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Preface

I was fortunate to get my first exposure to linear programming in a course taught by
the father of the subject, George Dantzig, at the University of California, Berkeley,
in the fall of 1965. It was love at first sight! I fell in love with linear program-
ming (LP), optimization models, and algorithms in general right then, and became
inspired to work on them. Another of my fortunes was to have as my thesis ad-
visor David Gale, who along with Harold Kuhn and Albert Tucker contributed to
the development of optimality conditions. Eventually, I started teaching optimiza-
tion in the IOE Department at the University of Michigan, Ann Arbor, and using it
in applications myself, and I would now like to share this background with future
generations of students.

Level of the Book and Background Needed

This is a first-year graduate (Master’s) level textbook on optimization models, linear
and quadratic, for decision making, how to formulate real-world problems using
these models, use efficient algorithms (both old and new) for solving these models,
and how to draw useful conclusions, and derive useful planning information, from
the output of these algorithms.

It builds on the undergraduate (Junior) level book Optimization Models for De-
cision Making Volume 1 on the same subject (Murty (2005) of Chap. 1), which I
posted at the public access website:

http://ioe.engin.umich.edu/people/fac/books/murty/opti model/,

from which you can download the whole book for a small contribution. Readers who
are new to the subject should read this Junior-level book to acquire the background
for reading this graduate-level book.
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Why Another Book on Linear Programming

When friends learned that I was working on this book, they asked me, “Why another
book on linear programming (LP)?” There are two reasons:

1. Almost all the best-known books on LP are mathematics books, with little
discussion on how to formulate real-world problems as LPs and with very simple
modeling examples. Within a short time of beginning work on applications, I real-
ized that modeling could actually be as complex as proving mathematical results and
requires very special skills. To get good results, it is important to model real-world
problems intelligently. To help the reader develop this skill, I discuss several illus-
trative examples from my experience, and include many exercises from a variety of
application areas.

2. All the available books on LP discuss only the simplex method (developed
based on the study of LP using the simplex, one of the solids in classical geometry)
and perhaps existing interior point methods (developed based on the study of LP
using the ellipsoid). All these methods are based on matrix inversion operations
involving every constraint in the model in every step, and work well for LPs in
which the coefficient matrix is very sparse. We discuss also a new method being
developed based on the study of LP using the sphere, which uses matrix inversion
operations sparingly and seems well suited to solve large-scale LPs, and those that
may not have the property of being very sparse.

Contents of the Book

Chapter 1 contains a brief account of the history of mathematical modeling, the
Gasuss–Jordan elimination method for solving linear equations; the simplex method
for solving LPs and systems of linear constraints including inequalities; and the
importance of LP models in decision making.

Chapter 2 discusses methods for formulating real-world problems, including
those in which the objective function to be optimized is a piecewise linear convex
function and multiobjective problems, as linear programs. The chapter is illustrated
with many examples and exercises from a variety of applications.

Chapter 3 explains the need for intelligent modeling in order to get good results,
illustrated with three case studies: one from a container terminal, the second at a
bus-rental company, and the third at an international airport.

Chapter 4 discusses the portion of the classical theory of polyhedral geometry
that plays an important role in the study of linear programming and in developing
algorithms for solving linear programs, illustrated with many numerical examples.

Chapter 5 treats duality theory, optimality conditions for LP, and marginal analy-
sis; and Chap. 6 discusses the variants of the revised simplex method. Both chapters
deal with traditional topics in linear programming. In Chap. 5 we discuss also opti-
mality conditions for continuous variable nonlinear programs and their relationship
to optimality conditions for LP.
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Chapter 7 discusses interior point methods (IPMs) for LP, including brief
descriptions of the affine scaling method, which is the first IPM to be developed, and
the primal-dual IPM, which is most commonly used in software implementations.

Chapter 8 discusses the sphere methods, new IPMs that have the advantage of
using matrix inversion operations sparingly, and thus are the next generation of
methods for solving large-scale LPs.

Chapter 9 discusses extensions of the sphere methods – to convex and nonconvex
quadratic programs, and to 0–1 integer programs through quadratic formulations.

Additional Exercises

Exercises offer students a great opportunity to gain a deeper understanding of
the subject. Modeling exercises open the student’s mind to a variety of applica-
tions of the theory developed in the book and to a variety of settings where such
useful applications have been carried out. This helps them to develop modeling
skills that are essential for a successful career as a practitioner. Mathematical ex-
ercises help train the student in skills that are essential for a career in research
or a career as a higher-level practitioner who can tackle very challenging applied
problems.

Because of the limitations on the length of the book, not all exercises could be in-
cluded in it. These additional exercises will be included in the website for the book at
springer.com in the near future, and even more added over time. Some of the formu-
lation exercises at the website deal with medium-size applications; these problems
can be used as computational project problems for groups of two or three students.
Formulating and actually solving such problems using an LP software package gives
the student a taste of real-world decision making.

Citing References in the Text

At the end of each chapter, we list only references that are cited in the text. Thus the
list of references is actually small; it does not provide extensive bibliographies of
the subjects. For readers who are interested, we refer them to other books available
that have extensive bibliographies.

We use the following style for citing references: A citation such as “Wolfram
(2002)” refers to the paper or book of Wolfram of year 2002 listed among references
at the end of the current chapter where this citation appears. Alternately, a reference
such as “(Dikin (1967) of Chap. 1) refers to the document of Dikin of year 1967 in
the list of references at the end of Chap. 1.
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Solutions Manual

Springer will host the solutions manual at springer.com, allowing token access to
registered adopting faculty.
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Conclusion

Optimum decision making is all about improving lives. As the Sanskrit proverb
(jiivaa ssamastaa ssukhinoo bhavamtu) shown in Telugu script says:

I hope readers will use these methods to improve the lives of all living beings!
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methods in Chap. 8.
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Chapter 1
Linear Equations, Inequalities, Linear
Programming: A Brief Historical Overview

This chapter, taken mostly from Murty (2006b), outlines the history of efforts that
eventually led to the development of linear programming (LP) and its applications
to decision making.

1.1 Mathematical Modeling, Algebra, Systems of Linear
Equations, and Linear Algebra

One of the most fundamental ideas of the human mind, discovered more than 5,000
years ago by the Chinese, Indians, Iranians, and Babylonians, is to represent quan-
tities that we want to determine by symbols – usually letters of the alphabet like
x; y; z � then express the relationships between the quantities represented by these
symbols in the form of equations, and finally, use these equations as tools to find out
the true values represented by the symbols. The symbols representing the unknown
quantities to be determined are nowadays called unknowns, or variables, or decision
variables.

The process of representing the relationships between the variables through equa-
tions or other functional relationships is called modeling or mathematical modeling.
The earliest mathematical models constructed were systems of linear equations, and
soon after, the famous elimination method for solving them was discovered in China
and India.

The Chinese text Chiu-Chang Suanshu (Nine Chapters on the Mathematical
Art) composed over 2,000 years ago describes the method using a problem of de-
termining the yield (measured in units called “tou”) from three types of grains –
inferior, medium, superior – given the yield data from three experiments each using
a separate combination of the three types of grains. See Kangshen et al. (1999) for
information on this ancient work, also a summary of this ancient Chinese text can be
seen at the website: http://www-groups.dcs.st-and.ac.uk/ ˜ history/HistTopics/Nine
chapters.html).

Ancient Indian texts Sulva Suutrah (Procedures Based On Ropes) and the
Bakshali Manuscript with origins during the same period describe the method in
terms of solving systems of two (three) linear equations in two (three) variables; see

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 1, c� Springer Science+Business Media, LLC 2010

1



2 1 Linear Equations, Inequalities, Linear Programming: A Brief Historical Overview

Joseph (1992) and also Lakshmikantham and Leela (2000) for information on these
texts, and for a summary and review of this book, see http://www.tlca.com/adults/
origin-math.html.

This effort culminated around 825 AD in the writing of two books by the Persian
mathematician Muhammad ibn-Musa Alkhawarizmi in Arabic, which attracted in-
ternational attention. The first was Al-Maqala fi Hisab al-jabr w’almuqabilah (An
essay on algebra and equations). The term “al-jabr” in Arabic means “restoring” in
the sense of solving an equation. In Latin translation, the title of this book became
Ludus Algebrae, the second word in this title surviving as the modern word algebra
for the subject, and Alkhawarizmi is regarded as the father of algebra. Linear alge-
bra is the name given subsequently to the branch of algebra dealing with systems
of linear equations. The word linear in “linear algebra” refers to the “linear com-
binations” in the spaces studied, and the linearity of “linear functions” and “linear
equations” studied in the subject.

The second book, Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi, appeared in
a Latin translation under the title Algoritmi de Numero Indorum, meaning Al-
Khwarizmi Concerning the Hindu Art of Reckoning; it was based on earlier Indian
and Arabic treatises. This book survives only in its Latin translation, because all the
copies of the original Arabic version have been lost or destroyed. The word algo-
rithm (meaning procedures for solving algebraic systems) originated from the title
of this Latin translation. Algorithms seem to have originated in the work of ancient
Indian mathematicians on rules for solving linear and quadratic equations.

1.1.1 Elimination Method for Solving Linear Equations

We begin with an example application that leads to a model involving simultaneous
linear equations. A steel company has four different types of scrap metal (called
SM-1 to SM-4) with compositions given in the table below. They need to blend
these four scrap metals into a mixture for which the composition by weight is: Al,
4.43%; Si, 3.22%; C, 3.89%; Fe, 88.46%. How should they prepare this mixture?

Compositions of available scrap metals

Type % in type, by weight, of element
A Si C Fe

SM-1 5 3 4 88
SM-2 7 6 5 82
SM-3 2 1 3 94
SM-4 1 2 1 96

To answer this question, we first define the decision variables, denoted by
x1; x2; x3; x4, where for j D 1 to 4, xj D proportion of SM-j by weight
in the mixture to be prepared. Then the percentage by weight of the element Al in
the mixture will be 5x1 C 7x2 C 2x3 C x4, which is required to be 4.43. Arguing
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the same way for the percentage by weight in the mixture, of the elements Si, C,
and Fe, we find that the decision variables x1 to x4 must satisfy each equation in the
following system of linear equations in order to lead to the desired mixture:

5x1 C 7x2 C 2x3 C x4 D 4:43;

3x1 C 6x2 C x3 C 2x4 D 3:22;

4x1 C 5x2 C 3x3 C x4 D 3:89;

88x1 C 82x2 C 94x3 C 96x4 D 88:46;

x1 C x2 C x3 C x4 D 1:

The last equation in the system stems from the fact that the sum of the proportions
of various ingredients in a blend must always be equal to 1. From the definition of
the variables given above, it is clear that a solution to this system of equations makes
sense for the blending application under consideration, only if all the variables in the
system have nonnegative values in it. The nonnegativity restrictions on the variables
are linear inequality constraints. They cannot be expressed in the form of linear
equations, and as nobody knew how to handle linear inequalities at that time, they
ignored them and considered this system of equations as the mathematical model
for the problem. �

The Gauss–Jordan (GJ) Pivot Step and the GJ (Elimination) Method

To solve a system of linear equations, each step in the elimination method uses one
equation to express one variable in terms of the others, then uses that expression
to eliminate that variable and that equation from the system, leading to a smaller
system. The same process is repeated on the remaining system. The work in each
step is organized conveniently through what is now called the Gauss–Jordan (GJ)
pivot step.

We will illustrate this step on the following system of three linear equations in
three decision variables given in the following detached coefficient table at the top.
In this representation, each row in the table corresponds to an equation in the sys-
tem, and the RHS is the column vector of right-hand side constants in the various
equations. Normally the equality symbol for the equations is omitted.

An illustration of the GJ pivot step

Basic variable x1 x2 x3 RHS

1 �1 �1 10
�1 2 �2 20

1 �2 �4 30
x1 1 �1 �1 10

0 1 �3 30
0 �1 �3 20
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In this step on the system given in the top table, we are eliminating the variable
x1 from the system using the equation corresponding to the first row. The column
vector of the variable eliminated, x1, is called the pivot column, and the row of the
equation used to eliminate the variable is called the pivot row for the pivot step, the
element in the pivot row and pivot column, known as the pivot element, is boxed in
the above table. The pivot step converts the pivot column into the unit column with
“1” entry in the pivot row and “0” entries in all the other rows by row operations.
These row operations consist of the following:

1. For each row other than the pivot row, subtracting a suitable multiple of the pivot
row from it to convert the element in this row in the pivot column, to 0.

2. At the end dividing the pivot row by the pivot element.

For example, for the GJ pivot step with the column of x1 as the pivot column
and the first row as the pivot row in the top tableau above, we need to subtract
the pivot row (row 1) from row 3; add the pivot row to row 2; and as the pivot
element is 1, leave the pivot row as it is. Verify from the bottom table above
that these row operations convert the column of x1 into the first unit column as
required.

In the resulting table after this pivot step is carried out, the variable eliminated,
x1, is recorded as the basic variable in the pivot row. This row now contains an
expression for x1 as a function of the remaining variables. The other rows contain
the remaining system after x1 is eliminated, the same process is now repeated on this
system.

When the method is continued on the remaining system, three things may
occur:

1. All the entries in a row may become 0; this is an indication that the constraint in
the corresponding row in the original system is a redundant constraint; such rows
are eliminated from the tableau.

2. The coefficients of all the variables in a row may become 0, while the RHS
constant remains nonzero; this indicates that the original system of equations is
inconsistent, that is, it has no solution; if this occurs the method terminates.

3. If the inconsistency termination does not occur, the method terminates after per-
forming pivot steps in all the rows; if there are no nonbasic variables at that stage,
equating each basic variable to the RHS in the final tableau gives the unique so-
lution of the system. If there are nonbasic variables, from the rows of the final
tableau we get the general solution of the system in parametric form in terms of
the nonbasic variables as parameters.

The elimination method remained unknown in Europe until Gauss rediscovered
it at the beginning of the nineteenth century while calculating the orbit of the as-
teroid Ceres based on recorded observations in tracking it earlier. It was lost from
view when the astronomer tracking it, Piazzi, fell ill. Gauss got the data from Piazzi,
and tried to approximate the orbit of Ceres by a quadratic formula using that data.
He designed the method of least squares for estimating the best values for the
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parameters to give the closest fit to the observed data; this gives rise to a system
of linear equations to be solved. He rediscovered the elimination method to solve
that system. Even though the system was quite large for hand computation, Gauss’s
accurate computations helped in relocating the asteroid in the skies in a few months
time, and his reputation as a mathematician soared.

Europeans gave the names Gaussian elimination method and Gauss–Jordan
(GJ) elimination method to two variants of the method at that time. These meth-
ods are still the leading methods in use today for solving systems of linear
equations.

1.2 Review of the GJ Method for Solving Linear Equations:
Revised GJ Method

The Gauss–Jordan (GJ) method for solving a system of linear equations works
on the detached coefficient tableau of the system. It carries out GJ pivot steps on
this tableau with each row as the pivot row, one row after the other. On each row, a
pivot step is carried out at most once. The method stops when pivot steps are carried
out on all the rows.

Conditions for the Existence of a Solution

First consider a single linear equation a1x1 C a2x2 C : : : C anxn = ˛. This
equation always has a solution if at least one of a1; : : : ; an ¤ 0; that is, when
.a1; : : : ; an/ ¤ 0. For example, if a1 ¤ 0, then x D .˛=a1; 0; : : : ; 0/T is a solu-
tion of the system.

If a D .a1; : : : ; an/ D 0 and ˛ D 0, then this equation is a trivial equation
0 D 0, it has no relation to the variables x, and so every x is feasible to it.

If a D 0 and ˛ ¤ 0, this equation becomes the

fundamental inconsistent equation 0 D ˛,

where ˛ is any nonzero number; it has no solution.
Now consider the general system of m equations in n unknowns

Ax D b; (1.1)

where A; b D .bi / are m � n; m � 1 matrices. Let Ai:; A:j denote the i th row,
j th column of matrix A. Then the various equations in this system are Ai:x D bi

for i D 1 to m.

Theorem 1.1. Theorem of alternatives for systems of linear equations: The
system of linear equations (1.1) has no feasible solution x iff there is a linear
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combination of equations in it which becomes the fundamental inconsistent equa-
tion. That is, (1.1) has no solution iff there exists a row vector � D .�1; : : : ; �m/

such that

mX
iD1

�i Ai: D �A D 0; (1.2)

mX
iD1

�i bi D �b D ˛ ¤ 0:

The proof of this theorem comes from the GJ method itself, as will be shown later
in this section. Using any solution of the alternate system (1.2), we can verify that
the fundamental inconsistent equation can be obtained as the linear combination
of equations in the original system (1.1), with coefficients �1; : : : ; �m; confirming
that (1.1) cannot have a solution. That is why any solution � of (1.2) is known as
evidence or certificate of infeasibility for (1.1).

System (1.2) is known as the alternate system for (1.1); it shares the same data
with the original system (1.1).

Redundant Equations, Certificate of Redundancy

An equation in original system (1.1), say the i th, is said to be a redundant equation
if it can be expressed as a linear combination of the others, that is, if there exists a
real vector .�1; : : : ; �i�1; �iC1; : : : ; �m/ such that

Ai: �
mX

tD1;¤i

�t At: D 0; bi �
mX

tD1;¤i

�t bt D 0:

Then .��1; : : : ; ��i�1; 1; ��iC1; : : : ; ��m/ is known as an evidence or cer-
tificate for redundancy of the i th equation in (1.1). Such redundant equations can be
eliminated from (1.1) without changing its set of feasible solutions.

In solving a system of linear equations by the GJ method, a redundant constraint
will show up as a row in which all the entries including the updated RHS constant
are 0.

Example 1.1. Consider the following system shown in detached coefficient form at
the top of the following sequence of tableaus. We show the various tableaus ob-
tained in solving it by the GJ method. PR and PC indicate pivot row and pivot
column, respectively, in each step, and the pivot elements are boxed. “RC” indi-
cates a “redundant constraint identified, which is eliminated from the system at this
stage.” After each pivot step, the entering variable in that step is recorded as the
basic variable (BV) in the PR for that pivot step.
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After the second pivot step, we found that the third constraint in the original
system was a redundant constraint, which showed up as a row of all 0’s in the
current tableau. So we eliminated this constraint in all subsequent tableaus. The
final basic vector obtained for the system was .x1; x4; x3/. There may be several
different basic vectors for the system; the final one obtained under the GJ elimina-
tion method depends on the choice of entering variables in the various steps of the
method.

PC
BV x1 x2 x3 x4 RHS

1 1 1 1 �6 PR
�1 1 0 �2 3
�2 12 5 �9 �9

0 4 �2 1 �8

PC
x1 1 1 1 1 �6

0 2 1 �1 �3 PR
0 14 7 �7 �21

0 4 �2 1 �8

PC
x1 1 3 2 0 �9

x4 0 �2 �1 1 3
0 0 0 0 0 RC
0 6 �1 0 �11 PR

x1 1 15 0 0 �31

x4 0 �8 0 1 14
x3 0 �6 1 0 11

The variable x2 remained as a nonbasic variable (also called as independent
variable or free variable). The basic solution wrt the basic vector .x1; x4; x3/ is
x D .x1; x2; x3; x4/T D .�31; 0; 11; 14/T obtained from the final tableau (known
as the canonical tableau wrt present basic vector .x1; x4; x3/) by setting the non-
basic variable x2 D 0.

The original system has a unique solution iff there is no nonbasic variable left at
the termination of the GJ method.

The dimension of the set of solutions of the system is equal to the num-
ber of nonbasic variables left at the end of the GJ method, which is 1 for this
example.

From the canonical tableau, we see that the general solution of the system
is x D .x1; x2; x3; x4/T D .�31 � 15x2; x2; 11 C 6x2; 14 C 8x2/T ,
where the free variable x2 is a parameter that can be given any arbitrary
value. �
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This version of the GJ method does not produce the evidence or certificate of
redundancy when a redundant equation in the original system is identified in the
method, so we do not have any way of checking whether the “0 D 0” equa-
tion appearance at that stage is genuine, or due to some errors in computation or
round-off operations carried out earlier. See Chap. 1 (and Sect. 1.16 in it) in the
web-book (Murty 2004) for more numerical examples of this version of the GJ
method.

We will now describe an improved version of the GJ method that has the ad-
vantage of producing also the evidence whenever either a redundant equation is
identified in the method or the infeasibility conclusion is reached.

1.2.1 GJ Method Using the Memory Matrix
to Generate the Basis Inverse

In this version, before beginning pivot steps on the original tableau, a unit ma-
trix I of order m, where m is the number of constraints in the system, is added
by the side of the original tableau. This unit matrix is called the memory matrix,
and its purpose is to accumulate the basis inverse; so in LP literature it is often re-
ferred to as the basis inverse. Here is the original tableau with the memory matrix
added.

Original tableau Memory matrix
x RHS

A b I

Now begin applying the GJ method. Remember that only the columns in the
A-part associated with variables xj are eligible to be selected as pivot columns, but
all the computations are carried out on all the columns in the tableau. Suppose at
some stage after some pivot steps, the current tableau is as given below.

Current tableau Memory matrix
x RHS

NA Nb NM
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Let A:j and NA:j be the j th columns in the original-A and NA, respectively. Also
let the entries in the i th row of the current tableau be NAi:; Nbi ; NMi:. Then we will
have

NA:j D NMA:j ; NAi: D NMi:A; Nbi D NMi:b; Nb D NMb: (1.3)

So, for all i D 1 to m, NMi:, the i th row of the memory matrix, gives the
coefficients in an expression of NAi: as a linear combination of the rows in the
original tableau. As NM keeps track of these coefficients, it is called the memory
matrix.

The equation corresponding to the i th row in the current tableau is NAi:x D Nbi .
So, if NAi: D 0 and Nbi D 0, this is a redundant equation, and from the above
formulas we see that NMi:, the corresponding row in the current memory matrix,
provides the evidence or certificate for this redundancy.

How to update the memory matrix when a redundant constraint is elimi-
nated from the original system: Suppose we started with a system of m linear
equations, and so the memory matrix for it is a square matrix of order m. At some
stage suppose we identified the i th equation in the original system as a redundant
constraint and want to eliminate it. After the elimination, the remaining system will
have only m � 1 rows, so the memory matrix associated with it must be a square
matrix of order m � 1. The question is: from the current memory matrix of order m,
how can we get the current memory matrix for the system of remaining constraints?
This is easy. When the i th constraint in the original system is identified as a redun-
dant constraint, delete the i th row from the original tableau, also from the current
tableau including the memory matrix part. Then delete the i th column also from the
memory matrix part. This completes the updating of all the things for this redundant
constraint deletion.

Also, if for some i we have in the current tableau NAi: D 0 and Nbi D ˛ ¤ 0, this
row in the current tableau is the fundamental inconsistent equation, so we conclude
that the original system is infeasible and terminate. Then N� D NMi: is the evidence or
certificate for infeasibility of the original system. So, N� is a solution of the alternate
system (1.2).

So, this version of the GJ method has the advantage of terminating with either a
solution x of the original system or a solution of the alternate system, establishing
the infeasibility of the original system.

Proof of Theorem 1.1. The argument given above also provides a mathematical
proof of the theorem of alternatives (Theorem 1.1) for systems of linear equations.

Example 1.2. Consider the following system with five equations in five unknowns
from the left-hand part of the top tableau. For illustrative purposes, we keep redun-
dant constraints discovered in the algorithm till the end. RC, PC, PR, and BV have
the same meanings as in Example 1.1, and the pivot elements are boxed. “IC” means
“inconsistent constraint, infeasibility detected.”

The third constraint in the final canonical tableau represents the equation “0 D 0”;
this shows that the third constraint in the original system is a redundant constraint.
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From the third row of the memory matrix (also called basis inverse) in this tableau,
and we see that the evidence vector for this is .�2; �4; 1; 0; 0/, which implies that

in the original system, the third constraint (which is �2x1C2x2�6x3C6x4C2x5 D �34)
is two times constraint 1 (which is x1Cx2Cx3Cx4Cx5 D �11) plus four times constraint
2 (which is �x1 � 2x3 C x4 D �3), which can be verified to be true.

The fifth constraint from the final canonical tableau is the inconsistent equation
“0 D 6.” From the fifth row of the basis inverse in this tableau, we see that the ev-
idence vector for this is N� D .�3; �5; 0; �1; 1/. It can be verified that when you
take the linear combination of equations in the original system with coefficients in
N� , then you get this inconsistent equation “0 D 6”. Alternately, N� is the solution
of the alternate system corresponding to the original system, which is given below
(here, ˛ turns out to be 6 for this solution N�):

PC Memory matrix
BV x1 x2 x3 x4 x5 b

1 1 1 1 1 �11 1 0 0 0 0 PR
�1 0 �2 1 0 �3 0 1 0 0 0
�2 2 �6 6 2 �34 0 0 1 0 0

0 3 �2 �4 �1 2 0 0 0 1 0
�2 6 �9 4 2 �40 0 0 0 0 1

PC
x1 1 1 1 1 1 �11 1 0 0 0 0

0 1 �1 2 1 �14 1 1 0 0 0 PR
0 4 �4 8 4 �56 2 0 1 0 0
0 3 �2 �4 �1 2 0 0 0 1 0
0 8 �7 6 4 �62 2 0 0 0 1

PC
x1 1 0 2 �1 0 3 0 �1 0 0 0
x2 0 1 �1 2 1 �14 1 1 0 0 0

0 0 0 0 0 0 �2 �4 1 0 0 RC
0 0 1 �10 �4 44 �3 �3 0 1 0 PR
0 0 1 �10 �4 50 �6 �8 0 0 1

x1 1 0 0 21 10 63 6 5 0 �2 0
x2 0 1 0 �8 �4 �54 �2 �2 0 1 0

0 0 0 0 0 0 �2 �4 1 0 0 RC
x3 0 0 1 �10 �4 44 �3 �3 0 1 0

0 0 0 0 0 6 �3 �5 0 �1 1 IC
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�1 � �2 � 2�3 � 2�5 D 0;

�1 C 2�3 C 3�4 C 6�5 D 0;

�1 � 2�2 � 6�3 � 2�4 � 9�5 D 0;

�1 C �2 C 6�3 � 4�4 C 4�5 D 0;

�1 C 2�3 � �4 C 2�5 D 0;

�11�1 � 3�2 � 34�3 C 2�4 � 40�5 D ˛:

�

Next we will discuss a computationally more efficient version of the same GJ
method.

1.2.2 The Revised GJ Method with Explicit Basis Inverse

Suppose the original system that we are trying to solve is Ax D b; consisting of
m equations in n unknowns. In many practical applications, we encounter systems
in which n is much larger than m, particularly in applications involving linear pro-
gramming models.

In the version of the GJ method discussed in Sect. 1.2.1, pivot computations are
carried out on all the n columns of A plus the m columns of the memory matrix.
Suppose after pivot steps have been carried out on some rows of the tableau, the
entries in the current coefficient tableau, RHS, memory matrix are NA; Nb D . Nbi /; NM .
Then (1.3) gives us the formulae to obtain NAi:, the i th row of NA for each i ; Nbi for
each i ; and NA:j , the j th column of NA, for each j , using data in NM and in the
original A; b.

Thus the formulae in (1.3) show that we can obtain any row or column of NA as
and when we need it, if we just carry out all the pivot computations in every step
on the columns of the memory matrix only and update NM in every step. This leads
to a computationally more efficient version of the GJ method known as the revised
GJ method with explicit basis inverse, discussed in Sect. 4.11 of Murty (2004). This
is the version that is commonly used in computer implementations. This version is
based on adopting a technique developed by Dantzig in the revised simplex method
for linear programming, to the GJ method for solving linear equations. In this ver-
sion, the current memory matrix is generally referred to as the basis inverse, so we
will call it the IT (inverse tableau) and denote it by B�1, instead of NM . The general
step in this version is described next.

General step in the GJ method: Let the current inverse tableau be the following:

BV Inverse tableau Updated RHS

::: B�1 Nb
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Let P denote the set of rows in which pivot steps have been carried out already.

1. Select a row i 2 f1; : : : ; mgnP as the pivot row (PR) for the next pivot step.
2. For this pivot step we need PR, the updated i th row NAi: for the systems of

equations being solved. From (1.3) we know that it is .B�1/i:A, and compute it.

If the PR, .B�1/i:A D 0 and Nbi D 0, the i th constraint in the present original
system is a redundant constraint, and in .B�1/i: we have the evidence vector for this
conclusion. Eliminate this i th constraint from the original system; the i th row from the
inverse tableau and the updated RHS vector, and the i th column from the inverse tableau;
reduce m by 1; and look for another pivot row for the next pivot step.

If the PR, .B�1/i:A D 0, and Nbi ¤ 0, we have in .B�1/i: evidence for the conclusion
that the original system has no solution; terminate.

If the PR, .B�1/i:A ¤ 0, select a nonzero entry in it as the PE (pivot element) for
the next pivot step, and the variable, xj say, containing it as the entering variable, and
its column, the j th updated column D NA:j D B�1A:j (where A:j is the column of
the entering variable xj in the original system), as the PC (pivot column) for that pivot
step. Computer programmers have developed several heuristic rules for selecting the PE
from among the nonzero entries in the pivot row to keep round-off errors accumulating
in digital computation under control. Put the PC by the side of the inverse tableau as
below.

BV Inverse Updated PC
tableau RHS xj

:
:
: B�1 Nb NA:j PR = i -th row

Performing this pivot step will update the inverse tableau and the RHS vector, leading
to the next inverse tableau. Now include row i in P .

3. If pivot steps have now been carried out in all the rows of the tableau, we have
a solution for the original system. The basic solution for the original system wrt
the present basic vector is given by setting all the nonbasic variables at 0, and the
t th basic variable D t th updated RHS constant for all t . Terminate.

If there are rows in the tableau in which pivot steps have not yet been carried
out, go to the next step and continue.

Example 1.3. We will now show the application of this version of the GJ method
on the system solved in Example 1.2 by the regular GJ method. Remember, in this
version pivot computations are carried out only on the inverse tableau and the RHS,
but not on the original system. At any stage, B�1 denotes the inverse tableau, IT.
If row i is the pivot row (PR), we will denote it by NAi: D .B�1/i:A. Likewise,
if xj is the entering variable (EV), its updated column, the PC, will be denoted by
NA:j D B�1 (original column of xj ). RC denotes redundant constraint, and for

simplicity we will not delete RCs detected. “IC” means “inconsistent constraint,
infeasibility detected.”
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Original system Memory matrix
x1 x2 x3 x4 x5 b BV Inverse tableau PC

B�1 x1

1 1 1 1 1 �11 1 0 0 0 0 1 PR
�1 0 �2 1 0 �3 0 1 0 0 0 �1

�2 2 �6 6 2 �34 0 0 1 0 0 �2

0 3 �2 �4 �1 2 0 0 0 1 0 0
�2 6 �9 4 2 �40 0 0 0 0 1 �2

Row 1 D PR above. EV x1. Next IT on right below
PC
x2

Now PR D Row 2. �11 x1 1 0 0 0 0 1
NA2: D .1; 1; 0; 0; 0/A �14 1 1 0 0 0 1 PR
D .0; 1; �1; 2; 1/: �56 2 0 1 0 0 4
x2 selected EV. 2 0 0 0 1 0 3

PC D B�1A:2 entered. �62 2 0 0 0 1 8

PR D Row 3. NA3: D .�2; �4;

1; 0; 0/A D 0. Nb3 D 0. RC.
PC
x3

PR D Row 4. NA4: D .�3; �3 3 x1 0 �1 0 0 0 2
0; 1; 0/A D .0; 0; 1; �14 x2 1 1 0 0 0 �1

�10; �5/. EV D x3. PC D 0 �2 �4 1 0 0 0
B�1A:3 entered. 44 �3 �3 0 1 0 1 PR

50 �6 �8 0 0 1 1

PR D Row 5. NA5: D .�3; �5; 63 x1 6 5 0 �2 0
0; �3; 1/A D 0: Nb5 D 6. IC. �54 x2 �2 �2 0 1 0

Infeasible. 0 �2 �4 1 0 0
44 x3 �3 �3 0 1 0

6 �3 �5 0 �1 1
IT D Inverse tableau

So, the fifth equation in the updated tableau is the inconsistent equation “0 D 6,”
which implies that the original system has no feasible solution and the method ter-
minates. The fifth row in the inverse tableau N� D .�3; �5; 0; �1; 1/ provides the
evidence vector for this conclusion. This N� is a solution of the alternate system
corresponding to the original system. �
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1.3 Lack of a Method to Solve Linear Inequalities
Until Modern Times

Even though linear equations had been conquered thousands of years ago, systems
of linear inequalities remained inaccessible until modern times. The set of feasi-
ble solutions to a system of linear inequalities is called a polyhedron or convex
polyhedron, and geometric properties of polyhedra were studied by the Egyptians
earlier than 4000 BC while building the pyramids, and later by the Greeks, Chinese,
Indians, and others.

The following theorem (Murty 2006a) relates systems of linear inequalities to
systems of linear equations.

Theorem 1.2. Consider the system of linear inequalities

Ax � b; (1.4)

where A D .aij / is an m � n matrix and b D .bi / 2 Rm. So, the constraints in the
system are Ai:x � bi , i 2 f1; : : : ; mg. If this system has a feasible solution, then
there exists a subset P D fp1; : : : ; psg � f1; : : : ; mg such that every solution of the
system of equations

Ai:x D bi ; i 2 P;

is also a feasible solution of the original system of linear inequalities (1.4).

Proof. Let K denote the set of feasible solutions of (1.4). For any x 2 K , the i th
constraint in (1.4) is said to be active at x if Ai:x D bi and inactive if Ai:x > bi .

We will now describe a procedure consisting of repetitions of a general step be-
ginning with an initial point x0 2 K .

General Step: Let xr 2 K be the current point and Pr D fi W i th constraint in
(1.4) is active at xr g.

Case 1: Pr D ;. In this case xr is an interior point of K . Let Nx be any solution
of one equation Ai:x D bi for some i . If Nx 2 K , define xrC1 D Nx.

If Nx 62 K , find N�, the maximum value of � such that xr C�. Nx �xr / 2 K . Then
xr C N�. Nx � xr / must satisfy at least one of the constraints in (1.4) as an equation,
define xrC1 D xr C N�. Nx � xr /.

Go back to another repetition of the general step with xrC1 as the current point.
Case 2: Pr ¤ ; and either xr is the unique solution of the system of equations

fAi:x D bi W i 2 Prg, or Pr D f1; : : : ; mg. In either of these cases, P D Pr

satisfies the requirement in the theorem, terminate.
Case 3: Pr is a nonempty proper subset of f1; : : : ; mg and the system fAi:x D

bi W i 2 Prg has alternate solutions. Let Hr D fx W Ai:x D bi ; i 2 Prg. Let t be
the dimension of Hr , and let fy1; : : : ; yt g be a basis for the subspace fAi:y D 0 W
i 2 Prg.

If each of the points y 2 fy1; : : : ; yt g satisfies Ai:y D 0 for all i 2 f1; : : : ; mg,
then P D Pr satisfies the requirement in the theorem, terminate.



1.3 Lack of a Method to Solve Linear Inequalities Until Modern Times 15

Otherwise, let Ny 2 fy1; : : : ; yt ; �y1; : : : ; �yt g satisfy Ai: Ny < 0 for some
i 2 f1; : : : ; mgnPr . Find N�, the maximum value of � such that xr C � Ny 2 K ,
define xrC1 D xr C N� Ny.

Go back to another repetition of the general step with xrC1 as the current point.
The subsets of indices generated in this procedure satisfy Pr � PrC1 and

jPrC1j � 1 C jPr j. So after at most m repetitions of the general step, the pro-
cedure must terminate with a subset P of f1; : : : ; mg satisfying the conditions in
the theorem. ut

In systems of linear inequalities like (1.4) appearing in applications, typically
m � n.

This theorem states that every nonempty polyhedron has a nonempty face that is
an affine space. It can be used to generate a finite enumerative algorithm to find a
feasible solution to a system of linear constraints containing inequalities. It involves
enumeration over subsets of the inequalities in the system. For each subset do the
following: eliminate all the inequality constraints in the subset from the system. If
there are any inequalities in the remaining system, change them into equations. Find
any solution of the resulting system of linear equations. If that solution satisfies all
the constraints in the original system, done, terminate. Otherwise, repeat the same
procedure with the next subset of inequalities. At the end of the enumeration, if no
feasible solution of the original system has turned up, it must be infeasible.

However, if the original system has m inequality constraints, in the worst case
this enumerative algorithm may have to solve 2m systems of linear equations be-
fore it either finds a feasible solution of the original system or concludes that it is
infeasible. The effort required grows exponentially with the number of inequalities
in the system in the worst case.

A Paradox: Many young people develop a fear of mathematics and shy away
from it. But since childhood I had a fascination for mathematics because it presents
so many paradoxes. Theorem 1.2 also presents an interesting paradox.

As you know, linear equations can be transformed into linear inequalities by
replacing each equation with the opposing pair of inequalities. But there is no way a
linear inequality can be transformed into linear equations. This indicates that linear
inequalities are more fundamental than linear equations.

But this theorem shows that linear equations are the key to solving linear inequal-
ities, and hence are more fundamental, this is the paradox. Again we will show later
in the book that linear inequalities may play an important role for solving linear
equations.

1.3.1 The Importance of Linear Inequality Constraints
and Their Relation to Linear Programs

The first interest in inequalities arose from studies in mechanics, beginning in the
eighteenth century. Crude examples of applications involving linear inequality mod-
els started appearing in published literature around the 1700s.
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Linear programming (LP) involves optimization of a linear objective function
subject to linear inequality constraints. Crude examples of LP models started ap-
pearing in published literature from about the middle of the eighteenth century. An
example of an application of LP is the fertilizer maker’s product mix problem dis-
cussed in Example 3.4.1 of Sect. 3.4 of Murty (2005b). It leads to the following LP
model:

(1.3.1)
Maximize z.x/ D 15x1 + 10x2 Item

Subject to 2x1 + x2 � 1,500 RM 1
x1 + x2 � 1,200 RM 2
x1 � 500 RM 3
x1 � 0; x2 � 0

in which the decision variables x1; x2 are the tons of Hi-ph, Lo-ph fertilizers man-
ufactured/day using three raw materials RM 1, 2, 3 for which the available supply is
at most 1,500, 1,200, 500 tons/day, respectively. The limit on the supply of each of
these raw materials leads to a constraint in the model, that is why these raw materials
are called the “items” corresponding to those constraints in the model. The objec-
tive function to be maximized is the daily net profit from fertilizer manufacturing
activities.

In this example, all the constraints on the variables are inequality constraints. In
the same way, inequality constraints appear much more frequently and prominently
than equality constraints in most real-world applications. In fact, we can go as far
as to assert that in most applications in which a linear model is the appropriate one
to use, most of the constraints are actually linear inequalities, and linear equations
play only the role of a computational tool through approximations, or through re-
sults similar to Theorem 1.2. Linear equations were used to model problems mostly
because an efficient method to solve them is known.

Fourier was one of the first to recognize the importance of inequalities as opposed
to equations for applying mathematics. Also, he was a pioneer who observed the link
between linear inequalities and linear programs in early nineteenth century.

For example, the problem of finding a feasible solution to the following system
of linear inequalities (1.5) in x1; x2 can itself be posed as another LP for which an
initial feasible solution is readily available. Formulating this problem known as a
Phase I problem introduces one or more non-negative variables known as artificial
variables into the model. All successful LP algorithms require an initial feasible
solution at the start, so the Phase I problem can be solved using any of those algo-
rithms, and at termination it either outputs a feasible solution of the original problem
or an evidence for its infeasibility. The Phase I model for finding a feasible solution
for (1.5) is (1.6), and it uses one artificial variable x3.

x1 C 2x2 � 10; (1.5)

2x1 � 4x2 � 15;

�x1 C 10x2 � 25;
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Minimize x3

Subject to x1 C 2x2 C x3 � 10

2x1 � 4x2 C x3 � 15

�x1 C 10x2 C x3 � 25 (1.6)

x3 � 10

For the Phase I problem (1.6), .x1; x2; x3/T D .0; 0; 26/T is a feasible solution.
In fact solving such a Phase I problem provides the most efficient approach for
solving systems of linear inequalities.

Also, the duality theory of linear programming discussed in Chap. 5 shows that
any linear program can be posed as a problem of solving a system of linear in-
equalities without any optimization. Thus, solving linear inequalities and LPs are
mathematically equivalent problems. Both problems of comparable sizes can be
solved with comparable efficiencies by available algorithms. So, the additional as-
pect of “optimization” in linear programs does not make LPs any harder either
theoretically or computationally.

1.4 Fourier Elimination Method for Linear Inequalities

By 1827, Fourier generalized the elimination method to solve a system of linear
inequalities. The method now known as the Fourier or Fourier–Motzkin elimina-
tion method is one of the earliest methods proposed for solving systems of linear
inequalities. It consists of successive elimination of variables from the system. We
will illustrate one step in this method using an example in which we will eliminate
the variable x1 from the following system.

x1 � 2x2 C x3 � 6;

2x1 C 6x2 � 8x3 � �6;

�x1 � x2 � 2x3 � 2;

�2x1 � 6x2 C 2x3 � 2:

x1 appears with a positive coefficient in the first and second constraints and a nega-
tive coefficient in the third and fourth constraints. By making the coefficient of x1

in each constraint into 1, these constraints can be expressed as

x1 � 6 C 2x2 � x3;

x1 � �3 � 3x2 C 4x3;

�2 � x2 � 2x3 � x1;

�1 � 3x2 C x3 � x1:
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The remaining system after x1 is eliminated and is therefore

�2 � x2 � 2x3 � 6 C 2x2 � x3;

�2 � x2 � 2x3 � �3 � 3x2 C 4x3;

�1 � 3x2 C x3 � 6 C 2x2 � x3;

�1 � 3x2 C x3 � �3 � 3x2 C 4x3;

and then maxf�2 � x2 � 2x3; �1 � 3x2 C x3g � x1 � minf6 C 2x2 � x3; �3 �
3x2 C 4x3g is used to get a value for x1 in a feasible solution when values for
other variables are obtained by applying the same steps on the remaining problem
successively.

However, starting with a system of m inequalities, the number of inequalities can
jump to O.m2/ after eliminating only one variable from the system, so this method
is not practically viable except for very small problems.

1.5 History of the Simplex Method for LP

In 1827, Fourier published a geometric version of the principle behind the simplex
algorithm for a linear program (vertex-to-vertex descent along the edges to an opti-
mum, a rudimentary version of the simplex method) in the context of a specific LP in
three variables (an LP model for a Chebyshev approximation problem), but did not
discuss how this descent can be accomplished computationally on systems stated
algebraically. In 1910, De la Vallée Poussin designed a method for the Chebyshev
approximation problem, which is an algebraic and computational analogue of this
Fourier’s geometric version; this procedure is essentially the primal simplex method
applied to that problem.

In a parallel effort, Gordan (1873), Farkas (1896), and Minkowski (1896) studied
linear inequalities, and laid the foundations for the algebraic theory of polyhedra
and derived necessary and sufficient conditions for a system of linear constraints,
including linear inequalities to have a feasible solution.

Studying LP models for organizing and planning production (Kantorovich 1939)
developed ideas of dual variables (resolving multipliers) and derived a dual-simplex
type method for solving a general LP.

Full citations for references before 1939 mentioned so far can be seen from the
list of references in Danizig (1963) or Schrijver (1986).

This work culminated in the mid-twentieth century with the development of the
primal simplex method by Dantzig. This was the first complete, practically and com-
putationally viable method for solving systems of linear inequalities. So, LP can be
considered as the branch of mathematics, which is an extension of linear algebra to
solve systems of linear inequalities. The development of LP is a landmark event in
the history of mathematics, and its application brought our ability to solve general
systems of linear constraints (including linear equations, inequalities) to a state of
completion.
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1.6 The Simplex Method for Solving LPs and Linear
Inequalities Viewed as an Extension of the GJ Method

One of the most popular methods for solving either systems of linear constraints
including linear inequality constraints, or linear programs, is the simplex method.
We will discuss this method in Chap. 6. Here we will explain why this method can
be viewed as the extension of the GJ method for solving systems of linear equations
to these more general systems. Let x 2 Rn denote the column vector of decision
variables.

First consider the problem of solving a system of linear constraints including
inequalities. For this, the simplex method first transforms the system into a stan-
dard form consisting of a system of linear equations in nonnegative variables by
simple transformations such as introducing nonnegative slack variables to convert
inequalities into equations, and eliminating unrestricted variables using the equal-
ity constraints (see Sect. 4.1 in Chap. 4 of Murty (2005b) for a discussion of these
transformations). The standard form is

Ax D b; (1.7)

x � 0;

where A is a matrix of order m � n, and b D .bi / is a column vector in Rm.

1.6.1 Generating the Phase I Problem if No Feasible Solution
Available for the Original Problem

Now apply the GJ method to solve the system of equations Ax D b ignoring the
nonnegativity restrictions on x. If this terminates with the infeasibility conclusion,
clearly (1.7) is also infeasible, so terminate. Otherwise, let x D .xB ; xD/ be the
basic, nonbasic partition of variables obtained at the end of the GJ method, and let
the final canonical tableau obtained be

BV xB

::: xD RHS
:::

xB I
::: ND Nb
:::

If Nb � 0, the basic solution of (1.7) wrt the basic vector xB , which is
.xB ; xD/ D . Nb; 0/, is a feasible solution for (1.7), and we are done.

If Nb 6� 0, let r be such that Nbr is the most negative element in Nb. Now
introduce a nonnegative artificial variable x0 into the canonical tableau associated
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with the column vector �e D .�1; �1; : : : ; �1/T of all “�1” entries, leading to
the following tableau called a Phase I tableau.

BV xB

::: xD x0 RHS
:::

xB I
::: ND �e Nb
:::

In this tableau if you perform a pivot step with row r as the PR (pivot row) and
x0 as the entering variable, then you will get the canonical tableau wrt a new basic
vector xB0 containing the artificial variable x0 as a basic variable, corresponding to
which the basic solution can be verified to be �0, with the value of the artificial
variable x0 being D � Nbr > 0 in it.

Example 1.4. Here we provide a numerical illustration for the introduction of the
artificial variable x0. Suppose the canonical tableau obtained at the end of the GJ
method on the system of equations Ax D b is the following tableau with variables
x1 to x7. The updated RHS is 6�0, so we already introduced the artificial variable
x0 in this tableau.

BV x1 x2 x3 x4 x5 x6 x7 x0
Nb

x1 1 0 0 1 �1 2 �1 �1 �3

x2 0 1 0 �2 1 �1 �1 �1 �6 PR
x3 0 0 1 �1 2 1 1 �1 7

PC
x1 1 �1 0 3 �2 3 0 0 3
x0 0 �1 0 2 �1 1 1 1 6
x3 0 �1 1 1 1 2 2 0 13

The basic solution produced by the GJ method on Ax D b in this problem is the
basic solution corresponding to the basic vector .x1; x2; x3/ in which the variables
x1; x2 are <0, so it is not feasible to the original system Ax D b; x �0. The most
negative variable in this solution is the basic variable x2 in r D second row. So, we
introduced the artificial variable x0 as discussed earlier, and performing a pivot step
in its column with row 2 as the PR leads to a new basic vector xB0 D .x1; x0; x3/

whose basic solution is a nonnegative solution to the augmented system. �

The Phase I problem:

Minimize x0

subject to xB C NDxD � ex0 D Nb (1.8)

xB ; xD ; x0 � 0
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is an LP formulation for the problem of getting a feasible solution for (1.7). It is one
of several different (but equivalent) ways of formulating the problem of finding a
feasible solution to (1.7) as a Phase I linear program.

Solving such an LP formulation seems to be the most efficient approach for solv-
ing systems of linear constraints with inequalities. The simplex algorithm solves
LPs like (1.8) starting with a nonnegative basic solution corresponding to a feasible
basic vector like xB0 by performing additional GJ pivot steps exchanging one basic
variable with a nonbasic variable in each step until an optimum solution for (1.8) is
obtained.

If the minimum value of x0 in the Phase I problem (1.8) is >0, clearly the orig-
inal (1.7) is infeasible. If the minimum value of x0 in (1.8) is 0, then any optimum
solution of (1.8) gives a feasible solution for (1.7), by suppressing the 0 value of x0

from it.
If the original problem to be solved is the LP of minimizing cx subject to (1.7),

then the only change in the above approach is to minimize cx C ˛x0, where ˛ is
a large positive penalty cost, instead of x0 in (1.8). Starting with the feasible basic
solution corresponding to the basic vector xB0 , the simplex method solves this LP
the same way.

Starting with the canonical tableau for the system of linear equations Ax D b ob-
tained by the GJ method, the simplex method carries out additional GJ pivot steps to
obtain a feasible solution for (1.7) or to solve an LP subject to (1.7). For this reason,
the simplex method for LP can be considered as an extension of the GJ method for
linear equations to solve systems of linear constraints including inequalities or LPs.

Linear Algebra

Study of linear equations.
Originated over 2,000 years ago.

!

Linear Programming

Study of linear constraints including
inequalities.
Twentieth century extension of lin-
ear algebra.

1.7 The Importance of LP

LP has now become a dominant subject in the development of efficient computa-
tional algorithms, in the study of convex polyhedra, and in algorithms for decision
making. But for a short time in the beginning, its potential was not well recognized.

Dantzig tells the story of how when he gave his first talk on LP and his sim-
plex method for solving it, at a professional conference, Hotelling (a burly person
who liked to swim in the sea, the popular story about him was that when he does,
the level of the ocean raises perceptibly, see Figs. 1.1 and 1.2; my thanks to Katta
Sriramamurthy and Shantisri Katta for these figures) dismissed it as unimportant
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Fig. 1.1 Hotelling (a whale
of a man) getting ready to
swim in the ocean

Fig. 1.2 Hotelling swimming
in the ocean. Watch the level
of the ocean go up

since everything in the world is nonlinear. But Von Neumann came to the defense
of Dantzig saying that the subject will become very important; see Page xxvii of
Dantzig and Thapa (1997). The preface in this book contains an excellent account
of the early history of LP from the inventor of the most successful method in OR
and in the mathematical theory of polyhedra.

Von Neumann’s early assessment of the importance of LP turned out to be as-
tonishingly correct. Today, the applications of LP in almost all areas of science are
so numerous, so well known, and recognized that they need no enumeration. Also,
LP seems to be the basis for most of the efficient algorithms for many problems in
other areas of mathematical programming. Many of the successful approaches in
nonlinear programming, discrete optimization, and other branches of optimization
are based on LP in their iterations. Also, with the development of duality theory and
game theory (Gale 1960), LP has also assumed a central position in economics.

1.7.1 Marginal Values and Other Planning Tools
that can be Derived from the LP Model

We will illustrate the very useful planning information that can be derived from
an LP model for a real-world decision-making problem, using the example of the
fertilizer maker’s product mix problem discussed in Example 3.4.1 of Sect. 3.4 of
Murty (2005b), referred to earlier in Sect. 1.3.1.
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The fertilizer maker (FM) produces Hi-ph, Lo-ph fertilizers using three raw
materials, RM-1, 2, 3 as inputs, whose supply is currently limited. Here is all the
data on the problem.

Raw Input/ton of Availability Cost
material Hi-ph Lo-ph (tons/day) ($/ton)
RM-1 2 1 1,500 50
RM-2 1 1 1,200 75
RM-3 1 0 500 60

Other costsa 50 40
($/ton)

Market priceb 300 175
Net profit 15 10

($/ton made)
aAll manufacturing costs other than raw material costs
bSelling price in market of this fertilizer

So the total production cost/ton of Hi-ph D (input raw material costs) C (other
production costs) D 2 � 50 C 1 � 75 C 1 � 60 C 50 D 285$/ton, and since its
market price is $300, production of Hi-ph leads to a net profit of 300 � 285 D $
15/ton made. The net profit from Lo-ph of $10/ton is computed in the same way.

The market is able to absorb all the Hi-ph, Lo-ph fertilizers the company can
produce, and so at present there is no limit on the production levels of these fertil-
izers. Defining x1; x2 D tons of Hi-ph, Lo-ph produced daily, the LP model for
maximizing the company’s daily net profit is

Maximize z.x/ D 15x1 C 10x2

s. to 2x1 C x2 � b1 D 1500 (RM-1 availability)

x1 C x2 � b2 D 1200 (RM-2 availability)

x1 � b3 D 500 (RM-3 availability)

x1; x2 � 0: (1.9)

The constraint 2x1 Cx2 � 1500 requires that the feasible region of this problem
should be on the side of the straight line fx W 2x1Cx2 � 1500g in Fig. 1.3. Likewise,
all other constraints in (1.9) can be represented by the corresponding half-spaces in
Fig. 1.3, leading to the set of feasible solutions, K of this problem as the shaded
region in Fig. 1.3.

Selecting any feasible solution, x0 D 0 say, we draw the objective line fx W
z.x/ D z.x0/g through it, and then move this objective line parallel to itself, in-
creasing the RHS constant in its representation as far as possible (because in this
problem we need to maximize the value of z.x/), while still maintaining a nonempty
intersection with the feasible region. If Oz is the final value of the RHS constant in
this process, then Oz is the maximum value of z.x/ in the problem, and any point in
the intersection of fz.x/ D Ozg \ K is an optimum solution of (1.9).
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Fig. 1.3 Solving the
fertilizer product mix model
geometrically
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For (1.9), Oz D 13,500, and the final position of the objective line is the dashed
line represented by fx W 15x1 C 10x2 D 13500g in Fig. 1.3. The optimum solution
of (1.9) Ox = .300; 900/T is unique, and it is the solution of the system:

2x1 C x2 D 1500;

x1 C x2 D 1200:

The RHS constants vector b D .b1; b2; b3/T is D .1500; 1200; 500/T at present
in (1.9). When the optimum solution Ox is implemented, the left over quantities in
the daily availability of RM-1, 2, 3 are 1500 � 2 Ox1 � Ox2 D 0, 1200 � Ox1 � Ox2 D 0,
500 � Ox1 D 200 tons, respectively.

Thus the daily availabilities of RM-1, 2 are fully used up, while there are 200
tons of spare in the availability of RM-3 when the optimum solution Ox is imple-
mented. So, to increase the net profit beyond the present maximum attainable level
of $13,500, the company has to increase the supply of either RM-1 or RM-2.

Marginal Values

Each constraint in an LP model is the material balance constraint of some item,
the RHS constant in that constraint being the availability or the requirement of that
item. The marginal value of that item (also called the marginal value corresponding
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to that constraint) is defined to be the rate of change in the optimum objective value
of the LP per unit change in the RHS constant in the associated constraint, while all
the other data in the problem remains unchanged.

For example, in the fertilizer product mix problem, the marginal value of RM
1 (and of the corresponding first constraint in (1.9)) is the rate of change in the
maximum daily profit per unit change in the supply of RM 1 from its present value
of 1,500. These rates are also called dual variables or the shadow prices of the
items. These are the variables in another linear programming problem that is in
duality relationship with the original problem. In this context, the original problem
is called the primal problem and the other problem is called the dual problem. The
derivation of the dual problem is discussed in Chap. 5.

So, let b D .b1; b2; b3/T denote the vector of RHS constants in (1.9) and let
f .b1; b2; b3/ denote the optimum objective value in (1.9) as a function of b, while
all the other data in the problem remains unchanged from their present values. Then
we know that f .1500; 1200; 500/ D 13,500. A simple expression for the marginal
value of b1 is then

.f .1500 C �; 1200; 500/ � f .1500; 1200; 500//=�;

where � is either positive or negative but with a small absolute value, provided this
ratio turns out to be the same for � < 0 or � > 0.

f .1500 C �; 1200; 500/ is the optimum objective value in the LP (1.9) with 1500
changed to 1500C�. The set of feasible solutions of the modified problem is similar
to that in Fig. 1.3 with the line corresponding to 2x1 Cx2 D 1500 moved parallel to
itself by j�j either away from 0 (if � > 0) or towards 0 (if � < 0). As long as j�j is
small, it is clear that the optimum solution of the modified problem is the solution of

2x1 C x2 D 1500 C �;

x1 C x2 D 1200;

which is Ox.�/ D .300 C �; 900 � �/ with optimum objective value of f .1500 C �,
1200; 500/ D 13500C5� D f .1500; 1200; 500/C5�. This shows that the marginal
value of b1 (RM-1) in (1.9) is O�1 D 5.

Similarly to compute the marginal value of b2 (RM-2), we need to compute
f .1500; 1200 C �; 500/, where again � is a real number of small absolute value.
Using the same arguments as above, we see the optimum solution of this modified
problem is the solution of

2x1 C x2 D 1500;

x1 C x2 D 1200 C �;

which is Ox.�/ D .300 � �; 900 C 2�/ with optimum objective value of f .1500;

1200 C �, 500/ D 13500 C 5� D f .1500; 1200; 500/ C 5�. This shows that the
marginal value of b2 (RM-2) in (1.9) is O�2 D 5.
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To compute the marginal value of b3 (RM-3) in (1.9), we need to compute
f .1500; 1200; 500 C �/. In the optimum solution Ox of the original (1.9), we have
200 tons of RM-3 not being used in the current supply. This implies Ox remains op-
timal to the modified problem, with b3 changed to 500 C � as long as j�j is small.
Therefore, f .1500; 1200; 500 C �/ D f .1500; 1200; 500/ D 13500. Therefore, the
marginal value of b3 (RM-3) in (1.9) is O�3 D 0. Therefore, the marginal value
vector for (1.9) is O� D (5, 5, 0).

The marginal value vector may not exist for all LPs. If b D .b1; : : : ; bm/T is
the RHS constants vector in an LP, and f .b1; : : : ; bm/ is the optimum objective
value function of this LP as a function of this b assuming that all the other data in
the LP remains unchanged; and if the value of the ratio .f .b1 C �; b2; : : : ; bm/ �
f .b1; : : : ; bm//=� depends on whether � > 0 or � < 0, then this LP does not have
marginal values. See Exercise 6.73 in Chap. 6 for an example.

In practice, we do not have to use the simple technique based on ratios of the form
.f .b1 C�; b2; : : : ; bm/�f .b1; : : : ; bm//=� to compute marginal values. In Chap. 5
we discuss techniques to check whether a general LP has the marginal values vector
or not, and show that when it exists it is the optimum dual solution. We also show
that when an LP is solved by any of the algorithms discussed in this book, the
optimum dual solution is also obtained as a byproduct.

Interpretation of Marginal Values and an Application

In the fertilizer product mix problem (1.9), the marginal value O�1 D 5 for RM-1
means that each unit of RM-1 available to this company at present is equivalent to
5$ in net profit. Other marginal values have a similar interpretation.

As an application of marginal values, we will show how they can be used to
evaluate the profitability of producing a new fertilizer, and at what level its market
price should be set so that it will be profitable in comparison with existing product
lines.

Suppose this company’s research lab has developed a new fertilizer with a catchy
name lushlawn. Manufacturing lushlawn needs 3, 2, 2 tons of RM-1, 2, 3, respec-
tively/ton and incurs other manufacturing costs of 100$/ton besides the raw material
costs.

If the company decides to introduce lushlawn as a new product, at what level
should they set its market price?

One ton of lushlawn needs as input a packet of (3, 2, 2) tons of RM-1, 2, 3. From
the marginal value vector O� we see that with existing product lines, this packet is
equivalent to 3 O�1 C 2 O�2 C 2 O�3 D 25$ of net profit.

Thus lushlawn is worth manufacturing, if it can be sold at a price that leads
to a net profit of 25$/ton made. So, the breakeven market price/ton of lushlawn
is $25 C (raw material costs) C (other manufacturing costs) D $25 C 3 � 50 C
2 � 75 C 2 � 60 C 100 D $435/ton. By conducting a market survey, the company
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can determine whether the market will accept lushlawn at a price � this breakeven
level of $435/ton. Once this is known, the decision whether to produce lushlawn is
obvious.

By providing this kind of valuable planning information, the LP model has be-
come a highly useful decision-making tool.

1.8 Dantzig’s Contributions to Linear Algebra, Convex
Polyhedra, OR, Computer Science

Much has been written about Dantzig’s contributions. Also, he has a personal assess-
ment of his own contributions in Chap. 1 of his book (Dantzig 1963). As someone
who started learning LP from his course at Berkeley, I will summarize here some of
his contributions that are usually overlooked in other statements (for a brief account
of my experiences with Dantzig see Murty (2005a)).

1.8.1 Contributions to OR

The simplex method is the first effective computational algorithm for one of the
most versatile mathematical models in OR. Even though LP and also the simplex
method for solving it originated much earlier than Dantzig’s work, as explained in
Sect. 1.5, it started becoming prominent only with Dantzing’s work and OR was
just beginning to develop around that time. The success of the simplex method is
one of the root causes for the phenomenal development and the maturing of LP,
mathematical programming in general, and OR in the second half of the twentieth
century.

1.8.2 Contributions to Linear Algebra and Computer Science

Recognizing the Irrelevance of the “RREF” Concept Emphasized
in Mathematics Books on Linear Algebra

Dantzig contributed important pedagogic improvements to the teaching of linear
algebra. He would state all the algorithmic steps in the GJ elimination method using
the fundamental tool of row operations on the detached coefficient tableau for the
system with the variable corresponding to each column entered in a top row in every
tableau. This makes it easier for young students to see that the essence of this method
is to take linear combinations of equations in the original system to get an equivalent
but simpler system from which a solution can be read out. In descriptions of the
GJ method in most mathematics books on linear algebra, the variables are usually
left out.
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Also, these books state the termination condition in the GJ elimination method
to be that of reaching the RREF (reduced row echelon form, a tableau is defined to
be in RREF if it contains a full set of unit vectors in proper order at the left end).
Dantzig (and of course a lot of other OR people) realized that it is not important
that all unit vectors be at the left end of the tableau (they can be anywhere and can
be scattered all over); also it is not important that they be in proper order from left
to right. He developed the very simple data structure (this phrase means a strategy
for storing information generated during the algorithm, and using it to improve the
efficiency of that algorithm (perhaps this is the first instance of such a structure in
computational algorithms)) of associating the variable corresponding to the r th unit
vector in the final tableau as the r th basic variable (or basic variable in the r th
row), and storing these basic variables in a column on the tableau as the algorithm
progresses. This data structure makes it easier to read the solution directly from the
final tableau of the GJ elimination method by making all nonbasic variables D 0 and
the r th basic variable D the r th updated RHS constant, for all r . Dantzig called this
final tableau the canonical tableau to distinguish it from the mathematical concept
of RREF. It also opened the possibility of pivot column selection strategies instead
of always selecting the leftmost eligible column in this method.

Even today it is sad that in courses on linear algebra in mathematics departments,
the RREF is emphasized as the output of the GJ elimination method. For a more
realistic statement of the GJ method from an OR perspective see Murty (2004).

Evidence (or Certificate) of Infeasibility

As explained in Sect. 1.2, a contribution of Dantzig, the revised simplex method, has
very important consequences to the GJ elimination method. When the GJ elimina-
tion method is executed in the revised simplex format, it produces an evidence for
infeasibility automatically whenever the system of linear equations being solved has
no solution.

1.8.3 Contributions to the Mathematical Study
of Convex Polyhedra

Dantzig has made fundamental contributions to the mathematical study of convex
polyhedra (a classical subject that has been investigated by mathematicians for more
than 4,000 years) when he introduced the complete version of the primal simplex
method as a computational tool.

We could only see drawings of two-dimensional polyhedra before this work.
Polyhedra in higher dimensions could only be visualized through imagination. The
primal simplex pivot steps are the first computational steps for actually tracing an
edge (either bounded or unbounded) of a convex polyhedron. It opened a revolution-
ary new computational dimension in the mathematical study of convex polyhedra,
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and made it possible to visualize and explore higher-dimensional polyhedra through
computation. At a time when research on convex polyhedra was beginning to stag-
nate, the simplex method has reignited the spark and enriched their mathematical
study manyfold.

1.9 Interior Point Methods for LP

In the early 1980s, Narendra Karmarkar pioneered a new method for LP, an interior
point method (Karmarkar 1984). Claims were made that this method would be many
times faster than the simplex method for solving large-scale sparse LPs, and these
claims helped focus researchers attention on it. His work attracted worldwide atten-
tion not only from operations researchers, but also from scientists in other areas.

Let me relate a personal experience. When news of his work broke out in world
press, I was returning from Asia. The person sitting next to me on the flight was a
petroleum geologist. When he learned that I was on the OR faculty at Michigan, he
asked me excitedly “I understand that an OR scientist from India at Bell Labs made a
discovery that is going to revolutionize petroleum exploration. Do you know him?!”

In talks on his algorithm that he gave at that time, Karmarker repeatedly empha-
sized the following points:

1. The boundary of a convex polyhedron with its faces of varying dimensions has a
highly complex combinatorial structure. Any method that operates on the bound-
ary or close to the boundary will get caught up in this combinatorial complexity,
and there is a limit on improvements we can make to its efficiency.

2. Methods that operate in the central portion of the feasible region in the direction
of descent of the objective function have the ability to take longer steps towards
the optimum before being stopped by the boundary, and hence have the potential
of being more efficient than boundary methods for larger problems.

3. From an interior point, one can move in any direction locally without violat-
ing feasibility; hence powerful methods of unconstrained optimization can be
brought to bear on the problem.

Researchers saw the validity of these arguments, hence Karmarkar’s talks stimu-
lated a lot of work on these methods that stay “away” from the boundary. In the tidal
wave of research that ensued, many different classes of interior point methods have
been developed for LP, and extended to wider classes of problems including convex
quadratic programming, monotone linear complementarity problem, and semi def-
inite programming problems. We will discuss some popular interior point methods
in a later chapter. Among them, the first is in fact the first interior point method
discussed in the literature, the primal affine scaling method (Dikin 1967), which
predates Karmarkar’s work, but did not attract much attention until after Karmarkar
popularized the study of interior point methods (IPMs). We will also discuss another
IPM known as the primal-dual IPM, which is the most popular IPM for solving LPs.



30 1 Linear Equations, Inequalities, Linear Programming: A Brief Historical Overview

1.10 Newer Methods

Many practical applications lead to large-scale LP models. All the methods dis-
cussed so far, which are based solely on matrix inversion operations, work very
well if the models are very sparse, and their performance depends critically on be-
ing able to exploit the sparcity in the model to advantage. For solving large-scale
models which do not fit this mold, these methods are difficult to use.

So, recent algorithmic research on LP has focused on methods that can solve LPs
fast without using matrix inversion operations or using them only minimally. These
methods are new, and computational experimentation with them is just beginning.
We will discuss the sphere methods in this category from Murty (2006a, b), Murty
and Oskoorouchi (2008a, b), Murty (2009) of Chap. 8, Murty (2008c, d) of Chap. 9
in Chaps. 8 and 9. Initial computational experiments with sphere methods for LP
(summarized in Chap. 8) indicate that they have great promise.

1.11 Conclusions

The most heavily used techniques in mathematics are linear algebra tools for solving
systems of linear equations whose origin goes back over 2,000 years. In the twenti-
eth century, this has been extended into linear programming that can solve systems
of linear constraints involving linear inequalities also. Now linear programming has
become the most important tool for decision making.

In this book we discuss these linear programming methods, and the basic theory
on which these methods are based, and also mathematical modeling techniques for
intelligently modeling important decision problems in a variety of areas, as linear
programs.

1.12 How to Be a Successful Decision Maker?

The aim of this book is to discuss some techniques for reaching optimum decisions
in problems that can be modeled using deterministic linear and quadratic models.
Successful decision making is a very complex task with many dimensions to it.
Reaching an optimum decision is one aspect of it. Another important aspect not in
the scope of this book is implementing the decision reached, which often requires a
lot of tact. I illustrate with a story:

“A 20-year-old lady started dating a 25-year-old man. He kept on giving her expensive gifts
until one day she agreed to marry him.

Two days after the wedding she realized that he had been giving her these expensive gifts
mainly to trap her into marriage, but in reality he was a miser. She felt very depressed at the
prospect of a possible divorce so soon after her marriage.
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A month passed by during which time she got a chance to observe him closely. He was hard
working, made good money, and was very nice in every respect, except that he tried to save
all this money. She thought “ If I can learn how to manage him, I can still have a wonderful
life. Let me give it a try.”

Forty years rolled by. Then her husband became sick, and on his death bed, she was serving
him obediently. He said “I am going to die soon. You know very well that I love my money
dearly. I want you to withdraw all my money and put it in my casket with me. I want to
take it with me to my afterlife. I hope you will take the decision to sincerely fulfill this last
request of mine.”

With his hands in hers, she told him, “You have my solemn promise that your wish will be
implemented.”

Moments later he was dead. The undertaker came and the man’s body was stretched out
in the casket. His wife, dressed in black, and her best friend were sitting by its side. The
ceremony was over, and the undertaker got ready to close the casket. Then the wife said
“Wait just a moment.” She went in and came out with a metal box and put it inside the
casket. Then the undertaker closed it and rolled it away.

Then her friend said “I hope you were not foolish enough to put all your family’s money in
your husband’s casket.”

The loyal wife replied, “Listen, I loved my husband, and we had a long and happy married
life. I made a promise that his final request would be implemented. My husband worked
very hard to earn his money, and I know how much pleasure it gave him to know he would
have it with him. I could not go back on my word.”

The friend said, “You mean to tell me that you kept your promise?!!”

The tactful wife said, “I sure did. I got all the money together, put it in my account, and
wrote him a check, and I put that cheque in the casket!”

Experience is the best teacher of “being tactful.” So, I encourage all the readers
to get involved in using the techniques discussed in this book in practice.

1.13 Exercises

1.1. Solve the system of equations in the scrap metal blending problem discussed in
Sect. 1.1.1 using Matlab, Mathematica, Maple, or Excel, ignoring the nonnegativity
restrictions on the variables. Is the solution to the system of equations unique? See
if you get a solution satisfying the nonnegativity restrictions anyway.

1.2. We need a nonnegative solution to the following system of linear equations:

x1 � 2x2 C x3 C x4 � x6 C 6x7 D 4;

x1 � x2 � 2x3 � x4 C x5 C 8x6 � 17x7 D �1;

2x2 C x3 � 2x4 � 5x5 C 3x6 � 4x7 D �3:

Solve using any linear equation software package, ignoring the nonnegativity
restrictions on variables. Does this system of equations have alternate solutions? If
so, what is the dimension of the set of all solutions to this system of equations?
Explain.
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Did you get a solution satisfying the nonnegativity restrictions? Explain the dif-
ference in the performance of these software packages on Exercise 1.1 and this
exercise. Basically, you have to explain why you were able to get a nonnegative
solution for one problem using this software, and not for the other.

1.3. Solve the following systems of linear equations by hand using the GJ elimina-
tion method. Use pivot elements of 1 or �1 as far as possible to avoid the occurrence
of fractions. If the system is inconsistent, obtain a solution to the alternate system in
each case. How many solutions of the alternate system were you able to obtain?

.a/ �x2 C 3x3 C 8x4 � 7x6 D �3

7x1 C x2 � 2x3 � 10x4 C 2x5 � 3x6 D �4

10x1 C 2x3 C 12x4 C 5x5 � 8x6 D 2:

.b/ �5x1 � 2x2 C 10x3 C x4 C 7x5 C 2x6 � 4x7 D 2

�3x1 C 3x2 � 2x3 � x4 C 2x5 C x6 C 3x7 D 3

�8x1 C x2 C 8x3 C 9x5 C 3x6 � x7 D 6

x1 C 2x3 � 3x5 � 4x6 C 2x7 D 5

�7x1 C x2 C 10x3 C 6x5 � x6 C x7 D 8:

1.4. Solve the following system of linear equations using the GJ method.
Are there any redundant constraints in the system, and if so how many? For each

of them give the certificate of redundancy.
What is the dimension of the set of solutions, S , of the system?
Give the formula for a general point in S obtained from your work.

x1 C x2 C x3 C x5 D 11;

x2 C x3 � x4 C x6 C x7 D 5;

x1 C x3 C 2x5 � x7 D 2;

x1 C 2x2 C x4 � x5 � x6 C x7 D 24;

x1 C 2x2 C 3x3 � 2x4 C 2x5 C 2x6 C x7 D 12:

It is required to find a solution of this system which makes 3x1 C 4x2 � 10x3 C
2x4 � 4x5 C 6x6 as close to 100 as possible. Find it explaining clearly how you
obtained it.

1.5. Solve the following system using the GJ method. If the system is infeasible, (1)
Determine whether it can be made feasible by ignoring any one constraint from the
system, (2) If the answer to (1) is “yes,” which constraint can be ignored to make
the system feasible, and what is a solution for the remaining system? (3) Consider
the original system again. Can it be made feasible by changing the value of exactly
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one right-hand-side constant? If so, carry out this modification and give a feasible
solution of the modified system.

x1 C x2 C x3 � 2x5 � 2x7 D �4;

x1 C x2 � x5 � x7 D �1;

x2 C x3 C x4 � x5 C x6 � x7 D �5;

2x1 C x2 C 3x3 � x4 � 5x5 � x6 � 5x7 D �5:

1.6. Apply the GJ method to the following system of linear equations:

x1 C x2 C x7 D 7;

x2 C x3 C x4 � 2x5 C 2x6 D 10;

x1 C x3 � x4 C x7 D 9;

2x1 C x2 C x3 � x4 C 2x7 D 20;

x1 C 2x2 C x3 C x4 � 2x5 C 2x6 C x7 D 12:

If the system is infeasible, how many inconsistent constraints were you able to
identify in the system? For each of them, give the certificate of inconsistency.

Now consider the original system of constraints with the original right-hand-side
vector b D .bi / D .7; 10; 9; 20; 12/T . For any i D 1 to 5, it is possible to increase
the value of bi from its original value at a cost of ci /unit, or decrease its value
from its original value at a cost of di /unit, where c D .ci / D .9; 2; 1; 4; 3/T and
d D .di / D .2; 1; 0; 5; 7/T . It is required to change the right-hand-side vector
in the original system to make the system feasible. Each bi can either be increased,
decreased, or left unchanged. Formulate the problem of changing the right hand side
vector of the original system to make the system feasible at minimum cost.

1.7. fA1:; : : : ; Ar:g is a given set of row vectors in Rn. ArC1: is another row vec-
tor in Rn, which is not in the linear hull of fA1:; : : : ; Ar:g. Then prove that the
following system of equations must have a solution x 2 Rn.

Ai:x D 0; i D 1 to r;

ArC1:x D 1:

1.8. f .x/ is a given affine function of x 2 Rn. We have a computer program by
using which we can output the value of f .x/ for any given x, but we do not have
its functional form.

As f .x/ is affine, we know that it can be expressed as c1x1 C c2x2 C : : : C
cnxn C c0. Explain how we can obtain the values of c1; : : : ; cn; c0 using that
computer program.

1.9. A is an m � n matrix and c is a row vector in Rn. It is known that the system
of linear equations Ax D 0, cx D 1 has no feasible solution x. Then show that c

must be a linear combination of row vectors of the matrix A.
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1.10. Solve the following system of linear equations by the GJ method.
If a feasible solution is obtained, give it. Otherwise, give a linear combination of

equations in the original system that yields the fundamental inconsistent equation,
explaining how you got it. If the original system is inconsistent, use the information
in the updated RHS column of the final tableau to determine what changes in the
original RHS column b will make the system feasible. From the current final tableau
give a feasible solution of the modified system.

Original system
x1 x2 x3 x4 x5 b

1 1 �2 1 2 3
0 �1 2 1 3 5
3 1 �2 5 12 18

1.11. The following system of linear equations is being solved by the revised GJ
method with explicit basis inverse.

x1 x2 x3 x4 x5 x6 x7 b

�1 0 2 �1 7 0 0 6
1 1 3 0 6 2 0 24
0 1 4 2 �5 �5 3 �2

7 6 14 7 �7 �2 6 74
0 �1 �6 0 4 0 1 �32

After some pivot steps we have the following basis inverse (also called the current
memory matrix in this chapter), but the column listing the basic variables, and the
updated RHS column are smeared and cannot be read correctly due to a printer
problem.

Memory matrix
�1 �2 �3 �4 �5

4 5 2 0 0
�5 �5 �2 0 0
�2 �2 �1 0 0

3 �4 �2 1 0
0 0 0 0 1

Using the formulas discussed in this chapter, find (1) the basic variables asso-
ciated with this inverse, (2) the basic solution, (3) evidence of redundancy and
infeasibility if any, and actual expressions in terms of the equation numbers 1–5
in the original system to give proofs of these claims, (4) dimension of the set of
feasible solutions, (5) rank of the coefficient matrix of the system, (6) and finally
a parametric representation of the general solution of this system in terms of the
independent variables.
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1.12. The following system of linear equations (first tableau) has been solved by the
revised GJ method with the explicit basis inverse. The second tableau given below
is the basis inverse obtained at termination.

x1 x2 x3 RHS

1 1 1 5
�1 3 1 6

0 4 2 11
2 3 1 10

Mem. matrix
�1 �2 �3 �4

3/2 1/6 0 �2=3

�1=2 1/6 0 1/3
�1 �1 1 0
0 �1=3 0 1/3

Using the formulas given in this chapter, find the solution of the system obtained,
and explain clearly why it is unique.

1.13. A is an m � n matrix, and c is a row vector in Rn. A; c are given. Let
S D fx W Ax D 0g, a subspace of Rn. We are also given that cx D 0 for
every x 2 S . Then prove that c must be a linear combination of row vectors of the
matrix A.

1.14. A1:; : : : ; Am:; c are .m C 1/ row vectors in Rn.
Express the condition for c to be in the linear hull (or subspace) of fA1:; : : : ; Am:g

through a system of constraints.
Write the alternate system for the system obtained above.
Very briefly mention if it is possible to solve both the original system, and the

alternate system simultaneously, with the same method. Which method does this?

1.15. Let A be a given matrix of order m � n (with n > m) and rank r . Consider
the optimization problem

minimize cx

subject to Ax D b .I /

Assume that (I) has at least one feasible solution. Prove that this optimization
problem has the property: either every feasible solution of it is optimal, or no feasi-
ble solution for it is optimal. Develop necessary and sufficient conditions for these
two possible outcomes.

1.16. A company makes products P1; P2 using raw materials R1; R2; R3. Rele-
vant data is given below.
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Item Units/unit input for Available
P1 P2 (units/day)

R1 4 5 3,000
R2 2 0 1,200
R3 1 2 900

Demand Unlimited 375
(units/day)
Net profit 3 5
($/unit)

Formulate the problem of finding an optimum production plan as an LP.
Solve the LP using the geometric method and find the optimum solution. Find

the marginal values of the three raw materials and the demand for P2.
If the demand for P2 can be increased from 375 units/day by advertising locally,

is it worth spending money on this advertizement?
The current prices of the resources R1; R2; R3 are $2, 4, 10/unit, respectively.

If additional supplies of each of these resources can be acquired, which of them has
the potential for helping to increase the total daily net profit of the company? For
each resource determine the breakeven price/unit at which additional supplies of it
can be acquired.

Suppose the company has the opportunity to make a new product P3. To make
one unit of P3 needs as inputs 2, 1, 2 units of resources R1; R2; R3, respec-
tively. What is the breakeven selling price of P3 at which it becomes competitive to
manufacture?

1.17. A company makes two types of discrete parts called A and B. Each part has
to be cast in the casting shop, machined, and then finished. Let shops 1, 2, and 3
refer to casting, machining, and finishing shops, respectively. For i D 1; 2; 3, shop
i has enough capacity to process either ai units of A, or bi units of B daily, or any
combination of these two activities in proportions of these levels summing up to 1,
where ai ; bi are given below.

Shop no. i Shop Capacity for
A B
ai bi

1 Casting 100 70
2 Machining 80 90
3 Finishing 60 110

Assume that they can sell all the castings they produce. The net profit from unit
of A and B sold is $800 and 900, respectively. Ignoring the integer requirements
on the units of A and B produced daily, formulate the problem of determining how
many units of A and B to produce daily to maximize total net profit.

Plot the set of feasible solutions for the problem and determine the optimum
solution geometrically.
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Determine the marginal values of the RHS constants corresponding to the cast-
ing, machining, finishing shop capacity constraints.

If the casting shop capacity is fully used up in the optimum solution, determine
how much the company could pay an outside supplier for a casting of A and B,
respectively, over its production cost, and still break even.

Suddenly, the country is in the grip of an economic recession, and the company
finds that it can only sell up to 55 units of A and 60 units of B daily. Discuss how
this alters some of the conclusions reached earlier.

1.18. A company manufactures two types of cake mixes, A and B, using two raw
materials R1 and R2. The following table gives the necessary data.

Raw material Units needed to Units
make 1 unit of available

A B
R1 1 2 6,000
R2 2 1 8,000

Net profit 7 5
per unit made

Maximum demand 3,500 2,500

Formulate the problem of determining how many units of A and B to make, as
an LP.

Solve the problem geometrically. Determine the marginal values associated with
all the RHS constants in the model. Interpret them.

At this stage, how much extra profit can the company make if the supply of
R1; R2 is increased by one unit?

A new cake mix developed by the company’s kitchen needs two units of R1 and
two units of R2 as input per unit. What is the minimum net profit that a unit of this
new cake mix should make, if it were to be competitive with A, B?

1.19. A is a given matrix of order m � n. The question is whether the homogeneous
system Ax D 0 has a nonzero solution. When can you conclude that it does, directly
without doing any work?

In any case, discuss an efficient method for answering this question, and find a
nonzero solution when it exists, based on row operations using at most minfm; ng
pivot steps.
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Chapter 2
Formulation Techniques Involving
Transformations of Variables

2.1 Operations Research: The Science of Better

Operations Research (OR) is the branch of science dealing with tools or techniques
for decision making to optimize the performance of systems, that is, to make those
systems better. Measures of performance, of which there may be several, are nu-
merical criteria that gauge the quality of some aspect of system’s performance, for
example, annual profit or market share of a company, etc. They are of two types: (1)
profit measures: (for these, the higher the value the better), (2) cost measures: (for
these the lower the value the better).

OR deals with techniques for designing ways to operate the system to maximize
profit measures or minimize cost measures as desired. Hence OR is the science to
make systems better.

Linear Programming (LP) is an important branch of OR dealing with decision
problems modeled as those of optimizing a linear function of decision variables sub-
ject to linear constraints that may include equality constraints, inequality constraints,
and bounds in decision variables. In an LP, all decision variables are required to be
continuous variables that can assume all possible values within their bounds subject
to the constraints. LPs are special instances of mathematical programming. Besides
LP, the subject mathematical programming includes network, integer, combinato-
rial, discrete, quadratic, and nonlinear programming.

The focus of this book is to study important aspects of LP and QP (quadratic
programming) and their intelligent applications for decision making.

We refer the reader to Chap. 3 in the Junior-level book (Murty (2005b) of Chap. 1;
this book can be downloaded from the website mentioned there), where decision-
making problems that can be modeled directly as LPs are discussed with many
illustrative examples. In this chapter we extend the range of applications of LP to
include decision-making problems involving the optimization of a piecewise linear
objective function subject to linear constraints. When the objective function satisfies
certain properties, these problems can be transformed into LPs in terms of additional
variables.

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 2, c� Springer Science+Business Media, LLC 2010
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2.2 Differentiable Convex and Concave Functions

The concepts of convexity of functions, and of sets, are fundamental pillars in opti-
mization theory. We already know that

a subset K � Rn is said to be a convex set if for every pair of points x; y 2 K , every
convex combination of x; y (i.e., point of the form ˛x C .1 � ˛/y for any 0 � ˛ � 1) is
also in K .

A real-valued function f .x/ of decision variables x D .x1; : : : ; xn/T 2 Rn is
said to be a linear function if it satisfies the following two properties that together
are known as the linearity assumptions:

Proportionality: f .˛x/ D f̨ .x/ for all x 2 Rn; ˛ 2 R1

Additivity: f .x C y/ D f .x/ C f .y/ for all x; y 2 Rn

An equivalent definition is: The real-valued function f .x/ defined over x 2 Rn

is a linear function, iff there exists a row vector of constants c D .c1; : : : ; cn/ such
that f .x/ D c1x1 C : : : C cnxn D cx for all x 2 Rn. In fact, for each j D 1 to n,
cj D f .I:j /, where I:j is the j th column vector of the unit matrix I of order n.

A real-valued function �.x/ of decision variables x 2 Rn is said to be an affine
function if there exists a constant c0 such that �.x/�c0 is a linear function as defined
earlier. Actually this constant c0 D �.0/. Thus equivalently, theta.x/ is an affine
function iff there exist constants c0; c1; : : : ; cn such that �.x/ D c0 C c1x1 C : : : C
cnxn.

The concept of convexity of a function is defined by Jensen’s inequality stated
below; it is related to the concept of convexity of a set, but we will not discuss
this relationship in this book as it is not important for the things we discuss here.
A function is said to be concave if its negative is convex, but there is no correspond-
ing concept called “concavity” for sets.

Linear and affine functions are both convex and concave; but convex and con-
cave functions may be nonlinear. In this section, we study important properties of
differentiable convex, concave functions, which may be nonlinear. A requirement is
that the set on which a convex or concave function is defined must be a convex set.
We will study convex, concave functions defined over Rn (or over a convex subset
of it) for n � 1 in this section.

2.2.1 Convex and Concave Functions

A real-valued function g.y/ defined over some convex subset  � Rn ( may be
Rn itself) is said to be a convex function if

g.˛y1 C .1 � ˛/y2/ � ˛g.y1/ C .1 � ˛/g.y2/

for all y1; y2 2  , and 0 � ˛ � 1. This inequality defining a convex function is
called Jensen’s inequality after the Danish mathematician who introduced it.
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To interpret Jensen’s inequality geometrically, introduce an .n C 1/th axis for
plotting the function value. So points in this space RnC1 are .y; ynC1/T , where on
the ynC1th axis we plot the function value g.y/ to get a geometric representation of
the function.

The set of all points f.y; g.y//T W y 2 g in this space RnC1 is a surface, which
is the surface or graph of the function g.y/.

The line segment f.˛y1 C .1 � ˛/y2; ˛g.y1/ C .1 � ˛/g.y2//T W 0 � ˛ � 1g
joining the two points .y1; g.y1//T , .y2; g.y2//T on the graph of the function is
called the chord of the function between the points y1; y2 or on the one-dimensional
line interval joining y1 and y2. If we plot the function curve and the chord on the
line segment f˛y1 C .1 � ˛/y2 W 0 � ˛ � 1g, then Jensen’s inequality requires that
the function curve lie beneath the chord. See Fig. 2.1 where the function curve and
a chord are shown for a function �.�/ of one variable �.

The real-valued function h.y/ defined on a convex subset  � Rn is said to be a
concave function if �h.y/ is a convex function, that is, if

h.˛y1 C .1 � ˛/y2/ � ˛h.y1/ C .1 � ˛/h.y2/

for all y1; y2 2  and 0 � ˛ � 1; see Fig. 2.2. For a concave function h.y/, the
function curve always lies above every chord.

Fig. 2.1 Graph of a convex
function �.�/ defined on R1

and its chord between two
points �1 and �2
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Fig. 2.2 Graph of a concave
function �.�/ defined on R1

and its chord between two
points �1 and �2
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All linear and affine functions (i.e., functions of the form cx C c0, where c 2
Rn; c0 2 R1 are given, and x 2 Rn is the vector of variables) are both convex and
concave.

Other examples of convex functions are �2r; e� over � 2 R1, where r is a
positive integer; � log.�/ over f� > 0 W � 2 R1g; and the quadratic function
xT Dx C cx C c0 over x 2 Rn, where D is a positive semidefinite (PSD) matrix
of order n (a square matrix D of order n � n is said to be a PSD (positive semidef-
inite) matrix iff xT Dx � 0 for all x 2 Rn. See Kaplan (1999); Murty (1988,
1995), or Sect. 9.1 for discussion of positive semidefiniteness of a square matrix,
and the proof that this quadratic function is convex over the whole space Rn iff D

is PSD).
We now derive some important properties of differentiable convex, concave func-

tions. For this discussion, the functions may be nonlinear.

Theorem 2.1. Gradient support inequality for convex functions: Let g.y/ be a
real-valued differentiable function defined on Rn. Then g.y/ is a convex function iff

g.y/ � g. Ny/ C rg. Ny/.y � Ny/

for all y; Ny 2 Rn, where rg. Ny/ D
�

@g. Ny/
@y1

; : : : ; @g. Ny/
@yn

�
is the row vector of partial

derivatives of g.y/ at Ny.

Proof. Assume that g.y/ is convex. Let 0 < ˛ < 1. Then .1 � ˛/ Ny C ˛y D
NyC˛.y� Ny/. So, from Jensen’s inequality g. NyC˛.y� Ny// � .1�˛/g. Ny/C˛g.y/. So

g.y/ � g. Ny/ � g. Ny C ˛.y � Ny// � g. Ny/

˛
:

Taking the limit as ˛ ! 0, by the definition of differentiability, the RHS in the
above inequality tends to rg. Ny/.y � Ny/. So we have g.y/ � g. Ny/ � rg. Ny/

.y � Ny/.
Now suppose the inequality in the statement of the theorem holds for all points

Ny; y 2 Rn. Let y1; y2 be any two points in Rn and 0 < ˛ < 1. Taking y D
y1; Ny D .1 � ˛/y1 C ˛y2, we get the first inequality given below; and taking
y D y2; Ny D .1 � ˛/y1 C ˛y2, we get the second inequality given below.

g.y1/ � g..1 � ˛/y1 C ˛y2/ � ˛.rg..1 � ˛/y1 C ˛y2/.y1 � y2/;

g.y2/ � g..1 � ˛/y1 C ˛y2/ � �.1 � ˛/.rg..1 � ˛/y1 C ˛y2/.y1 � y2/:

Multiplying the first inequality above by .1�˛/ and the second by ˛ and adding,
we get .1 � ˛/g.y1/ C ˛g.y2/ � g..1 � ˛/y1 C ˛y2/ � 0, which is Jensen’s
inequality. As this holds for all y1; y2 2 Rn and 0 < ˛ < 1, g.y/ is convex by
definition. ut
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Fig. 2.3 Illustration of the
gradient support inequality
for a convex function
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Value
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g(y)
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At any given point Ny, the function L.y/ D g. Ny/ C rg. Ny/.y � Ny/ is an affine
function of y, which is known as the linearization of the differentiable function g.y/

at the point Ny. Theorem 2.1 shows that for a differentiable convex function g.y/, its
linearization L.y/ at any point Ny is an underestimate for g.y/ at every point y; see
Fig. 2.3.

The corresponding result for concave functions obtained by applying the result
in Theorem 2.1 to the negative of the function is given in Theorem 2.2.

Theorem 2.2. Gradient support inequality for concave functions: Let h.y/ be
a real-valued differentiable function defined on Rn. Then h.y/ is a concave func-
tion iff

h.y/ � h. Ny/ C rh. Ny/.y � Ny/

for all y; Ny 2 Rn, where rh. Ny/ D
�

@h. Ny/
@y1

; : : : ; @h. Ny/
@yn

�
is the row vector of partial

derivatives of h.y/ at Ny. That is, the linearization of a concave function at any given
point Ny is an overestimate of the function at every point; see Fig. 2.4.

Theorem 2.3. Let �.y/ be a real-valued differentiable function defined on Rn. Then
�.y/ is a convex [concave] function iff for all y1; y2 2 Rn

fr�.y2/ � r�.y1/g.y2 � y1/ � 0 Œ� 0
:

Proof. We will give the proof for the convex case, and the concave case is proved
similarly.

Suppose �.y/ is convex, and let y1; y2 2 Rn. From Theorem 2.1 we have

�.y2/ � �.y1/ � r�.y1/.y2 � y1/ � 0;

�.y1/ � �.y2/ � r�.y2/.y1 � y2/ � 0:
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Fig. 2.4 Illustration of the
gradient support inequality
for a concave function
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Adding these two inequalities, we get fr�.y2/ � r�.y1/g.y2 � y1/ � 0.
Now suppose that �.y/ satisfies the property stated in the theorem; and let

y1; y2 2 Rn. As �.y/ is differentiable, by the mean-value theorem of calcu-
lus, we know that there exists an 0 < N̨ < 1 such that �.y2/ � �.y1/ D
r�.y1 C N̨ .y2 � y1//.y2 � y1/. As �.y/ satisfies the statement in the theorem,
we have

˚r�.y1 C N̨ .y2 � y1// � r�.y1/
� N̨ .y2 � y1/ � 0 or

r�.y1 C N̨ .y2 � y1//.y2 � y1/ � r�.y1/.y2 � y1/:

But by the choice of N̨ as discussed above, the left-hand side of the last inequality
is D �.y2/ � �.y1/. Therefore, �.y2/ � �.y1/ � r�.y1/.y2 � y1/. Since this
holds for all y1; y2 2 Rn, by Theorem 2.1, �.y/ is convex. ut

Applying Theorem 2.3 to a function defined over R1, we get the following
result:

Result 2.1. Let �.�/ be a differentiable real-valued function of a single variable
� 2 R1. �.�/ is convex [concave] iff its derivative d�

d�
is a monotonic increasing

[decreasing] function of �.

Hence checking whether a given differentiable function of a single variable � is
convex or concave involves checking whether its derivative is a monotonic function
of �. If the function is twice continuously differentiable, this will hold if the second
derivative has the same sign for all �. If the second derivative is � 0 for all �, the
function is convex; if it is � 0 for all �, the function is concave.

Now we will discuss the generalization of Result 2.1 to functions defined on
Rn for n � 2. A square matrix D of order n is said to be positive [negative]
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semidefinite (PSD or [NSD]) if xT Dx � Œ�
 0 for all x 2 Rn. In Chap. 9 these
concepts are defined and efficient algorithms for checking whether a given square
matrix satisfies these properties are discussed.

Theorem 2.4. Let g.y/ be a twice continuously differentiable real-valued function

defined on Rn, and let H.g.y// D
�

@2g.y/
@yi @yj

�
denote its Hessian matrix (the n � n

matrix of second partial derivatives) at y. Then g.y/ is convex iff H.g.y// is a
PSD (positive semi-definite) matrix for all y. Correspondingly, g.y/ is concave iff
H.g.y// is a NSD (negative semi-definite) matrix for all y.

Proof. We will prove the convex case. Consider a point Ny 2 Rn.
Suppose g.y/ is convex. Let ˛ > 0 and sufficiently small. By Theorem 2.1 we

have for each x 2 Rn

.g. Ny C ˛x/ � g. Ny/ � ˛rg. Ny/x/=˛ � 0

Take limit as ˛ ! 0C (through positive values of ˛). By the mean value theorem
of calculus the left-hand side of the above inequality converges to xT H.g. Ny//x,
and hence we have xT H.g. Ny//x � 0 for all x 2 Rn, this is the condition for the
Hessian matrix H.g. Ny// to be PSD.

Suppose H.g.y// is PSD for all y 2 Rn. Then by Taylor’s theorem of calculus,
for any y1; y2 2 Rn

g.y2/�g.y1/�rg.y1/.y2 �y1/ D .y2 �y1/T H.g.y1 C˛.y2 �y1///.y2 �y1/

for some 0 < ˛ < 1, which is � 0 since H.g.y1 C ˛.y2 � y1/// is PSD. So the
right-hand side of the above equation is � 0 for all y1; y2 2 Rn; therefore g.y/ is
convex by Theorem 2.1. ut

We know that linear and affine functions are both convex and concave. Now
consider the general quadratic function f .x/ D xT Dx C cx C c0 in variables
x 2 Rn, its Hessian matrix H.f .x// D .D C DT /=2 is a constant matrix. Hence
the quadratic function f .x/ is convex iff the matrix .D C DT /=2 is a PSD matrix
by Theorem 2.4. Checking whether a given square matrix of order n is PSD can
be carried out very efficiently with an effort of at most n Gaussian pivot steps (see
Kaplan (1999); Murty (1988), or Sect. 9.2 of this book, for the algorithm to use). So
whether a given quadratic function is convex or not can be checked very efficiently.

For checking whether a general twice continuously differentiable nonlinear func-
tion of x outside the class of linear and quadratic functions is convex may be a hard
problem, because its Hessian matrix depends on x, and the job requires checking
that the Hessian matrix is a PSD matrix for every x. Fortunately, for piecewise lin-
ear (PL) functions, which we will discuss in the next section, checking whether they
are convex can be carried out very efficiently even though those functions are not
differentiable everywhere.
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2.3 Piecewise Linear (PL) Functions

Definition: Piecewise Linear (PL) Functions: Considering real-valued continuous
functions f .x/ defined over Rn, these are nonlinear functions that may not satisfy
the linearity assumptions over the whole space Rn, but there is a partition of Rn into
convex polyhedral regions, say Rn D K1 [K2 [ : : :[Kr such that f .x/ is an affine
function within each of these regions individually, that is, for each 1 � t � r

there exist constants ct
0; ct D .ct

1; : : : ; ct
n/ such that f .x/ D ft .x/ D ct

0 C ct x for all
x 2 Kt , and for every S � f1; : : : ; rg, and at every point x 2 \t2S Kt , the different
functions ft .x/ for all t 2 S have the same value.

Now we give some examples of continuous PL functions defined over R1. Denote
the variable by �.

Each convex polyhedral subset of R1 is an interval; so a partition of R1 into
convex polyhedral subsets expresses it as a union of intervals: Œ�1; �1
 D f� W � �
�1g; Œ�1; �2
 D f� W �1 � � � �2g; : : : ; Œ�r�1; �r 
, Œ�r ; 1
, where �1; : : : ; �r

are the boundary points of the various intervals, usually called the breakpoints in
this partition.

The function �.�/ is a PL function if there exists a partition of R1 like this such
that inside each interval of this partition the slope of �.�/ is a constant, and its value
at each breakpoint agrees with the limits of �.�/ as � approaches this breakpoint
from the left, or right; that is, it should be of the form tabulated below:

Interval Slope of �.�/ in interval Value of �.�/

� � �1 c1 c1�

�1 � � � �2 c2 �.�1/ C c2.� � �1/

�2 � � � �3 c3 �.�2/ C c3.� � �2/
:::

:::
:::

�r�1 � � � �r cr �.�r�1/ C cr.� � �r�1/

� � �r crC1 �.�r/ C crC1.� � �r/

Notice that the PL function �.�/ defined in the table above is continuous, and at
each of the breakpoints N� 2 f�1; : : : ; �rg we verify that

lim
�!0�

�. N� C �/ D lim
�!0C

�. N� C �/ D �. N�/:

Here are numerical examples of continuous PL functions:

Example 2.1.

Interval Slope of �.�/ in interval Values of �.�/

�1 to 10 3 3�

10–25 5 30 + 5(� �10)
25 to 1 7 105 + 7(� �25)

�
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Example 2.2.

Interval Slope of �.�/ in interval Values of �.�/

�1 to 100 10 10�

100–300 5 1,000 + 5(� �100)
300–1,000 10 2,000 + 10 (� �300)
1,000 to 1 20 9,000 + 20(� �1; 000)

�

Exercises

2.3.1. (1) Show that the sum of PL functions is PL. Show that a linear combination
of PL functions is PL.

(2) Show that the function �.�/ D 1=.1 � �/2 is convex on the set �1 � � < 1.
Also, show that the function �6 � 15�2 is convex on the set 2 � � � 3.

2.3.2. Is the subset of R2, fx D .x1; x2/T W x1x2 > 1g, a convex set? What about
its complement?

2.3.3. Show that a real-valued function f .x/ of decision variables x 2 Rn is an
affine function iff for any x 2 Rn the function g.y/ D f .x C y/ � f .x/ is a linear
function of y.

2.3.4. Let K1 [ K2 [ : : : [ Kr be a partition of Rn into convex polyhedral regions,
and f .x/ a real-valued continuous function defined on Rn. Show that f .x/ is a PL
function with this partition of Rn iff it satisfies the following properties: for each
t 2 f1; : : : ; rg, x 2 Kt

(1) and all y such that x C ˛y 2 Kt for some ˛ > 0,
f .x C �y/ D f .x/ C �..f .x C ˛y/ � f .x//=˛/ for all � � 0 such that
x C �y 2 Kt ; and

(2) for each y1; y2 2 Rn such that xCy1; xCy2 are both in Kt , if xCy1 Cy2 2
Kt also, then f .x Cy1 Cy2/ D f .x/ C .f .x Cy1/ � f .x// C .f .x Cy2/ �
f .x//.

2.3.5. Show that the function f .x/ D .x2
3/=.c0 C c1x1 C c2x2/ of x 2 R3 is a

convex function on the set fx 2 R3 W c0 C c1x1 C c2x2 > 0g.

2.3.1 Convexity of PL Functions of a Single Variable

We discuss convexity of PL functions next. As these functions are not differentiable
at points where there slopes change, the arguments used in the previous section
based on differentiability do not apply.

Result 2.2. Let �.�/ be a PL function of a single variable � 2 R1. Let �1; : : : ; �r

be the various breakpoints in increasing order where its slope changes. �.�/ is



48 2 Formulation Techniques Involving Transformations of Variables

Fig. 2.5 PL function in the
neighborhood of a breakpoint
�t , where slope to the right <

slope to the left

q(l)

l l
l

lt
~

convex iff at each breakpoint �t its slope to the right of �t is strictly greater than
its slope to the left of �t ; that is, iff its slopes are monotonic increasing with the
variable.

Proof. Suppose at a breakpoint �t , ct D the slope of �.�/ to the right of �t is
<ct�1 D its slope to the left of �t . Let N� be a point close to but <�t , where the
slope of �.�/ is ct�1, and Q� is a point close to but >�t , where its slope is ct . Then
the graph of �.�/ in the neighborhood of �t will be as shown by the solid line in
Fig. 2.5. The chord of the function in the interval N� � � � Q� shown by the
dashed line segment is below the function, violating Jensen’s inequality for convex
functions. So, �.�/ cannot be convex.

If the slopes of the function satisfy the condition mentioned in the Result, then it
can be verified that every chord lies above the function, establishing its convexity.

ut
The corresponding result for concave functions is: a PL function of one variable

is concave iff its slope to the right of every breakpoint is less than its slope to the
left of that breakpoint, that is, its slopes are monotonic decreasing with the variable.
These results provide a convenient way to check whether a PL function of one vari-
able is convex, or concave, or neither. For example, the PL function in Example 2.1
has monotonically increasing slopes, so it is convex. For the one in Example 2.2, the
slope is not monotone, so it is neither convex nor concave.

2.3.2 PL Convex and Concave Functions in Several Variables

Let f .x/ be a PL function of variables x D .x1; : : : ; xn/T defined over Rn. So,
there exists a partition Rn D [r

tD1Kt , where Kt is a convex polyhedral set for all
t , the interiors of K1; : : : ; Kr are mutually disjoint, and f .x/ is affine in each Kt ;
that is, we have vectors ct and constants ct

0 such that

f .x/ D cT
0 C ct x for all x 2 Kt ; t D 1 to r . (2.1)
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Checking the convexity of f .x/ on Rn is not as simple as in the one-dimensional
case (when n D 1), but the following theorem explains how it can be done.

Theorem 2.5. Let K1[: : :[Kr be a partition of Rn into convex polyhedral regions,
and f .x/ the PL function defined by the above equation (2.1). Then f .x/ is convex
iff for each t D 1 to r , and for all x 2 Kt

ct
0 C ct x D Maximumfcp

0 C cpx W p D 1; : : : ; r:g

In effect, this says that f .x/ is convex iff for each x 2 Rn

f .x/ D Maximumfcp
0 C cpx W p D 1; : : : ; r:g (2.2)

Proof. Suppose f .x/ satisfies the condition (2.2) stated in the theorem. Let x1; x2 2
Rn and 0 � ˛ � 1. Suppose

f .x1/ D Miximumfcp
0 C cpx1 W p D 1; : : : ; r:g D c1

0 C c1x1; (2.3)

f .x2/ D Maximumfcp
0 C cpx2 W p D 1; : : : ; r:g D c2

0 C c2x2; (2.4)

and f .˛x1 C .1 � ˛/x2/ D maxfcp
0 C cp.˛x1 C .1 � ˛/x2/ W p D 1; : : : ; rg

= ca
0 C ca.˛x1 C .1 � ˛/x2/ for some a. Then

f .˛x1 C .1 � ˛/x2/ D ˛.ca
0 C cax1/ C .1 � ˛/.ca

0 C cax2/;

� ˛.c1
0 C c1x1/ C .1 � ˛/.c2

0 C c2x2/

from (2.3), (2.4);

D f̨ .x1/ C .1 � ˛/f .x2/:

As this holds for all x1; x2 2 Rn and 0 � ˛ � 1, f .x/ is convex by definition.
Now suppose that K1 [ : : : [ Kr is a partition of Rn into convex polyhedral

regions, and f .x/ the PL function defined by f .x/ D ct
0 C ct x for all x 2 Kt ;

t D 1 to r , is convex. Let Nx be any point in Rn, suppose Nx 2 Kpb
. Let x1 2

K1; x2 2 K2 be any two points such that Nx is on the line segment L joining them,
that is, Nx D N�x1 C .1 � N�x2/ for some 0 < N� < 1. For 0 � � � 1 let
f .�x1 C .1 � �/x2/ D �.�/.

The line segment L begins in Kp0
, where p0 D 1, and suppose it goes through

Kp1
; Kp2

; : : : ; Kpb
; KpbC1

; : : : ; Kps
, where ps D 2; this breaks up L into s � 1

intervals, each interval being the portion of L in one of the sets Kp1
; : : : ; Kps

. Let
the breakpoints for these intervals be �1; : : : ; �s in increasing order.

So, in the interval 0 � � � �1, �.�/ D c
p1

0 C cp1.�x1 C .1 � �/x2/ D
d

p1

0 C d
p1

1 � say. In the next interval �1 � � � �2, �.�/ D c
p2

0 C cp2 .�x1 C
.1 � �/x2/ D d

p2

0 C d
p2

1 �, etc. As f .x/ is continuous, �.�/ is continuous, so at
� D �1, the two functions d

p1

0 C d
p1

1 �; d
p2

0 C d
p2

1 � have the same value, and
so on.
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As f .x/ is convex, �.�/ which is f .x/ on the line segment L must also be
convex. So from Result 2.2 we must have d

p1

1 < d
p2

1 < d
p3

1 < : : : < d
ps

1 . From
this and the continuity of �.�/ it can be verified that �. N�/ D d

pb

0 C d
pb

1
N� �

d
p

0 C d
p

1
N� for all p 2 fp1; : : : ; psg, that is,

f . Nx/ D c
pb

0 C cpb Nx � c
p
0 C cp Nx for all p 2 fp1; : : : ; psg:

By varying the points x1; x2, the same argument leads to the conclusion that

f . Nx/ D c
pb

0 C cpb Nx � c
p
0 C cp Nx for all p D 1 to r:

Since this holds for all points Nx, f .x/ satisfies (2.2). ut
The function f .x/ defined by (2.2) is called the pointwise supremum function of

the set of affine functions fc p
0 C cpx W p D 1; : : : ; rg. Theorem 2.5 shows that

a PL function defined on Rn is convex iff it is the pointwise supremum of a finite
set of affine functions. In fact, in all applications where PL convex functions of two
or more variables appear, they are usually seen in the form of pointwise supremum
functions only. So, equations like (2.2) have become the standard way for defining
PL convex functions.

In the same way, the PL function h.x/ defined on Rn is concave iff it is the
pointwise infimum of a finite set of affine functions, that is, it is of the form h.x/ D
minimumfc p

0 C cpx W p D 1 to rg for each x 2 Rn.
In Fig. 2.6 we illustrate a pointwise supremum function �.�/ of a single vari-

able �. � is plotted on the horizontal axis, and the values of the function are
plotted along the vertical axis. The function plotted is the pointwise supremum

Fig. 2.6 Convexity and
pointwise supremum property
of a function of one variable.
The various functions of
which it is supremum are
called a1.�/ to a4.�/
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�.�/ D maxfa1.�/D 1 � 2�; a2.�/ D 1 C 0�; a3.�/ D �1 C �; a4.�/ D
�4 C 2�g. The graph of �.�/ is plotted in the figure with thick lines. The func-
tion is:

Interval �.�/ Slope in interval
� � 0 1 � 2� �2

0 � � � 2 1 0
2 � � � 3 �1 C � 1

� � 3 �4 C 2� 2

In Fig. 2.7, we illustrate a PL concave function h.�/ of a single variable �,
which is the pointwise infimum h.�/ D minfa1.�/ D 4 C �; a2.�/ D 3 C
.1=2/�; a3.�/ D 3 � �; a4.�/ D 4 � 2�g. The graph of h.�/ is shown in thick
lines. This function is:

Interval h.�/ Slope in interval
� � �2 4 C � 1

�2 � � � 0 3 C .1=2/� 1/2
0 � � � 1 3 � � �1

� � 1 4 � 2� �2

Fig. 2.7 Concavity and
pointwise infimum property
of a function of one variable.
The various functions of
which it is infimum are called
a1.�/ to a4.�/
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Exercises

2.3.6. Considering functions of decision variables x D .x1; : : : ; xn/T defined over
Rn, prove that: (1) the sum of convex (concave) functions is convex (concave), (2)
any positive combination of convex (concave) functions is convex (concave), (3)
pointwise supremum of convex functions is convex, likewise pointwise infimum of
concave functions is concave.

2.3.7. (1) Consider the function �.�/ D j�j of a real-valued variable �. Draw the
graph of �.�/ and show that it is a PL convex function. (2) In the same way show
that f .x/ D cj�j, where c is a constant, is PL convex if c � 0, and PL concave if
c � 0. (3) Draw the graphs of the absolute values of affine functions j4 C �j and
j4 � 2�j and show that these functions are PL convex. (4) For any j D 1 to n, show
that the function f .x/ D jxj j of x D .x1; : : : ; xn/T defined over Rn is PL convex.
What are the regions of Rn within which it is linear? (5) Show that the function
f .x/ D Pn

j D1 cj jxj j defined over Rn is convex if cj � 0 for all j , concave if
cj � 0 for all j . (6) Show that the absolute value function f .x/ D jc0 C cxj of
x 2 Rn is convex. What are the regions of Rn within which it is linear? Express
this function as the pointwise supremum of a set of affine functions. (7) Show that
the function f .x/ D Pt

rD1 wr jcr
0 C crxj (linear combinations of affine functions)

is convex if wr � 0 for all r , concave if wr � 0 for all r .

2.3.8. Consider the real-valued continuous function f .�/ of a variable �, defined
over � � 0; with f .0/ D �20; and slopes of 5, 9, 11, 8, 6, 10, respectively, in the
intervals Œ0; 20
; Œ20; 50
; Œ50; 60
; Œ60; 80
; Œ80; 90
; Œ90; 1
. Is it a convex or a
concave function over � � 0? If not, are there convex subsets of R1 on which this
function is convex or concave? If so, mention these and explain the reasons for the
same.

2.3.9. Consider a function �.x/ defined over a convex set  � Rn. A point Nx 2 

is said to be a local minimum for �.x/ over  if �.x/ � �. Nx/ for all points x 2 

satisfying jjx � Nxjj � � for some � > 0.
A local minimum Nx for �.x/ in  is said to be its global minimum in  if �.x/ �

�. Nx/ for all points x 2  . Local maximum, global maximum have corresponding
definitions.

Prove that every local minimum [maximum] of �.x/ in  is a global minimum
[maximum] if �.x/ is convex [concave]. Construct simple examples of general func-
tions defined over R1 which do not satisfy these properties.

Also, construct an example of a convex function that has a local maximum that
is not a global maximum.

2.3.10. Show that the function f .�/ D j� C 1j C j� � 1j defined on R1 is convex,
and that it has many local minima all of which are its global minima.
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2.4 Optimizing PL Functions Subject to Linear Constraints

The problem of optimizing a general continuous PL function subject to linear con-
straints is a hard problem for which there are no known efficient algorithms. Some
of these problems can be modeled as integer programs and solved by enumerative
methods known for integer programs. These enumerative methods are fine for han-
dling small-size problems, but require too much computer time as the problem size
increases. However, the special problems of either:

� Minimizing a PL convex function, or equivalently
� Maximizing a PL concave function

subject to linear constraints can be transformed into LPs by introducing additional
variables, and solved by efficient algorithms available for LPs. We will now discuss
these transformations with several illustrative examples.

2.4.1 Minimizing a Separable PL Convex Function Subject
to Linear Constraints

The negative of a concave function is convex. Maximizing a concave function is
the same as minimizing its negative, which is a convex function. Using this, the
techniques discussed here can also be used to solve problems in which a separa-
ble PL concave function is required to be maximized subject to linear
constraints.

A real-valued function z.x/ of decision variables x D .x1; : : : ; xn/T is said to
be a separable function if it can be expressed as the sum of n different functions,
each one involving only one variable, that is, has the form z.x/ D z1.x1/Cz2.x2/C
: : : C zn.xn/. This separable function is also a PL convex function if zj .xj / is a PL
convex function for each j D 1 to n.

Result 2.3. Let �.�/ be the PL convex function of � 2 R1 defined over � � 0

shown in the following table:

Interval Slope �.�/ D Interval
length

0 D �0 � � � �1 c1 c1� �1

�1 � � � �2 c2 �.�1/ C c2.� � �1/ �2 � �1

�2 � � � �3 c3 �.�2/ C c3.� � �2/ �3 � �2

:::
:::

:::

�r�1 � � � �r D 1 cr �.�r�1/ C cr .� � �r�1/ 1
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where �1 < �2 < : : : < �r�1 and c1 < c2 < ldots < cr (conditions for �.�/

to be convex). Then for any N� � 0, �. N�/ is the minimum objective value in the
following problem.

Minimize z D c1�1 C : : : C cr�r

subject to �1 C : : : C �r D N� (2.5)

0 � �t � �t � �t�1 t D 1; : : : ; r

Proof. Problem (2.5) can be interpreted this way: Suppose we want to purchase
exactly N� units of a commodity for which there are r suppliers. For k D 1 to r ,
kth supplier’s rate is ck /unit and can supply up to �k � �k�1 units only. �k in
the problem represents the amount purchased from the kth supplier, it is �0, but is
bounded above by the length of the kth interval in which the slope of �.�/ is ck . z
to be minimized is the total expense to acquire the required N� of the commodity.

Clearly, to minimize z, we should purchase as much as possible from the cheap-
est supplier, and when he cannot supply any more go to the next cheapest supplier,
and continue the same way until the required quantity is acquired. As the cost co-
efficients satisfy c1 < c2 < : : : < cr by the convexity of �.�/, the cheapest cost
coefficient corresponds to the leftmost interval beginning with 0, the next cheapest
corresponds to the next interval just to the right of it, and so on. Because of this, the
optimum solution N� D . N�1; : : : ; N�r / of (2.5) satisfies the following special property.

Special property of optimum solution N� of (2.5) that follows from convexity of
�.�/: If p is such that �p � N� � �pC1, then N�t D �t � �t�1, the upper bound
of �t for all t D 1 to p, N�pC1 D N� � �p , and N�t D 0 for all t � p C 2.

This property says that in the optimum solution of (2.5) if any �k > 0, then the
value of �t in it must be equal to the upper bound on this variable for any t < k.
Because of this, the optimum objective value in (2.5) is D c1 N�1 C : : : C cr N�r�. N�/.

ut
Example 2.3. – Illustration of Result 2.3: Consider the following PL function.

Interval Slope in interval �.�/ D Interval length
0�10 1 � 10

10�25 2 10 C 2.� � 10/ 15
25�30 4 40 C 4.� � 25/ 5
30�1 6 60 C 6.� � 30/ 1

As the slope is increasing with �, �.�/ is convex. Consider N� D 27. We see that
�.27/ D 48. The LP corresponding to (2.5) for N� D 27 in this problem is

Minimize z D �1 C 2�2 C 4�3 C 6�4

subject to �1 C �2 C �3 C �4 D 27

0 � �1 � 10; 0 � �2 � 15

0 � �3 � 5; 0 � �4
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The optimum solution of this LP is obtained by increasing the values of �1; �2;

�3; �4 one at a time from 0 in this order, moving to the next when this reaches its
upper bound, until the sum of these variables reaches 27. So, the optimum solution
is N� D .10; 15; 2; 0/T with its objective value of N�1 C 2 N�2 C 4 N�3 C 6 N�4 D 48
D �.27/ computed earlier from the definition of this function, verifying Result 2.3
in this example. �

If �.�/ is not convex, the optimum solution of (2.5) will not satisfy the special
property described in the proof of Result 2.3.

Because of this result when �.�/ is PL convex, in minimizing a PL convex func-
tion in which �.�/ is one of the terms, we can linearize �.�/ by replacing � byPr

tD1 �t , where �t is a new nonnegative variable corresponding to the t th interval
in the definition of �.�/, bounded above by the length of this interval, and replacing
�.�/ by

Pr
tD1 ct �t .

So now consider the problem

Minimize z.x/ D z1.x1/ C : : : C zn.xn/

subject to Ax D b (2.6)

x � 0;

where, for each j , zj .xj / is a PL convex function defined on xj � 0. Suppose the
various slopes for zj .xj / are c1

j < c2
j < : : : c

rj

j in that order with slopes changing

at the values d 1
j < d 2

j < : : : d
�1Crj

j for the variable xj . Then from this discussion,

the LP formulation for (2.6) involving new variables xk
j for k D 1 to rj , j D 1 to n

is (here `k
j D d k

j � d k�1
j D length of the kth interval in the definition of zj .xj //

Minimize
nX

j D1

rjX
kD1

ck
j xk

j

subject to
rjX

kD1

xk
j D xj ; j D 1 to n

Ax D b (2.7)

x � 0

0 � xk
j � `k

j ; 1 � j � n; 1 � k � rj

Example 2.4. A company makes products P1; P2; P3 using limestone (LI), elec-
tricity (EP), water (W), fuel (F), and labor (L) as inputs. Labor is measured in
man hours, other inputs in suitable units. Each input is available from one or more
sources.
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The company has its own quarry for LI, which can supply up to 250 units/day at
a cost of $20/unit. Beyond that, LI can be purchased in any amounts from an outside
supplier at $50/unit.

EP is available only from the local utility. Their charges for EP are $30/unit for
the first 1,000 units/day, $45/unit for up to an additional 500 units/day beyond the
initial 1,000 units/day, $75/unit for amounts beyond 1,500 units/day.

Up to 800 units/day of W (water) is available from the local utility at $6/unit,
beyond that they charge $7/unit of water/day.

There is a single supplier for F who can supply at most 3,000 units/day at
$40/unit, beyond that there is currently no supplier for F.

From their regular workforce they have up to 640 man hours of labor/day at
$10/man hour, beyond that they can get up to 160 man hours/day at $17/man hour
from a pool of workers.

They can sell up to 50 units of P1 at $3,000/unit/day in an upscale market; beyond
that they can sell up to 50 more units/day of P1 to a wholesaler at $250/unit. They
can sell up to 100 units/day of P2 at $3,500/unit. They can sell any quantity of P3

produced at a constant rate of $4,500/unit.
Data on the inputs needed to make the various products is given in the following

table. Formulate the product mix problem to maximize the net profit/day at this
company.

Product Input units/unit made
LI EP W F L

P1 1/2 3 1 1 2
P2 1 2 1/4 1 1
P3 3/2 5 2 3 1

Maximizing the net profit is the same thing as minimizing its negative, which
is D (the costs of all the inputs used/day) � (sales revenue/day). We verify that each
term in this sum is a PL convex function. So, we can model this problem as an LP
in terms of variables corresponding to each interval of constant slope of each of the
input and output quantities.

Let LI, EP, W, F, L denote the quantities of the respective inputs used/day; and
P1, P2, P3 denote the quantities of the respective products made and sold/day. Let
LI1, LI2 denote units of limestone used daily from own quarry, outside supplier. Let
EP1, EP2, EP3 denote units of electricity used/day at $30, 45, 75/unit, respectively.
Let W1, W2 denote units of water used /day at rates of $6 and 7/unit, respectively.
Let L1, L2 denote the man hours of labor used/day from regular workforce, pool,
respectively. Let P11, P12 denote the units of P1 sold at the upscale market, to the
wholesaler, respectively.

Then the LP model for the problem is

Minimize z D 20LI1 C 50LI2 C 30EP1 C 45EP2 C 75EP3 C 6W1 C 7W2 C 40F

C10L1 C 17L2 � 3;000P11 � 250P12 � 3;500P2 � 4;500P3
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subject to

(1/2)P1 C P2 C (3/2)P3 D LI
3P1 C 2P2 C5P3 D EP

P1 C (1/4)P2 C 2P3 D W
P1 C P2 C 3P3 D F
2P1 C P2 C P3 D L

LI1 C LI2 D LI, W1 C W2 D W
EP1 C EP2 C EP3 D EP

L1 C L2 D L, P11 C P12 D P1, All variables � 0

(LI1, EP1, EP2, W1) � (250, 1,000, 500, 800)
(F, L1, L2) � (3,000, 640, 160)

(P11, P12, P2) � (50, 50, 100). �

2.4.2 Min-max, Max-min Problems

As discussed earlier, a PL convex function in variables x D .x1; : : : ; xn/T can be
expressed as the pointwise maximum of a finite set of affine functions. Minimizing
a function like that subject to some constraints is appropriately known as a min-max
problem.

Similarly, a PL concave function in x can be expressed as the pointwise minimum
of a finite set of affine functions. Maximizing a function like that subject to some
constraints is appropriately known as a max-min problem. Both min-max and max-
min problems can be expressed as LPs using just one additional variable, if all the
constraints are linear constraints.

If the PL convex function f .x/ D maximumfct
0 C ct x W t D 1; : : : ; rg, then

�f .x/ D minimumf�ct
0�ct x W t D 1; : : : ; rg is PL concave and conversely. Using

this, any min-max problem can be posed as a max-min problem and vice versa. So,
it is sufficient to discuss max-min problems. Consider the max-min problem

Maximize z.x/ D Minimumfc1
0 C c1x; : : : ; cr

0 C crxg
subject to Ax D b

x � 0:

To transform this problem into an LP, introduce the new variable xnC1 to denote
the value of the objective function z.x/ to be maximized. Then the equivalent LP
with additional linear constraints is

Maximize xnC1

subject to xnC1 � c1
0 C c1x

xnC1 � c2
0 C c2x

:::
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xnC1 � cr
0 C crx

Ax D b

x � 0:

The fact that xnC1 is being maximized and the additional constraints together
imply that if . Nx; NxnC1/ is an optimum solution of this LP model, then NxnC1 D
minfc1

0 C c1 Nx; : : : ; cr
0 C cr Nxg D z. Nx/, and that NxnC1 is the maximum value of z.x/

in the original max-min problem.

Example 2.5. Application of the Min-max Model in Worst Case Analysis: Con-
sider the fertilizer maker’s product mix problem with decision variables x1; x2

(hi-ph, lo-ph fertilizers to be made daily in the next period) discussed in Sect. 1.7.1
and in Example 3.4.1 of Sect. 3.4 of Murty (2005b) of Chap. 1. This company makes
hi-ph, lo-ph fertilizers using raw materials RM1, RM2, RM3 with the following data
(Table 2.1):

We discussed the case where the net profit coefficients c1; c2 of these vari-
ables are estimated to be $15 and 10, respectively. In reality, the prices of fertilizers
are random variables that fluctuate daily. Because of unstable conditions and new
agricultural research announcements, suppose that market analysts have only been
able to estimate that the expected net profit coefficient vector .c1; c2/ is likely
to be one of f.15; 10/; .10; 15/; .12; 12/g without giving a single point estimate.
So, here we have three possible scenarios. In scenario 1, .c1; c2/ D (15, 10), ex-
pected net profit D 15x1 C 10x2; in scenario 2, .c1; c2/ D (10, 15), expected
net profit D 10x1 C 15x2; and in scenario 3, .c1; c2/ D (12, 12), expected net
profit D 12x1 C 12x2. Suppose the raw material availability data in the problem is
expected to remain unchanged. The important question is: which objective function
to optimize for determining the production plan for next period.

Regardless of which of the three possible scenarios materializes, at the worst
the minimum expected net profit of the company will be p.x/ D minf15x1 C
10x2; 10x1 C15x2; 12x1 C12x2g under the production plan x D .x1; x2/T . Worst
case analysis is an approach that advocates determining the production plan to op-
timize this worst case net profit p.x/ in this situation. This leads to the max-min
model:

Maximize p.x/ D minf15x1 C 10x2;

10x1 C 15x2; 12x1 C 12x2g
Table 2.1 Data for the fertilizer problem

Tons required to make
one ton of

Item Hi-ph Lo-ph Tons of item available daily

RM 1 2 1 1,500
RM 2 1 1 1,200
RM 3 1 0 500
Net profit $/ton made 15 10
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subject to 2x1 C x2 � 1;500

x1 C x2 � 1;200

x1 � 500

x1; x2 � 0:

Its LP formulation is

max p

subject to p � 15x1 C 10x2

p � 10x1 C 15x2

p � 12x1 C 12x2

2x1 C x2 � 1;500

x1 C x2 � 1;200

x1 � 500; x1; x2 � 0:

�

2.4.3 Minimizing Positive Linear Combinations of Absolute
Values of Affine Functions

Let z.x/ D w1jc1
0 C c1xj C : : : C wr jcr

0 C crxj: Consider the problem:

Minimize z.x/

subject to Ax � b; (2.8)

where the weights w1; : : : ; wr are all strictly positive. In this problem the objective
function to be minimized, z.x/, is a PL convex function, hence this problem can
be transformed into an LP. This is based on a result that helps to express the absolute
value as a linear function of two additional variables, which we will discuss first.

Result 2.4. Consider the affine function ck
0 C ckx and its value ˇ D ck

0 C ck Nx at
some point Nx 2 Rn. Consider the following LP in two variables u; v.

Minimize u C v

subject to u � v D ˇ (2.9)

u; v � 0

(2.9) has a unique optimum solution .Nu; Nv/, which satisfies NuNv D 0, and its opti-
mum objective value Nu C Nv D jˇj D jck

0 C ck Nxj.
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Proof. If ˇ � 0, the general solution of (2.9) is .u; v/ D .ˇ C ˛; ˛/ for some
˛ � 0, the objective value of this solution, ˇ C 2˛, assumes its minimum value
when ˛ D 0. So in this case .Nu; Nv/ D .ˇ; 0/ satisfying NuNv D 0 and having optimum
objective value of Nu C Nv D ˇ D jˇj.

If ˇ < 0, the general solution of (2.9) is .u; v/ D .˛; jˇj C ˛/ for some ˛ � 0,
the objective value of this solution, jˇj C 2˛, assumes its minimum value when
˛ D 0: So in this case .Nu; Nv/ D .0; jˇj/ satisfying NuNv D 0 and having optimum
objective value of Nu C Nv D jˇj.

So, the result holds in all cases. ut
Example 2.6. Illustration of Result 2.4: Consider problem (2.9) when ˇ D �7.
The problem is

minimize u C v subject to u � v D �7, u; v � 0.

The general solution of this problem is .u; v/ D .˛; 7 C ˛/ for ˛ � 0 with
objective value 7 C 2˛. So, the unique optimum solution is .Nu; Nv/ D .0; 7/ and
Nu C Nv D 7 D j � 7j and NuNv D 0. �

In the optimum solution .Nu; Nv/ of (2.9), Nu is usually called the positive part of ˇ,
and Nv is called the negative part of ˇ. Notice that when ˇ is negative, its negative
part is actually the absolute value of ˇ. Also, for all values of ˇ, at least one quantity
in the pair (positive part of ˇ, negative part of ˇ) is 0.

Commonly the positive or negative parts of ˇ are denoted by symbols ˇC; ˇ�,
respectively. In this notation, ˇ D ˇC � ˇ� and jˇj D ˇC C ˇ�; both ˇC; ˇ� are
� 0, and satisfy .ˇC/.ˇ�/ D 0.

Result 2.4 helps to linearize the objective function in (2.8) by introducing two
new variables for each absolute value term in it. Notice that this is only possible
when all the coefficients of the absolute value terms in the objective function in (2.8)
are positive. From this discussion we see that (2.8) is equivalent to the following LP
with two new nonnegative variables for each t D 1 to r , uC

t D maximum f0; ct
0 C

ct xg, u�
t D � minimumf0; ct

0 C ct xg. uC
t is the positive part of ct

0 C ct x and u�
t

its negative part.

Minimize w1Œ.uC
1 / C .u�

1 /
C : : : Cwr Œ.uC
r / C .u�

r /


subject to c1
0 C c1x D .uC

1 / � .u�
1 /

::: (2.10)

cr
0 C crx D .uC

r / � .u�
r /

Ax � b

.uC
t /; .u�

t / � 0; t D 1; : : : ; r:

If .OuC D .OuC
1 ; : : : ; OuC

r /; Ou� D .Ou�
1 ; : : : ; Ou�

r /; Ox/ is an optimum solution of
(2.10), then Ox is an optimum solution of (2.8), and ck

0 C ck Ox D OuC
k

� Ou�
k

,
jck

0 C ck Oxj D OuC
k

C Ou�
k

; and the optimum objective values in (2.10) and (2.8) are
the same.



2.4 Optimizing PL Functions Subject to Linear Constraints 61

Application of this transformation will be discussed next. This is an important
model that finds many applications.

In Model (2.10), by expressing the affine function c1
0 C c1x, which may be posi-

tive or negative, as the difference uC �u� of two nonnegative variables; the positive
part of c1

0 Cc1x denoted by .c1
0 Cc1x/C D maximumfc1

0 Cc1x; 0g will be uC, and
the negative part of c1

0 Cc1x denoted by .c1
0 Cc1x/� D maximumf0; �.c1

0 Cc1x/g
will be u� as long as the condition .uC/.u�/ D 0 holds. This condition will auto-
matically hold as long as:

1. The coefficients of uC; u� are both � 0 in the objective function being minimized;
and

2. The column vectors of the pair of variables uC; u� in the model among the constraints
(not including the sign restrictions) sum to 0 (or form a linearly dependent set).

A Cautionary Note 2.1: When expressing an unrestricted variable or an affine func-
tion as a difference uC � u� of two nonnegative variables, and using uC; u� as
the positive, negative parts of that unrestricted variable or affine function, or us-
ing uC C u� as its absolute value, it is necessary to make sure that the condition
.uC/.u�/ D 0 will automatically hold at very optimum solution of the model. For
this, the above two conditions must hold.

Sometimes people tend to include additional constraints involving uC; u� with
nonzero coefficients into the model (for examples, see Model 1 below, and Model
1 for the parameter estimation problem using the L1- measure of deviation in
Example 2.8 below). When this is done, the Condition 2 above may be violated;
this may result in the model being invalid. So, it is better to not include additional
constraints involving uC; u� into the model.

2.4.4 Minimizing the Maximum of the Absolute Values
of Several Affine Functions

Let z.x/ D Maximumfjc1
0 C c1xj; : : : ; jcr

0 C crxjg. Consider the problem

Minimize z.x/

subject to Ax � b: (2.11)

In this problem the objective function to be minimized, z.x/, is the pointwise
supremum of several PL convex functions, and hence is a PL convex function, hence
this problem can be transformed into an LP. Combining the ideas discussed above,
one LP model for this problem is Model 1 given below.

It can be verified that in this model the property .uC
t /.u�

t / D 0 for all t will hold
at every optimum solution for it, so this is a valid model for the problem. But it
has one disadvantage that it uses the variables uC

t ; u�
t representing the positive and

negative parts of ct
0 C ct x in additional constraints in the model (those in the first

line of constraints), with the result that the pair of column vectors of the variables
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uC
t ; u�

t among the constraints no longer form a linearly dependent set, violating
Condition 2 expressed in Cautionary Note 2.1 above.

Model 1

min z

subject to z � uC
t C u�

t ; t D 1; : : : ; r

c1
0 C c1x D uC

1 � u�
1

::: (2.12)

cr
0 C crx D uC

r � u�
r

Ax � b

uC
t ; u�

t � 0; t D 1; : : : ; r

It is possible to transform (2.11) into an LP model directly without introducing
these uC

t ; u�
t variables at all. This leads to a better and cleaner LP model for this

problem, Model 2, with only one additional variable z.

Model 2

min z

subject to � z � ct
0 C ct x � z; t D 1; : : : ; r

Ax � b (2.13)

z � 0:

The constraints specify that z � jct
0 C ct xj for all t ; and as z is minimized in

Model 2, it guarantees that if .Oz; Ox/ is an optimum solution of this Model 2, then Ox is
an optimum solution also for (2.11), and Oz is the optimum objective value in (2.11).

We will now discuss important applications of these transformations in meet-
ing multiple targets as closely as possible, and in curve fitting, and provide simple
numerical examples for each.

Example 2.7. Meeting targets as closely as possible: Consider the fertilizer
maker’s product mix problem with decision variables x1; x2 (hi-ph, lo-ph fertil-
izers to be made daily in the next period) discussed in Example 3.4.1 of Sect. 3.4
of Murty (2005b) of Chap. 1 and Example 2.5 above, with net profit coefficients
.c1; c2/ D .15; 10/ in $/ton of hi-ph, lo-ph fertilizers made. In these exam-
ples, we considered only maximizing one objective function, the daily net profit
D 15x1 C 10x2 with the profit vector given. But in real business applications, com-
panies have to pay attention to many other objective functions in order to survive
and thrive in the market place. We will consider two others.

The second objective function that we will consider is the companies total market
share, usually measured by the companies sales volume as a percentage of the sales
volume of the whole market. To keep this example simple, we will measure this by
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the total daily sales revenue of the company. The sale prices of hi-ph, lo-ph fertilizers
are $222, $107/ton, respectively, so this objective function is 222x1 C 107x2.

The third objective function that we consider is the hi-tech market share, which
is the market share of the company among hi-tech products (in this case hi-ph is the
hi-tech product). This influences the public’s perception of the company as a market
leader. To keep this example simple, we will measure this by the daily sales revenue
of the company from hi-ph sales which is $222x1.

So, here we have three different objective functions to optimize simultaneously.
Problems like this are called multiobjective optimization problems. One commonly
used technique to get a good solution in these problems is to set up a target value for
each objective function (based on the companies aspirations, considering the trade-
offs between the various objective functions), and to try to find a solution as close
to each of the targets as possible. In our example, suppose that the targets selected
for daily net profit, market share, and hi-tech market share are $12,500, 200,000,
and 70,000, respectively.

In this example, we consider the situation where the company wants to attain
the target value for each objective function as closely as possible, considering both
positive and negative deviations from the targets as undesirable.

When there is more than one objective function to be optimized simultaneously,
decision makers may not consider all of them to be of the same importance. To
account for this, it is customary to specify positive weights corresponding to the
various objective functions, reflecting their importance, with the understanding that
the higher the weight the more important it is to keep the deviation in the value of
this objective function from its target small. So, this weight for an objective function
plays the role of a penalty for unit deviation in this objective value from its target.
In our example, suppose these weights for daily net profit, market share, and hi-tech
market share, are 10, 6, and 8, respectively.

After these weights are given, one strategy to solve this problem is to determine
the solution to implement to minimize the penalty function, which is the weighted
sum of absolute deviations from the targets. This problem is (constraints on the
decision variables are given in Example 2.5 above)

Minimize penalty function D10j15x1 C 10x2 � 12;500j
C 6j222x1 C 107x2 � 200; 000j C 8j222x1 � 70;000j

subject to 2x1 C x2 � 1;500

x1 C x2 � 1;200

x1 � 500

x1; x2 � 0:

Linearizing this leads to the following LP:

Minimize penalty function D10.uC
1 C u�

1 / C 6.uC
2 C u�

2 / C 8.uC
3 C u�

3 /
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subject to 15x1 C 10x2 � 12;500 D uC
1 � u�

1

222x1 C 107x2 � 200;000 D uC
2 � u�

2

222x1 � 70;000 D uC
3 � u�

3

2x1 C x2 � 1;500

x1 C x2 � 1;200

x1 � 500

x1; x2; uC
i ; u�

i � 0; for all i .

If OuC D .OuC
1 ; OuC

2 ; OuC
3 /, Ou� D .Ou�

1 ; Ou�
2 ; Ou�

3 /, Ox D . Ox1; Ox2// is an opti-
mum solution of this LP, then Ox is an optimum solution that minimizes the penalty
function. �

Example 2.8. Best L1 or L1 Approximations for Parameter Estimation in
Curve Fitting Problems:

A central problem in science and technological research is to determine the op-
timum operating conditions of processes to maximize the yield from them. Let y

denote the yield from a process whose performance is influenced by n controllable
factors. Let x D .x1; : : : ; xn/T denote the vector of values of these factors, and
this vector characterizes how the process is run. So, here x D .x1; : : : ; xn/T are
the independent variables whose values the decision maker can control, and the
yield y is the dependent variable whose value depends on x. To model the problem
of determining the optimum x mathematically, it is helpful to approximate y by a
mathematical function of x, which we will denote by y.x/.

The data for determining the functional form of y.x/ is the yield at several points
x 2 Rn in the feasible range. As there are usually errors in the measurement of yield,
one makes several measurement observations of the yield at each point x used in
the experiment, and takes the average of these observations as the yield value at that
point. The problem of determining the functional form of y.x/ from such observed
data is known as a curve fitting problem.

For a numerical example, consider the data in the following Table 2.2 obtained
from experiments for the yield in a chemical reaction, as a function of the tempera-
ture t at which the reaction takes place.

The problem in this example is to determine a mathematical function y.t/ that
fits the observed data as closely as possible.

Table 2.2 Yield at various
temperatures

Temperature t Yield, y.t/

�5 80
�3 92
�1 96

0 98
1 100
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The commonly used strategy to solve the curve-fitting problem for the dependent
variable, yield y.x/, in terms of independent variables, x D .x1; : : : ; xn/T , involves
the following steps.

Step 1: Model function selection: Select a specific mathematical functional form
f .x; a/ with unknown parameters say a D .a0; : : : ; ak/ (these parameters are
things like coefficients of various terms, exponents, etc.) that seems to offer the
best fit for the yield y.x/.

In some cases there may be well-developed mathematical theory that specifies
f .x; a/ directly. If that is not the case, plots of y.x/ against x can give an idea of
suitable model functions to select.

For example, if plots indicate that y.x/ appears to be linear in x, then we can
select the model function to be f .x; a/ D a0 C a1x1 C : : : C anxn, in which the
coefficients a0; a1; : : : ; an are the unknown parameters. This linear model function
is the most commonly used one in statistical theory, and the area of this theory that
deals with determining the best values for these parameters by the method of least
squares is called linear regression theory.

If plots indicate that y.x/ appears to be quadratic in x, then the model function
to use is

Pn
iD1

Pn
j Di aij xi xj (where the coefficients aij are the parameters). Sim-

ilarly, a cubic function in x may be considered as the model function if that appears
more appropriate.

The linear, quadratic, cubic functions in x are special cases of the general poly-
nomial function in x. Selecting a polynomial function in x as the model function
confers a special advantage for determining the best values for the unknown param-
eters because this model function is linear in these parameters.

When the number of independent variables n is not small (i.e., � 4), using a
complete polynomial function in x of degree �2 as the model function leads to
many unknown parameter values to be determined. That is why when such model
functions are used, one normally uses the practical knowledge about the problem
and the associated process to fix as many as possible of these unknown coefficients
that are known to be insignificant with reasonable certainty at 0.

Polynomial functions of x of degree �3 are the most commonly used model
functions for curve-fitting. Functions outside this class are only used when there is
supporting theory that indicates that they are more appropriate.

Step 2: Selecting a measure of deviation: Let f .x; a/ be the model function se-
lected to represent the yield, with a as the vector of parameters in it. Suppose the
data available consists of r observations on the yield as in the following table.

Independent vars. x1 x2 : : : xr

Observed yield y1 y2 : : : yr

Then the deviations of the model function value from the observed yield at the
data points x1; : : : ; xr are f .x1; a/ � y1, . . . , f .xr ; a/ � yr . Some of these de-
viations may be �0 and some �0, but f .x; a/ is considered to be a good fit for
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the yield if all these deviations are small, that is, close to 0. In this step we have to
select a single numerical measure that can check whether all these deviations are
small or not.

The most celebrated and most commonly used measure of deviation is the sum of
squared deviations, first used and developed by Carl F. Gauss, the famous nineteenth
century German mathematician. He developed this measure for approximating the
orbit of the asteroid Ceres with a second degree curve. This measure is also known
as the L2-measure (after the Euclidean or the L2-metric defined as the square root
of the sum of squares), and for our problem it is L2.a/ D Pr

kD1.f .xk ; a/ � yk/2.
Determining the best values of the parameters a as those that minimizes this L2

measure L2.a/ is known as the method of least squares.
Another measure of deviation that can be used is the L1-measure (also known

as the rectilinear measure); it is the sum of absolute deviations D L1.a/ D Pr
kD1

jf .xk ; a/ � yk j.
A third measure of deviation that is used by some people is the L1-measure (also

known as the Chebyshev measure after the Russian mathematician Tschebychev
who proposed it in the nineteenth century). This measure is the maximum absolute
deviation L1.a/ D maxfjf .xk; a/ � ykj W k D 1 to rg.

The L2-measure is continuously differentiable in the parameters, but the L1 and
L1-measures are not (they are not differentiable at points in the parameter space
where a deviation term becomes 0). That is why minimizing the L2-measure using
calculus techniques based on derivatives is easier; for this reason the method of least
squares has become a very popular method for determining the best values for the
unknown parameters to give the best fit to the observed data. Particularly, most of
statistical theory is based on the method of least squares.

As they are not differentiable at some points, minimizing the L1 and L1-
measures may be difficult in general. However, when the model function f .x; a/ is
linear in the parameter vector a (this is the case when f .x; a/ is a polynomial in
x), then determining a to minimize the L1 or L1-measures can be transformed
into LPs and solved very efficiently. That is why parameter estimation to minimize
the L1 or L1-measures is becoming increasingly popular when f .x; a/ is linear
in a.

The parameter vector that minimizes the L2-measure is always unique, but the
problem of minimizing L1 or L1-measures usually have alternate optima. There
are some other differences among the L2; L1; L1-measures worth noting. Many
people do not like to use the L1-measure for parameter estimation, because it de-
termines the parameter values to minimize the deviations of extreme measurements
(which are often labeled as “outliers” in statistical literature), totally ignoring all
other observations. Both L1; L2-measures give equal weight to all the observations.

The L2-measure would be the preferred measure to use when f .x; a/ is not lin-
ear in the parameter vector a, because it is differentiable everywhere. When f .x; a/

is linear in a, the choice between L2; L1-measures of deviation to use for param-
eter estimation is a matter for individual judgement and the availability of suitable
software for carrying out the computations required.
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Step 3: Parameter estimation: Solve the problem of determining Na that minimizes
the measure of deviation selected.

The optimum solutions for the problems of minimizing L2.a/; L1.a/; L1.a/

may be different. Let Na denote the optimum a-vector that minimizes whichever mea-
sure of deviation has been selected for determining the best a-vector. The optimum
objective value in this problem is known as the residue. If the residue is “small, ”
f .x; Na/ is accepted as the functional form for y.x/.

If the residue is “large, ” it is an indication that f .x; a/ is not the appropriate
functional form for the yield y.x/. In this case go back to Step 1 to select a better
model function for the yield, and repeat this whole process with it.

Finally, the question of how to judge whether the residue is “small” or “large”.
Statistical theory provides some tests of significance for this judgement when using
the method of least squares. These are developed under the assumption that the
observed yield follows a normal distribution. But, in general, the answer to this
question depends mostly on personal judgement.

When f .x; a/ is linear in a, a necessary and sufficient condition for optimality
for the problem of minimizing L2.a/ is @L2.a/

@a
D 0. This is a system of linear

equations in a, which can be solved for determining the optimum solution Na.
The problems of minimizing L1.a/ are L1.a/ when f .x; a/ linear in a can be

transformed into an LP. We will show how to do this using the example of yield
in the chemical reaction as a function of the temperature t of the reaction; data for
which is given in Table 2.2 above.

Estimates of the Parameter Vector a that Minimize L2.a/ W Suppose plots indi-
cate that the yield in this chemical reaction, as a function of the reaction temperature,
y.t/ can be approximated closely by a quadratic function of t . So we take the model
function to be f .t; a/ D a0 C a1t C a2t2, where a D .a0; a1; a2/ is the
parameter vector to be estimated.

So, f .�5; a/ D a0 �5a1 C25a2, hence the deviation between f .t; a/ and y.t/

at t D �5 is a0 � 5a1 C 25a2 � 80. Continuing this way, we see that

L2.a/ D .a0 �5a1 C25a2 �80/2 C .a0 �3a1 C9a2 �92/2 C .a0 �a1 Ca2 �96/2

C.a0 � 98/2 C .a0 C a1 C a2 � 100/2;

L1.a/ D j.a0 �5a1 C25a2 �80/jCj.a0 �3a1 C9a2 �92/jCj.a0 �a1 Ca2 �96/j
Cj.a0 � 98/j C j.a0 C a1 C a2 � 100/j;

L1f.a/ D maxfj.a0 � 5a1 C 25a2 � 80/j; j.a0 � 3a1 C 9a2 � 92/j
j.a0 � a1 C a2 � 96/j; j.a0 � 98/j; j.a0 C a1 C a2 � 100/jg:

So, the method of least squares involves finding a that minimizes L2.a/. The
necessary and sufficient optimality conditions for this are @L2.a/

@a
D 0, which are

5a0 � 8a1 C 36a2 D 466;

�8a0 C 36a1 � 152a2 D �672;

36a0 � 152a1 C 708a2 D 3;024:
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It can be verified that this has the unique solution of Na D . Na0; Na1; Na2/ D
.98:6141; 1:1770; �0:4904/. So the fit obtained by the method of least squares is
f .t; Na/ D 98:6141 C 1:1770t � 0:4904t2, with a residue of 3.7527, in L2-measure
units.

Estimates of the Parameter Vector a that Minimize L1.a/ W The problem of
minimizing L1.a/ is the following LP:

Minimize
5X

iD1

.uC
i C u�

i /

subject to .a0 � 5a1 C 25a2 � 80/ D uC
1 � u�

1

.a0 � 3a1 C 9a2 � 92/ D uC
2 � u�

2

.a0 � a1 C a2 � 96/ D uC
3 � u�

3

.a0 � 98/ D uC
4 � u�

4

.a0 C a1 C a2 � 100/ D uC
5 � u�

5

uC
i ; u�

i � 0; for all i .

One of the optimum solutions of this problem is Na D . Na0; Na1; Na2/ D .98:3333;

2; �0:3333; /; the fit given by this solution is f .t; Na/ D 98:3333 C 2t � 0:3333t2,
with a residue of 3, in L1-measure units.

Estimates of the Parameter Vector a that Minimize L1.a/ W One LP model
discussed earlier for the problem of minimizing L1.a/ is the following:

Model 1:

Minimize z

subject to z � .uC
i C u�

i / for all i

.a0 � 5a1 C 25a2 � 80/ D uC
1 � u�

1

.a0 � 3a1 C 9a2 � 92/ D uC
2 � u�

2

.a0 � a1 C a2 � 96/ D uC
3 � u�

3

.a0 � 98/ D uC
4 � u�

4

.a0 C a1 C a2 � 100/ D uC
5 � u�

5

uC
i ; u�

i � 0; for all i .

One of the optimum solutions of this model is Oa D . Oa0; Oa1; Oa2/ D .98:5;

1; �0:5/, so the fit given by this solution is f .t; Oa/ D 98:5Ct �0:5t2, with a residue
of 1, in L1-measure units. The corresponding values of positive and negative parts
of the deviations in this optimum solution are OuC D .1; 0; 1; 0:5; 1/ and Ou� D
.0; 1; 0; 0; 0/, and it can be verified that this optimum solution satisfies .uC

t /.u�
t / D

0 for all t .



2.4 Optimizing PL Functions Subject to Linear Constraints 69

Even though this Model 1 is a perfectly valid LP model for the problem of mini-
mizing the L1-measure of deviation, it has the disadvantage of using the variables
uC

t ; u�
t representing the positive and negative parts of deviations in additional con-

straints in the model, as explained earlier.
A more direct model for the problem of minimizing L1.a/ is the following

Model 2 given below. As explained earlier, Model 2 is the better model to use for
minimizing L1.a/. One of the optimum solutions for this model is the same Oa that
was given as the optimum solutions for Model 1, so it leads to the same fit f .t; Oa/

as described under Model 1.

Model 2:

Minimize z

subject to � z � .a0 � 5a1 C 25a2 � 80/ � z

�z � .a0 � 3a1 C 9a2 � 92/ � z

�z � .a0 � a1 C a2 � 96/ � z

�z � .a0 � 98/ � z

�z � .a0 C a1 C a2 � 100/ � z

z � 0

All three methods, the L2; L1; L1 methods lead to reasonably good fits for
the yield in this chemical reaction, so any one of these fits can be used as the func-
tional form for yield when the reaction temperature is in the range used under this
experiment. �

2.4.5 Minimizing Positive Combinations of Excesses/Shortages

In many systems, the decision makers usually set up target values for one or more
linear functions of the decision variables whose values characterize the way the
system operates. Suppose the decision variables are x D .x1; : : : ; xn/T and a linear
function

P
aj xj has a target value of b.

Targets may be set up for many such linear functions. If each of these desired
targets is included as a constraint in the model, that model may not have a feasible
solution either because there are too many constraints in it, or because some target
constraints conflict with the others. That is why in these situations one does not
normally require that the target values be met exactly. Instead, each linear function
with a target value is allowed to take any value, and a solution that minimizes a
penalty function for deviations from the targets is selected for implementation.
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For the linear function
P

aj xj with target value b, the excess at the solution
point x (or the positive part of the deviation .

P
aj xj � b)) denoted by .

P
aj xj �

b/C and the shortage at x (the negative part of the deviation .
P

aj xj �b)) denoted
by .

P
aj xj � b/� are defined to be

if
�X

aj xj � b
�

� 0; excess
�X

aj xj � b
�

C D
�X

aj xj � b
�

;

shortage
�X

aj xj � b
�

� D 0

if
X

aj xj � b/ � 0; excess
�X

aj xj � b
�

C D 0;

shortage
�X

aj xj � b
�

� D j
�X

aj xj � b
�

j:

Therefore, both excess and shortage are always �0, and the penalty term cor-
responding to this target will be ˛

�P
aj xj � b

�C C ˇ
�P

aj xj � b
��

, where
˛; ˇ � 0 are, respectively, the penalties per unit excess, shortage (˛; ˇ may not
be equal, in fact one of them may be positive and the other 0) set by the decision
makers.

The penalty function D sum of the penalty terms corresponding to all the targets,
by minimizing it subject to the essential constraints on the decision variables, we
can expect to get a compromise solution to the problem. If it makes the deviations
from some of the targets too large, the corresponding penalty coefficients can be
increased and the modified problem solved again. After a few iterations like this,
one usually gets a reasonable solution for the problem.

The minimum value of the penalty function is �0, and it will be 0 iff there is a
feasible solution meeting all the targets. When there is no feasible solution meeting
all the targets, the deviations from some targets will always be nonzero; minimizing
the penalty function in this case seeks a balance among the various deviations from
the targets, that is, it seeks a good compromise solution.

By expressing the deviation .ax � b/, which may be positive or negative, as the
difference uC � u� of two nonnegative variables, the excess .ax � b/C defined
above will be uC and the shortage .ax � b/� defined above will be u� as long as
the condition .uC/.u�/ D 0 holds. For this, remember the precautions expressed in
the Cautionary Note 2.1 given above.

Example 2.9. We provide an example in the context of a simple transportation prob-
lem. Suppose a company makes a product at two plants Pi , i D 1, 2. At plant Pi ,
ai (in tons) and gi (in $/ton) are the production capacity and production cost during
regular time working hours; and bi (in tons) and hi (in $/ton) are the production
capacity and production cost during overtime working hours.

The company has dealers in three markets, Mj , j D 1, 2, 3 selling the product.
The selling price in different markets is different. In market Mj , the estimated de-
mand is dj (in tons), and up to this demand of dj tons can be sold at the selling price
of pj (in $/ton), beyond which the market is saturated. However, in each market j ,
there are wholesalers who are willing to buy any excess over the demand at the price
of sj (in $/ton).
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The cost coefficient cij (in $/ton) is the unit transportation cost for shipping the
product from plant i to market j . All this data is given in the following table.

cij for j D ai bi gi hi

1 2 3
i D 1 11 8 2 900 300 100 130

2 7 5 4 500 200 120 160
dj 400 500 200
pj 150 140 135
sj 135 137 130

We want to formulate the problem of finding the best production, shipping plan
to maximize net profit (Dsales revenue � production costs), as an LP. There is no
requirement that the amount shipped to any of the markets should equal or exceed
the demand at it, in fact any amount of the available product can be shipped to any
of the markets. Clearly the decision variables in this problem are

xij D tons shipped from Pi to Mj ; i D 1, 2; j D 1, 2, 3

yi D tons produced in Pi , i D 1, 2

yi1; yi2 D tons of regular, overtime production at Pi , i D 1, 2.

The essential constraints in this problem are the production capacity constraints,
these cannot be violated. They are

x11 C x12 C x13 D y1 D y11 C y12

x21 C x22 C x23 D y2 D y21 C y22 (2.14)

0 � yi1 � ai ; 0 � yi2 � bi

for i D 1, 2

From the production costs, we see that the slope of the production cost function
at each plant is monotonic increasing, hence it is PL convex and its negative is
PL concave. So, this negative production cost that appears as a term in the overall
objective function to be maximized can be expressed as �.g1y11Ch1y12Cg2y21C
h2y22/.

The demand dj at market j is like a target value to ship to that market, but
the actual amount sent there can be anything. For each unit of excess sent over the
demand, there is a drop in the sales revenue of .pj � sj //unit. So the total sales
revenue can be expressed as .

P2
iD1 xij/pj � .

P2
iD1 xij � dj /C.pj � sj /. So, our

problem is

Maximize
3X

j D1

2
4
 

2X
iD1

xij

!
pj �

 
2X

iD1

xij � dj

!C �
pj � sj

�
3
5

�.g1y11 C h1y12 C g2y21 C h2y22/ �
2X

iD1

3X
j D1

cijxij
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subject to the constraints (2.14). Putting it in minimization form and linearizing,
it is

Minimize .g1y11 C h1y12 C g2y21 C h2y22/ C
2X

iD1

3X
j D1

cijxij

�
3X

j D1

" 
2X

iD1

xij

!
pj � uC

j .pj � sj /

#

Subject to (2.14), and

2X
iD1

xij D dj C uC
j � u�

j for all j

uC
j ; u�

j � 0 for all j :

�

2.5 Multiobjective LP Models

So far we discussed only problems in which there is a single well-defined objective
function specified to be optimized. In most real-world decision-making problems
there are usually several objective functions to be optimized simultaneously. In
many of these problems, the objective functions conflict with one another; that is,
moving in a direction that improves the value of one objective function often makes
the value of some other objective function worse. See (Charnes and Cooper (1977),
Hwang and Masud (1979), Keeney and Raiffa (1976), Sawaragi et al. (1985), Steuer
(1986)), for a discussion of multiobjective optimization.

When dealing with such a conflicting set of objective functions, even developing
a concept of optimality that every one can agree on has turned out to be very difficult.

With the result there is no universally accepted concept of optimality in multiob-
jective optimization.

Hence, all practical methods for handling multiobjective problems focus on find-
ing some type of a compromise solution.

Let x D .x1; : : : ; xn/T denote the vector of decision variables. Let z1.x/; : : : ;

zk.x/ denote the k objective functions to be optimized simultaneously. If any one
of them is to be maximized, replace it by its negative, so all the objective functions
are to be minimized. Then this multiobjective LP is of the form

Minimize z1.x/; : : : ; zk.x/ simultaneously

subject to Ax D b (2.15)

Dx � d

x � 0:
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It is possible that each objective function is measured in its own special units.
A feasible solution Nx to the problem is said to be a pareto optimal solution (various
other names used for the same concept are: vector minimum, nondominated solution,
equilibrium solution, efficient solution, etc.) to (2.15) if there exists no other feasible
solution x that is better than Nx for every objective function and strictly better for at
least one objective function; that is, if there exists no feasible solution x satisfying

zr .x/ � zr . Nx/ for all r D 1 to k ; and

zr .x/ < zr . Nx/ for at least one r .

A feasible solution that is not a nondominated solution is called a dominated
solution to the problem. Clearly, a dominated solution is never a desirable solution
to implement, because there are other solutions better than it for every objective
function. So for a feasible solution to be a candidate to be considered for (2.15), it
must be a nondominated solution only.

Nobel Prize in This Area: The mathematical theory of nondominated solutions is very
highly developed. John Nash was awarded the 1994 Nobel Prize in economics for proving
the existence of nondominated solutions for certain types of multiobjective problems, and a
highly popular Hollywood movie “A Beautiful Life” has been made based on his life.

Very efficient algorithms have been developed for enumerating the set of all
nondominated solutions to multiobjective LPs; this set is commonly known as the
efficient frontier. However, typically there are far too many nondominated solu-
tions to multiobjective LPs, and so far no one has been able to develop a concept
for the best among them, or an efficient way to select an acceptable one. So, much
of the highly developed mathematical theory on nondominated solutions remains
unused in practice.

Example 2.10. Consider a multiobjective LP in which two objective functions
z.x/ D .z1.x/; z2.x// are required to be minimized simultaneously. Suppose Nx
with objective values z. Nx/ D (100, 200) and Ox with z. Ox/ D (150, 180) are two non-
dominated feasible solutions for this problem. The solution Nx is a better solution
than Ox for objective function z1.x/, but Ox is better than Nx for z2.x/. In this pair, im-
provement in the value of z1.x/ comes at the expense of deterioration in the value
of z2.x/, and it is not clear which solution is better among these two. �

The question can be resolved if we can get some quantitative compromise (or
tradeoff) information between the two objectives; that is, how many units of z2.x/

are the decision makers willing to sacrifice to improve the value of z1.x/ by one
unit? Unfortunately, such compromise information is not available in multiobjective
problems; that is what makes them hard to solve.

As another illustration, consider a problem in which two objective functions
z1; z2 are required to be minimized simultaneously. If Nx is a feasible solution to
the problem with values Nz1; Nz2 for the two objective functions, we represent Nx by the
point (Nz1; Nz2) in the z1; z2-plane. In Fig. 2.8, we mark the points in the z1; z2-plane
corresponding to feasible solutions of the problem. They form the dotted region in
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z1

z2

ẑ

Fig. 2.8 Dotted region consists of points in the objective plane corresponding to feasible solutions.
The point Oz does not correspond to a pareto optimum point, since points in the cone region marked
by the angle sign, which are in the dotted area, correspond to strictly superior feasible solutions on
one or both objective functions. The thick boundary curve corresponds to the efficient frontier

the z1; z2-plane in Fig. 2.8. A feasible solution corresponding to a point such as
Oz D .Oz1; Oz2/ in the interior of the shaded region is not a pareto optimum, as feasible
solutions corresponding to points in the shaded region satisfying z1 � Oz1; z2 � Oz2

are strictly better for one or both of the objective functions. So, for this problem,
pareto optimum solutions are those corresponding to points on the thick boundary
curve in Fig. 2.8, and there are an infinite number of them.

Feasible solutions in the efficient frontier for this problem correspond to points
on the thick boundary curve in Fig. 2.8. As points representing solutions trace out
this efficient frontier, if there are gains in the value of one objective function, there
will be losses in the value of the other.

The reader should not be fooled by the word optimum in the phrase pareto opti-
mum. In a multiobjective model, a pareto optimum does not have the nice optimality
properties that we have seen in single objective models. Remember that a pareto op-
timum point is just a feasible solution with the property that any move from it, if
it leads to a gain in the value of one objective function, it also leads to a loss in
the value of another objective function. Usually there are many such points, and it
is hard to determine which efficient solution is better unless we have some idea of
how much one unit decrease in the value of z2 is worth in terms of units of z1.

2.5.1 Practical Approaches for Handling Multiobjective
LPs in Current Use

As pointed out earlier, if complete compromise (or exchange, or tradeoff) informa-
tion between unit values of the various objective functions is available, it will make
it much easier to handle the multiobjective problem. Considering (2.15), suppose
the decision makers determine that c1.D1/ units of z1.x/ (in whatever units this ob-
jective function is measured in) is equivalent to (or has the same merit or value as)
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c2 units of z2.x/ (in its own units), that is equivalent to c3 units of z3.x/, : : : , which
is also equivalent to ck units of zk.x/. This vector c D .c1; : : : ; ck/ gives com-
plete compromise or exchange information between the various objective functions
in this problem, and so can be called the exchange vector. As zr .x/; cr are in the
same units, the quantity .1=cr/zr .x/ is a dimensionless quantity, and we can form
the sum

Pk
rD1.1=cr/zr .x/ and use it as a single objective function that measures

the value of the solution vector x. Hence, given the exchange vector c, the multiob-
jective problem (2.15) is equivalent to the single objective problem of minimizingPk

rD1.1=cr/zr .x/ subject to the constraints in (2.15).
Unfortunately, in many real-world applications, this exchange vector is not avail-

able. Usually there may be several decision makers interested in the solution of this
multiobjective problem, and each one may have a different opinion of what the value
of the exchange coefficient cr should be for each r . So, there is no universal agree-
ment on the exchange vector, and the challenge is to obtain a satisfactory solution
of the multiobjective problem, without explicitly using any exchange vector.

Even though the practical approaches in use for handling multiobjective prob-
lems do not mention exchange vectors directly, they get it indirectly using different
wording that the various decision makers find easier to answer.

2.5.2 Weighted Average Technique

This technique uses the tradeoff information in the form of what are called weights
measuring the relative importance of the various objective functions, and these
weights can be interpreted also as cost coefficients attached to unit values of the
various objective functions. The process of generating these weights will be easier
if all the objective functions are transformed and measured in common units, say
money units, scores, etc.

Let w D .w1; : : : ; wk/ be the vector of weights given. From the discussion above,
forming the sum

Pk
rD1 wr zr .x/ makes sense, and this technique takes the solution

of the multiobjective LP (2.15) to be an optimum solution of the single objective LP:

Minimize z.x/ D Pk
rD1 wr zr.x/

subject to Ax D b (2.16)

Dx � d

x � 0:

It can be shown that if all wr > 0, then every optimum solution of (2.16) is a
nondominated solution for (2.15). So, this type of optimizing a positive weighted
combination of all the objective functions is commonly used to generate a nondom-
inated solution for the problem. But the solution obtained depends critically on the
choice of the weights w1; : : : ; wk used in combining the original objective functions
z1.x/; : : : ; zk.x/ into the composite objective function z.x/ in (2.16).
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There may be several decision makers who have a stake in determining the
optimum solution to be selected for implementation. They may not all agree on
the choice of the weight vector to be used. It usually takes a lot of planning, discus-
sion, and negotiations, and many compromises, before a weight vector that everyone
can agree upon is arrived at. For this negotiation process, it is often helpful to solve
(2.16) with a variety of weight vectors and review the optimum solutions that come
up, before selecting one of them for implementation.

Example 2.11. Consider the fertilizer problem discussed in Example 2.7, in which
the constraints on the decision variables x1; x2 D tons of hi-ph, lo-ph fertilizer
made daily are

2x1 C x2 � 1;500; x1 C x2 � 1;200

x1 � 500; x1; x2 � 0:

For hi-ph, lo-ph, the selling prices are $222, 107/ton, respectively; and the net profit
coefficients are $15, 10, respectively. The important objectives all to be maximized
are net profit z1.x/ D 15x1 C 10x2, total sales revenue (used as a measure of
market share); z2.x/ D 222x1 C 107x2, sales revenue from hi-ph sales (used as a
measure of hi-tech market share); z3.x/ D 222x1; all measured in units of Dollar.
The multiobjective problem is to maximize z1.x/; z2.x/; z3.x/ simultaneously,
subject to the constraints on x1; x2 given above.

Suppose the decision makers have decided that the weights for the objective func-
tions z1.x/; z2.x/; z3.x/ (measuring their relative importance) are 0.5, 0.25, 0.25,
respectively. Then we take a compromise solution for this multiobjective problem
to be an optimum solution of the single objective function LP:

Maximize 0:5.15x1 C 10x2/ C 0:25.222x1 C 107x2/ C 0:25.222x1/

subject to 2x1 C x2 � 1;500; x1 C x2 � 1;200

x1 � 500; x1; x2 � 0: �

2.5.3 The Goal Programming Approach

The goal programming approach is perhaps the most popular method used for
handling multiobjective problems in practice. It has the added conveniences that
different objective functions can be measured in different units, and that it is not
necessary to have all the objective functions in the same (either maximization or
minimization) form. This method developed by A. Charnes has nice features that
appeal to the intuition of business people; that is why it is the common method in
usage. Several other references on goal programming are given at the end of this
chapter (Charnes and Cooper (1977), Hwang and Masud (1979), Keeney and Raiffa
(1976), Sawaragi et al. (1985), Schniederjans (1995), Sponk (1981), Steuer 1986).
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The most appealing feature of this method is that instead of trying to optimize
each objective function, the decision maker is asked to specify a goal or target value
that realistically is the most desirable value for that function (the name of the method
comes from this feature). Considering (2.15), we will denote the goal selected for
zr .x/ by gr for r D 1 to k. The decision makers are also required to specify a
unit penalty coefficient ˛r � 0 for each unit the value of zr.x/ is in excess of the
goal gr , and a unit penalty coefficient ˇr � 0 for each unit the value of zr .x/ is
short of the goal gr . These penalty coefficients play the role of exchange or tradeoff
coefficients between the various objective functions discussed earlier in this method.
In terms of this goal setting, the objective functions are divided into three types:

Type 1: Those for which the higher the value the better: Each of these objective
functions should really be maximized; for each of them the goal is like a minimum
acceptable value for it. Objective values � the goal are the most desirable; those
below the goal are to be avoided as far as possible, and are penalized with positive
penalties. So, for objective functions zr .x/ of this type, ˛r D 0 and ˇr > 0.

Type 2: Those for which the lower the value the better: These objective func-
tions should be minimized, for them the goal is like a maximum acceptable value.
Objective values � goal are desirable, those > the goal are penalized. So for zr .x/

of this type, ˛r > 0 and ˇr D 0.

Type 3: Those for which the preferred value is the goal: For these objective
functions their goal is the most desirable value, and both deviations above or below
the goal are penalized, So, for objective functions zr .x/ of this type, both ˛r >

0 and ˇr > 0.
At any feasible solution x, for r D 1 to k, we express the deviation in the r th

objective function from its goal, zr .x/ � gr , as a difference of two nonnegative vari-
ables

zr .x/ � gr D uC
r � u�

r ; uC
r ; u�

r � 0;

where uC
r ; u�

r are the positive and negative parts of the deviation zr .x/ � gr as
explained earlier. That is, uC

r D maximumf0; zr .x/ � grg and u�
r D maximum

f0; �.zr.x/ � gr /g.
Given this information, the goal programming approach takes the solution of the

multiobjective problem (2.15) to be a feasible solution that minimizes the penalty
function

Pk
rD1.˛r uC

r Cˇr u�
r /. So, it takes the solution for (2.15) to be an optimum

solution of the single objective LP.

Minimize
kX

rD1

.˛r uC
r C ˇr u�

r /

subject to

zr .x/ � gr D uC
r � u�

r ; r D 1 to k (2.17)

Ax D b; Dx � d

uC
r ; u�

r � 0; r D 1 to k:
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As all ˛r and ˇr � 0, and from the manner in which the values for ˛r ; ˇr are
selected, an optimum solution of this problem will try to meet the targets set for each
objective function or deviate from them in the desired direction as far as possible.
If the optimum solution obtained for this problem is not considered satisfactory
for (2.15), the search for a better solution can be continued using this same single
objective LP model with revised goals, or penalty coefficients, or both.

It can be shown that this goal programming approach is equivalent to the positive
linear combination approach when all the objective functions zr .x/ are linear.

Example 2.12. Consider the multiobjective problem of the fertilizer manufacturer
discussed in Examples 2.7 and 2.11. Suppose the first objective function z1.x/ D
net daily profit = $.15x1 C 10x2/ with a goal of $13,000 is a Type 1 objective
coefficient with penalty coefficients for excess, shortage of ˛1 D 0, ˇ1 D 0:5.

Suppose the second objective function z2.x/ D the market share, now measured
by the daily fertilizer tonnage sold D .x1 C x2/ tons, with a goal g2 D 1,150 tons,
is also a Type 1 objective function with penalty coefficients for excess, shortage of
˛2 D 0, ˇ2 D 0:3.

Suppose the third objective function, z3.x/ D hi-tech market share now mea-
sured by daily hi-ph tonnage sold D x1 tons, is a Type 3 objective function
with a goal g3 D 400 tons, with penalty coefficients for excess, shortage of
˛3 D 0:2; ˇ3 D 0:2.

With this data, the goal programming model for this problem is

Minimize 0.5u�
1 + 0.3u�

2 + 0.2.u�
3 C uC

3 /

subject to
15x1 + 10x2 + u�

1 � uC
1 D 13,000

x1 + x2 + u�
2 � uC

2 D 1,150
x1 + u�

3 � uC
3 D 400

2x1 + x2 � 1,500
x1 +x2 �1,200
x1 � 500

x1, x2, u�
1 ; uC

1 , u�
2 ; uC

2 ,u�
3 ; uC

3 � 0

An optimum solution of this problem is:

Ox D . Ox1; Ox2/T D .350; 800/T :

The solution Ox attains the goals set for net daily profit, and total fertilizer tonnage
sold daily, but falls short of the goal on the hi-ph tonnage sold daily by 50 tons. The
vector Ox is the solution for this multiobjective problem obtained by goal program-
ming, with the goals and penalty coefficients given above. �
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2.6 Exercises

2.1. Hiring workers for a new project: A contractor is working on a project expected
to last an year divided into six periods. He needs workers for this project, who can
be hired in two different ways:

Steady workers: These people are hired at the beginning of the year for the whole year,
they get paid at the rate of c1$/period for each of the six periods of the year (c1 D 20,000)

Casual workers: These people are hired at the beginning of each period for that period
only. As the availability of people seeking employment in the various periods varies, the
rate of pay per casual worker in period t is expected to be c2t $ in period t for t D 1–6
(c2t D 13,000, 17,000, 23,000, 25,000, 21,000, 15,000, respectively, for t D 1–6).

The company estimates that they will need dt workers in period t for t D 1–6
(dt D 15, 20, 23, 17, 25, 28, respectively, for t D 1–6).

In any period t , if the number of workers on the payroll in that period exceeds
dt , then the excess workers will have to be paid their contracted salary, but they
will essentially be idle in that period. To enforce responsible hiring, the Head Office
charges the contractor an amount of $2,500 penalty/idle worker/period.

Formulate the problem of determining the optimal hiring policy to meet worker
requirements to minimize the total cost + penalty, as a linear program, ignoring the
integer restrictions on the number of workers hired.

2.2. Blend for foundry sand: A steel foundry uses a lot of sand for preparing
molds for castings. They have five different suppliers for sand denoted by S1 to S5,
each has an upper limit that they can supply per week. Sand is classified into four
different particle sizes; the supply from each supplier has a different particle size
composition. For the castings the company produces, the ideal particle size compo-
sition of sand is known, and the demand for sand at the company is 800 tons/week.
Data for the following items is tabulated below.

fij D fraction by weight of particle size j in sand supplied by Si , i D 1–5, j D 1 to 4

Ui D upper limit on tons of sand that Si can supply per week, i D 1–5

gj D fraction by weight of particle size j in the ideal sand for the company, j D 1–4.

This data is tabulated below.

Supplier i fij For j D Ui

1 2 3 4
S1 0.10 0.40 0.30 0.20 100
S2 0.20 0.10 0.50 0.20 250
S3 0.30 0.58 0.02 0.10 50
S4 0.40 0.15 0.30 0.15 500
S5 0.60 0.17 0.18 0.05 200
gj 0.45 0.30 0.15 0.10 demand D 800
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Clearly each supplier’s sand deviates from the desired ideal sand. So, the com-
pany has decided to blend the sands from the various suppliers into a mixture and
use it.

Write down the decision variables needed to model the problem of finding an
optimal blend that matches the ideal particle size composition as closely as possible.
Develop a measure of deviation of the prepared mixture’s particle size composition
from the ideal, and formulate the problem of minimizing this measure of deviation
as a linear program to find the best blend.

2.3. Investment fund allocation among different shopping malls: A company
wants to invest their funds among different shopping malls in the Atlanta retailing
system. Their ultimate goal is of course to maximize the expected return from their
investment. They believe that they can achieve this by making sure that the sales
volumes in the shopping malls in which they invest remain high. Their research
has shown that a major factor affecting the sales volume in a shopping mall is its
patronization rate, which is defined as the share of the shopping trips in the area
that it attracts, and this can be estimated through observations.

The company has investigated 15 shopping malls in the Atlanta area. Of these,
they have decided to consider only shopping malls that attract 7% or more of the
total shopping trips in the Atlanta area for investment. That narrowed the list to only
five shopping malls.

Two other major factors affecting the sales volume at a shopping mall are the
average income level (annual income per member of household) of families in the
neighborhood of the mall and the number of major tenants in the mall. The follow-
ing table gives the data on these major factors for the five selected malls. In this
table, PPRj D predicted patronage rate of mall j , as a percentage of the total of
the five malls; AIj D average annual income level per household member in the
neighborhood of mall j in Dollar; MTj D number of major tenants in mall j ,
for j D1–5.

Mall j PPRj AIj MTj

1. Cumberland 20.5 19,700 4
2. Greenbriar 16.3 10,500 2
3. Lenox Square 25.3 18,800 3
4. Northlake 22.2 16,700 3
5. West End 15.7 8,200 1

The decision variables to be determined are the fractions xj of their total invest-
ment to allocate to mall j , for j D 1–5. They want to determine these decision
variables to meet the following three goals as closely as possible (all these goals
have the same level of importance).

Goal 1: The xj ’s should be proportional to the PPRj ’s as closely as possible.

Goal 2: The xj ’s should be proportional to the AIj ’s as closely as possible.

Goal 3: The xj ’s should be proportional to the MTj ’s as closely as possible.
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Formulate the problem of determining the decision variables to meet all
these goals as closely as possible, using goal programming (Khorramshshgol and
Okoruwa 1994).

2.4. Finding an optimum mix of water from different underground wells for
people in the Gaza Strip: WHO has set up standards of 250 mg `�1 for chlorides
and 50 mg `�1 for nitrates as upper bounds for these chemicals in drinking water.
The Gaza Strip is a narrow strip along the Mediterranean sea, with a population
of around 1.1 million people, which has serious water quality problems not only for
agricultural and industrial use, but also for drinking. Ground water is the only signif-
icant source of water they have. Because of waste water contamination, uncontrolled
use of agricultural fertilizer and pesticides and industrial pollutants, which directly
penetrate to the groundwater reservoir through pores in the rocks, and indirectly by
decomposition, salts in some wells are at high levels. For example, level of nitrates
in the water in some wells exceeds 300 mg `�1 (six times WHO upper limit), and
the level of chlorides may exceed WHO limit by four to five times. Drinking water
with nitrate level over 150 mg `�1 poses an extreme risk of blue baby syndrome in
infants and carcinogenic effects in adults. Similarly, high levels of chlorides in water
make it unacceptable for drinking due to the salinity it causes, and also causes high
blood pressure in those who drink it.

No. Well name Capacity Q Chlorides Nitrates
(m3 h�1) mg `�1 mg `�1

1 Sheikh Radwan 1 180 273 135

2 Sheikh Radwan 1A 180 245 140

3 Sheikh Radwan 3 150 1; 015 135

4 Sheikh Radwan 4 180 1; 085 90

5 Sheikh Radwan 7 180 553 175

6 Sheikh Radwan 7A 180 485 115

7 Sheikh Radwan 8 150 133 80

8 Sheikh Radwan 9 190 133 90

9 Sheikh Radwan 10 190 90 60

10 Sheikh Radwan 11 190 110 80

11 Sheikh Radwan 12 180 110 45

12 Sheikh Radwan 13 180 460 200

13 Sheikh Radwan 15 180 110 45

14 Sheikh Radwan 16 180 110 45

15 Sheikh Ejleen 1 150 810 110

16 Sheikh Ejleen 2 120 440 80

17 Saffa well 1 200 600 225

18 Saffa well 2 150 400 225

19 Saffa well 3 100 740 215

20 Saffa well 4 180 590 110
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This question deals with achieving an optimum strategy for mixing the water
from different wells to produce drinking water for the people in Gaza, which meets
WHO limits for nitrates and chlorides. There are 20 municipal wells as sources for
the water; data on the capacity of each well, nitrate, chloride level in the water from
each well are given above.

Develop a mathematical model to determine how much water from each of the
wells should be drawn (subject to the capacity constraint) and mixed to produce
drinking water at the rate of 450 m3 h�1, satisfying the WHO limits on nitrates and
chlorides as closely as possible (Agha 2006).

2.5. Locations for new water reservoirs: A small country has a more or less rect-
angular shape, suppose it is represented by a rectangle in the nonnegative orthant of
the x; y-Cartesian plane with 0 � x � 10 and 0 � y � 40.

The country’s water supply comes from six underground wells located at points
(3.21, 39.41), (3.94, 38.70), (5.09, 34.43), (6.05, 34.50), (6.33, 35.82), (6.64, 36.48),
respectively.

The country has decided to set up three different holding reservoirs of equal ca-
pacity to hold the water pumped from the wells. The total quantity pumped into each
of the reservoirs to be set up will be 1.4�106 m3/year. The amounts pumped from
the six wells will be 23,546, 311,112, 317,543, 1,182,600, 1,182,600, 1,182,600 m3

per year, respectively.
There are three population centers in the country, each has a municipal water

reservoir for supplying water to people in that center. These municipal water reser-
voirs are located at points (2.23, 10.11), (4.50, 20.22), (7.96, 30.21),
respectively.

Because of the topography of the country and the way water distribution pipes
are laid, distance between any two points a D .a1; a2/ and b D .b1; b2/ for water
distribution purposes can be measured using the rectilinear distance between a and
b, which is D ja1 � b1j C ja2 � b2j.

Formulate the problem of finding the locations .xi ; yi /, i D 1–3 of the three
proposed reservoirs to minimize the sum of the rectilinear distances of each of the
proposed reservoirs to each of the supply wells and the municipal reservoirs, as
an LP.

2.6. How to manage a prime raw material supply curtailment: Coastal States
Chemicals and Fertilizers (CSCF) located between Baton Rouge and New Orleans
in Louisiana makes eight different products using NG (natural gas) as a prime raw
material. Following table provides relevant information on the production of these
products at CSCF.
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Product Prod. Ratea NG input Net profit
capacity (103FT3 ($ ton�1)

(tons day�1) ton�1)
Phosphoric acid 400 80 5.5 60
Urea 250 80 7.0 80
Ammonium 300 90 8.0 90
phosphate
Ammonium 300 100 10.0 100
nitrate
Chlorine 800 60 15.0 50
Caustic soda 1,000 60 16.0 50
Vinyl chlo- 500 60 12.0 65
ride manomer
Hydroflou- 400 80 11.0 70
ric acid
aPresent production rate as a % of capacity.

Cajan Pipeline Co., the main supplier of NG, informed CSCF that they may have
to curtail their supply of NG due to shortages in the availability of NG.

It is required to develop contingency plans to determine the new production rates
for the various products if there is a (a) 20% and (b) 40% NG supply curtailment.
Model the problem for developing these plans optimally as an LP model. Then
discuss how to find the impact that natural gas shortages have on company profits
(Iverstine and Kinard 1977).

2.7. Financial management at NFP (not-for-profit) organizations: NFPs are
usually funded through grants from many different sources, with each individual
funding source putting specific restrictions on how and when their grant money can
be spent. For example, certain funding sources dictate what maximum and/or mini-
mum percent of a specific employee’s salary can be charged to their grant depending
on the work the employee does for the NFP agency. Some sources impose a require-
ment that funds used from their grant be matched with funds from grants from other
specified types of sources.

Here we consider the problem of assigning employee costs and the other costs of
the organization to the available grants subject to all the constraints. These costs are
classified into three categories: direct, common, and indirect costs.

Direct costs are those that can be traced specifically to a particular program of
the NFP (such as the salary of a nurse practitioner working full time in a commu-
nity clinic run by the NFP. The salary of a medical assistant who works in two
departments is also a direct cost split across these two departments according to the
proportion of time devoted to each).

Common costs are those nonadministrative costs that are shared across the
agency and not easily traced to a particular program; examples are rent, utilities,
office supplies, etc.
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Indirect costs are management and general administration expenses, like em-
ployee benefits, agency management related expenses, etc.

An employee with an FTE (full-time-equivalent) of 1 (i.e., a full-time employee)
is either dedicated to one specific program or splits his/her work hours across mul-
tiple programs. Managerial employees typically spend a portion of their work hours
on specific programs (referred to as program-related FTE) and reminder on agency
management (management-related FTE), which will be treated as indirect cost to
the agency.

Consider an NFP with four employees working on two programs according to
the following data.

Name FTE $/month
On prog. Related to Salary Benefits
1 2 Prog. Mgt.

John 1 0 1 0 5,000 450
Jill 0.30 0.45 0.75 0 4,000 300

Dick 0 0 0 1 9,000 900
Sue 0 0.50 0.50 0.50 6,000 550

Total 1.3 0.95 2.25 1.50 24,000 2,200

The total monthly common costs for the agency are $5,000.
Of the total monthly FTE of 3.75, management-related FTEs are 1.5, or 40%

of overall FTEs are dedicated to management. So, 40% of this agency’s monthly
common costs of $5,000, that is, $2,000, are management related and treated
as agency’s indirect costs. The remaining 60% of monthly common costs, that is,
$3,000, are program related and treated under direct costs of the agency.

The total monthly indirect costs for this agency comprise of all benefits, manage-
rial salaries, management related common costs, that is, $2,200 C 9,000 C 3,000 C
2,000 D $16,200. The total monthly direct costs for this agency consist of all pro-
gram related employee salaries and program related common costs D $5,000 C
4,000 C 3,000 C 3,000 D $15,000.

For the next month, this agency has funding from three separate grants. The
amounts of these grants and restrictions on how these amounts can be spent are
summarized below:

For Grant 1: Amount available for the month is $14,000. Restrictions are (1) between
20% and 40% of grant money should be devoted to Program 1 direct costs, (2) between
30% and 60% of grant money should be devoted to Program 2 direct costs.

For Grant 2: Amount available for the month is $7,000. Restriction is (1) No more than
40% of grant money to be spent for indirect costs.

For Grant 3: Amount available for the month is $10,000. Restriction is (1) At least 40%
of grant money to be spent for direct costs.

For all the grants: Restriction is: Some overspending for the month above the available
amount is allowed, but as far as possible the overspending amount should be kept within
2% of the available amount.



2.6 Exercises 85

It is required to determine what portion of each employee’s salary and benefits,
and what portion of the common costs will be charged to each of the grants for
the coming month. Formulate the problem of determining these things as a goal
programming problem to satisfy each of the restrictions on spending mentioned
above as closely as possible (Mehrotra et al. 2006).

2.8. Advertising media selection problem: There is a lot of interest in media se-
lection for effective advertising. In this problem we consider selection from nine
promotional media well known for their objective specific effects. We consider four
different objectives, each measured in terms of the number of consumers induced to
move from a lower hierarchical stage to a higher level of cognitive development by
an advertising event. The four objectives are the following:

1. z1 D Awareness: This objective measures the number of new consumers who
become aware of the manufacturer’s product or brand as a result of a promotional
effort. This objective is most likely to be influenced by network radio and TV
jingle slogan campaigns.

2. z2 D Knowledge: This measures the number of consumers who acquire
product-or-brand related knowledge as a result of the promotional event. This
objective is most likely influenced by noncompetitive descriptive copy promot-
ing the merits of the advertised product.

3. z3 D Preference: This measures the number of consumers who acquire a
preference for the product or brand of interest. This criterion is influenced by
competitive copy favorably comparing the advertiser’s brand to competitor’s
brands.

4. z4 D Purchase: This measures the number of consumers who actually purchase
the product sold. Best influenced by retail store copy in the local media.

The various promotional media considered are the following:

1. Slogan/jingle campaign on network radio
2. Slogan/jingle campaign on network TV
3. Descriptive copy in national magazine
4. Descriptive copy on network TV
5. Competitive copy in national magazine
6. Competitive copy on network TV
7. Retail store copy on spot radio
8: Retail store copy on spot TV
9: Retail store copy in top 100 newspapers

Let xj denote the number of campaigns to be held on media j , for j D 1 to 9;
these are the decision variables whose values need to be determined.

Even though all xj are integer variables, we will treat them as continuous vari-
ables in this problem; for implementation, the noninteger values in the solution will
be rounded to nearest integer values.

Each of the above objective function values depend on the decision vector x D
.xj /. For i D 1 to 4, zi can be estimated by the linear function 100.

P9
j D1 cijxj /,

where data on the cij coefficients, desired upper bounds uj on the variables xj , dj D
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cost in Dollar per single campaign of promotional media j , and the total budget are
given below (following table gives money figures in $100 units). The cij values are
estimated through data obtained from marketing surveys.

cij for Promotional media j

1 2 3 4 5 6 7 8 9
i D 1 150 500 100 100 100 100 50 50 50

2 10 50 200 350 150 250 10 10 10
3 0 0 150 250 200 350 10 10 10
4 0 10 15 15 20 50 100 200 300

uj 26 26 12 12 12 12 6 6 6
dj 69 757 780 1,515 1,100 1,515 100 950 3,500

Budget D 35,000. All money figures in $100 units.

Notice that each of the four objective functions are measured in the same units
(number of consumers), so combining them into some type of a composite objective
function is perfectly valid.

The mediaplanner of the company wants to use the advertizing budget available
most effectively. Formulate this as a multiobjective optimization problem, and dis-
cuss a good approach for solving it (Steuer and Oliver 1976).

2.9. Time transportation problems with multiple objectives: Bharat Coking
Coal in the state of Bihar, India, gets coal from six different mines, and uses it to
make coking coals at six coking plants, each coking plant making a different grade
of coking coal.

For i D 1 to 6: pi denotes the percent of sulfur in the coal from mine i , i D
1 to 6; and ai is the maximum units of coal that mine i can ship per period. For
j D 1 to 6: Uj denotes the maximum allowable percent of sulfur in the input coal
at coking plant j for j D 1 to 6, and bj denotes the units of coal required at plant
j per period. For i; j D 1 to 6, let xij denote the units of coal shipped from mine i

to plant j in a period, and t1
ij the units of time that coal shipped from mine i takes

to reach plant j . This data is given below.

Mine i D t1
ij data for plant j D ai pi

1 2 3 4 5 6
1 4 4 3 2 10 4 8 0.4
2 8 2 4 8 10 4 15 0.8
3 1 3 8 2 8 6 10 0.6
4 8 3 4 8 1 8 6 1.4
5 4 2 4 3 8 4 4 1.6
6 5 3 5 4 9 5 7 0.4
bj 7 10 9 4 1 3
Uj 0.7 0.5 0.7 0.6 0.5 0.8
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(1) The time minimizing transportation problem is the problem of minimizing the
time t1, by which shipments from all the mines reach their respective destina-
tions, assuming that all the shipments leave each mine at time point 0 (this type
of objective function is encountered commonly in transportation of perishable
goods, delivery of emergency supplies, etc.). A single objective transportation
problem with this type of objective function is known in the literature as the
bottleneck transportation model.

In this numerical example we have a bottleneck transportation problem with
the additional constraint that the sulfur content of coal delivered at plant j has
to be � Uj for j D 1 to 6.

(a) Formulate this problem.

(b) Notice that the objective function in this model is not linear. Discuss an efficient
approach for solving this model (Hint: This can be modeled as a bounded variable
LP with variable upper bounds on the variables.).

(2) Now consider the same coal shipping example with multiple time objective
functions to be minimized simultaneously, instead of the single time objective
function considered earlier. For instance, in this example, let t3

ij be the units of
time that a truck going from mine i to plant j takes to reach the highway af-
ter leaving mine i (after leaving mine i , the truck goes through the congested
neighborhood of mine i for some distance before reaching the highway taking
it to plant j . The time taken for this portion of travel called “congestion time”
is t3

ij ). Also, let t2
ij denote the time that the truck going from mine i to plant j

takes for travel between two checkposts on the way. The multiobjective version
consider the three time objective functions; those given by the cost data matri-
ces .t1

ij /; .t2
ij /; .t3

ij / measuring the total travel time, the travel time for travel
between two checkposts on the way on each route; and the third measuring the
congestion time that each shipment takes to begin highway transit to its destina-
tion after leaving the mine where it originates. So, the three objective functions
to be minimized are t1 D maximumft1

ij W .i; j / such that xij > 0g, t2 D
maximumft2

ij W .i; j / such that xij > 0g, and t3 D maximumft3
ij W .i; j / such

that xij > 0g.
Discuss an approach how this multiobjective bottleneck transportation model

can be solved (Singh and Saxena 2003).

2.10. Selecting investment opportunities: There are five projects in which money
can be invested, covering a 4-year horizon. Details of these projects are given below.
In this description, payout refers to either the return on investment or the principal
given back.

Project A accepts an investment between $10,000 and $500,000 at the beginning
of year 1. This investment is for a 2-year period. The project pays out 30cents/$
invested at the end of the 1st year and $1/$ invested at the end of the second.

Project B is identical to Project A, except that it is available at the beginning of
year 2.
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Project C is a first year investment available at the beginning of year 1, which
pays out $1.10/$ invested at the beginning of year 2. It accepts investments of
$20,000 or over.

Project D is a 3-year investment available at the beginning of year 1, which pays
out $1.75/$ invested at the beginning of year 4.

Project E becomes available at the beginning of year 3 and will pay out $1.20/$
invested at the beginning of year 4. It accepts an investment of at most $750,000.

Payout received from any of these projects in years 2 and 3 may be reinvested
in others, which are available for investment at that time. In addition, short-term (1
year) bank accounts yielding 6% interest are available for any money not invested
in the projects in the given year.

Suppose we start year 1 with $1 million of our money to put into a mix of
these opportunities, but no more there after, although we will reinvest payouts. The
planning horizon considered therefore is beginning of year 1 to beginning of year 4.
All cash received at the beginning of year 4 will be withdrawn.

(1) Develop a model to find an investment plan over the planning horizon, which
will maximize the total money from the investments by the beginning of year 4

(2) Develop a model to find an investment that maximizes the NPV (net present
value) of all the payout money, assuming a discount rate of 10%/year, and that
payouts received are not reinvested but cashed out.

(Source: “Case 12-3B, “Mitchell Enterprises,” from Vatter et al. 1978).

2.11. Production planning at a rubber company: Rubicon is a rubber company
that used to manufacture a variety of rubber products including tires for forklift
trucks and small tractors in the 1960s. At this time the company finds it advanta-
geous to take short lead-time contracts to make small runs of regular automobile
snow tires for a large distributor of auto replacement tires. These tires, bearing the
distributor’s trademark and made to the distributor’s specifications, utilize surplus
capacity at Rubicon. The contract with the distributor calls for a staged delivery
schedule of the two types of snow tires (nylon, fiberglass) over the three summer
months as indicated below.

Delivery schedule
Date No. tires to be delivered

Nylon Fiberglass
31 June 4,000 1,000
30 July 8,000 5,000

31 August 3,000 5,000
Total 15,000 11,000

Price/tire $7 $9

Only two types of machines, the Wheeling and Regal machines, can be used in
molding tires of the sort covered by the contract. These machines are fully booked
until the first of June. After that date, unused capacity would be available spasmod-
ically between other contracts as given below.
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Prod. hours available
Month Wheeling machines Regal machines
June 700 1,500
July 300 400

August 1,000 300

The two types of molding machines are similar except that the Wheeling ma-
chines are somewhat faster for making both types of tires than the older Regal
machines. Here is the data (costs are for the 1960s).

Machine Prod. hr/tire for type Mc. running cost/hr
Nylon Fiberglass

Wheeling 0.15 0.12 $10.07
Regal 0.16 0.14 $9.75

Material costs/tire $3.10 $3.90
FPSacosts/tire $0.23 $0.23

aFinishing, packaging, shipping

There is a small storage area adjacent to the production shop where up to one
month’s production could be kept until they are delivered to the distributor or to
a warehouse where tires can be stored from one month to the next at a cost of
$0.10/tire/month. Shipping is scheduled three days prior to the end of the month for
delivery before the last day of the month.

(1) Formulate the problem of minimizing the cost of producing and storing the tires
to meet this contract on time. Find an optimum solution of your model using
any of the available LP software systems.

(2) An additional Wheeling machine was due to arrive at the end of August. For a
$200 fee, its arrival can be expedited to a month earlier. This early arrival would
make available 172 additional hours of Wheeling machine time in August for
this snow tire work.
Discuss how the model for the problem will change if this expediting is carried
out, solve the new model, and decide whether the new machine’s arrival should
be expedited.

(3) From the optimum solutions, determine a tentative schedule for the maintenance
department, indicating when the yearly maintenance check on the various ma-
chines could be performed.

(4) The snow tire distributor has found that sales of fiberglass tires had been very
good the previous year, so they indicated that they may ask Rubicon to increase
their supply of this type of tires. Explain the strategy that Rubicon should adopt
if this request comes through (Hint: This needs knowledge of sensitivity analy-
sis discussed later in Chap. 6).

(Source: From Vatter et al. 1978).

2.12. Manpower planning at a mutual life insurance company: At a MLIC
(Mutual Life Insurance Company), life insurance is sold through full-time agents
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of the company. This exercise refers to the manpower planning effort carried out
in the company in 1962 for the 1963–1975 horizon. The most critical element in
long-range planning is identifying the company’s personnel requirements, as this is
the variable most likely to affect the sales of new life insurance.

A newly hired agents have relatively low productivity (in terms of new life insur-
ance volume generated per year) in the beginning, but their productivity improves
with their years of service at the company. Also, there is considerable turnover
among the agents, many leave the company after working for some years for other
jobs (e.g., out of 100 agents hired in a year, on average only 22 remain with the
company 4 years later).

From past records at the company, agent survival rates and agent productivity
rates have been estimated as a function of length of service, and this information in
terms of Pr ; Sr ; Tr is given below, where for r D 1,� � �

Pr D The probability that an agent who is in the r th year of service at the company surviv-
ing this year (i.e., continuing in service to go on to the .r C 1/th year of service)

Sr D Average production rate (i.e., sales of new life insurance commissioned in that year
in units of $1,000) of a person in the r th year of service at the company and surviving into
the next year of service

Tr D Average production rate (i.e., sales of new life insurance commissioned in that year
in units of $1,000) of a person in the r th year of service at the company and terminating
his service at the company by the end of that year.

r D year of Money unit D $1,000
service Pr Sr Tr

1st 0.74 126 42
2nd 0.55 336 61
3rd 0.71 366 62
4th 0.77 404 84
5th 0.79 417 75

6th or higher 0.91 474 116
For r � 6, Pr ; Sr ; Tr remain the same.

Using this information, answer the following questions.
(1) For r D 1 to 6 and higher, what is the probability that a person hired at the

beginning of first year will survive at the company r years and goes on into the
.r C 1/th year of service?

(2) For r D 1 to 6 and higher, what is the probability that a person hired at the
beginning of first year will survive at the company r years and terminate his
service at the company during the r th year of service?

(3) For a person hired at the beginning of first year, define for r D 1, . . . , P Cr D
the expected sales volume (in units of $1,000) that this person can be expected
to generate during the r th year. Find this P Cr for r D 1, � � � .

(4) The company has set up sales goals for each of the years 1970–1975. Let these
be denoted by Gi for i D 1970–1975. Goals for sales volume in several consec-
utive years in future are set in order to ensure some continuity in sales growth.
The company requires that the actual estimated sales in those years must be
greater than or equal to these goals.
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During the 1962 calender year, the company hired 430 new agents. For i D
1963–1975, let xi D the number of new agents to be hired during the calender
year i . The company’s objective is to be a growth company, but at the same time
does not want to grow so fast as to become unmanageable. To realize these, they
want that for each i , xi should be between xi�1 to .1:5/xi�1.

Ignoring the integer restrictions on the variables xi , set up a linear programming
model to determine .xi W for i D 1963–1975/ that minimizes the total number of
new agents hired between 1963 and 1975 subject to all the constraints mentioned
above.

For .Gi W i D 1970–1975/ D (351, 416, 482, 548, 615, 682) and (636, 712,
793, 874, 958, 1,042), respectively, solve the model using some LP software, and
compare the two optimum solutions.

(Source: Davis and Webster 1968).

2.13. Forecasting expected demand for paint: Past data of a paint manufacturing
company that distributes and sells

Year (t) y ` x p

1 337.2 6.666 14.50 200
2 404.2 5.338 15.75 202
3 402.1 4.321 16.78 206.6
4 452.0 6.117 17.44 208.8
5 431.0 5.559 19.77 212.9
6 582.0 7.920 23.76 216.0
7 596.6 5.816 31.61 218.2
8 620.8 6.113 32.17 221.7
9 513.6 4.258 35.09 224.5

10 606.9 5.591 36.42 227.9
11 628.0 6.675 36.58 231.0
12 602.7 5.543 37.14 234.0
13 656.7 6.693 41.30 238.0
14 778.5 7.638 45.62 242.0
15 827.6 7.752 47.38 247.0

its paints nationwide, over a 15-year period data on ` D home improvement loans
granted in the year in the nation as a whole in units of $1 billion, p D population of
the country in millions, x D index of building construction started in the nation as a
whole, are given above. Formulate the problem of determining y D its total yearly
sales (in $1 million units), as a function of some of these variables on which y may
depend.

2.14. Estimating labor costs for preparing different menu items: A catering
company prepares and serves specialized meals for groups who hire their services
to celebrate some occasion or other with a meal party. All the meals include a main
course (there are four choices for this: M1, chicken; M2, meat; M3, fish; and M4,
pasta/vegetarian), an appetizer (there are three choices for this: A1, Fruit cocktail;
A2, Nut and date cocktail; and A3, Melon and Prosciutto), a dessert (there are three
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choices under this: D1, A piece of pie; D2, A cake or pastry; and D3, Strawber-
ries with ice cream), an optional salad, and optional liqueurs and other after dinner
drinks. Of course, all meals include serving of wine or champagne during the main
course, and coffee/tea after the main course as standard features.

Contract Labor cost/ Choices in agreed menu
number person in $ Main Appetizer Dessert Salad Liqueurs

course
1 6.65 M1 A1 D2 1 0
2 7.25 M1 A1 D1 1 1
3 6.15 M4 A1 D2 0 0
4 6.25 M4 A1 D2 0 1
5 6.95 M1 A1 D1 1 0
6 5.75 M4 A1 D2 0 0
7 7.50 M3 A1 D3 1 1
8 7.60 M3 A1 D3 1 0
9 7.75 M3 A1 D3 1 0

10 5.70 M4 A1 D2 0 0
11 6.95 M1 A1 D1 1 0
12 6.85 M4 A1 D2 0 1
13 7.20 M1 A1 D3 1 1
14 7.35 M2 A1 D3 1 0
15 7.80 M3 A2 D3 0 1
16 8.15 M2 A2 D1 1 0
17 9.15 M3 A2 D3 1 1
18 7.50 M2 A2 D1 0 1
19 6.50 M4 A2 D2 0 0
20 8.50 M3 A2 D3 1 0
21 7.50 M1 A2 D2 0 0
22 8.70 M2 A2 D3 1 1
23 9.00 M3 A2 D3 1 1
24 7.80 M3 A2 D1 1 0
25 7.50 M1 A3 D1 1 0
26 6.00 M4 A3 D2 0 0
27 8.50 M3 A3 D1 1 1
28 7.80 M2 A3 D1 1 1
29 7.25 M1 A3 D2 0 1
30 6.20 M1 A3 D2 0 0
31 5.75 M4 A3 D2 0 0
32 7.10 M1 A3 D1 1 0
33 7.00 M2 A3 D2 0 1
34 7.50 M3 A3 D1 1 1
35 6.15 M4 A3 D2 0 0

1 D yes, 0 D No
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The catering company provides from its own store the necessary food and other
ingredients for preparing the meals; but hires workers from a sister company for
preparing, assembling, and serving the meals. The sister company charges our cater-
ing company for the man hours of labor provided to prepare the meals according to
the agreed upon menu, serving them, and handling the event. Data on these labor
costs from 35 different meal contracts (with 100–150 guests each) is in the table
given above.

Develop an LP model to determine the labor costs associated with each choice
available under the main course, appetizer, dessert, salad, and liqueurs.

2.15. Estimating the sales potential of a new store at a proposed location: A de-
partment store chain wants to develop an estimate of sales for a store as a function
of the demographic and other relevant information of the site where it is located.

No. SV SA Data related to trading zone of store
P FS B H MFI HG HO HV RP

1 192 122.5 643 3.2 1.4 1.2 105 53 11 28 94
2 236 111.7 743 3.5 23.9 22.4 82 53 7 24 70
3 156 123.4 872 3.4 11.1 0.9 135 64 53 30 146
4 133 106.0 720 3.1 5.3 1.3 124 52 19 29 141
5 102 116.9 491 3.6 26.0 1.3 126 60 63 27 127
6 86 85.0 286 4.0 4.4 0.4 132 51 86 25 154
7 108 90.3 159 3.9 7.7 1.0 141 56 67 36 147
8 74 74.9 190 3.7 8.4 1.1 125 55 61 25 123
9 149 122.8 530 3.4 6.3 1.3 127 59 59 30 124
10 242 120.9 1,113 3.3 14.4 7.8 106 54 14 32 90
11 148 120.3 133 3.5 5.1 0.7 148 59 51 47 136
12 148 64.4 337 3.4 6.7 0.4 154 61 48 44 147
13 117 112.6 309 3.7 6.4 1.6 120 55 52 27 110
14 112 93.8 230 3.6 11.2 0.3 139 51 72 30 131
15 47 49.1 244 4.0 5.9 2.9 123 54 82 23 154
16 110 118.1 280 3.6 9.8 0.4 126 51 65 25 134
17 97 104.5 217 4.2 1.4 1.0 141 44 91 30 154
18 80 110.1 518 3.7 8.3 0.6 139 47 77 28 150
19 90 105.0 202 3.9 4.1 0.3 157 50 90 32 161
20 73 77.2 180 3.9 2.8 0.6 153 55 89 33 138
21 88 85.7 166 4.0 0.6 0.7 128 49 85 27 158
22 132 100.0 647 3.7 28.9 1.1 126 51 70 26 130
23 84 116.1 210 3.6 7.1 3.4 123 53 56 30 111
24 81 74.1 422 3.7 6.6 0.4 147 66 81 30 155
25 134 113.2 607 3.4 18.4 1.9 120 54 39 28 123
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Each department store has its trading zone, that is, the zone from which it draws
its traffic. For a given size of store, all else being equal, the more people in the
trading zone, the higher the sales volume at the store. For a typical suburban store,
75% of all customers come from within a 5–10 mile radius; that is why this area is
defined as the store’s trading zone. The characteristics of the trading zone like its
population (P in units of 1,000 people), the average family size (FS), the median
family income (MFI in units of $100), the selling area in the store (SA in 1,000 ft2),
the % of hard goods in the store (HG), the percent of home owners (HO), the median
home value (HV in units of $1,000), the median rent paid/month by those living
in rented quarters (RP in $) the percent of blacks (B), and hispanics (H) in the
population in the trading zone are all expected to influence the sales volume in the
store. It is possible to get some of this information using computerized census tract
data, but the rest has to be collected.

The chain already has 25 stores in the NY area. Data on the annual sales volume
(SV in units of $100,000) at these stores and on the values of these explana-
tory factors for the sites where they are located is given below (all these data
is 1970s data, so the $ refers to 1970s US $). The first column gives the store
number.

Develop an LP model to express the expected annual sales at a store in terms of
the explanatory variables on which data is provided, that best fits the data.

Solve the model using an available LP software package and find the best fit
functional form for the expected annual sales.

There are two potential new sites where the chain has the opportunity to open
new stores. These sites are in densely populated areas with good access and little
competition, and as there are not enough stores near them, it is believed that resi-
dents of those areas are spending significant amounts outside of their zone. Here is
the data on the characteristics of the two sites:

Site 1: (P, FS, B, H, MFI, HO, HV, RP) D (955, 3.7, 40.0, 10.8, 84, 10, 23, 80).
From the land area available, the selling area in the store set up can be 125,000 ft2,
which can be increased to 146,000 ft2 if necessary.

Site 2: (P, FS, B, H, MFI, HO, HV, RP) D (431, 3.5, 13.8, 6.6, 94, 11, 18, 83),
and the store can have a selling area of 120,000 ft2.

Use the functional form found above to predict the expected sales volume in a
store is set up at sites 1, 2. Which among these sites should get priority for building
the next store?

2.16. (a) Developing a formula for new car sales volume at US franchised deal-
ers by quarter: The following table gives data on the total volume of sales of new
cars at US franchised dealers all over US by quarter from 1958 to 1974.
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Quarter Sales� Quarter Sales Quarter Sales Quarter Sales
1958, 1st 1069 1962, 2nd 1887 1966, 3rd 1744 1970, 4th 1490

2nd 1142 3rd 1360 4th 2218 1971, 1st 1977
3rd 927 4th 1946 1967, 1st 1744 2nd 2281
4th 1151 1963, 1st 1721 2nd 2235 3rd 1654

1959, 1st 1323 2nd 2056 3rd 1692 4th 2676
2nd 1613 3rd 1498 4th 1897 1972, 1st 2078
3rd 1289 4th 2059 1968, 1st 2021 2nd 2537
4th 1263 1964, 1st 1844 2nd 2321 3rd 2165

1960, 1st 1515 2nd 2171 3rd 1934 4th 2541
2nd 1739 3rd 1753 4th 2349 1973, 1st 2473
3rd 1330 4th 1895 1969, 1st 2030 2nd 2742
4th 1559 1965, 1st 2196 2nd 2347 3rd 2247

1961, 1st 1212 2nd 2381 3rd 1927 4th 2208
2nd 1550 3rd 1822 4th 2161 1974, 1st 1771
3rd 1180 4th 2366 1970, 1st 2207 2nd 2166
4th 1624 1966, 1st 2207 2nd 2189 3rd 1949

1962, 1st 1559 2nd 2209 3rd 1654 4th 1562

There is a long-term growth trend in sales due to growth in the population and
increases in standard of living. It is believed that the trend factor is of the form
.1069/at, where a is a parameter to be estimated from the data and t is the number
of the quarter, counting with 1958, 1st quarter as the one corresponding to t D 0.

New car sales are also affected by the season of the year. Let s1 to s4 denote the
seasonal factors associated with the seasons corresponding to the first to the fourth
quarters of the year.

Another important thing affecting new car sales is the fluctuation in general busi-
ness activity caused by the so-called odd year–even year business cycle. Let these
cyclical factors corresponding to the odd, even years be denoted by c1; c2 respec-
tively. So, our model is

Total new car sales at all franchised dealers in US for a quarter D (the trend factor for the
quarter)(seasonal factor for the quarter)(cyclical factor for the year).

Give an LP formulation for the problem of determining the values of various
parameters in this model, which gives the best fit for the data.

(b) Developing a formula for monthly champagne sales in France: Historical
data on the sales of champagne in France (in millions of bottles) by month for the
last six years is given in the following table. French champagne sales have a strong
seasonal pattern, but also exhibit a steady growth trend with time.

Using plots of data as necessary develop an appropriate model for (1) French
champagne sales in month j of year t , in terms of t; j , and (2) the annual sales
in year t , in terms of t . Formulate the problem of determining the values for the
unknown parameters in the model to give the best fit to the data given, as an LP.
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Year, Sales� Year, Sales Year, Sales Year, Sales
month month month month
(1, 1) 2.82 (2, 7) 3.03 (4, 1) 5.38 (5, 7) 3.97

2) 2.67 8) 1.76 2) 3.09 8) 1.72
3) 2.76 9) 3.60 3) 3.72 9) 5.05
4) 2.72 10) 4.47 4) 4.51 10) 6.92
5) 2.95 11) 6.84 5) 4.52 11) 9.86
6) 3.04 12) 8.36 6) 4.54 12) 11.33
7) 2.28 (3, 1) 3.11 7) 3.66 (6, 1) 4.02
8) 2.21 2) 3.01 8) 1.64 2) 3.96
9) 2.92 3) 4.05 9) 4.74 3) 4.51

10) 4.31 4) 3.52 10) 5.43 4) 4.28
11) 5.77 5) 3.94 11) 8.31 5) 4.97
12) 7.31 6) 3.99 12) 10.65 6) 4.68

(2, 1) 2.54 7) 3.26 (5, 1) 3.63 7) 3.52
2) 2.48 8) 1.58 2) 4.29 8) 1.82
3) 3.03 9) 3.53 3) 4.15 9) 5.22
4) 3.27 10) 5.21 4) 4.12 10) 6.87
5) 3.78 11) 7.62 5) 4.65 11) 10.80
6) 3.23 12) 9.25 6) 4.75 12) 13.92

2.17. Goal programming for project selection: IML (Indian Mines Ltd.) is the
largest coal-producing company in India, producing various grades of coal and con-
tributing more than 90% of the country’s production. Being a public sector company,
several of the mines operated by it are losing money. The company has decided to
face the challenges of (a) increasing total annual production, (b) reducing the aver-
age cost of production/ton, and (c) making their mines profitable, or at least reducing
their losses from present levels to some reasonable levels.

In this pursuit, the company has decided to invest in two types of mine projects:
(1) reconstruction mine projects to enhance production capacity of some existing,
operating mines, and (2) opening up new mines. They have made a list of eight
different projects of which three are reconstruction projects, and five are new mine
projects to invest in. Following table provides data on these projects.

In this table: No. D project number, IN D total investment (in million rupees)
needed to complete the project (however, we assume that the company may decide
to invest any fraction of this total in each project, more details on this given below);
PP D for an existing mine this is the present annual production level at the mine
in million tons; FP D future estimated annual production in million tons if project
receives full investment; PC D for an existing mine, this is the present total annual
operating cost in million rupees; FC D future estimated total annual operating cost
of the mine if project receives full investment; PPR D for an existing mine, this is
the annual profit/loss (C or �) in million rupees; FPR D future estimated annual
profit/loss in million rupees of the mine if it receives full investment; PM D for
an existing mine, this is the present manpower in persons; FM D future estimated
manpower at the mine in persons, if it receives full investment.
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No. IN Production Cost Profit/loss Manpower
PP FP PC FC PPR FPR PM FM

Existing mines reconstruction
1 106.2 0.225 0.315 115.4 127.2 �40:0 �18:9 1792 1615
2 118.0 0.27 0.45 160.6 220.4 �66:2 �40:3 3042 3042
3 130.6 0.18 0.45 72.6 106.0 �30:3 48.8 293 417

New Mines
4 708.7 0.6 265.5 �45:5 2196
5 94.7 0.195 50.1 �83:8 958
6 694.8 0.563 241.7 22.7 1643
7 196.2 0.293 86.4 �8:7 728
8 123.1 0.24 75.5 �1:04 237

For simplicity assume that on each project j , the company may decide to invest
a fraction xj of the total investment needed for it, where 0 � xj � 1 for all
j and x D .xj /. Make the simplifying linearity assumption that the effect of x

for an existing mine j will be: values after the decision is implemented, of: annual
production, annual operating cost, annual profit/loss, manpower, will be: (its present
value)(1 � xj ) Cxj (future estimated value mentioned in the tableau); and for a new
mine j these values will be: xj (future estimated value mentioned in the tableau).

A team of managers at the company has selected the following as important
targets or goals for the investment decision: (1) if possible, keep total investment in
all projects to within 1,100 million rupees, (2) try to achieve an average production
cost of 350 rupees/ton of coal produced at these mines, (3) try to keep the total loss
at these project sites to within 60 million rupees as far as possible, and (4) keep the
total manpower deployment at these project sites � the desired upper limit of 9,000.
Also, after consulting several executives and experts, it has been determined that the
weights measuring the achievements of various goals should be 0.298 for the capital
investment goal, 0.252 for the production cost goal, 0.241 for the profit/loss goal,
and 0.209 for the manpower goal.

The company would like to impose a constraint that the total estimated annual
production at these sites should reach or exceed 2 million tons.

(1) Formulate the problem as a linear goal programming problem.
(2) Discuss what changes should be made in the model if it is required that each

project should either be not taken up at all; or if it is taken up, it should be
completed (i.e., partial funding of projects is not allowed) (Mukherjee and
Bera 1995).

2.18. A bicriterion assignment problem: Let K denote the set of feasible solu-
tions of the usual n�n assignment problem represented by the system of constraints:
fx D .xij / W Pn

iD1 xij D 1 for all j D 1 to n;
Pn

j D1 xij D 1 for all i D 1 to ng.
In the usual cost-minimizing linear assignment problem (LAP), the decision vari-

able xij takes the value 1 [0] if job i is assigned [not assigned] to machine j for
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execution; cij represents the job completion cost of carrying out job i on machine
j , and the objective function to minimize is z1.x/ D Pn

iD1

Pn
j D1 cij xij .

All extreme point solutions of K (called assignments) make all variables xij

take only values 0 or 1. That is why all algorithms for LAP try to obtain extreme
point optimum solutions, thereby meeting the 0-1 requirements on all the variables
without imposing these requirements explicitly.

Let tij denote the time (in hours, say) needed to complete job i on machine j .
Then the time taken to complete all jobs if assignment Nx D . Nxij / is implemented
is Nt D maxftij W .i; j / such that Nxij D 1g, assuming that all the jobs are started
simultaneously.

Normally when work is going on, the company needs to have some supervisors
to supervise the work. Suppose the cost of providing the supervisory force is F $/h.
Both the job completion cost and the supervisory cost need to be minimized, and
so this leads to a bicriterion assignment problem: minimize z1.x/ and z2.x/ D
F maxftij W xij D 1g subject to x 2 K and xij 2 f0; 1g for all i; j .

(1) Prove that this bicriterion assignment problem has at most n2 efficient solutions.
(2) Prove that an optimum solution for the single objective problem of minimizing

z1.x/ C z2.x/ over x 2 K is attained at an efficient solution of the bicriterion
assignment problem.

Clearly, z2.x/ is not a linear function of x. Consider the following algorithm
for the problem of minimizing Q.x/ D z1.x/ C z2.x/ (not a linear function) over
x 2 K . Let ` be a lower bound for z2.x/ over x 2 K . For example, you can arrange
tij s in increasing order in a list, and take ` to be the nth element from the bottom in
this ordered list. Let c0 D .c0

ij D cij /.
Find an optimum assignment, x0, for the LAP of minimizing

Pn
iD1

Pn
j D1 c0

ij xij .
Let z0

1 D z1.x0/; z0
2 D z2.x0/; Q0 D z0

1 C z0
2. Define x� D x0; Q� D Q0. Set

k D 1 and go to Step 1.

General Step k: Consists of two substeps.
Substep 1: Define for all i; j , ck

ij D cij if tij < zk�1
2 , or D 1 if tij � zk�1

2 .

Substep 2: Find an optimum assignment xk minimizing
Pn

iD1

Pn
j D1 ck

ij xij . Let

zk
1 D z1.xk/; zk

2 D z2.xk/; Qk D zk
1 C zk

2 .
If zk

1 � Q� � `, then x� is an optimum solution of the problem and Q� is the
optimum objective value, terminate.

If Qk < Q�, update x� to xk , Q� to Qk , and go to the next step by adding
1 to k.

In this algorithm show that zk
1 is nondecreasing, while zk

2 is strictly decreasing.
Using this show that the algorithm obtains an optimum solution minimizing Q.x/

over K . When

c D

0
BBBBBBB@

6 3 5 8 10 6

6 4 6 5 9 8

11 7 4 8 3 2

9 10 8 6 10 4

4 6 7 9 8 7

3 5 11 10 12 8

1
CCCCCCCA

; .tij / D

0
BBBBBBB@

4 20 9 3 8 9

6 18 8 7 17 8

2 8 20 7 15 7

12 13 14 6 9 10

9 8 7 14 5 9

17 13 3 4 13 7

1
CCCCCCCA

;
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find an optimum assignment minimizing Q.x/ (Geetha and Nair 1993; Bakshi
et al. 1979; Berman et al. 1990).

2.19. Planning diets for diabetic patients: An important part of managing di-
abetes is very careful diet planning and sticking to it conscientiously. Diabetic
patients have to observe recommended dietary allowances on carbohydrates, fats,
and calories; and also make sure that their daily diet consists of other nutrients such
as vitamin B6, iron, etc., within prescribed limits.

Nutrient Average units/serving of food group RDA
MI VEG FT BR ME OI

CL 118 20 54 79 65 61 1800
PR 9.3 1.4 0.7 2.6 8.2 0.8 46
CH 13 5 13 15 0.6 0.6 �180
F 3.1 0.2 0.3 0.8 3.5 6.2 78

CA 334 44 15 14 7 6.7 800
FE 0.15 0.75 0.54 0.79 0.78 0.15 18
VC 2.3 22.84 22.53 0 0 0 45

VB6 90.2 91.09 58.04 67.06 102 17.78 2000
VB12 1 0 0 0 1.3 0.01 3

VE 0.05 1.51 0.78 0.38 0.13 2.45 12
MG 28.8 21.6 9.9 19.87 8.9 7.71 300
ZN 1.2 0.4 0.07 0.47 2.2 0.13 15

The usual approach to menu planning is a manual one based on exchange lists of
food groups, but most patients find this tedious and difficult to use. This exercise
deals with menu planning considering both client food preferences and recom-
mended dietary allowances, using an interactive goal programming approach.

In their exchange lists for meal planning, the ADA (American Diabetes Associ-
ation) forms various foods into six food groups: MI (milk), VEG (vegetables), FT
(fruits), BR (breads, this group also includes crackers, cereal, starchy vegetables),
ME (meats), OI (oils). For each food group, 1 serving is defined to be the following
quantity: MI (1 cup or 245 g), VEG (1 cup cooked vegetables or 80 g), FT (aver-
aged value of 100 g), BR (1 slice or 25 g for bread and/or crackers, 56 g for cereal,
or 118 g for starchy vegetables), ME (1 oz or 30 g of lean meat), OI (1 teaspoon or
14 g of oil, butter, or margarine).

For each sex and age group of the patient, ADA has provided RDA (recom-
mended dietary allowance) for various nutrients. Among all the nutrients, experi-
mentation has indicated that meeting the RDAs for a selected list of 12 generally
produced a diet sufficient also in the others. These 12 nutrients are CL (calories),
PR (proteins, measured in grams), CH (carbohydrates, measured in grams), F (fat,
measured in grams), CA (calcium, measured in milligrams), FE (iron, measured in
micrograms), VC (vitamin C, measured in milligrams), VB6 (vitamin B6, measured
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in milligrams), VB12 (vitamin B12, measured in micrograms), VE (vitamin E, mea-
sured in IU), MG (magnesium, measured in milligrams), and ZN (zinc, measured in
milligrams).

The patient is a young adult female. For her sex and age group, the RDA for
various nutrients are given in the last column of the table given below. The table
also gives the average value of the nutrient content/serving of each food group,
obtained using the Ohio State University. Nutrient Data Bank. She has specified
the minimum and maximum number of servings of each food group that she would
like to include in her daily diet. These bounds are MI (2–5 servings), VEG (1–5
servings), FT (1–5 servings), BR (3–6 servings), and OI (2–5 servings). Also,
the ADA has recommended that no more than 35% of calories in the diet should be
derived from the MI and OI groups. All these define the constraints on the decision
variables in the model for the problem.

The RDA number for each of the 12 nutrients is the goal for the content of that
nutrient in the daily diet. The aim is to find a diet in which the contents of the
nutrients CL, CH, and F are less than the corresponding goals as far as possible,
while the contents of the other nutrients are as close to the goal as possible. Take the
weight (a measure of the importance attached to that goal achievement) for goals
on CL, CH, and F as 5 each; the weight for each of the vitamin goals as 4; and
the weight for all the other goals as 3. Formulate the problem of determining the
number of servings of each of the food groups to include in the daily diet, to meet
the goals subject to the constraints mentioned above (Rugg et al. 1983).

2.20. Job allocation to operators at a book typesetting company: An agency
typesets books for publishers. At present they are starting work on m different
books, and n operators are available to work on typesetting them. The operators
work independently, each at his own speed, but all of them begin work on the por-
tions assigned to them at time point 0 and continue until it is finished. The agency
can split each book into any number of fractions, so that different fractions can be
performed by different operators.

If xij denotes the fraction of the i th book allotted to the j th operator, from past
experience they can estimate that it will take that operator �ij xij units of time, where
the m � n matrix  D .�ij / is given. The total working time of an operator will be
the sum of the times needed to perform all activity fractions assigned to him/her.

Formulate the problem of determining the fractions of each job to be allocated
to each operator, so as to minimize the clock time by which all the jobs are com-
pleted, as an LP. Give this formulation for the numerical example in which m D 5;

n D 3, and

 D

0
BBBBB@

13 17 7

37 23 11

19 2 31

5 3 29

1 1 1

1
CCCCCA

:

(Andreatta et al. 1993).
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2.21. Tele-marketing: A market research center (MRC) needs to collect data on
three types of products. They hire hourly employees to call potential customers and
gather this information. During a certain hourly period, the number of calls to be
made regarding the three types of products is given in the following table. Here
expected call duration is in minutes (min).

Product type 1 2 3
No. calls to make 90 150 270

Expected call duration 2.3 3.4 1.9

(1) There are six grades of employees with different salaries (wages/hour given in
dollars) for making these calls. Each employee can handle calls on a subset of
products depending on their expertise and past experience. Here is the relevant
data.

Call types they handle
Grade ! 1 2 3 4 5 6

Type 1 * � * � * *
2 � * * * � *
3 � � � * * *

Wage/hour 10 8 25 20 22 30
“*” indicates grade can handle this type

Let xj D number of employees of grade j employed during the hour for making
these calls. Taking xj as a continuous variable, model the problem of getting
the job done at the smallest cost.

(2) Now assume that they have a 3 h period to complete the above job, but a limit of
only 14 employees who can work in the office at any point of time. They have
the opportunity to hire the employees for a period of 1 h, or 2 h, or 3 h for this
work. Those hired for 1 h are to be paid at the hourly rate given above. Those
hired for a 2 h period are paid at the above rate for the first hour, and 90% of
the above rate for the second hour. Those hired for the 3 h period are to be paid
for the first two hours as mentioned in previous sentence, but only 80% of the
hourly rate given in the above table for the third hour.

Discuss the model to find the best plan to hire people to complete the job at
minimal cost in this situation. (Problem given by Vincent F. Yu.)

2.22. Minimizing losses from attacks on bank armored vehicles: In large cities,
each bank usually has several branches scattered in different areas of the city. On
each working day, the need arises for the bank to transfer different quantities of
money between its branches in the city. Banks use armored vehicles for these money
transfers. While these armored vehicles are traveling on the roads, they are some-
times attacked by robbers to loot the money inside them.

Designing safe routes for their armored vehicles is a serious problem that banks
face. The chance of an attack on these bank vehicles is usually very low, but it
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increases in hard economic times as unemployment in the city goes up. When an
attack occurs, if the attackers are successful, the bank stands to loose all the money
inside the vehicle at that time. One strategy that banks can use to minimize the
expected loss from these attacks is to put an upper bound, u, on the amount of
money that can be carried inside an armored vehicle at any time.

As the upper bound u decreases, the expected total daily mileage, m, of all the
armored vehicles of the bank in the city increases as these vehicles may have to
make more trips to carry out the needed money transfers. So, let m.u/ denote this
expected total daily mileage of the banks armored vehicles as a function of u.

Using simulation, the functional form of m.u/ has been determined to be the
following PL function. Here, u; m.u/ are given in coded money, distance units.

Range of u m.u/

40–50 110 � 3.u � 50/

35–40 140 � 5.u � 40/

30–35 165 � 10.u � 35/

As the expected daily mileage increases, their public exposure increases, and
this is expected to increase the chance of an attack on them. Let p.m/ denote the
probability of an attack on one of these armored vehicles while on the road in a
day, as a function of m. Using data on the past records of these occurrences and
other information, the Statistics Division of the bank came up with the following
estimates of p.m/.

Range of m Estimate of p.m/

110 � 155 0.0018 C 0.0005..m � 110/=45/

155 � 215 0.0023 C 0.0007..m � 155/=60/

From past data, we know that once an attack occurs on one of their armored
vehicles on the road, the probability that the attack will be repelled with no loss of
money inside is 0.25 and the probability that all the money inside will be lost is
0.75.

Using this information determine the optimum value of u, explaining clearly how
it is obtained.

(1) With fuel prices going up, extra mileage increases the cost of armored vehicle
operations too. Discuss how the model will change if it is required to minimize
the sum of expected losses from attacks on armored vehicles plus the expected
cost of armored vehicle operations to carry out the needed money transfers.

2.23. Referring to Sect. 2.5, prove that if Nx is an optimum solution of (2.16)
minimizing a positive weighted combination of all the objective functions in a multi-
objective minimization problem (2.15), then Nx is a nondominated solution for (2.15).

2.24. Concave function minimization: Consider the problem: Minimize �.x/ sub-
ject to Ax D b; x � 0, where A is a matrix of order m � n and �.x/ is a concave
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function. If this problem has an optimum solution, show that it must have an opti-
mum solution which is an extreme point of the set of all feasible solutions.

2.25. Minimizing scrap in aluminium foil slitting: At an aluminium foil mill,
the input is in the form of coils of aluminium foil in standard widths (SW), which
they slit into foil of different widths for a variety of end users. Customers order
foil specifying the width, gauge, and surface finish required. The mill selects an
appropriate coil from stock and slits it into the desired width. On a particular day
they have standard widths A to G in stock, and need to fill customer widths (CW)
I to V. Following table gives the weight of scrap in pounds, which will result from
slitting the customer orders of each width on the leftmost column of the table, from
the SW on the top line (an entry of “.” indicates that the SW is not suitable for that
CW). We need to determine which SW to use in slitting each CW to minimize total
scrap generated for filling all customer orders. Can this problem be modeled as an
LP? Formulate this problem. (Lanzenauer 1975).

CWnSW A B C D E F G
I 61 19 69 4 46 26 45
II 15 . 44 52 66 95 27
III 94 55 . 85 65 67 .
IV 42 48 11 62 13 . .
V 23 . . 58 . . .

2.26. We need to find a vector x D .x1; x2/T satisfying each of the following
equations as closely as possible: .2x1C4x2; x1C2x2; 4x1C5x2; 4x1C3x2; 3x1C
4x2; 6x1 C 3x2/T D .240; 130; 320; 170; 60; 45/T . Formulate this as an LP and
solve it.

2.27. We need to find a vector x D .x1; x2; x3/T � 0 satisfying the following
constraints as closely as possible. Formulate this as an LP.

x1 C x2 C x3 D 100;

x1 C x2 � x3 � 60;

�x1 C x2 C x3 � 70;

�x1 C x2 � x3 � 20:

2.28. Yearly production plan at a brewery: The demand from retailers for the
brewed product at a brewery is highly seasonal. For the months of January to
December for the planning year, the demand in units (1 unit D 1,000 barrels) is
estimated to be (5, 4, 5, 7, 10, 12, 14, 13, 11, 8, 10, 7/T .

Each month of the planning year, the brewery can operate at four production
levels; one shift/day, two shifts/day, or each with overtime. Following table provides
the production data for each of these levels. Money is measured in units, which we
will abbreviate as mu.
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Prod. level Prod. capacity Labor cost
(units/month) mu/month

One shift 5 3000
One shift C overtime 7 4000
Two shifts 9 6000
Two shifts C overtime 12 8000

Increasing from one shift level in a month to two shift level the next month incurs
a cost of 1,500 mu; while decreasing from two shift level to one shift level incurs a
cost of 1,000 mu.

They can hold brewed product between the brewhouse and the bottleshop in re-
frigerated tanks. Every unit inventory held in these tanks at the end of a production
month to the next month costs 300 mu.

Shortage in a month incurs a shortage cost of 500 mu/unit short; also this shortage
has to be made up in succeeding months in order to meet total demand. January
begins with two units of brewed product in inventory, and would be operating at the
one shift production level. Formulate the problem of developing a minimum cost
production plan for the planning year that would result in a closing inventory at the
end of the year of two units. (From Lanzenauer (1975)).

2.29. Toy-store problem: A toy-store chain has several stores in the midwest. For
the coming X-mas season, they need to place orders with their overseas suppliers
before the end of May for delivery in time for the X-mas sales period.

As unsold toys at the end of the X-mas season do not contribute much to the profit
of the company, they base their order quantities quite close to the expected sales vol-
ume. From experience over the years they observed that the X-mas sales volume has
a high positive correlation with the DJA D Dow Jones average (a measure of the eco-
nomic status of the region prior to the sales period), and a high negative correlation
with the percent unemployment rate in the region. Following table gives data on the
DJA during the months of February, March, April (these are independent variables
x1; x2; x3), the percent unemployment in the region during this period (indepen-
dent variable x4), and the toy sales volume in the region in millions of dollars during
the X-mas sales season (dependent variable y) between 1990 and 2001.

From the above discussion it is reasonable to assume that the expected value of
y can be approximated by a function a0 C a1x1 C a2x2 C a3x3 C a4x4, where the
parameters satisfy 0 � a1 � a2 � a3 and a4 � 0. Write the LP formulation
of the problem of finding parameter values that give the closest fit to data by the L1

measure of deviation.
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Year x1 x2 x3 x4 y

2001 10,690 10,185 10,306 4.3 59
2000 10,533 10,525 10,798 4.0 60
1999 9,356 9,550 10,307 4.3 54
1998 8,307 8,664 8,940 4.6 47
1997 6,828 6,727 6,800 5.2 36
1996 5,435 5,527 5,579 5.5 28
1995 3,927 4,080 4,239 5.5 20
1994 3,898 3,723 3,634 6.5 17
1993 3,344 3,405 3,434 7.1 14
1992 3,247 3,253 3,294 7.4 13
1991 2,798 2,903 2,895 6.6 11
1990 2,607 2,665 2,673 5.2 10

2.30. Oil Refinery Optimization: A refinery has a distillation capacity of 100,000
barrels of crude/day in its fractionator. Here crude oil is basically heated, and as
the temperature increases, different products called DN (distillation naphtha), DHO
(distillation heating oil), DGO (distillation gas oil), and P (pitch) are given off in
vapor form and are collected at various levels. The refinery gets crude oil from three
different countries, these are called crudes 1, 2, 3. All the crudes and the various
products are measured by volume in barrels. The output statistics from the distilla-
tion of each of the available crudes are tabulated below.

Distillation Yield (barrels/barrel) from
output distillation of

Crude 1 Crude 2 Crude 3
DN 0.19 0.16 0.02

DHO 0.27 0.32 0.24
DGO 0.38 0.27 0.26

P 0.05 0.13 0.39
Price ($/barrel) 23.25 22.00 20.50

Available 60,000 90,000 80,000
(barrels/day)

It can be verified that the total volume of outputs from the distillation of one
barrel of crude is <1. The loss is due to evaporation and unusable heavy residuals.

DHO can be sold directly as heating oil. DGO can be sold directly as diesel fuel.
Sale prices of these products are given below.

DHO and DGO can also be processed further in a catalytic cracker. The catalytic
cracker can either process a maximum of 100,000 barrels/day of DHO, or a maxi-
mum of 50,000 barrels/day of DGO, or a combination of these in proportion of these
levels adding up to 1. Also, when processing DHO, the catalytic cracker can be run
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either at a normal level or at a high severity level. The high severity level helps to
convert more of the DHO into naptha as seen from the table below. In processing
DGO, the catalytic cracker is run at normal level only and never on high severity
level.

Catalytic cracker Output (barrels/barrel of feed)
outputs DHO normal DHO high DGO normal

level severity level level
Catalytic naptha (CN) 0.18 0.32 0.48
Catalytic heating oil (CHO) 0.80 0.69 0.52
Pitch (P) 0.11 0.10 0. 15

The cracking process converts the feed into products whose density is smaller
than that of the feed, that is why the volume of outputs from this process is greater
than the feed volume.

The pitch (from fractionator and catalytic cracker) can be combined with CHO
(two parts of CHO to 17 parts of pitch) and sold as heavy fuel oil. DN and CN can
be combined (20 parts of DN with 17 parts or greater of CN) and sold as gasoline.
The quality of the gasoline improves with the proportion of CN in this blend. The
following table gives the selling prices (all money figures in this exercise are in 1995
US $) and demand for the various final products.

Final product Selling price Daily demand
($/barrel)

Gasoline 43.25 Up to 40,000 barrels
Heating oil 39.75 Up to 40,000 barrels
Diesel fuel 39.00 Any amount
Heavy fuel oil 30.00 Any amount

The processing cost on the fractionator is estimated to be $0.60/barrel of crude
processed. On the catalytic cracker, the processing costs are $1.50/barrel of fresh
feed at the high severity level and $0.95/barrel of fresh feed at the normal level.
Formulate the problem of determining how much of each final product to produce
daily in order to maximize daily net profit, as an LP.

2.31. Consider the following optimization problem in n variables x1; : : : ; xn. In this
problem, a; h are positive data elements.

Minimize z.x/ D cx

subject to Dx � d
nX

j D1

jxj � aj � h

x � 0:
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Notice that there is one constraint here involving absolute value terms. Is it pos-
sible to transform this problem into a linear program? Explain clearly. Discuss how
one can handle this problem.

2.32. A UM Dental School statistician has conducted research on the condition of
the teeth of 8-year-old kids in Michigan and estimated that the average number of
decayed teeth in the mouth of an 8-year-old Michigan kid is 1.8.

Given this data, it is required to find the minimum and maximum possible values
for the fraction of 8-year-old Michigan kids who have two or more decayed teeth in
their mouths. Give LP formulations for the problems of finding this minimum and
maximum (two separate problems).

Also comment on why an LP model is appropriate for these problems.

2.33. Optimum assignment of students to schools: A school district consists of r

neighborhoods, s schools, and in each of these schools g is the number of grades or
levels (like fourth grade, fifth grade, etc.) for students. Here are the data elements:
kju D capacity for the number of students of grade u in school j ; siu D number of
students in neighborhood i studying in grade u in a particular school year; and dij D
minutes that a student from neighborhood i has to spend in school bus daily to get
to school j , for j D 1 to s, u D 1 to g, and i D 1 to r .

Treating the number of students as a continuous variable, formulate the problem
of assigning students in this school district to schools to minimize the total number
of minutes spent in the school bus daily by all the students as a linear program. Also,
discuss whether this problem can be formulated as a transportation problem.

2.34. Recruiting workers for a new plant: A paper company is setting up a new
plant in a city for which they need to recruit the following numbers of workers:
2,000 nonprofessional workers and 800 professional workers.

There are four categories of workers: men (nonminority), women (nonminority),
men (minority), women (minority). The estimated average cost of recruiting per
worker in each category is given below:

Cost of recruiting/worker
Category Nonprofessional Professional
Minority (men or women) $740 $1560
Women (nonminority) 850 1450
Men (nonminority) 570 1290

The company has established the following goals in order of priority:

Goal 1: The percentage of women (minority or nonminority) among the workers should be
at least 30% as far as possible.
Goal 2: The percentage of minorities (men or women) among the workers should be at least
20% as far as possible.
Goal 3: The recruiting cost should be at most $2 million as far as possible.

It is required to find how many workers to recruit in each category in order to meet
the goals as closely as possible. Ignoring the integer nature of the variables, formu-
late this problem as a linear program using a goal programming approach.

If you need to make any additional assumptions, please state them very clearly.
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2.35. Short-term cash flow management: A department store has revenues com-
ing from their operations, and bills to pay out, at the end of each month. These
quantities for a 6-month period are given below.

Month On last day of month
Revenue from operations Bills to pay

July $1,000 5,000
Aug 2,000 5,000
Sep 2,000 6,000
Oct 4,000 2,000
Nov 7,000 2,000
Dec 9,000 1,000

Clearly, they have a short-term cash flow problem at the beginning of the period,
as they have no other income to pay the bills other than the revenue. They have two
available sources to borrow money.

Bank: The bank can loan a maximum of $7,000. The loan can be taken on 31 July, and it
should be paid back together with 9% interest on 31 Dec (early payback does not reduce
the interest amount).

S&L: The S&L can loan any amount of money for a period of one month, any number of
times. The loan amount can be taken on the last day of any month, and it should be paid
back together with 3% interest on the last day of following month.

Formulate the problem of determining how the store can minimize the cost of
paying their bills on time each month in the period, as a linear program.

2.36. Optimizing currency exchange transactions: A company holds 1.2 billion
Japanese yen, 10.5 billion Indonesian rupiahs, and 28 million Malaysian ringgits.
Here are the exchange rates and transaction costs. JY D Japanese yen, IR D In-
donesian rupiah, MR D Malaysian ringgit, UD D US$, CD D Canadian$, EE D
European euro, EP D English pound, MP D Mexican peso.

From Exchange rate to
JY IR MR UD CD EE EP MP

JY 1 50 0.04 0.008 0.01 0.0064 0.0048 0.0768
IR 1 0.0008 0.00016 0.0002 0.000128 0.000096 0.001536

MR 1 0.2 0.25 0.16 0.12 1.92
UD 1 1.25 0.8 0.6 9.6
CD 1 0.64 0.48 7.68
EE 1 0.75 12
EP 1 16
MP 1
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From Transaction cost %
JY IR MR UD CD EE EP MP

JY 0.5 0.5 0.4 0.4 0.4 0.25 0.5
IR 0.7 0.5 0.3 0.3 0.75 0.75

MR 0.7 0.7 0.4 0.45 0.5
UD 0.15 0.2 0.2 0.2
CD 0.2 0.1 0.1
EE 0.05 0.5
EP 0.5
MP

(1) The portion below the main diagonal in the first table is left blank because
each entry in it can be obtained from the corresponding entry above the diag-
onal (every currency considered can be converted into every other currency).
The second table is symmetric around the main diagonal, that is why only the
portion above the main diagonal is given. The transaction cost for converting
one currency, say c1 units of currency 1, into any other currency is .c1=100/�
(entry for this currency pair in the second table) in units of the currency be-
ing converted (i.e., here currency 1). Formulate the problem of finding the most
cost effective method to convert these holdings into US$, as a min cost flow
problem.

(2) Suppose there are transaction limits for converting yen, rupiah, and ringgits
(only these currencies, no limits for converting other currencies) as shown in
the following table (unit D equivalent of million US$). Then find the most cost
effective way of converting as much of these currency holdings into US$ as
possible.

From Transaction Limits
JY IR MR UD CD EE EP MP

JY � 5 5 2 2 2 4 8
IR 5 � 2 1 2 1 3 2

MR 3 5 � 2 3 3 2 1

2.37. Blending of residual fuel oil: Crude oil is separated into many different prod-
ucts such as naphtha (used for making gasoline), diesel oil, etc. The most expensive
products produced from crude oil are these higher volatile fractions. After all these
highly profitable fractions are removed, one of the fractions that remains at the bot-
tom is heavy residual fuel oil; its market price is quite low compared to the above
products. The sulfur content in heavy fuel oil is usually high, and burning it re-
quires special equipment; therefore, this fraction is mostly used as fuel in ships (i.e.,
ocean-going vessels) under the name “bunker fuel.” The quality of heavy fuel oil
depends on the type of crude oil from which it is produced, and measured by three
important characteristics: SG (specific gravity D weight/volume), SC (sulfur con-
tent, percent by weight), VBI (viscosity blend index, which blends linearly when
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quantities are measured in volume units like gallons). To meet the specifications on
these characteristics, bunker fuel sold to customers is usually a mixture of various
fractions.

Suppose we have three different fractions available to blend into bunker fuel: AF
(asphalt flux), CO (clarified oil), and K (kerosene). Data on them is given below.

Fraction Value of characteristic Price
SG SC VBI $/gallon

AF 0.98 2.39 0.966 1.86
CO 0.91 2.20 0.740 1.20
K 1.20 0.20 0.347 2.40

Specs. in �1.06 �2 �0.808
Bunker fuel �1 �0.738

Bunker fuel can be sold at $1.80/gallon. Select appropriate units for measuring
the three constituent fractions, and assuming that the blending cost is negligible,
formulate an LP model for determining an optimum blend for bunker fuel.

2.38. Gasoline blending: A gasoline blending company has six types of raw gaso-
lines available with data given below.

Type Oc. R. (octane Available Cost
rating) b/day $/gallon

T1 72 2,500 2.40
T2 81 3,800 2.55
T3 86 4,300 2.75
T4 89 5,500 2.85
T5 96 1,500 3.10
T6 99 1,000 3.20

1 barrel D 42 gallons.

They blend these raw gasolines into two grades of fuel: regular and premium.
Minimum specifications on Oc. R. for regular is 85 and for premium it is 95.
They need to produce a minimum of 9,000 b of regular/day and between 2,000 and
4,000 b/day of premium. The selling prices of these grades are $3.05/g and $3.20/g
for regular and premium, respectively. Formulate an LP to determine an optimum
blending plan for this company (Dantzing and Thappa (1997) of Chap. 1).

2.39. A production planning problem: Over the next 5-week horizon, a company
has to produce and deliver to its customer a special commodity according to the
following schedule: 200 units each at the end of weeks 1 and 2; then 300, 400, 500
units, respectively, at the end of weeks 3, 4, and 5.

The production process requires workers who received special training. The
training of a new worker, carried out by a trained worker, takes 1 week. They begin
week 1 with 10 trained workers on hand. Each trained worker can train up to five
new workers during a week if assigned to training during that week, or produce up
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to 10 units of the product if assigned to production during that week. Only workers
trained at the company are used for production or training of new workers.

Shortages in delivery cost $100/unit short /week short, until delivered. By the
end of the fifth week all required deliveries must be completed. A unit of product
produced ahead of schedule must be stored at the company until its delivery time,
this storage cost is $20/unit/week.

Salaries of workers are $15,000/week if used for production, $20,000/week if
used to train new workers. Treating the number of workers used for the various
tasks each week as continuous variables, formulate the problem of determining an
optimum production/training schedule as an LP model (Dantzig (1963) of Chap. 1).

2.40. Minimizing the cost of production level changes: A company has a pro-
cess that produces a product P . The production rate of this process measured in
tons/month can be changed, but this change costs money.

The company’s policy is to change the production rate, if necessary, only at the
beginning of each month. During any month, the process keeps on producing at the
same rate as it was set at the beginning of that month.

To increase the production rate from existing level costs c1 D $100 per ton/month
increase. To decrease production rate from existing level costs c2 D $50 per
ton/month decrease. When the production rate is changed, the amount of increase
or decrease in the rate has to be � 100 tons.

The first month’s production rate can be set at any nonnegative level; there is no
cost for this.

Production in a month can either be used for meeting the demand in that month
or put in storage for meeting the demand later on. The storage room has a capacity
for storing up to s D 1;000 tons and collects storage charges at the end of each
month on the total amount in storage then, at the rate of c3 D $10/ton. They have
100 tons in storage at the beginning of month 1.

Demand data (di D demand (in tons) in period i : i D 1 to 6) is (100, 500,
800, 600, 300, 500), and demand in each month has to be met exactly. At the end of
month 6 they would like to have at least 250 tons in storage.

The actual production cost/ton is the same in all the months so the company
needs to determine the production, storage plan in months 1–6 to minimize the sum
of storage and production level changing costs while satisfying all the constraints.
Formulate this as an LP and justify your formulation carefully.

2.41. x D .x1; : : : ; xn/T 2 Rn, where n � 4 is the vector of decision variables
in the optimization problem

Minimize �.x/

subject to Ax D b

and x � 0;

where A is a given m � n matrix and �.x/ D Maximumfx1; 5x2; 10x3g �
Minimumfx1; 5x2; 10x3g.
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Is it possible to transform this problem into a linear program? Why? If it is, give
that transformation and a clear explanation why it will work.

2.42. Six period production planning problem: A company divides the year into
six planning periods for planning purposes. Here is the relevant data for one impor-
tant product of this company for the coming year.

Period Total Prod. Prod.
j cost ($/ton) D cj capacity (tons) kj

1 20 15,000
2 25 20,000
3 30 22,000
4 40 30,000
5 35 27,000
6 50 25,000

There is unlimited demand for this product. The company has two main cus-
tomers for it who have very different purchasing strategies.

Customer 1 wants to sign a purchasing deal for the whole year with the company,
for any amount of the product, at p1 D 85$/ton; but he stipulates a phased delivery:
If q1 tons is the quantity the company agrees to sell him, he wants 10% of this
quantity delivered at the end of each of periods 1, 2, 5, 6, and 30% of this quantity
delivered at the end of each of periods 3 and 4.

Customer 2 will purchase any quantity of the product available at the end of each
period, but only at the rate p2 D 65$/ton.

Product manufactured during a period has to be sold by the end of that period or
disposed off, and it cannot be stored into the next period.

Formulate the problem of maximizing the net profit of the company during the
year as an LP

2.43. Speciality chemicals manufacturing: A speciality chemicals company
makes three chemicals denoted by C1; C2; C3; each in a separate division. These
are rare chemicals used for highly specialized applications, every one who uses them
always use all three of them in combination in proportions: C1:C2:C3 D 1:2:4 (i.e.,
each unit of C1 is always used in combination with 2 units of C2 and 4 units of C3,
etc.). Also as they are very expensive chemicals, whenever a customer buys any of
them, they always buy all of them in measured quantities in the above proportion.

Hence the customer demand for these chemicals can be measured unambiguously
by the demand for any one of them (since the demand for the other two can be
obtained from that one using the above proportions). Four expensive raw materials
RM1 to RM4 are used in making these chemicals. Here is the relevant data for a
period.
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Raw Units of input to make 1 unit Max units
material C1 C2 C3 available
RM1 2 0 1 3,000
RM2 4 3 0 7,000
RM3 0 3 1 5,000
RM4 0 1 4 6,000

Labor man hours. 3 2 4

They can allocate up to 10,000 man hours of labor during regular time for the
production of these chemicals, and up to another 3,000 man hours during overtime.

(1) Select suitable units for measuring customer demand for these chemicals, and
formulate an LP model for determining the maximum customer demand that
the company can meet in this period.

(2) The prices of raw materials RM1 to RM4 in money units/unit are 250, 175,
300, 400. The labor needed is highly skilled labor, regular time cost/man hour
is 5, and overtime cost is 7.5 money units.

Assuming that the maximum customer demand that can be met (in units selected
in (1)) is d , formulate an LP model for meeting this demand exactly, at minimum
cost.

2.44. Milk procurement: Organic Valley (OV) is a company that buys organic
raw milk from individual farms in the milk-producing area of Wisconsin, divided
into Regions 1 and 2. The farms vary in size, but all are small to medium. The
composition of raw milk in terms of butter content and its “separation properties”
tend to be more or less the same among the farms in each region, but the price/liter
of raw milk varies from farm to farm. So, OV has classified the farms in each region
into two classes, depending on the average price/liter of raw milk. Here is the data:

The average butter content of raw milk from Regions 1 and 2 is 40, 35 g/liter,
respectively. The two classes in Region 1 are 1.1 and 1.2 and those in Region 2 are
2.1 and 2.2. In class 1.1 and 1.2, the average price (cents)/liter is 45 and 50, and
the maximum availability in liters/day is 2,000, unlimited, respectively. In class 2.1
and 2.2, the average price (cents)/liter is 40 and 47, and the maximum availability
in liters/day is 3,000 and unlimited, respectively.

In procuring milk each day, depending on the quantity to be purchased from
each region, OV allocates that quantity among the two classes in that region so as to
minimize the total cost.

For each region i D 1, 2, give the expression fi .xi / for the price of buying xi

liters of raw milk from region i , explaining the reason for it.
Raw milk may be used in the blending process as it is or it may be passed through

a separator before blending. Each liter from Region 1 when separated yields 0.5 L
with butter 20 g/L, and another 0.5 L with butter 60 g/L at a cost of 3 cents/L. Sim-
ilarly each liter from Region 2 when separated yields 0.5 L with butter 15 g/L, and
another 0.5 L with butter 55 g/L at a cost of 3 cents/L.
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The blending process blends the various milks into two products (grades of milk
called cream and regular) with the following specifications.

Product Min. required Mkt. price Demand
butter content (cents L�1) (L day�1)

(g L�1)
Cream 52 150 1,000
Regular 22 80 8,000

Any leftover unsold milk is sold to an ice cream plant for 38 cents/L as long as
the butter content in it is �15 g/L.

Formulate the problem of maximizing OV’s net daily profit as an LP.

2.45. Milk blending: We have eight different grades of milk available with differ-
ent butter contents. For i D 1 to 8, the butter content of grade i is 15, 20, 40 45,
47, 50, 55, 60 g/L, respectively, and xi liters is the quantity of this grade of milk
available.

We have a customer to whom milk can be sold, but he will only buy milk in
which the butter content is �42 g/L.

We have a blender that can blend any combination of several grades of milk.
From the grades of milk that we have, it is required to determine the maximum
quantity of milk satisfying the customer’s specification on butter content that we
can produce using this blender. Formulate this problem as an LP.

2.46. Finding an interior point of a convex polyhedron: Let K D fx W Ax � bg.
An x 2 K is called an interior point of K if it satisfies Ax > b, boundary point of K

otherwise. Formulate the problem of finding an interior point of K , or establishing
that K has no interior point, as an LP.

On the other hand, if the goal is to find a boundary point of K , how can one
find it?

2.47. Optimizing bets at a horse race: A person has ˇ$ to bet on n horses com-
peting in a race. The race course has the following pay-off policy: If xi $ is bet on
the i th horse, the pay-off from this bet is ˛0i xi if that horse comes first in the race,
˛1i xi if it comes second in that race, 0 otherwise.

Formulate the problem of determining how much to bet on each horse in the race
to maximize the minimum net gain, irrespective of which of the n horses come in
first or second in the race.

2.48. Optimal revision of estimates to satisfy monotonicity: A sequence of
parameters .a1; : : : ; a5/, which are known to be monotonic increasing, is being
estimated from data subject to random fluctuations. The estimation process esti-
mates each ai independently from the others. The estimates obtained are denoted
by . Na1; : : : ; Na5/, because of random fluctuations this sequence may not be mono-
tonic increasing with i . It is required to revise the estimate Nai into xi , for i D 1 to
5, making the smallest possible changes, so that the revised sequence .x1; : : : ; x5/

is monotonic increasing. Formulate this as an LP.
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2.49. Revising property tax rates: A city currently collects property taxes within
its boundary; this is the major source of its revenue. Having incurred budget deficits
for several years, the city has appointed a committee to revise the property tax rates,
and also suggest other taxes that the city can levy to balance the budget.

Besides property taxes (PT), the committee is investigating the possibility of in-
cluding food and drug taxes (FDT), general sales tax (ST), and a gasoline tax (GT).

The tax base of property values is $550 million, and PT rate is an annual per-
centage of this value. The annual food and drug sales volume and general sales
volume are $35 million and $55 million, respectively; again, the FDT and ST rates
are percentages of these volumes. Annual gasoline sales volume within the city is
estimated at 8 million gallons; the GT rate will be in the form of cents/gallon sale.

The committee wants to determine the PT, FDT, ST, GT rates so as to achieve
the following goals as far as possible:

G1: Total tax revenue should be � 16 million

G2: FDT should be � 10% of total tax revenue

G3: ST should be equal to 20% of all taxes collected

G4: GT should be � 3 cents/gallon

G5: GT should be � 12% of the total tax revenue.

The committee has decided that missing G1 (per million) $, G4 (per 1 cent/
gallon), and G2, G3, or G5 (per 1%) should all carry the same penalty.

Formulate the problem of deciding the PT, FDT, ST, GT rates so as to minimize
the total penalty as an LP model.

2.50. A property of convex functions: Let f .x/ be a real-valued function in
x 2 Rn.

Prove that if f .x/ is a convex function and ˛ is any real number, then fx W
f .x/ � ˛g D the set of all points x satisfying f .x/ � ˛ must be a convex set.

2.51. Arranging financing for construction work: The construction of a bridge
starts on 1 Sept of year 1, and is expected to be completed on 31 Aug of year 5. For
this, the city has agreed to make the following payments to the contractor.

Date Amount to be paid ($million)
1 September, year 1 12
1 September, year 2 14
1 September, year 3 18
1 September, year 4 15

The city will raise this money by selling bonds on each of the above dates. Let
xj denote the $amount of bonds to be sold on the j th of these dates, j D 1 to 4.

All bonds accumulate simple interest only on the principal amount. Four year
bonds, three year bonds, two year bonds, one year bonds pay, respectively, 10%,
9%, 8%, 7% simple interest yearly. All bond amounts plus accrued interest will
have to be paid to bondholders in a simple lump sum payment on 1 September of
year 4.
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If the money collected in a bond is not used to pay the contractor on the day the
bond is sold, the city immediately invests it in a short-term (exactly one year) time
deposit, which pays the principal C6% interest paid exactly one year later. So, on
each of the dates in above tableau, contractors are paid out of money collected from
bond sales on that day + any money coming from repayment of short-term deposit
made 1 year before, and any remaining amount is invested in short term deposits
right away.

The Federal government agreed to pay the city $59 million, the total construction
cost of bridge, on 1 September of year 4. The city will use this money towards lump
sum payments to be made to bondholders on that day.

It is required to determine optimum values of xj ’s and short term deposits to be
made in each year of project horizon so as to minimize total interest money to be
paid to bond holders on 1 September of year 4 when they get lump sum payments.
Formulate this as an LP.

2.52. Managing a two-dam reservoir system: The state has two dams with reser-
voirs denoted by R1, R2, respectively, on a river. Water for the river comes mainly
from melting snows on mountains before R1. Estimated availability of water at R1

is 294 MAF (million acrefeet)/year.
At R1, the state has agreed to supply �24 MAF/year to a town there. Remaining

water at R1 flows down to R2 losing 20% to evaporation along the way. At R2 state
releases some water to farmers there for irrigation, and the rest passes through a
hydroelectric generator and then flows further downstream.

The town at R1 pays $0.5/AF for water supplied. Farmers pay $0.2/AF for
irrigation water released to them. Water passing through hydroelectric generators
earns $0.8/AF.

The state has a target of 100 MAF/year for releasing to farmers for irrigation, and
would be happy if this target can be exceeded. The penalty for downfall in irrigation
water release below target is 10 penalty units/MAF downfall.

The state has a target of $144 million for total income/year from this system, and
would be happy if this target can be exceeded. Penalty for downfall in total income
below target is 4 penalty units per $million downfall.

Give a goal programming model for allocating available water to the three uses
in this two-objective optimization problem.

2.53. f .x/ is a convex function defined in the space of x D .x1; x2/T , satisfying
following property:

Property: Inside the circle with x� D .3; 2/T as center and radius 1, x� is the
unique minimum point for f .x/, that is, for all points Nx inside the circle, Nx ¤ x�,
we have f . Nx/ > f .x�/.

Take any point x outside this circle. Using Jensen’s inequality, prove that it is not
possible for x to satisfy f .x/ < f .x�/.

2.54. Managing Tunis Water Resources System: The Tunis Water Resources
System (TWRS) comprises seven reservoirs interconnected by water conveyance
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structures (WCS) (a canal and three pipelines). Each reservoir provides water for a
number of demand centers, and a demand center may receive water from more than
one reservoir.

The reservoirs (all with first initial “R”) are RJ (Reservoir Joumine, or Joumine),
RBM (Ben Metir), RK (Kasseb), RBH (Bou Heurtma), RM (Mellegue), RSS (Sidi
Salem), and RS (Siliana). Data on their capacities and the expected incremental in-
flows from precipitation in its catchment area in the month of May are given below:

Reservoir RJ RBM RK RBH RM RSS RS
Capacity 120 44 72 103 89 510 62
(106m3)

Expected May 2.9 0.9 1.7 3 15.3 19.6 2.5
inflow (106m3)

There are demand centers all identified with “D” as the initial letter in their ab-
breviations, with demand for water in the month of May as given below.

Demand center Expected May
demand (106m3)

DIMA 1.2
DBLI 0.9
DJE 2

DIBH 10.7
DINE 0.3

DIAEA 9.3
DISI 4.3

DIMSC 13.1
DIBV 1.8
DTO 2.6
DTU 5

The following Fig. 2.9 shows the WCS with its canals (in solid lines), pipelines
(in dashed lines), with their monthly flow capacities in units of 106 m3/month, and
directions of flow indicated by arrows.

It is required to determine how much water should be supplied in the month of
May to each demand center through the various canals and pipelines to meet all the
demands, such that the amount of water in each reservoir at the end of May is as
close as possible to the amount in it at the beginning of May. Formulate this as an
LP. (Data from Nandalal and Bogardi 2007.)

2.55. Maximizing returns from short-term investments: In the automobile in-
dustry, companies make improvements in their car models and start selling the
improved versions of the cars at the beginning of each year. These new versions
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Fig. 2.9 This figure shows the WCS with its canals (in solid lines), pipelines (in dashed lines),
with their monthly flow capacities in units of 106 m3/month, and directions of flow indicated by
arrows. Each draws water from a reservoir node, and as it passes through each demand node
satisfying the demand there, the quantity of water it carries keeps decreasing. For the sake of this
problem, we ignore evaporation losses

enjoy high sale volumes during the first half of the year, after which the sale vol-
umes tend to level off during the second half of the year. That is why income to
these companies in the form of sale revenues from dealers tends to be higher in the
first half of the year than during the second half.

By the middle of the year, quality problems with the versions of car models being
sold become well known, and companies then set up new design teams to work on
fixing up these problems in the new versions of these car models to be released in
the market at the beginning of next year. That is why design changing expenses for
these companies tend to be higher in the second half of the year than during the
first half.

Hence, the income for these companies tends to be higher than their expenses
during the first half of the year and vice versa during the second half. These com-
panies normally operate on annual accounting, and their profits for the year are
declared only at the end of the year. So, to maximize their annual profits, these com-
panies normally invest their surplus income over expenses in the first half of the
year, in short term investment opportunities, to be cashed as needed or by the end of
the year.



2.6 Exercises 119

We provide the data for a company that divides the year into four periods of three
months each. Data on the expected income and expenses in each period is given
below. There are two investment opportunities, I1 and I2 for short-term investments.
In each of these opportunities, any amounts can be invested for periods ranging from
one, two, or three periods (can assume that all transactions take place only on the
last day of each period) with fractional returns given in a table below (i.e., if x is
the amount invested, r is the fractional return for a duration of k periods, and this
investment will pay out x.1 C r/ at the end of k periods after investing).

Period Expected income Expected expenses
1 200 100
2 180 110
3 150 180
4 170 250

Annual total 700 640

Returns from short-term investments
Duration Fractional returns in

(no. periods) I1 I2

1 0.02 0.01
2 0.05 0.06
3 0.08 0.09

Remember that all investments during the year will be cashed by the end of
the year. Also, the maximum invested over the year in any investment opportunity
cannot exceed 150 money units. The only money that the company invests in these
investments is any money on hand (from income in that period either from dealers
or from earlier investments that are cashed). Formulate the problem of determining
how much the company can invest in each investment opportunity, so as to maximize
the money left over in the companies hands by the end of the year.

2.56. Cake mix blending: A premium-quality cake mix is a blend of six different
powdered ingredients called I1 to I6.

There are three weighing machines (WM-1 to WM-3) for measuring the quan-
tities of the ingredients. Each weighing machine has one or more sizeable hoppers
attached to it, each hopper holding one of the ingredients.

The following table indicates the ingredients contained in the hoppers attached
to each of the weighing machines (* mark indicates that one hopper of the corre-
sponding weighing machine contains the ingredient, blank entry indicates that none
of the hoppers on this weighing machine contains that ingredient).

I1 I2 I3 I4 I5 I6

WM-1 * * *
WM-2 * * *
WM-3 * * * *
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An ingredient can be weighed on a weighing machine only if one of its hoppers
holds that ingredient. For example, on WM-1 we can weigh ingredients I1; I3; I4,
but none of the others. Also, I1 can be weighed on WM-1 or WM-3 or both of these,
but not on WM-2.

On each weighing machine, the ingredients are emptied from one of its hoppers at
a time, each hopper emptying for a preset duration depending on the quantity of that
ingredient to be measured on that weighing machine into the scale of that weighing
machine. After all the hoppers finish delivering their ingredients, the contents of the
scale are conveyed to a bin where they will be blended into the batch.

The weighing machines work simultaneously and independently in the plant, and
the whole operation is computer controlled. As soon as the scales on all the three
weighing machines deliver their contents to the bin, the batch is complete, weighing
stops, the scales are cleaned, and preparations take place for the next batch.

Some ingredients flow faster than the others from the hoppers.

gi D time in seconds for 1 kg of ingredient Ii to flow from the hoppers onto the scales of
a weighing machine, for i D 1 to 6.

Here is the data:

Ingredient I1 I2 I3 I4 I5 I6

kg needed for 130 140 101 290 29 21
a batch
gi 1 1.2 1.3 1.1 0.8 0.9

The capacity of the scales on each of the three weighing machines is 400 kg.
The problem is to determine how much quantity of each ingredient should be

weighed on each weighing machine in order to minimize the clock time for weigh-
ing a batch.

Give a formulation of this problem as a linear program. Define all your deci-
sion variables very clearly, and write the objective function and all the constraints
carefully. Justify your model.

2.57. In R2, the rectilinear distance between two points a D .a1; a2/ and b D
.b1; b2/ is defined to be d.a; b/ D ja1 � b1j C ja2 � b2j.

We are given four points in R2. These are a1 D .�10; 20/, a2 D .60; 30/,
a3 D .40; 10/, a4 D .80; 60/. The weights associated with these points are .w1; w2;

w3; w4/ D .0:2; 0:1; 0:3; 0:4/, respectively.
It is required to find a point x 2 R2 to minimize z.x/ D maxfwt d.x; at / W t D 1

to 4 g. Give a linear programming formulation of this problem.

2.58. Operating a hydroelectric power system: An agency operates two wa-
ter reservoirs on a river system. Each of these reservoirs has a hydroelectric power
generator, and all the water released from this reservoir flows through this generator
and generates power. AF D acrefeet, KAF D kiloacrefeet or 1,000 AF are units
for measuring the volume of water. KWH D kilowatthour is a unit for measuring
electric power.
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The amount of power generated when an AF of water is released from the reser-
voir depends nonlinearly on the head which is determined by the amount of water
in the reservoir at the time of release; however, to model the problem as a linear
program, we will assume that it is a constant D the average amount given in the
following table.

For operational decisions, an year is divided into six periods (or seasons) of two
months each. For simplicity, assume that each period is an interval of time with
uniform characteristics, that is, the inflows during this period from precipitation
occur at a constant rate.

During each period, the agency is required to release an amount of water � a
specified minimum amount from each reservoir for downstream uses. All water
released from reservoirs flows through the power generators and hence produces
electricity. During each period that water is released at a constant rate so that the
total release for the period equals the planned amount.

At any instant of time, if reservoir is at its full capacity, additional inflowing wa-
ter spills over the dam. The spilled water does not generate any electric power. As
an example, if water stored in Reservoir 1 with its capacity of 4,000 KAF at the be-
ginning of a period is 3,200 KAF, the inflow during this period into this reservoir is
1,400 KAF, and the water released during this period from this reservoir is 200 KAF,
then 3200 C 1400 � 200 � 4000 D 400KAF will be the spilled water from this
reservoir during this period.

Here is the data on the two reservoirs:

Reservoir Capacity Power generated Water stored
by releasing 1 AFa at year beginning

1 4000 KAF 310 KWH 1800 KAF
2 6000 KAF 420 KWH 2500 KAF

aAverage amount per AF as mentioned above

Power sales: They have an industrial customer (IC) who buys power on an annual
basis and pays $70/1,000 KWH. The IC stipulates that if the annual KWH of power
sold to them is denoted by e0, then pi e0 KWH of it must be delivered in period i ,
for i D 1 to 6; where the pi are given in the following table. In each period, any
power not sent to the IC is sold in that period itself to the regional power grid at a
price of $50/1,000 KWH.

Period Inflow (KAF) into Min release, KAF pi

reservoir from reservoir
i 1 2 1 2
1 550 2620 200 310 0.1
2 1,470 2300 200 580 0.15
3 990 1230 200 990 0.15
4 150 730 200 1,500 0.3
5 30 410 200 560 0.2
6 160 500 200 400 0.1
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At the end of the year, the amount of water in storage in each reservoir must be
the same as that at the beginning of the year.

It is required to determine how much water to release from each reservoir in each
period, the annual amount of power to sell IC, and the amount of power to sell the
regional power grid in each period, so as to maximize the total annual return from
power sales subject to all the above constraints. Formulate this as an LP, but do not
solve numerically.

2.59. Consider the LP: Minimize some objective function, z D cx subject to the
following constraints in standard form.

x1 x2 x3 x4 x5 x6 x7

1 0 0 0 3 1 �1 13
0 1 0 0 7 �2 2 29
0 0 1 0 �2 0 0 45
0 0 0 1 8 1 �1 83

xj � 0 for all j

Assuming that the problem has an optimum solution, prove that there must be an
optimum solution of the problem in which at least one of the two variables x6 or
x7 is 0.

2.60. Consider a company making five different car models indexed by i D 1 to 5,
in the luxury car segment. In the market there are 20 other car models indexed by
i D 6 to 25, made by other manufacturers in this segment.

The sales volume Qi during a quarter (of the year) of any of these car models
depends on the sale price Pi of this model and the sale prices of other car models in
this segment. For a particular quarter, we are given the following data:

For i D 1 to 5, Si (D unsold inventory in the dealer lots at the beginning of the quarter)
and D0

i (projected demand at current price levels) of car model i

C D total production capacity of car models i D 1 to 5 at the company’s plant in this
quarter

For i D 1 to 5, P 0
i D price of car model i at the end of the previous quarter

For i D 6 to 25, Pi (D best estimate of the price of car model i of the competitor for this
quarter),

aij for i D 1 to 5 and j D 1 to 25 is the rate of change in the expected demand of car
model i in this quarter per unit change in Pj

ci for i D 1 to 5 is the total production cost/unit of the i th car model.

Since these car models are competing with each other in the marketplace, change
in the selling price of any one of them affects the demand for the other car models
too in this quarter; the aij coefficients measure these effects, and these coefficients
are estimated from market surveys on customers buying new cars. So, what we are
assuming is that the expected demand in the quarter for the i th car model for i D 1

to 5 is Di D D0
i � P25

j D1 aij pj , where P6 to P25 are given data and P1 to P5

are the prices set for car models i D 1 to 5, respectively, for this quarter, these are
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decision variables the company can choose (so, for i D 1 to 5, Pi �P 0
i is the change

in prices of these models from last quarter to this quarter through rebates or price
increases).

Let Ii denote the production level of the i th car model in this quarter by the
company for i D 1 to 5. Then the amount Si C Ii is the volume available for sale
of this model during this quarter. Assuming that the sales and production volumes
of each car model are continuous variables, formulate the problem of determining
Pi ; Ii to maximize the company’s net profit during the quarter (problem formulated
by Robert Bordley).

2.61. A is a matrix of order m � n of full row rank, and S is the subspace of Rn,
S D fx 2 Rn W Ax D 0g.

For any pair of points p D .pj /; q D .qj / 2 Rn, the L1 distance between
them, denoted by jjp � qjj1, is defined to be

Pn
j D1 jpj � qj j.

Given a point y 2 Rn, y 62 S , the L1 projection of y onto the subspace S is
defined as an optimum solution of the problem of minimizing jjy �xjj1 over x 2 S .
Formulate the problem of finding an L1 projection of a given point y 2 Rn, y 62 S

onto the subspace S as a linear programming problem.
Is this L1 projection of y onto S a unique point? Illustrate with a numerical

example (from Brooks and Dula 2008).

2.62. Consider the problem discussed in Exercise 2.61. If S is a hyperplane in
Rn containing the origin, that is, S D fx W a1x1 C : : : C anxn D 0g, where
.a1; : : : ; an/ ¤ 0 and y 2 Rn; y 62 S ; derive the set of all points in S which are at
the minimum L1-distance to y (J.H. Dula).

2.63. Check whether the real-valued function f .x1; x2/ D �x1 C .x1 C x2/

ef�.x1Cx2/g is a convex function (R. Saigal).

2.64. w D .w1; : : : ; wn/ > 0 is a given vector of positive weights. For y D
.y1; : : : ; yn/T let

L.y/ D Maximumfwi yi W i D 1; : : : ; ng

a 2 Rn is given, and we are required to find x D .x1; : : : ; xn/T to minimize
L.a � x/ subject to xj � xj C1 � 0 for all j D 1 to n � 1. Formulate this problem
as an LP.

How does the formulation change if we have additional constraints: 0 � xj �
1 for all j ? (V.A. Ubhaya).

2.65. Let � 2 R1 and � > 0 is a positive constant. Define �.�/ D � logf1CeŒg.�/=��

+ 1g, where g.�/ D aCb�, an affine function. Show that �.�/ is a convex function
of �.
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Chapter 3
Intelligent Modeling Essential
to Get Good Results

3.1 The Need for Intelligent Modeling in Real World
Decision Making

Operations Research/Management Science (OR/MS) theory has developed efficient
algorithms for solving some single-objective optimization models that are highly
structured.

In real-world applications, decision problems tend to have many complex fea-
tures, uncertainty influencing many important aspects, and several other compli-
cations. Constructing a mathematical model to find an optimum decision in such
problems is often a very difficult task that requires a lot of skill. The trouble is that
none of the models discussed in OR theory may fit perfectly the problem you need
to solve. As Wolfram (2002) suggests “� � � the idea of describing behavior in terms
of mathematical equations works well where the behavior is fairly simple. It almost
inevitably fails whenever the behavior is more complex.”

So none of the standard techniques discussed in OR literature may apply directly
to the real problem. In this case the model has to be an approximate representation of
the real problem. It has to be constructed to satisfy the aim that the optimum solution
found for the model will be a good solution for the real one. Hence, there is a wide
gulf between real-world problems and mathematical models for which efficient al-
gorithms have been developed in theory. To bridge this gulf and get good results, it is
essential to model real-world problems intelligently. Heuristic modeling techniques,
approximations, relaxations, hierarchical modeling techniques with substitute ob-
jective functions for each stage (Murty and Djang 1999), and heuristic algorithms
serve as a bridge between the two sides of this gulf (Fig. 3.1) (Murty et al. (2005b)
of Chapter 1). This theoretical justification is also supported by Ackoff (1996),
Dantzig (1990), Geoffrion (1976), and Simon (1987).

In this mode of application, the methods developed in ORMS theory are not the
main methods for solving complex real-world problems, but become valuable tools
for designing intelligent approaches to handle them. We illustrate this process with
three case studies on work done for developing decision support systems in three
different real-world decision-making problems.

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 3, c� Springer Science+Business Media, LLC 2010
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Set of
models that
theoretical
techniques
can solve
efficiently

Real world
decision
making
problems

Intelligent modeling, heuristic modeling
approaches, hierarchical decomposition,
substitute objective functions, heuristic
algorithms, relaxations

Fig. 3.1 “Mathematical models for which we have theoretically efficient algorithms” and “real-
world problems we encounter in practice” are like the two banks of a very large river with a
wide gulf between them. “Intelligent modeling, heuristic modeling approaches, hierarchical de-
composition, substitute objective functions, heuristic algorithms, relaxations” serve as a bridge for
this gulf

3.2 Case Studies Illustrating the Need for Intelligent Modeling

3.2.1 Case Study 1: Application in a Container Shipping Terminal

Most of the cargo transported in ocean-going vessels around the world today can be
classified into two types:

� Bulk shipping of huge quantities of commodities such as crude oil, coal, ore,
grain, etc., which are shipped using specialized vessels called bulk carriers

� Containerized shipping in which a variety of goods are packed into standard-size
steel containers that are shipped on vessels

In this section, we focus on containerized shipping. A container terminal (or
terminal in short) in a port is the place where ocean-going container vessels dock
on berths, and unload inbound (import) containers (empty or filled with cargo), and
pick up outbound (export) containers. The terminals have storage yards (SYs) for
the temporary storage of these containers (Fig. 3.2).

Containers, Storage Blocks, and Yard Cranes

Containers are steel boxes of dimensions (all measurements are in feet) 20 � 8 � 8:5

or 20 � 8 � 9:5 (called 20-ft containers), or 40 � 8 � 8:5 or 40 � 8 � 9:5 (called
40-ft containers), or specialized slightly larger-size boxes (e.g., refrigerated con-
tainers for cargo that must be kept at specified cold temperatures during transit).
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Fig. 3.2 Containers in temporary storage at the storage yard (SY). At water’s edge, see quay
cranes (QC) unloading, loading containers from, into vessels. In SY, see yard cranes (YC) that
store and retrieve containers from storage

In measuring terminal throughput and vessel capacity, etc., a unified unit, TEU
(20-ft equivalent unit), is commonly used, with each 40-ft or larger container being
counted as 2 TEUs.

The storage yard (SY) in a terminal is usually divided into rectangular-shaped
regions called storage blocks or blocks. A typical block has seven rows (or lanes) of
spaces, six of which are used for storing containers in stacks or columns, and the
seventh reserved for truck passing. Each row typically consists of over twenty 20-ft
container stacks stored lengthwise end to end. For storing a 40-ft container stack,
two 20-ft stack spaces are used.

In each stack, containers are stored one on top of another. The placing of a con-
tainer in a stack, or its retrieval from the stack, is carried out by huge cranes called
yard cranes (YCs). The most commonly used yard cranes are rubber tired gantry
cranes (RTGCs) that move on rubber tires. The RTGC stands on two rows of tires
and spans the seven rows of spaces of the block between the tires (Fig. 3.3). The
bridge (top arm) of the RTGC has a spreader (container picking unit) that can travel
across the width of the block between rows one to seven. The RTGC can move on its
tires along the length of the block. With these two motions, the RTGC can position
its spreader to pick up or place down a container in any stack of the block or on top
of a truck in the truck passing row.

The height of an RTGC determines the height of each stack (i.e., the number
of containers that can be stored vertically in a stack). Older models of RTGCs are
five-level-high RTGCs. This model can store only four containers in a stack; the
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Fig. 3.3 Six rows of stored containers and seventh (rightmost) lane for truck passing in a storage
block. You can see the RTGC lowering a retrieved container from storage onto a truck

fifth level is needed for container movement across the width of the block. Newer
models are six-level-high RTGCs. They can store five containers in a stack and use
the sixth level for container movement.

The unloading of containers from a vessel, or the loading of containers into a
vessel, is carried out by huge cranes called quay cranes (QCs) (Fig. 3.4).

Vessels bring import containers that are unloaded at the docks, and brought to the
SY by the terminal’s internal trucks (TIT) for temporary storage until a customer’s
external truck (XT) comes to pick it up. At that time, the RTGC retrieves the import
container from storage, puts it on the XT, which then leaves through the terminal
gate (TG).

Customers send export containers to the terminal on their XTs which enter
through the TG and go to a block where the RTGC removes that container and
puts it in storage. When the vessel into which it is to be loaded arrives on the dock,
the RTGC retrieves the export container from storage and puts it on a TIT, which
takes it to the dock for loading into the vessel by the QC.

Shipping lines rate container terminals largely based on vessel turnaround time
(average time the terminal takes to unload and load a docked vessel) and the related
measure quay crane rate (QC rate) (average number of containers moved by a quay-
crane per hour). Technically, the QC rate can be as high as 40, but at most terminals
it hovers around 20–25. There are only about 40 major shipping lines in the world,
and they all take very seriously their decision about which container terminals to
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Fig. 3.4 A docked vessel and QCs unloading inbound containers from it and loading outbound
containers into it. Also see a TIT (terminal’s internal truck) that transports containers between the
berth and the SY

patronize. With several new ports and container terminals opening up all over the
world, container terminals face growing competition and have to provide premium
service through higher productivity to stay in business.

The roads inside the terminal get congested with container truck traffic. Traffic
flow in a container terminal is akin to the circulation of blood in a human being –
life depends on it. As TITs get stuck in traffic, QC rate goes down as QCs have to
wait for TITs to take away import containers unloaded or to bring export contain-
ers to load. So, one of the most serious problems in terminal operations is routing
the trucks optimally to minimize congestion. This and several other problems in
developing a decision support system for various daily operations in the termi-
nal to maximize its productivity and equipment utilization are discussed in Murty
et al. (2005a, b); Zhang et al. (2003); Murty (2007); Petering and Murty (2009).

The policy for allocating storage spaces to arriving containers directly influences
the routing of container trucks and is therefore an important factor in controlling
congestion. Developing a policy for allocating storage spaces to arriving contain-
ers optimally is a large and complex problem at busy container terminals, because
it involves a dynamic terminal system that may have several thousands of trucks
passing through the terminal gate daily; several vessels arriving and leaving each
day; several thousand TEUs of constantly accessed storage space; stochastic ar-
rivals and departures of containers; and many complex objectives to be optimized
simultaneously.

Important features of the terminal’s container storage and retrieval workload that
must be taken into account are (1) the distribution of work over time is variable
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because of uncertainties in weather conditions, road, and sea traffic conditions, and
other factors; (2) it is impossible to control the order in which containers arrive
or their times of arrival; (3) work (i.e., storage) must be carried out at arrival time
without delay.

Here we discuss the mathematical modeling of the problems of allocating storage
spaces to arriving containers and of routing the trucks inside the terminal optimally
to minimize congestion.

The Planning Period and Input Data for Decision Making

Container terminals work three 8-h shifts around the clock, every day. It is conve-
nient to make the planning horizon for decision making equal to the time interval of
a shift or less.

There are two important considerations for selecting the appropriate length of
the planning period. One is that it should be possible to estimate the total workload
in the period with reasonable accuracy. Another is that this total workload should
be distributed as uniformly as possible over time during this period. Operators
have found that a 4-h period (i.e., half of a shift) comes closest to meeting both
these considerations adequately. With shorter time periods, the accuracy of the esti-
mate of total workloads is poor. With longer time periods, the distribution of the
workload over time tends to be highly uneven. Hence, terminals have found it
convenient to organize their work with a 4-h period, half-a-shift, as the planning
period for decision making. A day is divided into six planning periods: 00:00–4:00,
4:00–8:00, 8:00–12:00, 12:00–16:00, 16:00–20:00, 20:00–24:00h.

Our main focus is to route trucks optimally to minimize congestion. The pol-
icy used for allocating storage spaces to arriving containers directly influences the
routing of container trucks, and is therefore the most important factor in controlling
congestion.

The First Model Considered

When we started working on this problem, we searched the literature for previous
work on this problem. Even though none of the published papers at that time consid-
ered congestion as the objective function to optimize, several publications discussed
integer programming models for storage space allocation to arriving containers. The
storage spaces allotted to arriving containers determines the routes that TITs take to
carry these containers from the berth to the SY, and thus directly influence conges-
tion on the road inside the terminal.

The decision variables for the models discussed in those papers were typically
binary variables of the form xijk`, which takes the value 1 if the i th container com-
ing from the j th QC position on a vessel is stored in the kth stack of block `, and
value of 0 otherwise.
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Typically, there are a large number of container storage positions in the yard,
some of which are already occupied by containers in storage at the beginning of
the planning period. Assigning a specific open storage position for each of the con-
tainers expected to arrive in a period leads to a huge integer program that takes
a long time to solve. The set of occupied storage positions in the yard changes
every minute, and it is very difficult (almost impossible) to control this change. Be-
fore the integer programming model for storage space allocation can be solved, the
data in the model will change significantly, making it impossible to implement the
output from the model. Because of this we realized that these traditional integer
programming models for storage space allocation are not only impractical, but also
inappropriate.

Choice of Decision Variables to Model Storage Space Allocation

There are a large number of container storage positions in the yard, some of which
are already occupied by containers in storage at any point of time, and determining a
specific open storage position for each newly arriving container in the arrival stream
leads to a huge mathematical model that will be impractical to solve. So, we have
decided to model the problem as a two-stage problem. Stage 1 determines only the
block in which each arriving container will be stored. Once the container arrives in
the block where it is to be stored, Stage 2 allocates an open position in the block
at the time of the container’s arrival, using a simple online algorithm, for storing it.
This leads to the second model that we considered for modeling the problem.

The Second Model Considered

Here we discuss the model for Stage 1, that of determining a block where each
container arriving for storage in the planning period will be stored. It is based on
a commonly used approach discussed in the literature for this problem; it uses a
batch-processing strategy. It considers all the containers expected to arrive and leave
at each node (berth or the terminal gate) during the planning period as a batch, and
models the problem of handling these batches at the various nodes optimally over
the planning period to minimize congestion.

The first step in developing this model with the goal of controlling the congestion
on the road system is to develop a measure for congestion. In city traffic with roads
of widely varying capacities and vehicles of many different types flowing on them,
it is very hard to characterize congestion by a single measure that every one can
agree on. But in the small road system inside the terminal, all roads have the same
capacity and the only vehicles on them are container trucks, and so it is far simpler
to develop measures of congestion on it.

For this we represent the terminal road system by a directed network G D
.N ;A/, where N D set of nodes (each block, berth unloading/loading position,
road intersection; the TG (terminal gate) is a node in it) and A D set of arcs (each
left or right road segment joining a pair of nodes is an arc in it).
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Each pair

� (Berth unloading/loading position, block) for import containers unloaded from
vessels at this position, going to the block for storage

� (Block, berth unloading/loading position) for export containers stored and re-
trieved from this block, going to this position for being loaded into a hatch of a
docked vessel

� (TG, block) for export containers being brought into terminal by customers on
their truck, sent for storage in this block until the vessel into which they will be
loaded arrives at the terminal

� (Block, TG) for import containers stored in this block, retrieved from storage and
placed on the customer’s truck, being taken out through the TG

is an origin–destination pair for trucks that have to go from the origin to the desti-
nation on it. These trucks constitute a separate commodity that flows on G. Let T

denote the number of these various (origin, destination) pairs; it is the number of
different commodities (container trucks with this (origin, destination)) flowing on
the arcs in G.

Suppose the planning period is period k. Planning for this period k is carried out
in the previous period, period k � 1. By period k � 1, the terminal has a reasonable
idea of which vessels will be docked in each of their berths during period k, the
expected number of import containers that will be unloaded from each hatch of
each docked vessel and sent for storage in the SY during period k, the expected
number of export containers that will be retrieved from storage in each block of
the SY and sent for loading into each hatch of each docked vessel in period k, the
expected number of import containers that will be retrieved from storage in each
block of the SY (these containers will be picked up by customer trucks and leave
the terminal through the TG), and the expected number of export containers that
will be brought into the terminal for storage in the SY until their vessel arrives. All
this information constitutes the data for this model, which is a multicommodity flow
model. For example, here is an illustrative sample of data for a planning period:

� Data at the TG: 400 export containers to go from the TG to some block in SY for
storage.

� Data at a block (B1) in SY: 40 export containers to be retrieved from storage
and dispatched to loading position 1 on berth 4, 10 export containers similarly to
loading position 2 in berth 8, 20 stored import containers to be retrieved and sent
out through the TG.

� Data at a position on a berth (Berth 1): 80 import containers to be unloaded and
sent for storage in some block.

The decision variables in this multicommodity flow model are
f r

ij D units (i.e., number of trucks) of commodity r passing through arc .i; j / in
the planning period, for r D 1 to t , .i; j / 2 A,

fij D
TX

rD1

f r
ij for .i; j / 2 A:
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The vector f D .f r
ij / is the flow vector of various commodities on G in the

planning period. Given f , a measure of congestion on G in this planning period is
� D maxffij W .i; j / 2 Ag.

Also, as distributing traffic on all arcs in G as much as possible leads to the
best possible traffic position, another measure of congestion is � � �, where � D
minffij W .i; j / 2 Ag.

Considering all the containers expected to arrive and leave at each node (TG, or
berth position, or block) during the planning period as a batch, the multicommodity
flow model formulates the problem of handling each of these batches at the vari-
ous nodes optimally to minimize any one of the measures of congestion discussed
above. In that process it determines the allocation of blocks for storing each con-
tainer expected to arrive for storage during the planning period.

We do not give the details of all the constraints in this multicommodity flow
model, but point out that it may be a large-scale LP with thousands of constraints
for container terminals at busy ports. However, commercial LP software systems are
able to solve such large-scale models reasonably fast, and it turns out that this model
can be solved to optimality in a few minutes of computer time. From the output, we
get the storage block allocation for each arriving new container, and the route to be
followed by the truck carrying it.

The output from this model turned out to be difficult to implement, as drivers
resented being told which routes to take. Also, as the model is solely based on esti-
mated total workload during the entire planning period, we realized that the output
from it works well only if that workload (number of containers handled/minute) is
distributed more or less uniformly over time during the planning period.

In reality at the terminal where we did this project, the number of containers
handled/hour during the planning period varied from 50 to 400. This model did not
take this wide fluctuation in workload over time at the terminal into account at all.
So the output from this model turned out to be poor.

The Third Model Considered

Actually, the arriving containers at a terminal form a continuous unending stream.
Handling this stream using discretization techniques (i.e., those like the second
model above, which handle all the containers expected to arrive during the plan-
ning period as a batch) produces poor solutions because the rate of arrivals in the
stream fluctuates widely over time.

We therefore had to develop dynamic, real-time approaches to allocate storage
blocks, and routing trucks to distribute the traffic uniformly among the various road
segments continuously over time to alleviate congestion.

At that time we did not know how to develop a dynamic plan, but observing the
terminal operations over some time gave a clue. Let

the fill-ratio in block i at time t which is D fi .t/ D (number of containers in storage in
block i at time t )/(total number of storage spaces for containers in block i )
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We observed that the fill-ratio in a block is highly positively correlated with the
truck traffic in and around that block (i.e., the number of containers moving in and
out of this block/minute). So, maintaining the fill-ratios in all the blocks nearly
equal will ensure that the volume of traffic in the neighborhood of all the blocks
will be nearly equal. This in turn ensures equal distribution of traffic on the terminal
roads, and hence minimizes congestion. This leads to a substitute objective function
technique (illustrated in Murty and Djang (1999)) for controlling congestion. For
the planning period k, it divides the storage space assignment decision into three
stages:

Stage 1: Determine Container Quota Numbers for Blocks: The container quota
for block i for the planning period is defined to be the number of containers arriving
at the terminal for storage during this planning period, which will be dispatched for
storage to block i , a decision variable that we denote by xi .

In the model for Stage 1 to determine xi , there should be a constraint that
P

i xi

should be equal to the total number of new containers expected to arrive for storage
during the planning period, to make sure that every one of them can be allotted to
some block for storage within its container quota. The algorithm that we developed
for Stage 1 is discussed later.

Stage 1 determines only the container quota numbers for the blocks, not the
identities of containers that will be stored in each block. The identities will be de-
termined by the dispatching policy discussed in Stage 2.

Stage 2: Dispatching Policy for Container Trucks at the TG and at the Berths:
This is actually a policy that specifies to which block in the storage yard
each truck carrying a container arriving for storage in the terminal will be
dispatched.

To implement the policy that we developed for making this decision, the terminal
has to monitor continuously over time: wi .t/ D the number of trucks waiting in
block i to be served by the yard cranes there at time point t . As part of our work
on this project, the terminal where we did this work developed systems to monitor
wi .t/ continuously over time for each block i . They also developed a dispatching
cell that has the responsibility of dispatching each truck in the arriving stream to
a block, and this cell gets this wi .t/ information continuously over time for each
block i .

As time passes during the planning period, the dispatching cell also keeps track
of how many containers in the arriving stream have already been sent to each block
for storage; when this number becomes equal to the container quota number for that
block, they will not send any more containers for storage to that block during the
planning period. For each block i , let

xR
i .t/ D xi � (number of new containers sent to block i for storage up to time t in the

planning period) D remaining container quota number for block i at time t in the planning
period.
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Regardless of how we determine the container quota numbers xi , if we send a
consecutive sequence of arriving container trucks to the same block in a short time
interval, we will create congestion at that block. To avoid this possibility, we must
ensure that the yard crane in that block has enough time to unload a truck we send
there before we send another.

Hence this policy dispatches each truck arriving (at the terminal gate and at each
berth) at time point t in the period, to a block i satisfying wi .t/ D Minfwj .t/ W j

satisfying xR
j .t/ > 0g, that is, a block with a remaining positive quota that has the

smallest number of trucks waiting in it.

Stage 3: Storage-Position Assignment Policy Within the Block: The storage-
position-assignment policy assigns storage positions to containers arriving at a block
to minimize reshuffling (i.e., the average number unproductive moves of the YC to
retrieve a stored container). This is another important objective function to optimize
in terminals to maximize the utilization of YCs. For this, we developed a heuristic
online algorithm, which is working well. As our aim here is to discuss the work
done to minimize congestion on the roads, we will not describe this policy in detail,
but refer the interested reader to Murty et al. (2005a, b).

Algorithm Developed for Stage 1 to Determine Container Quota Numbers
for Blocks: The Fill-Ratio Equalization Policy

The decision variable xi , the container quota number for block i for the planning
period k, is the number of containers arriving in this period to be dispatched for
storage to block i . The data needed for this decision are the following:

� ai D the number of stored containers that will remain in block i at the end of
this period if no additional containers are sent for storage there during this period
(this is D (the number of stored containers expected to be in this block at the
beginning of this planning period � the number expected to be retrieved from
storage during this planning period); this ai is easily estimated from the data
available in the previous period k � 1).

� N D the number of new containers expected to arrive at the terminal in this
period for storage.

� B; A D the total number of blocks in the storage yard, the number of storage
positions in each block.

The fill-ratio equalization policy determines the decision variables xi for this
period to make sure that the fill ratios in all the blocks are as nearly equal as possible
at one time point during the period, namely the end of the period.

The fill ratio in the whole yard at the end of this period will be F D .N CP
i ai /=.AB/. If the fill ratios in all the blocks at the end of this period are all equal,

they will all be equal to F . Thus, this policy determines xi to guarantee that the fill
ratio in each block will be as close to F as possible, by the least sum of absolute
deviations measure, by the end of this period. To determine xi , this leads to the
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following LP model that has very special structure, with only B C 1 (D100 at the
terminal where we did this work) constraints.

Minimize
BX

iD1

.uC
i C u�

i /

subject to
BX

iD1

xi D N

ai C xi � A � F D uC
i � u�

i

xi ; uC
i ; u�

i � 0:

Also, using the very special structure of this problem, we developed the following
simple combinatorial scheme to obtain its optimum solution.

Step 1: Rearrange blocks so that ai increases with i .
Step 2: Determine xi in increasing order of i using

x1 D MinimumfN; A � F � a1g, and for i � 2
xi D MinimumfMaximumf0; A � F � ai g; N �Pi�1

rD1 xrg.

Numerical Example: Suppose there are B D 9 blocks in the terminal, each with
A D 600 storage spaces. Suppose we expect N D 1,040 containers to arrive for
storage during the planning period. Data on ai , the previously stored containers re-
maining in storage at the end of this planning period in block i , already in increasing
order of i , are given in the following table.

i ai xi ai C xi

1 100 300 400
2 120 280 400
3 150 250 400
4 300 100 400
5 325 75 400
6 350 35 385
7 375 0 375
8 400 0 400
9 450 0 450
Total 2570 1040

The fill-ratio over the whole yard at the end of this period will be F D ..
P

i ai /C
1040/=.9 � 600/ D (2570 C 1040)/(5400) � 0.67, and so the average number
of containers in storage/block at this point of time will be A � F � 400. So, the
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LP model for determining the container quota numbers for blocks, the xi ’s in this
planning period, is

Minimize
9X

iD1

.uC
i C u�

i /

subject to
9X

iD1

xi D 1040

ai C xi � 400 D uC
i � u�

i for all i

xi ; uC
i ; u�

i � 0 for all i :

Our combinatorial scheme determines xi in the order i D 1; 2; : : : to bring ai Cxi

to 400 until all 1,040 new containers are allotted to blocks for storage. Under this
policy, ai C xi will be the number of stored containers in block i at the end of this
period. From the above table, we can verify that the values of all ai C xi are nearly
equal in this numerical example.

This policy determines only the quota number of containers for each block, not
which containers will be stored in each block. That is determined by the dispatching
policy discussed earlier.

The policy of determining the container quota numbers xi to maintain fill-ratios
of all blocks nearly equal and the dynamic dispatching policy for arriving container
trucks ensure that container truck traffic at each point of time is distributed evenly on
all portions of the terminal road system, and thus makes sure that the traffic situation
is the best that can be for the prevailing workload in the terminal. To implement these
policies, the company had to develop equipment for continuously monitoring how
many trucks are waiting to be served by the RTGCs in each block and relaying this
information to the people directing container truck traffic. But it was very beneficial
as these policies turned out to be highly effective and helped reduce congestion, and
consequently reduced the truck turnaround time by over 20%.

In this example two standard approaches for modeling the problem lead to large-
scale models that gave very poor results. But the third approach tried to minimize
congestion by controlling the variation in the fill-ratios of blocks coupled with a
dynamic truck dispatching policy; it led to a small model that was easy to solve.
So, it can be viewed as a substitute objective function technique (one that controls
the original objective function by optimizing a highly correlated substitute objec-
tive function that is much easier to control), and it has been highly effective. This
example shows that to get good results in real-world applications, it is necessary to
model the problems intelligently.

(optimization techniques) C (information technology) C (intelligent modeling)
! makes a powerful combination for solving practical problems.
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3.2.2 Case Study 2: Application in a Bus Rental Company

Faced with the imminent retirement of two senior employees who used to make
decisions on bus allocations to customers’ requests manually, a bus rental com-
pany in Seoul, South Korea, asked us to develop a decision-making support system
(DMSS) to help the young fresh graduate employee who will be taking over this job
from them.

Practice has shown that allocation and routing decisions made manually by
human operators with long experience are usually nearly optimal, and it is very
hard to beat those decisions using a computerized DMSS. Therefore, the company
asked us to design an i-DMSS (intelligent DMSS) that can help the new decision
maker to reach decisions comparable in quality to those made by the retiring pair of
senior decision makers.

In this section we discuss this decision problem, its context, the models we used
to solve it, the algorithms we used in the i-DMSS to solve these models in Murty and
Kim (2006), and how this i-DMSS is used to make the decisions daily. It produces
solutions 10–20% more economical than the manual decisions .

The Problem Description

We discuss the process of analyzing, modeling, and developing an i-DMSS to solve
the bus allocation problem. The application involves solving the same type of a
problem daily with new data for each day. This is a typical problem that arises at
bus rental companies in major cities all over the world, even though the constraints
and other features of the problem may vary from company to company.

This company rents buses (with drivers provided) to customer groups who
request them. The group size varies considerably. To serve customer needs eco-
nomically, the company rents two-size buses; a small 15-seat bus for small groups
(they have five of these buses), and a larger 45-seat bus for larger groups (they have
20 of these buses).

Each customer request (called a job) completely specifies the route that the group
wants to take, the starting location and starting time, any intermediate stops in the
job, and the ending location and the ending time. As the customer completely spec-
ifies the route in their job, there is no routing to be done by the company. We denote

n D number of jobs for which buses are to be allotted on a day,

ti ; Nti D starting and ending clock times of job i , i D 1 to n,

pi ; qi D starting and ending locations of job i , i D 1 to n,

L D set consisting of the two bus depots, and all the distinct sites among the starting and
ending locations of the n jobs,

dij D distance from i to j measured in expected travel time in minutes, for i; j 2 L;

i ¤ j ,

D D .dij / D the jLj 	 jLj-matrix distance data matrix for the problem for that day.
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The difference between the job ending and starting times, Nti � ti , is called the
duration of job i . This varies between 0.5 and 20 h, but more than 75% of the jobs
this company receives have durations �5 h.

The company gets up to 100 requests each day. Jobs are classified into large-
group jobs and small-group jobs depending on the corresponding customer group
size. Large-group jobs need a 45-seat bus, while a small-group job can be serviced
by either a 15-seat bus or a 45-seat bus. While servicing a job, the bus and its driver
should be at the disposal of the customer corresponding to that job, that is, two jobs
cannot be combined into a bus at the same time. The company’s charges for each
customer depend on the size of the bus they need, the duration of their whole job,
and the total mileage on that job.

The company keeps its buses at two depots in different locations. At each depot
they have a staff of drivers for the jobs served by buses from that depot. On days
when their own buses are not adequate, the company itself rents buses from other
vendors. All the data about jobs to be served on a day is available at the company by
the day before. They finalize all the bus and driver allocations for each day by the
evening of the day before, so that the drivers can take the buses from their depots to
the starting locations of the first jobs, on time. The drivers bring the buses back to
their depots from the ending locations of their last jobs.

As several jobs are of short duration, for economical operation the company likes
to pack as many jobs as possible, one after the other, into each bus’s daily work
schedule known as its work-sequence for the day. Suppose a bus handles jobs num-
bered i1; � � � ; ih in that order on a day, then its work-sequence for that day is the
sequence of jobs .i1; � � � ; ih/. Then for each g D 1 to h � 1 after completing job ig
at clock time Ntg at location qg , the driver has to drive that bus to the starting location
pgC1 of the next job igC1 before its starting time tgC1. So, for .i1; � � � ; ih/ to be
a work-sequence, the condition tgC1 � Ntg � (driving time from qg to pgC1/ must
hold for all g D 1 to h � 1. In this case, the drives from qg to pgC1 for g D 1 to
h � 1 of this bus are called empty load drives on this work-sequence.

During an empty load drive, the company is incurring the cost of keeping the bus
running (fuel etc. + driver’s wages) on its own without any customer paying for it.

All the buses start at their depot and return to their depot after their last job in
their work-sequence for the day. So for this bus, the quantity [Nth � t1 + (driving time
from depot to p1 ) + (driving time from qh to depot)], measured in hours, represents
the time in hours the driver of that bus worked that day, and this quantity is called
the duration of that work-sequence (note that this depends on the depot of the bus to
which this work-sequence is assigned).

The driver’s wages for a day are proportional to the number of hours she/he has
worked. For this reason drivers have a strong desire to maximize the number of
hours that they work, but driving fatigue can lead to serious accidents; that is why
the company likes to keep the duration of work-sequences to less than 12 h. Work-
sequences of duration over 12 h are called long-duration work-sequences. However,
there are some single jobs that are themselves of duration over 24 h, and these long-
duration jobs are quite lucrative to the company. These jobs usually have many
intermediate stops of considerable length during which the driver has nothing to do
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but wait, so she/he can rest, take a nap, and thus refresh her/himself. Long-duration
jobs and work-sequences with such intermediate rest periods do not contribute
to fatigue, and hence should be considered differently from other long-duration
work-sequences involving fatigue causing continuous driving. So, the company has
decided to allow such long-duration work-sequences, but set it as a goal to keep the
percentage of these long-duration work-sequences to 50 as far as possible so that
they can alternate a long-duration work-sequence allotted to a driver one day with a
short-duration work-sequence the next day.

The problem is a multiobjective problem. The most important objective is to
minimize OBJ1 D the total number of buses used to handle the jobs D the
total number of work-sequences into which the jobs are partitioned. This also in-
volves minimizing the expenses on renting other vendors buses used to handle
the jobs.

Customers pay for all the travel within the jobs, but the company does not collect
any money for the travel from the depot to the starting location of the first job in
the work-sequence, and back from the ending location of the last job in the work-
sequence to the depot, and the travel from the ending location of a job to the starting
location of the next job within a work-sequence. The second most important objec-
tive to minimize OBJ2 D the total cost of these empty load drives of all the buses.

The third most important objective stated as a goal is to keep OBJ3 D the per-
centage of long-duration work-sequences below 50 as far as possible.

The company had two full-time employees who were doing these allocations
over a long period of time manually using a map of the various locations involved
each day. With the imminent retirement of these experienced decision makers, the
company asked us to develop a computerized DMSS to help the new young person
who will replace these two old timers.

Models in the Literature for This Problem

This problem arises at all bus rental companies in major cities all over the world with
minor variations in the constraints. Also, many other allocation problems in different
areas of applications have features similar to this problem. So, all these problems can
be modeled using the same type of mathematical model. Several published papers
in the literature suggest using a 0–1 integer programming model with 0–1 decision
variables of the form

xijkl D
8<
:

1; if the i th job is included in the j th worksequence,
for which a bus of size k from depot ` is allocated

0; otherwise

for i D 1 to n; k D 1, 2; ` D 1, 2, 3 (` D 1, 2 denotes the two depots of the
company, and ` D 3 denotes “outside vendors” for buses); and j D 1 to t , where t

is an upper bound on the number of work sequences on this day.
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Some other papers in the literature modeled these problems with different binary
integer variables of the form

xjgkl D
8
<
:

1; if jobs j; g are both allocated to the same bus of
size k, from depot `

0; otherwise

for j; g D 1 to n; k D 1, 2; ` D 1, 2, 3.
With either set of decision variables, either to model OBJ3 (upper bound of

50 on the percent of long-duration work-sequences) as a constraint in the model
or to include a penalty term for violating this desired upper bound is very hard.
So, for simplicity, these publications assume that there should be no long-duration
work-sequences at all, as it is easy to model this constraint through linear
constraints.

Even with all these simplifications, the model ends up having a very large number
of constraints.

Also, with decision variables having four subscripts like the above, the number of
binary variables in the model becomes too large. When n is of the order of 100 as in
our application, the resulting 0–1 integer programming model with large number of
variables and constraints needs many days of computer time to solve even if we have
supercomputers to solve them. Our client company is a small company operating
with low margins of profit, and has only ordinary PCs available for this work, and
has shown no interest in acquiring software systems for large integer programs for
this work.

Overall Approach Used for Developing the i-DMSS

So, we applied hierarchical decomposition to break up the problem into several
stages that are simpler to model and solve. We found that it becomes easier to handle
OBJ2 if it is split into two parts as OBJ2.1 C OBJ2.2, where

� OBJ2.1 D cost of empty load drives in-between consecutive jobs on all the work-
sequences used,

� OBJ2.2 D cost of empty load drives from the depot to the starting location of the
first job in the work-sequence, and from the ending location of the last job in the
work-sequence to the depot,

for all the buses used. It can be verified that OBJ2.1 is uniquely determined by the
set of work-sequences into which the jobs are partitioned and does not depend at all
on the depot from which a bus is allotted to each of the work-sequences adopted.
Likewise, OBJ2.2 mainly depends on the depots from which buses are allotted to
work-sequences and not so much on how the work-sequences are formed.

We found that the overall model becomes a lot simpler if the two parts
OBJ2.1 and OBJ2.2 are optimized in separate stages of our approach. We will
optimize OBJ1 and OBJ2.1 together in the stage that determines the initial set of
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work-sequences. Minimizing OBJ2.2 is taken as the objective for determining from
which depot to allot a bus to each work-sequence after the set of work-sequences to
adopt is finalized.

Drivers are paid on an hourly basis for the duration of the work-sequences that
they operate. So, drivers are usually unhappy if they are assigned to work-sequences
whose duration is too small on a day. So, the company would also like to make sure
that most of the work-sequences adopted have durations � some threshold lower
bound; currently this lower bound ı D 6 h.

Decomposition for Two Types of Buses

In this problem, we have large-group jobs and small-group jobs; 15-seat buses that
can serve small-group jobs only and 45-seat buses that can serve all the jobs. On
some days when there are a large number of small-group jobs, the company may
experience a shortage of 15-seat buses to handle all of them. On such days, instead
of renting some extra 15-seat buses from outside vendors, the company has found it
to be much more economical to assign some of its own 45-seat buses to small-group
jobs. Because of this, we use the following hierarchical procedure for handling the
allocation of two types of buses to the various jobs:

Phase 1: First consider only the small-group jobs for which the 15-seat bus is
suitable. Apply the procedure to partition this subset of jobs into work-sequences.
Find the total working time associated with each of the work-sequences. Select a
threshold value, say ı hours (currently ı D 6), as a lower bound for a day’s working
time. For all work-sequences associated with a working time ı � 6, assign 15-seat
buses to the extent they are available, using the model discussed below, with the
only sources for the buses as the two depots of the company.

Phase 2: The jobs on all the work-sequences associated with working time ı < 6

and all the other work-sequences for which 15-seat buses may not have been allo-
cated in Phase 1 are combined with the set of large-group jobs. We then apply the
procedure to allocate 45-seat buses for this set of jobs.

The Model to Partition the Set of Jobs into Work-sequences

How to Minimize OBJ1? Minimizing OBJ1 requires that we partition the set of
n jobs into the smallest possible number of work-sequences. There is an efficient
network model for this problem. For i D 1 to n, represent job i by node i in a
directed network.

Job i is called a long-duration job if its duration Nti � t i is �12 h, nodes corre-
sponding to such jobs are left as isolated nodes in the network without any arcs
incident at them. These jobs are already too long, and we will not consider combin-
ing them with any other jobs in a work-sequence for a bus.
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If neither of nodes i; j is a long-duration job, include an arc from node i to node
j if a bus can handle job j after handling job i (the condition for including this arc
is (driving time from qi to pj ) C Nti � t j ). Let the resulting network be G D .N; A/,
where N D set of nodes in G and A D set of arcs. G is called the job precedence
acyclic network for the problem.

By making small perturbations in the starting times of the jobs if necessary, we
number the jobs serially in increasing order of their starting times. Then it is clear
that if i > j , then .i; j / 62 A. This implies that the numbering of the nodes in G is an
acyclic numbering (i.e., all arcs go from a node to another node with higher number).
Hence G is an acyclic network, and it is the job precedence acyclic network for this
set of jobs.

We define a simple chain in G to be either a set containing a single node or a
sequence of more than one node, i1, . . . , ih satisfying the condition that .ig�1; ig/ 2
A for g D 2 to h. Thus it corresponds to the usual notion of a simple chain in
network terminology (Ford and Fulkerson (1962); Murty (1992)) when there are two
or more nodes in it. However, a single node by itself is also considered as a simple
chain (it has no arcs) in this context. Therefore, every work-sequence corresponds
to a simple chain in G, and vice versa.

As each work-sequence corresponds to a simple chain in the acyclic network and
vice versa, the problem of partitioning the set of jobs into the smallest number of
work-sequences is the same as that of finding a minimum cardinality simple chain
cover for all the nodes in G, which is known in network programming literature as
Dilworth’s minimal chain decomposition problem.

An efficient algorithm for it based on the maximum cardinality bipartite match-
ing algorithm has been developed by Fulkerson (1956) and discussed in Ford and
Fulkerson (1962); see also Murty (1992). The algorithm involves finding a maxi-
mum cardinality matching in the bipartite network B D .N1; N2I A1/ with node
set N1 D fR1; : : : ; Rng; N2 D fC1; : : : ; Cng, and edge set A1 D f.Ri ; Cj / W .i; j /

is an arc in A in Gg.

Note 3.1. The maximum cardinality matching problem in the bipartite network
B is just an assignment problem with a 0–1 cost matrix .d 0

ij /, where d 0
ij D 0

if .i; j / is an arc in B and d 0
ij D 1 otherwise. If Nx D . Nxij / is the optimum

assignment for this problem, then the maximum cardinality matching in B is the
set of arcs f.i; j / W Nxij D 1 and d 0

ij D 0g, and its cardinality is the number of
arcs in it.

Suppose the cardinality of a maximum cardinality matching in B is r . Then it
is shown that the minimum number of simple chains needed to cover all the nodes
in G is s D n � r ; that is, in our problem at least s work-sequences or buses are
needed to cover all the jobs. From any maximum cardinality matching M in B , an
easy procedure is available for deriving a set of simple chains in G to cover all the
nodes in G (see Ford and Fulkerson (1962); Murty (1992)). This procedure consists
of obtaining the set of arcs f.i; j / W .Ri ; Cj / is an edge in the matching M in Bg, it
is the set of arcs in a node disjoint collection of simple chains in G, this collection of
simple chains is a minimum cardinality simple chain cover for the nodes of G. Find
it. The sequence of jobs corresponding to nodes in the order in which they appear



146 3 Intelligent Modeling Essential to Get Good Results

on each of these simple chains is a work-sequence for a bus, and hence each of these
simple chains can also be interpreted as a bus route.

Numerical Example: Job (or node) i is called a predecessor (or ancestor) of job j

if j can be handled by a bus after i , then we include the arc .i; j / in the job prede-
cessor acyclic network G defined above. In addition, node i is called an immediate
predecessor of j if it is a predecessor of j , and there is no other predecessor k of j

for which i is also a predecessor.
Typically, G will have too many arcs. So, in this n D 9 node example we show

only a subnetwork NG of G, with an arc .i; j / in it only if i is an immediate pre-
decessor of j in Fig. 3.5. With this, j can be handled by a bus after i if there is a
simple chain (or directed path) from i to j in NG.

So, after job 1, a bus can take up any of the jobs 3, 4, 6, 7, 8, or 9 in this example.
The bipartite network to apply Fulkerson’s algorithm on this example is given in
Fig. 3.6.

M is a maximum cardinality matching in B with six edges. So, a minimal chain
decomposition of G in this example has 9 � 6 D 3 chains, and the arcs on these
three chains are f.1; 3/; .3; 7/; .2; 4/; .4; 6/; .6; 8/; .5; 9/g. Hence the three chains
are f1; 3; 7g, f2; 4; 6; 8g, f5; 9g with nodes appearing in the order listed, and these are
the work-sequences in a partition of the nine jobs in this example into the smallest
number of work-sequences.

Fig. 3.5 The subnetwork for
the example

1 3 6 8

2 4 7 9

5

R R R R R R R RR R2 R3 R4 R6 R5 R7 R8 R9R1

C C C CC C4 C6 C7 C8 C9 C5 C2 C1C3

Fig. 3.6 The bipartite network B for this example. A maximum cardinality matching in it M D
f.R1; C3/; .R3; C7/; .R2; C4/;.R4; C6/; .R6; C8/; .R5; C9/g is marked with dotted edges
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This algorithm provides an efficient approach when OBJ1 is the only objective
to consider, ignoring the constraints on work-sequence durations implied by OBJ3
and the lower bounds on them.

Initial Set of Work-sequences: The strategy solves the following:

Problem 3.1. Find s D minimum number of work-sequences into which the set of
jobs f1; : : : ; ng can be partitioned as discussed earlier. There may be several such
minimal partitions. Among all of them find the one that has minimum value for
OBJ2.1.

The arc .i; j / in the network represents the opportunity of a bus servicing job
j after servicing job i . If this happens, then that bus travels from location qi after
finishing the servicing of job i at clock time Nti to location pj to start the servicing of
job j at clock time t j . Then in the time interval between Nti and t j of length tj � Nti
hours representing the empty load drive corresponding to this arc .i; j /, the bus and
the driver are working but the company gets no profit from it. This time has been
estimated to cost at the rate of $40/h. Hence we take the empty load drive cost of
arc .i; j / in G to be $ cij D 40.tj � Nti /; this is the cost coefficient of arc .i; j / in G

and the corresponding arc .Ri ; Cj / in B for OBJ2.1.
The maximum cardinality matching problem in B usually has many alternate

optimum solutions, and any one of them can be used to get a minimum cardi-
nality simple chain cover for the nodes in G. So, to partition the set of jobs into
work-sequences minimizing OBJ1 and OBJ2.1 simultaneously, we need to find a
minimum cost maximum cardinality matching in the bipartite network B with .cij /

as the vector of arc cost coefficients. As B is bipartite, this can be found very effi-
ciently using the min cost max flow algorithm.

In fact, this problem is the following minor variation of the assignment problem:

Minimize
X

Œcij xij W over arcs .i; j / in B


s. to
nX

iD1

xij D 1 for all j D 1 to n

nX
j D1

xij D 1 for all i D 1 to n

X
Œxij W over arcs .i; j / in B
 D r

xij � 0 for all i; j

and we need an integer solution for this LP. The special structure of this prob-
lem guarantees that every extreme point optimum of this LP (discussed later in
Chaps. 4–6) will be integer. If Nx is an extreme point optimum of this LP, then the
matching in B corresponding to it, defined by f.i; j / W Nxij D 1, and .i; j / is an arc
in Bg, is a minimum cost maximum cardinality matching in B .

If NM is a min cost max cardinality matching in B , the set of arcs f.i; j / W
.Ri ; Cj / 2 NM g is a node disjoint collection of simple chains in G. The collection
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of work-sequences corresponding to these simple chains minimizes OBJ2.1 among
all partitions of the set of jobs into the smallest possible number of work-sequences.
This set of work-sequences is a solution for Problem 1; it is the partition of the jobs
into an initial set of work-sequences to be considered in the heuristic approach for
handling OBJ3 next.

How to Handle OBJ3? The partition of jobs f1; : : : ; ng into a set of work-
sequences obtained above considered only optimizing OBJ1 and OBJ2.1 in this
priority order, but totally ignored OBJ3. Now we will discuss how to modify this
partition taking OBJ3 into account. Define for a work-sequence its total working
time D the difference between the ending time of the last job and the starting time
of the first job on the work-sequence expressed in hours.

The duration of a work-sequence defined earlier depends on the depot from
which the bus for this work-sequence is allotted, and it is equal to its total work-
ing time plus the driving time from and to the depot. Giving an allowance of 1 h for
driving from and to the depot, we call work-sequences for which the total working
time is greater than or equal to 11 h (Dsafety time � 1) as long work-sequences,
and these are the work-sequences most likely to violate the maximum duration con-
straint.

These long work-sequences are of two types. The first type is the single job work-
sequences, which consist of just one long-duration job. The second type is multiple
job work-sequences that are long. Typically, less than 10% customer service re-
quests are long-duration jobs. The company likes these because they generate higher
fees, and they try to assign them with equal frequency among all their drivers. Long-
duration jobs almost always contain nondriving rest periods during which the driver
can take a nap and get refreshed. For this reason, single-job long-work-sequences
are never considered a problem.

OBJ3 is a goal requiring that the percentage of long-duration work-sequences
should be �50 as far as possible. When this goal is violated, some of the mul-
tiple job long-duration work-sequences are modified using the following heuristic
strategies:

On each of these long multiple-job work-sequences, the longest arc (i.e., an arc .i; j / on this
work-sequence having maximum .t j � Nti / value) is deleted from the network G, and the
algorithm discussed above applied on the remaining network. Almost always this produces
a new collection of work-sequences that satisfies the goal on the percentage of long work-
sequences while increasing the number of work-sequences only slightly. Otherwise, this
process is repeated.

If the current list of work-sequences consists of some short-duration work-
sequences (i.e., those whose durations are � lower bound specified for it), they may
be suitable to be allotted to drivers who were allotted long-duration work-sequences
the previous day. If any other short-duration work-sequences remain in the list, they
are handled using the procedure similar to the above.

Clearly the optimum values of OBJ1 and OBJ2.1 obtained in the first run of the
algorithm are lower bounds for the minimum values of these respective objective
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functions in the specified priority order for partitioning the set of jobs considered
into work-sequences while satisfying the goal in OBJ3. We use these lower bounds
to compare the quality of the final solutions obtained.

The Model to Allocate a Bus to Each Work-sequence

After finalizing the partition of the set of jobs into work-sequences, we turn to the
problem of assigning buses to these work-sequences. These buses can come either
from depot 1, 2, or outside vendors. The assignment of buses to work-sequences
will be carried out so as to minimize OBJ2.2 (the cost of empty load drives from the
depot to the starting location of the first job, and from the ending location of last job
to the depot, for all the company’s own buses used) C the rental cost of buses from
outside vendors that are used, which includes besides OBJ2.2 the rental cost and the
cost of such empty load drives of buses rented from outside vendors. Let

� p D number of work-sequences in the final set,
� ct ; dt D cost of the empty load drive at the beginning and at the end of the t th

work-sequence if a bus is assigned to it from depot 1 and 2, respectively,
� et D cost of renting a bus for the t th work-sequence from an outside vendor,
� N1; N2 D number of buses available at depot 1 and 2, respectively.

As et is typically much larger than ct or dt , the number of buses rented from
outsider vendors will be .p � N1 � N2/C D maximum f0; p � N1 � N2g.

We have three sources for buses, sources 1, 2, and 3 (these are depot 1, 2, and
outside vendors, respectively), with availability of buses equal to N1; N2; .p �
N1 � N2/C, respectively. Each work-sequence requires exactly one bus. Clearly the
problem of assigning buses to work-sequence can be modeled as a 3 � p transporta-
tion problem, with the (3 � p) cost matrix whose t th column is .ct ; dt ; et /

T for
t D 1 to p.

Numerical Results Results obtained by using the i-DMSS on requested job data
at the company over a 5-day period from the past are shown in the following table.
The first column “A” is the day number. The second column “B” gives the number
of small-group jobs on the day. The third and fourth columns, “1, 2.1,” give values
of OBJ1 and OBJ2.1, respectively, in the set of initial work-sequences obtained for
small-group jobs. They are the lower bounds for these objectives for small-group
jobs. The fifth, sixth, and seventh columns, “1, 2.1, 2.2,” give the final values for
OBJ1, OBJ2.1, and OBJ2.2, respectively, for small-group jobs. The eighth column
“B” gives the number of remaining jobs for which 45-seat buses are to be allotted.
The ninth and tenth columns give the values for OBJ1 and OBJ2.1 in the initial set
of work-sequences obtained for these jobs. They are the lower bounds for OBJ1 and
OBJ2.1, respectively, for handling these jobs. The eleventh, twelfth, and thirteenth
columns give the final values for OBJ1, OBJ2.1, and OBJ2.2.
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Numerical Results
A Small-group jobs Large-group jobs

B Omit� Meet� B Omit� Meet�
1 2.1 1 2.1 2.2 1 2.1 1 2.1 2.2

1 14 5 3070 5 3070 2170 54 22 8100 23 9520 7700
2 13 5 2650 5 2650 2480 43 17 6490 17 8810 7540
3 12 5 2320 5 2320 1980 44 18 9980 19 11800 7480
4 14 5 3600 5 3600 2200 51 21 9150 21 9630 8400
5 15 4 2300 4 2300 1800 55 23 9570 24 9810 8330

� Refers to results � omitting OBJ3, meeting OBJ3 � respectively.

In the table, the final values for OBJ1 and OBJ2.1 for the small-group jobs are
the same as the lower bound for these respective objective functions for this subset
of jobs. To meet OBJ3, for large-group jobs, the value of OBJ1 increased by at
most one over its lower bound on three of the five days, while OBJ2.1 increased
about 9.5% on an average over its lower bound. This shows that the final solutions
obtained by the i-DMSS had objective values quite close to the lower bounds for
these objective functions.

We found that the results obtained by using the i-DMSS on this data are be-
tween 10% and 20% more economical than the manual decisions made by the senior
employees for those days.

Conclusions

We described how we used relaxations, hierarchical decomposition, and heuristics
to model and analyze the complex problem of allotting buses at a bus rental com-
pany, and presented the numerical results obtained with this approach. The new
person responsible to make the allocation decisions at the company uses the DMSS
in an interactive manner to make all the decisions in about a couple of hours every
evening.

3.2.3 Case Study 3: Allocating Gates to Flights
at an International Airport

The problem of assigning gates to flights of various types (arrival, departure, con-
nection, and intermediate parking flights) is an important decision problem in daily
operations at major airports all over the world. Strong competition between airlines
and increasing demand of passengers for more comfort have made the measure of
quality of these decisions at an airport an important performance index of airport
management. That is why mathematical modeling of this problem and the applica-
tion of OR (operations research) methods to solve those models have been studied
widely in OR literature.
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The dynamic operational environment in modern busy airports, increasing num-
bers of flights and volumes of traffic, uncertainty (random deviations in data el-
ements like arrival, departure times from flight time tables and schedules), its
multiobjective nature, and its combinatorial complexity make the flight-gate allo-
cation a very interesting decision problem both from a theoretical and a practical
point of view.

Responsibility for gate allocations to flights rests with different agencies at dif-
ferent airports. At some airports gate allocation decisions are made by the airport
management themselves for all their customer airlines. At others, some airlines lease
gates from the airport on long term contracts. Then those airlines make gate alloca-
tion decisions for their flights themselves.

Typically international airports have features quite distinct from those of re-
gional airports. The common characteristics of busy international airports all over
the world are that they usually serve a large number of different airlines; they nor-
mally serve a large number of flights spreading over most of the 24-h day; they have
to accommodate planes of various types and sizes; and a considerable percentage
of their flights are long-haul flights coming from long distances. These features and
the fact that international airports are much bigger and have much higher volumes
of traffic compared to regional or domestic airports make the problem of assigning
gates to flights at an international airport somewhat harder in practice than that at a
regional airport.

In this section we discuss the process of developing a DSS (decision support
system) and appropriate mathematical models and algorithms to use for making
gate allocation decisions at an international airport from Yu et al. (2009). Normally
international airports have both cargo and passenger flights, but in this section we
will only consider gate allocation decisions for passenger flights.

Flights use different types of planes (large-wingspan planes, short-wingspan
planes, planes for long-haul flights, short-haul flights, etc.) depending on the ex-
pected passenger volume on the flight, length of the flight, and several other
considerations. As mentioned earlier, airport gates are also classified into different
types depending on their size, location in the airport (those in the central portion of
the airport, remote gates, etc.); these gate characteristics determine their desirability
to airlines for their flights.

So, for each flight for which a gate is to be assigned, we need the set of all the
gates to which it can be assigned. This set of gates eligible to be assigned to a flight
is classified into first (most preferred by airline), second (second most preferred),
and third (least preferred) categories in order of their preference by the airlines.
Sometimes at some airports there may also be a fourth category of gates in decreas-
ing order of preference. This data is available and it will be used in constructing the
objective function to optimize, for determining the allocation of gates to flights.

The material in this section is based on the gate allocation project we carried out
at the Taoyuan International Airport (code name TPE) serving Taiwan. For details,
see our paper Yu et al. (2009). As an example, at TPE there are 78 gates (A1–A9,
B1–B9, C1–C10, D1–D10, 501–525, 601–615) serving 27 different types of flight
planes ranging from the small CL-604 to the large Boeing 777 and Airbus 380.
Among the 78 gates, those in the A, B, C, D sections are equipped with passenger
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Fig. 3.7 Gate Layout of the Airport TPE

bridges (also called jettys) for passengers to get out of the plane and walk inside
the terminal; 40 are apron gates (501–525, 601–615) (i.e., these are open air gates
without a passenger bridge, i.e., passengers have to either walk or be taken by bus
to and from inside the airport to this gate position) as shown in Fig. 3.7. In addition,
there are also three emergency gates 701–703 (this designation means that these
gates are too far away from the terminals and are to be used only when no other
gates are available), which are also apron gates. “Central gates” refers to gates con-
sidered to be in the central portion of the airport, which has an operating Skytrain
line between Terminals 1 and 2, with a train running back and forth every 2–5 min.
Using this, if necessary, passengers can get from any of these central gates to any
other within 10–15 min; see Fig. 3.7.

At TPE, even though the classification of gates into first, second, and third cat-
egories mentioned above for their flights differs from airline to airline, it tends to
be very similar. Airlines like to have their flights use gates in the terminal in which
most of their activities take place. So, in general, for most airlines the first-category
gates are those among the A, B, C, D sections in the terminal in which they have
their operations. Remote gates 601–615 are in the second-category for their flights.
Most airlines tend to place Cargo gates (numbers 501–525) in the third-category.
Emergency gates numbered 701–703 may be considered in the fourth-category for
almost all the airlines.
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Data Elements with Uncertainties in Them

The other input data for gate assignment decisions are flight arrival and departure
times. This data is subject to considerable uncertainty. As the difference between the
actual landing time of a flight and its scheduled landing time is a random variable,
gate allocations for flights on a day cannot be finalized based on information avail-
able the previous day about their landing times. That is why on day t �1 the airports
make a tentative gate allocation plan for all the flights on the next day t based on the
information about their landing and departure times available on day t � 1, and on
day t they revise these tentative gate allocations as needed by changes in flight land-
ing and departure times. Normally on day t � 1, by 2:00 PM all the tentative landing
and departure time information for all the flights on day t becomes available. Using
this information, the airport prepares the tentative gate allocation plan for day t by
10:00 PM on day t � 1.

The Various Objectives to be Optimized

There are various costs associated with gate assignments which need to be optimized
simultaneously.

As the gate allocation problem is a multiobjective problem, we solve it by com-
bining the various objectives into a single penalty function, and then determining the
gate allocations to minimize the combined penalty function. Here we will discuss
the various objective functions considered, and the penalty coefficients correspond-
ing to them that can be used in a DSS developed for gate allocations.

An Objective Commonly Considered in the Literature: In published literature
on the gate allocation problem in OR journals, the most frequently used objective is
minimization of the walking distance of all the passengers inside the airport. This is
also used as the most important goal in the design of airport terminals. This appeal-
ing objective is easily motivated and clearly understood, but it leads to very difficult
models that can hardly be solved.

A disturbing fact that has surfaced in the last few years is the large number of
airline passengers feeling various degrees of uneasiness and actual sickness (some
even suffering severe health consequences) from sitting without any physical ac-
tivity for considerable periods of time on medium to long airline flights. In view
of this, we feel that it is inappropriate to place a great emphasis on minimizing
the total walking distance of all airline passengers inside airports. On the contrary,
maybe encouragement should be provided for passengers to walk around when they
have the time. Moreover, this objective does not measure any real cost, and is not
high on either the airport’s or any airline’s list of important objective functions to be
optimized. Also, the availability at many international airports nowadays, of rapid
transit (also called Skytrain and other names) service between various terminals in
the airport, or clusters or centers of gates separated by some distance and walking
belts inside each terminal for covering long distances makes this objective function
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even less important. Airline managers whom we talked to tell us that even though
this objective function is emphasized heavily in OR literature, their current practice
of assigning gates to flights automatically takes care of this objective function, be-
cause in it, gates that are far away from the central part of the airport are assigned
to a flight only when there is no gate in the central part available at the time of its
landing.

Compared to this objective function of the total walking distance of all the pas-
sengers, the other objective functions like OBJ1 and 2 discussed below are real costs
that are considered high-priority objectives by both the airport and all the airlines.
So, we will not consider this objective function in our model.

However, there is a class of passengers – transfer passengers – who have only a
limited time (like an hour or so), who are greatly inconvenienced by having to walk a
long distance between their arrival and destination gates. One objective that we will
consider is minimizing OBJ D the total walking distance that transfer passengers
with a limited time to walk between their arrival and departure gates.

The number of passengers on each flight and the destination of each of them
in the airport (either the exit or the gate assigned to some other flights) fluctuate
randomly and widely from day to day. So, to evaluate this objective function rea-
sonably accurately, we need data on the number of passengers transferring between
every pair of gates, and hence modeling the problem of minimizing this objective
function needs binary variables with four subscripts, and consequently leads to a
large 0–1 integer programming model that is hard to solve.

So, we will handle this OBJ indirectly. One way of achieving this objective is
to make sure that arriving flights carrying more than a certain number of transfer
passengers are assigned to gates in the central part of the terminal, that is, gates
more or less equidistant from gates in all corners of the terminal (this guarantees
that wherever the departure gate may be, transfer passengers on those flights have
to travel only a small distance to reach them).

We can identify the set of those centrally located gates in the terminal. For an
arriving flight j with more than the prescribed number of transfer passengers and
an eligible gate i outside this central set include a penalty term corresponding to
this objective function in the penalty cost coefficient cij corresponding to this as-
signment of gate i to flight j . Using this, we can incorporate this OBJ into OBJ1
discussed below.

In the project at TPE discussed in Yu et al. (2009), the central part of the airport
consists of the A, B, C, D sections shown in Fig. 3.7. The first category gates men-
tioned above are all gates in the central part of TPE; the second category gates are
at some distance to the central part; and the third category gates are much farther
away. So, the penalty terms corresponding to the allocation of second and third cat-
egory gates to such flights in OBJ1 will reflect the impact of this objective OBJ in
the penalty function.

OBJ1: This objective measures the costs or penalties associated with the gate as-
signed to a flight.
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Emergency and cargo gates (these terms are used normally for gates some
distance away from the central portion of the airport; typically these are apron gates
without passenger bridges) may only be used during periods of heavy flight traffic
when regular passenger gates (i.e., those with jetties or passenger bridges) are not
available for assignment, and only for certain types of flights for which such gates
fit the flights. If such a gate i is eligible to be assigned to a flight j , then OBJ1 mea-
sures the penalty term corresponding to this assignment. Also, such an assignment
usually results in charges to airlines for coaches and sometimes towing charges, etc.
These are real costs that the airlines and the airport want to minimize. So, whenever
towing and coach charges are incurred in the assignment of an eligible gate i to a
flight j , we include these costs (scaled appropriately) in the penalty coefficient c1

ij

corresponding to this assignment.
Even when a regular gate i is assigned to a flight j , there may be a penalty cor-

responding to this assignment depending on whether gate i is in the central part of
the airport are not, if flight j is carrying a lot of transfer passengers, and the prefer-
ence category (first, second, or third as mentioned earlier) to which gate i belongs
for flight j . All these penalty terms corresponding to various gate assignments to
flights are to be determined by the decision makers.

OBJ 2: This objective measures the cost associated with the time the plane spends
circling around the airport, as well as waiting on the ground after landing before
beginning to taxi to the gate.

The plane is asked to circle the airport when there is no gate to receive it if it
lands right away, and even the taxiway is too full for it to wait after landing. In the
past, this type of “necessity for the plane circling around the airport” used to occur
sometimes, but nowadays at most airports around the world, this has become an
extremely rare event. So, we ignore this in our mathematical model.

After landing, the plane will be asked to wait on the taxiway if the gate i to which
it is assigned is either not free momentarily or the path from the landing point on
the runway to gate i is blocked momentarily by some obstruction.

So in OBJ2, we will consider only the costs and penalties for planes having to
wait on taxiways before beginning taxiing to the gate. If a flight lands at 8:00 PM say,
but the gate allocated to it is not going to be free until 8:15 PM, and taxiing needs
only 5 min, then the plane will be asked to wait on the taxiway for 10 min before
beginning to taxi to the gate. Such events occur during peak times of the day at most
busy airports. They cause inconvenience to the passengers and the flight crew on the
plane.

We can measure the penalty for such an event by c2
j tij , where

� tij D time in minutes that flight j plane has to wait on the taxiway after landing
before beginning to taxi to gate i if it is allotted to gate i ,

� c2
j D the penalty/minute waiting on taxiway for flight j .

The penalty coefficient c2
j may depend on the plane size, average passenger load

in flight j , etc. Suitable values for c2
j have to be determined by airport management

or the concerned decision makers.
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OBJ3: On each planning day this objective plays a role only in updating the
tentative gate allocations made the day before for this day. Most airports want to
make as few changes as possible in the tentative gate allocations made already.
However, some airports may not consider this objective important.

If this is considered important we can handle this objective by trying to minimize
the number of changes made in the tentative gate allocations. While updating the
gate allocations on the planning day, we will include a penalty term c3

ij for choosing
gate i for flight j in the final allocations, where c3

ij D 0, if gate i is the tentative gate
allotted to flight j ; 1 otherwise.

Outputs Needed

Typically most airports have the following goals for the gate allocation effort.

� Each day by about 2:00 PM or so the airport has all the information on the
scheduled landing times for all the flights next day. Using this data, prepare by
10:00 PM, a tentative gate allocation plan for all the flights next day.

� For each arriving and departing flight on the planning day, the gate allocation for
it should be finalized about 2 h before its actual arrival and departure based on
the latest information available about it.

The Planning Scheme to be Used

Flights arrive and land, and depart continuously over time. So, arriving and depart-
ing flights form a continuous stream, and before a flight arrives or departs, we need
to make a decision about its gate allocation.

Suppose a flight A arrives at 8:00 PM, and a gate, 1 say, is allotted to it. Then gate
1 will be occupied by this flight in the period 8:00–10:00 PM say, and is unavail-
able for allocation to other flights arriving in this interval. Thus, the allocation of
a particular gate to a flight limits the choice of gates to flights arriving and depart-
ing later. Consequently, in the above example, the allocation of gate 1 to flight A at
8:00 PM may lead to undesirable allocations to other flights arriving between 8:00
and 10:00 PM.

For this reason, most of the literature on the gate allocation problem insists on
making the gate allocation decisions for all the flights in a day simultaneously using
a large mathematical model covering the whole day. Because of this, researchers
claim that their model outputs the global optimum gate allocation plan for the whole
day, without getting trapped in suboptimal plans over shorter intervals of time.

We need to point out that there is a serious and fundamental flaw in this argument.
Most airports are committed to treating all their customer airlines equally, and

do not give special privilege or preference to any particular airline. This implies that
“first arrived, first assigned” policy should be adhered to strictly; similar policy also
holds for departing flights. This means that each flight should be allotted to the best
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gate available for allocation at the time of its arrival/departure, irrespective of how
it affects the availability of gates to flights arriving/departing after this flight.

For example, suppose two gates 1, 2 are the only ones available between 5 and
5:30 PM; of these 1 is a first-category gate and 2 is a third-category gate. Suppose
flight A lands at 5 PM, and flight B lands at 5:15 PM. By this policy, we must assign
gate 1 to flight A. It would violate the “first arrived, first assigned” policy to assign
gate 2 to flight A for the sake of assigning the first-category gate 1 to flight B arriving
later than flight A.

The “first arrived, first assigned” policy is one that all the airports in the world
claim to adhere to. In our conversations with airport officials, we were told that
they have to follow this policy to maintain good business relations with all their
customer airlines. This policy implies that each flight should be allotted the best
gate for it available at the time of its arrival/departure, and hence ideally it is best
to determine gate allocations by an online algorithm that makes real-time decisions
for each flight based on availability of gates at the time of its arrival/departure.

However, with lots of flights arriving/departing in short durations, and the ne-
cessity to announce gate allocations at least 2 h before the actual arrival/departure
based on the best information available at that time, and the desire to keep a large
percentage of these allocation decisions unchanged as far as possible, it is very
difficult to make gate allocations totally online for each flight just in time for its
arrival/departure. So, we adopt the following practical strategy that is close in spirit
to online decision making, and yet is easy to implement in practice. We select a
short planning interval (e.g., a 15 min or 30 min interval), and determine the best
gate assignments for all flights arriving/departing in this interval, at gates that will
be available for assignment at some point of time in this interval, minimizing the
penalty function discussed earlier, using a simple static mathematical model. If
the optimum solution obtained violates the “first arrived, first assigned” policy for
some flights, then it is easy to modify that solution (using swapping and other man-
ual moves) into one that satisfies that property, as the planning interval is short and
at the time of decision making all the necessary data for this interval is known ac-
curately.

For this reason we develop the following planning scheme for making gate al-
location decisions. In contrast, models in the literature for gate allocation totally
ignore the “first arrived, first assigned” policy.

Selection of the Planning Interval

We divide the day into short planning intervals for gate allocation decisions. Deci-
sions are made for the intervals in chronological order, and decisions made for an
interval are taken as fixed in making decisions for future intervals.

In the spirit of keeping close to online decision making, we find that taking the
planning interval length as 30 min is convenient and works well. So, we describe
the mathematical model in terms of 30-min planning intervals (interval length can
be changed from 30 min to similar short duration as appropriate).
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When interval k is the planning interval, gate allocation solutions for flights
arriving in time intervals � k � 1 are fully known, and that information can be
used to simplify many of the gate assignment constraints in the model for planning
interval k.

For example, the assignment of a large aircraft to a particular gate may imply
that adjacent gates can only accept aircraft of a certain size, or are even completely
blocked. So, if gate 1 is going to be used by a large aircraft flight in time interval
k�1, and that plane will continue to stay at that gate for some time during interval k,
then adjacent gates of gate 1 can simply be made ineligible for allocation to flights
using planes of nonacceptable size during planning interval k.

Thus, the choice of our short-duration planning interval allows us to both avoid
the effects of uncertainty in data elements, and also makes it possible to solve the
problem using a simpler mathematical model that is easier to solve. Also, it is easier
to make simple modifications in the output allocation manually for implementation.

Peak and Off-Peak Periods

We divide the day into 48 intervals of 30-min each, and number them serially 1 to
48 with 1 representing the 12:00–12:30 AM interval. Then we can plot the average
number of flights arriving/departing in each half-hour interval of the day based on
past data at the airport. From this we can see what the peak periods are for flights
arriving/departing at this airport. In fact, different working days may have different
peak periods. Identifying these peak periods provides very useful information for
managing gate allocations at the airport while keeping all customer airlines happy.
For solving the gate allocation problem, the peak periods offer most challenge; in
off-peak periods the problem is relatively easy to solve. During peak times, the
FOOs (flight operations officers of the airport responsible for gate allocations) may
have to persuade airlines to shorten the gate occupancy times for their flights in order
to accommodate more flights, and most airlines are usually happy to cooperate.

In Fig. 3.8 we show the plot of the average number of flights arriving/departing in
each half-hour interval of the day based on June 2007 data at TPE. From this we see
that there are two peak periods of the day for number of flights arriving/departing
at TPE, one in the period 7:00–10:00 AM and another in the period 3:00–5:00 PM.
Corresponding charts for the data in various months of 2007 confirm the same ob-
servation. However, this pattern is somewhat different for different days of the week
(Sunday to Saturday).

How is the Gate Occupancy Time of a Flight Determined

Most airports use fixed blocks of time for flights based on the size of the plane
normally used for the flight (like a 1.5-h block for flights that normally use large
wingspan planes, a 1-h block for those that use medium wingspan planes, etc.).
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Fig. 3.8 This figure shows the typical averages of the total number of flights arriving, departing
in each 30-min interval of a day. Time intervals are numbered serially 1–48 (1 is the time slot from
midnight to 12:30 AM) are shown on the horizontal axis. On the vertical axis we plot the number
of flights arriving and departing in the interval

TPE normally allocates 60-min gate time to arrival flights (i.e., these are arriving
flights for which this airport is the final destination, 90-min gate time to departure
flights (these are flights which originate at this airport) for flight preparation, pas-
senger disembarking, embarking, flight clean up, ground service to the plane, etc.
For transit flights (these are flights that arrive and make a brief stop at this airport,
and then depart for another destination), the allocated gate time is 150-min, the sum
of gate times of an arrival flight and a departure flight. However, these times may
vary depending on the size of the aircraft and the time of the day. During peak times,
the FOOs may shorten the gate time to accommodate more flights. On average, a
30-min buffer time is scheduled between two flights using the same gate to take
into account the uncertainty in flights’ actual arrival/departure time. This time may
also be cut short during peak hours, as the FOOs try to persuade flights occupying
gates to finish up their work as soon as possible. The FOOs usually have the full
cooperation of all the airlines in this effort during peak periods.

Strategy Used for Making Gate Allocation Decisions for a Planning Day

We will discuss below a procedure that gives the mathematical model for making
gate allocation decisions in a single 30-min planning interval assuming that the ar-
rival and departure times for all the flights arriving and departing in that interval are
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known exactly, and discusses how to solve it. Here we will discuss how to use that
procedure to generate the outputs needed for the planning day.

To Make the Tentative Gate Allocation Plan for All the Flights on the Planning
Day: This plan has to be prepared by 10:00 PM of the day before the planning day.
The data used for making this tentative plan are the scheduled arrival, departure
times for all the flights on the planning day, which becomes available by 2:00 PM of
the day before the planning day.

The planning day consists of k D 1 to 48 planning intervals of 30-min each.
The allocation decisions in these intervals are made in chronological order one after
the other, starting with the first planning interval (00:00–00:30 h), using the proce-
dure described below. So, at the time of making decisions for the kth interval, the
gate allocations for flights in the .k � 1/th interval would have been finalized and
become available.

To Update and Make Final Gate Allocation Decisions for a Planning Interval on
the Planning Day: Consider the kth planning interval. Gate allocation decisions
for flights arriving, departing in this interval are finalized 2 h before the beginning
of this interval.

Nowadays flight arrival and departure information is being continuously updated,
and this real-time information is delivered continuously to all airport organizations
who use it. About 2.5 h before the beginning of the planning interval, the kth, the
arrival/departure times for flights in the planning interval are known reasonably pre-
cisely. Also by this time gate allocations for flights in the .k � 1/th interval would
have been finalized and are known. Gate allocation decisions for the planning inter-
val are finalized using all this data with the procedure discussed below.

It is possible that some last-minute changes occur in the arrival/departure times
of flights in the planning interval, after the gate allocation plan for this interval is
finalized. Nowadays, such changes are rare and only few in number. Any necessary
changes in gate allocations to accommodate these last minute changes in arrival,
departure times are carried out by the gate allocation officers manually.

Procedure for Gate Assignments to Flights in a Planning Interval

Consider the kth planning interval on the planning day.
There may be some flights expected to arrive towards the end of the .k � 1/th

interval for which gates have not been assigned in the planning work for that inter-
val. These flights will also be considered for gate assignment in this kth planning
interval.

Let

� J; n W n is the number of flights that need to have a gate assigned in this planning
interval k. This includes flights that depart or land at some point of time in this
planning interval, and flights that are expected to land before, but have not been
assigned to a gate in the previous interval. J denotes the set of these flights, and
the index j is used to denote a general flight in J .
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� i W is the index used to denote a gate in the airport (includes all gates, remote
and emergency gates also if they can be used by some flights during heavy peak
times) that are expected to be available for assignment to flights in this interval.
If a flight is going to be occupied for the entire kth planning interval by a flight
assignment made in earlier periods, then it is not even considered in this model.

� xij W is the decision variable defined for gate i and flight j 2 J ; this variable
takes the value 1 if flight j is assigned to gate i in this planning interval, or 0
otherwise.

If a gate i is not suitable to assign to flight j for whatever reason (e.g., if flight j

uses a large plane and gate i is not of a size appropriate for it, etc.), then it is made
ineligible for assignment to flight j , and the corresponding variable xij is not even
considered in the model for planning interval k.

Similarly, several of the gate assignment constraints can be taken care of by this
ineligibility classification. For example, as mentioned in the previous section, if gate
i is adjacent to a gate occupied by a large plane, and that plane will be there for some
time during interval k, then it is made ineligible for all flights j 2 J with planes
of unacceptable size during planning interval k, and the corresponding variables xij

do not appear in the gate assignment model for this interval.
Let

� Gj D set of gates i that are eligible to be assigned to flight j 2 J in planning
interval k

� I D [j 2J Gj D set of gates i that are eligible to be assigned to at least one
flight j 2 J in this planning interval

� Fi D set of flights j 2 J for which gate i 2 I is eligible to be assigned in this
planning interval

We will combine the various objectives into a single penalty function to be min-
imized to determine an appropriate compromise between the various objectives,
while assuring some of the hard constraints in gate assignment.

Let

� cij W the combined positive penalty coefficient associated with the decision vari-
able xij . It is the sum of positive penalty coefficients associated with xij corre-
sponding to the various objectives (these are determined by the decision makers
based on trade-offs between the various objectives).

When considering gate allocations in planing interval k, flights that are expected
to arrive in time interval k � 1, but have not been assigned to gates then, should be
given preference. Also, the airport may consider giving preference to certain flights
that arrive in planning period k itself.

So, partition the set of flights J that need gate assignments in this planning inter-
val k into J1 [ J2, where

� J1 D subset of the flights in J that have to be given first preference for gate
assignments
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� J2 D the remaining flights in J .

We first determine the maximum number r of flights to which gates can be
assigned in this planning period k, subject to the constraints mentioned in the pre-
vious sections. It leads to the following transportation model.

There is a constraint corresponding to each flight that needs a gate assigned in
this planning interval k, the one corresponding to each flight j 2 J1 is an equal-
ity constraint specifying that each of these flights must be assigned one gate for
itself (because we are required to give these flights first preference for gate allo-
cation); the one corresponding to each flight j 2 J2 is an inequality constraint
specifying that this flight needs one gate for itself if an eligible one for it can be
found.

There is one inequality constraint corresponding to each gate that becomes free at
some point of time in this planning interval k and can receive a flight from that time
onwards, specifying that this gate can accommodate at most one flight for which it
is eligible to be assigned.

The objective in this model is to maximize the total number of eligible flight-gate
assignments that can be made in this planning interval. The model is

r D Maximum value of
X
j 2J

X
i2Gj

xij

Subject to
X

i2Gj

xij D 1 for each j 2 J1

X
i2Gj

xij � 1 for each j 2 J2

X
j 2Fi

xij � 1 for each gate i 2 I

xij � 0 for each j 2 J; i 2 Gj .

If this model turns out to be infeasible, it is an indication that there are not enough
eligible gates available in this planning interval to even assign to all the flights
j 2 J1. Then, the airport authorities can modify and relax some of the eligibility
requirements for gate assignments if possible, or modify the set J1 as appropriate,
and solve the model with revised information.

When this model is feasible, the maximum objective value r in it gives the max-
imum number of flights among those needing gates in this planning interval, for
which gates eligible for them can be assigned in this interval. If r < n D jJ j, the
remaining n� r flights in J for which eligible gates cannot be assigned in this plan-
ning interval will have to be transferred to the next interval for gate assignments.

The above model only provides the maximum number of gate assignments that
can be made in the planning interval k. It does not try to find optimal gate assign-
ments. When the above model is feasible, the optimum gate allocations are found
by solving another mathematical model, which is also a transportation (or network
flow) model. It tries to minimize the composite penalty function constructed above,
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subject to the same constraints as in the above model, and the additional constraint
that the total number of flight-gate assignments should equal the maximum possible
number r found above. It is

Minimize
X
j 2J

X
i2Gj

cij xij

Subject to
X

i2Gj

xij D 1 for each j 2 J1

X
i2Gj

xij � 1 for each j 2 J2

X
j 2Fi

xij � 1 for each gate i 2 I

X
j 2J

X
i2Gj

xij D r

xij � 0 for each j 2 J; i 2 Gj :

Transportation (network flow) models are easy to solve. Typically, we can expect
to have at most 100–200 flights to deal with in any planning interval at busy inter-
national airports. For problems of this size, either of the above models will require
at most 0.5 s of a common PC time to solve, using software programs available to-
day. An optimum solution Nx D . Nxij / obtained for the second model provides an
optimum gate allocation through the interpretation that

flight j 2 J is assigned to gate i in the optimum gate allocation Nx if Nxij D s1.

There may be other constraints that have not been included in this model. If so,
they can be added to the model. Or the gate assignment team may use their expert
judgment to modify an optimum solution of this model into another that can be
implemented.

Summary

We described the common features of the problem of allocating gates to passenger
flights at an international airport, and how many of the models for it in published
literature seem to focus on optimizing an objective function that the actual decision
makers do not consider important. This actually makes the models for this problem
in published literature very complex and difficult to solve. We outline a scheme for
developing a DSS for this problem that leads to a much simpler model that is easy
to implement in practice. In this approach, we applied the mathematical model in
two stages. In the first stage, we just maximized the number of flights to which gates
have been allocated, and in the second stage we optimized the actual allocation of
gates to these flights in terms of the other objective functions (OBJ 1, 2, 3) discussed
in this section. All the airport officials that we talked to felt that top priority should
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be given to maximize the number of flights that are gated, this is the reason for the
two-stage approach.

3.3 Murty’s Three Commandments for Successful
Decision Making

From the work in these case studies and other similar projects, I noticed that the
following are important for successful decision making:

(a) Looking at the problem from all possible angles and not just in one way
(b) Constructing an intelligent mathematical model to analyze the problem and to

solve it
(c) Being very tactful in selling the optimum solution obtained from the model and

in implementing it.

3.4 Exercises

3.1. Allocating shelfspace to items in a grocery store: This exercise deals with the
question of determining the amount of shelfspace to allocate in a grocery store to
various items sold by the store, in order to maximize the expected sales volume (or
the expected profit) of the store.

To model this problem, first we need to measure shelfspace in some units, say
units of 1 ft length. Let S D total shelfspace units available to allocate.

Items may be small (such as a screw) or reasonable size such as a 2-kg box of
breakfast cereal. A small item such as a screw will never be displayed on the shelf
individually; they are normally displayed in a container of reasonable size that holds
many screws, maybe even has several compartments for screws of various sizes. So,
we will assume that items are measured in units of comparable size. In fact, we will
measure each item in the same units of shelfspace needed to display it. So, for i D
1 to n; units of item i D the amount of item i that one shelfspace unit will hold (if a
single copy of an item takes more than 1 shelfspace unit to display, maybe the unit
of item i will be a fraction <1 of a single copy of the item).

Select a unit of time, such as a day or a week that is convenient to work with. Let
xi denote the units of shelfspace allotted to item i . These are the decision variables,
the optimum values of which have to be determined, and x D .xi /.

For i D 1 to n, let di D expected demand (or sales) for item i in the store
in units/unit time. We can expect that di increases as the exposure of the store’s
customers to this item i increases. Exposure of customers to this item increases as
the number of units of it on display on the shelves increases. So, we can expect that
di increases as xi increases. So, we represent this demand by di .xi / as a function
of xi ; its slope is expected to be positive.
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Suppose that the shelfspace allotted to item i is fully stocked at time point 0,
that is, at that point of time xi units of item i are on display. As customers pick up
units of item i to purchase, the number on display will keep decreasing until this
shelfspace is restocked again. The expected time between restockings of this item
can be derived from the distribution of demand, but for this exercise assume that
it can be approximated by xi =di .xi /. Restocking actually involves two tasks:

Task 1: Checking periodically the stock level of this item on the shelf to see if it
has reached a safety stock level and needs to be replenished.

Task 2: Replenishing the stock level of this item to xi , which requires going into
the warehouse, bringing in those copies of the item, and arranging them on the shelf.

So, `i .xi / D labor in man hours needed for tasks 1 and 2 to maintain stock levels
of this item on the shelf, has an inverse relationship with xi . As xi increases, `i .xi /

decreases and vice versa.
Let ci D cost in money units/man hour of labor to manage stock levels. Let pi D

profit in money units/unit of item i sold. Then the net profit to the company is the
profit from sales � cost of labor to manage stock levels on the shelves. For i D
1 to n, let LBi and UBi denote lower and upper bounds for xi specified by store
management. Also, experience may indicate some relationships between the xi ’s.
For example, everyone who buys coffee powder, or semia, may also buy an equal
quantity of sugar; this then leads to the constraint x1 � x2 C x3, where items 1, 2, 3
are sugar, coffee powder, semia, respectively.

Discuss how the functional forms for di .xi / and `i .xi / can be determined ex-
perimentally. Also, assuming that both di .xi /; `i .xi / are linear functions of xi ,
formulate the problem of determining an optimum x to maximize expected net profit
to the store.
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Chapter 4
Polyhedral Geometry

4.1 Hyperplanes, Half-Spaces, and Convex Polyhedra

A hyperplane in Rn is the set of feasible solutions of a single linear equation. Let
H D fx W a1x1 C � � � C anxn D a0g, where the coefficient vector .a1; : : : ; an/ ¤ 0,
be a hyperplane in Rn.

Only when n D 2 (i.e., in R2 only) every hyperplane is a straight line, and vice
versa. In Fig. 4.1, we show the hyperplane (straight line in R2) corresponding to the
equation x1 C x2 D 1.

When n � 3, hyperplanes are not straight lines. Figure 4.2 shows a portion of the
hyperplane corresponding to the equation x1 C x2 C x3 D 1 in R3.

For any n, each hyperplane H D fx W a1x1 C � � � C anxn D a0g in Rn divides
the space into two half-spaces H C and H �, where

H C D fx W a1x1 C � � � C anxn � a0g;
H � D fx W a1x1 C � � � C anxn � a0g:

The half-spaces H C and H � are closed half-spaces with H C \ H � D H and
H C [ H � D Rn. Thus, each linear inequality constraint corresponds to a half-
space, and vice versa. In Fig. 4.1, we show the half-spaces defined by the hyperplane
fx W x1 C x2 D 1g in R2.

4.1.1 Expressing a Linear Equation as a Pair of Inequalities

As H C \ H � D H , each hyperplane is the intersection of the two half-spaces
defined by it. Equivalently, in any system of constraints, an equation, a1x1 C � � � C
anxn D a0, can be replaced by the pair of inequalities a1x1 C � � � C anxn � a0 and
a1x1 C � � � C anxn � a0.

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 4, c� Springer Science+Business Media, LLC 2010
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Fig. 4.1 A hyperplane in R2

(in R2 it is a straight line).
You can also see the two
half-spaces into which it
divides the space

x2

x1
1

1

x
1  + x

2 =1

H+={ x : x1+x2 ³ 1}

H ={ x :x1+x2 £ 1} 

0

Fig. 4.2 Hyperplane
represented by
x1 C x2 C x3 D 1 in R3, part
of which is shaded

x3

x1

(0,0,1)

0

(1,0,0)

(0,1,0)

x2

Convex Polyhedron

The intersection of a finite number of half-spaces is a geometric object known as a
convex polyhedron. So every convex polyhedron is the set of feasible solutions of a
system consisting of a finite number of linear inequalities. As every linear equation
is equivalent to a pair of linear inequalities, we can define a convex polyhedron to
be the set of feasible solutions of a system of linear constraints containing a finite
number of linear inequalities and/or linear equations.

Geometric properties of convex polyhedra are being studied for a long time. The
Egyptian Pharaohs studied convex polyhedra over 5,000 years ago for designing and
constructing the Great Pyramids.

The set of feasible solutions of any linear programming problem is a convex
polyhedron. Because of the development of LP (linear programming) in the mid-
twentieth century, the study of convex polyhedra has gained added momentum. The
advent of LP has added a computational dimension to the study of convex polyhedra
and their boundary structure.
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Fig. 4.3 Unbounded (left)
and bounded (right) convex
polyhedra in R2

The boundary of a convex polyhedron is divided into its various boundary faces
of various dimensions and has a highly intricate combinatorial structure. The set of
optimum solutions of any linear program is a boundary face of its feasible solution
set. Also, the simplex method � the main method used for solving LPs in the third
quarter of the twentieth century, which continues to be one of the most popular
methods today � operates only on the one-dimensional faces of the set of feasible
solutions. This has resulted in a very intensive study of the boundary structure of
convex polyhedra since the mid-twentieth century.

In this chapter we will discuss important results on the geometry of convex poly-
hedra that are essential to the study of LP and the simplex method for solving it.
For a more detailed and complete treatment of the theory of convex polyhedra, the
reader is referred to the mathematical books (Grünbaum 1967; Ziegler 1994).

Convex Polytopes

A convex polyhedron may be unbounded or bounded. In Fig. 4.3, on the left is an
unbounded convex polyhedron, and on the right is a bounded convex polyhedron in
R2. A bounded convex polyhedron is known as a convex polytope.

4.1.2 Straight Lines, Half-Lines, and Their Directions

The most convenient and commonly used representation of a straight line is the
parametric representation involving a single parameter � say, as

L D fx.�/ D .xj .�// D .aj C �bj / W � takes all real valuesg

where a D .a1; : : : ; an/T ; b D .b1; : : : ; bn/T are given vectors such that b ¤ 0.
For example, the straight line in Fig. 4.1 in R2 joining the points .1; 0/T and .0; 1/T

can be represented as fx.�/ D .1; 0/T C �.�1; 1/T W � takes all real valuesg.
For any positive integer n, in Rn, a straight line is uniquely characterized by any

two distinct points on it. For example, if a; c are two distinct vectors in Rn (i.e.,
a ¤ c), the straight line through them is fx.�/ D a C �.a � c/: � takes all real
valuesg.
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Fig. 4.4 The solid line in the
figure is the half-line
f.1; 1/ C �.1; �1/ W � � 0g.
The point .2; 0/ on it is
obtained by moving from
.1; 1/ a step length of 1 in the
direction of .1; �1/. The
dashed line in the figure is the
ray of .1; �1/, which is
parallel to the above half-line
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In the parametric representation of a straight line, if we let the parameter � take
only nonnegative values (instead of all real values), we get a half-line, in this case
the coefficient vector of the parameter � in the representation is called the direction
of that half-line.

So, the half-line starting at a point a in Rn in the direction b in Rn has the
parametric representation LC D fx W a C �b W � � 0g. The point a C �b in LC is
said to be obtained by moving from the point a, a step length of � in the direction b.
Figure 4.4 illustrates a half-line in R2.

Any half-line beginning at 0 is also called a ray. So, the half-line beginning at 0
in the direction of b ¤ 0, that is, f�b W � � 0g is the ray of b.

4.1.3 Convex Combinations, Line Segments

Given a finite set of points  D fx1; : : : ; xrg in Rn, any point of the form ˛1x1 C
� � � C ˛rxr , where the coefficients satisfy ˛1 � 0; : : : ; ˛r � 0, ˛1 C � � � C ˛r D 1,
is known as a convex combination of points in  . The set of all such convex combi-
nations is known as the convex hull of  .

If r D jj D 2, its convex hull is known as the line segment joining the
two points in  . In this case  D fx1; x2g, a point on the line segment joining
x1; x2 can be represented using a single parameter as ˛x1 C .1 � ˛/x2, where
0 � ˛ � 1. As ˛ increases from 0 to 1, this point moves along the line segment
joining the two points in  from x2 to x1. Figure 4.5 shows the convex hull of six
points in R2, a line segment, and a pyramid in R3, which is the convex hull of five
points.
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Fig. 4.5 Some convex hulls
in R1, R2, and R3

4.2 Tight (Active)/Slack (Inactive) Constraints
at a Feasible Solution Nx

Let K be the set of feasible solutions of the general system of linear constraints

Ai:x

� D bi for i D 1 to p

� bi for i D p C 1 to m
(4.1)

consisting of inequalities and maybe some equality constraints. Let Nx 2 K , that
is, a feasible solution of (4.1). Tight (or active) constraints at Nx in (4.1) are all the
constraints in (4.1) that are satisfied as equations at Nx. Hence

All equality constraints in (4.1) Always active (tight) constraints at
every feasible solution Nx

All inequality constraints in (4.1)
satisfied as equations at Nx

Active (tight) constraints at the fea-
sible solution Nx

All inequality constraints in (4.1)
satisfied as strict inequalities at Nx

Inactive (slack) constraints at the
feasible solution Nx:

Example 4.1. Consider the feasible solution Nx D .�1; 10; 0; 5; 10/T to the follow-
ing system of constraints

x1 C x2 C x3 C x4 C x5 D 24

x1 � x2 C x3 � x4 � �16

�x2 � x3 C x4 C x5 � 8
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�x1 C x2 C x3 � 2x4 C 2x5 � 31

�x1 C x2 C x3 � 2x4 C 2x5 � 21

�2 � x1 � 10; 0 � x2; x3 � 10

x5 unrestricted; x4 � 0:

In this system there is one equality constraint, and 11 inequality constraints (each
bound on a variable is also an inequality constraint).

The constraints that Nx satisfies as equations are the first (equality constraint);
second, fifth, upper bound on x2, lower bound on x3 (all inequality constraints);
these are the constraints that are active at the feasible solution Nx.

The other constraints in the system, the third, fourths, lower bound on x2, upper
bound on x3, lower bound on x4 (all inequality constraints) are inactive at Nx. �

Example 4.2. Here we will give a two-dimensional example so we can also illustrate
the concepts of active/inactive constraints at a point geometrically. Remember that
in R2 every linear equation corresponds to a straight line (hyperplane in R2), and a
point Nx satisfies that equation iff it is on the corresponding straight line.

A linear inequality represents the half-space on one side of the corresponding
straight line, this constraint is active at Nx iff Nx lies on that straight line, inactive
if it lies in the interior of the half-space. Now consider the following system of
constraints in two variables x1; x2. Consider the points x1 D .1; 1/T ; x2 D .1; 2/T ,
x3 D .2; 2/T , all of which are feasible solutions of this system. Figure 4.6 shows
the feasible region of this system.
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5 6
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–x 1+
x 2
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x 1
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x1

x2
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Fig. 4.6 Feasible region is shaded. The thick dot in the interior of the feasible region is x3 D
.2; 2/T
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x1 C x2 � 2

�x1 C x2 � 2

x1 C x2 � 6

�x1 C x2 � �2 (4.2)

x1 � 1

x1 � 3

x2 � 0:

The solution x1 satisfies only constraints 1, 5 in (4.2) as equations, hence these
are the tight (active) constraints at x1; the other constraints in (4.2) satisfied as strict
inequalities at x1 are inactive or slack at x1.

The solution x2 satisfies only constraint 5 in (4.2) as an equation; all the other
constraints are satisfied as strict inequalities by x2. So, only the 5th constraint in
(4.2) is active at x2, all other constraints are inactive or slack at x2.

The solution x3 satisfies all the constraints in (4.2) as strict inequalities. Hence
there are no active constraints at x3 in (4.2); all are inactive. Clearly x3 is an interior
point of the set of feasible solutions of (4.2), as we can see clearly from Fig. 4.6. �

4.2.1 What is the Importance of Classifying the Constraints in a
System as Active/Inactive at a Feasible Solution?

When at a feasible solution Nx, a fundamental strategy in many optimization al-
gorithms is to look for a direction y to move, that will lead to improvements in
objective value while maintaining feasibility. If a constraint is active at Nx, then un-
less the direction of movement y is selected with special care, this constraint may
be violated even for moves of small step lengths, however small. On the other hand,
when a constraint is inactive, it will continue to remain satisfied when we move in
any direction from Nx, as long as the step length is sufficiently small.

That is why in selecting the direction y to move at Nx, the algorithms ignore the
inactive constraints, and only make sure that none of the active constraints will be
violated by the move. This points out the importance of classifying and identifying
the active constraints at the current feasible solution.

Let Nx D . Nx1; : : : ; Nxn/T be a feasible solution for a system of linear constraints
and suppose

a11x1 C � � � C a1nxn D a01

is an equality constraint in the system. As Nx is a feasible solution of the system, we
have a11 Nx1 C � � � C a1n Nxn D a01, and this constraint is active at Nx. If we move in
the direction y from Nx a positive step length �, we get the point Nx C �y. For this
point to satisfy this equality constraint, we need

Pn
j D1 a1j . Nxj C �yj / D a01, and

since a11 Nx1 C � � � C a1n Nxn D a01 we need a11y1 C � � � C a1nyn D 0, that is, the



174 4 Polyhedral Geometry

direction y has to satisfy the homogeneous equation obtained by setting the RHS
constant in every equality constraint in the system to 0 in order to retain feasibility
after moving in the direction y from Nx.

Now consider an inequality constraint in the system:

a21x1 C � � � C a2nxn � a02:

We need
Pn

j D1 a2j . Nxj C �yj / � a02 for Nx C �y to satisfy this constraint. So, if
this constraint is inactive at Nx, that is,

Pn
j D1 a2j Nxj > a02, then NxC�y will continue

satisfying this constraint for all directions y as long as � is sufficiently small.
If this constraint is active at Nx, i.e.,

Pn
j D1 a2j Nxj D a02, then this constraint

will continue to be satisfied by Nx C �y for � � 0 iff
Pn

j D1 a2j yj � 0, that is,
the direction y satisfies the homogeneous inequality obtained by setting the RHS
constant in this constraint to 0.

4.3 Subspaces, Affine Spaces, Convex Polyhedra;
Binding, Nonbinding, Redundant Inequalities;
Minimal Representations

A subspace of Rn is the set of feasible solutions of a system of homogeneous linear
equations, that is, a system of the form Ax D 0 with all RHS constants 0.

An affine space of Rn is the set of feasible solutions of a general system of linear
equations, that is, a set of the form  D fx 2 Rn W Ax D bg, where A is a
matrix of order m � n and b is a column vector in Rm. If Nx 2  , the transformation
of variables y D x � Nx, called translating Nx to the origin, translates  into the
subspace fy W Ay D 0g in the space of the new variables y.

As defined in Sect. 4.1, a convex polyhedron is the set of feasible solutions K of
a system of linear constraints consisting of a finite number of linear equations and
inequalities of the form

Ax D b;

Dx � d; (4.3)

where the inequality constraints include all the bound restrictions on individual vari-
ables in the system. Suppose A is of order m � n and D is of order p � n.

An inequality constraint in (4.3), say the first D1:x � d1, is said to be a redundant
inequality constraint, if its removal from the system (4.3) does not change its set
of feasible solutions; that is, iff the minimum value of D1:x subject to the other
constraints in (4.3) without this constraint is itself � d1.

So, whether a given inequality constraint in the system is redundant or not can be
determined by solving a single LP. As an example in the system of three inequality
constraints in variables .x1; x2/T : x1 � 4, x2 � 6, x1 C x2 � 5; you can clearly
verify that the third constraint x1 C x2 � 5 is redundant.
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So, all the redundant inequalities in the system (4.3) can theoretically be identi-
fied by solving at most p LPs, and deleted from the system without changing its set
of feasible solutions. For the sake of discussion in this section, let us assume that
this has been done, but for notational convenience we will continue to denote the
system by the same symbols. Under this assumption, all inequality constraints in
(4.3) are now nonredundant.

Now an inequality constraint in the system (4.3) – say the first, D1:x � d1, – is
said to be a binding [nonbinding] inequality constraint if ˇ D maximum value of
D1:x subject to (4.3); satisfies ˇ D d1 [ˇ > d1].

As an example, in the system of 3 inequality constraints in variables .x1; x2/T ;
x1 � 4, x2 � 6, �.x1 C x2/ � �10, you can clearly verify that all the constraints
are binding, that is, they hold as equations at every feasible solution.

If any inequality constraint in system (4.3) is binding, it can be changed into
an equality constraint without changing the set of feasible solutions of the system.
Thus, theoretically, with an effort of solving at most 2p LPs, we can identify and
eliminate all redundant inequality constraints, and also identify all binding inequal-
ity constraints among the remaining and convert them into equality constraints; all
this without changing the set of feasible solutions of the system. After this effort
is completed, any remaining inequality constraints in the system are nonbinding.
There are two possibilities at this stage:

1. There are no inequality constraints left in the remaining system (i.e., all inequality
constraints in the original system are either redundant or binding); in this case
the convex polyhedron K is itself an affine space.

2. There are �1 inequality constraints in the final system, in this case the convex
polyhedron K is not an affine space.

Affine spaces are the focus of discussion in linear algebra textbooks (e.g.,
Murty (2004) of Chap. 1). In the sequel we will study convex polyhedra that are
not affine spaces, that is, in the system of constraints representing them, there is at
least one nonbinding inequality constraint.

In the system of constraints representing K at this stage, among the system of
equality constraints there may be redundant equality constraints, and these can be
identified by performing GJ (Gauss-Jordan) pivot steps on this system of equations,
and eliminated from the system without changing the set of feasible solutions.

The final system of constraints representing K after all these operations are
carried out contains no redundant equality constraints and no redundant or bind-
ing inequality constraints; it is known as a minimal representation for the convex
polyhedron K . For notational convenience, we continue to denote the minimal rep-
resentation of K by (4.3) itself using the same symbols, where A; D are matrices
of orders m � n; p � n, respectively.

Then the affine space fx W Ax D bg of dimension n � m is the smallest dimen-
sional affine space containing K , and the dimension of K itself is n� m. This affine
space is a space in which K has full dimension.

In the minimal representation for K , each equality constraint can be used to
eliminate one variable from the system. For example, if the equality constraint
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is Ai:x D ai1x1 C � � � C ainxn D bi , and if ai1 ¤ 0, then from this equation
we have

x1 D .bi � ai2x2 � � � � � ainxn/=ai1I
this expression can be substituted for x1 in all the remaining constraints and x1

eliminated from them; the expression for x1 above can be stored at another location
to determine the value of x1 in the solution from the values of other variables in it
determined from the remaining system, and now the equality constraint Ai:x D bi

can also be eliminated from the system. In effect, now the remaining system in the
remaining variables .x2; : : : ; xn/T is a representation of K in the space of these
variables.

The same process can now be repeated on the remaining system with an equality
constraint in it, and the process continued the same way. As there are m nonredun-
dant equality constraints at the start of this process, in the end we will be left with
a system in .n � m/ variables consisting of inequality constraints only. This is a
space in which K has full dimension, and its representation in this space consists of
inequality constraints only.

Now consider the general LP model: minimize cx subject to a general system
of constraints consisting of equations and inequalities. In LP models obtained from
practical applications, the system may contain redundant constraints and binding
inequality constraints. If an algorithm for LP requires a minimal representation for
the set of feasible solutions as the input, that algorithm will not be practical be-
cause identifying each redundant or binding inequality constraint in the original LP
model by the process discussed above itself requires solving additional LPs. The
algorithms that we will discuss for LP are able to solve the general LP model itself
directly, using the constraints in that model.

Exercises

4.3.1. The set of feasible solutions of a system of homogeneous linear inequalities
fx W Ax � 0g is called a convex polyhedral cone. Consider the convex polyhedron
K D fx W Ax � bg. If there exists a point Nx 2 K satisfying all the constraints in
the representation of K as equations (i.e., all these constraints are active at Nx), show
that K is a translate of a convex polyhedral cone.

4.4 The Interior and the Boundary of a Convex Polyhedron

Consider a convex polyhedron K in the space in which it has full dimension, say
Rn. Then from Sect. 4.3 we know that K can be represented by a system of linear
inequalities in x D .x1; : : : ; xn/T . In the mathematical study of convex polyhedra,
a point Nx 2 K is said to be
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� A boundary point of K iff there is at least one active constraint at Nx
� An interior point of K if there are no active constraints at Nx,

in the system of constraints representing K . The boundary of K is the set of all
boundary points and its interior is the set of all its interior points. The boundary of
K is divided into subsets called faces of K , properties of which are discussed in
detail in the next section. They have a very complex and fascinating mathematical
structure that is being studied for over 2,000 years.

Some of the properties of faces of K are exploited in algorithms such as the sim-
plex method for LP. The rest of this chapter is mainly concerned with studying some
of the most important properties in the facial structure of K . The active constraints
at a boundary point Nx 2 K play a major role in determining what type of faces of K

contain Nx.

4.5 Supporting Hyperplanes, Faces of a Convex
Polyhedron, Optimum Face for an LP

4.5.1 Supporting Hyperplanes

Consider a general system of linear constraints in variables x D .x1; : : : ; xn/T 2 Rn

in which the inequality constraints include all the bound constraints on individual
variables.

Dx D d;

F x � g: (4.4)

Let K denote the set of feasible solutions of (4.4). A supporting hyperplane for
K is a hyperplane H in Rn satisfying: K is completely contained on one side of H

and H \ K ¤ ;. Two figures in Fig. 4.7 show examples of supporting hyperplanes
(straight lines in R2) for convex polyhedra in R2.

In Fig. 4.8, in the figure on the left K is in one side of the hyperplane H , but its
intersection with K is ;. In the figure on the right the hyperplane H has a nonempty
intersection with K , but K is in both sides of H . So, in both the figures in Fig. 4.8,
H is not a supporting hyperplane of K .

Fig. 4.7 In both the figures
here, H is a supporting
hyperplane of K

H

K

H

K



178 4 Polyhedral Geometry

Fig. 4.8 In both these
figures, H is not a supporting
hyperplane of K

H

K

H

K

Fig. 4.9 The set of feasible
solutions, K , of the fertilizer
problem. f Nxg is a face of K of
dimension 0, and is called an
extreme point of K . The thick
line segment is a face of K of
dimension 1, and is called an
edge of K
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4.5.2 Faces of a Convex Polyhedron

A face of a convex polyhedron K is either the empty set, or K itself, or the
intersection H \ K of K with a supporting hyperplane H . Faces of K , other than
K and ;, are called proper faces.

As K is strictly on one side of the supporting hyperplane H , if H \ K ¤ ;, it
can be seen that H \ K must be the set of feasible solutions of a system obtained
from (4.4) by making a subset of the inequality constraints in it into equations and
leaving the others unchanged.

So an alternate definition is: Given the convex polyhedron which is the set of
feasible solutions of (4.4), a proper face of it is the set of feasible solutions of a
system obtained from (4.4) by changing a subset of inequality constraints in it into
equations and leaving the other constraints unchanged.

Example 4.3. Consider the system of constraints in the fertilizer problem discussed
in Example 3.4.1 of Sect. 3.4 in Murty (2005b) of Chap. 1 and also in Sect. 1.7.1,
and Example 2.5 in this book, and its set of feasible solutions K shown in Fig. 4.9.
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2x1 C x2 � 1500;

x1 C x2 � 1200;

x1 � 500;

x1; x2 � 0:

Consider the system obtained by changing the first two inequality constraints into
equations:

2x1 C x2 D 1500;

x1 C x2 D 1200;

x1 � 500;

x1; x2 � 0:

The first two equations in this system have the unique solution Nx D .300; 900/T ,
which also satisfies the remaining constraints. So, the only solution of this system
is Nx, and it constitutes a face of K by itself. A single point that by itself is a face
of a convex polyhedron is called an extreme point of the convex polyhedron. Each
extreme point of a convex polyhedron is a face of dimension 0.

Next consider the system obtained by changing only inequality, x2 � 0, into an
equation and leaving the others unchanged. This system is

2x1 C x2 � 1500;

x1 C x2 � 1200;

x1 � 500;

x1 � 0;

x2 D 0:

Clearly, the set of feasible solutions of this system is the line segment joining
the points 0 D .0; 0/T and .500; 0/T marked with a thick line in Fig. 4.9. This line
segment is a face of K of dimension 1, such a face of a convex polyhedron is called
an edge. �

The following theorem explains the role of faces in linear programming.

Theorem 4.1. The set of optimum solutions of a linear program is a face of its set
of feasible solutions.

Proof. The general LP can always be put in the following form that we consider:

Minimize z.x/ D cx

subject to Dx D d (4.5)

F x � g:

Let K denote the set of feasible solutions of this LP.
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If K D ; or if K ¤ ; but (4.5) has no optimum solution (this happens if z.x/ is
unbounded below on K), then the set of optimum solutions of this LP is ;, and by
definition this is a face of K . So, the theorem holds in these cases.

If c D 0, then every point in K has the same value for z.x/, hence the set of
optimum solutions of this LP is K itself, and by definition this is a face of K , so the
theorem holds in this case also.

So, we assume that c ¤ 0, and that (4.5) has an optimum solution. Let Nx 2 K

be an optimum solution of (4.5) and H D fx W cx D c Nxg. So, H \ K ¤ ; as it
contains Nx, and it is the set of optimum solutions of (4.5). Also, as Nx minimizes cx

on K , we have cx � c Nx for all x 2 K , so K is in the half-space fx W cx � c Nxg,
which is one side of the hyperplane H . Therefore, H is a supporting hyperplane for
K; and hence H \ K , the set of optimum solutions of (4.5), is a face of K . So, the
theorem holds in this case too. ut

For this reason, the set of optimum solutions of an LP is usually referred to as its
optimum face.

In the following sections we will discuss zero- and one-dimensional faces, which
are the main tools used by the simplex method to solve an LP.

4.6 Zero-Dimensional Faces, or Extreme Points,
or Basic Feasible Solutions (BFSs)

Let K be the convex polyhedron, which is the set of feasible solutions of

Dx D d;

F x � g; (4.6)

where any bound restrictions on individual variables are already included among
the inequality constraints in (4.6). There are several equivalent definitions for zero-
dimensional faces of K , and some of them call them by different names. We will
discuss these various definitions now.

Definition 4.1. Geometric Definition: A point Nx 2 K is said to be an extreme
point (also called corner point, or vertex, or zero-dimensional face) of K if it cannot
be expressed as a convex combination of two other distinct points in K; that is,
if x1; x2 2 K , and Nx D ˛x1 C .1 � ˛/x2 for some 0 < ˛ < 1 implies that
x1 D x2 D Nx.

Example 4.4. See the point Nx in the feasible solution set for the fertilizer problem
in Fig. 4.9. Verify that it satisfies the property stated in Definition 4.1, and hence is
an extreme point of this convex polyhedron. Verify that the other extreme points of
this convex polyhedron are .0; 0/T ; .500; 0/T ; .0; 1200/T , all marked with dots in
Fig. 4.9. �
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This geometric definition does not provide an efficient criterion to check whether
a given point in a higher-dimensional convex polyhedron is an extreme point. For
this we provide an algebraic definition next, in which extreme points are called basic
feasible solutions (BFSs).

Definition 4.2. Algebraic definition: BFS for a system of linear constraints:
Consider the general system of linear constraints (4.6) and let Nx be a feasible so-
lution for it. Let the active system at Nx be the system of active constraints at Nx
treated as a system of equations, denote it by (S). Nx is said to be a BFS for (4.6) iff
it is the unique solution for this active system at Nx (i.e., for (S)), or equivalently, iff
the set of column vectors of variables in this active system is linearly independent.

Definition: Nondegenerate, Degenerate BFSs: When Nx is a BFS of (4.6), it is said
to be a nondegenerate BFS if the active system (S) at Nx is a square system (i.e.,
number of equations in it D number of variables in it), and degenerate if the number
of equations in this active system is > number of variables in it.

Note 4.1. The classification into nondegenerate, degenerate solutions is defined
only for basic feasible solutions; it does not apply to feasible solutions that are not
BFSs.

Example 4.5. Consider the system of constraints in the fertilizer problem discussed
in Example 4.3, which we reproduce below.

2x1 C x2 � 1500;

x1 C x2 � 1200;

x1 � 500;

x1; x2 � 0;

and the feasible solution Nx D .300; 900/T for it. The first two constraints are the
only active constraints at Nx, and hence the active system at Nx is

2x1 C x2 D 1500;

x1 C x2 D 1200:

The set of column vectors of variables in this active system f.2; 1/T ; .1; 1/T g is
linearly independent, and hence Nx is the unique solution for it. So Nx is a BFS for this
system. Also, as the active system is a square system, Nx is a nondegenerate BFS for
this system.

In the same way, verify that all the solutions .500; 500/T ; .500; 0/T ; .0; 0/T ;

.0; 200/T are all nondegenerate BFSs of this system.
Now consider the feasible solution Qx D .200; 1000/T of this system. There is

only one active constraint, the second, at Qx. Hence the active system at Qx is

x1 C x2 D 1200:

This active system has many solutions, so Qx is not a BFS of this system. �
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Example 4.6. When the system of constraints is in the form

Ax D b; (4.7)

x � 0;

where A is an m � n matrix (in this system all the variables are nonnegative vari-
ables, and all other constraints are equality constraints), it is said to be in standard
form. Here is a numerical example given in detached coefficient tableau form.

x1 x2 x3 x4 x5

1 1 4 12 2 16
0 1 1 3 �4 4

xj � 0 for all j

The coefficient matrix for this system A is a 2 � 5 matrix, and the first two
constraints are equations. Consider the feasible solution x1 D .12; 4; 0; 0; 0/T for
this system. The active system at x1 is

x1 x2 x3 x4 x5

1 1 4 12 2 16
0 1 1 3 �4 4
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

As x1 is a solution of this active system, it is the unique solution iff the col-
umn vectors of the variables in this system is a linearly independent set. As the
bottom three rows of the coefficient matrix in this system are three different unit
vectors, this holds iff the column vectors in the remaining system after striking
off these three unit vectors and the columns of the “1” entries in them, that is,
 D f.1; 0/T ; .1; 1/T g, are linearly independent. Notice that  is the set of col-
umn vectors in A of the original system, of variables x1; x2, which are strictly
positive in x1. It is linearly independent. So, x1 is the unique solution of this active
system; hence x1 is a BFS of this system in standard form, and as the active system
is a square system, x1 is a nondegenerate BFS in this example.

Now, consider the feasible solution x2 D .0; 0; 1; 1; 0/T for this system. The
positive variables in this system are x3; x4. The active system at x2 is

x1 x2 x3 x4 x5

1 1 4 12 2 16
0 1 1 3 �4 4
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0



4.6 Zero-Dimensional Faces, or Extreme Points, or Basic Feasible Solutions (BFSs) 183

Again as the bottom three rows of the coefficient matrix in this system are three
different unit vectors, we see that the set of column vectors of variables in this active
system is linearly independent iff f.4; 1/T ; .12; 3/T g is. It is not. So, x2 is not
the unique solution for this active system, and hence is not a BFS of this system. �

We will now show that the two definitions, the geometric definition of an extreme
point and the algebraic definition of a BFS, are equivalent.

Theorem 4.2. Let K be the set of feasible solutions of the general system of linear
constraints

Dx D d; (4.8)

F x � g:

Then every extreme point of K by the Geometric Definition 4.1, is a BFS of (4.8)
by the Algebraic Definition 4.2, and vice versa.

Proof. Let Nx be a BFS of (4.8), that is, it satisfies the conditions for being a BFS
as stated in Definition 4.2. Among the inequality constraints in F x � g, put all
of them that Nx satisfies as equations together, suppose they form F1x � g1, and
let the remaining ones that Nx satisfies as strict inequalities form F2x � g2. So
.F1; F2/; .g1; g2/ are partitioned forms of F; g respectively.

So, the active system at Nx is

Dx D d; (4.9)

F1x D g1;

and as Nx is a BFS of (4.8), it is the unique solution for (4.9). Now suppose Nx can
be expressed as ˛x1 C .1 � ˛/x2, where x1; x2 2 K and 0 < ˛ < 1. From
this we see that if either of x1 or x2 satisfies any of the inequality constraints in
F1x � g1 as a strict inequality, then so does Nx, leading to a contradiction. So, both
x1; x2 must satisfy each of these constraints as equations, and hence both of them
must be feasible to (4.9). But Nx is the unique solution of (4.9), and this implies that
x1 D x2 D Nx; that is, Nx is an extreme point of K , that is, it satisfies the conditions
for being an extreme point as stated in Definition 4.1.

Now suppose Nx is an extreme point of K , that is, satisfies the conditions in Def-
inition 4.1. Suppose (4.9) is the active system at Nx. Let the remaining constraints in
(4.8) that Nx satisfies as strict inequalities form F2x � g2, so we have F2 Nx > g2.
Suppose Nx is not the unique solution for (4.9). As (4.9) is a system of linear equa-
tions, if its solution is not unique, the dimension of its set of solutions must be �1,
so there must be a whole straight line through Nx all points on which are feasible to
(4.9). Let the parametric representation of this straight line be fx W x D Nx C �a W �

takes all real valuesg, where a ¤ 0.
As Nx satisfies F2 Nx > g2, we can find an � > 0 such that F2. Nx C �a/ � g2

for all �� � � � �. Nx C �a already satisfies (4.9) for all � real. Therefore, we
conclude that both Nx � �a and Nx C �a are feasible to (4.8), and hence contained in
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K , and Nx D Œ. Nx � �a) + . Nx C �a/
=2. Also, as a ¤ 0, Nx � �a ¤ Nx C �a. Thus
we can express Nx as a convex combination of two distinct points of K , contradicting
the assumption that Nx is an extreme point. Hence, Nx must be the unique solution of
(4.9); that is, it is a BFS of (4.8). ut

The standard form system is defined and explained with the numerical example,
Example 4.6 above. In the following theorem we will specialize the definition of
BFS to a system in standard form.

Theorem 4.3. Simpler characterization of BFS of a system in standard form:
Let Nx D . Nxj / be a feasible solution for the system of constraints

Ax D b; (4.10)

x � 0

in standard form, where A is a matrix of order m � n. Then Nx is a BFS of (4.10)
iff fA:j W j such that Nxj > 0g is linearly independent.

Proof. Let r be the number of Nxj which are >0. Rearrange the variables in (4.10)
and in Nx, so that we have Nxj > 0 for j D 1 to r and Nxj D 0 for j D r C 1

to n. Let A1 be the m � r matrix with column vectors A:1; : : : ; A:r and let A2 be

the m � .n � r/ matrix with column vectors A:rC1; : : : ; A:n. Then .A1

:::A2/ is a
partitioned form of A.

As the constraints xj � 0 for j D r C 1 to n are all active at Nx, the active system
at Nx is the .m C n � r/ � n system

0
BB@

A1

::: A2

: : : : : :

0
::: I

1
CCA x D

0
@

b

: : :

0

1
A : (4.11)

Nx is a BFS of (4.10) iff it is the unique solution of (4.11), which holds iff the set
of column vectors in the coefficient matrix in (4.11) is linearly independent; that is,
iff the set of column vectors of A1 is linearly independent. And the set of column
vectors of A1 is the set of columns of A corresponding to positive Nxj . ut

4.6.1 Nondegenerate, Degenerate BFSs for Systems
in Standard Form

Consider the system (4.10) in standard form, where A is a matrix of order m � n

and rank m. Then from Theorem 4.3, the number of positive variables in any BFS
can be at most m.
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If Nx is a BFS of (4.10) in which the number of positive variables is m, then the
number of active constraints at Nx is m C .n � m/ D n; therefore, the active system
at Nx is a square system, and Nx is a nondegenerate BFS by definition.

If Nx is a BFS of (4.10) in which the number of positive variables is r < m, then
the number of active constraints at Nx is mC.n�r/ > n; therefore, Nx is a degenerate
BFS by definition.

Hence some LP books mention the following as definitions.
Nondegenerate, Degenerate BFSs of (4.10) in Standard Form: When the co-

efficient matrix A is of order m � n and rank m, a feasible solution Nx of (4.10) is
said to be:

� A BFS of (4.10) if fA:j W j such that Nxj > 0g is linearly independent
� Then it is a nondegenerate BFS if the number of positive Nxj D m, degenerate if

this number is < m.

4.6.2 Basic Vectors and Bases for a System in Standard Form

Consider the system in standard form

Ax D b; (4.12)

x � 0;

where A is a matrix of order m � n. If (4.12) is feasible and the rank of A is r < m,
then there are m � r redundant equality constraints in (4.12), and they can be iden-
tified through pivot steps and eliminated one by one without affecting the set of
feasible solutions of (4.12). So, without any loss of generality, we will assume that
A is of full row rank, that is, its rank is m.

The concepts of basic vector, basis are linear algebra concepts and apply to sys-
tems of linear equations only. So, in (4.12), they apply to the equality constraints
Ax D b.

A basic vector for (4.12) is a vector xB of m variables in (4.12) satisfying the
property that the set of column vectors A:j associated with them is linearly indepen-
dent. Given a basic vector xB for (4.12), variables in it are called 1st basic variable,
2nd basic variable, : : :, mth basic variable in the order in which they appear in this
vector, and the submatrix B of A consisting of column vectors of basic variables in
this order, a square submatrix of order m, is known as the basis associated with xB .

Let xD be the vector of nonbasic variables (i.e., those not in xB ) and D the m �
.n � m/ matrix of column vectors A:j associated with them. Then after rearranging
the variables, (4.12) can be written in detached coefficient tableau form as

Basic Nonbasic
xB xD RHS
B D b

all variables � 0
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The basic solution of (4.12) wrt the basic vector xB is obtained by fixing each
nonbasic variable at its lower bound 0, and then using the remaining equations to
solve for the values of the basic variables to satisfy the equality constraints. It is

Nonbasic vector xD D 0; (4.13)

Basic vector xB D B�1b:

Also, xB ; B are said to be

Feasible basic vector, feasible basis if the basic solution is feasible to (4.12) (i.e., if
B�1b � 0), then this basic solution is called a basic feasible solution or BFS

Infeasible basic vector, infeasible basis otherwise

Nondegenerate if all the entries in B�1b are nonzero

Degenerate if at least one entry in B�1b is 0

It can be verified that these definitions of nondegenerate, degenerate BFSs agree
with the definitions mentioned earlier.

If Nx D . Nxj / is a nondegenerate BFS for (4.12), there are exactly m positive Nxj in
it, so Nx is the basic solution corresponding to the unique basic vector xB D .xj W j

such that Nxj > 0/. Thus each nondegenerate BFS of (4.12) corresponds to a unique
basic vector defined by the vector of positive variables in it.

On the other hand, if Nx D . Nxj / is a degenerate BFS of (4.12), the vector  D
.xj W j such that Nxj > 0/ does not have enough number of variables to constitute a
basic vector for (4.12). If  has r variables in it, it is necessary to add m�r variables
associated with 0-values of Nxj to  (while keeping linear independence of column
vectors associated with them) to make it into a basic vector for (4.12). Usually these
.m � r/ additional variables can be selected in many different ways. That is why a
degenerate BFS is usually associated with many different basic vectors for (4.12).

Example 4.7. Consider the following system of constraints in standard form given
as a detached coefficient tableau.

x1 x2 x3 x4 x5 b

1 1 4 12 2 16
0 1 1 3 �4 4

xj � 0 for all j

Here m D 2 and rank of the coefficient matrix is 2, and so every basic vector
consists of two variables. The vector .x3; x4/ is not a basic vector for this system,
as their set of column vectors f.4; 1/T ; .12; 3/T g is linearly dependent.

The vector xB D .x1; x2/T is a basic vector, and the basic solution associated
with it Nx1 D .12; 4; 0; 0; 0/T is feasible, hence Nx1 is a BFS, and as both the basic
variables are positive in it, it is a nondegenerate BFS. So, xB is the unique basic
vector corresponding to it.

The solution Nx2 D .0; 0; 4; 0; 0/T is a degenerate BFS of this system. Verify
that .x1; x3/; .x2; x3/; .x3; x5/ are all the different basic vectors of the system
associated with it. �
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4.6.3 BFSs for Systems in Standard Form for Bounded Variables

The system of constraints in the standard form for bounded variable LPs is

Ax D b; (4.14)

`j � xj � uj ; j D 1; : : : ; n;

where A is an m � n matrix of rank m, and ` D .`j / < u D .uj /. Some of the `j

may be �1 or 0, some of the uj may be C1.
Let Nx D . Nxj / be a feasible solution of (4.14). For some j , Nxj may be `j (the

lower bound on xj , if it is finite), or uj (the upper bound on xj , if it is finite), or
satisfy `j < Nxj < uj .

For convenience in notation let us assume that the variables are rearranged so
that

Nxj D `j for j = 1 to r;

`j < Nxj < uj for j D r C 1 to r C s;

Nxj D uj for j D r C s C 1 to n:

Let A1 be the m � r submatrix of A consisting of its column vectors A:1 to A:r ;
A2 the m � s submatrix of A consisting of its column vectors A:rC1 to A:rCs; and
A3 the m � .n � r � s/ submatrix of A consisting of its column vectors A:rCsC1

to A:n. As the bound constraints xj � `j are active for j D 1 to r and the bound
constraints xj � uj are active for j D r C s C 1 to n, the active system at Nx in
partitioned form is 0

BBBBBBB@

A1

::: A2

::: A3

: : : : : : : : :

I
::: 0

::: 0

: : : : : : : : :

0
::: 0

::: I

1
CCCCCCCA

x D

0
BBBBB@

b

: : :

`0
: : :

u0

1
CCCCCA

;

where the I are unit matrices of appropriate orders, and `0 D .`1; : : : ; `r/T , u0 D
.urCsC1; : : : ; un/T . Clearly, the set of column vectors of the coefficient matrix of
this system is linearly independent iff the set of column vectors in the matrix A2 is
linearly independent. This leads to the following result.

Result 4.1. A feasible solution Nx D . Nxj / for the bounded variable system (4.14) is
a BFS iff fA:j W j such that `j < Nxj < uj g is linearly independent. ut

Also, if the number of j such that `j < Nxj < uj is less than m, the number of
active bound constraints will exceed n � m, and the number of constraints in the
active system at Nx will exceed n. This leads to the following result.
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Result 4.2. If Nx is a BFS of (4.14), it is a nondegenerate BFS iff the number of j

such that `j < Nxj < uj is equal to m. If this number is < m, Nx is a degenerate BFS
of (4.14). ut
Example 4.8. Consider the following system with coefficient matrix A of
order 3 � 7.

x1 x2 x3 x4 x5 x6 x7 b

1 �1 1 0 1 2 4 68
�1 1 1 1 2 4 2 77

1 2 1 1 2 2 �2 23

2 � xj � 10 for all j

Consider the feasible solution Nx D (2, 2, 3, 4, 5, 10, 10/T to this system. 2 <

Nxj < 10 holds for j D 3, 4, 5. However, the corresponding set of column vectors
of the coefficient matrix fA:3; A:4; A:5g D f.1; 1; 1/T ; .0; 1; 1/T ; .1; 2; 2/T g is
linearly dependent, so Nx is not a BFS.

Now consider the feasible solution Qx D (2, 2, 6, 7, 2, 10, 10/T . 2 < Qxj < 10

holds for j D 3, 4, and the corresponding set of column vectors fA:3; A:4g is
linearly independent. So Qx is a BFS for this system. But as the number of Qxj strictly
between the bounds is 2 < m is 3, Qx is a degenerate BFS for this system. �

4.7 Purification Routine for Deriving a BFSs from a Feasible
Solution for Systems in Standard Form

The Importance of the Purification Routine: It will be shown later that if an LP with
its constraints in standard form has an optimum solution, then it also has an optimum
solution which is a BFS for it. The first successful method for solving LPs on a
commercial scale is one of the variants of the simplex method, and it always obtains
an optimum BFS when optimum solutions exist. Variants of the simplex method
have remained as the only commercially viable algorithms for solving LPs for a
very long time, and in this time, practitioners have learnt the subtle advantages of
optimum BFSs for practical implementation over other types of optimum solutions
when they exist.

Recently, newer methods called interior point methods have emerged as rea-
sonable competitors of the simplex method, particularly for large-scale sparse LP
models. When alternate optimum solutions exist, these interior point methods do
not normally converge to an optimum BFS. At that time the purification rou-
tine, which can obtain a BFS from a feasible solution, and an optimum BFS
from an optimum feasible solution, has become very prominent. So, good knowl-
edge of this routine, and how it works, is very important for anyone studying LP
today.
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Also, the main technique used in the purification routine is a fundamental
technique used in proving many important theoretical results on convex polyhedra.
Therefore, mathematically, the purification routine is a very important and useful
technique.

What is the reason for the name of this procedure? Purification routine is the
name of the procedure for finding a BFS from a feasible solution for a system of
linear constraints. In this section we discuss the version of it used for systems in
standard form. The name comes from a chemical analogy. Usually, each substance in
nature is a mixture of various individual compounds. In chemistry, “purification” is
the name used for a process that separates a specific compound from such a mixture.

By the results stated in Sect. 4.13, it can be shown that if the set of feasible
solutions of the system is bounded, then every feasible solution Nx, is a convex com-
bination of basic feasible solutions (or extreme point solutions) of the system. So,
from the chemical analogy, we can view Nx as a “mixture” of these BFSs, and hence
call the procedure for isolating one BFS from this mixture as “purification routine.”

4.7.1 The Main Strategy of the Purification Routine

Let the LP under consideration be

Minimize cx

subject to Ax D b (4.15)

x � 0;

where A is a matrix of order m � n and rank m. Suppose we are starting with a
feasible solution Nx D . Nxj / for (4.15), which has r variables > 0 in it, let

J D fj W Nxj > 0g:

The method checks the set of column vectors fA:j W j 2 J g for linear indepen-
dence. If it is linearly independent, Nx itself is a BFS, the method terminates.

Otherwise, Nx is not a BFS. The number of inactive constraints in (4.15) at the
feasible solution Nx is r (because Nx satisfies the constraint xj � 0 for each j 2 J as a
strict inequality), and so the system of active constraints in (4.15) at Nx is mC.n�r/;
these active constraints define the active system at Nx to be

Ax D b; (4.16)

xj D 0: for j 62 J

As Nx is not a BFS, this system has alternate solutions, and so to move from this
active system corresponding to Nx into another corresponding to a different feasible
solution, say Ox, which will have a unique solution, we need to make sure that the
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active system at Ox has additional equality constraints than those in (4.16); that is,
besides the variables xj for j 2 f1; : : : ; ngnJ , Ox must make some of the variables
xj for j 2 J equal to 0 also.

Another way of looking at this is the following: Nx is not a BFS because the set
fA:j W j such that Nxj > 0g is linearly dependent. So, to move from Nx into another
feasible solution Ox, which is closer to being a BFS than Nx, we should make sure that
the set fA:j W j such that Oxj > 0g is a proper subset of fA:j W j such that Nxj > 0g;
that is, while keeping all the variables xj for j 2 f1; : : : ; ngnJ at 0, Ox must make
one or more variables xj for j 2 J equal to 0 also.

That is why each step in the purification procedure moves from the current fea-
sible solution into another at which the set fj W xj > 0 in the solutiong becomes a
strictly smaller set.

When we check whether the set fA:j W j such that Nxj > 0g is linearly indepen-
dent; if it is not, that procedure will produce a linear dependence relation for this set
of vectors; that is, a vector .˛j W j 2 J / ¤ 0 such that

P
j 2J ˛j A:j D 0. Using this

linear dependence relation, the purification routine produces a new feasible solution
Qx in which the number of variables with positive values is � .r � 1/ and the whole
process is repeated with Qx.

So, the routine has to terminate with a BFS after no more than r of these steps.
Next we provide the details of the routine.

Let K denote the set of feasible solutions of (4.15). Geometrically, a step of the
purification routine applied on a point Nx contained in a face F of dimension d > 0

of K leads to a point Qx lying in a face of dimension � d � 1 of K (and also of F ).

4.7.2 General Step in the Purification Routine

Let Nx D . Nxj / be the current feasible solution, and J D fj W Nxj > 0g. Suppose
jJ j D r .

Check fA:j W j 2 J g for linear independence. Any of the available algorithms
for this can be used, but if this set is not linearly independent, the algorithm must
produce a linear dependence relation for the set. See Murty (2004) of Chap. 1 for an
algorithm, and this algorithm is illustrated in Example 4.10 given below.

If fA:j W j 2 J g is linear independent, Nx is a BFS, terminate. Otherwise, let

X
j 2J

˛j A:j D 0 (4.17)

be the linear dependence relation obtained, where .˛j W j 2 J / ¤ 0. As Nx D . Nxj /

is feasible to (4.15) and Nxj D 0 for all j 62 J , we have

X
j 2J

Nxj A:j D b: (4.18)
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Multiplying (4.17) by a parameter � and adding to (4.18) we get

X
j 2J

. Nxj C �˛j /A:j D b: (4.19)

So, if we define the vector x.�) D .xj .�//, where xj .�/ D Nxj C�˛j for j 2 J ,
0 otherwise, then x.�/ satisfies the system of equations Ax D b. We know that
Nxj > 0 for all j 2 J . But in the linear dependence relation (4.17), ˛j may have any
sign. For xj .�/ D Nxj C �˛j to be � 0

if ˛j < 0 we need � � �Nxj =˛j ,

if ˛j > 0 we need � � �Nxj =˛j .

So, for x.�/ to satisfy the nonnegativity constraints

� must be � �Nxj =˛j for all j such that ˛j < 0, i.e., � must be � minimumf�Nxj =˛j W j

such that ˛j < 0g.

� must be � �Nxj =˛j for all j such that ˛j > 0, i.e., � must be � maximumf�Nxj =˛j W j

such that ˛j > 0g.

We will now consider three separate cases.

Case 4.1. The vector .˛j W j 2 J / has both positive and negative quantities.

In this case define

�1 D maxf� Nxj =˛j W j such that ˛j > 0g;
�2 D minf� Nxj =˛j W j such that ˛j < 0g;

and verify that both �1; �2 are finite, �1 < 0 and �2 > 0, so we have �1 < �2, and
for all �1 � � � �2, x.�/ will be feasible to (4.15). Also, verify that

Nx D Œ.��1/=.�2 � �1/
x.�2/ C Œ.�2/=.�2 � �1/
x.�1/:

So, if ˛ D .��1/=.�2 � �1/, then it can be verified that 0 < ˛ < 1, and that the
above expression becomes Nx D ˛x.�1/C.1�˛/x.�2/, that is, it expresses the initial
feasible solution Nx as a convex combination of two feasible solutions x.�1/; x.�2/.
Also, for any t D 1 or 2, it can be verified that xj .�t / D 0 for the index j that
ties for the maximum (or minimum) in the definition of �t above. Therefore, each
of x.�1/; x.�2/ is a feasible solution of (4.15) in which the number of positive
variables is � .r � 1/. So, we have the following result in this case.

Result 4.3. From this one step in the purification procedure, in this case when the
coefficient vector obtained for the linear dependence relation has components of
both signs, we get an expression for the feasible solution Nx with r positive variables
in it at the beginning of this step, as a convex combination of two distinct feasible
solutions, in each of which the number of positive variables is � .r � 1/. ut
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Case 4.2. The vector .˛j W j 2 J / � 0, but not 0.

In this case define �1 as under Case 1, verify that it is finite and <0. Here, x.�/

will be feasible to (4.15) for all � � �1.
Define the vector y D .yj/ 2 Rn by yj D 0 for j 62 J and yj D ˛j for

j 2 J . So, y � 0, and as
P

j 2J ˛j A:j D 0, we have Ay D 0. So, y satisfies
Ay D 0; y � 0; such vectors y are called homogeneous solutions corresponding
to the original system (4.15).

The homogeneous system corresponding to (4.15) is obtained by changing
the variable names in (4.15) from x to a different symbol like y (mainly to keep
the distinction between the two systems), and then changing all the RHS constants
to 0. So, this homogeneous system corresponding to (4.15) is Ay D 0; y � 0.
Feasible solutions of the homogeneous system are called homogeneous solutions
corresponding to the original system (4.15). See Sect. 4.13 for a full discussion.

In this case, verify that Nx D x.�1/ C .��1/y, and that the number of positive
variables in x.�1/ is � .r � 1/.

Case 4.3. The vector .˛j W j 2 J / � 0, but not 0.

In this case define �2 as under Case 1, and verify that it is finite and >0. Here,
x.�/ will be feasible to (4.15) for all � � �2.

Define the vector y D .yj / 2 Rn by yj D 0 for j 62 J and yj D �˛j for
j 2 J . So, y � 0, and as

P
j 2J ˛j A:j D 0, we have Ay D 0. So, here this y is a

homogeneous solutions corresponding to the original system (4.15).
In this case, verify that Nx D x.�2/ C .�2/y, and that the number of positive

variables in x.�2/ is � .r � 1/. From Cases 2 and 3, we have the following result.

Result 4.4. From this one step in the purification procedure, in these cases when the
coefficient vector obtained for the linear dependence relation has all components
of the same sign, we get an expression for the feasible solution Nx with r positive
variables in it at the beginning of this step, as the sum of a feasible solution in
which the number of positive variables is � .r � 1/, and a positive multiple of a
homogeneous solution corresponding to the original system. ut

As .˛j W j 2 J / ¤ 0, at least one among �1, �2 given above is finite. If �1 [�2]
is finite, verify that xj .�1/ [xj .�2/] will be 0 for the j that attains the maximum
[minimum] in the definition of �1 [�2]. So, define N� to be one among �1 or �2,
whichever is finite, then x. N�/ is a feasible solution of (4.15) in which the number of
positive variables is � .r � 1/.

The purification routine repeats this general step with x. N�/ as the new feasible
solution.

As the number of positive variables in the current feasible solution decreases by
one or more in each step, the routine should terminate in at most r (r is the number
of positive variables in the initial feasible solution) steps with a BFS.

Note 4.2. Results 4.3 and 4.4 are very useful to prove fundamental results known
as resolutions theorems for convex polyhedra; that is why we derived their com-
plete statements here. These resolution theorems are given as Exercises 4.4 and 4.5;
they can be proved easily by mathematical induction using a purification step and
Results 4.3 and 4.4.
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Example 4.9. Computing the bounds �1; �2 in purification: Here we will illus-
trate the computation of the bounds for � to keep x.�/ nonnegative in purification.
Three separate cases are discussed corresponding to the signs of the coefficients of
� in x.�/.

Case 4.4. Suppose x.�/ D .6; 27; 40; 16; 21; 56; 65; 80/T C �.�2; �3; �5; 0; 3; 7;

5; 10/T . Here the coefficients of � in x.�/ take both positive and negative values.

For x1.�/ D 6 � 2� to be �0, we need � � 6=2. In the same way, to
keep all of 6 � 2�; 27 � 3�; 40 � 5� � 0, the parameter � should be � �2 D
minf6=2; 27=3; 40=5g D 3.

For x5.�/ D 21 C 3� to be �0, we need � � �21=3. In the same way, to keep
all of 21 C 3�; 56 C 7�; 65 C 5�; 80 C 10� � 0, the parameter � should be � �1

D maxf�21=3; �56=7; �65=5; �80=10g D �7.
So, x.�/ � 0 for all �7 � � � 3. Also notice that while xj .0/ > 0, xj .�7/ D 0

for j D 5, the index that attains the max in the definition of �1. Similarly, xj .3/ D 0

for j D 1, the index that attains the min in the definition of �2. Thus the number of
positive components in each of x.�1/, x.�2/ is � �1 C (the corresponding number
in x.0/). Also, verify that in this case the initial feasible solution x.0/ D 0:7x.3/C
0:3x.�7/ verifying Result 4.3.

Case 4.5. Suppose x.�/ D .20; 36; 50; 34; 6; 8/T C �.�2; �6; �5; �2; 0; 0/T . As
in Case 4.4, because all the coefficients of � are �0, we see that x.�/ � 0 if � �
minf20=2; 36=6; 50=5; 34=2g D �2 D 6. Also verify that x.6/ has one less positive
component than x.0/.

Also, in this case the homogeneous solution defined in Result 4.2 is y D
.2; 6; 5; 2; 0; 0/T and the initial feasible solution x.0/ D x.6/ C 6y.

Case 4.6. Suppose x.�/ D .11; 13; 30; 40; 6; 18/T C �.0; 0; 10; 20; 1; 9/T . As in
Case 4.4, because all the coefficients of � are �0, we see that x.�/ � 0 if � �
maxf�30=10; �40=20; �6=1; �18=9g D �1 D �2. Also verify that x.�2/ has two
less positive component than x.0/.

Also, in this case the homogeneous solution defined in Result 4.4 is y D .0; 0; 10;

20; 1; 9/T and the initial feasible solution x.0/ D x.�2/ C 2y. �

Example 4.10. Here we give an illustration of the purification routine. Consider the
feasible solution Nx D .1; 2; 10; 3; 0; 0/T of the following system in standard form:

x1 x2 x3 x4 x5 x6 b

1 0 1 �3 �6 12 2
�1 2 1 �1 17 18 10

0 1 1 �2 8 �5 6
0 1 1 �2 �9 �6 6

xj � 0 for all j
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Let A denote the 4 � 6 coefficient matrix for this system. The set of indices of
positive components in Nx is J D f1; 2; 3; 4g.

We need to check if the set of column vectors fA:1; A:2; A:3; A:4g is linearly
independent. We will use the method discussed in Murty (2004) of Chap. 1 for this.

This method can be applied to check the linear independence of either a set of
row vectors or a set of column vectors. However, as the method is based on row
operations, it requires that we write each vector in the set as a row vector (even if
the original vectors are column vectors) in a tableau. Then put a memory matrix
(a full unit matrix) on the left side of this tableau, and label the columns of the
memory matrix with the labels for the elements in the set in the same order in which
they appear as rows in the tableau. Here is the initial tableau with the memory matrix
on the left.

A:1 A:2 A:3 A:4

PC

1 0 0 0 1 �1 0 0 PR
0 1 0 0 0 2 1 1
0 0 1 0 1 1 1 1
0 0 0 1 �3 �1 �2 �2

Now perform a GJ pivot step in each row of the tableau one after the other. If all
these pivot steps are carried out, the original set of vectors is linearly independent,
terminate.

If the pivot step in a row cannot be carried out because there is no nonzero entry
in that row, the vector in that row in the memory matrix at that time gives the coeffi-
cients in a linear dependence relation for the set. On our tableau, we will perform the
pivot steps in top to bottom order, so we select row 1 as the pivot row (PR) and the
first column in the tableau as the pivot column (PC). PR and PC indicate the pivot
row and pivot column, respectively, for the pivot step performed in a tableau, and
the pivot element will be boxed. Continuing, we get the following series of tableaus.

Memory matrix
PC

1 0 0 0 1 �1 0 0

0 1 0 0 0 2 1 1 PR
�1 0 1 0 0 2 1 1

3 0 0 1 0 �4 �2 �2

1 0 0 0 1 �1 0 0
0 1 0 0 0 2 1 1

�1 �1 1 0 0 0 0 0
3 2 0 1 0 0 0 0

The updated third row in the tableau has no nonzero element, so we conclude that
the set fA:1; A:2; A:3; A:4g is linearly dependent and .�1; �1; 1; 0/ is the vector
of coefficients in a linear dependence relation. So the linear dependence relation is
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�A:1 �A:2 CA:3 D 0. And from the feasibility of Nx we have A:1 C2A:2 C10A:3 C
3A:4 D b. Using these two equations, we get

.1 � �/A:1 C .2 � �/A:2 C .10 C �/A:3 C 3A:4 D b;

where � is a parameter. This shows that x.�/ D .1 � �; 2 � �; 10 C �; 3; 0; 0/T

satisfies the equality constraints in the original system. Computing the bounds for
the parameter � to keep x.�/ � 0, we get �1 D maxf�10=1g D �10, �2 D
minf1=1; 2=1g D 1. So, x.�/ � 0, and hence feasible for the original system,
for all �10 � � � 1.

Fixing � at one of the bounds, �2 D 1 say, we get the new feasible solution
Qx D x.1/ D .0; 1; 11; 3; 0; 0/T for the original system with the new index set of
positive variables to be f2; 3; 4g.

Verify that the set of indices of variables positive at Qx is f2; 3; 4g, which is a
proper subset of the corresponding set f1; 2; 3; 4g for the feasible solution Nx we
started with.

So, now we need to check the set fA:2; A:3; A:4g for linear independence, to
check whether Qx is a BFS. For this we use the same method as before, and get the
following series of tableaus.

Memory matrix
A:2 A:3 A:4

PC

1 0 0 0 2 1 1 PR
0 1 0 1 1 1 1
0 0 1 �3 �1 �2 �2

PC
1 0 0 0 2 1 1

�1 1 0 1 �1 0 0 PR
2 0 1 �3 3 0 0
1 0 0 0 2 1 1

�1 1 0 1 �1 0 0
�1 3 1 0 0 0 0

As the updated row 3 has no nonzero entry, we know that fA:2; A:3; A:4g is
linearly dependent, hence Qx is not a BFS too. The linear dependence relation here is
�A:2 C 3A:3 C A:4 D 0. Also, as Qx is feasible, we have A:2 C 11A:3 C 3A:4 D b.
Combining these two equations we get

.1 � �/A:2 C .11 C 3�/A:3 C .3 C �/A:4 D b;

where � is a parameter, that is, x.�/ D .0; 1 � �; 11 C 3�; 3 C �; 0; 0/T satisfies
the system of equality constraints in the original system. Computing the bounds, we
see that x.�/ � 0 and hence feasible for the original system for all �3 � � � 1.
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Fixing � at one of the bounds, �3 say, we get the new feasible solution Ox D
x.�3/ D .0; 4; 2; 0; 0; 0/T for the original system with the new index set of positive
variables to be f2; 3g. It can be verified that the set fA:2; A:3g is linearly indepen-
dent. So, Ox is a BFS of the original system. As the number of positive components
in it is 2 < m D 4 D number of equality constraints in the system, and as the coeffi-
cient matrix of this system can be verified to be of full row rank, this is a degenerate
BFS. �

Summary

We discussed the purification routine for obtaining a BFS from a feasible solution
to a system in standard form. The method can easily be adopted to systems in other
forms, using the definition of BFSs for a general system given in Sect. 4.5. We will
give an example to illustrate this point.

4.7.3 Purification Routine for Systems in Symmetric Form

Ax � b; (4.20)

x � 0:

Adopting the purification routine to the system (4.20) in which all constraints are
inequalities, and all the variables are nonnegative variables (known as the system
in symmetric form, the reason for this name is explained in the duality Chap. 5)
is particularly easy. Suppose A is of order m � n. Introduce slack variables and
convert all the inequality constraints into equations, obtaining the following system
in standard form.

Ax � I s D b; (4.21)

x; s � 0;

where I is the unit matrix of order m and s D .s1; : : : ; sm/T is the slack vector. If Nx
is a feasible solution for (4.20), then . Nx; Ns D A Nx �b/ is a feasible solution for (4.21)
and vice versa. Also from the definition for the BFS of a general system given in
Sect. 4.6, it can be verified that Nx is a BFS for (4.20) iff . Nx; Ns D A Nx � b/ is a BFS
for (4.21) and vice versa. And Nx is a nondegenerate (degenerate) BFS for (4.20) iff
. Nx; Ns D A Nx � b/ is a nondegenerate (degenerate) BFS for (4.21).

If Nx is a feasible solution to (4.20), which is not a BFS, apply the purification
routine described above for systems in standard form to obtain a BFS for (4.21)
beginning with the feasible solution . Nx; Ns D A Nx � b/ for it. If . Ox; Os D A Ox � b/ is
the BFS for (4.21) that has been obtained in this routine, then Ox is a BFS for (4.20).
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Example 4.11. Consider the feasible solution Nx D . Nx1; Nx2/T D .1=3; 4=3/T for
the system (4.22) in variables x1; x2, which is in symmetric and not standard form.
We will check whether it is a BFS, and if not, obtain a BFS from it. After the orig-
inal system, we give the system in standard form obtained by introducing the slack
variables x3; x4; x5.

x1 C 2x2 � 2;

2x1 C x2 � 2; (4.22)

�x1 C x2 � 2;

x1; x2 � 0:

x1 C 2x2 � x3 D 2;

2x1 C x2 � x4 D 2; (4.23)

�x1 C x2 C x5 D 2;

x1; : : : ; x5 � 0:

To avoid confusion, we will denote solutions of (4.23) by X D .x1; x2; x3;

x4; x5/T . As x3 D x1 C 2x2 � 2, etc., the feasible solution Nx D .1=3; 4=3/T for
(4.22) corresponds to NX D .1=3; 4=3; 1; 0; 1/T . The index set of positive compo-
nents in NX is f1; 2; 3; 5g, and the set of column vectors in (4.23) of corresponding
variables is f.1; 2; �1/T ; .2; 1; 1/T ; .�1; 0; 0/T ; .0; 0; 1/T g D fA:1; A:2; A:3; A:5g
say. It can be verified that a linear dependence relation for this set is

A:1 � 2A:2 � 3A:3 C 3A:5 D 0:

From the feasible solution NX we get

.1=3/A:1 C .4=3/A:2 C A:3 C A:5 D b;

where b denotes the RHS vector in (4.23). Combining these equations we get

.� C .1=3//A:1 C .�2� C .4=3//A:2 C .�3� C 1/A:3 C .3� C 1/A:5 D b

So, the solution X.�/ D ..� C .1=3//; .�2� C .4=3//; .�3� C1/; 0; 3� C1/T

satisfies the equality constraints in (4.23). It is also nonnegative if �1 D .�1=3/ �
� � .1=3/ D �2.

By putting � D .�1=3/, we get X.�1=3/ D X1 D .0; 2; 2; 0; 0/T , which is a
BFS of (4.23), and this corresponds to the BFS x1 D .0; 2/T of (4.22).

By fixing � D .1=3/, we get X.1=3/ D X2 D .2=3; 2=3; 0; 0; 2/T , which is a
BFS of (4.23), and this corresponds to the BFS x2 D .2=3; 2=3/T of (4.22).

In Fig. 4.10, we show the feasible solution for (4.22) and the various points ob-
tained during this routine. The initial feasible solution Nx is not a BFS (i.e., extreme
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point solution). After one application of the purification routine, we move to one of
the BFSs x1 or x2 depending on whether the parameter � is fixed at its lower bound
�1 or upper bound �2. �

We will now derive an important property of the purification routine for LP, and
use it to derive some fundamental results for LP in standard form.

Theorem 4.4. Consider the LP in standard form

Minimize z.x/ D cx

Ax D b (4.24)

x � 0;

where A is a matrix of order m � n. Let Nx be an optimum solution for this LP, which
is not a BFS. Then all solutions obtained in the purification routine beginning with
Nx to obtain a BFS for (4.24) will also be optimum solutions of (4.24).

Proof. Suppose Nx has r positive components. For notational convenience, assume
that the variables in (4.24) have been rearranged so that Nx1; : : : ; Nxr are all >0 and
NxrC1; : : : ; Nxn are all D 0. So

Nx1A:1 C : : : C NxrA:r D b
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and z. Nx/ D Nz D c1 Nx1 C � � � C cr Nxr is the optimum objective value in (4.24). If
fA:1; : : : ; A:rg is linearly dependent, let a linear dependence relation for it be

˛1A:1 C � � � C ˛rA:r D 0;

where .˛1; : : : ; ˛r / ¤ 0. Define ˛rC1 D � � � D ˛n D 0 and let ˛ D .˛1; : : : ; ˛n/T .
Then the new solution obtained by the purification routine in this step is

x.�/ D Nx C �˛ D . Nx1 C �˛1; : : : ; Nxr C �˛r ; 0; : : : ; 0/T :

Since Nx1; : : : ; Nxr are all >0, x.�/ will remain nonnegative and hence feasible to
(4.24) for all �� � � � C� when � is a sufficiently small positive number.

The objective value at x.�/, z.x.�// D c. Nx C �˛/ D c Nx C �c˛.
If c˛ > 0, then z.x.��// D c Nx � �.c˛/ < c Nx, and as x.��/ is feasible to

(4.24), this contradicts the optimality of Nx. Similarly, if c˛ < 0, then z.x.�// D
c Nx � �.c˛/ < c Nx, again there is a contradiction to the optimality of Nx. So, under the
hypothesis that Nx is optimal to (4.24), c˛ must be D 0.

Therefore, for all �, z.x.�// D c Nx, that is, if x.�/ is feasible to (4.24), it is also
optimal; that is, all new solutions obtained by the purification routine are also opti-
mal. The same argument continues to hold for all steps of the purification routine.

ut
Theorem 4.5. If an LP in standard form has a feasible solution, then it has a BFS.

Proof. Starting from a feasible solution Nx for it, you can apply the purification rou-
tine to get a BFS for it. ut
Theorem 4.6. If an LP in standard form has a optimum feasible solution, then it
has a BFS which is also optimal.

Proof. Starting from a optimum feasible solution Nx, by Theorem 4.4, a BFS which
is optimal can be obtained by applying the purification routine. ut
Note 4.3. The results stated in Theorems 4.5 and 4.6 are stated in terms of LPs in
standard form, because in general these results may not be true. The results may fail
to hold because an LP with constraints in general form may not have a BFS at all.
For example, consider the following LP in two variables x1; x2.

Minimize 6x1

subject to x1 � 0

x2 unrestricted:

The set of feasible solutions of this LP is a half-space in R2 that has no BFSs and
hence no optimal BFSs.

But in practice, LPs in standard form and bounded variable LPs are the most
important. The results in these theorems hold well.
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Exercises

4.7.1. Suppose Nx is a feasible solution to the general system of linear constraints
given below. Generalize the purification method discussed above to find a BFS
of this system if one exists, or determine that the system has no BFSs, beginning
with Nx.

Dx D d;

F x � g:

4.7.2. Verify that Nx D .4; 6; 2; 8/T is a feasible solution to the following system
of constraints. Check whether it is a BFS. If not, apply purification to get a BFS
from it.

x1 x2 x3 x4 RHS
1 �1 2 0 D 2
2 1 1 3 �40
2 �1 3 1 �16
1 1 0 2 �26
1 2 0 0 �6

x1; x2 � 2; x3; x4 � 0

4.7.3. Check whether Nx D .4; 4; 4; 4; 5; 0; 0/T is a BFS for the following bounded
variable system. If it is not, obtain a BFS from it using purification.

x1 x2 x3 x4 x5 x6 x7 RHS
1 0 1 1 1 3 5 D17
2 0 2 2 1 6 �7 D29
0 2 �2 2 1 8 �2 D13
0 1 �1 1 1 �3 1 D9

0 � xj � 5 for all j

4.7.4. For the following system, check whether the solution Nx D .5; 5; 5; 5; 0; 0; 0/T

is feasible. If so, obtain a BFS from it if it is not already.

x1 x2 x3 x4 x5 x6 x7 RHS
1 2 1 3 1 �1 2 D35
2 0 �2 2 2 1 �1 D10
1 1 0 2 �1 1 2 D20
0 1 1 1 1 2 �1 D15

xj � 0 for all j

4.7.5. For the LP given below, Nx D .1; 2; 3; 4; 5; 0; 0/T is known to be an optimum
feasible solution. Obtain an optimum BFS for it.
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Minimize z.x/ D x1 C x2 C x3 C 2x4 C 2x5 C 2x6 C 4x7

subject to x1 C x2 C 2x4 C x5 C x7 D 16

x2 C x3 C x4 C 2x5 C 5x7 D 19

x1 C x3 C x4 C x5 C 2x6 C 2x7 D 13

xj � 0 for all j:

4.7.6. For each of the following systems in standard form, check whether the feasible
solutions given are extreme point solutions or not. If not, starting from each of them,
obtain an extreme point solution of the system. All xj � 0 in each system.

x1 x2 x3 x4 x5 x6 x7 x8 x9 b

1 1 �2 0 3 1 0 0 0 9
0 �1 0 �1 �1 0 1 0 0 �6

0 0 1 1 �1 0 0 1 0 1
1 �1 2 2 �3 0 0 0 1 1
2 �1 1 2 �2 1 1 1 1 5

Feasible sol. .3; 2; 1; 2; 2; 0; 0; 0; 0/T .

x1 x2 x3 x4 x5 x6 b

1 �1 2 2 2 �1 �7
�1 2 �1 0 2 �1 D0

1 2 2 1 2 �1 �12
�1 2 2 2 �1 �1 �11

Feasible sol. .1; 2; 3; 0; 0; 0/T .
Feasible sol. .1; 2; 3; 1; 0; 0/T .

x1 x2 x3 x4 x5 x6 b

0 �1 1 3 8 �7 2
1 0 1 0 9 11 14
1 �1 0 �1 12 2 �4

�1 2 �1 �2 3 8 2

Feasible sol. Nx D .8; 10; 6; 2; 0; 0/T .

4.7.7. (1) Let  denote the set of feasible solutions of the following system of con-
straints. Check whether Nx D .10; 15; 25/T is an extreme point of � .

x1 C2x2 +x3 D 65,
x1 C3x2 �x3 � �10,

�x1 C2x2 � 40,
2x2 Cx3 � 55,

x1 � 10,
x1 C2x2 C2x3 � 70,
x1, x2; x3 � 0.
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(2) Consider the feasible solution Nx D .3; 4; 6; 5; 0; 0; 0/T to the following LP.
Compute the objective function value Nz at Nx. Check whether Nx is an extreme
point of the set of feasible solutions to this LP. Why?

If Nx is not an extreme point solution for the problem, find an extreme point so-
lution from Nx, making sure that in each step of your method the objective value
decreases.

x1 x2 x3 x4 x5 x6 x7 �z b

1 1 �1 1 2 �3 1 0 6
�1 �2 5 �4 �3 4 �2 0 �1

1 2 �5 4 7 0 �3 0 1
�1 2 �11 8 0 8 3 0 �21

2 �2 �4 3 0 7 4 1 0

xj � 0 for all j , min z

4.7.8. Check whether Nx D (9, 2, 8, 1, 5, 0, 5/T is an extreme point solution of the
following system.

x1 x2 x3 x4 x5 x6 x7 �z b

1 0 0 0 �1 1 �1 0 �1

0 1 0 0 �1 �1 1 0 2
0 0 1 0 �1 0 �1 0 �2

0 0 0 1 0 1 1 0 6
�2 2 1 2 �4 2 6 1 0

min z; 0 � xj � 10 for j D 1 to 4;
0 � xj � 5 for j D 5, 6, 7

4.7.9. Is Nx D .7; 2; 5; 3/T an extreme point of the set of feasible solutions of the
following system?

x1 �x3 Cx4 � 5,
x2 �x4 � �1,

x1 �x2 Cx3 � 10,
x1 C2x2 �3x3 Cx4 � �1,

3x1 C2x2 �2x3 �x4 � 5,
x1 C3x2 C4x3 C2x4 � 50.

4.7.10. Let K denote the set of feasible solutions of the following system of con-
straints in standard form. Check whether Nx D .0; 10; 0; 15; 0; 5/T is an extreme
point of K . If it is not, find the smallest dimension face of K containing Nx, and
express it in parametric form.

x1 x2 x3 x4 x5 x6 b
3 1 �1 1 3 �2 15
7 0 5 1 �1 �1 10

�2 0 2 1 8 �1 10

xj � 0 for all j
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4.7.11. Consider the following system of equations.

x1 x2 x3 x4 x5 x6 x7

1 0 �1 1 �1 �2 12 5
0 1 1 2 2 3 7 26
1 1 0 3 1 1 �2 31
0 1 1 2 2 3 8 26

Verify that Nx D .10, 15, 2, 1, 2, 1, 0)T is a solution to this system of equations.
Starting from Nx, find a nonnegative solution to this system of equations in which the
number of positive components is �4, showing all your work.

4.7.12. (a) Consider the following system of linear equations in nonnegative vari-
ables. Check whether Nx D .8; 10; 6; 2; 0; 0/T is a BFS of this system. If Nx is not a
BFS, obtain a BFS from it showing all your work carefully.

x1 x2 x3 x4 x5 x6 RHS
0 �1 1 3 8 �7 2
1 0 1 0 9 11 14
1 �1 0 �1 12 2 �4

�1 2 �1 �2 3 8 2

xj � 0 for all j

(b) Let K denote the set of feasible solutions of the following system of linear
constraints. Verify that Nx D .2; 1; 3; 4; 2/T 2 K .

x1 x2 x3 x4 x5

1 0 0 0 1 D4
1 1 0 0 2 D7
0 1 1 0 2 �8
0 0 1 1 2 �11
0 0 0 1 1 �8
1 1 1 1 1 �30
2 �1 �1 �2 1 � �25

�1 �1 �1 1 1 �20

and xj � 0 for all j

Check whether Nx is an extreme point of K or not.
If Nx is not an extreme point of K , check whether it is contained on an edge of K ,

and if so obtain its parametric representation.
(c) Give the definition of a BFS (basic feasible solution) to the following general

system of linear constraints

Ai:x D bi ; i D 1; : : : ; m;

� bi ; i D m C 1; : : : ; m C p;
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where each Ai: is a row vector in Rn, and any bound restrictions on the variables
are already included among the inequality constraints. Prove that every BFS by
this definition is an extreme point of the set of feasible solutions by the geometric
definition of extreme points, and vice versa.

4.8 Edges, One-Dimensional Faces, Adjacency
of Extreme Points, Extreme Directions

Every one-dimensional face or edge of a convex polyhedron either has

� 2 extreme points on it
� Or 1 extreme point
� Or no extreme points on it

In the first case, the edge is the line segment joining the two extreme points on it,
which are themselves said to be an adjacent pair of extreme points. Such edges are
called bounded edges.

In the second case, the edge is a half-line called extreme half-line or unbounded
edge beginning at the extreme point on it. Its direction is said to be an extreme
direction for the convex polyhedron.

In the third case, the edge is an entire straight line. In LP applications, we mostly
meet the first two cases, that is why in this chapter we discuss only those two cases.

Definition 4.3. Geometric Definition of Adjacency: Two extreme points x1; x2

of a convex polyhedron K � Rn are adjacent if every point Nx on the line segment
joining them satisfies: if any pair of points x3; x4 2 K satisfy Nx D ˛x3 C .1�˛/x4

for some 0 < ˛ < 1, then x3 and x4 must both lie also on the line segment joining
x1 and x2.

Definition 4.4. Algebraic Definition of Adjacency: Let K be the set of feasible
solutions of

Dx D d; (4.25)

F x � g;

where the inequality constraints include all the bound restrictions on individual vari-
ables, if any. Let x1; x2 be two BFSs of (4.25), and let Nx be an interior point of the
line segment joining them (i.e., a point of the form ˛x1 C .1 � ˛/x2 for some
0 < ˛ < 1, e.g., Nx D .x1 C x2/=2). Let .S/ denote the active system at Nx, that is,
the system of all active constraints in (4.25) at Nx treated as a system of equations.
x1; x2 are adjacent extreme points of K iff the set of all solutions of .S/ is one-
dimensional, that is, it is the straight line joining x1; x2. This happens iff the rank
of the set of column vectors of the variables in .S/ is one less than its cardinality.
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Definition 4.5. Algebraic Definition of Adjacency for Systems in Standard
Form: Let K be the set of feasible solutions of the system in standard form

Ax D b; (4.26)

x � 0:

Let x1; x2 be two BFSs of (4.26). Let Nx be some point in the interior of the
line segment joining x1; x2 (i.e., a point of the form ˛x1 C .1 � ˛/x2 for some
0 < ˛ < 1, e.g., Nx D .x1 C x2/=2). Then, x1; x2 are adjacent on K iff the set of
column vectors fA:j W j such that Nxj > 0g is one less than its cardinality.

All these definitions can be proved to be equivalent to one another using argu-
ments very similar to those used in proving Theorems 4.2 and 4.3 in Sect. 4.6. These
definitions lead us to the following procedure.

4.8.1 How to Check if a Given Feasible Solution is on an Edge

Let Nx be a feasible solution of the general system (4.25). Obtain the active system
.S/ of (4.25) at Nx. If p D the rank of the set of column vectors of variables in .S/, is
D q D the number of column vectors in this set, then Nx is in fact an extreme point
and will definitely be contained on every edge through it.

If p D q � 1, then Nx is on an edge, it is an interior point of that edge, and the
extreme point(s) of this edge and its extreme direction, if any, can all be found by
finding the parametric representation of the straight line which is the set of solutions
of .S/, and the subset of this straight line that satisfies all the inactive inequality
constraints in (4.25) at Nx (this is very similar to finding the bounds for the parameter
� to keep the parametric solution feasible in the purification routine). If p � q�2, Nx
is not contained on any edge of the set of feasible solutions of (4.25).

For the system in standard form (4.26), the procedure is similar. Let Nx be a fea-
sible solution of (4.26) and let p D the rank of fA:j W j such that Nxj > 0g and
q D number of column vectors in this set. If p D q, Nx is a BFS of (4.26), and if
p D q � 1, Nx is an interior point of an edge; that edge and all the relevant informa-
tion about it can be found by applying one step of the purification routine beginning
with Nx. If p � q � 2, Nx is not contained on any edge of the set of feasible solutions
of (4.26).

Example 4.12. For the following system, is the feasible solution Nx D.5; 10; 3; 0; 0/T

on an edge?

x1 x2 x3 x4 x5 b

1 �1 �1 1 �2 �8

0 1 2 3 8 16
�1 1 1 8 �9 8

xj � 0 for all j
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The index set of positive components in Nx is J D f1; 2; 3g. Let A be the 3 � 5

coefficient matrix of this system, and denote its RHS vector by b. We need to find
the rank of fA:1; A:2; A:3g. We apply the method used earlier in Sect. 4.7. PC and
PR indicate pivot column and pivot row, respectively, and the pivot elements are
boxed.

As we have been able to carry out only two pivot steps, the rank of fA:1; A:2; A:3g
is 2, which is one less than the number of column vectors in this set, so Nx is on an
edge. To get the edge in parametric form, we apply one step of the purification rou-
tine. The linear dependence relation and the equation corresponding to the feasibility
of Nx are

Memory matrix
A:1 A:2 A:3

PC

1 0 0 1 0 �1 PR
0 1 0 �1 1 1
0 0 1 �1 2 1

PC
1 0 0 1 0 �1

1 1 0 0 1 0 PR
1 0 1 0 2 0
1 0 0 1 0 �1

1 1 0 0 1 0
�1 �2 1 0 0 0

�A:1 � 2A:2 C A:3 D 0

5A:1 C 10A:2 C 3A:3 D b

So, .5 � �/A:1 C .10 � 2�/A:2 C .3 C �/A:3 D b. Therefore, x.�/ D
.5 � �; 10 � 2�; 3 C �; 0; 0/T satisfies the equality constraints in the system,
x.�/ � 0 and is feasible to the system for all �1 D �3 � � � 5 D �2. So, one
parametric representation of the edge containing Nx is fx.�/ D .5��; 10�2�; 3C
�; 0; 0/T W �3 � � � 5g. In this representation Nx is obtained by fixing � D 0.

The points x.�3/ D .8; 16; 0; 0; 0/T and x.5/ D .0; 0; 8; 0; 0/T are the two
extreme points on this edge, so it is a bounded edge, which is the line segment
joining x.�3/ and x.5/. So, another parametric representation of this same edge is
f˛x.�3/C .1�˛/x.5/ D .˛.8; 16; 0; 0; 0/T C .1�˛/.0; 0; 8; 0; 0/T W 0 � ˛ � 1g.
In this representation, verify that you get Nx by setting ˛ D 5=8. �

Example 4.13. Check whether the feasible solution Nx D .2; 4; 8; 12; 0; 0/T of the
following system in standard form is on an edge.
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x1 x2 x3 x4 x5 x6 b

1 0 0 �1 1 17 �10

0 1 �1 0 2 18 �4

0 0 1 �1 3 19 �4

xj � 0 for all j

The index set of positive components in Nx is J D f1; 2; 3; 4g. Let A be the 3 � 6

coefficient matrix of this system, and denote its RHS vector by b. We need to find
the rank of fA:1; A:2; A:3; A:4g. We apply the method used earlier in Sect. 4.7. PC
and PR indicate pivot column and pivot row, respectively, and the pivot elements are
boxed.

Memory matrix
A:1 A:2 A:3 A:4

PC
1 0 0 0 1 0 0 PR
0 1 0 0 0 1 0
0 0 1 0 0 �1 1
0 0 0 1 �1 0 �1

PC
1 0 0 0 1 0 0

0 1 0 0 0 1 0 PR
0 0 1 0 0 �1 1
1 0 0 1 0 0 �1

PC
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 0 1 PR
1 0 0 1 0 0 �1

1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 0 1
1 1 1 1 0 0 0

So the rank of fA:1; A:2; A:3; A:4g is 3, which is one less than the number of
elements in it; so Nx is on an edge. Applying one step of purification, we have

A:1 C A:2 C A:3 C A:4 D 0;

2A:1 C 4A:2 C 8A:3 C 12A:4 D b:

So, .2 C �/A:1 C .4 C �/A:2 C .8 C �/A:3 C .12 C �/A:4 D b, where � is a
parameter. Hence x.�/ D .2 C �; 4 C �; 8 C �; 12 C �; 0; 0/T is a solution to
the equality constraints in our system for all values of �. x.�/ is nonnegative, hence
feasible to the system for all � � �2 D �1.
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So, the edge containing Nx in parametric representation is fx.�/ D .2C�; 4 C �;

8 C �; 12 C �; 0; 0/T W � � �2g:
It is an unbounded edge with its direction (coefficient vector of the parameter

� in the parametric representation) as y D .1; 1; 1; 1; 0; 0/T . This y is an ex-
treme direction for this system. x.�2/ D .0; 2; 6; 10; 0; 0/T is the extreme point
on this unbounded edge. Another parametric representation of this unbounded edge
is fx.�2/ C ˛y W ˛ � 0g with the direction y given above. �

Example 4.14. Check whether the feasible solution Nx D .2; 3; 4; 4; 0; 0/T of the
following system in standard form is on an edge.

x1 x2 x3 x4 x5 x6 x7 b

1 �1 �1 �5 3 1 �1 �25

1 1 7 �1 �8 0 2 29
�1 2 5 7 2 �2 2 52
�1 0 �3 3 4 �4 2 2

xj � 0 for all j

Memory matrix
A:1 A:2 A:3 A:4

PC

1 0 0 0 1 1 �1 �1 PR
0 1 0 0 �1 1 2 0
0 0 1 0 �1 7 5 �3

0 0 0 1 �5 �1 7 3
PC

1 0 0 0 1 1 �1 �1

1 1 0 0 0 2 1 �1 PR
1 0 1 0 0 8 4 �4

5 0 0 1 0 4 2 �2

0 �1 0 0 1 �1 2 0
�1 �1 0 0 0 �2 �1 1
�3 �4 1 0 0 0 0 0

3 �2 0 1 0 0 0 0

The index set of positive components in Nx is J D f1; 2; 3; 4g. Let A be the 3 � 7

coefficient matrix of this system, and denote its RHS vector by b. We need to find
the rank of fA:1; A:2; A:3; A:4g. We apply the method used earlier in Sect. 4.7. PC
and PR indicate pivot column and pivot row, respectively, and the pivot elements are
boxed.

So the rank of fA:1; A:2; A:3; A:4g is 2, which is two less than the number of
elements in it; so Nx is not on any edge of the set of feasible solutions of this system;
that is, it must be contained on a face of dimension 2 or higher of this set. �
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Example 4.15. x1 D .0; 2/T , x2 D .2=3; 2=3/T , x3 D .2; 0/T

x1 C 2x2 � 2;

2x1 C x2 � 2;

�x1 C x2 � 2;

x1; x2 � 0

are extreme points of the set of feasible solutions of the system given above. Check
whether the pairs of extreme points fx1; x2g and fx1; x3g

x1 x2 x3 x4 x5 b

1 2 �1 0 0 2
2 1 0 �1 0 2

�1 1 0 0 1 2

xj � 0 for all j

are adjacent. We used this same system in Example 4.11, and the set of feasible
solutions of this system can be seen in Fig. 4.10. From the figure we see that x1; x2

are adjacent but x1; x3 are not. We will now show how this conclusion can be
reached algebraically. As in Example 4.11, we introduce slack variables x3; x4; x5

and put this problem in standard form given above.

Memory matrix
A:1 A:2 A:3 A:5

PC

1 0 0 0 1 2 �1 PR
0 1 0 0 2 1 1
0 0 1 0 �1 0 0
0 0 0 1 0 0 1

PC
�1 0 0 0 �1 �2 1

1 1 0 0 3 3 0 PR
0 0 1 0 �1 0 0
1 0 0 1 1 2 0

PC
�1=3 2/3 0 0 1 0 1

1/3 1/3 0 0 1 1 0

0 0 1 0 �1 0 0 PR
1/3 �2=3 0 1 �1 0 0

�1=3 2/3 1 0 0 0 1
1/3 1/3 1 0 0 1 0

0 0 �1 0 1 0 0
1/3 �2=3 �1 1 0 0 0
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We denote solutions of this standard form by the symbol X D .x1; : : : ; x5/T .
Using x3 D x1 C 2x2 � 2, x4 D 2x1 C x2 � 2, x5 D 2 C x1 � x2, we know
that x1; x2; x3 correspond to X1 D .0; 2; 2; 0; 0/T , X2 D .2=3; 2=3; 0; 0; 2/T ,
X3 D .2; 0; 0; 2; 4/T , respectively.

Also, from arguments mentioned in Example 4.11, we know that xt is a BFS of
the original system iff the corresponding X t is a BFS of the standard form and that
xt ; xs are adjacent BFSs of the original system iff the corresponding X t ; X s are
adjacent BFSs of the standard form. So, as we are given that x1; x2; x3 are BFSs
of the original system, we know that X1; X2; X3 are BFSs of the standard form.

To check whether X1; X2 are adjacent, we check whether their midpoint NX D
.X1 C X2/=2 D .1=3; 4=3; 1; 0; 1/T is on an edge. The index set of positive
components in NX is J D f1; 2; 3; 5g. Denoting the coefficient matrix of the standard
form by A, we need to find the rank of fA:1; A:2; A:3; A:5g. PC and PR denote pivot
column, pivot row, respectively, in the tableaus given above, and the pivot elements
are boxed.

So, the rank of the set fA:1; A:2; A:3; A:5g is 3, one less than its cardinality, so
NX is on an edge, and hence X1; X2 are adjacent for the system in standard form;

consequently, the corresponding x1; x2 are adjacent in the original system.
The midpoint of X1; X3 is QX D .X1 C X3/=2 D .1; 1; 1; 1; 2/T , in which all

the variables x1 to x5 are >0, so we need to find the rank of fA:1; : : : ; A:5g. We have
already seen that the rank of a subset of this set is 3, and as each vector in this set is
from R3, the rank of this set cannot exceed 3. So, its rank is 3, while its cardinality
is 5. So, rank of this set is < �1C its cardinality, so QX is not on an edge for the
standard form, that is, X1; X3 are not adjacent. Consequently, the corresponding
x1; x3 are not adjacent in the original system. �

Exercises

4.8.1. Find all BFSs of the following bounded variable system in four variables:
�6 � x1 � 2, �5 � x2 � 3, 5 � x3 � 10, and �20 � x4 � �10.

Given two BFSs, x1; x2 of the above system develop conditions to check
whether they are adjacent BFSs. Apply your conditions on x1 D .�6; 3; 10; �20/T ,
x2 D .�6; 3; 5; �10/T .

4.8.2. Check whether .4; 9; 0; 3; 0; 0/T is an extreme point of the set of feasible
solutions of the following system. Why? If not is it on an edge? If it is, is the edge
bounded or unbounded?

x1 C x2 � 3x4 C 3x5 C x6 D 4

x1 C 2x2 � 5x4 C 5x5 C 3x6 D 7

�x2 C x3 C 2x4 � 5x5 C x6 D �3

xj � 0 for all j
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4.8.3. Let K denote the convex polyhedron, which is the set of feasible solutions of
the system of linear inequalities Ax � b, where the coefficient matrix A is of order
m � n. Give the conditions under which a feasible solution for this system, Nx, is
not an extreme point of K , but lies on an edge of K . Remember that here the only
constraints on x are those in Ax � b, other than this no other constraints exist on x

in the definition of K .
Use your conditions to check whether Nx D .5; 10; 15; 20/T is a nonextreme point

feasible solution on an edge of the set of feasible solutions, K , of the following
system of constraints. If Nx is on an edge of K , is the edge bounded or unbounded?
Why (explain clearly). Find all the extreme points of K on this edge.

x1 x2 x3 x4

1 1 1 1 �50
0 1 1 1 �45
0 0 1 1 �35
3 �1 2 1 �40
1 3 1 �1 �40

4.8.4. Prove that Definitions 4.3 and 4.4 are equivalent for system (4.25).

4.8.5. Prove that Definitions 4.5 and 4.3 are equivalent for the system (4.26) in stan-
dard form.

4.8.6. Consider the following system of constraints with RHS vector b D .b1; b2;

b3; b4/T .

x1 x2 x3 x4 x5 x6 x7 b

1 0 0 �1 1 1 1 b1

1 1 0 0 2 �1 1 b2

0 �1 1 1 0 �1 1 b3

0 0 0 1 0 �1 1 b4

xj � 0 for all j

(1) Let b D .3; 9; 0; 1/T . Verify that x1 D .1; 2; 1; 1; 3; 0; 0/T is a feasible solu-
tion of the system. Check whether x1 is a BFS, and if not whether it is on an
edge. If it is on an edge, determine whether that edge is bounded or unbounded,
find all the extreme points on it and its extreme direction if it has any, and a
representation of it in terms of its extreme points and extreme direction.

(2) Let b D .1; 0; 1; 0/T . Answer all the questions in (1) for the feasible solution
x2 D .1; 1; 2; 2; 0; 2; 0/T in this case.

(3) Consider the feasible solution x3 D .1; 1; 1; 1; 1; 1; 0/T when b D .2; 3; 0; 0/T

for this system. Can x3 be on an edge of the set of feasible solutions of the
system in this case? If not, starting from x3, find a point on an edge of the set
of feasible solutions in this case.
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4.8.7. Nx is a point in a convex polyhedron K which is not an extreme point of K .
Can Nx lie on two different edges of K?

4.8.8. Show that two edges cannot intersect at a point other than an extreme point.

4.8.9. (1) Let K D fx W Ax D b; x � 0g be a convex polyhedron. Let H D fx W
dx D d0g a hyperplane. Show that every extreme point of K \ H must be either an
extreme point of K lying on H or the point of intersection of an edge of K with H

(Murty 1971).
(2) Similarly show that every edge of K \ H is either an edge of K lying in H

or the intersection of a two-dimensional face of K with H .

4.8.10. Consider the following system of constraints:

x1 x2 x3 x4

1 �1 0 1 D8
0 1 �1 2 D21

�2 2 �2 6 �60
�1 2 �2 5 �51

1 1 1 1 �25

xj � 0 for all j .

Check whether Nx D .1; 3; 2; 10/T is a BFS for this system.
Transform this into a system of linear equations in nonnegative variables. Find

the feasible solution of the transformed system that corresponds to Nx, and continue
denoting it by the same symbol Nx. Check whether Nx is a BFS of this system, and
if not, whether Nx lies on an edge for the system. If so, is that edge bounded or
unbounded? Why?

If that edge is bounded, find the two extreme points of the system on that edge.
If it is unbounded, find the unique extreme point on that edge, and the direction of
this edge, and an algebraic representation of that unbounded edge.

4.9 Adjacency in a Primal Simplex Pivot Step

The primal simplex method considers the LP in standard form

Minimize z D cx

subject to Ax D b (4.27)

x � 0;

where A is a matrix of order m � n and rank m, and b ¤ 0. Let K denote the set of
feasible solutions of this LP.
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Starting with an initial primal feasible basic vector for (4.27), the primal simplex
algorithm performs a sequence of primal simplex steps on this problem, maintaining
primal feasibility throughout, until a basic vector satisfying one of the termination
conditions, optimality or unboundedness, is obtained.

For details of the primal simplex algorithm in the original and most elementary
version (i.e., using canonical tableaus), see, for example, Chap. 4 in Murty (2005b)
of Chap. 1. There, only one version, the primal simplex algorithm, is discussed;
hence the algorithm is sometimes referred to as the simplex algorithm without the
“primal” adjective. In this book we will also discuss some other versions of the algo-
rithm (e.g., the “dual simplex algorithm”); hence here we will refer to that algorithm
as the “primal simplex algorithm.”

In each primal simplex pivot step, the primal simplex algorithm enters a single
nonbasic variable into the present feasible basic vector. There are three different
possible outcomes of this pivot step, which we discuss as three separate cases below.
In each of these cases, our discussion will refer to the following canonical tableau.

To keep the discussion simple, we will assume that the primal feasible basic
vector at the beginning of this pivot step is xB D .x1; : : : ; xm/, with x1; : : : ; xm

as the basic variables in that order, and that the entering variable is xmC1. So, the
values of other nonbasic variables xmC2; : : : ; xn will all remain D 0 through this
pivot step, so we ignore them. Also, it will be easier to discuss each outcome using
canonical tableaus, which we will use. We provide illustrative numerical examples
for some of the cases.

In the following discussion, PC (pivot column) indicates the updated column
of the entering variable xmC1, and the relative cost coefficient in it NcmC1 < 0 by
the entering variable choice rule in the primal simplex algorithm (this comes from
the result on the optimality criterion in the simplex method discussed in Chap. 4 in
Murty (2005b) of Chap. 1, and the same result is proved again in Theorem 4.7 in
Sect. 4.12 coming later in this chapter).

Canonical tableau wrt xB D .x1; : : : ; xm/

BV Basic PC Other Updated
x1 : : : xm xmC1 nonbasics �z RHS

x1 1 : : : 0 Na1;mC1 : : : 0 Nb1

:::
:::

: : :
:::

:::
:::

:::

xm 0 : : : 1 Nam;mC1 : : : 0 Nbm

�z 0 : : : 0 NcmC1 : : : 1 �Nz
xj � 0 for all j , min z

“BV” is the abbreviation for “basic variable in this row.” So, the present BFS
is Nx D . Nx1; : : : ; Nxm; NxmC1; : : : ; Nxn/T D . Nb1; : : : ; Nbm; 0; : : : ; 0/T with objective
value D Nz.

So, what we do in this step is keep all other nonbasic variables xmC2; : : : ; xn

fixed at 0, and give the entering variable xmC1 a value �, which is a parameter.
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Then re-evaluating the values of the present basic variables x1 to xm to satisfy the
equality constraints in the system, we get the solution

x.�/ D . Nb1 � Na1;mC1�; : : : ; Nbm � Nam;mC1�; �; 0; : : : ; 0/T

D Nx C �.�Na1;mC1; : : : ; �Na1;mC1; 1; 0; : : : ; 0/T ;

with objective value Nz C� NcmC1 D z.�/. Now we consider the various cases that can
occur in this step.

Case 4.7. No positive entry in the pivot column: In this case, . Na1;mC1; : : : ; Nam;mC1/

� 0. So, there are no ratios to compute in the minimum ratio substep in this primal
simplex pivot step.

As all the entries in the PC are �0, x.�/ remains �0 for all � � 0; so x.�/ is
feasible to this problem for all � � 0, and as � ! 1, z.�/ ! �1. That is why in
this case we terminate the algorithm with the conclusion that the minimum value of
z on the set of feasible solutions of this problem, K , is D �1. Hence when there
is no positive entry in the pivot column, we say that the unboundedness termination
criterion has been satisfied.

The half-line fx.�/ W � � 0g is an unbounded edge or extreme half-line of K

beginning with the extreme point Nx, along which z ! �1. The direction of this
unbounded edge is y D .�Na1;mC1; : : : ; �Na1;mC1; 1; 0; : : : ; 0/T . Verify that this
direction y satisfies Ay D 0; y � 0, and cy D NcmC1 < 0.

The system Ay D 0; y � 0, obtained from the system of constraints in the
original problem by changing all the RHS constants in it to 0 is called the homo-
geneous system corresponding to the original system. To avoid confusion between
the two different systems, we are denoting the vector of variables in the homoge-
neous system by the symbol y. The direction of every unbounded edge of K satisfies
this homogeneous system, that is why all those directions are called homogeneous
solutions corresponding to the original system.

Example 4.16. Consider the following canonical tableau for an LP wrt the basic
vector .x1; x2/, in which the nonbasic variable x3 has been selected as the entering
variable in the primal simplex algorithm. In this example, m D 2 and the entering
variable is xmC1 D x3. We only show the columns of x1; x2; x3 (the basic and
entering variables) in this canonical tableau.

BV x1 x2 x3 Other �z Updated
nonbasics RHS

PC
x1 1 0 �2 : : : 0 0
x2 0 1 �1 : : : 0 3
�z 0 0 �3 : : : 1 �10

xj � 0 for all j , min z
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The present BFS is Nx D .0; 3; 0; : : : ; 0/T with objective value Nz D 10. The PC
has no positive entry, so the unboundedness termination criterion has been satisfied
in this step. In this case, the unbounded edge generated is

fx.�/ D .0 C 2�; 3 C �; �; 0; : : : ; 0/T W � � 0g:

Its direction Ny D .2; 1; 1; 0; : : : ; 0/T satisfies c Ny D Nc3 D �3 < 0. The objective
value z.�/ D 10 � 3� ! �1, as � increases along this unbounded edge.

The homogeneous system corresponding to the original system is given in the
following tableau.

y1 y2 y3 Other
nonbasics RHS

1 0 �2 : : : 0
0 1 �1 : : : 0

yj � 0 for all j

It can be verified that the direction Ny D .2; 1; 1; 0; : : : ; 0/T of the unbounded
edge above is feasible to this homogeneous system. Also, the objective value at
Ny D c Ny D .0; 0; �3; : : :/ Ny D �3 D Nc3, which is negative. �

Case 4.8. The PC has at least one positive entry, and it has a positive entry in at
least one row i in which Nbi D 0

For t D 1 to m, the value of the basic variable xt in x.�/ is Nbt C � Nat;mC1, and
to keep it non-negative, we need

� � . Nbt = Nat;mC1/ for all t such that Nat;mC1 > 0:

The quantity . Nbt = Nat;mC1/ is called the ratio in this primal simplex pivot step in
row t ; it is computed only if the entry Nat;mC1 in the pivot column (PC) in row t is
positive. So, to keep x.�/ � 0, the maximum value we can give to the parameter �

when the PC has at least one positive entry is � D minimumf. Nbt= Nat;mC1/ W over t

such that Nat;mC1 > 0g. This quantity � is called the minimum ratio in this pivot step
in the primal simplex algorithm, because it is the minimum of the ratios given above.
It is �0 because all Nbt � 0. So, x.�/ is feasible to the problem for all 0 � � � � .

In Case 4.7 discussed above, we considered the situation where PC has no
positive entry, there we found that x.�/ remains feasible to the problem for all
0 � � � C1. So, to keep conformity, we define the minimum ratio � to be D C1
when the PC has no positive entry, that is, when there is no ratio to compute.

In this case, we have the row index i such that Nbi D 0 and Nai;mC1 > 0, so using
the above definition of the minimum ratio, � D 0 in this case. In this case, x.�/ is
feasible to the problem, only for � D 0, and we see that x.0/ D Nx, the present BFS.

So, in this step we do not obtain a new feasible solution to the problem, but
remain at the same BFS as at the beginning of this step, and there will be no change
at all in the objective value. That is why a pivot step like this where the minimum
ratio is 0 is called a degenerate pivot step. In a degenerate pivot step, the basic vector
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changes by one variable (the entering variable replaces the basic variable xt , where
t is any of the indices that ties for the minimum ratio in its definition). The basic
variable replaced by the entering variable is called the dropping basic variable in
this pivot step. But there is no change in the BFS or the objective value, and the new
basic vector is another basic vector that corresponds to the present BFS.

With the new basic vector, the primal simplex algorithm now goes to the next
primal simplex pivot step.

Example 4.17. Consider the following canonical tableau for an LP wrt the basic
vector .x1; x2/, the top one among the two given below, in which the nonbasic vari-
able x3 has been selected as the entering variable in the primal simplex algorithm.
In this example, m D 2 and the entering variable is xmC1 D x3. We show only the
columns of x1; x2; x3 (the basic and entering variables) in this canonical tableau.
PC and PR indicate pivot column and pivot row, respectively, and the pivot element
is boxed

BV x1 x2 x3 Other �z Updated Ratio
nonbasics RHS

PC
x1 1 0 �2 : : : 0 1
x2 0 1 1 : : : 0 0 0 PR
�z 0 0 �3 : : : 1 �10 � D 0

x1 1 2 0 : : : 0 1
x3 0 1 1 : : : 0 0
�z 0 3 0 : : : 1 �10

xj � 0 for all j , min z

Here the PC has a positive entry in row 2 with updated RHS constant D 0, so
the ratio in this row is 0; hence in this step the minimum ratio � is 0, and this is a
degenerate step. The minimum ratio is attained in row 2, so x2, the present basic
variable in row 2, is the dropping basic variable in this pivot step, and it will be
replaced by the entering variable x3. The canonical tableau after this pivot step is
the second one shown. In this pivot step, there is no change in the objective value
or the primal BFS, but we get a new basic vector .x1; x3/ representing it after this
pivot step. �

Case 4.9. The PC has at least one positive entry, and it does not have a positive
entry in any row i in which Nbi D 0

Let the index set of variables that are >0 in the present BFS Nx wrt the present
basic vector xB D .x1; : : : ; xm/ be J D fi W Nbi > 0g. NJ D fi W Nbi D 0g, is the
index set of all basic variables only, which are 0 in Nx. Define NJ1, NJ2

NJ1 D fi W Nbi D 0 and Nai;mC1 D 0g;
NJ2 D fi W Nbi D 0 and Nai;mC1 < 0g:
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So, the PC has nonzero entries only among rows i 2 J [ NJ2. From linear algebra
we know that the PC, NA:mC1, the updated column of the entering variable xmC1, is
the coefficient vector in the representation of the original column A:mC1 of xmC1 as
a linear combination of the present basic columns A:1 to A:m; that is,

A:mC1 D original column vector of xmC1 D
X

i2J [ NJ2

Nai;mC1.A:i /:

Since fA:i W i 2 J [ NJ2g is linearly independent, the above equation provides
a unique linear dependence relation for the set of original columns of xi for i 2
J [ NJ2 [ fm C 1g, so the rank of this set is one less than its cardinality.

From the condition satisfied in this case, the updated RHS constant Nbi is >0 for
all i such that the PC has a positive entry in row i , so all the ratios will be strictly
positive, so the minimum ratio in this step � > 0, and it occurs in a row i 2 J .
Hence the dropping basic variable will be an xi for i 2 J . In the primal simplex
algorithm, such a pivot step is called a nodegenerate pivot step.

As Nai;mC1 < 0 for all i 2 NJ2 and D0 for all i 2 NJ1, after this pivot step the
updated RHS constant will remain 0 for all i 2 NJ1, and >0 for all i 2 NJ2.

So in the BFS Qx obtained after this pivot step, all basic variables xi for i 2 NJ1

will be 0, and >0 for all i 2 NJ2. Also, in Qx the entering variable xmC1 will have a
value equal to the minimum ratio, which is >0. In the BFS Nx before this pivot step,
all Nxi for i 2 J are >0.

So, at . Nx C Qx/=2, the index set of positive xi is J [ NJ2 [ fm C 1g. As we
have already seen above that the rank of fA:i W i 2 J [ NJ2 [ fm C 1gg is one
less than its cardinality, we conclude that Nx and Qx are adjacent extreme points of
K , and the parametric representation of the edge joining them is fx.�/ D . Nb1 �
Na1;mC1�; : : : ; Nbm � Nam;mC1�; �; 0; : : : ; 0/T W 0 � � � �g.

So, in every nondegenerate step, the primal simplex algorithm moves along a
bounded edge of the set of feasible solutions of the problem from one end to the
other.

Example 4.18. Consider the following canonical tableau for an LP wrt the basic
vector .x1 to x6/, in which the nonbasic variable x7 has been selected as the en-
tering variable in the primal simplex algorithm. In this example, m D 6 and the
entering variable is xmC1 D x7. We show only the columns of x1 to x7 (the ba-
sic and entering variables) in this canonical tableau. The PR (pivot row) is the row
containing the boxed pivot element.

The present BFS Nx D .0; 0; 0; 6; 2; 4; 0; � � � ; 0/T , with objective value 10. The
set J D f4; 5; 6g is the present index of rows with positive Nbi . The set NJ1 D f1g.
The set NJ2 D f2; 3g D index of rows with Nbi D 0 and Nai;mC1 < 0.

The canonical tableau after this pivot step is shown at the bottom. The new BFS
Qx is .0; 2; 4; 2; 0; 4; 2; 0; � � � ; 0/T with objective value D 6. You can verify that the
index of positive components in . Nx C Qx/=2 is J [ NJ2 [ fm C 1g.
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BV x1 x2 x3 x4 x5 x6 x7 Others �z Nb Ratio

PC
x1 1 0 0 0 0 0 0 : : : 0 0
x2 0 1 0 0 0 0 �1 : : : 0 0
x3 0 0 1 0 0 0 �2 : : : 0 0
x4 0 0 0 1 0 0 2 : : : 0 6 3
x5 0 0 0 0 1 0 1 : : : 0 2 2 PR
x6 0 0 0 0 0 1 0 : : : 0 4
�z 0 0 0 0 0 0 �2 : : : 1 �10 � D 2

x1 1 0 0 0 0 0 0 : : : 0 0
x2 0 1 0 0 1 0 0 : : : 0 2
x3 0 0 1 0 2 0 0 : : : 0 4
x4 0 0 0 1 �2 0 0 : : : 0 2
x7 0 0 0 0 1 0 1 : : : 0 2
x6 0 0 0 0 0 1 0 : : : 0 4
�z 0 0 0 0 2 0 0 : : : 1 �6

xj � 0 for all j , min z �

4.10 How to Obtain All Adjacent Extreme Points
of a Given Extreme Point?

Consider the system in standard form

Ax D b; (4.28)

x � 0;

where A is a matrix of order m � n and rank m, and b ¤ 0. Let K denote the set of
feasible solutions of this system. Let xB be a feasible basic vector for this system
associated with the BFS Nx. Here we discuss how to generate all the adjacent extreme
points of Nx in K , and in general all the edges (bounded or unbounded) of Nx on K ,
just to complete our discussion of extreme points and edges of convex polyhedra.

In applications, one does not often encounter the problem of enumerating the
extreme points and edges incident at a given extreme point of a given convex poly-
hedron represented by linear constraints. Hence the material in this section is mainly
of interest to people who are studying the mathematical aspects of convex polyhedra.

There are two important cases to consider.

Case 4.10. The basic vector xB and the BFS Nx are nondegenerate.

In this case all the m basic variables in xB are strictly >0 in Nx (i.e., in the canonical
tableau wrt the basic vector xB , all updated RHS constants are >0) and xB is
the unique basic vector corresponding to Nx. This is the nice and easy case for this
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problem. All the edges of K incident at Nx can be generated efficiently because there
are exactly n � m of them. To generate them, first create a list for edges of K

incident at Nx, and a list for adjacent extreme points of Nx (initially both the lists
are ;) and do the following for each nonbasic variable xj (i.e., a variable not in the
basic vector xB ).

Perform the primal simplex pivot step of entering that nonbasic variable xj into
the basic vector xB . By the nondegeneracy of xB , this must generate an edge of K

incident at Nx as under Case 1 or Case 3 of the previous Sect. 4.9. Put this edge in
the list of edges. If the edge is bounded, the other extreme point on it is an adjacent
extreme point of Nx on K , put it in the list of adjacent extreme points.

When this work is completed for all nonbasic variables xj not in xB , the list of
edges contains all the bounded and unbounded edges of K incident at Nx, and the list
of adjacent extreme points contains all the adjacent vertices of Nx on K . Terminate.

Case 4.11. The Basic Vector xB and the BFS Nx Are Degenerate.

In this case some of the m basic variables in xB are D 0 in Nx (i.e., in the canonical
tableau wrt the basic vector xB , some updated RHS constants are D0). The degree
of degeneracy of Nx refers to how large Œm � .number of positive variables in Nx/
 is.
Depending on how large this degree of degeneracy of Nx is, the number of adjacent
extreme points of Nx and the number of edges incident at Nx may be huge (i.e., it may
grow exponentially with n � m).

Mathematically, an “efficient algorithm” for this problem in this case refers to
one in which the effort to generate the next adjacent extreme point of Nx after r of
them have already been obtained requires a computational effort that is bounded
above by a polynomial in r . No such algorithm is known at the moment. This is one
open problem in the mathematical study of convex polyhedra.

We will discuss an enumerative method for this problem, it may not be efficient
because it may generate the same adjacent extreme point many (could be exponen-
tial in n � m) times, depending on the degree of degeneracy of Nx.

Here is the direct enumeration procedure: Let J D fj W Nxj > 0g, jJ j D r . In this
case there are many basic vectors of (4.28) corresponding to the BFS Nx. All variables
xj for j 2 J are basic variables in every basic vector of (4.28) corresponding to Nx.

Find out all subsets of m � r variables among fxj W j 62 J g, which when com-
bined with the variables in fxj W j 2 J g forms a basic vector for (4.28). This process
needs the checking of ..n � r/Š/=..m � r/Š.n � m/Š/ sets of m column vectors each
for linear independence (this is the enumerative part of this approach). It generates
all the basic vectors of (4.28) corresponding to the BFS Nx. Let B denote the set all
these basic vectors. For each basic vector xB 2 B carry out the following procedure.

Procedure: For each nonbasic variable xj (i.e., one not in the present basic vector
xB ) perform the primal simplex pivot step of entering that nonbasic variable xj into
the basic vector xB . If it leads to an unbounded edge (as in Case 4.7 of Sect. 4.9),
store it in the list of unbounded edges incident at Nx, if it is not there already.

If it leads to a nondegenerate pivot step, store the edge in the list of edges incident
at Nx if it is not there already, and store the other extreme point on this edge in a list
of adjacent extreme points of Nx if it is not there already.
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If it leads to a degenerate pivot step, continue.
When this procedure is completed for all the basic vectors in B, the lists of all the

bounded edges, unbounded edges, adjacent extreme points contain all the bounded,
unbounded edges, respectively, of K incident at Nx, and all the adjacent extreme
points of Nx on K . Terminate.

Example 4.19. In this example, we find the set of all basic vectors corresponding to
a degenerate BFS for a system in standard form. Consider the following canonical
tableau for a system in standard form.

BV x1 x2 x3 x4 x5 x6 x7 RHS
x1 1 0 0 �1 �2 0 2 0
x2 0 1 0 1 �1 2 1 4
x3 0 0 1 1 2 3 3 5

xj � 0 for all j .

The present basic vector .x1; x2; x3/ and the BFS Nx corresponding to it are
degenerate. The positive basic variables x2; x3 will be basic variables in every ba-
sic vector corresponding to Nx. The set of all basic vectors corresponding to Nx is
f.x1; x2; x3/; .x4; x2; x3/; .x5; x2; x3/; .x7; x2; x3/g. .x6; x2; x3/ is not a
basic vector because the rank of the set of column vectors corresponding to these
variables is only 2. �

One encounters this problem of enumerating all the adjacent extreme points of
a given extreme point only rarely in a few specialized applications, and when it
does, the systems on which it has to be solved are usually small (i.e., m and n � m

are small). On such small systems, this algorithm is quite satisfactory to solve the
problem.

The vertices and edges of a convex polyhedron put together define the one-
dimensional skeleton or the graph of the polyhedron.

Another related problem is the problem of enumerating all the extreme points
of a convex polytope specified by a system of linear constraints. As discussed
earlier, mathematically, an “efficient algorithm” for this problem is defined to be
one in which the effort to generate the next extreme point of the polytope after
r of its extreme points have already been obtained requires a computational ef-
fort that is bounded above by a polynomial in r . No such algorithm is known at
the moment if the polytope has degenerate extreme points. This is another open
problem in the mathematical study of convex polytopes. References Khachiyan
et al. (2006); Murty (1971, 2009); Murty and Chung (1995); Provan (1994) are all
research papers dealing with this problem. (PORTA) is a software package for enu-
merating the extreme points of a convex polyhedron specified by a system of linear
constraints.
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Exercises

4.10.1. Let K be the set of feasible solutions of the system given below. Verify that
Nx D .1; 3; 5; 0; 0; 0; 0; 0/T is an extreme point of K . Generate all the edges of K

incident at Nx and all the adjacent extreme points of Nx on K .

x1 x2 x3 x4 x5 x6 x7 x8 b

1 1 1 2 0 �3 1 �2 9
0 1 1 1 0 �2 0 �2 8
0 0 1 0 �1 �1 �1 �1 5

xj � 0 for all j

4.10.2. Generate all the adjacent extreme points of Nx D .3; 4; 0; 0; 0; 0/T on the set
of feasible solutions of the following system.

x1 x2 x3 x4 x5 x6 b

1 0 0 1 1 �1 3
0 1 0 1 �1 1 4
0 0 1 �1 0 1 0

xj � 0 for all j

4.11 Faces of Dimension �2 of a Convex Polyhedron

Because zero- and one-dimensional faces (extreme points and edges) are fundamen-
tal tools that the simplex method uses to solve LPs, we have discussed them and their
important properties in some detail in the previous sections. Faces of higher dimen-
sions do not play a major role in the study of LP, that is why we will discuss them
only briefly in this section.

As the simplex method for LP operates on LPs in standard form, we discussed
results on zero- and one-dimensional faces for convex polyhedra in terms of sys-
tems in standard form. For our discussion of faces of higher dimensions, however,
we will state them in terms of a general system of linear constraints. Let K be the set
of feasible solutions of a general system of linear constraints (4.29), where the in-
equality constraints include any sign restrictions and bounds on individual variables.
Suppose D is of order p � n and F is of order q � n.

Dx D d; (4.29)

F x � g:

In general a face of K is the set of feasible solutions of a system obtained from
(4.29) by taking a subset of inequality constraints in it and converting them to equal-
ity constraints, while leaving the other inequality constraints as they are. So, if



222 4 Polyhedral Geometry

.F1; F2/ is a partition of F into submatrices F1; F2 of orders q1 � n; q2 � n,
respectively, where q1 C q2 D q and .g1; g2/ is the corresponding partition of g

into subvectors, then the set of feasible solutions of the system

Dx D d

F1x D g1 (4.30)

F2x � g2

is a face of K , and conversely for every face of K , there exists a partition of F; g in
this way so that it can be represented by a system of the type (4.30).

Let Nx be a feasible solution for (4.29). If Nx is contained in a face NF of K of di-
mension r , then Nx is of course contained in every face F of K of dimension higher
than r that contains NF as a subset. So, the important question that this brings up is
finding the smallest dimension face of K that contains Nx, that smallest dimension
face of K containing the given point Nx is of course unique. To find it, we find the
subset of inequality constraints in (4.29), which are active at Nx. Putting these to-
gether, suppose they form the subsystem F1x � g1. Let the remaining inequality
constraints in (4.29) which are inactive at Nx form the subsystem F2x � g2. So,
we have

F1 Nx D g1;

F2 Nx > g2:

Recall that in Sect. 4.6, we defined the system of equality constraints Dx D d;

F1x D g1 as the active system of (4.29) at Nx. Let Nr be the dimension of the set of
solutions of this active system. Actually

Nr D n �
�

rank of the matrix

	
D

F1


�
;

it is the dimension of the smallest dimension face of K containing the point Nx. That
face itself is the set of feasible solutions of the system.

Dx D d;

F1x D g1;

F2x � g2:

4.11.1 Facets of a Convex Polyhedron

Faces of K whose dimension is .�1 C (dimension of K)) have a special name;
they are called facets of K . Each facet F of K is the set of feasible solutions of a
system obtained by changing one inequality constraint in (4.29) into an equation,
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and leaving all other constraints unchanged. So, the number of facets of K is � the
number of inequality constraints in the representation (4.29) of K .

Example 4.20. If  is the set of feasible solutions of the system in standard form

Ax D b;

x � 0;

where A is a matrix of order m � n, then every facet F of  corresponds to one of
the nonnegativity restrictions; that is, every facet of K is the set of feasible solutions
of a system

Ax D b;

xt D 0;

xj � 0; for j D 1, : : : ; t � 1; t C 1; : : : ; n

for some t 2 f1; : : : ; ng. So, this convex polyhedron  has at most n facets.

4.12 Optimality Criterion in the Primal Simplex Algorithm

Consider the LP in standard form

Minimize z.x/ D cx

subject to Ax D b (4.31)

x � 0;

where A is a matrix of order m � n and rank m. c 2 Rn is the row vector of original
cost coefficients of the variables x D .x1; : : : ; xn/T .

Let Nx be a BFS for this LP associated with the basic vector xB , with objective
value z. Nx/ D Nz. For notational convenience, we assume that xB D .x1; : : : ; xm/.

Canonical tableau wrt xB D .x1; : : : ; xm/

BV PC Updated
x1 : : : xm xmC1 xn �z RHS

x1 1 : : : 0 Na1;mC1 : : : Na1n 0 Nb1

:
:
:

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

xm 0 : : : 1 Nam;mC1 : : : Namn 0 Nbm

�z 0 : : : 0 NcmC1 : : : Ncn 1 Nz
xj � 0 for all j , min z



224 4 Polyhedral Geometry

“BV” is the abbreviation for “basic variable in this row.” So, the present BFS is
Nx D . Nx1; : : : ; Nxm; NxmC1; : : : ; Nxn/T D . Nb1; : : : ; Nbm; 0; : : : ; 0/T with objective value
z. Nx/ D Nz.

Entries in the objective row (bottom row in which �z is the basic variable) in the
canonical tableau are known as the updated (or relative or reduced) cost coefficients
of the variables wrt the basic vector xB .

Theorem 4.7. Optimality Criterion in the Primal Simplex Algorithm: In the
canonical tableau wrt the feasible basic vector xB , if all the relative cost coefficients
Ncj � 0 for all j , then the present BFS Nx is an optimum solution for this LP.

Proof. As the canonical tableau is obtained from the original tableau after perform-
ing some GJ pivot steps, the equation corresponding to every row in it is satisfied by
every feasible solution of the original LP. Let K denote the set of feasible solutions
of the original LP. So, for all x 2 K we have

NcmC1xmC1 C � � � C Ncnxn � z.x/ D �Nz
i.e., z.x/ D Nz C . NcmC1xmC1 C � � � C Ncnxn/

As NcmC1; : : : ; Ncn are all �0 by hypothesis, and all xj � 0 for all x 2 K ,
. NcmC1xmC1 C� � �C Ncnxn/ � 0 for all x 2 K , that is, z.x/ � Nz D z. Nx/ for all x 2 K .
So, Nx minimizes z.x/ over x 2 K . ut

If the optimality criterion is not satisfied, some nonbasic variables xj are asso-
ciated with Ncj < 0, each of them is eligible to be selected as the entering variable
into this canonical tableau by the entering variable choice rule of the primal simplex
algorithm. If the resulting pivot step is nondegenerate, the objective value decreases
below Nz in this pivot step, and the present basic vector xB can never reappear as the
algorithm continues.

If this pivot step is a degenerate pivot step, there is no change in the objective
value or the BFS in this step. Then a sequence of degenerate pivot steps may follow,
and in this case the algorithm may return to the present basic vector xB , completing
a cycle, and the algorithm could keep moving around in the same cycle indefinitely.
This is the problem of cycling in the primal simplex algorithm, for examples of it,
see Dantzig (1963); Dantzig and Thapa (1997) of Chap. 1; Murty (1983) of Chap. 2

There are several techniques developed to resolve the problem of cycling under
degeneracy in the simplex algorithm for LP. One prominent technique is based on
perturbation of the RHS vector; it replaces the RHS constants vector b in the original
LP by b.�/ D b C .�; �2; : : : ; �m/T , where � is a small positive parameter that is
not given a specific numerical value, but left as a small positive parameter.

It can be shown that the perturbed problem does not have any degenerate BFSs
when the parameter � is positive but sufficiently small; so in solving it by the primal
simplex algorithm, all the pivot steps will be nondegenerate, and hence the objective
value undergoes a strict decrease in every step and no basic vector can reappear; that
is cycling cannot occur. Also, the application of the algorithm on the perturbed prob-
lem can be carried out without using the actual value of the parameter �, but using
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only updated values of the original data elements. The only change in the algorithm
involves replacing the minimum ratio computation for determining the dropping ba-
sic variable in each pivot step by a little more complicated lexico-minimum ratio
computation. This lexico minimum ratio test identifies the dropping basic variable
uniquely in every pivot step. As the total number of possible basic vectors is finite,
these facts imply that the algorithm must terminate after a finite number of pivot
steps with a feasible basic vector for the perturbed problem, in which either the
optimality or the unboundedness criterion is satisfied. As this final basic vector is
feasible to the perturbed problem for all � positive and sufficiently small, it can be
verified that it is also feasible when � D 0, that is feasible to the original problem.
So, when you plug in � D 0 at termination, you will have a feasible basic vector for
the original problem, which satisfies the same termination condition, optimality, or
unboundedness. This leads to the following theorem.

Theorem 4.8. Starting with a feasible basic vector for an LP (4.31), the primal
simplex algorithm (with techniques for resolving cycling as necessary) terminates
with either an optimum basic feasible solution or with an extreme half-line of the
set of feasible solutions along which the objective function diverges to �1, after a
finite number of pivot steps. ut

The lexico-minimum ratio version of the primal simplex algorithm is theoreti-
cally simple and very elegant. Unfortunately, to implement it, one needs the explicit
inverse of the basis in every step. In practice, the basis inverse tends to be very
dense; computing and updating it is computationally intensive, and time consum-
ing, and prone to serious round-off error accumulation; that is why the basis inverse
is not used in practice. So, in practice this and other techniques developed to re-
solve cycling are not used. That is why we will not discuss these techniques in this
book. Readers interested in theory who want to learn these techniques can refer
to Dantzig (1963); Dantzig and Thapa (1997); Schrijver (1986) all from Chap. 1;
Murty (1983) of Chap. 2.

The problem of cycling is encountered in practical computation also; software
systems for LP use simple heuristic techniques that work very well to prevent cy-
cling; we will discuss them in later chapters.

If a feasible basic vector for (4.31) is not available to initiate the primal simplex
algorithm, we convert the problem of finding an initial feasible basic vector itself
into a Phase I LP problem. This involves making b into a nonnegative vector (for
each i such that the original bi < 0, multiply both sides of the i th constraint by �1),
then form the Phase I problem by introducing artificial variables. Using the same
symbols for the data elements, one Phase I model is

Minimize w D
mX

iD1

ti

subject to Ax C I t D b

x; t � 0;
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where I denotes the unit matrix of order m, and t D .t1; : : : ; tm/T is the vector of
artificial variables introduced.

As now b � 0, t is a feasible basic vector for this Phase I problem. As t � 0,
the minimum value for w in this problem is �0. Beginning with t as the basic vec-
tor, this Phase I problem can be solved by the lexico-minimum ratio version of the
Primal simplex algorithm. After a finite number of pivot steps it will terminate. At
termination:

� If the minimum value of w is >0, we conclude that the original LP is infeasible
� If it is D 0, the Phase I basic vector at termination leads to a feasible basic vector

for the original LP, with which its solution by the same algorithm can be initiated;
this part of the process is usually called Phase II.

The combined Phase I and II is known as the primal simplex method for solving
an LP; it uses the primal simplex algorithm twice, first to solve the Phase I problem
to find a feasible basic vector for the original problem, and then to solve the original
problem in Phase II.

Theorem 4.9. When the primal simplex method is applied to solve an LP in which
the objective function is to be minimized, after a finite number of pivot steps, it ter-
minates with one of three outcomes: (1) conclusion that the LP is infeasible, (2)
with an extreme half-line in the set of feasible solutions, along which the objec-
tive function diverges to �1, (3) with an optimum basic feasible solution of the
problem. ut

4.13 Boundedness of Convex Polyhedra

Dx D d; (4.32)

F x � g:

Let K denote the set of feasible solutions of the general system of linear con-
straints (4.32) in x D .xj W j D 1 to n/, where the inequalities include all the bound
constraints on individual variables, if any. An important mathematical question is to
determine whether K is bounded or not; that is, develop conditions under which
we can conclude that it is bounded or not. This question involves another system
of constraints related to (4.32), known as the homogeneous system corresponding
to (4.32).

In the homogeneous system corresponding to (4.32), there will be a variable
corresponding to each variable xj in (4.32); in order to distinguish the two systems
we will denote that corresponding variable in the homogeneous system by yj for
j D 1 to n. So, the vector of variables in the homogeneous system is y D .y1;

: : : ; yn/T .
The simple rules for obtaining the homogeneous system are: Change the vari-

ables x in (4.32) into y, and change every RHS constant in every constraint
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(including any bounds on individual variables) into 0. The result is the homogeneous
system, which is

Dy D 0; (4.33)

Fy � 0:

Remember that the homogeneous system is always feasible because 0 is a feasi-
ble solution for it. So, the important thing to determine is whether it has a nonzero
feasible solution.

Example 4.21. Consider the following system of constraints:

x1 � x2 C x3 C x4 � x5 � x6 D 100

2x1 C 2x2 � 3x3 � 4x4 C x5 � 7x6 � 20

�3x1 � 3x2 C 4x3 C x4 � 3x5 C x6 � �40

�20 � �x1 C 4x2 � 7x3 � 2x4 C x5 C x6 � 50

x1 unrestricted, x2 � 0; x3 � 0

0 � x4 � 10; x5 � �6; x6 � 15

For deriving the homogeneous system, one should remember the following
points:

� x2 � 10 in original system becomes y2 � 0 in homogeneous system.
� �10 � x3 � 12 in original system becomes 0 � y3 � 0, or in effect y3 D 0 in

homogeneous system.
� 6 � 2x1 C 10x2 � 15 in original system becomes 0 � 2y1 C 10y2 � 0, in effect

2y1 C 10y2 D 0 in homogeneous system.

Remembering these, the homogeneous system corresponding to the above
system is

y1 � y2 C y3 C y4 � y5 � y6 D 0

2y1 C 2y2 � 3y3 � 4y4 C y5 � 7y6 � 0

�3y1 � 3y2 C 4y3 C y4 � 3y5 C y6 � 0

�y1 C 4y2 � 7y3 � 2y4 C y5 C y6 D 0

y1 unrestricted, y2 � 0; y3 � 0

y4 D 0; y5 � 0; y6 � 0

We now state several important classical results on convex polyhedra.

Result 4.5. If Nx is a feasible solution of the original system (4.32) and Ny is a
nonzero feasible solution of the homogeneous system (4.33) corresponding to it,
it can be verified directly that Nx C � Ny is also feasible to (4.32) for all � � 0. Thus
every nonzero feasible solution of the homogeneous system (4.33) is the direction
for a feasible half-line for (4.32) at every feasible solution of (4.32).
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Result 4.6. Fundamental Theorem about Unboundedness of Convex Polyhedra:
When K is the set of feasible solutions of (4.32) is nonempty, it is bounded iff 0 is
the only feasible solution of the homogeneous system (4.33) associated with it.

This can be proved algorithmically using Theorem 4.9.

Result 4.7. Carathéodory’s Theorem: If Nx 2 Rm is in the convex hull of fa1; : : : ;

ang, then it can be expressed as a convex combination of at most mC1 points among
fa1; : : : ; ang.

This result follows from Theorem 4.5.
Now we state several results relating to a system in standard form. We consider

the system in standard form

Ax D b; (4.34)

x � 0;

where A is a matrix of order m � n. The homogeneous system corresponding to it is

Ay D 0; (4.35)

y � 0:

Result 4.8. Every feasible solution of (4.34) can be expressed as (a convex combi-
nation of BFSs of (4.34)) C (a homogeneous solution).

Result 4.9. Every nonzero homogeneous solution (i.e., nonzero feasible solution of
(4.35)) can be expressed as a convex combination of extreme points of the normal-
ized homogeneous system

Ay D 0;X
j

yj D 1; (4.36)

y � 0:

BFSs of (4.36) are known as extreme homogeneous solutions corresponding to
(4.34). Result 4.8 can be proved by induction on the number of positive variables
in the feasible solution, using the argument in the purification routine. Result 4.9
follows by applying Result 4.8 to (4.36). Following Results 4.13.6 and 4.13.7 follow
from Result 4.8. Result 4.12 follows from Theorem 4.8.

Result 4.10. Every feasible solution of (4.34) can be expressed as (a convex com-
bination of BFSs of (4.34)) C a non-negative multiple of (a convex combination of
extreme homogeneous solutions).

Result 4.11. If the set of feasible solutions of (4.34) is bounded (i.e., if 0 is the
only feasible solution of the corresponding homogeneous system (4.35)) then every
feasible solution of (4.34) can be expressed as a convex combination of its BFSs.
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A bounded convex polyhedron is called a convex polytope. An equivalent
statement of the above is: Every point in a convex polytope can be expressed as
a convex combination of its extreme points.

Result 4.12. If the LP in standard form

Minimize z.x/ D cx

Ax D b

x � 0

has a feasible solution, then the objective function z is unbounded below in it iff
there exists an extreme homogeneous solution y satisfying cy < 0.

4.14 Exercises

4.1. Consider the LP

Minimize cx

subject to Ax D b

x � 0

where A is a matrix of order m � n and rank m. In this LP the number of variables
is n, and the number of constraints is m, and we know that a nondegenerate BFS for
this problem will have exactly .n � m/ variables with value 0.

Now consider the special case of the above LP, the p � q balanced trans-
portation problem with p sources, q sinks, availability vector .a1; : : : ; ap/ at the
sources, requirement vector .b1; : : : ; bq/ at the sinks, with data satisfying

P
i ai DP

j bj , which has n D pq variables xij , m D p C q equality constraints in the
model.

Minimize
X

i

X
j

cij xij

subject to
X

j

xij D ai for all i D 1 to p

X
i

xij D bj for all j D 1 to q

xij � 0 for all i; j :

We know that every nondegenerate BFS for this problem will have exactly n �
m C 1 variables at 0, rather than n � m as seen above for the general LP. What is the
reason for this discrepancy?
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4.2. (Amy Cohn) Consider the LP

Minimize cx

subject to Ax D b

x � 0;

where A is a matrix of order m � n and rank m. Consider a feasible basic vector xB

for this LP associated with the BFS Nx.

(a) In the canonical tableau wrt this basic vector xB suppose that two or more
nonbasic variables have negative reduced cost. Does this mean that the current
BFS Nx is not optimal to the LP? Why or why not?

(b) Suppose that we have selected the nonbasic variable with the most nega-
tive reduced cost to enter the basic vector xB and moved to a new BFS
with an improved objective value. Will this lead to the largest improvement
in the objective value in one pivot step from the basic vector xB? Why or
why not?

(c) Use your answer to part (b) to develop an entering variable choice rule in the
primal simplex algorithm that will always yield the largest possible improve-
ment in objective value in every pivot step.

(d) Will the entering variable choice rule developed in (c) lead to finding the optimal
solution in the fewest possible pivot steps? Why or why not?

4.3. (Yash Aneja) Consider the LP

Minimize cx

subject to Ax D b

x � 0;

where A is a matrix of order m � n and rank m. Nx is a feasible solution to this LP,
which is not a BFS, with objective value Nz D c Nx. It is required to find a BFS to
this LP, if one exists, which has the same objective value Nz. Discuss an approach
for doing this. Mention whether this approach is guaranteed to produce a BFS with
objective value Nz, or conclude that no such BFS exists.

4.4. Consider the set of feasible solutions K of the system: Ax D b; x � 0, where
A; b are given. We are given that K is bounded.

Let Nx be a feasible solution to this problem; and suppose that the number of pos-
itive variables in Nx is r . Using mathematical induction on r , and a purification step
and Result 4.3, show that every point in K can be expressed as a convex combination
of extreme points of K .

4.5. Let K be the set of feasible solutions of the system: Ax D b; x � 0, where
A is of order m � n. We know that K is unbounded. Using the approach outlined in
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Exercise 4.4 and Result 4.4, show that every feasible solution of this system can be
expressed in the form:

(a convex combination of extreme points of K) C (a nonnegative combination of extreme
homogeneous solutions corresponding to this system).

4.6. Let K be the set of feasible solutions of the system: Ax D b; x � 0, where
A is of order m � n. The solution Nx is a feasible solution of this system satisfying
the property that the number of positive variables in it is the smallest among all the
feasible solutions of the system. Then prove that Nx must be an extreme point of K .

4.7. Let �.x/ be a convex function defined over the bounded polytope K D fx W
Ax D b; x � 0g, where A is a given matrix. Prove that the global maximum of
�.x/ over K is attained at an extreme point of K .

4.8. Consider the LP: minimize cx over x 2 K , where K is a convex polytope
specified as the convex hull of a given set of points fx1; : : : ; xrg. Show how to
solve this problem efficiently.

4.9. Consider the LP: Minimize some objective function z D cx subject to the
following constraints in standard form. Assuming that the problem has an optimum
solution, prove that there must be an optimum solution of the problem in which at
least one of the two variables x6 or x7 is 0.

x1 x2 x3 x4 x5 x6 x7

1 0 0 0 3 1 �1 13
0 1 0 0 7 �2 2 29
0 0 1 0 �2 0 0 45
0 0 0 1 8 1 �1 83

xj � 0 for all j

4.10. Let K denote the set of feasible solutions of the following system of con-
straints in standard form. Check whether Nx D .0; 10; 0; 15; 0; 5/T is an extreme
point of K . If it is not, find the smallest dimension face of K containing Nx, and
express it in parametric form.

x1 x2 x3 x4 x5 x6 b
3 1 �1 1 3 �2 15
7 0 5 1 �1 �1 10

�2 0 2 1 8 �1 10

xj � 0 for all j

4.11. Let K denote the set of feasible solutions of the following system of linear
constraints

Ax D b; (5.37)

Dx � d;

where A; D are given m � n and p � n matrices, respectively.
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Write the geometric definition for an Nx 2 K to be an extreme point of K.
Give a complete proof to show that Nx 2 K is an extreme point as defined geo-

metrically iff it is the unique solution of the system of linear equations consisting of
the active constraints in (5.37) at Nx treated as equations.

Write down the conditions that must be satisfied for Nx to be an extreme point of
K , in terms of the rank of some set of vectors.

State conditions on K , which will guarantee the existence of a point in K at
which all the inequality constraints in the system will hold as strict inequalities.

4.12. Let K be the set of feasible solutions of the following system of constraints.

x1 x2 x3 x4 x5 x6 x7

1 0 1 1 3 1 �1 D8
0 1 �1 0 0 3 2 D�1

1 �1 2 2 4 2 �2 D11
�1 2 �3 �2 �4 4 3 D�12

2 1 1 3 7 �2 4 D17
xj � 0 for all j

Check whether Nx D .2; 1; 2; 1; 1; 0; 0/T is an extreme point of K . If not, obtain
an extreme point of K from Nx showing all your work.

If Nx is not an extreme point of K , is it contained on an edge of K? Explain.

4.13. Let K0 D fx W Ax � bg. The first constraint in the system defining K0 is
A1:x � b1. Discuss what happens to the set of feasible solutions of the system
as b1 decreases from its present value. Show that there may be a value Nb1 for b1,
which is � its present value, such that when b1 decreases below Nb1, there is no
further change in the set of feasible solutions of the system. Find an LP model for
computing this Nb1.

Similarly discuss what happens to the set of feasible solutions of the system as
b1 increases from its present value. Show that there may be a value Ob1 for b1, which
is � its present value, such that when b1 increases above Ob1, the set of feasible
solutions of the system becomes empty. Find an LP model for computing this Ob1.

4.14. Let  D fx W Ax D bg, where A is a matrix of order m � n and rank m. Does
 have an extreme point? Why?

4.15. Consider the following LP in which A is of order m � n and rank r .

minimize cx

Ax D b .II /

x � 0

Assume that (II) also has at least one feasible solution. Then does it have at least
one extreme point solution?
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Let Nx be an extreme point solution of (II). What can you say about the number
of its adjacent extreme point solutions in the two cases when Nx is nondegenerate,
degenerate?

4.16. Consider the parametric RHS�LP

min z D cx

subject to Ax D b C �b�

x � 0;

where � is a real-valued parameter. The problem is known to have an optimum
solution when � D �1 and again when � D �2 > �1. Prove that the problem must
have an optimum solution for all �1 � � � �2, and that the optimum objective
value function Nz.�/ as a function of � is a convex function in this interval.
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Chapter 5
Duality Theory and Optimality
Conditions for LPs

5.1 The Dual Problem

Associated with every linear programming problem, there is another linear program
called its dual, involving a different set of variables, but sharing the same data. When
referring to the dual problem of an LP, the original LP is called the primal or the
primal problem. Together, the two problems are referred to as a primal, dual pair of
linear programs. The names primal, dual for the two problems are coined by Tobias
Dantzig, father of George Dantzig, around 1955 in conversations with his son.

A duality type result for systems of linear equations only (no inequalities) is the
theorem of alternatives for systems of linear equations (Theorem 1.1 in Sect. 1.2);
it has been known for a long time (by the eighteenth century or even earlier), but
similar results for systems of linear constraints including linear inequalities were
unknown until recently. These important duality-type results for systems of lin-
ear constraints including inequalities known as either/or theorems or theorems of
alternatives started appearing in published literature beginning in mid-nineteenth
century.

These theorems show that a given system of linear constraints has a feasible solu-
tion iff another system in a different set of variables but constructed using the same
data as the original system has no feasible solution. The first such necessary and
sufficient condition for feasibility of a system involving linear inequalities seems to
be that of Gordon in an 1873 paper:

Gordon’s Theorem: The system Ax < 0 has a solution iff the alternate system yA D 0,
y � 0 has no nonzero solution.

At the end of the nineteenth and the first half of twentieth centuries, many such
results were published by Farkas, Minkowski, Stienke, Motzkin, and several others.
The most famous among them, that appeared in 1894, is:

Farkas’ Lemma: The system Ax D b; x � 0 has a feasible solution iff the alternate
system yA � 0; yb > 0 has no feasible solution.

For a proof of Farkas’ lemma based on the duality theorem for LPs, see Exercise
5.3 at the end of this chapter; for a direct proof of Farkas’ lemma, see Exercises 5.36
and 5.37.
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International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 5, c� Springer Science+Business Media, LLC 2010
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The fundamental notion of duality, and the term itself, were introduced by von
Neumann in conversations with Dantzig in 1947, and stated in a working paper
written the same year. Gale, Kuhn, and Tucker independently formulated the duality
theorem of linear programming and proved it rigorously using Farkas’ lemma in
1951; and they received the John von Neumann Theory prize of INFORMS in 1980
for this work.

Duality plays a big role in LP theory, in this chapter we will discuss some of the
most important theoretical aspects of duality with algorithmic and computational
applications. Duality also plays a big role in nonlinear programming, see Bazaraa
et al. (2006).

In Chap. 5 of Murty (2005b) of Chap. 1, we derived the dual of an LP in a certain
form, purely from economic arguments, and explained how the dual variables can
be interpreted as the marginal values associated with the RHS constants in the LP
model, using the example of the Fertilizer problem that was discussed earlier in
Sect. 1.3.1 and Examples 2.5 and 4.3. We reproduce that material here for the sake
of completeness.

5.2 Deriving the Dual by Rational Economic Arguments

In this problem formulated in Sects. 1.3.1 and 1.7.1 of Chap. 1, the fertilizer manu-
facturer has a daily supply of 1,500 tons of RM 1, 1,200 tons of RM 2, and 500 tons
of RM 3 from the company’s quarries at a cost of $50, $75, $60 per ton, respec-
tively, for RM1, RM2, RM3. Presently these supplies can be used to manufacture
Hi-ph or Lo-ph fertilizers to make profit. Relevant data from Sects. 1.3.1 and 1.7.1
is tabulated.

Item
Tons required to make one
ton of

Maximum amount
available daily (tons)

Hi-ph Lo-ph
RM 1 2 1 1,500
RM 2 1 1 1,200
RM 3 1 0 500

Net profit
($)=ton
made

15 10

The LP model for this problem is:

Maximize z.x/ D 15x1 C 10x2 Item
S. to 2x1 C x2 � 1500 RM 1

x1 C x2 � 1200 RM 2
x1 � 500 RM 3
x1 � 0; x2 � 0,

(5.1)
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where the decision variables are

x1 D the tons of Hi-ph made per day;

x2 D the tons of Lo-ph made per day:

There is a detergent company in the area that needs supplies of RM 1, 2, and 3.
The detergent manufacturer wants to persuade the fertilizer manufacturer to give
up fertilizer making, and instead sell the supplies of RM 1, 2, 3 to the detergent
company. Being very profit conscious, the fertilizer manufacturer will not agree to
this deal unless the prices offered by the detergent manufacturer for each of these
raw materials fetch at least as much income as each of the options in the fertilizer
making business.

In this problem, the fertilizer maker is measuring money in net profit dollar units
(i.e., after subtracting the cost of raw materials and manufacturing costs from sales
revenue dollars). Let the offer made by the detergent manufacturer be

�i D price/ton for RMi , i D 1, 2, 3

in these same money units (i.e., as the cost of RM1, RM2, RM3 per ton is $50,
$75, $60, respectively, in real-life $, the detergent manufacturer offers to pay
$50 C �1; $75 C �2, $60 C �3 per ton of RM1, RM2, RM3, respectively).
With this understanding, we will continue our discussion in the fertilizer maker’s net
profit dollar units for money, and dollar will refer to these units. Clearly, these prices
�1; �2; �3 have to be �0 for the deal to be acceptable to the fertilizer manufacturer.

Now consider the Hi-ph fertilizer making process. Manufacturing one ton of this
fertilizer yields a net profit of $15, and uses up 2 tons RM 1, 1 ton RM 2, and 1 ton
RM 3. The same basket of raw materials fetches a price of 2�1 C �2 C �3 from the
detergent manufacturer. So, the fertilizer manufacturer will not find the price vector
� D .�1; �2; �3/ acceptable unless 2�1 C �2 C �3 � 15.

Similar economic analysis with the Lo-ph fertilizer process leads to the constraint
�1 C �2 � 10.

With the price vector � , the cost to the detergent company of acquiring the daily
raw material supply is 1500�1 C 1200�2 C 500�3, and the detergent manufacturer
would clearly like to see this minimized. Thus to make it acceptable to the fertilizer
manufacturer, the price vector � D .�1; �2; �3/ that the detergent manufacturer
offers for the supplies of RM 1, 2, 3, should be an optimum solution for

Minimize v.�/ D 1500�1C 1200�2C 500�3

s. to 2�1C �2C �3 � 15
�1C �2 � 10
�1, �2, �3 � 0

all �i � 0:

(5.2)

The LP (5.2) is the dual of (5.1), and vice versa. This pair of problems is a primal–
dual pair of LPs. When considering the primal (5.1), the variables in its dual (5.2)
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are called the dual variables, and the slacks in (5.2) corresponding to the inequality
constraints in it are called the dual slack variables.

As the first constraint in (5.2) comes from the economic analysis of the Hi-ph
manufacturing process, this dual constraint is said to correspond to the Hi-ph primal
variable x1. Likewise, the second dual constraint in (5.2) corresponds to the primal
variable x2. In the same way, the dual variable �1, the detergent manufacturer’s
price for the item RM 1, is associated with the RM 1 (first) primal constraint in (5.1).
Similarly the dual variables �2 and �3 are associated with the second (RM 2) and
third (RM 3) primal constraints in (5.1), respectively. Thus there is a dual variable
associated with each primal constraint, and a dual constraint corresponding to each
primal variable. Also, verify the following facts.

1. The coefficient matrix in the detergent manufacturer’s problem (5.2) is just the
transpose of the coefficient matrix in the fertilizer manufacturer’s problem (5.1),
and vice versa.

2. The RHS constants in (5.2) are the objective coefficients in (5.1), and vice versa.
3. Each variable in (5.1) leads to a constraint in (5.2), and vice versa.
4. LP (5.1) is a maximization problem in which the constraints are � type; and (5.2)

is a minimization problem in which the constraints are � type.

5.2.1 Dual Variables are Marginal Values

The marginal value of RM i in the fertilizer manufacturer’s problem is the rate of
change in the maximum net profit per unit change in the availability of RM i from
its present value; thus it is the net worth of one additional unit of RM i over the
present supply, for i D 1, 2, 3, to the fertilizer manufacturer.

Hence, if the detergent manufacturer offered to buy RM i at a price � its
marginal value, for i D 1, 2, 3, the fertilizer manufacturer would find the deal
acceptable. Being cost conscious, the detergent manufacturer wants to make the
price offered for any raw material to be the smallest value that will be acceptable to
the fertilizer manufacturer. Hence, in an optimum solution of (5.2), the �i will be
the marginal value of RM i , for i D 1, 2, 3, in (5.1). Thus the dual variables are the
marginal values of the items associated with the constraints in the primal problem.
These marginal values depend on the data, and may change if the data does.

5.2.2 The Dual of the General Problem in This Form

Now consider the general LP in the same form, it is

Maximize z.x/ D cx

subject to Ax � b (5.3)

x � 0;
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where A is an m�n matrix. LPs in this form are said to be in symmetric form. From
similar arguments it can be seen that the marginal values of this LP are the dual
variables in the dual of this problem given below. Let �i denote the dual variable
associated with the i th constraint in this LP, i D 1 to m. If we write the vector of
dual variables as a column vector, the statement of the dual problem will involve
AT as the coefficient matrix. But usually the vector of dual variables is written as
the row vector � D .�1; : : : ; �m/. Using it, the dual of the above LP is

Minimize v.�/ D �b

subject to �A � c (5.4)

� � 0:

We will discuss some of the relationships between the primal and dual problems
after we discuss the dual of the LP in general form in the next section.

5.3 Rules for Writing the Dual of a General LP

In this section we describe the rules for writing the dual of an LP in general form.
This dual is also based on economic arguments similar to those given above for LPs
in symmetric form.

Remember that in describing the simplex method for solving an LP in (Murty
(2005b) of Chap. 1), we required the transformation of the LP into standard form
first. To write the dual of a general LP, there is really no need to transform it in any
way first. We will describe how to write the dual of any LP as it is given, without
carrying out any transformation on it. This, however, requires remembering the right
and wrong types of inequalities for an LP, as defined below:

For a minimization problem: Any inequality constraint or bound constraint of the � type
is the right type; all other inequality constraints and bounds of the � type are of the wrong
type.

For a maximization problem: Any inequality constraint or bound constraint of the � type
is the right type; all other inequality constraints and bounds of the � type are of the wrong
type.

The question is: how does one remember these definitions easily? I always found
the following helpful. I think of optimizing a single variable subject to any single
bound constraint on it, for example: optimize x1 subject to x1 � 6.

If optimize in this statement is replaced by maximize, this problem has no op-
timum solution at all, suggesting that for a maximization problem “�” is of the
wrong type (hence the right type is “�” for maximization). But if optimize is re-
placed by minimize, then this problem has an optimum solution x1 D 6, suggesting
that for a minimization problem “�” is of the right type (hence “�” is wrong type
for minimization).
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Here, the LP whose dual we are deriving is called the primal LP. Let a primal
constraint refer to any condition in the primal involving two or more variables
(including equations), or any nonzero lower or upper bound condition on a sin-
gle variable. Hence the only primal conditions not counted as constraints for this
purpose are the �0 or �0 restrictions on individual variables, which we call as
sign restrictions. Remember that any primal variable for which both a lower and an
upper bound constraints are included in the list of constraints is treated as an unre-
stricted variable, because the bounds already spell out the range within which this
variable can vary.

For convenience in referring to them, we will assume that all the primal con-
straints are put in the form of a detached coefficient constraint tableau, each row
corresponding to a constraint, each column corresponding to a variable; and b

the RHS constants vector. Suppose xj , associated with the column vector Aj in
the tableau, and objective coefficient cj , j D 1 to n, are the primal variables. Here
are the rules for writing the dual of this LP.

1. Defining dual variables: Associate a separate dual variable to each primal con-
straint (i.e., row of the constraint tableau). Let � denote the row vector of dual
variables in this order.

2. Dual objective function: The dual objective function is �b C (any constant term
in the primal objective function). If primal is a minimization problem, dual is a
maximization problem and vice versa.

3. Sign restrictions on dual variables: Dual variables associated with (1) primal
equality constraints are unrestricted in sign, (2) right (wrong) type of primal in-
equality constraints are nonnegative (non-positive) variables in the dual problem.

4. Dual constraints: There is a dual constraint corresponding to each primal vari-
able. That, associated with xj , is (1) �Aj D cj if xj is an unrestricted
variable in primal, (2) �Aj � cj or �Aj � cj whichever is the right (wrong)
type for the dual problem if xj has the nonnegativity (nonpositivity) restriction
in the primal.

Example 5.1. Consider the following LP: minimize z0 D �3x1 � 4x2 C 5x3 � 6x5

C7x6�35 subject to constraints given below. The constant term �35 in the objective
function z0 does not depend on the feasible solution, so finding an optimum solution
minimizing z0 is the same as that minimizing z D z0 � .�35/. In the sequel
we consider minimizing z. The problem with constraints arranged in a detached
coefficient tableau are shown next.

x1 C x2 � x3 � 2x4 C 3x6 D �17

�x1 � x2 C 2x3 � 4x4 C 6x5 � 3x6 � �18

2x1 � 3x2 C 3x3 � x4 C 4x5 � 40

x2 � 0; x3 � 0; 2 � x4 � 15; 0 � x5 � 6; x6 � 3;

x1 unrestricted



5.3 Rules for Writing the Dual of a General LP 241

x1 x2 x3 x4 x5 x6 RHS Associated
dual var.

1 1 �1 �2 0 3 D �17 �1

�1 �1 2 �4 6 �3 � �18 �2

2 �3 3 �1 4 0 � 40 �3

0 0 0 1 0 0 � 2 �4

0 0 0 1 0 0 � 15 �5

0 0 0 0 1 0 � 6 �6

0 0 0 0 0 1 � 3 �7

�3 �4 5 0 �6 7 D z minimize
x1; x4; x6 unrestricted; x2; x5 � 0, x3 � 0

The dual problem in detached coefficient form is

�1 �2 �3 �4 �5 �6 �7 RHS Assoc.
var.

1 �1 2 0 0 0 0 D �3 x1

1 �1 �3 0 0 0 0 � �4 x2

�1 2 3 0 0 0 0 � 5 x3

�2 �4 �1 1 1 0 0 D 0 x4

0 6 4 0 0 1 0 � �6 x5

3 �3 0 0 0 0 1 D 7 x6

�17 �18 40 2 15 6 3 D v maximize
�1 unrestricted, �2; �4; �7 � 0, and �3; �5; �6 � 0.

Verify the following

1. The coefficient matrix of the dual constraints is the transpose of the coefficient
matrix of the primal constraints.
The primal RHS constants vector is the dual objective coefficient vector and vice
versa.

2. The dual of the dual problem is the primal problem. That is why the relationship
between a primal LP and its dual is said to be a symmetric relationship. �

5.3.1 Complementary Pairs in a Primal, Dual Pair of LPs

Each inequality constraint in the primal LP corresponds to its own slack variable; in
fact, after rearranging the terms, if the inequality is put in the form

.some expression in the variables/ � 0;

the left-hand side of this inequality is the expression for the primal slack variable
corresponding to this inequality. This primal inequality constraint corresponds to
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a sign-restricted dual variable in the dual problem. This primal slack variable and
the corresponding sign-restricted dual variable are said to correspond to each other;
together they form a pair known as a complementary pair of variables in this primal,
dual pair of LPs. In the same way, each dual slack variable and the corresponding
sign-restricted primal variable correspond to each other, and together they form a
complementary pair of variables.

Thus each complementary pair consists of a primal (or dual) slack variable and
its corresponding sign-restricted dual (or primal) variable, and in writing a comple-
mentary pair, both quantities in it are always written in a nonnegative form (i.e., if a
quantity is nonpositive, its negative would be entered in its place in the complemen-
tary pair). Also, in writing each complementary pair, usually the primal quantity is
written first, then the dual quantity is written next.

Example 5.2. Here we will list the various complementary pairs in the primal, dual
pair of LPs from Example 5.1. They are: .�x1�x2C2x3�4x4C6x5�3x6C18; �2/;

.40 � 2x1 C 3x2 � 3x3 C x4 � 4x5; ��3/; .x4 � 2; �4/; .15 � x4; ��5/; .6 �
x5; ��6/; .x6 �3; �7/; .x2; �4 � �1 C�2 C3�3/; .�x3; ��1 C2�2 C3�3 �5/;

.x5; �6 � 6�2 � 4�3 � �6/. �

5.3.2 What Is the Importance of Complementary Pairs?

Complementary pairs have a very important role in the optimality conditions for an
LP. A condition known as the complementary slackness condition or property states
that a pair of primal, dual feasible solutions is optimal to the respective problems iff
at least one quantity in every complementary pair for these solutions is 0 (this is dis-
cussed in Theorem 5.5 in the next section). The name complementary pair actually
refers to this property, because if we know that one of the quantities in the pair is
positive, the other must be 0 for optimality to hold.

Also, given an arbitrary pair of primal, dual feasible solutions, the duality gap in
this pair, defined as a measure of how far these solutions are from being optimal to
the respective problems, is shown to be equal to the sum of the products of various
complementary pairs in this pair (see Theorem 5.6 in the next section).

5.3.3 Complementary Pairs for LPs in Standard Form

Consider the primal LP

Minimize z D cx

subject to Ax D b (5.5)

x � 0;
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where A is a matrix of order m � n. Associating the dual variable �i to the i th
constraint in (5.5), we have the row vector of dual variables � D .�1; : : : ; �m/.
Then the dual problem is

Maximize v D �b

subject to �A:j � cj ; j D 1 to n (5.6)

� unrestricted;

or in matrix notation the dual problem is

Maximize v D �b

subject to �A � c

� unrestricted.

The various complementary pairs in this primal, dual pair of LPs are .xj ; Ncj D
cj � �A:j /, j D 1 to n. The dual slack cj � �A:j corresponding to xj is usually
denoted by Ncj ; we will show later that it is exactly the relative (or reduced) cost
coefficient of the primal variable xj computed in the simplex algorithm.

Example 5.3. Consider the LP in standard form in the following detached coeffi-
cient tableau

x1 x2 x3 x4 x5 x6 RHS Associated
dual var.

1 2 3 �2 1 16 17 �1

0 1 �4 1 1 1 2 �2

0 0 1 �2 1 0 1 �3

3 11 �15 10 4 57 D z minimize
xj � 0 for all j

Here is the dual problem in detached coefficient tableau form.

�1 �2 �3 RHS Associated
primal var.

1 0 0 � 3 x1

2 1 0 � 11 x2

3 �4 1 � �15 x3

�2 1 �2 � 10 x4

1 1 1 � 4 x5

16 1 0 � 57 x6

17 2 1 D v maximize

So, the complementary pairs in this primal, dual pair are .x1; Nc1 D 3 � �1/,
.x2; Nc2 D 11 � 2�1 � �2/, .x3; Nc3 D �15 � 3�1 C 4�2 � �3/, .x4; Nc4 D
10 C 2�1 � �2 C 2�3/, .x5; Nc5 D 4 � �1 � �2 � �3/, .x6; Nc6 D 57�
16�1 � �2/. �
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5.3.4 Complementary Pairs for LPs in Symmetric Form

Consider the primal LP

Minimize z D cx

subject to Ax � b (5.7)

x � 0;

where A is a matrix of order m � n. Associating the dual variable �i to the i th
constraint in (5.7), we have the row vector of dual variables � D .�1; � � � ; �m/.
Then the dual problem is

Maximize v D �b

subject to �A:j � cj ; j D 1 to n (5.8)

� � 0;

or in matrix notation the dual problem is

Maximize v D �b

subject to �A � c

� � 0:

When all the primal constraints are inequalities of the right type and all the primal
variables are nonnegative variables, the dual is also in the same form; that is why
LPs in this form are said to be in symmetric form. The constraints in the primal are
Ai:x � bi , i D 1 to m; hence the primal slack variables are Ai:x � bi themselves
for i D 1 to m. Likewise the dual slack variables are cj � �A:j , j D 1 to n. So,
we see that the various complementary pairs in this primal, dual pair of LPs are
.Ai:x � bi ; �i /; .xj ; cj � �A:j /, i D 1 to m, j D 1 to n.

Example 5.4. Consider the LP in symmetric form in the following detached coeffi-
cient tableau

x1 x2 x3 RHS Associated
dual var.

1 1 �1 � 10 �1

0 3 7 � 13 �2

6 7 0 D z minimize
xj � 0 for all j

Here is the dual problem in detached coefficient tableau form.
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�1 �2 RHS Associated
primal var.

1 0 � 6 x1

1 3 � 7 x2

�1 7 � 0 x3

10 13 D v maximize
�1; �2 � 0:

So, the various complementary pairs in this pair of primal, dual LPs are .x1 C
x2 � x3 � 10; �1/, .3x2 C 7x3 � 13; �2/, .x1; 6 � �1/, .x2; 7 � �1 � 3�2/,
.x3; �1 � 7�2/. �

5.3.5 Complementary Pairs for LPs in Bounded Variable
Standard Form

Consider the primal LP

Minimize z D cx

subject to Ax D b

` � x � k;

where A is a matrix of order m � n and ` D .`j /; k D .kj / are finite vectors
satisfying ` < k. The problem in matrix notation in detached coefficient form is

x RHS Associated
dual var.

A D b � D .�1; � � � ; �m/

I � ` � D .�1; � � � ; �n/

I � k � D .�1; � � � ; �n/

c D z minimize.

where I is the unit matrix of order n. Associating with the primal constraints, the
dual variables as shown in the above tableau; the dual problem in matrix notation is

Maximize v D �b C �` C �k

s. to �A C � C � D c

� unrestricted; � � 0; � � 0:
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Denoting � as �ı D .�ı1; � � � ; �ın/, the dual problem is

Maximize v D �b C �` � ık

s. to �A C � � ı D c

� unrestricted; �; ı � 0:

There are n dual constraints, if you show them individually, the dual problem
becomes

Maximize v D �b C �` � ık

s. to �A:j C �j � ıj D cj ; j D 1; � � � ; n

� unrestricted; �; ı � 0:

The various complementary pairs in this primal, dual pair of LPs are .xj �
`j ; �j /, j D 1, � � � ; n; .kj � xj ; ıj /, j D 1, � � � ; n.

Exercises

5.3.1. Write the duals of the following problems, list all the complementary pairs in
each of them; write the dual of the dual and verify that it is the original problem.

(a) Maximize �17x1 C 13x3 � 25x4 C 3x5 subject to

�3x2 C 7x3 � 20x4 C 6x5 � x6 C x7 D �29

5x1 � 9x3 C 15x5 � 66x6 � �13

2x1 C 5x2 C 9x3 C 22x4 C 34x5 C 7x6 C 2x7 � 133

x1 � 0; x2 � 0; �2 � x3 � 12; 0 � x4 � 10; x5 � 37

x6 � �8; x7 unrestricted.

(b) Minimize 3x1 C 6x2 � 7x3 C 9x4 subject to
�7 � x1 � 7, 8 � x2 � 38, 0 � x3 � 6, �12 � x4 � 0.

(c) Maximize 2x1 � 3x2 C 4x3 � 5x4 � 6x5 � 4x6 C 10x7 C 2x8 subject to (in the
following tableau blank entries are 0)

x1 x2 x3 x4 x5 x6 x7 x8 RHS
1 1 1 1 �2 3 �3 � 28

1 1 1 2 1 �4 �1 � 20

1 1 1 �5 3 4 D 15

1 �3 2 �1 1 D 8

all xj � 0:
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(d) Minimize 3x1 C 5x2 � 7x3 C 4x5 � 5x6 subject to 6x1 C 2x2 C 9x3 C 3x4 C
11x5 C 7x6 D 150 and 5 � xj � 25 for all j .

(e) Minimize z.x/ D Pn
j D1 cj xj subject to `j � xj � kj for all j andPn

j D1 aij xj � bi for i D 1 to m.

5.4 Duality Theory and Optimality Conditions for LP

In this section we derive results relating the primal and dual LPs, and optimality
conditions for them.

Theorem 5.1. Duals of equivalent LPs are equivalent.

Proof. We know that LPs can be transformed from one form (standard form,
symmetric form, etc.) to another by simple transformations like introducing slack
variables to make an inequality into an equation, replacing an equation by an equiva-
lent pair of opposite inequalities, expressing an unrestricted variable as a difference
of two nonnegative variables, multiplying both sides of an inequality by �1 and
changing its direction, row operations on equality constraints, etc. These transfor-
mations maintain the problems equivalent. When this is done, this theorem says that
the dual of the transformed problem is equivalent to the dual of the original.

We will first show that the theorem holds when an LP in general form is trans-
formed into symmetric form. Consider the LP in general form:

Minimize z.x/ D cx

s. to Dx D d (5.9)

F x � g;

where D is a matrix of order m � n and F is a matrix of order p � n. Its dual is

Minimize v.�; �/ D �d C �g

s. to �D C �F D c (5.10)

� � 0;

where � D .�1; � � � ; �m/; � D .�1; : : : ; �p/ are row vectors of dual variables.
To transform (5.9) into symmetric form, we need to replace the system of equa-

tions Dx D d by the opposing pair of inequalities Dx � d , Dx � d ; and express
the vector of unrestricted variables x as difference of two vectors of nonnegative
variables, say, x D xC � x� with xC; x� both � 0. This leads to the equiva-
lent transformed problem given in the following detached coefficient tableau using
matrix notation.
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xC x� RHS Associated
dual vector

D �D � d ı

�D D � �d �

F �F � g �

c �c D z minimize
xC; x� � 0

Associating the dual vectors (all row vectors) as indicated in the tableau, we see
that the dual of this transformed problem is

Maximize .ı � �/d C �g

s. to .ı � �/D C �F � c (5.11)

�Œ.ı � �/D C �F 
 � �c

ı; �; � � 0:

The second constraint here is the same as Œ.ı � �/D C �F 
 � c, which together
with the first is equivalent to .ı��/DC�F D c. Also, when ı; � � 0, ı � � D �

is a vector of unrestricted variables. Then we see that (5.11) is equivalent to the dual
(5.10) of the original LP (5.9).

Using similar simple arguments, we can verify that the theorem holds in
general. ut

Using Theorem 5.1, we see that the subsequent duality results that we will discuss
need to be proved for any one form of LP, then by this theorem they hold for LP in
any form.

Theorem 5.2. In a primal, dual pair of LPs, both problems may be infeasible.

Proof. By example. Consider the primal LP

Minimize z D 2x1 � 4x2

s. to x1 � x2 D 1

�x1 C x2 D 2

x1; x2 � 0:

Its dual is

Maximize v D �1 C 2�2

s. to �1 � �2 � 2

��1 C �2 � �4

�1; �2 � 0:

When we add the two primal equality constraints we get the fundamental incon-
sistent equation 0 D 3; so the primal is infeasible. When we add the two dual “�”
inequalities, we get the fundamental inconsistent inequality 0 � �2; so the dual is
infeasible too. ut
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5.4.1 The Importance of Good Lower Bounding Strategies
in Solving Optimization Problems

A general problem considered in optimization theory is of the form

Minimize z.x/ (5.12)

Subject to some specified constraints on x.

Optimization theory is concerned with developing techniques useful to handle
problems like (5.12). As maximizing a function z0.x/ is the same as minimizing
�z0.x/, there is no need to discuss maximization problems separately, that is why
much of optimization literature is written in terms of minimization.

Let z� denote the unknown minimum value of z.x/ in (5.12). To size up the
unknown quantity z�, it will be helpful to get both an upper bound and a lower
bound for it if these bounds can be computed by techniques that are much simpler
than computing z� directly.

Also, a lower bound like �1 (or the negative of a very large positive number) is
really of no value; the quality (i.e., usefulness) of a bound improves as the difference
between it and the unknown z� gets smaller.

If Nx is any feasible solution for (5.12), clearly z� � z. Nx/, and hence z. Nx/ is an
upper bound for z�. The process of computing a feasible solution for (5.12) is part
and parcel of solving (5.12) itself, it happens automatically in any successful algo-
rithm for solving (5.12), and the quality of the upper bound improves automatically
as better and better solutions are obtained in the algorithm. That is why computing
an upper bound for z� is not considered a great achievement.

However, computing a lower bound for z� does not appear to be a necessary part
of an algorithm for solving (5.12). But a good lower bound for z� when combined
with upper bounds for z� obtained during the algorithm can provide very valuable
information about the unknown value of z�.

That is why an efficient technique for computing a nontrivial good quality lower
bound for z� is very valuable. In optimization literature, techniques like this are
usually called lower bounding strategies.

Lower bounding strategies in minimization problems correspond to upper bound-
ing strategies in maximization problems, but as much of optimization literature is
in terms of minimization, both these are usually clubbed under lower bounding
strategies.

An effective lower bounding strategy for LPs comes from duality theory; the
result known as the weak duality theorem is the first significant result proved in
LP theory. It was proved by Gale, Kuhn, and Tucker in the early 1950s, and they
received the Von Neumann Theory Prize of INFORMS (American Society for OR
and Management Science) in 1980 for their contribution. We will discuss this next.

Theorem 5.3. The Weak Dualty Theorem: Consider a primal, dual pair of LPs
in which the primal is the minimization problem with objective function z.x/ and
the dual is the maximization problem with objective function v.�/. If Nx; N� are,
respectively, primal, dual feasible solutions, then z. Nx/ � v. N�/.
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So, for any dual feasible solution N� , v. N�/ is a lower bound for the minimum
objective value in the primal. Likewise, for any primal feasible solution Nx, z. Nx/ is
an upper bound for the maximum objective value in the dual.

Proof. We will consider the primal, and dual in symmetric form.

Primal (P)
Minimize z.x/ D cx

s. to Ax � b

x � 0

Dual (D)
Maximize v.�/ D �b

s. to �A � c

� � 0

where A is a matrix of order m � n, and x D .x1; : : : ; xn/T , � D .�1; : : : ; �m/

are vectors of primal, dual variables, respectively.
As Nx is primal feasible, we have A Nx � b. Also, as N� is dual feasible, N� � 0,

that is why we can multiply both sides of A Nx � b on the left by N� , leading to

N�A Nx � N�b: (5.13)

As N� is dual feasible, we have N�A � c. Also, as Nx is primal feasible, Nx � 0,
that is why we can multiply both sides of N�A � c on the right by Nx, leading to

c Nx � N�A Nx: (5.14)

Combining (5.13) and (5.14), we have c Nx � N�b, that is, z. Nx/ � v. N�/. So, the
result in this theorem is true for this primal, dual pair of LPs (P), (D).

Any LP can be transformed into this symmetric form, and by Theorem 5.1 the
result in this theorem holds for that LP and its dual. Also, this theorem can be proved
for LP in any form directly using arguments similar to those used above. ut
Corollaries of the Weak Duality Theorem: All the following results are direct
consequences of the weak duality theorem, Theorem 5.3.

1. Sufficient Optimality Criterion for LP: Let Nx be a feasible solution for an LP.
If you can find a feasible solution N� for its dual, which also satisfies primal
objective value at Nx D dual objective value at N� , then Nx is an optimum solution
for the primal, and N� is an optimum solution of the dual.

Example 5.5. Consider the fertilizer manufacturer’s problem, and its dual discussed
in Sect. 5.2, reproduced below.

Primal (5.1)
Max. z.x/ D 15x1 C 10x2

s. to 2x1 C x2 � 1500

x1 C x2 � 1200

x1 � 500

x1; x2 � 0

Dual (5.2)
Min. v.�/ D 1500�1 C 1200�2 C 500�3

s. to 2�1 C �2 C �3 � 15

�1 C �2 � 10

�1; �2; �3 � 0
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Let Nx D .300; 900/T . We verify that Nx is primal feasible and that z. Nx/ D $13;500.
Given the dual solution N� D .5; 5; 0/, we find that it is dual feasible and that
v. N�/ D $13;500, the same as z. Nx/. By the weak duality theorem, this informa-
tion is enough to conclude that Nx; N� are optimum solutions of the primal and
the dual. �

2. Dual Infeasibility and Primal Unboundedness: If the primal is feasible, and the
objective value to be minimized in it, z.x/ ! �1 on its feasible solution set,
then the dual must be infeasible.

3. Primal Infeasibility and Dual Unboundedness: If the dual is feasible, and the
objective value to be maximized in it, v.�/ ! 1 on its feasible solution set,
then the primal must be infeasible.

4. Bounds on Objective Values: In a primal, dual pair of LPs, (the minimum objec-
tive value in the minimization problem in the pair) is � (the maximum objective
value in the maximization problem in the pair).

5.4.2 Definition of the Dual Solution Corresponding to Each
Primal Basic Vector for an LP in Standard Form

Consider the primal LP in standard form

Minimize z D cx

subject to Ax D b (5.15)

x � 0;

Basic Nonbasic
x1 : : : xm xmC1 : : : xj : : : xn �z RHS
a11 : : : a1m a1;mC1 : : : a1j : : : a1n 0 b1

:::
:::

:::
:::

:::
:::

:::

am1 : : : amm am;mC1 : : : amj : : : amn 0 bm

c1 : : : cm cmC1 : : : cj : : : cn 1 0

xj � 0 for all j

where A D .aij / is a matrix of order m � n, and rank m. A vector of m primal
variablesxB D .x1; � � � ; xm/ say is a basic vector for this LP if the set of column
vectors in A of primal basic variables in xB is linearly independent; that is, if the
square matrix B consisting of those column vectors is nonsingular, in this case B

is said to be the basis corresponding to the basic vector xB . We can rearrange
the variables in the detached coefficient tableau representation of this problem into
basic, nonbasic parts as shown in the tableau given above.

B D

0
B@

a11 : : : a1m

:::
:::

am1 : : : amm

1
CA :
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The vector cB D .c1; : : : ; cm/, the subvector of the original cost vector c

corresponding to the basic variables in xB is known as the basic cost vector cor-
responding to the basic vector xB . Denoting the vector of nonbasic variables (i.e.,
those primal variables not in xB ) by the symbol xD , the submatrix of A corre-
sponding to them by D, and the vector of their cost coefficients by cD , the tableau
in partitioned form in matrix notation is

xB xD �z RHS
B D 0 b

cB cD 1 0

The primal basic solution corresponding to the basic vector xB is defined by
fixing all the nonbasic variables at their lower bound 0, and then using the equality
constraints to solve for the values of the basic variables. It is

NxD D 0;

NxB D B�1b;

objective value z D cB NxB C cD NxD D .cBB�1/b:

This primal basic solution is only guaranteed to satisfy the equality constraints
in (5.15), it may or may not satisfy the nonnegativity constraints. This solution is
called a basic feasible solution (BFS) if it is also nonnegative, that is, if B�1b � 0.
In this case, xB and B are said to be the primal feasible basic vector and basis,
respectively.

If B�1b 6� 0 (i.e., it has at least one negative component), then xB ; B are said
to be primal infeasible basic vector, basis, respectively.

Even though the basic vector xB consists of primal variables only and has nothing
to do directly with the dual problem, it is convenient to also associate a dual basic
solution corresponding to it. This is done by the following:

the dual basic solution corresponding to the primal basic vector xB is defined to be the
unique solution of the system of dual constraints corresponding to the basic variables in xB

treated as equations, ignoring all the other dual constraints.

The dual of (5.15) is

Maximize v.�/ D �b

subject to �A:j � cj ; j D 1; : : : ; n;

where the j th constraint here corresponds to xj . So, the system of dual constraints
corresponding to basic variables in xB D .x1; � � � ; xm/ treated as equations is

�A:j D cj ; j D 1; : : : ; m

or �B D cB . This has the solution N� D cBB�1, which is defined as the dual basic
solution associated with the primal basic vector xB .
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With this definition, the dual slack variable in the dual constraint corresponding
to the primal variable xj is cj � N�A:j D cj � .cBB�1/A:j D Ncj . We will show
shortly that this dual slack variable is exactly the relative (or reduced) cost coeffi-
cient of xj in the canonical tableau wrt the basic vector xB .

So, the dual basic solution N� D cBB�1 is feasible to the dual problem iff all the
dual slacks Ncj D cj � .cBB�1/A:j � 0 for all j D 1 to n. In this case we say
that the primal basic vector xB and the corresponding basis B are dual feasible if
all these Ncj � 0 for all j , dual infeasible if at least one Ncj < 0.

To get the canonical tableau wrt the basic vector xB , we take �z as the permanent
basic variable in the objective row. With this additional basic variable, the basis
becomes

B D
	

B 0

cB 1



:

Its inverse, known as the inverse tableau corresponding to the basic vector xB or
.xB ; �z/, contains the negative of the dual basic solution in its last row.

B�1 D
	

B�1 0

�cBB�1 1



D
	

B�1 0

� N� 1



: (5.16)

The canonical tableau wrt this basic vector can be obtained by multiplying the
original tableau on the left by the inverse tableau B�1. So it is

Canonical tableau wrt basic vector .xB ; �z/
Basic Nonbasic

x1 : : : xm xmC1 : : : xj : : : xn �z RHS

1 : : : 0 Na1;mC1 : : : Na1j : : : Na1n 0 Nb1

:::
:::

:::
:::

:::
:::

:::

0 : : : 1 Nam;mC1 : : : Namj : : : Namn 0 Nbm

0 : : : 0 NcmC1 : : : Ncj : : : Ncn 1 0

where updated RHS column . Nb; �Nz/ D (inverse tableau) (original RHS column) is

	 Nb
�Nz



D B�1

	
b

0



; (5.17)

or Nb D B�1b and Nz D cBB�1b D N�b. Also, for j D 1 to n, updated column of
xj D . NA:j ; Ncj / D (inverse tableau) (original column of xj ), so

	 NA:j

Ncj



D B�1

	
A:j

cj



; (5.18)

NA:j D B�1A:j ; Ncj D cj � N�A:j D cj � .cBB�1/A:j : (5.19)
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So, we see that the reduced (relative) cost coefficient of the variable xj wrt the
basic vector xB is the dual slack in the dual constraint corresponding to xj , and
the formula for it is

Ncj D (last row of inverse tableau) (original column of xj ): (5.20)

5.4.3 Properties Satisfied by the Primal and Dual Basic Solutions
Corresponding to a Primal Basic Vector

The definition of the dual basic solution corresponding to the primal basic vector
xB satisfies the following properties:

1. In Nx, the primal basic solution corresponding to xB , basic variables in xB are
the only ones that can take nonzero values. In the dual basic solution N� corre-
sponding to xB , the dual slack variables Ncj in dual constraints corresponding to
basic variables in xB are all 0, because N� is defined so as to satisfy N�B D cB .
So, in the primal, dual solution pair . Nx; N�/, every complementary pair . Nxj ; Ncj /,
j D 1 to n, contains at least one 0 quantity. This property called the complemen-
tary slackness property is an important optimality condition for the LP (5.15), as
explained later.

2. The primal objective value z. Nx/ and the dual objective value v. N�/ are both equal
(both equal to cBB�1b).

3. For each j D 1 to n, the value of the dual slack Ncj in the dual constraint
corresponding to xj , in the dual solution N� , is exactly the reduced (relative)
cost coefficient of xj wrt the basic vector xB .
The reduced cost coefficients Ncj for all basic variables should be 0 by definition
of N� . The definition of the dual basic solution corresponding to the primal ba-
sic vector xB (making the slacks in the dual constraints corresponding to basic
variables D 0) comes from this property.

4. In the primal simplex algorithm, the criterion for the primal feasible basic vector
xB to be optimal is that all reduced cost coefficients Ncj wrt it must be � 0. We
see that this is exactly the condition for the dual basic solution N� wrt xB , to be
dual feasible.
Hence this definition of the dual basic solution wrt xB makes it possible to
interpret the optimality criterion of the primal simplex algorithm as the dual
feasibility criterion.

Example 5.6. Consider the following LP, which is a model for a diet problem with
six foods. x1 to x6 represent the quantities of foods one to six included in the daily
diet; x7; x8 are the slack variables corresponding to the two constraints.
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Original tableau
x1 x2 x3 x4 x5 x6 x7 x8 �z RHS

1 0 2 2 1 2 �1 0 0 9
0 1 3 1 3 2 0 �1 0 19

35 30 60 50 27 22 0 0 1 0
xj � 0 for all j , minimize z

The number of equality constraints, m, in this problem is 2, and they clearly form
a linearly independent constraint set. So, the number of basic variables in every basic
vector for this problem will be 2.

1. First consider the vector .x1; x7/. This is not even a basic vector as the set of
column vectors of x1; x7 form a linearly dependent set.

2. Now consider the vector of variables .x1; x8/. As the set of column vectors
of x1; x8 is linearly independent, this is a basic vector for the problem. Call it
xB1

D .x1; x8/. The associated basic cost vector is cB1
D (35, 0); nonbasic vector

xD1
D .x2; x3; x4; x5; x6; x7/. The

Basis D B1 D
	

1 0

0 �1



:

To get the primal basic solution Nx1 corresponding to xB1
, we set NxD1

D 0, and
solve for NxB1

from the remaining system of equations, which is

x1 x8 RHS
1 0 9
0 �1 19

From this we see that Nx1 D .9; 0; 0; 0; 0; 0; 0; �19/T , which is primal infeasible
because it makes x8 negative. So, xB1

; B1 are primal infeasible.
The dual problem is

�1 �2 RHS Associated
primal var.

1 0 � 35 x1

0 1 � 30 x2

2 3 � 60 x3

2 1 � 50 x4

1 3 � 27 x5

2 2 � 22 x6

�1 0 � 0 x7

0 �1 � 0 x8

9 19 D v.�/ Maximize

To get the dual basic solution associated with xB1
, we need to solve the system

consisting of dual constraints corresponding to x1; x8 as equations, which gives
N�1 D (35, 0).
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Substituting N�1 D (35, 0) in the dual constraints, we compute the corresponding
vector of dual slacks as Nc1 D .0; 30; �10; �20; �8; �48; 35; 0/, which is not � 0.
Hence N�1 is dual infeasible, and so are xB1

; B1.
The extended basis, its inverse, corresponding to the basic vector .x1; x8; �z/

are

B1 D
0
@

1 0 0

0 �1 0

35 0 1

1
A ; B�1

1 D
0
@

1 0 0

0 �1 0

�35 0 1

1
A ;

and we verify that the last row of the inverse tableau is .� N�1; 1/. Also, the canonical
tableau of the problem wrt xB1

is

Canonical tableau wrt basic vector xB1

BV x1 x2 x3 x4 x5 x6 x7 x8 �z RHS
x1 1 0 2 2 1 2 �1 0 0 9
x8 0 �1 �3 �1 �3 �2 0 1 0 �19

�z 0 30 �10 �20 �8 �48 35 0 1 �315

Here “BV” stands for “the basic variable in this row.” Verify that the relative cost
coefficients in the canonical tableau are equal to the dual slacks computed earlier.
Also, verify that the updated columns in the canonical tableau are the same as those
obtained from the formulae given above.

3. Now consider the primal basic vector xB2
D .x1; x2/ for this problem. We

have

Basis D B2 D
	

1 0

0 1



; cB2

D .35; 30/:

So, we compute Nx2 D .9; 19; 0; 0; 0; 0; 0; 0/T is the primal basic solution wrt
xB2

; N�2 D (35, 30) is the dual basic solution wrt xB2
; Nc2 D .0; 0; �100; �50; �98;

�108; 35; 30/ is the dual slack vector at N�2.
As Nx2 satisfies the nonnegativity restrictions on the primal variables, it is a BFS

for the problem, and xB2
; B2 are primal feasible. But as Nc2 has negative entries,

xB2
; B2 are dual infeasible.

4. Now consider the primal basic vector xB3
D .x5; x6/ for this problem. The

basis, basic cost vector, extended basis, and its inverse are

B3 D
	

1 2

3 2



; cB3

D .27; 22/; B3 D
0
@

1 2 0

3 2 0

27 22 1

1
A

B�1
3 D

0
@

�1=2 1=2 0

3=4 �1=4 0

�3 �8 1

1
A :
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The primal basic solution wrt xB3
is Nx3 D .0; 0; 0; 0; 5; 2; 0; 0/T . From the last

row of the inverse tableau and (5.16) we conclude that the dual basic solution wrt
xB3

is N�3 D .3; 8/. The vector of dual slacks at N�3 is Nc3 D (32, 22, 30, 36, 0,
0, 3, 8).

As Nx3; Nc3 are both � 0, we conclude that this basic vector xB3
is both primal

and dual feasible for this problem. �

5.4.4 The Duality Theorem of LP

We will now discuss the duality theorem, the most fundamental result in the theory
of linear programming, linking an LP and its dual. In some books this theorem is
also referred to as the strong duality theorem of LP, as its statement strengthens the
statement in the weak duality theorem (Theorem 5.3). Remember that the statement
of the weak duality theorem and of Corollary 4 under it only guarantees a “�”
relationship in the two optimum objective values; this theorem guarantees that this
“�” always holds as “D.” Also, Corollaries 2, 3 of the weak duality theorem only
guarantee if the objective value is unbounded in one of the problems in a primal,
dual pair, the other problem must be infeasible; this theorem shows the converse of
these statements also hold.

Theorem 5.4. The Duality Theorem of LP: In a primal, dual pair of LPs, (1)
if one has an optimum solution, the other does also, and the two optimum objec-
tive values are equal, (2) if one of the problems is feasible and has the objective
unbounded (“below” if the problem is a minimization problem, “above” if it is a
maximization problem), then the other problem is infeasible and vice versa.

Proof. Consider the problem in the pair that has an optimum solution, as the primal
problem, in the form of a minimization problem in standard form

Minimize z.x/ D cx (5.21)

subject to Ax D b

x � 0;

where A is a matrix of order m � n and rank m. So, this is the primal. The other
problem in the pair is the dual of (5.21). From the hypothesis, the primal (5.21)
has an optimum solution, so by Theorem 4.9, it has a BFS which is optimum for it.
So, when the simplex method is applied to solve (5.21), it will terminate with an
optimum basis for it that satisfies the optimality criterion of the primal simplex
algorithm.

So, by the discussion in property 4 stated above, the dual basic solution corre-
sponding to optimum basic vector is going to be dual feasible, and has the same
dual objective value as the optimum primal objective value. Hence that dual feasi-
ble basic solution is an optimum solution of the dual problem, and the two optimum
objective values are equal, establishing (1).
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Statement (2) in the theorem follows from the weak duality theorem and
statement (1). ut

Other Proofs of the Duality Theorem. The proof given above for the duality the-
orem is based on the simplex method for LP. For an alternate proof of the duality
theorem using the Farkas’ lemma, see Exercise 5.34. Farkas’ lemma itself can be
proved directly as shown in Exercises 5.36 and 5.37.

5.4.5 Optimality Conditions for LP

Theorem 5.5. The Complementary Slackness Theorem: In a primal, dual pair
of LPs, let . Nx; N�/ be a primal, dual feasible solution pair. They are optimal to
the respective problems if at least one quantity in every complementary pair is 0
in . Nx; N�/. These conditions are known as complementary slackness conditions for
optimality.

Proof. Consider the primal and dual in symmetric form given below

Primal (P)
Minimize z.x/ D cx

subject to Ax � b

x � 0

Dual (D)
Maximize v.�/ D �b

subject to �A � c

� � 0

where A is an m � n matrix. The various complementary pairs in this primal, dual
pair of problems are

.xj ; cj � �A:j /; j D 1; : : : ; nI .Ai:x � bi ; �i /; i D 1; : : : ; m: (5.22)

As Nx; N� are primal and dual feasible, all the quantities Nxj ; cj � N�A:j ; Ai: Nx � bi ;

N�i are all � 0 for all i; j .
Therefore, for each j , Nxj .cj � N�A:j / � 0 and is 0 iff at least one quantity in

the complementary pair . Nxj ; cj � N�A:j / is 0. So, c Nx � N�A Nx D Pn
j D1 Nxj .cj �

N�A:j / D 0 iff one quantity in every complementary pair . Nxj ; cj � N�A:j / is 0 for
each j D 1 to n.

Similarly we see that N�A Nx � N�b D 0 iff at least one quantity in every comple-
mentary pair .Ai: Nx � bi ; N�i / is 0 for each i D 1 to m.

As shown in the proof of the weak Duality Theorem 5.3, c Nx � N�A Nx and
N�A Nx � N�b are both � 0; therefore, their sum c Nx � N�b D 0 iff each of c Nx � N�A Nx
and N�A Nx � N�b is 0.

As Nx; N� are optimal to the respective problems, by the Duality Theorem 5.4,
c Nx � N�b D 0. So by the above, both c Nx � N�A Nx and N�A Nx � N�b must be 0. By the
above, this implies that one quantity in every complementary pair is 0 at . Nx; N�/. ut
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Proof of this theorem for LPs in other forms follows from Theorem 5.1, or can
be derived directly using arguments similar to those used above for LP in the sym-
metric form.

Now we will summarize the complementary slackness (CS) conditions for op-
timality for some of the other forms in which LPs appear commonly. In all these
problems, A is a matrix of order m � n.

LP in standard form: Here are the primal and dual

Primal (P)
Minimize z.x/ D cx

subject to Ax D b

x � 0

Dual (D)
Maximize v.�/ D �b

subject to �A � c:

So, the dual constraints are Ncj D cj ��A:j � 0 for j D 1 to n. The CS conditions
are: for each j D 1 to n at least one quantity in each complementary pair .xj ; Ncj D
cj � �A:j / should be 0, or equivalently xj Ncj D 0 for all j .

LP in bounded variable standard form: Here are the primal and dual. Here `; k

are finite lower and upper bound vectors for the variables and ` < k.

Primal (P)
Minimize z.x/ D cx

subject to Ax D b

` � x � k

Dual (D)
Maximize v.�; �; ı/ D �b C `� � kı

subject to �A C � � ı D c

�; ı � 0:

The CS conditions are: at least one quantity must be 0 in each of the comple-
mentary pairs f.xj � `j ; �j /; j D 1 to n; and .kj � xj ; ıj /; j D 1 to ng, or
equivalently for all j D 1 to n

.xj � `j /�j D 0I .kj � xj /ıj D 0

LP in general form: Here the primal and dual are given below. All bounds
on individual variables are included as constraints in the statement of the primal
problem.

Primal (P)
Minimize z.x/ D cx

s. to Dx D d

F x � g

Dual (D)
Maximize v.�; �/ D �b C �g

s. to �D C �F D c

� � 0:

Here suppose F is a matrix of order p � q. Then the CS conditions are: at least
one quantity must be 0 in each complementary pair .Fi:x � gi ; �i /, i D 1 to p, or
equivalently .Fi:x � gi /�i D 0 for all i .
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5.4.6 Necessary and Sufficient Optimality Conditions for LP

Consider a primal, dual pair of LPs. From the weak duality theorem (Theorem 5.3),
duality theorem (Theorem 5.4), and the complementary slackness theorem
(Theorem 5.5), we know that a necessary and sufficient condition for a given pair
of primal, dual feasible solutions to be optimum to the respective problems is either
(1) the primal and dual objective values at this pair of solutions are equal, or (2)
the pair of primal and dual feasible solutions satisfy the complementary slackness
conditions for optimality (i.e., in this pair of solutions, at least one quantity in every
complementary pair is 0).

Also, given a feasible solution to an LP, a necessary and sufficient condition for it
to be optimal to the LP is the existence of a feasible solution to its dual that satisfies
the complementary slackness conditions with it.

A basic vector for an LP in standard form is an optimum basic vector iff it is
primal and dual feasible (because the primal and dual basic solutions associated
with a primal basic vector always satisfy the complementary slackness conditions
by the way the dual basic solution associated with a primal basic vector is defined).

5.4.7 Duality Gap, a Measure of Distance from Optimality

Now we state an important theorem that provides a measure of how far away a
given pair of primal, dual feasible solutions are from being optimal to the respective
problems, and relates this measure to the violation of the CS property in this pair.

In a primal, dual pair of LPs, suppose z.x/ is the primal objective function to be
minimized, and v.�/ the dual objective function to be maximized. Let . Nx; N�/ be a
primal, dual feasible solution pair. From the weak duality theorem (Theorem 5.3),
z. Nx/ � v. N�/. If d D z. Nx/ � v. N�/ D 0, then we conclude that . Nx; N�/ are optimal to
the respective problems.

This d D z. Nx/ � v. N�/ is known as the duality gap in the primal, dual pair of
feasible solutions . Nx; N�/.

If the duality gap d > 0, from the weak duality theorem (Theorem 5.3) we know
that

� z. Nx/ � the minimum objective value in the primal problem by at most d ;
� v. N�/ � the maximum objective value in the dual problem by at most d .

So, the duality gap d provides a measure of how far Nx; N� are from being optimal
as a pair to their respective problems.

Theorem 5.6. Let d be the duality gap in a pair . Nx; N�/ of primal and dual feasible
solutions to a primal, dual pair of LPs. Then d D the total complementary slackness
(CS) violation in the pair . Nx; N�/, which is defined as the sum of the products of the
various complementary pairs in . Nx; N�/.
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Proof. Consider the primal and dual in symmetric form given below

Primal (P)
Minimize z.x/ D cx

subject to Ax � b

x � 0

Dual (D)
Maximize v.�/ D �b

subject to �A � c

� � 0

where A is an m � n matrix. Then the duality gap in the given solutions . Nx; N�/ is
d D c Nx � N�b.

The various complementary pairs in this primal, dual pair of problems are

.xj ; cj � �A:j /; j D 1; : : : ; nI .Ai:x � bi ; �i /; i D 1; : : : ; m: (5.23)

The CS property requires that the product of each complementary pair be 0;
so the violation of the CS property in the pair . Nx; N�/ is

Pn
j D1 xj .cj � �A:j / CPm

iD1.Ai:x�bi /�i D .c Nx� N�A Nx/C. N�A Nx� N�b/ D c Nx� N�b D d , the duality sgap.
Proof of this theorem for LPs given in other forms is based on similar arguments.

ut

5.4.8 Using CS Conditions to Check the Optimality
of a Given Feasible Solution to an LP

CS conditions can often be used to conclusively establish whether a given feasible
solution for an LP is optimal or not. We illustrate with an example.

Example 5.7. Consider the LP given in detached coefficient form for clarity. Check
whether Nx D .6; 0; �1; 0; 2/T is an optimum solution for it.

x1 x2 x3 x4 x5 RHS
1 1 �1 2 �1 � 5

�2 0 2 �1 3 � �8

1 0 0 0 0 � 6
0 �3 0 3 0 � �5

0 0 5 �1 7 � 7
�3 1 3 0 5 D z minimize

The first thing to do is to check whether Nx is feasible to the problem, and classify
the primal inequality constraints as active, inactive, at Nx. If Nx is infeasible, the
process stops with that conclusion.
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Here Nx is feasible, constraints 1, 2, 3 are active inequality constraints, and
constraints 4, 5 are inactive inequality constraints at Nx. Associating the dual vari-
ables �1 to �5 to primal constraints from top to bottom, the dual of this problem is

�1 �2 �3 �4 �5 RHS
1 �2 1 0 0 D �3

1 0 0 �3 0 D 1
�1 2 0 0 5 D 3

2 �1 0 3 �1 D 0
�1 3 0 0 7 D 5

All �i � 0
5 �8 6 �5 7 D v maximize

The CS conditions for this pair of problems are

.x1 C x2 � x3 C 2x4 � x5 � 5/�1 D 0;

.�2x1 C 2x3 � x4 C 3x5 C 8/�2 D 0;

.x1 � 6/�3 D 0;

.�3x2 C 3x4 C 5/�4 D 0;

.5x3 � x4 C 7x5 � 7/�5 D 0:

If Nx is an optimum solution of the primal, we can find a dual feasible solution that
satisfies the above CS conditions together with Nx. If such a dual feasible solution
N� exists, we conclude that N�4 D N�5 D 0 from the fourth and fifth CS conditions.
Substituting 0 values for �4; �5 in the dual constraints, the remaining system is

�1 � 2�2 C �3 D �3;

�1 D 1;

��1 C 2�2 D 3;

2�1 � �2 D 0;

��1 C 3�2 D 5;

�1; �2; �3 � 0:

If the linear equations among these have a unique solution, we can compute it
and check whether it satisfies the remaining inequality constraints among the above
constraints. Here, the linear equations in this system do have the unique solution
N� D .1; 2; 0; 0; 0/ which satisfies the nonnegativity restrictions.

As Nx is primal feasible, and N� is dual feasible, and together they satisfy the CS
conditions, we conclude that Nx is indeed an optimum solution for the primal. �

Example 5.8. Check whether Nx D .12; 7; 2; 1; 0/T is an optimum solution for the
following LP in standard form.
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x1 x2 x3 x4 x5 �z RHS
1 �2 2 1 3 0 3
0 1 �1 �2 4 0 3
0 0 2 5 �1 0 9

�6 9 �5 10 �25 1 0

xj � 0 for all j , minimize z

We verify that Nx is feasible to the problem. To check optimality, we write the
dual problem and the complementary slackness conditions. Let �1; �2; �3 be the
dual variables associated with the equality constraints from top to bottom.

Maximize 3�1 C 3�2 C 9�3

s. to �1 � �6

�2�1 C �2 � 9

2�1 � �2 C 2�3 � �5

�1 � 2�2 C 5�3 � 10

3�1 C 4�2 � �3 � �25:

The CS conditions are

.�6 � �1/x1 D 0;

.9 C 2�1 � �2/x2 D 0;

.�5 � 2�1 C �2 � 2�3/x3 D 0;

.10 � �1 C 2�2 � 5�3/x4 D 0;

.�25 � 3�1 � 4�2 C �3/x5 D 0:

As Nx1; Nx2; Nx3; Nx4 are all > 0, Nx is an optimum solution to the primal iff there ex-
ists a dual feasible solution that satisfies the first four dual constraints as equations.
This gives us the following system of linear equations.

�1 D �6;

�2�1 C �2 D 9;

2�1 � �2 C 2�3 D �5;

�1 � 2�2 C 5�3 D 10:

This system of four equations in three unknowns has the unique solution N� D
.�6; �3; 2/. N� also satisfies the remaining fifth dual constraint. So, . Nx; N�/ together
are primal, dual feasible and satisfy the CS conditions, so they are optimal to their
respective problems. �
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Example 5.9. Check whether Nx D .10; 5; 0; 0; 0/T is an optimum solution for the
following LP in standard form.

x1 x2 x3 x4 x5 �z RHS
2 1 �1 2 1 0 25
2 0 2 �1 3 0 20
8 6 �10 20 �2 1 0

xj � 0 for all j , minimize Z

We verify that Nx is feasible to the problem. To check optimality, we write the
dual problem and the complementary slackness conditions. Let �1; �2 be the dual
variables associated with the equality constraints from top to bottom.

Maximize 25�1 C 20�2

S. to Nc1 D 8 � 2�1 � 2�2 � 0;

Nc2 D 6 � �1 � 0;

Nc3 D �10 C �1 � 2�2 � 0;

Nc4 D 20 � 2�1 C �2 � 0;

Nc5 D �2 � �1 � 3�2 � 0:

The CS conditions are xj Ncj D 0 for all j D 1 to 5. As Nx1; Nx2 > 0, if Nx is
optimum to the primal, we should be able find a solution to

8 � 2�1 � 2�2 D 0;

6 � �1 D 0;

which makes Ncj � 0 for j D 3, 4, 5. This system has the unique solution N� D
.6; �2/, but this solution makes Nc5 D �2 � �1 � 3�2 D �2 < 0, so is not dual
feasible. So there is no dual feasible solution that satisfies the CS conditions together
with Nx, hence we conclude that Nx is feasible but not optimal to the primal LP. �

Example 5.10. Check whether Nx D .10; 15; 0; 0; 0/T is an optimum solution for the
following LP in standard form.

x1 x2 x3 x4 x5 �z RHS
1 0 1 �2 1 0 10
0 1 �1 2 2 0 15
1 1 1 1 �1 0 25
1 4 �2 4 20 1 0

xj � 0 for all j; minimize z

We verify that Nx is feasible to the problem. To check optimality, we write the dual
problem and the complementary slackness conditions. Let �1; �2; �3 be the dual
variables associated with the equality constraints from top to bottom.



5.4 Duality Theory and Optimality Conditions for LP 265

As only Nx1; Nx2 are > 0, you can verify that the CS conditions yield only two
equations given below that a dual solution must satisfy as equations in order to
satisfy the CS conditions together with Nx

�1 C �3 D 1;

�2 C �3 D 4:

These equations do not have a unique solution. So, in this case the CS conditions
have not yielded enough number of equations in the dual variables, to identify a dual
solution for satisfying the CS conditions together with Nx, if this occurs it is not easy
to check the optimality of Nx directly using the CS conditions only. In this case, to
check if Nx is optimum, one can solve the primal LP using some LP algorithm, and
after obtaining the optimum objective value in it, compare its value to the objective
value at Nx. �

Exercises

5.4.1. Consider the following LP in standard form. Find the primal and dual basic so-
lutions associated with the basic vectors xB1

D .x1; x2; x3/; xB2
D .x2; x3; x4/

for this problem. Mention whether each of these basic vectors is primal feasible
or not, primal nondegenerate or not, and dual feasible or not. Compute the inverse
tableau for this problem with respect to xB1

.

x1 x2 x3 x4 x5

1 0 1 0 �1 20
0 1 0 1 1 10
0 0 1 �3=2 0 5
1 1 1 2 0 D z, minimize

xj � 0 for all j

5.4.2. Consider the following LP

Minimize
z.x/ D 12x1 �x2 C3x3 C5x4 �8x6

s. to x1 �2x2 Cx3 �x4 Cx5 �x6 Cx7 D �4

x1 Cx2 C2x4 �x5 �x6 �2x7 D 9
�2x1 Cx2 �x5 Cx6 Cx7 D 5

xj � 0, j D 1 to 7.

Write the dual of this problem and all the complementary pairs in these primal,
dual problems.

Is N� D .3; 4; �1/ dual feasible in this problem? Compute all the relative cost
coefficients with respect to N� .
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Mention all the primal variables that have to be equal to 0 in every optimum
solution of the primal LP if it is known that N� is an optimum dual solution.

In the system of equality constraints in the primal problem, substitute 0 for each
primal variable determined above, and obtain the general solution for the remaining
system. What kind of geometric object is the set of all solutions to the remaining
system?

Identify nonnegative solutions of the remaining system. Are these optimum so-
lutions of the primal LP? Why?

5.4.3. Check whether the basic vector .x4; x2; x6/ is primal feasible for the follow-
ing LP. Is it dual feasible? Is it optimal?

x1 x2 x3 x4 x5 x6 b

1 1 1 1 1 1 9
1 1 0 1 1 0 5
1 0 0 1 0 0 2
3 �2 1 �5 4 �2 D z, minimize

xj � 0 for all j .

5.4.4. Write the dual of the following LP, and the complementary slackness optimal-
ity conditions for this primal, dual pair. Using them check whether � D .�2; �3; 1/

is an optimum solution of the dual problem. If it is, derive an optimum solution of
the original LP using it and the optimality conditions.

x1 x2 x3 x4 x5 x6 x7 b

1 2 �2 1 0 3 1 �5

�2 1 �1 2 1 1 2 1
1 0 2 2 2 2 �2 8

10 0 9 �2 �1 �1 �10 D z, minimize

xj � 0 for all j .

5.4.5. Ice cream is a mixture of four ingredients, and its flavor is measured in
units of mmm/gallon. A certain brand of ice cream is required to have flavor
�1 mmm/gallon. Data on the cost and mmm content of the ingredients is given
below. Formulate the problem of determining a minimum cost composition for ac-
ceptable ice cream.

Write the dual of this problem and solve this dual geometrically. Find the op-
timum composition from the dual optimum using the complementary slackness
optimality conditions.

Ingredient 1 2 3 4
Cost ($/gallon) 2 0.7 1 1.5
mmm/gallon 3 0 0.5 1

5.4.6. For the following LP check whether Ox D (5, 2, 3, 1, 0, 0, 0) T is an optimum
solution using the complementary slackness optimality conditions.
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x1 x2 x3 x4 x5 x6 x7 b

1 �1 1 0 1 0 2 6
0 2 1 �1 �1 2 0 6
0 0 2 1 0 1 2 7
0 0 0 2 1 �1 1 2

�2 4 6 3 �1 10 5 D z.x/, minimize

xj � 0 for all j

5.4.7. Consider the balanced transportation problem with the following data (the
availability and requirement data is shown in bold letters to distinguish it from cost
data), and dual solution .Qu; Qv/. Verify that .Qu; Qv/ is dual feasible. Assuming that
.Qu; Qv/ is an optimum dual solution, find an optimum solution of the primal trans-
portation problem.

Source i Unit shipping cost to mkt. j Availability Qui

1 2 3 4
1 11 10 8 5 200 5
2 6 8 5 2 100 2
3 11 5 6 5 150 3

Requirement 50 50 200 150
Qvj 4 2 3 0

5.4.8. A company has divided their marketing area into six zones based on the
characteristics of the shoppers, their economic status, etc. They want to appoint a
director for each zone to run the marketing effort there. They have already selected
six candidates to fill the positions. The total annual sales in a zone would depend
on which candidate is appointed as director there. Based on the candidates skills,
demeanor, and background, it is estimated that $ cij million in annual sales will be
generated in zone j if candidate i is appointed as director there, and this .cij / data is
given below for i; j D 1 to 6. The problem is to decide which zone each candidate
should be assigned to, to maximize the total annual sales in all the zones (each zone
gets one candidate and each candidate goes to one zone).

Formulate this problem and write its dual using ui ; vj as the dual variables corre-
sponding to the constraints associated with the i th candidate, j th zone, respectively.

cij D annual sales volume in $million
if candidate i is assigned to zone j

Zone j D 1 2 3 4 5 6
Candidate i D 1 1 2 6 10 17 29

2 3 4 8 11 20 30
3 5 7 9 12 22 33
4 13 14 15 16 23 34
5 18 19 21 24 25 35
6 26 27 28 31 32 36
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Many people would consider this a very easy problem to solve, and would use a
method which can aptly be called the greedy method.

The method proceeds this way. As we want to maximize total sales, look for the
cell in the table fetching the largest annual sales; this is the cell corresponding to the
assignment of candidate 6 to zone 6, yielding an annual sales rate of $36 million. So,
assign candidate 6 to zone 6. This selection achieves the maximum possible sales at
this stage with this one allocation, hence it is known as a greedy choice. As candi-
date 6 is already assigned to zone 6, strike off the row of candidate 6 and the column
of zone 6 from the table and handle the remaining problem the same way, one
allocation at a time, using the greedy choice at each stage. Verify that the solution
obtained by this method is f.C1; Z1/; .C2; Z2/; .C3; Z3/; .C4; Z4/; .C5; Z5/;

.C6; Z6/g, where for i D 1 to 6, Ci denotes candidate i , Zi denotes zone i , and

.Ci ; Zi / indicates that candidate i is assigned to zone i . This fetches a total annual
sales rate of 36 C 25 C 16 C 9 C 4 C 1 D $91 million.

Using Qu D (0, 2, 4, 9, 16, 23), Qv D (1, 2, 5, 7, 9, 13) as the dual solution, show
that the greedy solution obtained above actually minimizes the total sales volume,
instead of maximizing it.

5.5 How Various Algorithms Solve LPs

As we have seen in the previous section, to conclude that a given feasible solution
to an LP is in fact an optimum solution, there are three conditions to be met. These
are as follows:

Primal feasibility
Dual feasibility
Complementary slackness property.

The primal simplex algorithm starts with an initial BFS and searches only among
BFSs for an optimum solution; so it maintains primal feasibility throughout. Also,
as it only searches among basic solutions, the primal and dual solutions in every step
of this algorithm satisfy the complementary slackness property. It passes through an
edge of the set of feasible solutions to go from one BFS to a better one in its search.
So, it operates only on the one-dimensional boundary of the set of feasible solu-
tions, and is therefore classified as a one-dimensional boundary method. The search
process in this algorithm has the aim of attaining dual feasibility, in fact the opti-
mality termination condition in this algorithm is the dual feasibility condition and
the unboundedness termination condition establishes dual infeasibility.

The dual simplex algorithm that we will discuss in the next chapter starts with
a dual feasible basic vector and maintains dual feasibility throughout. Also, as it
passes through basic vectors only, the primal and dual solutions in every step are ba-
sic solutions, and hence satisfy the complementary slackness property always. The
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termination condition in this algorithm is either primal feasibility or establishing
primal infeasibility. When one of these conditions is reached, this algorithm termi-
nates.

The IPMs (interior point methods) that we discuss in later chapters operate only
in the interior (or relative interior) of the set of feasible solutions. The most popular
among them for computer implementations are the primal–dual IPMs, which are
initiated with a primal–dual pair of interior feasible solutions. They trace a path of
primal-dual interior feasible pairs, trying to reduce the complementary slackness
violation (i.e., the duality gap in the pair) to 0.

5.6 How to Check if an Optimum Solution is Unique

5.6.1 Primal and Dual Degeneracy of a Basic Vector
for an LP in Standard Form

Consider the LP in standard form

Minimize z.x/ D cx

subject to Ax D b

x � 0;

where A is a matrix of order m � n and rank m: Let xB be a basic vector for this
problem. From the definition discussed in Chap. 4, we can classify this basic vector,
and the associated basis B and the corresponding primal and dual basic solutions as

� Primal nondegenerate if all basic variables have nonzero values in its primal
basic solution, that is, if every entry in the basic values vector B�1b is nonzero

� Primal degenerate if at least one basic variable a has zero value in its primal
basic solution, that is, if at least one entry in the basic values vector B�1b is zero

� Dual nondegenerate if none of the nonbasic dual slacks Ncj have 0-value at its
dual basic solution, that is, if Ncj D cj �cBB�1A:j is nonzero for every nonbasic
variables xj , where cB is the basic cost vector corresponding to xB

� Dual degenerate if at least one of the nonbasic dual slacks Ncj has 0-value at
its dual basic solution, that is, if Ncj D cj � cBB�1A:j is zero for at least one
nonbasic variables xj , where cB is the basic cost vector corresponding to xB .

Example 5.11. From the discussion of Sect. 5.4, we know that the values of the basic
variables in the basic solution corresponding to a basic vector for an LP in standard
form are the updated RHS constants in the canonical tableau wrt this basic vector;
and that the values of dual slacks at the dual basic solution are the relative cost
coefficients. In the following, we provide canonical tableaus wrt the basic vector
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.x1; x2/ for four different LPs. So, in all these tableaus, the nonbasic variables are
x3; x4; x5. In each tableau “BV” is an abbreviation for “ basic variable in row.”

Tableau 1
BV x1 x2 x3 x4 x5 �z RHS
x1 1 0 1 �1 1 0 3
x2 0 1 �1 1 1 0 4
�z 0 0 �2 3 2 1 �10

xj � 0 for all j , minimize z.

Tableau 2
BV x1 x2 x3 x4 x5 �z RHS
x1 1 0 1 �1 1 0 5
x2 0 1 �1 1 1 0 0
�z 0 0 2 3 2 1 �10

xj � 0 for all j , minimize z.

Tableau 3
BV x1 x2 x3 x4 x5 �z RHS
x1 1 0 1 �1 1 0 3
x2 0 1 �1 1 1 0 5
�z 0 0 2 3 0 1 �10

xj � 0 for all j , minimize z.

Tableau 4
BV x1 x2 x3 x4 x5 �z RHS
x1 1 0 1 �1 1 0 5
x2 0 1 �1 1 1 0 0
�z 0 0 2 3 0 1 �10

xj � 0 for all j , minimize z.

For the problem in Tableau 1, the basic vector .x1; x2/ is primal feasible and
primal nondegenerate as both Nb1; Nb2 are > 0. It is dual infeasible because Nc3 < 0,
but dual nondegenerate as all nonbasic Ncj are nonzero.

For the problem in Tableau 2, the basic vector .x1; x2/ is primal feasible and
primal degenerate as both Nb1; Nb2 are � 0 but one of them is 0. It is dual feasible
and dual nondegenerate as all nonbasic Ncj are > 0.

For the problem in Tableau 3, the basic vector .x1; x2/ is primal feasible and
primal nondegenerate as both Nb1; Nb2 are > 0. It is dual feasible and dual degenerate
as all nonbasic Ncj are � 0, but one of them is 0.

For the problem in Tableau 4, the basic vector .x1; x2/ is primal feasible and
primal degenerate as both Nb1; Nb2 are � 0, but one of them is 0. It is dual feasible
and dual degenerate as all nonbasic Ncj are � 0, but one of them is 0. �
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5.6.2 Sufficient Conditions for Checking the Uniqueness
of Primal and Dual Optimum Solutions

Theorem 5.7. Consider the LP in standard form and let xB be an optimum basic
vector for it. Let xD be the vector of nonbasic variables (i.e., those not in xB ). Let
the basic, nonbasic partition of the canonical tableau wrt xB be (“BV” is abbrevi-
ation for “basic vector”)

Canonical tableau
BV xB xD �z Updated RHS

xB I ND 0 Nb

�z 0 NcD 1 �Nz
xj � 0 for all j , min z

If NcD > 0 (i.e., all nonbasic relative cost coefficients are positive or xB is dual
nondegenerate), then Nx D . NxB ; NxD/ D . Nb; 0/ is the unique primal optimum solu-
tion for this LP.

If Nb > 0 (all updated RHS constants > 0, or xB is primal nondegenerate), then
the dual optimum solution is unique for this problem.

Proof. If NcD > 0, by the CS property, we know that xD must be 0 in every optimum
solution of the primal. When xD is fixed at 0, xB D Nb is the only possible solution
for the equality constraints in this LP, because the basis B corresponding to xB is
a nonsingular square matrix. So, Nx is the only optimum solution for this LP in this
case.

If Nb > 0, by the CS property the dual constraints corresponding to the basic
variables in xB must hold as equations (because the corresponding dual slacks must
be 0 for optimality), in any optimum solution of the dual. The coefficient matrix
of the dual variables in these equations is BT , as it is square and nonsingular; the
dual basic solution corresponding to xB is the only dual optimum solution in this
case. ut

Theorem 5.7 states only that cD > 0 is a sufficient condition for the BFS cor-
responding to the basic vector xB to be the unique optimum solution for the LP
considered there. This means that even if some of the nonbasic relative cost co-
efficients in NcD are 0, that BFS may still be the unique optimum solution for
that LP.

The following describes a simple procedure to conclusively check the uniqueness
of the optimum solution for an LP when some of the relative cost coefficients in NcD

are zero (but this procedure requires solving another LP).
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5.6.3 Procedure to Check if the BFS Corresponding
to an Optimum Basic Vector xB is the Unique
Optimum Solution

Let the original LP be

Minimize z D cx (5.24)

subject to Ax D b

x � 0;

where A is a matrix of order m � n and rank m, with an optimum basic vector xB ,
and the canonical tableau wrt which is denoted using the notation in Theorem 5.7.
For simplicity, let xB D .x1; : : : ; xm/, xD D the vector of nonbasic variables D
.xmC1; : : : ; xn/, and Nx the associated BFS.

As xB is an optimum basic vector, the nonbasic relative cost coefficients NcmC1;

: : : ; Ncn are all � 0. If they are all > 0, by Theorem 5.7, Nx is the unique optimum
solution for this LP, terminate.

If some of NcmC1; : : : ; Ncn are 0, for convenience in notation, let us assume that
NcmC1; : : : ; NcmCr are D 0 and NcmCrC1; : : : ; Ncn are all > 0.

Then by the CS theorem, Theorem 5.5, we know that xmCrC1 to xn must all
equal 0 in every optimum solution for this LP, and that any primal feasible solution
with xmCrC1 to xn D 0 is optimal to this LP. So the optimum face of this LP is the
set of feasible solutions of

Ax D b (5.25)

x � 0

xmCrC1; : : : ; xn D 0:

So, the problem of checking if Nx is the unique optimum solution for this LP boils
down to checking whether any of the variables xmC1; : : : ; xmCr can take a positive
value on this face.

To check this, we can try to enter each of the nonbasic variables xmCrC1; : : : ; xn

with 0 relative cost coefficients into the basic vector xB . If any one of them enters
with a nondegenerate pivot step, it will lead to an alternate optimum BFS. If one
of them has a nonpositive updated column in the canonical tableau wrt xB , then
entering that nonbasic variable at a value �, where � is a nonnegative parameter,
leads to an unbounded edge every point on which is an optimum solution for this LP.

But if each of these nonbasic variables xmC1; : : : ; xmCr enter the basic vector
xB with a degenerate pivot step only, then we can solve the following LP

Maximize
mCrX

j DmC1

xj s. to constraints in (5.25): (5.26)
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If the optimum objective value in (5.26) is 0, clearly Nx is the unique optimum
solution for (5.24). On the other hand, if the optimum objective value in (5.26) is
>0, an optimum solution for (5.26) is an alternate optimum solution for (5.24).

We will now provide several illustrative examples. For simplicity, in each exam-
ple, we state the LP under discussion using an optimum canonical tableau for it.

Example 5.12. Consider the following LP in standard form, for which the optimum
canonical tableau wrt the basic vector .x1; x2; x3/ is given. “BV” refers to “ basic
variable in row.” � is the minimum ratio in the pivot step.

BV x1 x2 x3 x4 x5 x6 x7 �z Nb Ratio
x1 1 0 0 �1 1 1 2 0 0
x2 0 1 0 1 �1 2 1 0 2 2
x3 0 0 1 2 2 4 3 0 6 3
�z 0 0 0 0 0 10 20 1 �100 � D 2

xj � 0 for all j , min z

The current BFS Nx D .0; 2; 6; 0; 0; 0; 0/T is an optimum solution with optimum
objective value 100. Nonbasic variables x4; x5 have 0 relative cost coefficients, but
x6; x7 have positive relative cost coefficients. So, for this LP any feasible solution
in which x6 D x7 D 0 is an optimum solution.

We find that x4 enters the basic vector .x1; x2; x3/ with a nondegenerate pivot
step, yielding an alternate optimum BFS Ox D .2; 0; 2; 2; 0; 0; 0/T wrt the new basic
vector .x1; x4; x3/. Its canonical tableau is

BV x1 x2 x3 x4 x5 x6 x7 �z Nb Ratio
x1 1 1 0 0 0 3 3 0 2
x4 0 1 0 1 �1 2 1 0 2
x3 0 �2 1 0 4 0 1 0 2
�z 0 0 0 0 0 10 20 1 �100

Other alternate optimum BFSs can be obtained by performing pivot steps in
columns of nonbasic variables x1 to x5 in one of these basic vectors. Also, any
convex combination of optimum BFSs is also optimum. �

Example 5.13. Consider the following LP in standard form for which the optimum
canonical tableau wrt the basic vector .x1; x2; x3/ is given. “BV” refers to “ basic
variable in row.”

BV x1 x2 x3 x4 x5 x6 x7 �z Nb Ratio
x1 1 0 0 1 �1 1 2 0 0
x2 0 1 0 1 �1 2 1 0 2 2
x3 0 0 1 2 0 4 3 0 6 3
�z 0 0 0 0 0 10 20 1 �100 � D 2

xj � 0 for all j , min z
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The current BFS Nx D .0; 2; 6; 0; 0; 0; 0/T is an optimum solution with optimum
objective value 100. Nonbasic variables x4; x5 have 0 relative cost coefficients, but
x6; x7 have positive relative cost coefficients. So, for this LP any feasible solution
in which x6 D x7 D 0 is an optimum solution.

The variable x4 enters the basic vector .x1; x2; x3/ with a degenerate pivot
step, hence this pivot step does not yield an alternate BFS, it just gives another basic
vector corresponding to the same BFS Nx.

But the updated column vector of x5 is � 0. Fixing the nonbasic variables
x4; x6; x7 at 0 and making x5 D �, a nonnegative parameter, yields the following
solution to the system of equations in this problem:

x.�/ D .�; 2 C �; 6; 0; �; 0; 0/T ;

which remains nonnegative and hence feasible to this LP for all � � 0. And the
objective value does not change as Nc5 D 0. Hence fx.�/ W � � 0g is an unbounded
edge of the set of feasible solutions of this LP every point on which is optimal to
the LP. �

Example 5.14. Now consider the following LP in standard form, for which the op-
timum canonical tableau wrt the basic vector .x1; x2; x3/ is given. “BV” refers to
“basic variable in row.”

BV x1 x2 x3 x4 x5 x6 x7 �z Nb Ratio
x1 1 0 0 1 1 1 2 0 0
x2 0 1 0 1 �1 2 1 0 2
x3 0 0 1 2 2 4 3 0 6
�z 0 0 0 0 0 10 20 1 �100

xj � 0 for all j , min z

The current BFS Nx D .0; 2; 6; 0; 0; 0; 0/T is an optimum solution with optimum
objective value 100. Nonbasic variables x4; x5 have 0 relative cost coefficients, but
x6; x7 have positive relative cost coefficients. So, for this LP any feasible solution
in which x6 D x7 D 0 is an optimum solution.

We find that both x4; x5 enter the basic vector .x1; x2; x3/ with degenerate
pivot steps, so neither of these pivot steps lead to an alternate optimum BFS.

In this case, the existence of an alternate optimum solution for this LP can be
checked by solving the following LP:

BV x1 x2 x3 x4 x5 �u Nb Ratio
x1 1 0 0 1 1 0 0
x2 0 1 0 1 �1 0 2
x3 0 0 1 2 2 0 6
�u 0 0 0 1 1 1 0

xj � 0 for all j , max u
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If the maximum value of u in this problem is 0, then Nx is the unique optimum
solution for this LP. If the maximum value of u in this LP is > 0, then an opti-
mum solution of this LP (or any feasible solution of this LP with u > 0) together
with x6; x7 D 0 gives an alternate optimum solution for the original LP. �

5.6.4 The Optimum Face for an LP

Definition 5.1. The optimum face for any LP is the set of its optimum solutions.

Consider the LP in standard form

Minimize z.x/ D cx

subject to Ax D b

x � 0:

Let K denote the set of feasible solutions of this problem. Given any optimum
solution x� for this LP, its optimum face is the set of feasible solutions of the fol-
lowing system of constraints:

Ax D b

cx D cx�

x � 0:

As cx� is the minimum value of cx over K , we have cx � cx� for all x 2 K .
So, the hyperplane fx W cx D cx�g contains the convex polyhedron K on one side,
and it has a nonempty intersection with K (the optimum solution x� is in K and also
on this hyperplane). A hyperplane like this is called a supporting hyperplane for the
convex polyhedron K , and a face of K by definition is the intersection of K with a
supporting hyperplane. That is why the set of feasible solutions of the above system
in a face of K , and hence it is called the optimum face for the LP under discussion.

If we are given more detailed information about the optimum solution, then we
can give simpler characterizations of the optimum face using the complementary
slackness optimality conditions. For example, if we are given an optimum BFS for
this LP associated with an optimum basic vector, xB say, let Nc� D . Nc�

j / be the vector
of relative cost coefficients in the canonical tableau wrt the basic vector xB . Then
let J � D fj W Nc�

j > 0g. Then, from the CS optimality conditions we know that the
optimum face of this LP is the set of feasible solutions of the system of constraints.

Ax D b

xj D 0 for all j 2 J �

x � 0:

Now, suppose we are not given an optimum BFS for this LP, but are given some
optimum dual solution �� D .��

i / associated with it. Then let Nc� D c ���A D . Nc�
j /,
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the associated vector of dual slacks, and J � D fj W Nc�
j > 0g. Then the optimum face

of this LP is again the set of feasible solutions of the system of constraints given
above.

Example 5.15. Now consider the LP in standard form from Example 5.14, in which
the objective function being minimized is z D 100 C 10x6 C 20x7. Given that
x� D .0; 2; 6; 0; 0; 0; 0/T is an optimum solution to this LP, the optimum objective
value is z� D 100 C 10x�

6 C 20x�
7 D 100. So, the optimum face of this LP is its set

of all feasible solutions satisfying 100 C 10x6 C 20x7 D 100 or 10x6 C 20x7 D 0,
that is, the set of feasible solutions of

x1 x2 x3 x4 x5 x6 x7
Nb

1 0 0 1 1 1 2 0
0 1 0 1 �1 2 1 2
0 0 1 2 2 4 3 6
0 0 0 0 0 10 20 0

xj � 0 for all j

If we are given more detailed information such as .x1; x2; x3/ is an optimum ba-
sic vector or that �� D .0; 0; 0/ is an optimum dual solution, then the correspond-
ing vector of relative cost coefficients or dual slacks is Nc� D .0; 0; 0; 0; 0; 10; 20/,
and from the CS optimality conditions, a simpler representation of the optimum face
is the following system of constraints

x1 x2 x3 x4 x5
Nb

1 0 0 1 1 0
0 1 0 1 �1 2
0 0 1 2 2 6
xj � 0 for all j D 1 to 5,
x6 D x7 D 0.

Representations through a system of constraints for optimum faces for LPs in
forms other than the standard form can be written down in a similar way using the
complementary slackness optimality conditions, given a primal or dual optimum
solution. �

5.7 Mathematical Equivalence of LP to the Problem
of Finding a Feasible Solution of a System of Linear
Constraints Involving Inequalities

An LP involves optimizing a linear objective function subject to linear constraints
involving inequalities. On the surface, the problem of finding an optimum feasi-
ble solution appears to be mathematically harder than finding an arbitrary feasible
solution.
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But we will show that these two problems are mathematically equivalent, in the
sense any algorithm to find a feasible solution to a system of linear constraints in-
volving inequalities can be used directly to solve LPs and vice versa.

Consider an LP in general form in which there may be equality constraints on the
variables, inequality constraints, and bounds on individual variables. By combining
the bounds on individual variables with the inequality constraints, the problem is
in the form

Minimize f �

subject to F � D h (5.27)

G� � g:

Let �; � be dual vectors corresponding to the constraints in the two lines in
(5.27). Its dual is

Maximize �h C �g

subject to �F C �G D f (5.28)

� � 0:

If �; .�; �/ are primal, dual feasible solutions, by the weak duality theorem
f � � �h � �g � 0. So, if we take the system containing both the primal and dual
constraints and the additional constraint f � ��h��g � 0, then any feasible solu-
tion to this system must satisfy this additional constraint as an equation, and by the
duality theorem it will be a primal, dual pair of optimum solutions. This system is

F � D h;

�F C �G D f;

G� � g; (5.29)

� � 0I �f � C �h C �g � 0:

So, solving the LP (5.27) involving optimization is equivalent to finding a feasi-
ble solution to the system of linear constraints (5.29).

Conversely, given a system of linear constraints involving inequalities, the prob-
lem of finding a feasible solution to it can be formulated as an LP through the phase
I formulation used in the primal simplex method. In fact, such phase I formula-
tions offer the most practical techniques for solving linear constraints involving
inequalities.

5.8 Marginal Values and the Dual Optimum Solution

Consider an LP in standard form

Minimize z D cx

subject to Ax D b (5.30)
x � 0;
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where A is a matrix of order m � n. Marginal values (MVs) are defined as
rates of change of the optimum objective value in this LP per unit change in
the RHS constants from their current values. So, to describe them mathemati-
cally, define the optimum objective value function in this LP as a function of the
RHS constants vector b, as b varies while A; c remain fixed at present values,
as f .b/.

Then mathematically, the MV wrt bi in this LP is exactly equal to the partial
derivative @f .b/=@bi when it exists. The definition of this partial derivative as a
limit is

lim
� ! 0 .ı.�/=�/;

where ı.�/ D f .b1; : : : ; bi�1; bi C �; biC1; : : : ; bm/ � f .b/.
A simple proof of the following theorem can be seen in Murty (1983) of Chap. 2.

The following theorem follows from the results in Sect. 5.6 (Theorem 5.7).

Theorem 5.8. Sufficient Condition for the Existence of Marginal Values: If the
LP (5.30) has a primal nondegenerate optimum BFS, then MVs wrt bi exist for all i ,
and the unique optimum dual solution is the vector of MVs for (5.30). ut
If (5.30) has an optimum BFS, but no nondegenerate optimum BFS, then the dual
may have alternate optimum solutions; in this case MVs do not exist for it. But in
this case, (5.30) will have positive, negative marginal values. These positive (neg-
ative) MVs are directional derivatives, they are limits as defined above, but when
� tends to 0 through positive (negative) values only. Detailed proofs of these re-
sults can be given based on the results discussed earlier in this chapter, and on the
properties satisfied by the canonical tableaus obtained in the primal simplex algo-
rithm for solving LPs. All these results are discussed in great detail in Chap. 8 of
Murty (1983) of Chap. 2. The treatment there also contains the formulae for the val-
ues of these positive and negative marginal values and procedures for computing
them, which involves solving a separate linear programming problem for each of
these values.

See Exercise 6.73 at the end of Chap. 6 for an example of an LP in which the
marginal value wrt an RHS constant b1 does not exist, but positive and negative
values exist and their values are different.

However, these directional derivatives have never come into practical use for
several reasons: one is the computational burden of computing them, the other is the
difficulty of deciding whether the computed 0-value in the BFS, of a basic variable,
is actually 0, or a small positive value rounded off to 0 in computation with bounded
precision.

Hence all the results on the positive and negative marginal values remain inter-
esting theoretically, but with no practical application so far. So, we will not discuss
them here; those interested in them for theoretical research should refer to that chap-
ter in Murty (1983) of Chap. 2.
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5.9 Summary of Optimality Conditions for Continuous Variable
Nonlinear Programs and Their Relation to Those for LP

In discussing LPs so far, we did not talk about any “types of linear programs,”
because all LPs are of just one type. The optimality conditions for LP discussed
earlier in this chapter apply equally to all LPs, and they completely characterize the
optimum solutions of any LP. In fact, the termination conditions in algorithms for
LP are based on these optimality conditions.

But the situation in quadratic and general continuous variable nonlinear opti-
mization problems is very different. These problems belong to two types. At the
moment we have complete characterizations of optimum solutions for only one type
of these continuous optimization problems, those in which the objective function to
be minimized is a convex function and the set of feasible solutions is a convex set
(these are called convex programming problems). For the other type called the non-
convex programming problems, we only have partial characterizations of optimality,
which we will explain.

In mathematics, conditions that a solution of an optimization problem must sat-
isfy in order to be an optimum solution are called necessary optimality conditions.
This means that a feasible solution not satisfying these necessary optimality con-
ditions is definitely not an optimum solution, but one satisfying them may not be
optimal.

Conditions which guarantee that every solution satisfying them is an optimum
solution are called sufficient optimality conditions. So, sufficient optimality condi-
tions are in general stronger conditions than necessary optimality conditions.

5.9.1 Global Minimum (Maximum), Local Minimum
(Maximum), and Stationary Points

A major difference between linear and general continuous variable optimization
models appears in the classification of various types of “optimum solutions.” In LP,
feasible solutions are classified into only two classes, those which are optimal and
those which are not. In LP optimum, solutions are all of one type, they all correspond
to the same optimum objective value.

In contrast, in QP, and continuous variable nonlinear programs, “optimum solu-
tions” are classified into three types, and in some of these, they may correspond to
different objective values.

Feasible solutions that correspond to the true minimum (or maximum, as re-
quired in the problem) value of the objective function are called global minimum
(or maximum), respectively. The original problem requires finding these global op-
tima. Clearly all global minima correspond to the same minimum objective value
in a minimization problem. In the same way, in a maximization problem, all global
maxima correspond to the true maximum objective value in the problem.
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A feasible solution of the problem that corresponds to the minimum (maximum)
objective value in a small neighborhood around it is called a local minimum (max-
imum), respectively, and such local optima may not be global optima in general
continuous optimization problems. In contrast, in LP, every local optimum is also
guaranteed to be a global optimum.

In fact, some types of quadratic programs and general continuous variable non-
linear programs may have local optima, which are not global optima. And different
local minima may correspond to different objective values. Also, in these QPs, and
general continuous variable optimization problems, we do not have any useful opti-
mality conditions to characterize the global optima. The only optimality conditions
known are characterizations of local optima.

We will now summarize these optimality conditions for a nonlinear program in
which all functions (objective and constraint functions) are assumed to be con-
tinuously differentiable (twice continuously differentiable if the Hessian matrix
appears in the conditions). As the problem of maximizing a function z.x/ is the
same as that of minimizing �z.x/, we will state the conditions for a minimization
problem.

For any real-valued function f .x/ of x D .x1; � � � ; xn/T , H.f .x// denotes its
Hessian matrix (the n � n matrix of second partial derivatives) at the point x, and
rf .x/ denotes the row vector of its partial derivatives.

A square matrix D of order n is said to be a

� PSD (positive semidefinite) matrix if yT Dy � 0 for all y 2 Rn;

� NSD (negative semidefinite) matrix if yT Dy � 0 for all y 2 Rn;

� PD (positive definite) matrix if yT Dy > 0 for all 0 ¤ y 2 Rn;

� ND (negative definite) matrix if yT Dy < 0 for all 0 ¤ y 2 Rn:

See Sects. 9.1 and 9.2 for efficient methods to check whether any given square
matrix belongs to one of these classes.

Optimality Conditions for an Unconstrained Minimization Problem: Consider
the problem: Minimize �.x/ over x 2 Rn.

� First order necessary optimality conditions for a given point Nx to be a local
minimum: r�. Nx/ D 0.

� Second order necessary optimality conditions for a given point Nx to be a local
minimum: r�. Nx/ D 0 and H.�. Nx// is PSD.

� Sufficient optimality conditions for a given point Nx to be a local minimum:
r�. Nx/ D 0 and H.�. Nx// is PD.

We will now discuss optimality conditions for minimization problems involving
constraints. In the literature, the first-order necessary optimality conditions given
below are often called KKT (Karush, Kuhn, Tucker) necessary optimality condi-
tions, and any point satisfying them is called a stationary point or KKT point for the
problem.
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Optimality Conditions for an Equality Constrained Minimization Problem:
Consider the problem: Minimize �.x/, subject to hi .x/ D 0 for i D 1 to m.

Denote h.x/ D .hi .x/; : : : ; hm.x//T . For i D 1 to m, associate a Lagrange
multiplier �i to the i th constraint in the problem and construct the Lagrangian for
the problem L.x; �/ D �.x/ � Pm

iD1 �i hi .x/ D �.x/ � �h.x/, where � D
.�1; � � � ; �m/ is the row vector of Lagrange multipliers for the problem.

The following optimality conditions for a given feasible solution Nx to be a local
minimum are proved under the assumption that the constraint functions hi .x/ sat-
isfy a regularity condition at the point Nx, which is frhi . Nx/ W i D 1 to mg; a linearly
independent set of vectors. Under these conditions, the point Nx is called a regular
point. Conditions like this that depend on the constraint functions are called con-
straint qualifications in the literature. The optimality conditions given below hold
when either the constraints are linear (in this special case, no additional constraint
qualifications are needed) or when some constraint qualifications hold at the given
feasible solution Nx. See references Murty (1988) of Chap. 2; Bazaraa et al. (2006).
The first order optimality conditions given below for this problem are often referred
to as the Lagrange multiplier optimality conditions.

� First order necessary optimality conditions for a given point Nx to be a local
minimum: Feasibility, that is, h. Nx/ D 0, and there exists a Lagrange multiplier
vector N� , which together with Nx satisfies

rxL. Nx; N�/ D r�. Nx/ � N�rh. Nx/ D r�. Nx/ �
mX

iD1

N�i rhi . Nx/ D 0:

So, this condition states that the objective gradient at Nx is a linear combination of
constraint gradients at Nx.

� Second order necessary optimality conditions for a given point Nx to be a local
minimum: Feasibility, that is, h. Nx/ D 0, and there exists a Lagrange multiplier
vector N� , which together with Nx satisfies

rxL. Nx; N�/ D r�. Nx/ � N�rh. Nx/ D 0 and

yT Hx.L. Nx; N�//y � 0

for all y 2 fy W rhi . Nx/y D 0; i D 1; : : : ; mg:
� Sufficient optimality conditions for a given point Nx to be a local minimum: Fea-

sibility, that is, h. Nx/ D 0, and there exists a Lagrange multiplier vector N� , which
together with Nx satisfies:

rxL. Nx; N�/ D r�. Nx/ � N�rh. Nx/ D 0 and

yT Hx.L. Nx; N�//y > 0

for all 0 ¤ y 2 fy W rhi . Nx/y D 0; i D 1; : : : ; mg:
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Optimality Conditions for a General Constrained Minimization Problem:
Consider the problem: Minimize �.x/, subject to hi .x/ D 0 for i D 1 to m, and
gp.x/ � 0 for p D 1 to t .

Denote h.x/ D .h1.x/; � � � ; hm.x//T ; g.x/ D .g1.x/; � � � ; gt .x//T . For i D
1 to m, associate a Lagrange multiplier �i to the i th equality constraint, and for
p D 1 to t associate a Lagrange multiplier �p to the pth inequality constraint
in the problem, and construct the Lagrangian for the problem L.x; �; �/ D
�.x/ � Pm

iD1 �i hi .x/ � Pt
pD1 �pgp.x/ D �.x/ � �h.x/ � �g.x/, where � D

.�1; � � � ; �m/, � D .�1; � � � ; �t / are the row vectors of Lagrange multipliers for the
problem.

� First order necessary optimality conditions for a given point Nx to be a local
minimum: Feasibility, that is, h. Nx/ D 0; g. Nx/ � 0, and there exist Lagrange
multiplier vectors N�; N�, which together with Nx satisfy

rxL. Nx; N�; N�/ D r�. Nx/ � N�rh. Nx/ � N�rg. Nx/

D r�. Nx/ �
mX

iD1

N�i rhi . Nx/ �
tX

pD1

N�prgp. Nx/ D 0:

N� � 0

N�pgp. Nx/ D 0 for all p

The last set of conditions here are called the complementary slackness optimality
conditions. They are equivalent to N�g. Nx/ D 0.

� Second order necessary optimality conditions for a given point Nx to be a local
minimum: Feasibility, that is, h. Nx/ D 0; g. Nx/ � 0, and there exist Lagrange
multiplier vectors N�; N�, which together with Nx satisfy

rxL. Nx; N�; N�/ D r�. Nx/ � N�rh. Nx/ � N�rg. Nx/

D r�. Nx/ �
mX

iD1

N�i rhi . Nx/ �
tX

pD1

N�prgp. Nx/ D 0:

N� � 0

N�pgp. Nx/ D 0 for all p

yT Hx.L. Nx; N�; N�//y � 0 for all y 2
fy W rh. Nx/y D 0; rgp. Nx/y D 0 for all p 2 P. Nx/g

where P. Nx/ D fp W gp. Nx/ D 0g.
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� Sufficient optimality conditions for a given point Nx to be a local minimum:
Feasibility, that is, h. Nx/ D 0; g. Nx/ � 0, and there exist Lagrange multiplier
vectors N�; N�, which together with Nx satisfy

rxL. Nx; N�; N�/ D r.�. Nx// � N�r.h. Nx// � N�r.g. Nx//

D r.�. Nx// �
mX

iD1

N�i r.hi . Nx// �
tX

pD1

N�pr.gp. Nx// D 0:

N� � 0

N�pgp. Nx/ D 0 for all p

yT Hx.L. Nx; N�; N�//y > 0 for all 0 ¤ y 2 T1;

where T1 D fy W rh. Nx/y D 0 and rgp. Nx/y D 0 for all p 2 P1, and
rgp. Nx/y � 0 for all p 2 P2g, P1 D P. Nx/ \ fp W N�p > 0g, P2 D P. Nx/ \ fp W
N�p D 0g.

Necessary and Sufficient Optimality Conditions for a Given Point Nx to be a
Global Minimum: If the problem is a convex programming problem, that is, if
�.x/ is a convex function, h.x/ are all affine functions and g.x/ are all concave
functions, then the first order optimality conditions (KKT optimality conditions) are
both necessary and sufficient for Nx to be a global minimum to the problem. So for
a convex programming problem, every stationary point (i.e., KKT point) is a global
minimum.

The concepts of various types of optimum solutions in a nonconvex program-
ming problem are illustrated in Fig. 5.1 for the problem of optimizing a real-valued
function �.x/ of one variable x 2 R1 subject to a � x � b, where Œa; b
 is a

x10x0

θ(x)

bx1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12a
x

Fig. 5.1 Various types of minima and maxima of a general objective function
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given closed interval in R1. Figure 5.1 contains a plot of �.x/ on this interval, with
the variable plotted on the horizontal axis, and the values of �.x/ plotted on the
vertical axis.

The points a; x5; x7; x10; x12 are local minima, x0; x4; x6; x11; b are local
maxima, x12 is the global minimum, and x6 is the global maximum for �.x/ in this
interval. In the interval x1 � x � x2, the function �.x/ is a constant, and every
point in this interval is a local minimum for �.x/. In the interval x8 � x � x9 the
function �.x/ is again a constant, and every point in this interval is a local maximum
for �.x/.

At the point x3, the derivative of �.x/ is 0, and so x3 is a stationary point for this
problem, even though it is neither a local minimum or maximum.

5.9.2 Relationship to Optimality Conditions
for LP Discussed Earlier

Consider the LP in standard form

Minimize cx

subject to Ax D b (5.31)

x � 0;

where A is a matrix of order m � n. To derive the optimality conditions given
above to this LP, we associate the Lagrange multipliers � D .�1; : : : ; �m/, � D
.�1; : : : ; �n/ to the two sets of constraints in (5.31) in that order. The Lagrangian is
L.x; �; �/ D cx � �.Ax � b/ � �x.

Therefore, the first order necessary optimality conditions or the KKT optimal-
ity conditions for a point Nx to be optimal to this LP are that there exist Lagrange
multiplier vectors N�; N�, which together with Nx satisfy

A Nx D b; Nx � 0

@L. Nx: N�; N�/

@x
D c � N�A � N� D 0; N� � 0; N� unrestricted.

N� Nx D 0:

The conditions in the first line are the primal feasibility conditions for Nx. Condi-
tions in the second line are the dual feasibility conditions for the Lagrange multiplier
vector N� . And N� D c � N�A is the vector of dual slacks in the dual feasible solu-
tion N� , this is the vector which we denoted by Nc (the relative cost vector when the
dual solution is N�/ in earlier sections. The conditions in the third line are the com-
plementary slackness optimality conditions discussed in earlier sections. Thus the
duality theorem and the complementary slackness theorem together provide a proof
that the first order necessary optimality conditions are both necessary and sufficient
optimality conditions for LPs.
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5.10 Exercises

5.1. A woman is trying to get as much vitamin K as possible in her diet to improve
her health. She started eating a special breed of avocado (BA) and a tropical fruit
from Brazil (BF), which are excellent sources of vitamin K. Both BA and BF also
contain potassium and leutein. There is a maximum daily limit (MDL) for potassium
and a minimum daily requirement (MDR) for leutein from BA and BF in her diet.
Also, BA contains a type of fat and BF contains sugars; for these reasons, she has
to limit the quantities of these foods in her diet. Data on the composition of these
foods and all the limits is given below. Also, in this problem ignore any Vit K,
potassium, and leutein she may get in foods other than BA and BF that she eats.

Nutrient Composition (units/unit) Limit
BA BF

Vit K 65 35 Maximize
Potassium 6 8 � 48 (MDL)

Leutein 1 1 � 2 (MDR)
Maximum in diet 6 4

Formulate the problem of determining how much BA, BF to include in her daily
diet as an LP. Solve this LP by the geometric method and determine the marginal
values of the MDL on potassium, and the MDR on leutein, and explain their
interpretation.

5.2. Consider the following LP. Denoting the dual variables associated with con-
straints 1–5 from top to bottom as �1 to �5, write the dual problem.

Given the optimum dual solution, N� D .�4; 3; 4; 5; 0/, find an optimum solution
to the primal using the CS conditions. Show that the set of optimum solutions of the
primal is a line segment in the x-space. Find its parametric representation.

x1 x2 x3 x4 x5 RHS
1 �1 0 1 0 D 6
0 �1 0 0 �2 � �4

0 0 1 0 �1 � 5

0 0 0 2 �2 � 14

0 �2 6 0 �4 � 25

�4 1 4 6 �20 D z minimize

all xj � 0

5.3. Consider the following LP

Minimize 0x

subject to Ax D b (5.32)

x � 0;
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where A is an m � n matrix. As all the cost coefficients of the variables are 0, verify
that every feasible solution of (5.32) as an optimum solution for it.

Applying the duality results to this LP, show that if the system of constraints in
(5.32) has no feasible solution x, then there exists a linear combination of equality
constraints in (5.32) in which all the variables xj have nonpositive coefficients,
but the RHS constant is strictly positive. This result is known popularly as Farkas’
lemma, it is a theorem of alternatives for the system of constraints in (5.32).

5.4. The Balanced LP Problem (BLP). BLP arises in situations that call for eq-
uitable distribution or sharing of resources, commonly encountered in economic
and military contexts. The set of feasible solutions for BLP is a convex polyhe-
dron K D fx W Ax D b; x � 0g, where x D .x1; : : : ; xn/T 2 Rn, and
A D .aij /; b D .bi / are given matrices of orders m � n; m � 1; respectively.

In this problem, we are given an objective function cx D Pn
j D1 cj xj and a

subset of column indices J � f1; : : : ; ng, where cj > 0 for each j 2 J . The aim
of BLP is to find a balanced solution, which is defined as a feasible solution x 2 K

that minimizes the difference .max fcj xj W j 2 J g � min fcj xj W j 2 J g/.
(1) Formulate the BLP as an LP problem. (2) If there exists a feasible solution

x 2 K satisfying cj xj has the same value, say t , for all j 2 J , it is called a
totally balanced solution. Show that any totally balanced solution is an optimum
solution for the BLP. If J D f1; : : : ; ng, show that a totally balanced solution
exists iff bi=.

Pn
j D1 aij =cj / has the same value for all i , which is easy to check

without solving any LP. (3) Let y be a scalar parameter, and consider the following
parametric RHS LP in variables x D .xj / and z 2 R1: min z subject to x 2 K and
.y=cj / � xj � .z=cj / for all j 2 J . Let x.y/; z.y/ denote an optimum solution,
optimum objective value of this parametric LP as a function of the parameter y.
Show that z.y/ is a PL convex function in y, and that there exists a value of the
parameter y such that x.y/ solves the BLP (Ahuja 1997).

5.5. Consider the following LP

x1 x2 x3 x4 x5 x6 RHS
1 1 1 1 1 �1 � 50
0 1 1 1 �1 2 � 45
0 0 1 1 2 2 � 35
0 0 0 1 1 1 � 20
1 3 6 10 7 14 D z.x/, minimize

xj � 0 for all j .

The solution Nx D .5; 10; 15; 20; 0; 0/ is a feasible solution for this LP with ob-
jective value z. Nx/ D 325.

(1) Check whether 325 is the minimum objective value in this LP, using the opti-
mality conditions in the simplex algorithm showing all your work very clearly.

(2) Check whether 325 is the minimum objective value in this LP, using the CS
optimality conditions, showing all your work.

Comment on why (1) and (2) are the same.
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5.6. Gordon’s theorem of alternatives states that the system Ax < 0 for a given
matrix A of order m � n has a solution iff the alternate system yA D 0; y � 0

has no nonzero solution y. Prove it using the duality theorem of LP (hint: apply the
strategy discussed in Exercise 5.3).

5.7. A is an m � n matrix, AT is the transpose of A, c is a row vector in Rn, and
b is a column vector in Rm. Consider the following LP in which there are n C m

constraints in nCm nonnegative variables written in the form of two column vectors,
x D .x1; : : : ; xn/T and y D .y1; : : : ; ym/T :

Minimize f D cx �bT y

subject to Ax � b

�AT y � �cT

x; y � 0.

Prove that this LP in n C m variables is either infeasible or is feasible, and the
optimum value for the objective function f will be 0 in this case.

5.8. Let A; b be matrices of orders m�n; m�1; respectively. Let x 2 Rn; � 2 Rm

be a column vector, row vector of variables and consider the two systems:

Ax D b; x � 0; (5.33)

�A � 0; �b D 1: (5.34)

Farkas’ lemma states that either (5.33) has a solution x or (5.34) has a solution � ,
but not both.

Using Farkas’ lemma, prove the corresponding result when the first system is
Ax D b without the non-negativity requirement on the variables.

5.9. Consider the fertilizer problem discussed in Sect. 5.2. There are three raw
materials RM1; RM2; RM3 available in maximum quantities of 1,500, 1,200,
500 tons/day, respectively. The input/output requirements for the two products
HI-ph, Lo-ph are summarized below.

Raw Input (tons/ton) to make Max. (tons)
material Hi-ph Lo-ph available/day
RM1 2 1 1,500
RM2 1 1 1,200
RM3 1 0 500

Now the prices have gone up quite a bit. The prices/ton of RM1; RM2; RM3

are, respectively, $4,500, $4,000, and $3,500. Manufacturing costs of Hi-ph, Lo-ph
other than the costs of these three raw materials are $600, 400/ton, respectively. The
selling prices of Hi-ph, Lo-ph are $17,600, $9,025/ton, respectively.

Write the model for maximizing the companies net profit/day. Letting x1; x2

denote the tons of Hi-ph, Lo-ph produced/day; the optimum solution of the model
is . Nx1; Nx2/ D .500; 500/T :

Find the constraints in the model that are active at Nx:
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Assuming that exactly the same constraints remain active at the optimum solution
when small perturbations occur in the availability of any of the raw materials, find
the marginal values of the three raw materials in this problem, using the small per-
turbation technique discussed in this chapter.

The company’s chemist has developed a new fertilizer and named it lushgarden.
To make one ton of lushgarden needs one ton each of RM1; RM2; RM3 and incurs
total other manufacturing cost of $500. Determine the minimum sale price/ton of
lushgarden at which it will be competitive with Hi-ph, Lo-ph, explaining clearly
how you obtained it.

5.10. Let A; b be given matrices of orders m � n; m � 1; respectively. Consider
the LP

Minimize z.x/ D cx

subject to Ax D b (5.35)

x � 0:

(1) Is there any relationship between “this LP having more than one optimum solu-
tion” and “degeneracy.” If so explain what this relationship is very clearly.

(2) Suppose Nx is a given optimum solution of this LP. If Nx is not a basic feasi-
ble solution (BFS) of this LP, show that this LP must have alternate optimum
solutions.
Also, in this case, describe briefly a procedure that can be used to obtain an
optimum BFS for this LP.

(3) Suppose we are given an optimum basic vector xB for this LP. Let P D Set
of i such that the entry in row i in the updated RHS column with respect to xB

is 0, Q D set of j such that xj is a nonbasic variable with zero relative cost
coefficient in the canonical tableau with respect to xB , S D set of j such that
xj is a nonbasic variable with nonzero relative cost coefficient in the canonical
tableau with respect to xB .

Prove that the set of optimum solutions of this LP is unique iff the optimum
objective value in the following LP is zero:

Maximize
X
j 2Q

xj

subject to Ax D b

xj D 0 for all j 2 S

x � 0:

5.11. Let b 2 Rn be a given vector. In defining its positive and negative parts, we
have expressed b as x � y, where x; y � 0. Consider the LP: minimize cx C dy

subject to x � y D b; x; y � 0.
Write the dual of this LP and express the condition when this dual is feasible

or infeasible, and relate this to the primal having an optimum solution or having
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an unbounded objective function on its set of feasible solutions. Also, verify the
complementary slackness property when both problems have optimum solutions.

What conditions on c; d will guarantee that xj yj D 0 at an optimum solution
of the original primal LP?

5.12. Consider the LP: minimize z D cx subject to b � Ax � d , where A is a
matrix of order m � n and b < d are both finite vectors, and any bound restrictions
on individual variables are included in the constraints.

Assume that this LP has a feasible solution. Show that the objective function z is
unbounded below on the set of feasible solutions of this LP iff c is not in the linear
hull of the row vectors of A.

5.13. Let A D .aij / be a 2 � 4 matrix, and consider the LP: minimize z.x/ D cx,
subject to .�1; �1/T � Ax � .1; 1/T , with the variables x unrestricted in sign.

Using symbols �1; �2I ı1; ı2 for the dual variables, write the dual of this LP.
Show that the system of dual constraints can be simplified and expressed in terms

of two unrestricted variables only. Use this to show that the dual problem has a
feasible solution iff the cost row c can be expressed as a linear combination of the
rows of A. Using this show that the original LP has an optimum solution iff the cost
row c is in the linear hull of the rows of A.

5.14. Consider the following LP in standard form.

x1 x2 x3 x4 x5 x6 �z RHS
1 �3 1 1 1 2 0 16
1 5 1 2 0 �3 0 1
0 2 1 �4 0 5 0 14
7 12 5 26 3 �16 1 0

xj � 0 for all j , minimize z

Write its dual and the complementary slackness optimality conditions that a pair
of primal and dual feasible solutions have to satisfy in order to be optimal solutions
to the respective problems.

Use these conditions to check whether Nx D .3; 0; 4; 0; 5; 2/T is an optimum
solution to this LP.

5.15. Consider the following LP in which A; D; c are m�n; p �n; 1�n matrices,
respectively. Write its dual using symbols � D .�i /; � D .�t / to denote the dual
variables.

Minimize z D cx

subject to Ax D b

Dx � d

x � 0:

Given Nx and . N�; N�/, a pair of primal and dual feasible solutions, prove directly
that c Nx is � the dual objective value at . N�; N�/.
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5.16. A is a given matrix of order m � n. Consider the following problems:

Problem 1. Find a vector b 2 Rm satisfying the property that the system Ax � b

has at least one feasible solution x 2 Rn.

Problem 2. Find a vector b 2 Rm satisfying the property that the system Ax � b

has no feasible solution x 2 Rn.

Describe the simplest and most efficient algorithms for each of Problems 1 and 2.
Which of Problems 1 or 2 can be solved using direct linear algebra operations

(i.e., matrix arithmetic, solving linear equations but no inequalities, finding rank,
etc.) only? Why?

Are the two problems of the same order of difficulty? If not, explain the reasons
for the difference.

5.17. Consider the system of homogeneous linear constraints: Ax D 0, x � 0,
where A is a given m � n matrix.

Using the duality theorem show that it has a nonzero feasible solution iff the
system in variables � D .�1; : : : ; �m/: �A > 0 has no feasible solution.

5.18. Consider the LP: minimize z D cx subject to Ax D b; ` � x � k, where
A D .aij / is a given m � n matrix, c D .cj / 2 Rn, b D .bi / 2 Rm, and
` D .`j / < k D .kj / are given finite vectors in Rn.

Write the dual of this LP. Show why the dual problem always has a feasible
solution, irrespective of what values the primal data elements take.

5.19. Optimum objective value as a function of the cost vector in an LP.
Consider the following LP where A is a matrix of order m�n: minimize z.x/ D cx

subject to Ax D b; x � 0.
In this LP A; b remain fixed, but the cost vector c varies, and we denote by g.c/

the optimum objective value as a function of the cost vector c. Show that g.c/ is a
concave function.

5.20. Consider the LP: minimize z D cx, subject to Ax � b.
Assuming that the LP has at least one feasible solution, prove that it has an op-

timum solution if and only if the cost vector c is in the Pos cone (i.e., nonnegative
hull) of the set of row vectors of A.

5.21. Let A be a matrix of order m � n. Consider the LP: minimize z.x/ D cx

subject to Ax D b; x � 0. Suppose we know that this LP has an optimum solution.
From this, what can we conclude about the dual of this LP?

Now consider the modified primal with an additional constraint: minimize z.x/ D
cx subject to Ax D b; AmC1:x D bmC1; x � 0. Suppose we know that this modi-
fied primal is infeasible. Then prove that the dual of this modified primal is feasible,
but its objective function is unbounded above in it.
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5.22. Consider the following primal linear program, where A is an m � n matrix.

Minimize z.x/ D cx

subject to Ax � b

x � 0:

It is known that this problem has at least one feasible solution. Prove that the set
of feasible solutions of either the primal or the dual or both must be nonempty and
unbounded.

5.23. Consider the following single constraint bounded variable LP:

min z.x/ D
nX

j D1

cj xj

s. to
nX

j D1

aj xj D b

`j � xj � kj for all j:

(1) Write the dual of this problem.
(2) If Nx D . Nxj / is a feasible solution for the original LP, prove that it is an optimum

solution iff there exists a real number N� satisfying, for all j D 1 to n,

N�aj < cj implies Nxj D `j

N�aj > cj implies Nxj D kj

`j < Nxj < kj implies N�aj D cj :

5.24. Consider the LP: minimize z.x/ D d T x subject to Dx � d; x � 0, where d

is a column vector in Rm and D is a square matrix of order m satisfying D D DT .
If x� � 0 satisfies Dx� D d , prove that x� is an optimum solution of this LP.

5.25. Consider the LP in standard form where Am	n has rank m: minimize z D cx,
subject to Ax D b, x � 0.

The solution Qx D . Qxj / is a given optimum solution of the above LP and QJ D
fj W Qxj > 0g. Then prove that every feasible solution Ox D . Oxj / for this LP that
satisfies fj W Oxj > 0g � QJ must also be an optimum solution of this LP.

5.26. Consider the LP: minimize z D cx, subject to
Pn

j D1 aj xj � b and 0 � xj �
u for all j , where u > 0 is a given common upper bound for all the variables and
all aj ; cj ; b are > 0.

Write the dual of this LP. Prove that there exists a j1 2 f1; : : : ; ng such that there
is an optimum solution . Nx/ D . Nxj / for this LP, where

for all j for which .cj =aj / > .cj1
=aj1

/, Nxj D 0,
for all j for which .cj =aj / < .cj1

=aj1
/, Nxj D u.
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5.27. Consider the system of linear equations Ax D b; x � 0, where A; b are
given below. Using Farakas’ lemma discussed at the beginning of this chapter, show
that the system AT y � 0; bT y > 0 must have a solution y (R. Saigal).

A D
0
@

1 2

�1 2

�1 0

1
A ; b D

0
@

1

0

5

1
A :

5.28. Let D be a diagonal matrix with positive diagonal entries, and e the column
vector of all 1’s of appropriate size. Consider the nonlinear program: maximize
xT x subject to xT x D eT Dx.

Write the KKT optimality conditions for this problem, and then find all the KKT
points for it. Determine which of these problems are local maxima, and among these
find the global maximum for this problem (R. Saigal).

5.29. Let Q; A; B be m � n; p � m; q � n matrices and c; d are row vectors in
Rm; Rn respectively. Consider the following quadratic program in variables x D
.x1; : : : ; xm/T ; y D .y1; : : : ; yn/T ; known as a bilinear programming problem (the
reason for this name is the following: if x or y is fixed, the remaining problem is an
LP in the remaining variables):

Minimize z.x; y/ D cx C xT Qy C dy, subject to Ax D a, By D b, x; y � 0.
Write the KKT necessary optimality conditions for this problem.
Fix x D Nx � 0 and write the KKT conditions for the remaining LP in y. Suppose

Ny is an optimum solution of the remaining LP in y:

Fix y D Ny and write the KKT conditions for the remaining LP in x. Suppose Nx
happens to be an optimum solution of the remaining LP in x.

Then show that . Nx; Ny/ is a KKT point for the original bilinear program
(R. Saigal).

5.30. Consider the problem: minimize 5x2
1 C 6x2

2 � �log.x1/ ��log.x2/ subject
to x1 C x2 D 1; x1; x2 � 0, where � is a positive constant.

Ignoring the “ x1; x2 � 0” constraints for the moment, write the KKT necessary
optimality conditions for the remaining problem. Find a solution to this KKT system
as a function of the parameter �, and check that this solution satisfies the sufficiency
condition for being a local minimum to this problem. Verify that this solution also
satisfies the ignored constraints x1; x2 � 0. Investigate what happens to this solu-
tion as � tends to 0.

5.31. Consider the problem: minimize .1=2/jjDxjj2 subject to xCAT y D c, where
D is a square diagonal matrix with positive diagonal entries and A; c are an m � n

matrix, and column vector in Rn; respectively.
Write the KKT necessary optimality conditions for this problem. Under what

conditions will this KKT system have a solution? If these conditions are satisfied,
find all solutions of this KKT system (R. Saigal).
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5.32. Let f .x/ be a real-valued function defined on Rn, and h.x/ D .h1.x/; : : : ;

hm.x//, all the functions being continuously differentiable. Consider the problem:
minimize f .x/ subject to h.x/ D 0, and ` � x � u, where `; u are given bound
vectors.

Write the necessary optimality conditions for this problem. Show that these con-
ditions are equivalent to finding a feasible solution x D .xj /, satisfying, for j = 1
to n

@f .x/

@xj

�
mX

iD1

�i

@hi .x/

@xj

D 0 if `j < xj < uj

� 0 if `j D xj

� 0 if xj D uj .

where � D .�1; : : : ; �m/T is the vector of Lagrange multiplier vectors associated
with the equality constraints in the problem (R. Saigal).

5.33. Consider the LP (5.36) where A is an m � n matrix.

min z.x/ D cx s:to Ax D b; x � 0 (5.36)

The vector xB D .x1; : : : ; xm/ is a dual feasible but primal infeasible basic vector
for (5.36). Nx D . Nx1; : : : ; Nxn/T is the basic solution of (5.36) corresponding to the
basic vector xB and Nz D c Nx. We have

Nxj < 0 for j D 1 to r;

Nxj � 0 for j D r C 1 to n:

(1) Show that Nz is the optimum objective value in the LP (5.37):

min z.x/ D cx s:to Ax D b; and xj � 0 for j D r C 1 to n (5.37)

(2) Show that Nz is a lower bound for the minimum objective value in (5.36).

5.34. Direct Proof of the Duality Theorem Using Farkas’ Lemma. Consider the
Primal LP, where A is an m � n matrix.

min z.x/ D cx s. to Ax � b; x � 0.

(1) Suppose we are given an optimum solution Nx for this LP. Let P be the index set
of active constraints at Nx, that is, P D fi W Ai: Nx D big.
Then show that the system of constraints:

Ai:y � 0 for all i 2 P ; y � 0; cy < 0

cannot have a solution y.
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Denote the vector of dual variables by the row vector � . Using the above result,
and Farkas’ Lemma show that there must exist a dual feasible solution N� with
dual objective value v. N�/ D N�b D c Nx, and then using the result in the weak
duality theorem show that N� is an optimum dual solution.

(2) If the primal is infeasible, show that Farkas’ Lemma implies that the system
�A � 0; � � 0; �b > 0 has a feasible solution �. Using this show that in this
case, if the dual has a feasible solution, then the dual objective function v.�/ is
unbounded above on the dual feasible set.

(3) Show that (1) and (2) together provide a direct proof of the duality theorem
for LPs in symmetric form, using Farkas’ lemma, without having to appeal
to the simplex algorithm (the proof given in Sect. 5.4 is based on the simplex
algorithm).

5.35. Consider a primal LP and the following possibilities in it (each is separate
from the others): (1) The i th constraint in it is of the type �. (2) The i th constraint
in it is of the type �. (3) The i th constraint in it is of the type D. (4) The j th variable
in it is sign restricted to be � 0. (5) The j th variable in it is sign restricted to be � 0.
(6) The j th variable in it is unrestricted in sign. (7) The j th variable in it is restricted
by a lower bound (LB) `j , and an upper bound (UB) uj which are included among
the primal constraints. (8) The j th variable in it only has an LB `j specified, which
is included among the primal constraints. (9) The j th variable in it only has an UB
uj specified, which is included among the primal constraints.

Mention the effect of each of these possibilities in the primal LP, on the dual of
this problem, assuming that the primal is a minimization (maximization) problem
separately.

5.36. Tucker’s lemma. Let A be a matrix of order m � n. Tucker’s lemma states
that there exists a column vector Nx 2 Rn and row vector N� 2 Rm satisfying A Nx � 0;
N�A D 0; N� � 0; and A1: Nx C N�1 > 0.

To prove Tucker’s lemma by induction, set up the following:
Induction hypothesis. Tucker’s lemma holds for all matrices of order .m�1/�n.
Let A be the matrix of order .m � 1/ � n obtained by removing the mth row Am:

from A. Then under the induction hypothesis, we know that there exists a column
vector x0 2 Rn and row vector u0 2 Rm�1 satisfying

Ax0 � 0I u0A D 0; u0 � 0I u0
1 C A1:x

0 > 0:

If Am:x
0 � 0, show that Nx D x0, N� D .u0; 0/ satisfies the conditions required

under Tucker’s Lemma.
If Am:x

0 < 0, define �i D .Ai:x
0/=.Am:x

0/, and Bi: D Ai: C �iAm: for i D 1

to m�1, and let B be the .m�1/�n matrix whose rows are Bi: for i D 1 to m�1.
Now by the induction hypothesis, there exists an x00; u00 satisfying

Bx00 � 0I u00B D 0; u00 � 0I u00
1 C B1:x

00 > 0:
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Defining Nx D x00 � x0.Am:x
00/=.Am:x

0/, N� D .u00;
Pm

iD1 �i u00
i /, show that this

Nx; N� satisfy the requirements in Tucker’s lemma. Using these complete the proof of
Tucker’s lemma by induction.

5.37. Direct Proof of Farkas’ Lemma. Let A be a given m � n matrix and b a
column vector in Rm. Farkas’ lemma states that either system (5.38) given below
has a solution x, or system (5.39) has a solution � , but not both.

Ax D b; x � 0 (5.38)

�A � 0; �b > 0 (5.39)

(1) Show that it is impossible for both systems (5.38) and (5.39) to be feasible, by
showing that if both of them have feasible solutions, it leads to the fundamental
inconsistent inequality 0 > 1.

(2) Assume that (5.38) has no feasible solution � . Let NA D
�

bT

�AT

�
, a matrix of

order .n C 1/ � m.

Since (5.39) is infeasible, in every solution of NAy � 0, we must have NA1:y D 0.
Using this and Tucker’s lemma of Exercise 5.36, obtain a direct proof of Farkas’
lemma.

5.38. Let A be a given matrix of order m � n. Using Tucker’s lemma (Exercise
5.36), show that there exists a column vector Nx 2 Rn and row vector N� 2 Rm

satisfying A Nx � 0I N�A D 0; N� � 0 and A Nx C N�T > 0.

5.39. Gordon’s Theorem of Alternatives. Let A be a given matrix of order m � n.
Use the result in Exercise 5.38 to show that exactly one of the following systems
(5.40) and (5.41) has a feasible solution, and the other is infeasible.

Ax > 0; (5.40)

�A D 0; � � 0; � ¤ 0 (5.41)

5.40. We are given a primal linear program with coefficient matrix A, in which the
constraints are numbered 1 to m with f1; : : : ; mg partitioned as M1 [M2 [M3, and
the variables have subscripts 1 to n with f1; : : : ; ng partitioned as N1 [ N2 [ N3.
Here is the primal:

Minimize z D cx, subject to: Ai:x � bi � 0 for i 2 M1, � 0 for i 2 M2, and D 0 for
i 2 M3; and xj � 0 for j 2 N1, � 0 for j 2 N2, and unrestricted for j 2 N3.

Write the dual problem using �i as the dual variable corresponding to the i th
constraint in the primal for i D 1 to m.

Given Nx; N� which are primal, dual feasible, respectively, using the weak du-
ality theorem show that they are optimum solutions to the respective problems iff
.Ai: Nx � bi / N� D 0 for all i 2 M1 [ M2 and Nxj . N�A:j � cj / D 0 for all j 2 N1 [ N2.
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5.41. The matrix A of order m � n and the column vector b in Rm are given.
Consider the LP: Minimize z = cx, subject to Ax D b. Show directly, that for this
LP, either every feasible solution is an optimum solution; or there exists no optimum
solution.

Write the dual of this LP, and show how you can get the same conclusion from
the duality theorem.

5.42. K is a convex polytope of full dimension in Rn with extreme points
fd 1; :::; d N g. Let Nd be an interior point of K , for example Nd D .

PN
rD1 d r /=N . Con-

sider the following LP with variables ˛r , r = 1 to N : Minimize z D PN
rD1 ˛r jjd r jj2

subject to
PN

rD1 ˛rd r D Nd ,
PN

rD1 ˛r = 1, and ˛r � 0 for all r .

(i) Denoting the variables in the dual of this LP by ˇ1; : : : ; ˇn; ı in that order, write
the dual of this LP.

(ii) Assume that ˛B D .˛1; :::; ˛nC1/ is an optimum basic vector for the primal.
Also assume that . Ň D . Ň

1; : : : ; Ň
n/; Nı/ is the corresponding optimum dual so-

lution. Show that .1=2/ Ň is the center of an n-dimensional sphere that contains
all the points d 1; : : : ; d nC1 on its boundary.
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Chapter 6
Revised Simplex Variants of the Primal
and Dual Simplex Methods and Sensitivity
Analysis

Consider an LP in standard form in n nonnegative variables subject to m equality
constraints that the variables are required to satisfy, in which we assume that the
rank of the coefficient matrix is m, without any loss of generality. So, n � m. In LP
models to be solved in practice, typically n will be much larger than m.

The original form of the primal simplex method developed in 1947, discussed
in LP textbooks (e.g., see Chap. 4 of Murty (2005b) of Chap. 1), is a wonderful
educational tool to explain the principles behind the method to beginners. Starting
with a primal feasible basic vector, this method goes through a series of steps, in
each step one GJ pivot step is carried out to replace one basic variable in the basic
vector by a specially selected nonbasic variable. All the work in a step of this method
is also discussed in our Sects. 4.9 and 4.12.

But as a computational method for solving LP models in practice, this original
form of the primal simplex method is highly inefficient as it updates every one of
the n C 1 column vectors in the canonical tableau in every pivot step to solve the
LP under consideration. In this chapter, we will discuss the much more efficient
revised simplex variants of the primal simplex method that are based on the same
fundamental theory, but in these variants we only need to update a smaller number,
mC2, column vectors of the basis inverse in every pivot step. We will discuss several
of the early (developed in 1950s and 1960s) variants of this method to describe
the ideas used to make the simplex method a practically valuable tool to solve LP
models in decision making.

Instead of updating the entire canonical tableau in every pivot step, these revised
simplex variants update the much smaller basis inverse in every pivot step, while
leaving the original system unchanged throughout the algorithm. The revised GJ
method for solving linear equations is discussed in Sect. 1.2, and the revised simplex
variants use the same formulas discussed there to execute all the operations of the
simplex algorithm using the basis inverse and the original tableau.

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 6, c� Springer Science+Business Media, LLC 2010
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6.1 Primal Revised Simplex Algorithm Using the Explicit
Basis Inverse

To solve a general LP using these variants, we begin with transforming the prob-
lem into standard form using the simple transformations discussed in Sect. 4.1 of
Murty( 2005b) of Chap. 1. After these transformations if necessary, let the problem
in standard form be

Minimize z.x/ D cx

subject to Ax D b (6.1)

x � 0;

Original Tableau
x1 : : : xj : : : xn �z RHS
a11 : : : a1j : : : a1n 0 b1

:::
:::

:::
:::

:::

am1 : : : amj : : : amn 0 bm

c1 : : : cj : : : cn 1 0

xj � 0 for all j , minimize z

where the coefficient matrix A is a matrix of order m � n and rank m.
This algorithm (the revised primal simplex algorithm) needs as input an ini-

tial primal feasible basic vector. Let xB be the initial primal feasible basic vector
for (6.1), B is the m � m associated basis consisting of the column vectors of A

corresponding to the basic variables in xB , and cB is the row vector of basic cost
coefficients. The extended basis corresponding to .xB ; �z/ is

B D
	

B 0

cB 1



:

The inverse tableau corresponding to .xB ; �z/ is

B�1 D
	

B 0

cB 1


�1

D
	

B�1 0

�� 1



; (6.2)

where � D cBB�1 is the dual basic solution corresponding to the basic vector
.xB ; �z/: The vector of values of the basic variables in the primal basic solution
corresponding to this basic vector is

updated RHS vector D B�1

	
b

0



D
	 Nb

�Nz



;
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where Nb � 0 by primal feasibility of xB . All this information is displayed in the
form of a tableau, which we also call the inverse tableau. “BV” stands for “basic
variables.”

Inverse tableau wrt xB

BV Inverse Tableau Basic values

xB B�1 0 Nb

�z �� 1 �Nz
Using the formulas derived in Sects. 1.2 and 5.4 ((5.16) to (5.20)), here we list

the various steps in the iteration of the simplex algorithm when .xB ; �z/ is the basic
vector.

The fact that .xB ; �z/ is a basic vector encountered in the primal simplex al-
gorithm automatically implies that it is primal feasible. The algorithm is initiated
with a primal feasible basic vector and it maintains primal feasibility throughout
(through the selection rule using the primal simplex minimum ratio test for the drop-
ping basic variable that will be replaced by the entering variable in the basic vector
in each pivot step). So, checking primal feasibility of the basic vector is not usually
mentioned in every step of the algorithm.

But, in practice, periodically after every few steps, the present primal solution
is checked for primal feasibility to make sure that the inevitable accumulation of
round-off errors in computation have not moved the present solution, Nx, too far
away from primal feasibility. A typically used measure of primal infeasibility of Nx is
jjA Nx�bjj; under exact computation it should be 0 if Nx is primal feasible. However, in
digital computation with finite precision, we incur round-off errors, and so in prac-
tical computation a small positive tolerance is selected and Nx is considered primal
feasible as long as jjA Nx � bjj � the selected tolerance. So, in solving (6.1) using the
revised primal simplex algorithm, if Nx is the present primal solution and jjA Nx�bjj is
higher than the specified tolerance for it, it is an indication that the round-off error
accumulation in the present basis inverse is unacceptable. In this case, the actual
basis matrix corresponding to the present basic vector is retrieved from the original
tableau and inverted again (this operation is called reinversion of the basis). With
the new basis inverse, continue the pivot step with the present basic vector.

6.1.1 Steps in an Iteration of the Primal Simplex Algorithm
When (xB , –z) is the Primal Feasible Basic Vector

1. Compute relative cost coefficients of nonbasic variables: From (5.18) in Sect. 5.4
we know that the relative cost coefficient of the variable xj is

Ncj D .��; 1/

	
A:j

cj



;
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that is, the dot product of the last row of the inverse tableau with the column
vector of xj in the original tableau.

2. Check optimality criterion: The optimality criterion is Ncj � 0 for all the variables
xj in the nonbasic vector xD . If it is satisfied, the present BFS .xD ; xB / D
.0; Nb/, objective value z D Nz, is an optimum solution for the problem. � from
the last row of the present basis inverse is an optimum dual solution, so we have
optimum solutions for both the primal and the dual problems. Terminate.
If the optimality criterion is not satisfied, go to Step 3.

3. Select the entering variable: Let E D fj W Ncj < 0g. Each xj for j 2 E is
eligible to enter the present basic vector xB in this iteration. In this step we select
one of them, say xs , as the entering variable in this iteration.

There are several entering variable selection rules. Dantzig’s rule selects one
that has the most negative Ncj . Another rule is to select the first one that is eligible,
as the Ncj ’s are being computed in Step 1 (if this rule is used, after the entering
variable is selected, the remaining Ncj ’s are not even computed).

Computer programmers have developed a variety of heuristic strategies and
rules for this selection that have been successful in speeding up the simplex algo-
rithm in large-scale computational tests on randomly generated LP models (see
Fourer (2005); Harris (1973) and Greenberg (1978)), and incorporated the best
among these strategies in commercial LP Solver systems.

4. Compute the updated column of the entering variable: From (5.18) in Sect. 5.4
we know that the updated column of the entering variable xs is

	 NA:s

Ncs



D B�1

	
A:s

cs



;

that is, the inverse tableau times the column vector of xs in the original tableau.
This column is known as the entering column or the pivot column in this iteration.

5. Check the unboundedness criterion: If NA:s , the updated column of the entering
variable xs , is �0, the objective function z.x/ is unbounded below on the set
of feasible solutions of this problem, terminate. Define x.�/, a feasible solution
depending on a parameter �, by

.xB.�/; xs.�/; all other nonbasic variables/ D . Nb � � NA:s; �; 0/;

with objective value z.�/ D Nz C Ncs�. As NA:s � 0, x.�/ remains feasible to the
problem for all � � 0, and as � ! 1, z.�/ ! �1. So fx.�/ W � � 0g is
an extreme half-line of the set of feasible solutions of this problem, along which
z ! �1.

If this unboundedness criterion is not satisfied, go to Step 6.
6. Minimum ratio test to determine the dropping basic variable, and pivot step to

update the inverse tableau: Enter the pivot column
	 NA:s

Ncs



D . Na1s ; Na2s ; : : : ; Nams ;

Ncs/T by the side of the inverse tableau and compute the ratios Nbi= Nais in all rows
i where Nais > 0. Identify the minimum, � , of these ratios, and select a row
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r where the minimum ratio is attained as the pivot row. If there is a tie for the
minimum ratio, the pivot row is selected among those tied by some selection rule.
In commercial LP solver systems, the best selection rule determined heuristically
through computational experimentation is usually incorporated.

The present basic variable in the pivot row is the dropping basic variable in
this iteration; it will be replaced by the entering variable to get the next basic
vector. Perform the pivot step on the inverse tableau with the pivot column (PC),
pivot row (PR) selected, this updates the inverse tableau into the inverse tableau
wrt the new basic vector.

With the new basic vector and the inverse tableau corresponding to it, go to
the next iteration.

Example 6.1.

Original tableau
x1 x2 x3 x4 x5 x6 x7 �z b

1 0 0 0 �1 1 1 0 2
0 1 0 0 1 �1 1 0 1
0 0 1 0 2 20 1 0 5
0 0 0 1 0 �1 1 0 0
0 0 1 1 �1 29 �8 1 0

xj � 0 for all j , minimize z

First inverse tableau
Basic Inverse tableau Basic PC Ratios

var. values x5

x1 1 0 0 0 0 2 �1

x2 0 1 0 0 0 1 1 1/1 PR
x3 0 0 1 0 0 5 2 5/2
x4 0 0 0 1 0 0 0
�z 0 0 �1 �1 1 �5 �3 Min. D � D 1

PC pivot column, PR pivot row

We will now provide a numerical example of the primal simplex algorithm, with
detailed explanation of the various steps in it. Consider the LP in the original tableau
given above.

Notice that the RHS vector in the original tableau is nonnegative and xB D
.x1; x2; x3; x4/ is a primal feasible basic vector. The augmented basis corre-
sponding to .xB ; �z/ is the square matrix consisting of the column vectors of
x1; x2; x3; x4; �z in the original tableau given above. Its inverse can be obtained
by the formulae in (6.2). This yields the first inverse tableau given above.

The primal BFS corresponding to xB is Nx D . Nx1 to Nx7/T D .2; 1; 5; 0I 0; 0; 0/T ,
with objective value Nz D 5. The dual basic solution corresponding to xB is N� D (0,
0, 1, 1) from the last row of the inverse tableau.
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The relative cost coefficients of the nonbasic variables, x5; x6; x7, . Nc5; Nc6; Nc7/D
(�3, 10, �10), are obtained by taking the dot product of the last row of the inverse
tableau with the original columns of these variables.

The optimality criterion of the primal simplex algorithm is not satisfied because
Nc5; Nc7 are negative and x5; x7 are eligible to enter the basic vector xB . Among
these, suppose x5 is selected as the entering variable.

The updated column of x5 is its original column multiplied on the left by the
inverse tableau, and this is .�1; 1; 2; 0; �3/T . As there are positive entries in this
column, the unboundedness criterion is not satisfied.

So, the updated column of x5 is the pivot column, and we have to carry out the
minimum ratio test to identify the pivot row.

We will now explain the rationale behind the minimum ratio test in this pivot
step for this example. Its purpose is to make sure that the next basic vector obtained
after the pivot step will also be primal feasible, that is, to maintain primal feasibility
throughout the algorithm.

x1 x2 x3 x4 �z x5

1 0 0 0 0 �1 2
0 1 0 0 0 1 1
0 0 1 0 0 2 5
0 0 0 1 0 0 0
0 0 1 1 1 �1 0

x6 D x7 D 0

At this stage the simplex algorithm fixes all the nonbasic variables other than
the entering variable at their present value of 0, gives the entering variable a tenta-
tive value, say � which is a nonnegative parameter, and obtains the solution of the
remaining system as a function of �. Suppose this solution is denoted by x.�/ and
its objective value by z.�/. In this example, the remaining system after fixing the
nonbasic variables x6; x7 at 0 and rearranging variables is given above.

Multiplying this system on the left by the present inverse tableau converts it into

x1 x2 x3 x4 �z x5

1 0 0 0 0 �1 2
0 1 0 0 0 1 1
0 0 1 0 0 2 5
0 0 0 1 0 0 0
0 0 0 0 1 �3 �5

x6 D x7 D 0

In this tableau, the column vector of x5 is its updated column computed above.
From this system we read out the solution x.�/ discussed above to be

.x1.�/; : : : ; x7.�//T D .2 C �; 1 � �; 5 � 2�; 0; �; 0; 0/T ;

z.�/ D 5 � 3�: (6.3)
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The coefficient of � in z.�/, �3, is Nc5, the relative cost coefficient of the entering
variable x5. Thus, Nc5 is the rate of change in the objective value per unit change
in the value of the nonbasic variable x5 from its current value of 0 in the present
BFS. This is the reason for selecting the entering variable among those with nega-
tive relative cost coefficients, because it helps to get a better solution with smaller
value for z.

In the solution in (6.3), z.�/ decreases as � increases from 0, and so to get max-
imum possible reduction in this iteration, we should give � the maximum possible
value. As � increases, the basic values, x1.�/; x4.�/ (which are 2 C �, and 0) re-
main �0 always. These are the values of basic variables in rows in which the pivot
column has entries �0.

However, the basic values x2.�/; x3.�/ (which are 1 � �; 5 � 2�) will become
<0 if � becomes too large. For x2.�/ D 1 � � to be �0, we need � � 1=1 D 1.
This is the ratio in row 2 in which x2 is the basic variable. This row has a positive
entry in the pivot column. For x3.�/ D 5 � 2� to be �0, we need � � 5=2, and this
is the ratio in row 3 in which x3 is the basic variable, this row also has a positive
entry of 2 in the pivot column. Thus each ratio computed in the ratio test is an upper
bound for the value of � to keep x.�/ in (6.3) to be �0, that is, feasible. Hence
the maximum possible value that we can give to � in this iteration is the smallest of
these upper bounds for it, that is, the minimum ratio, � D minf1/1, 5/2g D 1 here.

Hence the minimum ratio test determines the maximum possible value for the
entering variable that keeps the new solution x.�/ primal feasible.

When � D the minimum ratio � , the basic variable x2 in whose row the minimum
ratio is attained, will reach a value of 0. Any increase in � beyond the minimum ratio
� will make x2.�/ < 0, that is why x2 is called a blocking basic variable in this step.
When we fix � D � , this blocking basic variable becomes 0, and can be dropped
from the present basic vector to become a nonbasic variable at that time, and its
place in the basic vector given to the entering variable.

As every basic vector for an LP always consists of the same number of basic
variables, when the entering variable is brought into the present basic vector, one
of the present basic variables must be dropped from it. Candidates eligible to be
dropping basic variables are those whose value becomes 0 in x.�/.

The inverse tableau corresponding to the new basic vector is obtained by per-
forming a pivot step with the updated column of the entering variable as the pivot
column and the row of the dropping basic variable as the pivot row.

In the solution x.�/ in (6.3), if we put � D 0, we get the present BFS Nx. If we
put � D � , the minimum ratio, we get the BFS associated with the next basic vector
x OB , with its objective value of 5 � 3� D 2, as � D 1 here. The line segment joining
these two solutions is an edge of the set of feasible solutions of the problem. So,
in this iteration, we can say that the simplex algorithm travels from one end of this
edge, x.0/, to the other end, x.�/, attaining a strict decrease in the objective value
in this process. Geometrically, this move is like moving from the point Nx to the point
Ox in that figure, along the edge joining them, see Fig. 6.1.

Dantzig’s entering variable choice rule selects the entering variable to be one
among the nonbasic variables at this stage that has the most negative relative cost
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x(0)x

)(ˆ xx

Fig. 6.1 The move along an edge, taken by the primal simplex algorithm in a nondegenerate pivot
step from the BFS Nx to an adjacent BFS Ox illustrated on a two-dimensional polytope. The objective
value undergoes a strict improvement in this move

coefficient. So, under this rule, the entering variable corresponds to the best rate of
change in the objective value per unit change in the value of the entering variable
from its present value of 0.

Continuing with the example, the updated column of x5, the pivot column, is en-
tered on the first inverse tableau, and the ratios are computed on the tableau itself.
Row 2, in which the minimum ratio is achieved, is the pivot row, and the pivot ele-
ment is boxed. As the minimum ratio is � D 1 > 0, this pivot step is a nondegenerate
pivot step. Performing the pivot step yields the second inverse tableau given below.

Second inverse tableau
Basic Inverse tableau Basic PC Ratios

var. values x7

x1 1 1 0 0 0 3 2 3/2
x5 0 1 0 0 0 1 1 1/1
x3 0 �2 1 0 0 3 �1

x4 0 0 0 1 0 0 1 0/1 PR
�z 0 3 �1 �1 1 �2 �7 Min. D � D 0

PC pivot column, PR pivot row

The new BFS is Ox D .3; 0; 3; 0; 1; 0; 0/T with an objective value of Oz D 2.
The relative cost coefficients of the nonbasic variables here are . Nc2; Nc6; Nc7/ D
.3; 7; �7/. So, x7 is the entering variable in this iteration. Its updated column is
.2; 1; �1; 1; �7/T . It is the pivot column, and the minimum ratio is zero, and the
pivot row is row 4. This pivot step is a degenerate pivot step. Performing this pivot
step leads to the next inverse tableau.

Third inverse tableau
Basic Inverse tableau Basic

var. values
x1 1 1 0 �2 0 3
x5 0 1 0 �1 0 1
x3 0 �2 1 1 0 3
x7 0 0 0 1 0 0
�z 0 3 �1 6 1 �2
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Verify that the BFS and objective value are Ox; Oz, no change since the pivot step
was a degenerate pivot step. The relative cost coefficients of the nonbasic variables
wrt the new basic vector are . Nc2; Nc4; Nc6/ D (3, 7, 0).

As they are all �0, the optimality criterion is satisfied, and the present BFS
Ox D .3; 0; 3; 0; 1; 0; 0/T is an optimum solution with an optimum objective value
of Oz D 2. The dual solution O� D (0, �3, 1, �6) from the third inverse tableau is an
optimum dual solution.

The primal basic vector here is primal degenerate, as the primal basic variable
x7 is 0 in the associated BFS. So, as discussed in Chap. 5, we cannot interpret the
optimum dual solution ( O� here), as the marginal value vector in this problem. �

Example 6.2. This example illustrates the unboundedness termination. Consider the
following LP.

Original tableau
x1 x2 x3 x4 x5 x6 �z b

0 0 1 1 �1 �5 0 7
1 0 0 �1 �1 �3 0 9
0 1 0 �1 �1 0 0 1

�1 �1 �1 10 6 4 1 0
xj � 0 for all j , minimize z

We will initiate the primal simplex algorithm on this problem with the primal
feasible basic vector xB D .x3; x1; x2/. The inverse tableau corresponding to it is
given below.

Inverse tableau
Basic Inverse tableau Basic

var. values
x3 1 0 0 0 7
x1 0 1 0 0 9
x2 0 0 1 0 1
�z 1 1 1 1 17

The primal BFS associated with xB is Nx D .9; 1; 7; 0; 0; 0/T with an objective
value of Nz D �17.

The relative cost coefficients of the nonbasic variables are . Nc4; Nc5; Nc6/ D
.9; 3; �4/. As Nc6 is the only negative relative cost coefficient, we select x6 as the
entering variable.

The updated column of x6 is .�5; �3; 0; �4/T . There is no positive entry in this
column. The unboundedness criterion is satisfied, and hence the objective function
z.x/ is unbounded below in this problem, and there is no finite optimum solution.

Actually, the solution x.�/ obtained by fixing the nonbasic variables x4; x5 at 0,
giving the value � to the entering variable x6, and then finding the values of the basic
variables as functions of �, is the solution of the following system corresponding to
x6 D �.
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x3 x1 x2 �z x6

1 0 0 0 �5 7
0 1 0 0 �3 9
0 0 1 0 0 1
0 0 0 1 �4 17

It is

x.�/ D .9 C 3�; 1; 7 C 5�; 0; 0; �/T with an objective value of
z.�/ D �17 � 4�.

The solution x.0/ is the present BFS Nx. fx.�/ W � � 0g is a half-line beginning
with the present BFS, every point on which is feasible to the primal problem, so it
is a primal feasible half-line. As � ! 1, z.�/ ! �1 along this half-line.

For example, if you want a feasible solution with an objective value of �4017,
z.�/ D �17 � 4� is attained when � D 1;000, this corresponds to the point
x.1000/ D .1009; 1; 5007; 0; 0; 1000/T on this half-line.

In the same manner, for any objective value � �17 D z. Nx/, we can find a � > 0

such that the point x.�/ on this half-line is feasible to this problem and attains that
objective value. So, we terminate with the unboundedness conclusion. �

6.1.2 Practical Consequences of Satisfying
the Unboundedness Criterion

Suppose the unboundedness criterion is satisfied while solving an LP model for
a practical problem. Negative cost is profit, so this implies that we have found a
way for making an unlimited profit! This infinite profit will be achieved if one im-
plements the feasible solution at the infinite end of the half-line identified by the
algorithm along which the cost function z.x/ diverges to �1.

Clearly, some of the variables will have the value C1 in that solution. For a
simple example of this, consider a scheme popularly known in business circles as
a daisy link. Here we are able to buy crude oil at a cost say of $115/barrel from
a Middle East supplier, and sell it to a local company at $125/barrel. To make an
infinite profit from this deal, we have to buy and sell an infinite number of barrels at
these rates.

In practice, we are always limited by finite resources, and hence it is impossible to
implement a solution in which some variables are C1. Thus, while infinite profit is
a mathematical possibility, if the unboundedness criterion is satisfied while solving
an LP model for a practical problem, it is probably an indication that some con-
straints on the decision variables have been forgotten in constructing the model, or
omitted from it intentionally, or there may be serious errors in the cost coefficients
used in the model. So, one should review the model very carefully, and look for
errors and omissions.
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6.1.3 Features of the Simplex Algorithm

The primal simplex algorithm discussed in this section requires a primal feasible
basic vector initially, and maintains primal feasibility of the basic vector through-
out. Also, in every iteration, the primal and dual basic solutions satisfy all the
complementary slackness conditions. So, of the three conditions required for op-
timality mentioned in Chap. 5 (primal and dual feasibility, and complementary
slackness) it maintains two (primal feasibility and complementary slackness) and
strives to attain the third one, dual feasibility.

6.2 Revised Primal Simplex Method (Phase I, II) with Explicit
Basis Inverse

This is the version to solve an LP in standard form if an initial feasible basic vector
is not known. The input needed for this method is the LP in standard form.

First make all the RHS constants in all the rows in the original tableau nonneg-
ative (if any of them is <0, multiply all the elements in that row by �1). Let the
original tableau be

Original Tableau
x1 : : : xj : : : xn �z RHS
a11 : : : a1j : : : a1n 0 b1

:::
:::

:::
:::

:::

am1 : : : amj : : : amn 0 bm

c1 : : : cj : : : cn 1 0

xj � 0 for all j , minimize z

A basic vector for this problem is said to be a unit basic vector if its basis is the
unit matrix. As the RHS constants vector in the original tableau is �0, a unit basic
vector will be primal feasible.

Search for a unit basic vector in the original tableau. If a full unit basic vector,
xB , is found, starting with xB as the initial feasible basic vector, apply the revised
simplex algorithm discussed in Sect. 6.1 to solve the problem. This is called Phase
II of the primal simplex method.

6.2.1 Setting Up the Phase I Problem

Suppose a full unit basic vector has not been obtained in the original tableau. So,
at this stage we do not even have a feasible solution for the problem. The simplex
method divides the task of solving the problem into two phases. In Phase I it focuses
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on finding a BFS for the problem, ignoring the original objective function. If a BFS
is obtained in Phase I, starting with it the original objective function is minimized
in Phase II.

Phase I uses additional variables called artificial variables because they are not
part of the original problem. When the original problem is in standard form, Phase
I is set up so that it is also an LP in standard form, but with an initial feasible basic
vector containing these artificial variables, so starting with that the Phase I problem
can be solved by the primal simplex algorithm discussed in Sect. 6.1. We will now
discuss how to set up the Phase I problem.

Suppose in the process of searching for the unit basic vector in the original
problem, some variables corresponding to i th column vector of the unit matrix for
i 2 fi1; : : : ; irg have been selected into the basic vector, where 0 � r < m. For
each i 2 f1; : : : ; mgnfi1; : : : ; irg, introduce a nonnegative artificial variable asso-
ciated with the i th column vector of the unit matrix into the original tableau, and
introduce these artificial variables into the basic vector. Let x1

B be the resulting full
unit basic vector. If r D 0, x1

B consists of artificial variables only. If r > 0, x1
B

consists of some original problem variables and some artificial variables.

Phase I original tableau
Original Artificial

x1 : : : xn xnC1 : : : xnCm�r �z �w RHS
a11 : : : a1n 0 0 b1

:::
::: Missing unit

:::
:::

:::

am1 : : : amn vectors 0 0 bm

c1 : : : cn 0 : : : 0 1 0 0

0 : : : 0 1 : : : 1 0 1 0

All variables � 0, minimize w

Make the cost coefficient of each artificial variable in the z-row equal to 0; this z
will now be called the Phase II objective function. Introduce a new Phase I objective
function w D (sum of all the artificial variables), and enter this objective function
row at the bottom (i.e., as the m C 2-th row) of the original tableau. The resulting
tableau is called the Phase I original tableau.

In the Phase I problem, we minimize the Phase I objective function w starting
with the unit feasible basic vector x1

B , with the artificial variables introduced. During
Phase I, the Phase II objective row, the (m C 1)th, is updated in every iteration, but
the entries in it are not used in the algorithm.

As all artificial variables are nonnegative variables, the minimum value that their
sum w can have is 0. If a solution in which w D 0 is obtained, all the artificial vari-
ables must have 0-values in it, and by dropping their 0-values, the solution becomes
a feasible solution for the original problem.

As the value of w has to be reduced to 0 to reach a feasible solution of the original
problem, at any stage of Phase I, the current value of w measures how far away
we are from being feasible to the original problem. That is why w D the Phase I
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objective function value D (sum of the values of all the artificial variables in the
present solution) is known as an infeasibility measure for the present solution. If
the minimum value of w in the Phase I problem is strictly >0, and this implies that
the original problem is infeasible.

Phase I Inverse Tableau wrt xB

BV Inverse tableau Basic values

xB B�1 0 0 Nb

�z �� 1 0 �Nz
�w �� 0 1 � Nw

As the minimum value of w cannot be <0, Phase I will always have a finite
optimum solution, that is, the unboundedness criterion can never be satisfied during
Phase I.

Phase I inverse tableau wrt a basic vector xB for the Phase I problem will be of
the form given above. “BV” means “basic variable.”

Here � is the dual basic solution of the Phase I problem wrt the present basic
vector xB .

We denote the coefficients of xj in the original Phase I objective row by dj (dj D
0 if xj is an original problem variable; dj D 1 if xj is an artificial variable), and its
Phase I relative cost coefficient by Ndj . Ndj D dot product of the last row of the Phase
I inverse tableau with the column vector of xj in the Phase I original tableau, that
is,

Ndj D .��; 0; 1/

0
@

A:j

cj

dj

1
A :

If an artificial variable drops out of the basic vector and becomes a nonbasic
variable during Phase I, its column vector in the original tableau is then completely
deleted from further consideration because it is not needed any more. So, at any
stage of Phase I, the only artificial variables left in the original tableau are those that
are in the basic vector. So, during Phase I, the entering variable in every iteration
will always be an original problem variable. So, we have

Phase I termination condition: The Phase I relative cost coefficient Ndj � 0 for all original
problem variables xj .

Variables eligible to enter the basic vector during Phase I are those original vari-
ables for which the Phase I relative cost coefficient Ndj < 0. When the Phase I
problem is solved by the revised primal simplex algorithm discussed in the previous
section beginning with the initial feasible basic vector x1

B , there are three ways in
which it can terminate.
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1. With the conclusion that the original LP is infeasible: This happens if the mini-
mum value of w in the Phase I problem is >0.

In this case there is a technique called infeasibility analysis, which determines
how the model for the original problem can be made feasible by making the
smallest necessary changes in the data in the original tableau. This analysis is
discussed in Sect. 6.4.

2. Moving directly to Phase II: This happens if the minimum value of w is 0, and
the terminal basic vector of Phase I contains only original problem variables and
no artificial variables.

In this case, the final Phase I relative cost coefficient Ndj for all original prob-
lem variables will be 0. To get the inverse tableau for the original problem wrt
the present basic vector, all you need to do is to drop the last (Phase I objective)
row from the Phase I terminal inverse tableau, and the last column from the aug-
mented basis inverse in it. With this inverse tableau, begin Phase II to solve the
original problem.

3. Detecting some original problem variables xj that have a constant value of 0
at every feasible solution of the original problem: This case can occur when the
minimum value Nw of w is 0, but there are still some artificial variables in the
terminal Phase I basic vector with values of 0 in the corresponding BFS.

In this case, some of the Phase I relative cost coefficients Ndj for nonbasic
original problem variables may be >0. Let J D fj W Ndj > 0g. As all remaining
artificial variables are always basic variables, all the variables xj for j 2 J must
be original problem variables that are nonbasic.

The equation represented by the updated Phase I objective row at this stage
will be

X
j 2J

Ndj xj � w D Nw D 0

or w D P
j 2J

Ndj xj . This suggests that even though the present value of w is
0, if any of the variables xj for j 2 J were to be made >0, then the value of
w (the infeasibility measure) will become >0, that is, the solution will become
infeasible to the problem. So, all these xj for j 2 J are D 0 at every feasible
solution of the original problem.

We therefore fix all these xj for j 2 J at 0 and delete them from the original
tableau. After this, as all the remaining Ndj are 0, the value of w will remain D 0
in any subsequent pivot steps carried out during Phase II.

Then we drop the last (i.e., Phase I objective) row from the final Phase I in-
verse tableau (and also the Phase I original tableau), and the last column from
the augmented basis inverse in it, and begin Phase II with the remaining inverse
tableau to solve the original problem. The artificial basic variables may remain in
the basic vector during Phase II iterations, but their values in the primal solution
will never change from 0.
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Example 6.3. Consider the following LP in standard form.

x1 x2 x3 x4 x5 �z b

2 3 1 �1 0 0 10
1 2 �1 0 1 0 5
1 1 2 0 0 0 4
1 2 3 0 0 1 0

xj � 0 for all j , minimize z

The RHS constants vector is already >0. We only have the second unit vector in
the column of x5 in the tableau. So, we select x5 as the basic variable in row 2, and
introduce artificial variables t1; t3 as basic variables in rows 1, 3 for the initial basic
vector. The Phase I original tableau is

Phase I original tableau
x1 x2 x3 x4 x5 t1 t3 �z �w b

2 3 1 �1 0 1 0 0 0 10
1 2 �1 0 1 0 0 0 0 5
1 1 2 0 0 0 1 0 0 4
1 2 3 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 1 0
xj � 0 for all j ; artificials t1; t3 � 0; minimize w

Basic Inverse tableau Basic PC Ratios
var. values x1

t1 1 0 0 0 0 10 2 10/2
x5 0 1 0 0 0 5 1 5/1
t3 0 0 1 0 0 4 1 4/1

�z 0 0 0 1 0 0 1
�w �1 0 �1 0 1 �14 �3 Nd D (�3; �4; �3; 1; 0)

x2

t1 1 0 �2 0 0 2 1 2/1
x5 0 1 �1 0 0 1 1 1/1
x1 0 0 1 0 0 4 1 4/1
�z 0 0 �1 1 0 �4 1
�w �1 0 2 0 1 �2 �1 Nd D .0; �1; 3; 1; 0/

t1 1 �1 �1 0 0 1

x2 0 1 �1 0 0 1
x1 0 �1 2 0 0 3
�z 0 �1 0 1 0 �5

�w �1 1 1 0 1 �1 Nd D (0, 0, 0, 1, 1)
PC pivot column
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The vector .t1; x5; t3/ is the initial feasible basic vector for the Phase I problem.
The inverse tableau corresponding to it is the first in the series of tableaus given
above. The value of w in the initial solution is 14; this is the infeasibility measure
of the initial solution to the original problem. Subsequent inverse tableaus are listed
one below the other, with the pivot elements in a box and all the information like
Ndj s, the Phase I relative cost coefficients of x1 to x5, in a last row under each tableau.

Phase I terminates when the basic vector .t1; x2; x1/ is reached. As the value of
w in the solution corresponding to this basic vector is 1 > 0, the original problem
has no feasible solution. �

Example 6.4. Consider the following LP in standard form

Original Problem
x1 x2 x3 x4 x5 x6 �z b

1 �1 0 0 2 0 0 0
�2 1 0 0 �2 0 0 0

1 0 1 0 1 �1 0 3
0 2 1 1 2 1 0 4

�40 �10 0 0 �7 �14 1 0
xj � 0 for all j , minimize z

Again the original RHS constants vector is already >0. Here we only have the
fourth unit vector in the column of x4. So, we select x4 as the basic variable in row
4, and introduce artificial variables t1; t2; t3 as a basic variables in rows 1, 2, 3 for
the initial basic vector.

Phase I original tableau
x1 x2 x3 x4 x5 x6 t1 t2 t3 �z �w b

1 �1 0 0 2 0 1 0 0 0 0 0
�2 1 0 0 �2 0 0 1 0 0 0 0

1 0 1 0 1 �1 0 0 1 0 0 3
0 2 1 1 2 1 0 0 0 0 0 4

�40 �10 0 0 �7 �14 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0 1 0

xj � 0 for all j ; artificials t1; t2; t3 � 0; minimize w

Basic First inverse tableau Basic PC Ratios
var. values x3

t1 1 0 0 0 0 0 0 0
t2 0 1 0 0 0 0 0 0
t3 0 0 1 0 0 0 3 1 3/1
x4 0 0 0 1 0 0 4 1 4/1
�z 0 0 0 0 1 0 0 0
�w �1 �1 �1 0 0 1 �3 �1

PC D Pivot column, Nd D .0; 0; �1; 0; �1; 1/
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The Phase I original tableau is given above.
The vector .t1; t2; t3; x4/ is the initial feasible basic vector for the Phase I prob-

lem. The first inverse tableau is given above. The second inverse tableau obtained
during Phase I is given below. The last row under each inverse tableau gives the
Nd D . Ndj / vector wrt the present basic vector.

Basic Second inverse tableau Basic
var. values

t1 1 0 0 0 0 0 0
t2 0 1 0 0 0 0 0
x3 0 0 1 0 0 0 3
x4 0 0 �1 1 0 0 1
�z 0 0 0 0 1 0 0
�w �1 �1 0 0 0 1 0

Nd D .1; 0; 0; 0; 0; 0/

Phase I terminates with w D 0. Artificial variables t1; t2 are still in the basic
vector, but with 0-values in the solution. This final solution leads to the feasible
solution .x1 to x6/T D .0; 0; 3; 1; 0; 0/T for the original problem. Now we need to
go to Phase II.

We look for original problem variables with positive Phase I relative cost coef-
ficients at Phase I termination. Only x1 satisfies this property. So, x1 D 0 in every
feasible solution of the original problem. We fix x1 D 0 and delete it from the
problem. In Phase II we only consider variables x2 to x6 as candidates to enter the
basic vector. From the Phase I terminal tableau we get the inverse tableau given
above to initiate Phase II. The second inverse tableau is given below. In each inverse
tableau, the vector . Ncj W j D 2 to 6/ wrt the present basic vector is given in a
bottom row.

Basic First inverse tableau Basic PC Ratios
var. values x6

t1 1 0 0 0 0 0 0
t2 0 1 0 0 0 0 0
x3 0 0 1 0 0 3 �1

x4 0 0 �1 1 0 1 2 1/2
�z 0 0 0 0 1 0 �14

( Nc2 to Nc6) D .�10; 0; 0; �7; �14/

PC D pivot column
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Basic Second inverse tableau Basic
var. values

t1 1 1 0 0 0 0
t2 0 1 0 0 0 0
x3 0 0 1/2 1/2 0 7/2
x6 0 0 �1=2 1/2 0 1/2
�z 0 0 �7 7 1 7

. Nc2 to Nc6) = (4, 0, 7, 0, 0)

As . Nc2 to Nc6/ � 0, now Phase II terminates by satisfying the optimality criterion.
The present BFS Nx D . Nx1 to Nx6/ D .0; 0; 7=2; 0; 0; 1=2/T is an optimum solution
to the problem with an optimum objective value of Nz D �7.

Notice that even though the artificial variables t1; t2 were in the basic vector,
their values in the solution remained 0 during Phase II. �

6.3 How to Find a Feasible Solution to a System
of Linear Constraints

If the system consists of linear equations only, then Gaussian elimination can be
applied to find a feasible solution.

If the system involves linear inequalities and/or bounds on the variables, we put
the system in standard form and apply Phase I of the primal simplex method to find
a feasible solution.

Example 6.5. Find a feasible solution for the system of linear constraints given
below.

x1 C x3 � x4 D 3

x1 C x2 C 2x3 D 10

x1 C x2 C x3 � 2x4 � 14

xj � 0; for all j :

Original system, standard form
x1 x2 x3 x4 x5 b

1 0 1 �1 0 3
1 1 2 0 0 10
1 1 1 �2 �1 14

xj � 0 for all j
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Phase I original tableau
BV x1 x2 x3 x4 x5 t1 t2 t3 �w b

t1 1 0 1 �1 0 1 0 0 0 3
t2 1 1 2 0 0 0 1 0 0 10
t3 1 1 1 �2 �1 0 0 1 0 14

0 0 0 0 0 1 1 1 1 0

We introduce the slack variable x5 corresponding to the last inequality, and get
the system in standard form with all the RHS coefficients nonnegative. Then we
introduce the artificial variables to get the Phase I problem with a unit feasible basis
to apply the primal simplex method. Notice that there is no �z-row in this tableau,
because there is no objective function to be optimized; our aim is to find a feasible
solution of the original system of linear constraints. We now apply the Phase I of
the primal simplex method. The various inverse tableaus obtained are given below
one after the other. BV D present basic vector, PC D pivot column, with entering
variable given, and Nd D . Ndj W j D 1 to 5/ is the present Phase I relative cost
coefficient vector for the original variables.

Basic Inverse tableau Basic PC Ratios
var. values x1

t1 1 0 0 0 3 1 3
t2 0 1 0 0 10 2 5 Nd D .�3; �2;

t3 0 0 1 0 14 1 �4; 3; 1/

�w �1 �1 �1 1 �27 4 � D 3

x2

x3 1 0 0 0 3 0
t2 �2 1 0 0 4 1 4 Nd D .1; �2;

t3 1 0 1 0 11 1 11 0; �1; 1/

�w �5 �1 �1 1 �15 �2 � D 4

x1

x3 1 0 0 0 3 1 3
x2 �2 1 0 0 4 �1 Nd D .�1; 0;

t3 3 �1 1 0 7 1 7 0,3,1)
�w �9 1 �1 1 �7 �1 � D 3

x1 1 0 0 0 3
x2 �1 1 0 0 7 Nd D 0; 0;

t3 2 �1 1 0 4 1,2,1)
�w �8 1 �1 1 �4

The Phase I optimality criterion is now satisfied because all the Phase I relative
cost coefficients are �0. The minimum value of w D 4 > 0. This implies that the
original system has no feasible solution.
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Notice how the value of w, the Phase I objective function, decreases from 27 to
15, to 7, and finally to its minimum value of 4 in the sequence of Phase I solutions
obtained in the method. If the final value of the Phase I objective function w turned
out to be 0, we would have concluded that the final solution obtained is a feasible
solution of the original system. �

6.4 Infeasibility Analysis

When an appropriate and correct mathematical model constructed for a real-world
problem turns out to be infeasible, the mathematical and computational work on that
model has been completed and the conclusion reached that the problem is infeasible
with the data provided.

However, the real-world problem does not go away; it has to be modified and a
solution found for it. Engineers are left with the task of figuring out what changes
to make in the problem situation and data to make it feasible. Infeasibility analysis
deals with these changes and best modifications to adopt.

Suppose the original model for the problem is the following LP in standard form:

Minimize z D cx

subject to Ax D b (6.4)

x � 0;

which is infeasible. Let A D .aij / be an m � n matrix in this model.
The first thing to do is to check that this model is a reasonable representation

of the real-world problem being solved. If there are some constraints in the model
that should not be there, or if the values of some data elements have errors in them,
etc., correcting these errors may fix the problem. Fixing such errors is not really
an optimization, or a mathematical problem, but a task for the engineers who have
intimate knowledge of the context of the real-world problem being solved.

Suppose it turns out that the model (6.4) for the problem is fine and that the data
in it is reasonably accurate. In this case, perhaps the only option available to make
it feasible is to change the values of some data elements.

In most applications for which an LP model of the form (6.4) is suitable, the
coefficient matrix A is an input–output (or technology) matrix, that is, elements in
it measure how many units of one material are required as input to make one unit of
another, etc. In these applications, making changes in the values of entries in A may
require developing and adopting new technology, etc., which is usually hard.

On the other hand, the RHS constants b D .bi / typically represent production
levels, sales volume commitments, material supply levels, etc. These quantities are
relatively easier to change through negotiations with suppliers, customers, etc. That
is why practitioners usually prefer to make changes in the RHS constants to make
the model feasible, leaving the other data unchanged. This is what we will discuss
in this section.
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Making changes in the values of the RHS constants bi usually involves some ex-
penses, typically proportional to the amount of change, and may be at different rates
for different i . In this case, the problem of determining an optimal way of changing
b to make (6.4) feasible can itself be posed as another LP (see Exercise 6.24).

Here we will show that the final Phase I solution directly yields one way of
modifying the b D .bi / to make (6.4) feasible, which minimizes the sum of absolute
values of all the changes needed. Let the basic vector at Phase I termination be
xB D .xj1

; : : : ; xjm
/ associated with the basis B and the following inverse tableau

Final Phase I Inverse Tableau
BV Inverse tableau Basic Desired

values values

xj1
0 0 Nb1

Nb0
1

::: B�1
:::

:::
:::

:::

xjm
0 0 Nbm

Nb0
m

�z �� 1 0 �Nz �Nz
�w �� 0 1 � Nw 0

Here Nw > 0, the minimum value of the infeasibility measure, it is the sum of Nbi

over i D 1 to m such that xji
is an artificial variable.

To change the minimum value of w from Nw to 0, we need to modify the updated
RHS constants vector to Nb0 D . Nb0

1; : : : ; Nb0
m/, where for i D 1 to m

Nb0
i D

� Nbi if xji
is an original problem variable;

0 if xji
is an artificial variable:

The corresponding change in the original RHS constants vector modifies the orig-
inal b D .bi / to b0 D .b0

i /, where for i D 1 to m

� b0
i D bi if xji

, the basic variable in the final Phase I inverse tableau in the i th
row, is an original problem variable,

� b0
i D bi � Nbi if xji

, the basic variable in the final Phase I inverse tableau in the
i th row, is an artificial variable with value Nbi .

Clearly
P jbi � b0

i j D Nw, so modifying b to b0 is a way of making (6.4) feasible
by changing only the RHS constants to minimize the sum of absolute values of all
the changes. Clearly this is an optimal way of changing b to make (6.4) feasible if
(1) the cost rate per unit change in any bi is the same for all i ; and (2) for each i ,
the per unit cost of increasing any bi , or decreasing it, is the same.

To get an optimum solution of the modified problem, it is not necessary to do
Phase I on it again. In the final Phase I inverse tableau for the original problem,
change the updated RHS vector (i.e., the basic values vector) from . Nb; �Nz; � Nw/ to
. Nb0; �Nz; 0/ (this is marked as the “desired values” vector on the tableau). With this
as the final Phase I inverse tableau, go to Phase II to solve the modified original
problem.
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As an example, the original b-vector for the LP discussed in Example 6.2.1 is
.10; 5; 4/T . In the final Phase I solution obtained for this example, only the artificial
variable t1, basic variable in the first row, has positive value of 1. So, if the RHS
constants vector in this problem is modified to (9, 5, 4)T , the problem becomes
feasible, as discussed earlier. The final Phase I inverse tableau for this modified
problem is obtained from that of the original problem by changing the final value of
the basic variable t1 to 0. It is

Basic Inverse tableau Basic
var. values

t1 1 �1 �1 0 0 0

x2 0 1 �1 0 0 1
x1 0 �1 2 0 0 3
�z 0 �1 0 1 0 �5

�w �1 1 1 0 1 0

and the primal simplex method now moves to Phase II to solve the modified original
problem, beginning with this feasible basic vector.

6.5 Practical Usefulness of the Revised Simplex Method
Using Explicit Basis Inverse

The revised simplex method using explicit basis inverse is a very useful method to
solve small LPs by hand computation. It is also useful to solve LPs on the computer
if the number of constraints in the problem (omitting bound constraints on individual
variables) is not too large, that is, in the range of a few hundreds. Beyond that, this
variant of the simplex method begins to suffer from the following problems:

Fill-in: Many LP models encountered in practice are very sparse, that is, the fraction of
nonzero entries in the coefficient matrix in them is a very small fraction. Computer pro-
grammers try to take advantage of this sparcity to save the amount of space in the memory
needed to store the data (it is only necessary to store the nonzero entries along with their
locations in the matrix). Also arithmetic operations become much faster when a lot of the
elements you have to deal with are 0 (e.g., to find the sum of a set of elements, it is only
necessary to add the nonzero elements among them, thus finding the sum can be carried out
very fast when a lot of elements in the set are 0). In fact, computer programs for solving LPs
are able to solve large-scale models with only a small amount of computer time only be-
cause these models are very sparse. Programmers have built techniques into their programs
to take maximum advantage of this sparcity.

Actually, if an LP model is dense (this is the opposite of sparse, i.e., a large fraction of
entries in the data matrix in the model are nonzero), then even though it may be of moderate
size, present day LP computer programs will take a lot of time to obtain its solution.

It has been observed that even though a basis is very sparse, its inverse tends to become
very dense (i.e., the fraction of nonzero entries in it is close to 1). This phenomenon is
called the fill-in property of the inverse, and it makes the explicit basis inverses in even very
sparse LP models very dense. So storing the basis inverse occupies a lot of memory, and
any computation using it becomes very time consuming and inefficient.
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Effects of round-off errors: All our computers are digital computers that operate with fixed
finite precision, so each arithmetic operation carried out with them involves rounding-off.
So, in operations with a dense inverse round-off errors accumulate very rapidly. The result
is that after only a few pivot steps in the revised simplex method using the explicit inverse,
the product of a basis and its “inverse” in storage may be very different from the unit matrix.
This leads to loss of precision, unreliable output, primal basic solutions not even close to
being primal feasible, wrong decisions, etc.

For these reasons, the revised simplex method with explicit inverse is not used to
solve LP models in which the number of constraints is larger than a few hundred.

For solving larger models versions of the revised simplex method using factor-
izations of the basis inverse instead of the explicit inverse have been developed. One
of these early versions will be discussed in Sect. 6.7. These versions alleviate some
of the problems with using the explicit inverse to some extent.

6.6 Cycling in the Simplex Method

Cycling is a phenomenon that can occur when the simplex method encounters a
degenerate BFS along its path to the optimum. It is possible for the method to cycle
through several basic vectors corresponding to the same degenerate BFS endlessly
and never move away from this BFS. If this happens, it will never terminate and
never reach an optimum solution for the problem. Numerical examples illustrating
this possibility have been constructed, and these are discussed in most textbooks on
LP (see Dantzig (1963), Dantzig and Thappa (1997), Schrijver (1986) of Chap. 1,
Murty (1983) of Chap. 2).

One of the first theoretical techniques to resolve the problem of cycling and the-
oretically guarantee finite termination of the simplex method is the lexicographic
technique. It involves replacing the minimum ratio test to select the dropping basic
variable by a lexicographic minimum ratio test, and needs the explicit basis inverse
in every pivot step. So, the revised simplex method using the explicit basis inverse
is the ideal variant of the simplex method to incorporate the lexicographic tech-
nique into the computer program.

Details of the lexicographic simplex method, how and why it works, and proofs
of its finite convergence are discussed in many LP textbooks see for example the
references cited above.

However, because of the difficulties discussed in the previous section, this version
of the simplex method is not used except in specialized programs meant only for LPs
of small size. So, while the lexicographic technique is an elegant theoretical tool to
eliminate the possibility of cycling, it is not used in practical computation.

Several other elegant theoretical techniques to resolve the possibility of cycling
in the simplex method discussed in many LP textbooks have similar problems that
make them unattractive for practical use.

Programmers take care of the possibility of cycling by heuristic techniques that
have proved very effective in practice. One of the most commonly used techniques is
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to actually perturb the bounds on the variables by small quantities to guarantee strict
improvement in the objective value in every iteration while making corrections for
these perturbations at the end using sensitivity analysis techniques. This technique
is explained in detail in Sect. 6.11.

6.7 Revised Simplex Method Using the Product Form
of the Inverse

This is one of the earliest variants of the revised simplex method based on main-
taining a factorization of the basis inverse instead of the explicit inverse. The matrix
factors used in this implementation are called pivot matrices.

6.7.1 Pivot Matrices

Let D D .dij / be a matrix of order p �q. Consider performing a GJ (Gauss-Jordan)
pivot step on D with its sth column D:s as the pivot column (PC), r th row as the
pivot row, and hence the element drs ¤ 0 as the pivot element. Let ND denote the
matrix obtained from D after this pivot step.

Then there is a square matrix P of order p � p called the pivot matrix corre-
sponding to this pivot step, satisfying the property that ND D PD; that is, carrying
out this pivot step on a matrix is equivalent to left-multiplying it by the pivot matrix
corresponding to this pivot step.

The pivot matrix P will be the same as the unit matrix I of order p except for
one column known as its eta column, whose position, the r th in P , is the same as the
position of the pivot row in D. Here is the formula for writing this � (eta) column
from the pivot column (the boxed element is the pivot element). We also show the
whole pivot matrix on the right, the column in it different from the unit column is
its r th column, its �-column.

PC

d1s

:::

dr�1;s

drs

drC1;s

:::

dms

�-col.

�d1s=drs

:::

�dr�1;s=drs

1=drs

�drC1;s=drs

:::

�dms=drs

0
BBBBBBBBBBBBBBB@

Pivot matrix P

1 : : : 0 �d1s=drs 0 : : : 0
:::

: : :
:::

:::
:::

:::

0 : : : 1 �dr�1;s=drs 0 : : : 0

0 : : : 0 1=drs 0 : : : 0

0 : : : 0 �drC1;s=drs 1 : : : 0
:::

:::
:::

:::
: : :

:::

0 : : : 0 �dms=drs 0 : : : 1

1
CCCCCCCCCCCCCCCA

:
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To store any pivot matrix P , it is only necessary to store its eta vector and its
position in P , because from this information P can be generated easily.

Example 6.6. Let D be the matrix .A
:::b/ in the system of linear equations in the top

tableau .

x1 x2 x3 x4 RHS b

7 0 �1 1 10
4 �6 2 2 4
5 �2 1 0 15
9 �3 0 2 12
2 �3 1 1 2
3 1 0 �1 13

Consider performing a GJ pivot step in the column of x3 (the PC), with row 2 as
the PR (pivot row). The pivot element is boxed. The pivot matrix corresponding to
this pivot operation is

P D
0
@

1 1=2 0

0 1=2 0

0 �1=2 1

1
A :

The tableau obtained after the pivot step is performed is given at the bottom of

the original tableau. It can be verified that it is PD D P.A
:::b/. �

6.7.2 A General Iteration in the Revised Simplex Method
Using the Product Form of the Inverse

Consider the revised simplex method started with a unit basic vector which may
contain some artificial variables. In this case, the initial inverse tableau, denoted by
P0, differs from the unit matrix in the last row only if we begin with Phase II, or in
the last two rows only if we begin with Phase I. So, P0 is also like a pivot matrix,
and it can be generated by storing only those one or two rows.

In this version, the inverse tableau is not computed explicitly, but the various
pivot matrices corresponding to all the pivot steps carried out so far are stored in the
order in which they occurred, the newest pivot matrix always joining the string on
the left side of all those generated above. That is why at any stage, the sequence of
pivot matrices in this order of occurrence is called the current string of pivot matri-
ces. All the quantities needed to carry out the simplex method are generated using
this string. Every time it is needed, each pivot matrix in the string is generated from
its stored eta vector and its position.

If the method is started with a known feasible basic vector which is not a unit
basic vector, the corresponding basis is inverted, and the various pivot matrices cor-
responding to the pivot steps in this process form the current string.
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In the various steps in this iteration of the revised simplex method, the inverse
tableau is used only twice: first to get its last row to compute the relative cost co-
efficients of the nonbasic variables, then the inverse tableau is used to compute the
pivot column which is the updated column of the entering variable selected. We will
show how each of these operations can be carried out using the pivot matrices in the
string one by one in their proper order without ever computing the whole inverse
tableau explicitly.

Let the string of pivot matrices at this stage be Pr ; Pr�1; � � � ; P0, in its order,
each new pivot matrix generated in the algorithm joining the current string as its
leftmost entry. Then the formula for the inverse tableau is PrPr�1 : : : P1P0. So, the
last row of the inverse tableau is D (last row of the unit matrix of the same order as
the inverse tableau)(inverse tableau) D

.0; : : : ; 0; 1/PrPr�1 : : : P1P0 (6.5)

This can be computed efficiently from left to right. First multiply the row vec-
tor .0; : : : ; 0; 1/ by Pr on the right. Then multiply the resulting row vector by
Pr�1 on the right, and continue this way until multiplication by the entire string is
completed.

Because of the special structure of each of the pivot matrices, multiplication of a
vector by a pivot matrix takes about the same effort as computing the dot product of
two vectors. The left-to-right scheme described above to compute the expression in
(6.5) is commonly known as left-to-right string multiplication.

Now consider the operation of updating the entering column. Let xs denote the
entering variable, and let A:s denote its column in the original tableau. Let NA:s

denote the updated column of xs . We have

NA:s D PrPr�1 � � � P1P0A:s : (6.6)

This can be computed efficiently by right to left string computation, which in-
volves multiplying the column vector A:s by P0 on the left, then multiplying the
resulting column by P1 on the left, and continuing this way until the multiplication
by all the pivot matrices in the string is complete.

6.7.3 Transition from Phase I to Phase II

Consider solving the LP in standard form

Minimize z D cx

subject to Ax D b (6.7)

x � 0;
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where A is a matrix of order m � n and rank m. In solving this LP by the revised
simplex method using the product form of the inverse, during Phase I, pivot matrices
will be of order m C 2, while in Phase II they will be of order m C 1.

The last row and column (i.e., the .m C 2/th row and column) in each of the
pivot matrices during Phase I corresponds to the Phase I objective function, which
is deleted when we move to Phase II. This .m C 2/th row and column are deleted at
the end of Phase I, from each pivot matrix in the string, while moving to Phase II (in
effect, this essentially amounts to deleting the .mC2/th element from the stored eta
column of each pivot matrix stored at that stage). Then the present string becomes
the string corresponding to the present basic vector for the Phase II problem, and
you can begin Phase II with it.

Unlike the simplex method using canonical tableaus or the revised simplex
method with the explicit form of the inverse, this revised simplex method using
the product form of the inverse (PFI) is quite cumbersome for hand computation to
solve even small size LPs. That is why we do not present a numerical example for
this implementation here (such numerical examples can be seen in (Murty (1983)
of Chap. 2). However, its computer implementations offer superior performance to
solve LP models involving up to several hundreds of constraints.

Advantages of the product form of the inverse implementation: An eta column
is said to be sparse if the fraction of nonzero entries in it is small; as this fraction
approaches 1, the eta column is said to be dense. As long as eta columns of pivot
matrices generated in the various steps remain sparse, the revised simplex method
using the PFI (product form of the inverse) continues its superior performance. At
the beginning of the method, the eta columns in pivot matrices tend to be sparse, but
gradually they tend to fill-in more and more and become dense as r , the number of
the step being performed increases. Let m be the number of constraints in the model
being solved, and r the number of the current step in the method. As r=m exceeds 2,
the eta columns in pivot matrices become dense, and the memory space needed to
store the pivot matrices begins to approach that needed to store the explicit inverse
itself and the advantages of the PFI disappear. At this stage, the method goes to an
operation called reinversion discussed next.

6.7.4 Reinversions in the Revised Simplex Method Using PFI

Let xB be the present basic vector in the current iteration, with B; B; cB the
associated basis, augmented basis, basic cost vector, respectively, and let Nx; N� be the
associated primal and dual basic solutions. jjAx � bjj and jjcB � N�Bjj can be used
as measures to monitor the effects of roundoff errors accumulated so far. If both
these measures are smaller than specified tolerances, we continue with the iterations
in the method.

However, if one or both of jjAx � bjj, jjcB � N�Bjj exceed their specified tol-
erances, it is an indication that the accumulation of roundoff errors is already a
problem. In this case we go to this reinversion.
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Reinversion involves getting rid of the present string of pivot matrices. Reinvert
the present augmented basis B, that is, carry out the pivot operations needed to
compute B�1. But instead of generating the explicit inverse, generate the string of
pivot matrices corresponding to the various pivot steps carried out to compute B�1.
This new string consists of m C 1 or m C 2 pivot matrices (depending on whether
we are currently in Phase II or Phase I). With this new string, resume the iterations
of the revised simplex method for solving the LP model.

Also, when the number of pivot matrices in the current string becomes much
larger than m (i.e., their ratio begins to exceed 2 and continuing to grow), then the
storage space needed to store the eta vectors in all the pivot matrices in the present
string may exceed the space needed to store the explicit inverse of the basis. At this
time, carrying out a reinversion will replace the present string with a new string of
m C 1 (or m C 2) pivot matrices.

6.8 Revised Simplex Method Using Other Factorizations
of the Basis Inverse

The PFI implementation is the first implementation developed for the simplex
method using matrix factorizations. It helps to reduce the effects of problems like
fill-in, roundoff error accumulation, excessive computer time for each iteration, etc.
to some extent, for values of m up to several hundreds. But for solving LP models
in which m is much higher, even this PFI implementation is affected by the same
problems.

Implementations of the simplex method using other types of matrix factoriza-
tions such as Cholesky factorization, LU-decomposition, etc. have been developed
subsequently. Many of the high-performance commercial systems for solving lin-
ear programs available today are based on these newer factorizations. This area has
become a specialized area of computer programming, and is outside the scope of
this book. For details of these factorizations and implementations of the simplex
method using them, see Fourer (2005), Bartels (1971), Bartels and Golub (1969)
and Todd (1983).

6.9 Finding the Optimum Face of an LP (Alternate
Optimum Solutions)

In practical decision making, operating conditions usually change from the time a
mathematical model for the problem is constructed to the time an optimum solution
is computed by solving the model. Because of these changes or for some other
reasons that may have come up since the model construction, one may then find that
a computed optimum solution is not quite suitable. In this situation, if the original
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model has alternate optimum solutions, it is always better to check whether one of
them may be suitable to implement before going through the expense of solving the
revised model.

As discussed in Chap. 5, in linear programming there are efficient techniques
to check whether an optimum solution computed by the algorithm is the unique
optimum, and to generate other optimum solutions when there are alternate optima,
using the complementary slackness optimality conditions.

For an LP in standard form with xB as an optimum basic vector, if the relative
cost coefficients wrt xB of all the nonbasic variables are >0, then the BFS associated
with xB is the unique optimum solution of this LP.

On the other hand, if some nonbasic relative cost coefficients wrt xB are 0, by
bringing the corresponding nonbasic variables into this basic vector as in the primal
simplex algorithm, we can get alternate optimum BFSs for this LP. Also, any convex
combination of optimum solutions is also optimal. And the optimum face for this
LP, that is, the set of all optimum solutions, consists of all the feasible solutions in
which all variables xj whose relative cost coefficient Ncj wrt xB is strictly >0 have
value 0.

As an example, consider the following LP

Original problem
x1 x2 x3 x4 x5 x6 x7 �z b

0 0 1 1 �1 �5 3 0 7
1 0 0 �1 �1 �3 �8 0 9
0 1 0 �1 �1 0 4 0 1

�1 �1 �1 10 6 8 1 1 0
xj � 0 for all j , minimize z

An optimum basic vector for this LP is xB D .x3; x1; x2/. The inverse tableau
corresponding to it is given below.

Inverse tableau
Basic Inverse tableau Basic

var. values
x3 1 0 0 0 7
x1 0 1 0 0 9
x2 0 0 1 0 1
�z 1 1 1 1 17

The primal BFS associated with xB is Nx D .9; 1; 7; 0; 0; 0/T with an objective
value of Nz D �17. So, any feasible solution in which z D �17 is an optimum
solution to this LP. So one representation of the optimum face of this LP is, as the
set of feasible solutions of the following system of constraints,
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Optimum face representation
x1 x2 x3 x4 x5 x6 x7 b

0 0 1 1 �1 �5 3 7
1 0 0 �1 �1 �3 �8 9
0 1 0 �1 �1 0 4 1

�1 �1 �1 10 6 8 1 �17

xj � 0 for all j .

With respect to the optimum basic vector xB , the relative cost coefficients of the
nonbasic variables are . Nc4; Nc5; Nc6; Nc7/ D (9, 3, 0, 0).

As Nc6 D Nc7 D 0, any BFS obtained by performing pivot steps with x6; x7 as
entering variables into xB is an alternate optimum solution to this LP.

As Nc4; Nc5 are the only positive relative cost coefficients wrt the present basic
vector, we conclude that any feasible solution of the original system in which x4; x5

are both 0 is an optimum solution to the problem. So the optimum face of this LP
can also be represented as the set of all feasible solutions of

Second representation of the optimum face
x1 x2 x3 x4 x5 x6 x7 b

0 0 1 1 �1 �5 3 7
1 0 0 �1 �1 �3 �8 9
0 1 0 �1 �1 0 4 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

xj � 0 for all j D 1 to 5.

6.10 The Dual Simplex Algorithm

Consider the LP in standard form

Minimize z D cx

subject to Ax D b (6.8)

x � 0;

where A is a matrix of order m � n and rank m. Given a basic vector xB for this
problem, let xD be the corresponding nonbasic vector (i.e., vector of those variables
not in xB ). Then the original tableau for this problem can be partitioned into basic,
nonbasic parts this way:

Original tableau
xB xD �z RHS
B D 0 b

cB cD 1 0
All xj � 0, min z
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To solve this problem, we have to search for a basic vector xB satisfying the
following two properties:

1. Primal feasibility: Nb D B�1b � 0;

2. Dual feasibility: NcD D cD � .cBB�1/D � 0.

The primal simplex algorithm discussed so far begins with a basic vector xB

satisfying primal feasibility, and tries to attain the dual feasibility property while
maintaining primal feasibility throughout. It does this by performing a sequence of
primal simplex pivot steps, in each of which a column j in which dual feasibility is
violated (i.e., Ncj < 0) is selected as the pivot column, and the pivot row is chosen
by the primal simplex minimum ratio test to preserve primal feasibility in the next
basic vector.

Example 6.7. Consider the following LP for which the canonical tableau wrt the
basic vector xB D .x1; x2; x3/ is given below. The basic vector xB is dual feasible.

Canonical tableau wrt .x1; x2; x3/

BV x1 x2 x3 x4 x5 x6 �z RHS
x1 1 0 0 �1 �2 2 0 �6

x2 0 1 0 1 �1 �2 0 �2

x3 0 0 1 1 1 �1 0 4
�z 0 0 0 3 8 10 1 �100

We do not have a primal feasible basic vector for this LP readily available. The
basic vector .x1; x2; x3/ available is primal infeasible, but it is dual feasible be-
cause the relative cost coefficients of all the nonbasic variables are positive. To solve
this LP by the primal simplex method, we have to first carry out a Phase I to find
a primal feasible basic vector. During Phase I, the dual feasibility property may be
lost, so at the end of Phase I we may have to carry out Phase II to gain dual feasi-
bility again. So this method does not take any advantage of the dual feasible basic
vector .x1; x2; x3/ that is readily available to us. �

To solve LPs like this for which a dual feasible basic vector is available, it will
be nice to use a method that can be initiated with such

Primal simplex property Dual simplex property
Initiated with a primal feasible BV Initiated with a dual feasible BV
Each iteration begins with selecting
PC among those violating dual fea-
sibility, i.e., one in which relative
cost Ncj < 0

Each iteration begins with select-
ing PR among those violating primal
feasibility, i.e., one in which updated
RHS constant Nbi < 0

In each iteration, uses data in PC
and updated RHS constants vector,
in the primal simplex minimum ra-
tio test, to select PR to keep next BV
primal feasible

In each iteration, uses data in PR and
relative cost vector, in a dual sim-
plex minimum ratio test, to select
PC to keep next BV dual feasible
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a basic vector, which maintains dual feasibility throughout, and tries to attain primal
feasibility by performing a sequence of pivot steps changing the basic vector by
one variable in each step. Such a method was developed by Kantorovich earlier,
and again independently by Lemke (1954); it is called the dual simplex algorithm
(the reason for the name is elaborated on later). Analogous properties of the two
algorithms are explained in the table given above (BV D basic vector, PC D pivot
column, PR D pivot row) for minimization problems.

We will now describe various steps in a general iteration of the dual simplex
algorithm, and how to carry them out using either the canonical tableaus or inverse
tableaus (BV D basic vector).

Canonical tableau wrt xB

BV xB xD �z Updated RHS

xB I ND 0 Nb

�z 0 NcD 1 �Nz
Inverse tableau wrt xB

BV Inverse Updated RHS
xB B�1 0 Nb
�z � N� 1 �Nz

Here are the various steps in this iteration.

1. Check optimality (primal feasibility): If Nb � 0, xB is primal feasible and hence
optimal (as it is also dual feasible), and the present BFS is an optimum solution
of the original LP, and N� D cBB�1 is an optimum dual solution, terminate.
Otherwise continue.

2. Select pivot row (i.e., dropping basic variable) for a pivot step: Select one of the
rows among fi W Nbi < 0g as the pivot row for the pivot step in this iteration. The
current basic variable in this pivot row will be the dropping basic variable in this
iteration.

When there are several i satisfying Nbi < 0, several rules can be used for
selecting one of them as the pivot row; for example, the one corresponding to the
most negative Nbi , etc.

3. Check primal infeasibility: Let the r th row be the pivot row selected. If inverse
tableaus are being used, the formula for computing the pivot row is

Pivot row D updated r th row D NAr:;

D Vector�matrix product of r th row of the inverse tableau
multiplied on the right by the original tableau,

D .B�1/r:A:
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If there is no negative element in the pivot row, then conclude that the primal
problem is infeasible, and terminate. The reason for this conclusion is the fol-
lowing: Let Narj D entry in pivot row in j th column for j D 1 to n. Then the
equation corresponding to this pivot row is

nX
j D1

Narj xj D Nbr :

From the pivot row selection, we know that Nbr < 0. If Narj � 0 for all j D
1 to n, the above equation cannot have any solution x � 0, that is, primal is
infeasible. As the dual is feasible, by duality theorem the dual objective value is
unbounded above in this case.

If this criterion is not satisfied, continue.
4. Dual simplex minimum ratio test: The dropping basic variable (the present basic

variable in the pivot row) will be a nonbasic variable in the next basic vector,
hence it will have a value of 0 in the next primal basic solution, that is, it will
satisfy the sign restriction on it.

The dual simplex algorithm also makes sure that the entering variable (the
basic variable in pivot row in next basic vector) will have a strictly positive value
in the next basic solution. This will happen iff the pivot element in this pivot
step is strictly negative, that is why pivot elements in the dual simplex algorithm
are always <0 (compare this to the corresponding property in the primal simplex
algorithm in which the pivot element is always a positive element in the pivot
column to preserve primal feasibility).

The pivot row is NAr: D . Nar1; � � � ; Narn/, and the updated cost row is Nc D
. Nc1; � � � ; Ncn/ � 0 by dual feasibility of the present basic vector. Suppose Nar1 < 0.
If we used Nar1 as the pivot element, after the pivot step, the j th entry in the up-
dated cost row will change to . Ncj � . Nc1 Narj /=. Nar1//. So, for the next basic vector
to be dual feasible we need therefore

. Ncj � . Nc1 Narj /=. Nar1// � 0 for all j ;

i.e., Ncj Nar1 � Nc1 Narj since Nar1 < 0:

As Nc � 0 and Nar1 < 0, the above inequality will hold automatically for all j

such that Narj � 0. For j such that Narj < 0, the above inequality will only hold
if Ncj =.�Narj / � Nc1=.�Nar1/. For this reason, the entering column (i.e., the pivot
column) is chosen in this algorithm by the following:

Dual simplex minimum ratio test: The pivot row is NAr: D .Nar1; 
 
 
 ; Narn/, and the updated
cost row is Nc D .Nc1; 
 
 
 ; Ncn/ � 0. In all columns j such that Narj < 0, compute the dual
simplex ratio Ncj =.�Narj /.

Select the pivot column to be the column that corresponds to the minimum ratio, and
the variable associated with that column as the entering variable into the basic vector
in this iteration replacing the dropping variable. This selection of the pivot column (en-
tering variable) by the dual simplex minimum ratio test guarantees that the basic vector
obtained after the pivot step will be dual feasible.

5. Pivot step: Perform the pivot step and go to the next iteration with the new basic
vector.
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6. Change in objective value in this iteration: Let Nz be the objective value wrt xB

and Nbr the updated RHS constant in the pivot row, at the beginning of this iter-
ation. Suppose the pivot column is the column of the entering variable xs with
relative cost coefficient Ncs . Then the objective value of the new BFS obtained at
the end of the pivot step in 5 above is Nz � Nbr. Ncs=.�Nars// D Nz � Nbr� , where � is
the minimum ratio computed in this iteration.

As � � 0 and Nbr < 0, we see that the objective value either stays the same or
increases in this iteration depending on whether � D 0 or > 0.

Example 6.8. In this example we will solve the problem in standard form for which
the canonical tableau wrt the dual feasible basic vector .x1; x2; x3/ is given in
Example 6.7 (it is the tableau at the top given below) using canonical tableaus. In
each step the pivot element selected is boxed, and the PR (pivot row) and PC (pivot
column) are those containing this boxed element. The various canonical tableaus
obtained are put one below the other. BV indicates “basic variable in row.” All xj

are required to be �0, and z has to be minimized in the problem.

PC
BV x1 x2 x3 x4 x5 x6 �z RHS

x1 1 0 0 �1 �2 2 0 �6 PR
x2 0 1 0 1 �1 �2 0 �2

x3 0 0 1 1 1 �1 0 4
�z 0 0 0 3 8 10 1 �100

Ratios 3 4

PC
x4 �1 0 0 1 2 �2 0 6
x2 1 1 0 0 �3 0 0 �8

x3 1 0 1 0 �1 1 0 �2 PR
�z 3 0 0 0 2 16 1 �118

Ratios 2

PC
x4 1 0 2 1 0 1 0 2
x2 �2 1 �3 0 0 �3 0 �2 PR
x5 �1 0 �1 0 1 �1 0 2
�z 5 0 2 0 0 18 1 �122

Ratio 5/2 2/3 6

Optimum canonical tableau
x4 �1=3 2/3 0 1 0 �1 0 2/3
x3 2/3 �1=3 1 0 0 1 0 2/3
x5 �1=3 �1=3 0 0 1 0 0 4/3
�z 11/3 2/3 0 0 0 16 1 �370=3
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In the last tableau, all the updated RHS constants have become �0; hence it
is an optimum tableau and the method terminates. The optimum solution of this
problem is Nx D .0; 0; 2=3; 2=3; 4=3; 0/T , and the optimum objective value is 370/3.
As the relative cost coefficients of the nonbasic variables are all positive in the final
tableau, this optimum solution is the unique optimum for this LP. The optimum dual
solution is � D (3, 0, 8) � (inverse of basis for the basic vector .x4; x3; x5//, it is
the marginal value vector for this problem. �

Example 6.9. In this example we will solve the problem in standard form for which
the canonical tableau wrt the dual feasible basic vector .x1; x3; x4/ is given (it is
the tableau at the top given below) using canonical tableaus. In each step the pivot
element selected is boxed, and PR (pivot row), PC (pivot column), and BV (basic
variable in row) are indicated. All the variables are required to be �0 and z is to be
minimized.

PC
BV x1 x2 x3 x4 x5 x6 x7 �z RHS

x1 1 2 0 0 �1 �2 �2 0 �6 PR
x3 0 �1 1 0 1 2 4 0 �14

x4 0 0 0 1 1 �1 1 0 4
�z 0 4 0 0 3 8 10 1 �100

Ratios 3 4 5
Tableau exhibiting primal infeasibility

x5 �1 �1 0 0 1 2 �2 0 6
x3 1 1 1 0 0 0 2 0 �8 PR
x4 1 1 0 1 0 �3 3 0 �2

�z 3 7 0 0 0 2 16 1 �118

In the final tableau, the second row with updated RHS constant of �8 has been
selected as the pivot row.

But there is no negative entry among the updated constraint coefficients in this
row, so the primal infeasibility condition is satisfied in this row. Actually the con-
straint corresponding to this row is x1Cx2 Cx3 C2x7 D �8. As all the variables are
required to be �0 and they have positive coefficients in this equation, it is impossible
to make the left-hand-side of this equation negative. So, the system of constraints in
this LP has no primal feasible solution; we terminate with this conclusion. �

Example 6.10. In this example we will solve the following problem in standard
form. The vector .x1; x2; x3/ is a unit basic vector, and it can be verified to be
dual feasible; we will initiate the dual simplex algorithm on this problem with this
basic vector. We solve this LP using inverse tableaus. The first inverse tableau wrt
.x1; x2; x3/ is constructed as discussed earlier. In each step the pivot element se-
lected is boxed, and PR (pivot row, updated row of dropping variable), PC (pivot
column, updated column of entering variable), and BV (basic variable in row) are
indicated.
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Original tableau
x1 x2 x3 x4 x5 x6 �z RHS

1 0 0 4 �5 7 0 8
0 1 0 �2 4 �2 0 �2

0 0 1 1 �3 2 0 2
1 1 1 4 �1 9 1 0

xj � 0 for all j , minimize z

Here is the first inverse tableau.

First inverse tableau
BV Inverse Updated PC

RHS x4

x1 1 0 0 0 8 4
x2 0 1 0 0 �2 �2 PR
x3 0 0 1 0 2 1
�z �1 �1 �1 1 �8 1

The relative cost coefficients Ncj of the nonbasic variables x4; x5; x6 are given
in a table below, and they are all positive. Row 2 with negative updated RHS has
been selected as the PR, and the present basic variable in it, x2, is the dropping
basic variable in this step. The following table gives the entries in the PR D updated
second row and the Ncj in nonbasic columns. As the minimum ratio � occurs in the
column of x4, the entering variable in this step is x4. Its updated column, the PC in
this step, is already entered on the inverse tableau. After the pivot step, we get the
second inverse tableau given below.

x4 x5 x6

PR �2 4 �2

Ncj 1 3 2
Ratios 1/2 1 � D 1/2

Second inverse tableau
BV Inverse Updated

RHS
x1 1 2 0 0 4
x4 0 �1=2 0 0 1

x3 0 1/2 1 0 1
�z �1 �1=2 �1 1 �9

The relative coefficients of the nonbasic variables wrt this basic vector are
. Nc2; Nc5; Nc6/ D (1/2, 5, 1). As the updated RHS constants are all �0, this basic
vector .x1; x4; x3/ is optimal to the problem.
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The optimal BFS is Nx D .4; 0; 1; 1; 0; 0/T , and the optimum objective value in
the problem is Nz D 9. The optimum dual solution is � D (1, 1/2, 1). As the optimal
primal BFS is nondegenerate, the optimum dual solution is the marginal value vector
for this problem. �

Example 6.11. In this example we will solve the following problem in standard
form. Clearly, .x4; x5; x6/ is a unit dual feasible basic vector, and we will initiate
the dual simplex algorithm on this problem with this basic vector.

We solve this LP using inverse tableaus. In each step the pivot element selected
is boxed, and PR (pivot row, updated row of dropping variable), PC (pivot column,
updated column of entering variable), and BV (basic variable in row) are indicated.
The various inverse tableaus obtained are given below.

Original tableau
x1 x2 x3 x4 x5 x6 �z RHS

1 1 1 1 0 0 0 1
�1 �2 �1 0 1 0 0 �8

1 3 2 0 0 1 0 5
8 24 15 0 0 0 1 0

xj � 0 for all j , minimize z

First inverse tableau
BV Inverse Updated PC

RHS x1

x4 1 0 0 0 1 1
x5 0 1 0 0 �8 �1 PR
x6 0 0 1 0 5 1
�z 0 0 0 1 0 8

The second row is selected as the PR, and so x5 is the dropping variable. Updated
PR, Ncj entries in nonbasic columns are given below. x1 is selected as the entering
variable, and the PC is already entered on the inverse tableau. After the pivot step
we get the second inverse tableau.

x1 x2 x3

PR �1 �2 �1

Ncj 8 24 15
Ratios 8 12 15 � D 8

Second inverse tableau
BV Inverse Updated PC

RHS x2

x4 1 1 0 0 �7 �1 PR
x1 0 �1 0 0 8 2
x6 0 1 1 0 �3 1
�z 0 8 0 1 �64 8
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The first row is selected as the PR, so x4 is the dropping variable. Updated PR,
Ncj entries in nonbasic columns are given below. The variable x2 is selected as the
entering variable, and the PC is already entered on the inverse tableau. After the
pivot step we get the third inverse tableau.

x2 x3 x5

PR �1 0 1

Ncj 8 7 8
Ratios 8 � D 8

Third Inverse Tableau
BV Inverse Updated

RHS
x2 �1 �1 0 0 7

x1 2 1 0 0 �6

x6 1 2 1 0 �10

�z 8 16 0 1 �100

Now x6, the basic variable in the third row, is selected as the dropping variable
in this step. The PR D .B�1/3:A D (0, 0, 1, 1, 2, 1); it has no negative entry. So, we
terminate with the conclusion that the primal is infeasible. �

6.10.1 Properties of the Dual Simplex Algorithm

Consider the LP in standard form for which the canonical tableau wrt a dual feasible
but primal infeasible basic vector xB is given below. For notational convenience we
assume xB D .x1; � � � ; xm/. “BV” D “basic variable in row.”

Canonical tableau wrt xB

BV x1 : : : xm xmC1 : : : xj : : : xn �z RHS

x1 1 : : : 0 Na1;mC1 : : : Na1j : : : Na1n 0 Nb1

:::
:::

: : :
:::

:::
:::

:::
:::

:::

xm 0 : : : 1 Nam;mC1 : : : Namj : : : Namn 0 Nbm

�z 0 : : : 0 NcmC1 : : : Ncj : : : Ncn 0 Nz
xj � 0 for all j , minimize z.

1. Current basic solution is the optimum solution for a relaxed problem: The
present primal basic solution is Nx D . Nb1; : : : ; Nbm; 0; : : : ; 0/T with objective value
Nz. However, as xB is primal infeasible, Nbi < 0 for some i . Let

S D fi W Nbi < 0g and NS D f1; : : : ; mgnP:
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Then Nx violates the primal constraints xi � 0 for i 2 S , but satisfies all other
primal constraints. Now consider the relaxed problem obtained by relaxing the
bound constraints “xi � 0 for i 2 S” from the original LP, and let KS denote
its set of feasible solutions. So, KS 	 K , and so the minimum value of z in the
relaxed problem is � the minimum value of z in the original problem.

Minimize z D cx

subject to Ax D b (6.9)

xj � 0, for j 2 NS
xj unrestricted for all j 2 S:

From the definition of S , all the variables xi for i 2 S are basic variables in the
present basic vector, and so fmC1; � � � ; ng � NS . The equation corresponding to the
objective row in the canonical tableau is

z D Nz C
nX

j DmC1

Ncj xj : (6.10)

We know that the present primal basic solution Nx is feasible to the relaxed prob-
lem (6.9). Also, as xB is dual feasible, Ncj � 0 for all j , and as fm C 1; : : : ; ng � NS ,
it is clear that the term

Pn
j DmC1 Ncj xj is � 0 for all feasible solutions of (6.9). So,

from (6.10) we see that Nz, the objective value at Nx, is the minimum objective value
in (6.9); that is, the present basic solution Nx is an optimum solution for the relaxed
problem (6.9).

As a numerical example consider the LP discussed in Example 6.7 for which the
canonical tableau wrt the dual feasible basic vector xB D .x1; x2; x3/ is given.
The primal basic solution wrt xB is Nx D .�6; �2; 4; 0; 0; 0/T with objective value
Nz D 100.

The relaxed problem corresponding to xB is obtained by relaxing the constraints
x1; x2 � 0 from the original LP.

The objective equation from the last row of the canonical tableau is z D 100 C
3x4 C 8x5 C 10x6. From this equation, as x4; x5; x6 are required to be �0 in the
relaxed problem, we see that the minimum objective value in it is �100. Therefore,
Nx which is feasible to the relaxed problem with objective value 100 is an optimum
solution for it.

From this we see that the objective value in any step of the dual simplex algorithm
is always a lower bound for the minimum objective value in the original problem.
These things show that the dual simplex algorithm approaches the optimum for an
LP from outside its feasible region, with the current primal solution always remain-
ing the best solution under the present relaxation, and improving the objective value
in every step.

2. Objective value in the algorithm is a monotonically increasing lower bound
converging to the minimum in the original problem from outside: As in the primal
simplex algorithm, we define a pivot step in the dual simplex algorithm to be
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� Degenerate: if the dual simplex minimum ratio, � , in it is 0;
� Nondegenerate: if the dual simplex minimum ratio, � , in it is >0.

From the formula discussed earlier for the change in objective value in a dual
simplex pivot step, we see that it increases strictly in every nondegenerate step, and
stays the same in every degenerate pivot step. Therefore, the objective value in the
dual simplex algorithm is a monotonically increasing lower bound converging to the
minimum in the original problem from outside.

So, if we plot the objective value of the current basic solution obtained in the
various steps of the primal and dual simplex algorithms on the same LP, their paths
will be as shown in Fig. 6.2, in which both the paths are shown. Of course, the
number of steps that the two algorithms are not guaranteed to be the same. The path
at the top is for the primal simplex algorithm that begins with a BFS and walks
along BFSs only, with the objective value decreasing monotonically along the path.
The path at the bottom corresponds to the dual simplex algorithm, all primal basic
solutions in it are primal infeasible excepting the final one which is primal feasible
and optimal, and the objective value is monotonically increasing along this path.

3. Comparison with the primal simplex: In an LP in standard form with a m � n

coefficient matrix, typically n is much larger than m. On this problem, the dual
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Fig. 6.2 The top line tracks the objective value in various steps of the primal simplex algorithm,
and the path at the bottom does the same for the dual simplex. Primal simplex took nine steps (five
nondegenerate with strict decrease in objective value, four degenerate with no change) and dual
simplex took twelve steps (seven nondegenerate, five degenerate) to solve same LP with optimum
objective value of 170. All primal solutions in primal simplex are primal feasible (marked with a
little square), in dual simplex all but final primal solution are primal infeasible (these are marked
with a little diamond)
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simplex minimum ratio test may need up to O.n/ comparisons, which is much
greater than what the primal simplex minimum ratio step may need, which can be
at most O.m/ comparisons.

That is why when an LP has both a primal feasible basic vector and a dual feasible
basic vector readily available, practitioners show a preference for solving it by the
primal simplex algorithm starting with the known primal feasible basic vector. If
the LP has neither a primal feasible basic vector, nor a dual feasible basic vector
readily available, they prefer solving it by the primal simplex method using Phase I.
If it has no primal feasible basic vector readily available, but has a readily available
dual feasible basic vector, then they solve it using the dual simplex algorithm starting
with that available dual feasible basic vector.

6.11 Importance of the Dual Simplex Algorithm,
How to Get New Optimum Efficiently When RHS
Changes or New Constraints Are Added to the Model

The dual simplex algorithm has many important applications. It is used very often
for the following:

1. To get the new optimum solution when the RHS constants vector changes in an
existing LP model with a known optimum basic vector

2. When new inequality constraints have to be added to a model like the above
3. As a tool in a practical method to resolve degeneracy in solving an LP by the

primal simplex algorithm

We will now discuss these applications of the dual simplex algorithm. Let the
original LP model be

Minimize z D cx

subject to Ax D b (6.11)

x � 0;

where A is a matrix of order m�n and rank m. Let xB be the known optimum basic
vector for this problem with basis B and basic cost vector cB . Let xD denote the
vector of nonbasic variables.

1. Change in the RHS constants vector: Suppose the RHS constants vector in the
model (6.11) has changed from b to b0 and there is no other change in the model.

If B�1b0 � 0, then xB continues to be an optimum basic vector for the modified
model associated with the new optimum BFS .xB ; xD/ D .B�1b0; 0/, optimum
objective value z0 D cBB�1b0, and the same optimum dual solution N� D cBB�1 as
before the change of the RHS vector.

If B�1b0 6� 0, then xB is a dual feasible but primal infeasible basic vector for
the modified model. The inverse tableau of modified model wrt xB is obtained
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by changing the updated RHS vector in the current inverse tableau wrt xB to
.xB ; �z/ D .B�1b0; �cBB�1b0/. Starting with this, solve the modified model
by the dual simplex algorithm.

Example 6.12. Consider the LP solved in Example 6.10 in Sect. 6.10. The optimum
basic vector for this problem was found to be xB D .x1; x4; x3/, with the sec-
ond inverse tableau in that example as the inverse tableau corresponding to it. The
original RHS vector in this problem is b D .8; �2; 2/T .

Suppose b has to be changed to b0 D .8; �4; 7/T , but there is no other change
in the data. Then B�1b0 D .0; 2; 5/T � 0. So, xB remains primal feasible after
the modification of b to b0. Hence xB continues to be the optimum basic vector for
the modified problem too. So, the optimum dual solution to the modified problem
remains unchanged as � D .1; 1=2; 1/ and the optimum primal solution changes to
.xB ; �z/ D (inverse tableau) �.b0; 0/ D .0; 2; 5; 13/T .

If, on the other hand, the original RHS Vector b changes to b00 D .6; �4; 1/T

instead, we have B�1b00 D .�2; 2; �1/T 6� 0. So, with this change the basic vector
xB is not primal feasible, but remains dual feasible. The objective value correspond-
ing to the basic vector xB is �b00 D .1; 1=2; 1/.6; �4; 1/T D 5. So the inverse
tableau wrt xB for the modified model in this case is

Inverse tableau wrt xB

BV Inverse Updated
RHS

x1 1 2 0 0 �2

x4 0 �1=2 0 0 2

x3 0 1/2 1 0 �1

�z �1 �1=2 �1 1 �5

Starting with this inverse tableau, the modified model can be solved using the
dual simplex algorithm, as before. �

2. Adding new constraints to the model: In practical applications, while review-
ing the optimum solution of a model for the problem, one often finds that some
important constraints in the problem are missing in the model. These additional
constraints have to be included and the modified model solved again.

Solving integer programming models (these are LP models with additional re-
quirements that some variables can only have integer values in the solution) using
the branch and bound (B&B) or branch and cut (B &C) algorithms is based on this
strategy. In these algorithms, an LP relaxation (i.e., the original problem without the
integer requirements on the variables) is solved first.

If the optimum solution obtained for the LP relaxation violates some integer re-
quirements, then additional linear inequality constraints called cuts are generated
to cut off some of the nonintegral portions of the feasible set of the LP relaxation,
including its present nonintegral optimum solution, and these are included in the
model and the augmented model solved. This process may have to be repeated sev-
eral times before a solution for the original integer program is obtained. So solving
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augmented models with additional linear inequality constraints is a very important
process to solve integer programs. They have applications in many other areas too.

It is possible that the new constraints to be added to the model may be equations
or inequalities, but in most applications they turn out to be inequalities. That is why
we discuss only that case here. The same technique can easily be adopted for adding
new equality constraints to the model and get the new optimum solution.

Suppose xB is the optimum basic vector for the original LP model in standard
form. Let the basic, nonbasic partition of the original tableau wrt xB for that prob-
lem be

Original tableau
xB xD �z RHS
B D 0 b

cB cD 1 0
All xj � 0, min z

where the original I/O coefficient matrix .B
:::D/ is of order m � n.

After the optimum basic vector xB has been obtained, suppose we discover that
the model has to be augmented with r additional inequality constraints: F xB C
GxD � g, where .F

:::G/ is of order r � n (we have expressed all the addi-
tional inequality constraints in the “�” form). Introducing slack variables xE D
.xnC1; � � � xnCr /T , the original tableau for the modified problem is

Original tableau of augmented problem
xB xD xE �z RHS
B D 0 0 b

F G I 0 g

cB cD 0 1 0
All xj � 0, min z

Here I is the unit matrix of order r . As xB is an optimum basic vector for the
original model, .xB ; xE / can be verified to be a dual feasible basic vector for the
augmented model. It is associated with the basis whose inverse is

	
B 0

F I


�1

D
	

B�1 0

�FB�1 I



: (6.12)

So, if 	 Nb
Ng



D
	

B�1 0

�FB�1 I


	
b

g



� 0;

then .xB ; xE / is also primal feasible to the augmented problem, and hence an op-
timum basic vector for the augmented problem. In this case, .xB ; xD ; xE / D
. Nb; 0; Ng/ is an optimum BFS for the augmented model we are solving, so, terminate.
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However, if Ng 6� 0, then .xB ; xE / is a dual feasible but primal infeasible basic
vector for the augmented problem. The basis inverse corresponding to it can be
obtained from (6.12) using the known basis inverse B�1 corresponding to xB for
the original model. Then the inverse tableau corresponding to this basic vector can
be formed and the augmented problem solved, starting with it, using the dual sim-
plex algorithm.

Example 6.13. Suppose the original LP model is the LP solved in Example 6.10
in Sect. 6.10. The optimum basic vector for this problem was found to be xB D
.x1; x4; x3/, with the second inverse tableau in that example as the inverse tableau
corresponding to it. The optimum BFS corresponding to this basic vector is Nx D
.4; 0; 1; 1; 0; 0/T .

Suppose we need to add the new constraint 2x1 � 2x3 � 2x4 C 2x5 � 4. The
present optimum solution Nx satisfies this new constraint. Hence Nx remains optimal
to the augmented problem.

If, on the other hand, the new constraint to be added to the model is 2x1 � 2x3 �
2x4 C 2x5 � 2. Introducing the nonnegative slack variable x7, this constraint be-
comes the equation

2x1 � 2x3 � 2x4 C 2x5 C x7 D 2;

and when we plug in Nx into this equation, we find that the associated value of x7

becomes Nx7 D �2. We will add this new constraint as the last (i.e., fourth) constraint
in the model.

Negative value for the nonnegative slack variable x7 implies that the current op-
timum solution Nx violates the new constraint to be added. From the inverse of the
basis corresponding to the basic vector .x1; x4; x3/ for the original problem from
the second inverse tableau in Example 6.10 and using the formula in (6.12), we
compute the basis inverse corresponding to the basic vector .x1; x4; x3; x7/ for
the augmented model to be the following:

Inverse tableau
BV Inverse Updated

RHS
x1 1 2 0 0 0 4
x4 0 �1=2 0 0 0 1

x3 0 1/2 1 0 0 1
x7 �2 �4 2 1 0 �2

�z �1 �1=2 �1 0 1 �9

The vector .x1; x4; x3; x7/ is a primal infeasible, but dual feasible basic vector
for the augmented problem. So, starting with this inverse tableau, the augmented
model can be solved using the dual simplex algorithm, as before. �

3. A practical method to resolve cycling under degeneracy in the simplex method:
As discussed earlier, when an LP has degenerate BFSs, the simplex method could
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in theory cycle while solving it. Cycling is the name given to the phenomenon in
which the simplex method moves forever among a set of degenerate basic vectors,
making only degenerate pivot steps without ever changing the objective value, or the
solution, or satisfying a termination condition. The theoretical possibility of cycling
has been shown in specially constructed numerical examples.

Several theoretical techniques have been developed in the literature, with proofs
that they will resolve the problem of cycling under degeneracy and guarantee fi-
nite convergence of the simplex method if they are used. Some of these require the
basis inverse in every step, we discussed earlier that this is difficult to maintain in
practice because of the problems of fill-in, roundoff errors, and excessive computer
time for each step. Other techniques that do not need the basis inverse for resolving
cycling have been found to take far too many steps before satisfying the termination
criteria. For this reason, none of the theoretical techniques for resolving cycling are
in practical use.

In numerical computation with finite precision on digital computers, when the
minimum ratio in a pivot step turns out to be 0, it is hard to tell whether it is really 0,
or appears to be so due to accumulated round-off errors. But one often notices that
the simplex method goes through several steps in which there is negligible or no
change in the objective value. This kind of occurrence is considered as a manifes-
tation of cycling by programmers. To speed up the code when this occurs, many of
the software vendors whom I talked to told me that they normally use the following
strategy.

Suppose the LP is being solved by the primal simplex algorithm and a degenerate
BFS is encountered for the first time in this work. At that time they perturb the up-
dated RHS constants by small amounts so that the values of all the basic variables in
the BFS become strictly positive. Continuing with the modified RHS, the next pivot
step will be nondegenerate, resulting in a strict decrease in objective value. If the
same phenomenon occurs again, repeat a similar process with additional perturba-
tions of the RHS constants. Eventually when termination occurs, check the current
primal solution for primal feasibility to the original model. If it satisfies it to within
reasonable tolerance, it is accepted as the final solution of the problem. Otherwise,
at that stage the current RHS vector is replaced by the original, and the program
reverts to the dual simplex algorithm to continue solving the original model starting
with the present dual feasible, but primal infeasible basic vector. The dual simplex
algorithm is applied with the same kind of perturbation (now of the cost vector)
to resolve cycling in it. Again at the end of the dual simplex, one may have to re-
vert to primal simplex and continue the same way. Software vendors told me that
after at most two repetitions of this, they converge to an optimum solution within
reasonable tolerance and that each of these repetitions usually takes only very few
steps.

4. The primal simplex and the dual simplex as a pair of tools for decision making
using LP models: The primal simplex and the dual simplex as a pair of tools offer
a complete tool kit to efficiently handle many types of changes that occur in LP
models in applications. Some of the other sensitivity features are discussed in a
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later section in this chapter. The development of the dual simplex algorithm and its
pairing with the primal simplex algorithm has helped a lot to make LP a powerful
and valuable tool to model problems in applications.

6.11.1 The Dual Simplex Method

If an initial primal feasible basic vector for an LP in standard form is not available,
to solve it the primal simplex method carries out a Phase I using additional artificial
variables, to generate a primal feasible basic vector to initiate the primal simplex
algorithm on it in Phase II.

In the same way to solve LP by the dual simplex approach, if an initial dual
feasible basic vector is not available, then a dual simplex Phase I to generate a
dual feasible basic vector for the original problem has been developed. While the
primal simplex approach introduces artificial variables into the model to set up a
Phase I with its primal feasible basic vector readily available, the dual simplex ap-
proach introduces an artificial constraint to set up a dual simplex Phase I with its
dual feasible basic vector readily available.

Once a dual feasible basic vector for the original LP is found, starting with that,
the dual simplex Phase II takes over to solve the original LP using the dual simplex
algorithm. The combined dual simplex Phase I and II approach is called the Dual
simplex method; it can solve any LP whether a dual feasible basic vector is readily
available or not.

However, to solve a general LP model without known special structure, when
neither a primal feasible nor a dual feasible basic vector is readily available, prac-
titioners always seem to prefer solving it by the primal simplex method. For this
reason, the dual simplex Phase I is never used in practical applications. For this rea-
son, it seems to be only of theoretical interest, and hence we will not discuss it
in this book. The reader is referred to references Dantzig (1963); Dantzig and
Thappa (1997) of Chap. 1; Murty (1983) of Chap. 2) for details of the dual simplex
method.

6.12 Marginal Analysis

We have seen earlier that each constraint in an LP model for the operations of a
system can be interpreted as the material balance equation or inequality associated
with an item. From Sect. 5.8, we know that in general, there may be two quantities
associated with an item; one called the positive marginal value (rate of change in
the optimum objective value in the model, per unit increase in the RHS constant
in the constraint corresponding to the item from its present level), and a negative
marginal value (same rate as above, but per unit decrease). These values are called
the marginal values of the item, or of the constraint corresponding to it, or of the
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RHS constant in that constraint. Marginal analysis is economic analysis of the vari-
ous options available to the system based on these marginal values.

When the optimum dual solution for the LP is unique, for each item both the
positive and negative marginal values are equal to the value of the dual variable
associated with that item in the optimum dual solution; this common value is de-
fined to be the marginal value of that item, or of the constraint corresponding to it,
or of the associated RHS constant in the model. In this case we say that marginal
value is well defined, and for each item its marginal value is the rate of change in
the optimum objective value in the model per unit change (positive or negative) in
the RHS constant in the constraint corresponding to the item, from its present level.
We know that this case occurs if the LP model has a nondegenerate optimal primal
BFS. In this case, marginal analysis is simple and nice, and is based on the unique
optimum dual solution as the marginal value vector. In Sect. 3.13 in Murty (2005b)
of Chap. 1) an example (the fertilizer manufacturer’s problem) of this case has been
discussed with several planning applications of marginal analysis.

If the LP model does not have a nondegenerate optimal primal BFS, then it may
have alternate optimum dual solutions, and in this case the positive and negative
marginal values for an item may be different (see Sect. 1.7.1, and Exercise 6.73). In
this case, to be correct, marginal analysis has to be based on these positive and nega-
tive marginal values. Efficient methods for computing both the positive and negative
marginal values do exist and are discussed in Murty (1983) of Chap. 2; they require
extra computation on the dual problem. However, these methods are not known
widely. None of the commercially available LP software packages have subroutines
for them, and practitioners have never demanded that positive and negative marginal
values be provided to them in this case.

In this book we consider only marginal analysis in the simpler case when the
LP model has a nondegenerate optimal primal BFS, using the unique optimum dual
solution as the vector of marginal values.

Example 6.14. Marginal analysis at a company producing three products using four
processes. As an example, consider a company that needs three products for its in-
ternal use. There are four different processes that the company can use to make these
products. When a process is run, it may produce one or more of these products as
indicated in the following table. Here bi D minimum daily requirement for product
Pi in units, for i D 1 to 3; and cj D cost (in $) of running process/unit time.

Product Output /unit time of
Process 1 2 3 4 bi

P1 1 2 0 1 17
P2 2 5 1 2 36
P3 1 1 0 3 8
cj 28 67 12 35

For j D 1 to 4, let xj denote the units of time that process j is run daily. Let
x5; x6; x7 denote the slack variables corresponding to P1; P2; P3 (these are the
amounts of the product produced in excess of the minimum daily requirement).
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Then the model for meeting the requirements of the products at minimum cost is
the following LP in standard form.

Tableau: Original tableau
Item x1 x2 x3 x4 x5 x6 x7 �z b

P1 1 2 0 1 �1 0 0 0 17
P2 2 5 1 2 0 �1 0 0 36
P3 1 1 0 3 0 0 �1 0 8

28 67 12 35 0 0 0 1 0
all xj � 0; x5; x6; x7 are P1; P2; P3 slacks; minimize z

This problem has been solved by the revised simplex method, yielding the fol-
lowing optimum inverse tableau.

Tableau: Inverse tableau
Basic Inverse tableau Basic

var. values
x1 5 �2 0 0 13
x2 �2 1 0 0 2
x7 3 �1 �1 0 7
�z �6 �11 0 1 �498

x7 is P3 slack

So, the optimum solution is to run processes 1, 2 for 13, 2 units of time daily.
This solution attains the minimum cost of $498, and produces 17, 36, and 15
units of P1; P2; and P3, respectively, meeting the minimum daily requirements
of P1; P2, exactly, but leaving an excess of seven units of P3 after meeting its
requirement. As the optimal primal BFS is nondegenerate, the vector of marginal
values of P1; P2; and P3 is the optimum dual solution D (6, 11, 0).

So, the marginal value of P3 is 0. This means that small changes in its daily re-
quirement in the neighborhood of its present value of eight units, does not change
the cost to the company of meeting its requirements for these three products. At
the moment the requirement of P3 is automatically covered while meeting the re-
quirements of P1 and P2, and this actually produces an excess of seven units of P3

beyond its requirement.
P2 has the highest marginal value of $11 among the three products. This means

that small changes in its requirement from its present level of 36 units result in a
change in the optimum cost at the rate of $11/unit. And if an outside supplier were
to offer to supply P2, it is worth considering if the rate is �$11/unit. As it has the
highest marginal value, P2 is a critical input for the company.

A similar interpretation can be made for P1 and its marginal value of $6/unit.
Suppose the company’s research lab has come up with a new process, process 5,

that produces P1 and P2, at the rate of 4 and 9 units per unit time it is run, and does
not produce any P3. Let $c8 be the cost of running process 5 per unit time. For what
values of c8 is it desirable to run process 5? To answer this question, we evaluate
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the monetary benefit, in terms of the marginal values, of the output by running this
process per unit time. As it is 4 and 9 units of P1 and P2, respectively, and the
marginal values of P1 and P2 are 6 and 11, this monetary benefit is 4�6C9�11 D
$123/unit time. Comparing this with the cost c8 of running this process we conclude
that process 5 is not worth running if c8 > 123; it breaks even with the present
optimum solution if c8 D 123; and can save cost if c8 < 123. �

Example 6.15. Evaluating the profitability of new products. One major use of
marginal values is in evaluating the profitability of new products. It helps to de-
termine whether they are worth manufacturing, and if so at what level they should
be priced so that they are profitable in comparison with existing product lines.

We will illustrate this again using the company discussed in the previous example
(Example 6.14) that produces products P1; P2; and P3 for its internal use with
processes 1, 2, 3, and 4.

Suppose the company’s research lab has come up with a novel product, code
named “NP,” that is expected to have good market potential. Its manufacture requires
as inputs 1, 2, 1 units of P1; P2; P3, respectively/unit and incurs other costs (in
labor, other inputs, etc.) amounting to $50/unit.

What is the break-even price/unit for selling this NP in the market?
Using the marginal values of P1; P2; P3, derived in Example 6.14, we find that

a packet consisting of 1, 2, 1 units of P1; P2; P3 respectively, is equivalent to
1 � 6 C 2 � 11 C 1 � 0 D $28 in costs for running the processes to produce these
inputs.

So the break-even cost for NP is .28C50/=78/unit. Hence the break-even market
price for NP is $78/unit. If the company’s expectation is to have a profit margin
of �20%, NP is worth manufacturing if it can be sold at a price �$(1.2)(78) D
93.6/unit.

The company can conduct a market survey and determine whether the market
will accept NP at this price level. Once this is known, the decision whether to bring
NP into production becomes clear. �

Marginal analysis is this kind of cost-benefit analysis using the marginal values.
It provides very valuable planning information.

It has become a very common practice with practitioners to use this kind of
analysis using an optimum dual solution provided by the simplex method, even
when the optimal primal solution is degenerate. As pointed out at the beginning
of this section, this may lead to wrong conclusions in this case, so one should
watch out.

6.12.1 How to Compute the Marginal Values in a General
LP Model

The model for a real-world problem may be a general LP model that may not
be in standard form originally. Corresponding to each constraint in this model,
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there will be a dual variable in its dual, which can be interpreted as the marginal
value of the RHS constant in that constraint; it is the rate of change in the op-
timum objective value in the model per unit change in the RHS constant in that
constraint.

To solve this model, we first put it in standard form, which is in the form of a
minimization problem involving only equality constraints in nonnegative variables.
In this process constraints are modified, some may even be eliminated if the original
model contains some unrestricted variables.

To distinguish one from the other, let .P / refer to the original model with the
objective function and all the constraints as they were stated originally. Let .P 0/
refer to the equivalent LP in standard form in minimization form obtained by trans-
forming .P /. Suppose .P 0/ has a nondegenerate primal BFS. Then all the marginal
values for it are well defined. Knowing the marginal values for .P 0/, how can we
compute the marginal values for the original model .P /? We provide an answer
to this question here. Let xB denote an optimum basic vector for .P 0/. For .P 0/
we assume that the relative cost coefficients wrt xB of all nonbasic variables are
computed. By definition, the relative cost coefficient of a basic variable is 0.

First suppose there are no unrestricted variables in the original model .P /.
Inequality constraints in .P / were transformed into equations by introducing ap-
propriate slack variables in the process of getting .P 0/.

The marginal value associated with any “�” [“�”] inequality constraint in .P /

is the relative cost coefficient of the corresponding slack variable in .P 0/ if the
objective function in .P / is in minimization [maximization] form, or its negative if
the objective function in .P / is in maximization [minimization] form.

The marginal value associated with any equality constraint in .P / is the same as
the marginal value associated with this constraint in .P 0/ if the objective function
in .P / is in minimization form, or its negative if the objective function in .P / is in
maximization form.

It is possible that there are still some equality constraints in .P / that were used
to eliminate the unrestricted variables, marginal values associated with which are
not determined by the above rules. If so, go back to the process that transformed the
original problem .P / into .P 0/. In this process, first all the inequality constraints
in .P / other than the nonnegativity restrictions on individual variables have been
transformed into equations by introducing appropriate slack variables. This is just
before eliminating unrestricted variables in the model by performing pivot steps
in their columns. When you augment the optimal basic vector xB for .P 0/, with
all the unrestricted variables in the model at this stage, you get a vector xF say,
which will be a basic vector for the system of equality constraints at this stage.
Compute the dual basic solution associated with xF for this system. The values
of the dual variables associated with the eliminated constraints used to eliminate
the unrestricted variables to get .P 0/, in this dual solution, are the marginal values
corresponding to these constraints in .P /.
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6.13 Sensitivity Analysis

In applications of linear programming, the data such as the input–output coefficients,
cost coefficients, and RHS constants are normally estimated from practical consid-
erations and may have unspecified errors in them. Given an optimum basic vector
for the LP model, the optimality range of a data element is the interval within which
that element can vary, when all the other data remain fixed at their current values,
while keeping the present solution or basic vector optimal. In sensitivity analysis
there is a technique called ranging that determines the optimality range of some of
the data very efficiently. The width of the optimality range and the position of the
present value of the data element in this range can be used to check the robustness
of the present optimum solution or optimum basic vector to possible errors in that
data element.

Sensitivity analysis is the collection of simple applications of the optimality con-
ditions for LP to find the optimality ranges for various coefficients in the LP original
tableau, and also efficient techniques for finding a new optimum solution beginning
with the current one, if a change occurs in the value of one coefficient in the model
outside its optimality range. Ranging and these other techniques in sensitivity analy-
sis are all based on the optimality criteria. Here we discuss some sensitivity analysis
techniques that proved to be useful in practice.

6.13.1 Introducing a New Nonnegative Variable

Consider solving the original LP

Minimize z.x/ D cx

subject to Ax D b (6.13)

x � 0;

where without any loss of generality we assume that A is a matrix of order m � n

and rank m. Here is the original tableau for this problem

Original tableau
x �z

A 0 b

c 1 � ˛
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Suppose we found an optimum basic vector xB associated with the optimum
primal BFS Nx D . Nx1; � � � ; Nxn/T and optimum dual solution N� D . N�1; � � � ; N�m/ for
this original problem.

After solving the original model (6.13), suppose a new activity has become avail-
able. Let xnC1 denote the decision variable corresponding to it; it is the level at
which this new activity is to be carried out. Suppose the original column vector of
xnC1 is A:nC1 and its original cost coefficient is cnC1.

The following questions need to be answered at this stage. Is it worth performing
the new activity at a positive level? If so, how can we find the new optimum solution
beginning with the inverse tableau of xB for the original (6.13)? If it is not worth
performing the new activity at a positive level, how much should its cost coefficient
change before it becomes worthwhile?

Enter the new variable xnC1, with its column vector into the original tableau
given above. We will refer to the modified tableau as the augmented tableau. From
the optimality criterion in the simplex algorithm, and the fact that the basic vec-
tor xB satisfied it before introducing xnC1 into the problem, we conclude that xB

remains optimal to the augmented problem if the relative cost coefficient of xnC1,
namely NcnC1 D cnC1 � N�A:nC1, is �0. Thus if cnC1 � N�A:nC1, it is not worth
performing the new activity. In this case . Nx1; � � � ; Nxn; NxnC1 D 0/T is an optimum
solution of the augmented problem.

For the new activity to be worth performing, NcnC1 has to be <0, that is, cnC1 has
to decrease below N�A:nC1.

If NcnC1 < 0, then xB does not satisfy the optimality criterion for the augmented
problem, and xnC1 is the variable eligible to enter it. To get an optimum solution
of the augmented problem in this case, select xnC1 as the entering variable into xB

and continue the application of the simplex algorithm until it terminates again.
As an example, consider the LP model in Sect. 6.12 of the company trying to

produce the required quantities of P1; P2; P3 using four available processes at
minimum cost. The optimum basic vector for this problem is xB D .x1; x2; x7/

and its inverse tableau is given in Sect. 6.12.
As discussed in Sect. 6.12, the new process 5 developed by the company’s re-

search lab has become available. Let x8 denote the level at which this process is
operated. In Sect. 6.12, the column of x8 in the model is given to be .4; 9; 0; c8/T ,
where c8 is the cost coefficient. The relative cost coefficient of x8 wrt xB is

Nc8 D .�6; �11; 0; 1/.4; 9; 0; c8/T D c8 � 123:

If Nc8 � 0, that is, c8 � 123, it is not worth operating this process, and the present
BFS wrt the basic vector .x1; x2; x7/ given in Sect. 6.12 remains optimum with
x8 D 0.

If Nc8 < 0, that is, c8 < 123, then xB does not satisfy the optimality criterion
for the augmented problem. Suppose c8 D 122. With this value for c8, here is the
original tableau for the augmented problem.



6.13 Sensitivity Analysis 349

Original tableau
x1 x2 x3 x4 x5 x6 x7 x8 �z b

1 2 0 1 �1 0 0 4 0 17
2 5 1 2 0 �1 0 9 0 36
1 1 0 3 0 0 �1 0 0 8

28 67 12 35 0 0 0 122 1 0
all xj � 0; x5; x6; x7 are P1; P2; P3 slacks; minimize z

Here is the inverse tableau of xB D .x1; x2; x7/ with the updated column of x8

selected as the pivot column.

Basic Inverse tableau Basic PC Ratios
var. values x8

x1 5 �2 0 0 13 2 13/2
x2 �2 1 0 0 2 1 2/1
x7 3 �1 �1 0 7 3 7/3
�z �6 �11 0 1 �498 �1 Min. D � D 2

x1 9 �4 0 0 9
x8 �2 11 0 0 2
x7 9 �4 �1 0 1
�z �8 �10 0 1 �496

PC D pivot column

In the new basic vector, the relative cost coefficients of the nonbasic variables are
. Nc2; Nc3; Nc4; Nc5; Nc6/ D (1, 2, 7, 8, 10) > 0. So, this basic vector is optimal to the
augmented problem. The optimum BFS is Ox D .9; 0; 0; 0; 0; 0; 1; 2/T . It operates
process 1 for nine units of time, and the new process 5 (corresponding to x8) for
two units of time daily, and has a cost of $496.

6.13.2 Ranging the Cost Coefficient or an I/O Coefficient
in a Nonbasic Column Vector

Let (6.13) be the original model for which we have an optimum basic vector xB

associated with the optimum primal BFS Nx D . Nx1; � � � ; Nxn/T and optimum dual
solution N� D . N�1; � � � ; N�m/.

Suppose xj is a nonbasic variable now whose cost coefficient cj is likely to
change, while all the other data remain fixed at present levels. For what range of
values of cj does Nx remain an optimum solution to the problem?
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To answer this question, notice that a change in cj does not affect the primal
or dual basic solutions associated with xB nor does it affect the primal feasibility
of Nx. However, for N� to remain dual feasible, we need Ncj D cj � N�A:j � 0,
that is, cj � N�A:j . So, Nx remains an optimum solution to the problem as long as
cj � N�A:j , this is the optimality range for cj .

If the new value of cj is < N�A:j , then Ncj < 0, and the basic vector xB is no
longer dual feasible. In this case, xj is eligible to enter xB . To get the new optimum
solution, correct the value of cj in the original tableau, bring xj into the basic vector
xB , and continue the application of the primal simplex algorithm until it terminates
again.

As an example, consider the LP model of the company trying to produce the
required quantities of P1; P2; P3 using four available processes at minimum
cost, discussed in Sect. 6.12. The optimum basic vector for this problem is xB D
.x1; x2; x7/. Its inverse tableau is given in Sect. 6.12. Suppose the cost coefficient
of x4, the cost of running process 4 per unit time, is likely to change from its present
value of $35, while all the other data remains fixed. Denote the new value of this
cost coefficient by c4. For what range of values of c4 does the primal BFS wrt the
present basic vector .x1; x2; x7/ remain optimal to the problem?

The answer: As long as the relative cost coefficient of x4, Nc4 D (�6; �11; 0; 1/

.1; 2; 3; c4/T D c4 � 28 is � 0, that is, as long as c4 � 28. This is the optimality
range for c4.

If the new value of c4 is <28, say c4 D 27, the basic vector .x1; x2; x7/ is no
longer dual feasible. x4 is eligible to enter this basic vector. To get the new optimum
solution, correct the original cost coefficient of x4 to its new value of 27, bring x4

into the basic vector .x1; x2; x7/, and continue the application of the primal simplex
algorithm until it terminates again.

Now consider changes in an input–output coefficient in a nonbasic column. These
coefficients may change due to changes in the corresponding process or changes in
technology. Again consider the LP (6.13) and an optimum basic vector xB associ-
ated with the primal and dual optimum solutions, Nx; N� D . N�1; : : : ; N�m/ for it. Let xj

be a nonbasic variable. Its column in the original tableau is A:j D .a1j ; : : : ; amj /T .
Suppose the coefficient arj in this column is likely to change while all the other data
remains fixed at present levels.

Here also, the optimality range for arj is the set of all values of this coef-
ficient that keeps the relative cost coefficient of xj , Ncj D cj � N�A:j D cj ��Pm

i D 1
i ¤ r

N�aij

� � N�rarj nonnegative.

In the expression for Ncj here, the only thing that varies is arj , and all other entries
are at their present values. So

If N�r D 0, Ncj remains at its present nonnegative value whatever arj is, so the optimality
range for arj is the entire real line. If N�r > 0, the optimality range for arj is

arj � �
cj � �Pm

i D 1
i ¤ r

N�aij

��
= N�r ,
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and if N�r < 0, this optimality range is

arj � �.cj � .
Pm

i D 1
i ¤ r

N�aij //= N�r .

If the new value for arj is outside its optimality range, xj becomes eligible to
enter xB . To get the new optimum solution, bring it in and continue the application
of the simplex algorithm until it terminates again.

As an example, again consider the LP model discussed in Sect. 6.12. Suppose by
making changes in process 4, we can improve the output of P3 from this process
from its present value of 3 units/unit time. Will this change the optimum solution
for the problem? The answer is no, as N�3 D 0 in the dual optimum solution. The
explanation for this is not hard to see. The present primal optimum solution that
consists of running processes 1, 2 (corresponding to primal variables x1; x2) at
13, 2 units of time daily already produces an excess of seven units of P3 over its
requirement, and process 4 will not become economical even if the output of P3

from it changes.
In the same example, suppose by making changes in process 4 we can improve

the output of P1 from it. Does this change the optimum solution for this problem,
and if so how high should this output be before it does? Let a14 denote the new
value of the output of P1/unit time of process 4. With this value, the relative cost
coefficient of x4 is Nc4 D .�6; �11; 0; 1/.a14; 2; 3; 35/T D 13 � 6a14; Nc4 � 0 if
a14 � 13=6; this is the optimality range for a14. If a14 > 13=6, the basic vector
.x1; x2; x7/ is no longer dual feasible to the problem, and x4 becomes eligible
to enter it. To get the new optimum solution, compute the updated column of x4

with the new value of a14 and bring it in, and continue the application of the primal
simplex algorithm until it terminates again.

Note on real-world applications of LP: In practical applications, the coefficients
in the LP model are estimated from data, and the values of these coefficients like
cost coefficients are changing constantly over time. So, when a model is constructed
based on the value of this coefficient at some point of time, practitioners realize that
in future the value of this coefficient may differ from the value for it used in the
model.

So, one worry is: how robust is the solution obtained from the model to these
changes taking place continuously over time? Estimating the optimality range for
a coefficient for optimality of the current solution is of great help in assessing this
robustness. If the interval is wide, and the current value of the coefficient is far away
from the bounds of this interval like, for example, if the interval is 1–10 and the
current value of the coefficient is 5, then one feels confident that the current opti-
mum solution is likely to remain optimum to the problem even with slight variations
in the coefficient from present value. On the other hand if current value of coeffi-
cient is close to one of the bounds on this interval, then the value of this coefficient
has to be monitored carefully, as small changes in it may lead to a new optimum
solution.
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6.13.3 Ranging a Basic Cost Coefficient

Let (6.13) be the original model for which we have an optimum basic vector xB

associated with the optimum primal BFS Nx D . Nx1; : : : ; Nxn/T and optimum dual
solution N� D . N�1; : : : ; N�m/.

Suppose the cost coefficient of a basic variable in xB , x1 say, is likely to change,
while all the other data remains fixed at present levels. Denote the cost coefficient
of x1 by c1. For what range of values of c1 does Nx remain optimal to the problem?

The simple technique used in Sect. 6.13.2 for ranging a nonbasic cost coefficient
cannot be used here, because c1 is now a basic cost coefficient, and any change in it
results in a change of the dual basic solution associated with xB .

Let c0
B denote the row vector of cost coefficients of basic variables in xB , with

that of x1 recorded as c1 and that of all others equal to their present values. Then
the dual basic solution associated with xB , as a function of c1, is �.c1/ D c0

BB�1,
where B�1 is the inverse of the basis corresponding to xB . B�1 can be read from
the inverse tableau for xB .

For nonbasic variable xj , its relative cost coefficient as a function of c1 is
Ncj .c1/ D cj � �.c1/A:j . Express the condition that each of them should be � 0.
This identifies an interval for c1, which is its optimality range.

Suppose the new value of c1 is outside its optimality range. Correct the value of
c1 in the original tableau and the dual solution in the last row of the inverse tableau
of xB . Now some nonbasic variables must be eligible to enter xB . Select one of them
to enter xB and continue applying the primal simplex algorithm until it terminates
again.

As an example, consider the optimum inverse tableau associated with the basic
vector .x1; x2; x7/ for the LP discussed in Sect. 6.12. Suppose the cost coefficient
of the basic variable x1 is likely to change from its present value of 28. Denote its
new value by c1. The dual basic solution of the basic vector xB D .x1; x2; x7/ as
a function of c1 is

�.c1/ D .c1; 67; 0/

0
@ 5 �2 0

�2 1 0
3 �1 �1

1
A D .5c1 � 134; 67 � 2c1; 0/:

So, the relative cost coefficient of a nonbasic variable xj is the dot product
of .��.c1/; 1/ with the column of xj in the original tableau. These are ( Nc3.c1/;

Nc4.c1/; Nc5.c1/; Nc6.c1// D .2c1 � 55; 35 � c1; 5c1 � 134; 67 � 2c1/. To keep all
these relative cost coefficients � 0, c1 must satisfy 55/2 � c1 �67/2, this is the
optimality range for c1.

If the new value of c1 falls outside its optimality range, xB is no

Original tableau
x1 x2 x3 x4 x5 x6 x7 �z b

1 2 0 1 �1 0 0 0 17
2 5 1 2 0 �1 0 0 36
1 1 0 3 0 0 �1 0 8

27 67 12 35 0 0 0 1 0
xj � 0 for all j ; minimize z
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Inverse tableau
Basic Inverse tableau Basic

var. values
x1 5 �2 0 0 13
x2 �2 1 0 0 2
x7 3 �1 �1 0 7
�z �1 �13 0 1 �485

longer dual feasible. Suppose this new value is 27. So, the new dual solution corre-
sponding to xB is �.27/ D (1, 13, 0). The original tableau for the modified problem
and the corrected inverse tableau wrt xB are given above.

The relative cost coefficient of x3 now D Nc3.27/ D �1, so x3 is eligible to enter
this basic vector. Select x3 as the entering variable, and continue applying the primal
simplex algorithm until it terminates again.

6.13.4 Ranging the RHS Constants

Let (6.13) be the original model for which we have an optimum basic vector xB

associated with the optimum primal BFS Nx and optimum dual solution N� .
Suppose one of the RHS constants, b1, is changing, while all the other data

remains fixed at present levels. When b1 changes, the primal basic solution cor-
responding to xB will change with it. So, in this case, the optimality range for b1 is
defined to be the set of values of b1 for which the basic vector xB remains optimal
to the problem, even though the actual optimal primal BFS changes with b1 in this
interval.

A change in b1 does not affect the dual feasibility of xB , but it does affect its
primal feasibility. So, xB remains optimal as long as it is primal feasible. Let b0
denote the new RHS constants vector with b1 left as a parameter, but all the other
entries being equal to their current values. Then, the basic vector xB remains primal
feasible if B�1b0 � 0, where B�1 is the basis inverse corresponding to xB read
from the inverse tableau. Each entry in B�1b0 is an affine function of b1, express
the condition that they must all be � 0. This determines an interval for b1, which is
its optimality range. As long as b1 is in this range, the optimum solutions are

Primal optimum

�
all nonbasic variables = 0
basic vector xB D B�1b0;

Optimum dual solution D N�;

Optimum objective value D N�b0:
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Thus in this range, the optimum dual solution remains unchanged, but the basic
variables in the primal optimum BFS, and the optimum objective value are linear
functions of b1.

As an example consider the optimum inverse tableau associated with the basic
vector .x1; x2; x7/ for the LP model discussed in Sect. 6.12. Suppose the first RHS
constant in this model, the minimum daily requirement for P1, is likely to change
from its current value of 17. Denote the new value by b1. As a function of b1, the
primal basic solution wrt the basic vector .x1; x2; x7/ is

Nonbasic variables x3; x4; x5; x6 D 0;

Basic vector

0
@

x1

x2

x7

1
A D B�1b0 D

0
@

5 �2 0

�2 1 0

3 �1 �1

1
A
0
@

b1

36

8

1
A

D
0
@

5b1 �72

�2b1 C36

3b1 �44

1
A :

For this basic solution to be primal feasible, we need 5b1 � 72 � 0, which
implies b1 � 72=5; 36 � 2b1 � 0, which implies b1 � 18; and 3b1 � 44 � 0,
which implies b1 � 44=3. The set of values of b1 satisfying all these conditions is
the interval maxf72/5, 44/3g D 44/3 � b1 � 18. This is the optimality range for b1;
for b1 in this range, the optimum solution of the problem is the one given above, the
optimum dual solution is N�= (6, 11, 0) from the inverse tableau, and the optimum
objective value is N�b0 D 6b1 C 396.

If the new value for b1 is outside its optimality range, then xB is a dual feasible
but primal infeasible basic vector for the modified model. The inverse tableau of
modified model wrt xB is obtained by changing the updated RHS vector in the
current inverse tableau wrt xB to the correct one corresponding to the new value of
b1. Starting with this, solve the modified model by the dual simplex algorithm as
discussed in Sect. 6.10.

6.13.5 Features of Sensitivity Analysis Available in Commercial
LP Software

Suppose an LP model is solved using a software package. When the model has an
optimum solution, almost all commercially available LP software packages based
on the simplex method will output: a list of the basic variables in the final optimum
basic vector, together with their values in the primal optimum BFS; the correspond-
ing dual optimum solution; the relative cost coefficients of nonbasic variables; and
usually the optimality ranges of all the cost coefficients and RHS constants.
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6.13.6 Other Types of Sensitivity Analyses

Many other types of sensitivity analysis techniques are discussed in other LP text-
books, but those discussed in this section and in Sects. 6.11 and 6.12 are the only
ones popular with practitioners using LP models for decision making. So, we will
not discuss the others.

All sensitivity analysis techniques are based on the optimality conditions for lin-
ear programs, so if the reader encounters the need for a new type of sensitivity
analysis, she/he can solve their problem using the optimality conditions.

6.14 Revised Primal Simplex Method for Solving Bounded
Variable LP Models

So far we have been discussing the primal simplex method for solving LP models
in standard form in which the only bound restrictions on the variables are the non-
negativity conditions, which are lower bound conditions. But in many real-world
applications of LP, the variables are subject to both lower and upper bound restric-
tions. The way we have been handling these twin bound restrictions on individual
variables, is to transform the lower bound condition into the nonnegativity restric-
tion, and include the upper bound restriction as a linear equality constraint in the
model by introducing the appropriate slack variable, a clumsy procedure that in-
creases the order of the basis we have to deal with.

In this section, we will discuss the bounded variable primal simplex method,
which handles the bound restrictions on individual variables separately from other
constraints, each of which involve two or more variables. In this version, all con-
straints involving two or more variables are converted into equations by introducing
the appropriate slack variables, and pivot operations are performed only on this sys-
tem of equations.

Let the bound restrictions on the decision variable xj be `j � xj � kj . If
`j D �1; kj D C1, then xj is an unrestricted variable in the model. When there
are such unrestricted variables in the model, it is possible for the set of feasible
solutions to be nonempty, but have no extreme points. As an example for this, let K

be the set of feasible solutions of the system in two variables:

� x1 C x2 � 2; x1 C x2 � 1

� In standard form this corresponds to the system: x1Cx2Cx3 D 2; x1Cx2�x4 D
1; x3; x4 � 0, x1; x2 unrestricted.

The set K is the nonempty unbounded region in R2 between the parallel lines
defined by the two equations x1 C x2 D 1 and x1 C x2 D 2. Clearly, K has no
extreme points.

However, in applications we encounter only models in which the lower bounds
`j are all finite, so we will consider only this case. In this case, it can be shown
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easily that if there is a feasible solution, then there is an extreme point solution, and
if the LP has an optimum solution, there must be an extreme point optimum. Also,
by a simple transformation, we can transform all the lower bounds on individual
variables to 0. So, we take the standard form for the bounded variable LP to be

Minimize z.x/ D cx

subject to Ax D b (6.14)

0 � x � u;

where A is an m � n matrix, whose rank we will assume D m without loss of
generality, and u > 0. Some of the entries in u D .ui / may be D 1.

Consider the case where u is finite. In this case, by introducing slack variables,
we can express the upper bound constraints x � u as x C s D u; s � 0, and convert
this into the standard form of LP discussed till now in variables x; s as

Minimize z.x/ D cx

subject to

0
BB@

A
::: 0

: : : : : :

I
::: I

1
CCA

0
@

x

: : :

s

1
A D

0
@

b

: : :

u

1
A

x; s � 0:

The column vectors of the variables s give the coefficient matrix of this problem
a special structure. The version of the primal simplex method discussed earlier for
a general LP in standard form does not take advantage of this structure, and the
special properties of the inverse of bases for it that come from this special structure.
Taking advantage of this structure, the method can be simplified and operated using
only the portions of the basis inverse corresponding to the rows of the A matrix.
We will discuss this simplified version of the primal simplex method for bounded
variable LPs in this section.

Given a feasible solution Nx D . Nxj / of (6.14), variables can be partitioned into
three sets wrt it:

xj satisfying Nxj D 0,

xj satisfying its upper bound uj is finite, and Nxj D uj ,

xj satisfying 0 < Nxj < uj .

From Chap. 4 we know that a feasible solution Nx for (6.14) is a BFS iff fA:j W j

such that 0 < Nxj < uj g is linearly independent. Using this, we can define a BFS for
(6.14) in terms of a B-N partitions (basic, nonbasic partition) of variables in x into
three sets denoted by .xB ; xL; xU /, where

� xB D vector of basic variables consisting of m variables associated with a basis
B for the coefficient matrix A

� xL D vector of nonbasic variables whose values in the basic solution are fixed at
their lower bound 0
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� xU D vector of nonbasic variables whose values in the basic solution are fixed
at their upper bound

B , the submatrix of A whose columns correspond to the basic variables in xB ,
must be a square nonsingular submatrix, that is, a basis. Given such a B-N partition
.xB ; xL; xU /, the basic solution of (6.14) corresponding to it is defined to be

. NxB ; NxL; NxU /; where NxL D 0; NxU D uU ; NxB D B�1.b � A:U uU /:

The B-N partition . NxB ; NxL; NxU / is said to be a (primal) feasible partition if it
is primal feasible, that is, if 0 � NxB � uB , (then Nx is said to be a basic feasible
solution or a BFS); otherwise it is a (primal) infeasible partition. If Nx is a BFS, it
is a

� Nondegenerate BFS if 0 < NxB < uB , that is, every basic variable in the partition
has its value in Nx strictly between its bounds

� Degenerate BFS otherwise, that is, at least one basic variable in the partition has
its value in Nx equal to its lower bound 0, or its upper bound

Some of the entries in the vector u of upper bounds may be C1, then the
corresponding variables do not have an upper bound. Let J D fj W uj < 1g,
NJ D fj W uj D C1g. Associating the dual variables �i to the i th constraint in

Ax D b and the dual variable �j for the constraint xj � uj for j 2 J , the dual of
(6.14) is

Maximize v D �b C
X
j 2J

�j uj

subject to �A:j � �j � cj ; for j 2 J

�A:j � cj for j 2 NJ
� unrestricted; �j � 0, for j 2 J ;

where � D .�i /. The CS (complementary slackness) optimality conditions for a
primal, dual pair of feasible solutions to (6.14) and its dual above are

.uj � xj /�j D 0 for all j 2 J I and xj .cj � �A:j C �j / D 0 for all j:

Using the special structure of dual constraints, dual feasibility and optimality
conditions can be stated in terms of the dual variables � D .�i / only without men-
tioning the dual variables �j explicitly. For this reason, usually � D .�i / is itself
defined as the vector of dual variables for this problem.

The dual basic solution associated with the B-N partition .xB ; xL; xU / is de-
fined so as to satisfy the CS conditions with Nx, that is, it satisfies as equations the
dual constraints corresponding to primal basic variables in xB :

�A:j D cj for j 2 NJ s. th. xj 2 xB ;

�A:j � �j D cj for j 2 J s. th. xj 2 xB ;

�j D 0 for j 2 J s. th. xj 2 xB :
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In other words, the dual basic solution associated with the partition .xB ; xL; xU /

is defined by �A:j D cj for all j such that xj is a basic variable, which in
matrix notation is �B D cB , where B is the corresponding basis and cB the
basic cost vector. Hence N� D cBB�1 is the dual basic solution associated with
the partition .xB ; xL; xU /; the same formula as for the LP in standard form in
Chap. 5.

Also, define Ncj D cj � �A:j as the relative cost coefficient of the variable xj .
Hence the definition of the dual basic solution N� implies that the relative cost coef-
ficient Ncj is 0 for all basic variables xj in xB . In fact from the dual constraints, the
dual variables �j corresponding to N� can actually be obtained from

N�j D minimumf Ncj ; 0g for all j 2 J :

This is the reason why the dual solution is stated in terms of N� only.
It can be verified that the dual basic solution N� associated with the B-N partition

.xB ; xL; xU / is dual feasible iff

Ncj

� � 0 for all j s. th. xj 2 xL;

� 0 for all j s. th. xj 2 xU :
(6.15)

These are the optimality conditions for a primal feasible B-N partition .xB ; xL;

xU /. A B-N partition .xB ; xL; xU / is optimal to (6.14) if it is both primal and dual
feasible, in this case the primal, dual basic solutions associated with it are optimum
solutions of the respective problems.

6.14.1 The Bounded Variable Primal Simplex Algorithm

To solve (6.14), this algorithm needs an initial B-N primal feasible partition. It goes
through a sequence of primal feasible partitions, each obtained by exchanging one
variable among a pair of sets in the previous partition. The objective value is mono-
tonic decreasing along the sequence. The method terminates either with an optimum
partition or one in which an unboundedness criterion (equivalently, a dual infeasi-
bility criterion) is satisfied. If all the upper bounds in the vector u D .ui / are finite,
then of course the unboundedness criterion will never be satisfied.

To initiate the primal simplex algorithm on an LP like (6.14), we make b � 0

and look for a unit basis among the columns of A. If a full unit basic vector xB is
found, let xD be the associated vector of nonbasic variables.

Nx D . NxB ; NxD/ D .b; 0/ satisfies the equality constraints Ax D b in (6.14) (be-
cause the basis corresponding to xB is the unit matrix). If it also satisfies the bounds
on xB , that is, if b � uB , then Nx is feasible to (6.14) and .xB ; xL D xD ; xU D ;/

is a primal feasible partition, and it can be used to initiate this algorithm.
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If Nx is infeasible (i.e., b 6� uB ), or if a full unit basic vector is not found, then
we move to Phase I of the bounded variable primal simplex method whose aim is to
find a primal feasible B-N partition first.

Now we will describe a general iteration in the bounded variable primal simplex
algorithm.

6.14.2 General Iteration in the Bounded Variable Primal
Simplex Algorithm

Let the current primal feasible B-N partition be .xB ; xL; xU / associated with the
basis B and BFS Nx. Let the corresponding inverse tableau be

Inverse tableau
BV Inverse Basic

values
xB B�1 0 Ng
�z � N� 1 �Nz
Partition .xB ; xL; xU /

Remember that NxB D B�1.b � A:U uU / D B�1b � B�1A:U uU D Ng. This is
what is recorded in the RHS column (“basic values” column) in the inverse tableau.

Here are the various steps in this iteration.

1. Check optimality: For all nonbasic variables xj compute Ncj D cj � N�A:j . If
the optimality criterion (6.15) is satisfied, then .xB ; xL; xU / the present parti-
tion is an optimum partition, and Nx; N� are primal and dual optimum solutions.
Terminate.

Otherwise, let E D fj W either xj 2 xL and Ncj < 0; or xj 2 xU and Ncj > 0g,
set of indices of nonbasic variables eligible to enter the basic vector xB . Go to
Step 2.

2. Select entering variable: Select a nonbasic variable xj for some j 2 E as the
entering variable, say xs . Go to Step 3.

3. Minimum ratio test: Let the updated column of the entering variable xs be NA:s D
B�1A:s D . Nais W i D 1 to m/.

Case 1. xs 2 xL : In this case we have Ncs < 0, so the objective value decreases
if the value of xs is increased from its present value of 0. Let � represent its new
value. All nonbasic variables other than xs will have their value unchanged in this
iteration. So, the new solution x.�/ as a function of � is

Nonbasics other than xs D Present value (lower/upper bound)
xs D �,
xB D Ng � � NA:s,
z D Nz C � Ncs .
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We need to make sure that xs and all the variables in xB remain within their
lower and upper bounds in the new solution. The maximum value that � can have
subject to this condition is the minimum ratio � in this step.

� D min

�
us;

�
ui � Ngi

�Nais

W i s. th. Nais < 0

�
;

� Ngi

Nais

W i s. th. Nais > 0

��
;

where Ngi ; ui represent the present value and upper bound for the i th basic variable,
i D 1 to m.

� If � D 1, z is unbounded below, terminate.
� If � D us < 1, update the basic values vector by putting � D � . Let L0 D

Lnfxsg; U 0 D U [ fxsg. With .B; L0; U 0/ as the new partition and new BFS go
back to Step 1.

� If � < us (including � D 0), make changes in the basic vector and carry out the
pivot step to update the inverse tableau, as given below in Step 4.

Examples:

Basic Upper Updated entering col.
var. value bound NA:s

xi gi ui

x1 0 40 �1 �1 �1 �1

x2 10 40 �1 �1 �1 �1

x3 20 40 0 0 0 1

x4 30 80 1 1 0 0

x5 0 80 1 �1 �1 0

x6 15 80 1 �1 �1 0

UB of entering var. 20 10 50 50

Here we give four different examples to illustrate the computation of the min-
imum ratio and determining the dropping basic variables. All variables in the
problem have 0 as their lower bound.

For all these examples, the present basic vector is xB D .x1 to x6/ and
Ng D NxB D column vector of values of the basic variables in the present BFS
D .0; 10; 20; 30; 0; 15/T (this is the second column in the above tableau), and uB D
vector of upper bounds for basic variables D .40; 40; 40; 80; 80; 80/T (this is the
third column in the above tableau).

In all the four examples, the entering variable xs is the nonbasic variable x7

whose current value in the present BFS is Nx7 D 0. We denote the new value of this
variable by the parameter � and the next B-N partition by .xB0 ; xL0 ; xU 0/.

In the first example, NA:s D A:7 D .�1; �1; 0; 1; 1; 1/T D updated column of the
entering variable xs and u7 D upper bound on x7 D 20 (these are the entries given
in the fourth column in the tableau). So, we need 0 � � � 20 to keep x7 within



6.14 Revised Primal Simplex Method for Solving Bounded Variable LP Models 361

its bounds in the next solution. Also, the values of the basic variables in the next
solution as a function of � are given by xB .�/ D .0C�; 10C�; 20; 30��; 0��;

15 � �/T D g C �.� NA:7/.
To make sure that x7 and xB stay within their bounds in the new solution, the

maximum value that � can have is minimumf20; 40; .40 � 10/; 30; 0; 15g D 0. As
the minimum ratio is 0, this is a degenerate pivot step. The entering variable x7

moves from xL to xB0 replacing the basic variable x5 from it. x5 moves to xL0 .
In the second example, NA:7; u7 are given in column 5 of the above tableau.

xB .�/ D .0 C �; 10 C �; 20; 30 � �; 0 C �; 15 C �/T D g C �.� NA:s/. So, to
keep x7; xB within bounds, the minimum ratio is minimumf10 D UB of entering
variable x7, 40, 30, 30, 80, (80 -15)g D 10. The entering variable xs D x7 moves
from xL to x0

U . There is no change in the basic vector. In this example there will
be no pivot step to perform, the only change in the inverse tableau is to change the
basic values vector to xB .10/, and the value of the nonbasic entering variable x7

from 0 to 10.
In the third example, NA:7; u7 are given in column 6 of the above tableau. So

xB .�/ D .0 C �; 10 C �; 20; 30; 0 C �; 15 C �/T . So, to keep x7; xB within
bounds, the minimum ratio is minimumf50; 40; 30; 80; .80 � 15/g D 30. The enter-
ing variable x7 moves from xL to xB0 , replacing x2 as a basic variable. x2 moves to
xU 0 . In this example, a pivot step has to be performed, and the basic values vector
changes to .30; 40; 20; 30; 30; 45/T , and the value of x2 changes to 40, its upper
bound.

In the fourth example, NA:7; u7 are given in column 7 (last column) of the above
tableau. So xB .�/ D .0 C �; 10 C �; 20 � �; 30; 0; 15/T . So, to keep x7; xB

within bounds, the minimum ratio is minimumf50; 40; 30; 20g D 20. The entering
variable x7 moves from xL to xB0 , replacing x3 as a basic variable. x3 moves to xL.
In this example a pivot step has to be performed, and the basic values vector changes
to .20; 30; 20; 30; 0; 15/T , and the value of x3 changes to 0, its lower bound. �

Case 2: xs 2 xU : In this case we will have Ncs > 0, so the objective value
decreases if the value of xs is decreased from its present value of us. So, we make
the new value of xs D us � �, leaving all other nonbasic variables at their present
values. So, the new solution x.�/ is

Nonbasics other than xs D Present value (lower/upper bound),
xs D us � �,
xB D Ng C � NA:s,
z D Nz � � Ncs.

Based on same arguments as before, in this case the minimum ratio � in this
step is

� D min

�
us;

�
ui � Ngi

Nais

W i s. th. Nais > 0

�
;

� Ngi

�Nais

W i s. th. Nais < 0

��
;

where Ngi ; ui represent the present value and upper bound for the i th basic variable,
i D 1 to m.



362 6 Revised Simplex Variants

All remaining work in this case is similar to that in Case 1.

4. Pivot step: Select as the dropping basic variable, one whose ratio ties for the
minimum in the definition of � .

(a) Replace the dropping r th basic variable in the basic vector by xs . Delete
xs from xL or xU where it is currently. Include the dropping variable in xL

or xU depending on whether it is at its lower bound 0, or upper bound, in
x.�/. This updates all sets in the B-N partition. Let .x0

B ; x0
L; x0

U / be the
new partition after these changes.

(b) x.�/ is the new BFS. Replace the basic values column in the inverse tableau
by the values of the new basic vector in x.�/.

(c) Update the inverse matrix in the inverse tableau by carrying out the pivot step
with the updated column of xs as the pivot column and row r as the pivot
row.

Begin the next iteration with the new partition and inverse tableau for it.

6.14.3 The Bounded Variable Primal Simplex Method

Consider the bounded variable LP

Minimize z.x/ D cx

subject to Ax D b (6.16)

0 � x � u;

where b � 0 and A is a matrix of order m � n and rank m. If a primal feasible B-N
partition is not available to initiate the bounded variable primal simplex algorithm
on this problem, this method goes to a Phase I whose aim is to generate a feasible
B-N partition first.

Let I denote the unit matrix of order m. To set up the Phase I problem, for each
i D 1 to m, check if there is a column A:j of A, which is D I:i and satisfies uj � bi .
In that case, make xj as the basic variable in row i .

If this process generates a full unit basic vector xB , let xL be the vector of all
nonbasic variables, then the B-L partition .xB ; xL; xU D ;/ is a primal feasi-
ble partition, which can be used to solve (6.16) with the bounded variable primal
simplex algorithm, which is called Phase II in this method.

Otherwise, introduce artificial variables associated with the missing unit vectors
to make a full unit basic vector xB . Let xL be the vector of all the other nonba-
sic original problem variables. Each artificial variable has a lower bound of 0 and
upper bound of 1. Phase I problem is the problem of minimizing the Phase I ob-
jective function w D (sum of all the artificial variables introduced), subject to these
constraints; .xB ; xL; xU D ;/ is a primal feasible B-N partition for it. Solve this
Phase I problem by the bounded variable primal simplex algorithm beginning with
this feasible partition; this is Phase I of this method. If the minimum value of w in
this method is > 0, the original model (6.16) is infeasible, terminate.
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If the minimum value of w is 0, let Nx D . Nxj / denote the BFS at the end of Phase I.
Let Ndj denote the Phase I relative cost coefficient of the original problem variable
xj at this stage for j D 1 to n. If any Ndj > 0 [ Ndj < 0], then by Phase I termination
Nxj must be 0 (i.e., xj 2 xL) [must be D uj , i.e., xj 2 xU ], and Ndj > 0 [ Ndj < 0]
indicates that xj D 0 [xj D uj ] at every feasible solution of the original problem.
So, fix such variables xj at 0 [at uj ] and delete them from further consideration in
the problem [and revise the RHS constants vector at this stage accordingly].

Now you can move to Phase II with the remaining B-N partition. Any artificial
variables in the basic vector will have their basic values always D 0 in all future
iterations and can be deleted when they leave the basic vector, and they along with
their 0 value can be ignored otherwise.

6.15 Exercises

6.1. Solve the following LPs using the revised primal simplex algorithm (both these
problems have optimum solutions).

(a) Minimize z D 3x1 C 5x2 C 6x4 C 3x5 � 4x6 � 4x7

subject to x1 C x4 � x6 � x7 D 2

x2 � x4 C x5 � x7 D 3

x3 � x5 C x6 C x7 D 1

and all xj � 0:

(b) Minimize z D 6x1 C 4x3 C 5x4 C 3x5 C x6 C 10x7

subject to x1 C x4 C x5 C x6 C x7 D 14

x2 � x5 � x7 D 5

x3 C x4 � x6 C x7 D 6

and all xj � 0:

6.2. Solve the following LPs using the revised primal simplex algorithm (in both
these problems the primal objective function is unbounded below on the set of fea-
sible solutions). Show evidence of infeasibility of the dual problems.

(a) Minimize z D 7x1 C 9x2 C 3x4 � x5 C x6 � 2x7

subject to x1 � x4 � x5 C x6 � x7 D 1

x2 C x5 C x6 � 3x7 D 5

x3 C x4 � x6 C x7 D 2

and all xj � 0:
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(b) Minimize z D 3x1 C 9x3 C 3x4 � 3x5 C 3x6 C 7x7 C x8

subject to x1 C x5 � x7 � x8 D 4

x2 � x6 C x7 � x8 D 3

x3 C x5 C x6 C x7 � x8 D 10

x4 � x5 C x6 C x8 D 6

and all xj � 0:

6.3. Solve by the revised primal simplex method (all these problems have optimum
solutions).

(a) Minimize z D �4x1 C 6x2 � 9x3 C 2x4 C 12x5 C 11x6 C 12x7

subject to x1 C x3 � x4 C x5 C 2x6 D �5

2x2 � x3 C x4 C x5 � x6 C x7 D 12

x1 � x2 C x3 � x7 D �3

and all xj � 0:

(b) Minimize z D 7x1 � 12x3 C 14x4 C 9x5 � 12x6 C 11x7

subject to � x1 C x2 C x3 � x4 C x6 C x7 D 15

x2 � x3 C x4 C x5 � x6 C 2x7 D �5

�x1 � x4 C x5 � x6 � x7 D �5

�2x1 C 2x2 � x4 C 2x5 � x6 C 2x7 D 5

and all xj � 0:

(c) Minimize z D 6x1 C 4x2 C 5x3 C 4x4 C 4x6 C 6x7

subject to x1 � x3 C x4 C x5 C x6 C x7 D 3

x1 C x2 C x3 � x5 C x6 C x7 D 6

x1 C x2 C x3 C x4 � x7 D 3

and all xj � 0:

6.4. Solve the following problems (both have optimum solutions) by the primal
revised simplex method, by setting up Phase I using the smallest number of artificial
variables. During the pivot steps of Phase I, whenever there is a tie in the min ratio
test for the dropping variable, with an artificial variable and an original problem
variable among those tied, always select an original problem variable among those
tied as the dropping variable.
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(a) Minimize z D x1 C x2 C x3 C x4 C x5

subject to x1 � x2 � x5 � 2

�x1 C x3 � x4 C 2x5 � �4

x1 � 2x2 C x3 � x4 � 0

and all xj � 0:

(b) Minimize z D 3x1 C 4x2 C 5x3 C 2x4 C x5 C 3x6 C 2x7

subject to x1 C x3 C x5 � x7 � �5

x2 C x4 � x5 C x6 � �1

x1 � x6 C x7 � 2

3x1 C x2 C x3 C x4 � x6 C x7 � 8

and all xj � 0:

6.5. Solve the following problems by the dual simplex algorithm (both are primal
feasible also).

(a) Minimize z D �2x1 � 2x2 C 10x3 C 2x4 � 3x5

�12x6 C 12x7 C 14x8 C 11x9

subject to x3 � x5 � x6 � x7 C x8 C x9 D �5

x1 C x7 � x8 � x9 D �5

x4 C x5 � x6 � x9 D 0

x2 � x5 C x6 � x8 D �10

and all xj � 0:

(b) Minimize z D �6x1 C 2x3 C 9x4 � 3x5 � 4x6 C 6x7

subject to x2 C x4 � x6 � x7 D 13

x3 � x5 C x7 D �10

x1 � x4 C x5 C x6 D �3

and all xj � 0:

6.6. Consider the LP: minimize z.x/ D cx subject to Ax � 0, x � 0. Show that
either 0 is an optimum solution of this problem or that z.x/ is unbounded below on
its set of feasible solutions.

6.7. Solve the following problems by the dual simplex algorithm (both are primal
infeasible).
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(a) Minimize z D �3x1 � 10x2 � 15x3 C 2x4 � 6x5

C14x6 � 10x7 C 20x8 C x9

subject to x1 C x5 � x7 � x8 D 4

x3 � x6 C x7 � x8 C x9 D �2

x4 � x5 C x6 C x7 C x8 D �1

x2 C 2x3 C x5 � x6 C 2x7 � x8 D �5

all xj � 0 for all j

(b) Minimize z D �4x1 C 2x2 � x3 � 3x5 C 5x6 C 2x7

subject to x1 C x4 C x5 D 1

x3 C x4 � x6 � x7 D �2

�x1 C x2 � x4 C x6 D �2

xj � 0 for all j

6.8. Solve the following LP by the Phase I, II primal simplex method. From the
final tableau at the end of Phase I, can you conclude whether there are any redundant
equality constraints in the original model?

Maximize z D x1

subject to x1 C x2 C 4x3 C x4 D 20

2x1 C x3 D 5

�7x1 C x2 C x4 D 0

x1 to x5 � 0

6.9. Solve the following LPs by the bounded variable primal simplex method f.a/

is from Dantzig and Thappa (1997), vol. 1, cited in Chap. 1g. (All have optimum
solutions.)

(a) Minimize z D 12x1 C 2x2 C 9x3

Subject to x1 C x2 C x3 D 5 and 2x1 � x3 D 2

0 � x1 � 1; x2; x3 � 0

(b) Minimize z D �2x1 C 4x2 C 7x3 C 6x4 � 3x5 C 3x6 C 6x7 C 4x8

Subject to x2 C x3 C 2x5 D 25

x2 � x3 C x4 � x7 D 4

x1 � x2 � x5 C x6 C x7 � x8 D �2

x1 to x8 � 0; and � 10
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(c) Minimize z D 9x1 C 11x2 C 11x3 C 2x4 C 11x5 C 4x6 C 5x7 C 2x8

Subject to � x1 C x3 � x4 C x5 � x7 C x8 D 15

x2 � x3 C x6 C x7 � x8 D �5

x3 � 2x4 � x6 C 2x8 D 5

0 � xj � 15 for j 2 f1; 3; 5; 6; 8gI 0 � xj � 5 for j 2 f2; 4; 7g:

6.10. For the following LPs, find a feasible solution by the bounded variable primal
simplex method (both are primal infeasible).

.a/ x2 C x3 C x4 � x5 C 2x7 D 20

x1 C x3 C x4 � x5 C x7 D 15

�x3 C x5 C x6 C x7 D 5

x1 � 21; 0 � xj � 15 for j 2 f2; : : : ; 7g:

.b/ x3 C x4 C x6 D 5

x1 C x2 C x4 � x5 C x6 D 5

2x1 C x2 C x4 � 2x5 C 2x6 D 15

0 � xj � 10 for all j :

6.11. Solve this problem by the primal simplex method. The primal is infeasible;
show that the dual objective function is unbounded above in the dual problem.

Minimize z D �2x1 � 3x2 C 10x3 C 4x4

subject to x1 C x2 � x3 C x4 � 4

x2 � x3 � 8

for all j ; xj � 0:

Do the same for the following LP: minimize �x1 � x2

subject to x1 � x2 � 4

x1 � 2 x1; x2 � 0

6.12. Solve the following LP by the revised primal simplex method. If there is a tie
for the minimum ratio in any pivot step, always select the bottommost among the
rows tied as the pivot row.
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Minimize z D �2x3 � 10x4

s. to x1 C x3 C 2x4 � 2

x2 C x3 C x4 � 4

x1 C x2 C 2x3 C 3x4 � 6

2x1 C x2 C 3x3 C 6x4 � 8

and for all j ; xj � 0:

6.13. Solve the following LP by the primal simplex method, and show that the ob-
jective function is unbounded above on its set of feasible solutions. Show that the
dual is infeasible by showing an evidence of its infeasibility.

Maximize z D x2, subject to x1 C 2x2 � 2, 2x1 C x2 � 2, �x1 C x2 � 2,
and x1 � 2x2 � 2, and x1; x2 � 0.

6.14. Consider the LP: minimize z D cx subject to a � x � b, where a; b are
given column vectors in Rn satisfying a � b, and x is the vector of variables in the
problem. Derive the optimum solution of this problem through direct arguments.
Write the dual of this problem and derive its optimum solution using the optimality
conditions.

6.15. Consider the LP: minimize z D cx subject to Ax D b; x � 0. Nx is
a nondegenerate optimum BFS for this LP, and the associated dual basic solution
is dual degenerate. Then show that the original LP must have alternate optimum
solutions.

6.16. Solve the following LP by the revised primal simplex method using Dantzig’s
entering variable choice rule in every pivot step.

min z D �x1 �10x2 Cx3

s. to �x1 Cx2 Cx4 = 2
�2x2 Cx3 Cx4 = 3

x1 Cx2 �x3 � 2
�x2 Cx3 Cx4 � 3

�x1 C2x2 �x3 = 1
xj � 0 for all j .

If the problem is infeasible, show the modification of the original RHS constants
vector b to b0 indicated by the terminal Phase I inverse tableau to make this model
feasible. Also, write the final Phase I inverse tableau for the modified problem, in-
dicating the feasible solution to it contained there.

Explain clearly how to go to Phase II from the final Phase I tableau, in order to
get an optimum solution for the modified problem. Carry out Phase II, showing all
your work clearly, and obtain an optimum solution for the modified problem.
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6.17. For the LP given below, select by inspection, an initial basic vector that is
primal feasible but dual infeasible. Solve the LP using the revised primal simplex
algorithm, beginning with this basic vector.

Then select by inspection, an initial basic vector that is dual feasible but primal
infeasible. Solve the LP using the revised dual simplex algorithm, beginning with
this basic vector.

Show that both approaches yield the same solution.

Minimize z D �3x1 � 4x2 � 4x3 C 2x4 C 6x5 � 6x6 C 8x7 � 2x8

s. to x1 C x4 � x6 C x7 C x8 D 3

x2 C x4 C x6 � x7 C 2x8 D 4

�x3 C x4 C x5 � x6 C x7 C x8 D �6

all xj � 0:

6.18. A is a skew symmetric matrix (i.e., it is square and satisfies AT D �A).
Prove that if the LP, minimize yc, subject to yA � cT , and y � 0, has an optimum
solution, then the optimum objective value in it must be 0. Here y is the row vector
of variables and c is a given column vector.

6.19. While solving the LP minimize z D cx subject to Ax D b; x � 0 by the
revised primal simplex algorithm, a basic vector xB was obtained in which xs was
selected as the entering variable. The entering column satisfied the unboundedness
criterion. Show that the information in that column can be used to construct a vector
y satisfying Ay D 0; y � 0; cy < 0.

6.20. Red Brand Canners: Red Brand Canners used to be a medium-size company
canning and distributing a variety of fruit and vegetable products in the western part
of USA in the 1960s. In one year, they signed an agreement at planting time to
purchase the entire tomato crop in a large field at an average delivered price of
6 cents/lb (these are 1960s prices).

At harvest time, Produce Inspection estimates that the total crop will be 3�106 lb,
of which 20% is expected to be Grade A and the remaining portion expected to be
Grade B.

The company makes three different tomato products, and they set the selling
prices of these products in light of the long-term marketing strategy of the company.
Forecasted demand for these products at these prices are given below.

Product SP TU VC DF
Unit = Case

Whole tomatoes 4 18 2.52 Unlimited
Tomato juice 4.5 20 3.18 50,000
Tomato paste 3.8 25 1.95 80,000
SP selling price ($/case), TU tomatoes (lb) used/case,
VC variable costs(excluding tomato costs)$/case,
DF demand forcast in cases at these prices
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The company uses a numerical scale to record the quality of both the raw produce
and prepared products. The scale runs from 0 to 10 points, higher numbers repre-
senting better quality. On this scale, Grade A tomatoes averaged 9 points/lb and
Grade B tomatoes 5 points/lb. Minimum average input quality for canned whole
tomatoes is 8 for juice 6 points/lb, and paste can be made entirely from Grade B
tomatoes.

Remember that tomatoes have already been purchased, so the tomato cost is a
fixed cost that has already been incurred by contract. The problem confronting the
company now is to decide how to allocate the purchased tomatoes among its three
tomato products.

(1) Using as decision variables the number of pounds of each grade of available
tomatoes allocated to each of the three products formulate the problem of max-
imizing the profit contribution from tomato product sales, given the posted
selling prices and fixed costs.

Solve the resulting LP model (use any available LP software to answer this
question) and find an optimum product mix and the optimum dual solution.
What is the average quality/lb of the whole tomatoes and tomato juice if the
optimum solution is implemented?

(2) The company has received an offer from another farm to sell additional quanti-
ties of Grade A tomatoes at a price of 8.5 cents/lb. Should the company accept
this offer – and if so what is the maximum quantity of these tomatoes the com-
pany can buy at this price (assuming ample production capacity at the plant)?

Find the new optimum product mix if they buy 80,000 lb of these tomatoes
from this farm.

(3) Consider the original problem in (1) again. Suppose the marketing department
feels that it can increase demand for tomato juice by 25,000 cases by starting an
advertising campaign. How much can the company pay for such a campaign?

(4) How will the optimum product mix change if selling price of tomato juice is
increased by 30 cents/case (assume no change in demand)?

(5) If another farm offers to sell 50,000 lbs of Grade B tomatoes, how much can the
company pay for this lot?

(6) The estimate of 80,000 cases of demand for tomato paste is not very firm, and it
is believed that actually this demand is likely to be between 70,000 and 90,000
cases. Suppose the company decides to apply a holding cost of $1.8/case of
tomato paste remaining unsold into next season and a penalty of $25/case for
each case of tomato paste demand that cannot be met.

Reformulate the LP model taking this uncertainty in tomato paste demand
into account, and incorporating these holding and shortage penalty costs into
account, to find a new optimum production plan.

(Source: “Red Brand Canners” Case of the Graduate School of Business at
Stanford University.).

6.21. Consider the following LP: minimize z.x/ D 3x1 C 2x2 C 5x3, subject to
x1 � x3 D 3, 3x2 C 2x3 D 12, and xj � 0 for all j .

Show that Nx D .3; 4; 0/T is an optimum solution for this LP.
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(1) Suppose the vector of original cost coefficients (3, 2, 5) is going to change, but
all the other data in this LP remains fixed at present values. Denote the new
cost vector by c D .c1; c2; c3/. Describe the set of all c for which Nx remains
optimal to the modified LP.

(2) Suppose the RHS constants vector .3; 12/T in this LP is going to change, but
all the other data in the original LP remains unchanged. Denote the new RHS
constants vector by b D .b1; b2/T . Describe the set of all b for which the basic
vector .x1; x2/ remains optimal to the modified LP.

6.22. Consider the following LP in standard form:

x1 x2 x3 x4 x5 x6 �z RHS
1 2 �1 1 2 2 0 3
0 1 1 2 1 2 0 6

�1 0 2 2 �2 1 0 5
�4 0 9 12 �3 7 1 0

xj � 0 for all j , min. z.

Also, you are given that

0
@

1 2 �1

0 1 1

�1 0 2

1
A

�1

D
0
@

�2 4 �3

1 �1 1

�1 2 �1

1
A :

(1) Using the information given, construct the inverse tableau for this problem
with respect to the basic vector .x1; x2; x3; �z/, and verify that it is an
optimum basic vector; showing all your work.

Using this inverse tableau, answer the following questions. Each of these
questions is independent of the others, and each refers to the original LP
given above.

(2) Find the range of values of b1 (whose present value is 3) for which the basic
vector .x1; x2; x3/ remains optimal to the problem. Let the lower and upper
bounds of this optimality interval be denoted by `1; u1, respectively.

(2a) In this range, `1 � b1 � u1, give an optimum solution of the LP, optimum
objective value, and the optimum dual solution, as functions of b1.

Does the problem have a marginal value vector when `1 < b1 < u1 and
all the other data in the problem remains unchanged? Why? If so give that
marginal value vector.

(2b) Assuming that the new value of b1 D .1=2/ C u1, find the new optimum
solution of the problem using sensitivity analysis techniques. Show all the
work clearly.

(2c) Instead, if the new value of b1 D .�1/ C `1, find the new optimum solution of
the problem using sensitivity analysis techniques. Show all the work clearly.

(3) Let b1 D 3, its original value. Find the range of values of c2 (whose present
value is 0) for which the solution from the original inverse tableau obtained
above remains optimal to the problem.
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Assuming that the new value of c2 is 1 C (the upper bound of the optimality
range computed above), find the new optimum solution using sensitivity anal-
ysis techniques.

6.23. A private investor has $100,000 to invest in various avenues as shown in the
table below.

Investment Code Expected Jones’s Liquidity Risk
avenue name annual return rating factor
Savings account SA 4% A Immediate 0
Cert. of deposit CD 5.2% A 5-year 0
Atlantic lighting AL 7.1% BC Immediate 25
Arkansas REIT AR 10% B Immediate 30
Bedrock insurance BI 8.2% A 1-year 20
Nocal mining NM 6.5% BC 1-year 15
Mincomp systems MS 20% A Immediate 65
Antony hotel AH 12.5% C Unknown 40

The “liquidity” gives a measure of the waiting period to convert the asset into
cash. The “risk factor” is a measure of risk in the investment developed by an ex-
perienced agency; the higher the numerical value of the factor, the more risky is the
investment.

The investor wants the expected annual return on his total investment to be
�7.5%. He wants at least 50% of his total investment to be in “A” rated investments.
To handle emergencies that may show up, he wants �40% of his total investments
to have “immediate” liquidity rating. He wants to limit his investment in SA to be
�$30,000.

Formulate the problem of finding a portfolio of investments that minimizes the
weighted risk factor (sum over avenues of risk factor multiplied by amount invested)
subject to the above constraints, as an LP. Write its dual. Solve the model using any
available software program.

Is the expected annual return constraint active at the optimum solution? What
happens to the optimum solution, and the optimum value of the weighted risk, if the
minimum expected annual return is increased from the present 7.5%?

Also, answer the following questions, each part is separate, and they all refer to
the original problem given above.

(1) Does this LP have marginal values? Why? Give the practical interpretation of
the optimum dual solution obtained.

(2) Suppose the investor wants to include an additional constraint in the model in
the form of an upper bound on the amount invested in one stock. Assuming
that stock is either SA, or AL, or MS, mention separately for each the range
of values of the upper bound in that additional constraint for which the present
optimum portfolio will continue to remain optimal.
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For each of these stocks, mention what would happen to the optimum
weighted risk measure, and annual return, if we decide to invest $10,000 more
in that stock than what is invested in that stock by the present optimum solution?
(3) Find the optimality range for the risk factors of CD, AR, and AH to maintain
the optimum solution unchanged.

Mention how the optimum solution changes if the risk factor for AH changes
to �1 C (the lower limit of its optimality range computed above).
(Problem composed by Arvind R. Sharma.)

6.24. Consider the system of linear constraints: Ax D b; x � 0, where A D .aij /

is a matrix of order m � n and b D .bi / is the present RHS constants vector. This
system has been found to be infeasible.

We want to make the system feasible by changing the RHS constants vector in
the model from the present b to a modified b0 D .b0

i / at minimum cost.
For each i D 1 to m, if b0

i > bi [b0
i < bi ], a cost of c1

i .b0
i � bi / [c2

i .bi � b0
i /]

is incurred for making the change in the i th RHS constant, where all the c1
i ; c2

i are
given positive constants. Formulate the problem of finding the b0 to replace b, which
will make the original system feasible at minimum cost.

6.25. The vector xB is a feasible basic vector obtained in the process of solving an
LP: minimize cx subject to Ax D b; x � 0 by the primal simplex algorithm. A
nonbasic variable xs has been selected as the entering variable into the basic vector
xB , and there is a tie for the minimum ratio in this step. Then show that the basic
vector obtained after this pivot step will be primal degenerate.

6.26. We are given the inverse tableau wrt a basic vector xB for the LP: minimize
z D cx, subject to Ax D b, x � 0. Clearly specify the conditions under which the
following conclusions can be drawn: (1) xB is a primal and/or dual feasible basic
vector for this problem, (2) xB is the unique optimum basic vector for this LP, (3) we
can conclude that z is unbounded below on the set of feasible solutions of this LP, (4)
xB is a primal, dual, degenerate basic vector for this LP, (5) xB is a nondegenerate
primal feasible basic vector for this LP, xs is eligible to enter the basic vector xB

in the primal simplex algorithm, and if it is chosen as the entering variable, the
next basic vector obtained will be primal degenerate, (6) xB is a nondegenerate dual
feasible basic vector for this LP, xs is eligible to be the entering variable into the
basic vector xB in the dual simplex algorithm, and the next basic vector obtained
will be dual degenerate, (7) xB is an optimum basic vector for this problem, and we
can conclude that this LP has alternate optimum solutions, (8) without doing any
further pivoting, we can conclude that the optimum objective value in this problem
is �˛ (here ˛ is a given number).

6.27. When the primal simplex algorithm is applied to solve the following LPs
beginning with the vector of slack variables as the initial primal feasible basic vector,
the “most negative Ncj ” entering variable choice rule, and the topmost eligible pivot
row choice rule in each pivot step, show that the algorithm cycles (H. Kuhn (top
problem), M. Beale (second problem)).



374 6 Revised Simplex Variants

x1 x2 x3 x4 RHS
�2 �9 1 9 � 0

1/3 1 �1=3 �2 � 0

�2 �3 1 12 D z minimize
xj � 0 for all j

x1 x2 x3 x4 RHS
1/4 �60 �1=25 9 � 0

1/2 �90 �1=50 3 � 0

0 0 1 0 � 1

�3=4 150 �1=50 6 D z minimize
xj � 0 for all j

6.28. When Phase I of the simplex method is used to solve the LP: minimize z D
cx, subject to Ax D b, x � 0, where A is an m � n matrix; at the end of Phase I
we may find that the minimum value of w D Phase I objective function is 0, but the
Phase I final basic vector obtained contains one or more artificial variables as basic
variables.

Show that one of the reasons for this to occur is when the statement of the LP
given has redundant equality constraints in it. Discuss how we can verify whether
there are redundant equality constraints in the statement of the LP given from the
final Phase I canonical tableau.

What are some other reasons for this to occur?

6.29. When a general system of linear constraints Dx D d; Ex � f has at least
one feasible solution, an inequality constraint in the system is said to be a bind-
ing inequality constraint if it holds as an equation at every feasible solution of the
system.

When Phase I of the primal simplex method is applied to find a feasible solution
of the system Ax D b; x � 0, discuss which conditions at the termination of Phase
I of the primal simplex method will lead to identifying binding inequalities in this
system. Also, when there are binding inequalities in the system, will all the binding
inequality constraints in the system be identified this way by Phase I of the primal
simplex method?

6.30. Consider the LP: minimize z D cx, subject to Ax D b; x � 0.
We know that multiplying both sides of an equality constraint in the problem by

a real number ˛ ¤ 0 or adding a nonzero multiple of one equality constraint to
another does not alter the optimum face of the LP in any way. Discuss what effects
these changes to this primal problem will have on the optimum face of the dual
problem.

6.31. Consider the LP: minimize z D cx, subject to Ax D b; x � 0.
In this system, an inequality constraint x1 � 0 is said to be a redundant in-

equality constraint if deleting it from the system of constraints does not change
the set of feasible solutions of the system. (1) Show that if x1 � 0 is a redundant
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inequality constraint in the system, then there must exist constants dj � 0 for all
j D 0; 2; � � � ; n such that x1 D d0 CPn

j D2 dj xj on the set of feasible solutions of
this problem. (2) Suppose x1 � 0 is a redundant inequality constraint in the system
of constraints of this LP. Suppose for some i , ai1 ¤ 0. Then from the i th equality
constraint in the system, we know that x1 D .bi � Pn

j D2 aij xj /=ai1 on the set of
feasible solutions of this system. Eliminate the i th equality constraint from the sys-
tem, and the variable x1 from the remaining constraints and the objective function
using the expression for it in terms of the other variables. If .x�

2 ; � � � ; x�
n/T is an

optimum solution of the remaining problem, show that x� D .x�
1 ; x�

2 ; � � � ; x�
n/T is

an optimum solution of the original problem with x�
1 D .bi � Pn

j D2 aij x�
j /=ai1.

(3) Let ..x�
2 ; � � � ; x�

n/T be an optimum solution of the remaining problem discussed
in (2) obtained by eliminating the i th equality constraint and the variable x1 from
the original LP. Even if we do not know whether x1 � 0 is a redundant inequality
constraint in the original LP or not, as long as x1 > 0 on the optimum face of the
original LP, show that x� defined in (2) is an optimum solution of the original LP.

In some applications, we can conclude from practical considerations that some
nonnegative variables in the mathematical model for the problem will be positive at
every feasible solution or at every optimum solution. We can use the above results
to reduce the size of the problem in such instances.

6.32. Consider the LP: minimize z D cx, subject to Ax D b; Dx � d , where
A; D are m � n; p � n matrices.

Suppose x� is an optimum solution of the problem: minimize z D cx, subject to
Ax D b and Di:x � di , for i D 2 to p ; obtained from the original LP by ignoring
the first inequality constraint in it. Also, suppose D1:x

� < d1. Then prove that if the
original LP has an optimum solution, it must have an optimum solution satisfying
D1:x � d1 as an equation.

6.33. Suppose we know that the LP minimize z D cx, subject to Ax D b; x � 0

has a finite optimum objective value. Now if changes are made in the model leaving
A; c unchanged, but only changing b to a new Nb, prove that the modified LP must be
either infeasible or have a finite optimum objective value also (you have to show that
under the hypothesis, z cannot be unbounded below on the set of feasible solutions
of the modified problem).

6.34. Consider the LP: minimize z D cx, subject to Ax D b; x � 0, where A is an
m � n matrix. Suppose we have a primal nondegenerate optimum basic vector xB

for this LP.
A new variable xnC1 associated with the column vector .A:nC1; cnC1/ is intro-

duced into the model. When the augmented model is solved by the primal simplex
algorithm beginning with xB as the initial primal feasible basic vector, show that
once xnC1 enters the basic vector, it never leaves it. What conclusions can you draw
if the optimum basic vector xB for the original LP is degenerate?
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6.35. The LP: minimize z D cx, subject to Ax D b; x � 0, where A is an m � n

matrix, is being solved by the primal simplex method, and at the end of Phase I, the
conclusion “this LP is infeasible” has been reached.

There are two possibilities in this case: One is that the system of linear equations
Ax D b (i.e., with the nonnegativity restrictions on the variables ignored) may itself
have no solution. The second is that the system of equations Ax D b may have a
solution, but no nonnegative solution. Discuss how the final output from Phase I of
the primal simplex method can be used to determine which of these two possibilities
occurs for our problem.

Also, under the second possibility, as Ax D b has a solution, but no nonnegative
solution, how can we use the output from Phase I to determine a small subset of
variables xj in the model such that when the nonnegativity requirement on them is
relaxed, the remaining system becomes feasible?

6.36. Consider the following LP

x1 x2 x3 x4 x5 x6 �z b

0 1 2 �3 �3 0 0 8
2 �1 �1 �1 �2 3 0 12
1 �1 �2 2 1 1 0 1
0 �1 0 5 1 10 1 0

xj � 0 for all j , min z

(1) Given the following, find the primal and dual basic solutions of this problem
wrt the basic vector .x1; x2; x3/. Check whether this basic vector is primal
and/or dual feasible. Also, construct the inverse tableau corresponding to this
basic vector, using this information.

0
@

0 1 2

2 �1 �1

1 �1 �2

1
A

�1

D
0
@

1 0 1

3 �2 4

�1 1 �2

1
A :

(2) Does this problem have alternate optimum solutions? Why? If so, find the set
of all optimum solutions for this problem. Is the set of all optimum solutions
bounded or unbounded?

(3) Suppose the cost coefficient of x5, whose present value is 1, is going to change.
Denote its new value by c5. All the other data in the problem remains un-
changed. Find the range of values of c5 for which the present optimum BFS of
this problem remains unchanged. What happens to the problem if c5 is strictly
outside this range, and why?

(4) Suppose c5 remains equal to 1, but the cost coefficient of x3 is likely to change
from its present value of 0 to c3. Find the range of values of c3 for which the
present optimum BFS of this problem remains optimal.

Beginning with the basic vector .x1; x2; x3/, find an optimum solution of
the problem if c3 changes from 0 to 9.
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(5) Suppose c5 D 1 and c3 D 0, but the second RHS constant b2 is likely to change
from its present value of 12. Find the range of values of b2 for which the basic
vector .x1; x2; x3/ remains optimal to this problem. In this range, express the
optimum primal and dual solutions as functions of the parameter b2. What is
the slope of the optimum objective value in this range?

Find the optimum solution of the problem if b2 becomes equal to 9.

6.37. A company manufactures products A to G using two types of machines
P1; P2 and three raw materials R1; R2; R3. Relevant data is given below.

Item Item input (in units) to make one unit of Max.
A B C D E F G available

per day
R1 (in units) 0.1 0.3 0.2 0.1 0.2 0.1 0.2 500
R2 0.2 0.1 0.4 0.2 0.2 0.3 0.4 750
R3 0.2 0.1 0.1 0.2 0.1 0.2 0.3 350
P1 time (mc. hrs.) 0.02 0.03 0.01 0.04 0.01 0.02 0.04 60
P2 time 0.04 0.02 0.02 0.06 0.03 0.05 80

Constraint on � 200 � 800 � 400
daily output

Profit ($/unit) 10 12 8 15 18 10 19

(a) Let x1 to x7 denote the units of products A to G in that order produced/day.
Let x8 to x12 denote the slack variables associated with the supply constraint
on R1; R2; R3; P1-time, P2-time, respectively. Let x13; x14 be the slack vari-
ables associated with the upper bound constraints on the production of B; E ,
respectively. Using these decision variables, formulate the product mix problem
to maximize total daily profit as an LP, and solve it using one of the available
software packages to obtain primal and dual optimum solutions.

(b) Verify that the optimum basic vector for this problem is .x2; x3; x4; x5; x9;

x10; x13/ with the values of the basic variables in the optimum BFS as (437.5,
1037.5, 812.5, 400.0, 48.75, 19.0, 362.5).

Let �1 to �7 denote the dual variables associated with the supply constraints
on R1; R2; R3; P1-time, P2-time, and upper bound constraint on the daily
production of B; E, respectively, in that order. Using these dual variables, write
the dual problem.

Verify that the optimum dual basic solution associated with the primal basic
vector .x2; x3; x4; x5; x9; x10; x13/ is � D (12.5, 0, 41.25, 137.5, 0, 0, 10).
Also, answer each of the following questions about the original problem.

(1) Are the marginal values of the various items well defined in this problem? If so,
what are they?
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(2) Is it worth increasing the supply of R1 beyond the present 500 units/day? The
current supplier for R1 is unable to supply any more than the current amount.
The procurement manager has identified a new supplier for R1, but that sup-
plier’s price is $15/unit higher than the current suppliers’. Should additional
supplies of R1 be ordered from this new supplier?

(3) The production manager has identified an arrangement by which 20 h/day of
either P1- or P2-time can be made available at a cost of $150/machine hour. Is
it worth accepting this arrangement, and if so for which of these machines?

(4) The sales manager would like to know the relative contributions of the various
products in the company’s total profit. What are they?

(5) The sales manager believes that product C is priced too low for a good image.
This manager claims that if the selling price of C were increased by $2/unit, the
demand for it would be 600 units/day. What is the effect of this change?

(6) The production manager claims that the manufacturing process for G can be
changed so that its need for P1-time goes down by 50% without affecting qual-
ity, demand, or selling price. What will be the effect of this change on the
optimum product mix and total profit?

(7) The production manager believes that by changing specifications, it should be
possible to make product B with 33.3% less of R1, and this would have no
effect on the saleability of this product. What will be the effect of this change
on the optimum product mix and total profit?

(8) The company’s research division has formulated a new product, H , which they
believe can yield a profit of $8–10/unit made. The input requirements to make
one unit of this product will be

Item R1 R2 R3 P1-time P2-time
Input 0.1 0.2 0.1 0.02 0.02

Is this product worth further consideration?
(9) The sales manager feels that the selling price/unit of product F can be increased

by $2 without affecting the demand for it. Would this lead to any changes in the
optimum production plan? What is the effect of this change on the total profit?

(Shearn (1984)

6.38. A fertilizer maker can produce three types of fertilizers, call them A, B, C,
using three raw materials RM-1, RM-2, RM-3. Present suppliers can supply up
to a maximum of 1,700, 500, 1,100 tons of RM-1, 2, 3/day, respectively, at prices of
$50, 70, 60/ton delivered.

Other than the raw materials cost, total all other costs for the company to make
any of the three fertilizers is $20/ton. At present selling prices for the three fer-
tilizers, company gets a net profit of $50, $50, $30/ton of fertilizers A, B, C,
manufactured.

The company wants to maximize their total net profit. The LP model for this
involving three equality constraints is the following, where x1; x2; x3 represent
the tons of A, B, C made daily, and s1; s2; s3 represent the slacks associated with
RM-1, 2, 3 supplies.
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x1 x2 x3 s1 s2 s3 b

3 2 1 1 0 0 1700
2 1 0 0 1 0 500
1 1 1 0 0 1 1100

50 50 30 0 0 0 D z, maximize
All variables � 0.

The basic vector .x2; x3; s1/ is an optimum basic vector for this problem (re-
member this is a maximization problem). The basis inverse corresponding to this
basic vector is

0
@

2 1 1

1 0 0

1 1 0

1
A

�1

D
0
@

0 1 0

0 �1 1

1 �1 �1

1
A :

(1) Compute the primal and dual basic solutions for this problem associated with
the basic vector .x2; x3; s1/, explaining very clearly how you obtained them.

Explain whether the primal and dual basic solutions computed are the unique
optimum solutions for the problem, and if so why?

Do marginal values for RM-1, 2, 3 exist in this problem? Why? What are
they?

(2) Is it worth it for the company to acquire additional supplies of RM-3? What
about RM-1? Why?

What is the maximum price in $/ton they can pay for additional supplies of
RM-3 and still break even? Explain clearly.

(3) A new type of fertilizer, D, has been formulated by the companies chemist. To
make one ton of this new fertilizer needs 1, 3, 2 tons of RM-1, 2, 3, respectively,
and the other costs will be $30/ton of D made. Explain at what selling price/ton
of D it becomes profitable to make it, explaining clearly how you obtained your
answer.

6.39. The vector xB is an optimum basic vector for an LP in standard form. Show
that if xB is primal (dual) nondegenerate, then the optimum solution of the dual
(primal) is unique. Is the converse true? Why?

6.40. The vector xB D .x1; � � � ; xm/T is an optimum basic vector for the LP: min-
imize z D cx, subject to Ax D b; x � 0, where A is a matrix of order m � n.

Suppose that all the data in the problem remains unchanged except c1, the cost
coefficient of the variable x1, which is going to decrease from its present value.
What will happen to the set of feasible solutions of the primal and dual problems,
and the optimum objective value in the dual problem as c1 decreases? Explain why.

Show that as c1 decreases from its present value, that it could reach a value Nc1,
such that if c1 decreases any more from Nc1, the objective function z is unbounded
below in the primal problem. Model the problem of finding this Nc1 as another linear
programming problem, using the dual.
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As the value of c1 varies between its present value and Nc1, can we guarantee that
xB continues to remain as an optimum basic vector for the primal? Why?

Show that the primal has an optimum basic vector containing x1 as a basic vari-
able for all values of c1 between its present value and Nc1.

6.41. (i) K is a convex polyhedron specified in its constraint representation as
K D fx W Ax � bg, where A; b are given matrices of orders m � n; m � 1

respectively. Nx 2 K is given. Discuss how we can find the smallest dimensional
face of K containing Nx and determine its dimension.

(ii) Now suppose Ox 2 P , where P is specified as the convex hull of its set of
extreme points fx1; :::; xr g. Discuss whether the smallest dimension face of P

containing Ox and its dimension can be determined efficiently in this case.

6.42. Consider the following LP in standard form. The inverse of the basis corre-
sponding to the optimum basic vector .x1; x2; x3/ for it is B�1, where B1:

1: D
. 1; �1; 0/I B�1

2: D .0; 1; �1/I B�1
3: D .0; 0; 1/.

x1 x2 x3 x4 x5 x6 �z Original RHS
1 1 1 1 2 �1 0 17
0 1 1 2 1 1 0 14
0 0 1 1 1 2 0 10

�2 �5 1 3 6 14 1 0
xj � 0 for all j , minimize z

Write the optimum solution and the optimum objective value of the primal and
the dual.

Is the optimum dual solution unique? Why?
Does this LP have a marginal value vector? If so, what is it?

(1) Suppose the RHS vector changes from the present .17; 14; 10/T to .17 C
ı1; 14 C ı2; 10 C ı3/T . Find the joint range of variation of ı1; ı2; ı3 that
keeps the basic vector .x1; x2; x3/ primal feasible.

(2) The cost coefficient of x4 whose present value is 3 is changing. Representing
its new value by c4, find its optimality range.

If the new value of c4 is �3, find the new optimum solution from the present
one showing all your work carefully.

(3) Consider the original LP again with c4 D 3 as originally given. Now suppose
the RHS constant in row 2, call it b2 (present value is 14), is changing. Find the
optimality range of b2 showing your work carefully.

In this range express the optimum solution and objective value of the prob-
lem as a function of b2.

Suppose the new value of b2 is 18. Find the new optimum solution starting
from the present one, showing all your work carefully.

6.43. Consider the LP: minimize z D cx, subject to Ax D b; x � 0, where A is
a matrix of order m � n, which is known to be nondegenerate, and has a bounded
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feasible solution set. Also, there are feasible solutions in which x1 D 0, and those
in which x1 > 0.

All the data in this LP will remain fixed, except c1, the cost coefficient of x1,
which can vary.

Show that there exists a value Oc1 for c1 such that for all c1 > Oc1, x1 D 0 (and
so is not contained as a basic variable in any optimum basic vector for this LP), and
for all c1 < Oc1 the variable x1 > 0 in every optimum solution (and hence x1 is a
basic variable in every optimum basic vector for this LP). Formulate the problem of
finding this Oc1 as an LP. (From Dantzig and Thappa, vol. 1, 1997, of Chap. 1).

6.44. Construct a numerical example of an LP in which an optimum basic vector
xB for the LP, minimize z D cx, subject to Ax D b; x � 0, where A is a matrix of
order m�n, is no longer an optimum basic vector when some of the cost coefficients
in the basic cost vector cB are decreased from their values in the original c.

6.45. Consider the following LP in standard form:

x1 x2 x3 x4 x5 x6 �z b

1 1 0 0 �3 �1 0 9
0 �1 2 �5 3 0 0 2
0 1 �1 3 �2 �1 0 1
1 �1 3 �4 8 2 1 0

xj � 0 for all j , minimize z

An optimum inverse tableau for this LP is given below.

An optimum inverse tableau
BV Inverse Nb
x1 1 �1 �2 0 5
x2 0 1 2 0 4
x3 0 1 1 0 3
�z �1 �1 1 1 �10

(1) Write an optimum dual solution. Is it the unique optimum solution of the dual
problem? Why?

(2) This LP is the model for minimizing the cost at a company. The company has
found out that they can make changes in their operations that will result in a
change in the value of b3 in the model from 1 to 2, leaving everything else
unchanged. Is this change worth carrying out? Explain clearly. If this change
comes at a price what is the maximum they can pay for it and still break even?

(3) Consider the original LP again. Find the optimality range of the RHS constant
b3 for the present basic vector .x1; x2; x3/.

Write the optimum primal and dual solutions and the optimum objective
value of this LP as a function of b3 in its optimality range.

Suppose b3 changes from 1 to 4. Find the optimum solution of the modified
problem starting with the present basic vector .x1; x2; x3/ using the revised
format (i.e., use inverse tableaus, not canonical tableaus) showing all your work.
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(4) Consider the original LP again. The company has found a new activity. This
new activity will result in a new nonnegative variable x7 in the model associated
with the column vector A:7 D .�2; �3; 1; c7/T . Find the optimality range for
c7 in which the basic vector .x1; x2; x3/ remains optimal to the new model.

Solve the new model assuming that c7 D �7, again using the revised format
starting with the present basic vector .x1; x2; x3/. Either find the new optimum
solution or an extreme half-line along which z ! �1 if it is unbounded.

6.46. Consider the bounded variable LP:

minimize z D cx

subject to Ax D b

` � x � u:

Here A is an m � n matrix, ` < u, and both ` and u are finite vectors. Write the
dual of this problem.

Looking at the dual very carefully, show that it has a feasible solution.
In fact, assume that n D 5, c D .�2; 3; 0; �8; 10/. Given only this data about the

original problem, write down a feasible solution of the dual problem.

6.47. Let A be an m � n matrix and A1:; � � � ; Am: its row vectors. Consider the
following LP:

minimize z D cx

subject to ` � Ax � u:

Here ` D .`1; � � � ; `m/ < u D .u1; � � � ; um/. There are 2m constraints in the
above LP, they are `i � Ai:x � ui for i D 1 to m. Write the dual of this LP.

(1) Looking at the constraints in the dual problem carefully, determine conditions
on A; c to guarantee that the dual is feasible.

(2) We are given a feasible solution Nx to this LP. Prove that there exists a half-line
through Nx in the feasible region of this LP, along which z ! �1 iff the rank of

the augmented matrix

0
@

A

: : :

c

1
A > rank.A/.

6.48. Consider the following LP, which we denote by .P /.

x1 x2 x3 x4 x5 x6 �z RHS
1 0 0 �1 �1 2 0 2
0 1 0 1 �2 �1 0 1
0 0 1 �2 2 �1 0 �4

�2 �1 2 1 16 1 1 0
xj � 0 for all j , min z
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Let .RP / denote the problem obtained by relaxing just the one constraint “x3 �
0” from .P /, but leaving everything else unchanged. Prove that the basic solution
of .P / corresponding to the basic vector .x1; x2; x3/ is an optimum solution of
.RP /, even though it is not an optimum solution of .P /. Using this, show that the
optimum objective value in .P / is � �13.

Solve the original problem .P / starting with the basic vector .x1; x2; x3/, using
the revised simplex format, showing all your work very clearly.

6.49. We are given the LP:

x1 x2 x3 x4 x5

2 �1 1 1 0 = 3
�3 2 �1 1 0 � �10

4 1 2 1 �1 � 3

4 �1 �1 1 2 � 15

�18 2 �1 �4 �4 D z minimize
x1; x2; x3; x4; x5 � 0, x4 unrestricted

Check whether Nx D .2; 0; 0; �1, 4/T is an optimum solution to this LP.

6.50. Consider the following LP:

x1 x2 x3 x4 x5 x6

1 0 �1 2 3 2 � 6
�2 1 3 �1 2 1 � �4

0 2 1 3 1 4 � 12
3 2 2 3 �1 �2 � 12

�2 11 22 4 9 6 D z.x/

xj � 0 for all j , minimize z.x/

It is claimed that Nx D .0; 0; 0; 4; 0; 0/T is an optimum solution of this LP.
Without actually solving this LP using an algorithm, describe how you can verify

whether the claim is true or not using the optimality conditions. Apply this proce-
dure.

Did the procedure lead to a definitive conclusion whether the claim is true or not?
Why?

In case the procedure did not lead to a definitive conclusion, write down a system
of linear constraints with the property that the claim is true iff that system has a
feasible solution.

6.51. Show that the following LP is infeasible.

max. 3x1 � 2x2 C 10x3

s. to 2x1 C 5x2 C 8x3 � 3

�3x1 C 8x2 � 13x3 � �5

x1; x2; x3 � 0:
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6.52. The following is the LP model for maximizing the net profit (gross sales �
production costs) at a company. z is the net profit function to be maximized.

x1 : : : xj : : : xn

a11 : : : a1j : : : a1n � b1

:::
:::

:::
:::

am1 : : : amj : : : amn � bm

p1 : : : pj : : : pn D z D net profit, max.
xj � 0 for all j .

For i D 1 to m, bi is the maximum quantity of raw material Ri that the present
supplier of Ri can supply daily to the company.

Write the precise definition of the marginal value of Ri in this problem and its
practical interpretation.

Given the following information, answer the questions following it:
b1 D 100 tons. Marginal value of R1 is = $10/ton. Purchase price of R1 from

present supplier = $57/ton.
How much of the available 100 tons of R1 is being used up in the optimum solu-

tion of the present model? Explain why clearly.
If a new supplier offers to provide additional quantities of R1, what is the max-

imum the company can afford to pay him per ton and still break even? Explain
clearly.

6.53. In applications, what is the most commonly used technique for converting an
infeasible system of linear constraints into a feasible one? Why?

Consider the following LP model for a problem:

min z D �x1 �x2 C2x3 Cx4 �3x5 C4x6

subject to x1 Cx3 �x4 �x6 � 5

x2 �x3 Cx4 C2x5 �x6 � 2

x1 C2x2 �x3 Cx4 C3x5 �3x6 � 11

xj � 0 for all j .

Solve this LP, selecting entering variables that would lead to pivot elements of
“1” as far as possible to keep the computation simple. If this model is infeasible,
show how the modification discussed above applies to make the system feasible.

Continue the application of the algorithm to obtain an optimum solution of the
modified problem.

6.54. Consider the following LP in standard form in which ˛; ˇ; �; ı; � are real-
valued parameters.
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x1 x2 x3 x4 x5 x6 x7 �z
1 0 0 �1 1 1 �1 0 4
0 1 0 0 � 1 �1 0 10
0 0 1 ˛ ı �1 �1 0 0
0 0 �1 ˇ 6 � 3 1 �10

xj � 0 for all j , minimize z

(1) If ˛ C ˇ � 0, ı C 6 � 0, � � 1 � 0, outline a complete proof to show that
the minimum value of z in this problem is 10. In this case write an optimum
feasible solution.

If ˛ � 0 and ˛ C ˇ < 0, show that the minimum value of z in this problem
is �1 by actually producing a set of feasible solutions along which it diverges
to �1.

(2) What conditions should the parameters �; ı satisfy for x5 to be eligible to enter
the basic vector .x1; x2; x3/ when this problem is solved by the primal simplex
algorithm and for this operation to lead to x1 as the unique dropping basic
variable? Explain very clearly.

(3) Write the parametric representation of the edge generated when x6 is selected
as the entering variable into the basic vector .x1; x2; x3/. As you move away
from the BFS corresponding to the basic vector .x1; x2; x3/ along this edge,
at what rate does the value of z change? Explain very clearly.

6.55. Consider the following LP

x1 x2 x3 x4 x5 x6 x7 �z b

1 0 0 0 �3 2 �2 0 3
0 1 0 �10 � �1 �3 0 4
0 0 1 ˇ 2 3 0 0 ˛

0 0 0 � ı � 7 1 �10

xj � 0 for all j . z to be minimized.

The entries ˛; ˇ; �; ı; �; � in the tableau are real-valued parameters. Let B1

be the basis for this problem corresponding to the basic vector xB1
D .x1; x2; x3/.

Write down the range of values of each of the parameters ˛; ˇ; �; ı; �; �, which
will make the conclusions in the following statements true (each of the following
bits is independent of the others).

(1) B1 is not a primal feasible basis for this problem.
(2) From this tableau it is possible to select an initial primal feasible basic vector

and initiate Phase II of the primal simplex method to solve this problem.
(3) B1 is a primal feasible but nonoptimal basis for this problem, but the updated

column vector of x4 indicates that this problem has no finite optimum solution.
(4) B1 is a primal feasible basis for this problem, x5 is a candidate to enter the basic

vector xB1
, and when x5 enters, x2 is the unique dropping basic variable.

(5) B1 is a primal feasible basis for this problem, x6 is eligible to be the entering
variable into the basic vector xB1

, but when x6 enters this basic vector, the
objective value remains unchanged.
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6.56. Consider the following LP

min z D �x3 C x4

s. to x1 � x2 C x3 � x4 � 6

2x1 � x2 � 14

x1 � x3 C x4 � 8

xj � 0 for all j :

Solve this problem by the revised primal simplex method using the following en-
tering and dropping variable selection rules in each pivot step: the entering variable
is the eligible xj with the smallest subscript j ; the dropping variable is chosen so
that the pivot row is always the topmost among rows eligible to be pivot rows in this
step.

Clearly explain the final conclusion from the algorithm. If the objective func-
tion is unbounded below in the problem, write the parametric representation of the
extreme half-line along which it is unbounded, write the direction vector of this
half-line, and a feasible point on the half-line where the objective function assumes
the value �10;000.

6.57. For the following LP construct the inverse tableau corresponding to the basic
vector .x1; x2; x3/.

x1 x2 x3 x4 x5 x6 �z
1 0 2 3 1 0 0 3
0 1 1 3 0 3 0 3
0 0 1 2 1 1 0 3
1 1 4 18 7 24 1 0

xj � 0 for all j , min z

Is the basic vector .x1; x2; x3/ primal feasible for this problem? Is it dual
feasible?

Solve this LP using .x1; x2; x3/ as the initial basic vector.
Suppose the cost coefficient c2 of x2 in this problem, whose present value is 1,

is likely to change, while all the other data remains fixed.
Find the range of values of c2 for which the optimum solution obtained above

remains optimal to the problem, showing all your work carefully. Also, in this op-
timality range for c2, write the optimum dual solution and the optimum objective
value as functions of c2.

6.58. Consider the following two LPs with their optimum solutions given:

x1 is an optimum solution for: minimize cx, subject to A1x D b1, x � 0

x2 is an optimum solution for: minimize 2cx, subject to A2x D b2, x � 0.

In these problems, A1
m1	n; b1

m1	1; A2
m2	n; b2

m2	1 are given matrices, and the
vector c1	n is the same in both the problems. In both these problems, the vector of
variables is x D .x1; � � � ; xn/T .



6.15 Exercises 387

Let x3 D .x1 C x2/=2, and suppose that x3 is a feasible solution of the system
of constraints A1x D b1, A2x D b2, x � 0. Then prove that x3 is an optimum
solution to the problem of minimizing cx subject to these constraints.

6.59. Consider the LP in standard form: minimize z D cx, subject to Ax D b,
x � 0, where A is a matrix of order m � n and rank m.

This problem was solved by the primal simplex method. A BFS was obtained
at the end of Phase I, and Phase II terminated with the following final canonical
tableau

Final canonical tableau
Basic x1 x2 : : : xm xmC1 : : : xn

Vars.
x1 1 0 : : : 0 Na1;mC1 : : : Na1;n

Nb1

x2 0 1 : : : 0 Na2;mC1 : : : Na2;n
Nb2

:::
:::

:::
:::

:::
:::

:::

xm 0 0 : : : 1 Nam;mC1 : : : Nam;n
Nbm

in which the unboundedness criterion is satisfied. Write a clear and complete proof
to show that the dual problem is infeasible.

6.60. Get the inverse tableau for the following problem wrt the basic vector
.x1; x2; x3/ and solve the problem using it as the initial feasible basic vector.

x1 x2 x3 x4 x5 x6 �z b

1 1 0 �5 1 1 0 14
1 0 1 �3 0 2 0 15
0 �1 2 2 0 �3 0 6

�6 �3 �2 26 �4 20 1 0
xj � 0 for all j , minimize z

6.61. Check whether Nx D .2; 3; 1; 2; 1; 0; 0/T is on an edge of the set of feasible
solutions of the following system. If it is, (1) obtain a parametric representation of
the edge and all the extreme points on it, mentioning whether each of them is primal
degenerate or not; and (2) determine whether it is bounded or not.

Also, discuss what role edges play in the simplex algorithm for solving linear
programs.

x1 x2 x3 x4 x5 x6 x7 b

1 2 8 0 1 3 �1 17
0 1 3 1 0 �1 2 8
0 1 3 �1 0 �1 �4 4

�1 2 4 0 1 2 6 9
1 0 2 0 �1 8 9 3

xj � 0 for all j
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6.62. The symbols c1	n; Am	n; Wp	n; bm	1; dp	1 denote given matrices. Con-
sider the following linear programs in variables x D .x1; : : : ; xn/T .

.1/

min cx

s. to Ax D b

x � 0

.2/

min cx

s. to W x D d

x � 0

.3/

min cx

s. to Ax D b

W x D d

x � 0

It is known that x� 2 Rn is an optimum solution to both (1) and (2).
Then, can we conclude that x� is also optimal to (3)? If so, provide a proof.

Otherwise, provide an argument why you think it may be false.

6.63. Let A be a square nonsingular matrix of order n and consider the parallel-
ogram P D fx W ` � Ax � kg where ` < k. We need to find a maximum
[minimum] area rectangle inside P [containing P ] whose sides are parallel to the
coordinate axes. Give formulations for these problems.

Also, discuss whether these problems can be solved by solving a series of LPs.
Discuss a method for solving these problems.

6.64. The vectors c; c1; c2 are given row vectors in Rn; A; W are given matrices
of order m � n; and b; b1; b2 are given column vectors in Rm. Consider the
following LPs:

.1/

min c1x

s. to Ax D b

x � 0

.2/

min c2x

s. to W x D b

x � 0

.3/

min .c1 C c2/x

s. to .A C W /x D b

x � 0

If (1) and (2) are both known to have feasible solutions, can we conclude that (3)
must have a feasible solution too? If true, give a rigorous proof; otherwise give a
clear explanation why you think it may not be true.

6.65. Consider the bounded variable LP

Minimize z D cx

s. to Ax D b

0 � x � u;

where u > 0 is a finite upper bound vector for the variables, and A is a matrix of
order m � n and rank m.

Given a feasible solution Nx to this problem, write the conditions it has to satisfy
for being an extreme point of the set of feasible solutions of this problem.
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If Nx satisfies the conditions for being an extreme point, state clearly when it is
degenerate, nondegenerate.

(2) Consider the following bounded variable LP

x1 x2 x3 x4 x5 x6 x7 �z b

1 0 0 0 �1 1 �1 0 �1

0 1 0 0 �1 �1 1 0 2
0 0 1 0 �1 0 �1 0 �2

0 0 0 1 0 1 1 0 6
�2 2 1 2 �4 2 6 1 0

min z; 0 � xj � 10 for j D 1 to 4;
0 � xj � 5 for j D 5, 6, 7

Check whether Nx D (9, 2, 8, 1, 5, 0, 5/T is an extreme point solution to this
problem.

Starting with Nx, find an optimum solution of this problem using the bounded
variable primal simplex algorithm.

For this problem, what are the marginal values of the RHS constants b1 to b4,
and u5; u6; u7, the upper bounds of x5; x6; x7? Explain carefully.

6.66. If both min fc1x W Ax D b; x � 0g and minfc2x W W x D b; x � 0g have
feasible solutions (here c1; c2 may be different vectors, and A; W may be different
matrices), can we conclude that minf.c1 C c2/x W Ax C W x D b; x � 0g also has
a feasible solution? Why?

Further, if x� is an optimal solution for the problems minfcx W Ax D b1; x � 0g
and min fcx W W x D b2; x � 0g, then can we conclude that x� is also an optimal
solution for the problem minfcx W W x D b2; Ax D b1; x � 0g? Why?

6.67. Consider the following LP involving four variables x1 to x4. Show that it is
equivalent to a two-variable LP. Using this equivalence, find its optimum solution
geometrically.

Maximize z D x1 Cx4

s. to x1 C2x3 �x4 = 1
x1 +x2 C2x4 = 2

x1, x2, x3, x4 � 0.

6.68. Verify that .x1; x2; x3/ is a unit basic vector, which is infeasible for the
following system.

Find a feasible solution to it by Phase I of the primal simplex method using only
one artificial variable.

If the system is infeasible, mention a way to modify the RHS data in the origi-
nal system to make it feasible, and write down a feasible solution of the modified
system.
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x1 x2 x3 x4 x5 x6

1 0 0 �1 0 1 �2

0 1 0 0 �1 1 �5

0 0 1 0 1 0 4
xj � 0 for all j .

6.69. Consider the following LP in standard form:

x1 x2 x3 x4 x5 x6 x7 �z b

1 0 0 �1 2 �1 �1 0 4
�1 1 0 2 �3 0 �1 0 2

1 1 1 �1 2 �3 �2 0 16
�1 �1 �1 4 2 13 16 1 0

xj � 0 for all j ; min z

The optimum inverse tableau for this problem is given below.

Basic var. Inverse tableau Basic values
x1 1 0 0 0 4
x2 1 1 0 0 6
x3 �2 �1 1 0 6
�z 0 0 1 1 16

(1) Do marginal values exist for this LP? If so, what are they? Explain.
(2) If the company has an opportunity to change only one of the RHS constants,

bi s, in the model, which bi should they change to improve objective function
further? Should they increase it or decrease it? Explain.

(3) The first RHS constant, b1, is changing from its present value of 4. Find the
range of values of b1 for which the marginal value vector found in (1) remains
unchanged.

(4) Find an optimum solution for the problem if b1 changes to 8, beginning with
the present basic vector .x1; x2; x3/.

6.70. The following LP is being solved by the bounded variable primal simplex
algorithm.

x1 x2 x3 x4 x5 x6 x7 �z b

1 1 1 �3 1 �3 1 0 �4

0 1 1 �2 1 �2 �2 0 0
0 0 1 �1 �1 �2 1 0 �7

1 2 2 �2 0 �12 �3 1 0
0 � xj � 5 for all j , min z

Here is the present BFS.
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Basic var. Inverse tableau Basic values
x1 1 �1 0 0 1
x2 0 1 �1 0 2
x3 0 0 1 0 3
�z �1 �1 0 1 �1

Nonbasics x4 D x5 D 5, nonbasics x6 D x7 D 0.

Carry out one pivot step with the entering variable as an eligible variable whose
present value is at its upper bound.

Now carry out another pivot step with the entering variable as an eligible variable
whose present value is at its lower bound.

6.71. Consider the following system of linear constraints.

x1 x2 x3 x4 x5

1 2 1 1 1 = 3
1 1 �1 1 1 = 3
1 3 1 0 2 � 5
0 0 1 0 1 � 1

xj � 0 for all j

It is required to find a feasible solution to this system. Find it using Phase I of
the simplex method. When selecting entering variables, look for an eligible one that
will lead to a pivot element of 1 as far as possible to keep arithmetic simple.

Can you conclude that certain variables must be zero in every feasible solution?
Explain clearly.

6.72. Consider the following LP

min z D �x1 �10x2 Cx3

s. to �x1 Cx2 Cx4 = 2
�2x2 Cx3 Cx4 = 3

x1 Cx2 �x3 � 2
�x2 Cx3 Cx4 � 3

�x1 C2x2 �x3 = 1

xj � 0 for all j .

Solve this problem by the revised primal simplex method using Dantzig’s enter-
ing variable choice rule in every pivot step.

If the problem is infeasible, show the modification of the original RHS constants
vector b to b0 indicated by the terminal Phase I tableau to make this model feasible.
Also, write the final Phase I tableau for the modified problem, indicating the feasible
solution to it contained there.

Explain clearly how to go to Phase II from the final Phase I tableau in order to
get an optimum solution for the modified problem. Carry out Phase II, showing all
your work clearly, and obtain an optimum solution for the modified problem.
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6.73. Consider the following two-variable LP

Maximize z D x1

subject to x1 C x2 � b1 D 4

2x1 � x2 � 2

x1 � 2

x1; x2 � 0:

Let f .b1/ denote the optimum objective value in this LP as a function of the
RHS constant b1 whose present value is 4. If you notice any redundant constraints
in this LP, do not eliminate them.

Write the dual of this LP. Solve the LP geometrically and find the optimum faces
of both the primal and dual. Does either of these problems have a unique optimum
solution?

Is there a nondegenerate optimum BFS for the primal?
Compute the ratio .f .4C�/�f .4//=�, where � is a real number of small absolute

value. Does the value of this ratio depend on whether � is � 0 or � 0?
Does this LP have a marginal value wrt b1? Why? If not, does it have positive

and negative marginal values wrt b1? What are they?
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Chapter 7
Interior Point Methods for LP

7.1 Boundary Point and Interior Point Methods

In a linear program, typically there are inequality constraints, and equality
constraints, on the variables. In LP literature, a feasible solution is known as a:

� boundary feasible solution: if it satisfies at least one inequality constraint in the
problem as an equation;

� interior feasible solution: if it satisfies all inequality constraints in the problem
as strict inequalities.

Methods for solving LPs which move along boundary feasible solutions are
called boundary point methods; and those that move only among interior feasi-
ble solutions are called interior point methods.

Variants of the simplex method discussed so far move along edges (1-dimensional
boundary faces) of the feasible region K , and hence these are classified as
1-dimensional boundary methods.

(Murty [1986 ] and Chang, Murty [1989]) developed newer methods for solving
LPs using analogs of the gravitational force. These methods introduce a spherical
ball with small radius lying completely in the interior of K , and trace the path of
its center as the drop falls under a gravitational force pulling it in the direction of
the negative gradient of the objective function to be minimized. The ball cannot
cross the boundary of K , so after an initial move it will be blocked by the face
of K that it touches; after which it will start rolling down along the faces of K of
varying dimensions. Hence the center of the ball will follow a piecewise linear de-
scent path completely contained in the interior of K , but since the drop’s radius is
small, the center remains very close to the boundary of K . Therefore these meth-
ods are essentially boundary methods. However, unlike the simplex method which
follows a path strictly along the 1-dimensional boundary of K , these methods are
higher-dimensional boundary methods.

In this chapter we will discuss interior point methods for LP whose development
is primarily fueled by the fundamental work by (Narendra K. Karmarkar [1984] of
Chapter 1) which had tremendous impact on algorithms for solving LPs. The bound-
ary methods get entangled with the combinatorial complexity of the boundary of the

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 7, c� Springer Science+Business Media, LLC 2010
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feasible region, and the amount of work needed by them to solve an LP typically
grows exponentially with the size of the problem in the worst case. Realizing this,
Karmarkar developed an interior point method, which he showed to be a polynomial
time method and claimed that it will solve large-scale LPs much faster than bound-
ary methods. This claim attracted lot of researchers to the area, and very quickly
many other such interior point methods have been developed.

We will use the abbreviation “IPM” for “interior point method” in this book.

7.2 Interior Feasible Solutions

In mathematics, if  is the set of feasible solutions of a system of linear inequality
constraints

Dx � d (7.1)

then a point Nx 2  is said to be an interior point of  iff D Nx > d . Some books refer
to interior points of  as strict feasible solutions.

The main characteristic of an interior point Nx 2  of importance to optimization
algorithms is that from Nx, one can move in any direction y a positive step length
˛ > 0 leading to Nx C˛y which is also in  . Contrast this to a boundary point Qx 2 

which satisfies the first constraint in (7.1) as an equation, i.e., D1: Qx D d1; then in
any direction y satisfying D1:y < 0, any move of positive length, however small,
will take you outside  .

If K is the set of feasible solutions of the system

Ax D b (7.2)

Dx � d

with some equality constraints, then mathematically K has no interior (i.e., no in-
terior points), and every point of K is a boundary point. A point Nx 2 K satisfying
D Nx > d is called a relative interior point of K , its characteristic property is that
in any direction y satisfying Ay D 0, one can move a positive step length while still
remaining inside K .

In linear programming, constraint systems that we have to deal with are typically
in the form (7.2), and in LP literature it has become a common practice to adopt the
definitions given in Section 7.1 for interior and boundary points, contrary to estab-
lished mathematical terminology. So, we will use these definitions in the sequel.

7.3 General Introduction to Interior Point Methods

There are many different interior point methods (IPMs) now for LP, and the lit-
erature on them is very vast. We will discuss some of the common features of all
of them.
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1. Need an initial interior feasible solution: Most IPMs need an initial interior
feasible solution to initiate the method. If an interior feasible solution to the model
is not available, the problem can be modified by introducing one artificial variable
with a large big-M cost coefficient in the objective function to be minimized, into
a Phase I problem for which an initial interior feasible solution is readily available
(exactly like the big-M Phase I modification used in the simplex method). We show
these modifications first. Suppose the problem to be solved is in the form:

Minimize cx

subject to Ax � b (7.3)

where the coefficient matrix A is of order m � n. For LPs in this form, typically
m � n. Introducing the non-negative artificial variable xnC1, the Phase I modifica-
tion of the original problem is:

Minimize cx C M xnC1

subject to Ax C exnC1 � b (7.4)

xnC1 � 0

where e D .1; : : : ; 1/T 2 Rm, and M is a positive number significantly larger
than any other number in the problem. Let x0

nC1 > max f0; b1; b2; : : : ; bmg. Then
.0; : : : ; 0; x0

nC1/T is an interior feasible solution of the Phase I modification which
is in the same form as the original problem. If the original problem has an optimum
solution, and M is sufficiently large, then the artificial variable xnC1 will be 0 at an
optimum solution of the Phase I modification.

Now suppose the original problem is in the form:

Minimize cx

subject to Ax D b

x � 0

where A is a matrix of order m � n. For LPs in this form typically n > m, and
an interior feasible solution is one which is strictly > 0. Select an arbitrary vector
x0 2 Rn, x0 > 0; generally one chooses x0 D .1; : : : ; 1/T , the n-vector of all 1’s.
If x0 happens to be feasible to the problem, it is an interior feasible solution, use
it as the interior feasible solution to initiate the algorithm. Otherwise, let A:nC1 D
b � Ax0. The Phase I modification including the non-negative artificial variable
xnC1 is:

Minimize cx C M xnC1

subject to Ax C A:nC1xnC1 D b

x; xnC1 � 0:
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It is easily confirmed that .x0; x0
nC1/, where x0

nC1 D 1 is an interior feasible
solution of the Phase I problem which is in the same form as the original problem.
Again, if the original problem has an optimum solution and M is sufficiently large,
then the artificial variable xnC1 will be 0 at an optimum solution of the Phase I
modification.

The general LP is in the form

Minimize cx

subject to Ax D b

Dx � d

To construct a Phase I modification of this model with a readily available interior
feasible solution, solve the system of linear equations Ax D b and get a solution Nx
for it. Then the Phase I modification of this model with an artificial variable xnC1 is

Minimize cx

subject to Ax D b

Dx C exnC1 � d

where e is the column vector of all 1s in Rm, assuming D is of order m � n. Let
ˇ D 1 C maxf0; di � Di: Nxg. Then . Nx; NxnC1 D ˇ/ is an interior feasible solution
for it.

Similar modifications can be made to an LP in any form, to get a Phase I modifi-
cation in the same form with an interior feasible solution.

2. All interior feasible solutions: All points obtained in the method will be in-
terior feasible solutions. Most of the methods are descent methods in the sense that
either the objective function, or some other measure of optimality strictly improves
in every iteration. Unlike the simplex method which terminates in finite time, inte-
rior point algorithms are continuous optimization algorithms that generate an infinite
sequence of solutions converging to an optimum solution.

In practice, when improvements in the objective value per iteration becomes less
than a selected tolerance, the method is terminated and the current solution taken as
an approximate optimum solution. Arguments can be made that if the approximation
is close, then an exact optimum solution can be obtained from it by some procedures
which are referred to as rounding procedures. The following theorem describes
one such rounding procedures.

Theorem 7.1. Consider the LP in standard form

Minimize z D cx

subject to Ax D b (7.5)

x � 0
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where all the data A; c; b is integer, and A is a matrix of order m � n and rank m.
Let L be the size of problem (7.5), this size is defined to be the total number of binary
digits in all the data in (7.5), it is a measure of the storage space needed to store
all the data in the problem. Mathematically, size is the measure used to measure
how large an LP with integer data is. Suppose Nx is an interior feasible solution at
which the objective value is sufficiently close to the optimum objective value of the
problem, meaning that c Nx � 2�L C (the optimum objective value in (7.5)).

Suppose you obtain a BFS of (7.5) by applying the purification routine discussed
in Section 4.7 beginning with Nx, in each step using the value of the parameter � in
the description of the purification routine in Section 4.7 as the value that leads to a
decrease in the objective value. Then the final BFS obtained in this procedure will
be an optimum BFS for (7.5).

Proof. Let B denote any square submatrix of

	
A b

c 0



: (7.6)

Clearly the determinant of B is an integer, and it can be shown that its abso-
lute value is an integer <2L=n (see Theorem 15.1, Chapter 15 in (Murty [1983] of
Chapter 2). Let .xj1

; � � � ; xjm
; �z/ be a basic vector for the system of equations

	
A 0

c 1


	
x

�z



D
	

b

0



:

Then by Crammer’s rule, the value of any basic variable in the basic solution of
this system with respect to the above basic vector is the ratio ˙.P=Q/ where P; Q

are the values of the determinants of two square submatrices of the matrix in (7.6)
and Q ¤ 0.

These results imply the objective value at any BFS of (7.5) is a ratio of the form
˙u=v where u � 0; v>0 are integers both of which are <2L. This implies that if
the objective values at two BFSs of (7.5) are different, then the difference between
them is >2�L. Since (7.5) has an optimum solution, it must have an optimum BFS.

So any BFS whose objective value is <2�LC (the optimum objective value in
(7.5)) must be an optimum BFS for (7.5). So the BFS of (7.5) obtained by applying
the purification routine discussed in Section 4.7 beginning with Nx, in each step using
the value of the parameter � that leads to a decrease in the objective value, must be
an optimum BFS of the original LP. ut

In practice 2�L is too small, but it has been noticed that the purification procedure
applied on an interior feasible solution Nx produces an optimum BFS even when the
difference between z. Nx/ and the optimum objective value is not this small.

Unfortunately, finding the linear dependence relations required in the purification
procedure take computational effort. So programmers have developed even simpler
heuristic rounding procedures that are quite successful in practice.
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3. General iteration: Each iteration of an IPM begins with the current interior
feasible solution (for the first iteration, this is the initial interior feasible solution;
for all subsequent iterations it is the final interior feasible solution at the end of the
previous iteration), and typically consists of two steps.

Step 1: Determine the search direction: This is the direction to move at the
current interior solution.

Step 2: Step length determination: Determine the step length of the move.

If the current solution is xr , the selected direction is yr , and step length is �r ,
then the final point obtained in this iteration is xrC1 D xr C �ryr ; it will be the
current solution for the next iteration. IPMs can be classified into classes by the
strategy they use for selecting the search direction in Step 1. There are two major
classes.

Class 1: In these methods the search direction is determined by the solution
of a modified approximating problem constructed around the current interior fea-
sible solution. Two of the earliest IPMs developed, the affine scaling method, and
Karmarkar’s projective scaling method belong in this class. As an example of this
class, we will discuss the affine scaling method.

Class 2: These methods work with the optimality conditions for the LP (primal
and dual feasibility and the CS conditions), and select the direction of search at the
current interior feasible to be the one obtained by applying an appropriate variant
of Newton’s method for solving systems of nonlinear equations to the system of
optimality conditions. Many of the path following IPMs belong in this class. As
an example of this class of methods, we will discuss the primal-dual path follow-
ing IPM.

The various methods differ on whether they work on the primal system only, dual
system only, or the system consisting of the primal and dual systems together; on the
strategy used to select the search direction d r ; and on the choice of the step length
fraction parameter.

To give an idea of the main strategies used by IPMs to select the search directions,
we will discuss the two most popular interior point methods.

The first is in fact the first interior point method discussed in the literature, the
primal affine scaling method (Dikin [1967]), which predates Karmarkar’s work, but
did not attract much attention until after Karmarkar made the study of interior point
methods popular. This method works on the system of constraints in the original
problem (primal) only. To get the search direction at the current interior feasible
solution xr , this method creates an ellipsoid NEr centered at xr inside the feasible
region of the original LP. Minimizing the objective function over NEr is an easy
problem, its optimum solution Nxr can be computed directly by a formula. The search
direction in this method at xr is then the direction obtained by joining xr to Nxr .

The second method that we will discuss is a central path-following primal-dual
interior point method. It works on the system of constraints of both the primal and
dual put together. In this method the search directions used are modified Newton
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directions for solving the optimality conditions. The class of path-following primal-
dual methods evolved out of the work of many authors, see the list of references in
(Roos et al. [2006], Saigal [1995], Wright [1997], Ye [1997], Meggido [1989]).

4. Observed number of iterations in practice: Consider LPs in standard form
with m constraints in n non-negative variables. The observed average number of
iterations in the simplex method to solve these problems keeps growing at a linear
or higher rate, as the problem size grows (i.e., as m, n increase). But of course each
iteration in the simplex method involves much less work than an iteration of an IPM.
In spite of this, the simplex method takes a lot of CPU time to solve large scale LPs,
when compared to IPMs.

IPMs have been observed to take much smaller number of iterations to solve LPs,
and this number grows very slowly with the size of the LP model being solved; with
the result that IPMs have gained the reputation of taking almost a constant number
of iterations even as the size of the LP grows. Now-a-days, most large scale LPs are
typically solved using software based on IPMs.

But the simplex method has some subtle advantages too. It is an ideal method
for solving small LPs by hand. The IPMs on the other hand, are not suitable for
hand computation even on small LPs. Another is that if the LP being solved has an
optimum solution, then at termination the simplex method outputs an optimum BFS
even when the LP has alternate optimum solutions. On LPs with alternate optimum
solutions, the IPMs will output a relative interior point of the optimum face and
not a BFS; to move from that point to an optimum BFS requires purification steps
which add to the computational burden. Practitioners typically seem to prefer an
optimum BFS over a relative interior point of the optimum face for implementation
in real-world applications.

For students of LP, the simplex method and the associated discussion of extreme
points and edges of the set of feasible solutions, and optimality conditions, is an
ideal way to learn about the geometry of LP, how algorithms solve them, and how
to derive useful planning information from the output of algorithms. This is why we
have discussed them in detail in this book.

7.4 Center, Analytic Center, Central Path

The analytic center, or center of a convex polytope; and the central path of a lin-
ear program, are concepts used to develop interior point methods for solving linear
programs and to analyze their convergence properties.

We will give the definitions of these concepts for convex polytopes represented
by systems of different types.

1. First consider a convex polytope (i.e., a bounded polyhedron)  represented by
a system of linear inequalities, let  D fx W v D Ax � b � 0g, where A is a matrix
of order m�n. 0 D fx W Ax > bg is its interior. In this representation of  through
a system of linear inequalities, v is the vector of slack variables associated with the
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inequality constraints. The analytic center of  in this representation is defined
as the point in  which maximizes the product of the slack variables associated
with the inequality constraints in the representation, equivalently, it is the optimum
solution of:

Maximize
mX

iD1

log vi

subject tov D Ax � b � 0 (7.7)

The analytic center of  is well defined if  is bounded and 0 ¤ ;, and in this
case the optimum solution of (7.7) is unique since  is bounded and the objective
function to be maximized is a strictly concave function.

If .x�; v�/ is an optimum solution of (7.7), then by the KKT optimality condi-
tions for it, we know that there exists a row vector y� which together with x�; v�
satisfies: y� � 0; v� � 0, and

Ax� � v� D b

y�A D 0

y�v� D e

The analytic center of  depends on the system of inequalities chosen to repre-
sent ; if redundant constraints are added to or deleted from the system, the analytic
center changes.

2. Now consider a convex polytope K represented by a system consisting of
linear equations and inequalities. Its analytic center in this representation is defined
in a similar way. For example, suppose K D fx W Ax D b; x � 0g, where A is a
matrix of order m � n and rank m. Assume that K is bounded and its set of interior
feasible solutions K0 D fx W Ax D b; x > 0g ¤ ;. Its analytic center in this
representation is the unique optimum solution of

Maximize
nX

j D1

log xj

subject to Ax D b; x � 0 (7.8)

3. The central path for an LP: Some interior point methods like the primal-
dual path following algorithms discussed later on, are based on finding a sequence
of interior feasible solutions along, or in a neighborhood of, a path called the central
path that converges to the analytic center of the optimum face of the LP. The concept
of this central path is a corner stone in the development of interior point algorithms
for LP. Consider the LP in standard form:

Minimize z.x/ D cx

subject to Ax D b; x � 0 (7.9)
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where A is a matrix of order m � n and rank m. Let t > 0 be a positive parameter,
and consider the problem

Minimize cx � t

0
@

nX
j D1

log xj

1
A

subject to Ax D b; x � 0 (7.10)

Problem (7.10) is known as the logarithmic barrier problem associated with the
original LP. It can be shown that (7.10) has a unique optimum solution for each t > 0

iff the LP (7.9) and its dual both have interior feasible solutions. Letting the column
vector y D .y1; : : : ; yn/T denote the vector of dual variables or Lagrange multipli-
ers associated with the equality constraints in (7.10), the optimality conditions for a
feasible solution of (7.10), which we will call x.t/, to be optimal to (7.10), is that
there exists a y.t/ which together with x.t/ satisfies the KKT optimality conditions
for (7.10), which are: x > 0; s > 0 and

Ax D b

�AT y � s D �cT (7.11)

Xs D te

where X denotes diag.x1; : : : ; xn/, i.e., the square matrix of order n with diago-
nal entries as x1; : : : ; xn, and all off-diagonal entries 0. It can be shown that for
all 0 < t < 1, the solution .x.t/; y.t/; s.t// of (7.11) exists and is unique iff
both (7.9) and its dual have interior feasible solutions. The trajectory traced by
.x.t/; y.t/; s.t// in terms of the parameter t > 0 is known as the primal-dual
central path for the LP (7.9), it is well defined when both this LP and its dual have
interior feasible solutions.

Let K denote the set of feasible solutions of (7.9), and assume that both (7.9)
and its dual have interior feasible solutions. We also see that if C denotes the central
path for the LP (7.9), and .x.t/; y.t/; s.t// is a point on it; then x.t/ is the analytic
center of K \ fx W cx D cx.t/g. Thus every point on the central path is the analytic
center of the intersection of K with the objective plane through that point.

7.5 The Affine Scaling Method

This method is due to (Dikin [1967]). We describe the method when the original LP
is in the following standard form:

Minimize cx

subject to Ax D b (7.12)

x � 0
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where A is of order m � n and rank m. Let x0 be an available interior feasible
solution, i.e., Ax0 D b and x0 > 0, for initiating the method. Starting with x0,
the method generates a sequence of interior feasible solutions x0; x1; : : : . We will
discuss the general step.

Strategy of the General Step

Let xr D .xr
1; : : : ; xr

n/T be the current interior feasible solution. The method creates
an ellipsoid with xr as center, inside the feasible region of the original LP. It does
this by replacing:

the non-negativity restrictions “x � 0” by “x 2 Er D fx W Pn
iD1..xi � xr

i /=

.xr
i //2 � 1g”.

Er is an ellipsoid in Rn with its center at xr . The ellipsoidal approximating
problem is then

Minimize cx

subject to Ax D b (7.13)
nX

iD1

..xi � xr
i /=.xr

i //2 � 1

It can be shown that Er � fx W x � 0g. The intersection of Er with the affine
space defined by the system of equality constraints Ax D b is an ellipsoid NEr with
center xr inside the feasible region of the original LP. See Fig. 7.1. The ellipsoidal
approximating problem given above is the problem of minimizing the objective
function cx over this ellipsoid NEr . Its optimum solution Nxr D . Nxr

j / can be computed
by a formula. Here we briefly outline the various steps that lead to this formula.

x2

Er

xr

x1

Fig. 7.1 The ellipsoid Er constructed in affine scaling method when current interior feasible
solution is xr > 0. It is inside the non-negative orthant
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1. An ellipsoid in Rn with center at a point x0 2 Rn is the set of all points
E D fx W .x � x0/T D.x � x0/ � �2g; where D is a positive definite matrix,
and � > 0. See Chapter 9 for the definition of positive definiteness of a square
matrix, and efficient methods to check whether a given square matrix is positive
definite.

The ellipsoid is completely defined by the center x0, RHS constant �2, and the
positive definite matrix D. A sphere with center x0 is a special case of the ellipsoid
E with D D I , the unit matrix; in this case � is the radius of the sphere.

2. We start with the simplest problem of this type, and progressively lead to
the ellipsoidal approximating problem above. The sphere is the simplest type of
ellipsoid, so we begin with this problem on a sphere first. Consider the problem:

Minimize z D cx

s. to .x � x0/T .x � x0/ � �2

The objective plane through x0 is fx W cx D cx0g. To obtain the optimum
solution of the above problem, move this objective plane through x0, parallel to
itself, by decreasing the RHS constant, until it reaches a position where it is touching
the sphere at one point and becomes tangent to the sphere at that point. Any further
decrease in the RHS constant will make the plane not have any contact with the
sphere. So, that touching point, which is x0 C �.�cT /=jjcjj is the optimum solution
of the above problem. See Fig. 7.2.

3. For any vector x 2 Rn, let the upper case letter X represent the diagonal
matrix in Rn	n whose diagonal entries are the entries in x, i.e., X D diag.x/. This
has become standard notation in IPM literature. Correspondingly we will denote
diag.xr/ by X r for any superscript r .

xo

x

S

cxocx

Fig. 7.2 To minimize cx on a sphere with x0 as center, move objective plane fx W cx D cx0g
parallelly, decreasing the RHS constant, until it becomes a tangent plane to sphere. The touching
point x� of the tangent plane minimizes cx on the sphere
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Let x0 > 0 be a given point. Consider the problem

Minimize z D cx

s. to .x � x0/T .X0/�2.x � x0/ � �2 (7.14)

This problem can be transformed into the problem discussed under Item 2 by the
transformation yT D eT C .x � x0/T .X0/�1, i.e., xT D .y � e/T X0 C .x0/T D
yT X0, where e 2 Rn is the column vector in Rn with all entries equal to 1. In terms
of the new variables y, the problem (7.14) is

Minimize z0 D c0y C constant

s. to .y � e/T .y � e/ � �2

where c0 D cX0.
From Step 2, we know that the optimum solution of this problem is Ny D

e C �.�c0T =jjc0jj/. So the optimum solution of (7.14) is Nx D x0 � �.X0/2cT =

.jjX0cT jj/.
4. Now consider the problem

Minimize z D cx

s. to Ax D b (7.15)

.x � x0/T .x � x0/ � �2

where A is a matrix of order m � n and full rank m, and x0 is a point in the affine
space H D fx W Ax D bg. Denoting the ball B D fx W .x � x0/T .x � x0/ � �2g,
since the center x0 of B is in H , H \ B is another ball which has center x0 and
radius �, and is totally contained in H .

Since A is of full row rank, the orthogonal projection of cT into the subspace
fx W Ax D 0g is P cT where P D I � AT .AAT /�1A, in which I is the unit matrix
of order n. P is the projection matrix corresponding to this subspace.

Verifying that cP x D cx � cAT .AAT /�1b, we see that solving (7.15) is equiv-
alent to minimizing cP x on H \ B . Using the result in Step 2, we can see that
the optimum solution of this problem is x0 � �.PcT /=jjP cT jj if P cT ¤ 0. If
P cT D 0, then c is a linear combination of row vectors of A, in this case every
feasible solution of (7.15) is optimal to it.

5. Now consider the problem

Minimize z D cx

s. to Ax D b (7.16)

.x � x0/T .X0/�2.x � x0/ � �2

where A is a matrix of order m � n and full row rank m, and x0 is a point in the
affine space H D fx W Ax D bg. See Fig. 7.3.
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cxcx cxrcx

xr

xr

Fig. 7.3 To minimize cx on the ellipsoid NEr with center xr , technique similar to that described
in Fig. 7.2 for minimizing cx on a sphere. Formulas given above compute the resulting touching
point with NEr that minimizes cx on it

As in Step 3, using the transformation of variables yT D eT C.x�x0/T .X0/�1,
i.e., xT D .y � e/T X0 C .x0/T D yT X0, the problem becomes

Minimize z D cX0y C constant

s. to AX0y D b (7.17)

.y � e/T .y � e/ � �2

in terms of the new variables y, using the facts that x0 2 H , and .X0/T D X0

since X0 is diagonal. From Step 4, we know that the optimal y for this prob-
lem is e � �.P0X0cT /=.jjP0X0cT jj/ where P0 D I � X0AT .A.X0/2AT /�1AX0

is the projection matrix, if P0X0cT ¤ 0. If P0X0cT D 0, then cX0 is a lin-
ear combination of row vectors in AX0, i.e., c is a linear combination of rows
in A, then every feasible solution is optimal to (7.16). So, an optimal x to this
problem is X0 � (optimal y to (7.17)) D X0.e � �.P0X0cT /=.jjP0X0cT jj// D
x0 � �.X0P0X0cT /=.jjP0X0cT jj/.

Applying the result in Step 5 to the ellipsoidal approximating problem (7.13), we
see that its optimum solution is:

Nxr D xr � ŒX rPrX rcT 
=.jjPrX rcT jj/ D xr � Œ.X r /2sr 
=.jjX rsr jj/

where jj:jj indicates the Euclidean norm, and

X r D diag.xr
1; : : : ; xr

n/, the diagonal matrix of order n with diagonal entries
xr

1; : : : ; xr
n and off-diagonal entries 0

I D unit matrix of order n

Pr D .I � X rAT .A.X r/2AT /�1AX r/, a projection matrix
yr D .A.X r/2AT /�1A.X r /2cT , known as the tentative dual solution corre-

sponding to the current interior feasible solution xr

sr D cT � AT yr , tentative dual slack vector corresponding to xr .
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The reason to call sr the tentative dual slack vector, is that it can be shown to
converge to the slack vector corresponding to an optimum dual solution for (7.12)
under certain conditions. We have the following theorem:

Theorem 7.2. Let xr be the current interior feasible solution of (7.12), and Er D
E.xr / D fx W Pn

iD1..xi � xr
i /=.xr

i //2 � 1g. Then Er � fx W x � 0g. So, NEr D
fx W Ax D b; x 2 Erg � K . If Nxr D . Nxr

j /, an optimum solution for the problem:
minimize cx subject to x 2 fx W Ax D b; x 2 Erg is a boundary feasible solution
of K , i.e., Nxr

j D 0 for at least one j D 1 to n; then Nxr is an optimum solution of

(7.12), and yr D .A.X r/2AT /�1A.X r /2cT is an optimum dual solution.

Proof. Let x D .xj / 2 Er . Suppose there is a j such that xj < 0 in this vector x.
As xr > 0, we have xr

j > 0. So, we see that if xj < 0, then jxj � xr
j j > xr

j ; or
.jxj � xr

j j=xr
j / > 1; which implies that x 62 Er , a contradiction. So, Er � fx W

x � 0g.
From the formulae given above, we verify that PrX rcT D X r.I � AT .A.X r /2

AT /�1A.X r/2/cT D X r .cT � AT yr / D X rsr , and Nxr D xr � .X r/2sr=jjX rsr jj.
Since xr

j > 0, the fact that Nxr
j D xr

j � ..xr
j /2sr

j =jjX rsr jj/ D 0, implies that
xr

j sr
j D jjX rsr jj. Thus xr

i sr
i D 0 for all i ¤ j . Since xr

i > 0, we see that sr
i D 0

for all i ¤ j . Since xr
j > 0, xr

j sr
j D jjX rsr jj implies that sr

j � 0. Therefore from

sr D c � AT yr , we see that yr is dual feasible, and sr is the corresponding dual
slack vector; and that Nxr ; yr together satisfy the CS optimality conditions for (7.12)
and its dual respectively. Since they are also primal, dual feasible, respectively, they
are optimum solutions to (7.12), its dual, respectively. See Fig. 7.4. ut
Theorem 7.3. Let xr be the current interior feasible solution of (7.12), and sr the
tentative dual slack vector in this step. If sr � 0, then the objective function is
unbounded below in the original problem (7.12).

Proof. Let x.�/ D xr � �.X r /2sr . Since sr � 0, we see that x.�/ � 0 for all
� � 0; and it can also be verified that Ax.�/ D b for all �. This implies that x.�/

is a feasible solution of (7.12) for all � � 0.
Then cx.�/ D cxr ��c.X r /2sr D cxr ��cX rPrX rcT D cxr ��jjPrX rcT jj2.

So, the coefficient of � here is < 0, which implies that cx.�/ ! �1 as � ! 1.

Fig. 7.4 If the point Nxr

minimizing cx on NEr is a
boundary point of K , then Nxr

is in the optimum face for
minimizing cx on K

cxrcx

x r

x rEr

K
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So fx.�/ W � � 0g is a half-line in K along which z.x/ D cx ! �1, so z.x/ is
unbounded below on K in this case. ut

So, if the conditions in either Theorem 7.2, or Theorem 7.3 are satisfied, the al-
gorithm terminates with the appropriate conclusion. If these termination conditions
are not satisfied, then the search direction at xr is

d r D Nxr � xr D �..X r/2sr /=.jjX rsr jj/

is known as the primal affine scaling direction at the primal interior feasible
solution xr . Since both xr ; Nxr are feasible to the original problem, we have
Axr D A Nxr D b, hence Ad r D 0. So, d r is a descent feasible direction for the pri-
mal along which the primal objective value decreases. The maximum step length �r

that we can move from xr in the direction d r is the maximum value of � that keeps
xr

j C �d r
j � 0 for all j . It can be verified that this is

1 if sr � 0 (this leads to the unboundedness condition stated above); and
if sr 6� 0 it is equal to

�r D minf.jjX rsr jj/=.xr
j sr

j /: over j such that sr
j > 0g.

It can be verified that �r D 1 if Nxr
j D 0 for some j (in this case Nxr is an optimum

solution of the original LP as discussed above). Otherwise �r > 1. In this case the
method takes the next iterate to be xrC1 D xr C ˛�rd r for some 0 < ˛ < 1.
Typically ˛ D 0:95 in implementations of this method. This ˛ is the step length
fraction parameter. See Fig. 7.5. Then the method moves to the next step with
xrC1 as the current interior feasible solution. Here is a summary statement of the
general step in this method for solving (7.12).

General Step

Substep 1: Let xr D .xr
1; : : : ; xr

n/T be the current interior feasible solution of
the problem. Let X r D diag.xr

1; : : : ; xr
n/.

Substep 2: Compute:

the tentative dual solution yr D .A.Xr /2AT /�1A.Xr /2cT ,

the tentative dual slack sr D ct � AT yr ,

and the primal affine scaling search direction at xr which is dr D �..Xr /2sr /=.jjXr sr jj/.

Fig. 7.5 If Nxr minimizing cx

on NEr with center xr , is an
interior feasible solution, the
affine scaling method uses the
direction joining xr with Nxr

as descent direction at xr .
The bottom point is the
output of this descent step,
with which the next iteration
is initiated

K

cxrcx

x
xrEr

xr
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If sr � 0, fxr C �d r W � � 0g is a feasible half-line for the original problem
along which the objective function cx ! �1 as � ! C1, terminate.

Substep 3: If sr 6� 0, compute the maximum step length that we can move from
xr in the direction d r , this is the maximum value of � that keeps xr

j C �d r
j � 0

for all j . It is �r D minf.jjX rsr jj/=.xr
j sr

j /: over j such that sr
j > 0g. If �r D 1,

xr C d r is an optimum solution of the original LP, terminate.
Otherwise let xrC1 D xr C ˛�rd r for some 0 < ˛ < 1 (typically ˛ D 0:95).

With xrC1 as the current interior feasible solution, go to the next step.

Under some minor conditions it can be proved that if the original problem has an
optimum solution, then the sequence of iterates xr converges to a strictly comple-
mentary optimum solution, and that the objective value cxr converges at a linear or
better rate. Also if the step length fraction parameter ˛ is <2=3, then the tentative
dual sequence yr converges to the analytic center of the optimum dual solution set.
For proofs of these results and a complete discussion of the convergence properties
of this method see (Saigal [1995]). So far this method has not been shown to be a
polynomial time method.

Versions of this method have been developed for LPs in more general forms
like the bounded variable form, and the form in which the LP consists of some
unrestricted variables too. When the original LP has unrestricted variables, instead
of an ellipsoid, the method creates a hyper-cylinder with an elliptical cross section
inside the feasible region centered at the current interior feasible solution. The point
minimizing the objective function over this hyper-cylinder can also be computed
directly by a formula, and other features of the method remain essentially similar to
the above.

A version of this method that works on the constraints in the dual problem only
(instead of those of the primal) has also been developed, this version is called the
dual affine scaling method. There is also a primal-dual affine scaling method
that works on the system consisting of both the primal and dual constraints together,
search directions used in this version are based on Newton directions for the system
consisting of the complementary slackness conditions. See (Saigal [1995]) for a
complete discussion of all these versions of the affine scaling method with complete
proofs of results that can be achieved using them.

7.6 Newton’s Method for Solving Systems
of Nonlinear Equations

We will now discuss a classical method for solving a square system of nonlinear
equations in variables x D .x1; � � � ; xn/T . “Square system” means that the number
of equations in the system to be solved is the same as the number of variables. The
method is called “Newton’s method,” also as “Newton-Raphson method for solving
a system of n equations in n unknowns” in the literature. Consider the system

f .x/ D .f1.x/; � � � ; fn.x//T D 0 (7.18)
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where each of the functions fi .x/ for i D 1 to n is continuously differentiable. The
celebrated Newton’s method is the most widely used method to solve this system of
equations. Let

rf .x/ D the Jacobian matrix of f .x/ at x

D square matrix with i th row D row vector of partial

derivatives of fi .x/

D
	

@fi .x/

@xj

W i D 1; : : : ; nI j D 1; : : : ; n



:

Let x0 be the initial point with which the method is initiated. It generates a se-
quence of points x0; x1; x2;. . . using the iterative formula

xrC1 D xr � .rf .xr //�1f .xr /

for r D 0, 1, . . . , assuming that .rf .xr //�1 exists.
If for some r , .rf .xr // is singular, and jjf .xr /jj is larger than the specified

tolerance for it, the method is unable to proceed further. Under some mild conditions
on the functions in f .x/, and the initial point x0, the method can be proved to
converge to a solution of the system (7.18). Among several books, (Saigal [1995],
Dennis and Schnabel [1983], Fletcher [1981], Murty [1988] of Chapter 2, Ortega
and Rheinboldt [1970]) discuss these results in detail.

At the point xr , if rf .xr // is nonsingular, then the direction �.rf .xr //�1f .xr /

is called the Newton search direction. Newton’s method takes step lengths of 1 in
these directions.

Several modifications have been proposed to remedy the situation when the
Jacobian matrix turns out to be singular at a point obtained in the sequence;
these methods are typically called modified Newton methods. We have discussed
Newton’s method here because the primal-dual path following methods for LP dis-
cussed in Section 7.7 use Newton or modified Newton directions.

7.7 Primal-Dual Path Following Methods

The central path-following primal-dual IPMs are some of the most popular methods
for LP in software implementations at present. They consider the primal LP:

minimize cT x, subject to Ax D b; x � 0;
and its dual in which the constraints are: AT y C s D c; s � 0;

where A is a matrix of order m � n and rank m. The system of primal and dual
constraints put together is:

Ax D b

AT y C s D c (7.19)

.x; s/ � 0
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A feasible solution .x; y; s/ to (7.19) is called an interior feasible solution if
.x; s/ > 0. Let F denote the set of all feasible solutions of (7.19), and F0 the set of
all interior feasible solutions. For any .x; y; s/ 2 F0 define X D diag.x1; : : : ; xn/,
the square diagonal matrix of order n with diagonal entries x1; : : : ; xn; and S D
diag.s1; : : : ; sn/.

For each j D 1 to n, the pair .xj ; sj / is known as the j th complementary pair of
variables in these primal, dual pair of LPs. The complementary slackness conditions
for optimality in this pair of problems are: the product xj sj D 0 for each j D 1
to n; i.e., XSe D 0 where e is a vector of all 1s. Since each product is � 0, these
conditions are equivalent to xT s D 0.

The Central Path

As defined in Section 7.4, the central path, C for this family of primal-dual path-
following methods is a curve in F0 parametrized by a positive parameter � > 0. For
each � > 0, the point .x� ; y� ; s� / 2 C satisfies: .x� ; s� / > 0 and

AT y� C s� D cT

Ax� D b

x�
j s�

j D �; for all j D 1; : : : ; n

If � D 0, the above equations define the optimality conditions for the LP, shown
below in (7.20) (these are obtained by setting � D 0 in the above system). For
each � > 0, the solution .x� ; y� ; s� / is unique, and as � decreases to 0 the
central path converges to the center of the optimum face of the primal, dual pair
of LPs.

Optimality Conditions

From optimality conditions, solving the LP is equivalent to finding a solution
.x; y; s/ satisfying .x; s/ � 0, to the following system of .2n C m/ equations
in .2n C m/ unknowns:

F.x; y; s/ D

2
64

AT y C s � c

Ax � b

XSe

3
75 D 0 (7.20)

This is a nonlinear system of equations because of the last equation.
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Selecting the Directions to Move

Let the current interior feasible solution be . Nx; Ny; Ns/. So, . Nx; Ns/ > 0. Also, the
variables in y are unrestricted in sign in the problem.

Primal-dual path-following methods try to follow the central path C with � de-
creasing to 0. For points on C, the value of � is a measure of closeness to optimality,
when it decreases to 0 we are done. Following C with � decreasing to 0 keeps all the
complementary pair products xj sj equal and decreasing to 0 at the same rate.

However, there are two difficulties for following C. One is that it is difficult to
get an initial point on C with all the xj sj equal to one another; the second is that C
is a nonlinear curve. At a general solution .x; y; s/ 2 F0, the products xj sj will

not be equal to each other, hence the parameter � D
�Pn

j D1 xj sj

�
=n D xT s=n,

the average complementary slackness violation measure, is used as a measure of
optimality for them. Since path-following methods cannot exactly follow C, they
stay within a loose but well-defined neighborhood of C while steadily reducing the
optimality measure � to 0.

Staying explicitly within a neighborhood of C serves the purpose of excluding
points .x; y; s/ that are too close to the boundary of f.x; y; s/ W x � 0; s � 0g, to
make sure that the lengths of steps towards optimality remain long.

To define a neighborhood of the central path, we need a measure of deviation
from centrality, this is obtained by comparing a measure of deviation of the various
xj sj from their average � to � itself. This leads to the measure

.jj.x1s1; : : : ; xnsn/T � �ejj/=� D .jjXSe � �ejj/=�

where jj:jj is some norm. Different methods use neighborhoods defined by different
norms.

A parameter � is used to define a bound for this measure when using the
Euclidean norm. A commonly used neighborhood based on the Euclidean norm
jj:jj2, called the 2-norm neighborhood, defined by

N2.�/ D f.x; y; s/ 2 F0 W jjXSe � �ejj2 � ��g

for some value of the parameter � 2 .0; 1/. Another commonly used neighborhood
based on the 1-norm is the N�1.�/ defined by

N�1.�/ D f.x; y; s/ 2 F0 W xj sj � ��; j D 1; : : : ; ng

parametrized by the parameter � 2 .0; 1/. This is a one-sided neighborhood that
restricts each product xj sj to be at least some small multiple � of their average �.
Typical values used for these parameters are � D 0:5, and � D 0:001. By keeping
all iterates inside one or the other of these neighborhoods, path-following methods
reduce all xj sj to 0 at about the same rates.
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Since the width of these neighborhoods for a given � depends on �, these neigh-
borhoods are conical (like a horn), they are wider for larger values of �, and become
narrow as � ! 0.

Once the direction to move from the current point . Nx; Ny; Ns/ is computed, we
may move from it only a small step length in that direction, and since . Nx; Ns/ > 0

such a move in any direction will take us to a point that will continue satisfying
.x; s/ > 0. So, in computing the direction to move at the current point, the non-
negativity constraints .x; s/ � 0 can be ignored. The only remaining conditions
to be satisfied for attaining optimality are the equality conditions (7.20). So the
direction finding routine concentrates only on trying to satisfy (7.20) more closely.

Ignoring the inactive inequality constraints in determining the direction to move
at the current point is the main feature of barrier methods in nonlinear program-
ming; hence these methods are also known as barrier methods.

Equation (7.20) is a square system of nonlinear equations 2n C m equations in
2n C m unknowns; it is nonlinear because the third condition in (7.20) is nonlinear.
Experience in nonlinear programming indicates that the best directions to move
in algorithms for solving nonlinear equations are either the Newton direction, or
some modified Newton direction, as discussed in Section 7.6. So, this method uses a
modified Newton direction to move. To define that, a centering parameter � 2 Œ0; 1


is used. Then the direction for the move denoted by .4x; 4y; 4s/ is the solution
to the following system of linear equations

0
@

0 AT I

A 0 0

S 0 X

1
A
0
@

4x

4y

4s

1
A D

0
@

0

0

�XSe C ��e

1
A (7.21)

where 0 in each place indicates the appropriate matrix or vector of zeros, I the unit
matrix of order n, and e indicates the column vector of order n consisting of all 1s.

If � D 1, the direction obtained will be a centering direction, which is a Newton
direction towards the point .x�; y�; s�/ on C at which the products xj sj of all
complementary pairs in this primal, dual pair of problems are D �. Moving in the
centering direction helps to move the point towards C, but may make little progress
in reducing the optimality measure �. But in the next iteration this may help to
take a relatively long step to reduce �. At the other end the value � D 0 gives the
standard Newton direction for solving (7.20). Many algorithms choose � from the
open interval .0; 1/ to trade off between twin goals of reducing � and improving
centrality.

We will now describe two popular path-following methods.

The Long-Step Path-Following Algorithm (LPF)

LPF generates a sequence of iterates in the neighborhoodN�1.�/, which for small
values of � (e.g. � D 0:001) includes most of the set of interior feasible solutions
F0. The method is initiated with an .x0; y0; s0/ 2 F0. In each step the method
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chooses the centering parameter � between two selected limits �min; �max where
0 < �min < �max < 1. The neighborhood defining parameter � is selected from
.0; 1/. Here is the general step in this algorithm.

General Step k

Let .xk ; yk ; sk/ be the current interior feasible solution, and �k D .xk/T sk=n

the current value of the optimality measure corresponding to it. Choose �k 2
Œ�min; �max
. Find the direction .4xk; 4yk; 4sk/ by solving

0
@

0 AT I

A 0 0

Sk 0 Xk

1
A
0
@

4xk

4yk

4sk

1
A D

0
@

0

0

�XkSke C �k�ke

1
A (7.22)

Find ˛k D the largest value of ˛ 2 Œ0; 1
 such that .xk ; yk; sk/C˛.4xk ; 4yk ;

4sk/ 2 N�1.�/.
Setting .xkC1; ykC1; skC1/ D .xk ; yk ; sk/ C ˛k.4xk; 4yk; 4sk/ as the

new current interior feasible solution; go to the next step.

The Predictor-Corrector Path-Following Method (PC)

Path-following methods have two goals, one to improve centrality (closeness to the
central path while keeping optimality measure unchanged), and the other to decrease
the optimality measure �. The PC method takes two different steps alternately to
achieve each of these twin goals. The PC uses two N2 neighborhoods nested one
inside the other. They are N2.�1/; N2.�2/ for selected 0 < �1 < �2 < 1. For
example �1 D 0:25; �2 D 0:5. In some versions of this method values of � larger
than 1 are also used successfully.

Every second step in this method is a “predictor” step, its starting point will be in
the inner neighborhood. The direction to move in this step is computed by solving
the system (7.22) corresponding to the current solution with the value of � D 0. The
step length in this step is the largest value of ˛ that keeps the next point within the
outer neighborhood. The gap between the inner and outer neighborhoods is wide
enough to allow this step to make significant progress in reducing �.

The step taken after each predictor step is a “corrector” step, its starting point
will be in the outer neighborhood. The direction to move in this step is computed
by solving the system (7.22) corresponding to the current solution with the value of
� D 1. The step length in this step is ˛ D 1, which takes it back inside the inner
neighborhood to prepare for the next predictor step.

It has been shown that the sequence of interior feasible solutions obtained in this
method converges to a point in the optimum face. All these path-following methods
have been shown to be polynomial time algorithms.

Each step of these interior point methods requires a full matrix inversion, a fairly
complex task in solving large-scale problems. This involves much more work than a
step of the simplex method. But the number of steps required by these interior point
methods is smaller than the number of steps needed by the simplex method.



414 7 Interior Point Methods for LP

7.8 Summary of Results on the Primal-Dual IPMs

Here we summarize the results on the solutions obtained in primal-dual IPMs, and
related results. We consider the following primal, dual LPs; (7.23) is the primal, and
(7.24) is the dual.

Minimize z.x/ D cx

subject to Ax D b (7.23)

x � 0

Maximize v.�/ D �b

subject to �A C Nc D c (7.24)

Nc � 0

where x D .x1; : : : ; xn/T ; � D .�1; : : : ; �m/; Nc D . Nc1; : : : ; Ncm/, A is a matrix
of order m � n and rank m; and c D .c1; : : : ; cn/, b D .b1; : : : ; bm/T . If x� D
.x�

j /; .�� D .��
i /; Nc� D . Nc�

j // are primal, dual solution pairs; they are optimal to
the respective problems iff Nx�

j Nc�
j D 0 for all j . For j D 1 to n, .xj ; Ncj / are the

various complementary pairs in this primal, dual pair of LPs.
We assume that this primal, dual pair of LPs both have optimum solutions. For

any vector y D .yj / � 0, we denote �.y/ D fj W yj > 0g, the index set of positive
components in y.

1. Strictly complementary optimum solution pairs: There exists at least one
optimum pair x�; .��; Nc�/ that is strictly complementary, i.e., satisfying the prop-
erty that in every complementary pair .x�

j ; Nc�
j / exactly one quantity is 0, and the

other is strictly positive. In other words, �.x�/; �. Nc�/ satisfy: �.x�/ \ �. Nc�/ D ;,
and �.x�/ [ �. Nc�/ D f1; : : : ; ng (see Ye [1992], Mehrotra and Ye [1993] for
proofs).

Also, the sets �.x�/; �. Nc�/ for a strictly complementary optimum solution pair
are invariant; i.e., if .x�; .��; Nc�//, . Ox; . O�; ONc// are two strictly complementary
optimum solution pairs, then �.x�/ D �. Ox/, and �. Nc�/ D �. ONc/: So, we will denote
these sets for strictly complementary optimum solution pairs by �� D �.x�/, and
N�� D �. Nc�/ D f1; : : : ; ngn�.x�/, in the sequel.

2. If Qx; . Q�; QNc/ is any optimum solution pair for this primal, dual pair of LPs,
then �. Qx/ � �� and �. QNc/ � N��.

Therefore, given any strictly complementary optimum solution pair, then the op-
timum faces of the two problems are:

� 	P D Optimum face of the primal D fx W Ax D b; x � 0; xj D 0 for all
j 2 N��g.

� 	D D Optimum face of the dual D f� W �A C Nc D c; Nc � 0; Ncj D 0 for all
j 2 ��g.
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3. When (7.23) is solved by the primal-dual path following algorithms, let
xk ; .�k; Nck/ be the kth solution in the sequence generated. Then maxfxk

j ; Nck
j g > �

for all k, where � is a fixed positive number independent of k, the iteration count.
Also, let �k D fj W xk

j � Nck
j g. Then for all k sufficiently large we will have

�k D ��. See Ye [1992], Mehrotra and Ye [1993] for proofs of these results. So,
these algorithms converge to a strictly complementary optimum solution pair.

4. As in 3, let xk ; .�k ; Nck/ be the kth solution in the sequence generated, and
let �k D fj W xk

j � Nck
j g.

Let B be the matrix consisting of columns A:j for j 2 �k , and N be the ma-
trix consisting of the remaining columns of A. Let xB; xN be the corresponding
partition of the variables in x. Let

� xk�
B D orthogonal projection of xk

B on the affine space fxB W BxB D bg
� �k� D orthogonal projection of �k on the affine space f� W �B D cBg.

If xk�
B > 0, and cN � �k�N � 0, then xk� D .xk�

B ; 0/, .�k�; .0; Nck�
N // is an

optimum solution pair for this pair of LPs, terminate the algorithm. These conditions
will hold for some k finite. Otherwise continue the algorithm.

The orthogonal projection step here provides another way to obtain a true opti-
mum solution for the original LP when it is solved using these IPMs.

7.9 Exercises

7.1. Let f .x/ D 4x2
1C3x2

2 �4x1x2Cx1. Write the necessary optimality conditions
for finding the global minimum of f .x/ over x 2 R2.

At the point x0 D .1; 1/T what is the Newton direction for solving these nec-
essary optimality conditions? Find the next point in the sequence generated by
Newton’s method to solve this system.

7.2. Consider the system of nonlinear equations

f1.x/ D x2
1 � 2x1x2 C x4

2 � x1 � 2 D 0

f2.x/ D x4
1 C 3x1x2 � x4

2 C 3x2 � 3 D 0:

Starting with the point x0 D .1; 1/T apply one iteration of Newton’s method to
solve this system. (R. Saigal)

7.3. Consider the problem: maximize
Pn

j D1 log.xj /, subject to Ax D b; x � 0,
where A is a matrix of full row rank.

Show that if this problem has an optimum solution, then all the variables xj

will be > 0 in it. Using the necessary optimality conditions, and the nature of the
objective function being maximized, find the conditions under which this problem
has a unique optimum solution.
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When the problem has a unique optimum solution, that optimum solution is
called the analytic center of the polytope fx W Ax D b; x � 0g. Find it using
the KKT necessary optimality conditions.
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Chapter 8
Sphere Methods for LP

8.1 Introduction

For solving an optimization problem in which an objective function z.x/ is to be
minimized subject to constraints, starting with an initial feasible solution, a method
that works by generating a sequence of feasible solutions along which the objective
value z.x/ strictly decreases is known as a descent algorithm. Strict improvement
in the objective value in each step is an appealing property, and hence descent algo-
rithms are the most sought after.

If the original objective function is to be maximized instead, algorithms that
maintain feasibility and improve the objective value (i.e., here, increasing its value)
in every step are also referred to as descent algorithms.

For LPs we discussed the simplex algorithm and some interior point methods
(IPMs), all of which are descent algorithms. There are several other algorithms too
for LP in literature which have this desirable property. However, all these algorithms
are based on matrix inversion operations. In every step of the simplex algorithm,
the inverse of the basis needs to be updated by a single pivot step. Even though
IPMs need far fewer steps than the simplex algorithm, in each step they need more
complex full matrix inversion to find the search direction in that step.

Also, in every step of these methods, the matrix inversion operations involve
every constraint in the problem including any redundant constraints in the model.
The process of identifying and eliminating the redundant constraints, if any, from the
model using the methods available in theory is prohibitively expensive (in fact the ef-
fort needed by these methods is many times more than that needed to solve the
original model with all the redundant constraints in it), and hence is not practi-
cal. Presolvers based on various heuristics are commonly employed in LP solvers
to identify and eliminate redundant constraints in the model; they are reported to
be effective, albeit not optimal (see Cartis and Gould 2006). Instead of depending
on these presolvers, methods that have the ability to avoid redundant constraints
in their computational work by themselves have a definite advantage over existing
methods.

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 8, c� Springer Science+Business Media, LLC 2010
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Density of an LP Model

The density of an LP (or its coefficient matrix) refers to the percentage of nonzero
entries in the data. Problems in which this percentage is small (typically �1%) are
said to be sparse, as this percentage increases, the problem becomes more and more
dense. Many LP models in real-world applications tend to be very sparse. In ma-
trix inversion operations of the simplex method and IPMs discussed in Chap. 7,
programmers have developed techniques to exploit this sparsity. Using these they
produced implementations of these methods with reasonable memory requirements
that can solve large-scale models fast. However, the effectiveness of these tech-
niques fades as the density of the coefficient matrix increases, that is why solving of
large-scale dense LPs is difficult using existing methods.

Dense LP models do arise in several important application areas. For example,
a typical LP model for a data envelopment analysis (DEA) problem has a coeffi-
cient matrix that is essentially 100% dense (see Cooper et al. 2006). Also, many LP
models arising in location problems, distribution problems, and supply chain prob-
lems are typically dense. That is why there is a lot of research being carried out
targeting dense LP models. In solving LPs that are not very sparse, it is definitely
advantageous to have to deal with smaller number of constraints.

It seems that practitioners are quite content with obtaining solutions not nec-
essarily optimal, but close to being so, but they want a method that can obtain
this approximate solution faster than existing methods. In many applications, this
requires algorithms that can give good performance on models that may not be
very sparse. For this, we need to investigate fast methods that satisfy the follow-
ing properties:

1. Should be a descent method (i.e., starting with a feasible solution the method
should maintain feasibility throughout and the objective value should improve
monotonically in every step).

2. Should be implementable with no matrix inversions, or using matrix inversion
operations only sparingly.

3. If matrix inversion operations are used, they should never involve any redundant
constraints in the model and should only involve a small subset of the other con-
straints selected intelligently.

The future of algorithmic research in LP Is In this area.

Sphere Methods for LP

The sphere methods that we will discuss in this chapter are interior point methods
that are descent methods. In contrast to all other IPMs discussed in Chap. 7, these
methods can be implemented with no matrix inversions or using them only sparingly
(see Murty (2006a, b) of Chap. 1; Murty and Oskoorouchi 2008a, b; Murty 2009a).
Another advantage of these methods is that if matrix inversion operations are used in
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any iteration of the algorithm, only a small subset of constraints (called the touching
set of constraints in that iteration) will be involved in those matrix inversion opera-
tions. Also, amazingly, redundant constraints, if any in the model, never enter into
the touching set. So, they offer the prospect of extending the superior performance
of existing software systems for LP to models that do not have the property of being
very sparse. Hence, they seem to be well suited to the goals mentioned above. The
sphere methods belong to the class of predictor–corrector type IPMs discussed in
Sect. 7.7. They consider LPs in the form

minimize z.x/ D cx (8.1)

subject to Ax � b

where A is an m � n data matrix with a known initial interior feasible solution x0

(i.e., satisfying Ax0 > b). The constraints in (8.1) include all bound constraints on
individual variables. We assume that the rows of A, denoted by Ai: for i D 1 to m,
have been normalized, so that jjAi:jj D 1 (jj:jj denotes the Euclidean norm) for all
i D 1 to m.

If c D 0, every feasible solution is optimal, so we can change the objective
function in the problem to that of minimizing A1:x instead. So without any loss of
generality we can assume that c ¤ 0. We will assume that c is also normalized so
that jjcjj D 1.

If the set of feasible solutions does not have an interior or if it does but an inte-
rior feasible solution is not known, we modify the problem with the usual big-M
augmentation involving one artificial variable as follows:

minimize z.x/ D cx C M x0

subject to Ax C ex0 � b

x0 � 0

where e is the column vector of all 1s in Rm and M is a large positive penalty
parameter. The vector .x0 D 0; x0

0/, where x0
0 is a sufficiently large positive num-

ber, gives an initial interior feasible solution to this Phase I problem. This Phase I
problem is in the same form as (8.1); we solve it instead. For other such Phase I
strategies, see (Cartis and Gould 2006).

How to Implement These Algorithms for Solving a General LP?

As mentioned in Chap. 7, at present the most popular IPM for software imple-
mentations is the primal–dual interior point method, because: (1) it gives optimum
solutions to both the primal and the dual when both have feasible solutions and (2)
it provides a lower bound that serves as an indicator to check how far left to go to
reach the optimum. Also, in many algorithms, specifying a good termination condi-
tion to be used in practice is not easy. The lower bound in the primal–dual format
provides an automatic practical termination condition.
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We will show how to convert the sphere methods into primal–dual algorithms
for LPs in general form. Consider an LP in general form in which there may be
equality constraints on the variables, inequality constraints, and bounds on individ-
ual variables. By combining the bounds on individual variables with the inequality
constraints, the problem is in the form

Minimize f �

subject to F � D h (8.2)

G� � g

where F is a matrix of order p � q, say. Let �; � be dual vectors corresponding to
the constraints in the two lines in (8.2). Solving (8.2) and its dual involves finding a
feasible solution to the following system

F � D h

�F C �G D f (8.3)

.G�; �; �f � C �h C �g/ � .g; 0; 0/

.
Solving (8.3) is the same as solving the LP

Minimize
pX

iD1

.Fi:� � hi / C
qX

j D1

.�F:j C �G:j � fj /

subject to

.F �; G�/ � .h; g/ (8.4)

.�F C �G; �; �f � C �h C �g/ � .f; 0; 0/

The LP (8.4) is same form as (8.1). Also, since we are applying the algorithm
using matrix inversion operations sparingly, having all these additional constraints
over those in the original LP (8.2) in the model may not make it numerically difficult
to handle. The objective value in (8.4) will be 0 at the optimum if both (8.2) and its
dual have feasible solutions, so this provides a convenient lower bound to judge how
far is left to go. Hence, in the sequel we will discuss the methods for solving the LP
in the form (8.1).

Notation

The orthogonal distance from a point y 2 Rn to the facetal hyperplane fx W Ai:

x D big of the set of feasible solutions of (8.1) is minimum fjjx�yjj W Ai:x D big D
Ai:y � bi , because jjAi:jj D 1.
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Fig. 8.1 x0 2 K0, and the
ball shown is B.x0; ı.x0//,
the largest ball inside K with
x0 as center. Facetal
hyperplanes of K

corresponding to indices 1, 2
are tangent planes to this ball,
so T .x0/ D f1; 2g K

x0

1

2

In this chapter, we will use the following notation.

K D Set of feasible solutions of (8.1).
K0 D fx W Ax > bg D interior of K .

ı.x/ D MinfAi:x � bi W i D 1 to mg, defined for x 2 K0, it is the
radius of the largest ball inside K with x as its center, since
jjAi:jj D 1 for all i .

B.x; ı.x// D Defined for x 2 K0, it is the largest ball inside K with x as
its center.

T .x/ D Defined for x 2 K0, it is the set of all indices i satisfying:
Ai:x � bi D MinimumfAp:x � bp W p D 1 to mg D ı.x/.
The hyperplane fx W Ai:x D big is a tangent plane to B.x;

ı.x// for each i 2 T .x/; therefore, T .x/ is called the index
set of touching constraints in (8.1) at x 2 K0 (see Fig. 8.1).

tmin, tmax D Minimum, maximum values of z.x/ over K , respectively.
1 D fAT

i: ; �AT
i: W i D 1 to mg. This is a set of directions normal to

facetal hyperplanes of K .
2 D fP:1; � � � ; P:m; �P:1; � � � ; �P:mg, where P:i D .I �cT c/AT

i: ,
the orthogonal projection of Ai: (the direction normal to the
facet of K defined by the i th constraint in (8.1)) on the hyper-
plane fx W cx D 0g, for i D 1 to m.

ıŒt 
 D It is the Maximumfı.x/ W x 2 fx W cx D tgg, i.e., the
maximum radius of the ball that can be inscribed inside K with
its center restricted to fx W cx D tg. Notice the difference
between ı.x/ defined over K0, and this ıŒt 
 defined over the
interval Œtmin; tmax
 of the real line.

t� D Value of t 2 Œtmin; tmax
 that maximizes ıŒt 
.
ci D .I � Ai:.Ai:/

T /cT , the orthogonal projection of cT on fx W
Ai:x D 0g for i D 1 to m.

Each iteration of sphere methods consists of only two steps, a centering step
and a descent step. The centering step is a corrector step; it tries to move the
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current interior feasible solution into another one with higher value for ı.x/ with-
out sacrificing objective quality. The descent step is a predictor step that results in a
strict decrease in objective value.

In earlier chapters, we discussed all the previous methods for solving LPs in a
theoretical style. In this chapter, we will discuss the sphere methods for LP in the
“implementation style,” i.e., as they are implemented.

8.2 Ball Centers: Geometric Concepts

In this section, we first give the theoretical definition of the ball center of the given
polytope K and the ball center of K on a given objective plane intersecting K in its
interior; these are important concepts used in the sphere methods. Then, we discuss
methods for computing these ball centers approximately in the next section.

Earlier versions of a sphere method were discussed in (Murty (2006a, b) of
Chap. 1). In the centering step in those versions, the concept of the “center” of a
polytope is defined as a point that is the center of the largest radius ball inscribed
inside the polytope; i.e., for K it will be a point x that is optimal to the LP (8.5)
discussed later. But the optimum face for (8.5) in the x-space may contain multiple
points, in that case the description of the algorithm in these papers did not clearly
specify which of those multiple optimum points of (8.5) in the x-space should be
selected as the “center” of the polytope K defined by (8.1). Here, we will specify
rules that will make that choice “precise” from (Murty and Oskoorouchi 2008a, b).
For this we introduce the concepts of the ball center of a polytope and the ball center
of a polytope on a given objective plane fx W cx D tg.

The definition of the “center” of a polytope used in the sphere method is very
different from that used in earlier IPMs discussed in Chap. 7. For clarity between
the two, since the “center” that we need in the sphere method is the center of the
largest ball inside the polytope, we will use the word ball center of the polytope for
the center that is used in sphere methods.

Our definitions guarantee that every polytope K (i.e., a bounded convex polyhe-
dron) has a well defined and unique ball center for the polytope as a whole. Also,
when H is a hyperplane having a nonempty intersection with the polytope K in its
interior, the ball center for K on H is again well defined and unique.

These concepts are well defined only for convex polytopes (i.e., bounded convex
polyhedra) and may not really work for unbounded convex polyhedra, we discuss
this issue at the end of this section. For this reason, we will first give the defini-
tions under the assumption that the set of feasible solutions of the LP (8.1), K , is a
polytope.

What happens to the LP (8.1) if we do not know whether its set of feasible solu-
tions is bounded or not, or if we know that it is unbounded?

In the unbounded case, even though the concepts of ball centers may not be well
defined, the implementation of the algorithm based on the approximate computation
of ball centers can be carried out as usual. In this case, in one of the descent steps,
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the step length for the move may turn out to be C1. That is an indication that the
objective value in (8.1) is unbounded below on its set of feasible solutions, and the
algorithm terminates if this happens.

The Ball Center of a Polytope

Now we will continue with the definition of the ball center of a polytope. A polytope
of dimension 1 is a line segment, its ball center is its unique midpoint (see Fig. 8.2).

Now consider the polytope K of dimension n represented by (8.1). Its ball center
x� is a point in K0, which is the center of the largest radius ball inscribed inside K .
Letting ı� D ı.x�/, .x�; ı�/ is therefore an optimum solution of the LP

Maximize ı

subject to ı � Ai:x � bi ; i D 1 to m (8.5)

If the optimum solution of this LP (8.5) is unique, it will be .x�; ı�/, and x� is
the ball center of K (see Fig. 8.3).

If the optimum solution of (8.5) is not unique, all of its optimum solutions are of
the form .x; ı�/ for x 2 S , where S is the optimum face of (8.5) in the x-space.
In this case, the ball center of K is defined recursively by dimension to be the ball
center of the lower-dimensional polytope S . This definition guarantees that every
polytope has a unique ball center. See Fig. 8.4 for an illustration.

x∗

Fig. 8.2 The ball center of a 1-dimensional polytope (a line segment) is its mid-point x�

Fig. 8.3 The polytope K and
the largest ball inside it are
shown in the figure. When the
largest inscribed ball in K is
unique as here, its center x�

is the ball center of K

x∗

x∗

Fig. 8.4 A 2-dimensional polytope K for which the largest inscribed ball is not unique. S , the set
of centers of all such balls, the optimum face of (8.5) in the x-space, is the dashed line segment in
this polytope. Hence, here the ball center of K is the ball center of S , which is its mid-point x�
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The Ball Center for (8.1) on the Objective Plane fx W cx D tg
for Given t

The ball center of (8.1), or K , on the objective plane fx W cx D tg for given t is
defined as the center of the largest ball subject to the constraint that the center lie on
the objective plane fx W cx D tg. It is an optimum solution of the LP

Maximize ı

subject to ı � Ai:x � �bi ; i D 1 to m (8.6)

cx D t

If the optimum solution x for (8.6) is unique, denote it by x.t/ it is called the ball
center for (8.1) (or for its set of feasible solutions K) on the current objective plane
fx W cx D tg. In this case, the unique optimum solution of (8.6) is .x.t/; ıŒt 
 D
ı.x.t/// (see Fig. 8.5).

In general, even though the optimum ı in (8.6) is always unique, there may be
multiple points x which are optimal. Hence, let S.t/ denote the optimum face of
(8.6) in the x-space. In this case, the ball center for (8.1) on the objective plane
fx W cx D tg is defined to be the ball center of the polytope S.t/ as defined earlier.

This definition guarantees that for each t 2 .tmin; tmax/, the ball center for (8.1)
on the objective plane fx W cx D tg is unique.

The Case of Unbounded Convex Polyhedra

Suppose the set of feasible solutions, K of (8.1) is an unbounded polyhedron. Typ-
ically, the radius of a maximum inscribed ball in K will be 1 (i.e., ı is unbounded

xr

x(t)

cx = t

Fig. 8.5 K is the polytope in this figure. When the optimum solution for (8.6) is unique and the
largest ball inside K with center on the current objective plane fx W cx D tg is unique (like here,
it is the large ball in the figure), its center is x.t/, the ball center for (8.1) corresponding to the
present objective plane fx W cx D tg
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above in the LP (8.5) typically). Even if the radius of the maximum inscribed ball
is finite, the optimum face of (8.5) in the x-space may be an unbounded polyhedron
itself, so the ball center of K is not defined.

Even when K is an unbounded convex polyhedron, the hyperplane H may be
such that K \ H is bounded, i.e., is a polytope; in this case the ball center of K on
H is well defined. If K \ H is also unbounded, then the ball center of K on H is
also not defined.

8.3 Approximate Computation of Ball Centers

In Sect. 8.2, we defined the ball center of a polytope K and the ball center of K on
a hyperplane H intersecting K in its interior, recursively by dimension.

For computation of these ball centers, we will refer to any point that is the center
of the largest inscribed ball inside K (i.e., any optimum solution of (8.5)) as a ball
center of K , and discuss here how to compute one such point approximately. In
practice, the sphere methods are based on such a point computed approximately.
When the optimum solution of (8.5) is not unique, the schemes discussed here will
only approximate such a ball center, and not the ball center defined conceptually in
Sect. 8.2.

Several techniques have been discussed in (Murty (2006a, b) of Chap. 1; and
Murty and Oskoorouchi 2008a, b; Murty 2009a) to compute these ball centers
approximately. In the following Sects. 8.3.1 and 8.3.2 we give mathematical de-
scriptions of some techniques used for computing approximately a ball center of
the polytope K and a ball center of K on the objective plane fx W cx D tg for
given t .

8.3.1 Approximate Computation of Ball Centers of Polyhedra

We consider (8.5), the problem of computing a ball center of the whole polytope
K approximately beginning with an initial interior feasible solution. We summarize
these techniques and discuss ways to implement them.

Our approach involves a series of line search steps. The search direction for each
line search step is selected such that it is a profitable direction, i.e., the move in that
direction at the current point is guaranteed to lead to a point that increases the radius
of the inscribed ball with that point as center. Also, we will show that the optimum
step length in this line search step can be found by solving a 2-variable LP.

Let Nx be the current interior feasible solution. Hence, a direction y ¤ 0 is defined
to be a profitable direction at Nx if ı. Nx C˛y/ strictly increases as ˛ increases from 0;
unprofitable direction to move at Nx if the maximum value of ı. Nx C ˛y/ over ˛ � 0

is attained at ˛ D 0. We have the following result.
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Theorem 8.1. A given direction y is a profitable direction to move at the current
interior feasible solution Nx iff Ai:y > 0 for all i 2 T . Nx/. Also, Nx is a ball center of
K iff the system Ai:y > 0 for all i 2 T . Nx/ has no solution in y.

Proof. For any ˛ we have ı. Nx C ˛y/ D minimumfAi:. Nx C ˛y/ � bi W i D 1 to
mg, and ı. Nx C ˛y/ D ı. Nx/ when ˛ D 0. From the definition of T . Nx/, we have
ı. Nx/ D Ai:x � bi for all i 2 T . Nx/. So, we have the following facts.

Fact 1. For all i 62 T . Nx/, we have Ai: Nx � bi > ı. Nx/, and hence when ˛ is positive
but sufficiently small Ai:. Nx C ˛y/ � bi > ı. Nx/ what ever the sign of Ai:y may be.

Fact 2. If Ai:y > 0 for all i 2 T . Nx/, then each of these Ai:. Nx C ˛y/ is strictly
monotonically increasing as ˛ increases from 0.

Facts 1 and 2 together imply that when ˛ is positive but sufficiently small and y

satisfies Ai:y > 0 for all i 2 T . Nx/; then ı. Nx C˛y/ D minimumfAi:. Nx C˛y/�bi W
i D 1 to mg is > ı. Nx/; i.e., ı. Nx C ˛y/ strictly increases as ˛ increases from 0. This
shows that y is a profitable direction to move at Nx under the conditions stated in the
theorem.

If there is at least one index, say i1 2 T . Nx/ satisfying Ai1:y � 0, then for positive
but sufficiently small values of ˛, we have Ai1:. Nx C˛y/�bi1 � Ai1: Nx �bi1 D ı. Nx/

since i1 2 T . Nx/. From the definition of ı. Nx C ˛y/ this implies that in this case
ı. Nx C˛y/ either stays the same or strictly decreases as ˛ increases from 0, implying
that y is an unprofitable direction to move at Nx.

For x 2 K , ı.x/ D minimumfAi:x � bi W i D 1 to mg, is a piecewise linear
function that is the pointwise infimum of a finite set of affine functions, and so by
Theorem 2.5 of Chap. 2, we know that ı.x/ is a concave function. If there is no
profitable direction at Nx, then Nx is a local maximum for the concave function ı.x/

over K , and by Exercise 2.3.9 in Sect. 2.3 we know that it is the global maximum
for ı.x/ over K , i.e., Nx is a ball center of K . ut
Since ı. Nx C˛y/ D minimumfAi:. Nx C˛y/�bi W i D 1 to mg, we have ı. Nx C˛y/ �
Ai: Nx C ˛Ai:y � bi for all i D 1 to m.

So, for a given direction y, suppose Nı D maximum value of ı. Nx C ˛y/ over
˛ � 0 and N̨ � 0 is the value of ˛ where this maximum is attained in ı. Nx C ˛y/.
Then, . Nı; N̨ / is the optimum solution of the following 2-variable LP in which the
variables are ı and ˛.

Maximize ı

subject to ı � ˛Ai:y � Ai: Nx � bi ; i D 1 to m (8.7)

ı; ˛ � 0:

Therefore, the optimum step length for the line search problem of maximizing
ı. NxC˛y/ over ˛ � 0 in the given direction y can be found by solving this 2-variable
LP (8.7).
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LSFN, Using Line Search Steps in Facetal Normal Directions

One advantage of this technique is that it needs no matrix inversions. Beginning
with the initial xr;0 D xr , it generates a sequence of points xr;k , k D 1, 2, � � � along
which the radius of the inscribed ball ı is strictly increasing.

Whether a given direction y is profitable or not at the current point xr;k can
be checked very efficiently using the conditions proved in Theorem 8.1 (these are:
Ai:y > 0 for all i 2 T .xr;k//. Since the goal in this centering step is to increase the
minimum distance of x from each facetal hyperplane of K , this procedure LSFN
uses the directions normal to the facetal hyperplanes of K for the line searches, i.e.,
directions in 1 D fAT

i: ; �AT
i: W i D 1 to mg. This is the set of directions normal to

facetal hyperplanes of K . This procedure continues as long as profitable directions
for line search are found in 1 and terminates with the final point as an approximate
center of K , which is denoted by Nxr (see Fig. 8.6).

2-Variable LP to Compute the Step Length in Profitable Direction in the
Centering Step: Once a profitable direction y at the current point xr;k , has been
found, the optimum step length ˛ in this direction that maximizes ı.xr;k C˛y/ over
˛ � 0 is N̨ , where . Nı; N̨ / is the optimum solution of the 2-variable LP

Maximize ı

subject to ı � ˛Ai:y � Ai:x
r;k � bi i D 1; : : : ; m (8.8)

ı; ˛ � 0

and Nı is the optimum objective value ı.xr;k C N̨y/. Hence, the line search for
the maximum value of ı in the direction y involves solving this 2-variable LP,
which can be carried out efficiently (e.g., by the simplex algorithm) as discussed
above.

xr

x(t)
cx = t

Normal
Direction

Fig. 8.6 Moving from the current point xr , in the direction that is the orthogonal projection of the
normal to the facet of K on the right on the objective plane fx W cx D tg, leads to x.t/
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LSCPD, Sequence of Line Search Steps Using Computed
Profitable Directions

This technique, discussed in (Murty 2006b of Chap. 1), consists of a sequence of
at most n line search steps in profitable directions computed by solving a system
of linear equations. After each step in the sequence, the index set of touching con-
straints at the current solution x keeps growing by at least one more constraint, and
we will stop the sequence when the set of coefficient vectors of the touching set of
constraints becomes linearly dependent. That’s why the number of steps in the se-
quence is at most n. The entire sequence needs a single matrix inversion, carried out
in stages adding one row and column to the matrix at a time; hence, it uses matrix
inversion operations sparingly.

The sequence begins with the initial point in the sequence xr;0 D xr . When xr;k

is the current solution, from Theorem 8.1, we know that any solution y of the system

Ai:y D di for all i 2 T .xr;k/ (8.9)

where d D .di W i 2 T .xr;k// > 0 is any positive vector, is a profitable direction
to move at xr;k .

We will use (8.9) with d D e, the column vector of all 1s of appropriate dimen-
sion, to generate a profitable direction which is a basic solution of (8.9) to move.
Once a profitable direction y is determined, the step length to move in this direction
is determined by solving the 2-variable LP (8.8) as discussed under LSFN.

Hence, this sequence begins with the initial point xr;k for k D 0, solves (8.9)
with d D e for a basic solution. If this system has no solution, then this technique is
terminated with the initial point as the approximation of a ball center of K obtained
in it.

If it does yield a solution yk , suppose it is the basic solution with respect to a
basic vector yBk and basis Bk for the system. If ˛k is the optimum step length
maximizing ı.xr;k C ˛yk/, notice that as ˛ increases from 0, Ai:.x

r;k C ˛yk/ D
Ai:x

r;k C ˛ increases at the same rate as ˛ for all i 2 T .xr;k/. This implies that at
the solution xr;kC1 D xr;k C˛kyk obtained after this line search step, we will have
T .xr;kC1/ 	 T .xr;k/.

The sequence will now continue the same way with xr;kC1 as the initial solution
for the next step. Suppose T .xr;k/ D f1; � � � ; sg and T .xr;kC1/ D f1; � � � ; s; s C1g.
Then the profitable direction ykC1 to be used at xr;kC1 is computed by solving the
system

Ai:y D 1 for all i 2 f1; � � � ; s C 1g (8.10)

Let Ak D .Bk
:::Dk/ denote the coefficient matrix of (8.9) with rows fAi: W

i 2 T .xr;k/g, with columns partitioned into the basic, nonbasic parts with re-
spect to the basic vector yBk for it, and .ABk

sC1:; ADk

sC1:/ the corresponding partition
of AsC1:.
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The set of touching constraint coefficient vectors fAi: W i 2 T
�
xr;kC1

�g is

linearly independent iff ADk

sC1: � ABk

sC1:

�
Bk
��1

Dk ¤ 0.

Therefore, if ADk

sC1: �ABk

sC1:

�
Bk
��1

Dk D 0, terminate the sequence with xr;kC1

as the final approximation of a ball center of K obtained in it. On the other hand,
if this vector is ¤ 0, select a nonzero entry in it, suppose it is in the column of
the variable yj , then let Ak

:j be the column corresponding to yj in Ak , the coef-
ficient matrix of (8.9). Then yBkC1 D .yBk ; yj / is a basic vector for (8.10). The
corresponding basis for (8.10) is

BkC1 D

0
BB@

Bk
::: Ak

:j

: : : : : :

ABk

sC1:

::: asC1;j

1
CCA :

where asC1;j is the coefficient corresponding to yj in AsC1:. Hence

�
BkC1

��1 D

0
BB@

P
::: Q

: : : : : :

R
::: S

1
CCA

where

S D 1=
�
asC1;j � ABk

sC1:.B
k/�1Ak

:j

�

R D
�
�ABk

sC1:.B
k/�1

�
=

	
asC1;j � ABk

sC1:

�
Bk
��1

Ak
:j




Q D �
�
Bk
��1

Ak
:j S

P D
�
Bk
��1 C QR=S

Thus,
�
BkC1

��1
can be obtained by updating

�
Bk
��1

using the above formulas.
The sequence repeats the same way with xr;kC1 until it terminates at some stage.

Thus, in this sequence, whenever system (8.10) is augmented by a new constraint in
a step, the basic vector and basis inverse in this step can be updated quite efficiently
for the next step as discussed above.

To compute a ball center of K approximately starting with the initial interior
feasible solution we first apply the LSFN sequence of steps as described above se-
lecting profitable directions from the set 1 until the improvement in the radius of
the ball ı per step decreases below some selected tolerance. At that time we switch
and initiate an LSCPD sequence starting with the final point obtained at the end of
the LSFN sequence of steps. When the LSCPD sequence terminates, the final point
obtained in that sequence is an approximate ball center for K .
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8.3.2 Computing An Approximate Ball Center
of K on the Current Objective Plane

Consider the current objective value t and the current objective plane fx W cx D tg.
The model for finding the ball center on this objective plane is (8.6); the only differ-
ence between this and (8.5) is the additional constraint cx D t in (8.6).

Hence, an approximate solution to (8.6) can be obtained directly by adopting the
line search techniques discussed in earlier sections to this situation.

The only change required to adopt the line search techniques LSFN to this prob-
lem is to look for profitable directions from the set 2 D fP:1; � � � ; P:m;

�P:1; � � � ; �P:mg, where P:i D .I � cT c/.Ai:/
T , the orthogonal projection of Ai:

(the direction normal to the facet of K defined by the i th constraint in (8.1)) on
the hyperplane fx W cx D 0g, for i D 1 to m, instead of the set 1. Since 2 is
the set of directions that are orthogonal projections of the directions in 1 on the
plane fx W cx D 0g, any step length from a point in the current objective plane, in a
direction from 2, will keep the point on the current objective plane (see Fig. 8.6).

To adopt the line search sequence LSCPD to this problem, right from the initial
step in this sequence, we include the additional constraint cy D 0 in all systems of
the form (8.10) in the sequence, and continue as discussed under LSCPD.

8.3.3 Ball Centers of Some Simple Special Polytopes

An n-dimensional simplex in Rn is a convex polytope S which has exactly .n C 1/

extreme points fx1; � � � ; xnC1g satisfying the property that for each i , the set fxj �
xi W j D 1 to n C 1; j ¤ ig is a basis for Rn. It can be represented as the set of
feasible solutions of a system of linear inequalities

Dx � d

where D is an .nC1/�n matrix satisfying the properties that every square submatrix
of it of order n � n is nonsingular, and for each i , Di: is a linear combination of the
other rows of D with strictly negative coefficients.

As examples, a triangle is a 2-dimensional simplex, and a tetrahedron (e.g., the
one with the set of vertices f.0; 0; 0/; .1; 0; 0/; .0; 1; 0/; .0; 0; 1/g) is a 3-dimensional
simplex.

Assume that in the above system, all rows of D have been normalized so that
jjDi:jj D 1 for all i . In Murty (2009a, b) it has been shown that this simplex S has
a unique ball center, which is the unique solution of

Dx � ıe D d

where e is a column vector of all 1s, and .x; ı/ in the solution are the ball center and
the radius of the largest ball inside S . This can be proved easily using the conditions
derived in Theorem 8.1. See Fig. 8.7 illustrating the ball center of a 2-dimensional
simplex.
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Fig. 8.7 A 2-dimensional
simplex (a triangle in R2)
shown with the largest radius
ball inside it; see that it
touches all the facets of the
simplex. The center of this
ball marked in the figure is
the ball center of this simplex

In the same way they show that the ball center of S can be computed directly even
when it is represented as the convex hull of its set of extreme points fx1; � � � ; xnC1g.
They also show that the ball center of the convex hull of a linearly independent set
of vectors fx1; � � � ; xr g can be computed directly in the same way.

Murty (2009a, b) also discuss the application of these results to improve the
performance of sphere methods.

The Sphere Methods

There are two versions of the sphere method which we will call sphere methods 1
and 2. We will discuss them in the following sections. To solve (8.1) both methods
need an initial interior feasible solution. In both methods, each iteration consists of
two steps: a centering step and a descent step.

In concept, the centering step is a corrector step; it tries to move the current
interior feasible solution into another with a higher value for ı.x/ while keeping the
objective value either constant or decreasing. Of the two steps in each iteration, the
centering step is computationally the most expensive. Once the center is computed
in an iteration, the effort needed for a descent step in a given descent direction is
just one minimum ratio computation, which is cheap in comparison. That is why,
in contrast to earlier methods, we carry out descent steps in six different descent
directions (all obtained directly without additional computation) in each iteration
and take the best result obtained from all of them as the output of this iteration with
which the method goes to the next iteration.

8.4 Sphere Method 1

This is the version discussed in (Murty and Oskoorouchi 2008a). The general itera-
tion r C 1, begins with the current point xr , the interior feasible solution obtained
at the end of the previous iteration (or with the available interior feasible solution if
r D 0).
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Centering step: Starting with the current point xr , in concept the aim of this step
is to find a ball center for (8.1) on the current objective plane fx W cx D tg approx-
imately, where t D cxr , using line search steps discussed in Sects. 8.3.1 and 8.3.2.
The reason for getting a ball with the maximum possible radius with center on the
current objective plane is this: from the center of a ball with radius ı, we can move
a step length of at least ı in any direction. Maximizing ı helps to make longer steps
towards optimality in the descent steps in each iteration.

But in practice, if the same step that increases ı.x/ can also decrease the value
of cx instead of keeping it constant, that is even better for solving the LP (8.1). For
this reason, in this step we select line search directions which are both profitable and
are also descent directions for cx if possible.

First, apply LSFN as discussed in Sect. 8.3.1, selecting profitable directions for
the line search from the set 2 (instead of 1, to keep the objective value unchanged)
until the improvement in the radius of the ball ı per step decreases below some
selected tolerance. At that time suppose the point in the sequence being generated
is xr;k .

With xr;k , switch and initiate an LSCPD sequence with xr;k as the initial point
of the sequence. We will now follow a different procedure than what is described in
Sect. 8.3.2. Let xr;g denote a general point in the sequence being generated in this
sequence.

When xr;g is the current point, we look for a profitable direction to move at xr;g

which is a basic solution of the system

Ai:y D 1 for all i 2 T .xr;g/: (8.11)

Notice that the additional constraint “cy D 0” as discussed in Sect. 8.3.2 is
not included in (8.11). Suppose we obtain a basic solution y0 for this system, with
respect to the basic vector yB0 and basis B0. There are two cases to consider.

Case 8.1. If cy0 � 0, then y0 is not only profitable at xr;g (i.e., ı.xr;g C ˛y0/

increases as ˛ increases from 0), but it is also a descent direction for cx. So, we carry
out a line search step at xr;g in the direction y0 exactly as described in Sect. 8.3.1
and continue. This move increases ı.x/ and may also decrease cx.

Case 8.2. If cy0 > 0, there are two subcases to consider here. Let .B0
:::D0/ be the

partition of the coefficient matrix of (8.11) into basic and nonbasic parts with respect
to the basic vector yB0 for it. Let .cB0

:::cD0/ be the corresponding partition of the
row vector c.

Subcase 2.1: cD0 � cB0.B0/�1D0 D 0. In this subcase, cy D a constant D
cy0 > 0 in every solution of (8.11). So, in this subcase using any solution of (8.11)
as the direction for the move helps increase ı.x/, but also increases cx. So we termi-
nate the sequence at this stage and take the current point xr;g as the approximation
to the ball center on the objective plane through xr;g and go to the descent step
discussed next.
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Subcase 2.2: There is a nonzero entry in cD0 �cB0 .B0/�1D0, suppose it occurs
in the column of the nonbasic variable yj and that nonzero entry is denoted by Ncj .
Let the column vector of this nonbasic variable yj in D0 be denoted by .D0/:j .
Then the solution y1 of (8.11) given by: all the variables except yj in the nonbasic
vector yD0 , are D 0, and

yB0 D y0
B0 � �.B0/�1.D0/:j

Nonbasic yj D �:

where � D .�1 � cy0/= Ncj , satisfies cy1 D �1. Now carry out a line search step at
the current point xr;g in the direction y1 exactly as in Sect. 8.3.1 and continue. As
under Case 1, this move not only increases ı.x/ but also decreases cx.

This seems to output a good approximation to a ball center with objective value �
the objective value at the starting point xr . With that go to the Descent steps dis-
cussed next.

Descent Steps: Let Nxr denote the approximate ball center obtained in the center-
ing step.

Minimum Ratio Test to Compute the Step Length in Descent Steps: Each descent
step carried out in this iteration requires one minimum ratio computation. For ex-
ample, consider a descent step from the current center Nxr in the descent direction y

(i.e., satisfying cy < 0). If the step length is �, the move leads to the point Nxr C�y.
Select a small positive number �1 as the tolerance for minimum fAi:x � bi W i D
1 to mg for the point x to be in the interior of K . Then we will take the step length
from Nxr in the direction y to be: .��1/ C (the maximum step length possible while
remaining inside K), which is

� D minimum

� �Ai: Nxr C bi C �1

Ai:y
W i such that Ai:y < 0

�

and then the point obtained at the end of this descent step will be Nxr C �y if � is
finite.

If � D 1, the objective function z.x/ is unbounded below in (8.1) and f Nxr C�y W
� � 0g is a feasible half-line along which z.x/ diverges to �1 on K . Terminate the
method if this occurs.

We now list the various descent steps carried out in this iteration. After each
descent step, include the point obtained at the end of it, along with its objective
value, in a List.

D1, Descent Step 1: From the ball center Nxr take a descent step in the direction
d 1 D �cT .

D2, Descent Step 2: From the ball center Nxr take a descent step in the direction
d 2 D Nxr � Nxr�1, where Nxr�1 denotes the ball center computed in the previous
iteration r . Hence, this direction is the direction of the path of ball centers generated
in the algorithm.

D3, Descent Steps 3: The directions �ci for i 2 T . Nxr / are called GPTC (gra-
dient projection on touching constraint) directions at this stage. Carry out descent
steps from the ball center Nxr in each of these GPTC directions.
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D4, Descent Step 4: From the ball center Nxr take a descent step in the direction
d 4 D .

P
.�ci W for i 2 T . Nxr//=jT . Nxr/j, the average direction of all the GPTC

directions.

D5.1, Descent Steps 5.1: For i 2 T . Nxr /, let xir denote the orthogonal projection
of the center Nxr on the touching facetal hyperplane fx W Ai:x D big; it is the
point where this facetal hyperplane touches the ball B. Nxr ; ı. Nxr//. The points xir

for i 2 T . Nxr / are called the touching points (TPs) of the ball B. Nxr ; ı. Nxr // with its
touching facetal hyperplanes of K .

Let 0 < � < 1 be a small positive tolerance (� D 0.1 works well). Then for
i 2 T . Nxr /, the point on the line segment joining Nxr and xir close to the TP xir ,
Oxir D � Nxr C .1 � �/xir is called the near touching point (NTP) corresponding to
the tangent plane fx W Ai:x D big of the ball B. Nxr ; ı. Nxr//.

Carry out a descent step in the GPTC �ci from the NTP Oxir , for each i 2 T . Nxr /

(see Fig. 8.8).
At the end of all these steps, let Qxr1 denote the best point (i.e., the one corre-

sponding to the least objective value) among the jT . Nxr/j points obtained in these
descent steps.

D5.2, Descent Step 5.2: This descent step is from Murty and Kabadi (2008).

Fig. 8.8 Descent steps in a GPTC direction. Here, Nxr is the current center, T . Nxr/ D f1; 2g.
Directions �cT pointing down south, �c1 D orthogonal projection of �cT on facetal hyperplane
of constraint 1, are shown. x1r D TP of constraint 1, Ox1r D NTP corresponding to constraint 1.
Descent step from Nxr [ Ox1r ] in direction �c1 are shown, leading to points P ŒQ
, respectively. Here
Q is a much better point than P
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By the way the descent steps are carried out, it is clear that Qxr1, the best point
obtained in Descent Step 5.1, is close to the boundary of K and ı. Qxr1/ � �. Find
the touching set T . Qxr1/ D set of all i that tie for the minimum in fAi: Qxr1 � bi W i D
1 to mg.

For each i 2 T . Qxr1/, from Qxr1 take a descent step in the GPTC direction �ci

and include the resulting point along with its objective value in a new List 5.2.
At the end, let Qxr2 denote the best point by objective value, in List 5.2. If c Qxr1 �

c Qxr2 is:

� some selected tolerance for objective value reduction, take Qxr2 as the output of this De-
scent Step 5.2, put Qxr2 along with its objective value in the List, and go to the next iteration.

> the selected tolerance for objective value reduction, with Qxr2 as the initial interior feasible
solution repeat this Descent Step 5.2, and continue the same way.

When all these descent steps are carried out, the best point xrC1, among the
output points of all the descent steps, is the output of this iteration, with that point
the method goes to the next iteration. Just as with other IPMs, this method also
terminates when the change in the final points obtained in successive iterations is
smaller than some tolerance (i.e., it terminates at the end of iteration rC1 if jjxrC1�
xr jj=jjxr jj < �, concluding that xrC1 is an optimum solution of (8.1)).

8.4.1 Summary of Computational Results on Sphere Method 1

In this section, we present some computational results of implementing sphere
method 1, using MATLAB 7:0 to implement the algorithm and test it on some ran-
domly generated problems from (Murty and Oskoorouchi 2008a). For details on
how the test problems are generated and computational issues (like various toler-
ances used in the code, etc.), see this paper. Also, in these tests, Descent Step 5.2 is
not included, but all the others are.

Like other IPMs discussed in Chap. 7 we noticed in these experiments that the
number of iterations needed to solve an LP in n variables with m constraints, is very
small, and grows very slowly as n; m increase. In effect, like those other IPMs,
sphere method 1 also seems to need almost a constant number of iterations to solve
an LP as n; m increase.

The following table summarizes the results from solving an LP in n D 50 vari-
ables, with 150 constraints and bounds on individual variables, from (Murty and
Oskoorouchi 2008a), to minimize an objective function z.x/ D cx, starting with
an initial interior feasible solution, at which the objective value is 0. Sphere method
1 needed 10 iterations to solve this problem. In the following table we give: Itr D
iteration number r , ır D radius of the ball obtained at the end of the centering step
in iteration r , Tr D number of touching constraints for this ball, zr D objective
value of the output point obtained at the end of iteration r , and Dr D the descent
step that yielded the output point in iteration r .
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Itr r ır Tr zr Dr

1 2.052 22 �3:31 D5.1
2 2.053 30 �14:80 D5.1
3 1.40 50 �22:88 D5.1
4 0.60 50 �28:04 D5.1
5 0.27 49 �30:12 D5.1
6 0.11 47 �31:06 D5.1
7 0.04 46 �31:43 D2
8 0.003 49 �31:62 D5.1
9 Small 48 �31:64 D5.1

10 Small 48 �31:65 D5.1

When x�; xr ; xrC1 are an optimum solution and the current feasible solutions

at the beginning and end of iteration r , the quantity 100.cxr �cxrC1/
.cxr �cx�/

is known as the
percent moves towards optimality, in this iteration r in the algorithm. On problems
with n D 100, m D 300, and densities ranging from 10 to 100%, this percent move
towards optimality per iteration in sphere method 1 varied from 10 to 20 and from
0.22 to 0.50 in the simplex method.

In terms of CPU time, even this preliminary code based on MATLAB 7:0 rou-
tines for each individual step separately in sphere method 1 outperforms production
versions of the Simplex method on these problems.

8.5 Sphere Method 2

Consider the LP in the form (8.1), which we reproduce below for convenience.

Minimize z D cx (8.12)

subject to Ax � b

where A is a matrix of order m � n with jjcjj D jjAi:jj D 1 for all i D 1 to m; its
set of feasible solutions K and an initial interior feasible solution x0.

In sphere method 1 the set of feasible solutions considered remains unchanged
(i.e., remains the original K) throughout the algorithm, but the current objective
plane fx W cx D tg keeps on sliding in a parallel fashion towards decreasing val-
ues of t from one iteration to the next. The centering step in this method in each
iteration has the aim of finding a ball center on the current objective plane, at least
in principle. Even though line search directions y used in LSCPD in the centering
step in sphere method 1 may satisfy cy < 0; all the search directions used in LSFN
satisfy cy D 0, and hence leave the objective value unchanged.

In sphere method 2, in contrast, the set of feasible solutions K considered is
updated by the current objective value after each iteration, and hence gets smaller.
Thus, to distinguish, we will denote by Kr , the set of feasible solutions considered
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in Step r and we will have Kr � Kr�1 � K for all r . And in the centering step
of sphere method 2, all line search directions used (in both the LSFN and LSCPD
sequences) will both be profitable and descent directions for the original objective
function z D cx.

The first iteration of sphere method 2 begins with the initial interior feasible so-
lution x0. We will now describe the general iteration, iteration r C1, in this method.

General Iteration r C 1

The initial point for this iteration is xr , the interior feasible solution obtained at the
end of the previous iteration. Define the set of feasible solutions to be considered
for this iteration to be KrC1, where

KrC1 D fx W Ax � b; and cx � cxr C �g

where � is a small positive tolerance parameter. Go to the centering step in this
iteration.

Centering Step: The aim of this step is to find a ball center of KrC1 approxi-
mately as described in Sect. 8.3.1 (see Fig. 8.9).

LSFN: The set of facetal normal directions of KrC1 is rC1
1 D f˙cT ; ˙Ai: W

i D 1 to mg. Apply LSFN to find a ball center for KrC1 as in Sect. 8.3.1 using
profitable directions from rC1

1 .

K

x

1rK

x r
cT

cx cx r

Fig. 8.9 K is the original set of feasible solutions of the LP being solved. The current set of
feasible solutions in an iteration when xr is the initial interior feasible solution, is KrC1. The ball
shown is the largest ball inside KrC1 and its center Nx is a ball center obtained in the centering step
in this iteration
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LSCPD: This sequence begins with the interior feasible solution obtained at the
end of LSFN.

Let Ox denote the interior feasible solution in a step of this sequence. The touching
constraint set at Ox for KrC1 will typically include the objective constraint in the def-
inition of KrC1. If it does not, then apply this sequence as discussed in Sect. 8.3.1.

On the other hand, if the touching constraint set includes the objective constraint,
let T rC1. Ox/ denote the touching constraint index set for KrC1. Solve the system

Ai:y D 1 for all i 2 T rC1. Ox/ (8.13)

�cy D ˇ

where ˇ is a non-negative parameter. In Sect. 8.3.1, we used only ˇ D 1. But here
we will leave it as a parameter that is restricted to take positive values only and
obtain a solution of (8.13) as a function of this parameter ˇ. Let this solution be
denoted by p C ˇq.

As in Sect. 8.3.1, if B is a basis associated with the basic vector yB obtained for
(8.13) let yD denote the vector of remaining nonbasic variables in (8.13) associated
with the basic vector yB . Let p D .pB ; pD/; q D .qB ; qD/ be the partition of
the vectors p; q corresponding to the partition of y into basic and nonbasic parts
.yB ; yD/. Then qD D pD D 0, and qB is the last column of B�1 and pB is the
sum of the remaining columns of B�1.

3-Variable LP to Find Step Length in This Step: Hence, for all ˇ > 0, p C ˇq

is a profitable direction at Ox for KrC1. With p C ˇq as line search direction, the
optimum step length ˛ (maximizing ı. Ox C ˛.p C ˇq//, the radius of the maximum
radius ball inscribed in KrC1 with OxC˛.pCˇq/ as center) is determined by solving
the 3-variable LP in variables ı; ˛; � .

Maximize ı subject to

ı � ˛Ai:p � �Ai:q � Ai: Ox � bi ; i D 1; � � � ; m

ı � ˛.�c/p � �.�c/q � .�c/ Ox � ..�c/ Ox � �/

ı; ˛; � � 0:

Here, ˛; � will both be > 0 at optimum. Actually, this � is .˛/.ˇ/.
If . Nı; N̨ ; N�/ is an optimum solution of this 3-variable LP, then the point obtained

at the end of this step is Ox C N̨p C N�q. With that the next LSCPD step is applied
again as here, and so on until the LSCPD sequence is completed,

Let Nx denote the point obtained at the end of LSCPD, it is the approximate ball
center of KrC1 obtained in this iteration (see Fig. 8.9).

With the point Nx obtained at the end of the centering step, the iteration moves to
the descent steps in this iteration for the current set of feasible solutions KrC1, to
apply descent steps D1 to D5.2 as described in Sect. 8.4.

Instead of giving ˇ the specific value 1 as in earlier methods, leaving it as a
positive parameter in (8.13) improves the performance of the centering step.
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With the point obtained at the end of the iteration, the algorithm moves to the
next iteration. Termination criteria are the same as in sphere method 1.

Computational Performance of Sphere Method 2: Results from computational
experiments reported in Murty and Oskoorouchi (2008b) comparing both sphere
methods 1 and 2, and comparing these with the simplex method indicate that sphere
method 2 (including all six descent steps D1–D4, D5.1, D5.2) is about 40% faster
than sphere method 1; particularly on large scale LPs. These computational tests
also confirmed that implementing sphere method 2 by a low-level programming
language would make it competitive with other IPMs discussed in Chap. 7.

8.6 Improving the Performance of Sphere Methods Further

The most computationally expensive step in the sphere methods is the centering step
in each iteration, so reducing the number of times this step has to be carried out will
improve the performance of the methods.

The Descent Step D5.1 in sphere methods presents an opportunity to reduce the
number of times the centering step has to be used in them.

Let f Ox1; � � � ; Oxsg denote the set of all points obtained at the end of the various
descent steps in D5.1 in an iteration. We will have s � m, and typically s � n C 1,
so s is not a large number in comparison to m; n.

Let K2 denote the convex hull of f Ox1; � � � ; Oxsg. Typically, Ox1; � � � ; Oxs are spread
out in different directions all around K , each one in the interior of K but close to
the boundary of K . So, intuitively, it seems that a ball center for K2 may be close to
a ball center for K on the objective plane through it.

We checked whether the average of Ox1; � � � ; Oxs is a reasonable approximation to
a ball center of K2, but typically it is not.

When s D nC1, we find that typically K2 is a simplex. In this case, the ball cen-
ter of K2 can be computed directly using the method discussed briefly in Sect. 8.3.3,
and in greater detail in Murty (2009a, b). When s � n, we found that typically the
set f Ox1; � � � ; Oxsg is linearly independent. Again in this case, the ball center of K2 is
unique which can be computed directly using again the method mentioned above.
Using these results, a new descent step labeled D5.3 to be carried out after D5.1 in
sphere method 1 has been developed that promises to significantly reduce the num-
ber of times the centering step has to be used (see Murty 2009b). At the time this
book is going to press, this new step has not been tested computationally; but it will
be tested soon and the results reported in Murty and Oskoorouchi (2008b).

Conclusions

We presented some preliminary computational results on implementing sphere
methods 1 and 2 by solving each step in these methods using MATLAB 7.0 rou-
tines separately and compared this performance with that of MATLABs finished
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LP code “linprog” based on the simplex method. The results show that even this
implementation of the sphere methods performs much better than “linprog.”

To compare the sphere methods with existing IPMs will require developing a
low-level programming language code for them using advanced techniques of nu-
merical linear algebra and updating the basis inverse in LSCPD steps as the matrix
grows by a row and column as described above, which we have not done in these
preliminary experiments. But these preliminary results and the fact that the work in
each iteration of the sphere methods is much simpler than an iteration of other IPMs,
indicates that sphere methods will have advantage over them for solving large-scale
models, in particular when the models may have redundant constraints, or a coeffi-
cient matrix that is not very sparse.

8.7 Some Open Theoretical Research Problems

Let K D fx W Ax � bg, where A is a matrix of order m � n, and K0 its interior.
Assume that K is a polytope, i.e., it is bounded.

Let z D cx be an objective function for which the minimum and maximum
values in K are tmin and tmax. Also, let the symbols ı.x/, t�, B.x; ı.x//, T .x/ have
the same meanings as defined in the notation at the beginning of this chapter.

For tmin � t � tmax let x.t/ denote the ball center of K on the objective plane
fx W cx D tg, as defined conceptually in Sect. 8.2. Then for each tmin � t � tmax,
B.x.t/; ı.x.t/// is a maximum radius inscribed ball in K with its center on the
objective plane fx W cx D tg.

For simplicity we denote ı.x.t// by ıŒt 
, it is the radius of the maximum radius
ball that can be inscribed inside K with its center restricted to the objective plane
H D fx W cx D tg. Let t� be the value of t in the interval tmin � t � tmax where
ıŒt 
 attains its maximum value.

In Murty (2006a) of Chap. 1, it has been shown that ıŒt 
 is a piecewise linear
concave function defined on the interval tmin � t � tmax and that ıŒt 
 is monotonic
increasing in the interval tmin � t � t� and monotonic decreasing in the interval
t� � t � tmax.

1. In Murty (1980), it has been shown that in general the number of slope changes
in the optimum objective value function of a parametric RHS LP can grow expo-
nentially with the size (i.e., the number of constraints m or variables n in the LP)
in the worst case.

We know that the piecewise linear concave function ıŒt 
, is the optimum ob-
jective value in (8.6), which is a parametric right-hand-side (RHS) LP problem
in which t is the parameter. The LP (8.6) is of course a special parametric RHS
LP with special structure, determine whether the number of slope changes in ıŒt 


can grow also exponentially in m; n like the optimum objective value function of
a general parametric RHS LP, or whether it can be proved to be bounded above



8.7 Some Open Theoretical Research Problems 441

by a polynomial in m; n. In particular, is the number of slope changes in ıŒt 


bounded above by a linear function of m; n?
For the following problem 2, make the following

Assumption 1: for each tmin � t � tmax, the maximum radius inscribed ball in
K with its center on the objective plane fx W cx D tg, is unique; i.e., that (8.6)
has a unique optimum solution for all t .

Under this assumption it has been shown in (Murty (2006a) of Chap. 1) that
x.t/ is a piecewise linear function in t . Also that the interval tmin � t � tmax can
be partitioned into a finite number of subintervals, such that in each subinterval
both x.t/ and ı.x.t// are linear functions, and T .x.t// remains unchanged. As
t moves from one of these subintervals to an adjacent one, T .x.t// changes by
one or more entries.

2. Suppose a specific constraint, say constraint 1, drops out of the set T .x.t// at
t D t1 as the parameter t is increasing from a value slightly less than t1 to t1.

As t continues to keep on increasing, is it possible for constraint 1 to come
back into the set T .x.t// again? If so, what is the maximum number of times
that constraint 1 can go out and come back into the set T .x.t// as t increases
from tmin to tmax?

What is the maximum number of changes that the set T .x.t// can undergo as
t increases from tmin to tmax?

Note: In Murty (2006a) of Chap. 1, I included a proof that the total number of
changes that the set T .x.t// can undergo as t increases from tmin to tmax is at most
2m, but Andy Mirzaian (2007) has shown me that this proof has an error in it. So,
right now whether the total number of changes that the set T .x.t// can undergo
as t increases from tmin to tmax grows linearly with m is an open question.

3. Now, suppose that assumption 1 does not hold. In this case we defined x.t/ as the
ball center of K on the objective plane fx W cx D tg, which is uniquely defined
as in Sect. 8.2. In this general case also, is x.t/ a piecewise linear function of t?
Discuss what happens to the questions posed in 2 in this general case.

4. For each tmin � t � tmax assume that the largest radius ball inscribed in the set
K.t/ of feasible solutions of

Ax � b (8.14)

AmC1: � bmC1

where AmC1: D �c and bmC1 D �t is unique, and let xftg denote its center
and ıftg its radius. Let Tt .xftg/ denote the index set of touching constraints in
(8.14) at xftg for K.t/. For all t� C ıŒt�
 � t � tmax, clearly ıftg D ıŒt�
 and
xftg D x.t�/.

(1) What is the set of all t satisfying m C 1 2 Tt .xftg/ ? (2) As t is decreasing
from tmax to tmin when an i 2 f1; � � � ; m C 1g leaves Tt .xftg/, can it come
back into this set later on? How many times can an index i 2 f1; � � � ; mC1g
leave and enter Tt .xftg/ as t decreases from tmax to tmin?
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5. For the original polytope K represented by the system of linear constraints in
(8.1) and (8.5), and given an interior point x0 of K , we can determine the radius
of the largest sphere with center x0 that can be inscribed in K very efficiently as
described by the formula for ı.x0/ given in Sect. 8.1. Also, the results discussed
in Sect. 8.3 offer a good characterization for a ball center for K . Using this char-
acterization, the problem of obtaining a ball center (center for a largest radius
ball inside K) requires solving the LP (8.5), and in Sect. 8.3, we even developed
a procedure for doing this approximately.

Suppose K1 is a polytope represented as the convex hull of its extreme points,
say K1 D convex hull of fx1; � � � ; xN g, where the set of extreme points of K1

is given and K1 � Rn is of full dimension. Given an interior point x0 of K1,
can we determine efficiently the radius of the largest sphere with center x0 that
can be inscribed in K1? Is there a simple characterization for a ball center of K1

similar to that of K? Can an approximation to a ball center of K1 be computed
by a fast algorithm? At the moment these are all open research questions.

8.8 Future Research Directions

The sphere methods are new and are still under development. We are also inves-
tigating additional directions for line search to include in the procedures used for
computing approximate ball centers to accelerate their convergence rate and to im-
prove the quality of the approximation to an optimum ball center, and additional
descent steps to use in each iteration. Also, we have so far been able to test the
numerical performance of some alternatives in the algorithm using a preliminary
MATLAB code. More extensive testing is needed to determine the best alternatives
and then prepare a good code with these alternatives for tests using available large
scale test problems.

The sphere methods also open up important new research topics in computational
linear algebra. To get the best results from an implementation of the simplex method,
researchers developed efficient factorization techniques to update the inverse of a
matrix as one of its column vectors changes from one step to the next. An important
component of the sphere method is the LSCPD sequence of steps in which a matrix
grows by a row and a column from one step to the next. To get the best results from
the sphere method, we need to develop appropriate techniques to update the inverse
as the matrix grows in this way.

8.9 Exercises

8.1. Consider the polytope, K , defined by the following system of linear constraints
in two variables x; y: x � 2 � y � 2x C 1, y � x C 2, 0 � x; y � 4.
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Draw K geometrically, and by trial and error determine the largest inscribed ball
B inside K . Is B unique? Why? Formulate an LP model for determining B . Solve
this LP and check whether it tallies with the B that you generated by trial and error.

Also, let H D f.x; y/ W y D 2g. Determine by trial and error the largest ball
BH , with its center on H that is inscribed inside K . Formulate an LP model for
determining BH . Solve this LP and check whether it tallies with the BH that you
generated by trial and error.

8.2. Give a simple numerical example of a system of linear inequalities in two vari-
ables for which the set of feasible solutions K is unbounded, but it has a ball center
and a maximum radius inscribed ball with finite radius.

8.3. Give a simple numerical example of a system of linear inequalities in two vari-
ables for which the set of feasible solutions K is unbounded and does not have a ball
center because the maximum inscribed ball in K is unbounded and a hyperplane H

intersecting K in its interior, such that the ball center of K on H is well defined.

8.4. Let K D fx W Ax � bg, where A is a matrix of order m � n and K0 its interior.
Let z D cx be an objective function for which the minimum and maximum

values are tmin and tmax. Also, let the symbols ı.x/; ıŒt 
; t� ; B.x; ı.x//; T .x/ have
the same meanings as defined in Sect. 8.2 or in the notation at the beginning of this
chapter.

Let x.t/ denote the ball center of K on the objective plane fx W cx D tg, as
defined conceptually in Sect. 8.2. Then for each tmin � t � tmax, B.x.t/; ı.x.t///

is a maximum radius inscribed ball in K with its center on the objective plane fx W
cx D tg.

(1). Prove that ıŒt 
 is a piecewise linear concave function. Also show that ıŒt 
 is
monotonic increasing in the interval tmin � t � t� and monotonic decreasing in the
interval t� � t � tmax.

(2). Under assumption 1 of Sect. 8.7, show that the interval tmin � t � tmax

can be partitioned into a finite number of subintervals, such that in each subinterval
both x.t/; ı.x.t// are linear functions, and T .x.t// remains unchanged. As t moves
from one of these subintervals to an adjacent one, T .x.t// changes by one or more
entries.

(3). Prove that (1) and (2) hold even when Assumption 1 does not hold.

8.5. Let K D fx W Ax � bg, where jjAi:jj D 1 for all i . Suppose Nx 2 fx W Ax > bg
and T . Nx/ D set of all indices i that tie for the minimum in: minimumfAi: Nx � bi W
i D 1 to mg. Show that Nx is the center of a largest sphere inscribed inside K iff
y D 0 is the unique feasible solution for the system: Ai:y � 0 for all i 2 T . Nx/.

8.6. Let K D fx W Ax � bg, where A is a given matrix of order m�n; and S � K ,
an inscribed sphere. Both K and S are full dimensional. The point Nx 2 S minimizes
the linear objective function cx on S . If Nx is also a boundary point of K prove that
Nx minimizes cx over K .
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Chapter 9
Quadratic Programming Models

9.1 Introduction

Quadratic programming (QP) deals with a special class of mathematical programs
in which a quadratic function of the decision variables is required to be optimized
(i.e., either minimized or maximized) subject to linear equality and/or inequality
constraints.

Let x D .x1; : : : ; xn/T denote the column vector of decision variables. In math-
ematical programming, it is standard practice to handle a problem requiring the
maximization of a function f .x/ subject to some constraints by minimizing �f .x/

subject to the same constraints. Both problems have the same set of optimum solu-
tions. Because of this, we restrict our discussion to minimization problems.

A quadratic function of decision variables x is a function of the form

Q.x/ D
nX

iD1

nX
j Di

qij xi xj C
nX

j D1

cj xj C c0:

Define c D .c1; : : : ; cn/ and a square symmetric matrix D D .dij / of order n,
where

di i D 2qi i for all i D 1 to n

dij D dj i D qij for j > i

Then in matrix notation, Q.x/ D 1
2
xT Dx C cx C c0. Here, D is the Hessian

matrix (i.e., the matrix of second order partial derivatives) of Q.x/.
As an example, consider n D 3, x D .x1; x2; x3/T , and h.x/ D 81x2

1 � 7x2
2 C

5x1x2 � 6x1x3 C 18x2x3. This quadratic function h.x/ D 1
2
xT Dx where

D D
0
@

162 5 �6

5 �14 18

�6 18 0

1
A

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models,
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6 9, c� Springer Science+Business Media, LLC 2010
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A quadratic function is the simplest nonlinear function, and hence they have
always served as model functions for approximating general nonlinear functions
by local models (through Taylor series and other such approximations). Hence,
quadratic programming models serve as a bridge between linear programming and
nonlinear programming models. Also, some algorithms for nonlinear programming
are based on solving quadratic approximations of them using quadratic program-
ming techniques.

A square matrix D of order n is said to be

Positive semidefinite (PSD): if xT Dx � 0 for all x

Positive definite (PD): if xT Dx > 0 for all x ¤ 0

Negative semidefinite (NSD): if xT Dx � 0 for all x

Negative definite (ND): if xT Dx < 0 for all x ¤ 0

Indefinite: if it is neither PSD nor NSD.

Hence, the square matrix D is NSD, ND iff �D is PSD, PD, respectively. Also,
remember that all these concepts are only defined for square matrices. These matrix
theoretic concepts are important in the study of QP because the quadratic func-
tion Q.x/ D 1

2
xT Dx C cx C c0 is a convex function over Rn iff the matrix D

is PSD.

Result 9.1. Let Q.x/ D 1
2
xT Dx C cx C c0, where D is a symmetric matrix of

order n. Then the Hessian matrix (the n � n matrix of second partial derivatives)

of Q.x/ at x is H.Q.x// D
�

@2Q.x/
@xi @xj

�
D D. Q.x/ is a convex [concave] function

defined over Rn, iff the matrix D is PSD [NSD].

Result follows directly from Theorem 2.4 of Sect. 2.2.

9.2 Superdiagonalization Algorithm for Checking PD and PSD

Let M be a square matrix of order n which may or may not be symmetric. By
definition, M is PD or PSD iff D D M CM T is PD or PSD, respectively. To check
whether the symmetric matrix D D .dij / is PD or PSD, we can use the algorithms
given below. They are based on the following results.

Result 9.2. If D is PD, all its diagonal entries di i , i D 1 to n must be >0. If D is
not PD, but PSD, all its diagonal entries di i , i D 1 to n, must be � 0.

Result 9.3. If the symmetric matrix D D .dij / is PSD and a diagonal entry in it
di i D 0, then all the entries in its row and column, i.e., row i and column i , must be
zero.
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Theorem 9.1. Let D D .dij / be a symmetric matrix with its first diagonal entry
d11 ¤ 0. Subtract suitable multiples of row 1 from each of the other rows to convert
all entries in column 1 in rows 2–n to 0, i.e., transform

D D

0
BBB@

d11 : : : d1n

d21 : : : d2n

:::
:::

dn1 : : : dnn

1
CCCA into D1 D

0
BBB@

d11 d12 : : : d1n

0 Qd22 : : : Qd2n

:::
:::

:::

0 Qdn2 : : : Qdnn

1
CCCA

let E1 be the matrix of order .n � 1/ � .n � 1/ obtained by deleting column 1 and
row 1 from D1. Then E1 is also symmetric; and D is PD (PSD) iff d11 > 0 and E1

is PD (PSD).

For proofs of Results 9.2 and 9.3, and Theorem 9.1, see (Murty 1988 of Chap. 2),
for example. The following algorithms for checking PD and PSD are based on re-
peated use of these results.

Algorithm 1: Superdiagonalization Algorithm for Checking Whether M is PD
Let M D .mij / be the matrix of order n � n being tested for positive definiteness.
Let D D M if M is symmetric, otherwise D D M C M T .

Step 1: If any of the principal diagonal elements in D are � 0, D and hence M is
not PD, then terminate. Otherwise go to Step 2 with D as the current matrix.

Step 2: Subtract suitable multiples of row 1 of D from all the other rows, so that
all the entries in column 1 and rows 2–n of D are made into 0; i.e., transform D

into D1 as in Theorem 9.2.2. If any diagonal element of D1 is � 0, D and hence
M is not PD, then terminate. Otherwise go to Step 3 with the matrix D1 as the
current matrix.

General Step r C 2: At this stage the current matrix will be Dr of the following
form.

Dr D

0
BBBBBBBBBBB@

d11 d12 : : : d1n

0 Qd22 : : : Qd2n

0 0
: : : : : :

:::
Ndrr : : : Ndrn

0 OdrC1;rC1 : : : OdrC1;n

:::
:::

:::
:::

:::

0 0 0 Odn;rC1 : : : Odnn

1
CCCCCCCCCCCA

Subtract suitable multiples of row r C 1 in Dr from rows i for i > r C 1, so
that all the entries in column r C 1 and rows i > r C 1 are transformed into 0.
This transforms Dr into DrC1. If any element in the principal diagonal of DrC1

is � 0, D and hence M is not PD, terminate. Otherwise, if r C 2 < n go to the
next step with DrC1 as the current matrix. If r C 2 D n, the current matrix is
Dn�1 and it is of the form
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Dn�1 D

0
BBBBB@

d11 d12 : : : d1n

0 Qd22 : : : Qd2n

0 0
:::

:::
:::

0 0 : : : Ndnn

1
CCCCCA

If no termination has occurred earlier and all the diagonal entries in Dn�1 are
positive, D and hence M is PD, terminate.

If the method goes through Step n � 1, the final matrix Dn�1 is upper trian-
gular. All the work in this method has transformed the original matrix D into the
upper triangular matrix Dn�1. That is why this method is called the superdiago-
nalization algorithm.

Example 9.1. Test whether the following matrix M is PD.

M D

0
BB@

3 1 2 2

�1 2 0 2

0 4 4 5=3

0 �2 �13=3 6

1
CCA

D D M C M T D

0
BB@

6 0 2 2

0 4 4 0

2 4 8 �8=3

2 0 �8=3 12

1
CCA

All the entries in the principal diagonal of D are > 0. So, apply Step 1 in su-
perdiagonalization getting D1. Since all elements in the principal diagonal of D1

are > 0, continue. The matrices obtained in the order are

D1 D

0
BB@

6 0 2 2

0 4 4 0

0 4 22=3 �10=3

0 0 �10=3 34=3

1
CCA ; D2 D

0
BB@

6 0 2 2

0 4 4 0

0 0 10=3 �10=3

0 0 �10=3 34=3

1
CCA ;

D3 D

0
BB@

6 0 2 2

0 4 4 0

0 0 10=3 �10=3

0 0 0 8

1
CCA :

The algorithm terminates now. Since all the diagonal entries in D3 are >0, D

and hence M is PD.
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Example 9.2. Check whether

M D

0
BB@

1 0 2 0

0 2 4 0

2 4 4 5

0 0 5 3

1
CCA

is PD. M is already symmetric and its diagonal entries are > 0. Carrying out
Step 1 on D D M leads to

D1 D

0
BB@

1 0 2 0

0 2 4 0

0 4 0 5

0 0 5 3

1
CCA

Since the third diagonal entry in D1 is 0, the matrix M here is not PD.

Algorithm 2: Algorithm for Checking Whether M Is PSD
Let M D .mij / be the matrix of order n � n being tested for positive semidefinite-
ness. Let D D M if M is symmetric, otherwise D D M C M T .

Step 1: If any of the principal diagonal elements in D are < 0, D and hence M is
not PSD, then terminate. Otherwise, continue.

If any diagonal entries in D are 0, all the entries in the row and column of each
0 diagonal entry must be 0. Otherwise, D and hence M is not PSD, so terminate.
If termination has not occurred, reduce the matrix D by striking off the 0-rows
and columns of 0 diagonal entries. We will call the remaining matrix by the same
name D. Go to Step 2 with D as the current matrix.

Step 2: Start off by performing row operations as in Step 1 of Algorithm 1 dis-
cussed above, i.e., transform D into D1. If any diagonal entry in D1 is < 0, D

and hence M is not PSD, terminate. Otherwise, let E1 be the submatrix of D1

without its row 1 and column 1. If a diagonal entry in E1 is 0, all entries in its
row and column in E1 must be 0 too; otherwise, D and hence M is not PSD,
terminate. Continue if termination did not occur. With D1 as the current matrix,
go to Step 3.

General Step r C 2: At this stage the current matrix will be Dr of the same form
as in the above algorithm. Let Er be the submatrix of Dr with its rows 1 to r

and columns 1 to r struck off. If any diagonal entry in Er is < 0, D and hence
M is not PSD, terminate. If any diagonal element of Er is 0, all the entries in its
row and column in Er must be 0 too; otherwise, D and hence M is not PSD,
terminate. If termination did not occur, continue.

Let Dss be the first nonzero (and hence positive) diagonal element in Er . Sub-
tract suitable multiples of row s in Dr from row i for i > s, so that all the entries
in column s and rows i > s in Dr are transformed into 0. This transforms Dr

into Ds , which is the new current matrix. Go to Step s C2 with Ds as the current
matrix.
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If termination does not occur until Dn�1 is obtained, and if all the diagonal
entries in Dn�1 are � 0, D and hence M is PSD, terminate.

In the process of obtaining Dn�1, if all the diagonal elements in D and in all
the matrices Dr obtained during the algorithm are > 0, D and hence M is not
only PSD but actually PD.

Example 9.3. Check whether the following matrix M is PSD.

M D

0
BBBBB@

0 �2 �3 �4 5

2 3 3 0 0

3 3 3 0 0

4 0 0 8 4

�5 0 0 4 2

1
CCCCCA

; D D M C M T D

0
BBBBB@

0 0 0 0 0

0 6 6 0 0

0 6 6 0 0

0 0 0 16 8

0 0 0 8 4

1
CCCCCA

D:1 and D1: are both zero vectors. So we eliminate them, but will call the re-
maining matrix by the same name. All diagonal entries in D are � 0. So we apply
Step 1 of superdiagonalization. This leads to

D1 D

0
BB@

6 6 0 0

0 0 0 0

0 0 16 8

0 0 8 4

1
CCA ; E1 D

0
@

0 0 0

0 16 8

0 8 4

1
A

The first diagonal entry in E1 is 0, and the column and row of this entry in E1

are both zero vectors. And all the diagonal entries in D1 are � 0. So continue with
superdiagonalization. Since the second diagonal element in D1 is 0, move to the
third diagonal element of D1. This step leads to

D3 D

0
BB@

6 6 0 0

0 0 0 0

0 0 16 8

0 0 0 0

1
CCA

All diagonal entries in D3 are � 0, and it is upper triangular. So, D and hence
M are PSD. M is not PD because of the 0-diagonal entries encountered in the
algorithm.

Example 9.4. Is the matrix NM in Example 9.2 PSD? We have seen there that it is
not PD. Referring to Example 9.2, after Step 1 in superdiagonalization we have

E1 D
0
@

2 4 0

4 0 5

0 5 3

1
A

The second diagonal entry in E1 is 0, but its row and column in E1 are not zero
vectors. So, M is not PSD.
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These algorithms for checking whether a given square matrix is PD or PSD have
many uses in NLP. For example, given a quadratic program (QP) in which the objec-
tive function f .x/ D xT Dx C cx is to be minimized subject to linear constraints,
to check whether this problem is a convex QP, we need to check whether the ma-
trix D defining the quadratic form in f .x/, is PSD. Also, given a nonlinear twice
continuously differentiable function g.x/, a sufficient condition for it to be locally
convex at a point Nx, is that its Hessian matrix at Nx is PD. Also, these algorithms are
needed to check whether a given point satisfies the optimality conditions for being
a solution to an NLP (nonlinear program), as well.

9.3 Classification of Quadratic Programs

Considering the discussion in Sect. 5.9, QPs can be classified into the following
types.

Unconstrained quadratic minimization problem is one that requires the minimiza-
tion of a quadratic function Q.x/ over the whole space Rn with no constraints.

Equality constrained quadratic minimization problem is one that requires the min-
imization of a quadratic function Q.x/ subject to linear equality constraints on the
variables, Ax D b. These equations can be used to eliminate some variables by
expressing them in terms of the others, and thereby transform the problem into
an unconstrained one in the remaining variables. Thus, these problems are math-
ematically equivalent to (and can be solved by techniques similar to those of)
unconstrained quadratic minimization problems.

Inequality constrained quadratic minimization problem is one that requires the
minimization of a quadratic function Q.x/ subject to linear inequality constraints
Bx � d , and possibly bounds on individual variables ` � x � u, and may be some
equality constraints Ax D b.

Bound constrained quadratic minimization problem is one that requires the mini-
mization of a quadratic function subject only to bounds (lower and/or upper) on the
variables.

Convex quadratic program (CQP) any of the above problems in which the objec-
tive function to be minimized, Q.x/, is convex.

Nonconvex quadratic program any of the above problems in which the objective
function to be minimized, Q.x/, is nonconvex.

Linear complementarity problem (LCP) a special problem dealing with a sys-
tem of equations in non-negative variables in which the variables are formed into
various pairs called complementary pairs. A feasible solution in which at least one
variable in each pair is zero is desired. There is no objective function to be mini-
mized in this problem. The first-order necessary optimality conditions for a QP are
in the form of an LCP. And in turn every LCP can be posed as a QP.
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Among optimization problems, those in which a convex function is to be mini-
mized over a suitably defined convex set are called convex programming problems.
For convex programming problems, optimum solution(s) are well characterized,
and mathematical theory has derived necessary and sufficient optimality conditions
characterizing the optimum solution set, and efficient algorithms have been devel-
oped for solving these problems based on those optimality conditions.

Since linear functions are both convex and concave, all linear programs are con-
vex programming problems, and we discussed optimality conditions, and efficient
algorithms based on them for LPs in earlier portions of the book.

However, for nonconvex programming problems the situation is very different.
Talking in terms of minimization problems, in a nonconvex programming problem
there may be several types of minimum solutions. Those that attain the minimum
possible value for the objective function are called global minima. But there may
also be local minima that are not global minima; these local minima are minimum
solutions in a small neighborhood about them. For all convex programming prob-
lems, every local minimum is a global minimum; that is why when discussing LPs,
we only refer to “optimum solutions” and never worry about them being only local
minima.

Also, for nonconvex programming problems in general, so far there are no useful
necessary and sufficient optimality conditions for a feasible solution to be a “global
minimum” or even a “local minimum.” All we have available at this time are some
necessary conditions (called Karush–Kuhn–Tucker (KKT) optimality conditions, or
first-order necessary optimality conditions) for being a local minimum discussed in
Sect. 5.9. Unfortunately, these conditions may not be sufficient, so a solution satis-
fying them cannot be guaranteed to be even a local minimum. That is why a feasible
solution satisfying the KKT optimality conditions is called a KKT point, or KKT
solution, or stationary point. Algorithms developed for nonconvex programming
problems can at best be proved to converge to a KKT point. That is why nonconvex
programming problems are considered hard problems and practitioners are usually
happy if they can find a descent algorithm for them which converges to a KKT point.

Among QPs we have two classes: convex QPs and nonconvex QPs. There are
efficient algorithms to find global optima for convex QPs. To solve nonconvex QPs,
we apply the same algorithms on them, but we cannot guarantee that the solutions
obtained by them are even local minima.

9.4 Types of Solutions and Optimality Conditions

In linear programming (LP), we talk about optimum solutions but not about differ-
ent types of optima such as local and global optima. That is because every local
optimum and every point satisfying the first-order necessary optimality conditions
for an LP, are also a global optimum. Unfortunately, this is not the case in general
QPs, as discussed in Sect. 5.9.

For a QP, or any mathematical program in which an objective function �.x/ is
required to be minimized, a
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Local minimum is a feasible solution Nx for which there exists an � > 0 such that
�.x/ � �. Nx/ for all feasible solutions within a Euclidean distance of � from Nx.
Global minimum is a feasible solution Ox satisfying �.x/ � �. Ox/ for all feasible
solutions x.

Stationary point or KKT point is a feasible solution satisfying the first-order nec-
essary optimality conditions (also called the KKT optimality conditions) for the
problem. We will state these conditions now.

Consider the general QP with equality and inequality constraints:

Minimize Q.x/ D 1

2
xT Dx C cx

subject to Ax D b

Ex � f (9.1)

x � 0

where A; E are matrices of orders m � n; p � n, respectively. We assume that
D is a symmetric matrix; if not, just replace it by .D C DT /=2 and this leaves
Q.x/ unchanged. To state the first-order necessary optimality conditions for this
QP, we introduce the Lagrange multiplier vectors associated with the equality con-
straints, � D .�1; � � � ; �m/ and inequality constraints, � D .�1; � � � ; �p/ and
ı D .ı1; � � � ; ın/ associated with the nonnegativity restrictions (these �; �; ı are
all row vectors) and write the Lagrangian for the problem which is L.x; �; �; ı/ D
Q.x/ � �.Ax � b/ � �.Ex � f / � ıx. Then the first-order necessary optimality
conditions for (9.1) are the following:

@L

@x
D Dx C cT � AT �T � ET �T � ı D 0

Ax D b; Ex � f; x � 0; �; ı � 0

For all i 2 f1; � � � ; pg; �i .Ei:x � fi / D 0 (9.2)

For all j 2 f1; � � � ; ng; ıj xj D 0

From the first and fourth lines in this system, we see that the Lagrange multi-
pliers ıj for j D 1 to n can easily be eliminated from this system and it can be
expressed as:

@L

@x
D Dx C cT � AT �T � ET �T � 0

Ax D b; Ex � f; x � 0; � � 0

For i 2 f1; :::; pg; �i .Ei:x � fi / D 0 (9.3)

For j 2 f1; :::; ng; Œ.Dj:x C cj � �A:j � �E:j /
xj D 0

These conditions are often given in the form (9.3) in some textbooks. A feasible
solution Nx to (9.1) is called a KKT point or stationary point for this problem, iff there
exist Lagrange multiplier vectors N�; N� , which satisfy the above KKT conditions
(9.3) together with Nx.
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For the unconstrained minimization problem: minimize Q.x/ D 1
2
xT Dx C cx

over x 2 Rn, the first-order necessary optimality conditions are:

@L

@x
D Dx C cT D 0:

Here again, Nx is called a KKT point or stationary point for this problem if it
satisfies this condition.

For the equality constrained minimization problem: minimize Q.x/ D 1
2
xT

Dx C cx, subject to equality constraints Ax D b only, where A is a matrix of
order m � n we write the Lagrangian L.x; �/ D Q.x/ � �.Ax � b/, where
� D .�1; � � � ; �m/ is the row vector of Lagrange multipliers associated with the
equality constraints in the problem.

Then the first-order necessary optimality conditions for this problem are

@L

@x
D Dx C cT � AT �T D 0

Ax D b (9.4)

As before, a feasible solution Nx to this problem is called a KKT point or stationary
point for this problem, iff there exist Lagrange multiplier vectors N� that satisfy the
above KKT conditions together with Nx.

In a convex QP, every stationary point (KKT point), or a local minimum, is a
global minimum; hence, all these concepts converge in a convex QP. The same
may not be true in nonconvex QPs, i.e., there may be local minima that are not
global minima, and stationary points which are neither global nor local minima.
Also, the problem may have some local minima even when the objective function is
unbounded below on the set of feasible solutions.

We will refer to the first-order (KKT) necessary optimality conditions for a QP
as its KKT system.

Many textbooks have proofs of these optimality conditions; see, for example,
(Murty 1988 of Chap. 2; Bazaraa et al. 2006 of Chap. 5).

9.5 What Types of Solutions Can Be Computed Efficiently
by Existing Algorithms?

Like LPs, QPs have the property that when the set of feasible solutions is nonempty
either a global minimum exists or the objective function is unbounded below on
the set of feasible solutions. And for both convex and nonconvex QPs, there exist
finite algorithms for checking whether the objective function is unbounded below
on the set of feasible solutions, and for computing a global optimum solution when
one exists, but these finite algorithms may not be practical.



9.6 Some Important Applications of QP 455

For convex QPs there are very efficient algorithms for computing a global
minimum when it exists, and very high quality software systems implementing these
algorithms are available commercially.

For nonconvex QPs, even though finite algorithms for computing a global min-
imum are available, they are impractical, because the computational effort needed
by them grows exponentially with the size of the problem being solved. Nonconvex
QP is NP-hard, and so far there is no algorithm known that is guaranteed to find a
global minimum for it within a reasonable time.

Can we at least compute a local minimum for a nonconvex QP efficiently? Unfor-
tunately, even the problem of checking whether a given feasible solution is a local
minimum for a nonconvex QP may be a hard problem. In (Murty and Kabadi 1987),
it has been shown that the problem of checking whether 0 is a local minimum in the
following simple QP:

Minimize xT Dx

subject to x � 0

is a co-NP-complete problem when D is not PSD. In this paper, it has been ex-
plained that when dealing with a nonconvex QP, a reasonable goal is to look for an
algorithm that produces a descent sequence (i.e., a sequence of feasible points along
which the objective value strictly decreases) converging to a KKT point. Practition-
ers seem to accept this goal at the moment. Some of the algorithms discussed below
achieve this goal.

9.6 Some Important Applications of QP

Here we discuss some important practical applications of QP models in different
areas.

Finance: Analysis using QP models is an established part of selecting opti-
mum investment strategies. Perhaps (Markowitz 1959) is the first published book
in this area. With x as the vector of stock investments, the Markovitz model em-
ploys the variation in return as measured by the quadratic function xT Dx, where
D is the variance/covariance matrix of returns for measuring the risk. This risk is
the objective function to be minimized. Constraints in the model guarantee conser-
vation on the flow of funds and a lower bound on the expected returns from the
portfolio. There may also be bounds placed on the investments in particular sec-
tors of the economy (such as pharmaceuticals, utilities, etc.) to make sure that the
model does not put too many eggs in any one basket, thus achieving diversification.
Many other practical aspects of investing can easily be included by either adding
appropriate constraints or modifying the objective function by including quadratic
penalty terms.

For selecting the best investment strategy, several publications measure risk by
different objective functions (see Murty 2008a, b).
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Many authors (e.g., Crum and Nye 1981; Mulvey 1987) have designed similar
multiperiod quadratic generalized network flow models in which interest, dividends,
and loans are modeled by means of arc multipliers.

Taxation: QP models play a very important role these days in the analysis of tax
policies. Political leaders at the national and state levels are relying more and more
on such analyses to forecast growth rates in tax revenues and to set various taxes at
levels that are likely to ensure growth at desired rates. White (1983) gives a detailed
description of such an analysis carried out for the state of Georgia.

National and state government taxes, such as sales tax, motor fuels tax, alcoholic
beverages tax, personal income tax, etc., are all set at levels to ensure a healthy
economic growth. Government finance is based on the assumption of predictable
and steady growth of each tax over time.

If s is the tax rate for a particular tax and St the expected tax revenue for this tax
in year t , then a typical regression equation used to predict St as a function of s and
t is loge St D a C bt C cs where a; b; c are parameters to be estimated from past
data to give the closest fit by the least squares method, a QP technique. The annual
growth rate in this tax revenue is then the regression coefficient b multiplied by 100
to convert it to percent.

The decision variables in the model are sj D the tax rate for tax j in the base
year (0th year) as a fraction. From the known tax base for tax j in the 0th year, the
revenues from tax j in this year can be obtained as sj (tax base for tax j ) D xj .
The instability or variability in this revenue is measured by the quadratic function
Q.x/ D xT Vx, where V is the variance/covariance matrix estimated from past
data. Q.x/ is to be minimized. The constraints in the model consist of bounds on
the xj and a condition that

P
xj D T , the total expected tax revenue in the 0th

year. And there is an equation that the overall growth rate which can be measured by
the weighted average of the growth rates of the various taxes j ,

P
.xj bj /=T should

be equal to the desired growth rate �. Any other linear constraints that the decision
variables are required to satisfy can also be included. In fact, � can be treated as
a parameter and the whole model solved as a parametric QP model. Exploring the
optimum solution for different values of � in the reasonable range yields information
for the political decision makers to determine good values for the various tax rates
that are consistent with expected growth in tax revenues.

For an example, see Exercise 9.13.
Equilibrium Models: Economists use equilibrium models to analyze expected

changes in economic conditions, predict prices, inflation rates, etc. These models
often involve QPs. As an example, in (Glassey 1978), a simple equilibrium model
of interregional trade in a single commodity is described. He considers N regions
and the following data elements and variables.

Data: ai > 0 the equilibrium price in the i th region in the absence of imports
and exports.

bi > 0 the elasticity of supply and demand in the i th region.
cij the cost/unit to ship from i to j .
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Variables: pi equilibrium price in the i th region.
yi net imports into the i th region (may be > 0, or 0, or < 0)

xij actual exports from region i to region j .

If pi > ai , supply locally exceeds demand in the i th region, the difference being
available for export. From this we have pi D ai � bi yi . Also, the yi and xij

are linked through flow conservation equations. The interregional trade equilibrium
conditions are

pi C cij � pj for all i; j

.pi C cij � pj /xij D 0 for all i; j

If the first condition above does not hold, exports from i to j will increase until
the elasticity effects in markets i and j rise, and prices will adjust so that additional
profit from export no longer exists. Also, if xij > 0, we must have pi Ccij �pj D 0.

It can be verified that these conditions are the first-order necessary optimality
conditions for a quadratic network flow problem in which the quadratic objective
function can be interpreted as a net social payoff function. Using this observation
(Glassey 1978) describes a procedure for computing the equilibrium prices and
flows based on solving the QP.

In the same way traffic engineers use traffic equilibrium models solved by
quadratic network flow algorithms for road and communication network planning.
These traffic equilibrium models typically have hundreds of thousands of variables
and constraints and are probably the largest QP models solved on a regular basis.

Electrical Networks: Even during the physicist J.C. Maxwell’s time in the second
half of the 19th century, it has been well recognized that the equilibrium conditions
of an electrical or a hydraulic network are attained at the point where the total en-
ergy loss is minimized. Dennis (1959) has formally shown that the sum of the
energy losses in the resistors and at the voltage sources in an electrical network, is
a quadratic function of the branch currents, if all devices in the network are of a
linear (i.e., ohmic) nature. Using this he formulated the problem of determining the
branch currents at equilibrium in an electrical network connecting various devices,
voltage sources, diodes, and resistors, as a QP. He then showed that the optimality
conditions for this QP are precisely the Kirchoff laws governing the equilibrium
conditions of the network, with the Lagrange multipliers representing node poten-
tials. In the distribution of electrical power, this QP model is used to solve the load
flow problem concerned with the flow of power through the transmission network
to meet a given demand.

Power System Scheduling Problem: The economic dispatch problem in an elec-
trical power system operation deals with the problem of allocating the demand for
power � or system load � among the generating units in operation at any point of
time. The optimal allocation of load among the units to achieve a least cost alloca-
tion depends on the relative efficiencies of the units and can be modeled as a QP
(see Wood 1984). In power system operation, this model is usually solved many
times during the day with appropriate load adjustments.
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Application in Solving General Nonlinear Programs: At the moment, one of the
most popular algorithms for solving general nonlinear programming problems is
the SQP (sequential or recursive quadratic programming) method. It is an iterative
method that in each iteration solves a convex QP to find a search direction and a
line search problem (1-dimensional minimization problem for a merit function) in
that direction. The original concepts of this method are outlined in (Wilson 1963;
Han 1976; Powell 1978), but it has been developed into a successful approach
through the work of many researchers (see Eldersveld 1991; Bazaraa et al. 2006
of Chap. 5; Murty 1988 of Chap. 2). The success of these methods has made QP a
very important topic in mathematical programming. A nice software package for
nonlinear programs based on this approach is FSQP (Zhou and Tits 1992).

9.7 Unconstrained Quadratic Minimization
in Classical Mathematics

Historically, quadratic functions became prominent because they provide simple
local models for general nonlinear functions. A quadratic function is the simplest
nonlinear function and when used as a local approximation for a general nonlinear
function it can capture the important curvature information that a linear approxima-
tion cannot.

The use of quadratic approximations to handle general nonlinear functions goes
back a very long time. We discuss some important instances of this.

1. Newton’s method: Newton used it when he developed the celebrated Newton’s
method for finding an unconstrained minimum of a twice continuously differen-
tiable function, f .x/. This method constructs the local model for f .xr C y/ at
the current point xr to be the quadratic function Q.y/ D f .xr / C rf .xr /y C
1
2
yT H.f .xr //y, where rf .xr / is the row vector of the first-order partial deriva-

tives of f .x/ at xr and H.f .xr // is the Hessian matrix of f .x/ at xr . Q.y/ is
the second-order Taylor series approximation for f .x/ at xr . The method com-
putes yr , the minimizer of the model function Q.y/ (assuming that H.f .xr //

is PD, we have yr D �H.f .xr //�1.rf .xr //T ) and takes the next point to be
xrC1 D xr C yr .

Thus, Newton’s method solves an unconstrained quadratic minimization prob-
lem in each step. Starting from an initial point x0 it generates the sequence fxrg,
which under certain conditions can be shown to converge to the minimum of the
original function f .x/.

To treat the case where the Hessian H.f .xr // may not be PD, several modi-
fied Newton methods based on quadratic models different from the second order
Taylor series approximation at xr have been developed.

Also, the mathematically beautiful theory of quasi-Newton methods for un-
constrained minimization has also been developed through the study of quadratic
models (see Dennis and Schnabel 1983; Fletcher 1987; Bazaraa et al. 2006 of
Chap. 5).
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2. Conjugate gradient method: There is the very efficient Gaussian elimination
method for solving a square nonsingular system of linear equations, Ax D b

say, of order n. However, when n is very large, this method becomes unwieldy
and difficult to implement. The least squares formulation of this system of equa-
tions is the unconstrained quadratic minimization problem

Minimize .Ax � b/T .Ax � b/

and (Hestenes and Stiefel 1952) developed the conjugate gradient method for
solving this problem. Subsequently, through the study of the quadratic model,
several researchers have extended this method directly into a variety of conju-
gate gradient methods for the unconstrained minimization of general nonlinear
functions.

3. Linear least squares: Suppose we have a large system of linear equations (typi-
cally overdetermined, i.e., where the number of equations exceeds the number of
variables), say Ax D b, which has no exact solution. A common approach for
handling such a system is to look for a least squares solution, i.e., an optimum
solution of the unconstrained quadratic minimization problem

Minimize .Ax � b/T .Ax � b/

This problem is known as the linear least squares problem. Powerful numer-
ical linear algebra techniques such as singular value decomposition (SVD) have
been developed to solve large scale versions of this special class of QPs (see
Dennis and Schnabel 1983).

Statisticians have been using the linear least squares model for computing the
estimates of the coefficients in a linear regression model for a long time.

9.8 Summary of Some Existing Algorithms for Constrained QPs

1. Frank–Wolfe method: One of the first methods for QP developed in recent times
is that of (Frank and Wolfe 1956). It is an iterative method which in each iteration
solves an LP to find a search direction, and a line search problem in that direction.
It produces a descent sequence such that every limit point of this sequence is
a KKT point. However, the method has slow convergence, and is not popular
except on problems with special structure that makes it possible to solve the LP
in each iteration by an extremely fast special method taking advantage of the
structure.

2. Reduced gradient methods: The simplex method for LP has been extended to
solve problems involving the minimization of a quadratic (or in general a smooth
nonlinear) function subject to linear constraints. The method is called the reduced
gradient method and is discussed in (Wolfe 1959). The name reduced gradient
method refers to any method that uses the equality constraints to eliminate some
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variables (called the dependent or basic variables) from the problem and treats the
remaining problem in the space of the independent (or nonbasic variables) only,
either explicitly or implicitly. The reduced gradient is the gradient of the objective
function in the space of independent variables. The method is quite popular; see,
for example (Murty 1988 of Chap. 2; Bazaraa et al. 2006 of Chap. 5). The OSL
software package uses this method for solving QPs. The MINOS 5.4 software
package uses this method for minimizing a smooth nonlinear function subject to
equality constraints.

This method has been generalized directly into the GRG (generalized reduced
gradient) method for solving nonlinear programs involving nonlinear constraints
(Abadie and Carpentier 1969). The GRG is a popular method on which several
successful nonlinear programming software packages are based.

3. Methods based on the LCP: In the 1950s and 1960s, several researchers proposed
schemes for solving the QP by solving its KKT system. Lemke (1965) formu-
lated the KKT system for a QP as an LCP and developed a beautiful algorithm
for it called the complementary pivot algorithm. The data for an LCP of order n

consists of a square matrix M of order n and a column vector q 2 Rn, and it is
to find a w D .wj / 2 Rn and a z D .zj / 2 Rn satisfying

w � M z D q

w; z � 0

wj zj D 0 for all j

Checking whether the general LCP has a solution is an NP-complete prob-
lem and there are no efficient algorithms known for it. But the complementary
pivot algorithm is a finite path following method for finding a solution, when
one exists, to a class of LCPs which includes the KKT systems corresponding to
convex QP.

The development of the complementary pivot method is a nice theoretical
breakthrough for which Lemke received the Von Neumann theory award of
ORSA/TIMS in 1978.

However, the complementary pivot method and several other methods devel-
oped for the LCP are not currently popular for solving even convex QPs, because
a QP involving m inequality constraints in n non-negative variables leads to an
LCP of order m C n, blowing up the size.

For tackling nonconvex QPs, the complementary pivot approach is clearly
unsuitable, as it focusses attention purely on the KKT system and never even
computes the objective value, and if it leads to a KKT point at termination that
point may not even be a local minimum.

But the theoretical contribution of the formulation of the LCP and the com-
plementary pivot method for it is great. The LCP has a fascinating geometrical
interpretation. The study of the geometry of LCP is initiated in (Murty 1972)
and continues to be a very active area of research. And the mathematical princi-
ple behind the complementary pivot method has been used to develop simplicial
methods (which are also called complementary pivot methods) to solve sys-
tems of nonlinear equations and fixed point problems (see Murty 1988; Cottle
et al. 1992).
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4. Active set methods: A popular method for solving QP is based on a combinato-
rial approach to iteratively determine the set of active constraints at the optimum.
This type of strategy for handling inequality constrained optimization problems
is called the active set strategy. The method solves a sequence of equality con-
strained QPs by treating some of the inequality constraints as equations (the
active set) and temporarily ignoring the others. Several rules are employed to
modify the active set from one iteration to the next, to guarantee finite conver-
gence of the procedure (see Theil and van de Panne 1961). Several researchers
have extended this method to minimize a smooth nonlinear function subject to
linear equality and inequality constraints.

5. Interior point methods: Since the development of a very successful interior point
method for LP by Karmarkar in 1984, a variety of interior point methods have
been developed for convex QPs and the LCPs associated with them. These
methods are polynomially bounded, and some versions of them give excellent
computational performance on large sparse problems. The monograph (Kojima
et al. 1991) establishes the theoretical foundations for primal–dual interior point
methods for LP and LCP. The authors won the 1992 Lanchaster award for this
monograph (some other references on these methods are Ye 1991; Fang and
Puthenpura 1993).

We do not discuss details of these methods here, as detailed treatments of them
are already available in severable books among the references at the end of this
chapter and in (Bazaraa et al. 2006 of Chap. 5).

In the next section, we discuss the extension to QP of the sphere method dis-
cussed in Chap. 8 for LP. This new method still in development shows a lot of
promise for large-scale problem solving for both convex and nonconvex QPs.

9.9 The Sphere Method for QP

We consider the quadratic program (QP) in the following form

Minimize Q.x/ D cx C .1=2/xT Dx

subject to Ax � b (9.5)

where the objective coefficient matrix D is a symmetric matrix of order n, the con-
straint coefficient matrix A is of order m � n, and b; c are column and row vectors
of appropriate orders. Let K denote the set of feasible solutions. We also assume
that an interior point x0 of K (i.e., a point satisfying Ax0 > b) is available.

First we will assume that D is positive definite, i.e., that Q.x/ is strictly convex.
Strategies for relaxing this assumption are discussed briefly later on.

Let K0 D fx W Ax > bg, it is the interior of K . We assume that the row vectors
of A, denoted by Ai: for i D 1 to m, are normalized so that their Euclidean norm
jjAi:jj D 1 for all i . For each x 2 K0, we define ı.x/ D minfAi:x � bi W i D 1
to mg, ı.x/ is the radius of the largest ball that can be inscribed within K with its
center at s x.
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In this section, we will discuss the sphere method for QP, which is the extension
of the sphere method 1 for LP discussed in Chap. 8. It is an interior point method.
Just as the sphere methods for LP, each iteration in this method consists of a center-
ing step and then some descent steps. When the current interior feasible solution at
the beginning of an iteration is xr , the centering step in that iteration tries to move
that point to a different feasible solution, Nx say, that maximizes ı.x/ subject to the
constraint that Q.x/ � Q.xr /.

The Strategy of the Centering Step

When xr is the current interior feasible solution for (9.5), the problem of finding the
largest inscribed sphere inside K with center at a point where the objective value
Q.x/ is � Q.xr / is the following constrained max–min problem:

Maximize ı

subject to ı � Ai:x � �bi ; i D 1; � � � ; m (9.6)

Q.x/ � Q.xr /

If . Nx; Nı/ is an optimum solution of this problem, then Nı D ı. Nx/, and the ball
B. Nx; Nı/ with Nx as center and Nı as radius is the largest inscribed sphere required.
This problem (9.6) is itself a quadratic program. This type of model may have to
be solved several times before we get a solution for our original QP (9.5) and for
implementing our algorithm an exact solution of (9.6) is not essential; hence, solv-
ing (9.6) exactly will be counterproductive. Using the special max–min structure of
(9.6), we now develop an efficient procedure for getting an approximate solution
to (9.6), similar to the one developed in Chap. 8 for the corresponding centering
problem in sphere method 1 discussed there for LP.

9.9.1 Procedure for Getting an Approximate Solution for (9.6)

Let xr be the current interior feasible solution. This procedure generates a sequence
of interior feasible solutions xr;0 D xr ; xr;1; � � � all of them feasible to (9.6), along
which ı.x/ is monotonic increasing. When xr;k is the current solution, a direction
y is said to be

� Descent direction for Q.x/ at xr;k: if rQ.xr;k/y � 0;
� Profitable direction to move at xr;k: if ı.xr;k C ˛y/ increases as ˛ increases

from 0.

From the result in Sect. 8.3.1 we know that a direction y is a profitable di-
rection to move at the current interior feasible solution xr;k iff Ai:y > 0 for all
i 2 T .xr;k/ D set of all p that tie for the minimum in fAp:x

r;k � bp W p D 1

to mg.
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So, this procedure consists of a series of line search steps. The interior feasible
solution obtained at the end of a step is the initial interior feasible solution for the
next step. The first step begins with xr;0 D xr .

Each step consists of two substeps. Substep 1 selects a profitable direction to
move that is also a descent direction for Q.x/ at the current interior feasible so-
lution. In the step when xr;k is the initial interior feasible solution and y is the
profitable direction to move selected at it in Substep 1, Substep 2 carries out a line
search step to find the optimum step length ˛ maximizing ı.xr;k C ˛y/ over values
of ˛ between 0 and ˛1 D value of ˛ that minimizes Q.xr;k C ˛y/ over ˛ � 0. We
will first describe this Substep 2.

Substep 2: Line search substep: When the current point is xr;k and the profitable
direction selected to move at it is y. Find

� ˛1 D the value of ˛ that minimizes Q.xr;k C˛y/ over ˛ � 0. Finding ˛1, there-
fore, requires minimizing a quadratic function in the single variable ˛, which can
be solved easily.

� ˛2 D the value of ˛ that maximizes ı.xr C ˛y/ over ˛ � 0. In Sect. 8.3.1, it
has been shown that this can be found by solving the following 2-variable linear
program in which the variables are �; ˛.

Maximize �

subject to � � ˛Ai:y � Ai:x
r;k � bi i D 1; : : : ; m

�; ˛ � 0

which can be found with at most O.m/ effort.

Once ˛1; ˛2 are determined, let ˛ D minimumf˛1; ˛2g, take the next point in
the sequence to be xr;kC1 D xr;k C˛y, and continue the procedure in the same way
with xr;kC1.

Substep 1: Selecting profitable direction to move: For this we use the two meth-
ods LSFN and LSCPD similar to those discussed in Sect. 8.3.1. In steps at the
beginning of the procedure, we use LSFN and select the profitable directions to
move from the set 1 D fAi:; �Ai: W i D 1 to mg which also satisfy the property
of being descent directions for Q.x/ at the current interior feasible solution. This is
continued until at some stage the improvement per step in the value of the radius of
the inscribed ball becomes smaller than some selected tolerance.

Then we begin a cycle of LSCPD which selects profitable directions to move as
in LSCPD of Sect. 8.3.1. In this cycle, in the step when xr;k is the current point, the
profitable direction to move is selected exactly as in LSCPD of Sect. 8.3.1 with c

replaced by rQ.xr;k/.
The current point in the sequence at the end of this cycle, Nx say, is taken as

the approximate center and call it the ball center selected by this procedure. As
can be seen, the procedure used in this approximate centering strategy uses matrix
inversion steps only in LSCPD and uses them only sparingly and only solves a series
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of 2-variable LPs and single variable quadratic function minimization problems,
which can be solved very efficiently. Hence, this approximate centering strategy can
be expected to be efficient.

What Is the Purpose of Maximizing the Radius of the Inscribed
Ball in This Centering Step?

Our goal is to find an optimum solution to the original quadratic program (9.5).
Then, why are we focussing on the seemingly unrelated problem of maximizing the
radius of the inscribed ball in this centering step? The reason is the following.

Let B. Nx; Nı/, the ball with center Nx and radius Nı be the ball constructed in this
centering step. Then, in this iteration the algorithm uses the direction Ox � Nx as a
descent direction for a line search step to minimize Q.x/ over f NxC�. Ox� Nx/ W � � 0,
and � such that Nx C �. Ox � Nx/ 2 Kgg, where Ox is a point that minimizes Q.x/ over
the ball B. Nx; Nı/.

The problem of minimizing Q.x/ over the ball B. Nx; Nı/ is known in the literature
as the trust region problem. Efficient algorithms for solving it, and software imple-
mentations of them are available, whether Q.x/ is convex or not (e.g., see the links:
http://www2.imm.dtu.dk/Qmr/lstrs.html, http://galahad.rl.ac.uk/galahad-www/, for
software for this problem, one containing a MATLAB program and the other a For-
tran program). But solving this trust region problem is perhaps the most expensive
computational operation in this algorithm. Maximizing Nı, the radius of the ball
found in this centering step helps to reduce the number of times this expensive step
has to be used in this algorithm.

9.9.2 Descent Steps

Just as in the Sphere method for LP discussed in Chap. 8, we take several descent
steps and take the best point among the output points obtained from all of them as
the initial interior feasible solution for the next iteration.

DQ1: Descent Step Using a Descent Direction

Let B. Nx; Nı/ D fx W .x � Nx/T .x � Nx/ � Nı2g be the ball with center Nx and radius Nı
obtained in the centering step. In this step, we solve the problem

Minimize Q.x/ D cx C .1=2/xT Dx

subject to .x � Nx/T .x � Nx/ � Nı2 (9.7)
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This is the well-known trust region problem discussed in nonlinear program-
ming (see Conn et al. 2000), a problem of minimizing a quadratic function inside a
ball, for which efficient polynomial time algorithms exist. Associating the Lagrange
multiplier � 2 R1 with the constraint, the KKT optimality conditions for this prob-
lem are

cT C Dx C 2�.x � Nx/ D 0

� � 0; Nı2 � .x � Nx/T .x � Nx/ � 0

�. Nı2 � .x � Nx/T .x � Nx// D 0

Since � 2 R1, this problem can be solved efficiently (in polynomial time) using
the KKT conditions; see (Conn et al. 2000) for complete details of this algorithm.
The algorithm becomes simpler when D is positive definite or semidefinite, but
even if D is not positive semidefinite, it can be solved efficiently using the KKT
conditions.

Let Ox be the optimum solution computed for (9.7). If Ox is an interior point of
B. Nx; Nı/, or if it is a boundary point of both B. Nx; Nı/ and K , or if rQ. Ox/ D 0, then
Ox is an optimum solution of (9.5), then terminate.

Otherwise, using Ox � Nx as the descent direction for Q.x/ at Nx, do a line search
to minimize Q.x/ on the line segment f Nx C �. Ox � Nx/ W � � 0, and � such that
Nx C �. Ox � Nx/ 2 Kg. Let �1 be the optimum step length for this line search. If
Nx C �1. Ox � Nx/ is an interior point of K , then terminate if rQ.x/ D 0 at this point,
otherwise define this point as the output of this step.

If, however, Nx C �1. Ox � Nx/ is a boundary point of K , let I D fi W i -th constraint
in (9.5) is satisfied as an equation by Nx C �1. Ox � Nx/g. If the following system in
Lagrange multipliers �I D .�i W i 2 I /

c C . Nx C �1. Ox � Nx//T D �
X
i2I

�i Ai: D 0 (9.8)

�i � 0 for all i 2 I

has a feasible solution, then Nx C �1. Ox � Nx/ is an optimum solution of (9.5), so
terminate. However, it may not be productive to check if system (9.8) is feasible
every time this step ends up at this stage. If this operation of checking the feasibility
of (9.8) is not carried out or if (9.8) turns out to be infeasible, then take the output
of this step as Nx C .�1 � �/. Ox � Nx/, where � is some preselected positive tolerance
for the current point to be an interior point of K .

DQ2: Descent Step Using the Touching Constraints

We will first provide the motivation for this step. Assume that the centering step is
carried out exactly and suppose B. Nx; Nı/ D fx W .x� Nx/T .x� Nx/ � Nı2g is the ball with
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center Nx and radius Nı obtained in the centering step in this iteration. T . Nx/ D fi W
Ai: Nx D bi C Nıg is the index set of touching constraints in this iteration this is the
index set of facetal hyperplanes of K that are touching the ball B. Nx; Nı/ and hence
are tangent hyperplanes for it. Actually, T . Nx/ is the index set of linear constraints
in (9.6) that are active at its optimum solution, all other linear constraints in (9.6)
are inactive at its optimum solution and the same thing is also true for the problem
obtained by replacing x0 in (9.6) by Nx. So, . Nx; Nı/ is an optimum solution for (9.6)
when x0 there is replaced by Nx, i.e., for

Maximize ı

subject to ı � Ai:x � �bi ; i D 1; � � � ; m (9.9)

Q.x/ � Q. Nx/

It often happens the index set of touching constraints for the ball obtained from
an optimum solution of (9.9) with Q. Nx/ replaced by Q. Nx/ � � remains the same
as T . Nx/, for a range of values of � , say 0 � � � �1. In this range 0 � � � �1,
let ı.�/ denote the optimum radius of the ball and x.�/ the center. Beginning with
ı.0/ D Nı, clearly, ı.�/ decreases as � increases to �1. From these facts we see that
in the range ı.0/ � ı.�/ � ı.�1/, x.�/ is the optimum solution of

Minimize Q.x/ (9.10)

subject to Ai:x D bi C ı.�/; i 2 T . Nx/

Replacing the parameter ı.�/ by the symbol s, an optimum solution for (9.10)
can be obtained by solving

cT C Dx �
X

i2T . Nx/

�i Ai: D 0 (9.11)

Ai:x D bi C s; i 2 T . Nx/

where �T . Nx/ D .�i W i 2 T . Nx// is the vector of Lagrange multipliers for (9.10). If
.x.s/; �T . Nx/.s// is a solution of (9.11) as a function of the parameter s, then x.s/

defines a straight line in Rn in terms of the parameter s. The above argument shows
that by carrying out a line search step on this straight line, we can decrease the value
of Q.x/ to reach Q.x.�1//; and any further decrease in the value of Q.x/ below
this will lead to an optimal touching constraint index set for the ball different from
T . Nx/.

Even when (9.6) is solved approximately, we may improve the objective value
by carrying out this work with the ball obtained. That is what this step does.

Denoting the ball obtained in the centering step by the same symbol B. Nx; Nı/ D
fx W .x � Nx/T .x � Nx/ � Nı2g, denote the touching constraint index set by the same
symbol as above T . Nx/ D fi W Ai: Nx D bi C Nıg. With this T . Nx/, get the solution
.x.s/; �T . Nx// for system (9.11). Then, do a line search to minimize Q.x/ over the
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line segment fx.s/ W s such that x.s/ 2 Kg. Suppose s D s1 gives the optimum
x.s/ in this line search step.

If x.s1/ is an interior point of K , then terminate if rQ.x/ D 0 at this point,
otherwise define this point as the output of this step.

If, however, x.s1/ is a boundary point of K , let I D fi W i -th constraint in (9.5)
is satisfied as an equation by x.s1/g. If the following system in Lagrange multipliers
�I D .�i W i 2 I /

c C x.s1/T D �
X
i2I

�i Ai: D 0 (9.12)

�i � 0 for all i 2 I

has a feasible solution, then x.s1/ is an optimum solution of (9.5), so terminate.
However, it may not be productive to check if system (9.12) is feasible every time
this step ends up at this stage. If this operation of checking the feasibility of (9.12)
is not carried out, or if (9.12) turns out to be infeasible, then take the output of this
descent step as a point on the line segment fx.s/ W s 2 R1g close to x.s1/ but in the
interior of K .

Other Descent Steps

For each i 2 T . Nx/, find the NTP Oxi as defined in Sect. 8.3. Let �ci denote the
orthogonal projection of �rQ. Oxi /T on fx W Ai:x D 0g. For the QP (9.5) the descent
steps corresponding to D5.1 in Chap. 8 for LP, would be the descent steps for Q.x/

from Oxi in the descent direction �ci for each i 2 T . Nx/.
And if Qxr1 is the best point obtained in Descent Step D5.1, the descent steps

corresponding to D5.2 in Chap. 8 for LP would be the descent steps for Q.x/ from
Qxr1 in the descent direction �ci for each i 2 T . Qxr1/, and repeating this as long as
good reductions in objective value are occuring/repetition.

In Chap. 8, we saw that the Descent Steps D5.1 and D5.2 gave excellent results
for solving LP. It is not clear that the corresponding steps for the QP would be
equally effective. If computational experiments indicate that they are, then these
descent steps can also be included in the algorithm.

9.9.3 The Algorithm

The algorithm consists of repetitions of the following iteration beginning with an
initial interior point of K . We will now describe the general iteration. In each itera-
tion, Steps 2.1 and 2.2 are parallel steps, both of which begin with the ball obtained
in the centering step in the iteration.
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A General Iteration
Let x0 be the current interior feasible solution.

1. Centering Strategy: Apply the centering strategy described in Sect. 9.9.1 be-
ginning with the current interior feasible solution. Let B. Nx; Nı/ denote the ball
obtained with ball center Nx and radius Nı. Let T . Nx/ D fi W Ai: Nx D bi C Nıg
is the index set of touching constraints for this ball.

2.1. DQ1: Descent Step Using a Descent Direction: Apply this strategy described
in Sect. 9.9.2 beginning with the ball B. Nx; Nı/. If termination did not occur in
this step, let x1 denote the interior feasible solution of (9.5) which is the output
point in this step.

2.2. DQ 2: Descent Step Using the Touching Constraints: Apply this strategy de-
scribed in Sect. 9.9.2 beginning with the ball B. Nx; Nı/. If termination did not
occur in this step, let x2 denote the interior feasible solution of (9.5) which is
the output point in this step.

Similarly, if other descent steps discussed in the previous section are used,
let x3 denote the best point obtained at the end of these descent steps.

3. Move to Next Iteration: Define the new current interior feasible solution as
the point among x1; x2; x3 obtained in Steps 2.1 and 2.2, which gives the
smallest value for Q.x/. With it, go to the next iteration.

9.9.4 The Case when the Matrix D is not Positive Definite

Relaxing the positive definiteness assumption on the matrix D leads to a vast num-
ber of applications for the model (9.5). For example, an important model with many
applications is the following 0�1 mixed integer programming (MIP) model:

Minimize cx

subject to Ax � b (9.13)

x � 0

xj D 0 or 1 for each j 2 J

where J is the subscript set for variables that are required to be binary. Solving this
problem is equivalent to finding the global minimum in the quadratic program

Minimize cx C M
X
j 2J

xj .1 � xj /

subject to Ax � b (9.14)

xj � 0 for j 62 J

0 � xj � 1 for each j 2 J
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where M is a large positive penalty coefficient, which is in the form (9.5) with
D negative semidefinite. Unlike the model (9.5) when D is positive definite,
(9.14) may have many local minima, and we need to find the global minimum
for (9.14).

Some of the steps in this algorithm can still be carried out exactly. The approx-
imate centering procedure can be carried out. Also, Step 2.1 can be carried out
exactly. For Step 2.2, the system of (9.11) may typically have a unique solution.
Even when (9.11) has many feasible solutions, a solution to (9.12) may not even be
a local minimum for (9.11); in fact, it may be a local maximum for (9.11). Hence,
the value of including Step 2.2 in the algorithm is not clear in this case.

However, since the ball minimization problems in Step 2.1 can be solved exactly,
there is reason to hope that by adjusting the value of the penalty cost coefficient M

during the algorithm, the algorithm can be made to lead to a good local minimum,
and thereby offer a good heuristic approach. For this general case, these and other
issues need to be pursued.

9.10 Commercially Available Software

MINOS 5.4 � available from Stanford Business Software or from The Scientific
Press as part of either of the algebraic modeling systems AMPL or GAMS and
OSL � available from IBM, or from the Scientific Press as part of AMPL, are two
of the commercially available software packages for solving QPs.

AMPL (Fourer et al. 1993) is a modeling language for mathematical program-
ming that provides a natural form of input for linear, integer, and nonlinear math-
ematical models besides QP models. The book is accompanied by a PC student
version of AMPL and representative solvers, enough to easily handle problems of a
few hundred variables and constraints. Versions that support much larger problems
are available from the publisher. AMPL uses either the MINOS 5.4 solver or the
OSL solver for solving QP models.

GAMS (Brooke et al. 1988) is a high-level language that is designed to make the
construction and solution of large and complex mathematical programming models
straightforward for programmers, and more comprehensible to users of models. It
uses the MINOS solver for solving QPs, it also has solvers for linear, integer, and
nonlinear programming problems. A student version and a professional version are
available.

IBM’s OSL is a collection of high-performance mathematical subroutines for
solving linear, integer, and quadratic programming models.

MINOS 5.4 (Murtagh and Saunders 1987) is a Fortran-based computer system
designed to solve large-scale linear, quadratic, and nonlinear models.
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9.11 Exercises

9.1. A is a given matrix of order m � n. Consider the following two problems: (1)
Maximize f .x/ D Minimum fAi:x W i D 1 to mg, subject to jjxjj D 1 and (2)
Minimize yT y, subject to Ai:y � 1, i D 1 to m.

Show that these two problems are equivalent (Avi-Itzak 1994).

9.2. Let f .x/ D 3x1 C 4x2 � x1x2 C x2
1 C 2x2

2. Consider the QP: minimize
f .x/ subject to x1 C x2 D 1.

Check whether this is a convex QP and write the KKT optimality conditions
for it.

Find a KKT point for this problem and check whether it is a global minimum.
Suppose the additional constraints: x1; x2 � 0 are added to the problem. Write

the KKT conditions for the augmented problem. Find all the KKT points for this
problem and comment on whether they are global minima (R. Saigal).

9.3. Consider the QP: minimize cx C .1=2/xT Dx, subject to Ax D b where D is
a PD matrix.

Write the KKT necessary optimality conditions for this problem. Under what
conditions is this KKT system guaranteed to have a solution? Under these condi-
tions, is the solution of the system unique? Find a solution of the system.

Now consider the same problem with additional constraints x � 0. Write the
KKT necessary optimality conditions for the augmented problem. Obtain the con-
ditions under which this system will have a solution. Under these conditions, show
that the solution to this system must be unique (R. Saigal).

9.4. Let K � Rn be a convex set with a nonempty interior, and Q.x/ a quadratic
function. If Q.x/ is a convex function over K , show that it is actually convex over
the whole space Rn.

9.5. Consider the QP: minimize Q.x/ D cx C .1=2/xT Dx subject to Ax � b;

x � 0. If D is not PSD prove that an interior feasible solution Nx, i.e., one satisfying
A Nx > b; Nx > 0, cannot be an optimum solution of this QP using the necessary
optimality conditions.

9.6. Write the optimality conditions for the following QP. Given that it has an opti-
mum solution in which all of x1; x2; x3 are > 0, find that optimum solution.

Minimize � 6x1 � 4x2 � 2x3 C 3x2
1 C 2x2

2 C .1=3/x2
3

subject to x1 C 2x2 C x3 � 4

x1; x2; x3 � 0

9.7. Test whether the following matrices are either PD, PSD, or not.

0
@

0 1 �1

0 0 �2

1 2 1

1
A ;

0
@

4 3 �7

0 0 �2

4 0 6

1
A ;

0
@

4 100 2

0 2 10

4 0 4

1
A ;

0
@

5 �2 �2

�5 5 �2

5 0 5

1
A :
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9.8. Q.x/ D cx C .1=2/xT Dx. If D is PD, prove that Q.x/ is bounded below.

9.9. Prove that Q�.x/ D xT .�I C D/x C cx is a convex function when � is
sufficiently large, whatever D may be.

9.10. Given a square matrix D, the superdiagonalization algorithm discussed in
Sect. 9.2 can be used to check if it is PSD. If this algorithm terminates with the
conclusion that D is not PSD, show how to find a vector y 2 Rn satisfying
yT Dy < 0.

9.11. Sylvester’s Problem. A:1; A:2; � � � ; A:n are given points in Rm. It is re-
quired to find the smallest diameter sphere in Rm containing all these points inside
it. Formulate this problem as a QP. Show this formulation for the set of points
f.1; 1/; .�3; 2/; .1; �5/; .�2; 4/g in R2.

9.12. Consider the QP: minimize cx C .1=2/xT Dx, subject to Ax D b, where D

is a PD matrix.
Write the KKT necessary optimality conditions for this problem. Under what

conditions is this KKT system guaranteed to have a solution? Under these condi-
tions, is the solution of the system unique? Find a solution of the system.

Now consider the same problem with additional constraints x � 0. Write the
KKT necessary optimality conditions for the augmented problem. Obtain the con-
ditions under which this system will have a solution. Under these conditions show
that the solution to this system must be unique (R. Saigal).

9.13. Quadratic Programming Model to Determine State Taxes. It is required to
determine optimum levels for various state government taxes that minimizes insta-
bility while meeting constraints on growth rates over time. Seven different taxes are
considered: sales, motor fuel, alcoholic beverages, tobacco, motor vehicle, personal
income, and corporate taxes. State government finance is based on the assumption
of predictable and steady growth of each tax over time. Instability in tax revenue is
measured by the degree to which the actual revenue differs from predicted revenue.

Using past data, a regression equation can be determined to measure the growth
in tax revenue over time. Let s be the tax rate for a particular tax and St the expected
tax revenue from this tax in year t . Then the regression equation used is

loge St D a C bt C cs

where a, b, c are parameters to be determined using past data to give the closest fit.
Data for the past 10 years from a state is used for this parameter estimation. Clearly,
the parameter c can only be estimated, if the tax rate s for that tax has changed
during this period, this has happened only for the motor fuel and the tobacco taxes.
The best-fit parameter values for the various taxes are given below in Table 9.1 (for
all but the motor fuel and tobacco taxes, the tax rate has remained the same over
the 10-year period for which the tax data is available, and hence the parameter a

given below for these taxes is actually the value of a C cs, as it was not possible to
estimate a and c individually from the data).
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Table 9.1 Regression coefficient values

j Tax j a b c

1 Sales 12.61 0.108
2 Motor fuel 10.16 0.020 0.276

3 Alcoholic beverages 10.97 0.044
4 Tobacco 9.79 0.027 0.102

5 Motor vehicle 10.37 0.036
6 Personal income 11.89 0.160

7 Corporate 211.09 0.112

The annual growth rate is simply the regression coefficient b multiplied by 100
to convert it to percent.

For 1984, the tax revenue from each tax as a function of the tax rate can be
determined by estimating the tax base. This data, available with the state, is given
below.

j Tax j Tax base (in $106)
1 Sales 34,329
2 Motor fuel 3,269

3 Alcoholic beverages 811
4 Tobacco 702

5 Motor vehicle 2,935
6 Personal income 30,809

7 Corporate 4,200

If sj is the tax rate for tax j in 1984 as a fraction, xj D tax revenue to be
collected in 1984 in millions of dollars for the j th tax is expected to be: (tax base
for tax j )sj .

Choosing the decision variables to be xj for j D 1–7, let x D .x1; : : : ; x7/T .
The total tax revenue is

P7
j D1 xj . Then the variability or instability in this revenue

is measured by the quadratic function Q.x/ D xT Vx where V the variance–
covariance matrix estimated from past data is
0
BBBBBBBBB@

0:00070 �0:00007 0:00108 �0:00002 0:00050 0:00114 0:00105

0:00115 0:00054 �0:00002 0:00058 �0:00055 0:00139

0:00279 0:00016 0:00142 0:00112 0:00183

0:00010 0:00009 �0:00007 �0:00003

0:00156 0:00047 0:00177

0:00274 0:00177

0:00652

1
CCCCCCCCCA

:

Since V is symmetric, only the upper half of V is recorded above.
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The problem is to determine the vector x that minimizes Q.x/, subject to several
constraints. One of the constraints is that the total expected tax revenue for 1984
should be T D 3300 in millions of dollars. The second constraint is that a specified
growth rate of � in the total tax revenue should be maintained. It can be assumed

that this overall growth rate is the function
P7

iD1
xj bj

T
which is a weighted average

of the growth rates of the various taxes. We would like to solve the problem treating
� as a non-negative parameter. Of particular interest are values � D 9% and 13%.

The other constraints are lower and upper bounds on tax revenues xj ; these are
of the form 0 � xj � uj for each j , where uj is twice the 1983 revenue from tax j .
The vector u D .uj / is (2,216, 490, 195, 168, 95, 2,074, 504) in millions of dollars.

Formulate this problem as a QP. Using the tax base information given above
determine the optimal tax rates for 1984 for each tax (White 1983).

9.14. To Determine Optimum Mix of Ingredients for Moulding Sand in a
Foundry. In a heavy casting steel foundry, moulding sand is prepared by mixing
sand, resin (phenol formaldehyde), and catalyst (para toluene sulfonic acid). In the
mixture, the resin undergoes a condensation polymerization reaction resulting in a
phenol formaldehyde polymer that bonds and gives strength. The bench life of the
mixed sand is defined to be the length of the time interval between mixing and the
starting point of setting of the sand mix. In order to give the workers adequate time to
use the sand and for proper mould strength, the bench life should be at least 10 min.
Another important characteristic of the mixed sand is the dry compression strength
which should be maximized. An important variable which influences these charac-
teristics is the resin percentage in the mix. Extensive studies have shown that the
optimum level for this variable is 2% of the weight of sand in the mix; hence, the
company has fixed this variable at this optimal level. The other process variables
that influence the output characteristics are:

x1 D Temperature of sand at mixing time

x2 D Percent of catalyst; as a percent of resin added

x3 D Dilution of catalyst added at mixing:

The variable x3 can be varied by adding water to the catalyst before it is mixed.
An experiment conducted yielded the following data.

Dry compression strength
x3 D 0 x3 D 10

x1 x2 D 25 30 35 40 25 30 35 40
20c 31.4 32.4 33.7 37.3 32.7 33.7 36.3 34.0
30c 33.4 34.1 34.9 32.6 30.1 31.1 35.0 35.2
40c 33.8 31.4 38.0 32.4 31.6 32.3 34.7 34.8
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Bench life
x3 D 0 x3 D 10

x1 x2 D 25 30 35 40 25 30 35 40
20c 13.3 11.5 10.8 10.3 15.8 14.0 12.8 11.8
30c 10.3 9.0 8.0 6.8 12.3 11.0 10.3 9.3
40c 7.0 6.3 5.0 4.3 11.8 10.5 7.3 5.8

Bench life can be approximated very closely by an affine function in the variables
x1, x2, x3; dry compression strength can be approximated by a quadratic function
in the same variables. Find the functional forms for these characteristics that provide
the best approximation. Using them, formulate the problem of finding the optimal
values of the variables in the region 0 � x3 � 10, 25 � x2 � 40, 20 � x1 � 40,
so as to maximize the dry compression strength subject to the additional constraint
that the bench life should be at least 10, as a QP. Find its optimum solution. (Hint:
For curve fitting use either the least squares method or the minimum absolute devi-
ation methods based on linear programming discussed in Chap. 2.) (Bharat Heavy
Electricals Ltd., Hardwar, India).

9.15. A stock broker has been following the stock price of a company by measuring
the weekly average stock price denoted by W . The company is well established, and
its stock price distribution has been stable for a long time. W varied between 50 to
80 in the past with following discretized distribution.

Interval of W Probability
I1 (D 50 to 53) p1

I2 (D 53 to 56) p2

:::
:::

I10 (D 77 to 80) p10

Let p D .p1; :::; p10/ denote the given probability vector. In Fall 2002 the
company acquired another company through a merger. This may have changed the
probability distribution of W . Since than W varied between 56 to 86. From the ob-
servations for one year after the merger, in Fall 2003 we estimated the following
discretized distribution.

Interval of W Probability
I3 q3

I4 q4

:::
:::

I10 (D 77 to 80) q10

I11 (D 80 to 83) q11

I12 (D 83 to 86) q12

Let q denote the given probability vector corresponding to these latest
observations.
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Let x D .x1; :::; x12/ denote the unknown true probability vector corresponding
to the intervals I1 to I12 in the current discretized distribution of W . Since q is
based on too few observations, it is not a good estimate for x by itself.

Let S1; S2 denote the sum of squared deviations of corresponding entries between
x and p, x and q respectively.

The standard quadratic model takes the estimate of x to be a probability vector
that minimizes the weighted average ˛S1 C .1 � ˛/S2 where 0 < ˛ < 1 is a
numerical parameter whose value is taken to be larger than .1 � ˛/ because q is
based on too few observations (for example ˛ D 0:7).

Formulate the model for estimating x. Derive an optimum solution of this model
showing clearly how you obtained it. Can you conclude that the optimum solution
of this model is unique, and why?
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Epilogue

As the Greek proverb says

˝��"� �"�o� �˛��o��� �˛���ı˛ ˇ�"�"��;

O��!& �˛� �o�& �˛��o��� ˇ�ˇ��o� �"�ø&:

(which could loosely be translated as: “As travelers rejoice to see their destination,
so too is the end of a book to those who labor to learn from it”), I hope the readers
will find their efforts rewarding.

Katta Gopalakrishna Murty
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In simplex algo., 212–220
Advertizing application, 85
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Airlines application, 150–163
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Assignment problem, 145

B
Ball center, 422–424
Barrier methods, 412
Basic variable, 6–7
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Degenerate, 186
Dual feasible, 253
Dual infeasible, 253
Feasible, 186
Infeasible, 186
Nondegenerate, 186
Optimum, 260
Primal, 251
Primal feasible, 252
Primal infeasible, 252

Basis, 185–186
Degenerate, 186
Dual feasible, 253
Dual infeasible, 253
Feasible, 186
Infeasible, 186

Nondegenerate, 186
Primal, 251
Primal feasible, 252
Primal infeasible, 252

Basis inverse, 11
BFS, 180–189

Degenerate, 181–185
Nondegenerate, 181–185

Binding ineq., 175
Blending, 79, 109–110, 113–114, 119–120
Boundary feasible sol., 393
Boundary method, 393
Boundary point, 177
Bounded variable simplex, 355–363
Boundedness, 226–229
Bus rental, 140–150
Boundary, 176–177
BV, 6

C
Canonical tableau, 7
Caratheodary’s theorem, 228
Case studies, 128–164
Central path, 399–401, 410
Center, 399
Certificate, 6

Of infeasibility, 6, 13, 28
Of redundancy, 6

Chain decomposition, 145
Checking uniqueness, 269–276
Chord, 41
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Complementary pairs, 241–246
Complementary slackness theorem, 258–260
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Convex function, 40–52, 115
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Convex polyhedra, 168, 229
Convex polyhedral cone, 176
Convex polytope, 169, 229
Convex programming problem, 279
Container shipping, 128–139
CS conds., 260–265
Cycling, 319

D
Dantzig, 21, 27–29
Decision making, 30–31
Decision variables, 1
Dikin, 29
Dilworth’s chain decmposition, 145
Dimension, 7
Dominated sol., 73
Dual basic solution, 252–254
Dual Problem, 25, 235–241

Derivation of, 236
For general LP, 238–241

Dual simplex algo., 326–336
Applications of, 337–341

Dual simplex method, 342
Dual variables, 238
Duality gap, 260–261
Duality theorem, 257

E
Edge, 204–210, 303–304
Efficient frontier, 73
Efficient sol., 73
Either, or theorems, 235
Elimination method, 1–17

For equations, 1–2
Fourier, 17
Fourier-Motzkin, 17
G, GJ, 3–13

Equilibrium sol., 73
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Of redundancy, 6
Of infeasibility, 6, 13, 28

Excess, 69
Extreme homogeneous sol., 228
Extreme point, 179–180

F
Faces, 178–180, 221–223
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Optimum, 179–180
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Farkas Lemma, 235, 293–295
Finance application, 108–109, 115, 117–119
Forecasting application, 91, 94–96, 104
Free variable, 7
Fundamental inconsistent eq., 5
Fundamental inconsistent ineq., 295

G
Gate allocation, 150–164
Gauss-Jordan (GJ) method, 3–8

Revised, 11–13
Global min, max, 279, 283
Goal, 77
Goal programming, 76–78, 96
Gordon’s theorem, 235, 295
Gradient support ineq., 42–44
Greedy method, 268

H
Half-line, 170

Direction of, 169–170
Half-space, 167
Hessian matrix, 45, 451
Homogeneous sol., 228
Homogeneous system, 226–228
Hotelling, 22
Hyperplane, 167

In R2, line, 168

I
Inactive constraint, 171–174
Independent variable, 7
Infeasibility analysis, 316–318
Intelligent modeling, 127–164
Interior, 176–177
Interior feasible sol., 393–394
Interior point, 177, 393–394
Interior point methods, 29, 393–415
Inverse Tableau, 11–13, 301–306
Investment applications, 80, 87–88, 96–97,

117–119
IPM, 29, 393–415
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J
Jensen’s ineq., 40–45
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L
L1; L2; L

1

, 66–69
Line segment, 170–171
Linear algebra, 2, 21
Linear function, 40
Linear program, 15–16, 21, 39

As extension of linear algebra, 21
Linearity assumptions, 40
Linearization, 43
Local min, max, 279
LP, 15–16, 21, 39
LP, linear ineq. equivalence, 276–277
LSCPD, 428–429
LSFN, 427

M
Marginal analysis, 26–27, 342–346
Marginal values, 22–27, 238, 277–278
Math. modeling, 1
Math. programming, 39
Matrix factorizations, 324

Dual opt. sol. as, 277–278
Existence of, 278

Max-min, 57–58
Maximum cardinality matching, 145
Memory matrix, 8–13, 194–196
Min-max, 57–58
Minimal representation, 175
Modified Newton direction, 409
Multi-objective problems, 63, 72–78

N
ND, 280, 446–450
NSD, 280, 446–450
Negative part, 77
Newton’s direction, 409
Newton’s method, 408–409
Nobel prize, 73
Nonbasic variable, 7
Nonbinding ineq., 175
Nonconvex programming, 279

O
Open problems, 440–442
OR, 39
Optimality conds., 247, 258–260, 279–284,

410, 452–454
Optimality criterion, 223–226
Optimum face, 179–180, 324–326
Optimum sol. uniqueness, 269–276

P
Paradox, 15
Parameter estimation, 67–69, 91–96
Pareto optimum, 73
Path following methods, 409–415

Long step, 412–413
Predictor-corrector, 413

PC, 6
PD, 280
Penalty function, 70
PFI, 320–323
Phase I problem, 16, 19–21
Phase I, II, 307
Pivot matrices, 320
PL functions, 46–51
Planning application, 89–91
Pointwise infimum, supremum, 50–51
Polyhedron, 14
Positive part, 77
PR, 6
Primal affine scaling, 29, 401–408
Primal basic sol., 251–254
Primal basic vector, 251
Primal-dual IPM, 29, 409–415
Primal problem, 25
Primal revised simplex, 298–314
Product form of inverse, 320–323
Production planning, 82–83, 88, 100, 103,

105–106, 110–113
Proportionality assumption, 40
PSD, 280
Purification, 188–199

Q
QP, 39, 445–469

Applications, 455–458

R
RHS, 3, 6
Rectilinear distance, 120
Redundant eq., 6
Redundant ineq., 174
Residue, 67
Revised simplex, 28, 297–326

S
Sensitivity analysis, 337–340, 347–355
Separable function, 53
Shelf-space allocation, 164–165
Shortage, 69
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As extension of GJ, 19
History of, 18

Slack constraint, 171–174
SM-1, 431–436
SM-2, 436–440
Sphere methods, 418, 431–439, 461–469

For LP, 418, 431–439
For QP, 461–469

Straight line, 169
Subspace, 174
Supporting hyperplane, 177–178

T
Tactfulness, 31, 164
Target value, 77
Termination condition, 300, 309
Theorems of alternatives, 5–6, 235

Three commandments, 164
Tight constraint, 171–174
Touching constraints, 421
Tucker’s lemma, 294–295

U
Unboundedness crit., 300, 305–306
Unique sol., 7, 325

For eq., 7
For LP, 325

W
Water resources appl., 81–82, 116–117,

120–122
Weak duality theorem, 249–251
Weighted average technique, 75–76
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