethylation of the
promoter region of p16INK4a, is at least roughly consistent with the empirical data
of Liu et al. (2006) on the prevalence of such hypermethylation in NSCLC tumors
of smokers and nonsmokers.

If this interpretation is not wildly wrong – that is, if MSCE Model 1 provides an
approximately correct description of lung carcinogenesis, and if arsenic in cigarette
smoke is indeed responsible for most of the increase in p16INK4a promoter region
hypermethylation among smokers compared to nonsmokers, and if this increase in
p16 methylation, in turn, causes most of the estimated increase in μPF among smok-
ers – then the proportionality between the reduction in μPF and the reduction in risk
in Table 12.3 implies that removing arsenic from cigarette smoke could have a large
impact on lung cancer risk. It could reduce by up to 2/3 the expected number of
tumor cells formed by age 80 for someone who smokes 60 cigarettes per day from
age 20 to 60.

Limitations of Modeling Assumptions and Calculations

The preceding modeling and calculations are admittedly rough. They ignore
interindividual heterogeneity in exposures and in parameter values; skip uncertainty,
variability, and sensitivity analyses; incorporate the extreme assumption that arsenic
in cigarette smoke accounts for all of the estimated increase in μPF (t) among smok-
ers via increased methylation of p16INK4a; and gloss over important distinctions
among lung tumors types, on the grounds that most lung tumors are NSCLCs.
Nonetheless, that the model is at least roughly consistent with available data from
the single study of Liu et al. (2006) suggests that it may provide a useful starting
point estimate of the potential impact on lung cancer risk of removing arsenic. The
upper-bounding assumption that arsenic in cigarette smoke accounts for the entire
increase in μPF(t) among smokers compared to nonsmokers can perhaps be replaced
by a refined estimate of the true fraction of this increase that is caused by arsenic
when additional data become available on smoking levels, arsenic exposure levels,
and corresponding p16 methylation levels. Until then, sensitivity analyses will be
used to explore how the provisional conclusion that removing arsenic could remove
a large proportion of malignant cells (up to two thirds of them, for the smoking
scenario in Table 12.3) changes if less extreme assumptions are made.

Sensitivities, Uncertainties, Implications, and Conclusions

Based on the preceding model and calculations, what can a risk assessor tell a deci-
sion maker who wants to know whether removing arsenic from cigarettes might sig-
nificantly reduce lung cancer risks to smokers? Clearly, a key scientific uncertainty
is the assumption that arsenic affects lung cancer risk by increasing p16 methylation,
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and that this drives increases in μPF, the rate at which patch cells enter the clonal
expansion phase, F. Although the calculations in the previous section suggest that
this account is roughly consistent with the data of Liu et al. (2006), MSCE Model 1
is far from being well validated. On the other hand, despite these important uncer-
tainties and knowledge gaps, we can now address some of the pragmatic questions
that decision makers must struggle with. For example:

1. The question “What is the plausible range of risk reductions in lung cancer risk
from removing arsenic from cigarette smoke?” can be answered as follows: Up to
two thirds of lung cancer malignant cells (or at least of NSCLC malignant cells)
might be prevented, under the assumptions of MSCE Model 1, for the smoking
scenario in Table 12.3. (The simulation model in Appendix B can be used to
prepare analogous tables for other smoking scenarios.) This upper bound may
later prove to be too high (point 2 below), as it is contingent on a worst-case
assumption that arsenic accounts for the full smoking-related increase in μPF.
However, that such a high estimate is at least roughly consistent with current
mechanistic knowledge and epidemiological data (as captured in the simulation
model) and biomarker data (Liu et al.,2006) may justify further investigation of
this relationship (point 3 below).

2. A quantitative answer to “How sensitive is the reduction in risk to less-than-
full removal of arsenic?” is as follows. If removing arsenic leaves intact a frac-
tion g > 0 of the smoking-related increase in rate μPF, then the finding of
proportionality between a reduction in μPF and a resulting reduction in risk
(see Table 12.3) implies that the revised, smaller upper bound will become
1 – [(bPF + 10gqPF)/(bPF +10qPF)] = 1 – (0.00006 + 0.00012 g)/0.00018 for
a smoking scenario with s(t)= 10, e.g., with x= 60 cigarettes/day. For example,
if removing arsenic reduces the smoking-related increase in μPF by only 50%
instead of by 100% (g = 0.5 instead of 0), then the new upper bound for risk
reduction will become 1/3 instead of 2/3.

3. Similarly, the finding of a linear relation between the reductions in μPF (t) and
reductions in risk (see Table 12.2) permits a quantitative answer to the question
“How sensitive are estimated risk reductions to the presence of other p16 methy-
lating agents in cigarette smoke?” If we relax the worst-case assumption that
arsenic accounts for all of the estimated increase in μPF(t) among smokers (via
increased methylation of p16INK4a), and assume instead that arsenic accounts
for only a fraction f of the increase [with other agents in cigarette smoke, such
as tobacco-specific nitrosamines, accounting for the remaining (1 – f) of the
increase], then the new upper bound for the predicted reduction in risk from
removing arsenic would be (2/3)f instead of 2/3. This simple sensitivity anal-
ysis also provides a straightforward way to incorporate expert judgments into
the analysis to help inform investment decisions about the possible benefits of
removing arsenic. For example, if an expert believes that other (nonarsenic) con-
stituents of cigarette smoke account for at least a fraction≥ (1 – f) of the increase
in methylation of p16INK4a, then this can be used to tighten the upper-bound
estimate on the risk reduction from removing arsenic, from 2/3 to ≤ (2/3)f.
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4. The question “What are the most important scientific uncertainties, that, if
resolved, would most improve the ability to quantify risk reductions from removing
arsenic from cigarette smoke?” can be at least partly addressed by suggesting sev-
eral lines of experimental investigation, as follows. First, perform experiments to
validate (or falsify and replace) the hypothesis that removing arsenic would reduce
p16INK4a promoter region hypermethylation to its background level. Second, per-
form experiments to estimate the impact of p16INK4a hypermethylation on μPF.
For example, what fraction of field cells (identified experimentally as in Wistuba
and Gazdar, 2006) have both hypermethylated p16INK4a and patch markers such
as LOH 3p (Table 12.2)? What fraction of premalignant lung epithelial cells with
hypermethylated p16INK4a are also involved in clonal expansion in the lung?
Experimental answers to these questions can potentially help to validate or refine
the modeling assumptions and the resulting plausible range for preventable lung
cancers caused by arsenic estimated in previous sections.

In summary, the model discussed in this chapter provides a constructive way
to (a) use incomplete data to constrain the plausible range of risk reductions from
removing specific constituents from a complex mixture (cigarette smoke); and (b)
quantify the sensitivity of results to changes in assumptions. Even if the biolog-
ical assumptions about arsenic in this chapter are eventually replaced with better
ones, the ability to quantify risk reductions from interventions that act through dif-
ferent model parameters (Table 12.3) may still prove useful for various constituents.
Although the MSCE model invites refinements (and resolution of current key scien-
tific uncertainties) to obtain improved bounds, it also shows how available data can
support interim conclusions for decision makers trying to assess whether remov-
ing particular carcinogenic constituents, such as arsenic, could create a significant
reduction in human health risks. Based on the model in this chapter, the current
(interim) answer for arsenic is: Yes, with reservations. Considerable work remains
to be done to determine the proper extent, if any, of the reservations.

Appendix A: Listing for TSCE Model of Smoking and Lung
Cancer

Intermediate cells(t) = Intermediate cells(t – dt) + (initiation + promotion – con-
version) ∗ dt
INIT Intermediate cells = 0

INFLOWS:
initiation = mu1 s∗Normal cells
promotion = Intermediate cells∗es
OUTFLOWS:
conversion = mu2 s∗Intermediate cells
Malignant cells TSCE(t) =Malignant cells TSCE(t – dt) + (conversion) ∗ dt
INIT Malignant cells TSCE = 0
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INFLOWS:
conversion = mu2 s∗Intermediate cells
Normal cells(t) = Normal cells(t – dt) + (development – initiation) ∗ dt
INIT Normal cells = 0

INFLOWS:
development = if (TIME < 20) then (1E7/20) else 0
OUTFLOWS:
initiation = mu1 s∗Normal cells
e0 = 6.5E-2 {Schollberg, 2006, joint fit for males and females}
e1 = m1 {Schollberg, 2006, joint fit for males and females}
e2 = 1.19 {Schollberg, 2006, joint fit for males and females}
es = e0∗(1 + fse1e2)
fse1e2 = e2∗(1 – exp(–(e1/e2)∗s))
fsm1m2 = m2∗(1 – exp(–(m1/m2)∗s))
m1 = 0.15 {Schollberg, 2006, joint fit for males and females}
m2 = 1.83 {Schollberg, 2006, joint fit for males and females}
Malignant cells TSCE x 100 =Malignant cells TSCE∗100
mu0 = 1.87E-7 {Schollberg, 2006, joint fit for males and females}
mu01 = mu0
mu02 = mu0
mu1 s = mu01
mu2 s = mu02∗(1 + fsm1m2)

Appendix B: Listing for MSCE Lung Cancer Model with Field
Carcinogenesis

F(t) = F(t – dt) + (fPF new + net births – fFM new) ∗ dt
INIT F = 0

INFLOWS:
fPF new = P∗muPF
net births = muF∗F
OUTFLOWS:
fFM new = F∗muFM
M(t) =M(t – dt) + (fFM new) ∗ dt
INIT M = 0

INFLOWS:
fFM new = F∗muFM
N(t) = N(t – dt) + (development 2 – fNP new) ∗ dt
INIT N = 0

INFLOWS:
development 2 = if (TIME < 20) then (100/20) else 0
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OUTFLOWS:
fNP new = N∗muNP
P(t) = P(t – dt) + (fNP new – fPF new) ∗ dt
INIT P = 0

INFLOWS:
fNP new = N∗muNP
OUTFLOWS:
fPF new = P∗muPF
bF = 0.08
bFM = 0.00008
bNP = 0.05
bPF = 0.00006
effective internal dose s = (1 – exp(–0.1∗s))/0.1
muF = (bF + qF∗effective internal dose s)
muFM = (bFM + qFM∗effective internal dose s)
muNP = if (TIME < 11) then 0 else (bNP + qNP∗effective internal dose s)
muPF = (bPF + qPF∗effective internal dose s)
qF = 0.0072
qFM = 0.0000176
qNP = 0.001
qPF = 0.000012
s = if ((TIME >= start age) and (TIME < stop age)) then x else 0
start age = 20
stop age = 60
x = 60



Chapter 13
Simplifying Complex Dynamic Networks:
A Model of Protease Imbalance and COPD
Dynamic Dose-Response

The risk models in previous chapters have emphasized causal processes described
by directed acyclic graphs (Bayesian network models) and by multistage carcino-
genic processes in which exposure hastens the net transition rates and increases the
net proliferation rates of affected cells. More is required to predict the probable con-
sequences of interventions in feedback-control systems, where changing the levels
of controllable inputs can affect not only the specific subprocesses targeted by the
interventions, but also the equilibrium levels of other variables throughout the entire
interconnected system.

A dynamic system’s response to attempted control actions can be notoriously
counterintuitive. Students of systems dynamics in business and management science
learn this through simulation games (such as the notorious “MIT beer game,” which
models instability in supply chains). Students of traffic network engineering learn it
through Braess’s paradox, in which adding capacity to a network to relieve conges-
tion shifts the system to a new, more congested, equilibrium! In health risk assess-
ment, disease risk may respond unexpectedly to exposures that alter feedback loops
that normally maintain organs, tissues, and organisms in homeostatic equilibrium.

Simulation can predict the response of a feedback-control system to changes in
inputs if an accurate simulation model of the system is available. But if only the
overall structure of a system is known – its main subsystems and which ones affect
others, but not the quantitative details of their input-output behaviors – then it may
be impossible to develop a simulation model using standard simulation software
packages. Accurate predictive simulation modeling is not possible for highly uncer-
tain systems if it requires more detailed quantitative information than is available
about the behaviors of system components and subsystems. In addition, simulation
often produces more detailed answers than the decision maker cares about, includ-
ing simulation of transient responses, as well as of changes in equilibrium. In many
applications, it is desirable to produce less detailed outputs from less detailed inputs.
Mathematical economics has developed a way to predict the probable consequences
of changing inputs when many details of the modeled systems are unavailable. This
is the method of comparative statics, which is inspired by Le Chatelier’s principle
in thermodynamics (Samuelson, 1947). It uses conditions that must hold in equilib-
rium to compare the equilibria that hold before and after an exogenous change or
intervention.

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 13, C© Springer Science+Business Media, LLC 2009
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This chapter develops a comparative statics analysis of how cigarette smoking
increases the risk of chronic obstructive lung disease (COPD), a disease character-
ized by a dynamic imbalance among the levels of enzymes called proteases, which
digest proteins (including lung tissue), and the levels of antiproteases, which nor-
mally hold proteases in check. In normal equilibrium, these two sets of enzymes
are in dynamic balance. In COPD, the proteases dominate, and lung tissue is grad-
ually destroyed. Comparative statics provides a useful mathematical tool for under-
standing the shift from a normal, homeostatic, nonsmoking, dynamic equilibrium
to an abnormal, postsmoking, dynamic equilibrium in which the normal balance of
proteases and antiproteases is permanently disrupted. This chapter also illustrates
an important technique for reducing large models with many unknown parameters,
represented by networks of interacting homeostatic feedback-control processes, to
much smaller models with only a few “reduced parameters” that must be estimated
from data. Such reductions in model complexity make possible the analysis of equi-
libria for large dynamic systems.

Background on COPD

Chronic obstructive pulmonary disease (COPD) is a smoking-associated degener-
ative lung disease – treatable but not reversible – that culminates in potentially
lethal clinical conditions such as chronic bronchitis and emphysema. Smoking pro-
duces gradually accelerating loss of lung function in COPD patients, as measured by
forced expiratory volume in 1 second (FEV1) and other measures. Quitting smoking
slows the rate of further deterioration in lung function compared to its trajectory in
continuing smokers, but does not reverse past losses or prevent continued deteriora-
tion. With few exceptions – most notably, a sensitive subpopulation with a genetic
deficiency in the production of the antiprotease alpha-1-antitrypsin (Abboud and
Vimalanathan, 2008) – strong genetic risk factors for COPD are not yet well under-
stood. Why only some smokers (fewer than 20%) progress to severe destruction
and clinical COPD (Sharafkhaneh et al., 2008), even though essentially all smokers
suffer lung injury and inflammation, and why COPD and associated airway inflam-
mation and lung tissue destruction continue, even after smoking ceases, have long
been important puzzles in COPD research (e.g., Hogg, 2006).

This chapter develops and applies methods of dose-response modeling for
COPD, based on a model of how long-term exposure to cigarette smoke (CS) dis-
rupts normal homeostasis in a particular way in the network of protease (protein-
digesting) and antiprotease (protease-inhibiting) enzymes mediating interactions
among lung cells and the extracellular matrix (ECM) in lung tissue. Once home-
ostasis has been disrupted in this way, the behavior of the network shifts perma-
nently to a new regime in which proteases dominate antiproteases, leading to the
ongoing net destruction of lung tissue and degradation of the ECM. Although the
qualitative hypothesis of a “protease-antiprotease imbalance” has been prominent
in COPD research for decades (Abboud and Vimalanathan, 2008), this is, to our
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knowledge, the first mathematical model showing how this imbalance can become
self-sustaining in the absence of continued exposure. The model has interesting
implications for the dynamic relation between exposure and risk of COPD.

A Flow Process Network Model of Protease-Antiprotease
Imbalance in COPD

Figure 13.1 presents the main features of the model. The logic is as follows. Smoke-
activated alveolar macrophages (M) release several molecular signals (such as IL-8,
LTB4, and GRO-α). Figure 13.1 does not show these explicitly, but their effects
are indicated (using the graphical notation of the ITHINKTM modeling environment
used to draw Fig. 13.1) by thin “information arrows” directed from compartments
(state variables, represented by boxes) to flows (thick arrows pointing into or out of
compartment boxes). Thus, the stocks in some compartments can affect inflow rates
to, and outflow rates from, other compartments.

Some signals from M (notably, IL-8) stimulate an increase in lung neutrophils
(N), largely through chemoattraction (Tudhope et al., 2008). Other signals upregu-
late the production of the protease macrophage elastase, MMP-12 (P in Fig. 13.1).
(MMP-12 is produced not only by alveolar macrophages, but also by other lung
cells, such as dendritic cells.) MMP-12, in turn, degrades lung tissue, especially
elastic fibers, forming elastin fragments (F) (Maeno et al., 2007). Elastin frag-
ments potently attract monocytes, which then mature into additional macrophages.

M

M inflow

M outflow

F

F inflow

F outflow

N

N inflow

N outflow

T

T inflow

T outflow

P

P inflow

E

E inflow

E outflow

A

A inflow

A outflow

P outflow

Fig. 13.1 A dynamic model of protease-antiprotease imbalance. P=macrophage elastase (matrix
metalloproteinase-12), F = elastin fragments, M= macrophages, N = neutrophils, E = neutrophil
elastase, T = tissue inhibitor of metalloproteinase-1, A = alpha-1-antitrypsin. The model is imple-
mented in the ITHINKTM continuous simulation modeling environment
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Thus, the following positive feedback loop is created: P↑ → F↑ → M↑ → P↑
(Sharafkhaneh et al., 2008; Maeno et al., 2007). (Here, up arrows represent upregu-
lation; horizontal arrows indicate causation.) This loop is shown in the upper right
of Fig. 13.3.

Increased MMP-12 (P) also increases the removal rate of the antiprotease α-
1 antitrypsin (A), reducing its equilibrium level (Houghton et al., 2006). This, in
turn, reduces the removal rate and increases the level of the neutrophil-derived pro-
tease, neutrophil elastase (E). MMP-induced degradation of the extracellular matrix
(ECM) also liberates collagen-derived peptides that attract yet more neutrophils (N)
into the lung (van Houwelingen et al., 2008). With more neutrophils and more
neutrophil-elastase (E) per neutrophil, levels of E rise; this, in turn, increases the
removal rate and reduces the level of the antiprotease TIMP-1 (tissue inhibitor of
metalloproteinase-1) (T) (Houghton et al., 2006; Shapiro et al., 2003). The decrease
in TIMP-1 (T) reduces the removal rate and increases the equilibrium level of
macrophage elastase (P) (Shapiro et al., 2003). The bottom half of Fig. 13.1 shows
this second positive feedback loop:

P ↑→ A↓→ E ↑→ T ↓→ P ↑ .

A third positive feedback loop through P is created by the fact that neutrophils
produce neutrophil elastase: P↑→ F↑→M↑→ N↑→ E↑→ T↓→ P↑.

Thus, once P starts to increase, several positive feedback loops tend to amplify
the increase [as well as the levels of macrophages (M), neutrophils (N), neutrophil
elastase (E), and elastin fragments (F), all of which are positively involved with P
in the feedback loops] until a new equilibrium is reached.

Yet despite these positive feedback loops, most cigarette smokers do not develop
COPD (Sharafkhaneh et al., 2008). Analyzing the equations corresponding to the
process flow network in Fig. 13.1 suggests a possible explanation in terms of the
existence of two distinct, locally stable, equilibria, as detailed in the next section.

The model in Fig. 13.1 is admittedly a very high-level, simplified, and aggre-
gate description of selected processes of importance in COPD. Many of the links
in this diagram could in principle be recursively expanded into entire pathways
or subnetworks, down to the molecular level. Figure 13.1 deliberately ignores all
lower-level details and many short-term transients. It represents the roles of crucial
cell populations, such as CD4+ and CD8+ T lymphocytes (Borchers et al., 2007;
Maeno et al., 2007) and dendritic cells, only implicitly, by their effects on the quan-
tities in Fig. 13.1. Other consequences of activated neutrophils and macrophages
are not described, including the increased apoptosis of alveolar cells (due to the
release of cytokines such as IL-18, which upregulates the production of caspases and
cathepsins that increase apoptosis of epithelial cells) and changes in macrophage
phenotypes that reduce their ability to recognize, respond appropriately to, and
remove apoptotic cells. Although apoptosis of alveolar cells without a compensating
increase in production, leading to a net destruction of alveolar tissue, may be critical
in causing emphysema (Demedts et al., 2006b), Fig. 13.1 only considers the produc-
tion of elastin fragments, and not other correlated events such as apoptosis-driven
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tissue destruction. Thus, Fig. 13.1 represents only a skeleton or core of a description
of protease-antiprotease imbalance in COPD-related emphysema.

Despite these limitations, the model of protease-antiprotease imbalance in
Fig. 13.1 has considerable support from experimental data. Table 13.1 summarizes
the results of recent experimental investigations of COPD etiology – or, more accu-
rately, smoking-associated emphysema-like changes in mice. [There are no fully
satisfactory animal models for human COPD (Churg and Wright, 2007). Animals,
unlike humans, do not develop a degenerative version of the disease that persists
even after smoke exposure ceases (Wright et al., 2008). Why this is so has been a
mystery in COPD research; a possible explanation is suggested below.]

Table 13.1 Evidence for causal links in Fig. 13.1, from experiments in mice

Link Comments on more detailed pathways and evidence for links References

P↑→ F↑ “[T]he CD8+ T cell product, IFN-gamma-inducible protein-10,
induces production of macrophage elastase (matrix
metalloproteinase 12) that degrades elastin, both causing lung
destruction directly and generating elastin fragments that serve as
monocyte chemokines augmenting macrophage-mediated lung
destruction.”

Maeno
et al.
(2007)

F↑→M↑ “This EF [elastin fragments, F] chemotactic signal ultimately leads to
enhanced lung tissue destruction by placing more macrophages,
and thus more MMP-12, within close proximity of the airspace.”

Houghton
et al.
(2006)

“Elastin fragment antagonism in this model abrogated both
macrophage accumulation and airspace enlargement.”

Shapiro
et al.
(2003)

M↑→ P↑ “Moreover, there was less macrophage elastase activity secondary to
decreased macrophage accumulation in neutrophil
elastase-deficient mice.”

Shapiro
et al.
(2003)

M↑→ N↑ Activated alveolar macrophages (M) release cytokines TNF-α and
GM-CSF that stimulate production of IL-8, a potent
chemoattractant for recruiting neutrophils (N) to the lung, via a p38
MAPK pathway. (TNF-α and GM-CSF also prime the neutrophils.)

Tudhope
et al.
(2008)

N↑→ E↑ Production of neutrophil elastase (E) by lung neutrophils is regulated
in part by SLPI via an NFκB-dependent pathway that is
compromised in Nrf-2 knockout mice.

Iizuka
(2005)

E↑→ T↓ “[Neutrophil elastase, E] is capable of degrading the tissue inhibitors
of metalloproteinases (TIMPs), the major inhibitors of MMP-12.

Houghton
et al.
(2006)

T↓→ P↑ Thus it appears that these proteinases are able to indirectly augment
each other’s function by degrading one another’s inhibitors.”

“Each elastase inactivated the endogenous inhibitor of the other, with
neutrophil elastase degrading tissue inhibitor of
metalloproteinase-1, and macrophage elastase degrading
α1-antitrypsin.”

Shapiro
et al.
(2003)

P↑→ A↓
A↓→ E↑

“Furthermore, MMP-12 degrades α1-antitrypsin, whose major
function is to inhibit NE.”

Houghton
et al.
(2006)
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The overall causal structure in Fig. 13.1 shows MMP-12 (P) as the unique node
common to all three positive feedback loops. Consistent with this postulated linch-
pin role, mice deficient in MMP-12 (unlike wild-type mice) do not develop emphy-
sema or an increase in lung macrophages when exposed to cigarette smoke (CS)
(Hautamaki et al., 1997; Houghton et al., 2006). Likewise, mice with a CD8+ T-
cell deficiency that inhibits normal increases in MMP-12 during CS exposure are
protected from macrophage and neutrophil accumulation and emphysema (Maeno
et al., 2007), as are senescence-accelerated mice with inhibited MMP-12 production
(Mori et al., 2008). MMP-12 increases appear to be both necessary and perhaps suf-
ficient (Hautamaki et al., 1997) for long-term CS exposures to induce emphysema
in mice.

In humans, too, MMP-12 is significantly elevated in the lungs of COPD patients
compared to healthy smokers, and even more so compared to levels in never-
smokers (Molet et al., 2005; Babusyte et al., 2007). Both tobacco smoke and wood
smoke increase MMP-12 levels in human subjects in vivo (Montaño et al., 2004).
Other MMPs, such as MMP-2, MMP-8, and MMP-9, may also be important in
human COPD (Vernooy et al., 2004); thus, for humans, P in Fig. 13.1 may be a sur-
rogate for several strongly correlated MMPs, of which MMP-12 is the most clearly
identified.

In summary, while the model in Fig. 13.1 is admittedly simplified, and much
more detailed and complete models of COPD pathogenesis should and doubtless
will be developed, Fig. 13.1 does capture key causal relations that appear to be
empirically important in mice and that are consistent with human data. The fol-
lowing sections analyze the implications of this model for smoking-COPD dose-
response relations.

Mathematical Analysis of the Protease-Antiprotease Network

Table 13.2 summarizes a system of ordinary differential equations (ODEs) corre-
sponding to Fig. 13.1. These model equations incorporate some simplifying assump-
tions and approximations, such as that the inflow (production) of new elastin frag-
ments (F) is approximately proportional to P (MMP-12), that the fractional degra-
dation rate of elastin fragments per unit time is approximately constant, and that
neutrophil elastase is produced at a rate proportional to the number of neutrophils
(N) and is removed at a fractional rate proportional to alpha-1-antitrypsin (A). The
complete dynamic model has seven variables (P, F, M, N, A, E, T), seven equations,
and 18 parameters (aFP, dF, bM, aMF, dM, bN, aNM, dN, bA, eAP, aEN, eEA, bT, eTE,
bP, aPM, dP, ePT). The notation is that bj is the unstimulated inflow (“birth” of new
material) into compartment j; aji is the additional inflow into compartment j per
unit time stimulated by each unit of material in predecessor compartment i (thus,
aji is the potency of i in stimulating production of j, assuming for simplicity an
approximately directly proportional relation, e.g., because all levels are well below
saturation); dj is the unstimulated fractional rate of clearance or outflow (“death”)
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Table 13.2 Model equations and simplifications

Link Model equation Equilibrium simplification Justification

P↑→ F↑ dF/dt = aFPP – dFF F = P See text.
F↑→M↑ dM/dt = bM + aMFF

– dMM
M = wMP + (1 – wM) = wM(P – 1)
+ 1, where wM = aMF/(aMF +
bM)

Use F = P & initial
equilibrium
condition bM +
aMF = dM.

M↑→ N↑ dN/dt = bN + aNMM –
dNN

N = wNwM(P – 1) + 1, where wN

= aNM/(aNM + bN)
Similar to formula

for M.
P↑→ A↓ dA/dt = bA – eAPAP A = 1/P For A = P = 1 and

dA/dt = 0, bA =
eAP, so (1 – AP)
= 0.

N↑→ E↑
A↓→ E↑

dE/dt = aENN – eEAAE E = NP = [wNwM(P – 1) + 1]P In initial
equilibrium, N =
AE. Then, use A
= 1/P.

E↑→ T↓ dT/dt = bT – eTETE T = 1/E = 1/[wNwM(P – 1) + 1]P Similar to formula
for A.

M↑→ P↑
T↓→ P↑

dP/dt = bP + aPMM –
dPP– ePTPT

bP + aPMM = dPP + ePTPT dP/dt = 0 in
equilibrium.

of material from compartment j (per unit of material in j per unit time); and eji is the
potency of i in stimulating additional removal of j.

The “Equilibrium Simplification” column of Table 13.2 shows how these equa-
tions simplify in equilibrium, so that the equilibrium values of all six variables other
than P are determined from the value of P and only two reduced parameters, wM

and wN. To accomplish this reduction from 18 to two unknown parameters, we first
normalize all state variables (i.e., compartment levels), without loss of generality, to
make their levels 1 in the initial (unexposed) equilibrium. Then, setting time deriva-
tives to zero in equilibrium, it follows that dF/dt= aFPP – dFF, for example, implies
the initial equilibrium condition: 0 = aFPP – dFF = aFP – dF (using the initial con-
dition normalization, F = P = 1). Hence, aFP = dF. If P now changes away from
its initial equilibrium value of P = 1 to some new value, then the new equilibrium
condition aFPP – dFF = 0 (together with the parameter value constraint aFP = dF)
implies aFP(P – F) = 0, or F = P. Other equilibrium simplifications in Table 13.2
are derived similarly, as sketched in the “Justification” column.

If exposure to cigarette smoke (CS) causes an increase in P (Maeno et al., 2007),
then the formulas in the “Equilibrium Simplification” column of Table 13.2 show
how all other quantities will adjust to the new level of P. The equilibrium inflows
and outflows for P can also be studied as functions of P:

Inflow to P = (bP + aP M − aP MwM )+ aP MwM P, (13.1a)
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Fig. 13.2 Unique stable “healthy” equilibrium at P∗ = 1. (Parameter values: bP + aPM = 8,
aPMwM = 0.5, dP = 2, wNwM = 0.2.)

Outflow from P = dP P + ePT /[wN wM (P − 1)+ 1], (13.1b)

where wM = aMF/(aMF + bM) and wN = aNM/(aNM + bN).
Inflow is a straight-line function of P with y-intercept (bP + aPM – aPMwM) and

slope aPMwM. Outflow asymptotically approaches a straight line with slope dP, for
large values of P. [Its y-intercept is ePT/(1 – wNwM), where ePT = bP + aPM – dP

in the initial normalized equilibrium with all variables equal to 1. Note that if bP is
exogenously increased by an exposure that increases inflow, however, ePT need not
change.] Equating (13.1a) and (13.1b) gives a quadratic equation. The two curves
intersect at P = 1, and perhaps at one other equilibrium point, P∗.

An equilibrium point P∗ is locally stable if Inflow intersects Outflow from above
at P∗, i.e., if Inflow > Outflow for P < P∗ and Inflow < Outflow for P > P∗, since
then P will increase when it is less than P∗ and will decrease when it is greater
than P∗. If Inflow intersects Outflow from below, then the equilibrium where they
intersect is unstable: Any small change in P will be amplified. Since it is not bio-
logically realistic for P to increase without bound, we assume a maximum possible
inflow rate, Inflowmax, determined by rate-limiting steps in the production rate of P.
In other words, Inflowmax is the saturation level for inflow of P.

As an example, Fig. 13.2 plots Inflow and Outflow as functions of P for the
following parameter values: bP + aPM = 8, aPMwM = 0.5, dP = 2, wNwM = 0.2.
[These parameter values were selected simply to provide a concrete illustration. As
discussed below, there are essentially two types of possible equilibrium behaviors
of the system, illustrated in Figs. 13.2 and 13.3, respectively, due to the fact that
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Equation (13.2) below is quadratic. The precise values of the parameters do not
matter in illustrating these possibilities.] In this case, P∗ = 1 is the unique stable
equilibrium. To the left of 1, Inflow exceeds Outflow; to the right, Outflow exceeds
Inflow. Thus, any exogenous one-shot change in the level of P (e.g., due to a tran-
sient increase or decrease in bp) will be undone as the system operates to restore the
homeostatic equilibrium.

If exposure to cigarette smoke shifts the Inflow line upward and/or the Outflow
curve downward during exposure (e.g., by increasing bP), then their intersection
point – the unique stable equilibrium – will shift rightward, to higher levels of P.
Other variables [elastin fragments (F), macrophages (M), neutrophils (N), and neu-
trophil elastase (E)] will also shift to new, higher levels during exposure, according
to the formulas in Table 13.2. [CS may also act directly to increase some of these
elements, as well as acting indirectly via the feedback loops in Fig. 13.1 when P
increases (Churg et al., 2002).] Once exposure stops, if the curves return to their
original positions (e.g., if bP falls back to its original level), then the presmoking
equilibrium will be restored.

In Fig. 13.2, Inflow only slightly exceeds Outflow for P values between 0 and
1. The gap between Inflow and Outflow can be increased at all points other than
P = 1, where they intersect, by decreasing the slope of the Inflow line (aPMwM).
Geometrically, decreasing aPMwM while holding other parameters fixed pivots the
Inflow line clockwise (flatter slope) about the fixed point (P = 1, Inflow = bP +
aPM).

Conversely, increasing the slope of the Inflow line (aPMwM) rotates it counter-
clockwise. Increasing the slope enough to make it steeper than that of the outflow
curve has a dramatic qualitative effect on the behavior of the system, as illustrated
in Fig. 13.3. Here, aPMwM has been increased from 0.5 to 1.5. (The Outflow curve is
the same as in Fig. 13.2 but is now shown on an expanded scale.) Now, P = 1 is an
unstable equilibrium. Any increase of P above 1 is amplified by the positive feed-
back loops in Fig. 13.1, leading to further increases until a new stable equilibrium is
reached at P= 8. Any smoking-related upward shift in the Inflow line (or downward
shift in the Outflow curve) will shift this new stable equilibrium still further right-
ward (and will bring P = 1 into its basin of attraction, so that P will spontaneously
increase above 1).

Even if these vertical shifts are undone when smoking ceases, the system will not
return to its presmoking equilibrium at P = 1 while the increase in slope aPMwM

persists. Instead, it will settle at the new stable equilibrium level (P= 8 in Fig. 13.3)
following the cessation of exposure.

Figure 13.4 plots essentially the same information in a different way. It shows
the net inflow into P, defined as the difference between Inflow and Outflow, as a
function of the level of P:

Net I n f low = (I n f low − Out f low) = d P/dt

= (bP + aP M − aP MwM )+ aP MwM P − dP P − ePT / [wN wM (P − 1)+ 1]

= bP + aP M (1− wM )+ (aP MwM − dP )P − ePT / [wN wM (P − 1)+ 1] .
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Fig. 13.3 Unstable equilibrium at P= 1, stable “COPD” equilibrium at P= 8. (Parameter values:
bP + aPM = 8, aPMwM = 1.5, dP = 2, wNwM = 0.2.)
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Fig. 13.4 Net inflow for the model in Fig. 13.3 is zero at equilibrium points
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In this diagram, the equilibrium points occur where NetInflow = 0. An equilib-
rium is stable if the NetInflow curve cuts the x-axis (NetInflow = 0) from above.

If the slope of the Inflow line is increased further (so that aPMwM > dP), then
it will lie above the Outflow curve at all points to the right of P = 1. In this case,
similar to Fig. 13.4, any initial increase in P will be amplified until a new, saturated,
stable equilibrium is reached with Inflow = Outflow = Inflowmax. (Any reduction in
P below 1 would also be amplified until P = 0, but this does not occur if exposures
increase P.)

Some Possible Implications for Experimental and Clinical COPD

Figs 13.2, 13.3, and 13.4 illustrate two different possibilities for how the protease-
antiprotease network in Fig. 13.1 can respond to exogenously caused changes in
the level of P. Figure 13.2 is the case of a stable unique equilibrium system, in
which the NetInflow curve (not shown) cuts the x-axis exactly once, from above,
with a negative slope. An exogenous increase in the Inflow line (e.g., in bP) shifts
this equilibrium rightward, but returning bP to its original level will restore P to
its original equilibrium. This is qualitatively similar to experimental emphysema
observed in animal models (Churg and Wright, 2007).

By contrast, Fig. 13.3 illustrates the case of two equilibria, an unstable one to
the left and a stable one to the right. In this system, an exogenous increase in bP

(shifting the NetInflow curve up) would shift the left equilibrium further leftward
and the right one further rightward. A system initially at P = 1 will spontaneously
move rightward to the new (“COPD”) equilibrium, and stay there. Restoring bP to
its initial level will not restore such a system to its initial (left) equilibrium. P and
other variables that depend positively on it (F, M, N, E) will remain permanently
elevated (although at lower levels when smoking cessation brings bP back down
than if smoking continues). This pattern is qualitatively similar to that of smoking-
induced COPD observed in human patients.

What can turn a system of the first (stable) type into one of the second type? It
suffices to increase the slope of the Inflow line, e.g., by increasing the parameter aPM,
representing the average production of MMP-12 per alveolar macrophage. Thus, it is
tempting to conjecture that lasting smoking-induced changes in human macrophage
phenotypes (Löfdahl et al., 2006) explain the induction of irreversible COPD. For
this explanation to be biologically plausible, however, COPD patients would have
to have steeper Inflow lines than healthy smokers. This is a testable implication, as
discussed in the next section.

To recapitulate our hypothesis for how smoking causes COPD, if smoking grad-
ually and permanently tilts the Inflow line in Fig. 13.2 upward until it becomes
steeper than the outflow curve at P = 1, it will destabilize the normal (“healthy”)
equilibrium and induce a new, stable (“COPD”) equilibrium to the right of it, as in
Figs. 13.3 and 13.4. (The location of the new equilibrium value of P will be at the
smaller of the intersection of the Outflow curve with the tilted Inflow line or with
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the horizontal Inflowmax line, not shown in Figs. 13.3 and 13.4.) If smoking not only
tilts the Inflow line upward but also reversibly increases its height [e.g., due to an
increase in bP during smoking, as CS causes CD8+ T-cell-mediated increases in
MMP-12 production (Maeno et al., 2007)], then, after smoking ceases, the levels of
P and other quantities that depend positively on it would decline to the new stable
equilibrium level, but not to the initial equilibrium level.

Is the Model Consistent with Available Human Data?

Directly identifying the theoretical Inflow and Outflow curves from clinical or epi-
demiological data may be difficult or impossible, because smoking affects many
model input parameters simultaneously (e.g., Churg et al., 2002). However, the
hypothesis that smoking tilts the Inflow line permanently upward can nonetheless
be assessed from limited human data. Recall that the slope of the Inflow line is pro-
portional to parameter aPM, representing the average production of MMP-12 per
alveolar macrophage. Thus, we can ask whether, in clinical reality, MMP-12 pro-
duction is permanently elevated in COPD patients compared to non-COPD smokers
(and, a fortiori, compared to never-smokers).

Table 13.3 summarizes data from two recent studies on MMP-12 levels mea-
sured in bronchoalveolar lavage (BAL) and induced sputum (IS) of present, for-
mer, and never-smokers. These data show a roughly 1.5- to twofold increase in the
measured MMP-12 levels in healthy smokers compared to never-smokers; and a
further roughly three- to fourfold increase in the measured MMP-12 levels among
COPD smokers compared to healthy smokers. Much of this increase persists among
COPD ex-smokers. On the other hand, macrophage counts are not significantly ele-
vated in IS from COPD patients compared to IS from nonsmokers (Rufino et al.,
2007). This pattern is therefore very consistent with the hypothesis that MMP-12
per macrophage is increased among COPD patients, corresponding to an upward
tilt in the Inflow line. [Demedts et al. (2006a) also reported MMP-12 enzymatic
activity 30 times higher in patients with COPD than in controls.])

Table 13.3 MMP-12 levels are elevated in COPD compared to non-COPD smokers

MMP-12 protein levels in Number of BAL MMP-12 +
Population induced sputum (IS) macrophages

COPD patients (IS) 17.5 ng/mg 1.6 × 106/ml
COPD smokers (BAL)

Ex-smokers (IS) 6.1 ng/mg 0.9 × 106/ml
COPD ex-smokers (BAL)

Healthy smokers 6.7 ng/mg 0.4 × 106/ml
Never-smokers 4.2 ng/mg 0.2 × 106/ml

Data: Demedts et al. (2006a) Data: Babusyte et al. (2007)
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Other studies have confirmed that COPD patients produce more MMP-12 than
controls (Molet et al., 2005) and that macrophage phenotypes differ in COPD
patients compared to healthy smokers (and in healthy smokers compared to non-
smokers), but do not appear to change following smoking cessation (Domagała-
Kulawik, 2003, 2006). Molet et al. (2005) found that

The number of MMP-12 expressing macrophages together with the staining intensity was
higher in BAL samples from COPD patients than in control subjects. Similar results were
noted in bronchial biopsies with higher MMP-12 expression in COPD subjects than in con-
trols. Enhanced MMP-12 level was also observed in BAL fluids from patient with COPD
in comparison to control subjects. [T]his study demonstrated that COPD patients produce
greater quantities of MMP-12 than controls, which may be a critical step in the pathogenesis
of COPD and emphysema.

CS exposure causes other lasting changes in macrophage phenotypes among
COPD patients. For example, Li et al. (2006) found significantly increased NF-κB
activity induced by TNF-α in alveolar macrophages from patients with COPD. Neu-
trophil elastase (E) cleaves specific (phosphatidylserine) receptors on macrophages,
reducing their ability to recognize and remove apoptotic cells and to resolve inflam-
mation (Demedts et al., 2006b).

In summary, it seems plausible that CS exposure in humans might lastingly alter
macrophage phenotypes, increasing the average MMP-12 produced per activated
alveolar macrophage (M) and thus steepening the Inflow line. For patients with suf-
ficiently responsive macrophages (e.g., due to normal phenotypic variation in the
population), the Inflow line may become steeper than the Outflow curve in the vicin-
ity of P = 1 in Fig. 13.2, leading to a shift from normal to COPD equilibrium.

Whether these changes account for a CS-induced shift from a stable, normal,
healthy equilibrium to a new stable COPD equilibrium remains to be empirically
verified. Some additional testable predictions that might help to confirm or refute
the proposed conceptual model are as follows:

• Heterogeneity: Smokers who will develop COPD exhibit larger increases in
MMP-12 per macrophage following CS exposure than smokers who do not
develop COPD. (This prediction and the following ones are contingent on the
hypothesis that the specific mechanism by which the Inflow line becomes steeper
than the Outflow curve at P = 1 in Fig. 13.2, for COPD-prone smokers, is a shift
in alveolar macrophage phenotypes toward ones that produce more MMP-12-
per-macrophage.)

• Reversibility: Smokers who quit before the MMP-12 per macrophage becomes
too large (or, more generally, before the Inflow line becomes steeper than the
Outflow curve at P= 1 in Fig. 13.2) will experience largely reversible symptoms,
with P and other model variables returning to approximately their initial levels.

• Species differences: Mice and other experimental animals (e.g., rats, guinea pigs)
that develop reversible inflammation and emphysema-like symptoms only in
response to continuing CS exposure have Inflow lines that never become steeper
than the Outflow curve, i.e., MMP-12 per macrophage never becomes large
enough to trigger irreversible COPD. If a genetically engineered strain were



316 13 Simplifying Complex Dynamic Networks

developed with a higher MMP-12 per macrophage, irreversible COPD could be
induced in these species.

• Dose-response: If COPD occurs (and is irreversible) once the cumulative shift in
the distribution of alveolar macrophage phenotypes makes the Inflow line steeper
than the Outflow curve at P = 1 in Fig. 13.2, then a COPD-prone smoker will
develop COPD when cumulative smoke exposure passes a threshold.

If this proposed model is substantially correct, then, in the COPD equilibrium,
elevated levels of MMP-12 (P) are predicted to persist even after smoking ceases,
although at lower levels than during continued smoking. (The COPD equilibrium is
shifted even further right during continued smoking if smoking shifts the NetInflow
curve upward. If the NetInflow curve then shifts back downward when smoking
ceases, then P levels decline from the levels reached during smoking to the new
stable equilibrium corresponding to the right x-intercept of the NetInflow curve.)
This prediction is consistent with the empirical data in Table 13.3. Other variables
that depend on P are predicted to follow similar time courses. These include alveolar
macrophages (M) and their products, such as IL-8, IL-18, caspases, and TNF-α;
neutrophils (N), neutrophil elastase (E), CD8+ T-cells (not shown in Fig. 13.1),
elastin fragments (F), apoptotic epithelial cells, and reparable damage to alveolar
walls and to the extracellular matrix (not shown in Fig. 13.1).

Summary and Conclusions

This chapter has shown how networks of interacting homeostatic equilibrium pro-
cesses, represented by systems of coupled ODEs, can be simplified to analyze equi-
librium responses to exogenous stresses. Applied to a simple model of protease-
antiprotease interactions and imbalance widely believed to be important in the
pathology of COPD (Fig. 13.1), these methods reduce a complex system of seven
ODEs with 18 unknown parameters (Table 13.2) to a simpler system described by
a single ODE [Equation (13.2)] whose equilibrium behavior is determined by a
quadratic equation with only two unknown parameters. One additional parameter
value then determines the corresponding equilibrium values of all six other model
variables (formulas in Table 13.2).

Even without estimating parameter values, analysis shows that the model pre-
dicts two possible qualitative behaviors for the network in Fig. 13.1, depending on
whether the NetInflow curve [described by Equation (13.2) and illustrated in Fig.
13.4] cuts the x-axis only once, from above (yielding a unique stable equilibrium, as
in Fig. 13.2), or twice, once from below and once from above (the situation shown in
Fig. 13.4). In the latter case, a transient upward shift in the NetInflow curve during
smoking will displace the initial equilibrium to a new, stable, COPD equilibrium
with elevated levels of several variables that remain elevated even after smoking
ceases. We propose this as a conceptual model for the protease-antiprotease imbal-
ance in human COPD etiology.
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Appendix A: Equilibrium in Networks of Homeostatic Processes

Representing Biological Knowledge by Networks of Flow Processes

Consider a network of flow processes, each represented by an ordinary differential
equation (ODE) of the form

d X/dt = rate of inflow to X at time t − rate of outflow from Xat time t.

X is interpreted as the level of some quantity in some biological compartment
(which we will also call X). Changes in the level of X are conceived of as resulting
from inflows to and/or outflows from this compartment. The levels of some quanti-
ties may affect the rates of change (via inflows and outflows) in the levels of other
quantities. Directing an information arrow (indicating a causal dependency relation,
i.e., that the quantity at the arrow’s tail affects the quantity at its head) from each
compartment to the flows that it affects creates a network of flow processes.

The logical structure of causal dependencies among processes in the network
can be depicted in a directed graph where nodes represent the levels of individual
flow processes (compartments) and arrows between nodes are information arrows.
It is traditional in systems biology diagrams to use two types of information arrows
to distinguish visually between upregulating (→) and downregulating (–|) influ-
ences; thus, Y → X signifies that an increase in Y causes an increase in X (all
else being held equal), while Y –|X indicates that an increase in Y blocks, inhibits,
or reduces the level of X. In our framework of dynamic processes, it is useful
to accomplish something similar by representing the level of each variable as a
node (e.g., a box) in the directed graph, attaching an inflow arrow and an outflow
arrow to each compartment (represented by a node), and then directing information
arrows specifically to the appropriate inflow and outflow arrows that they affect.
(See Fig. 13.5.) Such flow processes can easily be represented in the Systems Biol-
ogy Markup Language (SBML) or in continuous simulation modeling environments
such as STELLA R©/ITHINK R© or ACSL. We use ITHINK R© diagrams in this chapter
because ITHINK has a well-developed (and fairly well-known) graphical notation
for displaying compartments, flows, and information arrows.

To deal more specifically with biological systems consisting of networks of pro-
cesses that normally maintain themselves in homeostatic equilibrium, but that may
be perturbed by exposures, we specialize the preceding very general SBML frame-
work in the following ways:

1. Each compartment is assumed to have a normal equilibrium level. Without loss
of generality, we choose units so that this level is 1.

2. The inflow into a compartment consists of two components: a baseline inflow
that originates from sources exogenous to the system being modeled. and a com-
ponent that may depend on the levels of other state variables (i.e., other compart-
ment levels) within the system being modeled. We will call the latter component
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Fig. 13.5 ITHINK R©

diagram for the process
described by Equation (13.3).
Thick arrows denote flows,
thin arrows are information
arrows, boxes represent state
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that point into them via
information arrows

the “stimulated inflow” into the model (since it is inflow that may be stimulated
by the current levels of other processes/compartments).

3. Similarly, the total outflow from a compartment consists of two components: (1)
the product of the current compartment level times a baseline outflow rate and
(2) the product of the current compartment level times a stimulated outflow rate
that may depend on the current levels of other processes/compartments. Unlike
inflows, which typically originate from outside a compartment, outflows drain
the level of the compartment itself, and hence are limited by the current contents
of the compartment (i.e., zero level in the compartment implies a zero net out-
flow). Therefore, it is convenient to express outflows in terms of products of the
compartment level and outflow rates (which are measured in units of the fraction
of the compartment contents cleared per unit time by each of the two outflow
components, baseline and stimulated).

4. In normal homeostatic equilibrium, when all compartment levels equal 1, the
inflow into each compartment equals the outflow from that compartment.

These assumptions are made in order to model networks of processes that may
be coupled to each other (via dependencies of stimulated inflow or outflow rates
in some compartments on levels in other compartments) but that ordinarily main-
tain themselves in a stable, homeostatic equilibrium, signified by all compartments
being at their nominal levels of 100%. Thus, the outflow from one compartment
is not required to be shown as entering into one or more other compartments, nor
are flows assumed necessarily to be conserved within the modeled system. (Such
traditional compartmental modeling of conserved flows can be captured if desired,
by directing information arrows from the outflows of compartments to the inflows
of their downstream compartments, and performing the appropriate calculations to
allocate conserved flows.) Our networks are intended not primarily for such tradi-
tional compartmental modeling, but rather for modeling coupled homeostatic pro-
cesses in which levels and/or flows may be perturbed by exogenous exposures and
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may influence each other’s rates (typically by upregulating inflows or outflows, thus
upregulating or downregulating, respectively, resulting compartment contents).

Example: ODE and ITHINK R© Representations
of a Single Process

Equation (13.3) is a typical ODE description for a single process, compartment X,
with inflow and outflow rates dependent on the levels of two other compartments, Y
and Z, respectively.

d X/dt = b + aY − d X − eX Z = (b + aY )− (d + eZ )X. (13.3)

X denotes the level of the compartment (a state variable of the model), b is the base-
line inflow into compartment X (independent of the levels of other variables in the
model), Y is the level of an inflow-stimulating variable, Z is the level of an outflow-
stimulating variable, and a and e are coupling coefficients (interpreted as potency
factors for stimulating the production and removal of X, respectively) showing how
strongly the inflow and outflow rates for X are stimulated per unit of Y and per unit of
Z, respectively. Of course, other functions could be used to relate the levels of other
variables to the inflow and outflow rates of X, and any of the nonnegative coefficients
a, b, d, and e could be zero for some processes. However, with the scale for each
variable selected to satisfy the constraint that normal (unperturbed) equilibrium is
defined as X= Y= Z= 1, the coefficients must satisfy b+ a= d+ e, so that inflow
and outflow are balanced at equilibrium. Figure 13.5 shows an ITHINK R© diagram
representing the process for X in Equation (13.3).

Note that if Y is exogenously increased to a new value Y∗ > 1, then X adjusts
to a new, increased level at which the inflow and outflow are again balanced. The
condition for equilibrium is that X no longer changes:

d X/dt = b + aY − d X − eX Z = 0, or b + aY ∗ = (d + eZ )X∗,

implying that the new equilibrium value of X is

X∗ = (b + aY ∗)/(d + eZ ). (13.4)

If Z remains fixed at its equilibrium value of 1, then the new equilibrium value
of X after the process adjusts to the new value Y∗ will be greater than 1. It is easy
to see from (13.3) that X will increase if it is below X∗ (since inflow then exceeds
outflow) and will decrease if it is above X∗ (since outflow then exceeds inflow), so
the value of X∗ given by Equation (13.4) is a unique, globally stable equilibrium. In
particular, changes in the level of X caused by temporary exogenous changes in the
levels of Y or Z will be reversed after Y and Z are returned to their original values of
1. Likewise, a one-time exogenous change in the level of X itself (e.g., an injection
or withdrawal that increases or decreases the value of X to a new level different from
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1) will not sustain itself: Without continued intervention, the system will return to
its unique stable equilibrium at X = Y = Z =1 from any starting values of these
variables. This captures the idea that X is a homeostatic process. We will investigate
how networks of such processes, interacting through coupling coefficients (such as
a and e in this example), behave in response to exogenous stresses.

Reducing Chains of Coupled Processes to Simpler Equivalents

Suppose that several processes are linked together to form a mechanistic pathway,
with changes in the level of each compartment driving changes in the level of the
next. Figure 13.6 presents a simple example, which can be depicted more tersely as
P→ F→M→ N. Here, each process is coupled to its successor by an information
arrow that shows that the level of one affects the inflow to the next. For brevity,
the baseline and stimulated components of the inflow and outflow are not shown
separately for each process, but should be understood as being present implic-
itly, in the formulas determining the sizes of the inflows and outflows. Explicitly,
the following set of equations corresponds to Fig. 13.6 (treating P as exogenously
specified):

d F/dt = bF + aF P P − dF F,

d M/dt = bM + aM F F − dM M,

d N/dt = bN + aN M M − dN N .

Here, bj is the baseline “birth” flow of new material into compartment j in the
absence of stimulation from other compartments, dj is the baseline fractional
“death” rate out of compartment j (per unit in compartment j per unit time; thus,
the outflow from j is djXj if there is no stimulated outflow), and ajk is the stimulated
production rate of material into compartment j per unit of material in compartment k
(if k stimulates production of j, shown by an information arrow from j to the inflow
of k).

Superficially, it appears that there are nine parameters (three for each equation)
that might have to be estimated from the data. But the constraint that all rates of

M

M inflow

M outflow

F

F inflow

F outflow

N

N inflow

N outflow

P

P inflow

P outflow

Fig. 13.6 Example of a chain of coupled processes
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change are zero when all compartment levels are 1 reduces the degrees of freedom
considerably, yielding the following normalized system with six parameters:

d F/dt = bF + aF P P − (bF + aF P )F,

d M/dt = bM + aM F F − (bM + aM F )M,

d N/dt = bN + aN M M − (bN + aM N )N .

Suppose that our goal is to predict the new equilibrium levels in all compartments
following an exogenous change in P from its initial equilibrium value of 1 to a new
value, P∗. After adjustment, the new equilibrium values (indicated by asterisks) must
again cause all time derivatives for state variables to vanish:

P = P∗,
d F/dt = 0→ bF + aF P P = (bF + aF P )F → F∗ = wF + (1− wF )P∗,

where wF = bF/(bF + aF P ),

d M/dt = 0→ bM + aM F F = (bM + aM F )M → M∗ = wM + (1− wM )P∗,
where wM = bM/(bM + aM F ),

d N/dt = 0→ bN + aN M M = (bN + aM N )N → N ∗ = wN + (1− wN )P∗,
where wN = bN /(bN + aN M ).

(We assume that each compartment in the chain has a nonzero inflow and a nonzero
outflow rate, so that all wj are finite.) Thus, a single reduced parameter, wj, suffices
to predict the new equilibrium level in compartment j from the new equilibrium level
in its predecessor. The number of parameters to be estimated is now one less than the
number of compartments (three parameters, for the example in Fig. 13.6), assuming
that the new value of the first compartment is exogenously specified. Clearly, this
holds for any number of compartments in a chain constructed as in Fig. 13.6.

More generally, to predict the new equilibrium level in a specific compartment
(e.g., the last one in a chain of any length) when the level in the first compartment
is exogenously set to a new value (e.g., to predict N∗ for any P∗), only one reduced
parameter is needed. If the compartments are numbered from 0 for the first to n for
the last, with the flow in compartment j being governed by the ODE in Equation
(13.5),

d X j/dt = b j + a j, j−1 X j−1 − d j X j , (13.5)

then the general relation between equilibrium levels in consecutive compartments is

X ∗j = w j X ∗
j−1 + (1− w j ), where w j = b j/(b j + a j, j−1). (13.6a)

This can be rearranged as

X ∗j − 1 = w j (X ∗
j−1 − 1). (13.6b)
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This difference equation, with initial condition X0 specified, has the obvious solu-
tion (as can be verified by repeated substitution)

X ∗j = w jw j−1 . . . w1(X ∗0 − 1)+ 1. (13.7)

For the example in Fig. 13.6, N∗ = wNwMwF(P∗– 1) + 1. Thus, a single reduced
parameter, wjwj–1. . .w1, which may be interpreted as the ratio of (Xj

∗ – 1) to (X0
∗

– 1) for any value of X0
∗ �= 1, suffices to predict the new equilibrium values of

compartment j for any other value of X0
∗. This ratio can be estimated by simple

linear regression of (Xj
∗ – 1) vs. (X0

∗ – 1) (with zero intercept) if several measured
pairs of values of X0

∗ and corresponding values of Xj
∗ are available; the values of

the individual wj (or of the structural parameters bj, aj,j–1, and dj) need not be known.
If each compartment in a chain regulates its successor’s outflow, rather than its

inflow, via the ODE

d X j/dt = b j − d j X j − e j, j−1 X j X j−1 = b j − (d j + e j, j−1 X j−1)X j , (13.8)

then the normalization that dXj/dt = 0 when Xj = Xj–1 = 1 implies that bj = dj +
ej,j–1. If Xj–1 is changed to a new value Xj–1

∗ �=1, then Xj will adjust until equilibrium
is restored, with

d X j/dt = b j − (d j + e j, j−1 X ∗
j−1 )X ∗j = 0.

Solving for the new equilibrium level in compartment j yields

X ∗j = b j/(d j+e j, j−1 X ∗
j−1 ) = 1/[w j X ∗

j−1 + (1−w j )] = 1/[w j (X ∗
j−1 −1)+1],

(13.9)
where wj = ej,j–1/bj = ej,j–1/(dj + ej,j–1). Again, a single reduced parameter, wj, deter-
mines the new equilibrium level in each compartment from that in its predecessor.
It can be estimated by nonlinear regression from (Xj–1

∗, Xj
∗) pairs, if they are avail-

able. It is not necessary to estimate structural parameters, bj, dj , and ej,j–1, for each
compartment to predict how its contents will change in response to changes in the
equilibrium level of its predecessor.

Figure 13.5 and Equation (13.4) describe a compartment X with inflow stimulated
by one predecessor, Y, and outflow stimulated by another predecessor, Z. Several
special cases are of interest in real networks. If the baseline (unstimulated) inflow
and outflow are both zero (so that dX/dt = aY – eXZ), then Equation (13.4) and the
requirement that X= Y= Z= 1 in normal equilibrium imply the simple equilibrium
relation

X∗ = Y ∗/Z∗. (13.10)

If there is only stimulated input but not stimulated outflow (so that dX/dt = aY
– dX), then Equation (13.4) and the requirement that dX/dt = 0 when Y = X = 1
imply that



Appendix A: Equilibrium in Networks of Homeostatic Processes 323

X∗ = Y ∗. (13.11)

If there is only stimulated output but not stimulated input (so that dX/dt = b –
eXZ), then the equilibrium (b = eXZ) and normalization (b = e) conditions imply
that

X∗ = 1/Z∗. (13.12)

Equations (13.7) and (13.9)-(13.12) provide formulas for propagating new equi-
librium levels along causal chains and through simple junctions where levels of
predecessors regulate the inflow and/or outflow of a process. Since these equations
are local [each determines the equilibrium level for a compartment from the equilib-
rium level(s) of its immediate predecessor(s)], they can easily be extended to more
complex network topologies in which process nodes can have multiple (>2) prede-
cessors and/or successors. For example, a process with stimulated inflows depending
on the levels of m ≥ 2 parents via the ODE

d X j/dt = b j + a1Y1 + a2Y2 + . . .+ amY1 − d j X j

can be analyzed in exactly the same way as Equation (13.5), with aj,j–1Xj–1 replaced
by a1Y1 + a2Y2 + . . . + amY1.



Chapter 14
Value of Information (VOI) in Risk Management
Policies for Tracking and Testing Imported
Cattle for BSE

Previous chapters have discussed and illustrated several methods for building
quantitative risk assessment (QRA) models for complex and uncertain systems,
including systems with dramatically nonlinear responses (such as the COPD risk
model in Chapter 13, where sufficient exposure switches the entire system of inter-
acting feedback-control processes from normal to diseased behavior). Techniques
that have proved useful for QRA modeling of complex, uncertain, and potentially
nonlinear systems include the following:

• Information-theory and data-mining algorithms (Chapters 6 and 7) for identi-
fying potential causal relations (including nonlinear and multivariate ones with
high-order interactions) in large multivariate data sets.

• Upper-bounding methods (Chapters 8, 9, 12) for using available information
about causal pathways, even if very incomplete (e.g., biomarker data for complex
diseases), to estimate upper bounds for the preventable fractions of disease. Anal-
ogous methods can be used to quantify upper bounds on the preventable fractions
of failures in complex reliability and engineering systems, fraudulent transac-
tions in financial systems, defective parts in manufacturing systems, accidents in
traffic networks, crimes in social systems, missed opportunities for mutual gains
in economic systems, and so forth.

• Identification of a discrete set of possible risks (Chapters 10 and 11) that are
implied by different assumption sets and/or that are consistent with available
knowledge and data about uncertain causal mechanisms.

• Systems dynamics analysis and simulation (Chapters 11, 12, 13), together with
probability bounds (such as Markov’s inequality) that relate the deterministic
analysis of mean values to bounds on the probable values of stochastic processes.

• Comparative statics analysis and reduction of complex models (Chapter 13) to
simpler ones that make the same predictions of equilibrium behaviors in response
to changes in inputs.

This chapter and Chapters 15 and 16 illustrate the following additional tech-
niques for QRA modeling in systems where uncertainty arises from the actions of
one or more intelligent decision makers.

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 14, C© Springer Science+Business Media, LLC 2009
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• Decision tree, sequential decision optimization, and value of information analy-
sis (this chapter).

• Game theory and hierarchical optimization modeling (Chapters 15 and 16)
of the behaviors of intelligent attackers and intelligent defenders of a facil-
ity or infrastructure target. These models also support optimization of the
allocation of defensive resources, taking into account the attacker’s best
response.

• Mathematical optimization and phase-transition modeling (Chapter 16) for pre-
dicting the resilience of complex systems (e.g., telecommunications networks)
to deliberate attacks and for designing systems to make them resilient to
attack.

The main practical purpose of QRA modeling is to support better risk man-
agement decisions by predicting the probable consequences of different actions or
interventions. This chapter and the following two discuss how to use QRA models
to improve risk management for systems in which uncertainty about consequences
results largely from uncertainty about how other decision makers will respond to
possible future events. This chapter studies the economic risk to the United States
from mad cow disease (bovine spongiform encephalitis, BSE) caused by cattle
imported from Canada. It considers two main risk management scenarios: with
and without a system in place to track the origin of cattle discovered to have BSE.
Chapters 15 and 16 discuss protecting specific targets and telecommunications net-
works, respectively, against deliberate attacks by terrorists.

An important lesson from these chapters is that risk models can guide and
improve current risk management decisions even if information about their inputs
is highly uncertain. The relevant question for risk managers is usually not, “Do we
have adequate models and input information on which to base current decisions?”
but rather, “Can the information and models that we have now be used to improve
the expected utility of current decisions?” If the answer to this latter question is
yes, then current information, however imperfect, has positive value of information
(VOI), even if there is considerable room for improvement. For example, even if
future information is expected to be much more complete and accurate than cur-
rent information, it is still possible and important to decide what (if anything) to
do now, given whatever is known now, assuming that future actions will be opti-
mized with respect to what will be known then. Some critics mistakenly believe
that QRA requires unrealistically complete information, or high confidence and cer-
tainty about cause and effect, before it can be used to guide and improve decisions.
This misperception has provided one motivation for the development and use of
potentially inferior decision processes (defined as ones that make less desired con-
sequences more likely), such as the concern-driven alternatives to QRA discussed
in Chapter 1, or the scoring and ranking methods in Chapters 4 and 5. This chapter
illustrates how to optimize current decisions in the presence of large uncertainties
about possible futures.



Testing Canadian Cattle for Bovine Spongiform Encephalitis (BSE) 327

Testing Canadian Cattle for Bovine Spongiform
Encephalitis (BSE)

From October 1996 to March 31, 2004, Canada tested the brains of 2,769 targeted
cattle for BSE, finding it in one cow, in May 2003. (The cow had been condemned
at slaughter and did not enter the human food chain.) Canadian cattle targeted for
testing in 1996–2004 included animals with neurological signs or emaciation that
were submitted through provincial slaughter facilities and by field veterinarians, as
well as samples from cattle submitted to provincial diagnostic laboratories for post-
mortem examination. If, based on European experience, targeted animals had been
estimated to be not more than about 60 times more likely to have BSE than nontar-
geted animals as a base case (e.g., Doherr et al., 2001), then a base case prevalence
rate of BSE among nontargeted Canadian cattle of about (1/2,768)∗(1/60) = 6.0E-6
could have been estimated in March 2004. [The United States Department of Agri-
culture in its September 18, 2007, rule allowing older (over 30 months old), higher-
risk cattle to be imported from Canada into the United States used a Canada-specific
estimate of 2.4–6.8 BSE cases per million adult cattle, with an expected value of
3.9E-6 ( http://edocket.access.gpo.gov/2007/07-4595.htm).] Chebyshev’s inequality
(see Chapter 2, Table 2.1) for a binomial model (or a mixture-of-binomials model,
which has a smaller variance for the same mean) then implies that it is statistically
almost certain that some BSE-positive cattle will be imported into the United States
among the first few million Canadian cattle imported, if BSE is prevalent at rates on
the order of several per million.

Since 2004, close to 200,000 additional Canadian cattle have been tested. Because
BSE cases continue to be found regularly as of this writing (2008), it is a statistical
near-certainty that further testing will discover further Canadian BSE cases, as the
prevalence rate does not yet appear to be declining. Therefore, rather than attempt-
ing to pursue a moving target, we will analyze BSE risk management policies based
primarily on data available as of 2004. Subsequent data confirming the continued
prevalence of BSE in Canada strengthen the conclusions based on the earlier data.

In December 2003, a second dairy cow from Alberta, imported into the United
States to the state of Washington, was also diagnosed with BSE. (As of 2008, this
is the only case ever discovered in the United States of infectious BSE of the type
found in the United Kingdom and subsequently found in Canada following imports
from the United Kingdom.) Following a prompt, thorough investigation by the
U.S. Department of Agriculture (USDA) and the Canadian Food Inspection Agency
(CFIA), the USDA’s APHIS Veterinary Services (VS) issued an “Explanatory Note”
in February 2004, concluding that its previous risk analysis of the risks from Cana-
dian cattle and beef products imported into the United States remained unchanged
by the new case, and that the risks remained low. As stated in the note:

Both of the BSE cases of Canadian origin occurred in cattle born before the feed ban was
implemented. They were both older than 30 months of age when they were diagnosed as
infected. Infection presumably occurred prior to or around the time the Canadian feed ban
was enacted. The finding of an imported case in a cow greater than 30 months of age has
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little relevance to an analysis of risk under the proposed mitigation measures, beyond the
implications for BSE prevalence in Canada. The proposed rule was not in effect in 2001
when the imported case, which was more than 4 years old at the time, entered the United
States. Under the proposed conditions, the animal would not have been allowed entry into
the United States. [Note: The USDA’s (2007) rule does allow over-30-month-old cattle to
be imported from Canada into the United States.] Therefore, we continue to consider the
import controls in the proposed rule to be effective and the results of the analysis unchanged.
(USDA, 2004)

From a statistical perspective, the detection of two BSE cases from Alberta in less
than eight months in 2003, and two more in less than a month at the end of 2004 and
the beginning of 2005 (among fewer than 1,300 animals tested in Alberta over that
interval), raises the question of what the true prevalence of BSE in Canadian cattle
may be at present. The statistical inference problem is complicated by the fact that
the cow in Washington state was not detected as part of Canada’s routine sampling
program, and the probability that such cattle will be detected once they have been
imported into the United States is not known. From a risk management perspec-
tive, the key question is what actions, if any, the United States should take now in
light of the uncertainty about the true prevalence rate of BSE among Canadian cat-
tle now and in the future. This decision problem is made more challenging by high
economic stakes and by scientific uncertainties regarding BSE sources, reservoirs,
and dynamics. As noted by the USDA’s Animal and Plant Health Inspection Ser-
vice in a February 2004 position statement entitled “Official diagnosis of Chronic
Wasting Disease (CWD) should be performed exclusively by Federal and State reg-
ulatory agency laboratories,” even false positives might be economically damaging:
“In the case of a disease like BSE, a false positive could be devastating, costing the
U.S. economy billions of dollars in unnecessary domestic and international market
disruption from which it could take years to recover.” Subsequent reporting by the
USDA of unconfirmed BSE cases that turned out to be false positives, starting in
July 2004, suggests that such market impacts can occur quickly.

The QRA of BSE risks is fraught with many scientific uncertainties and com-
plexities, including the following:

• Uncertain roles of horizontal and vertical transmission (if any) within herds,
• Unknown existing and potential BSE reservoirs in Canada and the United States,
• Transmission dynamics within and between different reservoirs,
• Differences in susceptibility among individual cattle of the same age,
• The shape of the age-vs.-infectivity curve for cattle,
• The distribution of infectivity and differences in virulence among new BSE

cases,
• The latency period until clinical expression; the possibility of subclinical cases

(Thackray et al., 2003; Hill and Collinge, 2003); definition of clinical BSE
expression,

• The potential for clustering of rare events within geographic areas, processing
plants, affected populations, etc.

• Error rates and compliance failure rates (such as mislabeling, etc.) in Canada and
the United States,
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• Possible heterogeneity of the basic reproductive rate for BSE in different geo-
graphic areas or for different strains of BSE, different types of cattle, etc.,

• Detection probabilities per case, given the target and sampling schemes used,
• Uncertainty of inferred cattle age measurements (e.g., from dentition, etc.),
• Variability and accuracy in testing methods for BSE detection.

With so many unknowns, predictive modeling can be highly uncertain. Real-
world data on observed cases of BSE can therefore potentially be especially valu-
able for improving estimates of the true BSE prevalence. However, the two BSE
cases from Alberta detected in 2003 support alternative interpretations, ranging from
(a) the first beginnings of a wave of BSE cases to (b) the last remnants of a problem
from the 1980s and 1990s that has already been fixed and that, by chance, escaped
detection until 2003 and (c) possibly scenarios in between. (The data available as of
2004 did not reveal a unique correct interpretation, although confirmation of over a
dozen BSE cases by 2008 would subsequently make clear that Canada’s BSE prob-
lem was starting, not ending, in 2003.)

This creates a dilemma for both health and economic risk management. On the
one hand, experience since 2003 has shown that discovery of imported BSE cases in
the United States can dramatically reduce U.S. beef exports, even if the infected ani-
mals originated in Canada. If the true prevalence of BSE in Canadian cattle shipped
to the United States were known to be as high as several per million, then preven-
tion of cattle imports from Canada would be necessary to prevent BSE from being
imported into the United States. On the other hand, if the prevalence of BSE in
Canadian cattle were driven down by one or more orders of magnitude, to zero or
to U.S. levels, then the advantages of resumed trade could be gained by allowing
unrestricted imports, without incurring a substantial risk of additional BSE cases.

Given the high economic stakes and the uncertainties about the prevalence of
BSE in Canadian cattle (and, for that matter, U.S. cattle), it has been difficult to
determine what policies would best promote U.S. and international interests – what
policies would be optimal, based on a solid analytic foundation. Options range from
tightening or loosening current import policies to gathering more information first –
for example, by tracking all imported cattle and testing all Canadian cattle in the
United States – and then using this information and the results of future sampling to
decide when, whether, and how to change import restrictions. To discover which of
these (or other) options is most desirable, it is necessary to compare their conditional
probability distributions of gains and losses.

This chapter illustrates the application of constructive decision-analytic tech-
niques, including value of information (VOI) calculations (Yokota and Thompson,
2004), to quantify and compare the potential economic values of different risk man-
agement and information-seeking options available to the United States for manag-
ing the uncertain risks of BSE originating in Canada. The analysis focuses mainly
on a near-term decision – whether to require Canadian cattle in the United States to
be identified, permanently marked, and tracked to provide information about their
origins in case future BSE cases are found – and on the economic consequences
of different potential futures whose probabilities can be affected by these near-term
decisions. This focus reflects the facts that economic consequences will probably
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dominate near-term policy decisions, are easier to estimate from available informa-
tion than possible human health risks, and provide an analytic framework that can
be extended to include health risk considerations if desired. By explicitly represent-
ing key uncertainties and assessing the probable consequences of alternative current
decisions under several scenarios, the decision-analytic framework presented here
may prove useful to policy analysts and decision makers in considering how best
to assess and manage the highly uncertain risks of BSE in the United States from
imported cattle.

Methods and Data

Decision-analytic risk management proceeds through the following steps:

1. Identify a set of alternative decision rules or options to be compared. A decision
rule specifies the actions to be taken at each time, given the information avail-
able at that time. It may be thought of as a plan that specifies what to do under
different contingencies.

2. Identify the consequences of concern, which the actions may affect.
3. Identify the probabilities of different consequences, for each decision rule. This

typically requires considering different scenarios or assumption sets describing
alternative ways in which current uncertainties might be resolved. These are
also called states of nature. Often, there is no objective, uniquely correct way
to determine the prior probabilities of alternative scenarios. Then conservative
assumptions (tending to favor the status quo) and sensitivity analyses (in which
various prior probabilities of scenarios are assumed) may be used to determine
how robust the conclusions and decision recommendations from the analysis are
to variations in scenario probabilities.

4. Identify the optimal decision rule, defined as the one with the most desir-
able probability distribution of consequences, given the current information and
assuming that future actions will be made optimally given future information.

5. Identify and recommend an optimal current action, determined by the optimal
decision rule.

This framework is explained in detail in Raiffa (1968) and Clemen (1996).

Formulation of the Risk Management Decision Problem
as a Decision Tree

The decision rules compared in this chapter are structured as follows (see Fig. 14.1).
First, an initial (“Stage 1”) decision must be made either to track Canadian cattle in
the United States (“Track CA imports”) or not to track them (“Do not track CA
imports”). The main purpose of the decision analysis is to compare the probable
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Fig. 14.1 Decision tree for BSE tracking and testing policy
Notation for decision problem components
• D1 = Stage 1 choice set = {Track Imports, Do Not Track Imports}
• {Y1 | d1} = information sets of possible outcomes based upon the Stage 1 decision d1 ε D1
• {D2 | d1} = Stage 2 choice set, given the Stage 1 decision d1 ε D1
• {Y2 | d1,d2} = information sets of possible outcomes after decisions d1 ε D1 and d2 ε

{D2 | d1}

consequences to the United States of these two alternative initial actions. Following
this Stage 1 decision, additional information will be obtained from ongoing sam-
pling programs in the United States and Canada that perform tests for BSE on both
symptomatic (e.g., “downer” cattle) and randomly selected healthy-appearing cattle
at slaughter. If the Stage 1 decision was “Track CA imports,” then any of the fol-
lowing informative events may be observed over a specified following time period
(e.g., one year):

• No new BSE cases detected,
• BSE case of Canadian origin detected in the United States,
• BSE case of U.S. origin detected in the United States,
• BSE case of Canadian origin detected in Canada.

(If several of the last three events occur in a year, we focus on the first to occur as
the event of interest.) The probabilities of these events depend on both the unknown
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true prevalence rates of BSE in the United States and Canadian herds (i.e., on which
scenario or state of nature is correct) and also on the sampling plans and tests used
to examine the herds. If the Stage 1 decision is “Don’t track CA imports,” then the
four possible observations for the next period are aggregated to only the following
three:

• No new BSE cases detected,
• New BSE case detected in Canada,
• New BSE case detected in the United States.

In reality, as in the case of the Washington state cow, forensic efforts might suc-
cessfully identify the origin of a BSE case even without new tracking measures. The
effect of a Stage 1 decision to track imports is then to increase the probability that the
origin of a new case can be determined. The formal analysis treats the Track vs. Do
not track decisions as providing vs. failing to provide, respectively, the information
needed to identify the origin (Canadian or not) of any new BSE case, while recog-
nizing that partial tracking via ear tags, brands, and tattoos may already be available.
(Indeed, the tracking issue is confined to Canadian cattle because Mexican cattle in
the United States are already well identified.)

After the Stage 1 decision, and given updated information about any new BSE
cases, a subsequent (“Stage 2”) decision must be made about whether to sell and
process healthy-appearing cattle without first requiring them to be tested for BSE
(“No required test”) vs. requiring all U.S. cattle to be tested for BSE before being
sold or processed (“Test all”) vs. requiring only all Canadian cattle in the United
States to be tested for BSE before being sold or processed (“Require testing for CA
cattle only”). The last option is available only if the Stage 1 decision was “Track CA
imports.” In addition to any required testing, some cattle will continue to be sampled
and tested according to a USDA test program, and this is not affected by the Stage 1
and Stage 2 decisions. The Stage 2 decision presumably will be made to obtain the
most desirable outcome possible, given the information available then. For exam-
ple, if a new BSE case is detected in the United States and its origin cannot be
ascertained, then the Stage 2 decision might be “Test all” U.S. cattle at slaughter, to
reduce export and domestic consumption losses (if the economic benefits outweigh
the costs of testing), whereas if the origin of the case is known to be Canadian and
the Stage 1 decision was to “Track CA imports,” then the best Stage 2 decision
might be “Require testing for CA cattle only.”

After Stage 1 and Stage 2 decisions have been made and the future information
has been obtained, it becomes possible to evaluate how much beef consumption, if
any, has been lost in export and domestic markets due to BSE cases and risk man-
agement responses, and how much the Stage 1 and Stage 2 decisions cost to imple-
ment. A goal for rational risk management decision making today is to anticipate
how current decisions change probable future total costs (i.e., the sum of implemen-
tation costs and costs from lost domestic and export sales), as they will eventually be
assessed in hindsight. Each Stage 1 decision, in conjunction with optimized Stage
2 decisions given future information, determines a probability distribution for total
cost. Rational risk management requires making the choice today that induces the
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most desirable probability distribution for total costs, as they eventually will be eval-
uated in the future.

Figure 14.1 presents a decision tree model summarizing the logical structure of
the decision problem. In this tree, a decision rule specifies which outgoing branch
to follow at each decision node (represented by a rectangular node in Fig. 14.1).
“Repeat test” refers to the action of doing nothing other than to continue the routine
BSE sampling and testing programs. The notation for Stage 1 and Stage 2 decisions
(“choice sets”) and observed outcome events (“information sets”) listed at the bot-
tom of Fig. 14.1 allows the same framework to be expanded to include additional
decisions, scenarios, and information events if so desired to increase the resolu-
tion of the problem description. However, the relatively simple, aggregate descrip-
tions of possible decisions and futures in Fig. 14.1 suffice to carry out the decision
analysis calculations; analogous calculations can be performed for more detailed
descriptions.

Estimated Economic Consequences of Detecting Additional
BSE Cases

To finish describing the decision problem, it is necessary to estimate the economic
costs associated with each terminal node (i.e., “leaf” node) at the tips of Fig. 14.1.
Only the direct costs of implementing the different Stage 1 decisions and of reduced
beef sales in case of detection of new BSE cases will be considered, as a first approx-
imation to the full societal costs. (A refined analysis could estimate economic multi-
plier effects and reductions in consumer surplus from reduced domestic sales, which
would increase their impacts further. However, sensitivity analysis suggests that the
main conclusions, which are dominated by loss-of-export-related impacts, would
not be changed by these refinements.) The decision model incorporates the follow-
ing three types of cost: tracking costs, testing costs, and market costs. Tracking costs
represent the cost of permanently marking each live cow coming into the United
States, including labor and materials. Testing costs represent the costs per BSE test,
including kits, labor, shipping, holding, laboratory facilities, and expenses. Market
costs represent market losses (or gains) associated with each second-stage outcome
as a function of all that occurred up to that point. Baseline values for each of these
costs are estimated next. These are then varied to obtain sensitivity analyses.

Market Impacts

The main economic impacts on the United States of discovering a new BSE case are
assumed to be as follows for the baseline scenario.

• If a new BSE case of unknown origin is discovered in the United States, then
both domestic demand and remaining exports of U.S. beef will immediately
decline. Following the discovery of the BSE-positive cow in Washington state
in 2003, U.S. exports declined by approximately 50%. For the baseline scenario,
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we assume that the discovery of a new BSE case of unknown origin in the United
States will result in a further loss of $12.27 billion per year in cattle sales, corre-
sponding to a 25% assumed reduction in consumer demand. The situation where
full testing identifies a BSE case of known U.S. origin in the United States pro-
vides a similar loss.

• If a new BSE case is found in the United States that is not specifically known to
be of Canadian origin, but subsequent full testing does not find a similar case, a
smaller loss of $6.14 billion per year will occur.

• If a new BSE case is discovered in Canada, then U.S. exports may increase to
replace decreased Canadian exports. The magnitude of this effect is estimated as
a gain of $1.382 billion per year in the base case.

• If a new BSE case known to be of Canadian origin is discovered in the United
States, and if Canadian cattle are then removed from U.S. exports and from the
food supply, the net impact on the United States is a loss of $2.683 billion per
year in the base case, primarily from additional lost exports. (The U.S. domestic
markets responded only relatively slightly to the Canadian BSE cases discovered
in 2003, suggesting that the main economic impacts come from the closing of
export markets to U.S. beef.)

Table 14.1 summarizes the baseline economic impacts for each of the possi-
ble futures (i.e., branches through the decision tree to a leaf node) in Fig. 14.1.
The appendix provides the supporting rationale and data for the estimated market
impacts.

Tracking Costs

Table 14.1 also shows the estimated costs of tracking and testing cattle that are
included in the model. Annual cattle-tracking costs are calculated by multiplying an
estimated unit cost per animal by the number of live cattle imported annually into the
United States from Canada. In 2002, prior to any BSE detections, this was 1,538,715
cattle (http://cattle.guelph.on.ca/statistics/livetrade-withus.html). The annual cost of
tracking any newly imported cattle is estimated as $10 to cover tags, labor, and com-
pliance checks. The baseline total annual tracking costs for such cattle, assuming a
return to 2002 levels of imports, are thus 1,538,715 × $10 = $15,538,715. (Part
of this cost may initially be borne by Canadian producers, but it is included in the
model as the cost results directly from a Track Imports policy and may ultimately
be passed on to U.S. consumers.) The costs of locating and then tracking Canadian
cattle already in the United States are more difficult to estimate; they are addressed
in the Sensitivity Analysis and Discussion sections.

Testing Costs

The Stage 1 testing costs in the United States are obtained by multiplying a unit test
cost per animal by the size of the assumed Stage 1 sample size. In FY2004, the USDA
tested 20,543 cattle (http://www.usda.gov/Newsroom/0105.04.html). In the wake of
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the December 2003 finding of a BSE-positive cow, the annual number of cattle sam-
pled will probably be at least doubled, to around 40,000, in addition to one-time, much
larger sampling efforts (http:// usda.mannlib.cornell.edu/reports/nassr/livestock/
pct-bb/catl0104.pdf). The per-animal test unit cost is estimated as $30
(http://www.meatnews.com/index.cfm?fuseaction=article&artNum=7345). The
Stage 1 annual testing costs in the United States are therefore estimated as $30 ×
40,000= $1,200,000.

Approximately 36.6 million cattle were slaughtered in the United States in 2003
(USDA, 2004). If each animal is tested at slaughter for a unit cost of $30, then the
baseline total annual U.S. testing cost in Stage 2 for “Test All” is approximately $30
per animal × 36.6 M animals per year = $1.098 billion per year. The correspond-
ing cost for the “Test Canadian-origin cattle only” is estimated by assuming that
the Canadian-origin portion of the U.S. herd is approximately in steady state, that
is, the number of Canadian origin cattle slaughtered annually is equal to the num-
ber imported. Thus, testing costs are 1,538,715 animals per year × $30 per animal
tested = $45,161,450 per year. Canadian testing costs are not included in our U.S.
policy model, but the numbers of animals tested are included since they affect the
probability of detecting new BSE cases.

Scenario Probabilities

The probable consequences of current decisions, specifically, whether to Track
Canadian cattle imports, depend on whether and where BSE is detected next. The
probabilities of the different economic consequences in Table 14.1, i.e., of differ-
ent rows, given the choices of Stage 1 and Stage 2 decisions, are modeled via the
variables and formulas in Table 14.2.

These formulas are based on a simple, approximate binomial model, in which
only the average probability of detecting BSE per animal tested is used (for each of
Canada and the United States separately) and details of interanimal variability are
ignored. (In practice, the outcome probabilities in the table are renormalized to sum
to 1, since ignoring the possibility of multiple BSE discoveries in the same year may
lead to slight departures from 1.)

The probabilities pUSUS, pUSCA, and pCA are estimates of the probabilities of find-
ing one or more BSE positive cattle among each batch of 1,000 tested. (Probability
per 1,000 is more convenient than probability per animal, given the small proba-
bilities involved, but either could be used.) Uncertainty about the correct values of
these probabilities is modeled by using five possible scenarios or “states of nature,”
shown in Table 14.3. Columns 2–4 show the values of pUSUS, pUSCA, and pCA for
each of the five scenarios.

The values in Table 14.3 for each scenario are averages for the entire U.S. and
Canadian herds. The rationale for these values is as follows. Past testing suggests
that the BSE rate in cattle of U.S. origin is likely very low or zero, since no con-
firmed cases have been discovered to date. The BSE rate in cattle of Canadian
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Table 14.3 Scenario definitions and BSE detection rates (per 1,000 animals tested)

States of nature PUSUS PUSCA PCA Prior estimate

1 0 0 0 0.2
2 0 1.00E-04 1.00E-04 0.2
3 0 1.00E-06 1.00E-06 0.2
4 1.00E-06 1.00E-04 1.00E-04 0.2
5 1.00E-06 1.00E-06 1.00E-06 0.2

origin may be zero (if there are no new cases to be discovered), very low, or rel-
atively high, with zero being perhaps somewhat less likely than the others, given
the two BSE cases detected in 2003. The value corresponding to “relatively high”
(1E-4 per 1,000) is consistent with the rate provided by the World Organization
for Animal Health (http://www.oie.int/eng/info/en esb.htm), which shows a 2003
incidence rate for Canada of 0.33 per million. The “very low” rate (1E-6 per 1,000
animals) is a plausible high-end estimate for the United States that considers the
large number of cattle slaughtered annually (∼36.6 M) without any cases detected
thus far. We combined these considerations into the five scenarios shown. (Each
scenario may also be viewed as the centroid of a cluster representing all possible
scenarios that are closer to it than to any of the other four, in which case the dis-
cretization of all possible scenarios into only these five represents the relatively low
degree of resolution permitted by the current data.)

The selection of scenario prior probabilities is potentially controversial. We adopt
the following bounding approach to avoid needless controversy. If the main conclu-
sion from the analysis is that the status quo is justified (i.e., tracking of Canadian
cattle imports is not recommended because the incremental costs exceed the value
of the information provided), then little justification may be needed. By contrast, if
the analysis shows that a change from the status quo to “Track Canadian imports”
is recommended (because the value of the tracking information exceeds the costs
of acquiring it), then more justification may be needed to persuade stakeholders
to adopt the conclusion. Therefore, we will pick values of highly uncertain inputs
(such as the scenario probabilities) to favor the status quo, so that if the analysis
still recommends a change, the result will be relatively strongly supported despite
uncertainties in the model inputs. (This intentional bias toward the status quo is
not strictly rational but recognizes the reality that any recommended changes from
the status quo may require an additional burden of robustness.) Given that the lim-
ited available evidence favors the hypothesis that the Canadian BSE prevalence is
higher than the U.S. BSE prevalence (as in scenarios 2 and 4), and that these sce-
narios imply relatively high information values for tracking Canadian cattle, we will
use a uniform distribution of scenario probabilities as a conservative (i.e., status quo
favoring) prior distribution, thereby giving more relative weight to scenarios 1 and 5
(no difference between U.S. and Canadian cattle) than the available data might sug-
gest. The uniform prior also represents a maximum-entropy prior, and in this sense
imposes as few assumptions as possible.
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In the current situation of limited BSE testing, animals that are considered most
likely to have BSE are targeted. Testing data from Europe suggest that the BSE
rate among this subpopulation is 60 times greater than that of the general cattle
population. This factor is applied to the probabilities in Table 14.3 to obtain the
probabilities of positive test results among sampled cattle in Stage 1 with limited
testing. The sampling factor will be subject to sensitivity analysis.

Let si ε S represent the state of nature, i, with initial probability psi. Then

• P( y1| d1, si) = probability of event y1 occurring, given that the first-stage deci-
sion was d1 and the state of nature is si, and

• P(y1| d1) =
5∑

i=1
P(y1|d1, si )psi = unconditional probability for event y1 given

decision d1.

Second-Stage Probabilities via Bayes’ Rule

The states of nature provide a basis for computing second-stage probabilities via
Bayesian updating. The first-stage outcomes {y1| d1} provide information regard-
ing the likelihood of the states of nature, allowing us to revise the estimates, psi.
Specifically,

ps ′i =
P(y1|d1, si )psi

5∑
j=1

P(y1|d1, s j )ps j

.

Then, similarly to the first stage,

P(y2|d1, d2) =
5∑

i=1

P(y2|d1, d2, si )ps ′i .

The conditional probabilities P(y2 | d1, d2, si) are computed using the binomial
formulas from Stage 1, but with the test quantities nUSUS, nUSCA, and nCA revised.
In particular, if d2 indicates full testing (of all cattle or all cattle from Canada), then
nUSUS, nUSCA will be greatly increased to reflect full vs. partial testing. Second, the
probabilities pUSUS, pUSCA, and pCA may be quite different from those in Stage 1. In
Stage 1, the testing regime targets “downer” cattle and others considered most likely
to have BSE. In Stage 2, under full testing, the probabilities of a positive batch are
diluted by less likely animals and therefore may be much (e.g., 60-fold) lower.

Solution Algorithms

The decision tree in Fig. 14.1, together with the quantitative data in Tables 14.1,
14.2, and 14.3 that populate it, specify the base case risk management decision
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problem to be solved. A standard dynamic programming algorithm (Raiffa, 1968)
provides the solution and allows variations of the problem with different input values
to be solved to yield sensitivity analyses and to characterize the robustness of model
recommendations to uncertainties in the input values. We used the TreePlanTM deci-
sion tree software package for ExcelTM to solve the decision optimization problem
for the base case and for sensitivity runs.

Results

Optimal Decision Rule for the Base Case

Under the baseline assumptions in Tables 14.1, 14.2, and 14.3, the expected net cost
of “Track Imports” is $10,385,294 per year while the expected cost of “Do Not
Track Imports” is $90,045,020 per year. Thus, the expected net economic value of
the information provided by tracking is $79,658,726 per year, reflecting the much
higher probability of large market losses when imports are not tracked, as BSE cases
of Canadian origin in the United States are not distinguished from, and so have the
same economic impact as, BSE cases of U.S. origin. The optimal decision rule for
the base case is as follows: Track Canadian cattle imports, then continue limited
sampling in Stage 2 no matter what occurs. In other words, the benefit from tracking
in this case does not come from avoiding the cost of 100% testing of U.S. cattle,
since this is too expensive to undertake. Rather, it comes from the reduced loss of
U.S. beef sales if the country of origin of a BSE case detected in the United States
is Canada and this can be ascertained and announced.

Sensitivity Analysis Results

The base case is of limited interest by itself, since it is not clear how robust the opti-
mal current decision (“Track Canadian imports”) is to plausible variations in the
inputs. However, the following sensitivity analysis results indicate that this recom-
mended initial decision is very robust to key input uncertainties:

• Robustness to market benefits estimates. Suppose that the positive market
impacts (of $1.382 billion) for the United States of another BSE discovery
in Canada in some rows of Table 14.2 may have been estimated incorrectly.
What degree of error would change the optimal decision from “Track Canadian
imports” to “Don’t track Canadian imports”? The answer is that the optimal base
case decision (“Track CA imports”) remains optimal when all positive market
outcomes (those with a value of $1.382 billion in Table 14.2) are multiplied
by any positive number, whether less than 1 (scaled-down benefit estimate) or
greater than 1 (scaled-up benefit estimate). Indeed, the VOI for tracking remains
positive for any benefit multiplier >–0.58.
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• Robustness to market loss estimates. Similarly, if all outcomes with a nega-
tive market impact in Table 14.2 are multiplied by any positive factor (and,
indeed, any factor >–1.57), the optimal Stage 1 decision remains “Track Cana-
dian imports.” (The optimal second-stage decision changes as a function of the
scaling factor, with full testing of Canadian-only or all-U.S. cattle becoming opti-
mal for some values, but the VOI increases linearly for all positive values of the
loss multiplier.)

• Robustness to targeting efficiency. Define the targeting efficiency factor as the
ratio of the probability of a positive BSE test in a targeted animal vs. a purely
randomly sampled animal. Its baseline value is 60. The VOI for tracking Cana-
dian imports increases linearly as this factor is increased; it is negative (expected
cost > expected benefit) only for values less than 17. European experience sug-
gests that the true value of this factor could be as high as 186 in some areas (based
on Swiss data, http://europa.eu.int/comm/food/fs/bse/bse21 en.html), although
it varies among countries.

• Robustness to consumer loss of confidence. Suppose that baseline negative con-
sequences are multiplied by a “fear factor” when the “Repeat Test” decision is
chosen at the second stage and the market impact is negative, to reflect greater-
than-estimated consumer fear and adverse reaction (loss of confidence in beef
safety) that could occur if BSE is found in the second stage, but only limited
sampling (the “Repeat Test” decision in Fig. 14.1) is used. The VOI for track-
ing Canadian imports increases as this factor is increased, by over 50% when
the “fear factor” is 2 (i.e., if the loss of beef sales due to consumer fear is twice
as great as estimated in the base case). The optimal Stage 1 decision remains
“Track Canadian imports” for all positive values of the “fear factor,” indicating
considerable robustness to uncertainty about how customers would react to fur-
ther BSE cases. (Interestingly, the optimal Stage 2 decision shifts from “Repeat
Test” to “Test All” if the first stage detects BSE in the United States, and the fear
factor is greater than about 1.20, as seems quite plausible.)

• Robustness to tracking costs. The base case assumes a tracking cost per ani-
mal per year of $10. This cost could be as high as $35 while leaving the VOI
from tracking greater than zero. Therefore, locating and tracking Canadian cattle
already in the United States appears to be worthwhile when the cost is less than
$35/head.

• Robustness to scenario probabilities. Figure 14.2 shows the results of varying
the probability of each of the individual scenarios in Table 14.3 from 0 to 1 while
leaving the remaining probability spread evenly among the other four scenarios.
The VOI (= desirability index for tracking imports) increases with the probabil-
ities of scenarios 2 and 4 and decreases with the probabilities of scenarios 1, 3,
and 5. Scenarios 2 and 4 are those with a high probability for BSE in Canada
and low (or zero) probability for BSE in the United States. Scenarios 1, 3, and 5
each have a zero or very low probability of BSE in either country. They have the
potential for a negative VOI, but only at high values (exceeding approximately
0.78). All available data are most consistent with scenarios 2 and 4, which imply
a positive VOI for tracking Canadian cattle.
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Fig. 14.2 Sensitivity analysis plot for scenario probabilities

In summary, the optimal decision for the base case, “Track Canadian imports,”
appears to be very robust to a wide range of plausible variations in the input data,
as well as to combinations of variations (not shown). Thus, the model’s recom-
mendation to begin tracking appears to be well justified, even if some conservative
assumptions are made that tend to discount the value of tracking information. Of
course, if tracking information is not needed to reliably determine the country of
origin, as happened in the Washington state case, then the VOI from tracking would
be reduced – potentially to zero, if other data already provided reliable country-of-
origin information. However, in practice, the ability to reliably identify the country
of origin is often haphazard at best. Similarly, if U.S. consumer confidence and
exports do not respond to information that a new BSE case is of non-U.S. origin as
modeled in any of these sensitivity analyses, then their conclusions would not nec-
essarily hold. Thus, the current analysis only shows what might be the case, based
on the baseline scenarios and the wide range of variations shown. It does not prove
that the VOI must be high. But it shows that it may be, under input assumptions that
appear (at least to us) to be plausible. This provides an incentive to better understand
the key drivers of potential economic value from better tracking information.

The economic value of tracking information in some sensitivity analyses comes
primarily from limited export losses if the next case of BSE detected in the United
States can be shown to be of Canadian origin, whereas in others, it comes primarily
from avoiding the need to test all U.S. cattle, as opposed to just those of Canadian
origin, to win back customers. Although the second-stage decisions that benefit from
a first-stage decision to track Canadian cattle imports vary across sensitivity analysis
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cases, most of the sensitivity analyses agree that this is the optimal current decision,
even while differing in their precise (Stage 2 planning) reasons.

Impacts of Possible Win-Back of Export Markets

The base case analysis and the assumptions in Table 14.1 are perhaps pessimistic,
in that they assume that the losses of U.S. cattle and beef export markets following
the discovery of a Canadian-origin BSE case in December 2003 are persistent and
irreversible. Depending on the evolution of international risk perceptions and the
harmonization of risk management standards and plans, it is possible that aggres-
sive tracking and testing policies in the United States might result in the recovery
of some lost export markets. If so, the economic impacts from tracking and testing
could dwarf those calculated for the base case. For example, under an assumption
that aggressive testing would allow the United States to regain its lost exports (as
long as no confirmed BSE case of U.S. origin is discovered), the optimal strategy
becomes to immediately start tracking all Canadian cattle and, if a confirmed BSE
case of Canadian origin is found, to test all Canadian-origin cattle in the United
States prior to export. In this case, the expected net economic value of the infor-
mation provided by tracking increases to $771,570,514 per year, i.e., by close to an
order of magnitude.

Discussion

This chapter has developed and applied a decision-analytic value of information
(VOI) framework to quantify the potential economic value of tracking Canadian
cattle imported into the United States. The major conclusion is that, based on data
available through early 2004, the potential economic value of such information to
the United States greatly exceeds its costs for cattle that may be imported in the
future (by a ratio of 79,658,726 to 15,538,715 ≈ 5 in the base case, and more in
many sensitivity analyses). For “legacy” Canadian cattle that have already entered
the United States, moving quickly to locate and start tracking them before any addi-
tional BSE cases are detected appears to be well justified for many sets of input
assumptions, provided that the cost per head is kept within bounds (e.g., up to $35
per head, based on the sensitivity analyses for the base case). If the costs per head
are too great to justify locating all legacy animals, then location and tracking efforts
should focus on the oldest animals – those with the greatest risk of becoming new
BSE cases.

The potential economic value of information from a tracking program is esti-
mated to exceed its costs by more than fivefold if such information can reduce future
losses in export and domestic markets and reduce the future testing costs required
to reassure or win back customers. Sensitivity analyses indicate that this conclusion
is somewhat robust to many technical, scientific, and market uncertainties, includ-
ing the current prevalence of BSE in the United States and/or Canada and the likely
reactions of consumers to possible future discoveries of BSE in the United States
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and/or Canada. Indeed, the potential value of tracking information is great enough to
justify tracking Canadian cattle already in the United States when this can be done
for a reasonable cost. If aggressive tracking and testing can win back lost exports,
then the VOI of a tracking program may increase to over half a billion dollars per
year.

Epilogue and Conclusions

In 2004, a new rule was indeed passed to make imported Canadian cattle easier
to identify, based on a combination of identification procedures, permanent mark-
ings, and restricted transportation of Canadian-origin cattle within the United States.
Rolling the historical viewpoint forward to 2009, uncertainty about the responses of
potential trade partners to discoveries of mad cow disease (BSE) continues to be a
major component of uncertainty about the economic consequences of future BSE
discoveries (and even of past ones, if subsequent risk management is mishandled
by commingling high-risk and low-risk cattle). This was demonstrated dramatically
in 2008, when the government of South Korea was thrown into crisis by an agree-
ment to import beef from the United States (possibly including BSE-positive beef
from Canada). In November 2007, the USDA had removed restrictions on imports
of Canadian cattle into the United States, publishing a rule that would allow even
the over-30-month-old cattle at a relatively high risk of BSE to be imported into
the United States. The USDA’s rule making acknowledged concerns expressed in
public comments “that the rulemaking would exacerbate the limited access of U.S.
beef to world markets and harm the ability of the United States to restore lost export
markets,” as follows:

A number of commenters expressed concern that the rulemaking would exacerbate the lim-
ited access of U.S. beef to world markets and harm the ability of the United States to
restore lost export markets. Commenters stated that imports of Canadian cattle and beef
are currently banned by 35 countries, including the important U.S. export markets of the
Republic of Korea, Singapore, and Taiwan, and that APHIS [the USDA’s Animal and Plant
Health Inspection Service] should not consider relaxing its BSE import restrictions in light
of ongoing international concerns regarding the safety of Canadian beef and cattle. Other
commenters stated that the United States should allow imports only of classes of cattle and
beef that U.S. export markets are willing to accept from the United States.

However, the USDA then dismissed these concerns, as follows: “[USDA]
Response: . . .However, we [USDA/APHIS] expect any restrictions placed on beef
from the United States and Canada by an importing country to become more uni-
form, as discussed below, and, therefore, for the rule to have little effect on U.S.
beef export markets.” The near-revolt in South Korea in 2008 showed that the “little
effect on U.S. beef export markets” predicted by the USDA might turn out to be
larger than expected.

The Canadian BSE story continues to unfold. A partial chronology of significant
events in 2008, while this book was being written, included the following.
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• May 13, 2008: President Lee Myung-bak of South Korea announced that the
United States agreed to halt imports if a BSE outbreak occurs in the United
States.

• June 23, 2008: The Canadian Food Inspection Agency confirmed the 13th case
of BSE since the national surveillance program started in 2003.

• July 3, 2008: A federal judge in South Dakota, presiding in a lawsuit brought
against the USDA by a cattle producers’ advocacy group, R-CALF USA, ordered
the USDA to reconsider its rule allowing over-30-month-old cattle to be imported
from Canada.

• July 28, 2008: A story in The Chicago Tribune reported that “Despite persis-
tent fears of mad cow disease in Canadian beef, the Department of Agricul-
ture has failed to properly track hundreds of Canadian cattle coming into the
United States, the department’s inspector general has concluded. The inspec-
tor general’s audit, completed in March but only recently made public, said
that some of the imported cattle did not have proper identification or health
records despite federal regulations requiring them. . . . About 1.1 million cat-
tle were imported into the U.S. from Canada in the fiscal year ending in
September 2006, the period covered by the audit. The audit mainly faulted
Agriculture’s Animal Plant Health Inspection Service, or APHIS, for fail-
ing to properly check records as the cattle crossed the Canadian border”
(http://www.chron.com/disp/story.mpl/nation/5908457.html).

In light of such developments, VOI analysis appears to still be relevant for mak-
ing decisions now about how far to enforce compliance with tracking and testing
requirements. At least some undetected BSE cases are likely to be imported from
Canada, based on imports of several million cattle and a Canadian prevalence rate
estimated at several BSE cases per million. The risk of finding new cases of BSE in
the United States is steadily increasing as imports from Canada continue. VOI anal-
ysis can help to identify present actions to help manage the economic risks created
by these imports.

The analysis in this chapter has focused on potential economic consequences,
and risk management options for possibly mitigating them, if another BSE case is
discovered in the United States. That some BSE cases might possibly increase the
risk of vCJD among people eating beef or exposed to beef products reinforces the
conclusions from the economic analysis, insofar as they make it even more impor-
tant to be able to identify the origin of any new BSE cases quickly, to reduce the
possible human health risks as soon and as fully as possible.

That tracking and testing are imperfect has sometimes been advanced as a quali-
tative reason for restricting or rejecting them. The quantitative comparisons carried
out in our sensitivity analyses suggest that this reasoning is not necessarily justi-
fied: measures that help to identify the origins and prevalence of BSE cases can
have a high information value for improving future risk management decisions and
creating additional risk management options, even if they are less than perfect.
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Appendix: Market Impact Assumptions and Calculations

This appendix lists the main assumptions used in the market impact calculations
referred to in the text. (This appendix is based primarily on work by economist J.
van Sickle.) Table 14.1 summarizes the expected economic impacts for each set of
potential future events, i.e., each branch through the decision tree to a leaf node
in Fig. 14.1. The impacts are calculated starting from a baseline situation in which
BSE has already been discovered in Canadian cattle (May 2003) and the impacts of
the discovery have been absorbed in the market. The impacts also assume that BSE
has been discovered in a Canadian animal in the United States (December 2003),
resulting in a roughly 50% reduction of the previous U.S. export market.

Major assumptions for estimating the expected market outcomes following these
events are listed below.

1. If the United States tracks all imports and tests all animals and no subsequent
BSE case is discovered, then the exports lost following the discovery of the BSE-
positive cow in Washington state in 2003 will gradually be regained. Analysis of
a proposed rule for designating minimal risk regions presented by the USDA in
2004 indicates that producer surplus would decline $1.91 billion as a result of
U.S. producers losing 50% of their export market (excluding Canada and Mex-
ico). The impact on producer revenues from this decline is estimated to be $2.864
billion ($1.02 billion from lower values on beef continuing to be sold and $1.84
billion on the value of beef no longer produced because of lower prices). It is
assumed that tracking and testing will restore confidence in the international
community and allow that market to be restored.

2. If the United States chooses to track all imports and test only Canadian animals,
then it will only gain back half of the export market lost in the baseline model.
Therefore, the impact of this scenario is assumed to be half of that estimated in
assumption 1, i.e., $1.432 billion.

3. If a case of BSE is discovered in Canada, it is assumed that loss of confidence
in the Canadian beef supply will increase demand for U.S. beef in domestic and
international markets by another $1.382 billion (roughly half of the estimated
gains the United States experienced following the first case of BSE in Canada).
The gains the United States realized from the first discovery of BSE in Canada
were estimated from the USDA study on the proposed rule for minimal risk
regions. The USDA estimated that the reintroduction of all beef from Canada into
the U.S. market would result in a decline in producer surplus of $1.545 billion.
The impact on producer revenues from this decline is $2.765 billion ($1.375
billion price impact and a $1.39 billion quantity impact). Because most of the
U.S. revenue gains to be expected from a subsequent discovery of BSE in Canada
were realized in the first discovery, revenue gains to U.S. producers are assumed
to be half of that value ($1.382 billion).

4. A discovery of BSE in a U.S. animal inside the U.S. border (Stage 2 outcome)
is expected to cause a decline in domestic demand for U.S. beef and also result
in the loss of most remaining exports. A study completed by Jin et al. (2004)
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indicated that a discovery of BSE in a U.S. animal was expected to cause a 25%
decline in domestic demand for U.S. beef, equal to $12.27 billion in producer
revenues from our base model analysis. This result, combined with the loss of
export markets equal to $2.864 billion (see discussion in assumption 1), results
in a combined impact on producer revenues of $15.14 billion.

5. A discovery of BSE in a U.S. animal inside the U.S. border as a Stage 1 outcome
followed by rigorous testing (test all) with no additional discoveries of BSE in
the United States is assumed to have half the impact of a Stage 2 outcome of BSE
in the United States It is assumed in this scenario that rigorous testing with no
additional discoveries of BSE will mitigate the impacts resulting from a decline
in domestic demand. It is assumed that consumer demand will decline by half
that of a Stage 2 outcome of BSE in the United States ($6.14 billion) and that all
remaining export markets will be lost ($2.863 billion), resulting in a total impact
of $9.003 billion.

6. A discovery of BSE in a Canadian animal in the United States is assumed
to cause a decline in U.S. producer revenues of $1.432 billion. This result is
assumed to occur from a loss equal to one half the remaining export earnings
from beef (see discussion in assumption 1).

The $4.246 billion impact for Stage 1 No BSE and Stage 2 BSE in Canada is a
combination of assumptions 1 and 2.



Chapter 15
Improving Antiterrorism Risk Analysis

Several important risk analysis methods now used in setting priorities for protect-
ing U.S. infrastructures against terrorist attacks are based on the formula risk =
threat × vulnerability × consequence. This chapter identifies potential limitations
in such methods that limit their ability to guide resource allocations to optimize risk
reductions. After considering specific examples for the Risk Analysis and Manage-
ment for Critical Asset Protection (RAMCAPTM) framework used by the Depart-
ment of Homeland Security, we address fundamental limitations of the product for-
mula. These include its failure to adjust for correlations among its components, the
nonadditivity of risks estimated using the formula, its inability to use risk-scoring
results to allocate defensive resources optimally, and the intrinsic subjectivity and
ambiguity of the threat, vulnerability, and consequence numbers.

Trying to assess probabilities for the actions of intelligent antagonists directly,
instead of modeling how they pursue their goals adaptively in light of available
information and experience, can produce ambiguous or mistaken risk estimates. For-
tunately, recent work demonstrates that two-level (or few-level) hierarchical opti-
mization models can provide a useful alternative to risk = threat × vulnerabil-
ity × consequence scoring rules, and also to probabilistic risk assessment (PRA)
techniques that ignore rational planning and adaptation by attackers. In such two-
level optimization models, Defender predicts Attacker’s best response to Defender’s
actions and then chooses actions anticipating the best responses. Such models
appear valuable as practical approaches to antiterrorism risk analysis (Bier and
Azaiez, 2009).

The Risk = Threat × Vulnerability × Consequence Framework

In April 2007, the Department of Homeland Security (DHS) released a risk-based
performance standard for the security of chemical facilities in the United States
(www.dhs.gov/xlibrary/assets/IP˙ChemicalFacilitySecurity.pdf). The new standard
estimates risks by means of the following formula:

risk = threat × vulnerabili t y × consequence. (15.1)

L.A. Cox, Jr., Risk Analysis of Complex and Uncertain Systems,
International Series in Operations Research & Management Science 129,
DOI 10.1007/978-0-387-89014-2 15, C© Springer Science+Business Media, LLC 2009
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This standard is based on the Risk Analysis and Management for Critical Asset
Protection (RAMCAPTM) framework (RAMCAPTM Framework, 2006). Table 15.1
shows the explanations provided for the terms in this formula, as well as for
“conditional risk,” i.e., risk when intent to attack is assumed (i.e., conditioned on
threat = 1).

RAMCAPTM models the actions of rational adversaries using a “reasonable worst
case” as follows:

The worst reasonable case consequence should consider that the adversary is intelligent
and adaptive and will attempt to optimize or maximize the consequences of a particular
attack scenario. . . . Rational judgment is necessary in defining the reasonable worst case.
. . . [T]here is a gaming aspect to the decisions of the adversary. . . [s]uch models have not
yet been developed. . . . (RAMCAPTM Framework, pp. 28 and 45)

One purpose of this chapter is to show how the concept of “reasonable worst
case” can be made more precise in some applications by assuming that intelli-
gent attackers optimize (and, where necessary, adapt in light of new information)

Table 15.1 RAMCAPTM terminology

Term RAMCAPTM definition

Risk The potential for loss or harm due to the likelihood of an unwanted event
and its adverse consequences. It is measured as the combination of the
probability and consequences of an adverse event, i.e., threat. When the
probability and consequences are expressed numerically, the expected
risk is computed as the product of those values with uncertainty
considerations. . . . In security, risk is based on the analysis and
aggregation of three widely recognized factors: threat, vulnerability and
consequence.

Conditional risk A measure of risk that focuses on consequences, vulnerability, and
adversary capabilities, but excludes intent. It is used as a basis for
making long-term risk management decisions. The adversary
capabilities, countermeasures, and residual vulnerability are often
combined into a measure of likelihood of adversary success.

Consequence The outcome of an event occurrence, including immediate, short- and
long-term, direct, and indirect losses and effects. Loss may include
human casualties, monetary and economic damages, and environmental
impact, and may also include less tangible and therefore less quantifiable
effects, including political ramifications, decreased morale, reductions in
operational effectiveness, or other impacts.

Threat Any indication, circumstance, or event with the potential to cause the loss
of, or damage to, an asset or population. In the analysis of risk, threat is
based on the analysis of the intention and capability of an adversary to
undertake actions that would be detrimental to an asset or population.

Vulnerability Any weakness in an asset’s or infrastructure’s design, implementation, or
operation that can be exploited by an adversary. Such weaknesses can
occur in building characteristics, equipment properties, personnel
behavior, locations of people, equipment and buildings, or operational
and personnel practices.
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their attack plans to maximize the expected damage achieved. However, model-
ing the optimizing behaviors of attackers requires risk assessment models different
from Equation (15.1). The following sections survey some important limitations on
attempts to directly estimate risk = threat × vulnerability × consequence for pur-
poses of allocating defensive resources, without modeling intelligent planning and
optimization by attackers.

RAMCAPTM Qualitative Risk Assessment

Before considering the more fundamental limitations of Equation (15.1), we first
consider some flaws in the specific implementation of the equation in RAMCAPTM.
RAMCAPTM proposes two options for risk assessment, which it calls “qualita-
tive” and “quantitative,” although both are based on semiquantitative (ordered cat-
egorical) ratings of threat, vulnerability, and consequence. The “qualitative” option
(which might also be called semiquantitative) categorizes economic consequences
using the following rating scale: 0 = $0–25 million loss, 1 = $25–50 million, 2 =
$50-100 million, . . ., 13 = $102,401 million and above. Fatalities and injuries are
scored similarly: 0 = 0–25 fatalities, 1 = 25–50 fatalities, . . . , 13 = 102,401 fatal-
ities or more, with a similar rating scale for the number of injuries. (The severity of
injuries is not included in the injury score.) (The RAMCAPTM tables actually leave
small gaps between intervals, e.g., $0–25 million, $26-50 million, $51-100 million,
etc., so that consequences such as $25.4 million or $50.7 million do not fall in any
category. We assume that “26” includes values greater than 25 and less than 26, and
similarly for other gaps.)

Vulnerability is assessed similarly, using a “likelihood of attack success scale”
that assigns a score of 0 to success probabilities below 0.0312, 1 to probabilities
from 0.0312 to 0.0625, 2 to probabilities from 0.0625 to 0.125, 3 to probabilities
from 0.125 to 0.25, 4 to probabilities from 0.25 to 0.5, and 5 to probabilities above
0.5. (Probabilities in “bin” 5 are further subdivided into 0.5–0.75, 0.75–0.9, and
greater than 0.9.)

The RAMCAPTM documentation suggests using event tree analysis to estimate
the likelihood of attack success. In event tree analysis, different possible sequences
of events are represented by corresponding sequences of nodes in a tree (a directed
acyclic graph in which each node has a unique parent, except for the first or “root”
node, which represents an initiating event such as “Attack attempted”). Nodes rep-
resent events, multiple arcs branching from a node represent different possible out-
comes of a random event, and the probability of each terminal node (each “leaf” of
the tree) is the product of the conditional probabilities of the arcs along the unique
path leading from the root node to it. To use event trees to estimate attack success
probabilities, the conditional probabilities for the arcs in the tree must be estimated.
This begs the question of how such probabilities are to be determined, especially for
“events” that represent attacker actions. Several researchers have commented that
modeling actions as random variables is inadequate for representing the purposive
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(and opportunistic) behaviors of intelligent attackers (Golany et al., 2009; Bier and
Azaiez, 2009; National Research Council, 2008).

Finally, a “conditional risk matrix” (i.e., a risk matrix assuming that an attack
takes place) assigns overall conditional risk scores to pairs of consequence and vul-
nerability scores via the formula

conditional risk score = consequence score+ vulnerability score. (15.2)

This reflects the identity

log(vulnerabili t y × consequence) = log(vulnerabili t y)+ log(consequence)
(15.3)

because the scales used to rate consequence and vulnerability are logarithmic.
(There also appears to be an implicit independence assumption that allows vul-
nerability and consequence scores to be assessed separately, which might not be
realistic.)

In general, the qualitative risk rating does not provide adequate information to
guide resource allocation. For example, it assigns the same qualitative risk score
(“5”) to (a) a 100% probability of zero fatalities (quantitative risk = 0, qualitative
risk = 5 + 0 = 5) and (b) a 20% probability of 100 fatalities (qualitative risk =
3+ 2= 5). Similarly, a zero probability of a $100 billion loss is given the same risk
score (“11”) as a certainty of a $1 billion loss. Such anomalies arise because con-
sequence scores and vulnerability scores are summed to get risk scores; thus, even
if one score is zero, the risk score (unlike the quantitative risk) can be nonzero. The
scoring also can assign relatively small scores to relatively large risks. For example,
a 0.10 probability of 100 deaths (expected value = 10 deaths) would have a smaller
risk score (4) than a 0.26 probability of 26 deaths (expected value = 6.76 expected
deaths, risk score = 5).

Limitations of RAMCAPTM for Quantitative Risk Assessment

RAMCAPTM’s “quantitative” scoring (which might also be called semiqualitative)
is also based on Equation (15.1).Vulnerability and consequence numbers are cal-
culated as the arithmetic average of the upper and lower values of the “bins” (the
value ranges in the preceding “qualitative” approach) for the attack’s success prob-
ability and the consequence of a successful attack, respectively. All quantities are
interpreted as expected values.

The RAMCAPTM Framework states that an advantage of using the above for-
mula with a defined set of scales for vulnerability and consequence is that “The risk
associated with one asset can be added to others to obtain the aggregate risk for an
entire facility. . . [and] can be aggregated and/or compared across whole industries
and economic sectors. This is precisely the goal of DHS.” However, such summa-
tion is, in general, mathematically incorrect, as shown in the following examples.
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Moreover, it lets facility owners manipulate risk estimates up or down, depending
on preferences. It is unable to distinguish among some risks (limited resolution) and
can give incorrect estimated risk rankings. The following examples illustrate these
limitations.

Example: Distortions Due to Use of Arithmetic Averages on
Logarithmic Scales

For the following two risks:

• A: (vulnerability = 0.25, consequence = $400 M),
• B: (vulnerability = 1, consequence = $60 M),

the formula conditional risk = vulnerability × consequence implies that A has a
larger conditional risk than B ($100 M vs. $60 M). However, RAMCAPTM would
assign a vulnerability of (0.125+ 0.25)/2= 0.1875 and a consequence of (200 M+
400 M)/2= 300 M to A, implying an estimated conditional risk of 0.1875∗300 M=
$56.25 M for A. It would assign a vulnerability of (0.9 + 1)/2 = 0.95 and a conse-
quence of (50 M + 100 M)/2 = $75 M to B, implying an estimated conditional risk
of 0.95∗$75 M = $71.25 M for B. Thus, it reverses the correct ranking of these two
risks.

Example: Limited Resolution

RAMCAPTM quantitative risk assessment assigns the same quantitative conditional
risk estimate of [(0.125 + 0.25)/2]∗[($0 + $25 M)/2] = $2.34 M to a facility with
(vulnerability = 0.15, consequence = $1 M) and a facility with (vulnerability =
0.25, consequence= $25 M). Yet many stakeholders might view these as signifi-
cantly different risks.

Example: Manipulating Vulnerability Estimates by Aggregating
Attack Scenarios

Suppose that a facility can be attacked via any of six separate approaches (generi-
cally called front, back, left, right, top, and bottom). The success probability for each
approach (if attempted) is 0.07, and these success probabilities are independent of
each other. (This is for illustration only; such independence assumptions may dan-
gerously oversimplify reality.) If one approach is attempted and fails, others may be
attempted. The consequence of a successful attack is the same in each case. Thus,
the sum of the conditional risks is proportional to the sum of the vulnerabilities
contributed by the different approaches: 6∗[(0.0625 + 0.125)/2] = 0.5625.
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To achieve a lower vulnerability number, a facility owner can simply represent
each possible attack path (e.g., “attack via front,” “attack via back,” etc.) as one
possible aspect of the same overall attack (“attack via some approach”). The overall
attack has success probability: Pr(attack succeeds)= 1 – Pr(all approaches fail)= 1
– (1 – 0.07)6 = 0.353, which is coded as (0.25 + 0.5)/2 = 0.375. Thus, the facility
owner can claim a vulnerability estimate of either 0.5625 or 0.375, whichever he
prefers, by choosing to calculate the vulnerability of the facility as the sum of the
vulnerabilities from different attack paths or as the vulnerability from the overall
probability of a successful attack. The claim that “The risk associated with one asset
can be added to others to obtain the aggregate risk for an entire facility” is not true
in general, as the correct probabilistic formulas, such as Pr(attack succeeds) = 1 –
Pr(all approaches fail), are not additive.

Example: Nonadditive Vulnerabilities

Suppose that an attack on a facility succeeds if and only if both of two activi-
ties, A and B, are successfully completed. A can be accomplished in either of two
ways, A1 or A2, and B can be achieved in either of two ways, B1 or B2. A must
be completed before B can be attempted. Thus, the four possible successful attack
sequences are (A1, B1), (A1, B2), (A2, B1), (A2, B2). If each of A1, A2, B1, and
B2 independently has a 0.4 success probability, then the overall probability of a
successful attack is Pr(A is completed)∗Pr(B is completed | A is completed) = [1 –
Pr(A1 and A2 both fail)]∗[1 – Pr(B1 and B2 both fail)] = (1 – 0.6∗0.6)2 = 0.41.
But summing the vulnerabilities contributed by each of the four attack scenarios
(A1, B1), (A1, B2), (A2, B1), (A2, B2), each having success probability 0.4∗0.4 =
0.16, yields a total vulnerability estimate of 4∗0.16 = 0.64, larger than the correct
probability, 0.41.

Example: Product of Expected Values Not Equal to Expected Value
of Product

Suppose that threat and vulnerability are each uniformly distributed between 0
and 1 and that consequence is uniformly distributed between 0 and $25 mil-
lion. RAMCAPTM applies Equation (15.1) to the expected values of the quanti-
ties on its right side, yielding risk = (0.5)∗(0.5)∗($12.5 M) = $3.125 M. However,
if threat is perfectly positively correlated with each of vulnerability and consequence
(with vulnerability = threat and consequence = $25 M∗threat), then the correct
value of risk is $6.3 million. If threat is perfectly negatively correlated with each of
vulnerability and consequence [with vulnerability = 1 – threat and consequence =
$25 M∗(1 – threat)], then the correct value of risk is only about $2 million. Thus,
correlations among the components substantially affect the correct value of risk.

More simply, suppose that each of T, V, and C is equally likely to be 0 or 1. (For
simplicity, here C is scaled to vary from 0 to 1.) Then the product of their expected
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values is 0.5∗0.5∗0.5= 0.125. But if the variables are interdependent, with the value
of C determining the values of T and V via the equations T = C and V = C, then the
expected value of their product, TVC, is 0.5, not 0.125. On the other hand, if T =
C and V = 1 – C, then the expected value of TVC is 0. Thus, multiplying expected
values gives an answer (0.125) that may be very different from the correct expected
value of the product, taking into account the dependencies among the components,
which may be as low as 0 or as high as 0.5. Because the formula risk= threat× vul-
nerability × consequence ignores dependencies among components, the numerical
value of risk that it produces (with all terms being expected values, as in RAMCAP)
may be either higher than the correct value (e.g., 0.125 instead of 0) or lower than
the correct value (e.g., 0.125 instead of 0.5).

In practice, positive correlations may arise if intelligent attackers are more likely
to attack targets with high vulnerability and consequence values, or if larger tar-
gets are both more valuable and more vulnerable. Then Equation (15.1), with terms
interpreted as expected values, may underestimate risks.

Risk Rankings Are Not Adequate for Resource Allocation

After a risk assessment has been completed, how can its results be used to improve
risk management decision making? One common answer is that risk managers
should rank-order estimated risks from highest to lowest based on the risk assess-
ment results, then allocate risk management resources to risk-reducing countermea-
sures (e.g., for vulnerability reduction or consequence mitigation) from the top of
the list down, until available resources have been spent. For example, a Department
of Energy (DOE) report states that

The risk values are then determined and ranked from the highest to the lowest producing
a relative risk ranking. Obviously, resources should be used to reduce the vulnerabilities
or mitigate the consequences from the highest ranked threat scenarios first. In the National
Strategy for Homeland Security, it is stated “Protecting America’s critical infrastructures
thus require that we determine the highest risks. . . .” In planning security upgrades at
Brookhaven National Laboratory, a select committee was established and this relative risk
ranking concept was used for ordering the upgrade schedule. (Indusi, 2003)

However, allocating resources “to reduce the vulnerabilities or mitigate the con-
sequences from the highest-ranked threat scenarios first” may not be an effective
way to allocate defensive resources to reduce risks. Effective risk management
requires considering risk reductions achieved by different allocations of limited
resources. These are not necessarily implied by the sizes of different risks, because
countermeasures may only partly reduce risks and because costs of different coun-
termeasures constrain which ones can be implemented with the available budget. In
addition, if the optimal portfolio of risk-reducing activities requires diversifying
defensive investment across multiple types of threat scenarios, then any priority
rule that ranks all instances of one type above all instances of another is obviously
inconsistent with an optimal (diversified) investment (see Chapter 5).
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Example: Priority Ranking May Not Support Effective Resource
Allocation

Setting: The following counterexample is repeated (with minor modifications) from
Chapter 4. Suppose that an agency must allocate a limited budget to reduce the risks
of terrorist attacks. Three opportunities have been identified to reduce risks:

• Act A reduces risk from 100 to 80. It costs $30.
• Act B reduces risk from 50 to 10. It costs $40.
• Act C reduces risk from 25 to 0. It costs $20.

Here, “risk” is measured on a scale such as expected casualties in the event of
an attack, i.e., it is a conditional risk. (This example can also be constructed so
that all three acts start from the same base level of risk, say 50, and A, B, and C
reduce risk by 20, 40, and 25, respectively. Using different base levels allows for
the possibility that options A, B, and C protect different subpopulations.) The goal
for resource allocation is to achieve the largest possible total risk reduction for the
available budget.

Problem: What priority ranking of A, B, and C achieves the largest risk reduction
from the allocation of limited funds, if resources are allocated from the top of this
priority list down until they are exhausted?

Solution: No priority ranking exists that answers this question. Instead, the cor-
rect answer depends on the budget. For a budget of $49, the largest feasible risk
reduction is achieved by funding B, so the best priority order puts B first. If the bud-
get is $50, then funding A and C achieves the greatest risk reduction, so B should
be ranked last. At $60, the best investment is to fund B and C, so now A should
be ranked last. Thus, no rank ordering of A, B, and C optimizes resource alloca-
tions independent of the budget. For example, no possible rank order is optimal for
budgets of both $49 and $50.

The difficulty illustrated here is that resource-constrained investments in reduc-
ing risks cannot, in general, be optimized using priority rankings. Resource alloca-
tion problems that can be solved this way have been characterized (Bertsimas and
Nino-Mora, 1996), but selecting a portfolio of expensive risk-reducing activities to
maximize the risk reduction achieved is not a problem of this type.

Some Fundamental Limitations of Risk = Threat ×
Vulnerability × Consequence

Some of the limitations discussed in the preceding sections are specific to
RAMCAPTM and can be overcome fairly easily. Instead of using arithmetic averages
on a log scale, one could use geometric averages. Instead of discretizing or “bin-
ning” estimated values of the vulnerability and consequence attributes, one could
use point estimates without binning. Instead of simply multiplying expected values,
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one could adjust for covariance [as in the formulas E(XY) = E(X)E(Y) + Cov(X, Y)
or E(XYZ) = E(X)E(Y)E(Z) + E(X)Cov(Y, Z) + E(Y)Cov(X, Z) + E(Z)Cov(X, Y) +
E{[(X – E(X)][Y – E(Y)][Z – E(Z)]}] or use Monte Carlo simulation to estimate the
mean of a product of (possibly correlated) factors. However, other difficulties appear
to be intrinsic to Equation (15.1). This section discusses limitations that appear to
be impossible to avoid.

“Threat” Is Not Necessarily Well Defined

Equation (15.1) assumes that a threat probability number exists, at least in principle,
reflecting the probability of an attack in a stated interval of time. However, if the
attack probability in that interval depends on the assessed threat number, then any
estimate of threat may be self-defeating. This occurs if an attacker’s response to the
threat estimate (or to the defender’s actions based on it) invalidates the estimate.
In general, any threat estimate that does not model how attackers respond to the
threat estimates (and resulting defender actions) may be unreliable. This holds no
matter how the threat estimates are derived, e.g., whether by Bayesian, frequentist,
or other (e.g., game-theoretic) threat assessment. Moreover, even apart from the
need to model attacker responses, threat numbers may be inherently ambiguous
when the assumptions and knowledge on which they are based are not explicitly
stated.

Example: Self-Defeating Threat Predictions

Suppose that two players, Attacker and Defender, engage in the following game.

Stage 1: Defender estimates the threat (= attack probability), vulnerability,
and consequence values for each of M facilities. Defender identifies the N
top-ranked (highest threat × vulnerability × consequence values) facilities,
where N < M reflects Defender’s resource constraints.

Stage 2: Attacker randomly selects K > 0 of the other (M – N) facilities to
attack, with probabilities proportional to their vulnerability × consequence
values (and independent of their estimated threat probability numbers). (K
reflects Attacker’s resource constraints.)

In this setting, assigning a high enough threat value to a facility to place it in
the top N facilities guarantees that it will not be attacked (true threat and risk= 0,
conditioned on estimated threat and risk being sufficiently high). Thus, estimating a
threat as high makes the true threat low. The concept of a threat as a static probabil-
ity number that is “out there” to be estimated is fundamentally inadequate for pro-
tecting against informed, intelligent attackers if the threat estimate itself affects the
threat being estimated. Although this example has used a deliberately simple pair
of decision rules for Defender and Attacker, it illustrates that Attacker’s strategy
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may exploit Defender’s own threat estimates and ranking, thus undermining their
predictive validity.

Example: Ambiguity of Threat Estimates

Suppose that an adversary will attack a facility within the next year if and only if
he knows that the attack will succeed with probability at least 0.8. Suppose that a
perfectly reliable and well-calibrated vulnerability assessment expert announces that
the probability that an attack on the facility will succeed (assuming, for purposes of
the vulnerability assessment, that it is attempted) is 0.33, based on knowledge that
an attack can succeed if and only if the adversary has a secret weapon (or inside
help, etc.) and the probability of obtaining this required advantage in the next year
is only 0.33. A threat assessment expert knowing these probability numbers might
well conclude that the facility will not be attacked in the next year (since 0.33 <
0.8). But, in reality, the probability of an attack on this facility in the next year is
0.33, the probability that the adversary will gain the secret weapon and then attack.
(A 100% chance of a 33% chance of success at the time the adversary makes a go-no
go decision would indeed guarantee no attack, but a 33% chance of a 100% chance
of success does not.)

“Vulnerability” Can Be Ambiguous and Difficult to Calculate via
Event Trees

The concept of “vulnerability” as the conditional probability that an attack succeeds,
given that it is attempted, is vague about how and why the attack is conducted and
what contingency plans an attacker uses if some setbacks are encountered. These
details can greatly affect the calculated vulnerability values.

Example: Ambiguity of Attack Success Probabilities Elicited from Experts,
Due to Unspecified Implications of an Attack

Suppose that we ask an expert in terrorism risk analysis for (a) the probability that
a certain facility will be attacked within the next year (the “threat” to that facility)
and (b) the probability that an attack will succeed in destroying or compromising
the facility, assuming that an attack is made (the “vulnerability” of the facility). The
expert knows (although we do not) that an attack will be made in the next year if
and only if the potential attackers first obtain a device that is guaranteed to make
the attack successful. Any attack made without that device will fail. The probabil-
ity that the device is obtained in the next year is 1/3. Based on this knowledge, the
answer to question (a) is that the threat is 1/3. But the correct answer to question
(b) depends on exactly how the expert interprets the question. If she interprets
“assuming that an attack is made” to mean “assume that an attack is made, whether
or not the attackers have the device,” then the probability that the attack will succeed
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is only 1/3 (the probability that the device is obtained prior to the attack). But if she
interprets “assuming that an attack is made” to imply that the attackers will necessar-
ily have the device (since otherwise they would not attack), then the probability that
the attack will succeed is 1. Which answer, 1/3 or 1, the expert gives in response
to question (b) depends entirely on her assumptions about the implications of the
assumption that an attack is made. Since no uniquely correct interpretation or set of
implications is specified as part of the question, there is no unique correct answer.
Using such elicited probabilities to allocate resources makes the allocation depend
on interpretations of ambiguous hypothetical conditions, rather than on how terror-
ists will actually behave.

Suggesting that event tree analysis can be used to estimate vulnerability num-
bers begs the question of exactly how the plans, contingency plans, and adaptive
responses (and, if necessary, replanning) of intelligent agents should be modeled, so
that they can be represented as event trees. The following examples show that treat-
ing activities of intelligent attackers as random variables in a standard event tree
is generally not adequate for modeling how determined, intelligent attackers learn
from failure and adaptively modify their plans and behaviors. Risk assessments that
do not model such features of intelligent attacks can underestimate risks and misal-
locate resources.

Example: Ambiguous Elicited Probabilities of Successful Attack

For simplicity, suppose that an attacker moves among only four states, Ready, Suc-
ceed, Fail, and Interdicted. The attacker starts in the Ready state. From that state,
all he can do is attempt an attack. The attack consists of a single activity, which
either succeeds (with probability s) or fails (with probability 1 – s) when attempted.
A failed attempt leads to a probability c of being interdicted (“caught”). If this is
avoided, then the attacker eventually returns to Ready, perhaps after a delay. This
example considers how this simple process might be represented and analyzed via
probabilistic risk assessment (PRA), which seeks to characterize risk via the fre-
quency (or probability) and severity of possible adverse consequences (Bier and
Azaiez, 2009).

Problem: If the attack success and interdiction probabilities are s = 0.2 and c =
0.1, respectively, then what is the probability that this situation will end with a suc-
cessful attack (“vulnerability”)?

Solution: The answer depends completely on exactly how the two probabili-
tiess = 0.2 and c = 0.1 are interpreted, and on the apparently subtle philosophical
distinction between aleatory and epistemic probabilities. One possible answer is that
the probability of a successful attack is s = 0.2. This is correct if the success prob-
ability of s = 0.2 is interpreted as an epistemic probability reflecting uncertainty
about whether the attacker can successfully complete the attack activity once it is
attempted. (For example, an attack team that rams a car loaded with gasoline into
an airport building may have a 20% probability of discovering that this successfully
compromises the integrity of the building and kills a large number of people and an
80% probability of discovering that it does not work very well, and just blows up
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the car and kills the driver. In this case, attempting the attack will resolve the uncer-
tainty. A success probability of s = 0.2 would then be the answer to the question.)

A different answer is correct if the success probability is interpreted as an
aleatory (or “stochastic”) probability. In this interpretation, failure on one attempt
does not reveal that success is impossible: it only means that the attacker was not
lucky on that particular attempt. After returning to the Ready state, another attempt
could be made, and the probability of success would then be s = 0.2 again. (For
example, this is the interpretation that might be most relevant if “success” of an
attack depends on random factors such as the direction of the wind, traffic condi-
tions, or the chance presence or absence of police or detectors at the time of the
attack.)

If the aleatory probability interpretation is used, then the situation moves among
different states according to the Markov transition diagram in Fig. 15.1. There are
thus two possible eventual outcomes (absorbing states) of this process: Succeed
or Interdicted. The probability of eventual success starting from the Ready state,
denoted by p, satisfies the recursive equation

p = s + (1− s)(1− c)p

That is, it is the sum of the probability of immediate success starting from Ready,
which is s, plus [the probability of returning to Ready, which is (1 – s)(1 – c)] ×
[probability of eventual success starting from Ready, which is p.] The solution is

p[1− (1− s)(1− c)] = s, or p = s/[s + c(1− s)].

For the particular numerical values in this example, s = 0.2 and c = 0.1, the
probability of a successful attack being completed before interdiction is

p = s/[s + c(1− s)] = 0.2/(0.2+ 0.1∗0.8) = 0.714.

Thus, an aleatory interpretation of the probabilities s = 0.2 and c = 0.1 leads
to a predicted risk of 0.714, significantly higher than the predicted risk of 0.2 if an
epistemic interpretation is used.

s
Ready →Succeed

(1 – s)  (1 – c)↓↑
Fail → Interdicted

c

State-transition diagram

Fig. 15.1 Transition diagram for a simple stochastic attack process. Arrows indicate possible tran-
sitions among the four states (Ready, Succeed, Fail, Interdicted). Each transition arrow is labeled
with its probability of occurrence as follows: s = probability that Succeed follows Ready; 1 – s =
probability that Fail follows Ready; c= probability that Interdicted follows Fail; 1 – c = probabil-
ity that Ready follows Fail
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In most practical applications of Equation (15.1), interpretations of probability
numbers (aleatory or epistemic) are left to subject matter experts. Hence, it can
be unclear how users of such models are supposed to interpret the probabilities
produced and whether the risks quantified by the model are correct. For example,
defining vulnerability as “the conditional probability that an attack succeeds, given
that it is attempted” would be inadequate, as it is silent about whether “probability”
is to be interpreted as aleatory or epistemic – and this difference matters.

Example: Event Trees vs. Decision Modeling for Actions of Intelligent
Attackers

Even if all probabilities are known and are aleatory, standard event tree modeling
that ignores rational decision making by an attacker may lead to conclusions and rec-
ommendations importantly different from those generated by models that account
for the optimizing behavior of intelligent attackers. Treating attackers as optimizers
and calculating their best responses to different conditions may allow a defender
with limited resources to achieve larger risk reductions than can be produced by any
model [including Equation (15.1)] that ignores details of how intelligent attackers
adapt their plans as information becomes available before and during the course of
an attack. “Best-response” models represented as two-level or few-level hierarchical
optimization problems (e.g., in which Defender calculates Attacker’s best responses
to various conditions, and then chooses defensive investments to minimize the dam-
age from Attacker’s best response) are typically far easier to formulate, solve, and
understand than full game-theoretic analyses, yet are adequate for much practical
work in counterterrorism and infrastructure protection (Brown et al., 2006).

Problem setting: Suppose that an attack on a facility succeeds if and only if
Attacker successfully completes both of two activities, A and B. It costs Attacker
1 unit (on some scale) to attempt each activity. Activities A and B have respective
success probabilities of 0.8 and 0.5, when and if each is attempted. The benefit to
Attacker of a successful attack is 10 (on a scale comparable to the one used for
costs). Attacker acts intelligently to maximize the expected net value. He can afford
to initiate one attack per year, and the facility is one of 100 similar facilities that are
equally likely to be targeted; thus, the probability that it will be attacked in a year is
assumed by Defender to be threat = 0.01.

Defender, with a limited budget, must choose which of two expensive counter-
measures to implement: option 1 reduces the success probability for attack activity
A from 0.8 to 0.24, while option 2 reduces the success probability for activity B
from 0.5 to 0.145.

Problem: (a) Which countermeasure should Defender implement, option 1 or
option 2 (assuming that he can afford only one)? (b) How much risk reduction will
this achieve?

Solution based on traditional event tree analysis: The probability that an attack
succeeds is the probability that both A and B succeed. This is 0.8∗0.5 = 0.4
in the absence of intervention; 0.24∗0.5 = 0.12 if option 1 is implemented; and
0.8∗0.145 = 0.116 if option 2 is implemented. Therefore, the decision implement
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option 2 maximizes predicted risk reduction. It reduces the predicted conditional
risk of a successful attack (conditioned on an attack being attempted) from 0.4 to
0.116.

Solution accounting for intelligent decision making by adversary: An intelligent
adversary maximizes the expected net benefit of an attack by trying the activities
in order of decreasing ratio of failure-probability-per-unit-cost until no remaining
activity has positive expected value. [This is a simple example of an index policy for
dynamic optimization (Cox, 1990; Denardo et al., 2004; Sethuraman and Tsitsikilis,
2007)]. Thus, Attacker’s optimal strategy if Defender does nothing to reduce vulner-
abilities is to first attempt activity B (having failure-probability-per-unit-cost ratio
of 0.5/1 = 0.5) and then attempt activity A (having failure-probability-per-unit-cost
ratio of 0.2/1 = 0.2) if B succeeds. This attack sequence has an expected net benefit
to Attacker of (–1 to attempt B) + (0.5 probability that B succeeds)∗[(–1 to attempt
A) + (0.8 probability that A succeeds)∗(10 benefit if B & A both succeed)] = –1 +
.5∗(–1+ 0.8∗10)= 2.5. Since this is positive, it is worthwhile for Attacker to under-
take an attack.

If option 2 is implemented, then the optimal attack still attempts activity B
first (with failure-probability-per-unit-cost ratio of 0.855) and then, if B succeeds,
attempts A (with failure-probability-per-unit-cost ratio of 0.2/1 = 0.2), for an
expected cost of (–1 to attempt B) + (0.145 probability that B succeeds)∗[(–1 to
attempt A) + (0.8 probability that A succeeds)∗(10 benefit if B & A both succeed)]
= –1 + 0.145∗(–1 + 0.8∗10) = 0.015. Again, an attack is worthwhile.

However, if option 1 is implemented, then it is best for Attacker to attempt activ-
ity A first (with failure-probability-per-unit-cost ratio of 0.76/1 = 0.76) and then, if
A succeeds, attempt B (with failure-probability-per-unit-cost ratio of 0.5/1 = 0.5),
for an expected net benefit to Attacker of (–1 to attempt A) + (0.24 probability that
A succeeds)∗[(–1 to attempt B) + (0.5 probability that B succeeds)∗(10 benefit if B
& A both succeed)] = –1 + 0.24∗(–1 + 0.5∗10) = –0.04. Since the expected net
benefit of this attack is negative, the attacker has no attractive attack opportunity
left at this target location. [Trying B first and then A if B succeeds would have
an expected value of (–1 to attempt B) + (0.5 probability that B succeeds)∗[(–1 to
attempt A)+ (0.24 probability that A succeeds)∗(10 benefit if B & A both succeed)]
= –1 + 0.5∗(–1 + 0.24∗10) = –0.30.]

Therefore, the optimal defensive strategy, taking into account the attacker’s intel-
ligent responses to different countermeasures, is to implement option 1. Doing so
reduces the risk from 0.4 to 0. This differs significantly from the recommendations
and predicted risk reduction made above using event tree analysis, which models
Attacker’s behavior using random variables instead of optimized decisions.

The principle illustrated in this example, that modeling an intelligent attacker’s
intelligent (optimizing, adaptive) behavior leads to different recommendations and
risk estimates from traditional event tree analysis, also applies to expected utility-
maximizing attackers with exponential utility functions and to attack opportunities
with general precedence constraints (Denardo et al., op cit.) The lesson here is that
event trees can be used, but they do not represent or solve Attacker’s and Defender’s
key planning and decision problems. These must therefore be solved using other
principles, such as the index policy illustrated above.
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Optimization of decisions based on their probable consequences, taking into
account the actions of opponents, is essential for realistic QRA. This example
has illustrated a very simple case of two-level hierarchical optimization in which
Defender can evaluate each feasible alternative course of action (i.e., implement
option 1, option 2, both, or neither) by calculating Attacker’s best response to it.
This enables Defender, in turn, to choose a best course of action for reducing risk,
taking Attacker’s best response into account. Military operations research experts
have developed two-level optimization for leader-follower (Stackelberg) games into
a powerful planning and resource allocation technique that appears to be practical
for many counterterrorism and infrastructure protection risk management applica-
tions (Brown et al., 2006). Hierarchical optimization dispenses with the threat com-
ponent, conceived of as a single number to be estimated, and goes beyond simplistic
estimates of vulnerability in Equation (15.1). Instead, it focuses on predicting and
controlling attacker behaviors via the incentives created by defensive investments.
Hierarchical optimization can produce strategies (perhaps mixed) for the opponents
as outputs, rather than requiring them as inputs. Such modeling avoids both the
(potentially unrealistic) idealizations of game theory (Bier and Azaiez, 2009) and
the limitations of Equation (15.1).

Example: Probabilistic vs. Decision Modeling for Actions of Intelligent
Attackers

This example reinforces the previous one by showing that, even in the absence of
any complicated optimization calculations, an attacker who simply “follows the path
of least resistance” by picking activities that are most likely to succeed in complet-
ing the attack may behave very differently from what a simple probabilistic risk
assessment (PRA) model of an attack would predict (Golany et al., 2009). As a
result, the best choice of countermeasures may differ from what would be recom-
mended using PRA calculations that treat attacker activities as random variables
rather than as outcomes of intelligent planning and adaptation to intelligence about
countermeasures.

Suppose that public health is threatened if some logical combination of events
takes place. For clarity, consider this small example, with only four basic events:

• A = a specific infectious agent is introduced into a building via air intake,
• B = the infectious agent is introduced into the building via drinking water,
• C = the agent escapes detection until after building occupants are exposed and

some become infected,
• D = one or more people become ill or die as a result of the undetected exposure.

The probability of D over the next year can be calculated as follows:

Pr(D) = Pr(D|C)∗Pr(C) = Pr(D|C)∗[Pr(C |B)∗Pr(B)
+ Pr(C |A)∗Pr(A)− Pr(C |A&B)∗Pr(B|A)∗Pr(A)].
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In this expression, each of the initiating events A and B would typically be
assigned an estimated annual frequency of occurrence. Pr(C | B) and Pr(C | A)
reflect any detection countermeasures that are in place. Pr(D | C) reflects the vir-
ulence, time to diagnosis, and availability of effective treatments.

If the numbers are Pr(A) = 0.01, Pr(B) = 0.02, Pr(C | A) = 0.5, Pr(C | B) = 0.4,
Pr(D | C) = 0.2, and Pr(A & B) = Pr(B | A)∗Pr(A) is small enough to ignore, then
the annual probability predicted for D would be estimated as

Pr(D) = Pr(D|C)∗[Pr(C |B)∗Pr(B)+ Pr(C |A)∗Pr(A)]

= 0.2∗[0.4∗0.02+ 0.5∗0.01] = 0.0026.

A countermeasure that reduces the nondetect probability for airborne agents from
0.5 to 0.25 would reduce predicted risk to 0.0021 [i.e., by (0.0026 – 0.0021)/0.0026
= 19.2%]. A countermeasure that reduces the nondetect probability for waterborne
agents from 0.4 to 0.2 would reduce the predicted risk to 0.0018 (i.e., by 30.8%).
Installing both countermeasures reduces the predicted risk to 0.0013, i.e., by half.

If the initiating events are caused by intelligent attackers with good intelli-
gence about what countermeasures have been implemented, then the risk assessment
changes dramatically. Absent countermeasures, such an attacker who has sufficient
resources to afford an average of 0.01 + 0.02 = 0.03 attacks per facility-year at
this location would focus on the path of least resistance or greatest success prob-
ability, i.e., the airborne route. Doing so creates an annual risk of 0.2∗[ 0.4 ∗ 0 +
0.5∗0.03] = 0.0030. A countermeasure that reduces the nondetect probability for
airborne agents from 0.5 to 0.25 would cause the attacker to shift the attack toward
waterborne attacks. After the countermeasure has been implemented, the new risk
becomes 0.2∗[ 0.4 ∗ 0.03 + 0.25∗0] = 0.0024, corresponding to only a 7.7% reduc-
tion in risk. Implementing a countermeasure that reduces the nondetect probabil-
ity for waterborne agents from 0.4 to 0.2 would leave the optimal attack strategy
(airborne route) and resulting risk unchanged at 0.0030. Implementing both coun-
termeasures would reduce the risk to 0.0015 (or possibly to zero, if a success prob-
ability of only 0.0015 is too low to justify the attacker’s investment of resources).

In summary, for the same total frequency of initiating events (i.e., 0.03 per year),
the intelligent attack gives a slightly higher predicted risk than a fault tree model
(0.0030 instead of 0.0026). However, the two approaches give very different pre-
dictions for the effects of alternative risk management countermeasures. For exam-
ple, a countermeasure that reduces the nondetect probability for waterborne agents
from 0.4 to 0.2 would reduce the predicted risk to 0.0018 in the fault tree model,
but would leave it unchanged at 0.0030 in the intelligent-attacker model. The two
models have opposite implications for which countermeasure to implement if only
one can be afforded. The purely probabilistic model predicts that the larger risk
reduction is achieved by the countermeasure that reduces the nondetect probability
for the waterborne route, while the intelligent-attacker model predicts that imple-
menting this countermeasure will leave the risk unchanged. Thus, it is important to
use decision-optimizing models rather than purely probabilistic models if initiating
events do, in fact, result from the efforts of intelligent agents who adapt their attacks
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to exploit relative weaknesses in defenses. The reason is that intelligent agents can
use information as it becomes available to continually update their strategies (for
example, to follow the changing path of least resistance until no attractive path for-
ward remains). This type of adaptation to exploit changing situations does not arise
in standard PRA models for applications without intelligent agents.

“Consequence” Can Be Ambiguous and/or Subjective

In many applications, the consequence term in Equation (15.1) is interpreted as a
single number. (Of course, the number can be drawn from a distribution, or arrived at
via multiattribute modeling.) This number may represent the midpoint of a range or
the mean of a probability distribution for multiple possible consequences. However,
in general, there is no unique “correct” way to represent an uncertain consequence
by a single number (see Chapter 4). Such numbers are inherently either subjective
(if they are calculated for a particular, stated risk attitude) or ambiguous (otherwise).
For example, recall from Chapter 4 that three prospects (e.g., attack scenarios), A,
B, and C, having normally distributed consequences (on some value scale) with
respective means of 1, 2, and 3 and respective variances of 0, 1, and 2, can have
oppositely ordered certainty equivalent values (with A being ranked either highest
or lowest), depending on the assessor’s subjective risk attitude.

Discussion and Conclusions

The concepts of threat, vulnerability, and consequence as numbers that experts can
estimate and use in calculating risk are problematic for assessing risks from intelli-
gent adversaries. Threat estimates may be self-defeating if attackers use intelligence
about the defender’s own threat estimates to help decide where and when to attack.
Vulnerability, meaning the probability that an attack succeeds if it is attempted, may
depend on the attacker’s ability to dynamically replan and continue the attack when
obstacles are encountered. The information needed to predict what an intelligent
attacker will do and how likely he is to succeed must include such contingent actions
and therefore is not well represented by a single vulnerability number. Rather, vul-
nerability is perhaps better represented as a model for calculating the conditional
probability that an attack will succeed if the attacker plans optimally (and then
reoptimizes throughout the course of the attack as new information becomes avail-
able). The correct answer to “How likely is it that an attack will succeed?” typically
depends on the attacker’s response to the defender’s preparations. Attempting to
assess vulnerability holistically, or by standard PRA techniques, without an explicit
analysis of the attacker’s best responses, can produce misleading risk estimates and
poor risk management recommendations.

Finally, when the consequences of an attack are very uncertain (perhaps depend-
ing on factors such as the wind direction and speed at the time of attack and
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the ability to warn and/or evacuate people quickly and effectively), the use of
consequence numbers may be inherently subjective and/or ambiguous. Even in prin-
ciple, there may be no set of consequence numbers that different rational risk man-
agers (having different risk attitudes) agree with.

These limitations suggest that Equation (15.1) ignores some key problems. It
forces practitioners to try to use and interpret numbers that have no clear conceptual
definitions and that do not model the planning, learning, and adaptive replanning
of intelligent attackers. Although expert probability elicitation techniques can cer-
tainly be applied even to poorly defined or meaningless quantities, simply eliciting
numerical values does not resolve the conceptual limitations of the threat, vulnera-
bility, and consequence numbers, nor model what real attackers will do to achieve
their goals, nor make the elicited values useful for predicting risks or for priority
setting and resource allocation.

What would be better? Perhaps the most important improvement is to model
attacker actions not as random events, but as results of intelligent, goal-directed
choices that are responsive to information about defenses and about the success or
failure of attempted actions. Several technical options for such modeling have been
developed, including the following.

• Decision tree analysis generalizes event tree analysis by allowing choice nodes
as well as chance nodes in the tree representing attack sequences. At each choice
node, the attacker can decide what to do next based on all the information avail-
able at that node (i.e., the sequence of event outcomes and actions that led to
it). Intelligent attacks are modeled by assuming that, at each choice node, the
attacker chooses the outgoing arc that maximizes the conditional expected utility
starting from that node. A decision tree goes beyond TVC by allowing T= “prob-
ability of attack” and V = “probability of success” to evolve as future informa-
tion items (events or actions) become known. Thus, threat and vulnerability are
not simply numbers, but stochastic processes with numerical values that changs
contingent on different information. Risk is not determined by multiplying T, V,
and C, but by optimizing via backward dynamic programming in a decision or
game tree. Off-the-shelf decision tree software products provide extensive sup-
port for commercial-quality quantitative risk analysis using decision trees (von
Winterfeldt and O’Sullivan, 2006; NRC, 2008).

• Probabilistic activity AND-OR networks. A practical limitation in formulating
decision trees is that they can be very large when there are many choices to
be made. (For example, if N activities must be completed to accomplish a cer-
tain goal, and if they can be attempted in any order, then there is a choice of
N! possible orders in which to try them.) One solution to this problem (Cox,
1990) is to represent attack opportunities as stochastic activity networks in which
nodes represent activities, arcs represent precedence constraints, and each activ-
ity has a specified probability of being successfully completed if it is attempted
and requires a specified amount of time (or other resources) to attempt. The
attacker uses an optimal index policy (Denardo et al., 2004) to continually choose
the most promising remaining path forward, given the outcomes of activities
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attempted so far, and abandons the attack only when no attractive path forward
(with positive expected value to the attacker) remains.

• Project planning models of terrorist attacks apply off-the-shelf project planning
and risk analysis software to represent the interdependent tasks that terrorists
must successfully undertake to complete planned attacks, to plan in what order
to attempt these activities, and to calculate the overall probability of successful
completion from the success probabilities for individual tasks (Rosoff and von
Winterfeldt, 2007).

• Hierarchical optimization focuses on optimizing allocations of defensive
resources, assuming that attackers will then adopt “best responses” to the allo-
cations. This suggests two- (or more-) level hierarchical optimization, as in the
simple examples in the previous section and the more complex real-world appli-
cations in Brown et al. (2006). Synergies or other interactions among defensive
options magnify the value of optimizing allocations, rather than using holistic
scores or priority orders to allocate defensive resources.

These and other approaches, such as game-theory models (Bier and Azaiez,
2009), typically do not even attempt to assess the threat, vulnerability, and conse-
quence numbers or scores as inputs. Instead, they focus on modeling how intelligent
attackers can best exploit opportunities to do damage, and how defenders can allo-
cate defensive resources to minimize the damage that attackers can do, assuming
that the attackers will take full advantage of remaining weaknesses.

Regardless of which technical options are used, treating attackers as intelligent
opportunists, rather than as random variables, appears to be essential for overcom-
ing key limitations of purely probabilistic modeling (Bier and Azaiez, 2009; NRC,
2008; Golany et al., 2009). Rather than trying to assess risks holistically based on
probability judgments about what damage attackers may do (e.g., through expert
judgments of threat, vulnerability, and consequence scores), it is more useful – and
technically practical – to focus on optimizing defenses, assuming that attackers will
respond by optimizing their attacks accordingly.



Chapter 16
Designing Resilient Telecommunications
Networks

How can telecommunications networks be designed to withstand deliberate attacks
by intelligent agents, possibly working in teams? This chapter continues discussing
quantitative risk assessment (QRA) for systems with intelligent adversaries by
reviewing progress in methods for designing communications networks that are
resilient to attacks – that is, that are able to quickly and automatically reroute traf-
fic around affected areas to maintain communications with little or no interruption.
Current network architectures, routing and restoration protocols, and design meth-
ods already suffice to protect networks against the loss of any single link or node, so
the main focus for defending against deliberate attacks is on the design of networks
that can reroute traffic even when multiple simultaneous failures occur.

We first survey deterministic optimization for designing networks that can
reroute all traffic after loss of any k links or nodes, where k is an integer reflect-
ing the attacker’s ability to do simultaneous damage. Optimization heuristics for
k = 1 and k = 2 are relatively well developed, but the design of networks that are
resilient to k link cuts or node deletions, for arbitrary k, is an open problem. Next,
we consider simple probability models for failures in packet-switched data networks
caused by attacks on the most loaded nodes. At least in highly simplified (not neces-
sarily realistic) models, such networks are inherently resilient to attacks if and only
if they have enough spare capacity at each node (typically about 10k% more than
would be required in the absence of attacks, if the attacks are focused on the k most
heavily loaded node). Networks with less than this critical amount of extra node
capacity are predicted to be vulnerable to cascading failures following a successful
attack.

Even though progress in the deterministic optimization and probability modeling
of telecommunications networks suggests that it may be possible to meet the techni-
cal challenges of designing highly resilient networks, network operators and owners
may lack incentives to invest in network protection. We present examples showing
that traditional game-theoretic results on the Pareto inefficiency (and nonunique-
ness) of Nash equilibria and other solution concepts apply forcefully to jointly
owned telecommunications networks. In such settings, network owners and users
might all benefit from institutions that enable them to mutually commit to larger
investments in network resiliency than they would otherwise make.
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Introduction: Designing Telecommunications Infrastructure
Networks to Survive Intelligent Attacks

Three possibilities for designing telecommunications networks that will provide
reliable communications, even if terrorists or other intelligent adversaries attack the
network infrastructure, are as follows:

• Physical defenses seek to “harden” selected network nodes and links enough to
make attacks undesirable, perhaps by burying cables more deeply or reinforcing
buildings against attacks.

• Information defenses use secrecy, deception, and randomization (Brown et al.,
2006) about facility locations and interconnection plans to increase the costs of
planning successful attacks.

• Resilient networks, the main focus of this chapter, provide enough flexibility,
redundancy, and rapid recovery (or “self-healing”) capability so that any afford-
able attempts to disrupt traffic instead result in the automatic rerouting of traffic
and uninterrupted service. This chapter surveys recent ideas, methods, and mod-
els for designing such resilient networks to protect telecommunications infras-
tructure against deliberate attacks.

Throughout this chapter, networks are understood to consist of nodes and links.
Nodes represent locations where network elements carry out the switching, groom-
ing (i.e., aggregation from lower- to higher-bandwidth signals), regeneration and
amplification of optical signals, and routing of traffic. Network elements consist of
equipment such as add-drop multiplexers (ADMs) and remotely configurable opti-
cal cross-connect switches (OXCs). Links, such as fiber optic cables and microwave
links, carry signals between nodes. More specifically, terminating equipment for
creating and receiving traffic coded as modulated laser light is situated at the nodes.
Any other equipment that is located on the links themselves (e.g., regenerator huts,
where optical signals are strengthened for transmission over long distances) will be
treated as part of the links. The key question addressed in this chapter is: How should
network topologies be designed and how should traffic be routed and switched to
make communication among nodes resilient to link and node failures, whether acci-
dental or resulting from deliberate attacks?

Background: Diverse Routing, Protection Paths,
and Protection Switching

Modern fiber optic telecommunications networks are vulnerable to failures of links
(i.e., individual fibers or entire fiber cables carrying bundles of fibers) and fail-
ures of nodes (e.g., due to failures of terminating equipment or to fires in central
offices). Historically, major fiber breaks have occurred several times per year in
the United States, usually because of backhoes accidentally digging through buried
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fiber conduits. Node failures are uncommon, but do occur. For example, a 1988 fire
at the Hinsdale central office in Illinois, which was a hub for multiple long-distance
companies, led to multiple simultaneous outages. This event taught the telecommu-
nications industry the importance of avoiding the possibility of such single-point
failures. However, deliberate attacks might increase the frequency of failures, espe-
cially, coordinated simultaneous failures intended to disrupt the flow of telecom-
munications network traffic. The resilience of networks to such coordinated failures
requires additional analysis.

Automated Protection Switching (APS) for Packets and Light Paths

Telecommunications networks rely on automated protection switching (APS) to
automatically reroute traffic when failures of nodes or links occur. Two quite dif-
ferent types of traffic can be rerouted automatically: data packets and light paths.
Packets are used to carry information in data networks and in many mobile and wire-
less networks. Light paths are dedicated sequences of links and equipment, together
with optical channel assignments for each link, that carry very high-bandwidth opti-
cal signals (typically consisting of many lower-level channels multiplexed together
and encoded as modulated laser light) through optical networks. For purposes of
resilient network design, the main difference is that packets can follow different
routes through a network, although constraints on latency times for video and other
applications may limit the diversity of routes used by consecutive packets from the
same session. By contrast, a light path must provide dedicated end-to-end connec-
tivity; thus, if a link fails, each light path that has been using it must promptly switch
to another path with the same origin and destination nodes for all traffic in order to
avoid any interruption of service.

Demands Consist of Origins, Destinations, and Bandwidth
Requirements

It is often convenient to describe optical network traffic in terms of demands, with
each demand being specified by its origin node, destination node, and size (mean-
ing the amount of bandwidth that it requires, typically measured in units of optical
channels). The digital hierarchy of optical channels used in these networks pro-
vides discrete standard sizes of bandwidth, ranging from a single optical channel
(an “OC-1”) up to 192 channels (OC-192) or more, in standard multiples (OC-1,
OC-3, OC-12, OC-48, and OC-192). Smaller channel sizes (measured in bandwidth
units such as STS-1, DS-3, and DS-1s) are also available and are used in the access
networks that feed into optical backbone networks, but will not be considered further
here. The design issues considered in this chapter apply to all levels of granularity.

At any moment, an optical network is provisioned to carry a given set of
demands. This is done by assigning each demand to a specific light path that
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includes the desired origin and destination nodes and that has sufficient capacity
(i.e., bandwidth) to carry this demand in addition to other demands assigned to it.

Multiple Levels of Protection for Demands

In addition to its origin, destination, and size, each demand has a required level
of protection that determines what should happen in the event of a network fail-
ure event. Unprotected demands are routed on a best-effort basis, and they may be
dropped if a node or link fails. Each protected demand has an associated contingency
plan that allows the possibility of rerouting if such a failure condition occurs.

Different degrees of protection are available. For example, a very strong form of
protection reserves dedicated protection capacity for each demand on a “protection”
(or “backup”) light path with all links disjoint from those on the primary light path
that normally carries the demand. (For maximum protection, all nodes other than
the origin and destination may also be required to be disjoint from those on the
primary path.) If the primary path is interrupted at any point, the entire demand is
immediately switched onto the reserved protection path. Such protection typically
provides a physically diverse route (unless primary and backup links happen to pass
through the same conduit, which can be avoided with additional design effort), with
adequate capacity already reserved, for each protected demand. Recovery following
a failure is therefore extremely fast, since protection paths are precomputed and no
further computation is needed to figure out what to do when a failure occurs.

Example: Protection and Self-Healing Services in SONET Rings

Many existing legacy synchronous optical network (SONET) ring networks in
metropolitan areas embody this principle of fully redundant protection capacity.
Traffic is routed around an optical fiber ring in one primary direction (for unidirec-
tional SONET rings), with a duplicate signal being sent around in the other direction
for protection. Add-drop multiplexers (ADMs) positioned at nodes on the fiber ring
(e.g., local wire centers) insert (“add”) or receive (“drop”) traffic in time slot chan-
nels within each optical channel. (An optical channel typically uses a specific wave-
length, or color, of laser light. This wavelength, called a “lambda,” is modulated at a
high frequency to transmit information. Wavelengths in the vicinity of 1,530–1,560
nanometers can travel great distances through modern fiber optic glass before hav-
ing to be amplified or regenerated. These wavelengths are partitioned into optical
channels separated by guard bands of unused wavelengths. Different time slot chan-
nels within wavelengths are assigned to the laser pulses coding the information for
different demands.) If a link between two adjacent nodes on the ring fails, traffic
still flows between all origin-destination pairs of nodes using the reverse direction
of routing. Thus, restoration is almost instantaneous (less than 50 milliseconds), and
SONET ring owners can offer “self-healing” services.

However, this arrangement is costly, in that half the capacity of the ring is used
only by an unneeded duplicate signal unless a failure occurs. (In a bidirectional
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SONET ring, protected signals are normally sent in only one direction and pre-
emptable lower-priority traffic may use the other direction. If a failure occurs, the
preemptable traffic is dropped and the direction of flow for all protected traffic is
reversed, occupying the bandwidth that had been used for the preemptable traffic.)
In addition, of course, a ring is vulnerable to a coordinated attack that produces two
simultaneous link failures, creating two ring segments that are no longer connected.
No node in one segment can then send a signal to any node in the other.

Weaker forms of protection do not require the entire protection path for a demand
to be disjoint from the primary path. Instead, when a link fails, other nonfailed links
in the primary path may continue to be used, with traffic being switched locally
around the failed link. Such local rerouting to restore traffic flows, called restoration,
uses capacity more efficiently (and is less disruptive) than protection path switching,
since a relatively small set of flows can be rerouted based on the specific location of
a failure. Moreover, if it is assumed that only one or at most a few links will ever
fail simultaneously, then the same protection paths and capacity can be reserved to
handle the traffic from multiple primary paths. This leads to shared-capacity protec-
tion plans, where multiple primary paths are assigned the same protection capacity
under the assumption that not all of them will require it simultaneously. Intelligent
attackers may try to exploit such less-than-full redundancy to crash part of the net-
work by causing more traffic to be switched onto protection paths than their capacity
can hold. However, several contemporary network designs are resilient to any small
set of failures.

Example: Resilient Packet Ring (RPR) Protection Scheme

Resilient packet rings (RPRs) use Ethernet packets, rather than dedicated light paths,
to carry demands. They achieve fast recovery from fiber cuts, comparable to SONET
ring self-healing services, while providing more efficient and flexible utilization
of available capacity (bandwidth on links) since packets from the same session
can follow different routes. RPRs are organized as sets of intersecting small fiber
rings (called “ringlets”), which provide for highly flexible routing of traffic. As in
a SONET ring, protected traffic can be “steered” or “wrapped” around a ringlet
to avoid a failed link. (“Steering” redirects traffic in the event of a node or link
failure by informing all nodes of the change in connectivity and letting the rout-
ing algorithms update packet-routing decision tables based on the new topology.
“Wrapping” simply treats the last node prior to the failure point as a new origin and
forwards packets on to their destinations from there.) In addition, since each packet
contains its destination node address (coded into the packet header data), this infor-
mation can be used to route packets through the network while avoiding congested
(or failed) links, using concurrent information about the currently least-congested
routes as well as information about the priority classes for demands (e.g., to avoid
slow delivery of consecutive packets in applications such as video that are sensitive
to transmission delays). The intersecting-rings design allows many possible routes
between origin and destination nodes, making the network “resilient” to failures in
one or a few nodes or links.
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A Simple Two-Stage Attacker-Defender Model

Most traditional network designs have considered a network to be “survivable” if all
protected traffic can be rerouted and carried without service interruption following
the loss of any single link (and/or node). Multiple simultaneous failures are usually
treated as negligibly rare events. Of course, this can change dramatically when the
failures are intelligently planned and coordinated instead of occurring at random.
Multiple-failure events may then become realistic possibilities, and network designs
must be revised accordingly to defend against such events.

The vulnerability of a telecommunications network to intelligent attacks can
be assessed with the help of the following two-stage attacker-defender model, in
which an intelligent defender designs a network to withstand attack by an intel-
ligent attacker with limited resources, anticipating that the attacker will optimally
exploit any weaknesses.

Stage 1 (Defender’s move): The network operator (“Defender”) decides on all of
the following:

• Network topology: What nodes are joined by what fiber links?
• Fiber capacity: How much bandwidth is installed on each link? (This typically

involves deciding what terminating equipment to put at the nodes at the two ends
of the link.)

• Equipment locations and quantities: What equipment (referred to generically as
“network elements”) should be placed where in the network? This step specifies
the locations of add-drop multiplexers (ADMs), regenerators and amplifiers to
boost optical signals attenuated by passage through fiber, and wavelength con-
version equipment (typically based on remotely configurable tunable lasers) to
change the wavelengths used to carry specific optical signals, thus allowing more
efficient use of wavelengths that would otherwise be underutilized. (Regenera-
tors may be placed on links, but other network elements are placed at nodes; thus,
this decision is mainly about what equipment to place at each site.)

• Network interconnection: Which fibers connect which network elements?
• Admission control policy: When new demands arrive dynamically, as requests

for given amounts of connection bandwidth between two points (or among mul-
tiple points, for broadcast demands) for stated time intervals, the admission con-
trol policy determines which requests to accept and reserves primary paths and
restoration capacity (for protected demands) to accommodate them. This chap-
ter does not address dynamic admission control, but takes demands as given and
known.

• Traffic routing: How is each demand routed through the network? Which chan-
nels on which wavelengths on which fibers carry each demand (for dedicated
routes)? If the signal is converted from one channel or wavelength to another
along the way, then which cards (electronics boards that plug into slots in the
shelves of equipment racks) in which slots of which shelves in which equip-
ment bays receive, convert, and send the signal? (Such detailed route planning
is required to assure that sufficient ports and capacity are available to handle
the assigned traffic.) In other words, what is the primary path for each demand?
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Assignments of traffic to primary paths must be feasible, as determined by capac-
ity constraints (including the availability of cards and ports), interconnect plans,
and signal power budgets and distance constraints [required to keep the attenu-
ation of optical signals and the optical signal-to-noise ratio (OSNR) within the
tolerance of the signal processing equipment]. For packetized traffic, what deci-
sion rules, algorithms, or routing tables are used to route packets through the
network?

• Restoration plans: For protected demands, how will each demand be rerouted if
nodes, network elements, or links on its primary path fail? For packet networks,
how will packets be rerouted if congestion or failure is encountered, while still
meeting constraints on delivery times, i.e., “latency”?

Stage 2 (Attacker’s move): Once Defender’s move has been completed, Attacker
may cut any k links simultaneously. Here, k is an integer reflecting Attacker’s ability
to launch simultaneous attacks on multiple links simultaneously. A variation is to
allow attacks on nodes instead of, or in addition to, links. (“Simultaneous” cuts are
cuts completed within a short enough time so that the last is completed before the
first is repaired.)

To model intelligent attacks in this framework, one might assume that the attacker
has some particular goal in mind (e.g., to disconnect one or more specific target
nodes or subsets of nodes, perhaps representing strategic command and control cen-
ters, from the rest of the network). The defender seeks to reserve sufficient protec-
tion capacity and diversity of paths in Stage 1 so that these targets can withstand
any k-cut attack in Stage 2. This means that, after any k links are cut, all protected
demands can be rerouted on the reserved capacity. In particular, the network will
withstand an attack in which Attacker optimizes some objective function (which
may be unknown to the defender) to select which k links to cut. Formulating the
problem as protecting against any k cuts makes it unnecessary to speculate more
deeply about exactly how the attacker decides which links to target.

Results for Networks with Dedicated Routes (“Circuit-Switched”
Networks)

This section considers the problem of designing attack-resistant circuit-switched
optical networks. In a circuit-switched network, each demand is normally carried
by a dedicated light path. The following special cases of this framework have been
investigated.

Designing Networks to Withstand a Single (k = 1) Link Cut

The case k = 1 is the classic “survivable network” design problem of greatest inter-
est when failures are random and are rare enough so that the probability of multiple
simultaneous failures can be ignored. Designs that protect against any single link
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failure (such as “self-healing” SONET ring designs) also trivially protect against
any single deliberate link cut.

Solving the multiple interdependent decision problems in Stage 1 even for k = 1
can lead to very large-scale, computationally intractable optimization problems
(Tornatore et al., 2002) that include as subproblems well-known difficult (NP-
complete) combinatorial optimization problems such as the bandwidth-packing
problem (Laguna and Glover, 1993; Parker and Ryan, 1994; Villa and Hoff-
man, 2006) and multicommodity network flow problems (one for each failure
scenario) (Rajan and Atamturk, 2004). However, several solution heuristics and
meta-heuristics have proved to be highly effective in solving real-world survivable
network design problems with k = 1 (Soriano et al., 1998). For example, Rajan and
Atamturk (2004) compare (a) a relatively naı̈ve two-stage hierarchical design, in
which demands are first routed ignoring survivability requirements, and then addi-
tional capacity is added to links to allow traffic to be rerouted in the event of any
single link failure; and (b) a more sophisticated joint design that simultaneously
routes demands along primary paths and reserves sufficient additional capacity to
allow all traffic to be rerouted following any link failure. Heuristics for solving the
joint design problem (discussed next) achieve on the order of 20% cost savings
compared to the hierarchical designs when capacity is expensive.

Although the literature on capacitated survivable network design problems is now
vast (e.g., Soriano et al., 1998), many practical design strategies use a combination
of a few key heuristic ideas, including the following.

(a) Consider only a subset of all possible primary and protection paths. These are
typically generated using a greedy or fast (low-order polynomial-time) heuristic
(e.g., Dacomo et al., 2002), such as paths or rings constructed using modified
shortest-path or minimal spanning tree algorithms. For networks with general
topologies (i.e., mesh networks), it is common practice to search for rings or
directed cycles that “cover” the nodes and links of the network, meaning that
each node and each link belong to at least one ring. These rings are then used to
form protection paths. Finding minimal-cost ring covers in which each protec-
tion link is used exactly once can be accomplished easily for planar networks
(since then each ring corresponds to a face of the graph), but is NP-hard in gen-
eral. However, effective (polynomial-time) heuristics are available for various
ring-covering problems (including “double-cycle covers” in which each ring
appears in exactly two rings, being covered by a cycle in each direction exactly
once) (Dacomo et al., 2002).

(b) Iteratively improve feasible solutions by using local (myopic) search and opti-
mization procedures to add or delete capacities to maintain feasibility while
seeking to reduce costs.

(c) Ignore or relax difficult (e.g., integer-capacity) constraints at first, so that use-
ful initial approximate solutions can be obtained using linear programming. The
solutions to the relaxed problem serve as starting points for myopic improve-
ment heuristics.
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(d) Use multiple random starting solutions and evolve the population of candidate
solutions [using meta-heuristics such as simulated annealing, greedy random-
ized search procedure (GRASP), Tabu Search (Laguna and Glover, 1993) and
genetic algorithms] to discover lower-cost feasible ones.

The survivable network design heuristics of Rajan and Atamturk (2004) illustrate
several of these ideas. To obtain a tractably small number of possibilities to evalu-
ate, their solution heuristic only evaluates a subset of directed cycles as candidate
paths for restoring traffic flows following a link failure. The cycles are generated
and evaluated within an iterative “column-and-cut generation” heuristic optimiza-
tion algorithm that uses a variant of a shortest-path calculation to quickly generate
candidate directed cycles to consider as restoration paths. This restriction allows
formulation of mixed-integer programs (MIPs) that describe the capacitated surviv-
able network design problem. The decision variables are the amounts of capacity
added to each link. The constraints require that enough capacity be added to carry
all traffic (i.e., demands) in the absence of failure and also following any single link
failure. The objective function to be minimized is the total cost of all the capacity
installed in the network. The resulting MIPs can be solved approximately in a matter
of hours using a linear programming relaxation, strengthened with valid inequalities
representing the survivability requirements.

Many other researchers have also proposed integer linear programming (ILP)
formulations of the capacitated survivable network design problem with k = 1, dif-
fering according to the details of the technologies modeled, such as whether it is
assumed that light paths must use the same wavelengths on all links or instead allow
for wavelength conversion at nodes. Current solution heuristics typically give solu-
tions with costs that are close (often within about 3%) of the theoretical optimum
on benchmark cases where the exact solution is known or for which useful bounds
are available (usually based on branch-and-bound solvers with relatively long run
times).

A theoretical result of Brightwell et al. (2001) nicely captures both the compu-
tational intractability of exact solutions and the availability of good approximate
solution heuristics for the design of survivable networks with k = 1. The result is
expressed for a particularly simple model in which the attacker seeks to cut a link
to cause at least some traffic between a specified source node s and destination
node t to become unroutable using the remaining capacitated links in the network.
To prevent this, the defender is allowed to add additional discrete increments of
capacity to the links (e.g., corresponding to additional terminating equipment). The
defender knows the costs of adding different amounts of capacity to the links and
seeks a minimum-cost set of capacity additions that will allow all protected traffic
to be rerouted between s and t following any single link cut. In this framework,
Brightwell et al. establish that

(a) The problem can be solved easily (in polynomial time) using an algorithm based
on shortest paths if the discreteness of capacity additions is ignored.
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(b) The problem is computationally intractable (NP-hard) when constraints are
enforced, reflecting the discrete nature of capacity expansion decisions (due to
the fact that only a whole number of discrete capacity additions can be made on
any link).

(c) Despite this theoretical intractability, a simple polynomial-time heuristic based
on modified least-cost path assignments provides solutions that are not more
than 15/14 times more expensive than the exact (but perhaps too hard to com-
pute) cost-minimizing solution.

Designing Networks to Withstand k = 2 Link Cuts

In light of the maturity and widespread practical deployment of survivable network
designs for k = 1 cuts, an intelligent attacker attempting to disconnect one or more
target nodes from a modern network by severing links will typically have to make
at least two simultaneous cuts (e.g., one for each direction in a SONET ring). Choi
et al. (2002) address the design of networks that remain connected when any two
edges fail. Such networks, which must be 3-connected, must therefore also have
three link-disjoint paths between any two nodes (by Menger’s theorem in graph the-
ory). These link-disjoint paths can be identified quickly (using a Ford-Fulkerson
max-flow algorithm). They are used to create a primary backup path and a sec-
ondary backup path. Any single link failure automatically triggers switching of
affected traffic to the primary backup path, while a subsequent link failure then
triggers switching to the secondary backup path.

Choi et al. consider several variations of this basic idea, involving different
amounts of signaling after a failure event (to alert nodes to the change in network
topology) and using different information about path failure vs. specific link fail-
ures. Based on an evaluation of restoration possibilities in three real-world networks
(ARPANET, NJ LATA network, and a national network), they conclude that “It is
possible to achieve almost 100% recovery from double-link failures with a mod-
est increase in backup capacity.” Thus, although much more can be done (e.g.,
to allow for dynamic restoration based on specific information about failed links
rather than precomputed protection paths, or to minimize restoration capacity costs),
it appears that designing networks to protect against k = 2 simultaneous cuts is
practical.

Results for the General Case of k Cuts

Brightwell et al. have extended some of their results for k = 1 to larger values of
k as follows. The problem of finding a minimum-cost set of protective capacity
reservations (using link-disjoint paths) so that a specific demand can be restored
following any simultaneous deletion of at most k links can be solved in polynomial
time using a linear programming or ellipsoid algorithm, provided that the require-
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ment that the capacities be integer amounts is ignored. (Recall that the demand is
identified by a specific origin node s, a specific destination node t, and a bandwidth
requirement T.) However, the problem is strongly NP-hard (even for k = 1) when
the integer constraint is enforced. Despite this theoretical complexity, good approx-
imate solutions can be found with relatively little computational effort using a suc-
cessive shortest-path method (involving solving several shortest-path problems) for
minimum-cost flow problems. For some specific formulations of the minimum-cost
capacity-reservation problem, it can be shown that the solution found by ignoring
integer constraints is no more than 6/5 times more expensive than the true optimal
solution with integer constraints enforced, but is much easier to find.

In summary, it is practical to design networks that are resilient enough to protect
any single specified demand against the failure of any k arcs or nodes. The next step
is to investigate extensions of this encouraging result from a single demand to all
protected demands. This will require quantifying the costs of protecting different
amounts of demand against simultaneous attacks of different sizes, k ≥ 1. The work
reviewed in this section provides the beginnings of a theory of resilient network
design for arbitrary k, but much remains to be done to develop practical resilient
designs for arbitrary k > 2.

Statistical Risk Models and Results for Scale-Free
Packet Networks

This section considers statistical properties of failures in packet-switched networks
when intelligent attacks are modeled by assuming that the attacker always targets
the most heavily loaded node(s). In packet networks (e.g., the Internet), failures can
be caused by overloading nodes, that is, by forcing more traffic to be routed through
a node (e.g., a router) than it has the capacity to handle. In this case, packets dropped
at the overloaded node must be rerouted, shifting additional load onto nearby nodes.
This may trigger a spreading cascade of congestion and node failures.

Although such a cascading failure process might be difficult to model mathemat-
ically in detail, methods adopted from statistical physics – especially, the statistical
mechanics of phase transitions – provide suggestive insights (at least in highly sim-
plified and idealized models) into both the probability that a deliberate attack on
the most-linked node(s) will succeed in inducing a cascade of node failures, and
also the probable size of resulting network service outages. Precise results have
been derived for scale-free networks, i.e., networks in which the probability that a
randomly selected node is connected to x other nodes is proportional to x–γ (a Yule-
Simon power-law distribution). Such networks arise through preferential attachment
growth processes in which “the rich probably grow richer,” i.e., each new node
added to the growing network forms links to previously existing nodes with proba-
bilities proportional to how many links they already have. These (and some other)
random growth processes can generate networks in which a small fraction of nodes
are major hubs with many links, while most nodes have relatively few links.
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Empirically, scale-free networks with γ values between 2 and 3 have been
reported to describe well both the statistical pattern of World Wide Web page links
and the statistical distribution of connections among routers (i.e., nodes) in the Inter-
net (as well as other networks, such as air traffic networks and metabolic and pro-
teomic networks in systems biology). A study of 284,805 Internet routers revealed
a value of γ = 2.3, with the probability that a randomly selected node has x = 1
neighbor being Pr(x = 1) = 0.53 and the probability that it has 100 neighbors being
Pr(x = 100) = 2.5 × 10–5 (Deccio et al., http://dna.cs.byu.edu/papers/pdf/survive.
pdf.) However, the relevance of such statistical measures, and of the scale-free
model, to real networks has been challenged, in part by showing that networks
with completely different resilience to attacks may have identical scale-free network
parameters (Doyle et al., 2005).

Qualitatively, it has frequently been claimed that scale-free networks tend to be
highly resistant to random failures, yet very vulnerable to targeted attacks. This is
a direct consequence of the fact that they typically have a tiny proportion of very
heavily connected nodes, so that crashing (in effect, deleting from the network) a
few of the most heavily loaded nodes can cause most of the network to collapse
through cascading failures (Albert et al., 2000). For example, Deccio et al. (op cit.)
found that randomly deleting 1% of the nodes in a scale-free network (based on real
Internet router data) would leave over 97% of the original nodes operating normally,
but targeting the top 1% of most heavily connected nodes for removal would reduce
the size of the functioning network to less than 60% of its original size. Similarly,
Crucitti et al. (2004) found that the average time required to send packets through a
network in many simulated examples with 2,000 nodes and 10,000 edges was much
more sensitive to intelligently targeted attacks than to random failures. Complete
network failure (inability to deliver packets) occurred when about 0.4 of the nodes
were removed in a targeted way, but not when 90% or more of nodes were removed
randomly.

In practice, of course, even carefully planned and targeted attacks are more likely
to bring down only a few nodes simultaneously than a high proportion of all nodes
in a network. It is therefore desirable to understand the risk of network failure from
an attack that succeeds in knocking out only one or a few most heavily loaded nodes.
To this end, it is convenient to adopt the following explicit (though admittedly highly
simplified and unrealistic) model of how network traffic loads are initially allocated
among nodes and how they are redistributed following a successful attack (Zhao
et al., 2004).

1. In each time period, each node sends one unit of traffic to each other node via
the shortest path between them. (Ties are resolved arbitrarily.)

2. The total load on any node is the total amount of traffic per unit time passing
through it. By assumption 1, this is just the number of shortest paths passing
through it. For scale-free networks, it can be deduced that node loads follow a
power-law distribution of the form L(x) ∼ xη, where η > 0 is a scaling exponent
and L(x) is the load on a node that is connected to x neighbors (Zhao et al., 2004).

3. The total capacity of a node is the maximum load that it can process.



Statistical Risk Models and Results for Scale-Free Packet Networks 383

4. A node fails if and only if the traffic load sent to it exceeds its capacity.
5. If a node fails, then all traffic is rerouted using the new set of shortest paths

available after the failed node is deleted from the network.
6. The attacker chooses to attack the node with the largest number of links (i.e.,

neighbors).
7. The defender purchases sufficient capacity at each node to carry its entire original

load plus some additional fraction α of that load: capacity allocated to node i =
(1 +α)∗(load at node i), where α ≥ 0 is called the tolerance parameter.

This simple (not necessarily realistic) model leads to the following striking qual-
itative result. There is a critical value of the tolerance parameter, denoted αc (a
function of the scaling exponents in the power laws for the load distribution and
the degree distribution, η and γ, respectively, and of the number of nodes in the
network) such that

• If sufficient node capacities are allocated so that α > αc, then an attack on a single
node in a large network has probability close to zero of crashing the network.
More quantitatively, the ratio of the numbers of nodes in the largest connected
component of the network before the attack and after the attack (and after any
cascade of node failures that it triggers) will be approximately 1.

• On the other hand, if α < αc, then a successful attack that deletes the single most
loaded node in a network has a high probability (close to 1) of crashing the net-
work. In other words, the ratio of the numbers of nodes in the largest connected
component of the network before and after the attack (and after any cascade of
node failures that it triggers) will be approximately 0 with high probability.

• Theoretical calculations and numerical simulations show that the numerical value
of the critical value of the tolerance parameter is approximately αc ≈ 0.10.

The critical value of the tolerance parameter may be interpreted as a statistical
margin of safety at which a statistical phase transition occurs between the network
being resilient to deletion of any single node (meaning that other nodes remain con-
nected, with high probability) and the network being vulnerable to deletion of a
single node (meaning that it triggers a cascade of failures that end up disconnecting
most nodes).

Many variations of this basic phase-transition model have been explored, and
investigations of more realistic models and of the detailed statistics of how net-
works break apart into disconnected fragments (including the distributions of their
numbers and sizes) in the vicinity of the phase-transition point αc are ongoing (e.g.,
Duenas-Osorio et al., 2004). For example, numerical simulations suggest that an
attacker who attacks the k > 1 most linked nodes simultaneously can induce col-
lapse of the network at higher values of the tolerance parameter. The critical value
of the tolerance parameter increases approximately in proportion to the number of
simultaneous attacks, k (Zhao et al., op cit., Fig. 4). Attacks on edges as well as on
nodes have been studied and scale-free networks have been modified to include dif-
ferent types of clustering (e.g., Holme et al., 2002). Dynamic models, where node
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deletions by an attacker and node additions or repairs by a defender take place over
the same time interval, have also been examined. These lead to the conclusion that
the evolving network remains highly connected (it has a giant component) with high
probability (approaching 1 in large networks) if the rate at which the attacker can
delete nodes is sufficiently small compared to the rate at which the defender can
repair or replace damaged nodes (Flaxman et al., 2007). Recently, the effects of
attacker information on the vulnerability of scale-free networks have been investi-
gated. One conclusion is that concealing information about a small fraction of nodes
from the attacker can greatly improve the ability of networks to withstand intelligent
(but incompletely informed) attacks (Gallos et al., 2005; Wu et al., 2007).

These more sophisticated (but still not necessarily realistic) models share with
simpler ones the key qualitative property of phase transitions, in which sufficient
capacities (and/or repair rates) protect against large-scale failures with high prob-
ability (approaching 1 in large networks), while insufficient capacities (or repair
rates) allow the possibility that a small set of attacks (possibly on only one node) can
trigger a cascade of failures that leave most of the network disconnected. Although
a great deal of additional quantitative detail has been uncovered through theoreti-
cal analysis and numerical simulation of attack-defense processes near the phase-
transition boundary, and although this remains a very active area of research, the
crucial qualitative insight that there is often a well-defined transition from low vul-
nerability to high vulnerability as the load increases relative to capacity is one of the
most valuable and robust lessons to emerge from the study of attack and defense in
scale-free networks.

The existence of such a phase transition suggests that many network risk man-
agement decision problems can be simplified to the task of keeping networks in the
low-vulnerability regime. This is done by maintaining sufficient margins of safety
(e.g., greater than αc) so that the network will be able to withstand attacks. Simula-
tion and detailed mathematical analysis of phase transitions provide practical meth-
ods for quantitative assessment of the required safety measures. For the specific
attack model of Zhao et al. (2004) discussed above, a useful design rule of thumb is
that α > k∗10% provides an adequate safety margin for withstanding k-link attacks.

Real-World Implementation Challenges: Incentives to Invest
in Protection

The preceding sections have described several recent constructive approaches to
designing telecommunications networks (circuit-switched or packet-switched) that
can withstand targeted attacks at several locations simultaneously. Investing in pro-
tection capacity can make it possible to restore protected demands or sessions almost
immediately following such an attack. This section asks whether network owners
and operators have incentives to actually make such investments. How do interde-
pendencies among the risks and benefits of jointly owned network infrastructure
affect incentives to invest in protection?
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Telecommunications networks typically have many owners and many users; they
exemplify systems in which interactions among players drive the costs and benefits
received by each. Many of the best-studied models in game theory may be inter-
preted as special cases of network games. The following examples are intended to
illustrate how some of the most familiar paradigms of cooperative and noncoopera-
tive game theory apply to decisions about whether to invest in improved reliability
(or resilience, if failures come from deliberate attacks) in telecommunications net-
works. Throughout this section, the focus is on whether network owners will invest
in improved network reliability, without regard for whether potential failures result
from deliberate attacks or random failure events; thus, we will use the general term
“reliability” to refer to the probability that a system does not fail, without further
inquiry into possible reasons for failure.

Example: An N-Person Prisoner’s Dilemma for Network
Maintenance

Setting: Suppose that three different owners own the three different links in the
following linear series network:

A→ B→ C→ Z.

It costs $1 to maintain each link. Doing so guarantees that the link can reliably
transport two units of traffic. Without maintenance, the link deteriorates with prob-
ability 0.5 (possibly due to deliberate attacks, but this example can also be applied
to random failures); a deteriorated link can reliably transport only one unit of traf-
fic. In this simplified model, each owner decides at the start of the game whether
to invest in maintenance, and any deterioration of nonmaintained links takes place
immediately after the decision has been made.

The demand for network services is such that customers will use this linear chain
network to carry as much traffic as it can carry reliably (one or two units), generating
either $6 or $12 units of revenue, respectively, which is then shared equally among
the link owners, giving each either $2 or $4, respectively.

Problem: What is each owner’s optimal strategy for investing in maintenance?
Solution: If all players maintain their links, each receives a profit of ($4 revenue –

$1 maintenance cost)= $3. A player who does not maintain his own link when both
of the other two players maintain theirs also receives 0.5 × $4 + 0.5 × $2 = $3
expected profit. A player who maintains his own link when only one of the other
two players does so receives an expected profit of 0.5 × $4 + 0.5 × $2 – $1 = $2;
but if he chooses not to maintain his own link, then his expected profit increases to
0.25 × $4 + 0.75 × $2 = $2.5. A player who maintains his own link when neither
other player does likewise receives an expected profit of 0.25 × $4 + 0.75 × $2 –
$1 = $1.5; but if he chooses not to maintain his own link, then his expected profit
increases to 0.125 × $4 + 0.875 × $2 = $2.25. Thus, no matter what the other
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players do, each player maximizes his own expected profit by not maintaining his
own link. Doing otherwise might decrease, but cannot increase, his expected profit.

Discussion: When all players follow the unique dominant strategy of not invest-
ing in maintenance, each receives an expected profit of only $2.25 (or $2 per day
in the long run, if the play is repeated on consecutive days until all links fail). But
if all players maintained their links, each would receive a profit of $3. Thus, the
dominant strategy is Pareto-inefficient: all players could do better by choosing a
different (dominated) strategy. This is like a three-player version of the Prisoner’s
Dilemma, in that the unique dominant strategy for all players gives each a lower
payoff than would one of the dominated strategies. A similar result holds in analo-
gous games with N > 3 players; i.e., the unique Nash equilibrium is to underinvest
in maintenance.

This example suggests how the presence of multiple owners in a network can
lead to free-riding incentives, underinvestment in network maintenance or quality,
and Pareto-inefficient provision of network resources to users who would be willing
to pay for better service.

Example: Nash Equilibrium Can Be Inadequate for Predicting
Investments

Setting: Suppose that Player 1 owns the link from A to B and that Player 2 owns the
link from B to C in the simple network A→ B→ C. A customer is willing to pay
up to $100 per month to use this network to send messages from A to C, provided
that the product of the reliabilities of the two links is sufficiently great, say p1p2 ≥
0.5. Assume that Player 1 must select a nonnegative reliability p1 between 0 and 1
(inclusive) for link AB, and that Player 2 must select a nonnegative reliability p2

between 0 and 1 for link BC. The customer will pay each player $50 per month if
and only if p1p2 ≥ 0.5, and otherwise will pay 0 and will forego using the network.
It costs a player $50p per month to maintain a reliability level p on her link.

Problem: What reliability level should each player choose for her link?
Solution: This is an instance of the classical two-person bargaining game (iso-

morphic to the “divide a dollar” game), to which an entire large literature is devoted.
Every pair of nonnegative reliabilities (p1, p2) such that p1p2 = 0.5 is a Nash equi-
librium, since if one player can credibly insist on maintaining a level p, then the
other player’s unique best response is to settle for maintaining level 0.5/p. Thus,the
Nash equilibrium concept is inadequate to predict a unique outcome for this game.
Axiomatic bargaining theory (including the Nash bargaining solution) proposes var-
ious normative justifications for specific solutions, especially the symmetric (in dol-
lars, although not necessarily in utilities) solution (p1, p2) = (0.707, 0.707), but
the confident prediction of a specific outcome is impossible. In some cases, play-
ers may commit themselves to inadequate investments in unsuccessful attempts to
induce each other to spend more, thus arriving at a Pareto-inefficient outcome in
which neither sells capacity to the customer (Roth, 1985).
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Example: A Network Collusion Game with an Empty Core

Problem: A customer is willing to pay $6 to send crucial data from the origin O to
the destination D along any highly reliable path. There are three owners, 1, 2, and 3,
of network links. Links AB and BE belong to Player 1, links BD and CE belong to
Player 2, and link ED belongs to Player 3. Suppose that all links are currently low-
reliability, but that any link can be converted to high-reliability by adding expensive
terminating equipment at either end. If it costs $1 to upgrade the links, how should
the three players cooperate to make an offer to the customer? (See Fig. 16.1.)

Solution: This is an example of a cooperative game with an empty core: There
is no coalition and agreement among its members that is proof against different
coalitions being formed that can improve the profits offered to each of its members.
Therefore, no possible coalition is stable. The customer may wait forever for the
owners to stop realigning and make an offer.

For example, suppose that Player 1 approaches Player 2 and proposes that they
each invest $1 (Player 1 to upgrade link AB and 2 to upgrade link BD) and then
offer the customer the use of path OABD and split the $6 from the customer evenly.
Under this agreement, Players 1 and 2 each make a profit of $3 – $1= $2 and Player
3 makes nothing. Dissatisfied with this outcome, Player 3 might approach Player 2
with the suggestion that Player 3 invest in upgrades for both Player 3’s own link
(ED) and also one of Player 2’s (CE). Then the two can team up to offer path OCED
to the customers, split the $6 evenly, and Player 2 will make a profit of $3 (beating
the profit made in the proposal from Player 1) while Player 3 will make a $1 profit
(beating its zero profit under Player 1’s proposal). Player 1 will now be excluded
and make no profit. (Player 3 might propose many other deals, but this illustrates
that Player 3 has both the incentive and the ability to make a deal with Player 2 that
both of them would prefer to the one that Player 1 initially proposed.)

Rather than making no profit, Player 1 can do better by offering to team with
Player 3. For example, Player 1 might now offer to invest $2 (one each in links
AB and BE), have Player 3 invest in only one (ED), and split the $6 evenly, so that
Player 1 makes a $1 profit and Player 3 makes a $2 profit. Player 2 is excluded.
But now, Player 2 can repropose Player 1’s original offer back to Player 1 (giving
each of them a profit of $2). And so the cycle continues: Whoever is currently left
worst off (e.g., excluded from making a profit) by any proposed agreement can make
an offer to one of the other players that will increase both their profits (and make
someone else the worst off, and hence ready to propose a different deal). There is no
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Fig. 16.1 Network showing which player (1, 2, or 3) owns each link
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possible agreement that cannot be improved (in the sense of increasing profits for
all who participate) by some subset of two players who have both the incentive and
the power to do so. Thus, companies trying to find the best deal for themselves by
exploring different partnerships will find that there is no solution to this problem.

Example: A Tipping Point

Suppose that Player 1 will invest in security if at least two other players do, that
Player 2 will invest in security if at least one other player does, and that Player 3
would like to invest in security, but only if everyone else does. If these preferences
are common knowledge, then Player 3 can tip the system from no investment by any
player to investment by all players by being the first to invest (thus inducing Player 2,
and then Player 1, to follow). If the players do not know each other’s preferences,
however, then each will wait for someone else to move first, no tipping point will
be reached, and the players will fail to make the mutual investment in security that
all three of them would prefer to make. Thus, knowing the player’s preferences and
willingness to pay for investments in security (or network reliability) is not sufficient
to predict what will happen: knowledge of what the players know about each other’s
preferences is also needed.

The examples in this section have led to the same major policy-relevant conclu-
sion by different routes: Even if it is possible to solve the purely technical problems
of devising cost-effective networks that are resilient against accidental and/or mali-
cious failure (e.g., using the design heuristics and statistical phase-transition safety
margins discussed in earlier sections), interdependencies among network owners
can undermine willingness to invest in network resilience, leading to socially sub-
optimal (Pareto-inefficient) decisions that invest too little. In some cases, there may
be simple solutions (e.g., to create an artificial “tipping point” by stimulating ini-
tial investments in increased security or by providing players with credible infor-
mation about each other’s preferences). However, the incentive, information, and
distributed decision-making challenges illustrated in these examples have proved
to be enduring and difficult in many applications of game theory. Socially opti-
mal investment in more resilient telecommunications networks may be inhibited
by these challenges, even when algorithms for minimizing the costs of protecting
against intelligent attacks are well developed.

Summary

Mathematical optimization can be used to design networks that can withstand the
simultaneous loss of any k links or nodes, where k is a small integer reflecting the
attacker’s ability to do simultaneous damage. Solution heuristics for k= 1 and k= 2
are relatively well developed. However, the optimal (least-cost) design of networks
that are resilient to k link cuts or node deletions, for arbitrary k, remains an open
problem.
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Simple probability and statistical models have been developed that predict the
effects of attacks and repairs in large scale-free networks (typical of large data net-
works, including the Internet), assuming that the attacker always targets the most
heavily loaded links or nodes. These models typically exhibit a phase transition, in
which the networks are inherently resilient to attacks if and only if they have enough
spare capacity at each node (about 10k% more than would be required in the absence
of attacks, if the attacks are focused on the k most heavily loaded node). Networks
with enough extra capacity at each node can absorb the impacts of successful attacks
by redistributing the traffic originally routed through failed nodes to surviving neigh-
bors, leaving almost 100% of the network (other than the failed nodes) still con-
nected. On the other hand, networks with less than this critical amount of extra node
capacity are vulnerable to cascading failures (similar to spreading blackouts in an
electric grid), so that a successful initial attack can lead to the progressive collapse
of the network, with the largest connected component remaining after the attack
and its aftermath probably consisting of a negligibly small fraction (close to 0%)
of all nodes. This threshold-like division between resilient and vulnerable networks
makes it relatively simple to design resilient networks: simply include enough extra
capacity at each node so that attacks will be absorbed rather than causing cascading
failures.

Although optimization and probability models may reveal how to design net-
works that can withstand intelligent attacks, network operators who own only some
portions of a network may lack incentives to actually make the required investments.
Strategic incentives can encourage network owners to invest too little in network
reliability and resilience. The traditional game-theoretic problems of free riding,
Pareto-inefficient Nash equilibria, nonunique Nash equilibria, empty cores, and poor
coordination due to private information can be powerful in network investment set-
tings. Each problem can result in underinvestment in network protection, meaning
that all players would benefit if all could commit to make greater investments in
network reliability and resilience. Regulatory intervention, centralized command
and control, or institutional designs facilitating mutual commitments and multiway
contracting may be needed to overcome such adverse incentive effects, enabling net-
work owners and users to reap the potential benefits from greater network reliability
and resilience.

Epilogue

Earlier chapters of this book illustrated methods for quantifying and comparing
the probable health consequences of a few discrete risk management alternatives,
such as ban or do not ban for a food animal antibiotic or remove or do not remove
for various constituents of cigarette smoke. The three final chapters have discussed
more complicated risk management problems, including ones with multiple stages
of decision making, outcomes that are contingent on both present decisions and
future events (such as discovery of BSE), future decisions that are contingent on
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future information and that are constrained by current choices (such as whether to
track cattle origins), and consequences of present decisions that depend on subse-
quent decisions by determined, intelligent players (e.g., attackers and defenders, or
different owners of a network infrastructure). In all these cases, QRA models that
include the optimization of future decisions suffice to predict (or at least bound, as
in the BSE model) the probabilities of different consequences for current decisions.
Thus, these QRA models support optimization of current risk management deci-
sions, even for relatively complex, uncertain systems with multiple decision makers
and sequential decisions.

More generally, a combination of QRA modeling techniques enables useful pre-
diction and control of probable outputs in complex and uncertain systems. We have
illustrated QRA for important real-world applications, including lung cancer, food
safety, antimicrobial resistance, economic risks from imported BSE, and terrorist
attacks on target locations or telecommunications networks. Highly useful QRA
methods include: methods for bounding preventable risks, based on partial knowl-
edge of causal mechanisms; asymptotic probability results that are independent of
details (such as phase-transition behaviors in large random networks); simulation
and mathematical analysis of system dynamics and equilibria (even when many
details of causal pathways are unknown or are described only by high-level empiri-
cal relations); and optimization of decisions, assuming that future decisions, perhaps
by other players, will also be optimized, contingent on future information available
when they are made.

An optimistic conclusion from the QRA models and calculations presented
throughout this book is that QRA modeling is currently practical for a variety of
complex, uncertain systems in real-world applications of great practical impor-
tance. Despite large remaining uncertainties about exactly how complex systems
work, and about how changing controllable inputs will affect outputs that deci-
sion makers care about, QRA enables practitioners to predict key aspects of sys-
tem responses to changes in controllable inputs. It lets risk analysts identify and
eliminate dominated decision options using realistically incomplete and imperfect
information. QRA is a practical discipline for improving decisions in a complex and
uncertain world.
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Axsäter/ INVENTORY CONTROL
Wolkowicz, Saigal & Vandenberghe/ HANDBOOK OF SEMI-DEFINITE PROGRAMMING:

Theory, Algorithms, and Applications
Hobbs & Meier/ ENERGY DECISIONS AND THE ENVIRONMENT: A Guide to the Use of

Multicriteria Methods
Dar-El/ HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong/ PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners
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