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Preface

I was fortunate to get my first exposure to linear programming in a course taught by
the father of the subject, George Dantzig, at the University of California, Berkeley,
in the fall of 1965. It was love at first sight! I fell in love with linear program-
ming (LP), optimization models, and algorithms in general right then, and became
inspired to work on them. Another of my fortunes was to have as my thesis ad-
visor David Gale, who along with Harold Kuhn and Albert Tucker contributed to
the development of optimality conditions. Eventually, I started teaching optimiza-
tion in the IOE Department at the University of Michigan, Ann Arbor, and using it
in applications myself, and I would now like to share this background with future
generations of students.

Level of the Book and Background Needed

This is a first-year graduate (Master’s) level textbook on optimization models, linear
and quadratic, for decision making, how to formulate real-world problems using
these models, use efficient algorithms (both old and new) for solving these models,
and how to draw useful conclusions, and derive useful planning information, from
the output of these algorithms.

It builds on the undergraduate (Junior) level book Optimization Models for De-
cision Making Volume 1 on the same subject (Murty (2005) of Chap. 1), which I
posted at the public access website:

http://ioe.engin.umich.edu/people/fac/books/murty/opti_model/,

from which you can download the whole book for a small contribution. Readers who
are new to the subject should read this Junior-level book to acquire the background
for reading this graduate-level book.
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Why Another Book on Linear Programming

When friends learned that I was working on this book, they asked me, “Why another
book on linear programming (LP)?” There are two reasons:

1. Almost all the best-known books on LP are mathematics books, with little
discussion on how to formulate real-world problems as LPs and with very simple
modeling examples. Within a short time of beginning work on applications, I real-
ized that modeling could actually be as complex as proving mathematical results and
requires very special skills. To get good results, it is important to model real-world
problems intelligently. To help the reader develop this skill, I discuss several illus-
trative examples from my experience, and include many exercises from a variety of
application areas.

2. All the available books on LP discuss only the simplex method (developed
based on the study of LP using the simplex, one of the solids in classical geometry)
and perhaps existing interior point methods (developed based on the study of LP
using the ellipsoid). All these methods are based on matrix inversion operations
involving every constraint in the model in every step, and work well for LPs in
which the coefficient matrix is very sparse. We discuss also a new method being
developed based on the study of LP using the sphere, which uses matrix inversion
operations sparingly and seems well suited to solve large-scale LPs, and those that
may not have the property of being very sparse.

Contents of the Book

Chapter 1 contains a brief account of the history of mathematical modeling, the
Gasuss—Jordan elimination method for solving linear equations; the simplex method
for solving LPs and systems of linear constraints including inequalities; and the
importance of LP models in decision making.

Chapter 2 discusses methods for formulating real-world problems, including
those in which the objective function to be optimized is a piecewise linear convex
function and multiobjective problems, as linear programs. The chapter is illustrated
with many examples and exercises from a variety of applications.

Chapter 3 explains the need for intelligent modeling in order to get good results,
illustrated with three case studies: one from a container terminal, the second at a
bus-rental company, and the third at an international airport.

Chapter 4 discusses the portion of the classical theory of polyhedral geometry
that plays an important role in the study of linear programming and in developing
algorithms for solving linear programs, illustrated with many numerical examples.

Chapter 5 treats duality theory, optimality conditions for LP, and marginal analy-
sis; and Chap. 6 discusses the variants of the revised simplex method. Both chapters
deal with traditional topics in linear programming. In Chap. 5 we discuss also opti-
mality conditions for continuous variable nonlinear programs and their relationship
to optimality conditions for LP.
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Chapter 7 discusses interior point methods (IPMs) for LP, including brief
descriptions of the affine scaling method, which is the first IPM to be developed, and
the primal-dual IPM, which is most commonly used in software implementations.

Chapter 8 discusses the sphere methods, new IPMs that have the advantage of
using matrix inversion operations sparingly, and thus are the next generation of
methods for solving large-scale LPs.

Chapter 9 discusses extensions of the sphere methods — to convex and nonconvex
quadratic programs, and to 0—1 integer programs through quadratic formulations.

Additional Exercises

Exercises offer students a great opportunity to gain a deeper understanding of
the subject. Modeling exercises open the student’s mind to a variety of applica-
tions of the theory developed in the book and to a variety of settings where such
useful applications have been carried out. This helps them to develop modeling
skills that are essential for a successful career as a practitioner. Mathematical ex-
ercises help train the student in skills that are essential for a career in research
or a career as a higher-level practitioner who can tackle very challenging applied
problems.

Because of the limitations on the length of the book, not all exercises could be in-
cluded in it. These additional exercises will be included in the website for the book at
springer.com in the near future, and even more added over time. Some of the formu-
lation exercises at the website deal with medium-size applications; these problems
can be used as computational project problems for groups of two or three students.
Formulating and actually solving such problems using an LP software package gives
the student a taste of real-world decision making.

Citing References in the Text

At the end of each chapter, we list only references that are cited in the text. Thus the
list of references is actually small; it does not provide extensive bibliographies of
the subjects. For readers who are interested, we refer them to other books available
that have extensive bibliographies.

We use the following style for citing references: A citation such as “Wolfram
(2002)” refers to the paper or book of Wolfram of year 2002 listed among references
at the end of the current chapter where this citation appears. Alternately, a reference
such as “(Dikin (1967) of Chap. 1) refers to the document of Dikin of year 1967 in
the list of references at the end of Chap. 1.
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Solutions Manual

Springer will host the solutions manual at springer.com, allowing token access to
registered adopting faculty.
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Conclusion

Optimum decision making is all about improving lives. As the Sanskrit proverb
(jiivaa ssamastaa ssukhinoo bhavamtu) shown in Telugu script says:

B° DO DT ok

I hope readers will use these methods to improve the lives of all living beings!

9 April 2009 Katta Gopalakrishna Murty
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Glossary of Symbols and Abbreviations

Equations, Results, Theorems, Examples, Tables, and within-section Exercises are
numbered serially in each section; so an i.j.k refers to the kth item in Sect.i.j.
End-of-chapter exercises are numbered serially in each chapter. So Exercise i.j
refers to the jth exercise at the end of Chap.i. Similarly, figures are numbered
serially in each chapter, so Fig.i.j refers to the jth figure in Chap.i. In tableaus
in which there is no constraint symbol (=, >, <) mentioned corresponding to the
rows, it implies that each of those rows corresponds to an equation.

Abbreviations in Alphabetical Order

BFS Basic feasible solution for a linear program
(B, L, U), B-N Basic—nonbasic partitions of variables in the bounded
variable simplex method

BV Basic vector or Basic variables

CQ Constraint qualifications for an NLP

CQP Convex QP

CS Complementary slackness optimality conditions

D1, D2, D3, D4, Descent steps used in the sphere methods for LP
D5.1,D5.2

DQI1, DQ2 Descent steps used in the sphere method for QP

GJ Gauss—Jordan (pivot step, algorithm)

GPTC Gradient projections on touching constraints used
in the sphere methods

1/0 Input—output coefficients in a linear program

IPM Interior point method

1T Inverse tableau with respect to a basis for an LP
in standard form

KKT conds. Necessary optimality conditions for an NLP

KKT point A point satisfying the KKT conditions

LCP Linear complemetarity problem, a type of QP

XXi



Xxii Glossary of Symbols and Abbreviations

LP Linear program

LSCPD A centering subroutine used in the sphere methods

LSFN A centering subroutine used in the sphere methods

MDR Minimum daily requirement for a nutrient in a diet model

MIP Mixed integer program

MV Marginal values in an LP

ND, NSD Negative definite, semidefinite, respectively

NLP Nonlinear programming problem

NTP Near touching points used in the sphere methods

OR Operations Research

PC Pivot column (for a GJ pivot step or in a pivot step of the
simplex method)

PD, PSD Positive definite, semidefinite, respectively

PE Pivot element in a GJ pivot step

PFI Product form of the inverse of a basis

PL Piecewise linear

PR Pivot row (for a GJ pivot step or in a pivot step of the
Simplex method)

QP Quadratic program

RC Redundant constraint identified in a system of linear
constraints

RHS Right hand side (constants or vector of constants in an
LP)

RM; Raw material i in a product mix problem

SY Storage yard in a container terminal at a port

TEU A unit for measuring container volume in container
shipping

TG The terminal gate at a container terminal

TP Touching points used in the sphere methods

wrt With respect to

XT, TIT External truck, terminal’s internal truck, in a container
terminal

YC, RTGC, QC  Yard crane, rubber tired gantry crane, quay crane in a
container terminal

Some Technical Words

Ball center A center used in the sphere method
Iff If and only if
Canonical tableau Updated tableau of a system of linear equations wrt a BV

s. to subject to



Glossary of Symbols and Abbreviations xxiil

Symbols Dealing with Sets

R" The n-dimensional real Euclidean vector space. The
space of all vectors of the form x = (xq,... ,x,,)T

\ Set difference symbol. If D, E are two sets, D\ E is the
set of all elements of D thatare notin E.

| F| Cardinality of the set F'.

J, I, I3 Symbols representing sets of indices.

E Eligible set of variables to enter a basic vector in the

simplex method. Sometimes used to denote a matrix.
The symbols E, E, E" are also used in Chap. 7 to
denote ellipsoids.

K, I'; K° r° Sets of feasible solutions of an LP and their interiors.

€ Set inclusion symbol. @ € D means that a is an element
of D.

bdD Means that b is not an element of the set D.

- Subset symbol. £ C F means that set E is a subset of
F, thatis, every element of E is an element of F

u Set union symbol.

N Set intersection symbol.

@ The empty set.

0 Radius of a sphere or the RHS constant in the
mathematical representation of an ellipsoid.

Pos cone of A When A is a matrix, the set of all nonnegative linear

combinations of column vectors of A is called its pos

cone. Similarly, “pos cone of row vectors of A” refers
to the set of all nonnegative linear combinations of its

row vectors.

Symbols Dealing with Vectors and Matrices

=><,>,< Symbols for equality, greater than or equal to, less
than or equal to, greater than, less than; which must
hold for each component in vectors.

[|x]| Euclidean norm of vector x = (x1,...,Xp), itis

,/xf +...+ x,2,. Euclidean distance between two

vectors x, y is ||lx — y||.
A = (aij) Matrix with a;; as the general element in it.
X Transpose of vector x, matrix A.
A1 Inverse of the nonsingular square matrix A.
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A, Aj
rank(A)

1
D

Diag(d)
H(f(x))
Vf(x)

x", X7

s, S

n-column

C, u, k

A, Ax

Glossary of Symbols and Abbreviations

The ith row vector, jth column vector of matrix A.

Rank of a matrix A, same as the rank of its set of
row vectors, or its set of column vectors.

Unit matrix of appropriate order.

A square matrix, used to denote the Hessian of a
quadratic function in Chap. 9.

A square diagonal matrix with the vector d along its
main diagonal, and all off-diagonal entries 0.

Hessian (matrix of second partial derivatives) of a
function f(x).

The gradient vector of a real-valued function f(x).
When f(x) = (fi(x),..., fa(x)), this symbol
denotes the Jacobian matrix of f(x).

x" denotes a point obtained in the rth iteration; X"
is a diagonal matrix with x” along its main
diagonal and all off-diagonal entries O.

A vector, and the diagonal matrix with s along its
main diagonal.

A pivot matrix corresponding to a pivot step; also a
projection matrix; the symbols P, D are also used
to denote a primal, dual pair of LPs.

The unique column in a pivot matrix different from
the other unit columns.

Bound vectors in a bounded variable LP.

The vector of all entries of 1 of appropriate
dimension.

When A isan m X n matrix, if we mention these
matrix-vector products, it implies that 7 is a row
vectorin R™ and x is a column vectorin R”.

Symbols Dealing with Real Numbers

||
n!
o0

bD

at, o~

Absolute value of real number «.

n factorial.

Infinity.

Summation symbol.

The positive and negative parts of the real number «o;
equal to maximum{0, o}, maximum{0, o},
respectively.

A large positive penalty parameter associated with
artificial variables introduced into a model,
sometimes also used to denote a matrix.



Glossary of Symbols and Abbreviations

Symbols Dealing with LPs, QPs, and IPs

Xj, Xij, X

Cij; Cj, C

T, T

u=(u;), v=_(v;)
Cj, Cij, C

n, m

o

()

ai, bj

x(4), z(A), A

Qp, Qp
N1(61), Ni(62)
Ll? L27 LOO

Kr

xj isthe jth decision variable in an LP or IP; x;; is
the decision variable associated with cell (i, j) in
an assignment or a transportation problem. x
denotes the vector of these decision variables.

The unit cost coefficient of a variable x;;, x; inan
LP or IP model. c¢ is the vector of ¢;; or c;.

Dual variable associated with the ith constraint in an
LP, the vector of dual variables.

Vectors of dual variables associated with rows,
columns of a transportation array.

The reduced or relative cost coefficient of variables
Xj, xjj in an LP, or the transportation problem (or
the associated dual slack variable); ¢ is the vector
of these relative cost coefficients.

Usually, number of variables, constraints in an LP or
IP. Also, the number of sinks, sources (columns,
rows) in a transportation problem.

The Phase I dual basic solution.

Vectors of original and updated Phase I cost vectors,
respectively.

Usually denotes a basis for an LP in standard form.

Vectors of basic (dependent), nonbasic (independent)
variables wrt a basis for an LP.

The updated jth column, ith row corresponding to
the original coefficient matrix A wrt a given basic
vector.

In Chap. 2, denotes the active system at a given
feasible solution.

In a transportation problem, these are the amounts of
material available for shipment at source i,
required at sink j, respectively.

A is a parameter denoting the value of an entering
variable in the simplex method; x(4), z(1) denote
the resulting solution and its objective value.

Usually the minimum ratio in a pivot step in the
simplex algorithm for solving an LP or a
transportation problem.

The optimum faces of the primal and dual pair of LPs.

Neighborhoods of central paths used in Chap. 7.

Measures of deviation between a function and its
estimated values.

The set of feasible solutions considered in the rth
iteration in Sphere method 2.
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tmin> max The minimum and maximum values of the objective
function in Sphere methods in Chap. 8.

The orthogonal projection of the cost vector ¢ on the
ith facetal hyperplane used in sphere methods in
Chap. 8.

8(x); 8[t] The radius of a largest inscribed sphere with center x;

the center on the objective plane with objective
value ¢ in sphere methods in Chap. 8.

cl

B(x,9) Denotes an inscribed ball with radius § in sphere
methods in Chap. 8.

T (x) The set of indices of facetal hyperplanes touching the
largest inscribed ball with center x in sphere
methods in Chapter 8.

0(x) A quadratic function in x.

0 — 1 variable A variable that is constrained to take values of O or 1.

Also called “binary variable” or “boolean variable.”

Other Symbols
Superscripts, Regular letter superscripts are ordinary superscripts,
exponents for example, x” denotes the rth point in a set of
points. Superscripts in boldface letters denote
exponents, for example, 24 is 16, the fourth power
of 2, n" denotes n to the power r.

exp(g) The Napieran number e (used in mathematics, =
2.71828....) raised to the power of g.

O(n") The worst case complexity of an algorithm is said to
be O(n"), if the measure of computational effort
to solve a problem of size n by the algorithm is
bounded above by a constant times 7n".

O Symbol indicating the end of a proof.

] Symbol indicating the end of an example.

Symbols Dealing with Networks or Graphs

N The finite set of nodes in a network.

A The set of lines (arcs or edges) in a network.
G = W,A A network with node set A/ and line set A.
@i, 7)) An arc joining node i tonode ;.






Chapter 1
Linear Equations, Inequalities, Linear
Programming: A Brief Historical Overview

This chapter, taken mostly from Murty (2006b), outlines the history of efforts that
eventually led to the development of linear programming (LP) and its applications
to decision making.

1.1 Mathematical Modeling, Algebra, Systems of Linear
Equations, and Linear Algebra

One of the most fundamental ideas of the human mind, discovered more than 5,000
years ago by the Chinese, Indians, Iranians, and Babylonians, is to represent quan-
tities that we want to determine by symbols — usually letters of the alphabet like
X, y, z — then express the relationships between the quantities represented by these
symbols in the form of equations, and finally, use these equations as tools to find out
the true values represented by the symbols. The symbols representing the unknown
quantities to be determined are nowadays called unknowns, or variables, or decision
variables.

The process of representing the relationships between the variables through equa-
tions or other functional relationships is called modeling or mathematical modeling.
The earliest mathematical models constructed were systems of linear equations, and
soon after, the famous elimination method for solving them was discovered in China
and India.

The Chinese text Chiu-Chang Suanshu (Nine Chapters on the Mathematical
Art) composed over 2,000 years ago describes the method using a problem of de-
termining the yield (measured in units called “tou”) from three types of grains —
inferior, medium, superior — given the yield data from three experiments each using
a separate combination of the three types of grains. See Kangshen et al. (1999) for
information on this ancient work, also a summary of this ancient Chinese text can be
seen at the website: http://www-groups.dcs.st-and.ac.uk/ ™ history/HistTopics/Nine_
chapters.html).

Ancient Indian texts Sulva Suutrah (Procedures Based On Ropes) and the
Bakshali Manuscript with origins during the same period describe the method in
terms of solving systems of two (three) linear equations in two (three) variables; see

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models, 1
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6_1, © Springer Science+Business Media, LLC 2010



2 1 Linear Equations, Inequalities, Linear Programming: A Brief Historical Overview

Joseph (1992) and also Lakshmikantham and Leela (2000) for information on these
texts, and for a summary and review of this book, see http://www.tlca.com/adults/
origin-math.html.

This effort culminated around 825 AD in the writing of two books by the Persian
mathematician Muhammad ibn-Musa Alkhawarizmi in Arabic, which attracted in-
ternational attention. The first was Al-Magqala fi Hisab al-jabr w’almugabilah (An
essay on algebra and equations). The term “al-jabr” in Arabic means “restoring” in
the sense of solving an equation. In Latin translation, the title of this book became
Ludus Algebrae, the second word in this title surviving as the modern word algebra
for the subject, and Alkhawarizmi is regarded as the father of algebra. Linear alge-
bra is the name given subsequently to the branch of algebra dealing with systems
of linear equations. The word linear in “linear algebra” refers to the “linear com-
binations” in the spaces studied, and the linearity of “linear functions” and “linear
equations” studied in the subject.

The second book, Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi, appeared in
a Latin translation under the title Algoritmi de Numero Indorum, meaning Al-
Khwarizmi Concerning the Hindu Art of Reckoning; it was based on earlier Indian
and Arabic treatises. This book survives only in its Latin translation, because all the
copies of the original Arabic version have been lost or destroyed. The word algo-
rithm (meaning procedures for solving algebraic systems) originated from the title
of this Latin translation. Algorithms seem to have originated in the work of ancient
Indian mathematicians on rules for solving linear and quadratic equations.

1.1.1 Elimination Method for Solving Linear Equations

We begin with an example application that leads to a model involving simultaneous
linear equations. A steel company has four different types of scrap metal (called
SM-1 to SM-4) with compositions given in the table below. They need to blend
these four scrap metals into a mixture for which the composition by weight is: Al,
4.43%; Si, 3.22%; C, 3.89%; Fe, 88.46%. How should they prepare this mixture?

Compositions of available scrap metals

Type % in type, by weight, of element

A Si C Fe
SM-1 5 3 4 88
SM-2 7 6 5 82
SM-3 2 1 3 94
SM-4 1 2 1 96

To answer this question, we first define the decision variables, denoted by
X1, X2, X3, X4, where for j = 1 to 4, x; = proportion of SM-j by weight
in the mixture to be prepared. Then the percentage by weight of the element Al in
the mixture will be 5x; + 7x2 + 2x3 + x4, which is required to be 4.43. Arguing
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the same way for the percentage by weight in the mixture, of the elements Si, C,
and Fe, we find that the decision variables x; to x4 must satisfy each equation in the
following system of linear equations in order to lead to the desired mixture:

5x1 + Txpy 4+ 2x3 + x4 = 4.43,

3x1 + 6x3 + x3 + 2x4 = 3.22,

4x1 4+ 5x2 + 3x3 + x4 = 3.89,
88x1 + 82x5 4+ 94x3 + 96x4 = 88.46,

X1+ X2+ X3+ x4 = 1.

The last equation in the system stems from the fact that the sum of the proportions
of various ingredients in a blend must always be equal to 1. From the definition of
the variables given above, it is clear that a solution to this system of equations makes
sense for the blending application under consideration, only if all the variables in the
system have nonnegative values in it. The nonnegativity restrictions on the variables
are linear inequality constraints. They cannot be expressed in the form of linear
equations, and as nobody knew how to handle linear inequalities at that time, they
ignored them and considered this system of equations as the mathematical model
for the problem. n

The Gauss—Jordan (GJ) Pivot Step and the GJ (Elimination) Method

To solve a system of linear equations, each step in the elimination method uses one
equation to express one variable in terms of the others, then uses that expression
to eliminate that variable and that equation from the system, leading to a smaller
system. The same process is repeated on the remaining system. The work in each
step is organized conveniently through what is now called the Gauss—Jordan (GJ)
pivot step.

We will illustrate this step on the following system of three linear equations in
three decision variables given in the following detached coefficient table at the top.
In this representation, each row in the table corresponds to an equation in the sys-
tem, and the RHS is the column vector of right-hand side constants in the various
equations. Normally the equality symbol for the equations is omitted.

An illustration of the GJ pivot step

Basic variable | x;y x x3 | RHS

[1] =1 —1]10
-1 2 —220
1 -2 —4]30
I -1 —1]10
0 1 -3[30
0 -1 -3]20

X1
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In this step on the system given in the top table, we are eliminating the variable
x1 from the system using the equation corresponding to the first row. The column
vector of the variable eliminated, x;, is called the pivot column, and the row of the
equation used to eliminate the variable is called the pivot row for the pivot step, the
element in the pivot row and pivot column, known as the pivot element, is boxed in
the above table. The pivot step converts the pivot column into the unit column with
“1” entry in the pivot row and “0” entries in all the other rows by row operations.
These row operations consist of the following:

1. For each row other than the pivot row, subtracting a suitable multiple of the pivot
row from it to convert the element in this row in the pivot column, to 0.
2. At the end dividing the pivot row by the pivot element.

For example, for the GJ pivot step with the column of x; as the pivot column
and the first row as the pivot row in the top tableau above, we need to subtract
the pivot row (row 1) from row 3; add the pivot row to row 2; and as the pivot
element is 1, leave the pivot row as it is. Verify from the bottom table above
that these row operations convert the column of x; into the first unit column as
required.

In the resulting table after this pivot step is carried out, the variable eliminated,
X1, is recorded as the basic variable in the pivot row. This row now contains an
expression for x; as a function of the remaining variables. The other rows contain
the remaining system after x; is eliminated, the same process is now repeated on this
system.

When the method is continued on the remaining system, three things may
occur:

1. All the entries in a row may become O; this is an indication that the constraint in
the corresponding row in the original system is a redundant constraint; such rows
are eliminated from the tableau.

2. The coefficients of all the variables in a row may become 0, while the RHS
constant remains nonzero; this indicates that the original system of equations is
inconsistent, that is, it has no solution; if this occurs the method terminates.

3. If the inconsistency termination does not occur, the method terminates after per-
forming pivot steps in all the rows; if there are no nonbasic variables at that stage,
equating each basic variable to the RHS in the final tableau gives the unique so-
lution of the system. If there are nonbasic variables, from the rows of the final
tableau we get the general solution of the system in parametric form in terms of
the nonbasic variables as parameters.

The elimination method remained unknown in Europe until Gauss rediscovered
it at the beginning of the nineteenth century while calculating the orbit of the as-
teroid Ceres based on recorded observations in tracking it earlier. It was lost from
view when the astronomer tracking it, Piazzi, fell ill. Gauss got the data from Piazzi,
and tried to approximate the orbit of Ceres by a quadratic formula using that data.
He designed the method of least squares for estimating the best values for the



1.2 Review of the GJ Method for Solving Linear Equations: Revised GJ Method 5

parameters to give the closest fit to the observed data; this gives rise to a system
of linear equations to be solved. He rediscovered the elimination method to solve
that system. Even though the system was quite large for hand computation, Gauss’s
accurate computations helped in relocating the asteroid in the skies in a few months
time, and his reputation as a mathematician soared.

Europeans gave the names Gaussian elimination method and Gauss—Jordan
(GJ) elimination method to two variants of the method at that time. These meth-
ods are still the leading methods in use today for solving systems of linear
equations.

1.2 Review of the GJ Method for Solving Linear Equations:
Revised GJ Method

The Gauss—Jordan (GJ) method for solving a system of linear equations works
on the detached coefficient tableau of the system. It carries out GJ pivot steps on
this tableau with each row as the pivot row, one row after the other. On each row, a
pivot step is carried out at most once. The method stops when pivot steps are carried
out on all the rows.

Conditions for the Existence of a Solution

First consider a single linear equation ayx; + azx» + ... + apx, = «. This
equation always has a solution if at least one of ai,...,a, # 0; that is, when
(a1,...,ay) # 0. For example, if a; # 0, then x = («¢/a;,0,... ,O)T is a solu-
tion of the system.

Ifa = (a1,....a,) = 0 and ¢ = 0, then this equation is a trivial equation
0 = 0, it has no relation to the variables x, and so every x is feasible to it.

Ifa =0 and @ # 0, this equation becomes the

fundamental inconsistent equation 0 = «,

where « is any nonzero number; it has no solution.
Now consider the general system of m equations in # unknowns

Ax = b, (1.1)

where A, b = (b;) are m x n, m x 1 matrices. Let A;., A ; denote the ith row,
jth column of matrix A. Then the various equations in this system are A; x = b;
fori =1 tom.

Theorem 1.1. Theorem of alternatives for systems of linear equations: The
system of linear equations (1.1) has no feasible solution x iff there is a linear
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combination of equations in it which becomes the fundamental inconsistent equa-
tion. That is, (1.1) has no solution iff there exists a row vector 1 = (T1,...,Tm)
such that

m
> mid =mA=0, (1.2)

i=1

3 7r,-b,-=7rb=oz760.
2.

i=1

The proof of this theorem comes from the GJ method itself, as will be shown later
in this section. Using any solution of the alternate system (1.2), we can verify that
the fundamental inconsistent equation can be obtained as the linear combination
of equations in the original system (1.1), with coefficients 1, ..., 7;; confirming
that (1.1) cannot have a solution. That is why any solution 7 of (1.2) is known as
evidence or certificate of infeasibility for (1.1).

System (1.2) is known as the alternate system for (1.1); it shares the same data
with the original system (1.1).

Redundant Equations, Certificate of Redundancy

An equation in original system (1.1), say the ith, is said to be a redundant equation
if it can be expressed as a linear combination of the others, that is, if there exists a

real vector (7, ..., —1, Mi41,...,7Tm) such that
m m
Al'. — E ﬂtAt. = O, bl’ — E ﬂtbt =0.
t=1,#i t=1,%i
Then (—ny,...,—mi—1, 1, =Ti41,...,—7m) is known as an evidence or cer-

tificate for redundancy of the ith equation in (1.1). Such redundant equations can be
eliminated from (1.1) without changing its set of feasible solutions.

In solving a system of linear equations by the GJ method, a redundant constraint
will show up as a row in which all the entries including the updated RHS constant
are 0.

Example 1.1. Consider the following system shown in detached coefficient form at
the top of the following sequence of tableaus. We show the various tableaus ob-
tained in solving it by the GJ method. PR and PC indicate pivot row and pivot
column, respectively, in each step, and the pivot elements are boxed. “RC” indi-
cates a “redundant constraint identified, which is eliminated from the system at this
stage.” After each pivot step, the entering variable in that step is recorded as the
basic variable (BV) in the PR for that pivot step.
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After the second pivot step, we found that the third constraint in the original
system was a redundant constraint, which showed up as a row of all 0’s in the
current tableau. So we eliminated this constraint in all subsequent tableaus. The
final basic vector obtained for the system was (x1, x4, x3). There may be several
different basic vectors for the system; the final one obtained under the GJ elimina-
tion method depends on the choice of entering variables in the various steps of the
method.

PC

BV X1 X2 X3 X4 RHS
1 1 1| -6 PR
-1 1 0 -2 3
-2 12 5 =9 -9
0 4 2 1| -8

PC

x| 11 1 1| —6
0 2 1 -3 PR
0 14 7 =7 =21
0 4 2 1| -8

PC

x| 13 2 0| —9

xg | 0 =2 -1 1 3
0 0 0 0 0 RC
0 6 |-1 0| —11 PR

x1 | 1 15 0 0| -31

xg | 0 -8 0 1| 14

x3 | 0 —6 1 o 11

The variable x, remained as a nonbasic variable (also called as independent
variable or free variable). The basic solution wrt the basic vector (x1, X4, X3) is
x = (x1, X2, X3, x4)T = (-31,0,11, 14)T obtained from the final tableau (known
as the canonical tableau wrt present basic vector (x1, x4, Xx3)) by setting the non-
basic variable x, = 0.

The original system has a unique solution iff there is no nonbasic variable left at
the termination of the GJ method.

The dimension of the set of solutions of the system is equal to the num-
ber of nonbasic variables left at the end of the GJ method, which is 1 for this
example.

From the canonical tableau, we see that the general solution of the system
is x = (x1, x2, x3, x4)7 = (=31 — 15x2, x2, 11 + 6x5, 14 + 8x3)7,
where the free variable x, is a parameter that can be given any arbitrary
value. ]
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This version of the GJ method does not produce the evidence or certificate of
redundancy when a redundant equation in the original system is identified in the
method, so we do not have any way of checking whether the “0=0" equa-
tion appearance at that stage is genuine, or due to some errors in computation or
round-off operations carried out earlier. See Chap. 1 (and Sect. 1.16 in it) in the
web-book (Murty 2004) for more numerical examples of this version of the GJ
method.

We will now describe an improved version of the GJ method that has the ad-
vantage of producing also the evidence whenever either a redundant equation is
identified in the method or the infeasibility conclusion is reached.

1.2.1 GJ Method Using the Memory Matrix
to Generate the Basis Inverse

In this version, before beginning pivot steps on the original tableau, a unit ma-
trix I of order m, where m is the number of constraints in the system, is added
by the side of the original tableau. This unit matrix is called the memory matrix,
and its purpose is to accumulate the basis inverse; so in LP literature it is often re-
ferred to as the basis inverse. Here is the original tableau with the memory matrix
added.

Original tableau|Memory matrix
X RHS

A b 1

Now begin applying the GJ method. Remember that only the columns in the
A-part associated with variables x; are eligible to be selected as pivot columns, but
all the computations are carried out on all the columns in the tableau. Suppose at
some stage after some pivot steps, the current tableau is as given below.

Current tableau | Memory matrix
X RHS

A b M
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Let A ; and A ; be the jth columns in the original-A4 _and_fi, _respectively. Also
let the entries in the ith row of the current tableau be A; , b;, M;. Then we will
have

Aj=MA;, A, =MA b =Mb, b=Mb. (1.3)

So, foralli =1 tom, Mi,, the ith row of the memory matrix, gives the
coefficients in an expression of fL; as a linear combination of the rows in the
original tableau. As M keeps track of these coefficients, it is called the memory
matrix. B

The equation corresponding to the ith row in the current tableau is Aix = b;.
So, if /L; = 0 and b; = 0, this is a redundant equation, and from the above
formulas we see that M;, the corresponding row in the current memory matrix,
provides the evidence or certificate for this redundancy.

How to update the memory matrix when a redundant constraint is elimi-
nated from the original system: Suppose we started with a system of m linear
equations, and so the memory matrix for it is a square matrix of order m. At some
stage suppose we identified the ith equation in the original system as a redundant
constraint and want to eliminate it. After the elimination, the remaining system will
have only m — 1 rows, so the memory matrix associated with it must be a square
matrix of order m — 1. The question is: from the current memory matrix of order m,
how can we get the current memory matrix for the system of remaining constraints?
This is easy. When the ith constraint in the original system is identified as a redun-
dant constraint, delete the ith row from the original tableau, also from the current
tableau including the memory matrix part. Then delete the i th column also from the
memory matrix part. This completes the updating of all the things for this redundant
constraint deletion. .

Also, if for some i we have in the current tableau A; = 0 and b; = o # 0, this
row in the current tableau is the fundamental inconsistent equation, so we conclude
that the original system is infeasible and terminate. Then 7 = M;. is the evidence or
certificate for infeasibility of the original system. So, 7 is a solution of the alternate
system (1.2).

So, this version of the GJ method has the advantage of terminating with either a
solution x of the original system or a solution of the alternate system, establishing
the infeasibility of the original system.

Proof of Theorem 1.1. The argument given above also provides a mathematical
proof of the theorem of alternatives (Theorem 1.1) for systems of linear equations.

Example 1.2. Consider the following system with five equations in five unknowns
from the left-hand part of the top tableau. For illustrative purposes, we keep redun-
dant constraints discovered in the algorithm till the end. RC, PC, PR, and BV have
the same meanings as in Example 1.1, and the pivot elements are boxed. “IC” means
“inconsistent constraint, infeasibility detected.”

The third constraint in the final canonical tableau represents the equation “0 = 0”;
this shows that the third constraint in the original system is a redundant constraint.
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From the third row of the memory matrix (also called basis inverse) in this tableau,
and we see that the evidence vector for this is (—2, —4, 1, 0, 0), which implies that

in the original system, the third constraint (which is —2x; +2x, —6x3 +6x4+2x5 = —34)
is two times constraint 1 (which is x; +x,+x3+x4+x5 = —11) plus four times constraint
2 (which is —x; — 2x3 + x4 = —3), which can be verified to be true.

The fifth constraint from the final canonical tableau is the inconsistent equation
“0 =6.” From the fifth row of the basis inverse in this tableau, we see that the ev-
idence vector for this is 7 = (—3,—5,0,—1,1). It can be verified that when you
take the linear combination of equations in the original system with coefficients in
7, then you get this inconsistent equation “0 = 6. Alternately, 7 is the solution
of the alternate system corresponding to the original system, which is given below
(here, @ turns out to be 6 for this solution 7):

PC Memory matrix

BV | x1 x» x3 X4 X5 b
] vt 1 1|-11] 1 00 o0 0 PR
-1 0 -2 1 0| =3/ 0 10 00
-2 2 -6 6 2|-3| 0 01 00
0 3 2 —4 —1| 2/ 0 00 10
-2 6 -9 4 2|—-40| 0 00 0 1

PC

xx | 1 1 1 1 1|=11] 1 00 00
o[1] -1t 2 1|-14/ 1 10 00 PR
0 4 —4 8 4|-=56 2 01 00
0 3 2 —4 —1| 2/ 0 00 10
0 8 —7 6 4|—-62| 2 00 01

PC

xx| 1 0 2 -1 0| 3/ 0 -10 00

x| 0 1 -1 2 1|-14] 1 10 00
0 0 0 0 0| O0|-2 —4 1 0 0 RC
0 0 |1] —10 —4| 44|-3 =3 0 1 0 PR
0 0 1 —10 —4| 50|-6 —8 0 0 1

x;| 1 0 0 21 10| 63] 6 5 0 —2 0

X2 0 1 0 -8 —4|-54|-2 -2 0 1 0
0 0 0 0 0| 0|2 —41 0 0 RC

x3| 0 0 1 —10 —4| 44[-3 =3 0 1 0
0 0 0 0 0| 6[-3 -50 -1 1 IC
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w1 — oy — 23 —2m5 = 0,

w1 + 273 + 3m4 + 6715 = 0,

— 21y — 673 — 274 — 915 = 0,

w1 + 7y + 63 — 4y + 45 = 0,

w1 + 23 — w4 4+ 25 = 0,

—11m — 37y — 3473 + 24 — 4075 = .
|

Next we will discuss a computationally more efficient version of the same GJ
method.

1.2.2 The Revised GJ Method with Explicit Basis Inverse

Suppose the original system that we are trying to solve is Ax = b, consisting of
m equations in n unknowns. In many practical applications, we encounter systems
in which n is much larger than m, particularly in applications involving linear pro-
gramming models.

In the version of the GJ method discussed in Sect. 1.2.1, pivot computations are
carried out on all the n columns of A plus the m columns of the memory matrix.
Suppose after pivot steps have been carried out on some rows of the tableau, the
entries in the current coefficient tableau, RHS, memory matrix are A, b = (b; )s M.
Then (1.3) g1ves us the formulae to obtain A;, the ith row of A for each i; b; for
each i; and A ;, the jth column of A, for each j, using data in M and in the
original A, b.

Thus the formulae in (1.3) show that we can obtain any row or column of A as
and when we need it, if we just carry out all the pivot computations in every step
on the columns of the memory matrix only and update M in every step. This leads
to a computationally more efficient version of the GJ method known as the revised
GJ method with explicit basis inverse, discussed in Sect. 4.11 of Murty (2004). This
is the version that is commonly used in computer implementations. This version is
based on adopting a technique developed by Dantzig in the revised simplex method
for linear programming, to the GJ method for solving linear equations. In this ver-
sion, the current memory matrix is generally referred to as the basis inverse, so we
will call it the IT (inverse tableau) and denote it by B~1, instead of M. The general
step in this version is described next.

General step in the GJ method: Let the current inverse tableau be the following:

BV Inverse tableau Updated RHS

S

B—l
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Let P denote the set of rows in which pivot steps have been carried out already.

1. Selectarow i € {1,...,m}\P as the pivot row (PR) for the next pivot step.
2. For this pivot step we need PR, the updated ith row A; for the systems of
equations being solved. From (1.3) we know that it is (B~1); A, and compute it.

If the PR, (B~ 1); A =0 and b; = 0, the ith constraint in the present original
system is a redundant constraint, and in (B~!),. we have the evidence vector for this
conclusion. Eliminate this i th constraint from the original system; the ith row from the
inverse tableau and the updated RHS vector, and the i th column from the inverse tableau;
reduce m by 1; and look for another pivot row for the next pivot step.

Ifthe PR, (B~'); A =0, and b; # 0, we have in (B™!); evidence for the conclusion
that the original system has no solution; terminate.

If the PR, (B™!);A # 0, select a nonzero entry in it as the PE (pivot element) for
the next pivot step, and the variable, x; say, containing it as the entering variable, and
its column, the jth updated column = /I. i = B4 ; (where A ; is the column of
the entering variable x; in the original system), as the PC (pivot column) for that pivot
step. Computer programmers have developed several heuristic rules for selecting the PE
from among the nonzero entries in the pivot row to keep round-off errors accumulating
in digital computation under control. Put the PC by the side of the inverse tableau as
below.

BV | Inverse | Updated | PC
tableau RHS X

S

B! A; PR=i-throw

Performing this pivot step will update the inverse tableau and the RHS vector, leading
to the next inverse tableau. Now include row i in P.

3. If pivot steps have now been carried out in all the rows of the tableau, we have
a solution for the original system. The basic solution for the original system wrt
the present basic vector is given by setting all the nonbasic variables at 0, and the
tth basic variable = rth updated RHS constant for all 7. Terminate.

If there are rows in the tableau in which pivot steps have not yet been carried
out, go to the next step and continue.

Example 1.3. We will now show the application of this version of the GJ method
on the system solved in Example 1.2 by the regular GJ method. Remember, in this
version pivot computations are carried out only on the inverse tableau and the RHS,
but not on the original system. At any stage, B~! denotes the inverse tableau, IT.
If row i is the pivot row (PR), we will denote it by A = (B71);.A. Likewise,
if x; is the entering variable (EV), its updated column, the PC, will be denoted by
A j =B -1 (original column of x;). RC denotes redundant constraint, and for
simplicity we will not delete RCs detected. “IC” means “inconsistent constraint,
infeasibility detected.”
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Original system Memory matrix
X1 X2 X3  Xa X5 b | BV Inverse tableau PC
B1 X1
1 1] —11 1 00 o0 o0f[1] PR
-1 0 =2 1 0| -3 0 1.0 0 0f-1
-2 2 -6 6 2| —34 0 01 0 0f-2
0 3 —2 —4 —1 2 0 00 10| 0
-2 6 -9 4 2| —40 0 00 0 1|2
Row 1 = PR above. EV x;. Next IT on right below
PC
X2
Now PR = Row 2. —11 | x; 1 0 0 0 0 1
As. = (1,1,0,0,0) A —14 1 10 00 PR
=(0,1,—1,2,1). —56 2 01 0 0f 4
x5 selected EV. 2 0 00 1 0 3
PC = B~ 14, entered. —62 2 0 0 0 1 8
PR = Row 3. A3, = (-2, —4,
1,0,0)4 = 0. b3 = 0. RC.
PC
X3
PR = Row 4. A4, = (=3, -3 3/xp | 0 -1 0 0 O] 2
0,1,0)4 = (0,0, 1, —14| x| 1 1.0 0 0]-1
—10,—5).EV = x3. PC = 0 -2 -4 1 00| 0
B~'A 5 entered. 44 3 30 10 PR
50 -6 -8 0 0 1] 1
PR=Row5. 45 =(-3,-5.| 63| x| 6 5 0 —2 0
0,-3,1)A=0.bs=6IC. | -54|x, |—2 =2 0 1 0
Infeasible. 0 -2 —4 1 0 0
44 x3 | -3 =3 0 1 0
6 -3 =5 0 -1 1

IT = Inverse tableau

So, the fifth equation in the updated tableau is the inconsistent equation “0 =6,”
which implies that the original system has no feasible solution and the method ter-
minates. The fifth row in the inverse tableau 7 = (—3,—5,0, —1, 1) provides the
evidence vector for this conclusion. This 7 is a solution of the alternate system
corresponding to the original system. |
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1.3 Lack of a Method to Solve Linear Inequalities
Until Modern Times

Even though linear equations had been conquered thousands of years ago, systems
of linear inequalities remained inaccessible until modern times. The set of feasi-
ble solutions to a system of linear inequalities is called a polyhedron or convex
polyhedron, and geometric properties of polyhedra were studied by the Egyptians
earlier than 4000 BC while building the pyramids, and later by the Greeks, Chinese,
Indians, and others.

The following theorem (Murty 2006a) relates systems of linear inequalities to
systems of linear equations.

Theorem 1.2. Consider the system of linear inequalities

Ax > b, (1.4)
where A = (a;j;) is an m x n matrix and b = (b;) € R™. So, the constraints in the
system are Aj x > b;, i € {1,...,m}. Ifthis system has a feasible solution, then
there exists a subset P = {p1,..., ps} C{1,...,m} such that every solution of the

system of equations

Aix = bl‘, i eP,
is also a feasible solution of the original system of linear inequalities (1.4).

Proof. Let K denote the set of feasible solutions of (1.4). For any x € K, the ith
constraint in (1.4) is said to be active at x if A; x = b; and inactive if A; x > b;.

We will now describe a procedure consisting of repetitions of a general step be-
ginning with an initial point x° € K.

General Step: Let x” € K be the current point and P, = {i : ith constraint in
(1.4) is active at x” }.

Case 1: P, = @. Inthis case x” is an interior point of K. Let X be any solution
of one equation A4; x = b; forsomei. If ¥ € K, define x"t1 = x.

If x ¢ K, find A, the maximum value of A such that x” +A(xX —x") € K. Then
x" + A(x — x") must satisfy at least one of the constraints in (1.4) as an equation,
define x"t! = x" + A(x — x7).

Go back to another repetition of the general step with x as the current point.

Case 2: P, # @ and either x” is the unique solution of the system of equations
{Aix =b; : i €P.}, or P, = {1,...,m}. In either of these cases, P = P,
satisfies the requirement in the theorem, terminate.

Case 3: P, is a nonempty proper subset of {1,...,m} and the system {A4; x =
b; 1 i € P} has alternate solutions. Let H, = {x : A;.x = b;, i € P.}. Lett be
the dimension of H,, and let {y!,..., y’} be a basis for the subspace {4;y = 0 :
i eP,}.

If each of the points y € {y!,..., y’} satisfies A; y =0 foralli € {1,...,m},
then P =P, satisfies the requirement in the theorem, terminate.

r+1
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Otherwise, let y € {yl_,...,y’, —yl, ..., —y'} satisfy A;.y < 0 for some
i €{l,...,m}\P,. Find A, the maximum value of A such that x" + 1y € K,
define x" ! = x" 4+ Ay.

Go back to another repetition of the general step with x” ™1 as the current point.

The subsets of indices generated in this procedure satisfty P, C P,4; and
|Pry1] = 1 + |P,|. So after at most m repetitions of the general step, the pro-
cedure must terminate with a subset P of {1,...,m} satisfying the conditions in
the theorem. O

In systems of linear inequalities like (1.4) appearing in applications, typically
m > n.

This theorem states that every nonempty polyhedron has a nonempty face that is
an affine space. It can be used to generate a finite enumerative algorithm to find a
feasible solution to a system of linear constraints containing inequalities. It involves
enumeration over subsets of the inequalities in the system. For each subset do the
following: eliminate all the inequality constraints in the subset from the system. If
there are any inequalities in the remaining system, change them into equations. Find
any solution of the resulting system of linear equations. If that solution satisfies all
the constraints in the original system, done, terminate. Otherwise, repeat the same
procedure with the next subset of inequalities. At the end of the enumeration, if no
feasible solution of the original system has turned up, it must be infeasible.

However, if the original system has m inequality constraints, in the worst case
this enumerative algorithm may have to solve 2™ systems of linear equations be-
fore it either finds a feasible solution of the original system or concludes that it is
infeasible. The effort required grows exponentially with the number of inequalities
in the system in the worst case.

A Paradox: Many young people develop a fear of mathematics and shy away
from it. But since childhood I had a fascination for mathematics because it presents
so many paradoxes. Theorem 1.2 also presents an interesting paradox.

As you know, linear equations can be transformed into linear inequalities by
replacing each equation with the opposing pair of inequalities. But there is no way a
linear inequality can be transformed into linear equations. This indicates that linear
inequalities are more fundamental than linear equations.

But this theorem shows that linear equations are the key to solving linear inequal-
ities, and hence are more fundamental, this is the paradox. Again we will show later
in the book that linear inequalities may play an important role for solving linear
equations.

1.3.1 The Importance of Linear Inequality Constraints
and Their Relation to Linear Programs

The first interest in inequalities arose from studies in mechanics, beginning in the
eighteenth century. Crude examples of applications involving linear inequality mod-
els started appearing in published literature around the 1700s.
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Linear programming (LP) involves optimization of a linear objective function
subject to linear inequality constraints. Crude examples of LP models started ap-
pearing in published literature from about the middle of the eighteenth century. An
example of an application of LP is the fertilizer maker’s product mix problem dis-
cussed in Example 3.4.1 of Sect. 3.4 of Murty (2005b). It leads to the following LP
model:

(1.3.1)
Maximize z(x) =15x; + 10x» Item
Subject to 2x1 + X < 1,500 RM 1
X1 + X, < 1,200 RM 2
X1 < 500 RM 3
x1 >0, x, > 0

in which the decision variables x1, x, are the tons of Hi-ph, Lo-ph fertilizers man-
ufactured/day using three raw materials RM 1, 2, 3 for which the available supply is
at most 1,500, 1,200, 500 tons/day, respectively. The limit on the supply of each of
these raw materials leads to a constraint in the model, that is why these raw materials
are called the “items” corresponding to those constraints in the model. The objec-
tive function to be maximized is the daily net profit from fertilizer manufacturing
activities.

In this example, all the constraints on the variables are inequality constraints. In
the same way, inequality constraints appear much more frequently and prominently
than equality constraints in most real-world applications. In fact, we can go as far
as to assert that in most applications in which a linear model is the appropriate one
to use, most of the constraints are actually linear inequalities, and linear equations
play only the role of a computational tool through approximations, or through re-
sults similar to Theorem 1.2. Linear equations were used to model problems mostly
because an efficient method to solve them is known.

Fourier was one of the first to recognize the importance of inequalities as opposed
to equations for applying mathematics. Also, he was a pioneer who observed the link
between linear inequalities and linear programs in early nineteenth century.

For example, the problem of finding a feasible solution to the following system
of linear inequalities (1.5) in x1, x» can itself be posed as another LP for which an
initial feasible solution is readily available. Formulating this problem known as a
Phase I problem introduces one or more non-negative variables known as artificial
variables into the model. All successful LP algorithms require an initial feasible
solution at the start, so the Phase I problem can be solved using any of those algo-
rithms, and at termination it either outputs a feasible solution of the original problem
or an evidence for its infeasibility. The Phase I model for finding a feasible solution
for (1.5) is (1.6), and it uses one artificial variable x3.

X1 + 2x2 > 10, (1.5)
2x1 —4x, > 15,
—x1 + 10x, > 25,
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Minimize Xx3

Subject to x; + 2x3 + X3
2x1 —4x3 + x3

—x1 + 10x3 + x3

X3

10
15
25 (1.6)
10

IV 1V

IV 1V

For the Phase I problem (1.6), (x1, X2, X3)T = (0,0, 26)T is a feasible solution.
In fact solving such a Phase I problem provides the most efficient approach for
solving systems of linear inequalities.

Also, the duality theory of linear programming discussed in Chap. 5 shows that
any linear program can be posed as a problem of solving a system of linear in-
equalities without any optimization. Thus, solving linear inequalities and LPs are
mathematically equivalent problems. Both problems of comparable sizes can be
solved with comparable efficiencies by available algorithms. So, the additional as-
pect of “optimization” in linear programs does not make LPs any harder either
theoretically or computationally.

1.4 Fourier Elimination Method for Linear Inequalities

By 1827, Fourier generalized the elimination method to solve a system of linear
inequalities. The method now known as the Fourier or Fourier—Motzkin elimina-
tion method is one of the earliest methods proposed for solving systems of linear
inequalities. It consists of successive elimination of variables from the system. We
will illustrate one step in this method using an example in which we will eliminate
the variable x; from the following system.

X1 —2x2 +x3 <
2x1 4+ 6x5 — 8x3 < —6,
—X1 — Xy —2x3 <
—2x1 —6x2 + 2x3 < 2.
X1 appears with a positive coefficient in the first and second constraints and a nega-

tive coefficient in the third and fourth constraints. By making the coefficient of x;
in each constraint into 1, these constraints can be expressed as

X1 <64 2x; —x3,
X1 < —=3-—3x5 4+ 4x3,
—2—x2 —2x3 < x1,
—1 —3x3 + x3 < x3.
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The remaining system after x; is eliminated and is therefore

—2—Xxp —2x3 <64 2x3 — X3,
—2—xp —2x3 < —3—3x, + 4x3,
—1—=3x2 +x3 <6+ 2x5 — X3,

<
—1 —3x3 + x3 < —=3—3x5 + 4x3,
and then max{—2—x; —2x3, —1—=3x; +x3} < x; <min{6 + 2x; —x3, —3—
3x + 4x3} is used to get a value for x; in a feasible solution when values for
other variables are obtained by applying the same steps on the remaining problem
successively.

However, starting with a system of m inequalities, the number of inequalities can
jump to O(m?) after eliminating only one variable from the system, so this method
is not practically viable except for very small problems.

1.5 History of the Simplex Method for LP

In 1827, Fourier published a geometric version of the principle behind the simplex
algorithm for a linear program (vertex-to-vertex descent along the edges to an opti-
mum, a rudimentary version of the simplex method) in the context of a specific LP in
three variables (an LP model for a Chebyshev approximation problem), but did not
discuss how this descent can be accomplished computationally on systems stated
algebraically. In 1910, De la Vallée Poussin designed a method for the Chebyshev
approximation problem, which is an algebraic and computational analogue of this
Fourier’s geometric version; this procedure is essentially the primal simplex method
applied to that problem.

In a parallel effort, Gordan (1873), Farkas (1896), and Minkowski (1896) studied
linear inequalities, and laid the foundations for the algebraic theory of polyhedra
and derived necessary and sufficient conditions for a system of linear constraints,
including linear inequalities to have a feasible solution.

Studying LP models for organizing and planning production (Kantorovich 1939)
developed ideas of dual variables (resolving multipliers) and derived a dual-simplex
type method for solving a general LP.

Full citations for references before 1939 mentioned so far can be seen from the
list of references in Danizig (1963) or Schrijver (1986).

This work culminated in the mid-twentieth century with the development of the
primal simplex method by Dantzig. This was the first complete, practically and com-
putationally viable method for solving systems of linear inequalities. So, LP can be
considered as the branch of mathematics, which is an extension of linear algebra to
solve systems of linear inequalities. The development of LP is a landmark event in
the history of mathematics, and its application brought our ability to solve general
systems of linear constraints (including linear equations, inequalities) to a state of
completion.
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1.6 The Simplex Method for Solving LPs and Linear
Inequalities Viewed as an Extension of the GJ Method

One of the most popular methods for solving either systems of linear constraints
including linear inequality constraints, or linear programs, is the simplex method.
We will discuss this method in Chap. 6. Here we will explain why this method can
be viewed as the extension of the GJ method for solving systems of linear equations
to these more general systems. Let x € R”" denote the column vector of decision
variables.

First consider the problem of solving a system of linear constraints including
inequalities. For this, the simplex method first transforms the system into a stan-
dard form consisting of a system of linear equations in nonnegative variables by
simple transformations such as introducing nonnegative slack variables to convert
inequalities into equations, and eliminating unrestricted variables using the equal-
ity constraints (see Sect. 4.1 in Chap.4 of Murty (2005b) for a discussion of these
transformations). The standard form is

Ax = b, (1.7)

where A is a matrix of order m x n, and b = (b;) is a column vector in R™.

1.6.1 Generating the Phase I Problem if No Feasible Solution
Available for the Original Problem

Now apply the GJ method to solve the system of equations Ax = b ignoring the
nonnegativity restrictions on x. If this terminates with the infeasibility conclusion,
clearly (1.7) is also infeasible, so terminate. Otherwise, let x = (xp, xp) be the
basic, nonbasic partition of variables obtained at the end of the GJ method, and let
the final canonical tableau obtained be

BV | xz : xp | RHS

(el
S

xp | 1

If b > 0, _the basic solution of (1.7) wrt the basic vector xp, which is
(xB, xp) = (b, 0), is a feasible solution for (1.7), and we are done. B

If b # 0, letr be such that b, is the most negative element in b. Now
introduce a nonnegative artificial variable x¢ into the canonical tableau associated
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with the column vector —e = (—1,—1,...,—1)T of all “—1” entries, leading to
the following tableau called a Phase I tableau.

BV |xg : xp xo |RHS

S

XB I : D —e

In this tableau if you perform a pivot step with row r as the PR (pivot row) and
Xo as the entering variable, then you will get the canonical tableau wrt a new basic
vector x g/ containing the artificial variable x¢ as a basic variable, corresponding to
which the basic solution can be verified to be >0, with the value of the artificial
variable x¢ being = —b, > O init.

Example 1.4. Here we provide a numerical illustration for the introduction of the
artificial variable xo. Suppose the canonical tableau obtained at the end of the GJ
method on the system of equations Ax = b is the following tableau with variables
X1 to x7. The updated RHS is #0, so we already introduced the artificial variable
Xo 1n this tableau.

BV | x1 x» X3 x4 x5 X¢ X7 X0 b
x| 1 0 0 1 -1 2 -1 —1]|-=3
2 0 1 0 =2 1 -1 -1 -6 PR
x3/ 0 0 1 -1 2 1 1 —1|7
PC
x| 1 -1 0 3 =2 3 0 0] 3
x| 0 -1 0 2 -1 1 1 1] 6
x3 |0 -1 1 1 1 2 2 0|13

The basic solution produced by the GJ method on Ax = b in this problem is the
basic solution corresponding to the basic vector (x1, X2, x3) in which the variables
X1, xp are <0, so it is not feasible to the original system Ax = b, x >0. The most
negative variable in this solution is the basic variable x; in r = second row. So, we
introduced the artificial variable xo as discussed earlier, and performing a pivot step
in its column with row 2 as the PR leads to a new basic vector xp' = (x1, Xo, X3)
whose basic solution is a nonnegative solution to the augmented system. |

The Phase I problem:
Minimize Xxg
subjectto xp + DxD —exg = b (1.8)

XB, Xp, X0 > 0
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is an LP formulation for the problem of getting a feasible solution for (1.7). It is one
of several different (but equivalent) ways of formulating the problem of finding a
feasible solution to (1.7) as a Phase I linear program.

Solving such an LP formulation seems to be the most efficient approach for solv-
ing systems of linear constraints with inequalities. The simplex algorithm solves
LPs like (1.8) starting with a nonnegative basic solution corresponding to a feasible
basic vector like x g/ by performing additional GJ pivot steps exchanging one basic
variable with a nonbasic variable in each step until an optimum solution for (1.8) is
obtained.

If the minimum value of x( in the Phase I problem (1.8) is >0, clearly the orig-
inal (1.7) is infeasible. If the minimum value of x¢ in (1.8) is 0, then any optimum
solution of (1.8) gives a feasible solution for (1.7), by suppressing the 0 value of xo
from it.

If the original problem to be solved is the LP of minimizing cx subject to (1.7),
then the only change in the above approach is to minimize cx + axg, where « is
a large positive penalty cost, instead of x¢ in (1.8). Starting with the feasible basic
solution corresponding to the basic vector x g/, the simplex method solves this LP
the same way.

Starting with the canonical tableau for the system of linear equations Ax = b ob-
tained by the GJ method, the simplex method carries out additional GJ pivot steps to
obtain a feasible solution for (1.7) or to solve an LP subject to (1.7). For this reason,
the simplex method for LP can be considered as an extension of the GJ method for
linear equations to solve systems of linear constraints including inequalities or LPs.

Linear Programming

Linear Algebra

N Study of linear constraints including
Study of linear equations. inequalities.
Originated over 2,000 years ago. Twentieth century extension of lin-

ear algebra.

1.7 The Importance of LP

LP has now become a dominant subject in the development of efficient computa-
tional algorithms, in the study of convex polyhedra, and in algorithms for decision
making. But for a short time in the beginning, its potential was not well recognized.

Dantzig tells the story of how when he gave his first talk on LP and his sim-
plex method for solving it, at a professional conference, Hotelling (a burly person
who liked to swim in the sea, the popular story about him was that when he does,
the level of the ocean raises perceptibly, see Figs. 1.1 and 1.2; my thanks to Katta
Sriramamurthy and Shantisri Katta for these figures) dismissed it as unimportant
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Fig. 1.1 Hotelling (a whale
of a man) getting ready to
swim in the ocean

Fig. 1.2 Hotelling swimming
in the ocean. Watch the level
of the ocean go up 4

X[

since everything in the world is nonlinear. But Von Neumann came to the defense
of Dantzig saying that the subject will become very important; see Page xxvii of
Dantzig and Thapa (1997). The preface in this book contains an excellent account
of the early history of LP from the inventor of the most successful method in OR
and in the mathematical theory of polyhedra.

Von Neumann’s early assessment of the importance of LP turned out to be as-
tonishingly correct. Today, the applications of LP in almost all areas of science are
so numerous, so well known, and recognized that they need no enumeration. Also,
LP seems to be the basis for most of the efficient algorithms for many problems in
other areas of mathematical programming. Many of the successful approaches in
nonlinear programming, discrete optimization, and other branches of optimization
are based on LP in their iterations. Also, with the development of duality theory and
game theory (Gale 1960), LP has also assumed a central position in economics.

1.7.1 Marginal Values and Other Planning Tools
that can be Derived from the LP Model

We will illustrate the very useful planning information that can be derived from
an LP model for a real-world decision-making problem, using the example of the
fertilizer maker’s product mix problem discussed in Example 3.4.1 of Sect. 3.4 of
Murty (2005b), referred to earlier in Sect. 1.3.1.
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The fertilizer maker (FM) produces Hi-ph, Lo-ph fertilizers using three raw
materials, RM-1, 2, 3 as inputs, whose supply is currently limited. Here is all the
data on the problem.

Raw Input/ton of  Availability  Cost
material Hi-ph Lo-ph (tons/day) ($/ton)
RM-1 2 1 1,500 50
RM-2 1 1 1,200 75
RM-3 1 0 500 60
Other costs? 50 40
($/ton)

Market price® 300 175
Net profit 15 10
($/ton made)
2 All manufacturing costs other than raw material costs
bSelling price in market of this fertilizer

So the total production cost/ton of Hi-ph = (input raw material costs) + (other
production costs) = 2 x 50 + 1 x 75 + 1 x 60 + 50 = 285$/ton, and since its
market price is $300, production of Hi-ph leads to a net profit of 300 — 285 = $
15/ton made. The net profit from Lo-ph of $10/ton is computed in the same way.

The market is able to absorb all the Hi-ph, Lo-ph fertilizers the company can
produce, and so at present there is no limit on the production levels of these fertil-
izers. Defining x;, x, = tons of Hi-ph, Lo-ph produced daily, the LP model for
maximizing the company’s daily net profit is

Maximize z(x) = 15x; + 10x,
S.t0 2x1 + xp < by 1500 (RM-1 availability)
X1 + x2 < by = 1200 (RM-2 availability)
X1 < b3 500 (RM-3 availability)
X1, X2 > 0. (1.9

The constraint 2x; 4+ x> < 1500 requires that the feasible region of this problem
should be on the side of the straight line {x : 2x; +x, < 1500} in Fig. 1.3. Likewise,
all other constraints in (1.9) can be represented by the corresponding half-spaces in
Fig. 1.3, leading to the set of feasible solutions, K of this problem as the shaded
region in Fig. 1.3.

Selecting any feasible solution, x° = 0 say, we draw the objective line {x :
z(x) = z(x%)} through it, and then move this objective line parallel to itself, in-
creasing the RHS constant in its representation as far as possible (because in this
problem we need to maximize the value of z(x)), while still maintaining a nonempty
intersection with the feasible region. If Z is the final value of the RHS constant in
this process, then Z is the maximum value of z(x) in the problem, and any point in
the intersection of {z(x) = z} N K is an optimum solution of (1.9).

0
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Fig. 1.3 Solving the
fertilizer product mix model
geometrically
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For (1.9), z = 13,500, and the final position of the objective line is the dashed
line represented by {x : 15x1 4+ 10x, = 13500} in Fig. 1.3. The optimum solution
of (1.9) & = (300, 900)7 is unique, and it is the solution of the system:

2x1 4+ x2 = 1500,
X1 + xo = 1200.

The RHS constants vector b = (by, b, b3)T is = (1500, 1200, SOO)T at present
in (1.9). When the optimum solution X is implemented, the left over quantities in
the daily availability of RM-1, 2, 3 are 1500 — 2x; — X, = 0, 1200—X; — X, = 0,
500 — x; = 200 tons, respectively.

Thus the daily availabilities of RM-1, 2 are fully used up, while there are 200
tons of spare in the availability of RM-3 when the optimum solution X is imple-
mented. So, to increase the net profit beyond the present maximum attainable level
of $13,500, the company has to increase the supply of either RM-1 or RM-2.

Marginal Values
Each constraint in an LP model is the material balance constraint of some item,

the RHS constant in that constraint being the availability or the requirement of that
item. The marginal value of that item (also called the marginal value corresponding
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to that constraint) is defined to be the rate of change in the optimum objective value
of the LP per unit change in the RHS constant in the associated constraint, while all
the other data in the problem remains unchanged.

For example, in the fertilizer product mix problem, the marginal value of RM
1 (and of the corresponding first constraint in (1.9)) is the rate of change in the
maximum daily profit per unit change in the supply of RM 1 from its present value
of 1,500. These rates are also called dual variables or the shadow prices of the
items. These are the variables in another linear programming problem that is in
duality relationship with the original problem. In this context, the original problem
is called the primal problem and the other problem is called the dual problem. The
derivation of the dual problem is discussed in Chap. 5.

So, let b = (b1, by, b3)T denote the vector of RHS constants in (1.9) and let
f (b1, b2, b3) denote the optimum objective value in (1.9) as a function of b, while
all the other data in the problem remains unchanged from their present values. Then
we know that f(1500, 1200, 500) = 13,500. A simple expression for the marginal
value of by is then

(f(1500 + €, 1200, 500) — £(1500, 1200, 500)) /€.

where € is either positive or negative but with a small absolute value, provided this
ratio turns out to be the same fore < 0 or e > 0.

f(1500 + €, 1200, 500) is the optimum objective value in the LP (1.9) with 1500
changed to 1500+¢€. The set of feasible solutions of the modified problem is similar
to that in Fig. 1.3 with the line corresponding to 2x; +x2 = 1500 moved parallel to
itself by |e| either away from O (if € > 0) or towards O (if € < 0). As long as |€| is
small, it is clear that the optimum solution of the modified problem is the solution of

2x1 4+ x2 = 1500 + €,
X1 + x2 = 1200,

which is X(€) = (300 + €, 900 — €) with optimum objective value of f (1500 + ¢,
1200, 500) = 13500+5¢ = (1500, 1200, 500) 4 5¢. This shows that the marginal
value of b1 (RM-1)in (1.9)is 77 = 5.

Similarly to compute the marginal value of b, (RM-2), we need to compute
f(1500, 1200 + €,500), where again € is a real number of small absolute value.
Using the same arguments as above, we see the optimum solution of this modified
problem is the solution of

2x1 + x = 1500,
1200 + €,

X1+ X2

which is X(¢) = (300 — €,900 + 2¢) with optimum objective value of f(1500,
1200 + €, 500) = 13500 + 5¢ = f(1500, 1200, 500) + 5¢. This shows that the
marginal value of b, (RM-2)in (1.9)is 7, = 5.
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To compute the marginal value of b3 (RM-3) in (1.9), we need to compute
f(1500, 1200, 500 + €). In the optimum solution x of the original (1.9), we have
200 tons of RM-3 not being used in the current supply. This implies X remains op-
timal to the modified problem, with b3 changed to 500 + € as long as |¢| is small.
Therefore, (1500, 1200, 500 4+ ¢) = f(1500, 1200, 500) = 13500. Therefore, the

marginal value of b3 (RM-3) in (1.9) is 73 = 0. Therefore, the marginal value
vector for (1.9)is 7 = (5, 5, 0).

The marginal value vector may not exist for all LPs. If b = (by,...,bpy)T is
the RHS constants vector in an LP, and f(b1,...,bs) is the optimum objective

value function of this LP as a function of this b assuming that all the other data in
the LP remains unchanged; and if the value of the ratio (f(b1 + €,b2,...,bm) —
f(b1,....by))/€ depends on whether € > 0 or € < 0, then this LP does not have
marginal values. See Exercise 6.73 in Chap. 6 for an example.

In practice, we do not have to use the simple technique based on ratios of the form
(f(b1+€,ba,....,bm)— f(b1,...,bm))/€ to compute marginal values. In Chap. 5
we discuss techniques to check whether a general LP has the marginal values vector
or not, and show that when it exists it is the optimum dual solution. We also show
that when an LP is solved by any of the algorithms discussed in this book, the
optimum dual solution is also obtained as a byproduct.

Interpretation of Marginal Values and an Application

In the fertilizer product mix problem (1.9), the marginal value 7; = 5 for RM-1
means that each unit of RM-1 available to this company at present is equivalent to
5% in net profit. Other marginal values have a similar interpretation.

As an application of marginal values, we will show how they can be used to
evaluate the profitability of producing a new fertilizer, and at what level its market
price should be set so that it will be profitable in comparison with existing product
lines.

Suppose this company’s research lab has developed a new fertilizer with a catchy
name [ushlawn. Manufacturing lushlawn needs 3, 2, 2 tons of RM-1, 2, 3, respec-
tively/ton and incurs other manufacturing costs of 100$/ton besides the raw material
costs.

If the company decides to introduce lushlawn as a new product, at what level
should they set its market price?

One ton of lushlawn needs as input a packet of (3, 2, 2) tons of RM-1, 2, 3. From
the marginal value vector 7 we see that with existing product lines, this packet is
equivalentto 377, + 275 + 2713 = 25$ of net profit.

Thus lushlawn is worth manufacturing, if it can be sold at a price that leads
to a net profit of 25$/ton made. So, the breakeven market price/ton of lushlawn
is $25 + (raw material costs) + (other manufacturing costs) = $25 + 3 x 50 +
2 x 75+ 2 x 60 + 100 = $435/ton. By conducting a market survey, the company
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can determine whether the market will accept lushlawn at a price > this breakeven
level of $435/ton. Once this is known, the decision whether to produce lushlawn is
obvious.

By providing this kind of valuable planning information, the LP model has be-
come a highly useful decision-making tool.

1.8 Dantzig’s Contributions to Linear Algebra, Convex
Polyhedra, OR, Computer Science

Much has been written about Dantzig’s contributions. Also, he has a personal assess-
ment of his own contributions in Chap. 1 of his book (Dantzig 1963). As someone
who started learning LP from his course at Berkeley, I will summarize here some of
his contributions that are usually overlooked in other statements (for a brief account
of my experiences with Dantzig see Murty (2005a)).

1.8.1 Contributions to OR

The simplex method is the first effective computational algorithm for one of the
most versatile mathematical models in OR. Even though LP and also the simplex
method for solving it originated much earlier than Dantzig’s work, as explained in
Sect. 1.5, it started becoming prominent only with Dantzing’s work and OR was
just beginning to develop around that time. The success of the simplex method is
one of the root causes for the phenomenal development and the maturing of LP,
mathematical programming in general, and OR in the second half of the twentieth
century.

1.8.2 Contributions to Linear Algebra and Computer Science

Recognizing the Irrelevance of the “RREF” Concept Emphasized
in Mathematics Books on Linear Algebra

Dantzig contributed important pedagogic improvements to the teaching of linear
algebra. He would state all the algorithmic steps in the GJ elimination method using
the fundamental tool of row operations on the detached coefficient tableau for the
system with the variable corresponding to each column entered in a top row in every
tableau. This makes it easier for young students to see that the essence of this method
is to take linear combinations of equations in the original system to get an equivalent
but simpler system from which a solution can be read out. In descriptions of the
GJ method in most mathematics books on linear algebra, the variables are usually
left out.
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Also, these books state the termination condition in the GJ elimination method
to be that of reaching the RREF (reduced row echelon form, a tableau is defined to
be in RREF if it contains a full set of unit vectors in proper order at the left end).
Dantzig (and of course a lot of other OR people) realized that it is not important
that all unit vectors be at the left end of the tableau (they can be anywhere and can
be scattered all over); also it is not important that they be in proper order from left
to right. He developed the very simple data structure (this phrase means a strategy
for storing information generated during the algorithm, and using it to improve the
efficiency of that algorithm (perhaps this is the first instance of such a structure in
computational algorithms)) of associating the variable corresponding to the rth unit
vector in the final tableau as the rth basic variable (or basic variable in the rth
row), and storing these basic variables in a column on the tableau as the algorithm
progresses. This data structure makes it easier to read the solution directly from the
final tableau of the GJ elimination method by making all nonbasic variables = 0 and
the rth basic variable = the rth updated RHS constant, for all r. Dantzig called this
final tableau the canonical tableau to distinguish it from the mathematical concept
of RREEF. It also opened the possibility of pivot column selection strategies instead
of always selecting the leftmost eligible column in this method.

Even today it is sad that in courses on linear algebra in mathematics departments,
the RREF is emphasized as the output of the GJ elimination method. For a more
realistic statement of the GJ method from an OR perspective see Murty (2004).

Evidence (or Certificate) of Infeasibility

As explained in Sect. 1.2, a contribution of Dantzig, the revised simplex method, has
very important consequences to the GJ elimination method. When the GJ elimina-
tion method is executed in the revised simplex format, it produces an evidence for
infeasibility automatically whenever the system of linear equations being solved has
no solution.

1.8.3 Contributions to the Mathematical Study
of Convex Polyhedra

Dantzig has made fundamental contributions to the mathematical study of convex
polyhedra (a classical subject that has been investigated by mathematicians for more
than 4,000 years) when he introduced the complete version of the primal simplex
method as a computational tool.

We could only see drawings of two-dimensional polyhedra before this work.
Polyhedra in higher dimensions could only be visualized through imagination. The
primal simplex pivot steps are the first computational steps for actually tracing an
edge (either bounded or unbounded) of a convex polyhedron. It opened a revolution-
ary new computational dimension in the mathematical study of convex polyhedra,
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and made it possible to visualize and explore higher-dimensional polyhedra through
computation. At a time when research on convex polyhedra was beginning to stag-
nate, the simplex method has reignited the spark and enriched their mathematical
study manyfold.

1.9 Interior Point Methods for LP

In the early 1980s, Narendra Karmarkar pioneered a new method for LP, an interior
point method (Karmarkar 1984). Claims were made that this method would be many
times faster than the simplex method for solving large-scale sparse LPs, and these
claims helped focus researchers attention on it. His work attracted worldwide atten-
tion not only from operations researchers, but also from scientists in other areas.

Let me relate a personal experience. When news of his work broke out in world
press, I was returning from Asia. The person sitting next to me on the flight was a
petroleum geologist. When he learned that I was on the OR faculty at Michigan, he
asked me excitedly “T understand that an OR scientist from India at Bell Labs made a
discovery that is going to revolutionize petroleum exploration. Do you know him?!”

In talks on his algorithm that he gave at that time, Karmarker repeatedly empha-
sized the following points:

1. The boundary of a convex polyhedron with its faces of varying dimensions has a
highly complex combinatorial structure. Any method that operates on the bound-
ary or close to the boundary will get caught up in this combinatorial complexity,
and there is a limit on improvements we can make to its efficiency.

2. Methods that operate in the central portion of the feasible region in the direction
of descent of the objective function have the ability to take longer steps towards
the optimum before being stopped by the boundary, and hence have the potential
of being more efficient than boundary methods for larger problems.

3. From an interior point, one can move in any direction locally without violat-
ing feasibility; hence powerful methods of unconstrained optimization can be
brought to bear on the problem.

Researchers saw the validity of these arguments, hence Karmarkar’s talks stimu-
lated a lot of work on these methods that stay “away” from the boundary. In the tidal
wave of research that ensued, many different classes of interior point methods have
been developed for LP, and extended to wider classes of problems including convex
quadratic programming, monotone linear complementarity problem, and semi def-
inite programming problems. We will discuss some popular interior point methods
in a later chapter. Among them, the first is in fact the first interior point method
discussed in the literature, the primal affine scaling method (Dikin 1967), which
predates Karmarkar’s work, but did not attract much attention until after Karmarkar
popularized the study of interior point methods (IPMs). We will also discuss another
IPM known as the primal-dual IPM, which is the most popular IPM for solving LPs.
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1.10 Newer Methods

Many practical applications lead to large-scale LP models. All the methods dis-
cussed so far, which are based solely on matrix inversion operations, work very
well if the models are very sparse, and their performance depends critically on be-
ing able to exploit the sparcity in the model to advantage. For solving large-scale
models which do not fit this mold, these methods are difficult to use.

So, recent algorithmic research on LP has focused on methods that can solve LPs
fast without using matrix inversion operations or using them only minimally. These
methods are new, and computational experimentation with them is just beginning.
We will discuss the sphere methods in this category from Murty (2006a, b), Murty
and Oskoorouchi (2008a, b), Murty (2009) of Chap. 8, Murty (2008c, d) of Chap. 9
in Chaps. 8 and 9. Initial computational experiments with sphere methods for LP
(summarized in Chap. 8) indicate that they have great promise.

1.11 Conclusions

The most heavily used techniques in mathematics are linear algebra tools for solving
systems of linear equations whose origin goes back over 2,000 years. In the twenti-
eth century, this has been extended into linear programming that can solve systems
of linear constraints involving linear inequalities also. Now linear programming has
become the most important tool for decision making.

In this book we discuss these linear programming methods, and the basic theory
on which these methods are based, and also mathematical modeling techniques for
intelligently modeling important decision problems in a variety of areas, as linear
programs.

1.12 How to Be a Successful Decision Maker?

The aim of this book is to discuss some techniques for reaching optimum decisions
in problems that can be modeled using deterministic linear and quadratic models.
Successful decision making is a very complex task with many dimensions to it.
Reaching an optimum decision is one aspect of it. Another important aspect not in
the scope of this book is implementing the decision reached, which often requires a
lot of tact. I illustrate with a story:

“A 20-year-old lady started dating a 25-year-old man. He kept on giving her expensive gifts
until one day she agreed to marry him.

Two days after the wedding she realized that he had been giving her these expensive gifts
mainly to trap her into marriage, but in reality he was a miser. She felt very depressed at the
prospect of a possible divorce so soon after her marriage.
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A month passed by during which time she got a chance to observe him closely. He was hard
working, made good money, and was very nice in every respect, except that he tried to save
all this money. She thought *“ If I can learn how to manage him, I can still have a wonderful
life. Let me give it a try.”

Forty years rolled by. Then her husband became sick, and on his death bed, she was serving
him obediently. He said “I am going to die soon. You know very well that I love my money
dearly. I want you to withdraw all my money and put it in my casket with me. I want to
take it with me to my afterlife. I hope you will take the decision to sincerely fulfill this last
request of mine.”

With his hands in hers, she told him, “You have my solemn promise that your wish will be
implemented.”

Moments later he was dead. The undertaker came and the man’s body was stretched out
in the casket. His wife, dressed in black, and her best friend were sitting by its side. The
ceremony was over, and the undertaker got ready to close the casket. Then the wife said
“Wait just a moment.” She went in and came out with a metal box and put it inside the
casket. Then the undertaker closed it and rolled it away.

Then her friend said “I hope you were not foolish enough to put all your family’s money in
your husband’s casket.”

The loyal wife replied, “Listen, I loved my husband, and we had a long and happy married
life. I made a promise that his final request would be implemented. My husband worked
very hard to earn his money, and I know how much pleasure it gave him to know he would
have it with him. I could not go back on my word.”

The friend said, ““You mean to tell me that you kept your promise?!!”

The tactful wife said, “I sure did. I got all the money together, put it in my account, and
wrote him a check, and I put that cheque in the casket!”

Experience is the best teacher of “being tactful.” So, I encourage all the readers
to get involved in using the techniques discussed in this book in practice.

1.13 Exercises

1.1. Solve the system of equations in the scrap metal blending problem discussed in
Sect. 1.1.1 using Matlab, Mathematica, Maple, or Excel, ignoring the nonnegativity
restrictions on the variables. Is the solution to the system of equations unique? See
if you get a solution satisfying the nonnegativity restrictions anyway.

1.2. We need a nonnegative solution to the following system of linear equations:

X1 —2X2 + X3+ x4 — X6 + 6x7 = 4,
xl—X2—2X3—X4+X5+8X6—17X7=—1,
2x3 + X3 —2x4 — 5x5 4+ 3x¢ —4x7 = 3.

Solve using any linear equation software package, ignoring the nonnegativity
restrictions on variables. Does this system of equations have alternate solutions? If
so, what is the dimension of the set of all solutions to this system of equations?
Explain.
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Did you get a solution satisfying the nonnegativity restrictions? Explain the dif-
ference in the performance of these software packages on Exercise 1.1 and this
exercise. Basically, you have to explain why you were able to get a nonnegative
solution for one problem using this software, and not for the other.

1.3. Solve the following systems of linear equations by hand using the GJ elimina-
tion method. Use pivot elements of 1 or —1 as far as possible to avoid the occurrence
of fractions. If the system is inconsistent, obtain a solution to the alternate system in
each case. How many solutions of the alternate system were you able to obtain?

(a) —Xx3 + 3x3 + 8x4 — Tx¢ =-3
Tx1 + xp —2x3 — 10x4 + 2x5 — 3Xx¢
10x; + 2x3 + 12x4 + 5x5 — 8x¢ = 2.

I
|
~

(b) —5x1 —2x2 4+ 10x3 + x4 + Tx5 + 2x6 —4x7 =2
—3x1 +3x2 —2x3 — X4 +2x5 +x6 +3x7 =3

—8x1 + x2 4+ 8x3 + 9x5 + 3x6 — X7 =6
X1+ 2x3 —3x5 —4x¢ + 2x7 =5
—7x1 + x2 + 10x3 4+ 6x5 — X6 + X7 = 8.

1.4. Solve the following system of linear equations using the GJ method.

Are there any redundant constraints in the system, and if so how many? For each
of them give the certificate of redundancy.

What is the dimension of the set of solutions, S, of the system?

Give the formula for a general pointin S obtained from your work.

X1+ x2 +x3+ x5 = 11,

X2+ X3 —X4+X6+x7= 5,

X1+ x3+2x5 —x7= 2,

X1+ 2X2 + X4 — X5 — X6 + X7 = 24,

X1+ 2x2 4+ 3x3 —2x4 + 2x5 + 2x6 + x7 = 12.

It is required to find a solution of this system which makes 3x; + 4x, —10x3 +
2x4 — 4xs5 4 6x6 as close to 100 as possible. Find it explaining clearly how you
obtained it.

1.5. Solve the following system using the GJ method. If the system is infeasible, (1)
Determine whether it can be made feasible by ignoring any one constraint from the
system, (2) If the answer to (1) is “yes,” which constraint can be ignored to make
the system feasible, and what is a solution for the remaining system? (3) Consider
the original system again. Can it be made feasible by changing the value of exactly
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one right-hand-side constant? If so, carry out this modification and give a feasible
solution of the modified system.

X1+ x2 +x3 —2x5 —2x7 = —4,

X1+ X2 —x5 —x7 = —1,

X2 + X3 + X4 — X5 + X — X7 = —5,

2x1 + x3 + 3x3 — x4 — 5x5 — xg — 5x7 = —5.

1.6. Apply the GJ method to the following system of linear equations:

X1+x2+x7= 7,

X3 + X3 + x4 —2x5 + 2x¢ = 10,

X1+ X3 —x4+x7= 9,

2x1 + X2 + x3 — x4 + 2x7 = 20,

X1+ 2x2 + x3 + X4 — 2X5 + 2x¢ + x7 = 12.

If the system is infeasible, how many inconsistent constraints were you able to
identify in the system? For each of them, give the certificate of inconsistency.

Now consider the original system of constraints with the original right-hand-side
vector b = (b;) = (7,10,9,20,12)T. Forany i = 1to 5, it is possible to increase
the value of b; from its original value at a cost of c;/unit, or decrease its value
from its original value at a cost of d;/unit, where ¢ = (¢;) = (9,2,1,4, 3)T and
d = (di)) = (2,1,0,5,7)T. It is required to change the right-hand-side vector
in the original system to make the system feasible. Each b; can either be increased,
decreased, or left unchanged. Formulate the problem of changing the right hand side
vector of the original system to make the system feasible at minimum cost.

1.7. {A;,..., A, } isa given set of row vectors in R”. A,41. is another row vec-
tor in R", which is not in the linear hull of {A4;,..., A, }. Then prove that the
following system of equations must have a solution x € R".

Aix =0, i=1tor,
Arprx =1,

1.8. f(x) is a given affine function of x € R". We have a computer program by
using which we can output the value of f(x) for any given x, but we do not have
its functional form.

As f(x) is affine, we know that it can be expressed as c1x; + cax2 + ... +
cnXn + co. Explain how we can obtain the values of cy,...,cs,co using that
computer program.

1.9. A isanm x n matrix and c is a row vector in R”. It is known that the system
of linear equations Ax = 0, cx = 1 has no feasible solution x. Then show that ¢
must be a linear combination of row vectors of the matrix A.
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1.10. Solve the following system of linear equations by the GJ method.

If a feasible solution is obtained, give it. Otherwise, give a linear combination of
equations in the original system that yields the fundamental inconsistent equation,
explaining how you got it. If the original system is inconsistent, use the information
in the updated RHS column of the final tableau to determine what changes in the
original RHS column » will make the system feasible. From the current final tableau
give a feasible solution of the modified system.

Original system

X1 X2 X3 X4 X5 b
1 1 -2 1 2 3
0 -1 2 1 3 5
3 1 -2 5 12 18

1.11. The following system of linear equations is being solved by the revised GJ
method with explicit basis inverse.

X1 X2 X3 X4 X5 Xe X7 b
-1 0o 2 -1 7 0 0 6
1 1 30 6 2 0 24
0 1 4 2 -5 -5 3 =2
7 6 14 7 -7 =2 6 74
0O -1 -6 0 4 0 1 -32

After some pivot steps we have the following basis inverse (also called the current
memory matrix in this chapter), but the column listing the basic variables, and the
updated RHS column are smeared and cannot be read correctly due to a printer
problem.

Memory matrix
K1 M2 U3 K4 U5
4 5 2 0 O
-5 =5 =2 0 O
-2 -2 -1 0 O
3 4 -2 1 0
0O 0 0 o0 1

Using the formulas discussed in this chapter, find (1) the basic variables asso-
ciated with this inverse, (2) the basic solution, (3) evidence of redundancy and
infeasibility if any, and actual expressions in terms of the equation numbers 1-5
in the original system to give proofs of these claims, (4) dimension of the set of
feasible solutions, (5) rank of the coefficient matrix of the system, (6) and finally
a parametric representation of the general solution of this system in terms of the
independent variables.
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1.12. The following system of linear equations (first tableau) has been solved by the
revised GJ method with the explicit basis inverse. The second tableau given below
is the basis inverse obtained at termination.

X1 X2 X3 RHS
o1 5
-1 3 1 6
0 4 2 11
2 3 1 10

Mem. matrix

M1 M2 M3 K4
372 1/6 0 -2/3

-1/2 U6 0 153
-1 -1 1 0
0 -—1/3 0 153

Using the formulas given in this chapter, find the solution of the system obtained,
and explain clearly why it is unique.

1.13. A is an m x n matrix, and c is a row vector in R". A, c are given. Let
S = {x : Ax = 0}, a subspace of R". We are also given that cx = 0 for
every x € S. Then prove that ¢ must be a linear combination of row vectors of the
matrix A.

1.14. Ay.,...,Am.,c are (m + 1) row vectors in R".

Express the condition for ¢ to be in the linear hull (or subspace) of {A; , ..., Am.}
through a system of constraints.

Write the alternate system for the system obtained above.

Very briefly mention if it is possible to solve both the original system, and the
alternate system simultaneously, with the same method. Which method does this?

1.15. Let A be a given matrix of order m x n (with n > m) and rank r. Consider
the optimization problem

minimize cx
subjectto Ax = b (1)

Assume that (I) has at least one feasible solution. Prove that this optimization
problem has the property: either every feasible solution of it is optimal, or no feasi-
ble solution for it is optimal. Develop necessary and sufficient conditions for these
two possible outcomes.

1.16. A company makes products P, P, using raw materials R;, R,, R3. Rele-
vant data is given below.
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Item Units/unit input for | Available
P, P, (units/day)
Ry 4 5 3,000
R 2 0 1,200
R 1 2 900
Demand | Unlimited 375
(units/day)
Net profit 3 5
($/unit)

Formulate the problem of finding an optimum production plan as an LP.

Solve the LP using the geometric method and find the optimum solution. Find
the marginal values of the three raw materials and the demand for P;.

If the demand for P, can be increased from 375 units/day by advertising locally,
is it worth spending money on this advertizement?

The current prices of the resources Ry, Rz, Rz are $2, 4, 10/unit, respectively.
If additional supplies of each of these resources can be acquired, which of them has
the potential for helping to increase the total daily net profit of the company? For
each resource determine the breakeven price/unit at which additional supplies of it
can be acquired.

Suppose the company has the opportunity to make a new product P3;. To make
one unit of P3 needs as inputs 2, 1, 2 units of resources Ry, Ry, R3, respec-
tively. What is the breakeven selling price of P3 at which it becomes competitive to
manufacture?

1.17. A company makes two types of discrete parts called A and B. Each part has
to be cast in the casting shop, machined, and then finished. Let shops 1, 2, and 3
refer to casting, machining, and finishing shops, respectively. For i = 1,2, 3, shop
i has enough capacity to process either a; units of A, or b; units of B daily, or any
combination of these two activities in proportions of these levels summing up to 1,
where a;, b; are given below.

Shop no. i Shop Capacity for

A B

ai bi
1 Casting 100 70
2 Machining 80 90
3 Finishing 60 110

Assume that they can sell all the castings they produce. The net profit from unit
of A and B sold is $800 and 900, respectively. Ignoring the integer requirements
on the units of A and B produced daily, formulate the problem of determining how
many units of A and B to produce daily to maximize total net profit.

Plot the set of feasible solutions for the problem and determine the optimum
solution geometrically.
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Determine the marginal values of the RHS constants corresponding to the cast-
ing, machining, finishing shop capacity constraints.

If the casting shop capacity is fully used up in the optimum solution, determine
how much the company could pay an outside supplier for a casting of A and B,
respectively, over its production cost, and still break even.

Suddenly, the country is in the grip of an economic recession, and the company
finds that it can only sell up to 55 units of A and 60 units of B daily. Discuss how
this alters some of the conclusions reached earlier.

1.18. A company manufactures two types of cake mixes, A and B, using two raw
materials R; and R,. The following table gives the necessary data.

Raw material Units needed to Units
make 1 unit of  available
A B
R, 1 2 6,000
R, 2 1 8,000
Net profit 7 5

per unit made
Maximum demand 3,500 2,500

Formulate the problem of determining how many units of A and B to make, as
an LP.

Solve the problem geometrically. Determine the marginal values associated with
all the RHS constants in the model. Interpret them.

At this stage, how much extra profit can the company make if the supply of
Ri, R; isincreased by one unit?

A new cake mix developed by the company’s kitchen needs two units of R; and
two units of R, as input per unit. What is the minimum net profit that a unit of this
new cake mix should make, if it were to be competitive with A, B?

1.19. A is a given matrix of order m x n. The question is whether the homogeneous
system Ax = 0 has a nonzero solution. When can you conclude that it does, directly
without doing any work?

In any case, discuss an efficient method for answering this question, and find a
nonzero solution when it exists, based on row operations using at most min{m, n}
pivot steps.
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Chapter 2
Formulation Techniques Involving
Transformations of Variables

2.1 Operations Research: The Science of Better

Operations Research (OR) is the branch of science dealing with tools or techniques
for decision making to optimize the performance of systems, that is, to make those
systems better. Measures of performance, of which there may be several, are nu-
merical criteria that gauge the quality of some aspect of system’s performance, for
example, annual profit or market share of a company, etc. They are of two types: (1)
profit measures: (for these, the higher the value the better), (2) cost measures: (for
these the lower the value the better).

OR deals with techniques for designing ways to operate the system to maximize
profit measures or minimize cost measures as desired. Hence OR is the science to
make systems better.

Linear Programming (LP) is an important branch of OR dealing with decision
problems modeled as those of optimizing a linear function of decision variables sub-
ject to linear constraints that may include equality constraints, inequality constraints,
and bounds in decision variables. In an LP, all decision variables are required to be
continuous variables that can assume all possible values within their bounds subject
to the constraints. LPs are special instances of mathematical programming. Besides
LP, the subject mathematical programming includes network, integer, combinato-
rial, discrete, quadratic, and nonlinear programming.

The focus of this book is to study important aspects of LP and QP (quadratic
programming) and their intelligent applications for decision making.

We refer the reader to Chap. 3 in the Junior-level book (Murty (2005b) of Chap. 1;
this book can be downloaded from the website mentioned there), where decision-
making problems that can be modeled directly as LPs are discussed with many
illustrative examples. In this chapter we extend the range of applications of LP to
include decision-making problems involving the optimization of a piecewise linear
objective function subject to linear constraints. When the objective function satisfies
certain properties, these problems can be transformed into LPs in terms of additional
variables.

K.G. Murty, Optimization for Decision Making: Linear and Quadratic Models, 39
International Series in Operations Research & Management Science 137,
DOI 10.1007/978-1-4419-1291-6_2, © Springer Science+Business Media, LLC 2010
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2.2 Differentiable Convex and Concave Functions

The concepts of convexity of functions, and of sets, are fundamental pillars in opti-
mization theory. We already know that
a subset K C R" is said to be a convex set if for every pair of points x, y € K, every

convex combination of x, y (i.e., point of the form ax + (1 —a)y forany 0 <« < 1)is
alsoin K.

A real-valued function f(x) of decision variables x = (xi,...,x,)T € R"is
said to be a linear function if it satisfies the following two properties that together
are known as the linearity assumptions:

Proportionality: f(ax) = af(x) forall x € R", « € R!
Additivity: f(x +y) = f(x) + f(y) forallx, y € R"

An equivalent definition is: The real-valued function f(x) defined over x € R"
is a linear function, iff there exists a row vector of constants ¢ = (c¢1,...,cy) such
that f(x) = c1x1 + ...+ cpxp = cx forall x € R". In fact, for each j = 1ton,
c; = f(l ), where [ ; is the jth column vector of the unit matrix / of order n.

A real-valued function 6(x) of decision variables x € R" is said to be an affine
function if there exists a constant ¢g such that 8(x)—cg is a linear function as defined
earlier. Actually this constant ¢ = 6(0). Thus equivalently, theta(x) is an affine
function iff there exist constants ¢g, c1,...,c, suchthat 0(x) = co+c1x1 +...+
CnXn.-

The concept of convexity of a function is defined by Jensen’s inequality stated
below; it is related to the concept of convexity of a set, but we will not discuss
this relationship in this book as it is not important for the things we discuss here.
A function is said to be concave if its negative is convex, but there is no correspond-
ing concept called “concavity” for sets.

Linear and affine functions are both convex and concave; but convex and con-
cave functions may be nonlinear. In this section, we study important properties of
differentiable convex, concave functions, which may be nonlinear. A requirement is
that the set on which a convex or concave function is defined must be a convex set.
We will study convex, concave functions defined over R” (or over a convex subset
of it) for n > 1 in this section.

2.2.1 Convex and Concave Functions

A real-valued function g(y) defined over some convex subset I' C R” (I" may be
R" itself) is said to be a convex function if

glay' + (1 —a)y?) < ag(yh) + (1 —a)g(y?)

forall y!, y2 € I',and 0 < « < 1. This inequality defining a convex function is
called Jensen’s inequality after the Danish mathematician who introduced it.
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To interpret Jensen’s inequality geometrically, introduce an (n + 1)th axis for
plotting the function value. So points in this space R"*! are (y, y,+1)7, where on
the y,+1th axis we plot the function value g(y) to get a geometric representation of
the function.

The set of all points {(y, g(¥))T : y € I'} in this space R"* is a surface, which
is the surface or graph of the function g(y).

The line segment {(ay! + (1 —a)y?, ag(y') + (1 —a)g(¥*)T: 0 <a <1}
joining the two points (y!, g(y')T, (¥2, g(¥?))T on the graph of the function is
called the chord of the function between the points y!, y? or on the one-dimensional
line interval joining y' and y2. If we plot the function curve and the chord on the
line segment {ay! 4+ (1 —a)y? : 0 < a < 1}, then Jensen’s inequality requires that
the function curve lie beneath the chord. See Fig. 2.1 where the function curve and
a chord are shown for a function 6(1) of one variable A.

The real-valued function /(y) defined on a convex subset I' C R” is said to be a
concave function if —h(y) is a convex function, that is, if

h(ay' + (1 —a)y?) = ah(y') + (1 —a)h(y?)

forall y!, y2 e Tand0 < « < I;see Fig.2.2. For a concave function A(y), the
function curve always lies above every chord.

0(%)

(A2, 6(12))

8(2)

0L) T
Fig. 2.1 Graph of a convex
function #(A) defined on R!
and its chord between two
points A; and A,
0(
(A2, 6(1,))
0% T
0(rp) T

Fig. 2.2 Graph of a concave
function #(A) defined on R! )
angi its chord between two A A
points A; and A,
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All linear and affine functions (i.e., functions of the form cx + cg, where ¢ €
R", ¢o € R! are given, and x € R" is the vector of variables) are both convex and
concave.

Other examples of convex functions are AT et over A € R!, where r is a
positive integer; —log(1) over {A > 0 : A € R'}; and the quadratic function
xTDx + c¢x 4 ¢ over x € R", where D is a positive semidefinite (PSD) matrix
of order n (a square matrix D of order n X n is said to be a PSD (positive semidef-
inite) matrix iff x” Dx > 0 for all x € R". See Kaplan (1999); Murty (1988,
1995), or Sect. 9.1 for discussion of positive semidefiniteness of a square matrix,
and the proof that this quadratic function is convex over the whole space R" iff D
is PSD).

We now derive some important properties of differentiable convex, concave func-
tions. For this discussion, the functions may be nonlinear.

A

Theorem 2.1. Gradient support inequality for convex functions: Let g(v) be a
real-valued differentiable function defined on R". Then g(y) is a convex function iff

gy) = g+ Ve —y)

forally, y € R" whereVg(y) = (M, .. ag(j)) is the row vector of partial
derivatives of g(y) at y.

Proof. Assume that g(y) is convex. Let 0 < o < 1. Then (1 — )y + ay =
y4oa(y—y). So, fromJensen’s inequality g(y+a(y—y)) < (1—a)g(y)+ag(y). So

gy +aly —y)) — g(y')_
o

gy)—g(y) =

Taking the limit as « — 0, by the definition of differentiability, the RHS in the
above inequality tends to Vg(y)(y — y). So we have g(y) — g(y) = Vg(p)
> =».

Now suppose the inequality in the statement of the theorem holds for all points
¥, y € R". Let y!, y? be any two points in R” and 0 < « < 1. Taking y =
y, ¥ = (1 —a)y' + ay?, we get the first inequality given below; and taking
y=y2, 5 =(—a)y' +ay?, we get the second inequality given below.

g =gl —a)y' +ay?) = a(Vg((1 —a)y' +ay?)(y' = »?),

g —g(l—a)y' +ay®) = —(1 —)(Ve((1 —a)y' + ay>) (' = 7).

Multiplying the first inequality above by (1 —«) and the second by « and adding,
we get (1 —a)g(y') + ag(y?) — g((1 — a)y! + ay?) > 0, which is Jensen’s
inequality. As this holds for all y!,y2 € R" and 0 < a < 1, g(y) is convex by
definition. O
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Fig. 2.3 Illustration of the Function
gradient support inequality Value
for a convex function )

L(y)

At any given point y, the function L(y) = g(¥) + Vg(7)(y — ¥) is an affine
function of y, which is known as the linearization of the differentiable function g(y)
at the point y. Theorem 2.1 shows that for a differentiable convex function g(y), its
linearization L(y) at any point y is an underestimate for g(y) at every point y; see
Fig.2.3.

The corresponding result for concave functions obtained by applying the result
in Theorem 2.1 to the negative of the function is given in Theorem 2.2.

Theorem 2.2. Gradient support inequality for concave functions: Let h(y) be
a real-valued differentiable function defined on R". Then h(y) is a concave func-

tion iff
h(y) < h(y)+ Vh(G)(y — )

forally, y € R", where Vh(y) = (%, cees %) is the row vector of partial

derivatives of h(y) at y. That is, the linearization of a concave function at any given
point y is an overestimate of the function at every point; see Fig. 2.4.

Theorem 2.3. Let 0(y) be a real-valued differentiable function defined on R". Then
0(y) is a convex [concave] function iff for all y*, y?> € R"

Vo) -vopHio?—yH =0 [=0].

Proof. We will give the proof for the convex case, and the concave case is proved
similarly.
Suppose 6(y) is convex, and let y!, y? € R". From Theorem?2.1 we have
0(»*) =00 = VoH(?* —»H = 0,
0" =00y = VoA —»?) = 0.
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Fig. 2.4 Illustration of the Function
gradient support inequality Value L(y)
for a concave function

h(y)

Adding these two inequalities, we get {VO(y2) — VO(y)}(y? — y!) > 0.

Now suppose that 6(y) satisfies the property stated in the theorem; and let
y!, y2 € R™. As 6(y) is differentiable, by the mean-value theorem of calcu-
lus, we know that there exists an 0 < & < 1 such that (y?) — (y!) =
VOO + a(y? — y1))(»? — yl). As 0(y) satisfies the statement in the theorem,
we have

(Vo' +a(y?—y') —vophHla(?—y')=0 or

Vo' +a(y* =y )No* -y = VeOhHo* — .

But by the choice of @ as discussed above, the left-hand side of the last inequality
is = 6(y?) — 9(y"). Therefore, 0(y%) — O(y)) > VOO (»? — y1). Since this
holds for all y!, y2 € R", by Theorem2.1, §(y) is convex. O

Applying Theorem?2.3 to a function defined over R!, we get the following
result:

Result 2.1. Let 8(A) be a differentiable real-valued function of a single variable
A € R'. O(L) is convex [concave] iff its derivative % is a monotonic increasing

[decreasing] function of M.

Hence checking whether a given differentiable function of a single variable A is
convex or concave involves checking whether its derivative is a monotonic function
of A.If the function is twice continuously differentiable, this will hold if the second
derivative has the same sign for all A. If the second derivative is > 0 for all A, the
function is convex; if it is < 0 for all A, the function is concave.

Now we will discuss the generalization of Result 2.1 to functions defined on
R" forn > 2. A square matrix D of order n is said to be positive [negative]
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semidefinite (PSD or [NSD]) if xT Dx > [<] 0 for all x € R". In Chap.9 these
concepts are defined and efficient algorithms for checking whether a given square
matrix satisfies these properties are discussed.

Theorem 2.4. Let g(y) be a twice continuously differentiable real-valued function

defined on R", and let H(g(y)) = (gif;a(y);)) denote its Hessian matrix (the n X n

matrix of second partial derivatives) at y. Then g(y) is convex iff H(g(y)) is a
PSD (positive semi-definite) matrix for all y. Correspondingly, g(y) is concave iff
H(g(y)) is a NSD (negative semi-definite) matrix for all y.

Proof. We will prove the convex case. Consider a point y € R".
Suppose g(y) is convex. Let @ > 0 and sufficiently small. By Theorem 2.1 we
have for each x € R”

(g(y +ax)—g(y) —aVg(y)x)/a = 0

Take limit as @ — O™ (through positive values of @). By the mean value theorem
of calculus the left-hand side of the above inequality converges to x” H(g(7))x,
and hence we have xT H(g(7))x > 0 for all x € R", this is the condition for the
Hessian matrix H(g(y)) to be PSD.

Suppose H(g(y)) is PSD for all y € R". Then by Taylor’s theorem of calculus,
for any y!, y? € R"

g —gH—-veOrH 2 —yhH = 02— yHTHEO +a(* =y (> —yh)

for some 0 < a < 1, whichis > 0since H(g(y' + a(y? — y'))) is PSD. So the
right-hand side of the above equation is > 0 for all y!, y2 € R"; therefore g(y) is
convex by Theorem2.1. O

We know that linear and affine functions are both convex and concave. Now
consider the general quadratic function f(x) = xT Dx + cx + co in variables
x € R", its Hessian matrix H( f(x)) = (D 4+ DT)/2 is a constant matrix. Hence
the quadratic function f(x) is convex iff the matrix (D + D7T)/2 is a PSD matrix
by Theorem 2.4. Checking whether a given square matrix of order n is PSD can
be carried out very efficiently with an effort of at most » Gaussian pivot steps (see
Kaplan (1999); Murty (1988), or Sect. 9.2 of this book, for the algorithm to use). So
whether a given quadratic function is convex or not can be checked very efficiently.

For checking whether a general twice continuously differentiable nonlinear func-
tion of x outside the class of linear and quadratic functions is convex may be a hard
problem, because its Hessian matrix depends on x, and the job requires checking
that the Hessian matrix is a PSD matrix for every x. Fortunately, for piecewise lin-
ear (PL) functions, which we will discuss in the next section, checking whether they
are convex can be carried out very efficiently even though those functions are not
differentiable everywhere.
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2.3 Piecewise Linear (PL) Functions

Definition: Piecewise Linear (PL) Functions: Considering real-valued continuous
functions f'(x) defined over R", these are nonlinear functions that may not satisfy
the linearity assumptions over the whole space R", but there is a partition of R” into
convex polyhedral regions, say R" = K; UK, U...UK, suchthat f(x) is an affine
function within each of these regions individually, thatis, foreach 1 < ¢ < r

there exist constants ¢§, ¢ = (c{,..., ch) such that f(x) = fi(x) = ¢f + ¢'x for all
x € K;, and for every S C {1,..., r}, and at every point x € N,esK;, the different
functions f;(x) for all ¢ € S have the same value.

Now we give some examples of continuous PL functions defined over R!. Denote
the variable by A.

Each convex polyhedral subset of R! is an interval; so a partition of R! into
convex polyhedral subsets expresses it as a union of intervals: [—oo, A;] = {A : A <
AMb Al ={A: A < A < Aad, ..o [Aro1, Ar], [Ar, 00], Where Aq, ... A,
are the boundary points of the various intervals, usually called the breakpoints in
this partition.

The function (1) is a PL function if there exists a partition of R! like this such
that inside each interval of this partition the slope of #(2) is a constant, and its value
at each breakpoint agrees with the limits of 6(A) as A approaches this breakpoint
from the left, or right; that is, it should be of the form tabulated below:

Interval Slope of 6(A) in interval Value of 6(A)
A<M C1 Cc1A
A <A< A 2 (A1) + c2(A — A1)
A2 <A< A3 c3 0(A2) + c3(A —A2)
Arc1 SAZ A, Cr OAr—1) +cr(A —Ar21)
A=Ay Cr1 O(Ar) + cr1(A —Ar)

Notice that the PL function (1) defined in the table above is continuous, and at
each of the breakpoints A € {A1,...,A,} we verify that

lim 6(A +¢) = lim O(A +¢) = O(N).
e—>0— e—01

Here are numerical examples of continuous PL functions:

Example 2.1.
Interval ~ Slope of #(A) in interval ~ Values of 8(A)
—oo to 10 3 31
10-25 5 30+ 5(A —10)
25 to oo 7 105 + 7(A —25)
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Example 2.2.
Interval  Slope of 8(A) in interval Values of 8(1)
—oo to 100 10 104
100-300 5 1,000 + 5(A —100)
300-1,000 10 2,000 + 10 (A —300)
1,000 to oo 20 9,000 + 20(A —1,000)
|
Exercises

2.3.1. (1) Show that the sum of PL functions is PL. Show that a linear combination
of PL functions is PL.

(2) Show that the function 8(1) = 1/(1 —A)?is convex onthe set —1 < A < 1.
Also, show that the function A% — 1512 is convex on the set2 < A < 3.

2.3.2.Is the subset of R, {x = (x1, x2)T : x;x2 > 1}, a convex set? What about
its complement?

2.3.3. Show that a real-valued function f(x) of decision variables x € R" is an
affine function iff for any x € R” the function g(y) = f(x 4+ y) — f(x) is a linear
function of y.

2.34.Let K1 UK U...U K, be apartition of R" into convex polyhedral regions,
and f(x) areal-valued continuous function defined on R". Show that f(x) is a PL
function with this partition of R" iff it satisfies the following properties: for each
t € {l,...,r},x e K;

(1) and all y such that x + @y € K; for some o > 0,
fx+Ay) = f(x) + A(f(x + ay) — f(x))/a) for all A > 0 such that
x+ Ay € Ky;and

(2) foreach y!, y? € R" such that x + y!, x4 y? are bothin K;,if x + y! +y? €
Kpalso,then f(x +y' +y%) = f(x)+(f(x+y") = f() +(f(x +y?) -
f(x)).

2.3.5. Show that the function f(x) = (x2)/(co + c1x1 + c2x2) of x € R is a

convex function on the set {x € R3: ¢o + c1x1 + coxa > 0}.

2.3.1 Convexity of PL Functions of a Single Variable

We discuss convexity of PL functions next. As these functions are not differentiable
at points where there slopes change, the arguments used in the previous section
based on differentiability do not apply.

Result 2.2. Let (1) be a PL function of a single variable A € R'. Let Ay,..., A,
be the various breakpoints in increasing order where its slope changes. (L) is
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Fig. 2.5 PL function in the o)
neighborhood of a breakpoint
A, where slope to the right <
slope to the left

1T
>

A

convex iff at each breakpoint Ay its slope to the right of Ay is strictly greater than
its slope to the left of A;; that is, iff its slopes are monotonic increasing with the
variable.

Proof. Suppose at a breakpoint A;, ¢; = the slope of (1) to the right of A; is
<cy—1 = its slope to the lgft of ;. Let A be a point close to but <A;, where the
slope of 8(1) is ¢;—1, and A is a point close to but >A;, where its slope is ¢;. Then
the graph of 8(A) in the neighborhood of A, will be as shown by the solid line in
Fig.2.5. The chord of the function in the interval A < A < A shown by the
dashed line segment is below the function, violating Jensen’s inequality for convex
functions. So, 6(A) cannot be convex.
If the slopes of the function satisfy the condition mentioned in the Result, then it
can be verified that every chord lies above the function, establishing its convexity.
O

The corresponding result for concave functions is: a PL function of one variable
is concave iff its slope to the right of every breakpoint is less than its slope to the
left of that breakpoint, that is, its slopes are monotonic decreasing with the variable.
These results provide a convenient way to check whether a PL function of one vari-
able is convex, or concave, or neither. For example, the PL function in Example 2.1
has monotonically increasing slopes, so it is convex. For the one in Example 2.2, the
slope is not monotone, so it is neither convex nor concave.

2.3.2 PL Convex and Concave Functions in Several Variables

Let f(x) be a PL function of variables x = (xq,... ,x,,)T defined over R". So,
there exists a partition R" = Uj_, K;, where K; is a convex polyhedral set for all
t, the interiors of K, ..., K, are mutually disjoint, and f(x) is affine in each K;;
that is, we have vectors ¢’ and constants ¢} such that

f(x)=cl +c'x forallx e K;,,t =1tor. 2.1
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Checking the convexity of f(x) on R” is not as simple as in the one-dimensional
case (when n = 1), but the following theorem explains how it can be done.

Theorem 2.5. Let K1U...UK, be a partition of R" into convex polyhedral regions,
and f(x) the PL function defined by the above equation (2.1). Then f(x) is convex
iff foreach t = 1tor, and for all x € K;

¢ +c'x = Maximum{c8 +cPx: p = 1,...,r}
In effect, this says that f(x) is convex iff for each x € R"

f(x) = Maximum{c§ +c?x:p = 1,....r} 2.2)

Proof. Suppose f(x) satisfies the condition (2.2) stated in the theorem. Let x!, x2 €
R"and 0 < o < 1. Suppose

fxY = Miximum{c? +c?x':p = 1,...,r} = ¢y +c'xl, (2.3)
f(x*) = Maximum{c? +c?x*:p = 1,...,r} = ¢ +c*x?, (2.4)

and f(ax! + (1 — a)x?) = max{c) + cP(ax' + (1 —a)x?) : p = 1,....1}
=cg +c? (ax! 4 (1 — o) x?) for some a. Then

flax' + (1 —a)x?) = a(cd 4+ c*x) + (1 —a)(cd + c“x?),
< oe(cé +clxh 4+ —oe)(cg + c2x?)
from (2.3), (2.4),
=af(x) + (1 =) f(x?).

As thisholds forall x!, x> € R" and0 < « < 1, f(x) is convex by definition.

Now suppose that K; U ... U K, is a partition of R” into convex polyhedral
regions, and f(x) the PL function defined by f(x) = ¢ + ¢'x for all x € Ky,
t = 1tor, is convex. Let X be any point in R", suppose ¥ € K,,. Let x! €
Ky, x?2 € K, be any two points such that X is on the line segment L joining them,
thatis, ¥ = Ax! + (1 —Ax?) forsome 0 < A < 1.For0 < A < 1 let
FOx+ (1 —=21)x?) =0(A).

The line segment L begins in K, where pg = 1, and suppose it goes through
Kp, Kpys---» Kp,, Kpyoys---s Kpg, where ps = 2; this breaksup L into s — 1
intervals, each interval being the portion of L in one of the sets K, ..., Kp,. Let
the breakpoints for these intervals be A1, ..., Ay in increasing order.

So,in theinterval 0 < A < A1, 0(A) = ¢! + cP1(Ax! + (1 — A)x?) =
dyP' + d,P' A say. In the nextinterval Ay < A < Az, O(A) = cb? + cP2(Ax! +
(1—=21)x%) = dy"* +d A, etc. As f(x) is continuous, (1) is continuous, so at
A = A1, the two functions dy”' + d,”' A, dy"?* 4+ d 7> ) have the same value, and
o on.
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As f(x) is convex, 6(A) which is f(x) on the line segment L must also be
convex. So from Result2.2 we must have d,”! < d,?? < d,”* < ... < d,”*. From
this and the continuity of 6(1) it can be verified that (1) = dy”’ +d” P
d,f +dPAforall p € {p1,..., ps}, thatis,

fX)=cf? +cPrx > cf +cPx forall p e {p1,...,ps}
By varying the points x!, x2, the same argument leads to the conclusion that
f(x)=cb? +cPx > ¢ +cPx forallp=1tor.
Since this holds for all points X, f(x) satisfies (2.2). O

The function f(x) defined by (2.2) is called the pointwise supremum function of
the set of affine functions {COP +c¢Px : p =1,...,r}. Theorem?2.5 shows that
a PL function defined on R” is convex iff it is the pointwise supremum of a finite
set of affine functions. In fact, in all applications where PL convex functions of two
or more variables appear, they are usually seen in the form of pointwise supremum
functions only. So, equations like (2.2) have become the standard way for defining
PL convex functions.

In the same way, the PL function i(x) defined on R”" is concave iff it is the
pointwise infimum of a finite set of affine functions, that is, it is of the form i (x) =
minimum{cy” + ¢?x : p = 1 to r} for each x € R".

In Fig. 2.6 we illustrate a pointwise supremum function 6(1) of a single vari-
able A. A is plotted on the horizontal axis, and the values of the function are
plotted along the vertical axis. The function plotted is the pointwise supremum
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Fig. 2.6 Convexity and
pointwise supremum property
of a function of one variable. T ‘
The various functions of
which it is supremum are /
called a;(A) to as(A)
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O(A) = max{a;(A)= 1—-21, ax(A) = 14+ 04, az(A) = -1+ 1, as(}) =
—4 + 21}. The graph of 6(A) is plotted in the figure with thick lines. The func-
tion is:

Interval O(A)  Slope in interval
A <0 1—-2A -2
0< A =<2 1 0
2=1=3 -1+4 1
A>3 —4 421 2

In Fig.2.7, we illustrate a PL concave function #(A) of a single variable A,
which is the pointwise infimum 2(1) = min{a1(A) = 4 + A, ax(A) = 3 +
(1/2)A, a3z(A) =3 —A, as(A) = 4 —21}. The graph of i(A) is shown in thick
lines. This function is:

Interval h(A) Slope in interval
A< =2 442 1
2 <A <0 3+(1/2)A 12
0<A<=<1 3-2 -1
A>1 4—-2A -2
1 —— A
Fig. 2.7 Concavity and / LT 2\3N 5 6
pointwise infimum property 1 ® °
of a function of one variable. ?@ d’@
The various functions of \\7 S,
which it is infimum are called \ R4

a1(A) to a(2) ks
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Exercises

2.3.6. Considering functions of decision variables x = (x, ... ,x,,)T defined over
R, prove that: (1) the sum of convex (concave) functions is convex (concave), (2)
any positive combination of convex (concave) functions is convex (concave), (3)
pointwise supremum of convex functions is convex, likewise pointwise infimum of
concave functions is concave.

2.3.7. (1) Consider the function (A1) = |A| of a real-valued variable A. Draw the
graph of 6(1) and show that it is a PL. convex function. (2) In the same way show
that f(x) = c|A|, where c is a constant, is PL convex if ¢ > 0, and PL concave if
¢ < 0.(3) Draw the graphs of the absolute values of affine functions |4 + A| and
|4 — 21| and show that these functions are PL convex. (4) For any j = 1 to n, show
that the function f(x) = |x;| of x = (x1,... ,xn)T defined over R" is PL convex.
What are the regions of R" within which it is linear? (5§) Show that the function
f(x) = Y cjlx;| defined over R" is convex if ¢; > 0 for all j, concave if
c; < 0for all j. (6) Show that the absolute value function f(x) = |co + cx| of
X € R" is convex. What are the regions of R” within which it is linear? Express
this function as the pointwise supremum of a set of affine functions. (7) Show that
the function f(x) = Z£=1 wrleg + ¢ x| (linear combinations of affine functions)
is convex if w, > O for all r, concave if w, < 0 forall r.

2.3.8. Consider the real-valued continuous function f(A) of a variable A, defined
over A >0; with f(0) = —20; and slopes of 5, 9, 11, 8, 6, 10, respectively, in the
intervals [0, 20], [20, 50], [50, 60], [60, 80], [80, 90], [90, co]. Is it a convex or a
concave function over A > 07? If not, are there convex subsets of R! on which this
function is convex or concave? If so, mention these and explain the reasons for the
same.

2.3.9. Consider a function 6(x) defined over a convex set ' C R”. A pointx € I'
is said to be a local minimum for 6(x) over " if 6(x) > 6(x) for all points x € T"
satisfying ||x — x|| < € for some € > 0.

A local minimum X for #(x) in T is said to be its global minimum in T if 6(x) >
0(x) for all points x € I'. Local maximum, global maximum have corresponding
definitions.

Prove that every local minimum [maximum] of 6(x) in I is a global minimum
[maximum] if 8(x) is convex [concave]. Construct simple examples of general func-
tions defined over R! which do not satisfy these properties.

Also, construct an example of a convex function that has a local maximum that
is not a global maximum.

2.3.10. Show that the function f(1) = |A + 1|+ |A — 1| defined on R! is convex,
and that it has many local minima all of which are its global minima.
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2.4 Optimizing PL Functions Subject to Linear Constraints

The problem of optimizing a general continuous PL function subject to linear con-
straints is a hard problem for which there are no known efficient algorithms. Some
of these problems can be modeled as integer programs and solved by enumerative
methods known for integer programs. These enumerative methods are fine for han-
dling small-size problems, but require too much computer time as the problem size
increases. However, the special problems of either:

e Minimizing a PL convex function, or equivalently
e Maximizing a PL concave function

subject to linear constraints can be transformed into LPs by introducing additional
variables, and solved by efficient algorithms available for LPs. We will now discuss
these transformations with several illustrative examples.

2.4.1 Minimizing a Separable PL Convex Function Subject
to Linear Constraints

The negative of a concave function is convex. Maximizing a concave function is
the same as minimizing its negative, which is a convex function. Using this, the
techniques discussed here can also be used to solve problems in which a separa-
ble PL concave function is required to be maximized subject to linear
constraints.

A real-valued function z(x) of decision variables x = (xq,... ,xn)T is said to
be a separable function if it can be expressed as the sum of n different functions,
each one involving only one variable, that is, has the form z(x) = z1(x1) +z2(x2) +
...+ zx(x,). This separable function is also a PL convex function if z; (x;) is a PL
convex function for each j = 1 to n.

Result 2.3. Let 6()) be the PL convex function of . € R! defined over A > 0
shown in the following table:

Interval Slope (L) = Interval
length

0=Ag <A <Xy C1 1A A1
A=A A 2 OA) +c2(A—21) Aa—Xy

Ay <A <23 c3 0(A2) + c3(A — A2) Az — Az

Arc1 A < A =00 Cr OAr—1) +cr(A—Ar1) oo
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where Ay < Ay < ... < Ar—1andcy < cy < ldots < c¢, (conditions for 6(1)
to be convex). Then for any A > 0, O(A) is the minimum objective value in the
following problem.

Minimize 7 = cipt1 + ...+ cr iy
subject to Ui+ ...+ ur = A 2.5)
OflLt SA;—)\.t_lt= 1,...,}’

Proof. Problem (2.5) can be interpreted this way: Suppose we want to purchase
exactly A units of a commodity for which there are r suppliers. For k = 1 to r,
kth supplier’s rate is cg/unit and can supply up to Ax — Ag_; units only. pg in
the problem represents the amount purchased from the kth supplier, it is >0, but is
bounded above by the length of the kth interval in which the slope of 0(A) is c. z
to be minimized is the total expense to acquire the required A of the commodity.
Clearly, to minimize z, we should purchase as much as possible from the cheap-
est supplier, and when he cannot supply any more go to the next cheapest supplier,
and continue the same way until the required quantity is acquired. As the cost co-
efficients satisfy ¢; < ¢z < ... < ¢, by the convexity of 6(A), the cheapest cost
coefficient corresponds to the leftmost interval beginning with 0, the next cheapest
corresponds to the next interval just to the right of it, and so on. Because of this, the
optimum solution it = (i1, . .., iy) of (2.5) satisfies the following special property.

Special property of optimum solution ji of (2.5) that follows from convexity of
O(A): If pissuchthat A, < A < Ap41,then ii; = A; — A;—1, the upper bound
of u; forallt = 1to p, fip4+1 =A —Ap,and i, = O0forallt > p+2.

This property says that in the optimum solution of (2.5) if any p > 0, then the
value of y; in it must be equal to the upper bound on this variable for any ¢ < k.
Because of this, the optimum objective value in (2.5) is = c1/i1 + . .. + crjiir0(R).

0

Example 2.3. — Illustration of Result 2.3: Consider the following PL function.

Interval Slope in interval o(r) = Interval length
0—-10 1 A 10
10-25 2 10 +2(2 —10) 15
25-30 4 40 + 4(A —25) 5
30—o0 6 60 + 6(A — 30) 00

As the slope is increasing with A, 6(4) is convex. Consider A = 27. We see that
0(27) = 48. The LP corresponding to (2.5) for A = 27 in this problem is

Minimize z = (1 + 2z + 43 + 6144

subject to M1+ o+ ps+ps = 27
0 <pup <10,0 < pup <15
0 < uz <5 0= g

IATA
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The optimum solution of this LP is obtained by increasing the values of w1, w2,
3, 4 one at a time from O in this order, moving to the next when this reaches its
upper bound, until the sum of these variables reaches 27. So, the optimum solution
is i = (10,15,2,0)7 with its objective value of jr; + 2/1> + 4/i3 + 6iy = 48
= 6(27) computed earlier from the definition of this function, verifying Result 2.3
in this example. |

If 8(X) is not convex, the optimum solution of (2.5) will not satisfy the special
property described in the proof of Result2.3.

Because of this result when 6(1) is PL convex, in minimizing a PL convex func-
tion in which 6(A) is one of the terms, we can linearize 8(A) by replacing A by
> 7_, I, where i is a new nonnegative variable corresponding to the 7th interval
in the definition of (1), bounded above by the length of this interval, and replacing
O(A) by D1y Coite

So now consider the problem

Minimize z(x) = z1(x1) + ... + 22 (xz)
subjectto Ax = b (2.6)

x >0,

where, for each j, z;(x;) is a PL convex function defined on x; > 0. Suppose the

various slopes for z; (x;) are c! < ¢2 < ... ¢/ in that order with slopes changing

J j
Sty . o .
at the values d ]1 < d]? <...d; 77 for the variable X j. Then from this discussion,

the LP formulation for (2.6) involving new variables xf fork =1tor;,j =1ton
is (here Z’]‘. =d Jk —d 5‘ ~1 = length of the kth interval in the definition of z; (x;))

Minimize Z Z Cf xf
j=lk=1
rj
subject to fo =xj, j=1ton
k=1
Ax =b 2.7)
x>0

0<xf<tf, 1<j=nlsks=sm

Example 2.4. A company makes products Py, P>, P3 using limestone (LI), elec-
tricity (EP), water (W), fuel (F), and labor (L) as inputs. Labor is measured in
man hours, other inputs in suitable units. Each input is available from one or more
sources.
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The company has its own quarry for LI, which can supply up to 250 units/day at
a cost of $20/unit. Beyond that, LI can be purchased in any amounts from an outside
supplier at $50/unit.

EP is available only from the local utility. Their charges for EP are $30/unit for
the first 1,000 units/day, $45/unit for up to an additional 500 units/day beyond the
initial 1,000 units/day, $75/unit for amounts beyond 1,500 units/day.

Up to 800 units/day of W (water) is available from the local utility at $6/unit,
beyond that they charge $7/unit of water/day.

There is a single supplier for F who can supply at most 3,000 units/day at
$40/unit, beyond that there is currently no supplier for F.

From their regular workforce they have up to 640 man hours of labor/day at
$10/man hour, beyond that they can get up to 160 man hours/day at $17/man hour
from a pool of workers.

They can sell up to 50 units of P; at $3,000/unit/day in an upscale market; beyond
that they can sell up to 50 more units/day of P; to a wholesaler at $250/unit. They
can sell up to 100 units/day of P, at $3,500/unit. They can sell any quantity of P
produced at a constant rate of $4,500/unit.

Data on the inputs needed to make the various products is given in the following
table. Formulate the product mix problem to maximize the net profit/day at this
company.

Product  Input units/unit made
LI EP W F

Py 12 3 1 1
P, 1 2 174 1
Ps 32 5 2 3

— = N

Maximizing the net profit is the same thing as minimizing its negative, which
is = (the costs of all the inputs used/day) — (sales revenue/day). We verify that each
term in this sum is a PL convex function. So, we can model this problem as an LP
in terms of variables corresponding to each interval of constant slope of each of the
input and output quantities.

Let LI, EP, W, F, L denote the quantities of the respective inputs used/day; and
Py, P, P3 denote the quantities of the respective products made and sold/day. Let
LI;, LI, denote units of limestone used daily from own quarry, outside supplier. Let
EP;, EP,, EP; denote units of electricity used/day at $30, 45, 75/unit, respectively.
Let Wy, W5 denote units of water used /day at rates of $6 and 7/unit, respectively.
Let L;, L, denote the man hours of labor used/day from regular workforce, pool,
respectively. Let P;, Py denote the units of P; sold at the upscale market, to the
wholesaler, respectively.

Then the LP model for the problem is

Minimize z = 20LI; + 50LI, + 30EP; + 45EP;, + 75EP3 + 6W + 7W, + 40F
+10L; 4 17Ly — 3,000 P;; — 250P;, — 3,500P, — 4,500P3



2.4 Optimizing PL Functions Subject to Linear Constraints 57

subject to
172)Py + P, +(32)P3; = LI
3P; + 2P, +5P3; = EP
P; + (1/4)P, +2P3 = W
Pi+P,+3P; = F
2P +P,+P; = L
LI; + LI, = LI, Wi+ W, =W
EP, + EP, + EP; = EP
Li+L, =L, P11 + P12 = Py, All variables > 0
(LI, EPy, EP>, W) < (250, 1,000, 500, 800)
(FELi,Ly) < (3,000,640, 160)
(P11, P12, P2) < (50,50, 100). m

2.4.2 Min-max, Max-min Problems

As discussed earlier, a PL convex function in variables x = (xp,..., x,,)T can be
expressed as the pointwise maximum of a finite set of affine functions. Minimizing
a function like that subject to some constraints is appropriately known as a min-max
problem.

Similarly, a PL concave function in x can be expressed as the pointwise minimum
of a finite set of affine functions. Maximizing a function like that subject to some
constraints is appropriately known as a max-min problem. Both min-max and max-
min problems can be expressed as LPs using just one additional variable, if all the
constraints are linear constraints.

If the PL convex function f(x) = maximum{c§ + c’x : ¢ = 1,...,r}, then
—f(x) = minimum{—c{—c’x : ¢t = 1,...,r}is PL concave and conversely. Using
this, any min-max problem can be posed as a max-min problem and vice versa. So,
it is sufficient to discuss max-min problems. Consider the max-min problem

Maximize z(x) = Minimum{cy + ¢'x,...,ch + c"x}
subjectto Ax = b
x > 0.

To transform this problem into an LP, introduce the new variable x, 4 to denote
the value of the objective function z(x) to be maximized. Then the equivalent LP
with additional linear constraints is

Maximize Xj,+1
subjectto xp4+1 < cé +c'x

2 2
Xn4+1 =€y +¢°X
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Xns1 S ¢f +c"x
Ax =b

x > 0.

The fact that x,4; is being maximized and the additional constraints together
imply that if (X, X,+1) is an optimum solution of this LP model, then X,y =
min{cy + ¢1X,..., ¢} + "%} = z(X), and that X, is the maximum value of z(x)
in the original max-min problem.

Example 2.5. Application of the Min-max Model in Worst Case Analysis: Con-
sider the fertilizer maker’s product mix problem with decision variables xi, x,
(hi-ph, lo-ph fertilizers to be made daily in the next period) discussed in Sect. 1.7.1
and in Example 3.4.1 of Sect. 3.4 of Murty (2005b) of Chap. 1. This company makes
hi-ph, lo-ph fertilizers using raw materials RM1, RM2, RM3 with the following data
(Table 2.1):

We discussed the case where the net profit coefficients c¢;, ¢, of these vari-
ables are estimated to be $15 and 10, respectively. In reality, the prices of fertilizers
are random variables that fluctuate daily. Because of unstable conditions and new
agricultural research announcements, suppose that market analysts have only been
able to estimate that the expected net profit coefficient vector (c1, ¢2) is likely
to be one of {(15,10), (10, 15), (12, 12)} without giving a single point estimate.
So, here we have three possible scenarios. In scenario 1, (¢, ¢3) = (15, 10), ex-
pected net profit = 15x; 4+ 10x5; in scenario 2, (c1, ¢2) = (10, 15), expected
net profit = 10x; + 15x5; and in scenario 3, (c1, ¢2) = (12, 12), expected net
profit = 12x; 4 12x,. Suppose the raw material availability data in the problem is
expected to remain unchanged. The important question is: which objective function
to optimize for determining the production plan for next period.

Regardless of which of the three possible scenarios materializes, at the worst
the minimum expected net profit of the company will be p(x) = min{l15x; +
10x,, 10x; 4 15x5, 12x + 12x,} under the production plan x = (x1, x2)7. Worst
case analysis is an approach that advocates determining the production plan to op-
timize this worst case net profit p(x) in this situation. This leads to the max-min
model:

Maximize p(x) = min{15x; + 10x;,
10x1 + 15x2, 12x1 + 12x5}

Table 2.1 Data for the fertilizer problem
Tons required to make

one ton of
Item Hi-ph Lo-ph Tons of item available daily
RM 1 2 1 1,500
RM2 1 1 1,200
RM3 1 0 500

Net profit $/ton made 15 10
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subject to 2x; + x2 < 1,500
X1 + x2 < 1,200
x1 <500
x1,x2 > 0.
Its LP formulation is
max p

subjectto p < 15x; + 10x,
p < 10x1 + 15x,
p < 12x; + 12x,

2x1 + x2 < 1,500

X1+ x2 < 1,200

x1 < 500, x1,x2 >0.

IA

|
2.4.3 Minimizing Positive Linear Combinations of Absolute
Values of Affine Functions
Letz(x) = wilcd + clx| + ... + wy|ch + ¢"x|. Consider the problem:
Minimize z(x)
subjectto Ax > b, (2.8)
where the weights wy, ..., w, are all strictly positive. In this problem the objective

function to be minimized, z(x), is a PL convex function, hence this problem can
be transformed into an LP. This is based on a result that helps to express the absolute
value as a linear function of two additional variables, which we will discuss first.

Result 2.4. Consider the affine function c’oc + c*x and its value p = c’oc + c*x ar
some point X € R". Consider the following LP in two variables u, v.

Minimize u v
subjectto u—v=_, 2.9)

u,v=>0

(2.9) has a unique optimum solution (u, v), which satisfies uv = 0, and its opti-
mum objective value u + v = || = |c10‘ + ckx).
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Proof. If B > 0, the general solution of (2.9) is («, v) = (B + «, «) for some
a > 0, the objective value of this solution, 8 + 2«, assumes its minimum value
when o = 0. So in this case (i, v) = (8, 0) satisfying uv = 0 and having optimum
objective valueof u +v = 8 = |B|.

If B < 0, the general solution of (2.9)is (u, v) = («, |B| + @) for some ¢ > 0,
the objective value of this solution, |8| 4+ 2w, assumes its minimum value when
« = 0. So in this case (u, v) = (0, |B]) satisfying uv = 0 and having optimum
objective value of u + v = |B|.

So, the result holds in all cases. O

Example 2.6. Tllustration of Result2.4: Consider problem (2.9) when 8 = —7.
The problem is

minimize u 4 v subjecttou —v = =7, u, v > 0.

The general solution of this problem is (4, v) = (¢, 7 + @) for@ > 0 with
objective value 7 + 2. So, the unique optimum solution is (u, v) = (0,7) and
u+v=7=|—7|and uv = 0. [ |

In the optimum solution (&, v) of (2.9), & is usually called the positive part of B,
and v is called the negative part of B. Notice that when f is negative, its negative
part is actually the absolute value of 8. Also, for all values of 8, at least one quantity
in the pair (positive part of 8, negative part of 8) is 0.

Commonly the positive or negative parts of 8 are denoted by symbols B+, 87,
respectively. In this notation, 8 = B+ — 8~ and |8| = BT + B~; both B, B~ are
>0, and satisfy (81)(87) = 0.

Result2.4 helps to linearize the objective function in (2.8) by introducing two
new variables for each absolute value term in it. Notice that this is only possible
when all the coefficients of the absolute value terms in the objective function in (2.8)
are positive. From this discussion we see that (2.8) is equivalent to the following LP

with two new nonnegative variables for eacht = 1tor, ut‘" = maximum {0, c(’) +
¢'x}, uy = — minimum{0, ¢} + ¢’x}. u;" is the positive part of cf + ¢'x and u;

its negative part.

Minimize wi[(u]) + @)+ ... +we[() + ()]
subjectto ¢ +clx = (uf) — (u7)

(2.10)
ch+c"x = Wh) — ()
Ax > b
wh, W) =0, t=1,...,1
If @t = @f,....af), i = (47,...,& ), %) is an optimum solution of
(2.10), then X is an optimum solution of (2.8), and c’g + kg = it,': — Uy,

ck + k2| = zft,': + it ; and the optimum objective values in (2.10) and (2.8) are
the same.
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Application of this transformation will be discussed next. This is an important
model that finds many applications.

In Model (2.10), by expressing the affine function cé + ¢!x, which may be posi-
tive or negative, as the difference u™ —u~ of two nonnegative variables; the positive
partof ¢} + ¢! x denoted by (¢§ +c'x)* = maximum{cj +c'x, 0} willbe u™, and
the negative part of ¢} 4 ¢! x denoted by (c§ +¢'x)™ = maximum{0, —(c§ +c'x)}
will be u~ as long as the condition (u™)(u~) = 0 holds. This condition will auto-
matically hold as long as:

1. The coefficients of ut, u™ are both > 0 in the objective function being minimized;
and

2. The column vectors of the pair of variables uT, u™ in the model among the constraints
(not including the sign restrictions) sum to O (or form a linearly dependent set).

A Cautionary Note 2.1: When expressing an unrestricted variable or an affine func-
tion as a difference ut — u~ of two nonnegative variables, and using ut, u as
the positive, negative parts of that unrestricted variable or affine function, or us-
ing ut + u™ as its absolute value, it is necessary to make sure that the condition
(u™)(u™) = 0 will automatically hold at very optimum solution of the model. For
this, the above two conditions must hold.

Sometimes people tend to include additional constraints involving u*, u~ with
nonzero coefficients into the model (for examples, see Model 1 below, and Model
1 for the parameter estimation problem using the L.,- measure of deviation in
Example 2.8 below). When this is done, the Condition 2 above may be violated;
this may result in the model being invalid. So, it is better to not include additional
constraints involving ut, u= into the model.

2.4.4 Minimizing the Maximum of the Absolute Values
of Several Affine Functions

Let z(x) = Maximum{|c} + ¢'x|,...,|c§ + ¢"x|}. Consider the problem

Minimize z(x)
subjectto  Ax > b. .11

In this problem the objective function to be minimized, z(x), is the pointwise
supremum of several PL convex functions, and hence is a PL convex function, hence
this problem can be transformed into an LP. Combining the ideas discussed above,
one LP model for this problem is Model 1 given below.

It can be verified that in this model the property (u?‘)(ut_) = 0 for all 7 will hold
at every optimum solution for it, so this is a valid model for the problem. But it
has one disadvantage that it uses the variables u,+ , u; representing the positive and
negative parts of c¢f, + ¢’x in additional constraints in the model (those in the first
line of constraints), with the result that the pair of column vectors of the variables
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ut, u; among the constraints no longer form a linearly dependent set, violating
Condition 2 expressed in Cautionary Note 2.1 above.

Model 1

min z
subject to zzuj'+ut_, t=1,...,r
cé—i—clx:ui"—ul_

(2.12)

J’_ —
S —u

r r —
Cop+c'x=u -

Ax > b

+ p—
w u, >0, t=1,...,r

It is possible to transform (2.11) into an LP model directly without introducing
these u,+ , u, variables at all. This leads to a better and cleaner LP model for this
problem, Model 2, with only one additional variable z.

Model 2

min z
subjectto —z < cj+c'x <z, t=1,....r
Ax > b (2.13)

z>0.

The constraints specify that z > |c6 + ¢’ x| for all ¢; and as z is minimized in
Model 2, it guarantees that if (z, X) is an optimum solution of this Model 2, then X is
an optimum solution also for (2.11), and Z is the optimum objective value in (2.11).

We will now discuss important applications of these transformations in meet-
ing multiple targets as closely as possible, and in curve fitting, and provide simple
numerical examples for each.

Example 2.7. Meeting targets as closely as possible: Consider the fertilizer
maker’s product mix problem with decision variables x;, x, (hi-ph, lo-ph fertil-
izers to be made daily in the next period) discussed in Example 3.4.1 of Sect. 3.4
of Murty (2005b) of Chap. 1 and Example2.5 above, with net profit coefficients
(c1, ¢2) = (15,10) in $/ton of hi-ph, lo-ph fertilizers made. In these exam-
ples, we considered only maximizing one objective function, the daily net profit
= 15x1 4 10x; with the profit vector given. But in real business applications, com-
panies have to pay attention to many other objective functions in order to survive
and thrive in the market place. We will consider two others.

The second objective function that we will consider is the companies total market
share, usually measured by the companies sales volume as a percentage of the sales
volume of the whole market. To keep this example simple, we will measure this by
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the total daily sales revenue of the company. The sale prices of hi-ph, lo-ph fertilizers
are $222, $107/ton, respectively, so this objective function is 222x; + 107x,.

The third objective function that we consider is the hi-tech market share, which
is the market share of the company among hi-tech products (in this case hi-ph is the
hi-tech product). This influences the public’s perception of the company as a market
leader. To keep this example simple, we will measure this by the daily sales revenue
of the company from hi-ph sales which is $222x;.

So, here we have three different objective functions to optimize simultaneously.
Problems like this are called multiobjective optimization problems. One commonly
used technique to get a good solution in these problems is to set up a target value for
each objective function (based on the companies aspirations, considering the trade-
offs between the various objective functions), and to try to find a solution as close
to each of the targets as possible. In our example, suppose that the targets selected
for daily net profit, market share, and hi-tech market share are $12,500, 200,000,
and 70,000, respectively.

In this example, we consider the situation where the company wants to attain
the target value for each objective function as closely as possible, considering both
positive and negative deviations from the targets as undesirable.

When there is more than one objective function to be optimized simultaneously,
decision makers may not consider all of them to be of the same importance. To
account for this, it is customary to specify positive weights corresponding to the
various objective functions, reflecting their importance, with the understanding that
the higher the weight the more important it is to keep the deviation in the value of
this objective function from its target small. So, this weight for an objective function
plays the role of a penalty for unit deviation in this objective value from its target.
In our example, suppose these weights for daily net profit, market share, and hi-tech
market share, are 10, 6, and 8, respectively.

After these weights are given, one strategy to solve this problem is to determine
the solution to implement to minimize the penalty function, which is the weighted
sum of absolute deviations from the targets. This problem is (constraints on the
decision variables are given in Example 2.5 above)

Minimize penalty function =10|15x; + 10x; — 12,500|

+ 6[222x1 + 107x2 — 200,000 + 8]222x; — 70,000|

subjectto 2x; + x» < 1,500
X1 + x2 < 1,200
x1 <500

x1,x2 > 0.
Linearizing this leads to the following LP:

Minimize penalty functionzlo(uir + uy) + 6(u2+ + uy) + 8(u;r + u3)
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subjectto 15x; + 10x, — 12,500 = u;r —uy
222x1 + 107x2 — 200,000 = uf — u;
222x1 — 70,000 = ui —u3

2x1 + x2 < 1,500
x1 +x2 < 1,200
x1 <500
X1, X2, btl»+, u; >0, foralli.
If " = (irf . .3‘2+’ i3), fi_ = (iil_., i, ﬁ;), X = ({Acl., {?2)) is an opti-
mum solution of this LP, then X is an optimum solution that minimizes the penalty
function. |

Example 2.8. Best L1 or L., Approximations for Parameter Estimation in
Curve Fitting Problems:

A central problem in science and technological research is to determine the op-
timum operating conditions of processes to maximize the yield from them. Let y
denote the yield from a process whose performance is influenced by n controllable
factors. Let x = (xq,... ,xn)T denote the vector of values of these factors, and
this vector characterizes how the process is run. So, here x = (xq,... ,xn)T are
the independent variables whose values the decision maker can control, and the
yield y is the dependent variable whose value depends on x. To model the problem
of determining the optimum x mathematically, it is helpful to approximate y by a
mathematical function of x, which we will denote by y(x).

The data for determining the functional form of y(x) is the yield at several points
x € R" in the feasible range. As there are usually errors in the measurement of yield,
one makes several measurement observations of the yield at each point x used in
the experiment, and takes the average of these observations as the yield value at that
point. The problem of determining the functional form of y(x) from such observed
data is known as a curve fitting problem.

For a numerical example, consider the data in the following Table 2.2 obtained
from experiments for the yield in a chemical reaction, as a function of the tempera-
ture ¢ at which the reaction takes place.

The problem in this example is to determine a mathematical function y(¢) that
fits the observed data as closely as possible.

Table 2.2 Yield at various Temperature 7 Yield, (1)

temperatures — m
=3 92

-1 96

0 98

1 100
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The commonly used strategy to solve the curve-fitting problem for the dependent
variable, yield y(x), in terms of independent variables, x = (xy, ..., x,,)T, involves
the following steps.

Step 1: Model function selection: Select a specific mathematical functional form
f(x,a) with unknown parameters say a = (aop,...,a) (these parameters are
things like coefficients of various terms, exponents, etc.) that seems to offer the
best fit for the yield y(x).

In some cases there may be well-developed mathematical theory that specifies
f(x,a) directly. If that is not the case, plots of y(x) against x can give an idea of
suitable model functions to select.

For example, if plots indicate that y(x) appears to be linear in x, then we can
select the model function to be f(x,a) = ap +a1x1 + ... + anxy, in which the
coefficients ag, ai,...,a, are the unknown parameters. This linear model function
is the most commonly used one in statistical theory, and the area of this theory that
deals with determining the best values for these parameters by the method of least
squares is called linear regression theory.

If plots indicate that y(x) appears to be quadratic in x, then the model function
touseis ) Z'}:i aijx;xj (where the coefficients a;; are the parameters). Sim-
ilarly, a cubic function in x may be considered as the model function if that appears
more appropriate.

The linear, quadratic, cubic functions in x are special cases of the general poly-
nomial function in x. Selecting a polynomial function in x as the model function
confers a special advantage for determining the best values for the unknown param-
eters because this model function is linear in these parameters.

When the number of independent variables n is not small (i.e., > 4), using a
complete polynomial function in x of degree >2 as the model function leads to
many unknown parameter values to be determined. That is why when such model
functions are used, one normally uses the practical knowledge about the problem
and the associated process to fix as many as possible of these unknown coefficients
that are known to be insignificant with reasonable certainty at O.

Polynomial functions of x of degree <3 are the most commonly used model
functions for curve-fitting. Functions outside this class are only used when there is
supporting theory that indicates that they are more appropriate.

Step 2: Selecting a measure of deviation: Let f(x,a) be the model function se-
lected to represent the yield, with a as the vector of parameters in it. Suppose the
data available consists of r observations on the yield as in the following table.

Independent vars. x! x2 ... x”

Observed yield y! y2 ... y”

Then the deviations of the model function value from the observed yield at the
data points x!,...,x" are f(x!,a) — y!, ..., f(x",a) — y". Some of these de-
viations may be >0 and some <0, but f(x,a) is considered to be a good fit for
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the yield if all these deviations are small, that is, close to 0. In this step we have to
select a single numerical measure that can check whether all these deviations are
small or not.

The most celebrated and most commonly used measure of deviation is the sum of
squared deviations, first used and developed by Carl F. Gauss, the famous nineteenth
century German mathematician. He developed this measure for approximating the
orbit of the asteroid Ceres with a second degree curve. This measure is also known
as the L,-measure (after the Euclidean or the L,-metric defined as the square root
of the sum of squares), and for our problem it is L,(a) = > ;_, (f(x*, a) — yk)2.
Determining the best values of the parameters a as those that minimizes this L,
measure L;(a) is known as the method of least squares.

Another measure of deviation that can be used is the L{-measure (also known
as the rectilinear measure); it is the sum of absolute deviations = Lj(a) = Z;,:l
| f(xF,a) = y¥.

A third measure of deviation that is used by some people is the L,-measure (also
known as the Chebyshev measure after the Russian mathematician Tschebychev
who proposed it in the nineteenth century). This measure is the maximum absolute
deviation Lo (a) = max{| f(x¥,a) — y¥|: k = 1tor}.

The L,-measure is continuously differentiable in the parameters, but the L; and
L -measures are not (they are not differentiable at points in the parameter space
where a deviation term becomes 0). That is why minimizing the L,-measure using
calculus techniques based on derivatives is easier; for this reason the method of least
squares has become a very popular method for determining the best values for the
unknown parameters to give the best fit to the observed data. Particularly, most of
statistical theory is based on the method of least squares.

As they are not differentiable at some points, minimizing the L; and Leo-
measures may be difficult in general. However, when the model function f(x, @) is
linear in the parameter vector a (this is the case when f(x,a) is a polynomial in
Xx), then determining a to minimize the L; or L,-measures can be transformed
into LPs and solved very efficiently. That is why parameter estimation to minimize
the L or Ls-measures is becoming increasingly popular when f(x,a) is linear
ina.

The parameter vector that minimizes the L,-measure is always unique, but the
problem of minimizing L; or Ls.-measures usually have alternate optima. There
are some other differences among the L,, L, Lso-measures worth noting. Many
people do not like to use the L,-measure for parameter estimation, because it de-
termines the parameter values to minimize the deviations of extreme measurements
(which are often labeled as “outliers” in statistical literature), totally ignoring all
other observations. Both L, L,-measures give equal weight to all the observations.

The L,-measure would be the preferred measure to use when f(x, @) is not lin-
ear in the parameter vector a, because it is differentiable everywhere. When f(x, a)
is linear in a, the choice between L,, L;-measures of deviation to use for param-
eter estimation is a matter for individual judgement and the availability of suitable
software for carrying out the computations required.
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Step 3: Parameter estimation: Solve the problem of determining a that minimizes
the measure of deviation selected.

The optimum solutions for the problems of minimizing L;(a), Li(a), Loo(a)
may be different. Let a denote the optimum a-vector that minimizes whichever mea-
sure of deviation has been selected for determining the best a-vector. The optimum
objective value in this problem is known as the residue. If the residue is “small, ”
f(x,a) is accepted as the functional form for y(x).

If the residue is “large, ” it is an indication that f(x,a) is not the appropriate
functional form for the yield y(x). In this case go back to Step 1 to select a better
model function for the yield, and repeat this whole process with it.

Finally, the question of how to judge whether the residue is “small” or “large”.
Statistical theory provides some tests of significance for this judgement when using
the method of least squares. These are developed under the assumption that the
observed yield follows a normal distribution. But, in general, the answer to this
question depends mostly on personal judgement.

When f(x, a) is linear in a, a necessary and sufficient condition for optimality
for the problem of minimizing L;(a) is W = 0. This is a system of linear
equations in a, which can be solved for determining the optimum solution a.

The problems of minimizing L;(a) are Loo(a) when f(x, @) linear in a can be
transformed into an LP. We will show how to do this using the example of yield
in the chemical reaction as a function of the temperature ¢ of the reaction; data for
which is given in Table 2.2 above.

Estimates of the Parameter Vector a that Minimize L;(a) : Suppose plots indi-
cate that the yield in this chemical reaction, as a function of the reaction temperature,
y(¢) can be approximated closely by a quadratic function of ¢. So we take the model
function to be f(¢t, a) = ap + ait + axt?, where a = (ag, a1, a) is the
parameter vector to be estimated.
So, f(—5, a) = ap —5a1 + 25a», hence the deviation between f(¢,a) and y(¢)
att = —5isag — 5a; + 25a, — 80. Continuing this way, we see that
La(a) = (ap—5ay +25a; —80) + (ap —3a; + 9az — 92)% + (ap —ay +ap — 96)*
+(ao — 98)* + (ao + ay + az — 100)%,
Li(a) = |(ap—5ay +25a2 —80)| + |(ap —3a1 +9a2 —92)| + |(ag — a1 +az —96)|
+|(ao — 98)| + |(ao + a1 + ax — 100)|,
Loo{(a) = max{|(ap — 5a; + 25a, — 80)|, |(ao — 3a1 + 9a» — 92)|
(a0 — a1 + az —96)|. [(ao — 98)|. [(ao + a1 + az — 100)|}.

So, the method of least squares involves finding a that minimizes L,(a). The

necessary and sufficient optimality conditions for this are % = 0, which are
5ap — 8ay + 36a, = 466,
—8ag + 36a; — 152a, = —672,

36ao — 152a; + 708a; = 3,024.
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It can be verified that this has the unique solution of a = (ag, ai, az) =
(98.6141, 1.1770, —0.4904). So the fit obtained by the method of least squares is
f(t, a) = 98.6141 + 1.1770t — 0.4904¢2, with a residue of 3.7527, in L,-measure
units.

Estimates of the Parameter Vector a that Minimize L(a) : The problem of
minimizing L (a) is the following LP:

5

Minimize Z:(ulJr +u;)

i=1

subjectto (ag — 5a; + 25a, — 80) = u1+ —uy
(a() —3a; + 9a, —92) = I/t;_ —u;
(ap —ay +az — 96) = uf —u3
(ap —98) = uj —uy
(ao + a1 + az — 100) = ud —us

uf,uy >0, foralli.

One of the optimum solutions of this problem is a = (ag, ai, az) = (98.3333,
2,—0.3333,); the fit given by this solution is f(¢, @) = 98.3333 + 2¢ — 0.3333¢2,
with a residue of 3, in L;-measure units.

Estimates of the Parameter Vector a that Minimize L, (a) : One LP model
discussed earlier for the problem of minimizing L (a) is the following:

Model 1:

Minimize z
subjectto z > (ul-Jr +u;) foralli
(ap — 5a1 + 25a — 80) = u —uy
(ap —3ay +9a; — 92) = u2+ —u,
(ap —a; +a —96) = u3+—u§
(ap —98) = ui‘ —uy
(ao + a1 +a —100) = ud —us

u;r,ul-_ > (0, foralli.

One of the optimum solutions of this model is @ = (do, ai, a») = (98.5,
1,—0.5), so the fit given by this solution is f(z, a) = 98.5+1—0.5¢2, with a residue
of 1, in Ls,-measure units. The corresponding values of positive and negative parts
of the deviations in this optimum solution are #t = (1,0,1,0.5,1) and &~ =
(0,1,0,0,0), and it can be verified that this optimum solution satisfies (u;'r)(ut_) =
0 for all 7.
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Even though this Model 1 is a perfectly valid LP model for the problem of mini-
mizing the Lo.-measure of deviation, it has the disadvantage of using the variables
u;", u; representing the positive and negative parts of deviations in additional con-
straints in the model, as explained earlier.

A more direct model for the problem of minimizing L (a) is the following
Model 2 given below. As explained earlier, Model 2 is the better model to use for
minimizing Lo (a). One of the optimum solutions for this model is the same a that
was given as the optimum solutions for Model 1, so it leads to the same fit f(z,a)
as described under Model 1.

Model 2:

Minimize z
subjectto —z < (ap —5a; + 25a, —80) <z
—z < (ap—3a;+9a, —92) <z
—z < (@p—a1+ax—96) <z
—z < (a0 —M) =<z
—z < (ao +ay +a —100) <z
z>0

All three methods, the L, L;, Lo methods lead to reasonably good fits for
the yield in this chemical reaction, so any one of these fits can be used as the func-
tional form for yield when the reaction temperature is in the range used under this
experiment. |

2.4.5 Minimizing Positive Combinations of Excesses/Shortages

In many systems, the decision makers usually set up target values for one or more
linear functions of the decision variables whose values characterize the way the
system operates. Suppose the decision variables are x = (x1,...,x,)” and a linear
function ) a;x; has a target value of b.

Targets may be set up for many such linear functions. If each of these desired
targets is included as a constraint in the model, that model may not have a feasible
solution either because there are too many constraints in it, or because some target
constraints conflict with the others. That is why in these situations one does not
normally require that the target values be met exactly. Instead, each linear function
with a target value is allowed to take any value, and a solution that minimizes a
penalty function for deviations from the targets is selected for implementation.
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For the linear function ) a;x; with target value b, the excess at the solution
point x (or the positive part of the deviation ()_ajx; — b)) denoted by (3 _a,;x; —
b)* and the shortage at x (the negative part of the deviation (3_ a ; x ; —b)) denoted
by (3 ajx; —b)™ are defined to be

if(Zajxj —b) > 0, excess (Zajxj —b)+ = (Zajxj —b),
shortage (Zajxj —b)i =0

ifZajxj —b) < 0,excess (Zajxj —b)+ =0,

shortage (Zajxj —b)7 = | (Zajxj —b) [

Therefore, both excess and shortage are always >0, and the penalty term cor-
responding to this target will be o (Y ajx; — b)+ + B(Xajx; —b) , where
o, B >0 are, respectively, the penalties per unit excess, shortage (o, B may not
be equal, in fact one of them may be positive and the other 0) set by the decision
makers.

The penalty function = sum of the penalty terms corresponding to all the targets,
by minimizing it subject to the essential constraints on the decision variables, we
can expect to get a compromise solution to the problem. If it makes the deviations
from some of the targets too large, the corresponding penalty coefficients can be
increased and the modified problem solved again. After a few iterations like this,
one usually gets a reasonable solution for the problem.

The minimum value of the penalty function is >0, and it will be 0 iff there is a
feasible solution meeting all the targets. When there is no feasible solution meeting
all the targets, the deviations from some targets will always be nonzero; minimizing
the penalty function in this case seeks a balance among the various deviations from
the targets, that is, it seeks a good compromise solution.

By expressing the deviation (ax — b), which may be positive or negative, as the
difference u™ — u~ of two nonnegative variables, the excess (ax — b)1 defined
above will be u™ and the shortage (ax — b)~ defined above will be u~ as long as
the condition («™)(u~) = 0 holds. For this, remember the precautions expressed in
the Cautionary Note 2.1 given above.

Example 2.9. We provide an example in the context of a simple transportation prob-
lem. Suppose a company makes a product at two plants P;, i = 1, 2. At plant P;,
a; (in tons) and g; (in $/ton) are the production capacity and production cost during
regular time working hours; and b; (in tons) and 4; (in $/ton) are the production
capacity and production cost during overtime working hours.

The company has dealers in three markets, M, j = 1, 2, 3 selling the product.
The selling price in different markets is different. In market M, the estimated de-
mand is d; (in tons), and up to this demand of d; tons can be sold at the selling price
of p; (in $/ton), beyond which the market is saturated. However, in each market j,
there are wholesalers who are willing to buy any excess over the demand at the price
of s; (in $/ton).
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The cost coefficient ¢;; (in $/ton) is the unit transportation cost for shipping the
product from plant i to market j. All this data is given in the following table.

cij for j = a; b; gi h;
1 2 3
1] 11 8 2 [ 900 300 100 130
7 5 4 500 200 120 160
400 500 200
Dj 150 140 135
S; 135 137 130

(SR

X

We want to formulate the problem of finding the best production, shipping plan
to maximize net profit (=sales revenue — production costs), as an LP. There is no
requirement that the amount shipped to any of the markets should equal or exceed
the demand at it, in fact any amount of the available product can be shipped to any
of the markets. Clearly the decision variables in this problem are

X;j = tons shipped from P;to M;; i=1,2; j=1,2,3
y; = tons produced in P;,i = 1,2
Vi1, Vi = tons of regular, overtime production at P;,i = 1, 2.

The essential constraints in this problem are the production capacity constraints,
these cannot be violated. They are

X11 +X12+X13 =Y1= Y+ Y2

Xo1 + X22 +X23 = Y2 = Y21 + Y22 (2.14)
0 <yi1 =<a, 0=Zy2 <D
fori =1, 2

From the production costs, we see that the slope of the production cost function
at each plant is monotonic increasing, hence it is PL convex and its negative is
PL concave. So, this negative production cost that appears as a term in the overall
objective function to be maximized can be expressed as —(g1 y11 +h1y12+g2y21+
h2y22).

The demand d; at market j is like a target value to ship to that market, but
the actual amount sent there can be anything. For each unit of excess sent over the
demand, there is a drop in the sales revenue of (p; — s;)/unit. So the total sales
revenue can be expressed as (Ziz:l Xj)pj — (21-221 xij—dj)T(pj —sj). So,our
problem is

3 2 2 +
Maximize (inj) pj— (inj —dj) (pj —Sj)

j=1| \i=1 i=1
2 3

—(g1y11 + iy + g2y21 +hayn) = DD cyx;
i=1j=1
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subject to the constraints (2.14). Putting it in minimization form and linearizing,
itis
2 3

Minimize (g1y11 + h1y12 + g2y21 + hay22) + Z Z CijXij
i=1j=1
3 2
-y [(z) Pyt (o) —s»}
=1 L\iz1

Subject to (2.14), and

2
ini =d; -|—u_,+ —u; forall j
i=1

uf, uwy >0 forall j.

2.5 Multiobjective LP Models

So far we discussed only problems in which there is a single well-defined objective
function specified to be optimized. In most real-world decision-making problems
there are usually several objective functions to be optimized simultaneously. In
many of these problems, the objective functions conflict with one another; that is,
moving in a direction that improves the value of one objective function often makes
the value of some other objective function worse. See (Charnes and Cooper (1977),
Hwang and Masud (1979), Keeney and Raiffa (1976), Sawaragi et al. (1985), Steuer
(1986)), for a discussion of multiobjective optimization.

When dealing with such a conflicting set of objective functions, even developing
a concept of optimality that every one can agree on has turned out to be very difficult.

With the result there is no universally accepted concept of optimality in multiob-
jective optimization.

Hence, all practical methods for handling multiobjective problems focus on find-
ing some type of a compromise solution.

Let x = (x1,...,x,)T denote the vector of decision variables. Let z; (x), ...,
7k (x) denote the k objective functions to be optimized simultaneously. If any one
of them is to be maximized, replace it by its negative, so all the objective functions
are to be minimized. Then this multiobjective LP is of the form

Minimize zj(x),...,z(x) simultaneously
subjectto Ax =D (2.15)
Dx > d

x > 0.
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It is possible that each objective function is measured in its own special units.
A feasible solution X to the problem is said to be a pareto optimal solution (various
other names used for the same concept are: vector minimum, nondominated solution,
equilibrium solution, efficient solution, etc.) to (2.15) if there exists no other feasible
solution x that is better than X for every objective function and strictly better for at
least one objective function; that is, if there exists no feasible solution x satisfying

zr(x) <zy(x) forallr = 1 tok ;and

7zr(x) < zr(x) for at least one r.

A feasible solution that is not a nondominated solution is called a dominated
solution to the problem. Clearly, a dominated solution is never a desirable solution
to implement, because there are other solutions better than it for every objective
function. So for a feasible solution to be a candidate to be considered for (2.15), it
must be a nondominated solution only.

Nobel Prize in This Area: The mathematical theory of nondominated solutions is very
highly developed. John Nash was awarded the /1994 Nobel Prize in economics for proving
the existence of nondominated solutions for certain types of multiobjective problems, and a
highly popular Hollywood movie “A Beautiful Life” has been made based on his life.

Very efficient algorithms have been developed for enumerating the set of all
nondominated solutions to multiobjective LPs; this set is commonly known as the
efficient frontier. However, typically there are far too many nondominated solu-
tions to multiobjective LPs, and so far no one has been able to develop a concept
for the best among them, or an efficient way to select an acceptable one. So, much
of the highly developed mathematical theory on nondominated solutions remains
unused in practice.

Example 2.10. Consider a multiobjective LP in which two objective functions
2(x) = (z1(x), z2(x)) are required to be minimized simultaneously. Suppose x
with objective values z(X) = (100, 200) and x with z(X) = (150, 180) are two non-
dominated feasible solutions for this problem. The solution X is a better solution
than x for objective function z; (x), but X is better than X for zz (x). In this pair, im-
provement in the value of z;(x) comes at the expense of deterioration in the value
of z5(x), and it is not clear which solution is better among these two. |

The question can be resolved if we can get some quantitative compromise (or
tradeoff) information between the two objectives; that is, how many units of z»(x)
are the decision makers willing to sacrifice to improve the value of z;(x) by one
unit? Unfortunately, such compromise information is not available in multiobjective
problems; that is what makes them hard to solve.

As another illustration, consider a problem in which two objective functions
71, Zp are required to be minimized simultaneously. If X is a feasible solution to
the problem with values z1, Z» for the two objective functions, we represent X by the
point (z1, z2) in the z;1, z2-plane. In Fig. 2.8, we mark the points in the z;, z>-plane
corresponding to feasible solutions of the problem. They form the dotted region in
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21

Fig. 2.8 Dotted region consists of points in the objective plane corresponding to feasible solutions.
The point z does not correspond to a pareto optimum point, since points in the cone region marked
by the angle sign, which are in the dotted area, correspond to strictly superior feasible solutions on
one or both objective functions. The thick boundary curve corresponds to the efficient frontier

the z;, z2-plane in Fig.2.8. A feasible solution corresponding to a point such as
Z = (21, z2) in the interior of the shaded region is not a pareto optimum, as feasible
solutions corresponding to points in the shaded region satisfyingz; < 21, 22 < 2
are strictly better for one or both of the objective functions. So, for this problem,
pareto optimum solutions are those corresponding to points on the thick boundary
curve in Fig. 2.8, and there are an infinite number of them.

Feasible solutions in the efficient frontier for this problem correspond to points
on the thick boundary curve in Fig. 2.8. As points representing solutions trace out
this efficient frontier, if there are gains in the value of one objective function, there
will be losses in the value of the other.

The reader should not be fooled by the word optimum in the phrase pareto opti-
mum. In a multiobjective model, a pareto optimum does not have the nice optimality
properties that we have seen in single objective models. Remember that a pareto op-
timum point is just a feasible solution with the property that any move from it, if
it leads to a gain in the value of one objective function, it also leads to a loss in
the value of another objective function. Usually there are many such points, and it
is hard to determine which efficient solution is better unless we have some idea of
how much one unit decrease in the value of z, is worth in terms of units of z;.

2.5.1 Practical Approaches for Handling Multiobjective
LPs in Current Use

As pointed out earlier, if complete compromise (or exchange, or tradeoff) informa-
tion between unit values of the various objective functions is available, it will make
it much easier to handle the multiobjective problem. Considering (2.15), suppose
the decision makers determine that c¢; (=1) units of z; (x) (in whatever units this ob-
jective function is measured in) is equivalent to (or has the same merit or value as)
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¢ units of z5(x) (in its own units), that is equivalent to c3 units of z3(x), ..., which
is also equivalent to cx units of zx(x). This vector ¢ = (c1,...,ck) gives com-
plete compromise or exchange information between the various objective functions
in this problem, and so can be called the exchange vector. As z,(x), ¢, are in the
same units, the quantity (1/c,)z,(x) is a dimensionless quantity, and we can form
the sum Zle (1/¢r)zr(x) and use it as a single objective function that measures
the value of the solution vector x. Hence, given the exchange vector ¢, the multiob-
jective problem (2.15) is equivalent to the single objective problem of minimizing
Zle (1/¢r)zr (x) subject to the constraints in (2.15).

Unfortunately, in many real-world applications, this exchange vector is not avail-
able. Usually there may be several decision makers interested in the solution of this
multiobjective problem, and each one may have a different opinion of what the value
of the exchange coefficient ¢, should be for each r. So, there is no universal agree-
ment on the exchange vector, and the challenge is to obtain a satisfactory solution
of the multiobjective problem, without explicitly using any exchange vector.

Even though the practical approaches in use for handling multiobjective prob-
lems do not mention exchange vectors directly, they get it indirectly using different
wording that the various decision makers find easier to answer.

2.5.2 Weighted Average Technique

This technique uses the tradeoff information in the form of what are called weights
measuring the relative importance of the various objective functions, and these
weights can be interpreted also as cost coefficients attached to unit values of the
various objective functions. The process of generating these weights will be easier
if all the objective functions are transformed and measured in common units, say
money units, scores, etc.

Letw = (wy, ..., wg) be the vector of weights given. From the discussion above,
forming the sum ZI,;I wrzr(x) makes sense, and this technique takes the solution
of the multiobjective LP (2.15) to be an optimum solution of the single objective LP:

Minimize z(x) = Z,’; L WrZr(x)
subjectto Ax =b (2.16)
Dx >d
x > 0.

It can be shown that if all w, > 0, then every optimum solution of (2.16) is a
nondominated solution for (2.15). So, this type of optimizing a positive weighted
combination of all the objective functions is commonly used to generate a nondom-
inated solution for the problem. But the solution obtained depends critically on the
choice of the weights wy, . .., wi used in combining the original objective functions
z1(x), ..., zx(x) into the composite objective function z(x) in (2.16).
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There may be several decision makers who have a stake in determining the
optimum solution to be selected for implementation. They may not all agree on
the choice of the weight vector to be used. It usually takes a lot of planning, discus-
sion, and negotiations, and many compromises, before a weight vector that everyone
can agree upon is arrived at. For this negotiation process, it is often helpful to solve
(2.16) with a variety of weight vectors and review the optimum solutions that come
up, before selecting one of them for implementation.

Example 2.11. Consider the fertilizer problem discussed in Example 2.7, in which
the constraints on the decision variables x;, x, = tons of hi-ph, lo-ph fertilizer
made daily are

2x1 + xp < 1,500, x1 +xp < 1,200

x1 < 500, x1, xo > 0.

For hi-ph, lo-ph, the selling prices are $222, 107/ton, respectively; and the net profit
coefficients are $15, 10, respectively. The important objectives all to be maximized
are net profit z;(x) = 15x; + 10x,, total sales revenue (used as a measure of
market share); zo(x) = 222x; + 107x,, sales revenue from hi-ph sales (used as a
measure of hi-tech market share); z3(x) = 222x;; all measured in units of Dollar.
The multiobjective problem is to maximize z;(x), z2(x), z3(x) simultaneously,
subject to the constraints on x, X, given above.

Suppose the decision makers have decided that the weights for the objective func-
tions z1 (x), z2(x), z3(x) (measuring their relative importance) are 0.5, 0.25, 0.25,
respectively. Then we take a compromise solution for this multiobjective problem
to be an optimum solution of the single objective function LP:

Maximize 0.5(15x; + 10x2) + 0.25(222x1 + 107x2) + 0.25(222x1)

subjectto 2x; +x2 < 1,500, x; +x2 < 1,200
x1 < 500, x1, x, > 0. [

2.5.3 The Goal Programming Approach

The goal programming approach is perhaps the most popular method used for
handling multiobjective problems in practice. It has the added conveniences that
different objective functions can be measured in different units, and that it is not
necessary to have all the objective functions in the same (either maximization or
minimization) form. This method developed by A. Charnes has nice features that
appeal to the intuition of business people; that is why it is the common method in
usage. Several other references on goal programming are given at the end of this
chapter (Charnes and Cooper (1977), Hwang and Masud (1979), Keeney and Raiffa
(1976), Sawaragi et al. (1985), Schniederjans (1995), Sponk (1981), Steuer 1986).
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The most appealing feature of this method is that instead of trying to optimize
each objective function, the decision maker is asked to specify a goal or target value
that realistically is the most desirable value for that function (the name of the method
comes from this feature). Considering (2.15), we will denote the goal selected for
zr(x) by g, for r = 1 to k. The decision makers are also required to specify a
unit penalty coefficient o, > 0 for each unit the value of z,(x) is in excess of the
goal g,, and a unit penalty coefficient 8, > 0 for each unit the value of z,(x) is
short of the goal g,. These penalty coefficients play the role of exchange or tradeoff
coefficients between the various objective functions discussed earlier in this method.
In terms of this goal setting, the objective functions are divided into three types:

Type 1: Those for which the higher the value the better: Each of these objective
functions should really be maximized; for each of them the goal is like a minimum
acceptable value for it. Objective values > the goal are the most desirable; those
below the goal are to be avoided as far as possible, and are penalized with positive
penalties. So, for objective functions z,(x) of this type, & = 0 and 8, > 0.

Type 2: Those for which the lower the value the better: These objective func-
tions should be minimized, for them the goal is like a maximum acceptable value.
Objective values < goal are desirable, those > the goal are penalized. So for z, (x)
of this type, & > 0and 8, = 0.

Type 3: Those for which the preferred value is the goal: For these objective
functions their goal is the most desirable value, and both deviations above or below
the goal are penalized, So, for objective functions z,(x) of this type, both o, >
0 and B, > 0.

At any feasible solution x, for r = 1 to k, we express the deviation in the rth
objective function from its goal, z, (x) — g, as a difference of two nonnegative vari-
ables

() —g =uf —uy, wf, ug >0,

where 1", u; are the positive and negative parts of the deviation z,(x) — g, as
explained earlier. That is, #,;7 = maximum{0, z,(x) — g} and ¥, = maximum
{0, —(zr (x) — gr)}-

Given this information, the goal programming approach takes the solution of the
multiobjective problem (2.15) to be a feasible solution that minimizes the penalty
function Z,’;l (aru + Bru;). So, it takes the solution for (2.15) to be an optimum

solution of the single objective LP.

k
Minimize Z(aru:r + Bru;)
r=1
subject to
() —g =uf —u;, r=1tok 2.17)

u
Ax=b, Dx >

uj', u, >0, r=1tok.
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As all o and B, > 0, and from the manner in which the values for o, §, are
selected, an optimum solution of this problem will try to meet the targets set for each
objective function or deviate from them in the desired direction as far as possible.
If the optimum solution ob